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1. Introduction

Medical Imaging plays a key role in disease management, starting from baseline
risk assessment, diagnosis, staging, therapy planning, therapy delivery, and follow-up.
Each type of disease has led to the development of more advanced imaging methods and
modalities to help clinicians address the specific challenges in analyzing the underlying
disease mechanisms. Imaging data is one of the most important sources of evidence for
clinical analysis and medical intervention as it accounts for about 90% of all healthcare data.
Researchers have been actively pursuing the development of advanced image analysis
algorithms, some of which are routinely used in clinical practice. These developments were
driven by the need for a comprehensive quantification of structure and function across
several imaging modalities such as Computed Tomography (CT), X-ray Radiography,
Magnetic Resonance Imaging (MRI), Ultrasound, Nuclear Medicine Imaging, and Digital
Pathology [1].

In the context of the availability of unprecedented data storage capacity and computa-
tional power, Deep learning has become the state-of-the-art machine learning technique,
providing unprecedented performance at learning patterns in medical images and great
promise for helping physicians during clinical decision-making processes. Previously
reported deep learning-related studies cover various types of problems, e.g., classification,
detection, segmentation, for different types of structures, e.g., landmarks, lesions, organs,
in diverse anatomical application areas [2].

The aim of this special issue is to present and highlight novel methods, architectures,
techniques, and applications of deep learning in medical imaging. Papers both from theoret-
ical and practical aspects were welcome, including ongoing research projects, experimental
results, and recent developments related to, but not limited to, the following topics: image
reconstruction; image enhancement; segmentation; registration; computer aided detection;
landmark detection; image or view recognition; automated report generation; multi-task
learning; transfer learning; generative learning; self-supervised learning; semi-supervised
learning; weakly supervised learning; unsupervised learning; federated learning; privacy
preserving learning; explainability and interpretability; robustness and out-of-distribution
detection; and uncertainty quantification.

2. The Papers

In this Special Issue, we published a total of 14 papers that span across four interesting
topics as outlined below.

2.1. Privacy-Preserving Learning

Deep Learning heavily relies on existing and forthcoming patient data to yield pre-
cise and dependable outcomes within the realm of healthcare applications. Despite the
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copiousness of biomedical data, its dissemination and retrieval are hindered by ethical
limitations, particularly concerning safeguarded health-related information pertaining to
patients. Consequently, the actualization of medical AI systems encounters challenges, as
the requisite data for their development and training are ensnared within the confines of
hospital security protocols. To engender resilient algorithms, the databases employed for
training, validation, and testing must encompass the complete spectrum of pathological
deviations and permutations. Additionally, it is imperative to leverage the entirety of
accessible information to formulate a more tailored solution. In instances where training
datasets lack heterogeneity, there is a propensity for algorithms to exhibit partiality or
inclination towards specific patient profiles [2].

In the field of privacy-preserving learning three papers are presented.
The first paper presents a novel approach for protecting sensitive data in the healthcare

setting, as nowadays the trend is to send it outside the facility for it to be processed, trained
on etc. [3]. The researchers designed the solution to make it robust against both human
perception, as well as against different software attacks such as AI reconstruction attempts.
Therefore, by using the proposed pipeline, the data will be obfuscated before leaving
the healthcare facility, and the external processing (such as training of AI models) can
be performed with a satisfactory privacy-accuracy trade-off, i.e., without a significant
drop in accuracy. The three main objectives of the paper are to hide the content from
any person viewing the images, to make it difficult for an AI to reconstruct the image, as
well as to facilitate AI model training on such data. Regarding the technical aspects, a
Variational Autoencoder (VAE) is used, trained on around 30,000 images from the Medical
MNIST dataset. The VAE has two different output channels, one based on the mean of the
normal distribution, which offers more privacy, but limits the performance in further ML
applications, and a second one which is based on the standard deviation of the normal
distribution, which trades privacy for training performance.

The second paper’s focus lies on maintaining and improving the training and pre-
diction accuracy of AI based solutions in heart disease diagnosis, while overcoming data
privacy issues [4]. The main mechanism is federated learning, which aims to keep the
data on a single device while training via a collaborative system of a shared model. The
optimizer framework–the Modified Artificial Bee Colony (M-ABC) has been chosen due to
its flexibility and user-friendliness, has less parameters than other algorithms and has a fast
convergence rate. These two methods work together, as the federated matched averaging
(FedMA) is constructing a privacy-aware framework for a global cloud model, and the
M-ABC framework serves as the feature selector on the client’s side. The pipeline was
trained on the heart disease dataset of UCI Cleveland, with 303 records and 76 attributes.

In the third paper, the same approach is used, but instead of employing the M-ABC
optimization, a hybrid M-ABC with Support Vector Machine is used [5]. The SVM is less
prone to overfitting, works well in high dimensional spaces, and has good handling of
non-linear data. Moreover, it is a suitable candidate for classifying multiple classes. The
M-ABC acts as the feature extractor and the SVM as the classification algorithm. The dataset
combines over eleven common features, such as blood pressure, cholesterol serum, sex, age
etc. from the datasets of Cleveland, Stalog, Hungary, Long Beach, and Switzerland. As far
as results are concerned, the proposed solution is both more efficient and more accurate
than the previous ones.

2.2. Image Generation

Within the domain of medical imaging, generative models pursue two primary tra-
jectories: (i) transformation from noise to image and (ii) transition between images. The
former encompasses methodologies focused on artificially augmenting the dataset, often
referred to as augmentation, by training a deep learning-grounded model to transmute a
noise vector into authentic-looking images. To illustrate, when confronted with an exten-
sive array of breast imaging data, such as mammograms, a generative model endeavors to
fabricate novel images resembling constituents of the imaging dataset. In the context of
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image-to-image generation, generative models undertake the conversion of a given input
image into an alternative representation. A diverse array of challenges within the healthcare
domain can be effectively addressed through image-to-image generative models. These
encompass tasks spanning the enhancement of image fidelity via denoising, amplification
of resolution, image inpainting, amalgamation of multi-modal images, along with image
reconstruction and alignment.

In the field of reconstruction and image generation four papers are presented. The first
one suggests employing an end-to-end deep learning network for the correction of metal
artifacts in CT images [6]. The input of the network is represented by metal-affected NMAR
sinograms, and the outputs are artifact-free reconstructed images. The architecture consists
of three parts: sinogram refinement used to filter the sinogram, back projection used to
reconstruct the image into the image domain, and image refinement used to further refine
the reconstruction. All parts are trained simultaneously and furthermore, the network
performs the complete CT image reconstruction, and does not require a predefined back
projection operator or the exact X-ray beam geometry.

A second paper in this area proposes a method to increase the field of view of intraop-
erative images obtained from Computer Tomographs [7]. This method is used as a prior
step to the registration of two volumes: thin intraoperative volume and preoperative vol-
ume. The method consists in extrapolating the thin volume by generating additional slices
from the existing ones using a GAN architecture. By enhancing the context information
required for the matching process, the results appear to be comparable to those obtained
after aligning two high-resolution images having the same field of view.

The third paper presents a transfer learning enhanced GAN technique for image
reconstruction using under-sampled MR data [8]. The model was tested on an open-source
knee dataset, and a private brain dataset with two different acceleration factors: 2 and 4.
Both datasets were divided into training and test sets. The training sets were used for
finetuning the model after transfer learning. The results indicate that the proposed model
outperforms the other reconstruction techniques for both acceleration factors, suggesting
that, by using transfer learning, the variation in image contrast, acceleration factor and
anatomy between training and test dataset is smaller. Moreover, the distribution of the
reconstructed images, produced by transfer learning is more similar to the distribution of
the completely sampled image.

The main objective of the fourth paper is OCT image enhancement through denoising
and deblurring of the image on a single step process [9]. The applied method is an
unsupervised learning technique with unpaired images and disentangled representation,
combined with a GAN architecture. The framework consists in encoders (used to extract
relevant features from the raw images: image content, image noise, blur features, and
blur-noise features), generators (used to generate from the extracted features blurred,
noisy, blurred-noisy and clean images) and discriminators (used to discriminate between
generated and real images for each feature). The obtained model was compared with
state-of-the-art methods for OCT image enhancement, which were outperformed. Also, a
quantitative comparison with state-of-the-art methods indicates that the proposed enhancer
performs better than all the other methods, with the best processing speed when the
computations were run on a GPU.

2.3. Applications–Cardiovascular Diseases

Cardiovascular ailment (CVD) poses a substantial peril to human well-being and
stands as the primary global fatality determinant [10]. The incidence of both mortality and
morbidity linked to CVD exhibits an escalating trajectory, particularly within burgeoning
territories. This malady precipitates considerable financial ramifications, approximated at
351.2 billion USD in the United States, thereby engendering persistent compromise to the
quality of life [11]. Within the European Union, the annual expenditure has been assessed
at 210 billion euros, apportioned amongst direct healthcare outlays (53%), diminished
productivity (26%), and informal caregiving for individuals afflicted with CVD (21%) [12].
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In the field of cardiovascular disease applications four papers are presented. The
first paper in this field proposes two methods for binary classifying the risk of CAD
based on the CAC (CAC > 400 represents high risk of CAD, while CAC < 400 low risk of
CAD) in diabetic patients [13]: the first method consists in employing a state-of-the-art
CNN architecture for CAD risk assessment, based on the retina images and the second
method consists in employing classical machine learning classifiers on the clinical data (age
and presence of diabetic retinopathy). The DL algorithm considered therein is a VGG16
architecture trained on ImageNet and finetuned on the available retina images. By using the
proposed methods, two protocols were established that target two specific applications. The
statistics (accuracy, precision, recall, F1 score, confusion matrix) were computed to evaluate
each method and the protocols. Results show acceptable accuracies when evaluating the
methods independently, while when combining the methods either the precision or recall
improve depending on the protocol (the protocol that is created based on the particular
needs of each application).

The second paper focuses on obtaining a smaller processing time when using a semi-
automated approach for the task of segmenting coronary artery lumen by pre-selecting
vessel locations likely to require manual inspection and editing [14]. The pre-selection step
is formulated as an Out-of-Distribution (OoD) detection problem with the task of detecting
mismatched pairs of CCTA lumen images and their corresponding lumen segmentations.
Two Normalizing Flows architectures are employed and assessed: a Glow-like baseline,
and a NF architecture which uses a novel coupling layer which exhibits an inductive bias fa-
voring the exploitation of semantical features instead of local pixel correlations. The models
were assessed on both synthetic mask perturbations and expert annotations. On synthetic
perturbations, the results indicate a better performance for the proposed model, when
compared with the baseline model. The proposed model also outperforms the baseline,
having a sensitivity for detecting faulty annotations close to inter-expert agreement.

The main objective in the third paper is to evaluate the feasibility of using neural
networks in predicting invasively measured FFR from the radius of the coronary lumen
that is extracted along the centerline of the coronary artery from OCT images [15]. Three
different approaches were used for solving this task: a regression, a classification and an
FSL (few shot learning) approach, where the task was formulated also as a classification
problem. For each approach different types of architectures were considered: ANN, CNN
and RNN. The evaluation step is performed on ensembles for each architecture type:
each proposed architecture is trained 20 times, with different random seeds, and the final
prediction is performed by the mean value (for regression)/probabilities (for classification)
of all 20 models. The FSL CNN based ensemble shows the best diagnostic performance,
while being the most robust approach by having the smallest standard deviation and
uncertainty. Moreover, compared with baseline approaches based on MLD or %DS FSL
CNN reaches improved results. Also, the authors demonstrated that the dataset size has
a significant impact on the accuracy: a linear increase in performance was observed as a
function of dataset size.

The aim of the last paper of this section is to classify fundus images into five classes of
diabetic retinopathy by using neural networks with transfer learning and data augmenta-
tion [16]. Three architectures were employed for this task: VGG19, ResNet50, DenseNet169.
All models were first finetuned on a public dataset (APTOS). Since the public dataset was
imbalanced the models were enhanced by further finetuning on the augmented public
dataset (APTOS augmented). The resulting models were tested on a blinded test dataset.
Results indicate that ResNet50 performs better than all the other models on all classes.

2.4. Applications–Other

In the last category we included three other applications based on medical imaging,
related to cancer, gastrointestinal disorders, and respectively medical report generation. In
the first paper, the authors try to optimize the radiological workload, by using the knowl-
edge graph method, a novel method that enhances search engines in general proposed by
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Google in 2012 [17]. Firstly, there is an initial knowledge association between disease labels,
that are defined as nodes. This is done in two steps, with the help of CheXpert tagger,
that classifies the reports into 14 different categories, and the SentencePiece tagger/de-
tagger tool, from which the nouns with top k occurrences are selected as additional disease
categories. Based on this, a graph convolutional neural network is used to aggregate
information between nodes, creating prior knowledge. This is done by generating a hybrid
image-text feature, with features extracted from X-ray images with the help of a CNN,
and text features extracted from the associated clinical reports using transformers. The
transformers represent a better option compared to the classic RNN approach, as radiology
reports tend to consist of longer sentences. This hybrid pair is sent through the graph
convolutional network, and the node features are split into two branches: a linear classifier
for disease classification and a generator head for the report itself. The result is fine-tuned
by re-running it through the text classifier. The results are evaluated by the quality of the
Natural Language Generation and as well as the clinical efficacy.

The second paper uses the DDSM dataset (Digital Database for Mammography Screen-
ing), with a total of 2620 films, of which 695 are normal and 1925 are abnormal, to improve
the detection of Breast Cancer, a pathology encountered worldwide, which puts at risk
many lives [18]. The employed model, unlike the classic CNN architectures such as VGG,
ResNet, MobileNet, etc. is represented by the novel CoroNet: based on the Xception
CNN architecture, which consists of a 71-layer deep CNN architecture, pretrained on an
ImageNet dataset. The key efficiency improvement of this architecture is the depth wise
separable convolution layers with residual connections, which enable a decrease in the
number of operations. Separable convolution replaces the classical n × n × k convolu-
tion with a 1 × 1 × k point-wise convolution, followed by a channel-wise n × n spatial
convolution, and the residual connections represent “skip connections” which enable the
flow of gradients without the need for non-linear functions of activation. This mitigates
the disappearing gradient issue. As per the results, this solution outperforms alternative
networks.

Finally, in the third paper, a CNN backbone, ResNet-50 pre-trained on ImageNet, is
used to extract features from static images, and a GCN (Graph Convolutional Network) is
employed for classifying the relationship between labels [19]. An LSTM architecture was
used for the temporal association between subsequent frames in the gastroscopy. Those
form the proposed GL-Net architecture, which combines the label extraction feature and
temporal correlation and dependencies, for real-time predictions in gastroscopy videos. The
dataset consists of 49 videos and after video processing and 5 Hz sampling, 23,471 training
images and 5798 test images are obtained, with multi-label annotations.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Deep learning (DL)-based algorithms have demonstrated remarkable results in potentially
improving the performance and the efficiency of healthcare applications. Since the data typically
needs to leave the healthcare facility for performing model training and inference, e.g., in a cloud
based solution, privacy concerns have been raised. As a result, the demand for privacy-preserving
techniques that enable DL model training and inference on secured data has significantly grown.
We propose an image obfuscation algorithm that combines a variational autoencoder (VAE) with
random non-bijective pixel intensity mapping to protect the content of medical images, which are
subsequently employed in the development of DL-based solutions. A binary classifier is trained on
secured coronary angiographic frames to evaluate the utility of obfuscated images in the context of
model training. Two possible attack configurations are considered to assess the security level against
artificial intelligence (AI)-based reconstruction attempts. Similarity metrics are employed to quantify
the security against human perception (structural similarity index measure and peak signal-to-noise-
ratio). Furthermore, expert readers performed a visual assessment to determine to what extent the
reconstructed images are protected against human perception. The proposed algorithm successfully
enables DL model training on obfuscated images with no significant computational overhead while
ensuring protection against human eye perception and AI-based reconstruction attacks. Regardless
of the threat actor’s prior knowledge of the target content, the coronary vessels cannot be entirely
recovered through an AI-based attack. Although a drop in accuracy can be observed when the
classifier is trained on obfuscated images, the performance is deemed satisfactory in the context of a
privacy–accuracy trade-off.

Keywords: image obfuscation; deep learning; medical imaging; privacy preserving classification

1. Introduction

In the last decade, machine learning (ML) algorithms have demonstrated remarkable
results in potentially improving the performance and the efficiency of healthcare appli-
cations. A recent study [1] provides an overview of the benefits that machine learning
brings in healthcare, including aiding doctors in their decision making, and decreasing
the cost and time it takes to reach a diagnosis. Even though such solutions allow for
better resource allocation and treatment selection, they are challenging to implement in
real-world circumstances due to several obstacles. The same study emphasizes that one of
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the most significant problems is the massive amount of high-quality data that are frequently
necessary to create and evaluate machine learning models.

A related issue is the ethical aspect of data collection, which necessitates data sourcing
for ML, to comply with personal information protection and privacy regulations [2]. The
GDPR establishes precise permission standards for data uses in Europe, whereas the
HIPAA regulates healthcare data from patient records in the United States. These laws are
considerably more challenging to fulfill when clinical users prefer to delegate ML model
development and deployment to third parties, and use them via cloud services, e.g., due to
a lack of hardware capabilities. According to a recent survey [3], the Machine Learning as a
Service (MLaaS) paradigm has appeared as a highly scalable approach for remotely running
predictive models, raising at the same time increased security and privacy concerns. The
same paper highlights that fully homomorphic encryption (HE) could be a straightforward
approach that allows a third party to process encrypted data without knowing its content.

An early effort that combined HE with neural networks, involving the communication
between the model owner and the data provider, is described in [4]. CryptoNets [5]
eliminates this interaction, but it has the drawback that the encryption technique does not
process real numbers. CryptoDL [6] approximates nonlinear functions with low-degree
polynomials to overcome model complexity restrictions. However, the use of estimated
activation functions reduces the prediction accuracy of the model. More recent studies
propose different approaches to increase the classification accuracy at the inference phase
in AI-based models employing homomorphic encryption. In [7], adopting a polynomial
approximation of Google’s Swish activation function, and applying batch normalization,
enhanced classification performance on the MNIST and CIFAR-10 datasets. Additional
optimizations are performed to reduce the consumption level. J.W. Lee et al. [8] emphasize
that the most common activation functions are non-arithmetic functions (ReLU, sigmoid,
leaky ReLU), which are not suited for homomorphic computing, because most HE schemes
only enable addition and multiplication. They evaluate these non-arithmetic functions with
adequate precision using approximation methods. In combination with multiple methods
for reducing rescaling and relinearization errors, the bootstrapping strategy enables a
deep learning model to be evaluated on encrypted data. According to the numerical
verification, the ResNet-20 model produced equivalent results on the CIFAR-10 dataset for
both encrypted and unencrypted data. The efficiency of MLaaS is drastically improved
in [9], where GPUs acceleration is used to evaluate a pre-trained CNN on encrypted images
from MNIST and CIFAR-10 datasets. None of the above-mentioned methods addresses
the training phase of models on encrypted data due to the increased number of operations
and the longer runtime, this being regarded as an open problem, especially in the case of
image-based datasets. For privacy-preserving computations within deep learning models,
we suggested a variant of a noise-free matrix-based homomorphic encryption method
(MORE [10]) in our earlier work [11]. We validated the methodology using two medical
data collections in addition to the MNIST dataset. The encryption step is employed during
both training and inference. The experiments showed that the method provides comparable
results to those obtained by unencrypted models, while having a low computational
overhead. However, the changes made to the original HE scheme to allow computations
on rational numbers come at a cost in terms of privacy, as it provides lower security than
standard schemes. This method was further used in [12] to design a cloud-based platform
for deploying ML algorithms for wearable sensor data, focused on data privacy. We have
further addressed the security compromise in [13], where we combined a HE scheme based
on modulo operations over integers [14], an encoding scheme that enables computations
on rational numbers, and a numerical optimization strategy that facilitates training with a
fixed number of operations. Nevertheless, the computational overhead introduced through
encoding and encryption represents a significant drawback of the method.

The comprehensive survey [3] includes theoretical concepts, state-of-the-art capabili-
ties, limits, and possible applications for more privacy-preserving machine learning (PPML)
solutions based on HE. An overview of techniques based on other privacy-preserving
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primitives such as multi-party computation (MPC), differential privacy (DP) and federated
learning (FL) is provided in [15]. The authors underline that a hybrid PPML system could
feasibly imply a trade-off between ML performance and computational overhead.

Another privacy-preserving approach that has received increasing interest is image
obfuscation. In the context of PPML, it entails modifying the image so that the content
becomes unintelligible while retaining the underlying information to some extent. Obfusca-
tion methods such as mosaicing, blurring and P3 are analyzed in [16]. Mosaicing is used to
alter parts of an image inside a window whose size is inversely related to obfuscated image
resolution. Blurring applies a Gaussian filter that removes details from images. Despite
the fact that mosaicing and blurring make it impossible for the human eye to detect faces
or digits in obfuscated images, the authors show that standard image recognition models
can extract useful information from the transformed data. The strategy suggested in [17]
uses Gaussian noise to obscure only a few images in the dataset (which are considered to
have a sensitive content). The authors emphasize that this method could affect the model
performance if too many frames require protection.

The obfuscation techniques described in [18] are variations on the mixup approach,
which entails creating convex combinations of pairs of samples. The proposed approaches
aim to improve the privacy of the training data, while optimizing the model accuracy
without increasing the computational cost of the training process. The presented meth-
ods are variants of the mixup technique, which entails creating convex combinations of
pairs of samples. After mixing, the newly created sample is further obfuscated through
pixel grafting, pixel shuffling, noise addition or blurring. In the same research, authors
demonstrate that metrics like SSIM (structural similarity index measure) and HaarPSI
(Haar wavelet-based perceptual similarity index), which accord with human perception
on picture degradation, may be used for privacy assessment. Two datasets that contain
images depicting animals were used to validate the methods. The results highlight that a
compromise between obfuscation and learning capabilities must always be considered. The
Google Vision AI image classifier was queried with obfuscated images, and its recognition
performance was lower than that of the human evaluators. Kim et al. [19] performed an
interesting study focused on privacy-preservation for medical image analysis. They pro-
posed a client-server system in which the client protects the patient identity by deforming
the input image using a system comprising a transformation generator, a segmentation
network, and a discriminator. The system is trained in an end-to-end adversarial manner
to solve the task of MRI brain segmentation. Being focused on enabling protection against
facial recognition, the approaches presented in [20,21] leverage generative adversarial net-
works to produce more visually pleasing outputs, while providing a solid defense against
deep learning-based recognition systems. In [21], for the analyzed scenarios, the trade-off
is formulated based on the privacy against face recognition versus the utility in terms of
face detection.

Herein, we propose an obfuscation technique that combines variational autoencoders
with non-bijective functions. The aim is to achieve a method that enables accurate model
training, while ensuring privacy against human eye perception and AI-based reconstruc-
tion attacks. The experiments are constructed to reflect the perspective of a clinical user
(e.g., hospital) in a specific use case (coronary angiography view classification), and the per-
spective of a threat actor. Because the hospital lacks the physical resources and the expertise
to develop a DL classification model, the inference is performed by a third party, which
is considered untrustworthy. In this scenario, this external party is a Machine Learning
as a Service (MLaaS) provider who can train a DL model using the clinical data, and then
make it available as a cloud service for inference. Since the patient data is considered to be
sensitive and private, every angiographic frame used for training or inference is obfuscated
to protect data privacy outside of the clinical environment. Conversely, a potential threat
actor, that could be the MLaaS provider or an interceptor, may try to acquire illegal access
to the clinical data. The considered attack strategy is based on the training of a reconstruc-
tion model on original-obfuscated pairs of samples from a public dataset. Because the
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obfuscation method is considered publicly available as a black-box tool for collaborative
purposes, any external entity can use the tool to obfuscate images and obtain a dataset of
corresponding image pairs. Two possible attack configurations are formulated. In the first
one, the threat actor knows the data source (i.e., hospital) but is unaware of its specific type
(coronary angiography, in our case), hence the training is performed on a public dataset
containing medical-related samples. Another possibility is that the attacker is a collabora-
tive hospital which knows that the target dataset consists of coronary angiographies, and
which trains the reconstruction model on its own angiographic data.

All parties other than the hospital are regarded as untrustworthy in terms of data secu-
rity, and, in consequence, every externalized angiographic frame is, in fact, an obfuscated
image. Even the rightful receiver, in this case the MLaaS provider, is not considered honest
regarding data confidentiality, which is why the proposed obfuscation method aims to be
irreversible. The goal is to protect the medical images from a highly resourceful entity (in
terms of both computer power and data), while allowing for the training of the desired
deep learning model directly on the altered images.

The remainder of the paper is organized as follows. The obfuscation techniques, as
well as the network architectures, datasets, and procedures for the suggested use case, are
presented in Section 2. Section 3 describes the experiments performed from the perspectives
of the clinical user and the threat actor, along with the findings. In Section 4, we iterate
through the unique characteristics of the proposed technique, present remarks regarding
its usefulness in deep learning-based applications, and finally draw the conclusions.

2. Methods and Materials

In the following, we propose a novel strategy that combines two obfuscation ap-
proaches to:

1. Hide the content of a sensitive image from the human eye;
2. Make AI-based image reconstruction challenging;
3. Facilitate DL model training using obfuscated images.

The first stage is to train a variational autoencoder, which uses the original (non-
obfuscated) dataset as both input and target, and provides an obfuscated counterpart for
each sample at the bottleneck. A detailed description of the VAE architecture, training and
obfuscation process is presented in Section 2.1. The next step is also described as a stand-
alone method in Section 2.2, where every pixel intensity value is randomly translated to
another intensity value in a non-bijective manner, to alter the visual information. When the
techniques are used in conjunction, the image encoded with the VAE is further obfuscated
through pixel substitution, according to a non-bijective mapping function. The entire
workflow is detailed in Section 2.3. The clinical usage scenario, the dataset, and the
architecture used to solve the classification task are presented in Section 2.4. Section 2.5
describes the procedures employed to evaluate the privacy level provided by the proposed
approach against human perception and against AI-based reconstruction attacks.

2.1. Obfuscation Method Based on a Variational Autoencoder

The Variational Autoencoder [22] considered herein is a generative model based on the
work of Kingman et al. [23]. It consists of two models that support each other: an encoder
(recognition model) and a decoder (generative model). The difference between VAEs and
other AEs is that the input is not encoded as a single point, but as a distribution over the
latent space, from which the decoder draws random samples. Due to the reparameterization
trick, which allows for backpropagation through the layers, the two components of the
VAE can be chosen to be (deep) neural networks.

The autoencoders, and by extension VAEs, generate an encoding of the inputs that
allow for an accurate reconstruction. This property also ensures that the encoding contains
useful information extracted from the input, and, hence, it can be employed in further
DL-based analysis or model training, e.g., within an obfuscation method based on VAE.
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From a probabilistic perspective, a VAE implies approximate inference in a latent
Gaussian model, where the model likelihood and the approximate posterior are param-
eterized by neural networks. The recognition model compresses the input data x into a
dimensionally reduced latent space χ, while the generative model reconstructs the data
given the hidden representation z ∈ χ. Let us denote the encoder qθ(z|x) and the decoder
pφ(x|z), where θ and φ represent the neural network parameters.

The latent variables z ∈ χ are considered to be drawn from a simple distribution:
p(z) = N (0, I), named prior (here, I denotes the identity matrix). The input data x have a
likelihood p(x|z) that is conditioned on z. As a result, a joint probability distribution over
data and latent variables can be defined:

p(x, z) = p(x|z)p(z). (1)

The aim is to calculate the posterior distribution p(z|x). This can be achieved by
applying Bayes’ rule:

p(z|x) = p(x|z)p(z)
p(x)

, (2)

where p(x) can be obtained by marginalizing out z: p(x) =
∫

p(x|z)p(z)dz. Unfortunately,
the integral is usually intractable [24]. As a consequence, an approximation of this posterior
distribution is required.

There are two main ways for posterior approximation: applying Markov Chain Monte
Carlo (MCMC) methods such as the Metropolis–Hastings algorithm [25] or Gibbs sam-
pling [26], and variational inference (VI) [27]. VAE uses the latter because the sampling
methods converge slower [28]. This approach implies approximating the posterior with
a family of Gaussian distributions qλ(z|x), where parameters λ represent the mean and
the variance of each hidden representation. As a result, the encoder parameterizes the
approximate posterior qθ(z|x, λ), taking x as input data, and parameters λ as outputs.
On the other hand, the decoder parameterizes the likelihood p(x|z), having the latent
variables as input and the parameters to distribution pφ(x|z) as output. The approximation
is penalized by computing the Kullback–Leibler (KL) divergence that measures the distance
between qθ(z|x, λ) and p(z).

Hereupon, the loss function which is minimized during training is composed of two
terms: (i) the reconstruction error between input data x and output data x′, and (ii) the KL
divergence between the approximate posterior and p(z), chosen to be a normal distribution:

Loss = L(x, x′
)
+ KL(qθ(z|x, λ)||p(z)). (3)

The first step of our method is to train a convolutional VAE on another dataset from
the same domain as the working dataset. Additionally, one of the layers is used for noise
addition. At the bottleneck, the information is divided between two channels to obtain
an encoded version of the input. Those channels correspond to the mean (channel 1) and
standard deviation (channel 2) of the normal distribution obtained from the encoder. Any
of the channels can then be used for a subsequent DL model training on obfuscated images.
From the trained VAE, only the encoder is retained as a black-box obfuscation tool. As
there is no need for a reconstruction once an image has been obfuscated, the decoder is
discarded. Figure 1 displays the workflow described for the obfuscation method based on
a VAE.

For our experiments, the VAE is trained on the Medical MNIST dataset [29]. The
dataset contains 6 classes of X-ray images, that are randomly distributed for training
(30,000 images) and validation (12,000). More details about the Medical MNIST dataset are
presented in Section 2.5.

During training, the 64 × 64 images are passed through three convolutional layers of
32, 8, and 4 filters, respectively, with a 3 × 3 receptive field. ReLU is the activation function
chosen for each layer. The architecture of the decoder consists of three convolutional, ReLU
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activated layers of 4, 8, and 32 filters, followed by one dense layer. The VAE is trained for
10 epochs.

Figure 1. Schematic representation of the obfuscation technique based on a VAE.

The trained encoder can be used for obfuscating medical images. A channel option
must be selected, depending on the desired result. The first channel, corresponding to the
mean of the normal distribution, usually assures a better privacy level than the second
channel, as it does not preserve as much detailed information from the input. This limits,
though, its usefulness in further AI-algorithms. The channel corresponding to the standard
deviation of the normal distribution tends to preserve more useful information from the
original image. As a result, it is preferred in cases where the obfuscated images would be
used in machine learning tasks. This channel, although depending on the initial structure
of the original image, may or may not ensure the imposed or desired level of privacy. For
example, in the encoding of an image with a monochromatic background, most probably
sensitive details will be visible, which could uncover the nature of the original image.
Such an example is shown in Figure 2, where the original image, representing a coronary
angiography, has an almost monochromatic background. As a result, in the image obtained
from channel 2, the main vessel can be seen.

Figure 2. Comparison between the original frame (a) and the obfuscated counterparts when channel 1
(b) and channel 2 (c) are chosen.

2.2. Obfuscation Based on Non-Bijective Pixel Intensity Shuffling

This approach starts with a simple obfuscation technique—random pixel intensity
shuffling. Every pixel intensity is randomly associated with another value from the same
interval as described by Equation (4), where range(a, b) is a function that returns all integer
numbers between a and b, including the interval’s endpoints, and shu f f le(x) is a function
that randomly interchanges the positions of the elements of a list x inside the returned
array. We call this array a map because it creates connections between each possible pixel
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intensity embodied in the list of indexes of the array and a new random value contained in
the array at the corresponding position.

intensityMap = shu f f le(range(0, 255)) (4)

This association is a bijective function because for each domain component there is
only one corresponding element in the codomain. Although this operation preserves the
underlying information of the images, while making them unrecognizable for the human
eye, the approach is still susceptible to AI-based attacks, statistical or even reverse engineer-
ing attacks. Presuming that an external party has access to the obfuscation algorithm in a
black-box form, an unlimited number of new images can be obfuscated, and a statistical
evaluation should reveal that a one-to-one mapping was used. By reversing this mapping,
a potential attacker can obtain the original images with no information loss. Training
a deep learning model to reconstruct the obfuscated images is another attack approach.
In anticipation of this kind of attack, a second step is proposed for this obfuscation method.
The bijective function is modified so that the injectivity property is lost. In other words,
multiple elements of the domain will correspond to the same element of the codomain. This
effect is achieved by applying the same mod N operation on each value of the previously
obtained map. Hence, the obfuscation method can be defined by a function f : A → B,
where A = [0, 255] and B = [0, N). When obfuscating an image, an iteration across all
pixels must be performed. In Equation (5), pv denotes the intensity of the pixel found at
the (i, j) coordinates in the image matrix.

pv = imagei,j (5)

This value is modified according to Equation (6), where the mod function represents
the typical modulo operation and the pv value is used as an index.

imagei,j = intensityMappv mod N (6)

Figure 3 synthesizes the steps proposed for this obfuscation technique. The key concept is
that applying a mod N operation limits the range of possible values to N elements. However,
this is not equivalent to filtering the highest intensities due to the previously performed random
associations. Thus, more details are preserved in images by arbitrary but consistent replacement
of 256 − N pixel intensities. Since the obfuscation function is represented by a many-to-one
mapping, the task of reconstructing unseen images becomes more complex and more uncertain,
even for an AI-based model trained on original-obfuscated image pairs.

Figure 3. Schematic representation of the obfuscation technique based on pixel intensity shuffling.
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The N value is an adjustable parameter that improves security when being set to
lower values. As a function of this parameter, the underlying information is preserved
in different degrees, presumably retaining enough details in the images for DL-based
applications. Figure 4 displays a comparison between an angiographic frame Figure 4a
and the obfuscated counterparts when bijective Figure 4b or non-bijectiveFigure 4c–e
mapping is applied. The obfuscated samples are rescaled in [0, 255] interval to allow a
better visual comparison.

Figure 4. Comparison between the original frame (a) and the obfuscated counterparts when
N = 256 (b), N = 156 (c), N = 50 (d) and N = 45 (e).

2.3. Secure Obfuscation Algorithm

As previously explained, the security of VAE obfuscation also depends on the image
itself. For images with a uniform distribution of pixel intensities, the method will not only
protect the content from the human eye perception but, due to the additional noise, also
make it more difficult for an AI-based model to reconstruct the original image. In contrast,
the human eye would be able to discern the environment from the main structures, or
even details of the structures, in a dichromatic image where two predominant intensities
describe the object and the background. The noise level can vary, but this would also affect
the utility of the image. Using a non-bijective function to substitute the intensities makes
the obfuscated images unrecognizable by the human eye. Although the modulo operation
is meant to protect against more sophisticated attacks, the success rate of an AI-based
reconstruction attack depends on the value of N. The smaller this parameter is, the more
difficult the reconstruction becomes. However, this implies a trade-off between privacy
and utility. We integrate the strengths of each method into a new obfuscation algorithm to
maximize their effectiveness. The steps are as follows, in the order in which they should
be performed :

1. The VAE model is trained on images similar to those that will be obfuscated in the
clinical use case.

2. All pixel intensities are randomly shuffled, and a modulo N operation is performed on
each resulting value leading to a non-bijective mapping between different intensities.

3. The original image is encoded using the VAE encoder.
4. Each pixel value of the encoded image is substituted with the corresponding value in

the non-bijective map.

As a result, an obfuscated image is created, which retains the original image’s under-
lying relevant information and can be used for further analysis and processing (e.g., image
classification). Regardless of the initial structure of an image, combining the techniques
improves privacy. First, the eye perception is affected by the intensity shuffling even if,
after encoding, the sensitive content is still distinguishable. Then, the protection against
AI-based reconstruction attacks is ensured by the conjunction of noise and non-bijectivity.
The entire obfuscation workflow is schematically depicted in Figure 5.

Although the underlying information of an image is preserved using this technique,
an essential requirement that must be met to use multiple images in the same application
(e.g., training a classifier on obfuscated images) is that the same encoder and the same
shuffling map should be applied on all images (both for training and inference). The
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trade-off between privacy and utility can be managed by tuning certain method-specific
parameters according to the needs of the use case. For the technique based on non-bijective
intensity mapping, the choice of parameter N may influence the image utility. Regarding
confidentiality, a higher N implies less information retained in the obfuscated image and,
thus, a more difficult to perform image reconstruction. Figure 6 displays an original
angiographic frame and the obfuscated counterparts for each obfuscation approach. The
chosen value for the modulo operator N in Figure 6c is 96. More examples are included in
Appendix A, Figure A1.

Figure 5. Schematic representation of the secure obfuscation algorithm.

Figure 6. Comparison between an original angiographic frame (a) and the obfuscated counterparts
when using (b) encoding, (c) non-bijective intensity mapping, and (d) combined algorithm.

2.4. Utility Level Evaluation

As the methods described above rely on reducing, to a certain degree, the information
from the original images, their utility after the obfuscation must be evaluated. To perform
this analysis, the same DL model is trained for multiple levels of obfuscation, including
no obfuscation. The methods presented in Sections 2.1 and 2.2 are employed separately
and in conjunction, as described in Section 2.3, to obfuscate an in-house dataset consisting
of coronary angiography frames. The same experiment is run for multiple values of N,
ranging between 1 and 255. The utility of obfuscated images is determined by comparing
the accuracy achieved on a testing dataset for different degrees of obfuscation.

The task is to train a binary classifier to distinguish between RCA and LCA views in
angiographic frames. Figure 7 depicts one sample of each category. The dataset contains
3280 coronary angiographies, balanced between the two classes. A subset of 600 images is
used for validation, and another subset of 700 images is retained for evaluation purposes.
The rest of the 1980 angiographic frames are used for training. Augmentation techniques
such as shifting, flipping, zooming and rotation are applied. The original size of the frames
is 512 × 512 pixels, but experiments with different input shapes have shown that a size of
128 × 128 ensures almost no loss in classification performance with a lower computational
time. The pixels values are normalized through min-max scaling in the [0, 1] range.
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Figure 7. RCA—right coronary artery (a) and LCA—left coronary artery (b).

The images (obfuscated or not) are passed through four convolutional layers of 16
and 32 filters with a 3 × 3 receptive field during training. The pooling layers downsample
the images by a factor of two by using the maximum value of a window. After the last
convolutional layer, a flatting layer is added to convert the features matrix into a vector. The
fully connected layers contain 512, 1024 and 2 nodes, respectively. The ReLU function is
employed as an activation function for all layers, except for the last one where the softmax
activation is used. Each convolutional layer is followed by a local normalization layer [30]
to make the model more robust to image degradation. To limit the overfitting, between 25%
and 50% of the connections of the neurons are dropped through dropout layers. Furthermore,
although the maximum number of epochs is set to 30, early stopping is employed when the
validation loss is not decreasing within 10 consecutive epochs. A learning rate scheduler is
used to achieve good convergence, starting from 1 × 10−3, and diminishing the value with
every epoch. The workflow of an inference step using the obfuscation algorithm is depicted
in Figure 8.

Figure 8. Detailed workflow of inference using the secure obfuscation algorithm.

The Keras framework [31] was used to build the convolutional neural network, and
the local normalization layer is based on [30]. The experiments were run on a computer
equipped with an Intel i7 CPU (Intel, Santa Clara, CA, USA) at 4.2 GHz, 32 GB RAM
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and an NVIDIA GeForce GTX 1050 Ti GPU (Nvidia, Santa Clara, CA, USA) with 4 GB of
dedicated memory.

2.5. Privacy Level Evaluation

To compare the degree of privacy provided by each proposed technique, we employ
similarity metrics such as SSIM and PSNR (peak signal-to-noise-ratio) assessed between
the original and the corresponding obfuscated images. As stated in [18], SSIM is an
image quality metric that can quantify image privacy. It considers perceptual phenomena
like brightness and contrast, as well as structural information changes. SSIM can take
values between 0 and 1, where 0 means no structural similarity, and 1 indicates identical
images. Therefore, lower values correspond to an increased security. PSNR is expressed
using the decibel scale, and typical values for good quality images (with a bit depth of 8)
are between 30 and 50 dB. As a result, values below the lower threshold indicate that
the image is protected against human perception. The entire testing subset owned by
the hypothetical clinical user is employed for this evaluation. The averaged results are
presented in Section 3.3.

Two possible attack configurations are considered to assess the level of security against
AI-based reconstruction. The considered scenario is that of an external party willing to
access the original data sent by the hospital or by a specific patient. The general assumption
is that the obfuscation algorithm used by the hospital is publicly available as a black-box
tool. The privacy parameter N is also presumed to be known. This means that another
clinical user or an MLaaS provider, or even an external interceptor can use the tool to
obfuscate images and obtain a dataset of corresponding image pairs. Moreover, because
the data source is known, the threat actor might guess that the dataset consists of medical
images. The workflow of an entity willing to gain unauthorized access to the data has the
following steps: obfuscating a dataset of medical images using the same obfuscation tool
as the hospital, training a deep learning model to reconstruct the original frames from the
obfuscated images, intercepting obfuscated images, and reconstructing the original images
using the previously trained model.

In the first attack configuration, the interceptor assumes that the targeted data contains
medical images, but is unaware of their type (E1); therefore, the malicious actor trains
the reconstruction model using a publicly available dataset with different medical-related
classes. In the following experiments (see Section 3.3), the reconstruction model is trained
using the Medical MNIST dataset [29]. It contains six classes of X-ray images (abdomen
CT, breast MRI, CXR, chest CT, hand radiography, head CT), each class totalling around
7000 samples. All 40,954 medical images are used for training, and the evaluation is
performed on the intercepted obfuscated dataset. The Medical MNIST images have a size
of 64 × 64 pixels, but they are resized to 128 × 128, the dimensions of the frames sent by
the hospital. Figure 9 depicts a sample of each category of the Medical MNIST dataset.

Figure 9. Medical MNIST samples: abdomen CT (a), breast MRI (b), CXR (c), chest CT (d), hand
radiography (e), head CT (f).

Another possibility is that the type of the medical images is well known, so a similar
dataset is used to train the reconstruction model (E2). For example, two clinical partners
want to create an aggregated dataset containing coronary angiographies for training a view
classification model, but they both wish to keep their data confidential. However, one of the
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partners is willing to obtain the content provided by the other. As they both use the same
obfuscation tool, the threat actor obfuscates his angiographic dataset, and uses it to train a
reconstruction model. Then, the malicious actor intercepts the obfuscated frames of the
victim, and tries to undo the obfuscation. The (in-house) dataset used in these experiments
contains 8365 angiographies (5779 LCA and 2586 RCA), all employed for training. Their
original size (512 × 512) is modified to 128 × 128.

Before training, both the inputs (obfuscated images) and the targets (original images)
are normalized through min-max scaling in the [0, 1] interval. The U-Net architecture intro-
duced in [32] is employed for reconstruction. The first half of the network, which behaves
like an encoder, consists of convolutional and pooling layers that perform downsampling.
Each decoder block combines its input with information from the corresponding encoder
block, and performs convolutional and upsampling operations. The same activation func-
tion, number of filters, kernel size, pooling window and stride as in the original paper were
used. The batch size and momentum values were set to 1 and 0.99, respectively. The model
was trained for 30 epochs with a learning rate of 0.001. The architecture was implemented
in the PyTorch framework [33], and the models were trained on a machine equipped with
128 GB RAM and NVIDIA GeForce GTX 1080 Ti GPU with 11 GB of dedicated memory.

The reconstruction network was trained on images obfuscated using the methods
described in Sections 2.1 and 2.2, and the algorithm presented in Section 2.3 for multiple
values of the parameter N. To determine the degree of similarity between the reconstructed
images and the original counterparts, SSIM and PSNR are computed across all frames sent
by the victim (the training dataset of the classifier). Considering the threshold values of
SSIM, in the results presented in Section 3.3, a lower SSIM value denotes a poor recon-
struction performance and a high privacy level. Regarding the interpretation of PSNR, in
the following experiments, values under 30 indicate inaccurate reconstruction and high
security. The scikit-image library [34] was employed for computing the similarity metrics.

Expert readers manually performed a visual assessment to determine to what extent
the reconstructed images are protected against human perception. The assessment was
performed on 50 frames (25 LCA, 25 RCA). Since in most cases the background was
reconstructed more accurately than the arteries, two separate scores were assigned for
each image. A scale from 1 to 5 was chosen, where 1 indicates that the object was not
reconstructed at all and 5 denotes a visual similarity larger than 95%. Some scoring
guidelines were formulated to limit the evaluation bias. Tables 1 and 2 synthesize the links
between scores and image descriptions.

Figures 10 and 11 display for each score an evaluation example corresponding to
the scoring guidelines. The mean scores are computed for all evaluations of all frames.
The LCA and RCA frames were also considered separately to determine if reconstruction
performs better on a specific class.

Table 1. Scoring guidelines concerning the vessels’ accurateness.

Score Vessel Tree Description

1 No vessel is visible in the image.
2 There are some fine lines in the background, but it is hard to distinguish whether they are

blood vessels or to identify the angiographic view.
3 The main vessel is visible, but there are many missing details, and additional artifacts

are present.
4 All branches are visible but not with the same clarity as in the original image. Enough

details are present to be able to distinguish the angiographic view.
5 The reconstruction is more than 95% similar to the original image. Some portions might be

unclear, or some additional artifacts might be present, but the main arteries are well visible.
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Table 2. Scoring guidelines concerning the background accurateness.

Score Background Description

1 The background is almost monochromatic.
2 The prominent shadows are vaguely captured.
3 More accurate intensities are captured, but the background is still diffused overall.
4 The background is close to the original one in shape and pixel intensities. Some diffused

areas or additional artifacts might be present.
5 The reconstructed background is more than 95% similar to the original one. The same

shapes and shadows are depicted, but might differ in pixel intensity in specific regions.

Figure 10. Examples of reconstructed angiographies and the scores assigned concerning the ves-
sels’ accurateness: (1) no visible vessels; (2–4) intermediate scores; (5) accurate vessels reconstruction.

Figure 11. Examples of reconstructed angiographies and the scores assigned concerning the back-
ground accurateness: (1) monochromatic background; (2–4) intermediate scores; (5) accurate back-
ground reconstruction.

3. Experiments and Results

3.1. Angiographic View Classification

To evaluate the utility of angiographic frames after obfuscation, we formulate four
experiments in which convolutional neural networks are trained to solve the angiographic
view classification task:

• C1—original images are used (no obfuscation);
• C2—images are obfuscated using only the VAE encoder;
• C3—images are obfuscated only through intensity substitution according to a non-

bijective map;
• C4—images are obfuscated using both methods, as described in Section 2.3.

The details regarding these experiments are presented in Section 2.4. The accuracy
obtained by the DL model for each configuration on a testing subset is reported in Table 3.

Table 3. Comparison between DL-model performance when trained on original and obfuscated
images, respectively.

C1 C2 C3 C4 [11]

Test
Accuracy 97.57% 93.71% 88.57% 82.71% 96.20%
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After altering the angiographic frames using the VAE encoder, the performance drops
by approximately 4%. The method based on a non-bijective map applied to pixel intensities
(N = 96) leads to a decrease in accuracy of 9%. Although using both techniques causes
a significant performance drop compared to the model trained on original images, the
accuracy value remains above 80% and may be considered satisfactory in the context of
a privacy--accuracy trade-off. The purpose of these experiments is not to achieve state-
of-the-art performance on obfuscated images but to compare the results when the same
architecture and different obfuscation techniques are employed.

The last column of the table displays the performance previously achieved on the
same dataset, using a different DL model and employing the MORE [10] homomorphic
encryption scheme as a privacy-preserving technique. The accuracy was identical for the
encrypted and the unencrypted model, but the computational time was around 32 times
larger when encrypted data was used. In the experiments C1–C4 both training and inference
were performed with the same runtime since the complexity of the data is not increased by
the obfuscation method. Although the MORE encryption scheme provides some advan-
tages in terms of simplicity, clarity, and practicability, when adapted for PPML its linear
structure can raise security concerns [11]. By having access to a large enough number of
pairings of encrypted and unencrypted data, and by formulating the key search attack as
an optimization problem, this linearity may allow one to find the secret key. Furthermore,
the fact that the message to be encrypted will always be found among the eigenvalues
of the ciphertext matrix is a benefit in terms of utility but also represents privacy-related
disadvantages. The obfuscation method overcomes these limitations, since it is highly
non-linear and no decryption key is involved.

The C4 experiment was run multiple times for different values of parameter N. The
results achieved on a testing subset are depicted in Figure 12. As expected, for N = 1, the
accuracy drops to 50% (random guess) because all images become monochromatic. For the
other values of N, no monotonous tendency can be observed, suggesting that even for smaller
values, enough details are preserved for the classification to be successfully performed.

Figure 12. Influence of parameter N on the test accuracy in C4 configuration experiments.

3.2. Privacy Level of Obfuscated Images

A comparison of the similarity metrics derived for all angiographic frames in the test
subset for each of the three procedures is presented in Table 4.

Table 4. Similarity between the original frames and the obfuscated images.

Encoding
Non-Bijective

Mapping
Combined
Techniques

SSIM 0.1999 0.0602 0.0512
PSNR [dB] 19.18 9.96 9.92

When employing the VAE encoder to obfuscate images, the results show low similarity
and poor quality compared to the original ones. However, applying a non-bijective random
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mapping leads to an SSIM value below 0.1, corresponding to almost no structural similarity.
The PSNR also indicates that applying non-bijective function features increases privacy.
Nevertheless, the metrics decrease even further when the methods are simultaneously
employed. Thus, the results support the initial hypothesis and motivate the usage in
conjunction with the proposed techniques.

3.3. AI-Based Reconstruction Attack

To evaluate the security of obfuscated frames against AI-based reconstruction attacks,
we formulate six experiments:

• A1—E1 attack configuration when images are obfuscated using only the VAE encoder;
• A2—E1 attack configuration when images are obfuscated using only the non-bijective

mapping;
• A3—E1 attack configuration when images are obfuscated using both encoding and

non-bijective mapping;
• A4—E2 attack configuration when images are obfuscated using only the VAE encoder;
• A5—E2 attack configuration when images are obfuscated using only the non-bijective

mapping;
• A6—E2 attack configuration when images are obfuscated using both encoding and

non-bijective mapping.

Figures 13 and 14 display an example of a reconstructed angiography for each attack
configuration. More angiographic samples and their recovered counterparts are presented
in Appendix A, Figures A2 and A3. A visual comparison provides the first intuition on
the reconstruction capabilities of the AI model in different scenarios. As expected, the
performance of the reconstruction model is improved when the training dataset is similar
to the targeted dataset, but, even so, all it can restore is the background of the angiographic
frames. Because it is typically not possible to identify a patient based on the background
of an angiography, this information is not considered sensitive. Even if the background
can be recreated through AI-based methods, the obfuscation techniques are deemed secure
against AI-based attacks as long as the object of interest (in this case, the coronary vessels)
remains unrecognizable after the reconstruction.

Figure 13. Comparison between (a) an original angiographic frame and the reconstructions obtained
with the attack configurations (b) A1, (c) A2, and (d) A3.

Figure 14. Comparison between (a) an original angiographic frame and the reconstructions obtained
with the attack configurations (b) A4, (c) A5, and (d) A6.
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For a quantitative analysis, the similarity metrics discussed in Section 2.5 are computed.
Higher scores for both SSIM and PSNR indicate better reconstructions. The average values
for each attack configuration are presented in Table 5.

Table 5. Similarity between the original frames and the reconstructed images.

Attack Configuration Experiment SSIM PSNR [dB]

E1

A1 0.6120 25.23
A2 0.3079 9.96
A3 0.5100 22.30

E2

A4 0.8173 29.54
A5 0.7593 26.91
A6 0.6855 23.63

These results support the conclusions drawn from the visual inspection. The VAE-
based technique enables a certain degree of reconstruction but applying the non-bijective
intensity mapping eliminates this shortcoming. Although for the E1 attack configuration,
the best privacy is achieved in experiment A2 (only non-bijective intensity mapping), this
result is not confirmed when a similar dataset is used for training the reconstruction model.
For the E2 setup, the results from A4, A5 and A6 experiments show that, when the methods
are used in conjunction, the quality of recreated frames is significantly affected: the vessels
are no longer visible, and the background is diffuse.

Experiments A3 and A6 were repeatedly run for different values of N. Figures 15 and 16
show how SSIM and PSNR vary as a function of parameter N for the attack configurations
E1 and E2. As expected, the reconstruction is impossible for N = 1 (all information is
removed) and is slightly better in E2 than in E1. However, there is no monotonous tendency
in any configuration. Conversely, in the case of PSNR, although the metrics for N = 1 are
higher due to the background similarity, there is an oscillating downward trend suggesting
that a smaller N implies an increased security level.

The results of the manual evaluation for all three obfuscation approaches are depicted
in Figure 17. The mean scores regarding vessels and background reconstruction quality
are displayed for each evaluator, alongside the average value. While similar scores were
attributed to both vessels and background reconstructions when only encoding was used,
for the other two obfuscation approaches, the recovered background presents a higher
quality compared to the reconstructed vessels. However, overall, we observe a decreasing
trend when comparing the three employed techniques. Even if applying the non-bijective
intensity mapping results in a significant privacy improvement, a further decrease in
reconstruction quality is noticed when the techniques are used in conjunction.

Figure 15. Influence of parameter N on SSIM in A3 (E1) and A6 (E2), respectively, configuration
experiments.
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Figure 16. Influence of parameter N on PSNR in A3 (E1) and A6 (E2), respectively, configuration
experiments.

Figure 17. Mean scores of manual evaluation for vessels (left) and background (right) reconstructions.

Table 6 presents a numerical synthesis of the results. The mean and standard deviation
of vessels and background evaluations are displayed for each obfuscation method. The
standard deviation is smaller than 1 for each evaluation case, indicating low inter-user
variability. The fact that the vessels were mainly evaluated with a score of 1 for the
combined procedures strengthens the idea that this strategy provides robust security
against recovery attempts.

Table 6. Mean scores regarding the quality of the reconstructed images.

Encoding Non-Bijective Mapping Combined Techniques

Vessels Background Vessels Background Vessels Background

Mean score 3.50 ± 0.91 4.37 ± 0.70 1.40 ± 0.51 2.97 ± 0.79 1.03 ± 0.17 1.75 ± 0.61

4. Discussion and Conclusions

4.1. Advantageous Properties and Limitations

A first key feature of the proposed obfuscation algorithm is its irreversibility. It is
impossible to undo the encoding stage, since performing the decoding without having
access to the trained decoder is impossible. Furthermore, reversing the non-bijective
mapping is also impossible since it establishes many-to-one relationships, resulting in
a large number of alternative substitutes. When the data is sensitive but the partners
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are untrustworthy, this property addresses the challenge of encryption key management
generally involved in collaborative model training. Because there is no inverse function,
this obfuscation algorithm can be used by multiple entities to create a common dataset and
train a more robust DL model without exposing the original data to each other. Even if
the receiver is considered trustworthy, the simple fact of externalizing the data exposes
it to the risk of being accessed by an unauthorized party. Thus, an essential requirement
that the approach must meet is the preservation of the image utility in the altered state.
Once this is achieved, the collaborative work can be carried out based on a zero-trust
architecture where the original data can be accessed only by authorized personnel inside
the hospital environment.

Another benefit of this strategy is that the VAE does not have to be trained on the
same or similar dataset as the one being obfuscated. Even if the encoder is not trained
on the target dataset, the underlying information is preserved, and the privacy level is
unaffected. As a result, there is no need to disclose sensitive data when training the encoder
because any publicly available dataset can be used. Furthermore, it does not need to be
trained in the clinical environment; it may be provided as a black-box tool. Furthermore,
an outside party can not exploit the decoder to reverse the encoding if it is combined with
non-bijective intensity shuffling.

The main drawback of the method is the drop in accuracy for the model that uses
obfuscated images to perform a specific task. Such solutions, particularly in the medical
domain, should provide performance comparable to that of an expert, to be adopted
in the clinical decision-making process. Thus, a path for further development of the
method would consist of integrating different strategies for enhancing the performance
and robustness of models trained on secured images. An interesting research idea in this
direction is to assess how training a DL-based model on a mixed dataset (containing both
obfuscated and non-obfuscated synthetic images) would improve the performance. The
usage of denoising modules directly in the classification network to increase accuracy
without compromising privacy should also be investigated.

Another shortcoming is the lack of a precise security level quantification that would
allow a clinical user to choose a particular algorithm configuration for a specific use case. To
achieve a rigorous separation of the privacy and accuracy levels according to the obfuscation
technique specifications, we intend to conduct within future work additional experiments
which solve other medical tasks and employ different datasets and DL solutions.

4.2. Privacy-Utility Trade-off Considerations

While parameter N influences the confidentiality level of the obfuscation method that
uses non-bijective functions, the degree of privacy provided by the VAE-based approach
is dependent on the level of noise added during encoding, and the number of channels
obtained at the bottleneck. When several channels are employed, the information is shared
between them, resulting in fewer details being preserved in one channel and in more robust
security. Furthermore, the valuable information is not evenly dispersed across the different
channels, and one may select a particular representation to fulfill a specific requirement.
Hence, the clinical user may select between different options for the trade-off between
accuracy and privacy (e.g., categorical choice: very high accuracy, high accuracy, balanced,
high privacy, very high privacy). For example, a very high privacy requirement may be
chosen if easily recognizable patient features are present in the images (MRI data [35]).

Regarding the classification accuracy, although its value is still above 80% when the ob-
fuscation approaches are combined, which is acceptable in the context of a privacy-accuracy
trade-off, there is still room for improvement. The purpose of the classification experiments
is not to achieve state-of-the-art performance on obfuscated images but to compare the
results when the same architecture and different obfuscation techniques are employed.
Because the classification task can be successfully performed even when using small values
of N, we sought to explore the existence of structural dissimilarities between the LCA and
the RCA, which could allow for a superior reconstruction for one of the classes. Figure 18
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depicts two different samples (one LCA and one RCA angiographic acquisition) and their
dichromatic obfuscated counterparts. Although assigning the proper category solely by
visually inspecting the binary images is difficult, it is clear that some characteristics are
preserved even when N = 2, which allows for a relatively accurate DL-based classification.
The scores given by the expert readers for LCA and RCA reconstructions are recorded
separately, to see if such differentiating details allow for a more qualitative recovery for
specific samples. In terms of vessel scores, there is no substantial difference between the
two categories, according to the visual inspection. However, it appears that the background
can be better reconstructed for RCA views.

Figure 18. Comparison between LCA (a) and RCA (c) samples and their obfuscated counterparts
when N = 2: LCA (b) and RCA (d).

To demonstrate that there is no statistically significant difference between the two
groups, we compute the p-value. The scores are first standardized into the t-score. The
p-value is calculated by considering a two-tailed hypothesis. A comparison between the
results obtained for the three obfuscation approaches, where the vessels and the background
are separately assessed, is presented in Table 7. As the significance level is set to 0.05 and
all computed p-values exceed this threshold, we can confirm that the difference between
reconstructed RCA and LCA frames is not statistically significant.

Table 7. Statistical significance assessment regarding the reconstruction difference between LCA and
RCA views.

Encoding Non-Bijective Mapping Combined Techniques

Vessels Background Vessels Background Vessels Background

p-value 1 0.765 0.337 0.183 0.678 0.076

4.3. Final Conclusions

In this paper, we present an obfuscation approach that protects the privacy of medical
images while allowing for DL model training. Although obfuscation techniques have been
previously researched, integrating them into medical applications might be challenging due
to the strict privacy and performance requirements. Mosaicing and blurring can be used to
make faces and digits unrecognizable to the human eye, as shown in [16]. According to
the authors, the obfuscation methods that were evaluated preserve enough information
correlated to the original images. Thus, an accurate reconstruction is possible using AI-
based models. The approaches proposed in [17] assume that only a part of the images from
the dataset contains sensitive information, and these will be obfuscated. However, this
is not the case when training models in medical DL-based applications, where the same
level of confidentiality is required for all employed data. The method also implies the risk
of affecting model accuracy if too many samples need to be secured, which again is not
acceptable in a medical application where both privacy and accuracy are crucial.

A promising technique is presented in [18], where images are obfuscated by mixing
their pixels with the pixels of another image. Other obfuscation methods were combined
with the proposed technique to enhance security, and the experiments showed that the
images are protected both from human perception and artificial recognition systems. The
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performance of models trained on obfuscated images varies with the level of privacy. The
loss in accuracy significantly increases when methods are combined, and when privacy
parameters are tuned for better security. Another aspect to consider is that the model is
trained to perform the cat vs dog classification task, hence the properties of the classes are
well defined, and there are many training samples available. However, since the differences
between images are very subtle in specific medical imaging applications, and the available
data is limited, it is unlikely that training a model on mixed images would achieve high
accuracy. In the approach presented by Kim et al. [19], the patient identity is protected by
transforming the brain MRI into a proxy image that is sent to the server for segmentation.
The altered segmentation mask is then sent to the client, who restores it to the useful
version. Compared to our method, this approach differs from the initial requirements
perspective, as it is designed to allow for an accurate reconstruction of the processed
image. To achieve this, an identity obfuscation loss and a transformation invertibility
loss based on SSIM are minimized. The mean average precision and the F1-score are
used to assess the re-identification accuracy in the case of an attacker attempting to match
an encoded image or segmentation against an existing database. In [20,21], generative
models (GANs) were used to create visually appealing images similar to the original ones
in terms of basic shape, but distinct in terms of details. Applying this method to X-ray
coronary angiographies, for example, might result in synthetic angiographic frames with
characteristics which are significantly different from those in the original images (possible
stenoses might be excluded, vessel ramifications might be modified, etc). This method is
particularly challenging to apply in personalized medicine since the details of each image
are required for a proper assessment, but the entire content is confidential. Furthermore,
unlike the techniques discussed above, GAN-based methods do not secure information
regarding the target objects or the objective of model training (in our use case, the MLaaS
provider, or an interceptor who visualizes the obfuscated images, could tell that they are
angiographic frames).

The proposed obfuscation algorithm was created with the requirements of a medical
use case in mind. Only the computational overhead associated with the obfuscation phase
is introduced. Once the data have been secured, training and inference are carried out as if
plain data were used. Because the result of the obfuscation is still an image, there is no need
for special deep learning libraries or frameworks. Although the privacy-accuracy trade-off
must be considered, applying the obfuscation algorithm on medical images successfully
hides the sensitive content from human perception and protects it against AI-based recon-
struction attacks, while allowing for DL model training with satisfactory performance.
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Abbreviations

The following abbreviations are used in this manuscript:

DL Deep Learning
VAE Variational Autoencoder
AI Artificial Intelligence
ML Machine Learning
MLaaS Machine Learning as a Service
SSIM Structural Similarity Index Measure
PSNR Peak Signal-to-Noise-Ratio
ReLU Rectified Linear Unit
LCA Left Coronary Artery
RCA Right Coronary Artery
CT Computed Tomography
MRI Magnetic Resonance Imaging
CXR Chest X-Ray
CNN Convolutional Neural Network

Appendix A

Multiple examples of angiographic frames and the corresponding obfuscated or recon-
structed counterparts are presented in this appendix.

Figure A1 displays for each original sample the obfuscated version obtained when
encoding and the non-bijective map are used independently and in conjunction. The value
of the parameter N used to attain the images displayed under (c) and (d) is 96.

Figure A2 presents reconstructed images in the E1 attack configuration, when the
malicious actor is aware that the target data are medical images but does not know their
specific type. The original angiographies are shown in the first column.

The same frames are displayed in Figure A3 along with the recovered images in the
E2 attack configuration, where the threat actor knows that the targeted dataset contains
coronary angiographies, and the reconstruction model is trained on a similar dataset.
We observe that the more knowledgable the attacker is, the better the reconstruction
performance is when only encoding is employed as a security measure. However, the
coronary vessels are difficult to recover in both attack configurations, when the second step
of the obfuscation algorithm is included.
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Figure A1. Comparison between (a) original and corresponding obfuscated angiographic frames
using (b) encoding, (c) non-bijective intensity mapping, and (d) combined algorithm.
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Figure A2. Comparison between (a) original angiographic frames and the reconstructions obtained
with the attack configurations (b) A1, (c) A2, and (d) A3.
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Figure A3. Comparison between (a) original angiographic frames and the reconstructions obtained
with the attack configurations (b) A4, (c) A5, and (d) A6.
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Abstract: Heart disease is one of the lethal diseases causing millions of fatalities every year. The
Internet of Medical Things (IoMT) based healthcare effectively enables a reduction in death rate
by early diagnosis and detection of disease. The biomedical data collected using IoMT contains
personalized information about the patient and this data has serious privacy concerns. To overcome
data privacy issues, several data protection laws are proposed internationally. These privacy laws
created a huge problem for techniques used in traditional machine learning. We propose a framework
based on federated matched averaging with a modified Artificial Bee Colony (M-ABC) optimization
algorithm to overcome privacy issues and to improve the diagnosis method for the prediction of
heart disease in this paper. The proposed technique improves the prediction accuracy, classification
error, and communication efficiency as compared to the state-of-the-art federated learning algorithms
on the real-world heart disease dataset.

Keywords: privacy aware; federated learning; healthcare; heart disease prediction; feature selection

1. Introduction

Advancement in technologies like the Internet of Things (IoT) and wearable sensing
devices enables the storage of records related to the health parameters of patients or
people. The IoT in the healthcare environment has led to a new research domain of the
Internet of Medical Things (IoMT). The IoMT-based solutions integrated with the healthcare
system can enhance care services, and quality of life, and enable cost-effective solutions [1].
Biomedical data related to people like medical records, images, physiological signals, and
many other forms are gathered using these technologies. The volume of this biomedical
data is huge as it can easily be gathered from a huge number of people using modern
technologies [2]. Wearable sensing devices, like smartwatches, wristbands, and many
others, enable early detection and warnings of several diseases. The increasing trend
in wearable devices helps in efficient data collection and the early detection of diseases.
Healthcare is a system that is formed with the intention to prevent, diagnose, and treat
various health-related problems in humans. As the advancement and development of
healthcare-related technologies take place, data in huge amounts is available from various
sources. The development of an efficient healthcare infrastructure system is one of the
challenging goals of current modern society.

One of the primary health concerns faced worldwide is cardiovascular disease. Ac-
cording to the World Health Organization (WHO), approximately 18 million deaths occur
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yearly worldwide due to heart or cardiovascular disease [3]. Heart disease or cardiovascu-
lar disease (CVD) is based on various conditions that impact the human heart. Many factors
cause heart disease including personal and functional behavior and genetic predisposition.
Numerous risk factors include smoking, excessive consumption of caffeine, and alcohol,
inactivity, stress, and physical fitness, as high blood pressure, obesity, pre-existing heart dis-
ease, and high cholesterol can also be a reason for heart disease. CVD is a serious condition
that affects the function of the heart and causes problems such as strokes and reduced blood
vessel function. Patients with heart disease do not reach the advanced stages of the disease
and it is too late for the damage to be repaired. Early and accurate treatment of heart
disease plays a significant role in avoiding death. Machine learning (ML)-based techniques
provide a way forward for effective diagnosis of heart disease. A lot of research has been
performed and various machine learning models have been used to make classifications
and predictions for diagnosing heart disease. A hybrid technique based on random forest
and a linear model is suggested in [4] to improve the prediction accuracy of heart disease.
For the identification of heart disease in the E-healthcare system and to resolve the problem
of feature selection, a system is proposed in [5] based on classification algorithms.

Machine learning (ML) models are frequently trained on sufficient user data in health-
care to track a patient’s health status. Regrettably, today’s healthcare faces two critical
challenges. For starters, real data is frequently found as isolated islands. Even though there
is a large amount of data in various organizations, sharing this data is impossible due to
concerns about privacy and security. As a result, training powerful models with valuable
data is difficult. In addition, the European Union through General Data Protection Regula-
tion (GDPR) [6], China by China through China Cyber Security Law [7], and the United
States with the California Consumer Privacy Act (CCPA) of 2018 [8], have recently enforced
the protection of user data privacy through these regulatory procedures. Therefore, it is
not possible to get huge amounts of user data in real-time healthcare applications. To over-
come these challenges, federated learning is proposed recently by Google [9,10]. Recently,
some new meta-heuristics techniques are proposed such as monarch butterfly optimization
(MBO) [11], slime mold algorithm (SMA) [12], moth search algorithm (MSA) [13], hunger
games search (HGS) [14], Runge Kutta method (RUN) [15], and Harris hawks optimization
(HHO) [16], to further minimize the fitness function by keeping the size of the population
unchanged, to improve the weight adaption rate, to enhance the local searching method, to
optimize the dynamic fitness function computation, to avoid the local optimal solutions
and increase convergence speed, and to cooperatively search for the optimal local solution,
respectively. Several security and privacy challenges in an IoT environment with their use
cases are outlined in [17,18].

The aim of federated learning is a privacy-aware collaborative learning mechanism of a
shared model by keeping the data on the device. Hence, the users of federated learning will
experience personalized machine learning and overcome privacy issues as well. Motivated
by these highlighted issues of privacy in healthcare, in this paper, we propose a federated
matched averaging with a Modified Artificial Bee Colony (M-ABC) optimization-based
framework to overcome privacy issues and to improve the diagnosis method for the
prediction of heart disease. The objective of our proposed framework is to develop an
overall privacy-aware decentralized learning method for heart disease diagnosis which
improves the feature optimization at the client end and the communication efficient global
cloud model. We chose M-ABC optimizer because it is highly flexible and user-friendly,
uses fewer control parameters than other algorithms such as genetic algorithm (GA) and
particle swarm optimization (PSO), is easily hybrid with other optimization algorithms,
and possesses strong robustness and a fast convergence rate. In addition, the M-ABC
method can also accommodate a random cost objective function. This paper’s contributions
are as follows:

• We design and propose a privacy-aware framework for the prediction of heart disease
in healthcare using an improved federated learning algorithm for cloud and user sites.
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• M-ABC optimizer is proposed at the client end for the optimal feature selection of
heart disease data. This optimizer enables improved accuracy of prediction and fewer
classification errors.

• Federated matched averaging (FedMA)-based algorithm is explored for constructing
a privacy-aware framework for a global cloud model.

• We validated and tested the proposed framework with a real-world heart disease
dataset. Evaluation of the performance of the proposed framework in terms of pre-
diction accuracy, classification error, and communication efficiency is performed with
state-of-the-art federated learning algorithms.

The rest of the paper is organized as follows. Section 2 presents the review of related
work. Section 3 explains the materials and the proposed framework. Section 4 is related to
the evaluation of performance and results. The last section, Section 5, provides a conclusion
and future work of the paper.

2. Literature Review

Privacy and security of data, and data in an isolated form are the two big challenges
faced by the current machine learning research domain. Techniques based on machine
learning require centralized training data for the model to be trained. Regulations are
put into practice for data privacy throughout the world [6–8]. Hence data privacy is a
big challenge for traditional machine learning techniques. Federated learning initially
proposed by Google, federated stochastic gradient (FedSGD), and averaging (FedAvg)
based algorithm brought a ray of hope to overcome these challenges [9]. A technique
constructed on federated learning is proposed in [10] to overcome the issue of data isolation
and privacy. They proposed a comprehensive framework based on federated learning to
tackle the issues related to data security in the traditional artificial intelligence domain.
Their proposed solution is categorized into two approaches i.e., horizontal, and vertical
federated learning.

Technical aspects such as hardware, platforms, software, protocol, enabling technolo-
gies, and other features of the data privacy of federated learning are discussed by the
authors in [19]. The authors discussed some of the optimization techniques for federated
learning in their article by highlighting their features and performance. They also outlined
some of the market implications of federated learning in order to anticipate them. Ad-
ditionally, some of the advantages, issues, and challenges which refer to the design and
deployment of federated learning are presented by the authors. In [20], the authors provide
insight into the various machine learning deployment architectures such as centralized,
distributed, and federated learning. They have outlined the evolution of machine learning
architectures with comprehensive deliberation. Moreover, application areas for federated
learning such as the IoT systems, healthcare, Gboard App, edge computing, cybersecurity,
and many others were suggested by them.

In the paper [21], the authors developed a model based on federated learning for
the prediction of hospitalization of health-related disease patients. They used electronic
health records (EHR) data distributed amongst numerous sources or agents. The authors
proposed the cluster Primal Dual Splitting (cPDS) algorithm to overcome the problem of
large-scale sparse Support Vector Machine (sSVM) using a federated learning technique.
Their proposed technique achieves analogous prediction accuracy of the classifier. Authors
in [22], tested and evaluated the three federated learning-based algorithms on the MNIST
dataset and used a Bayesian correlated t-test. According to their evaluation, FedAvg
outperforms CO-OP and FSVRG algorithms when the uploads by clients are limited to
10,000. They have used balanced data distribution in which the clients have the same
amount of data. An optimized version of FedAvg is proposed by authors in [23], in which
they intend to enhance the accuracy and convergence rate of the state-of-the-art federated
learning algorithm. They proposed the Federated Match Averaging (FedMA) algorithm
based on the layer-wise federated learning algorithm to adopt Bayesian nonparameterized
methods for heterogeneous data. Their proposed FedMA performs better than FedAvg in
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terms of convergence, and accuracy, and reduces the communication size. To optimize the
convergence speed of federated learning, the authors in [24] proposed a fast-convergent
algorithm that achieves intelligent selection of each device at every round of the training
model. Their algorithm utilizes precise and effective approximation for communication of
a near-optimal distribution of device selection to improve the convergence rate.

Authors in [25] have proposed an algorithm that assigns the weights according to the
contribution of each class to the local models. The machine learning based algorithms can
play their part in the detection of COVID-19 using a dataset of chest X-rays of the patients. A
Federated learning-based technique is proposed by the authors in [26] to detect COVID-19
cases with improved model prediction accuracy and loss as compared with the traditional
machine learning algorithms. For their work, the authors utilized two datasets which
are descriptive datasets with COVID-19-infected cases from Wuhan and patients’ chest
x-ray radiography images with COVID-19, Pneumonia, and normal images. To resolve
the issue of data privacy for the IoMT-based healthcare system, authors in [27] proposed a
blockchain-based solution using federated learning. Their proposed algorithm is a hybrid
approach based on federated learning and maximation of the Gaussian Mixture Model
(FL-EM-GMM) and uses blockchain for model verification, and homomorphic encryption
to overcome user data privacy issues. Their proposed method shows that the IoMT data
training can be completed using privacy locally to prevent data leakage.

Traditionally, the cloud/server collects sensed data from IoMT devices and then per-
forms the prediction of that sensed data. To develop a privacy-aware heart rate prediction
technique, authors in [28] proposed a Bayesian inference federated learning with autoregres-
sion with exogenous variable (ARX) model. This FedARX method accomplishes accurate
and robust heart rate prediction as compared with the traditional machine learning models.
To effectively manage and optimize the computation offloading for IoT-based applica-
tions, authors in [29] proposed a meta-heuristic Artificial Bee Colony (ABC) optimization.
Their technique intelligently manages the computation workload for resource-constrained
IoT applications. Authors in [30] proposed the ABC algorithm for the optimization of
numerical problems in a computing environment. For lightweight prediction of computa-
tional workload in an IoT-assisted Edge environment, authors in [31] proposed an artificial
neural network-based framework. Their proposed multi-objective framework enhances
workload management for computationally intensive applications. A long short-term
memory (LSTM) based prediction of computational workload technique for offloading in
IoT-assisted Mobile Edge Computing is proposed in [32]. A detailed survey of intelligent
offloading of computational workload is prepared by authors in [33]. An extensive survey
of open-source datasets for the COVID-19 disease is performed by authors in [34]. They
categorized the datasets into four classes as the identification of COVID-19 from X-ray
images, CT scans, and cough sounds, as well as transmission estimation, case reporting,
and diagnosis from demographic, epidemiological, and mobility data.

Other methods were also introduced in the literature for heart disease prediction,
such as a hybrid approach of linear discriminant analysis with the modified ant lion op-
timization for classification [35], a combination of Fuzzy logic algorithm and gradient
boosting decision tree (GBDT) [36], a technique based on modified salp swarm optimiza-
tion (MSSO) and an adaptive neuro-fuzzy inference system (ANFIS) [37], and multi-cost
objective function [38]. Heart disease monitoring and prediction based on a hybrid classifier
and deep learning centered modified neural network for IoT-assisted healthcare is pro-
posed in [39–42]. Moreover, various methods are proposed for improving the classification
error and accuracy, such as the higher-order Boltzmann-based model [43], performance
evaluation of classifiers and optimizers for heart disease prediction [44], localization using
two-stage classifiers [45], a hybrid classifier based on random forest and naïve bayes [46],
hybrid recommender system [47], based on genetic algorithm and hybrid classifiers using
the ensembled model with a majority voting technique [48], and Artificial intelligence (AI)
based heart disease detection using electrocardiogram (ECG) signals [49].
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3. Materials and Methods

A healthcare system built on the Internet of Medical Things (IoMT) makes it possible
to collect patient data in real-time for the purposes of early disease diagnosis and treatment.
Patients who are diagnosed and treated early have a lower risk of developing heart disease.
With the emerging international privacy laws like GDPR [6], China Cyber Security Law [7],
and CCPA [8], the traditional machine learning based techniques are unable to overcome
the privacy issues as they require user data to be processed for model generation and
diagnosis of disease. The IoMT-based sensing devices gather heart disease information
from the patients before and after the initiation of heart disease. When it comes to the
healthcare system, user data is impossible to share due to privacy and security issues.
A federated learning framework for heart disease prediction in the healthcare system is
proposed in this paper, which overcomes privacy issues and provides effective heart disease
prediction in a privacy-aware healthcare system. The symbols used throughout the study
are described in Table 1 below.

Table 1. Description of used symbols.

Used Symbol Description

Xni Initialization vector for client sites

Cnie Candidate solution by employed bee

Xpi Random local solution

Fn Fitness function

Cnio Onlooker bee’s candidate solution

Cnis Candidate solution of scout bee

wjl lth neuron studied on the dataset j

θi Mean Gaussian

c (wjl, θi) Similarity function

K Number of client sites listed as k

B Size of local minibatch

η Learning rate

E Number of local epochs

ωo Initial global cloud model

ωk Model of kth client

3.1. Dataset Description

We train and test our proposed framework on the heart disease dataset of UCI Cleve-
land. This dataset contains 303 records and 76 attributes. A detailed description of the
dataset is illustrated in Table 2 below. This table shows the numerous risks of heart disease,
their description, and the encoded values of these risks. The encoded values are utilized as
the input to our proposed framework.

Table 2. Detailed Description of Dataset.

S# Risk Name Description Encoded Values

1 Age Age in years >79 = 2, 61–79 = 1, 51–60 = 0, 35–50 = −1, <35 = −2

2 Sex Female and Male Female = 0, Male = 1

3 Blood pressure In mmHg
Above 139 mmHg = High = 1
120–139 mmHg = Normal = 0
Below 120 mmHg = Low = −1
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Table 2. Cont.

S# Risk Name Description Encoded Values

4 Serum cholesterol In mg/dL
>240 mg/dL = High = 1

200–239 mg/dL = Normal = 0
<200 mg/dL = Low = −1

5 Hereditary Family members diagnosed
with heart disease

Yes = 1
No = 0

6 Alcohol Yes or No Yes = 1
No = 0

7 Diabetes Yes or No Yes = 1
No = 0

8 Resting electrocardiographic Normal, ST T, or Hypertrophy
Hypertrophy = 2

ST T = 1
Normal = 0

9 Angina induced by exercise Yes or No Yes = 1
No = 0

10 Fasting blood sugar >120 mg/dL True = 1
False = 0

11 Status of heart (thallium
scan)

Reversible defect, Normal,
fixed defect Reversible defect = 7, Normal = 3, fixed defect = 6

12 Smoke Yes or No Yes = 1
No = 0

13 Diet Good, Normal, Poor Good = 1, Normal = 0, Poor = −1

14 Heart Disease Yes or No Yes = 1,
No = 0

3.2. Optimal Solution Selection Using M-ABC Algorithm for IoMT Clients

An algorithm based on swarm intelligence, known as the Modified Artificial Bee
Colony (M-ABC), has been developed and proposed in [50]. The scout bee, onlooker bee,
and employed bee all appear in the M-ABC algorithm. Scout bees are responsible for
exploring new food sources, while the onlooker bee chooses a food source based on the
dance of an employed bee. As a result, the bees employed are protected from exploitation
because they are linked to their food source. Neither the scout bees nor the onlooker bees
are associated with any particular food source. They are referred to as “unemployed bees”
as a result. The main aim of the fitness function is the optimal selection of classification
error and communication efficiency of the received models from the IoMT client sites. The
objective of the fitness function is to minimize the classification error and number of rounds
consumed to achieve higher accuracy. Algorithm 1 below presents the generalized working
of the M-ABC optimizer.

Algorithm 1: Working of Optimizer M-ABC Algorithm

1: IoMT sites initialization phase using Equation (1)
2: Do Repeat

3: Employed bees for new solution using Equation (2)
4: Onlooker bees candidate solution using Equations (3) and (4)
5: Phase of Scout bees’ candidate solution using Equation (5)
6: Memorize the best solution you came up with
7: until maximum number of cycles reached
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3.2.1. Initialization Phase

All the population of healthcare sites is initiated with vector Xni. The initialization of
IoMT client sites is done using the below Equation (1) with i ranges from 1 to NP:

Xni = li + [(rand (−1,1) + 2i − 1) * x (ui - li)]/2NP (1)

The ui and li represent the upper and lower bounds of the parameters, respectively.

3.2.2. Solution Search by Employed Bee

The employed bee scours the neighborhood for new solutions. Using this Equation (2),
a new answer can be found. The function τni produces a random number in the range of
−1 and 1, and Xpi is a local random solution. The fitness of the new candidate solution
by employed bee Cnie is calculated and in case the fitness is high then the solution is
memorized. The candidate solution using the below equation of employed bee helps in
obtaining an improved feature selection for IoMT client sites.

Cnie =

{
τni + rand

(
Xni,−Xpi

)
; if i = i’,

Xpi, if i �= i’.
(2)

3.2.3. Candidate Solution by Onlooker Bee

Employed bees share their candidate solution with onlooker bee and after that,
the onlooker bees probabilistically choose their candidate solution Cnio using the below
Equation (3). To further improve the quality of the candidate solution, the Cnio by onlooker
bee is utilized as represented by the below equation.

Cnio =
Fni (X n)

∑m
i=1(Fm)(Xn)

(3)

The fitness function Fn is computed using the below equation.

Fn =

{
1

1+Fobj
, if Fobj ≥ 0,

1 + abs(F obj), if Fobj<0.
(4)

3.2.4. Scout Bee Phase

The scout bee in M-ABC ensures that the new solution is explored, and it chooses
a candidate solution Cnis using the firefly algorithm as depicted in below Equation (5),
where Cnis0 is the initial solution. If an employed bee fails to improve its solution within a
predetermined time frame, it becomes a scout bee.

Cnis = Cnis + e−ri
2
(Cnis0 − Cnis) + (rand (0, 1) – 0.5) (5)

3.2.5. Data Collection Using IoMT Clients

The IoMT devices are initially used to collect patient health information, and the
connected devices communicate with one another when sending patient data. IoMT devices
capture medical information from the patient’s body after they are implanted, including
the heart rate, blood pressure, glucose level, cholesterol, and pulse rate. Using the proposed
M-ABC technique, these details are locally optimized within an IoMT local healthcare
site, after which the local model from each IoMT local healthcare site is transferred to the
global cloud. Patient data from the UCI repository is also used to assess the efficacy of the
proposed technique.

3.3. Design of Proposed Framework

We briefly describe our proposed system model and technique in this section. Addi-
tionally, in this section, we provide a comprehensive overview of the federated matched
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averaging (FedMA) algorithm and M-ABC-based optimization for optimal feature selection
and classification. The proposed system model is illustrated in Figure 1 below. We assume
that there are five healthcare client sites and one cloud server, this setting can be scaled up
for generalization. Our proposed framework consists of heart disease data collection de-
vices that are located inside a healthcare site. Initially, a global model is disseminated by the
global cloud towards the healthcare sites, after receiving the model from the cloud, the sites
perform feature selection and classification using an M-ABC optimizer, after that perform
training on the local data using the received model and then the healthcare sites upload
their local model updates to the cloud. On receiving multiple updates of local models, a
new global model is computed using FedMA, and this new model is then disseminated
among the healthcare sites. In this way, all the training data remains on the device and the
privacy concerns are overcome with increased prediction accuracy and less classification
errors. The working of the proposed framework is illustrated in Algorithm 2.

Figure 1. Overview of proposed framework.

FedMA calculates the Maximum Aposteriori Estimate (MAE) of a Bayesian nonpara-
metric model using the Beta Bernoulli process (BBP) using equation 6 below. The wjl be
lth neuron studied on the dataset j and c(..) be an appropriate function of similarity. In
case the client data sizes are imbalanced, then weighted averaging can be used instead
of uniform. The similarity function c (wjl, θi) is the subsequent posterior probability of jth

client neuron l generated from a Gaussian with mean θi. Due to the nonparametric aspect,
their BBP-MAP inference approach allows a number of neurons in the federated model to
mildly grow in comparison to the client model sizes. This matched averaging-based global
cloud model helps in reducing the communication size to reach the target accuracy and the
overall convergence rate of the model is also improved.

min
{π j

li } ∑
L
i=1 ∑j,l minθi π

j
li.c(w jl)s.t. ∑i π

j
li= 1∀j, l; ∑l π

j
li= 1∀ i, j (6)
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Algorithm 2: Learning method of proposed framework for healthcare. The K number of users is
listed as k, local minibatch size is shown by β, learning rate is represented by η, and local epochs
are represented using E.

Input: Data from various healthcare users {U1, U2, - - -, UN}
Output: Privacy-aware personalized model for each IoMT user ωk
// Processing at the global cloud end:

1: Initialize a global cloud model ωo
2: for every round r = 1, 2, . . . do

(i) r ← 2190 maximum of (K, 1)
(ii) St ← (r is random number of clients)
3: for every client k ε Sr do in parallel

(i)
{

∏ k
r

}
← BBP-MAP ({k, Cn, ωr})//call BBP-MAE to solve Equation (6)

(ii) ωk ← 1
K

K
∑

k=1
ωk

r ∏k
r

(iii) ωr+1 ← ∏ k
r ωk//permutate the next weights

4: Distribute ωk among all users
5: Repeat above steps with every evolving user data
// Working at Client End (k, ω):
1: for each client in k
(i) β ← (fragment each Pk to groups of β size)
(ii) Compute candidate solution Cn using M-ABC Optimizer using Equations (2), (3), and (5)
2: for every local round i = 1 . . . E do

(i) for group b ε β do

(a) ω←ω– η∇l (ω; b)
3: return ω to the cloud

The proposed framework is devised for both client and cloud ends. This proposed
framework is implemented into three stages as described below:

1. Initial Phase: Initially, all the connected IoMT healthcare sites obtain an initial global
model ωo from the cloud and are initiated with vector Xni.

2. Working at Cloud End: To retrieve the weights ωk of the federated model, the cloud
first collects only the weights from the clients and performs matched averaging. The
clients then train their local model using their local data while the matching federated
is kept frozen once the cloud broadcasts these weights to them. Then, we repeat this
process up until the final round of communication.

3. Working at IoMT Client Sites: After data collection using IoMT devices, the collected
data is fragmented into local minibatch of size β. The candidate optimal solution
Cn for each β is computed using the M-ABC optimizer and the weights of the local
computed solution from every IoMT client site are returned to the global cloud.

4. Experimental Evaluation and Results

In this section, we will discuss the simulation process of the proposed framework,
simulation environment, and experimental settings for analyzing the efficiency of the
proposed framework as a whole and contrast its performance with that of the standard
federated learning models.

4.1. Experimental Setup

To evaluate the performance of the proposed framework, we conducted the simula-
tion compromising of 4000 rounds of communication using a python environment using
PyTorch machine learning libraries on Intel ® Core ™ i7-8550 @ 4GHz system and all the
experimentation is performed in this simulated environment. Table 3 below describes the
simulation parameters and settings utilized for the experiments.
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Table 3. Simulation parameters and settings.

Parameter Value

Simulation environment Python

Dataset utilized UCI Cleveland

Number of communication rounds 4000

Local epochs {10, 20, 40, 80, 100, 120, 140, 160}

Volume of communication (in GBs) {0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6}

Number of client nodes 5

4.2. Results and Discussion

The performance of the proposed framework for heart disease in terms of prediction
accuracy, time to reach the accuracy, communication efficiency, and effect of local epoch
on accuracy are measured and compared with state-of-the-art FedSGD, FedAvg, FedMA,
and PSO optimizer with FedMA techniques. Figure 2 below shows the comparison of
convergence rate with prediction accuracy on the heart disease dataset. The proposed
framework achieves 92.89% accuracy on 3000 rounds of communication which is higher
than the state-of-the-art FL and FedMA with PSO algorithms. Because our proposed
framework utilizes the M-ABC optimizer for healthcare user sites and FedMA for the cloud
model, this enables the model to achieve better accuracy faster than existing federated
learning algorithms. In FedSGD, FedAvg, and FedMA, the cloud model tends to perform
the simple gradient, averaging, and matched averaging, respectively, but their client
model does not have any algorithm for feature selection and classification which results
in higher convergence time for the cloud model. In PSO with FedMA, the learning rate is
improved but the classification and feature selection consume higher convergence, whereas
in our proposed framework the learning rate tends to increase faster after every round as
compared with FedAvg and FedMA. Therefore, our proposed framework achieves higher
accuracy in a lesser number of rounds.

Figure 2. Comparison of communication efficiency.

We have conducted experiments on the effect of local epochs on the accuracy as
compared to state-of-the-art FedAvg and FedMA algorithms on the heart disease dataset.
We considered the local epochs E to be as {10, 20, 40, 80, 100, 120, 140, 160}. For every E, we
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evaluated the accuracy test of the proposed framework, FedAvg, and FedMA. The result
is illustrated in Figure 3 below. We observed that training our proposed framework for a
longer time favors the convergence rate because our proposed framework returns a better
global model on the local model with higher model quality as our proposed technique
utilizes a modified-ABC optimizer. For FedSGD, FedAvg and FedMA, both did not employ
any optimizer, so their accuracy tends to deteriorate as they train for a longer period but in
the case of PSO with FedMA, the accuracy remains constant after 80 local epochs which is
due to the slow convergence rate of PSO algorithm. This result depicts that user sites can
use our proposed framework to continue training their model’s local users for as long as
they wish.

Figure 3. Effect of local epoch on accuracy.

We have evaluated and compared the performance of standard FL, PSO with FedMA
and our proposed technique for the effect of prediction accuracy on the volume of commu-
nication. For this evaluation, we varied the volume of communication (in Gigabytes) as
{0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6} and recorded the prediction accuracy of each technique
as shown in Figure 4 above. It is observed from the results that the proposed technique
achieves better accuracy at both low and high volumes of communication as compared
to standard FL and PSO with FedMA. Moreover, in Figure 5 below a comparison of the
size of communication used to reach 90% prediction accuracy is illustrated. The proposed
technique uses 20% less communication size (in GB) as compared to existing federated
learning algorithms.
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Figure 4. Effect of Accuracy on Amount of Communication.

Figure 5. Comparison of communication size consumed to reach 90% prediction accuracy.

The performance metrics such as accuracy, precision, classification error, f-measure,
specificity, sensitivity, and the number of rounds consumed to reach the highest accuracy
are considered for the performance efficiency comparison of the proposed framework with
FedAvg, FedMA, and PSO with FedMA. Accuracy in the context of machine learning means
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the percentage of all available instances that make the right predictions. Precision is defined
as the percentage of correct predictions in the positive instance category. Classification
errors are defined as the inaccuracies or percentages of errors available in the case. Three
performance measurements are used to identify key features of heart disease. This helps to
understand the behavior of different groups for a better selection of features. The results of
these parameters are depicted in Tables 4 and 5. Our proposed framework achieves higher
target accuracy in a lesser number of rounds as compared to vanilla FL, and PSO with
FedMA for the heart disease dataset. As depicted in Table 4, our proposed method delivers
a 22% reduction in the number of rounds as compared to FedSGD, FedAvg, and FedMA
because the learning rate of our proposed model increases rapidly after every round which
results in a 22% less number of rounds. As in Table 5, the proposed framework achieves
better scores of prediction accuracy (92.89%), precision (94.2%), sensitivity (96.6), and
specificity (81.8) as compared to existing FL algorithms on the heart disease dataset because
the learning rate of our proposed model improves after every round of communication
with less minibatch size. Hence our proposed framework is best suited for providing
better heart disease prediction accuracy with privacy awareness as compared to existing
FL algorithms. Moreover, the classification error of our proposed method is 11.8 which
is less compared to FedAvg and FedMA due to the M-ABC optimization technique for
feature selection and classification used in our proposed framework which results in less
classification errors. The optimized features used for the M-ABC optimizer are shown in
Table 6 with the details of achieved prediction accuracy. The M-ABC optimizer had 89%
accuracy with five functions in the first experiment. Using the same dataset, the M-ABC
optimizer with six features yielded 90% accuracy, and eight features achieved 92% accuracy.

Table 4. Time to reach the accuracy of model.

Technique Accuracy after 4000 Rounds # of Rounds to Reach 90% Difference in # of Rounds

FedSGD 90 3988 –

FedAVG 90.07 3871 2.9%

FedMA 90.22 3495 12.4%

FedMA with PSO 90.38 3406 14.6%

FedMA with M-ABC (Proposed) 92.89 3018 24.3%

Table 5. Performance on full features set.

Technique Accuracy Precision
Classification

Error
F-Measure Specificity Sensitivity

FedSGD 90 89.4 22.5 85.1 28.2 83.2

FedAVG 90.07 92.3 20.4 85.8 29.5 85.3

FedMA 90.22 90.1 18.6 86.6 52.5 89.5

FedMA with PSO 90.38 92.5 15.4 86.9 63.8 89.9

FedMA with M-ABC (Proposed) 92.89 94.2 11.8 90.1 81.8 96.6

Table 6. Optimized features with M-ABC optimizer.

Optimized Feature Accuracy Achieved (in %)

Age, BP, Serum Chol., Rest ECG, Thallium Scan 89.82

Age, BP, Serum Chol., Hereditary, Rest ECG, Thallium Scan 90.72

Age, BP, Serum Chol., Hereditary, Rest ECG, Thallium Scan, Smoke, Diet 92.89
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5. Conclusions

We proposed a privacy-aware decentralized federated learning framework for effec-
tive heart disease prediction in healthcare in this paper. The proposed framework is a
hybrid method of FedMA and M-ABC optimization techniques to improve heart disease
prediction while addressing privacy concerns in a healthcare system. The primary goal
of this paper is to improve heart disease prediction accuracy as well as training time and
communication efficiency. To ensure that our proposed framework is correct and valid,
we evaluated and compared the performance in terms of various model prediction-based
parameters and communication efficiency with the baseline federated learning FedAvg,
FedMA, and with FedMA using PSO optimizer algorithms. The proposed framework indi-
cated improved performance in terms of accuracy, classification error, precision, sensitivity,
and communication efficiency. It is observed that the proposed framework provides 2.6%
higher accuracy, 7% less classification error, 1.8% more precision, 7.1% higher sensitivity,
and 12% fewer rounds are required to achieve the highest level of accuracy.

Our proposed model has some limitations, including the possibility of extending it for
scalability in terms of the number of IoMT client sites with the effect of the learning rate on
the overall model. In the future, we aim to further improve the privacy-aware healthcare
predictive system by using other feature selection algorithms and optimization methods.
The diagnosis, treatment, and control of health-related diseases is a major issue due to
privacy concerns, hence, in the future, we will work on recovery and treatment of many
other critical diseases such as breast cancer, diabetes, skin cancer, and Parkinson’s Disease.
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Abstract: One of the deadliest diseases, heart disease, claims millions of lives every year worldwide.
The biomedical data collected by health service providers (HSPs) contain private information about
the patient and are subject to general privacy concerns, and the sharing of the data is restricted under
global privacy laws. Furthermore, the sharing and collection of biomedical data have a significant
network communication cost and lead to delayed heart disease prediction. To address the training
latency, communication cost, and single point of failure, we propose a hybrid framework at the client
end of HSP consisting of modified artificial bee colony optimization with support vector machine
(MABC-SVM) for optimal feature selection and classification of heart disease. For the HSP server,
we proposed federated matched averaging to overcome privacy issues in this paper. We tested and
evaluated our proposed technique and compared it with the standard federated learning techniques
on the combined cardiovascular disease dataset. Our experimental results show that the proposed
hybrid technique improves the prediction accuracy by 1.5%, achieves 1.6% lesser classification error,
and utilizes 17.7% lesser rounds to reach the maximum accuracy.

Keywords: heart disease prediction; hybrid technique; ABC-SVM; privacy-aware machine learning;
intelligence-based healthcare

1. Introduction

The Internet of Things (IoT) enables the connectivity of physical objects and compu-
tational power so they may connect to the Internet. The IoT has the potential to assist in
the development of applications that are both adaptable and efficient across a variety of
industries, including healthcare, environmental monitoring, and industrial control sys-
tems. The IoT in the healthcare environment has led to the establishment of the Internet of
Medical Things (IoMT), a cutting-edge area of a cyber physical system for wellness and
wellbeing. Integrating these solutions into the HSP system has the potential to improve
care services, quality of life, and open the door to cost-effective solutions [1]. For further
analysis, the biomedical information pertaining to people is obtained. This information
includes medical records, photographs, physiological signals, and many more forms. Given
that the IoMT’s cyber physical system collects data from several users, the volumetric scale
of this biomedical data is enormous [2]. Smartwatches, wristbands, and other wearable
sensing devices, among others, help in early illness diagnosis and warning. These wearable
devices include strong and application-specific computational architecture that is housed
in a distant HSP cloud data center, enhancing their capabilities (for real-time and early
detection of health concerns). In IoMT-based healthcare solutions, wearable devices are
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often collected at the HSP’s data center with the goal of preventing, diagnosing, and treat-
ing a variety of human health-related issues including cardiovascular illnesses (CVD). The
construction of an effective electronic healthcare infrastructure is difficult due to the vast
number of data that are gathered from multiple sources, including end users and other
stakeholders in the delivery of health services.

According to World Health Organization (WHO) projections, CVD-related mortality
accounts for close to 18 million fatalities annually globally [3]. Numerous risk factors, such
as a history of heart attack, obesity, stress, high blood pressure, smoking, excessive use
of alcohol, and high cholesterol, can all contribute to CVD. CVD impairs heart function
and results in issues including strokes and impaired blood vessel function. The ability to
treat CVD effectively and quickly is crucial for patient survival. The academic and industry
communities are paying close attention to machine learning (ML)-based approaches for
the accurate detection and prognosis of cardiac disorders. In [4], for example, a hybrid
strategy based on a random forest and linear model was proposed to increase heart disease
prediction accuracy. Authors in [5] proposed a feature selection and classification technique
for identifying cardiac illness in an e-healthcare system.

To create an effective prediction model for tracking a patient’s health state, traditional
ML models are trained on vast amounts of user data. Although it is organized by several
autonomous HSPs, these healthcare data are available in scattered, isolated silos. Even if
there are a lot of aggregate data in different businesses, sharing the data is limited because
of worries about security and privacy. Similarly, collected user data from the crowd are too
restricted. These restrictions are enforced through regulatory laws such as the European
Union’s GDPR [6], China Cyber Security Law [7], and the United States’ CCPA of 2018 [8].
Hence, it is not trivial to accumulate large amounts of user data in real-time healthcare
applications to train powerful predictive models with high-quality training data. On the
other hand, if the collection of user data is allowed, it is still not trivial to process these
crowd-generated data, since the volume and velocity of the incoming data at the central
server of HSP put a lot of burden on the network backhaul, delimited by the processing
and storage capabilities of the central server. Indeed, with these restrictions in place, the
number of training samples would not be large enough to generalize the model, affecting
the performance of the trained model. To overcome these challenges, Google in [9,10]
proposed federated learning (FL): a combination of distributed and incremental machine
learning. FL is a distributed privacy-preserving machine learning technique that enables
the collaborative training of a shared global predictive model without the need of uploading
private local data to a central server to overcome the privacy concerns caused by centralized
machine learning.

The FL algorithm’s efficacy can be further improved by introducing feature selection at
the distributed nodes. Feature selection will improve the identification of common features
set in the sensory health data and distributed over the healthcare registries. Furthermore,
feature selection will also help in dimensionality reduction to lower the computational cost
and the model size. In this regard, recently, a feature-optimized federated learning-based
technique was proposed in [11]; they addressed the issue of dimensionality reduction and
communication efficiency for heart disease by improving the distributed nodes’ learning
technique. For the security and privacy issues in the cloud computing environment, fed-
erated learning incentive-based mechanisms were introduced in [12–14]. Recently, some
meta-heuristic techniques have been proposed to further expand the solution search space
for cloud-based healthcare systems [15,16]. These techniques also aim to minimize the
fitness (objective) function though preserve the size of the population, increase weight
adaptation rates, improve local search techniques, offer fitness function-improved com-
putation, provide solutions to avoid local minima, and enhance the convergence rate of
the algorithm.

Deep learning (DL) and SVM are both effective methods, although they are made to
address distinct challenges. While DL is better suited for big datasets with many features,
SVM works well for small to medium-sized datasets with few features. In comparison to
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DL, SVM is less prone to overfitting and is known to be successful in high-dimensional
space. SVM can be trained using various kernel functions, such as linear, polynomial, and
radial basis functions (RBF), which can help to handle non-linear data. In tabular datasets,
SVM can be used in conjunction with feature scaling, normalization, and dimensionality
reduction techniques to improve the performance. Motivated by these highlighted issues
of data privacy, improved feature selection, and classification for heart disease, in this
manuscript, we proposed a privacy-aware FL-based framework that utilizes federated
matched averaging at the HSPs’ cloud end with a hybrid technique of modified artificial
bee colony with support vector machine (MABC-SVM) for optimization for effective CVD
prediction, respectively, at the client nodes. The M-ABC at the HSP client for optimal
solution search works in four phases, i.e., the initialization phase, employed bee phase,
onlooker bee phase, and the scout bee phase. These steps are described in detail in
Section 4.1. The primary contributions of the proposal are enumerated as follows:

• An FL-based framework is proposed in this paper to overcome the problem of data
privacy for HSP systems.

• We utilize the modified version of a federated matched averaging (FedMA) algorithm
to preserve the privacy of heart disease data and to address the issues of the HSP’s
central model updation and communication efficiency.

• A hybrid technique comprised of a modified artificial bee colony and support vec-
tor machine (MABC-SVM) is proposed for the prediction of CVD with improved
prediction accuracy. This hybrid algorithm is introduced at the client end of HSP.

• Our hybrid method’s performance in terms of communication efficiency, classification
error, and prediction accuracy is assessed and compared to current FL approaches.

The rest of the paper is organized as follows. Section 2 provides context for federated
learning, the MABC method for optimum feature selection, and the SVM classification
algorithm. Section 3 is an overview of relevant work. The proposed hybrid FL-based
method is explained in Section 4. Section 5 is concerned with performance and the outcomes’
evaluation. The conclusion and future work are presented in Section 6.

2. Background

In this section, we provide a brief overview of the methodologies that were used
to build the FedMA with MABC-RB-SVM framework for privacy-aware heart disease
prediction.

2.1. Basics of Federated Learning

To train a model, one needs access to data, which is the core of the area of artificial
intelligence, and it frequently occurs in isolated data islands. The problem of isolated data
silos is easily resolved by centralizing data processing. As international privacy protection
laws for users strengthen, data collection for training models becomes more challenging.
The issue of how to legally address data islands has sparked considerable discussion and
research in the field of artificial intelligence. Traditional data analytics approaches are
already at capacity due to the many rules that must be adhered to while attempting to
address the data silo problem.

By jointly training algorithms without transferring the data, federated learning is a
learning paradigm that aims to overcome the issues of data governance and privacy. While
data are stored locally, federated learning trains statistical models across data silos. By
retaining the data on the device, FL aims to provide a collaborative learning process that
is privacy conscious and uses a shared model. As a result, users of FL will benefit from
individualized machine learning that also addresses privacy concerns.

2.2. M-ABC-Based Optimization Algorithm

The modified artificial bee colony (M-ABC), a swarm intelligence-based technique, was
proposed in [17]. The M-ABC is the upgraded version of artificial bee colony optimization,
which is a method that mimics the intelligent foraging behavior of honeybee colonies to
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find the best solution to a problem. It simulates the bees’ actions while they search for
nectar, and keeps a group of potential answers, referred to as “bees”, that explore the
possible solutions and adjust their positions based on the quality of their findings. This
method is particularly effective for solving complex optimization issues that are hard to
resolve with traditional optimization methods. This M-ABC algorithm has three types
of artificial bees such as onlooker, employed, and scout bee. While onlooker bees pick a
source constructed on the employed bee’s dance, scout bees oversee discovering new food
sources. As a result of being connected to their food supply, the employed bees are shielded
against exploitation. The observer bees and the scout bees are not connected to any food
source. The primary goals of the fitness function are the best possible classification error
and communication effectiveness of the models that are obtained from HSP sites. In order
to increase accuracy, the fitness function seeks to reduce classification errors and round
consumption.

In the M-ABC, the scout bee is combined with the firefly algorithm, and the modified
technique is a combination of two different metaheuristic optimization techniques, namely,
the artificial bee colony (ABC) and the firefly algorithm. The ABC algorithm generates
a population of potential solutions, and the firefly algorithm improves the solutions by
simulating the flashing behavior of fireflies. This hybrid algorithm is known for its global
optimization abilities and has been applied to various optimization problems, showing
better results than the original ABC or firefly algorithm alone. It is useful for solving
complex optimization problems that are difficult to solve with traditional techniques.

2.3. SVM Classification Technique

The support vector machine (SVM) is widely used in intelligence-based systems for
classification problems. The fundamental principle of the SVM classification algorithm is
to discover the negative samples and the optimal selection for dividing positive samples.
To attain the best generalization ability while remaining resistant to overfitting, the SVM
attempts to determine the trade-off between lowering the training set error and maximizing
the margin [18]. In addition, one of the best things about the SVM is that it uses convex
quadratic programming, which gives only global minima and keeps the program from
getting stuck in local minima.

The data are converted using a method called kernel trick using the SVM. The SVM
kernel is a function that converts non-separable problems into separable problems by
taking low-dimensional input space and transforming it into higher-dimensional space.
Data conversion is used to determine the best splitting line among the expected outcomes.
The border can range from a straightforward narrow margin for binary classes to a more
challenging splitting including multiple classes [19].

3. Related Work

The contemporary machine learning research field is faced with two major challenges:
data isolation and privacy and security issues. In methods utilizing standard ML, central-
ized training data are necessary. Around the world, laws are implemented to protect the
privacy of data [6–8]. Therefore, the main difficulty for conventional machine learning
algorithms is data privacy. A federated stochastic gradient descent (FedSGD) and federated
averaging (FedAvg)-based technique first developed by Google in [9] offered some hope
for overcoming these difficulties. In [10], a method based on FL was suggested to address
the problems of data silos and privacy. To address the problems with data security in the
conventional artificial intelligence field, they created an extensive architecture based on
federated learning. Their suggested solution was divided into two categories: horizontal
and vertical FL.

A description of the different machine learning deployment models, including central-
ized, distributed, and federated learning, was given by the authors in [20]. With careful
consideration, they have described how machine learning architectures have developed.
The authors of the research in [21] created a federated learning-based model for individ-
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uals with diseases that are likely to require hospitalization. They made use of data from
electronic health records (EHRs) spread across various sources or agents. To use FL to
solve the issue of large-scale sparse computing, the authors presented the clustering-based
approach for dual splitting. Their suggested method yielded similar classifier prediction
accuracy. The MNIST dataset was utilized by the authors of [22] to test and assess the
three FL-based methods. A Bayesian correlated t-test was also employed. When client
uploads were restricted to 10,000, FedAvg surpassed CO-OP and FSVRG algorithms, in
their assessment. They have employed balanced data distribution, where each customer
receives the same volume of information. The authors of [23] suggested a modified version
of the standard FL with the aim of improving the algorithm’s accuracy and convergence
rate. To implement Bayesian non-parameterized approaches for heterogeneous data, they
introduced the FedMA algorithm, which is a layer-wise version of the FL algorithm. Their
suggested FedMA outperformed in terms of convergence, accuracy, and communication
size reduction. The authors of [24] examined technical issues and other factors regarding
the data privacy in the distributed implementation environment for FL algorithms. In their
study, they outlined the features and results of a few of the optimization strategies for FL
implementation. Additionally, they have discussed certain commercial consequences for
federated learning that will be expected.

The authors of [25] have suggested an algorithm that distributes weights according
to how much each class contributes to the local models. Using patients’ chest x-ray data,
machine learning-based algorithms can contribute to the identification of COVID-19. In
contrast to conventional machine learning techniques, an FL version was suggested in [26]
to discover COVID-19 with improved prediction accuracy. A blockchain-based approach
based on federated learning was suggested by authors in [27] to address the problem of
data privacy for IoMT-based healthcare systems. Their suggested solution was a hybrid
strategy built on federated learning and the maximum approximation of the Gaussian
mixture model, and it used blockchain to address the issue of user data privacy. Their
suggested approach demonstrates that IoMT data training may be carried out utilizing
local privacy to stop data leaking.

In the past, researchers gathered sensed data from HSP devices and then utilized that
data to predict about several diseases. The authors of [28] suggested a version of FL with
a Bayesian inference model to construct a privacy-aware heart rate prediction approach.
Comparing this FedARX approach to conventional machine learning models, it achieves
accurate and reliable heart rate prediction. A meta-heuristic method called artificial bee
colony (ABC) optimization was suggested by the authors in [29] as a way to efficiently
manage and optimize the calculation of offloading for IoT-based applications. Their method
effectively controls the computing workload for IoT applications with limited resources.
The authors in [30] suggested a fast-convergent technique that accomplishes intelligent
selection of each device at every round of training the model in order to maximize the
convergence speed of federated learning. To increase the convergence rate, their approach
employs precise and efficient approximation for the transmission of a nearly optimum
distribution of device selection.

Other approaches, such as a hybrid technique combining a linear discriminant analysis
with modified ant lion optimization for classification [31], a gradient boosting decision
tree with fuzzy logic algorithm [32], a hybrid of modified scalp swarm optimization and
adaptive neuro-fuzzy inference system [33], and a multi-objective function using meta-
heuristics [34], were also presented in the literature as strategies for predicting heart disease.
The use of a hybrid classifier and a modified neural network with a deep learning focus was
presented in [35–38] as a method for monitoring and predicting cardiac problems. Methods
such as the Boltzmann-based model for higher order [39], modified hybrid method using
classifiers and optimizers [40], two-stage-based localization of the classifiers [41], and
hybrid classifier based on nave Bayes and random forest [42] were also anticipated to
improve classification accuracy with less error.
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4. Proposed Hybrid FL-Based Framework

This section suggests a federated learning architecture that addresses privacy concerns
and effectively predicts cardiac disease in a healthcare system that is sensitive to privacy
concerns. Table 1 provides a description of the symbols used in our suggested framework,
where Xio represents the initial vector for client sites using the M-ABC algorithm; Xri is the
randomly chosen local solution; the candidate solutions of employed, onlooker, and scout
bees are represented as Cen, Con, and Csn, respectively; Fit[n] is the fitness function; B is the
size of the local batch at HSP clients; ωo is the initial model disseminated by the HSP global
orchestrator; similarity function is represented as c (wjl, θi); and the decision function based
on RB-SVM for the heart disease dataset d is represented by DF (d).

Table 1. Brief description of the symbols utilized in our proposed framework.

Symbol Brief Description

Xio Initial vector for MABC at client sites

Xri Local solution chosen randomly

Cen Employed bee’s candidate solution

Con Candidate solution from onlooker bee

Csn Candidate solution obtained by scout bee

Fit[n] Fitness function

N Number of HSP clients

B Local minibatch at every HSP client

ωo Initial model by HSP global orchestrator

c (wjl, θi) Similarity function

θi Gaussian mean

wjl Weight of lth neuron on dataset j in MABC

E Local epochs

η Learning rate

ωN Model of Nth HSP client

d Input dataset to RB-SVM

KF Kernel function

DF (d) Decision function on dataset d in RB-SVM

mr Margin function

RBF Radial basis function

In the FL-based HSP environment, we have a small number of HSP client devices
and the data for independent model training on each device are not sufficient; an FedMA
approach is more suitable. Our idea is to train multiple models independently on every
HSP client and then average their predictions to produce a final prediction. This can lead
to a better performance by reducing overfitting and increasing the diversity of the models.
We propose an FL-based framework for privacy-aware prediction of the heart disease.
Our proposed framework is constituted for the HSP client- and server-end. For the HSP
client, the hybrid model of the RB-SVM with M-ABC for optimal classification and feature
selection is proposed. For the HSP server, the FedMA is proposed to overcome the issues
of HSP’s central model updation and communication efficiency.
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4.1. M-ABC-Based Feature Selection

At the HSP client-end, the M-ABC optimizer is used to choose features in the best
way possible. The implementation of the M-ABC is completed in the four phases and each
phase is described as follows:

4.1.1. Phase-I

Every client site of HSP is initialized by Xio vector. This initialization is achieved by
using Equation (1):

Xio = li + rand (0,1) ∗ (ui − li) (1)

where the ui and li represent the upper and lower bounds of the parameters, respectively.

4.1.2. Phase-II (Searching of Candidate Solution by Employed Bee)

Using Equation (2), the bee searches the local HSP clients for new candidate solutions
during this phase. The random integer generated by the function τni falls between [−1 and
1], and the local random solution is represented by Xri.

Cen[i] = Xio + τni ∗ (Xio − Xri) (2)

The fitness function Fit[n] using Equation (3) determines the fitness of a new candidate
solution, and if the fitness value is high, the solution is memorized.

Fit[n] =

{
1

1+Fobj
, if Fobj ≥ 0,

1 + abs(Fobj), if Fobj < 0.
(3)

4.1.3. Phase-III (Onlooker Bee’s Candidate Solution)

Employed bees present their potential solution to the onlooker bee, who then makes a
probabilistic decision Con using Equation (4).

Con[i] =
Fn[i] (Xn)

∑m
i=1 (Fm)(Xn)

(4)

4.1.4. Phase-IV (Scout Bee with Firefly)

By picking a Csn solution using the firefly process as shown in the equation below, the
scout bee ensures that the new solution is evaluated in Equation (5). An employed bee
becomes a scout bee if it fails to improve its solution within a defined time range.

Csn[i] = Csn[i] + e−ri
2
(Csn0[i]− Csn[i]) + (rand (0, 1)− 0.5) (5)

4.2. Classification Based on SVM

For a non-linear classification problem with a multidimensional set of features, the
decision function using Equation (6) in terms of kernel function KF (d, dj) for the input
dataset d, mr as the margin, and weight represented as ϐ j, can be written as:

DF (d) = ∑n
d=1

ϐ j. KF
(
d, dj

)
+mr (6)

To solve the heart disease (non-linear discrete) classification problem with a feature set
of a high-dimension, kernel function is modified to be the radial basis function (RBF) RBF
(d, dj) = e (−γ|[d − dj]|ˆ2). Therefore, the decision function defined in the above Equation (6)
is modified and is computed using Equation (7). In our proposed framework, the RB-SVM
classifier is implemented at the HSP client side.

DF (d) = ∑n
d=1

ϐ j. RBF (d, dj)+mr (7)
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4.3. Discussion on Proposed Framework

In this section, we present a full review of our proposed framework comprised of the
hybrid MABC-SVM with FedMA-based technique for the effective prediction of CVD. Our
suggested system model is depicted in Figures 1 and 2. Our suggested system consists of
heart disease data-gathering equipment housed within a healthcare facility. Initially, the
HSP global model orchestrator distributes a global model to HSP clients. The HSP clients,
upon reception of this model, perform classification and optimal feature selection using
our proposed MABC-SVM technique, and then perform the local training. The HSP client
nodes send their updated local model towards the HSP central orchestrator. A new global
model is generated using the FedMA after receiving repeated updates for local models, and
it is distributed among the HSP clients. According to our proposed approach, the privacy
issues are addressed as all of the CVD data never left the HSP client node, prediction
accuracy is raised, and classification mistakes are decreased. Algorithm 1 below shows
how our proposed framework functions.

Figure 1. Overview of proposed hybrid federated learning framework.

56



Appl. Sci. 2023, 13, 1911

Figure 2. Illustration of model computation at HSP global model orchestrator and user ends.

The proposed FedMA-based framework obtains the maximum aposteriori estimate
(MAE) using the Bernoulli process described below:

min{πj
li} ∑L

i=1 ∑j,l minθiπ
j
li.c(wjl)s.t. ∑i π

j
li= 1∀j, l; ∑l π

j
li= 1∀ i, j. (8)

where the wjl is lth neuron of the dataset j and an appropriate function of similarity is
c(..). The posterior probability of c (wjl, θi) is computed on the jth client neuron l and mean
Gaussian θi. The total neurons in the federated model can gradually increase in accordance
to the sizes of the HSP client models because our suggested inference approach is not
reliant on parameters. Our proposed framework is designed for the HSP clients and cloud
sites, and it is executed in the following stages:

1. Stage-I (initial): An initial global model ω o is disseminated to every HSP client user
HCN. After obtaining this initial model, the HSP client is initiated for initial feature
selection using Xi0.

2. Stage-II (HSP clients): The client nodes will perform feature selection and classification
of each fragmented local data of size β using a hybrid MABC with the RB-SVM
technique. The updated weights of the local solution are returned to the HSP global
orchestrator from every HSP client.

3. Stage-III (HSP global orchestrator): Upon reception of the weights from every HSP
client, it performs the matched averaging and obtains an updated weight ωN for the
current round of communication.

4. Stage-IV (finalization at HSP global orchestrator): The updated weights ωN are com-
puted until there is no evolution in the HSP client models.
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Algorithm 1: Proposed hybrid FL-based framework for heart disease prediction

Input: CVD Data from HSP clients {HC1, HC2, - - -, HCN}
Output: Privacy aware model for heart disease at HSP client user ωN
// Computation at the HSP global orchestrator:

1: Initialize with global model ωo
2: for each round i = 1, 2, . . . do

i) m ← max (N, 1)
ii) S[t] ← (m is selected randomly for HSP clients)

3: do in parallel for each client N ε S[t]

(i) Compute inference method using Equation (8) with ({N, Cn, ωm})

(ii) ωN ← 1
N

N
∑

k=1
ωN

m ∏N
m

(iii) ωm+1 ← ∏N
m ωN //next weights permutation

4: Disseminate ωN among the HSP clients
5: Repeat until no evolution found in client models

// Computation at the HSP Client End (N, ω):

1: foreach client in N

(i) β ← (fragment the local data to β size each into PN groups)
(ii) Calculate Cn using MABC with Equations (2), (4) and (5)
(iii) Perform the decision classification using RB-SVM classifier with Equation (7)

2: for every local i = 1 . . . E epochs do

(i) for b ε β groups do

(a) Perform gradient descent using (ω; b)

3: send back ω to the HSP global orchestrator

5. Experimental Evaluation and Validation

5.1. Simulation Setup

We use the Python environment (PyTorch) on a system with an Intel ® Core TM i7 @ 4
GHz and 16 GB RAM to run a simulation with 5000 communication rounds to evaluate
the performance of the proposed framework. For standard FL algorithms at the client end,
we implement the SVM classifier. Hence, the standard FL algorithms are versions of the
SVM such as FedAvg-SVM, and FedMA-SVM, and we also develop an upgraded version
of the vanilla FedMA compromising of a genetic algorithm (GA) and SVM as FedMA with
GA-SVM. The effectiveness of our framework for heart disease is assessed and compared
with state-of-the-art FedAvg, FedMA, and FedMA with GA-SVM approaches in terms of
prediction accuracy, time to attain the accuracy, communication efficiency, and influence of
the local epoch on accuracy. We consider the number of HSP client nodes to be five and
one HSP server node. However, this proposed framework can be scaled-up for the HSP
client nodes.

5.2. Dataset Description

Utilizing the combined dataset of five heart illness datasets, this dataset combines over
eleven common features from the datasets of Cleveland, Stalog, Hungary, Long Beach, and
Switzerland [43]. This dataset is used for the prediction of CVD, and it consists of various
parameters for CVD. The dataset has records of CVD patients recorded using eleven heart
disease features. The eleven CVD features of this dataset include resting blood pressure,
cholesterol serum, chest pain, max heart rate, depression level, resting electrocardiogram,
angina-induced by exercise, fasting blood sugar, ST slope, age, and sex. We train and
evaluate our suggested framework on this combined dataset (this dataset is available at
https://www.kaggle.com/fedesoriano/heart-failure-prediction, accessed on 8 December
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2022). There are 918 entries in the combined dataset collection, along with 76 characteristics
in each dataset. Table 2 provides an illustration of the dataset’s complete description.
The many risks for developing heart disease are included in this table along with their
descriptions and encoded values. Our suggested approach uses the encoded values as its
input. For the experimentation of this dataset using our proposed framework, the control
group refers to the group of patients who do not have heart disease (as determined by the
target column of Table 2). The patients with heart failure are considered the experimental
group. The target column in the dataset is used to distinguish between the two groups,
with 0 indicating no heart failure and 1 indicating heart failure.

Table 2. Thorough description of the combined dataset.

S# Feature Explanation Unit Coded Values

1 Resting blood
pressure (Rt_Bp) In mmHg Integer

Low Level = Below 120 = −1
Normal Level = 120–139 = 0
High Level = Above 139 = 1

2 Cholesterol
serum (Cl_S) In mg/dL Integer

<200 mg/dL = Low = −1
200–239 mg/dL = Normal = 0

>240 mg/dL = High = 1

3 Chest pain (C_P) Type of chest
pain String

Angina Typical (AT) = 2
Asymptomatic (AS) = 1

Angina Atypical (ATA) = 0
Non-Angina (NA) = −1

4 Max heart rate
(MHR)

Maximum
achieved heart

rate in bpm
Integer

<69 bpm = Low = −1
70–90 bpm = Normal = 0

>91 bpm = High = 1

5 Depression level
(Dp_L)

Old peak in ST
(numeric value
measured for

depression level)

Float <0.5 mm = Normal = 0
>0.5 mm = High = 1

6
Resting electro-

cardiogram
(Rt_ECG)

Normal, ST T, or
LVH String

LVH = 2
ST T = 1

Normal = 0

7
Angina induced

by exercise
(AI_bE)

Yes or No String Yes = 1
No = 0

8 Fasting blood
sugar (F_BS) >120 mg/dL Integer True = 1

False = 0

9 ST slope (ST_S) Peak exercise
slope String

Up = 2
Flat = 1

Down = 0

10 Age (A) Age in years Integer >77 = 2, 64–77 = 1, 47–63 = 0,
35–46 = −1, <35 = −2

11 Sex (S) Female and Male String Female = 0, Male = 1

12 Target (heart
disease) Yes or No Integer Yes = 1,

No = 0

5.3. Results and Discussion

In the FL-based HSP environment, the communication rounds refer to the number
of times the HSP client model parameters are exchanged during the training process. If
the large number of rounds are consumed by an FL model, then it will also increase the
communication overhead and computational cost. Therefore, the number of communication
rounds is a key aspect in the FL system’s overall performance and efficiency. The impact of
communication rounds on the algorithm’s accuracy in making predictions on the combined

59



Appl. Sci. 2023, 13, 1911

dataset is seen in Figure 3. Our proposed framework reaches 93.8% accuracy within the
4500 rounds of communication, which is better than the existing FedAvg-SVM, FedMA-
SVM, and FedMA with GA-SVM algorithms. Since the proposed MABC-RB-SVM method
employs the hybrid of the MABC optimizer and RB-SVM classifier for optimal feature
selection and classification at HSP clients, and for the HSP global orchestrator, we deploy
the FedMA which permits our overall model to accomplish better accuracy in a lesser
number of communication rounds than the existing FL algorithms. In the FedAvg-SVM
and FedMA-SVM, the HSP overall model performs the simple averaging and matched
averaging, respectively, on the simple SVM kernel at their client model algorithm which
results in consuming higher communication rounds. The learning rate is increased in
the GA-SVM with FedMA, but the convergence is consumed more by the classification
and feature selection. Consequently, the proposed hybrid framework accomplishes better
accuracy and reduces the amount of communication rounds used.

Figure 3. Comparison of convergence rate with prediction accuracy.

We evaluate and vary the local epochs E from 10 to 160, to examine the impact of
local epochs on the prediction accuracy of the proposed hybrid technique and existing FL
algorithms. The accuracy test on each E of the proposed hybrid framework, FedAvg-SVM,
FedMA-SVM, and hybrid of GA-SVM with FedMA, is reviewed and compared. Figure 4
shows the outcome of this test. The findings show that the suggested framework can train
for a longer period and supports a higher rate of convergence because it produces a better
HSP global model on the local model with a higher model quality. This is because our
suggested technique makes use of the RB-SVM and MABC methods at the client side of HSP.
The accuracy of traditional FL algorithms, such as FedAvg and FedMA, tends to decrease
with time due to the lack of an optimizer. However, in the case of the GA-SVM with FedMA,
the accuracy does not decrease much after 100 local epochs, which is attributable to the
GA algorithm. This result demonstrates that if user sites implement our recommended
structure, they are free to train the local users of their model indefinitely.
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Figure 4. Comparison of the effect of local epoch on the prediction accuracy.

For the influence of prediction accuracy on the utilized communication volume, we
examine and compare the performances of the FedAvg-SVM, Fed-MA-SVM, GA-SVM
with FedMA, and our suggested approach. We vary the volume of communication (in
Gigabytes) for this assessment as {0.6, 1.2, 1.8, 2.4, 3.0, 3.6, 4.2, 4.8, 5.4, 6.0} and record the
prediction accuracy of each approach, as shown in Figure 5. The recorded results show that
our hybrid approach outperforms traditional FL techniques and FedMA with the GA-SVM
in terms of accuracy at both low and large communication volumes. Furthermore, Figure 6
depicts a comparison of the extent of communication necessary to achieve the various
target prediction accuracy of the algorithms (70%, 75%, 80%, 85%, and 90%). The GA-SVM
outperforms our suggested approach for a lower target accuracy of 70% and 75%. However,
when compared to existing FL algorithms, our proposed approach consumes 15–25% less
communication size (in GB) for improved target accuracy.

Figure 5. Analysis of prediction accuracy on the volume of communication.
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Figure 6. Comparison of consumed communication volume to reach target prediction accuracies.

Performance metrics such as accuracy, precision, classification error, f-measure, speci-
ficity, sensitivity, and the number of rounds required to achieve the highest accuracy are
assessed for the performance efficiency comparison of the proposed framework with the Fe-
dAvg-SVM, FedMA-SVM, and GA-SVM with FedMA. Accuracy in machine learning refers
to the proportion of all available examples that yield the right predictions. The fraction
of accurate positive instance predictions is what is referred to as precision. Classification
errors are defined as the inaccuracies or proportions of mistakes that are readily available
in the instance. Three performance indicators are used to identify important heart disease
symptoms. This makes it easier to comprehend how different groups behave and enables
better feature selection. The results of these parameters are displayed in Tables 3 and 4. The
created GA-SVM with FedMA for the heart disease dataset and baseline FL approaches
are compared to our proposed framework, which achieves greater target accuracy in less
cycles. The number of rounds in our suggested technique is reduced by 37% when com-
pared to existing methods, as shown in Table 3, since our proposed model’s learning rate
grows quickly after each round, leading to fewer rounds. Table 3 demonstrates that the
proposed framework performs better on the heart disease dataset than FL state-of-the-art
methods in terms of prediction accuracy (93.8%), precision (94.2%), sensitivity (96.6), and
specificity (81.8), because of the proposed model’s improved learning rate that increases
with each communication round with a smaller minibatch size. Our proposed framework
is therefore more equipped to provide increased heart disease prediction accuracy while
maintaining privacy when compared to existing baseline FL techniques. In addition, the
MABC optimization technique for feature selection and the RB-SVM classification in our
proposed framework result in decreased classification errors, resulting in a classification
error of 11.9 for our recommended method.
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Table 3. Consumed algorithm time for the highest accuracy of the model.

Techniques Max. Accuracy Achieved # Of Rounds to Reach 91% Difference

FedAvg-SVM 91.3 3810 –

FedMA-SVM 91.7 3425 10.1%

FedMA with GA-SVM 92.3 3046 20.1%

FedMA with MABC-RB-SVM
(Proposed) 93.8 2408 37.8%

Table 4. Comparison of performance on features of the dataset.

Techniques Accuracy F-Measure Precision Classification Error Sensitivity Specificity

FedAvg-SVM 91.3 87.3 92.3 20.4 85.3 59.5

FedMA-SVM 91.7 88.4 90.1 18.6 89.5 72.5

FedMA with
GA-SVM 92.3 89.6 93.7 13.3 91.9 78.8

FedMA with
MABC-RB-SVM

(Proposed)
93.8 90.1 94.2 11.9 96.6 81.8

6. Conclusions and Future Work

For the objective of early illness detection and treatment, a health service provider
(HSP) system to collect patient data in real time has been created. Intelligent healthcare
systems can move quickly to save many lives, especially when a patient is in a remote place
without access to medical treatment. It is challenging to predict survival in patients with
cardiac disease. Due to privacy and security concerns, it is hard to exchange user data when
it comes to healthcare systems. In this paper, we proposed a hybrid federated learning
framework for improved heart disease prediction and to address privacy issues in the
healthcare system. In order to enhance heart disease prediction, the proposed framework
combines MABC with RB-SVM feature optimization and classification techniques at the
HSP’s client node, while FedMA is used at the HSP global orchestrator to solve communica-
tion efficacy and privacy problems in the healthcare system. The main goal of this research
is to shorten training time and improve communication efficiency while improving the
prediction accuracy of heart disease. We evaluated and compared the performance in terms
of several model prediction-based metrics and communication efficiency with the baseline
FedMA, FedMA, and a developed upgraded version of FedMA using a GA-SVM optimizer
and classifier algorithms in order to ensure the accuracy and validity of our proposed frame-
work. Performance metrics including prediction accuracy, classification error, sensitivity,
precision, and communication efficiency all showed a considerable improvement under
the suggested paradigm. Our findings indicated that the suggested strategies produce
outcomes with 1.5% greater accuracy, 1.6% lower classification error, 4.7% higher sensitivity,
and 17.7% fewer rounds needed to reach the greatest degree of accuracy. In the future,
we will focus on the rehabilitation and treatment of several additional serious illnesses
including Parkinson’s, diabetes, liver cancer, skin cancer, and breast cancer.

Author Contributions: Conceptualization, M.M.Y. and M.N.; methodology, M.M.Y., M.A.K. and
A.A.-R.; software, M.M.Y. and S.Q.; validation, M.M.Y., M.N., A.A.-R. and M.A.K.; formal analysis,
M.M.Y. and M.N.; investigation, M.M.Y. and S.Q.; resources, M.M.Y. and M.A.K.; data curation,
M.M.Y. and M.N.; writing—original draft preparation, M.M.Y., M.N. and M.A.K.; writing—review
and editing, M.M.Y., M.N., S.Q. and M.A.K.; visualization, M.M.Y. and M.A.K.; supervision, M.N.;
project administration, M.N., S.Q., A.A.-R. and M.A.K.; funding acquisition, A.A.-R. All authors have
read and agreed to the published version of the manuscript.

63



Appl. Sci. 2023, 13, 1911

Funding: Princess Nourah bint Abdulrahman University Researchers Supporting Project number
(PNURSP2023R235), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: We ran simulations to see how well the proposed approach performed.
Any questions concerning the study in this publication are welcome and can be directed to the lead
author (Muhammad Mateen Yaqoob) upon request.

Acknowledgments: The authors sincerely appreciate the support from Princess Nourah bint Abdul-
rahman University Researchers Supporting Project number (PNURSP2023R235), Princess Nourah
bint Abdulrahman University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Turjman, F.A.; Nawaz, M.H.; Uluser, U.D. Intelligence in the Internet of Medical Things era: A systematic review of current and
future trends. Comput. Commun. 2020, 150, 644–660. [CrossRef]

2. Dash, S.; Shakyawar, S.K.; Sharma, M.; Kaushik, S. Big data in healthcare: Management, analysis and future prospects. J. Big Data
2019, 6, 54. [CrossRef]

3. Watkins, D.A.; Beaton, A.Z.; Carapetis, J.R.; Karthikeyan, G.; Mayosi, B.M.; Wyber, R.; Yacoub, M.H.; Zühlke, L.J. Rheumatic heart
disease worldwide: JACC scientific expert panel. J. Am. Coll. Cardiol. 2018, 72, 1397–1416. [CrossRef] [PubMed]

4. Mohan, S.; Thirumalai, C.; Srivastava, G. Effective Heart Disease Prediction Using Hybrid Machine Learning Techniques. IEEE
Access 2019, 7, 81542–81554. [CrossRef]

5. Li, J.P.; Haq, A.U.; Din, S.U.; Khan, J.; Khan, A.; Saboor, A. Heart Disease Identification Method Using Machine Learning
Classification in E-Healthcare. IEEE Access 2020, 8, 107562–107582. [CrossRef]

6. Voigt, P.; dem Bussche, A.V. Scope of application of the GDPR. In The EU General Data Protection Regulation; Springer: Cham,
Switzerland, 2017; pp. 9–30.

7. Wagner, J. China’s Cybersecurity Law: What You Need to Know. The Diplomat. 2017. Available online: https://thediplomat.
com/2017/06/chinas-cybersecurity-law-what-you-need-to-know/ (accessed on 10 October 2022).

8. de la Torre, L. A Guide to the California Consumer Privacy Act of 2018. 2018. Available online: http://dx.doi.org/10.2139/ssrn.
3275571 (accessed on 10 October 2022).

9. McMahan, B.; Ramage, D. Federated Learning: Collaborative Machine Learning without Centralized Training Data. Google
AI Blog 2017. Available online: https://ai.googleblog.com/2017/04/federated-learning-collaborative.html (accessed on 11
October 2022).

10. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Areas, B.A.Y. Communication-Efficient Learning of Deep Networks from
Decentralized Data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale,
FL, USA, 20–22 April 2017; pp. 1273–1282.

11. Yaqoob, M.M.; Nazir, M.; Yousafzai, A.; Khan, M.A.; Shaikh, A.A.; Algarni, A.D.; Elmannai, H. Modified Artificial Bee Colony
Based Feature Optimized Federated Learning for Heart Disease Diagnosis in Healthcare. Appl. Sci. 2022, 12, 12080. [CrossRef]

12. Xu, X.; Liu, W.; Zhang, Y.; Zhang, X.; Dou, W.; Qi, L.; Bhuiyan, M.Z.A. Psdf: Privacy-aware iov service deployment with federated
learning in cloud-edge computing. ACM Trans. Intell. Syst. Technol. (TIST) 2022, 13, 70. [CrossRef]

13. Zhang, X.; Hu, M.; Xia, J.; Wei, T.; Chen, M.; Hu, S. Efficient Federated Learning for Cloud-Based AIoT Applications. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 2021, 40, 2211–2223. [CrossRef]

14. Yang, J.; Zheng, J.; Zhang, Z.; Chen, Q.; Wong, D.S.; Li, Y. Security of federated learning for cloud-edge intelligence collaborative
computing. Int. J. Intell. Syst. 2022, 37, 9290–9308. [CrossRef]

15. Elaziz, M.A.; Xiong, S.; Jayasena, K.P.N.; Li, L. Task scheduling in cloud computing based on hybrid moth search algorithm and
differential evolution. Knowl.-Based Syst. 2019, 169, 39–52. [CrossRef]

16. Yang, Y.; Chen, H.; Heidari, A.A.; Gandomi, A.H. Hunger games search: Visions, conception, implementation, deep analysis,
perspectives, and towards performance shifts. Expert Syst. Appl. 2021, 177, 114864. [CrossRef]

17. Panniem, A.; Puphasuk, P. A Modified Artificial Bee Colony Algorithm with Firefly Algorithm Strategy for Continuous Optimiza-
tion Problems. J. Appl. Math. 2018, 2018, 1237823. [CrossRef]

18. Chen, H.L.; Yang, B.; Liu, J.; Liu, D.-Y. A support vector machine classifier with rough set-based feature selection for breast cancer
diagnosis. Expert Syst. Appl. 2011, 38, 9014–9022. [CrossRef]

19. Yadav, D.P.; Saini, P.; Mittal, P. Feature Optimization Based Heart Disease Prediction using Machine Learning. In Proceedings of
the 2021 5th IEEE International Conference on Information Systems and Computer Networks (ISCON), Mathura, India, 22–23
October 2021; pp. 1–5.

20. Abdulrahman, S.; Tout, H.; Ould-Slimane, H.; Mourad, A.; Talhi, C.; Guizani, M. A Survey on Federated Learning: The Journey
From Centralized to Distributed On-Site Learning and Beyond. IEEE Internet Things J. 2021, 8, 5476–5497. [CrossRef]

64



Appl. Sci. 2023, 13, 1911

21. Brisimi, T.S.; Chen, R.; Mela, T.; Olshevsky, A.; Paschalidis, I.C.; Shi, W. Federated learning of predictive models from federated
electronic health records. Int. J. Med. Inform. 2018, 112, 59–67. [CrossRef]

22. Nilsson, A.; Smith, S.; Ulm, G.; Gustavsson, E.; Jirstrand, M. A performance evaluation of federated learning algorithms. In
Proceedings of the Second Workshop on Distributed Infrastructures for Deep Learning (DIDL), Rennes France, 10–11 December
2018; ACM: New York, NY, USA, 2018; pp. 1–8.

23. Wang, H.; Yurochkin, M.; Sun, Y.; Papailiopoulos, D.; Khazaeni, Y. Federated learning with matched averaging. arXiv 2020,
arXiv:2002.06440.

24. Aledhari, M.; Razzak, R.; Parizi, R.; Saeed, F. Federated Learning: A Survey on Enabling Technologies, Protocols, and Applications.
IEEE Access 2020, 8, 140699–140725. [CrossRef]

25. Ma, Z.; Mengying, Z.; Cai, X.; Jia, Z. Fast-convergent federated learning with class-weighted aggregation. J. Syst. Archit. 2021,
117, 102125. [CrossRef]

26. Salam, M.A.; Taha, S.; Ramadan, M. COVID-19 detection using federated machine learning. PLoS ONE 2021, 16, e0252573.
27. Cheng, W.; Ou, W.; Yin, X.; Yan, W.; Liu, D.; Liu, C. A Privacy-Protection Model for Patients. Secur. Commun. Netw. 2020, 2020,

6647562. [CrossRef]
28. Fang, L.; Liu, X.; Su, X.; Ye, J.; Dobson, S.; Hui, P.; Tarkoma, S. Bayesian Inference Federated Learning for Heart Rate Prediction.

In Proceedings of the International Conference on Wireless Mobile Communication and Healthcare, Virtual Event, 19 November
2020; Springer: Cham, Switzerland, 2020; pp. 116–130.

29. Babar, M.; Khan, M.; Din, A.; Ali, F.; Habib, U.; Kwak, K.S. Intelligent Computation Offloading for IoT Applications in Scalable
Edge Computing Using Artificial Bee Colony Optimization. Complexity 2021, 2021, 5563531. [CrossRef]

30. Nguyen, H.T.; Sehwag, V.; Hosseinalipour, S.; Brinton, C.; Chiang, M.; Poor, H.V. Fast-Convergent Federated Learning. IEEE J. Sel.
Areas Commun. 2021, 39, 201–218. [CrossRef]

31. Manimurugan, S.; Almutairi, S.; Aborokbah, M.; Narmatha, C.; Ganesan, S.; Chilamkurti, N.; Alzaheb, R.A.; Almoamari, H.
Two-Stage Classification Model for the Prediction of Heart Disease Using IoMT and Artificial Intelligence. Sensors 2022, 22, 476.
[CrossRef] [PubMed]

32. Yuan, X.; Chen, J.; Zhang, K.; Wu, Y.; Yang, T. A Stable AI-Based Binary and Multiple Class Heart Disease Prediction Model for
IoMT. IEEE Trans. Ind. Inform. 2022, 18, 2032–2040. [CrossRef]

33. Khan, M.A.; Algarni, F. A Healthcare Monitoring System for the Diagnosis of Heart Disease in the IoMT Cloud Environment
Using MSSO-ANFIS. IEEE Access 2020, 8, 122259–122269. [CrossRef]

34. Chhabra, A.; Singh, G.; Kahlon, K.S. Multi-criteria HPC task scheduling on IaaS cloud infrastructures using meta-heuristics. Clust.
Comput. 2021, 24, 885–918. [CrossRef]

35. Li, C.; Hu, X.; Zhang, L. The IoT-based heart disease monitoring system for pervasive healthcare service. Procedia Comput. Sci.
2017, 112, 2328–2334. [CrossRef]

36. Khan, M.A. An IoT Framework for Heart Disease Prediction Based on MDCNN Classifier. IEEE Access 2020, 8, 34717–34727.
[CrossRef]

37. Sarmah, S.S. An Efficient IoT-Based Patient Monitoring and Heart Disease Prediction System Using Deep Learning Modified
Neural Network. IEEE Access 2020, 8, 135784–135797. [CrossRef]

38. Makhadmeh, Z.A.; Tolba, A. Utilizing IoT wearable medical device for heart disease prediction using higher order Boltzmann
model: A classification approach. Measurement 2019, 147, 106815. [CrossRef]

39. Ganesan, M.; Sivakumar, N. IoT based heart disease prediction and diagnosis model for healthcare using machine learning
models. In Proceedings of the 2019 IEEE International Conference on System, Computation, Automation and Networking
(ICSCAN), Pondicherry, India, 29–30 March 2019; pp. 1–5.

40. Albahri, A.S.; Zaidan, A.A.; Albahri, O.S.; Zaidan, B.B.; Alamoodi, A.H.; Shareef, A.H.; Alwan, J.K.; Hamid, R.A.; Aljbory, M.T.;
Jasim, A.N.; et al. Development of IoT-based mhealth framework for various cases of heart disease patients. Health Technol. 2021,
11, 1013–1033. [CrossRef]

41. Gupta, A.; Yadav, S.; Shahid, S.; Venkanna, U. HeartCare: IoT Based Heart Disease Prediction System. In Proceedings of the 2019
International Conference on Information Technology (ICIT), Bhubaneswar, India, 19–21 December 2019; pp. 88–93.

42. Jabeen, F.; Maqsood, M.; Ghanzafar, M.A.; Adil, F.; Khan, S.; Khan, M.F.; Mehmood, I. An IoT based efficient hybrid recommender
system for cardiovascular disease. Peer-to-Peer Netw. Appl. 2019, 12, 1263–1276. [CrossRef]

43. Fedesoriano. Heart Failure Prediction Dataset. Available online: https://www.kaggle.com/fedesoriano/heart-failure-prediction
(accessed on 28 November 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

65



Citation: Bauer, D.F.; Ulrich, C.; Russ,

T.; Golla, A.-K.; Schad, L.R.; Zöllner,

F.G. End-to-End Deep Learning CT

Image Reconstruction for Metal

Artifact Reduction. Appl. Sci. 2022,

12, 404. https://doi.org/

10.3390/app12010404

Academic Editors: Lucian Mihai Itu,

Constantin Suciu and Anamaria

Vizitiu

Received: 9 December 2021

Accepted: 30 December 2021

Published: 31 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

End-to-End Deep Learning CT Image Reconstruction for Metal
Artifact Reduction

Dominik F. Bauer *, Constantin Ulrich †, Tom Russ, Alena-Kathrin Golla, Lothar R. Schad and Frank G. Zöllner

Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine,
Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
constantin.ulrich@dkfz-heidelberg.de (C.U.); tom.russ@medma.uni-heidelberg.de (T.R.);
alena-kathrin.golla@medma.uni-heidelberg.de (A.-K.G.); lothar.schad@medma.uni-heidelberg.de (L.R.S.);
frank.zoellner@medma.uni-heidelberg.de (F.G.Z.)
* Correspondence: dominik.bauer@medma.uni-heidelberg.de
† Current address: Division of Medical Image Computing, German Cancer Research Center,

69120 Heidelberg, Germany.

Abstract: Metal artifacts are common in CT-guided interventions due to the presence of metallic
instruments. These artifacts often obscure clinically relevant structures, which can complicate the
intervention. In this work, we present a deep learning CT reconstruction called iCTU-Net for the
reduction of metal artifacts. The network emulates the filtering and back projection steps of the
classical filtered back projection (FBP). A U-Net is used as post-processing to refine the back projected
image. The reconstruction is trained end-to-end, i.e., the inputs of the iCTU-Net are sinograms and the
outputs are reconstructed images. The network does not require a predefined back projection operator
or the exact X-ray beam geometry. Supervised training is performed on simulated interventional data
of the abdomen. For projection data exhibiting severe artifacts, the iCTU-Net achieved reconstructions
with SSIM = 0.970 ± 0.009 and PSNR = 40.7 ± 1.6. The best reference method, an image based post-
processing network, only achieved SSIM = 0.944 ± 0.024 and PSNR = 39.8 ± 1.9. Since the whole
reconstruction process is learned, the network was able to fully utilize the raw data, which benefited
from the removal of metal artifacts. The proposed method was the only studied method that could
eliminate the metal streak artifacts.

Keywords: image reconstruction; deep learning; metal artifacts; computed tomography

1. Introduction

The presence of high attenuation objects in the scanning field leads to artifacts in
computed tomography (CT) imaging, which substantially decrease the image quality.
The generic term for these kinds of artifacts is metal artifacts, which are a combination
of beam hardening, scattering, photon starvation, and edge effects [1]. Metal artifacts are
common in CT-guided interventions due to the presence of metallic instruments such as
biopsy needles [2–4] or catheters [5]. In many interventions, iodine contrast agent is used,
leading to additional beam hardening [6]. These artifacts often obscure clinically relevant
structures, which can complicate the intervention. For example, the visibility of liver lesions
is significantly reduced during liver biopsy [2] or during transarterial chemoembolization
(TACE) [7,8], where catheters are used in combination with contrast agents.

Several CT reconstruction methods have been developed to improve image quality
in the presence of metal objects. Statistical iterative reconstruction techniques can be
used to correct beam hardening and thus mitigate metal artifacts [9]. Furthermore, dual-
energy CT allows one to reconstruct virtual monoenergetic images at high kiloelectron
volt levels, which substantially reduces metal artifacts [5,10]. The most common type of
metal artifact reduction (MAR) method is based on inpainting projection data that has been
affected by metal. In these approaches, the metal objects are first automatically detected
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(e.g., via thresholding) in the uncorrected CT image. The metal objects are then forward-
projected into the sinogram domain to obtain a metal trace. The projection data in this
metal trace are treated as missing data and are interpolated, e.g., via linear interpolation
(LIMAR) [11]. Meyer et al. proposed a modification of the LIMAR approach called
normalized MAR (NMAR) [12]. NMAR uses a forward projection of an image prior to
flatten the uncorrected sinogram before interpolation. This additional step smoothes the
sinogram, which reduces the streak artifacts caused by interpolation. In NMAR, the image
prior is obtained by identifying air, soft tissue, and bone, in either the uncorrected CT or
pre-corrected LIMAR image.

With the rapidly increasing popularity of deep learning in medical imaging in recent
years [13], a plethora of novel MAR methods have emerged. Deep learning networks are
mostly trained in a supervised manner and thus require a metal-free and a corresponding
metal-affected dataset. These metal-affected data are commonly synthesized by inserting
metallic objects into the metal-free data. Zhang et al. presented a convolutional neural
network (CNN) called CNN-MAR, which outputs an improved image prior [14]. This
image prior is forward-projected, and the resulting sinogram data are used to fill in the
metal trace in the original sinogram. Several CNN approaches that operate in the sinogram
domain have been introduced [15–17]. Lossau et al. developed a sophisticated sinogram
inpainting approach that works in the presence of motion. A segmentation network
identifies the metal trace in the projection domain; a second network fills in the missing
sinogram data; and, after reconstruction, a third network reinserts the metal objects in the
corrected image [18]. A popular class of deep learning MAR techniques are image-based
CNNs. They take the uncorrected images as input and either learn a direct mapping
to the artifact-free images [14,19,20] or to the artifact residuals [21]. These image-based
methods often rely on input data that has already been pre-corrected to produce reasonable
results [14,19]. Another option for MAR in the image domain is unsupervised image-to-
image translation, which has the advantage that no synthesized metal artifacts are necessary
and thus training can be conducted with unaltered clinical data [22–24]. Compared to
supervised models, unsupervised models can achieve similar performance on synthetic
data [22]. Lin et al. recently proposed an end-to-end trainable network called Dual Domain
Network (DuDoNet) [25]. It consists of a sinogram enhancement network and an image
enhancement network, which are connected by a Radon Inversion Layer (RIL). The RIL
reconstructs the CT images using the filtered back projection (FBP) and allows gradient
propagation during training.

In this work, we present an end-to-end deep learning CT reconstruction called iCTU-
Net, for the correction of metal artifacts. The network learns the mapping from the metal-
affected sinograms to the artifact-free images. It consists of three parts, which are trained
simultaneously: sinogram refinement, back projection, and image refinement. To our
knowledge, we are the first to train a single end-to-end deep learning network for the
task of reducing metal artifacts with a learnable backprojection operation. Since the whole
reconstruction process, including the back projection, is learned, the network is able to freely
adapt the reconstruction to the imperfections of the sinogram data. The reconstruction is
trained in a supervised manner with simulated interventional training data. We focus on
liver interventions; thus, we generate abdominal liver data, including metal objects. We
compare our iCTU-Net to the classical NMAR algorithm and to a sinogram refinement
and an image refinement deep learning network. Both of these networks employ the same
U-Net architecture that is used in our network, which allows for a fair comparison. These
reference networks were selected to investigate the performance of deep learning MAR
approaches in three different domains: sinogram pre-processing, image post-processing,
and reconstruction.
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2. Materials and Methods

2.1. iCTU-Net

The design of our iCTU-Net displayed in Figure 1a is based on the iCT-Net by
Li et al. [26], which in turn is inspired by the classical FBP. The reconstruction is trained
end-to-end, i.e., the inputs of the iCTU-Net are sinograms and the outputs are reconstructed
images. The network includes pre-processing layers and aims to emulate the filtration of
the sinograms and the back projection into the image domain. Post-processing layers were
used to further refine the reconstruction. The network performs the complete CT image
reconstruction and does not require a predefined back projection operator or the exact
X-ray beam geometry.

In a first step, disturbances in the raw measurement data, such as excessive noise,
are supposed to be suppressed using 3 × 3 convolutions (refining layers). The corrected
sinogram is then filtered via 10 × 1 convolutions (filtering layers). By using 1 × 1 convolu-
tions after the refining and filtering layers and by applying padding in all convolutions,
the refined and filtered sinogram maintains the same size of the input sinogram. The con-
volutions in the refining layers employ a shrinkage activation function with a threshold
of 0.0001 [26]. For the filtering layers, a tanh activation function is used. Afterwards,
the refined and filtered sinogram is projected into the image space in a back projection
step. This is realized by a d × 1 convolution with N2 output channels without padding,
where d is the number of detector elements and N is the output image size. This convolu-
tion connects every detector element with every pixel in the image space. Since the back
projection is learned, sinograms acquired with different beam geometries can be used to
train the network, such as parallel beam and fan beam. Then, the results for each view
angle v are reshaped to images of size N × N and rotated according to the acquisition angle.
The acquisition angle of the projections is the only geometrical information provided to the
network. The rotated images are linearly interpolated and cropped to maintain an image
size of N × N. The back projected image is then obtained by combining all views with
a 1 × 1 convolution using a leaky Rectified Linear Unit (ReLU) activation function [27].
Finally, the image output is further refined by a U-Net. The U-Net is a popular choice for
post-processing to reduce artifact in CT imaging [28].

2.2. Reference MAR Networks

To compare our iCTU-Net to other methods, we implement two deep learning MAR
algorithms similar to those of Gjesteby et al. Both networks use pre-corrected NMAR
inputs [17,19]. One is based in the projection domain (U-Net Sino), and the other one in the
image domain (U-Net Image). To ensure comparability, we use the same U-Net architecture
in the iCTU-Net, U-Net Sino, and U-Net Image. In the U-Net Sino, the sinograms are first
refined by a U-Net, and the result is then reconstructed using the FBP [17]. In the U-Net
Image, the sinograms are first reconstructed with the conventional FBP and then refined
with a U-Net [19]. These reference networks were chosen to allow a comparison of sinogram
pre-processing, image post-processing, and reconstruction deep learning MAR techniques.

The U-Net architecture is shown in Figure 1d and is similar to the original U-Net by
Ronneberger et al. [29]. It has four en- and decoding blocks consisting of 3× 3 convolutions,
which are connected via skip connections. Zero-padding is used in the convolutions to
ensure that the network output is the same size as the network input. The blocks of the
top level have 32 channels, which are doubled with each encoding block until the lowest
block has 512 channels. Downsampling in the contracting path is performed via 2 × 2
max-pooling with stride 2, while upsampling in the expansive path is accomplished using
3 × 3 transposed convolutions with stride 2. All convolutional layers are followed by a
ReLU activation function.
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Figure 1. Deep learning architectures for metal artifact reduction. (a) iCTU-Net end-to-end CT
reconstruction network architecture. (b) Sinogram domain U-Net. (c) Image domain U-Net. (d)
U-Net network architecture used in the three networks in (a–c).

2.3. Data Generation

To simulate the training data, we use the XCAT phantom, which provides highly
detailed whole-body anatomies [30]. The phantom includes female and male models of
different ages, providing a wide variety of patient geometries. Further customization
of anatomies by changing organ sizes is possible. We create 40 different XCAT models
for training and 10 additional models for testing, resulting in 3964 and 991 slices of size
512 × 512 pixel with an in-plane resolution of 1 × 1 mm2 and a slice thickness of 2 mm,
respectively. Because we choose liver interventions as a use case, we generate abdominal
XCATs that include the whole liver.

Organ masks can be easily obtained within the XCAT framework. Utilizing these
organ masks, we insert metal structures inside the veins of the XCAT phantoms, emulating
contrast agents or interventional instruments, such as catheters. Metal objects are only
placed inside thicker blood vessels and have a uniform size, independent of the blood
vessel size. This is realized by first eroding the blood vessel masks of the XCAT phantom,
using a disk with a radius of 3 pixels as a structuring element. The erosion is performed
to exclude the smallest blood vessels. To obtain the final metal mask, we skeletonize the
mask and then increase the thickness via dilation using a disk with a radius of 3 pixels.
An example is shown in Figure 2, with the metal mask in red, the initial blood vessels in
white, and the liver in green. Most of the metal structures are placed inside the liver or in
the portal vein beneath the liver.
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Figure 2. Generation of the metal masks inside blood vessels. The metal masks are shown in red,
the initial blood vessel segmentation in white, and the liver in green.

Our data generation pipeline is shown in Figure 3, which starts with the generation
of the ground truth data in the first row. First, we create sinograms by forward projecting
the XCAT image data using a parallel beam geometry with 736 projection beams and 360
projection angles. A polychromatic X-ray spectrum and the energy-dependence of the
absorption coefficients are considered in the forward projection:

I =
N

∑
i=1

I0 · η(Ei) · e−
∫

L μ(x,Ei)dx, (1)

with weights of the energy spectrum η(Ei). An incident flux of I0 = 4 · 106 photons is used,
which is slightly increased compared to clinical levels [31], to combat photon starvation
due to the presence of the metal objects. The X-ray energy spectrum is generated using the
SpekCalc software with a tube peak voltage of 100 kVp and 1 mm aluminium filter [32].
We use 91 energy bins from 10 keV to 100 keV with a uniform size of 1 keV. The organ
masks provided by the XCAT framework make it possible to assign an energy-dependent
attenuation coefficient μ(x, Ei) to each organ. The sinograms are then reconstructed via a
FBP. Since the energy dependence of the attenuation coefficients is accounted in the forward
projection, beam hardening is present in the ground truth data.

To simulate data affected by metal, we utilize the previously mentioned metal mask
to insert the attenuation coefficient of iron. Afterwards, metal sinograms are created
via forward projection using Equation (1). Noise is then added, the projection data is
normalized, and the negative logarithm is applied:

pn = − ln

(
Poisson(I) +N (0, σ2)

∑N
i=1 I0 · η(Ei)

)
. (2)

The photon production, attenuation, and detection is described by a Poisson distribu-
tion. Electronic noise of the detector is simulated with a Gaussian distribution N with a
mean value of zero and σ2 = 40 [33,34]. A subsequent FBP results in an image containing
metal artifacts. As input for the training of our networks we do not use this artifact image;
instead, we use data pre-corrected with the NMAR algorithm as shown in the third row of
Figure 3. The prior image used for the normalization in NMAR is obtained by segmentation
of soft tissue and bone in a LIMAR image [11,12].
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Figure 3. Generation of the metal training dataset. The input and labels for the three used deep
learning networks are indicated by the colored words “Input” and “Label” beneath the corresponding
images. The color coding corresponds to the colors used for the network architectures in Figure 1
(green: iCTU-Net, blue: U-Net Sino, and red: U-Net Image).

2.4. Training

The networks are trained with the SSIM loss function using the Adam optimizer with
a learning rate of 0.001 [35]. We apply L2 regularization to the network weights, with a
weighting factor of 10−6. Each network is trained for 25 epochs. The training data in
image domain is windowed to [−1000, 1000] HU and then mapped to the interval [−1, 1].
The whole image slices are used for training, and no patches are extracted. The sinogram
training data is neither windowed nor normalized. The input and label images for the
iCTU-Net (green), U-Net Sino (blue), and U-Net Image (red) are noted in Figure 3.

2.5. Evaluation

The reconstructions are evaluated by calculating the peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM) for the test data. We set the background values of ground
truth and reconstructions to −1000 HU to focus the analysis on the body region where the
relevant anatomy is located. For the evaluation, the slices of the test dataset are divided into
three categories: no metal, moderate metal artifacts, and severe metal artifacts, with 106,
748, and 137 slices, respectively. This separation allows one to evaluate the reconstructions
when no metal is present. A slice is assigned to the severe metal artifact category if the
FBP yields an SSIM value of less than 0.7, and to the moderate metal artifact category if
the SSIM value of the FBP is greater than or equal to 0.7. The SSIM threshold is chosen,
such that the number of slices with severe metal artifacts is similar to the number of slices
without metal.

2.6. Experiments

We conduct three experiments. First, we configure our iCTU-Net in an ablation
study. Then, we investigate the impact of different sinogram input data for training in
an input study. Finally, we compare our best network configuration with state-of-the-art
MAR algorithms.

In the ablation study, we investigate different post-processing layers and loss functions.
The purpose of the ablation study is to find settings for the iCTU-Net that yield the best
reconstructions. The resulting network configuration will be used in following studies.
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We train three networks with different post-processing layers after backprojection: no
post-processing, three convolution layers, and a U-Net. All of these networks are trained
with the SSIM loss and with pre-corrected NMAR sinograms as input. To investigate the
influence of the loss function, we additionally train the U-Net post-processing network
with the MSE loss. Both SSIM and MSE are commonly used loss functions in CT artifact
reduction and CT reconstruction [28].

In the input study, we train the network with different sets of training input data in
addition to the previously used pre-corrected NMAR sinograms. The idea behind the input
study is to find out how the network behaves for different kinds of sinogram input data. We
use sinograms without metal (ground truth sinogram in Figure 3 but with additional noise
added via Equation (2)) to investigate the network’s performance if no metal is present.
In this way, the reconstruction performance and the ability to mitigate metal artifacts
can be evaluated separately. We calculate the evaluation metrics for different categories
of artifact severity, even though none of the test data contain any metal. Nevertheless,
the categories are used to allow fair comparisons to the other networks. We also train a
network with uncorrected metal sinograms (noisy metal sinogram in Figure 3), to see if an
NMAR pre-correction is necessary.

Finally, in the comparison study, we compare our iCTU-Net with the NMAR sinogram
inpainting algorithm and the U-Net Sino and U-Net Image networks described earlier.

3. Results

3.1. Ablation Study

The results of the evaluation metrics for the ablation study are shown in Table 1, and
reconstructed images are shown in Figure 4. We first investigate the impact of the different
post-processing layers. Compared to using the U-Net for post-processing, using no post-
processing and three convolutional layers performs generally worse, especially for severe
artifacts. When using no post-processing, clear streak and extinction artifacts are present.
Using the three convolutional layers for post-processing improves SSIM and PSNR and the
streak and extinction artifacts disappear. However, the geometry of some soft tissue organs
such as the liver is not reconstructed correctly, which is particularly evident for severe metal
artifacts. Using the U-Net as the final layers of the network substantially improves the
evaluation metrics, completely eliminates artifacts, and reconstructs organs more accurately.
For no artifacts, the iCTU-Net underperforms compared to the FBP, especially in terms of
PSNR. As shown by the arrows in the zoomed regions in Figure 4, the iCTU-Net is not
capable of resolving small structures of only a few millimeters in size. From now on, we
will only use the U-Net for post-processing as it yields the best results.

Finally, we train the iCTU-Net with the MSE loss. For no artifacts and moderate
artifacts, the SSIM and PSNR evaluation metrics for the SSIM and MSE losses are similar.
However, the SSIM metric for the MSE loss is considerably worse for severe artifacts and
the reconstructions of the MSE iCTU-Net in Figure 4 look grainy. Thus, the network with
U-net post-processing layers combined with SSIM loss performs best. Only this network
configuration is referred to as iCTU-Net in this work.
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Figure 4. Results of the ablation study, where the ground truth and FBP are compared to different
iCTU-Net settings. All networks are trained with pre-corrected NMAR sinograms and the SSIM loss,
except for the MSE iCTU-Net, which is trained with the MSE loss. A slice without metal artifacts,
with moderate metal artifacts, and with severe metal artifacts is shown. The scans are windowed
to [−300 HU, 300 HU] to increase the visibility of the artifacts. The arrows in the zoomed regions
indicate small structures that the iCTU-Net cannot resolve accurately.
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Table 1. SSIM and PSNR evaluation metrics for the ablation study. All networks are trained with
pre-corrected NMAR sinograms and the SSIM loss, except for the MSE iCTU-Net, which is trained
with the MSE loss. The best result for each metric is marked bold.

FBP No Post- 3 Conv iCTU-Net MSE

Processing Layers iCTU-Net

No SSIM 0.988 ± 0.020 0.865 ± 0.038 0.903 ± 0.028 0.969 ± 0.008 0.962 ± 0.010
Artifacts PSNR 50.3 ± 4.9 31.0 ± 2.9 30.5 ± 4.3 37.7 ± 1.8 37.3 ± 1.3

Moderate SSIM 0.869 ± 0.087 0.859 ± 0.036 0.897 ± 0.038 0.976 ± 0.007 0.967 ± 0.009
Artifacts PSNR 15.2 ± 3.1 33.1 ± 2.1 34.3 ± 2.8 39.5 ± 1.8 39.3 ± 1.5

Severe SSIM 0.625 ± 0.056 0.715 ± 0.06 0.832 ± 0.024 0.970 ± 0.009 0.946 ± 0.013
Artifacts PSNR 10.6 ± 1.4 24.9 ± 5.6 34.2 ± 1.3 40.7 ± 1.6 39.6 ± 1.3

All SSIM 0.848 ± 0.125 0.840 ± 0.06 0.889 ± 0.04 0.975 ± 0.008 0.964 ± 0.012
Images PSNR 18.3 ± 11.6 31.7 ± 4.0 33.9 ± 3.1 39.5 ± 1.9 39.1 ± 1.6

3.2. Input Study

In the input study, we investigate different sinogram inputs for the iCTU-Net. The re-
sults of the evaluation metrics for the input study are shown in Table 2, and reconstructed
images are shown in Figure 5. The SSIM and PSNR in Table 2 show that the network
performs similarly independent of the input. The network trained without metal in the
input sinogram achieves the best PSNR, and the network trained with the pre-corrected
NMAR sinograms achieved the best SSIM. However, these differences in SSIM and PSNR
are not significant. For the metal input, some reconstruction inaccuracies close to metal
objects can be observed, as indicated by the arrows in the zoomed images in Figure 5. Apart
from this, the reconstructions in Figure 5 show no noticeable differences in image quality.
Therefore, we continue to use the pre-corrected NMAR sinograms for the iCTU-Net. This
allows for a fairer comparison with the deep learning reference methods, since they also
use NMAR inputs.

Table 2. SSIM and PSNR evaluation metrics for the input study. The differentiation of artifact severity
is not meaningful for No Metal Input because none of the test data contain metal. Since this network
is not trained with any metal data, it is not suitable for artifact reduction. However, to allow a
reasonable comparison to the other methods, we keep the categories, meaning the same slices are
used for evaluation. The best result for each metric is marked bold.

FBP No Metal Input Metal Input iCTU-Net

No SSIM 0.988 ± 0.020 0.967 ± 0.006 0.968 ± 0.011 0.969 ± 0.008
Artifacts PSNR 50.3 ± 4.9 37.8 ± 1.5 37.4 ± 1.9 37.7 ± 1.8

Moderate SSIM 0.869 ± 0.087 0.974 ± 0.004 0.975 ± 0.009 0.976 ± 0.007

Artifacts PSNR 15.2 ± 3.1 40.2 ± 1.5 39.6 ± 1.9 39.5 ± 1.8

Severe SSIM 0.625 ± 0.056 0.968 ± 0.005 0.962 ± 0.012 0.970 ± 0.009

Artifacts PSNR 10.6 ± 1.4 40.7 ± 0.8 40.4 ± 1.7 40.7 ± 1.6

All SSIM 0.848 ± 0.125 0.972 ± 0.005 0.972 ± 0.011 0.975 ± 0.008

Images PSNR 18.3 ± 11.6 40.0 ± 1.6 39.5 ± 2.0 39.5 ± 1.9
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Figure 5. Results of the input study, where the ground truth and FBP are compared to iCTU-Nets
trained with different input sinograms. All networks are trained with the U-Net post-processing
layers and the SSIM loss, which yield the best results in the ablation study. No Metal Input, Metal
Input, and iCTU-Net are, respectively, trained with metal-free, metal, and NMAR pre-corrected
sinograms. A slice without metal artifacts, with moderate metal artifacts, and with severe metal
artifacts is shown. The scans are windowed to [−300 HU, 300 HU] to increase the visibility of the
artifacts. The arrows in the zoomed images indicate an anatomy that the Metal Input network cannot
resolve accurately.

3.3. Comparison Study

The results of the evaluation metrics for the comparison study are shown in Table 3,
and reconstructed images are shown in Figure 6. The deep learning reference methods
U-Net Sino and U-Net Image both perform better than NMAR in terms of SSIM, especially
for severe artifacts. In terms of PSNR, they perform worse when artifacts are not present
and similarly when artifacts are present. The U-Net Image achieves a slightly higher SSIM
than the U-Net Sino, but the performance of both methods is very similar. In Figure 6, no
substantial removal of metal artifacts can be observed for the U-Net Sino and U-Net Image,
only a smoothing of the streak artifacts is observed for the U-Net Image.
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Figure 6. Results of the comparison study, where the ground truth and FBP are compared to NMAR,
U-Net Sino, U-Net Image, and iCTU-Net. A slice without metal artifacts, with moderate metal
artifacts, and with severe metal artifacts is shown. The scans are windowed to [−300 HU, 300 HU] to
increase the visibility of the artifacts. The arrows and circles in the zoomed images indicate anatomies
that could only be recovered by the iCTU-Net.
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Table 3. SSIM and PSNR evaluation metrics for the comparison study. The best result for each metric
is marked bold.

FBP NMAR U-Net Sino U-Net Image iCTU-Net

No SSIM 0.988 ± 0.020 0.988 ± 0.020 0.990 ± 0.011 0.993 ± 0.010 0.969 ± 0.008
Artifacts PSNR 50.3 ± 4.9 50.3 ± 4.9 46.5 ± 2.1 45.3 ± 3.2 37.7 ± 1.8

Moderate SSIM 0.869 ± 0.087 0.976 ± 0.016 0.979 ± 0.012 0.983 ± 0.011 0.976 ± 0.007
Artifacts PSNR 15.2 ± 3.1 44.3 ± 3.1 43.9 ± 2.6 42.8 ± 2.1 39.5 ± 1.8

Severe SSIM 0.625 ± 0.056 0.911 ± 0.042 0.936 ± 0.025 0.944 ± 0.024 0.970 ± 0.009

Artifacts PSNR 10.6 ± 1.4 38.2 ± 2.4 39.3 ± 1.9 39.8 ± 1.9 40.7 ± 1.6

All SSIM 0.848 ± 0.125 0.968 ± 0.032 0.974 ± 0.021 0.978 ± 0.019 0.975 ± 0.008
Images PSNR 18.3 ± 11.6 44.1 ± 4.4 43.5 ± 3.1 42.7 ± 2.6 39.5 ± 1.9

Without artifacts, the iCTU-Net is outperformed by all methods in terms of PSNR and
SSIM as they are all FBP-based and already outperformed the iCTU-Net in the ablation
study. For moderate artifacts, the iCTU-Net achieves competitive SSIM values compared to
the reference methods but performs worse in terms of PSNR. Nevertheless, the iCTU-Net
is the only method capable of completely removing moderate metal artifacts, as shown
in Figure 6. As indicated by the arrows in the zoomed images in Figure 6, the iCTU-net
is also the only method that can restore a blood vessel into which a metal object has been
inserted. For severe artifacts, the iCTU-Net performs better than all reference methods with
SSIM = 0.970 ± 0.009 and PSNR = 40.7 ± 1.6. The second best method, the U-Net Image,
only achieved SSIM = 0.944 ± 0.024 and PSNR = 39.8 ± 1.9. Averaged over all images,
the SSIM of the iCTU-Net is competitive with the U-Net Image, but a worse PSNR is
achieved. The iCTU-Net is able to remove severe metal artifacts completely, whereas for the
other methods strong streak artifacts are still present over the whole image. The iCTU-Net
can not only efficiently remove severe artifacts but also reliably restore the anatomy that
is obstructed by these artifacts. This is especially evident inside the circles shown in the
zoomed images in Figure 6. All other methods fail to restore the anatomy in this region.

4. Discussion

We trained the iCTU-Net with metal-affected data, to investigate its ability to mitigate
metal artifacts. The iCTU-Net outperformed the reference methods for reconstructions
with severe metal artifacts. Similar results were found for the application of the iCTU-Net
to sparse-angle CT reconstruction, where the iCTU-Net showed good performance for a
small number of projections [28]. However, the iCTU-Net was not able to resolve small
structures of only a few millimeters in size. The reconstructions were slightly blurred,
which is probably the reason why the iCTU-Net could not match the quality of the FBP
when no metal was present. In the ablation study, it was found that the loss function and
the post-processing layers have a major impact on the quality of the reconstruction. We
had attempted to sharpen the reconstructed image by combining the SSIM loss with an
additional gradient difference loss [36], but no substantial improvements were observed.
In the future, we will investigate alternatives to the U-Net as post-processing layers to
further optimize the network. The iCTU-Net was trained with a dataset of 3964 slices,
of which only 310 contained no metal. Due to this small fraction of metal-free training data,
the network might not be able to learn how to properly reconstruct metal-free sinograms.
In the input study, we trained the reconstruction network exclusively with metal-free
data to test this hypothesis. We found that the network trained with metal-free raw data
did not perform better than the iCTU-Net for the no artifact category. Therefore, we can
conclude that training the network with mainly metal-affected data does not degrade the
quality of the reconstructions. Interestingly, the evaluation metrics for the moderate and
severe artifact categories also did not differ substantially. Thus, the network trained with
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metal-affected input data reconstructs images with metal-affected test data just as well as
the network trained without metal reconstructing images that do not include metal. This
shows that the iCTU-Net reliably reduces metal artifacts. This is confirmed by the fact
that all networks in the input study performed very similarly for all severities of artifacts.
The network seems to handle metal objects in the raw data very well.

The input study showed that the iCTU-Net performs similarly regardless of the sino-
gram input data used. Training the network with uncorrected metal sinograms revealed
similar performances compared to the network trained with pre-corrected NMAR sino-
grams. This means that reconstruction without pre-correction is feasible, which reduces the
complexity of the algorithm.

In the comparison study, a sinogram pre-processing and an image post-processing
approach were investigated. We have found that the image-based post-processing deep
learning approach provides better results than the sinogram pre-processing approach.
This is consistent with the findings of Arabi et al. [37]. Since the reference methods
are all FBP-based, they are superior to the iCTU-Net in the absence of artifacts due to
the aforementioned blurring. However, the artifacts introduced by the FBP cannot be
completely mitigated by the reference methods. The iCTU-Net is the only method that
removes all metal artifacts and yields the best results of all methods for severe metal
artifacts. Since the iCTU-Net is trained end-to-end, the network can fully utilize the raw
data and learn to reconstruct an artifact-free image. The U-Net Sino learns to mitigate
disturbances in the sinogram with the raw data as input. However, small errors in the
sinogram can lead to significant deviations in the reconstruction [28], which the U-Net
Sino cannot correct. The U-Net Image only mitigates the artifacts in the image domain
introduced by the FBP. In doing so, the network no longer has the original raw data to
learn from.

The usage of digital XCAT phantom data for metal data simulation instead of real
patient data has several advantages. First of all, with the organ masks provided by the
XCAT, metal objects can automatically be inserted in specific body regions. In this work,
we inserted iron into the blood vessels. For future studies it would be better to insert atten-
uation coefficients of materials that are commonly used for contrast agents and catheters.
Moreover, for the simulation of polychromatic projections, it is not necessary to segment
the images into soft tissue, bone, and metal to assign the corresponding attenuation co-
efficients, as is done in several other works [14,21,37]. Instead, the organ masks of the
XCAT allow for the insertion of energy-dependent attenuation coefficients for every organ.
In the future, it will be desirable to test the iCTU-Net on experimental raw data instead of
simulated data. However, this requires the iCTU-Net to be adapted to work with the raw
data of multirow detector CT scanners. The two-dimensional projection data might lead
to restrictions due to GPU memory limitations. Since dual-energy CT has been shown to
help reduce metal artifacts [5,10], the iCTU-Net should benefit from the additional spectral
information. Photon-counting CT is another spectral technology that can be used to reduce
metal artifacts [38]. The energy of individual photons can be measured by energy-resolving
detectors [39]. The iCTU-Net is readily applicable to energy-resolved raw data by including
the energy information in separate input channels. The additional spectral information in
the raw data is expected to mitigate beam hardening artifacts.

We will also investigate the ability of the iCTU-Net to simultaneously mitigate different
kinds of artifacts. This is achievable by using a training dataset that contains a combination
of artifacts. Promising results for the isolated mitigation of artifacts with the iCTU-Net in
low-dose CT and sparse-angle CT have already been shown [28].

5. Conclusions

The presented end-to-end deep learning CT reconstruction algorithm was trained with
simulated interventional data to mitigate metal artifacts during reconstruction. We showed
that the iCTU-Net reconstruction MAR approach is better suited to mitigate metal artifacts
than commonly used sinogram pre-processing and image post-processing deep learning
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approaches. The iCTU-Net is the only studied method that can eliminate the metal streak
artifacts. However, the end-to-end reconstruction approach performs worse than the other
approaches when no artifacts are present. Reconstructions without any metal showed that
the iCTU-Net is prone to blurring. Because the whole reconstruction is learned, the network
is able to fully utilize the raw data, which benefits the removal of metal artifacts. In the
future, we will try to improve the network architecture by investigating alternative loss
functions and post-processing layers to avoid blurring. We will also train networks with
data including different kinds of artifacts to investigate simultaneous mitigation of several
types of artifacts.
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Abstract: Intraoperative Computer Tomographs (iCT) provide near real time visualizations which
can be registered with high-quality preoperative images to improve the confidence of surgical
instrument navigation. However, intraoperative images have a small field of view making the
registration process error prone due to the reduced amount of mutual information. We herein
propose a method to extrapolate thin acquisitions as a prior step to registration, to increase the field
of view of the intraoperative images, and hence also the robustness of the guiding system. The
method is based on a deep neural network which is trained adversarially using self-supervision
to extrapolate slices from the existing ones. Median landmark detection errors are reduced by
approximately 40%, yielding a better initial alignment. Furthermore, the intensity-based registration
is improved; the surface distance errors are reduced by an order of magnitude, from 5.66 mm
to 0.57 mm (p-value = 4.18 × 10−6). The proposed extrapolation method increases the registration
robustness, which plays a key role in guiding the surgical intervention confidently.

Keywords: generative adversarial networks; volume extrapolation; self-supervision; volume registration

1. Introduction

Over the past years, the use of medical imaging in computer aided interventions has
become more and more popular, supporting clinicians in their workflow and thus reducing
the procedural associated risks [1].

This paper is focused on increasing the trustworthiness of liver needle therapies
such as Radiofrequency Ablation (RFA) or biopsy, where real time imaging plays a main
role in guiding the intervention confidently. Although it is well known that there is a
trade-off between radiation dose, acquisition time and image quality, during such surgical
interventions all procedures must be carried out as quickly and accurately as possible. A
possible solution to this problem is to intraoperatively acquire thin images-that provide
low—resolution visualizations of a small liver region—and register them with complete
high resolution preoperative images [2].

Registration is a technique used to align two images with respect to the patient’s
internal structures. Formally, having a reference and a template image R, T : Rd → R,
registration objective is to find a transformation ϕ : R

d → R such that R ≈ T ◦ ϕ [3].
Therefore, registration techniques are employed to retrieve high resolution preoperative
information such as lesion location and appearance and aggregate it with the thin intra-
operative images revealing the real-time needle localization, thus increasing navigation
confidence. Based on the operands, there are multiple types of registration including
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slice-to-volume, projection-to-volume, volume-to-volume, etc. [4]. Herein we focus on the
latter, aiming to boost the performance of two Computer Tomograph (CT) volumes rigid
registration. Two volumes can be registered using a feature-based approach, an intensity-
based approach or a combination of the two techniques. In feature-based registration, a
set of corresponding features (e.g., landmarks, center of mass, etc.) are used to compute
the transformation ϕ to register a volume (called the moving or template volume, T) to the
space of the other volume (fixed or reference volume, R) [5]. The intensity-based approach
can be formulated as an optimization problem, seeking the best set of parameters for the
transformation ϕ to minimize a predefined distance measure: argminϕ[D(R, T ◦ ϕ)] [3,6].
However, this approach is not robust due to the potential presence of local minimums
caused by image artifacts and sub-optimal distance metrics. Combinations of the two
approaches might be used to improve registration accuracy and robustness (e.g., using
intensity-based registration as a refinement step for the feature-based registration).

To the best of our knowledge, registration of thin images has been overlooked so
far. Since all the registration techniques are highly dependent on the amount of mutual
information (common data presented by both images from different perspectives), analysis
of thin images is very challenging due to their reduced field of view (FOV). However, during
surgeries low-resolution thin CT slabs are acquired to mitigate the patient’s exposure
risk. In this context, despite performing an initial alignment based on center of mass
or geometric center, intensity-based registration is prone to failure given to the distinct
fields of view of the operands. To reliably retrieve the corresponding high resolution
preoperative data, a feature-based approach must be considered. However landmark
detection algorithms might also be affected by the thin volume quality thus yielding a poor
registration performance.

We therefore propose a method to extrapolate thin CT slabs, generating additional
slices from the few existing ones, hence providing enhanced context information required
by registration algorithms to work robustly.

Artificial intelligence in medical applications has received significant attention from
the scientific community over the past few years. Due to their potential to model complex
problems based on large datasets of examples, deep learning algorithms are nowadays
employed for solving a wide variety of tasks such as regression, classification, segmentation
and image generation [7,8]. Generative adversarial networks (GANs) [9] are a state of the
art method for solving tasks such as synthetic image generation [10–12], segmentation [13],
super-resolution [14], denoising [15,16], style-transfer [17,18] and inpainting [19,20].

Image interpolation, also known as image completion or inpainting [21], aims at
filling missing regions within an image with coherent and realistic content based on the
surrounding information. Thus, in image interpolation, the field of view is well defined. In
contrast, image extrapolation [22–24] is a more challenging task since the field of view has
to be extended by hallucinating coherent and realistic content outside the boundaries of
the existing information.

In this paper, we introduce an extrapolation methodology based on a generator net-
work which increases the field of view of thin intraoperative CT volumes, and improves
the accuracy and robustness of a subsequent registration process. To prove the efficiency of
the proposed method we focus on the liver area and assume that a thin acquisition would
have a thickness of approximately 5 cm. However, this can be easily adjusted for other
thicknesses or use-cases.

The paper is organized as follows: Section 2 provides an overview of the proposed
methods, including details regarding data, network architecture, optimization and quantifi-
cation strategies. Section 3 presents the results from a task oriented perspective. Strengths
and limitations of this study are discussed in Section 4, including the next steps towards
the adoption of our method in real world applications and Section 5 presents some
overall conclusions.
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2. Materials and Methods

In this section we introduce a self-supervised approach for extrapolating axial slices,
thus enhancing the context information required by the registration algorithms to obtain
a good alignment. Due to the lack of real intraoperative data, we synthesize thin images
by extracting approximately 5 cm thick sub-regions (see Section 2.1) from full CT field of
views (Figure 1a).

(a) Thin intraoperative image. (b) Full preoperative image.

Figure 1. Examples of CT images: The thin image (a) displays a reduced field of view (thickness)
with respect to the z axis, as compared to the full preoperative image (b).

As depicted in Figure 2, given a CT volume f : Rd → R we first use an uniform
distribution to build a binary mask m : R

d → {0, 1} to randomly remove 75% of the
information through a voxel-wise multiplication, thus yielding an image g : Rd → R. We
further refer to this image as the grid image, which is defining the extrapolation extent.
Next, we simulate a thin acquisition t : Rd → R by extracting a region of interest (ROI)
out of the grid image and then employ a deep neural network to restore the missing
information, thus extrapolating the thin slab across z direction.

Figure 2. Schematic overview of the workflow. The data are stochastically processed at training time
to create a self-supervised learning framework.

2.1. Dataset

The dataset consisted of 1400 high resolution CT images, each of which provided
a complete visualization of the liver. Furthermore, from each of these images we only
considered an ROI determined by the liver bounding box with respect to the z axis (further,
we refer to this as the full image). To generalize the model, we stochastically set the
thickness of the full image to the height of the liver bounding box, adding ±25 mm in each
direction. All these images have a constant resolution of 512 × 512 in the x-y plane, with a
voxel spacing of 0.8 mm, while the mean resolution for the z-axis is of 179.2 voxels (ranging
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from 24 to 796, with a mean voxel spacing of 1.49 mm). All the images were resampled to a
spacing of [3,3,1.5] mm. Further, to create an isotropic grid of size 128 × 128 × 128 voxels,
either padding or cropping was performed. To avoid numerical instability and arithmetic
overflow when computing the variance, we normalized our data using the Welford’s online
algorithm [25].

The data were employed to develop a self-supervised learning framework, automati-
cally creating input-output pairs from the ground-truth images: at training time, a quarter
of the full volume FOV was randomly extracted simulating an intraoperative volume of
varying thickness, as depicted in Figure 3. Further, a deep neural network was employed
when reconstructing the original volume, thus extrapolating the thin slab across the z-axis.

Figure 3. Thickness distribution of the training input data.

We randomly split the data into a training set representing 80% of the data and a
testing set representing the remaining 20% of the data. Additionally, we used 100 CT pairs
for quantifying the registration performance.

2.2. Proposed Method

We trained our extrapolation network (also referred to as generator) within an adver-
sarial framework, optimizing it to “fool” another neural network (called critic or discrimi-
nator) regarding the authenticity of generated samples.

As depicted in Figure 4 the generator network first performed a repetition of the
thin slab across the z-axis, increasing the thickness of the input with a factor of four, thus
defining the target FOV of the extrapolated image. This repetition adapts the encoder’s
feature maps to the decoder’s dimensions such that we can take advantage of the long
term skip connections propagating the information through the network. Moreover, this
strategy is beneficial in terms of expanding the receptive field of view at the bottleneck,
thus using the limited amount of real information efficiently.

The rest of the generator is a variation of U-net, where each block consists of a sequence
of convolution, activation function and instance normalization layers [26]. In the encoder
part, downsampling was performed using 2-strided convolutions, until a receptive field of
view of 255 × 255 × 255 voxels was obtained at the bottleneck. Nonlinearities are provided
by LeakyReLU activations, while the decoder employs ReLUs. Upsampling was performed
through interpolation layers followed by 1-strided convolutions.

We used similar blocks as in the generator to create a patch-discriminator [27] con-
ditioned on the grid image (Figure 2—g), which, besides the image to be discriminated,
was provided as an input. This image helped the critic to penalize the generator in regards
to finding the right extrapolation extent. Instead of outputting a single value, the critic
outputs a 8 × 8 × 8 feature-map on which each element discriminates 31 × 31 × 31 voxels
patches in the input.
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Figure 4. Network architectures; left—U-net like generator; right—patch discriminator. The first
layer of the generator performs a 4× repetition of the thin input to define the extrapolation extent.

2.2.1. Optimization Strategy

We trained the critic to distinguish between fake (ẽ) and real samples ( f ), thus maxi-
mizing the Wasserstein distance between the real (Pr) and fake (Pg) data distribution [28]:

Lcritic = Eẽ∼Pg [D(ẽ, g)]− Ef∼Pr [D( f , g)] + λEê∼Pê [(|| �ê (D(ê, g))||2 − 1)2] (1)

Equation (1) displays the objective function used to train the critic, where the third
term is a gradient penalty term used to improve the training stability [29].

Secondly, we trained the generator to produce images which are indistinguishable
from the real ones, thus minimizing Lcritic by optimizing:

Ladv = −Eẽ∼Pg [D(ẽ, g)] (2)

To further stimulate the generation of image details and consistent internal structures,
in addition to the adversarial component, we also used a feature loss [30] penalty. This
component aims at minimizing the L1 distance between features F extracted from real and
fake samples, respectively. The feature maps are provided by the third convolution layer of
a 3D network trained in brain tumor segmentation [31].

L f eat = Eẽ, f [||F(ẽ)− F( f )||1] (3)

As depicted in Figure 5, the grid information (volume g) was only used at training
time by the critic to constrain the generator to find the right position of the thin slab within
the target field of view.

The objective of the generator represents a weighted combination of the two terms of
Equations (2) and (3). The weights have been empirically chosen such that the components
take values in the same range: λadv = 1 and λ f eat = 1, which has been shown to lead to a
better performance of the model. When using a larger weight for the supervision signal, as
suggested in [27], the adversarial loss became unstable in the early stages of the training,
hindering an improvement of the generated images over time.

Lgen = λadvLadv + λ f eatL f eat (4)

Since the cost function used to train GANs stems from another neural network trained
jointly, the loss alone can be misleading when trying to identify the best performing model.
Therefore, for the current experiment, model selection was performed through a visual
inspection of the samples produced by the generator over time.

85



Appl. Sci. 2022, 12, 2944

Figure 5. Generator optimization workflow. A conditional GAN was employed in extrapolating thin
input volumes, expanding their FOV with a factor of 4.

2.2.2. Image Metadata Retrieval

Since our convolutional neural network (CNN) generator operates on voxel intensity
information only, we needed to perform an extra-step to retrieve the metadata of the
extrapolated images.

Intuitively, the extrapolated image will have the same spacing and orientation as the
thin one. However, the origin and dimension of the image changes due to the addition of
synthetic information. Determining the grid dimension of the expanded volume is straight
forward since we always quadruple the input field of view on the z-axis:

(dẽx, dẽy, dẽz) = (dtx, dty, dtz × 4) (5)

To compute the origin of the extrapolated volume, we first needed to determine thin
slab’s location within the extrapolation grid. In the current work, we addressed this issue
in the post-processing phase, performing an extra-registration step to determine the extent
of extrapolation as further described:

We overlapped the thin slab (sliding it across z direction) at each possible location of
the extrapolated volume, calculating the voxel-wise mean squared error (Figure 6—d1..k).
Next, we determined the extent extrapolation by picking the index which minimized this
penalty.

Figure 6. Position regression; left—thin slab t; right—extrapolated volume ẽ.

Further, the origin of the extrapolated image was calculated using the following
expression:

(oẽx, oẽy, oẽz) = (otx, oty, otz − argmini=1..k(di)× stz) (6)

where stz is the spacing of thin volume across z direction.
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In our tests, this simple registration step was always accurate because the extrapola-
tion network only had to copy the thin slab’s intensities into the output volume without
modifying them at all, hence generating relatively few errors.

2.3. Performance Quantification

One of the major challenges in image generation tasks is the lack of a goal standard
method to quantify the performance of the generative models. Hence, we herein propose
a goal oriented quantification method consisting in two tests: landmark detection [32,33]
and registration errors [34].

As we want to perform a feature-based registration of two volumes based on a set of
corresponding landmarks, we must encourage accurate detection on the synthetic images.
Hence, we first evaluate our extrapolation models based on the euclidean distance between
the manual annotations and the landmarks detected on the thin, extrapolated and ground-
truth volumes, respectively.

For the registration test, the 100 additional CT pairs mentioned in Section 2.1 were used
as follows: we randomly extracted thin slabs from the fixed images and then employed our
models for extrapolation. Further, we compared the performance between the registration
of ground-truth fixed and full moving images, thin-fixed and full moving images and
extrapolated-fixed and full-moving images. We used two metrics for this evaluation:
surface distance and DICE, both computed on the liver masks, obtained by using the same
segmentation model employed for data preprocessing.

3. Results

Table 1 displays the structural similarity index (SSIM) and the peak signal to noise
ratio (PSNR) metrics for the train and test set, respectively. No significant differences were
observed between the performance of the two sets, indicating the good generalization
power of the generator.

Table 1. Image similarity results.

Mean (±std) [mm]

Metric Train Set Test Set

SSIM 0.726(±0.04) 0.719(±0.05)
PSNR 24.13(±2.19) 23.76(±2.26)

3.1. Landmark Detection Test

We ran a pretrained landmark detection model [33] on three variants of each test
image: full, thin and extrapolated. Next, we calculated the Euclidean distance between
each detected landmark and the corresponding manual annotation. The results are depicted
in Figure 7: the proposed method reduces the median detection error by approximately
40% (from 19.51 mm to 12.08 mm, p-value = 7.38 × 10−37) while the interquartile range
(IQR) is reduced by more than a half, which means that our method increases landmark
detection robustness significantly (Table 2).

Since a quarter of the full volume thickness is always used as an input, each ex-
trapolated image should contain (1) that quarter of the FOV (we will refer to it as actual
information region) and (2) three quarters of extrapolated (hallucinated) information. All
detected landmarks were considered for the blue boxplots, including the ones detected in
the extrapolated region. On the other hand, the red boxplots display the detection error on
the actual information only, which is more relevant, since we only employed extrapolation
to provide more context for detection algorithms, rather than generating synthetic points
to be used for registration.
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(a) Train set. (b) Test set.

Figure 7. Detection errors. For the blue boxplots all detected landmarks were considered, while
the red boxplots only take into account landmarks detected on the region containing the actual
information.

Table 2. Landmark detection results on the test set.

Mean (±std) [mm]

Image All Detected Landmarks Landmarks Detected on Actual Info

Full volume 4.64(±8.02) 4.04(±7.05)
Thin volume 19.51(±43.0) 19.51(±43.0)

Extrapolated volume 18.62(±22.96) 12.08(±16.86)

3.2. Registration Test

Figure 8 displays the registration results of the full moving images with all three
variants of the fixed images-full, thin and extrapolated. The blue boxplots display the results
of landmark-based registration which is then used as an initialization for the intensity-based
registration, depicted in red.

As expected, the best performance was obtained when the full-moving images are
registered with full-fixed images (having a median SD of 0.20(±0.08) mm after intensity-
based registration), and the worst results were obtained when the full-moving images were
registered with thin-fixed images (5.66(±20.56) mm). However, we obtained a registration
performance comparable to the one corresponding to full-fixed images (0.57(±2.05) mm)
by using the proposed extrapolation method as a prior step, thus reducing the thin slab
registration error with a factor of 10 (p-value = 4.18 × 10−6). The same holds true when
considering the DICE score (Figure 8b), which increased due to the extrapolation from 0.67
to 0.88 (median).

(a) Surface distance. (b) DICE score.

Figure 8. Registration results: landmark-based registration in blue, intensity-based registration in
red. Each figure has three groups: left—registration of full-fixed with full-moving images; middle—
registration of thin-fixed with full-moving images; right—registration of extrapolated-fixed with
full-moving images.
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Figure 9 displays a comparison between the registration of thin, full and extrapolated
images. While the first row presents a poor registration of the thin image, the third row
demonstrates the benefits of our approach, showing a much better overlap between the
extrapolated-fixed and full-moving images. However, the best performance was obtained
when aligning the full-fixed with the full-moving images (second row).

Figure 9. Registration example. The first row displays a poor alignment of the thin image, while
the third row displays an improved registration determined by the extrapolation. The middle row
presents a very accurate registration of the ground truth full image for comparison.

4. Discussion

4.1. Algorithm Selection

Before defining the method described in this paper, a number of experiments were
performed. At first, a 2D Wasserstein GAN with gradient penalty was employed in
extrapolating individual coronal slices, which were stacked together afterwards to create
a 3D volume. Although the generated 2D samples looked relatively realistic per se (see
Figure A1), the resulting 3D volumes had a significant inconsistency across the y direction,
leading to a poor detection and registration performance. We have tried to mitigate this
inconsistency by using a sequence of five consecutive frames as input to predict the middle
one, and by adding to the cost function of total variation loss across the y direction. No
substantial improvement was observed.

On 3D data we trained various settings of Least Squared GANs (LSGAN) [35] with
no success. The discriminator learned to distinguish fake samples within a few iterations,
providing very strong gradients, hence placing the generator into a mode collapse. To
mitigate this behavior we tried different strategies such as decreasing the size of the network,
Dropout regularization, Gaussian noise addition to layers and/or labels, occasionally
flipping the targets, addition of voxel-wise supervision loss component for training the
generator, etc. The 3D Wasserstein GAN with gradient penalty demonstrated more stable
behavior during the training, when used in conjunction with an extra-supervision loss,
such as voxel-wise mean squared error or a feature loss (Equation (3)). Although the
perceptual quality of the generated samples is much lower when compared to the 2D
counterpart (see Figure A2), the goal oriented metrics (landmark detection error and
registration performance) demonstrated a substantial improvement.
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4.2. Overall Discussion

We found that our method reduced the median landmark detection error by a very
large margin, thus leading to a superior feature-based registration. A better detection
yields a better initialization for the intensity-based registration, rendering the alignment
of extrapolated images comparable to the alignment of ground-truth images. Due to the
enhanced context available in synthetic images, the overlapping error denoted by the
median surface distance improved from 5.66 mm to 0.57 mm (p-value = 4.18 × 10−6).

We note that the paper represents only a proof of concept that recent advances in gen-
erative networks can improve the robustness of computer aided interventions significantly
using augmented data.

The major challenge of image out-painting remains the determination of the expansion
size and direction. To expand the field of view of an image, Ref. [23] propose an extra
input for the network, which is a vector representing the padding to be applied in each
direction (top, left, bottom and right), hence defining an extrapolation grid. In [22], a binary
mask is used to remove 32 pixels from each side of an image, thus solving a symmetrical
extrapolation problem. However, our self-supervised learning approach does not require
such prior information since it wouldn’t be available in real world applications, but it
is limited to always quadrupling the thickness of the input. Therefore, to address other
use-cases, where the thickness of the intraoperative images is out of distribution with
respect to the training data (see Figure 3), the model must be retrained accordingly.

Another important aspect of our proposed method is the need for an extra-registration
step to determine the origin of extrapolated volumes. We are aware of the existence of other
(maybe more elegant) approaches, but we have chosen this simple strategy to preserve the
non-rigid properties offered by the fully convolutional networks, as well as to maintain
that the entire workflow is self explainable.

5. Conclusions

We proposed a method for improving the performance of intraoperative image regis-
tration by expanding the field of view of thin slabs, thus enhancing the context information
required for the matching process. We showed that our approach increased the detection
performance by a large margin. Therefore, the feature-based registration provided a much
better initialization for the intensity-based refinement step, which produced results compa-
rable to the ones obtained after aligning two high-resolution images having the same field
of view.
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Abbreviations

The following abbreviations are used in this manuscript:

RFA Radiofrequency ablation
CT Computer Tomograph
FOV Field of view
GAN Generative adversarial network
ROI Region of interest
CNN Convolutional neural network
IQR Interquartile range
SSIM Structural similarity index
PSNR Peak signal to noise ratio

Appendix A

Figure A1 displays some examples of extrapolated volumes using a 2D neural network,
trained to extrapolate individual coronal frames. Although the network produces relatively
plausible images across the extrapolation axis (middle), the resulting 3D volume displays
a significant inconsistency across the y direction, which can be seen in the axial (left) and
sagittal (right) views.

Figure A2 displays two examples of 3D extrapolation with the proposed approach,
where the thin input image is overlayed on the coronal and sagittal views. Extrapolated
volumes tend to be blurry and affected by noise, but in terms of structural consistency they
are superior to the ones generated with the 2D neural network.

Figure A1. 2D extrapolation examples. Left—axial view; Middle—coronal frame (extrapolation
axis); Right—sagittal frame.
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Figure A2. 3D extrapolation examples. Each example provides a comparison of the extrapolated
image (left) with the ground truth image (right). Top—axial view; Middle—coronal frame (extrapo-
lation axis); Bottom—sagittal frame.
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Abstract: Generative adversarial networks (GAN), which are fueled by deep learning, are an efficient
technique for image reconstruction using under-sampled MR data. In most cases, the performance
of a particular model’s reconstruction must be improved by using a substantial proportion of the
training data. However, gathering tens of thousands of raw patient data for training the model in
actual clinical applications is difficult because retaining k-space data is not customary in the clinical
process. Therefore, it is imperative to increase the generalizability of a network that was created using
a small number of samples as quickly as possible. This research explored two unique applications
based on deep learning-based GAN and transfer learning. Seeing as MRI reconstruction procedures
go for brain and knee imaging, the proposed method outperforms current techniques in terms of
signal-to-noise ratio (PSNR) and structural similarity index (SSIM). As compared to the results of
transfer learning for the brain and knee, using a smaller number of training cases produced superior
results, with acceleration factor (AF) 2 (for brain PSNR (39.33); SSIM (0.97), for knee PSNR (35.48);
SSIM (0.90)) and AF 4 (for brain PSNR (38.13); SSIM (0.95), for knee PSNR (33.95); SSIM (0.86)). The
approach that has been described would make it easier to apply future models for MRI reconstruction
without necessitating the acquisition of vast imaging datasets.

Keywords: image reconstruction; MRI; GANs; transfer learning; deep learning

1. Introduction

Magnetic Resonance Imaging (MRI) is a non-ionizing imaging technique used in
biomedical research and diagnostic medicine. A strong magnetic field and Radio Frequency
(RF) pulses are the foundational elements of MRI. An image is created when antennas
placed near the area of the body being examined absorb hydrogen atom radiation, which
is present in abundance in all living things. Due to the greater soft-tissue contrast and
non-invasive nature of MRI, it is commonly utilized to identify diseases. MRI, on the other
hand, has a severe problem in that it takes a long time to acquire sufficient data in k-space.
In order to address this issue, k-space imaging approaches with insufficient sampling have
been proposed. Compressed sensing [1] and parallel imaging [2] are two commonly used
reconstruction approaches for obtaining artifact-free images.

Numerous research organizations and well-known MRI scanner manufacturers are
accelerating MRI acquisition. Hardware techniques such as several coils are utilized to
sample k-space data in parallel [3]. One of the two main approaches is used in commercial
MRI scanners [4] to reconstruct a picture from the coils’ under-sampled k-space data. To
be more precise, aliased pictures produced by partial k-space conversion are combined
into a single coherent image via the Sensitivity Encoder (SENSE) [5]. The inverse Fourier
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transform (IFT) is calibrated using GRAPPA [6], which uses information from signals
in the complex frequency domain. These techniques are examined by [7], along with a
hybrid approach that combines the advantages of SENSE with the GRAPPA method’s
resilience to some flaws. Figure 1, is a summary of data from the PubMed results for “GPU
reconstruction” from 2004 to 2020.

Figure 1. Summary of data from the PubMed results for “GPU reconstruction” from 2004 to 2020.
The number of papers in respective years is represented in the graph. Number of papers are 5, 9, 13,
24, 36, 29, 48, 79 and 133 in years 2004–2020.

Notable is the fact that deep learning reconstructions have notably shorter reconstruc-
tion times while maintaining higher image quality [8,9]. Using a convolutional neural
network, the authors of [10] were able to determine the mapping between zero-filled (ZF)
images and their corresponding fully-sampled data (CNN). Iterative processes from the
ADMM algorithm were used to develop a novel deep architecture for optimizing a CS-
based MRI model [11]. In [11], they recreated under-sampled 2D cardiac MR images by
use of a convolutional neural network cascade. In terms of both speed and accuracy, our
strategy was superior to CS approaches. De-Aliasing Generative Adversary Networks
(DAGAN) was proposed by Yang et al. for fast CS-MRI reconstruction in [12]. To keep
perceptual image data in the generator network, an adversarial loss was combined with
a unique content loss. For MRI de-aliasing [10], created a GAN with a cyclic loss. This
network’s reconstruction and refinement are carried out using cascaded residual U-Nets.
In [13], the authors employed an L1/L2 norm and mixed-cost loss of Least Squares (LS)
generator to train their deep residual network with skip connections as a generator for
the reconstruction of high-quality MR images. A two-stage GAN technique, according
to [14], can estimate missing k-space samples while also removing image artifacts. The
self-attention technique was incorporated into a hierarchical deep residual convolutional
neural network by [15] in order to improve the under-sampled MRI reconstruction.

Using the self-attention mechanism and the relative average discriminator (SARA-
GAN), [16] constructed an artificial neural network in which half of the input data is
true, and the other half is false. Research organizations and prominent MRI scanner
manufacturers are working hard to speed up the acquisition of MRI scans. For example,
numerous coils can be used to sample k-space data simultaneously, as demonstrated by
Roemer and colleagues [17]. Under-sampled k-space data generated by the coils are used
to reconstruct a picture in commercial MRI scanners [18]. Both approaches are now being
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applied. If the reader is interested in learning more about how the Sensitivity Encoder
(SENSE) works, we suggest [19]. For example, the GeneRalized Autocalibrating Partial
Parallel Acquisition (GRAPPA), developed in 2002 by Griswold et al., works on complex
frequency domain signals before the IFT. For an overview of these approaches, as well as a
hybrid approach that incorporates the benefits of Sense and Grappa, see [20].

The Compressed Sensing (CS) approach [21] provides efficient acquisition and recon-
struction of the signal with fewer samples than the Nyquist–Shannon sampling theorem
limit when a signal has a sparse representation in a specified transform domain. By select-
ing a tiny portion of the k-space grid, CS is employed for MRI reconstruction [22]. The IFT
of the zero-filled k-space exhibits incoherent artifacts that behave like additive random
noise due to the underlying premise that the under-sampling is random. CS, despite being
a popular technique today, promotes smooth rebuilding, which could lead to the loss of
fine, anatomically significant textural characteristics. Additionally, a sizable amount of
runtime is needed. Recently, various machine learning methods for MRI acceleration were
suggested. In order to reconstruct MRI from under-sampled k-space data, Ravishankar and
Bressler [23] suggested a dictionary-based learning strategy that takes advantage of the
sparsity of overlapping image patches highlighting local structure. Using spatio-temporal
patches to reconstruct dynamic MRI [24], elaborated on this concept. Both [25,26] used
compressed manifold learning based on Laplacian 75 Eigenmaps to reconstruct cardiac
MRI and predict respiratory motion.

A variational network (VN) was created in 2018 by [27] to reconstruct intricate multi-
channel MR data. In [28], they suggested the MoDL architecture to handle the MRI recon-
struction difficulty. Meanwhile, ref. [29] created PI-CNN, which combines parallel imaging
with CNN, for high-quality real-time MRI reconstruction. A method for multi-channel
image reconstruction based on residual complicated convolutional neural networks was
developed by [30] to expedite parallel MR imaging. Reconstructed multi-coil MR data from
under-sampled data was successfully produced by [31] using a variable splitting network
(VS-Net). Sensitivity encoding and generative adversarial networks (SENSE-GAN) were
merged by [32] for rapid multi-channel MRI reconstruction. For the reconstruction of
multi-coil MRI, ref. [33] introduced the GrappaNet architecture. The GrappaNet trained the
model from beginning to end using neural networks in addition to conventional parallel
imaging techniques. Dual-domain cascade U-nets were proposed by [34] for MRI recon-
struction. They showed that dual-domain techniques are superior when reconstructing
multi-channel data channels simultaneously. A summary of different articles regarding
deep learning-based and other models for MRI reconstruction is presented in Table 1.

Training the network parameters and achieving reliable generalization results, all
of the aforementioned approaches require a significant size of the dataset. On publicly
accessible datasets, the majority of earlier investigations have verified their reconstruction
performances. Gathering tens of thousands of multi-channel data points for model training
in clinical applications is challenging, though, because retaining raw k-space data is not a
common clinical flow. The generalization of learned image reconstruction networks trained
on open datasets must therefore be improved. In order to address this issue, numerous
transfer learning studies have been carried out lately.
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Table 1. A summary of different articles regarding deep learning-based and other models for
MRI reconstruction.

Sr. No. Reference Methodology Results Future Directions

1 [35]
Reconstruction of brain MRI

data using a G1M
U-Net model

Reconstruction results are derived
from practical sampling schemes

of accelerated brain MRIs.

Apply to a wide range of
datasets with excellent

fidelity to fully
sample scans.

2 [36]
Use of a GAN with a Cyclic

Loss to Reconstruct
a CS-MRI

In terms of both running time and
image quality, CS-MRI methods

performed noticeably better than
open-source MRI datasets.

The next step in the study
will be to extend Refine

GAN to handle
dynamic MRI.

3 [37]

The inverse problem was
solved using a deep

CNN-based
optimization model.

Discriminative CNN denoiser
creates a versatile, quick, and

efficient image
restoration framework.

_ _ _ _

4 [38]

Image Reconstruction from
Compressively Sensed

Random Measurements
Using Recon Net

Recon Net offers high-quality
reconstructions of simulated and

actual data for various
measurement rates.

_ _ _ _

5 [39]

To resolve problems with
normal-convolutional

inverse, direct inversion and
a CNN are proposed.

Parallel beam X-ray CT
sparse-view network performance

is calculated.

It is possible to address
strategies for

heterogeneous datasets.

6 [40]

CS-based approaches,
especially DLMRI, use a

coordinate-descent algorithm
to optimize.

CNNs were evaluated for their
relevance to the MR image
reconstruction challenge.

The model will directly
address the coil sensitivity

maps’ redundancy.

7 [41]

The Primal-Dual algorithm
for tomographic

reconstruction has
been learned.

For the Shepp–Logan phantom,
they improve peak SNR by 6 dB

over competing approaches.

Capable of using complex
loss functions with learned
reconstruction operators.

8 [42]
Recurrent Neural Networks
are used by RIMs to solve

inverse problems.

The RIM-3task model is
competitive on all noise levels. _ _ _ _

9 [43]
A pre-trained CNN model
was used to augment and
classify brain tumor data.

Before and after data
augmentation, they outperformed
the most sophisticated algorithms

with 90.67 accuracies.

Weight-saving
CNN fine-grained

classification will use
differential

stochastic classification.

10 [44]
Investigate the overfitting
issue using a CapsNet for
classifying brain tumors.

Comparative research with CNN
found their accuracy rate was

86.56%.
Learning rate decreases

with iterations.

In the future, look into how
adding more layers affects

classification accuracy.

11 [45]
A review of medical image

classification using deep
learning approaches.

They explain deep learning
algorithms and how they can be
used for medical imaging, noting

that the learning rate is
proportional to the inverse

of iterations.

To apply the strategies to
the modalities where they
are not employed, more

research is needed.

12 [46] Predicted patient survival
using BraTS2017 and U-NET.

With less computational time,
89.6% accuracy was achieved. _ _ _ _

13 [47]

BRaTS 2013, 2015 used
CNN-based two-path

architecture to separate
brain tumors.

Cascaded input
CNN achieved 88.2% accuracy.

Analysis of various
architectural designs.

Increasing the architecture
layers and data set boosted
the outcomes even more.
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To reconstruct high-quality images from under-sampled k-space data in MRI, ref. [48]
created a unique deep learning approach with domain adaptability. The proposed network
made use of a pre-trained network, which was then fine-tuned using a sparse set of radial
MR datasets or synthetic radial MR datasets. Knoll et al. [49] investigated the effects
of image content, sampling pattern, SNR, and image contrast on the generalizability of
a pre-trained model in order to show the potential for transfer learning using the VN
architecture. To test the ability of networks trained on normal pictures to generalize to T1-
and T2-weighted brain images, ref. [50] suggested a transfer-learning approach. Meanwhile,
assessed the generalization of the results of a trained U-net for the single-channel MRI
reconstruction problem using MRI performed with a variety of scanners, each with a
different magnetic field intensity, anatomical variations, and under-sampling masks.

This study aims to investigate the generalizability of a trained GAN model for recon-
structing an MRI with insufficient samples in the following circumstances:

 Transfer learning for a private clinical brain test dataset using the proposed
GAN model.

 Using datasets from open-source knee and private source brain tests, transfer learning
of the proposed GAN model.

 For datasets on the knee and brain with Afs of 2 and 4, transfer learning of the
proposed GAN model is conducted.

2. Method and Material

The formulation of the multi-channel image reconstruction problem for parallel imag-
ing is as follows:

w = PFRI + m (1)

where I is the image we intend to solve, P is the under-sampling mask, w is the col-
lected k-space measurements, m is the noise, F is the Fourier transform and R is the coil
sensitivity maps.

By incorporating past knowledge, CS-MRI constricts the solution space in order to
solve the inverse problem of Equation (1). Furthermore, the optimization problem can be
stated as:

I = mini
1
2
‖PFRi − Y‖2

2
+ λS(i) (2)

where the prior regularization term is denoted by S(i), and the first term reflects data fidelity
in the k-space domain, which ensures that the reconstruction results are consistent with
the original under-sampled k-space data. Term λ is a balance parameter that establishes
the trade-off between the data fidelity term and the prior knowledge. In a specific sparsity
transform domain, S(i) is often an L0 or L1 norm.

Typically, an iterative strategy is necessary to tackle the above optimization issue. The
regularization term S(i), which is based on CNN, can now be used to denote, i.e.,

I = mini
1
2
‖PFRi − Y‖2

2
+ λ‖I − f CNN(Iu|θ)‖2

2
(3)

Utilizing the training dataset, the model’s parameters can be tuned, and the out-
put of CNN is f CNN(Iu|θ) with the parameters θ. Iu = FH

u w, where H stands for the
Hermitian transpose operation, and also refers to the ZF images that were reconstructed
from under-sampled k-space data. Recently, MRI reconstruction has also incorporated
conditional GAN.

A GAN has a discriminator D and a generator G. Both the discriminator and the
generator need to be trained. The generator G can be taught, through training, to predict the
distribution of the genuine data that are provided and to produce data that will deceive the
discriminator D. Distinguishing between the output of the generator G and the actual data
is the discriminator D’s goal. Then, after training, the generator can be used independently
to generate new samples that are comparable to the original ones.
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The conditional GAN loss was therefore applied to the reconstruction of MRI images,
which is:

minθcmaxθe  bGAN(θc, θe) = EIt−P
train(It)

[logDθe(It)] EIt−pc(It) [logDθe(Gθc(Iu))] (4)

where It is the fully sampled ground truth, and Iu is the equivalent reconstructed image
produced by the generator. Iu is the ZF image that serves as the generator’s input.

2.1. Datasets

The provincial institutional review committee approved the study, and all subjects
provided their informed consent for inclusion prior to participating in it. The MRI scan-
ning was authorized by the institutional review board (Miu Hospital Lahore). Private
brain tumor MRI datasets were collected from 19 participants utilizing various imaging
sequences. We chose 6 participants at random for network testing and 13 for tuning, which
corresponded to 218 and 91 images, respectively. The “Stanford Fully Sampled 3D FSE
Knees” repository provided the knee datasets used in this inquiry. The raw data were
collected using an 8-coil, 3.0T full-body MR system in conjunction with a 3D TSE sequence
with proton density weighting and fat saturation comparison. For network tuning, we
randomly selected 18 individuals, and for testing, we randomly selected 2 subjects, which
corresponded to 1800 and 200 2D images, respectively.

2.2. Model Architecture

Each of the generator networks had the same design and was based on the proposed
GAN model residual of CNN. Our proposed GAN architecture, which includes a generator
and discriminator, is depicted in Figure 2 in detail. Five convolutional encoding layers
and five deconvolutional decoding layers made up the network, with batch normalization
and leaky-ReLU activation functions following each layer. The final layer of the k-space
network generator G entailed 2 output channels corresponding to real and fake components
(see Figure 3).

The discriminator was made up of nine different blocks of convolution layers, followed
by leaky-ReLU activation functions and batch normalization, and the final stage is a fully
linked layer. The training was conducted using the Adam optimizer (see Figure 4). Using
our proposed GAN model and transfer learning, we were able to recover the undersampled
MRI data for two different circumstances, as shown in Figure 5. The dataset contains
1800 images from 18 participants and 4500 images from 45 subjects for testing. We di-
vided the training and validation datasets during the training procedure. Eighteen photos
were chosen at random for validation during each round. The models in the validation
dataset with the best performance, or those with the highest PSNR, were chosen for further
independent testing.

Using random sampling trajectories for AF = 2 and AF = 4, retroactively, all fully
sampled k-space data were undersampled. We experimented with different filter sizes,
changing the filter sizes according to the pool of our data sample. Figures 3 and 4 show the
details of the architecture. The networks were trained using the Adam [43] optimizer and
the various hyperparameters. The model was trained with an initial learning rate of 10−3,
filter size 3 × 3, Xavier initialization and an 8-batch size with a monotonically decreasing
learning rate over 500 epochs.
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Figure 2. Our proposed GAN architecture, including a generator and discriminator. The generator
G takes the input ZF and sensitivity map. The details of both generator G and discriminator D are
discussed and shown below in Figures 3 and 4.

Figure 3. Discriminator architecture.
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Figure 4. Generator architecture.

 

Figure 5. Transfer learning for a GAN reconstruction model proposed for under-sampled
MRI reconstruction.

3. Results and Discussion

The experiments were carried out in Python3 with the TensorFlow backend. On
a workstation equipped with an NVIDIA GV100GL graphics processor unit (GPU), the
reconstruction methods were executed. PSNR and SSIM were used to evaluate the acquired
reconstruction outcomes.

We experimented with several filter sizes in order to determine the best filter size, and
we ultimately chose the filter size that produced the greatest results on our samples of
public and private data. Three distinct filter sizes, including 3 × 3, 5 × 5 and 7 × 7, were
used. In comparison to other filter sizes, the 3 × 3 filters produced greater results. The
experimental findings on the private brain and public knee datasets with various filter sizes
are shown in Figure 6.

The model produced excellent reconstruction results (PSNR, 37.98; SSIM, 0.97). Then,
using a test dataset made up of just a few hundred images from various domains, we
applied our model to it. The test results of several brain and knee image reconstruction
methods on a private and public dataset are shown in Figures 7–10. As demonstrated by
brain images, the findings of Directly Trained (PSNR, 35.78; SSIM, 0.95) were marginally
superior to those of the Calgary Model (PSNR, 34.73; SSIM, 0.94) and Image Net (PSNR,
34.25, SSIM, 0.92), which had artifacts.
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Figure 6. The graph of the PSNR/SSIM values obtained as a result of experiments by using different
filter size (3 × 3, 5 × 5 and 7 × 7) on our private brain and public dataset.

 
Figure 7. At AF = 2, Reconstruction results on private brain images. From left to right: (i) Image Net
(IN); (ii) Directly trained (DT); (iii) Calgary Model (CM); (iv) Proposed GAN; (v) ZF. In the second
row: (i) Image net; (ii) Directly Trained; (iii) Calgary Model; (iv) Proposed GAN results of same slices
from brain image dataset after applying transfer learning.
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Figure 8. At AF = 4, Reconstruction results on private brain images. From left to right: (i) Image Net;
(ii) Directly trained; (iii) Calgary Model; (iv) Proposed GAN; (v) ZF. In the second row: (i) Image net;
(ii) Directly Trained; (iii) Calgary Model; (iv) Proposed GAN results of same slices from brain image
dataset after applying transfer learning.

 

Figure 9. At AF = 2, Reconstruction results on knee dataset. From left to right: (i) Image Net;
(ii) Directly trained; (iii) Calgary Model; (iv) Proposed GAN; (v) ZF. In the second row: (i) Image net;
(ii) Directly Trained; (iii) Calgary Model; (iv) Proposed GAN results of same slices from knee image
dataset after applying transfer learning.
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Figure 10. At AF = 4, Reconstruction results on knee dataset. Moving left to right: (i) Image Net;
(ii) Directly trained; (iii) Calgary Model; (iv) Proposed GAN; (v) ZF. In the second row: (i) Image net;
(ii) Directly Trained; (iii) Calgary Model; (iv) Proposed GAN results of same slices from knee image
dataset after applying transfer learning.

The outcomes of our proposed GAN model (PSNR, 37.98; SSIM, 0.97) were superior
to those of the other models examined. Our proposed transfer learning model beat other
reconstruction techniques (PSNR, 39.33; SSIM, 0.95). Due to a short training dataset, the DT
image (PSNR = 36.05; SSIM = 0.95) produced artifacts in the associated brain images. The
image net model (PSNR, 34.69; SSIM, 0.92) and CM image (PSNR, 35.25; SSIM, 0.95) had
worse results than the other models.

The results of our proposed GAN model at AF 4 were 37.73 PSNR and 0.96 SSIM.
Image net (PSNR, 34.25; SSIM, 0.92), CM (PSNR, 34.59; SSIM, 0.93) and DT (PSNR, 35.38;
SSIM, 0.95) at AF 4. The image net model performed the worst, the category model
performed marginally better and the directly trained model performed better than both.
Similarly, the performance was enhanced when transfer learning was applied to the same
dataset at AF 4. On the knee dataset, the performance of our proposed GAN was also
better than other models. As compared to the brain image dataset, the knee dataset had
the lowest accuracy of all mentioned models at AF2 and AF 4. On the knee dataset, our
proposed GAN model at AF 2 was 34.63 PSNR and 0.88 SSIM. Image net (PSNR, 32.13;
SSIM, 0.81), Calgary Model (PSNR, 32.24; SSIM, 0.82) and Directly Trained (PSNR, 32.83;
SSIM, 0.85) at AF 2. The Calgary model outperformed the ImageNet model, whereas the
directly trained model outperformed both. The performance was enhanced when transfer
learning was applied to the same dataset at AF 2.
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There were the following results after applying transfer learning: Directly Trained
(PSNR, 33.05; SSIM, 0.86), Image net (PSNR, 32.90; SSIM, 0.81), Calgary Model (PSNR,
32.79; SSIM, 0.84) and proposed GAN model (PSNR, 35.48: SSIM, 0.90).

This study’s key contribution is the development of a transfer learning enhanced GAN
technique for reconstructing numerous previously unreported multi-channel MR datasets.
The findings indicate that TL from our proposed method may be able to lessen variation
in image contrast, anatomy and AF between the training and test datasets. With the brain
tumor dataset, reconstruction image performance was better.

This demonstrates that the best method might be to generate training and test data
with the same contrasts because brain data were initially used to train the proposed
model. When the distributions of the training and test datasets were similar, the recon-
struction performance was good. The PSNR and SSIM of the images were significantly
enhanced after applying transfer learning. This demonstrates that the extra information
provided by these reconstructions makes fine-tuning more efficient when data are replicated
across domains.

Table 2 shows the comparison of different models’ reconstruction results under
AF = 2 for brain and knee images. The directly trained model for brain and knee im-
ages performed better than the Image Net and Calgary model. Our proposed GAN models
beat all other compared methods, having PSNR (37.98) and SSIM (0.96) for brain images
and PSNR (34.63) and SSIM (0.88) for knee images. All compared models perform slightly
less on knee images than on brain images.

Table 2. Quantitative analysis of PSNR and SSIM values acquired from brain and knee test images
using various reconstruction techniques.

Brain Knee

PSNR SSIM PSNR SSIM
ZF 29.12 0.86 30.25 0.80

ImageNet [51] 34.25 0.92 32.13 0.81
Directly Trained [52] 35.78 0.95 32.83 0.85
Calgary Model [53] 34.73 0.94 32.24 0.82

Proposed GAN 37.98 0.96 34.63 0.88

Figure 11 displays the outcomes of reconstruction for knee and brain images at an
AF of 2. The x-axis shows various models, and the y-axis shows the value of PSNR. The
blue color legend depicts the brain images, and the brown color legend depicts the knee.
The proposed GAN model had the highest accuracy (PSNR, 37.98 and 34.63) on brain and
knee images, respectively. ZF and image net had the least PSNR compared to other models.
Figure 12 displays the outcomes of reconstruction for knee and brain images at an AF of
2. There are multiple model counts on the x-axis, and the SSIM value is displayed on the
y-axis. The knee is represented by the brown color legend, and the brain by the blue color
legend. In images of the knee and the brain, the proposed GAN model had the highest
SSIM (0.96 and 0.88, respectively). When compared to other models, ZF and image net had
the lowest SSIM.

Figures 13 and 14 show the reconstruction results at AF 4 for brain and knee images.
Our proposed GAN model showed promising results as compared to the other model.
Results at AF 4, PSNR and SSIM of all compared models in Figures 13 and 14 were slightly
decreased. Furthermore, if we discuss the performance difference at AF 2 and AF 4, the
Proposed GAN model improved PSNR by 1.06% and SSIM by 1.01% at AF 2, as compared
to AF 4.
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Figure 11. PSNR, values of reconstructed images of the knee and brain using various models, with
AF = 2.

Figure 12. SSIM, values of reconstructed images of the knee and brain using various models, with
AF = 2.
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Figure 13. PSNR, values of reconstructed images of the knee and brain using various models, with
AF = 4.

Figure 14. SSIM, values of reconstructed images of the knee and brain using various models, with
AF = 4.

After using transfer learning, Table 3 compares the reconstruction outcomes of several
models for pictures of the knee and the brain with AF = 2. Our proposed GAN models beat
all other compared methods by improved PSNR (39.33) and SSIM (0.97) for brain images
and PSNR (35.48) and SSIM (0.90) for knee images. The directly trained model for brain and
knee image performance improved by PSNR (36.05), SSIM (0.95) and PSNR (33.05), SSIM
(0.86) better than the Image Net and Calgary model. All compared models’ performance
increased on knee images than brain images after applying transfer learning.
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Table 3. PSNR and SSIM quantitatively evaluated values for the brain and knee test images acquired
using various reconstruction models after using transfer learning.

Brain Knee

PSNR SSIM PSNR SSIM
ImageNet [51] 34.69 0.92 32.90 0.81

Directly Trained [52] 36.05 0.95 33.05 0.86
Calgary Model [53] 35.25 0.95 32.79 0.84
Proposed GAN-TL 39.33 0.97 35.48 0.90

Reconstruction results for images of the knee and brain at AF = 2 after TL are shown
in Figures 15 and 16. Figure 15 displays the PSNR value-based outcomes of reconstruction,
while Figure 16 shows the SSIM value-based results of reconstruction after applying TL.
The blue color legend depicts the brain images, and the brown color legend depicts the
knee. Proposed GAN model PSNR (37.98 and 34.63), SSIM (0.97 and 0.90), on brain and
knee images, respectively. Calgary model performance PSNR (35.25 and 32.79) and SSIM
(0.95 and 0.84) were slightly better compared to the image net model. Directly trained
model PSNR (36.05 and 33.05) and SSIM (0.95 and 0.84) results for brain and knee images,
respectively. Performance increased by 3.0 % on brain images compared to knee images.

Figure 15. The blue dots represent brain data PSNR values while orange dots represent knee data
PSNR values of the reconstructed images when AF = 2 following TL.
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Figure 16. The blue dots represent brain data SSIM values, while orange dots represent knee data
SSIM values of the reconstructed images when AF = 2 following TL.

The reconstruction outcomes for images of the knee and brain at AF 4 are shown in
Figures 17 and 18. In comparison to the other model, the proposed GAN model demon-
strated good results. Additionally, if we compare the performance between AF 2 and AF 4,
the proposed GAN model enhanced PSNR and SSIM at AF 2 compared to AF 4 by 1.20 and
2% percent, respectively.

Figure 17. The blue dots represent brain data PSNR values, while orange dots represent knee data
PSNR values of the reconstructed images when AF = 4 following TL.
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Figure 18. The blue dots represent brain data SSIM values, while orange dots represent knee data
SSIM values of the reconstructed images when AF = 4 following TL.

Our research shows that when compared to other techniques, the reconstruction’s
image’s distribution produced by transfer learning is more similar to the distribution of
the completely sampled image, which can help with the segmentation and diagnosis of
cancerous tumors. We can also successfully use transferred learning across a range of
anatomies. We discovered that brain tumor samples converged faster than knee datasets.
This might be because only a few transfer learning steps were necessary to achieve the best
results because the brain tumor data were located at similar anatomical locations as the
training data.

As an alternative, we used a fixed training set and a range of iterations to test model-
reconstructed image performance after fine-tuning. It makes sense to draw the conclusion
that performance increases with dataset size. Given that there are essentially no data that
can be collected, we think the current study is more realistic. The outcomes of reconstruction
will be better than using a tiny portion of its own data for training as long as fine-tuning
is carried out, regardless of whether the AF is more or less than its own under-sampling
AF. A model with a low AF should be chosen for TL because both brain and knee data
show that AF = 2 is ideal for fine-tuning. In the future, we will evaluate our transfer
learning method’s reconstruction performance compared to that of existing unsupervised
learning methodologies. The proposed method would facilitate the application of future
MRI reconstruction models without requiring the collection of sizable imaging datasets.

4. Conclusions

This work examines the generalization capabilities of a learned proposed GAN model
for under-sampled multi-channel MR images in terms of the differences across training
and test datasets. Our research demonstrates that the proposed GAN model was used to
analyze private brain images, knee images and images with varying AF while utilizing TL
and a small tuning dataset. As compared to the results of transfer learning for the brain and
knee, fewer training data being used produced superior results, with acceleration factor
(AF) 2 (for brain PSNR (39.33) and SSIM (0.97); for knee PSNR (35.48) and SSIM (0.90)) and
AF 4 (for brain PSNR (38.13) and SSIM (0.95); for knee PSNR (33.95) and SSIM (0.86)). The
proposed method would facilitate the application of future MRI reconstruction models
without requiring the collection of sizable imaging datasets.
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Abstract: Optical coherence tomography (OCT) is a rapidly evolving imaging technology that
combines a broadband and low-coherence light source with interferometry and signal processing
to produce high-resolution images of living tissues. However, the speckle noise introduced by the
low-coherence interferometry and the blur from device motions significantly degrade the quality of
OCT images. Convolutional neural networks (CNNs) are a potential solution to deal with these issues
and enhance OCT image quality. However, training such networks based on traditional supervised
learning methods is impractical due to the lack of clean ground truth images. Consequently, this
research proposes an unsupervised learning method for OCT image enhancement, termed one-step
enhancer (OSE). Specifically, OSE performs denoising and deblurring based on a single step process.
A generative adversarial network (GAN) is used for this. Encoders disentangle the raw images into a
content domain, blur domain and noise domain to extract features. Then, the generator can generate
clean images from the extracted features. To regularize the distribution range of retrieved blur
characteristics, KL divergence loss is employed. Meanwhile, noise patches are enforced to promote
more accurate disentanglement. These strategies considerably increase the effectiveness of GAN
training for OCT image enhancement when used jointly. Both quantitative and qualitative visual
findings demonstrate that the proposed method is effective for OCT image denoising and deblurring.
These results are significant not only to provide an enhanced visual experience for clinicians but also
to supply good quality data for OCT-guide operations. The enhanced images are needed, e.g., for the
development of robust, reliable and accurate autonomous OCT-guided surgical robotic systems.

Keywords: optical coherence tomography; image enhancement; generative adversarial network;
unsupervised learning

1. Introduction

Optical coherence tomography (OCT) is an imaging technology able to produce high-
resolution images of living tissues. Most OCT devices used in clinical studies have a
resolution of approximately 10 μm and a depth of penetration up to 2 mm in soft tissues [1].
However, OCT image quality is significantly degraded by speckle noise introduced by
the low-coherence interferometry used in the imaging process and by blur arising from
relative motions between the device and the tissue [2]. This has a strong impact on
subsequent analysis and makes clinical application challenging. Therefore, efficient OCT
image enhancement methods are urgently needed [3].

By improving the light source, hardware-based approaches reduce the noise of the
detector and scanner to some extent, but the speckle in the imaging system cannot be
eliminated. Software-based approaches such as non-local means or block-matching and 3D
filtering (BM3D) can provide good results, but need laborious efforts of parameter tuning
for different noise levels [4]. Block matching and 4D collaborative filtering (BM4D) expands
BM3D to three-dimensional picture volumes [5]. Sliding window, adaptive statistical-based
filters, and patch correlation–based filters are the three main classes of digital filters used to
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denoise images [6]. However, these methods have limitations that reduce their potential
for clinical applications, such as a long processing time and excessive smoothness [7].

Recently, convolutional neural networks (CNNs) have started to be considered as
a potential solution for such image enhancement tasks. For example, Kai Zhang et al.
proposed a feed-forward denoising convolutional neural network (DnCNN) able to handle
Gaussian denoising with unknown noise levels based on a residual learning strategy [8].
In addition, Rico-Jimenez et al. proposed a self-fusion network that was pre-trained to
fuse 3 frames to achieve near-real-time processing frame rates [9]. However, supervised
learning methods such as these are laborious in terms of training data acquisition, requiring
well-paired training images (images with noise and blur and corresponding clean images).
Furthermore, the use of standard CNNs may lead to loss of details due to averaging
processes [10]. These characteristics make standard CNNs impractical for OCT image
enhancement. To overcome these limitations, Chunhao Tian et al. proposed a generative
adversarial network (GAN) for the problem of restoring low-resolution OCT fundus images
to their high-resolution counterparts [11]. In addition, several other methods based on
GAN have been proposed for unpaired image enhancement, such as CycleGAN [12],
SNR-GAN [10], and SiameseGAN [13].

Another interesting unsupervised learning strategy for OCT image enhancement is
disentangled representation. This strategy divides each feature into narrowly specified
variables and encodes them as distinct dimensions. Recently, it has been used for image-
to-image translation, such as in BicycleGAN [14] and cross-cycleGAN [15]. In addition,
DRGAN implemented this unsupervised learning method for reducing speckle with dis-
entangled representation [16]. However, even though these GAN-based models provided
promising results for OCT image despeckling, the problem of blurriness of OCT images
still needs to be solved.

This paper presents a novel solution for simultaneous denoising and deblurring of
OCT images without requiring a well-paired training dataset. This is achieved with a deep
learning GAN architecture that exploits disentangled representation, as shown in Figure 1.
After training, the encoder for content and the generator for a clean image can enhance the
original image quality. More specifically, the proposed method learns to disentangle noise,
blur and content from raw OCT images and then uses this knowledge to generate enhanced
images. In order to accommodate for little content information, Kullback—Leibler (KL)
divergence [17] loss is used to regularize the distribution range of extracted blur attributes.
As shown in Figure 2, the content encoders learn to extract content features from unpaired
clean and raw images, while the blur and noise encoders capture blur and noise information
from low-quality raw images.

Figure 1. Workflow of proposed OSE image enhancement method: unpaired raw and clean OCT
images are used as the input of an unsupervised learning strategy based on disentangled represen-
tation and GAN. This process allows the one-step enhancer (OSE) to learn to extract content from
low-quality OCT images and generate clean images.
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Figure 2. Framework of proposed image enhancement method. X and Y are inputs, where subscripts
b, c, r, n, bn and cycle are blurred, clean, reconstructed, noisy, blurred and noisy, and cycled,
respectively. The encoder and generator’s superscripts c, b, n, and bn is content, blur, noise, and
blur-noise, respectively.

The next sections of this paper are organized as follows: in Section 2, we explain
related work, including GAN-based deblurring, GAN-based denoising, and disentangled
representation. In Section 3, we describe our proposed method, including the problem
formulation, definition of loss functions, method implementation and assessment method.
In Section 4, we present experiments and results. Finally, conclusions are presented in
Section 5.

2. Related Work

2.1. GAN-Based Speckle Removal

OCT images are known to suffer from speckle noise, which are artifacts produced
mostly by the coherent nature of the image formation process. Recently, various GAN-based
models have been developed to remove such noise from OCT images based on knowledge
extracted from unpaired training data. These include SNR-GAN [10], ARM-SRGAN [18],
nonlocal-GAN [19], and DRGAN [16].

SNR-GAN was proposed by Yan Guo et al. to establish an end-to-end structure-
aware noise reduction GAN that uses cycle GAN to translate data between noisy and
clean domains [20]. In order to preserve subtle features during denoising, they used
regional structural similarity index (SSIM) loss of image patches instead of the entire image.
This method enabled promising improvements in terms of signal-to-noise ratio (SNR),
contrast-to-noise ratio (CNR) and SSIM index with a processing speed of 0.3 s per image.

The ARM-SRGAN is a GAN-based method developed for fast and reliable generation
of super-resolution (SR) images without relying on a paired training dataset of low- and
super-resolution images [18].

The nonlocal-GAN method, unlike cycle-GAN based methods that include two gener-
ators and two discriminators, is based on only one generator and one discriminator [19].
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The discriminator can learn the features of noise in noisy OCT images and then direct the
denoising generator without reference images.

Finally, DRGAN was proposed by Yongqiang Huang et al. as an unsupervised de-
noising method that disentangles the noisy image into content and noise spaces by using
corresponding encoders. It then predicts the denoised OCT image based on the extracted
content features [16]. According to the published results, DRGAN outperforms the methods
mentioned above in noise reduction and detail preservation.

2.2. GAN-Based Deblurring

Boyu Lu et al. proposed a method for unsupervised deblurring via disentangled
representations with a single image [21]. To properly encode blur information into the
deblurring framework, the model disentangles the content and blur characteristics from
blurred images.

3. Proposed Method

3.1. Problem Formulation

Overall, the learning process for image enhancement based on unpaired data is re-
alized using disentanglement to decode the image features and GAN to generate clean
images. For implementing this, the proposed method consists of three parts: (1) encoders
for content (Ec) and features (Eb, En and Ebn for blur, noise and blur-noise); (2) generators
of blurred, noisy, blurred-noisy, and clean images (Gb, Gn, Gbn, Gc); and (3) discriminators
for blurred, noisy, blurred-noisy, and clean image discrimination (Db, Dn, Dbn, Dc).

An overview of the proposed architecture is shown in Figure 2. Given an input blur-
noise data X and unpaired clean data Y, the content encoder Ec extracts content information
from corresponding samples, and Eb, En estimate the feature information in X. Then Gb, Gn,
and Gbn take features and content information to generate corresponding images, and
Gc generates a clean image. Finally, the discriminators distinguish between the real and
generated images.

Since clean images should only contain content components, a well-trained content
encoder Ec should allow the generation of the desired enhanced images. This is achieved by
exploiting information from the blur and noise domains. For the blur domain, considering
the content information of Ec and the blur features of Eb, the generated blur images guide
the encoder Ec towards extracting content information from blurred images. Similarly,
generating and then distinguishing noisy images from clean ones guides Ec towards
extracting content from noisy images. In addition, we enforce the last layers of the encoders
for content, blur and noise to share weights, which contributes to guiding Ec towards
learning how to effectively extract content information from raw images.

Specifically, Ec encodes inputs X and Y as content features Fc
x and Fc

y , respectively.
The blur feature Fb

x and noise feature Fn
x are encoded from X by Eb and En. Then, as

shown in Equations (1) and (2), the reconstructed Yr is generated from Fc
y using Gc, and the

reconstructed Xr is generated from Fc
x , Fb

x , Fn
x using Gbn.

Yr = Gc(Fc
y) (1)

Xr = Gbn(Fc
x , Fb

x , Fn
x ) (2)

Generators are used to generate new images based on the features described above
according to Equations (3)–(7).

Xb = Gb(Fc
x , Fb

x ) (3)

Xc = Gc(Fc
x) (4)

Yb = Gb(Fc
y , Fb

x ) (5)

Yn = Gn(Fc
y , Fn

x ) (6)
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Ybn = Gb(Fc
y , Fb

x , Fn
x ) (7)

Disentanglement is then used to handle unpaired inputs and generate new images
from a corresponding domain. Features are obtained from generated images: Fc − Xc,
Fb −Yb, Fn −Yn, Fc −Ybn, Fb −Ybn, Fn −Ybn. Finally, cycled inputs are obtained as follows:

Xcycle = Gbn(Fc − Xc, Fb − Ybn, Fn − Ybn) (8)

Xcycle2 = Gbn(Fc − Xc, Fb − Yb, Fn − Yn) (9)

Ycycle = Gbn(Fc − Ybn) (10)

After training the model and addressing disentanglement, Ec can extract content
features from low-quality images, and then clean images can be obtained using Gc.

3.2. Loss Function

The overall loss function includes five subfunctions: domain adversarial loss (Ladv),
cycle consistency loss (Lcycle), reconstruction loss (Lrecon), noise patch loss (Lnoise) and KL
divergence loss (LKL). Their interconnections with the processing framework is illustrated
in Figure 3.

Figure 3. Diagramillustrating the inputs and outputs of loss functions. The inputs include X: original
images, Y: clean images, Z: real blurred/noisy images.

(1) Domain adversarial loss: Ladv pushes the discriminators to pick the best encoders
and generators to minimize the adversarial loss functions, which include content informa-
tion loss Lc

adv, blur feature loss Lb
adv, noise feature loss Ln

adv, and blur-noise feature loss Lbn
adv.

The domain adversarial loss is defined as:

Ladv = argmin
E,G

max
D

(Lc
adv + Lb

adv + Ln
adv + Lbn

adv) (11)

where E stands for the encoder, G for the generator, and D for the discriminator. The four
adversarial loss functions are defined below, where Zb and Zn are real blurred and noisy
images, and E is the expectation operator.

Lc
adv = E[log Dc(Y)] +E[1 − log Dc(Xc)] (12)

Lb
adv = E[log Db(Zb)] +E[1 − log Db(Yb)] (13)

Ln
adv = E[log Dn(Zn)] +E[1 − log Dn(Yn)] (14)

Lbn
adv = E[log Dbn(X)] +E[1 − log Dbn(Ybn)] (15)

(2) Cycle consistency loss: inspired by CycleGAN [20], cycle consistency loss is
introduced to guarantee that the enhanced image Xc represents a proper reconstruction
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of the raw sample image, and that Ybn can be translated back to the original clean image
domain. The cycle consistency loss further limits the space of the generated samples and
preserves the content of original images.

Lcycle =E[||X − Xcycle||1]
+E[||X − Xcycle2||1] +E[||Y − Ycycle||1]

(16)

where ||.||1 represents the l1-norm.
(3) Reconstruction loss: the reconstruction loss is applied to facilitate X = Xr and

Y = Yr. Consequently, Gc and Gbn can reconstruct the inputs to generate a clean counterpart
of X and a blur-noise counterpart of Y.

Lrecon = E[||X − Xr||1] +E[||Y − Yr||1] (17)

(4) Noise patch loss: to overcome the obstacle of multiple types of noise, we lever-
age noise patches from the background of raw images and use a discriminator Dpn to
distinguish between real noise and generated noise as follows:

LX
noise = E[log Dpn(N)] +E[log Dpn(X − Xb)] (18)

LY
noise = E[log Dpn(N)] +E[log Dpn(Y − Yb)] (19)

According to Equations (18) and (19), the noise patch loss is given by:

Lnoise = argmin
E,G

max
D

(LX
noise + LY

noise) (20)

(5) KL divergence loss: to guarantee that the blur encoder Eb(X) only encodes blur
components, Yb is generated from Ec(Y) and Eb(X) in Equation (5). This discourages Eb(X)
from encoding content information from X. Furthermore, KL divergence loss is used to
regularize the blur feature distribution Fb = Eb(X) to bring it closer to a normal distribution
p(F) ∼ N(0, 1). KL divergence is minimized to obtain the KL loss as described in [22]:

LKL =
1
2

N

∑
i=1

(μ2
i + σ2

i − log(σ2
i )− 1) (21)

where μ and σ are the mean and standard deviation of Fb, and N is its dimension. The KL
divergence loss can reduce the gap between the prior p(F) and the learned distributions.
This further suppresses any content information contained in Fb.

Considering the equations above, the overall loss function can be written as:

L =λadvLadv + λcycleLcycle + λreconLrecon

+ λnoiseLnoise + λKLLKL
(22)

where the subscripted λ are the coefficients of each corresponding loss function.

3.3. Implementation and Data

The proposed network architecture has a structure similar to DRGAN [16]. The content
encoder is composed of an input convolutional layer, a down sampler and four residual
blocks. The noise encoder consists of an input convolutional layer, a down sampler and an
adaptive average pooling layer with a 1 × 1 convolutional layer. The blur encoder has four
strided convolution layers and one fully connected layer. For the generator, the architectures
are symmetric to the content encoder, but vary for generating images of different domains.
We use skip-connections between Ec and Gc, with SPADE [23] and adaptive instance
normalization [24], to fuse features from different levels. Then, the discriminator applies a
series of convolutional and pooling layers to give a binary judgement.
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This model was implemented in PyTorch with a Ubuntu 20.04 operation system and
an NVIDIA Quadro RTX 8000 GPU. During training, the Adam optimizer was used, and
the learning rate was set to 0.0002 for 80 epochs. According to information in [16,21],
the hyper-parameters in our framework were experimentally set to the following values:
λadv = 1, λcycle = 10, λrecon = 10, λnoise = 1, and λKL = 0.01.

We acquired two datasets for this study. One consisted of 30 low-quality OCT images
and 30 clean OCT images from three different pork larynxes. The second dataset contained
the same number of images captured from two ex vivo rabbit eyes. These custom datasets
were captured using a commercial OCT device (TEL320C1, Thorlabs, Inc., Newton, NJ,
USA). The pixel size was 0.40 × 2.47 μm (width × height), and the size of each image was
set to 10,000 × 1024 pixels. Therefore, the FOV was 4.00 × 2.53 mm.

The clean images in our datasets were obtained using the Speckle Averaging function
of the ThorImageOCT software (version 5.2), which uses 4 successive A-scans to compute
the mean and variance values used in the averaging process.

A test set was formed by randomly selecting 20 images with noise and blur and
20 corresponding clean images from each dataset. The remaining 40 images were randomly
combined into pairs to form a training set. Since tissue information is concentrated in the
middle part of the OCT images, all images were center-cropped to a pixel size of 900 × 450
to improve training efficiency.

To obtain noise features for the noise loss function, a window with pixel size of
256 × 256 was used to extract noisy patches from the background of low-quality images.
This window was applied to the images in the training set using a stride of 8 pixels. This
process extracted a total of 19,360 patches from low-quality images for the input X, and
19,360 patches from clean images for the input Y.

3.4. Experimental Method and Performance Metrics

An ablation study was performed to evaluate the performance of each component in
the proposed image enhancement method. This consisted in evaluating the performances
of each module separately: first, the denoise and the deblur modules were independently
assessed. Then, the performance of the proposed model, which combines both operations
into a single step operation, was evaluated. More specifically, we removed speckle and
blur from the original images separately, and then used the proposed model to perform a
one-step image enhancement.

In addition, to benchmark the performance of the proposed image enhancer, non-
learning (BM3D [25]), supervised learning (DnCNN [8]) and unsupervised learning (DR-
GAN [16]) methods were implemented. The BM3D software implements the traditional
OCT image enhancement method, while the DnCNN and DRGAN models were trained on
the same dataset used to train our new model.

Performance evaluation used the same test set described above. In addition, the
processing time of each method was evaluated both on CPU and GPU. Finally, a visual
assessment of the four image enhancement methods was performed using sample images
from the test set.

Two metrics were used for quantitative performance assessment: peak signal-to-noise
ratio (PSNR) and structure similarity index measure (SSIM). PSNR is commonly used
to measure the quality of reconstruction of lossy image compression codecs. It offers
an approximation to human perception of reconstruction quality based on differences
between the reconstructed and the reference image. SSIM, on the other hand, measures the
similarity between two images. The overall index of SSIM evaluates luminance, contrast
and structural differences.

PSNR = 10log10(
(max(Ig))2

1
MN ∑i ∑j(Ic(i, j)− Ig(i, j))2

) (23)
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where Ig and Ic are, respectively, the generated and the averaging clean images. M and N
are the size of the image.

SSIM =
(2μIg μIc + C1)(2σIg Ic + C2)

(μ2
Ig
+ μ2

Ic
+ C1)(σ

2
Ig
+ σ2

Ic
+ C2)

(24)

where μIg , μIc , σIg , σIc and σIg Ic are the local means, standard deviations and cross-covariance
of images Ig and Ic. The constants C1 and C2 are set according to the literature [26].

4. Experimental Results

4.1. Ablation Study Results

Visual results from the ablation study are presented in Figure 4, while the quantitative
results are shown in Table 1. A visual analysis of Figure 4 shows that the denoise module
is effective in removing noise from the original OCT image (raw image). The data in
Table 1 demonstrates improvements of 10.59 in PSNR and 0.24 in SSIM, which confirms this
module works properly. However, the problem of unclear tissue layers is not addressed.

Figure 4. Sample images from the ablation study performed using OCT images from a pork larynx to
evaluate the denoise module, the deblur module, and the proposed OSE method.

Table 1. Ablation study results.

Metrics (Mean ± std)

Method PSNR SSIM

Original images 8.94 ± 2.01 0.34 ± 0.14
Denoise module 19.53 ± 1.87 0.58 ± 0.20
Deblur module 17.55 ± 1.52 0.47 ± 0.12

OSE 26.71 ± 2.21 0.81 ± 0.16

The deblur module, on the other hand, removes blur and makes the layers more
visible. This can be observed in Figure 4 by comparing the result of the deblur module with
the raw image. In this case, the PSNR improved from 8.94 to 17.55, and the SSIM improved
from 0.34 to 0.47. However, noise is still present in the image, and this limits the image
enhancement performance.

The proposed method combining both modules provides better enhancement per-
formance than each single module applied separately. A visual inspection of the result
in Figure 4 shows that the proposed method was able to effectively enhance the original
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raw image. This is corroborated by the data in Table 1, which shows the proposed method
achieved top performances in terms of PSNR and SSIM.

4.2. Performance Comparison Results

Figure 5 provides a visual comparison of the image enhancement results achieved
with the proposed OSE and with the other state of the art methods: the 3-D block-matching
algorithm (BM3D), the supervised learning-based method DnCNN, and the unsupervised
learning-based method DRGAN. It can be observed that all methods achieved satisfactory
speckle reduction performance, but only OSE was effective in also removing the blurring
effects on the image details, as shown in the selected magnified areas.

Figure 5. Sample images from the image enhancement performance study comparing the proposed
OSE with the state of the art methods BM3D, DnCNN and DRGAN. The image areas marked in red are
magnified and shown as inset pictures to facilitate the visual assessment of the different algorithms.

The data in Table 2 summarizes the quantitative performance metrics obtained for
the four different enhancement methods. OSE improved PSNR from 8.94 to 26.71 and
SSIM from 0.34 to 0.81, outperforming all the other methods in terms of both denoising
and deblurring.

Table 3 shows the mean processing time of the methods assessed for 10,000 × 1024
pixel images. Considering this data, we can see that although BM3D provides good image
enhancement results, it takes much more time than the other methods to process the OCT
images. In addition, we can note that DnCNN performed better than DRGAN but was
slower. Furthermore, as explained earlier, DnCNN is a supervised learning method that
requires a well-paired set of images for training. On the other hand, OSE provided top
image enhancement performance with the best processing speed when the computations
were performed on a GPU. It achieved a mean processing rate of 8.3 fps on the GPU.
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Table 2. Quantitative performance comparison with state-of-the-art methods for OCT image
enhancement.

Metrics (Mean ± std)

Method PSNR SSIM

Original images 8.94 ± 2.01 0.34 ± 0.14
BM3D 24.11 ± 1.04 0.71 ± 0.08

DnCNN 23.99 ± 2.70 0.78 ± 0.24
DRGAN 16.77 ± 1.04 0.61 ± 0.10

OSE 26.71 ± 2.21 0.81 ± 0.16

Table 3. Mean processing time for 10,000 × 1024 pixel OCT images

Mean Processing Time (s)

Method CPU GPU

BM3D 45.69 -
DnCNN 11.14 0.17
DRGAN 3.77 0.14

OSE 3.86 0.12

5. Conclusions

This paper presented a novel deep learning model for one-step denoising and de-
blurring of OCT images. This one-step enhancer (OSE) is trained using an unsupervised
learning strategy, which allows learning from a mixed dataset of unpaired OCT images.
For this, the method uses disentangled representation and generative adversarial network
(GAN) to extract content, blur and noise features from raw OCT images, and then learns to
generate clean images. The proposed OSE was assessed through both an ablation study and
a comparative performance evaluation based on the quantitative metrics PSNR and SSIM.
The ablation study demonstrated that the method produced effective denoise and deblur
modules, which enabled high performance levels when used in a combined model. The
comparative analysis showed the proposed method outperformed state-of-the-art methods
for OCT image enhancement, indicating that our one-step enhancer is a valuable alternative
for speckle and blur reduction in OCT images.
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Abstract: Cardiovascular diseases (CVD) are one of the leading causes of death in the developed
countries. Previous studies suggest that retina blood vessels provide relevant information on cardio-
vascular risk. Retina fundus imaging (RFI) is a cheap medical imaging test that is already regularly
performed in diabetic population as screening of diabetic retinopathy (DR). Since diabetes is a ma-
jor cause of CVD, we wanted to explore the use Deep Learning architectures on RFI as a tool for
predicting CV risk in this population. Particularly, we use the coronary artery calcium (CAC) score
as a marker, and train a convolutional neural network (CNN) to predict whether it surpasses a
certain threshold defined by experts. The preliminary experiments on a reduced set of clinically
verified patients show promising accuracies. In addition, we observed that elementary clinical data
is positively correlated with the risk of suffering from a CV disease. We found that the results from
both informational cues are complementary, and we propose two applications that can benefit from
the combination of image analysis and clinical data.

Keywords: retina fundus imaging; deep learning; medical imaging; convolutional neural networks

1. Introduction

According to the World Health Organisation, ischaemic heart disease and stroke are
nowadays leading causes of death globally [1]. Cardiovascular disease (CVD) progression
is dramatically increasing every year and thus many efforts to improve risk predictors
are needed. The assessment of cardiovascular risk can be done from a wide variety of
information and parameters derived from patients’ history such as individual age, gender,
smoking status, blood pressure, body mass index (BMI), or metabolic parameters (i.e.,
glucose and cholesterol levels) [2]. However, this information is not always updated,
centralized or available.

Coronary artery calcium (CAC) is a clinically validated strong marker of a CVD [3].
CAC scoring has proved to be a consistent and reproducible method of assessing risk for
major cardiovascular outcomes, especially useful in asymptomatic people for planning
primary prevention [4]. Nevertheless, CAC score obtention needs the use of CT scans,
which are expensive and involve radiation risks.

Retinal Fundus Imaging (RFI) provides relevant information about the vascular system
of the eye. There is previous evidence that RFI can be a predictor of CVD [5–9], kidney
chronic disease [10] or dementia [11]. Preceding research have shown that capillary vascular
and foveal area are the most prevalent regions in predicting the CAC scoring from RFI [12].
In addition, RFI is usually acquired on a regular basis from patients that suffer type 2
diabetes, being CVD one of the most common morbidity [13].
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Deep Learning (DL) algorithms have obtained significant improvements in almost
all the applications of computer vision [14,15], including medical imaging applications.
Particularly, automated retina image classification outperformed human accuracy in di-
abetic retinopathy diagnosis [16]. This paper proposes to apply DL, more concretely a
convolutional neural network (CNN), to the prediction of CAC score from RFI. Using
data gathered in a previous project [13] we conjecture that a CNN can predict whether a
patient may be diagnosed with a CAC score greater than 400, i.e., the threshold defined
by cardiologists to indicate a very high risk of CVD disease. In addition, we explore the
use of two clinical variables, age and presence of diabetic retinopathy, which previous
studies suggest that are highly correlated with CAC > 400 [13]. The experiments show
that both informational cues are complementary, and when properly combined, they can
significantly increase the precision or recall of the prediction. We validate the proposal in
two different applications, clinical diagnosis and large-scale retrieval. The results show that
RFI can be used for CVD risk prediction with low-cost image acquisition, which may have
a significant impact in the strategies for selecting those patients in whom the screening of
CVD should be prioritized.

2. Materials and Methods

We used two state-of-the art CNN architectures, VGG [17] (16 and 19 layers deep ver-
sions) and ResNet [18] to learn a model of the retina images from patients with CAC > 400
and CAC < 400. We consider it as a binary (two class) classification problem. We used a
5-fold crossvalidation approach to validate the neural networks, and we picked the best
performing one for the rest of the experiments in the paper. We split retina images into left
and right eye data sets, and tested them independently. Table 1 summarizes the results.
VGG16 mean accuracies outperform in both cases ResNet, although differences are not
statistically significant. Given their equivalence, we used VGG16 as the image classifier for
the rest of the paper. Table 2 described the main components of the VGG16 architecture,
which is composed of 13 convolutional and 3 fully-connected layers.

Table 1. Comparison of prediction accuracy between DL architectures.

CNN Architecture VGG16 VGG19 ResNet

Mean 0.68 0.67 0.64

StdDev 0.045 0.088 0.12

CI (95%) (0.64, 0.72) (0.59, 0.75) (0.53, 0.75)

2.1. Transfer Learning

The amount of labelled data is scarce, which poses significant difficulties in training a
large neural network (130 M parameters). One of the most common approaches to cope
with small sample size problems is the use of transfer learning [19]. The CNN is first trained
on a large data set of images (ImageNet [14] in our particular study), and then the model
parameters are fine-tuned according to the retina image training set. We removed the last
fully-connected layer from VGG16 (FC-1000, adjusted to the ImageNet dataset), adding
a two neuron layer (FC-2) to distinguish only two classes: patients labelled CAC > 400
and CAC < 400. These layer parameters where randomly initialized and fined tuned
inside the learning process. The model was trained for 60 epochs, batch size of 8, using
learning rate 0.0001 and weight decay 4 × 10−2. Cross-entropy loss and stochastic gradient
descent were used for loss function and optimizer respectively. The use of pretrained
filters significantly improves the accuracies, being the first CNN layers local filters for
detecting specific image compounds, and the top (classification layers) of the network high
level representations of the decision boundary. All the experiments were performed using
PyTorch [20] Python library.
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Table 2. VGG 16-layer model architecture (configuration“D”) [17].

CNN Configuration
Input 224 × 224 RGB Image
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2.2. Clinical Data Classification

We trained classical machine learning classifiers on the clinical data available, to anal-
yse their prediction capabilities and their complementarity with image based classification.
We used the out-of-the-box implementation from Python scikit-learn package of the clas-
sifiers: Logistic Regression, K Nearest Neighbours [21], Support Vector Machines [22],
Gaussian Process, Decision Tree [23], Random Forest [24], Ada Boost [25], Quadratic Classi-
fier and Naive Bayes.

2.3. RFI Dataset Description

We used a RFI dataset from N = 76 patients, i.e., 152 retinal images (left/right
eye), 66 of them labelled as CAC > 400 (positive samples) and 86 labelled as CAC < 400
(negative samples). These images were selected from the PRECISED study (ClinicalTrial.
gov NCT02248311). In this study, age between 46 to 76 years was an inclusion criteria.
It should be noted that the incidence of cardiovascular events before 45 years is very
low and, therefore, a screening strategy at younger ages are not cost-effective. Images
have 3 channels (RGB). Image dimensions vary from 2576 × 1934 × 3, 2032 × 1934 × 3 to
1960 × 1934 × 3 (width, height and color channels). Figure 1 depicts 2 examples of each eye
(one with CAC < 400 and one with CAC > 400) extracted from the database.

(a) CAC < 400. Right eye example. (b) CAC < 400. Left eye example.

(c) CAC > 400. Right eye example. (d) CAC > 400. Left eye example.

Figure 1. RFI dataset samples (2576 × 1934 × 3).
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Prior to the training and inference, we perform the following preprocessing pro-
cedure: first, images are color-normalized following the guidelines of the PyTorch li-
brary for transfer learning of ImageNet-based learned models. We substract the pre-
computed mean = [0.485, 0.456, 0.406] and divide each pixel by the standard deviation
std = [0.229, 0.224, 0.225] used on the ImageNet pretraining (See for more details: https:
//pytorch.org/vision/stable/models.html, accessed on 18 January 2022) Therefore, RFI
images are loaded to a range of [0, 1] and normalized in that way. Second, all images are
rescaled to a 224 × 224 standardized size to fit in the CNN input model. We do not apply
postprocessing step to the CNN output, and we just select as the most suitable class the
one that has maximum output on the last fully connected layer.

2.4. Metrics

To quantify the model performance, we report the following statistical measures of
the model predictions:

• Accuracy: The global percentage of correct predictions.
• Precision: The average of the retrieved items that were relevant, defined as TP/(TP + FP).

TP stands for true positives, and FP stands for false positives.
• Recall: The number of relevant items retrieved TP/(TP + FN), where FN stands for

false negatives.
• F1-measure: The harmonic mean of the precision and recall, defined as 2× (precision×

recall/(precision + recall)).

• Confusion Matrix: Illustrates the distribution performance ordered as:
(

TN FP
FN TP

)

3. Results

3.1. Automated Positive CAC Score Prediction Using DL

In this section, we report the results of applying the DL model over fundus images to
automatically predict patients presenting a CAC score > 400 and thus a potential cardiovas-
cular risk. The included subjects were enrolled in the PRECISED study (ClinicalTrial. gov
NCT02248311). The study was conducted according to the declaration of Helsinki and was
approved by the local ethics committee. All subjects provided written informed consent
before study entry.

We performed a 5-Fold stratified Cross Validation, where the image set is split in
5 folds, being 4 folds used for training and 1 for testing. The process is repeated 5 times
until each sample has appeared in test once. We report the mean accuracy along the 5 trials
and the 95% confidence intervals. We used VGG16 as the DL architecture (see Section 2).
Training time was 141 s using NVidia GPU 12 Gb 2080Ti 12 Gb and inference time 0.85 s on
the same hardware.

Results suggest that even with a small sample size effect, the VGG16 can model better
than change both classes (see Table 3). Notice that the model does not perform equally
using images from each eye. Although differences are not statistically significant, the retinas
differ from the left to the right eye.

Table 3. Accuracy, Precision, Recall and F1-measure and confusion matrix

(
TN FP
FN TP

)
using fundus

image and DL.

Model Accuracy Precision Recall F1 Conf Mat

RFI (Left Eye) 0.67 0.48 0.67 0.56 35 8
17 16

RFI (Right Eye) 0.72 0.52 0.77 0.62 38 5
16 17
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3.2. Classification Complementarity: Combination of Clinical and RFI Data

We evaluated the use of clinical data using the classifiers defined in Section 2.2 on the
same patients dataset, and following a 5-Fold Cross Validation approach. Table 4 depicts
the results for the variables age (ranging from 45 to 76 years old, mean = 65.75) and previous
diagnosis of diabetic retinopathy. We also used the combination (concatenation) of both.
Results show significantly better than chance accuracies in predicting the CAC > 400 label,
especially when the combination of variables is used.

Table 4. Accuracy of classifiers depending on classification variables used.

Classifier Age DR Age + DR

Logistic Regression 0.60 0.70 0.70
KNN 0.56 0.44 0.61
SVM 0.54 0.70 0.69

Gaussian Process 0.54 0.70 0.70
Decision tree 0.62 0.70 0.65

Random Forest 0.57 0.70 0.64
AdaBoost 0.57 0.70 0.70

Quadratic Classifier 0.55 0.70 0.70
Naive Bayes 0.55 0.70 0.70

We further explored the predicted labels for both the image and the clinical data
classifiers, and we found that individual predictions differ considerably between modalities.
This suggest that an ensemble of both informational cues could take benefit from the
complementarity in the predictions. Particularly, we propose two settings that target two
specific applications:

• Clinical Diagnosis: we follow a conservative prediction protocol that combines both
modalities to reduce the False Negative ratio, i.e., the likelihood of having positive
patients diagnosed as negative. This application is conceived for healthcare systems
where resources availability is not constrained. After analyzing the retinography,
this procedure may suggest further clinical tests (heart scan) for uncertain CAC
positive predictions even though the patient probability of having CAC < 400 is
still considerable.

• Large Scale Retrieval: where we give priority to improve the precision of the ensemble.
The goal in this case is to build and application that may search in large databases,
and may send to screen the patients with CAC > 400. As the resources are limited,
only the patients with high certainty of having CAC > 400 should be further screened.
Contrary to the first application, it is designed for efficient resource management and
prioritize patients that urgently need further clinical screening.

3.2.1. Application: Clinical Diagnosis

In this application, the ensemble is constructed by first running the model on the
clinical data, and then for all the samples that resulted in a CAC < 400 classification run
the image DL model. We only report CAC < 400 if in both cases the result was negative.

This setting, shown in Figure 2, allows the health system to minimize the number
of False Negatives (people that urgently needs a treatment but would not be spotted just
using one of the methods). Table 5 shows the results. The first row shows the accuracy,
recall, precision, F1 measure and confusion matrix for the VGG16 based image prediction
(CNN). For each classifier tested on clinical data, we provide its results, and the results
using the combination of both the image and clinical classifiers.

There is a consistent trend in the results that show significant improvements in the
F1-measure, in all cases. The number of false negatives is reduced about 50%, being the
most critical case to be addressed with this setting (patients with CAC > 400 predicted as
negative). Besides, we also have increased considerably the true positives (and consequently
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the recall) by using the image prediction, detecting more patients with CAC > 400. This
improvement comes at the cost of increasing the number of false positives (FP). This
scenario is less problematic (in terms of health prediction system) since FP are patients
diagnosed positive that in fact are CAC < 400, thus not being in danger.

Table 5. Accuracy, Precision, Recall and F1-measure and confusion matrix

(
TN FP
FN TP

)
for the clinical

diagnosis application.

Classifier Accuracy Recall Precision F1 Conf Mat

CNN (RFI) 0.72 0.52 0.77 0.62 38 5
16 17

Logistic Regression 0.68 0.52 0.68 0.59 35 8
16 17

Protocol 0.74 0.76 0.68 0.71 31 12
8 25

KNN 0.61 0.55 0.55 0.55 28 15
15 18

Protocol 0.64 0.76 0.57 0.65 24 19
8 25

SVM 0.70 0.45 0.75 0.57 38 5
18 15

Protocol 0.78 0.76 0.74 0.75 34 9
8 25

Gaussian Process 0.71 0.48 0.76 0.59 38 5
17 16

Protocol 0.78 0.76 0.74 0.75 34 9
8 25

Decision Tree 0.67 0.58 0.63 0.60 32 11
14 19

Protocol 0.71 0.79 0.63 0.70 28 15
7 26

Random Forest 0.59 0.42 0.54 0.47 31 12
19 14

Protocol 0.66 0.73 0.59 0.65 26 17
9 24

Ada Boost 0.68 0.58 0.66 0.61 33 10
14 19

Protocol 0.72 0.79 0.65 0.71 29 14
7 26

Quadratic Classifier 0.70 0.45 0.75 0.57 38 5
18 15

Protocol 0.78 0.76 0.74 0.75 34 9
8 25

Naive Bayes 0.70 0.45 0.75 0.57 38 5
18 15

Protocol 0.78 0.76 0.74 0.75 34 9
8 25
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Figure 2. Description of the protocol used in the clinical diagnosis application.

3.2.2. Application: Large Scale Retrieval

In this case, for all the positive samples resulting on the clinical model, we run the
VGG16 classifier approach to double check if it is CAC > 400. The ensemble only reports
a positive case if in both models the samples result in a positive detection. The model
minimizes the number of false positives (saving resources by avoiding the screening of
patients that could be diagnosed CAC > 400). This protocol is depicted in Figure 3.

This protocol may find utility in large scale database retrieval, typically hundreds of
thousands of patients. In this cases it will not be possible to test with CT scan all the positive
patients, and the priority should be to devote the resources to the most certain ones. As can
be seen in Table 6, the experiments show a consistent reduction on the FP ratio (up to 90%),
and a large improvement of the precision (91%), which shows that when the ensemble
predicts a patient with CAC > 400, there is a 90% of chance of being correct. Notice
that, globally, this restrictive setting underperforms the individual classifiers, as there is a
significant increase in the false negative ratio (positive patients that where discarded).

Figure 3. Description of the protocol used in the large scale retrieval application.

Table 6. Accuracy, Precision, Recall and F1-measure and confusion matrix

(
TN FP
FN TP

)
for the large

scale retrieval application.

Classifier Accuracy Recall Precision F1 Conf Mat

CNN (RFI) 0.72 0.52 0.77 0.62
38 5
16 17

Logistic Regression 0.68 0.52 0.68 0.59
35 8
16 17

Protocol 0.67 0.27 0.90 0.42
42 1
24 9
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Table 6. Cont.

Classifier Accuracy Recall Precision F1 Conf Mat

KNN 0.61 0.55 0.55 0.55
28 15
15 18

Protocol 0.68 0.30 0.91 0.45
42 1
23 10

SVM 0.70 0.45 0.75 0.57
38 5
18 15

Protocol 0.64 0.21 0.88 0.34
42 1
26 7

Gaussian Process 0.71 0.48 0.76 0.59
38 5
17 16

Protocol 0.66 0.24 0.89 0.38
42 1
25 8

Decision Tree 0.67 0.58 0.63 0.60
32 11
14 19

Protocol 0.68 0.30 0.91 0.45
42 1
23 10

Random Forest 0.62 0.48 0.57 0.52
31 12
17 16

Protocol 0.67 0.24 1.00 0.39
43 0
25 8

Ada Boost 0.68 0.58 0.66 0.61
33 10
14 19

Protocol 0.68 0.30 0.91 0.45
42 1
23 10

Quadratic Classifier 0.70 0.45 0.75 0.57
38 5
18 15

Protocol 0.64 0.21 0.88 0.34
42 1
26 7

Naive Bayes 0.70 0.45 0.75 0.57
38 5
18 15

Protocol 0.64 0.21 0.88 0.34
42 1
26 7

4. Discussion

Recent research [8] suggests that a Deep CNN (EfficientNet) provides promising
accuracies when applied to RFI in predicting CV risk. The study was performed on a
large scale cohort of Asian patients, mostly non-diabetic, obtaining scant correlation (0.47)
between the RetiCAC CNN score and the CAC assessed by CT scan. In the present pilot
study we have focused on type 2 diabetic population, thus using a more homogeneous
dataset for making the training. For this reason and due to the use of VGG and ResNet DL
architectures the accuracy has been significantly improved.

Results using methods over both clinical and image data show acceptable accuracies
in the assessment of a high CAC score. Yet, the two established protocols showed com-
plementary capacities in comparison to independently use both modalities. Experimental
studies suggest that it is possible to tailor a specific ensemble to the particular needs of
the application, improving either the precision or the recall, although there is a trade off
between both performance indicators.

The protocol shows that an application defined specifically for clinical diagnosis,
guarantees missing only few patients with CAC > 400, reducing considerably the false
negatives and maximizing the recall (75% aprox.). However, this procedure has a signifi-
cant number of false positives which will impact on resource costs but not in individual
diagnosis capabilities.
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A second application is conceived for image retrieval of large databases where re-
sources for further cardiological testing are scarce. The ensemble may maximize the
precision by reducing the number of false positives, but the application clearly worsens
predictions at individual level. Nevertheless, it may find utility when prioritization is
urgently needed, as is the case of low income countries.

5. Conclusions

This study provides significant evidences that deep learning methods could be used
for evaluating cardiovascular risk by using CAC as unique biomarker. Preliminary re-
sults show promising accuracies on a small sample sized database by using classical DL
architectures. On the other hand, our findings show that there are clinical variables which
also correlate positively with CAC > 400. A very simple preliminary study shows above
chance accuracies, and more important, complementarity with the results obtained by
image analysis. Based on that, we build two applications that optimize a precision or a
recall criteria for a specific application.

This is a preliminary work that proves that there exists discriminative information in
the retinal images. Further research challenges are: data acquisition and model improve-
ments. Results can be significantly improved gathering more clinical data (increasing the
number of relevant variables) or the number of images (more patients). In addition, more
efforts can be put in the specialization of the DL architecture, taking advantage of higher
detailed information in the retinal images (thickness, dimension, tortuosity of the vessels,
etc.) or increasing the model capacity with current developments in self-supervision (to
mitigate the small sample size problem) and curriculum learning (training the machine
learning models in a meaningful order [26]).
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The following abbreviations are used in this manuscript:

BMI Body Mass Index
CAC Coronary Artery Calcium
CNN Convolutional Neural Network
CT Computed Tomography
CVD Cardiovascular Diseases
DL Deep Learning
DR Diabetic Retinopathy
FN False Negative
FP False Positive
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TN True Negative
TP True Positive
RFI Retinal Fundus Imaging
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Abstract: Coronary computed tomography angiography (CCTA) is an effective imaging modality,
increasingly accepted as a first-line test to diagnose coronary artery disease (CAD). The accurate
segmentation of the coronary artery lumen on CCTA is important for the anatomical, morphological,
and non-invasive functional assessment of stenoses. Hence, semi-automated approaches are currently
still being employed. The processing time for a semi-automated lumen segmentation can be reduced
by pre-selecting vessel locations likely to require manual inspection and by submitting only those for
review to the radiologist. Detection of faulty lumen segmentation masks can be formulated as an
Out-of-Distribution (OoD) detection problem. Two Normalizing Flows architectures are investigated
and benchmarked herein: a Glow-like baseline, and a proposed one employing a novel coupling
layer. Synthetic mask perturbations are used for evaluating and fine-tuning the learnt probability
densities. Expert annotations on a separate test-set are employed to measure detection performance
relative to inter-user variability. Regular coupling-layers tend to focus more on local pixel correlations
and to disregard semantic content. Experiments and analyses show that, in contrast, the proposed
architecture is capable of capturing semantic content and is therefore better suited for OoD detection
of faulty lumen segmentations. When compared against expert consensus, the proposed model
achieves an accuracy of 78.6% and a sensitivity of 76%, close to the inter-user mean of 80.9% and 79%,
respectively, while the baseline model achieves an accuracy of 64.3% and a sensitivity of 48%.

Keywords: out-of-distribution; normalizing flows; coronary computed tomography angiography;
lumen segmentation

1. Introduction

Coronary computed tomography angiography (CCTA) is an effective imaging modal-
ity, increasingly accepted as a first-line test to diagnose coronary artery disease (CAD).
Advancements in CCTA have allowed for minimal radiation exposure, effective coronary
characterization, and detailed imaging of atherosclerosis over time. Due to the increasing
body of evidence showing the effectiveness of CCTA [1,2], recent ACC/AHA chest pain
guidelines recommend CCTA as a first line test for patients with stable and acute chest pain.

The rapid progress in Artificial Intelligence (AI) approaches for pattern recognition
over the last decade has led to several concepts, applications, and products built around the
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primary goal of augmenting and/or assisting the radiologist in their reading and reporting
workflow, mainly focusing on automatic detection and characterization of features and on
automatic measurements in the images. The majority of state-of-the-art CCTA image analy-
sis algorithms are powered by artificial intelligence (AI) [3]. The accurate segmentation
of the coronary artery lumen on CCTA is a crucial step for the automated detection and
assessment of CAD for numerous use cases:

• Anatomical quantification of stenosis—for instance, minimum lumen area, minimum
lumen diameter or percentage diameter stenosis [4].

• Morphological quantification: amount and composition of coronary plaques [5].
• Functional quantification of coronary function—for instance, CFD or machine learning

based Fractional Flow Reserve (FFR) computation [6,7].

While the performance of AI based methods has improved markedly over the years,
given the importance of an accurate lumen detection, semi-automated approaches are
currently still being employed. Thus, the lumen is first automatically detected, and then
manually inspected and edited by the radiologist if deemed necessary. This process,
together with coronary artery centerline editing, required, e.g., between 10 and 60 min in
a study assessing the diagnostic performance of ML-based CT-FFR for the detection of
functionally obstructive coronary artery disease [6]. One potential approach for significantly
reducing the time required for a semi-automated CCTA lumen analysis is to pre-select
locations which are likely to require inspection and editing, and to present only those for
review to the radiologist. Considering that a Deep Neural Network (DNN) is responsible
for generating the lumen segmentation masks, this pre-selection step can be linked to the
topic of confidence and out-of-distribution detection in Deep Learning. It is known that
the output of classic DNNs may be unreliable when applied on out-of-domain, noisy or
uncertain input data. Many methods have been proposed for assessing model output
confidence. van Amersfoort et al. [8] uses a bi-Lipschitz deep feature extractor which feeds
a sparse Gaussian Process (GP): segmenting an image involves at the lowest level many
classification sub-problems, where each pixel is labelled according to the object/class it
pertains to. Therefore, a GP can be adapted to model a segmentation task as a classification
task, and, hence, the associated output uncertainty value can be extracted for each pixel.
Image segmentations which display large mask uncertainties can be flagged as unreliable
and proposed for human inspection. Another approach is to employ energy-based models.
Liu et al. [9] shows that a model trained with a SoftMax final activation contains implicitly
a density estimator. An energy-score can be computed for each pixel and aggregated
mask-scores can be compared to predefined thresholds to determine which samples require
manual inspection. Within these two methods, the model confidence is shaped during
learning the target task. Therefore, in classification problems, the output confidence is low
whenever the input sample is either far away from the training distribution or it is placed
close to the nonlinear class-separation manifold in the input space.

Regular confidence methods do not provide a reason why the output confidence is
low, and the class separation learnt by the model is highly dependent on the target task and
on the model architecture. Normalizing Flow (NF) models on the other hand can be trained
explicitly to model input data probability densities. Given a downstream target task T, if
only its input data is employed for building the NF model, then estimating the likelihood
of input samples for the target task can be obtained through the NF model. Input samples
with low probabilities can be flagged as out-of-distribution and the target model’s output
should be considered unreliable, as it would operate outside its training distribution. An
NF model can also be built by stacking the input samples with their expected GT output.
This way, the NF model can be placed downstream of the target task and act as an Audit
model, detecting cases where the previous model provided faulty predictions. In either
scenario, the NF is a separate model and therefore imposes no constraints on the model
responsible for the target task. NFs are a class of generative models which can perform
exact log-likelihood computation. They have been employed in various setups, for instance:
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• Image generation[10,11]: Being reversible models, random samples from the prior dis-
tribution can be transformed into the data domain, therefore obtaining new synthetic
datapoints.

• Prior for variational inference: Instead of employing a fixed distribution (usually the
normal distribution) in the KL term for ELBO maximization in variational inference,
NF can be employed to model a much more expressive prior distribution. In a
variational auto-encoder (VAE), this allows the encoder to better capture input patterns
by not placing a fixed constraint on its computed embeddings. Ziegler and Rush [12]
employed such a method for character-level language modeling and polyphonic music
generation.

• Out-of-Distribution (OoD) detection: As log-likelihood values can be exactly and
efficiently computed, NF may be good candidates in outlier detection [13].

NF can usually operate efficiently in both directions: forward (or inference) direction,
where input samples x from the input domain X are transformed into embeddings z which
are likely under a chosen distribution Z. At each layer, the input is modified towards Z
and the logDet value (i.e., ln

(∣∣∣det
(

∂ f
∂x

)∣∣∣), where f is the NF) is summed with the current
layer contribution. The backward (or generative) direction employs the bijection property
of the NF to transform an embedding z into a synthetic sample xnew. Refs. [14,15] offer an
introduction and review into the current approaches used in the NF framework.

In this paper, we present an approach based on NF for the OoD detection of coronary lu-
men segmentations. NF models which are built from coupling layers as proposed in [10,11]
tend to focus on local pixel correlations instead of the global semantic meaning [13,16]
and, as a result, OoD samples may in fact produce larger log-probability values than in-
distribution data. We investigate the usage of a new type of coupling layer, which employs
reversible 1 × 1 convolutions in which the filter parameters are computed based on the
passed-through components. We compare the proposed architecture against a Glow-like
architecture on the task of detecting mismatched pairs of CCTA lumen images and their cor-
responding lumen segmentations. The coronary lumen images and masks are 3D volumes
stacked along the channel axis. We also employ synthetic perturbations on the binary masks
and use the perturbed samples as explicit outliers to further shape the learnt probability
density of “correct” image-mask pairs. The end goal is to flag those samples for which the
given segmentation does not properly match with the lumen image. Overall, we assess the
performance of the NF models as follows: (i) against the synthetic mask perturbations, and
(ii) using expert annotations.

2. Methods

2.1. Patients and Imaging Protocol

Two datasets were used for the purpose of this study: a primary dataset as basis for
the conventional train\validation\test split and an additional secondary separate test set.

The primary dataset included 560 patients who underwent contrast enhanced CCTA
for clinical indications at Das Radiologische Zentrum (Heidelberg, Germany). CCTA was
performed on a third generation dual-source CT scanner (SOMATOM Force, Siemens
Healthcare GmbH, Erlangen, Germany). Beta-blockers or sublingual nitroglycerin were
administered prior to the scan if clinically indicated. Prospective and retrospective gating
protocols were utilized with a tube voltage varying between 70–150 kV. Reconstructed
matrix size was 512 × 512 with a pixel size between 0.289–0.496 mm. Slice thickness and
increment were 0.6 mm and 0.4 mm, respectively.

The secondary dataset included 53 patients. It was retrospectively collected from
patients who underwent contrast enhanced CCTA from an independent test center. CCTA
was acquired on a dual-source CT scanner (SOMATOM Force, Siemens Healthcare GmbH,
Erlangen, Germany). Beta-blockers were not used since physiological cardiac function
was also assessed. Tube voltages for the scans varied between 80–120 kV. Reconstructed
matrix size was 512 × 512 with a pixel size of 0.391 mm. Slice thickness and increment were
0.75 mm and 0.4 mm, respectively.
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2.2. CCTA Annotations

Three expert readers performed lumen annotations. These experts received 25 h of
theoretical and practical training from a level 3 SCCT certified cardiothoracic imaging
radiologist. Lumen annotations were performed on standard Windows workstations with
a dedicated in-house annotation tool. The tool has two orthogonal curved multiplanar
reconstruction (cMPR) views and one cross-sectional view where the experts can perform
drawing and editing. First, coronary centerlines and corresponding lumen boundaries were
generated using previously developed methods [17,18]. These automatically generated
centerlines and lumen boundaries were then manually edited to obtain the final lumen
annotations. Lumen annotations were performed only between the proximal and distal
lesion markers defined by the expert readers before starting the lumen annotation process.
To this end, annotators placed markers at the start and end of the diseased coronary artery
regions to define lesions for every branch. These lesions were then extended proximally
and distally by 5 mm to include healthy coronary artery regions. If the lesions overlapped
after the extension, the lesions were merged. For each extended lesion, the experts first
checked and edited the lumen boundaries in 4 cMPR views. They also reviewed their
results in the cross-sectional view and edited the contours if required. The window and
level were automatically set using values extracted from the DICOM tags; however, the
experts were encouraged to modify these values according to existing guidelines [19] to
achieve the best visualization of the coronary lumen.

2.3. Data Preparation for Convolutional Neural Networks

For each extended lesion, the centerline is sampled equidistantly at 0.25 mm intervals.
Unit vectors that are tangential to the centerline are computed. To define a 2D local
coordinate system along the centerline, two other unit vectors are determined at every
centerline point using a rotation minimizing frame technique [20]. Cross-sectional images
are then generated by sampling the CCTA volume at regular grid positions around the
centerline along the local 2D coordinate system. Distances from the corresponding branch
mesh to regular grid positions are also computed to generate corresponding cross-sectional
distance maps, which then can be binarized to obtain lumen masks. The resulting cross
sectional images and masks have a size of 64 × 64 pixels with 0.125 mm isotropic pixel
spacing.

2.4. NF Architectures

We investigated the use of a Glow-style NF architecture, combining layers previously
introduced in [10,11], such as checkerboard and channel masking coupling layers, invertible
1 × 1 Convolutions, Split and Squeeze layers. Our baseline network is depicted in Figure 1
and described in Table 1. We employed affine coupling layers as in Equation (1), where x
and y are the input and output tensors, respectively. Subscripts a and b typically denote the
two halves of the tensors: one which is passed-through unchanged and the other one which
is updated in a linear fashion with respect to itself, but in a highly non-linear fashion with
respect to the former half, through functions s and t (which are Deep Neural Networks).

ya = xa

yb = (xb − tDNN(xa)) sDNN(xa)
(1)

Networks s and t are in our case a two-head 3D CNN, with its architecture described
in Table 2. The final activation function of head s was chosen as exp(tanh(x)) in order
to easily compute the contribution to logDet (as ∑ tanh(x) across all spatial dimensions
and channels) and provide a bound of [e−1, e1] to the scaling done at each coupling layer,
ensuring numerical stability and a bounded global maximal value of logDet.

The input samples consist of chunks of 8 adjacent cross sections (down-sampled to
32 × 32 resolution) and 2 channels (the concatenation of the angiography and the binary
mask volumes). There are 3 squeezing operations which contract the input resolution
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23 times down to 1 × 4 × 4, with increasing number of channels, being the same setup
as used in Glow [11] (however we employed fewer layers on each scale due to runtime
considerations). The effective receptive field of a coupling layer is given by the receptive
field of the s and t network, in this case, 5 × 5 × 5. Stacking coupling layers and using
multiple scales (i.e., squeeze layers) increase the final NF receptive field, similar to the
operation of classical CNNs.

Figure 1. Baseline model architecture. Activation norm not depicted.

Table 1. Glow-style baseline architecture.

Stage No. Blocks Block Description Resolution No. Channels
Total Number
of Parameters

1 4
Affine coupling layer using
checkerboard mask; Activation
Norm (if not last block)

8 × 32 × 32 2

∼2 millions

2
3
4

1 3D Squeeze operation

Stage 2: 4 × 16 × 16
Stage 3: 2 × 8 × 8
Stage 4: 1 × 4 × 4

Stage 2: 16
Stage 3: 64
Stage 4: 256

3
Activation Norm; Invertible 1 ×
1 Convolution; Affine coupling
layer using channel-wise masking

1 Split channels After stage 2: 8
After stage 3: 32

Table 2. s and t network architecture.

Stage Block No. Filters
Cumulative
Receptive Field

1
Conv3D with 3 × 3 × 3 kernel,
stride 1, padding 1; BatchNorm;
LeakyReLU

64 3 × 3 × 3

2
Conv3D with 1 × 1 × 1 kernel,
stride 1, padding 0; BatchNorm;
LeakyReLU; Dropout

64 3 × 3 × 3

3
Conv3D with 3 × 3 × 3 kernel,
stride 1, padding 1; BatchNorm;
LeakyReLU; Dropout

64 5 × 5 × 5

4 − s Conv3D with 1 × 1 × 1 kernel,
stride 1, padding 0 As many as x’s channels for

checkerboard masking or half
for channel masking

5 × 5 × 5

4 − t Conv3D with 1 × 1 × 1 kernel,
stride 1, padding 0

In [13], it has been shown that NFs which employ affine coupling layers are prone to
focus more on local pixel correlations instead of semantic content and exploit coupling layer
co-adaptation in order to maximize the final log-probability, i.e., the inductive bias of a
stack of affine coupling layers encourages them to encode information about masked pixels
in subsequent layers so that t is a good approximation to xb and thus s can be increased,
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leading to larger final log-probabilities. Therefore, stacks of affine coupling layers are
incentivized to guess local pixel values by exploiting texture correlations and information
feed-forward by bypassing the masks, instead of building features increasing in complexity
and expressivity as it is happening for classical stacks of convolutional layers. Semantic
features can describe higher level characteristics of the modeled objects, such as global
shapes (e.g., the relatively circular shape of the lumen with its spatial continuity between
slices), global appearance (e.g., how distinguishable is the lumen from the background)
and object correlations (e.g., the mask’s spatial alignment to the lumen; calcifications, if
present, should be around the lumen, etc.).

Behrmann et al. [21] shows that by constraining a general-purpose residual network [22]
to be bi-Lipschitz, it can be used as a NF architecture. The expressive power of ResNets
is shown to be preserved even with this constraint. On a classification task the invertible
ResNet performed better while on a density modeling task it performed similar to affine-
coupling networks. However, sampling from a NF consisting of a ResNet is an iterative
process at each residual layer and training/inference involves approximating the logDet
at each layer through a power series truncation. Therefore, such ResNet-based models
are not that straight-forward in their operation as, e.g., Glow-based models. Ref. [23,24]
tackle the problem of conditional probability modelling through the use of NF. In coupling
layers, instead of using only the passed-through portion of the layer input to compute s
and t, an additional embedding (dependent on the conditioning variable) is also employed.
In addition, several layers such as Activation Norm (ActNorm) and invertible 1 × 1
Convolutions no longer have constant (but trainable) parameters for all inputs/samples,
but instead their weights are computed based on the conditional embedding, therefore
tailoring their effect for each particular pair of (condition, sample).

Inspired by the above research, we propose the use of a novel type of coupling layer,
one which can operate efficiently for both NF directions, does not focus on local pixel
correlations and has an inductive bias similar to conventional CNNs. The layer resembles
a standard Glow-like sequence of 1 × 1 Invertible Convolution, channel masking, affine
coupling layer. However, the last step is replaced with a 1 × 1 convolution (with applied
bias) whose parameters are computed based on the passed-through channels, as in [25]. The
applied bias is broadcasted to all spatial positions, therefore is it the same across the width,
height and depth of the resulting tensor, meaning that the layer is no longer capable to
reproduce masked pixel values as revealed in [13]. The same (sample specific) convolution
kernel is applied at all spatial positions, in contrast to the element-wise computation done
in (1). This behavior is similar to classical CNNs, with the exception that now the filter
weights are not the same for all samples. Equation (2) describes the layer’s operation, with
simplified notation: ∗ means 1 × 1 Convolution with kernel k and + is a broadcasting
sum. k is computed by a CNN and has shape cmodi f -by-cmodi f , where cmodi f is the number
of channels which are updated. b is a vector of cmodi f elements. The CNN responsible for
computing k and b is described in Table 3.

ya = xa

yb = xa ∗ k(xa) + b(xa)
(2)

It is observed that the layer is self-conditioned, i.e., it does not employ an external
conditioning network or another parallel flow as in [23,24], since the lumen binary mask
and the angiographic image were not treated separately, but were concatenated on the
channel axis. This is possible because the mask and the image should be highly correlated
spatially in order to achieve high log-probability.

A new NF architecture was designed employing the above coupling layer. The first
stage is a sequence of Additive Coupling Layers with checkerboard masking. According to
[13], these layers will focus mainly on local pixel correlations, but this is equivalent to the
functioning of the first layers in classical CNNs, where the receptive field-of-view is small
and the filters tend to search for simple patterns such as corners, edges, textures, etc. As
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opposed to affine couplings, additive couplings are volume preserving, i.e., they do not
contribute directly to logDet and final log(p(x)), but indirectly through the upstream layers.

Table 3. CNN architecture for computation of k and b employed inside the coupling layer.

Stage Block No. Filters
Cumulative
Receptive Field

1 Conv3D with 3 × 3 × 3 kernel, stride 1, padding
1; BatchNorm; LeakyReLU 64 3 × 3 × 3

2 MaxPool3D 2 × 2 × 2, stride 2 4 × 4 × 4

3 Conv3D with 1 × 1 × 1 kernel, stride 1, padding
0; BatchNorm; LeakyReLU; Dropout 64 4 × 4 × 4

4 Conv3D with 3 × 3 × 3 kernel, stride 1, padding
1; BatchNorm; LeakyReLU; Dropout 64 8 × 8 × 8

5 − k Conv3D with 1 × 1 × 1 kernel, stride 1, padding
0; Average pooling c2

modi f full

5 − b Conv3D with 1 × 1 × 1 kernel, stride 1, padding
0; Average pooling cmodi f full

The next stages consist of cascades of coupling layers, as described in Figure 2 and
Table 4. In contrast to a classical CNN, where filters of shape 3 × 3 (or larger) and strides
larger than 1 are used (either in convolutional or max pool layers) to increase the effective
field-of-view (FoV), in our architecture the FoV in these stages is increased solely by the
squeeze operations. After squeezing, a 1 × 1 × 1 patch of pixels is formed from a patch of
2 × 2 × 2 pixels which were flattened spatially into the channel dimension. Therefore, the
FoV doubles on each spatial axis for each squeeze step. This allows 1 × 1 Convolutions to
operate on increasingly larger FoV, similar to the functioning of a classical CNN, while still
retaining the capability of efficient forward/backward NF computation. There are enough
squeeze operations so that the resolution on the last stage decays to 1 × 1 × 1. Naturally,
we restrict the input spatial dimensions to be powers of 2.

One possible disadvantage is that after each squeeze operation, the number of channels
ci (at stage i) increases exponentially with the number of squeezed dimensions (see Table 4).
This directly impacts the proposed coupling layer’s runtime and complexity, since it must
produce matrix k whose size scales with the square of ci. In addition, inference and sampling
involve computing the determinant and inverse of k, respectively. One workaround to
alleviate this issue is to modify the splitting layers so that the tensors are not split in half
along the channel axis anymore, but instead only a quarter is retained for the rest of the
computation graph while the other 75% of channels are factored out. This can be applied
especially in the first stages, where the embeddings mostly describe texture. After such
a split, the input to the next squeeze has only ci/4 channels, half that of a regular split.
Cascading such splits throughout the network can alleviate the effect of the exponentially-
increasing ci, especially for larger resolution inputs. In our experiments, the first split layer
only retains ci/4 channels. The net effect is that there are only 512 channels in the last stage,
as opposed to the original 1024 (as described in Table 4), resulting in faster runtimes and
fewer model parameters.

In this new architecture, BatchNorm was employed instead of ActNorm. In classical
CNNs, batch norm acts by computing the batch statistics and then using them to normalize
the output. In our approach, two running averages of the batch mean and standard-
deviation are employed for normalization and they are updated with current batch statistics
after their use, so that the normalization procedure is dependent only on past batches and
any cross-talk between samples in the current batch is eliminated. In either CNN and NF
cases, batch norm’s main purpose is to provide “checkpoints” for activations inside the
network, i.e., after each BatchNorm layer the activations have preset statistics (i.e., are
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centered around 0 with a std. dev. of 1). This has been shown to improve the training
process [11,26].

In all our experiments, the network weights are initialized such that the layers are
an identity mapping in the beginning of training, as suggested in [11]. We employed the
PyTorch DL framework with the Adam optimizer with a learning rate of 1 × 10−4 and
trained until the validation loss plateaued.

Figure 2. Comparison between baseline inner architecture (top) and proposed inner architecture
(bottom) employing the novel coupling layer. Updated parts are highlighted in red. Normalization
layers not depicted.

Table 4. Improved NF architecture employing the novel coupling layers.

Stage No. Blocks Block Description Resolution No. Channels
Total Number of
Parameters

1 4
Additive coupling layer using
checkerboard mask; BatchNorm
(if not last block)

8 × 32 × 32 2

∼8.7 millions2
3
4
5
6

1 3D Squeeze operation

Stage 2: 4 × 16 × 16
Stage 3: 2 × 8 × 8
Stage 4: 1 × 4 × 4
Stage 5: 1 × 2 × 2
Stage 6: 1 × 1 × 1

Stage 2: 16
Stage 3: 64
Stage 4: 256
Stage 5: 512
Stage 6: 1024

4
BatchNorm; Invertible 1 × 1 Con-
volution; convolutional coupling
layer using channel-wise masking

1 Split channels

After stage 2: 8
After stage 3: 32
After stage 4: 128
After stage 5: 256

2.5. Synthetic Mask Perturbations

Our application’s goal is to detect incorrect pairs of (angiography image, lumen mask),
i.e., samples where the segmentation is not in full agreement with the image. To test our
models, we devised a method to obtain “wrong” datapoints (or samples which are not in
the distribution of “correct” image-mask pairs) starting from our initial data (considered to
be “correct”).
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We augmented the datasets by applying preset perturbations on the lumen segmenta-
tion binary mask, while keeping the angiographic image untouched. Three types of mask
perturbations were employed:

• zooming:we applied zoom in/out operations on the mask image with respect to the
mask center, so that the resulting mask is still aligned with the angiography, but
larger/smaller than before. Figure 3 displays an example for various levels of zoom.

• morphing: we applied dilations or erosions along 4 directions on the height ∗ width
plane: left-right, top-bottom, topLeft-bottomRight and topRight-bottomLeft. This
perturbation only affects one part of the mask (the eroded or dilated part), while
the other part is left untouched. Figure 4 displays an example for various levels of
morphing. By convention, negative and positive levels refer to the two ways in the
selected direction, with zero meaning original mask position (levels are expressed
as ratios of the original mask size along the chosen direction). At every level, either
dilation (resulting in prolonged masks) or erosion (resulting in shortened masks) can
be applied.

• translations: in the same 4 directions on the height ∗ width plane, we translated whole
mask images. Each level increment signifies a pixel shift. Figure 5 shows an example
for various levels of translation.

For each network architecture, we performed two training procedures: one employing
only original (unperturbed) data and one employing a dataset consisting of the original
data and its perturbed version. The perturbations are applied during train time, similar to
data augmentation techniques, such that each original data sample gets perturbed on all
perturbation types, levels and directions over the training epochs. At each epoch, the ratio
between untouched and perturbed data is 1-to-1.

When only original data is used, the training loss function consists of maximizing the
log-probabilities across the train set. When perturbed data is also employed, we used a
train loss function (Equation (3)) similar to the hinge loss introduced in [13,27], where the
model tries to maximize predicted log-probs for original (untouched, in-distrib) samples
and tries to decrease predicted log-probs under a certain threshold T for perturbed samples
(OoD). The hinge loss allows us to shape the learnt probability density modeled by the NF,
by directly offering supervision in regions around the original samples in the input domain.
Therefore, the NF can be trained to be sensitive to the used synthetic perturbations and to
mark perturbed samples as OoD

L(θ, x) = Ex∈inDistrib(ln(pθ(x))− Ex∈OoD(max(0, ln(pθ(x))− T))
θoptimal = argmaxθ L(θ, x)

(3)

where pθ is the probability density modeled by the NF.
Training only on original data and then testing on synthetic perturbations gives

insight into the OoD detection capability which stems purely from the inductive bias of
the NF architecture. In addition, we argue that NF models, being a class of generative
models, provide a form of explainability by being able to produce samples from their
learnt probability density. By sampling repeatedly from the model and computing the
associated log-probs, one can observe the kind of samples which the model considers to
be in-distribution. We believe that this gives insight into the semantic content which is
interpreted by the model and into the functioning of the computational chain of layers.
Section 3.3 will discuss in further detail.
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Figure 3. Example of zoom perturbation on lumen mask. Only the mask contour is shown.

Figure 4. Example of mask morphing perturbation in the left-to-right direction. Top row shows
dilations (the mask is prolonged), bottom row shows erosions (the mask is shortened). Only the mask
contour is shown.

Figure 5. Example of mask translation perturbation in the topLeft-bottomRight direction. Only the
mask contour is shown.

3. Results and Discussion

3.1. Evaluation on Synthetic Mask Perturbations

First, we evaluated the baseline and the proposed networks trained on original (unper-
turbed) data. We applied the synthetic perturbations on the testset in increasing levels of
severity and measured how well the models can distinguish between log-probs of original
and log-probs of perturbed samples. At each perturbation level, we computed the area
under the RoC curve. Figures 6–8 display the AUROC values for translation, zooming and
morphing perturbations, respectively. We use AuRoC as a metric for assessing how well
two individual data distributions can be separated by using a probability threshold. A
value close to 1 indicates that there are probability thresholds which yield near 100% accu-
racy in detecting perturbations, while values close to 0.5 indicate that the probabilities of
the two data distributions have high overlap and are therefore indistinguishable by simple
thresholding. Hence, the closer the AuRoC values are to 1, the better is the performance of
the method. Zoom level 1.0× and translate level 0 do not have any effect on the test data,
so naturally the AuRoC is 0.5 since it is comparing the same distribution against itself.
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Figure 6. AuRoC performance for the baseline and proposed architecture when tested against mask
translation in various directions. Training done only on original data.

Figure 7. AuRoC performance for the baseline and proposed architecture when tested against mask
zooming. Training done only on original data.

Figure 8. AuRoC performance for the baseline and proposed architecture when tested against mask
morphing in various directions. Training done only on original data.

It is observed that the proposed model has superior performance across all pertur-
bation types and levels. Zooming under 1.0× actually yields higher log-probs for the
baseline model, resulting in AuRoC values under 0.5. Even at small mask perturbation
levels (e.g., 0.9×/1.1× zooming, ±2 pixels translation), the proposed model has much
larger sensitivity in detecting the mask alterations (even though it was not trained explicitly
to do so) in contrast to the baseline model, where the log-probs start to decrease more
significantly only at larger perturbation levels. The mask morphing is the hardest to detect
since part of the mask remains the same. Thus, the baseline model is largely insensitive
to this type of perturbation as the maximum AuRoC at a high perturbation level of 60%
is under 0.65. In comparison, the AuRoC for the proposed network has a much faster
variation for increasing perturbation severity, achieving values over 0.9 for some directions
at 60% morphing.

Next, we evaluated the test-time sensitivity against synthetic perturbations after
training using the augmented trainset and loss from Equation (3). We employed the
following perturbation levels to generate OoD samples for training:

• translation (in all 4 directions) of ±3 or ±4 pixels;
• zooming levels of 0.65×, 0.8×, 1.2×, and 1.35×;
• morphing (in all 4 directions, erosions/dilations) levels of 0.2 and 0.35 (ratio of initial

mask size).
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Any OoD sample had only one type of perturbation applied to it. In addition, given
the fact that each sample is a 3D volume consisting of 8 2D slices, the perturbation could
be applied on each slice following some preset variation for its severity/level along the
slice axis (see Figure 9 for the employed severity variation types). A severity variation
type is sampled randomly for each OoD sample and each component 2D slice is perturbed
according to its corresponding severity.

Figure 9. There were 7 perturbation severity variations employed for OoD samples generation. Each
slice index has its corresponding relative severity level, according to the chosen severity variation.

Figures 10–12 display the test-set AUROC values for translation, zooming and morph-
ing perturbations, respectively. The two models perform similarly well, except for some
morphing directions, where the proposed model has slightly lower AuRoC values for small
perturbation levels.

Figure 10. AuRoC performance for the baseline and proposed architecture when tested against
mask translation in various directions. Training done on augmented dataset using the hinge loss in
Equation (3).

Figure 11. AuRoC performance for the baseline and proposed architecture when tested against mask
zooming. Training done on augmented dataset using the hinge loss in Equation (3).
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Figure 12. AuRoC performance for the baseline and proposed architecture when tested against
mask morphing in various directions. Training done on augmented dataset using the hinge loss in
Equation (3).

This training procedure yields models which show high sensitivity towards samples
from the outlier distribution used explicitly during training, and which can separate the
log-prob distributions even for small levels of perturbations. However, in [13] it is reported
that even though NF models can achieve good separation between in-distrib and OoD sets
used explicitly during training, there may also be other OoD sets (unseen during training)
which still achieve log-probs as high as in-distribution data. Therefore, the inductive bias
of the model still plays a major role in the generalization and usability of a NF model
in the face of new data, even if it was explicitly tuned to decrease log-probabilities for
some forms of outliers. The next sections will further inspect the two models trained on
augmented data and will provide evidence that the baseline model, even though it can now
detect some outliers, does not model a useful probability density which is descriptive of
the training data.

To obtain a log-probability signal which describes the likelihood of an entire vessel
segment, a sliding window approach was employed in which overlapping chunks of 8
adjacent cross-sections are fed through the NF model to obtain the log-prob values for each
chunk. Using this procedure, middle cross-sections can participate in at most 8 chunks,
therefore there may be up to eight predicted log-probability values linked to each middle
cross-Section. A voting scheme based on averaging is employed, where the final log-prob
value for each cross-section is computed by averaging the linked predicted log-probs.
Figure 13 depicts such an example, where a synthetic perturbation is applied with a known
severity variation. The proposed NF model detects when the perturbation severity is high
enough, while outputting high log-prob values when the perturbation is negligible.

3.2. Evaluation on Expert Annotations

The results in the previous section indicate that the herein proposed model is supe-
rior to the Glow-like baseline. Hence, we first ran the proposed model (trained on the
augmented trainset) on the secondary dataset described in Section 2.1. We employed two
relative thresholds of 60% and 90% of the mean log-probability value observed on the
primary dataset’s test split, when no perturbation was applied. All lesions which had
at least one cross-Section log-probability value under the 60% threshold were selected as
candidates with possibly wrong mask annotations, yielding a total of 31 of these lesions.
To construct the bin of candidates with possibly correct mask annotations, we randomly
sampled 31 lesions from those for which all cross-Section log-probability values were above
the 90% threshold. Thus, we did not consider lesions which had any intermediate values of
log-probability (i.e., between the 60% and 90% thresholds) without also having at least one
low log-probability cross-section, to avoid the effect of model uncertainty for data which
it considers to be near the separation manifold between correctly annotated lesions and
faulty ones. We then further excluded lesions which had a reference diameter (computed as
average of healthy proximal and distal diameters) lower than 1.5 mm (the typical threshold
employed in CCTA based studies assessing CAD anatomically and functionally). As a
result, a test set containing 56 lesions from 35 patients was employed for the evaluation.
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Figure 13. Whole vessel-segment prediction using a sliding window approach and the proposed
architecture. A zooming perturbation with a known severity variation (top plot, gray signal) is
applied (note that zoom level 1.0× is an identity transform). The resulting log-prob signal (top plot,
red signal) dips whenever the perturbation is severe enough, compared to the original log-prob
signal in the absence of any perturbation (top plot, purple signal). The bottom 2 plots display
two lateral views of the vessel segment (2 projections on different axes), with the perturbed mask
contour overlaid.

The selected test set was manually and independently annotated by three expert
readers at lesion-level: each lesion was marked as being either “correctly” or “incorrectly
annotated”, based on the following instructions: a lesion should be marked as “incorrectly
annotated” if at least one cross-sectional contour would require editing; otherwise, if no
cross-sectional contour requires editing, then the lesion should be marked as “correctly an-
notated”. The annotator instructions were devised so as to match the procedure employed
to construct this separate test set, with the goal of being able to directly compare the labels
from the NF model to the ones provided by the annotators.

The Glow-like baseline NF model was also applied on the 56 lesions and the same
relative thresholds and criteria were employed to classify each lesion. Evaluating the two
NF models against the human annotations was framed as a binary classification problem.
Table 5 summarizes relevant metrics (accuracy, sensitivity, specificity, PPV and NPV) for
the proposed and baseline models. Annotation consensus was obtained through a majority
vote between the three annotators. The mean inter-user metric values were obtained by
averaging all 6 possible metric values pertaining to pairs of annotators, e.g., Annotator_1
(as GT) versus Annotator_3 (as Prediction), Annotator_3 (as GT) versus Annotator_1 (as
Prediction), etc. When compared against annotation consensus, the proposed model has
higher performance than the baseline on all considered metrics.

Of special interest is the sensitivity metric, which measures the percentage of NF-
flagged lesions as being incorrect from the set of lesions considered incorrect by the human
annotators’ consensus. The higher this metric value, the more capable is a NF model in
detecting faulty segmentation masks. We observe that the proposed model has sensitivity
of 76.0%, close to the inter-user value of 79.0%, while the baseline model only achieves 48%.
Overall, according to the majority vote of the expert readers, 25 lesions were annotated as
requiring editing, out of which 17 had unanimous annotations and 8 had non-unanimous
annotations. The NF model correctly classified 16 out of the 17 unanimously annotated
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lesions and three of the eight non-unanimously annotated lesions. This indicates a 94.1%
sensitivity on the unanimously annotated lesions.

The overall accuracy score also increases to 78.6% (close to the inter-user value of
80.9%) for the proposed model, as compared to an accuracy value of 64.3% for the baseline
Glow-like model. These results reinforce the observation that the baseline model is unable
to fully capture semantic content while the proposed model does. Similar behavior was
observed in the previous section, where the proposed model had better AuRoC values in
detecting synthetic perturbations when trained only on original data.

Table 5. Metrics on the secondary dataset for the baseline and the proposed model. The proposed
model consistently outperforms the baseline and has metric values close to inter-expert agreement.

Metric
Inter-Expert Agreement

Average [Min, Max]
Baseline Model Proposed Model

Accuracy 0.81 [0.79, 0.86] 0.64 0.79

Sensitivity 0.79 [0.70, 0.87] 0.48 0.76

Specificity 0.83 [0.76, 0.90] 0.77 0.81

PPV 0.79 [0.70, 0.87] 0.63 0.76

NPV 0.83 [0.76, 0.90] 0.65 0.81

3.3. Sampling from the Models

We employed the models trained on the augmented trainset to generate novel samples.
Similar to sampling procedures in [11], we employed N (0, 0.6 · I) instead of the actual
prior distribution (i.e., standard normal multivariate distribution) in order to produce
samples with larger log-probs and which look more realistic. Each new sample was run
back through the model in the forward direction to compute the log-probs, confirming
that the sample is in fact in-distribution (the sampling procedure may seldomly generate
samples of lower log-probability). Figure 14 shows samples from the two models.

As already revealed in [13], the baseline model tends to focus more on textures and
is unable to capture the semantics of the training data. We observed that in most of the
generated samples, the segmentation mask is lacking (i.e., only zeros are generated on the
mask channel). In addition, the usual round shape of the lumen is not distinguishable in
the image channel. In [11], the proposed Glow model can indeed generate realistic samples.
That model operates on the same spatial resolution as ours (32 × 32) and uses the same
number of 3 spatial scales (i.e., squeeze operations); however, it employs up to 48 coupling
layers per scale (as opposed to ours, which only uses 3 coupling layers per scale due to
runtime considerations). We hypothesize that many glow-like layers are required at each
scale because of their tendency to disregard semantic content and a deep stack of such
layers can approximate some semantic content as very complex textures.

In contrast, the proposed architecture uses a small number of 4 (novel) coupling layers
per scale and manages to capture the semantic content of a usual data point: the lumen has
the typical shape in the image channel, the segmentation mask is present (with plausible
pixel-values, e.g., close to either 0 or 1) and respects the shape and position of the lumen in
the image channel.

We argue that inspecting the generated samples is an explainability mechanism which
offers insight into the learnt probability distribution, i.e., the model can provide example
inputs which are very likely under the learnt density and by repeating the sampling
procedure enough times, an approximation of the typical set of the learnt distribution may
be constructed. If a generative model consistently produces samples with high associated
log-probabilities but which have low quality under manual inspection and are implausible
considering the specific topic/domain, then this is proof that the learnt probability density
is not a good approximation of the true probability density and, therefore, the model cannot
be reliably used for OoD detection (even if its train-time loss function encouraged the
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separation of some OoD data sets). In practice, the amount of available OoD data is usually
limited and the inductive bias of the model still holds a huge importance in the quality of
the distribution fitting. Zhang et al. [27] shows that “even good generators can still exhibit
OoD detection failures”, therefore the above condition of good/plausible sample generation
is necessary, but not sufficient. It is necessary because the learnt probability density should
match the underlying data probability density as closely as possible. However, even for a
good generator (with high validation-set likelihoods) there may be small-volume regions
of the sample space where the model assigns high-density but low overall probability mass.
This faulty assignment of high-density might be caused by model estimation error [27], but
because the overall probability mass may be negligible (due to the small volumes of poorly
modeled regions), it does not affect the generation of synthetic samples. Still, training
a generative model for OoD detection can require accurate estimation in regions which
are unimportant for good generation [27]. Using an ensemble of generative models may
alleviate the effect of model estimation errors, as each model instance may mis-predict on
different regions of the sample space and thus errors could be averaged out.

Figure 14. Three samples (pairs of lumen image and segmentation mask) generated by the proposed
network (right) and by the baseline model (left).

3.4. Inspecting the Flows

The main hypothesis in [28] is that, in hierarchical VAEs, the lowest latent variables
“learn generic features that can be used to describe a wide range of data” and thus OoD data
can achieve high likelihoods “as long as the learned low-level features are appropriate”.
It is further suggested that “OOD data are in-distribution with respect to these low-level
features, but not with respect to semantic ones”.

Inspired by the hierarchical likelihood bounds approach in [28], we inspected the
progressive transformation of mask-perturbed samples as they are passed through the
sequence of coupling layers inside the NF models (i.e., going in the forward direction from
x ∈ X to z ∈ Z). We recorded the likelihood of the first factored out embeddings (termed
zbottom) after the first splitting operation and their associated logDet values at that stage.
We computed pseudo-likelihood values, associated to these “bottom features”, by ignoring
the rest of the computational chain and the part of the embeddings which were not factored
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out (termed ztop). We also computed pseudo-likelihood values associated with the “top
features”, i.e., by summing the likelihood (under the prior) of embeddings ztop and the
updates to logDet done at stages after the first splitting operation.

Intuitively, the “bottom features” operate at a smaller field-of-view and tend to capture
more local patterns, while the “top features” are built based on the “bottom features” and
at larger fields-of-views, therefore being able to access the global semantic content of a
sample. Formally, the two pseudo-likelihoods are computed as in Equation (4):

Lbottom = ln(p(zbottom)) + ln(|det(∇( f1 ◦ f2 ◦ . . . ◦ fk))|)
Ltop = ln

(
p
(
ztop

))
+ ln(|det(∇( fk+1 ◦ fk+2 ◦ . . . ◦ fM))|) (4)

where M is the number of layers in the NF model and k is the index of the splitting layer
which factored out zbottom and retained ztop for the upstream layers. Because the chosen
prior distribution is a diagonal multivariate Gaussian, the sum of Lbottom and Ltop yields
exactly ln(p(x)).

Employing models trained only on original (unperturbed) data, we computed AuRoC
values for the two pseudo-likelihoods when applying perturbations of increasing severity
and compared performances to the standard case where the regular log-probabilities are
used to discriminate OoD samples. Figure 15 shows the AuRoC values for the baseline
and proposed models when detecting mask translations in various directions. For the
baseline model, the bottom features have worse performance in detecting outliers, while
the top features perform better than regular log-probs. This observation is in line with
the hypothesis in [28], that higher level latent variables can better discriminate through
semantic content, while lower level latents would yield similar likelihoods for OoD data if
textures appear to be in-distribution.

However, the proposed model shows consistent performance across the top and
bottom level features and regular log-probabilities. This suggests that even at the first
spatial scale, the novel coupling layers try to capture semantic features instead of local
spatial correlations and that the inductive bias of this coupling layer is better suited for
OoD detection than regular affine coupling layers (as used in [10] or [11]).

Inspecting the proposed model also on mask-morphing or mask-zooming pertur-
bations reveals the same behavior. However, despite the fact that pseudo-likelihoods
of bottom-features exhibit similar OoD detection performance as regular log-probs, the
network architecture cannot be truncated to use a smaller number of spatial scales. An
experiment where only four spatial scales were employed (instead of the original 5) was
conducted. The resolution on the final spatial scale was 1 × 2 × 2 instead of 1 × 1 × 1.
The experiment revealed that the network in this configuration is unable to ensure spatial
coherency across the entirety of the input image (of resolution 8 × 32 × 32) but only on
patches of 8 × 16 × 16, since each pixel position in the 1 × 2 × 2 map has a field-of-view
of 16 pixels. Even though the k-and-b network has a full receptive view, the k kernel is
applied on a 1 × 1 basis and cannot semantically link adjacent spatial sections in the xb
tensor. Therefore, the proposed network decays the spatial resolution down to 1 × 1 × 1,
where the computed k kernel can operate on the entire receptive field of the input. Figure 16
shows samples generated from a model with only four spatial scales instead of five. The
samples reveal that the 4 quadrants are not semantically connected.
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Figure 15. Baseline model (first row) compared to proposed network (last row): AuRoC values for
separating OoD mask-translated samples, using either top-features or bottom-features. Dashed black
lines represent default model performance using regular log-probs.

Figure 16. Generated samples are not coherent across the entire 32 × 32 spatial resolution, but only
on the 16 × 16 quadrants.

4. Conclusions

While the performance of AI based methods has improved markedly over the past
few years, semi-automated approaches are currently still being employed. One potential
approach for significantly reducing the processing time is to pre-select regions of interest
which are likely to require manual inspection and editing. Herein, we linked this pre-
selection step to the topic of confidence and out-of-distribution detection, based on NF. The
usage of a novel coupling layer which exhibits an inductive bias favoring the exploitation
of semantical features instead of local pixel correlations was investigated on the task
of detecting mismatched pairs of CCTA lumen images and their corresponding lumen
segmentations. A network architecture employing such layers was tested against a Glow-
like baseline. The proposed network showed better performance in OoD detection when
tested against synthetic perturbations, while the sensitivity of detecting faulty annotations
was close to inter-expert agreement. Samples from the model confirm that the learnt
probability density managed to capture the relevant informational content from the training
samples, instead of just modelling plain textures.
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During model development and testing stages, only manual annotations were em-
ployed in the input mask-channel; therefore, the use of the investigated models is not
tied to any specific segmentation model. Thus, any model-specific segmentation artefacts,
which could possibly alter the observed probability density of correct image-mask pairs,
are avoided by learning only from manual annotations (e.g., possible segmentation failure
modes are not included in the learnt probability density). In deployment scenarios, the
mask channel would be fed by a separate segmentation model and the proposed NF can
therefore act as an independent audit model, detecting cases where the mask is not in
full agreement with the underlying lumen images. As the failure modes of the NF model
would be uncorrelated with the failure modes of the segmentation model, the proposed
setup is better suited for robust pre-selection of vessel locations which are likely to require
inspection and editing, leading to time savings when performing semi-automated CCTA
lumen analysis.

CCTA is a powerful non-invasive test for ruling out CAD, i.e., avoiding unnecessary
invasive coronary angiography (ICA). A recent review has summarized the latest aspects
addressing the CCTA suitability for selecting patients for invasive coronary angiography
(ICA) and subsequent revascularization [29]. Clinical trials have shown that performing
CCTA in patients receiving a clinical indication for ICA results in lower costs and more
effective patient care [30].

However, small errors in the CCTA interpretation (e.g., minimal lumen area or di-
ameter) can have a significant influence on the interpretation of the anatomical and/or
functional significance of a stenosis. A large grey zone of uncertainty in the clinical inter-
pretation may be the consequence.

The method proposed herein allows for more confident decision making using CCTA
imaging alone. Using the proposed out-of-domain detection method, the gray zone in the
clinical interpretation can potentially be narrowed down.
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Abbreviations

The following abbreviations are used in this manuscript:

CCTA Coronary computed tomography angiography
OoD Out-of-Distribution
NF Normalizing Flows
AI Artificial Intelligence
CNN Convolutional Neural Network
GT Ground truth
CAD Coronary artery disease
AuRoC Area under the Receiver operating Characteristics
FFR Fractional Flow Reserve
AHA American Heart Association
CFD Computational fluid dynamics
KL Kullback–Leibler divergence
logDet Logarithm of determinant
cMPR curved Multiplanar Reconstruction
VAE Variational Auto-Encoder
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Abstract: Cardiovascular disease (CVD) is the number one cause of death worldwide, and coronary
artery disease (CAD) is the most prevalent CVD, accounting for 42% of these deaths. In view of the
limitations of the anatomical evaluation of CAD, Fractional Flow Reserve (FFR) has been introduced
as a functional diagnostic index. Herein, we evaluate the feasibility of using deep neural networks
(DNN) in an ensemble approach to predict the invasively measured FFR from raw anatomical
information that is extracted from optical coherence tomography (OCT). We evaluate the performance
of various DNN architectures under different formulations: regression, classification—standard,
and few-shot learning (FSL) on a dataset containing 102 intermediate lesions from 80 patients.
The FSL approach that is based on a convolutional neural network leads to slightly better results
compared to the standard classification: the per-lesion accuracy, sensitivity, and specificity were 77.5%,
72.9%, and 81.5%, respectively. However, since the 95% confidence intervals overlap, the differences
are statistically not significant. The main findings of this study can be summarized as follows:
(1) Deep-learning (DL)-based FFR prediction from reduced-order raw anatomical data is feasible
in intermediate coronary artery lesions; (2) DL-based FFR prediction provides superior diagnostic
performance compared to baseline approaches that are based on minimal lumen diameter and
percentage diameter stenosis; and (3) the FFR prediction performance increases quasi-linearly with the
dataset size, indicating that a larger train dataset will likely lead to superior diagnostic performance.

Keywords: deep-learning; few-shot learning; ensemble models; coronary artery disease; optical
coherence tomography; fractional flow reserve

1. Introduction

Cardiovascular disease (CVD) is the number one cause of death worldwide, and
coronary artery disease (CAD) is the most prevalent CVD, accounting for 42% of these
deaths. In CAD patients, plaque builds up in the coronary arteries and limits the blood
flow to the myocardium, especially when the demand is increased (exercise, stress). In
severe cases, this can lead to myocardial infarction, or even death.

X-ray coronary angiography (XA) represents the gold standard in CAD imaging [1].
Optical coherence tomography (OCT) is used in certain scenarios in conjunction with XA.
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OCT has the highest resolution among all invasive imaging modalities, allowing for a pre-
cise intra-vascular evaluation of stent apposition and expansion [2–4], thus, representing a
paramount tool for PCI (percutaneous coronary intervention) optimization [5]. Nonetheless,
its ability to assess the functional significance of a stenosis is not negligible [6].

The purely anatomical assessment of CAD, independent from the medical imaging
modality, does not fully capture the functional significance of coronary stenoses. In view of
the limitations of the anatomical evaluation of CAD, Fractional Flow Reserve (FFR) has
been introduced as a functional index. FFR is defined as the ratio of flow in the stenosed
branch at hyperemia—a condition of stress, with maximum coronary blood flow—to the
hypothetical hyperemic flow in the same branch under healthy conditions. This can be
shown to be closely approximated by the ratio of hyperemic cycle-averaged pressure distal
to the stenosis to the cycle-averaged aortic pressure [7]. An FFR value ≤ 0.8 is considered
to be positive, i.e., the patient requires invasive treatment, such as percutaneous coronary
intervention (PCI-stenting) or coronary artery bypass graft (CABG). An FFR value > 0.8 is
considered to be negative, i.e., typically only optimal medical therapy is prescribed. Several
clinical trials have demonstrated the superiority of FFR-guided decision-making [8], which
represents the current gold standard. However, although providing obvious advantages,
studies indicate that the use of FFR is still relatively low due to the need to administer
hyperemia-inducing drugs, additional costs, and the extended duration and invasive
nature of the procedure [9]. Hence, computational approaches for FFR prediction have
been introduced, relying either on computational fluid dynamics (CFD) or on artificial
intelligence (AI).

Blood-flow computations, performed using CFD, when used in conjunction with
patient-specific anatomical models that are extracted from medical images, have been pro-
posed for diagnosis, risk stratification, and surgical planning [4]. Model-based assessment
of coronary stenoses has been previously performed using such techniques in several clini-
cal studies, based on anatomical models that are reconstructed from coronary computed
tomography angiography (CCTA) [10–13], XA [14–18], or OCT [19–22]. Computed FFR
has been the main quantity of interest in these studies, all of which showed that computed
FFR has good diagnostic accuracy compared to invasively measured FFR. The CFD models
consist of partial differential equations, which can be only numerically solved, leading to a
large number of algebraic equations. Due to the time-consuming process that is employed
for reconstructing the anatomical model, and the computationally intensive aspect of the
CFD models [23,24], they are not used for intra-operative assessment and planning, where
near real-time performance is required.

Alternatively, artificial intelligence-based solutions may be employed that are capable
of providing results in real-time. To develop such solutions, a large database is required for
the training phase, containing pairs of input-output data. The input data are represented by
the anatomical information, while the output are invasive FFR [25]. Once the training phase
has been finalized, the online usage provides results instantaneously. Such supervised
machine learning (ML) algorithms are routinely employed in medical imaging applications,
e.g., organ segmentation [26]. Moreover, machine learning models can also be employed to
reproduce the behavior of non-linear computational models [27,28].

Recently, machine learning models for the prediction of FFR based on CCTA [29],
XA [30], OCT [31], and intravascular ultrasound (IVUS) [32] have been introduced. All these
approaches rely on the extraction of features describing the vascular geometry, specifically
the arterial lumen, and, in some studies, also on patient features.

The goal of the present study is to evaluate the feasibility of using deep neural net-
works (DNN) to predict the invasively measured FFR from the radius of the coronary lumen
that is extracted along the centerline of the coronary artery of interest. The starting point is
represented by OCT images, the coronary lumen is then automatically extracted for each
cross-section and subsequently processed to determine an equivalent radius value. The
radius values are then arranged in a one-dimensional (1D) sequence, to be fed as input to
the DNN. Our approach is in contrast to previous ML-based approaches for FFR prediction,
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since we use as input raw, reduced-order anatomical data instead of hand-crafted features.
The second important aspect of the study is that we focus on intermediate lesions, for
which the visual anatomical assessment of CAD based on XA does not allow for a clear
clinical decision. As a result, the dataset contains a large number of lesions having an FFR
value that is close to the cut-off of 0.8, making the prediction task more challenging.

Deep-learning (DL) is a class of machine learning algorithms that uses multiple layers
to extract higher level features from the raw input [33]. The FFR prediction task can
be formulated either as a regression problem (predict the exact value of FFR) or as a
classification problem (predict the FFR class, e.g., binary classification: ≤0.8 or >0.8). There
are several types of neural networks that are suitable for the FFR prediction, amongst others:

- fully connected neural network, commonly referred to as artificial neural networks
(ANNs). Potential disadvantages of ANNs are the large number of trainable parame-
ters, which leads to the requirement of large training datasets, and the difficulty in
capturing the inherent properties in 1D/2D/3D data structures

- convolutional neural networks (CNNs). Compared to ANNs, CNNs can capture the
inherent properties in 1D/2D/3D data structures, but still require relatively large training
sets. Also, fixed size input data are required if the network is not fully convolutional.

- recurrent neural networks (RNNs) [34]. RNNs have the advantage that a variable
length input sequence can be processed, but they may be affected by vanishing and
exploding gradient issues.

Few-shot learning (FSL) is a type of learning where the prediction is performed based
on a limited number of samples [35]. In a study that was published by Yang et al., the
models that were used for FSL were classified into four categories: multitask learning,
embedding learning, learning with external memory, and generative modeling.

OCT images were previously used in a variety of DL-based applications: stent strut de-
tection [36,37], stent strut segmentation [38–40], coronary calcification segmentation [41,42],
atherosclerotic plaque characterization [43], and lumen segmentation [44]. Furthermore,
DL-based approaches were employed also in studies addressing other types of optical
signals [45,46].

Herein, we evaluate the performance of ANNs, CNNs, and RNNs in both regression
and classification formulations. Additionally, we also consider the use of FSL, focusing
specifically on prototypical networks [47], a subcategory of the embedding learning models,
considered the state of the art for classification tasks. More details that are related to
prototypical networks are included in Appendix A.1.

2. Materials and Methods

2.1. Data Set
2.1.1. Study Design

This was a single-center, retrospective study that was carried out at the Clinical
Emergency Hospital, Bucharest, Romania. The study complied with the Declaration of
Helsinki for investigation in human beings. The study protocol was approved by the local
ethics committee and each patient signed an informed consent form before the enrolment
in the study.

2.1.2. Study Population

Patients at least 18 years old, with stable angina, and an indication for diagnostic
XA due to intermediate or high likelihood of obstructive coronary artery disease, were
considered. Further inclusion criteria were: at least one lesion with 40% to 80% diameter
stenosis by visual assessment, and invasive FFR measurement considered required by
the operator for clinical decision-making. Patients were excluded if they were unable to
provide informed consent, had significant arrhythmia (heart rate over 120 bpm), suspected
acute coronary syndrome, atrial fibrillation, low systolic pressure (below 90 mmHg), con-
traindication to beta blockers, nitroglycerin or adenosine, a non-cardiac illness with a life
expectancy of less than 2 years, pathological aortic valve, rest state angina, or myocardial
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infarct during the last 6 months. Additionally, aorto-ostial lesions were excluded from the
study. A total of 80 patients were included in the study.

2.1.3. Procedure Protocol

Coronary angiography (Siemens Artis Zee, Forchheim, Germany) was performed after
iso-centering in posterior-anterior and lateral planes, via a transradial (preferred) or trans-
femoral approach. In all cases, a 6 French diagnostic catheter was used after intracoronary
injection of glyceryl trinitrate according to routine practice in the hospital, with manual
contrast injection and cine acquisition at a frame rate of 15 frames/second. OCT imaging
was performed using a frequency-domain OCT systems (St. Jude Medical/Abbott, St. Paul,
MN, USA). The fiber probe was pulled back at a constant speed and cross-sectional images
were generated with a spacing of 0.2 mm.

The acquisition of physiological data for FFR calculation was performed according
to conventional practice [48] with a commercially available FFR measurement system
(PressureWire Aeris; St. Jude Medical, Minneapolis, MN, USA). The 0.014 coronary wire
with a pressure tip was advanced until the pressure sensor passed the orifice of the guid-
ing catheter. Transcatheter aortic and intracoronary pressure tracings were equalized.
Subsequently, the guidewire was advanced into the respective coronary artery until the
pressure sensor passed the index lesion. Hyperemia was induced by the administration of
adenosine either intravenously at a constant rate of 140 μg/kg/min, or as an intracoronary
bolus (100 μg for the right and 200 μg for the left coronary artery); the pressure recording
was started, and the FFR was determined. A total of 102 coronary lesions in 80 patients
underwent FFR analysis. This invasively measured FFR represents the ground truth that is
used during the training of the deep neural networks, as described in the following.

2.2. Data Pre-Processing

The OCT data were exported from the OCT workstation available onsite. All OCT
slices are RGB images, and the exported data contains the automatically detected coronary
lumen, which is overlaid on the image and depicted in green. The spacing between the
slices is 0.2 mm, and the number of slices per acquisition is constant at 376. Figure 1
displays the data pre-processing workflow starting from the exported OCT images with
automatically detected lumen contour. First, the contours are automatically extracted by
processing the green channel as follows: a threshold representing 90% of the maximum
intensity value is used to create a binary image, and all the contours are extracted [49].
We then retain the contour which surrounds the center of the image: if there are multiple
such contours, we pick the one with the largest area. Next, we use an in-house developed
application to collect manual input that is provided by the clinical expert:

- selection of the proximal start and distal end slice, which define the coronary artery
region of interest. Slices representing the catheter are excluded, alongside other slices
with sub-optimal image quality (e.g., blood artifacts);

- rejecting/correcting erroneous contours within the selected slice-range: the automat-
ically detected contours may be incorrect on certain slices, typically in bifurcation
regions and/or if the lumen has a profoundly non-circular shape (e.g., concave shape).
Erroneous bifurcation contours are rejected, while erroneous contours in the stenosis
region are corrected (required in less than 10% of the OCT acquisitions).
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Figure 1. OCT data processing workflow, including FFR prediction using a deep neural network.

Next, the data are pre-processed: the inside area of each non-rejected lumen contour
in the selected slice-range is computed and the effective radius is determined (considering
an equivalent circular contour with identical area). The radius of rejected contours is set
using linear interpolation that is applied on the radiuses of the closest neighboring contours
that have not been rejected. The radiuses are then arranged in a 1D sequence, starting
with the proximal slice of the selected slice-range. Since the OCT slices are equidistant,
only the radius values are used as input. For the further processing using deep neural
networks, the 1D radius sequence is padded to a size of 376 (maximum length of an OCT
sequence), and z-score normalization is performed [50]. The mean and standard deviation
of each acquisition are computed, and then a global mean and global standard deviation are
computed for the training set by averaging the mean and standard deviation values of the
acquisitions that are included in the training set. The acquisitions in the validation/test split
are normalized using the values that are employed for the training set. The 1D sequence of
normalized radius values is used as input for the deep neural network predicting FFR.

2.3. Deep Neural Network Based FFR Prediction

Different types of neural network models are considered for the prediction of the
invasively measured FFR, ANNs, CNNs, and RNNs, applied with different approaches:

- a regression approach: models predict a rational number representing invasive FFR
- a classification approach: models predict the class of the FFR value (positive, i.e.,

FFR ≤ 0.8, or negative, i.e., FFR > 0.8)
- a FSL approach: similar to the classification approach.

As ANN, we used a fully connected neural network with 4 hidden layers, and the
rectified linear unit (ReLU) [51] as the activation function for the hidden layers. The details
of the ANN architecture are included in Appendix A (Table A1).

As CNN, we used a fully convolutional neural network (1D convolutions) with eight
layers. For the hidden layers we used ReLU as activation function, and batch normalization
was employed [52]. For the regression and the classification approach we added a final fully
connected layer to perform the prediction. For the FSL approach, this layer is not required.
The details of the CNN architectures are included in Appendix A (Tables A2 and A3).

As RNN, we included a bidirectional gated recurrent unit (GRU) [53] layer on top of
the previously described fully convolutional neural network (referred to as CNN + RNN in
the Appendix A). This avoids the padding requirement. The CNN layers learn the relevant
features from the input, and then the RNN performs the final prediction based on those
features. Training a fully RNN network was not possible considering the small size of
the available dataset. For the regression and the classification approach we added a fully
connected layer after the bidirectional GRU to perform the prediction. For the bidirectional
GRU, we used ReLU as the activation function. The details of the RNN architecture are
included in Appendix A (Table A4).
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No activation function was used on the last layer for the regression approach, and the
sigmoid function [54] was chosen for the classification approach. For the FSL approach, the
output of the network is represented by the features from the last hidden layer. The class is
then determined by the smallest Euclidean distance between the output of the network and
the two class clusters. These are defined by the mean features of the training set samples of
each class.

For the classification and FSL approaches, all the samples with invasive FFR ≤ 0.8
represent the positive class and all the samples with invasive FFR > 0.8 represent the
negative class. Since the dataset consists of only 102 invasive values, the models are
evaluated using the leave-one-out cross validation strategy that is applied at the patient
level [55]. For each fold, the samples of one patient are moved to a validation set, while
the model is trained for a fixed number of epochs (300) on the samples of the remaining
patients. The classification accuracy is computed for each epoch, and the epoch leading
to the highest accuracy on the entire dataset, i.e., all folds, is chosen for reporting the
statistics. Additionally, only during training of the classification-based approaches, we
also ignored the samples with invasive FFR values in the range 0.79–0.81 (six samples). By
removing these samples that are close to the cut-off point, the model is able to learn to better
discriminate between the classes. For all the models we used the Adam optimizer [56],
mean squared error as a loss function for the regression approach, and cross entropy [57] for
the classification and the FSL approach (more details are included in Appendix A.2). All the
architectures were optimized using grid search [58], applied for: number of layers, number
of neurons per layer, dropout percentage, and the learning rate. The implementation is
based on Python, and the PyTorch [59] library for DL model training and inference.

To allow for a fair assessment of the performance, an ensemble approach is considered
for each configuration: each of the proposed models is trained 20 times using different
random seeds. For each configuration, the 20 models are then combined into one ensemble
model. For regression approaches, the ensemble prediction for one sample is the mean
value of the predictions of all 20 models. For classification and FSL approaches, the
ensemble prediction for one sample is the mean value of the probabilities of all 20 models.
This allows for a more robust assessment of the model performance, which is independent
from the random seed that is used during training. The value 20 was chosen following
experiments which indicated that the ensemble model performance did not change when
using larger values.

For all the ensemble models, we performed the receiver operating characteristic (ROC)
analysis [60] and we computed the area under the curve (AUC) score [61]. Based on the
ROC curves, we selected for each ensemble model the optimal cut-off point as being the
point closest to the point (0, 1) [62]. The reported model performance metrics are based on
the optimal cut-off point. The formula that is used to determine the point closest to (0, 1)
is [63]:

ER(c) =
√
(1 − Se(c))2 + (1 − Sp(c))2 (1)

where ER is the closest point to (0, 1), c is a cut-point, Se is sensitivity, and Sp is specificity.
Similar to other studies, we further consider the minimum lumen diameter (MLD) and

percentage diameter stenosis (%DS) as simple baseline references to assess the performance
of the DL models. The %DS is computed as follow:

DS = (1 − rmin/ravg) × 100 (2)

where rmin is the minimum radius of the sequence, ravg is the average of the proximal and
distal reference radius values of the lesion, as extracted from the OCT data.

For both MLD and %DS, we also apply the leave-one-out cross validation strategy
at the patient level, as follows: for each fold, a threshold value is chosen which balances
sensitivity and specificity on the respective training set, and then this threshold is applied
to classify the test sample(s).
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To evaluate the results, we computed the diagnostic statistics (accuracy, sensitivity,
specificity, negative predictive value (NPV), and positive predictive value (PPV) [64]) for
all approaches, and additionally the mean absolute error (MAE), mean error (ME), and
the mean squared error (MSE) for the regression approach. For the diagnostic statistics we
additionally computed the 95% confidence intervals.

3. Results

3.1. Population Characteristics

Baseline patient and lesion characteristics are summarized in Tables 1 and 2: 80 patients
(66 male, 14 female) with 102 lesions were included in this study. The mean patient
age was 60.5 ± 11.2 years. The mean FFR was 0.80 ± 0.08, and 48 of the lesions were
hemodynamically significant according to the criterion FFR ≤ 0.80.

Table 1. Baseline patient characteristics and risk factors (n = 80).

Male 66 (82%)

Female 14 (18%)

Age (years) 60.5 ± 11.2 years

Race All Caucasian

Weight 81.93 ± 16.15 kg

Height 172.13 ± 8.05 cm

Diabetes 27 (33.75%)

Hypertension 60 (75%)

Hypercholesterolemia 62 (77.5%)

Smoking history 42 (52.5%)

Family history of CAD 3 (2.9%)

Previous myocardial infarction 46 (45%)

Previous Angina 64 (80%)

Ejection fraction 48.28 ± 6.31%

Table 2. Baseline lesion characteristics (n = 102).

Index Artery

Left Anterior Descending artery (LAD) 57

Left Circumflex artery (LCx) 20

Right Coronary Artery (RCA) 25

Fractional Flow Reserve

Mean ± SD 0.80 ± 0.08

Median (IQR) 0.83 (0.75−0.86)

FFR ≤ 0.80 48

FFR < 0.75 25

0.75 ≤ FFR ≤ 0.85 47

FFR > 0.85 30

3.2. Invasive FFR Prediction Performance

Figure 2 displays the ROC curve, the AUC scores including their 95% confidence
intervals (CI), and the closest point to (0, 1) for all the approaches. The best three approaches
based on AUC score are regression CNN, FSL RNN, and FSL CNN. Interestingly, the AUC
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score is superior for the regression CNN approach, but the FSL CNN approach has the
closest point to (0, 1), i.e., the best diagnostic performance statistics, as shown below.

Figure 2. The ROC curve, AUC score, and the closest point to (0, 1) for all approaches. Values in the
parentheses represent the 95% confidence intervals computed as in [65].

The performance and statistics of the various ensemble DL models and approaches
considered herein are displayed in Table 3.

Table 3. Diagnostics and performance statistics of the considered ensemble DL models and ap-
proaches. Values in the parentheses represent the 95% confidence intervals.

Validation

Approach
Ensemble

Arch.
Train_Accuracy

[%]
Accuracy

[%]
Sensitivity

[%]
Specificity

[%]
NPV
[%]

PPV
[%]

AUC
[%]

MAE ME MSE Corr.

Regression

ANN 73.7 64.7 (55.1–73.3) 61.1 (47.8–80.1) 68.8 (54.7–80.1) 61.1 (47.8–73.0) 68.8 (54.7–80.1) 66.2 (55.8–76.7) 0.062 0.007 0.105 0.273

CNN 85.9 75.5 (66.3–82.8) 74.1 (61.1–86.7) 77.1 (63.5–86.7) 72.5 (59.1–82.9) 78.4 (65.4–87.5) 82.1 (73.9–90.2) 0.082 −0.008 0.015 0.342

RNN 69.7 68.6 (59.1–76.8) 77.8 (65.1–71.2) 58.3 (44.3–71.2) 70.0 (54.6–81.9) 67.7 (55.4–78.0) 70.1 (60–80.1) 0.072 0.022 0.011 0.261

Classification

ANN 78.4 70.6 (61.1–78.6) 70.4 (57.2–81.8) 70.8 (56.8–81.8) 68.0 (54.2–79.2) 73.1 (59.7–83.2) 68.6 (58.4–78.9) - - - -

CNN 98.7 72.5 (63.2–80.3) 75.9 (63.1–80.1) 68.8 (54.7–80.1) 71.7 (57.5–82.7) 73.2 (60.4–83.0) 75.5 (66.2–84.8) - - - -

RNN 73.8 69.6 (60.1–77.7) 64.8 (51.5–85.1) 75.0 (61.2–85.1) 65.5 (52.3–76.6) 74.5 (60.5–84.7) 75.1 (65.7–74.5) - - - -

FSL

ANN 78.9 72.5 (63.2–80.3) 79.2 (65.7–77.8) 66.7 (53.4–77.8) 78.3 (64.4–87.7) 67.9 (54.8–78.6) 70.2 (60–80.4) - - - -

CNN 78.6 77.5 (68.4–84.5) 72.9 (59.0–89.6) 81.5 (69.2–89.6) 77.2 (64.8–86.2) 77.8 (63.7–87.5) 76.3 (66.9–85.7) - - - -

RNN 75.6 75.5 (66.3–82.8) 72.9 (59.0–86.8) 77.8 (65.1–86.8) 76.4 (63.7–85.6) 74.5 (60.5–84.7) 77.2 (60–80.1) - - - -

In terms of diagnostic performance, the FSL approach is performing better than
classical regression and classification, while in terms of AUC, the CNN regression is
superior to other methods. Since the 95% confidence intervals overlap, the differences are
statistically not significant. FSL algorithms have been designed for optimal performance on
small datasets where they tend to perform better than classic models. The best performing
architecture is the one that is based on CNN. Furthermore, the training accuracy suggests
that overfitting is not present for eight of the nine approaches. For the classic CNN-based
classification, the model seems to overfit, even though different attempts were made to
address this: L2 regularization and dropout. The confusion matrix for the best approach is
depicted in Table 4.

Table 4. The confusion matrix for the FSL-CNN approach.

Predicted Values

Actual Values

Positive (1) Negative (0)
Positive (1) 35 13

Negative (0) 11 44
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For comparison, MLD has an accuracy of 67.64%, a sensitivity of 64.81%, and a
specificity of 70.83%. The %DS has an accuracy of 63.72%, a sensitivity of 62.96%, and a
specificity of 64.58%.

Each ensemble model consists of 20 models that were trained with different seed
values. Table 5 displays the mean accuracy, the standard deviation (std) of the accuracy,
the minimum accuracy (min), and the maximum accuracy (max) for the validation dataset
when employing the default operating points/thresholds of 0.8 for regression and 0.5 for
classification. While all variations are quite small, the smallest std is obtained for the
models that are based on FSL, which further underlines the robustness of this approach.
Additionally, we computed the ensemble model mean uncertainty by averaging the uncer-
tainty of the ensemble model for each examination [66]. The ensemble model uncertainty
for regression approaches is the standard deviation of the predictions of all models for one
sample. An intuitive approximation for the ensemble model’s uncertainty for classification
and FSL approaches was chosen as:

Mean ensamble uncertainty = ∑N
i

abs(round(y(i))− y(i))
N

, (3)

where y(i) is the ensemble model prediction for each sample and N is the number of samples;
this uncertainty measure is the distance between the output probability and the predicted
class label (0 or 1), therefore, predictions such as 0.1 or 0.9 are considered “confident”
while others such as 0.4 or 0.6 are considered more “uncertain”. This approximation is
feasible since ensemble models usually have well-calibrated outputs [66]. The ensemble
uncertainty results of the regression approaches are not directly comparable to the ensemble
uncertainty results for the classification and FSL approaches, and it has been also shown [66]
that regression-based uncertainty that is computed as the ensemble predictions’ standard
deviation is not well-calibrated as the MSE training loss “is not a scoring rule that captures
predictive uncertainty” [66]. For the regression approaches, RNNs tend to have the smallest
uncertainty. For classification and FSL approaches the uncertainty is similar for five of the
approaches, while FSL CNN has a much smaller uncertainty.

Table 5. Diagnostic performance statistics of the considered ensemble DL models and approaches.

Accuracy

Approach Ensemble Arch.
Mean

[%]
Std
[%]

Min
[%]

Max
[%]

Uncertainty
[%]

Regression

ANN 61.57 4.55 53.92 70.59 4.48

CNN 61.76 2.65 55.88 65.69 12.91

RNN 63.19 3.82 54.9 71.57 2.25

Classification

ANN 68.43 1.69 65.69 72.55 32.55

CNN 67.75 3.1 63.73 73.53 32.9

RNN 68.04 1.71 64.71 71.57 31.69

FSL

ANN 66.67 3.34 59.8 72.55 30.9

CNN 75.59 1.2 72.55 76.47 2.77

RNN 74.46 1.37 71.57 76.47 34.71

The reason the default thresholds were employed in Table 5 is that selecting a best-
operating-point with respect to some metrics and some held-out test-set is part of a post-
processing stage; uncertainty estimates, however, depend solely on two factors: the input
samples (i.e., input noise, out-of-distribution, etc.) and the learned model (here, the training
procedure, the network architecture, and especially the training set have a large influence);
the ground-truth label of a test input sample has no influence on the prediction uncertainty.
Therefore, for an unbiased assessment, uncertainty measures of all the approaches were
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computed from the raw ensemble predictions and compared with the mean accuracy that
was obtained from using the default thresholds.

Figure 3 displays four sample cases: one for each of the categories true positive
(TP), true negative (TN), false positive (FP), and false negative (FN). A representative
angiographic frame is displayed, indicating the invasive FFR value and the coronary vessel
and region of interest that is visualized using OCT. Further, the longitudinal OCT view and
the radius profile that were used as input to the DNNs are displayed.

 

Figure 3. Four sample cases: one for each of the categories: (a) TP, (b) TN, (c) FP, and (d) FN.
A representative angiographic frame is displayed indicating the invasive FFR value and the coronary
vessel and region of interest visualized using OCT. The longitudinal OCT view and the radius profile
used as input to the DNNs are also displayed.
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3.3. Subgroup Analyses

In the following, we use the best performing model according to the results in Table 3
(FSL-CNN) to perform a series of subgroup analyses.

As detailed in Section 2.1, the dataset contains a large number of samples in the
interval 0.75–0.85 (46%). Hence, we have computed the statistics separately for lesions
with FFR < 0.75, lesions with FFR > 0.85, and for the lesions with intermediate values. The
results are displayed in Table 6. As expected, the accuracy of the model increases in the
two bins at the extremes.

Table 6. Diagnostic performance and 95% CI of the model for lesions with FFR < 0.75, lesions with
FFR > 0.85, and for the lesions with intermediate values.

FFR Interval Accuracy [%] Sensitivity [%] Specificity [%]

FFR > 0.85 86.6 (70.3–94.6) N/A 86.6 (70.3–94.6)

0.75–0.85 68.0 (53.8–79.6) 60.8 (40.7–77.8) 75.0 (55.1–88.0)

FFR < 0.75 84.0 (65.3–93.6) 84.0 (65.3–93.6) N/A

In another analysis, we assessed the performance as a function of the vessel on
which the measurement was performed. The results are displayed in Table 7 and indicate
a higher accuracy on the LCx, compared to the other two main coronary arteries. The
literature suggests that the LCx has typically a smaller baseline and hyperemic flow velocity
compared to the LAD and RCA, which impacts the FFR measurements [67]. In other words,
the same radius profile will lead to different invasive FFR values on different arteries. Since
the type of artery is not used as an input to the DNN, a performance difference is expected.

Table 7. Diagnostic performance and 95% CI of the model for the three main coronary arteries.

Coronary Artery Accuracy [%] Sensitivity [%] Specificity [%]

LAD 75.4 (62.8–84.7) 76.4 (60.0–87.5) 73.9 (53.5–87.4)

LCX 85.0 (58.3–91.9) 80.0 (37.5–96.3) 86.6 (54.8–92.9)

RCA 76.0 (56.5–88.5) 55.5 (26.6–81.1) 87.5 (63.9–96.5)

Most of the measurements in the study were performed in the LAD. The clinical
literature suggests that proximal LAD lesions are of particular interest for long-term patient
outcome [68]. Hence, we have divided LAD lesions into proximal lesions and others (mid
or distal lesion). The results are displayed in Table 8 and indicate a similar performance
in terms of accuracy, but the sensitivity is slightly lower for proximal lesions. This is an
expected outcome since literature indicates that a lesion with a certain severity will lead to
smaller FFR values when it is located in the proximal LAD, compared to the mid and distal
LAD. Hence, the model slightly underestimates the severity of proximal LAD lesions.

Table 8. Diagnostic performance and 95% CI of the model for different lesion locations on the LAD.

LAD Lesions Location Accuracy [%] Sensitivity [%] Specificity [%]

proximal LAD 74.1 (56.7–86.2) 70.5 (46.8–86.7) 78.5 (52.4–92.4)

mid/distal LAD 76.9 (57.9−88.9) 82.3 (58.9–93.8) 66.6 (35.4–87.9)

In another analysis, we assessed the prediction performance for male and female
patients. The results in Table 9 indicate that the model performs slightly better for male
patients. This is an expected outcome since the vast majority of lesions are from male
patients (82%).
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Table 9. Diagnostic performance and 95% CI of the model as a function of patient sex.

Gender Accuracy [%] Sensitivity [%] Specificity [%]

Male 78.8 (67.7–85.1) 73.8 (58.9–84.6) 83.7 (67.3–90.2)

Female 70.5 (46.8–86.7) 66.6 (29.9–90.3) 72.7 (43.4–90.2)

The age of the patient can be another important factor in the clinical decision-making.
We have divided the data at the patient level into three equally large bins. The results in
Table 10 indicate a marked difference between the three subgroups. The intermediate bin
has a slightly larger number of intermediate lesions (18 vs. 15/14), partially explaining the
difference in diagnostic performance.

Table 10. Diagnostic performance and 95% CI of the model as a function of age.

Age Interval Accuracy [%] Sensitivity [%] Specificity [%]

<58 81.2 (64.6–91.1) 75.0 (53.2–88.8) 91.6 (64.6–98.5)

58–66 69.2 (50.9–79.3) 60.0 (35.7–80.1) 75.0 (50.8–85.0)

>66 83.8 (67.3–92.9) 84.6 (57.7–95.6) 83.3 (60.7–94.1)

Finally, in another subgroup analysis we have considered the centerline length of
the input data and have divided the samples into three equally sized bins. The results in
Table 11 display a balanced performance, i.e., the considered length has no major influence
on the model performance.

Table 11. Diagnostic performance and 95% CI of the model as a function of the OCT sequence length.

Vessel Length [cm] Accuracy [%] Sensitivity [%] Specificity [%]

<4.74 77.1 (57.9–85.8) 53.8 (29.1–76.7) 90.9 (66.6–92.5)

4.74–5.74 75.0 (57.8–86.7) 78.5 (52.4–92.4) 72.2 (49.1–87.5)

>5.74 79.4 (63.2–89.6) 80.9 (59.9–92.3) 76.9 (49.7–91.8)

3.4. Effect of Dataset Size

To assess the impact of the number of samples on the performance, we trained the best
performing approach (CNN architecture with FSL) on datasets containing only a part of the
original dataset. We started with 30% of the original dataset, and then increased the size in
increments of 10%, until reaching 100%, i.e., the original dataset. The smaller datasets were
set up by random sampling from the original dataset. To limit the selection bias, for each
percentage we ran 20 experiments, where for each experiment a new random sampling
was performed, and the CNN was initialized with a new random seed. The accuracy and
the standard deviation for all the considered experiments is displayed in Figure 4.

As expected, the dataset size has an important impact on the accuracy. Encouragingly,
a relatively linear increase in performance can be observed, indicating that with larger
datasets, the performance should further increase. Moreover, the variation, i.e., standard
deviation, decreases as the dataset size increases. This is motivated by two aspects. First,
the smaller the percentage of data are, the larger is the variability of the actual dataset that
is employed for the leave-one-out cross-validation. When 100% of the data are employed,
the variability stems only from the random seed that is used for the initialization. Secondly,
the larger the dataset, the more robust the prediction will be, i.e., with a smaller variability.
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Figure 4. Model accuracy as a function of the dataset size.

3.5. Saliency Maps and Runtime

To analyze the features that the model is focusing on, we computed the saliency
maps [69] for the best ensemble model (CNN-FSL). To obtain the saliency map for the
ensemble model, we computed the derivative of the output with respect to the input for
each individual model and then we averaged all saliency maps (see Figure 5). As expected,
the output of the ensemble CNN-FSL model is influenced by all coronary diameters, but
the gradient is larger in the stenosis area, which is known as the main determinant for the
measured FFR values.

Figure 5. The saliency map that was computed for the ensemble CNN-FSL model. The saliency maps
on the top correspond to samples with an invasive FFR > 0.8, and the saliency maps on the bottom
correspond to samples with an invasive FFR < 0.8.
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The training time for one-fold and one epoch is approximately 1050 ms for all the
described approaches, the inference time for regression and classification approaches for
one sample is approximately 2 ms, and the inference time for FSL approaches for one
sample is approximately 25 ms. This difference of one order of magnitude is determined
by the necessity of determining the classification clusters. All experiments were run on a
desktop computer with AMD Ryzen 9 5900X CPU, 128 GB of RAM, and an NVIDIA RTX
3060 graphics card.

4. Discussion and Conclusions

4.1. Deep Learning-Based Prediction of FFR

As more data are emerging from studies that are based on artificial intelligence and
computational modelling, the incremental diagnostic value of predicted coronary functional
diagnostic indices over the traditional XA-based visual or quantitative lesion grading is
becoming more evident.

We have introduced a method for the deep-learning-based prediction of FFR from
routine optical coherence tomography. No specific requirements were formulated for the
OCT acquisition. We demonstrated that this approach has a high potential in assessing
functionally significant stenoses. Different models and approaches were proposed and
evaluated. The experiments indicated the superiority of the FSL-based approach, a type
of DL formulation that is specialized for small datasets. However, given the large overlap
in the 95% confidence intervals, the differences between the methods are statistically
not significant.

Thus, the main findings of this study can be summarized as follows: (1) DL-based FFR
prediction from reduced-order raw anatomical data is feasible in a dataset that is focused
on intermediate lesions for which the visual anatomical assessment of CAD based on XA
does not allow for a clear clinical decision, and with no restriction on the type of lesions
that were included in the study, and on the OCT acquisition; (2) DL-based FFR prediction
provides superior diagnostic performance compared to baseline approaches based on MLD
or %DS; (3) the FFR prediction performance increases quasi-linearly with the dataset size,
indicating that a larger training dataset will likely lead to superior diagnostic performance.

The diagnostic accuracy of 77.5% achieved herein is lower compared to that of other
studies focusing on FFR prediction from OCT, which reported an accuracy ranging between
88% and 95% [21,22,31,70,71]. There are two main aspects that are responsible for this
difference. First, the complexity of the dataset that is processed herein is higher than that of
other studies: 46% of the samples have an invasive FFR value ranging between 0.75 and
0.85, while in other studies these grey zone lesions represented between 20% and 44% of
the entire dataset [21,22,31,70,71].

Secondly, past studies focusing on FFR prediction from OCT either rely on compu-
tational fluid dynamics (CFD) [21,22,70,71], or on ML-based approaches including hand-
crafted features [31]. By applying a deep neural network directly on the raw data that are
represented by the effective radius along the centerline of the vessel of interest, we allow
the model to automatically learn powerful features for FFR prediction. The results that
were obtained in other application areas (healthcare or others) demonstrate that classic
machine learning (ML) techniques and hand-crafted features typically outperform DL-
based approaches when the training set is small, but, conversely, the DL-based approaches
outperform classic ML-based approaches when the size of the trainset increases signifi-
cantly [70]. The results in Figure 4, depicting the accuracy as a function of the dataset
size, confirm that a larger dataset will enable a better performance: the performance of
the DL model increases quasi-linearly with the dataset size. As shown in Table 3, the
diagnostic performance of the proposed model is already considerably higher outside of
the 0.75–0.85 FFR value interval.

To increase the prediction performance of DL models, different types of regularization
are employed in the literature: mathematical expressions added to the loss function (L1,
L2 regularization) [71], dropout (used to randomly drop out neurons during training) [72],
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and data augmentation [73]. Herein, we have used L2 regularizations and dropout. Data
augmentation, i.e., generating new samples by perturbing the input data, is difficult to
perform when training against invasively measured FFR, since the approximation of the
ground truth values is not straightforward. We have considered data augmentation by
adding a small amount of noise to the 1D radius sequence used as input, but the results
have not improved.

A DL- or ML-based prediction of FFR was considered also in studies relying on other
types of medical images (CCTA, XA). Kumamaru et al. [74] proposed a DL model to
estimate invasive FFR from CCTA. They had a dataset containing 207 measurements from
131 patients and have obtained an accuracy of 75.9% in predicting an abnormal invasive
FFR (≤0.8). Another interesting approach was proposed by Zreik et al. [75], they used DL
in an unsupervised manner and obtained an overall accuracy of 78% on CCTA data. They
obtained an accuracy of 66% for FFR < 0.7, 75% for an FFR between 0.7 and 0.8, 79% for an
FFR between 0.8 and 0.9, and 73% for an FFR > 0.9. Itu et al. [29] proposed a DL model that
was trained on ground truth values computed with a CFD-based approach on a database
of synthetically-generated coronary anatomies. They achieved an accuracy of 83.2% on
CCTA data.

4.2. Clinical Impact

Despite the overwhelming clinical evidence that an FFR-guided revascularization
strategy improves patient outcome, still the number of coronary interventions preceded by
FFR measurements is relatively low due to the limitations of invasive pressure measure-
ments [76]. Hence, a virtual functional index would increase the adoption of physiology-
guided coronary interventions, while drastically reducing the requirement for invasive
pressure measurements.

The proposed method is potentially well suited for a clinical setting, given the real-
time prediction performance of the DL model. Certain manual steps are required in the
current pipeline, but these can be automated using algorithms for image quality assessment,
e.g., to exclude slices with blood artifacts, and more accurate lumen contour detection [77].
The approach only requires knowledge of the coronary luminal geometry, which can be
extracted directly from OCT.

4.3. Limitations

The motivation to perform invasive FFR was clinical, which resulted in a large pro-
portion of anatomically borderline lesions in a population with extensive atherosclerotic
disease. No cases were excluded, and the results should be interpreted with the considera-
tion that this was a retrospective single-center study.

The anatomical data that was used as input to the DL model may not always accurately
reflect the true luminal geometry due to limitations of the OCT acquisition itself (heart
motion during automatic pullback, sub-optimal calibration), and small errors that are intro-
duced by the linear interpolation of radius values for the rejected contours. Furthermore,
by using the effective radius information as input, we neglect the actual three-dimensional
shape of the coronary lumen. The literature suggests that this has a small impact [78], but
in certain samples, with non-circular lumen geometry, e.g., concave shape, the impact may
not be negligible.

Moreover, the manual editing steps limit the real-time capabilities of the algorithm
and introduce intra- and inter-observer variability.

While the subgroup analyses indicate that the length of the considered segment does
not influence the results, the maximal length of 7.5 cm may represent a limitation in the case
of serial stenoses. For example, if lesions are present in the proximal and distal segment of
a vessel, a processed vessel length that is larger than the limit of 7.5 cm would be required
to accurately predict FFR.
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Finally, to validate our findings and to provide more representative results, the pro-
posed method requires further validation in larger, prospective studies, that are conducted
at multiple clinical sites.

4.4. Future Work

Multiple future directions can be defined, given also the current limitations that are
listed above. First, the size of the training set should be increased to exploit the capabilities
of a deep neural network-based approach. To limit the complexity of the input data, we
currently use the effective radius, however, we envision the use of the coronary lumen
mask as input, which may then allow the model to consider lumen non-circularities for
the prediction. The dimensionality of the input data would increase from 1D to 3D, which
would require a larger training set for enabling an accurate prediction. Furthermore, with
the increase in the dataset size, other deep-learning approaches (evaluated herein or others)
might lead to the best FFR prediction performance.

When employing a classification-based approach, another possible future direction
is to increase the number of output classes. For example, a three-class approach would
predict lesions as being functionally significant, functionally non-significant, or interme-
diate/uncertain. This would allow for the definition of hybrid decision-making strategy,
where lesions which are not in the intermediate, i.e., uncertain class, can be confidently
diagnosed, while for the ones in the intermediate class further aspects may be considered
for the final decision, potentially even performing the invasive FFR measurement. The
invasive FFR cut-off values for distinguishing the three classes may be chosen based on the
performance of the model, e.g., to ensure a sensitivity/specificity of at least 95% for the
lesions which are not in the intermediate class. The better the performance of the model,
the closer the cut-off values may be to 0.8, i.e., the fewer lesions would be predicted as
being uncertain.

Herein, we have considered only the coronary lumen information as input. Previous
studies have demonstrated that FFR is influenced also by other patient characteristics
(demographics, other pathologies, etc.) [31]. The results of the sub-group analyses have
shown the patient sex and age and the vessel of interest may influence the prediction.
Additional features may be considered directly as input into the deep neural network, or a
cascaded modeling approach may be designed: the first model processes only the coronary
lumen information, while the second model, which takes as input the output of the first
model, processes all additional features to perform a final and more accurate prediction.

Standard OCT acquisitions have been used for obtaining the input data for the FFR
prediction. OCT acquisition guidelines containing specific requirements (e.g., include the
entire stenosis in the OCT sequence) may likely improve the prediction accuracy. Such an
approach was successfully applied in a previous study [79].

The method that is described herein may be applied similarly on coronary lumen
information that is extracted from other imaging modalities (XA, CCTA, IVUS). Since the
image resolution, especially on XA and CCTA, is lower than on intra-vascular images, the
coronary lumen information may be less accurate. However, XA and CCTA allow for a
more complete evaluation of the coronary tree since the vessel of interest can be assessed in
all its segments, alongside large side branches. A different methodology might lead to the
optimal performance in that case, e.g., based on graph neural networks [80].

Finally, the approach can also be extended to predict other hemodynamic quantities,
such as coronary flow reserve (CFR), rest Pd/Pa [81], the instantaneous wave-free ratio
(iFR) [82], or hyperemic/basal stenosis resistance (HSR/BSR) [83,84], each of which can be
used as a ground-truth during training.
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Abbreviations

The following abbreviations are used in the manuscript:
CVD Cardiovascular disease
CAD Coronary artery disease
XA X-ray coronary Angiography
OCT Optical coherence tomography
PCI Percutaneous coronary intervention
FFR Fractional flow reserve
CABG Coronary artery bypass graft
CFG Computational fluid dynamics
CCTA Coronary computed tomography angiography
ML Machine Learning
IVUS Intravascular ultrasound
DNN Deep neural network
DL Deep learning
ANN Artificial neural network
CNN Convolutional neural network
RNN Recurrent neural network
FSL Few-shot learning
ReLU Rectified linear unit
GRU Gated recurrent unit
MLD Minimum lumen diameter
%DS Percentage diameter stenosis
NPV Negative predictive value
PPV Positive predictive value
MAE Mean absolute error
ME Mean error
MSE Mean squared error
LAD Left Anterior Descending artery
LCx Left Circumflex artery
RCA Right Coronary Artery
Arch. Architecture
Corr. Correlation
TP True positive

172



Appl. Sci. 2022, 12, 6964

TN True negative
FP False positive
FN False negative
CFR Coronary flow reserve
iFR Instantaneous wave-free ratio
HSR Hyperemic stenosis resistance
BSR Basal stenosis resistance
FC Fully connected
BCE Binary cross entropy
FoV Field of view

Appendix A.

Table A1. ANN architecture. The layer that is highlighted in purple is used only for the regression
and the classification approaches (not for the FSL approach). For the regression approach, we used no
activation function and the activation function that is highlighted in green is used for the classification
approach (not for the FSL approach).

Layer Index Layer Input Features Output Features Activation Function Regularization

1 FC 376 32 ReLU -
2 FC 32 64 ReLU -
3 FC 64 128 ReLU -
4 FC 128 256 ReLU Dropout
5 FC 256 1 Sigmoid -

Table A2. CNN architecture that is used for the FSL approach.

Layer Index Layer Kernel Size
Input

Channels
Output

Channels
Stride

Activation
Function

Regularization Normalization Receptive FoV

1 Conv1D 3 1 64 2 ReLU - Batch norm 3
2 Conv1D 3 64 128 2 ReLU - Batch norm 7
3 Conv1D 3 128 256 2 ReLU - Batch norm 15
4 Conv1D 3 256 512 2 ReLU - Batch norm 31
5 Conv1D 3 512 512 2 ReLU - Batch norm 63
6 Conv1D 3 512 512 1 ReLU - Batch norm 127
7 Conv1D 3 512 512 1 ReLU - Batch norm 191
8 Conv1D 3 512 512 1 ReLU - Batch norm 255

Table A3. The fully connected layers that were added on top of the architecture that is presented in
Table A2, for the CNN-based regression and classification. For the regression approach, we used no
activation function and the activation function that is highlighted in green is used for the classification
approach (not for the FSL approach).

Layer Input Features Output Features Activation Regularization

FC 2048 1024 ReLU Dropout
FC 1024 1 Sigmoid -

Table A4. The bidirectional GRU that was added on top of the architecture that is presented in
Table A2, used for CNN + RNN approach. The layer that is highlighted in purple is only used for the
regression and the classification approach (not for the FSL approach). For the regression approach,
we used no activation function and the activation function that is highlighted in green is used for the
classification approach (not for the FSL approach).

Layer Input Features Hidden Size Output Features Activation Regularization

Bidirectional GRU 512 512 1024 - Dropout
FC 1024 - 1 Sigmoid -
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Appendix A.1. Prototypical Networks

Prototypical networks [37] are a subcategory of the embedding learning models.
Prototypical networks are used mainly for classification tasks, in both few-shot learning
and zero-shot learning scenarios. These neural networks learn a metric space from the
data, and then the classification is performed by computing distances to the prototype
representations of each class, which are M-dimensional representations of each class cluster,
based on an embedding function. They are computed by averaging the embedding vectors
of all the training samples of a class (i.e., the neural network features predicted for the
input data):

vk =
1

Ns
∑Ns

i=1 fφ(xi), (A1)

where vk is the prototype of each class, fφ is the embedding function, and xi are the support
images. The next step consists of classifying the query images. This is performed by
computing the distance between each image and the prototypes:

pφ(y = k|x) = exp
(−d

(
fφ(x), vk

))
∑k′ exp(−d

(
fφ(x), vk′

)
)

(A2)

During training, the loss is computed using:

J(φ) = −log
(

pφ(y = k|x)) (A3)

where k is the true class.

Appendix A.2. Loss Functions

The loss function used for the regression approaches [46] is:

MSE =
1
n ∑n

i=1

(
Yi − Y′

i
)2, (A4)

where Yi is the ground truth value and Y′
i is the predicted value.

The loss function used for the classification approach [46] (not for FSL the approach):

BCE = − 1
n ∑n

i=1

(
Yi· ln Y′

i + (1 − Yi)· ln
(
1 − Y′

i
))

, (A5)

where Yi is the ground truth value and Y′
i is the predicted value.

The loss function used for the FSL approaches is described in Equation (A1).
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Abstract: The incidence of diabetes in Mauritius is amongst the highest in the world. Diabetic
retinopathy (DR), a complication resulting from the disease, can lead to blindness if not detected
early. The aim of this work was to investigate the use of transfer learning and data augmentation for
the classification of fundus images into five different stages of diabetic retinopathy. The five stages
are No DR, Mild nonproliferative DR, Moderate nonproliferative DR, Severe nonproliferative DR
and Proliferative. To this end, deep transfer learning and three pre-trained models, VGG16, ResNet50
and DenseNet169, were used to classify the APTOS dataset. The preliminary experiments resulted
in low training and validation accuracies, and hence, the APTOS dataset was augmented while
ensuring a balance between the five classes. This dataset was then used to train the three models,
and the best three models were used to classify a blind Mauritian test datum. We found that the
ResNet50 model produced the best results out of the three models and also achieved very good
accuracies for the five classes. The classification of class-4 Mauritian fundus images, severe cases,
produced some unexpected results, with some images being classified as mild, and therefore needs to
be further investigated.

Keywords: deep learning; diabetic retinopathy; retinal fundus images; transfer learning; data
augmentation

1. Introduction

Diabetes is one of the most challenging health problems in the world, impacting
roughly 537 million individuals according to the IDF Diabetes Atlas Tenth edition 2021 (Di-
abetes Atlas, 2021). According to the same atlas, countries have spent over USD 966 billion
on diabetes patients worldwide, a 316 percent increase over the previous 15 years, and
yet diabetes will be responsible for 6.7 million deaths in 2021, or 1 death every 5 s. Dia-
betes poses a danger to the health-care systems of low- and middle-income nations, which
account for 75 percent of the world’s diabetic population, resulting in many cases going
undetected. The most common complication in advanced or uncontrolled diabetic patients
is diabetic retinopathy, one of the leading cause of vision loss worldwide, accounting for
21.8 percent of patients across the globe [1]. With Mauritius currently ranking fifth in the
global standardized diabetes prevalence among ages 20–79 in 2019 and predicted to reach
the second position in 2030 [2], diabetic retinopathy is a serious threat to Mauritians. This
is especially true for people in their working years, since this group is more susceptible as
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per the article “Global estimates of the prevalence of diabetes for 2010 and 2030 in Diabetes
Atlas”. Patients who have had vision loss as a result of this condition typically have a
late diagnosis of diabetes or are unaware that they have diabetes and eye difficulties. A
recent study [3] found that diagnosing retinopathy early can prevent or delay a substantial
amount of vision loss. This can also help to speed up the healing process or halt disease
development. However, establishing a precise diagnosis and the stage of the disease is
difficult. Ophthalmologists conduct screenings by visually inspecting the fundus and
evaluating colour images. They rely on detecting the presence of microaneurysms, small
saccular outpouching of capillaries, retinal haemorrhages and ruptured blood vessels,
among many indicators, in the fundoscopic images. This manual method, however, results
in inconsistency among readers [4] and is costly and time-consuming. To address the
growing number of undiagnosed retinal patients, early disease identification and treatment
are critical.

Advancements in convolutional neural networks (CNNs), a type of deep learning, has
motivated researchers to use them in medical image analysis for different tasks, amongst
which is image classification of diabetic retinopathy. CNNs exhibit a better performance,
but they also need a lot of computing resources and large datasets to train. Transfer
learning (TL) strategies have been proposed to solve this problem [5–7]. It involves using a
previously learned model, on different images, to train a new model. The traits learned
by pre-training on the large dataset can be transferred to the new network, where only the
classification component is trained on the new smaller dataset, to fine-tune the new data [7].
TL reduces the amount of time spent constructing and training a deep CNN model as
well as the computing resources needed. The visual geometry group (VGG) [8], inception
modules (GoogleNet) [9], residual neural network (ResNet) [10] and neural architecture
search network (NasNetLarge) [10] are examples of the many high-performing pre-trained
models found in the literature. In 2017, Masood et al. [11] applied a pre-trained Inception
V3 model on the Eye-PACS fundus dataset and achieved an accuracy of 48.2%. Meanwhile,
Li et al. [12] investigated the use of transfer learning for identifying DR by comparing
several network topologies, such as AlexNet, VGG-S, VGG16 and VGG19, to two datasets:
the Messidor and DR1 datasets. With an area under the curve (AUC) of 98.34%, the VGG-S
architecture scored the best AUC for the Messidor dataset while an AUC score of 97.86%
was obtained for the DR1 dataset. Similarly, in 2019, using the EYE-PACS dataset, Challa
et al. [13] proposed a deep All-CNN architecture for DR classification. The model obtained
an accuracy of 86.64%, a loss of 0.46 and an average F1 score of 0.6318. Meanwhile, using
the Asia Pacific Tele-Ophthalmology Society 2019 Blindness Detection (APTOS 2019 BD)
dataset [14], Kassani et al. [15] described a classification method using a modified Xception
architecture model, which is an extension of the Inception architecture, on the dataset
and obtained an accuracy of 83.09%, a sensitivity of 88.24% and a specificity of 87.00%.
Khalifa et al. [16] implemented transfer learning using four pre-trained models, namely
AlexNet, Res-Net18, SqueezeNet and GoogleNet. AlexNet obtained the highest accuracy
of 97.9%. In Hagos et al. [17], a pre-trained Inception V3 model was applied to a subset
of the APTOS dataset for DR classification, and the accuracy was 90.9% and the loss was
3.94%. Sikder et al. [18] presented a method incorporating the ExtraTree classifier, which
is a popular ensemble learning algorithm based on decision trees and bagging learning
techniques, and achieved a classification accuracy of 91%. In 2020, Shaban et al. [19]
proposed a modified version of the VGG-19 that achieved an accuracy of 88%–89% when
both 5-fold, and 10-fold cross validation methods were used, respectively. Using the
same APTOS 2019 BD dataset, Mushtaq et al. [20] achieved a classification accuracy of
90% using a pre-trained Dense169 model. Before they trained the images, the latter were
pre-processed by removing the black border and applying Gaussian blur filter. Moreover,
Thota et al. [21] fine-tuned a pre-trained VGG16 model for classifying the severity of DR.
An average class accuracy of 74%, sensitivity of 80%, specificity of 65% and AUC of 0.80
were achieved. Gangwar et al. [22] developed a novel deep learning hybrid model with
pre-trained Inception-ResNet-v2 as a base model and it obtained a test accuracy of 72.33%
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on Messidor-1 and 82.18% on the APTOS dataset. On the other hand, Dai et al. [23] used a
deep learning model based on the ResNet architecture to classify fundus images into five
different classes. Images were obtained from the Shanghai Integrated Diabetes Prevention
and Care System study. Firstly, the different features, such as microaneurysm, hard exudate
and haemorrhage were detected, and then they concatenated the model used and the base
model for DR classification. The model achieved AUCs of 0.943, 0.955, 0.960 and 0.972,
for mild, moderate, severe and proliferative cases. Benson et al. [24] discussed the usage
of transfer learning by using a pre-trained Inception V3 on the DR dataset obtained from
the VisionQuest Biomedical database. The model classified fundus images into six classes
including identifying scars, and it achieved a sensitivity and specificity of 90%, with an
AUC of 95%.

The reviews described above highlight the fact that all work carried out to date was
for images from a specific country, and hence they were not targeted at a local multiracial
population such as Mauritius [25,26]. Therefore, this research work makes the follow-
ing contributions:

(1) Application of three pre-trained models, VGG16, DenseNet169 and ResNet50, on a
publicly available diabetic retinopathy dataset and the data-augmented version of the
dataset to solve the class imbalance problem;

(2) Enhance the pre-trained models to improve the performance obtained in (1);
(3) Apply the enhanced models on a blind Mauritian local cohort to predict the different

stages of diabetic retinopathy;
(4) Compare the predicted results obtained for the Mauritian dataset using the enhanced

models to an actual ophthalmologist’s diagnosis.

The paper is structured as follows. Section 2 presents the proposed solution and
describes the different components. Section 3 discusses the experimental results. Finally,
Section 4 concludes the paper.

2. Materials and Methods

This section highlights the methodology used in implementing deep transfer learning
for classification.

2.1. Proposed Workflow and Components

Figure 1 shows the proposed workflow for the system, which can accept different
datasets. For this work, two datasets, the APTOS original dataset and a constructed
Mauritian dataset, were used. The data were first pre-processed, and data augmentation
was applied to the APTOS dataset only. Next, three pre-trained models were applied to the
original and augmented APTOS dataset. The results were analyzed, and the models were
tuned to reach their ideal minima. The enhanced models were then applied to the blind
testing data from the APTOS dataset and the labelled Mauritian dataset, which was not
used for the training phase.
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Figure 1. Workflow of our proposed system.

The workflow shown in Figure 1 is as follows: (1) data pre-processing and augmenta-
tion (for the APTOS dataset only); (2) training and enhancing the CNN models using the
original and augmented APTOS dataset; (3) analyzing results; and (4) classification of the
images for the 3 datasets and comparison to actual data.

2.2. Datasets

In this research work, two fundus image datasets were used. The first dataset was
the APTOS 2019 diabetic retinopathy dataset, which is publicly available online on Kaggle
(https://www.kaggle.com/c/aptos2019-blindness-detection/data, accessed on 17 Febru-
ary 2022). This dataset was selected among the other publicly available datasets since it is
from India, which is close to the Mauritian population in terms of ethnicity. The second
dataset was created locally from the images obtained from the hospitals in Mauritius. Each
image in the APTOS 2019 dataset was assigned a class label of 0–4 according to the severity
of the disease, as shown in Figure 2. Each image from the local cohort was also assigned a
class label of 0–4 by a local doctor. The original dataset obtained from Kaggle is termed
as the original APTOS dataset. The class distribution of the original APTOS dataset is
illustrated in Figure 2.

Figure 2 reveals that, despite the data belonging to five different classes, the number of
samples in each class varied substantially, resulting in an unbalanced dataset. As discussed
in [27–29], an unbalanced dataset leads to a high misclassification rate and sub-optimal
performance. To mitigate this challenge, we applied data augmentation, which is one
possible solution to this problem. Traditional data augmentation techniques, namely
horizontal and vertical flipping and changes in the brightness range [30], were applied to
the original APTOS datasets to produce the augmented APTOS dataset.
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Figure 2. Original APTOS dataset.

Table 1 shows the total number of images for each class in the original APTOS dataset,
the augmented APTOS dataset and the local Mauritian dataset. We divided both the APTOS
dataset and the augmented APTOS dataset into a training set and testing set. There were
3662 images in the original Aptos dataset, whereby 70% (2563 images) were considered
for training and 30% (1099 images) were taken for the testing phase. For the augmented
APTOS dataset, data augmentation was performed on the training set only as performed by
Gangwar et al. [22]. Only the data from classes 1, 3 and 4 were augmented since the model
could not correctly classify these 3 classes in the original APTOS dataset. All the images in
these 3 classes were augmented. In this paper, we used two sets for testing data, one which
is made up of fundus images from the APTOS 2019 dataset (the remaining 30% of which
were not used as training data) and the second being the Mauritian dataset composed of
fundus images obtained from a local hospital in Mauritius. Table 1 presents the image
count for each class in the training and testing data for the original and augmented APTOS
datasets as well as the Mauritian dataset.

Table 1. Number of images class-wise in the 3 datasets.

Training Data

Number of Images in
Training/Validation Dataset

Number of Images in
Testing Dataset

Class 0
Class

1
Class

2
Class 3 Class 4 Class 0 Class 1 Class 2 Class 3 Class 4

Original APTOS
dataset

1265 272 697 138 191 540 98 302 55 104

Total images—2563 Total images—1099

Augmented APTOS
dataset

1265 1306 697 935 1264 540 98 302 55 104

Total images—5467 Total images—1099

Mauritian dataset
No training performed using

Mauritian data
54 62 45 12 33

Total images—208

Figure 3 presents the number of images in each of the 5 classes after the application of
data augmentation on the original APTOS dataset. It can be observed that the augmented
dataset was more balanced.
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Figure 3. Augmented APTOS dataset.

2.3. Data Pre-Processing

The images were subjected to a pre-processing phase to improve their quality. They
were resized as each model accepted images of different resolutions. For the ResNet50
Model, the images were resized to 512 × 512 pixels, whereas they were resized to
224 × 224 pixels for the VGG16 and DenseNet169 models. Another reason for performing
pre-processing was the varying size and resolution of photos collected from the Kaggle
website. These pictures ranged from 474 × 358 pixels to 3388 × 2588 pixels in width and
height. After pre-processing the images, the different CNN models were applied to the
training data of the two APTOS datasets to perform classification.

2.4. Transfer Learning Using ResNet50, VGG16 and DenseNet169

In this paper, transfer learning (TL) using the architectures of the three CNNs models,
ResNet50, VGG16 and DenseNet169, was applied to the diabetic retinopathy images. In
TL, learned features from one task are applied to a different task without having to learn
from scratch. This is commonly used when building CNN models since the process of
training from scratch requires a lot of computational resources, large datasets and a lot of
time [31]. CNN models consist of multiple layers, namely: the convolution layer, pooling
layer and fully connected layer. CNN models employ multiple perceptrons to evaluate
picture inputs and eventually extract different patterns from the images to output to the
fully connected layer. Our CNN models extracted representative patterns to form the
feature maps. A 3 × 3 kernel was passed over the input matrix of the diabetic retinopathy
image, as illustrated in Figure 4.

Figure 4. Convolution layer.
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The classification function, which is the output of the fully connected layer, plays an impor-
tant role in the process, whereby the different patterns of the five stages of diabetic retinopathy,
learnt by the feature extraction layers, are used to perform the multiclass classification.

The VGG16 model, a CNN architecture pre-trained on the ImageNet dataset, was
adopted for the development of our diabetic retinopathy application as it has been fully
tested in a similar domain, achieving good performance [32,33]. VGG16 consists of 13 con-
volutional layers and 3 fully connected layers. There are 5 blocks each containing 2 or
3 convolution layers and ending with a max-pooling layer, as illustrated by Figure 5. A
fixed-size image of dimensions (224, 224, 3) is the input to the VGG16 model.

Figure 5. Architecture of the VGG16 model.

ResNet50, another popular CNN architecture, consists of 50 layers organized in so-
called residual blocks [9]. It is known for its skip connection approach, which eventually
solves the vanishing gradient problem. ResNet50 contains 48 convolution layers along
with 1 MaxPool and 1 AveragePool layer. This was desired in our diabetic retinopathy
application as it allows the later layers to learn lesser semantic information that was
captured in the early layers. A 3 × 3 filter was used to perform the spatial convolution,
which was eventually reduced using the max-pooling method. Figure 6 illustrates the
ResNet 50 model with the 48 convolution layers and the 16 skip connections.

Figure 6. Architecture of ResNet50 model.

The third model that was considered was the DenseNet169 model [34]. Compared
to the ResNet50 model, it has more layers. However, it contains a similar block to skip
connections called the dense block. With the increase in the number of layers, it gives the
model the opportunity to learn more distinctive features. In fact, the architecture consists
of four dense blocks with varying numbers of layers as illustrated in Figure 7. Our design
for this model consisted of the 2D average pooling, which is in the original architecture,
where a dropout layer set to 0.5 was added.
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Figure 7. Architecture of DenseNet169 model.

2.5. Enhanced CNN Models

Initially, the architectures of VGG16, ResNet50 and DenseNet169 were applied to the
APTOS dataset. To be able to use these architectures in transfer learning and for classifying
the diabetic retinopathy images into five classes, fully connected layers were added. The
3-dimensional feature map obtained from the last convolutional layer was converted to one
dimension by using global average pooling 2D and passed to a series of a dropout layer, a
dense layer and a dropout layer and finally to a dense layer with five nodes, representing
the normal and the DR grades. The fully connected layers were selected as in the ResNet
model in Taormina et al. [35], and Zhang et al. [36] shows that adding fully connected
layers yields better results. The activation function used in the last dense layer was Softmax,
as used in ElBedwehy et al. [37] for face detection classification. The Adam optimizer was
applied to the 3 models with a learning rate of 1 × 10−3, and the loss entropy used was the
categorical cross entropy. In this work, data balancing was performed using basic image
manipulation techniques [38]. In the deep neural network, the Adam optimizer was used
instead of the stochastic gradient descent (SGD) since the former is computationally more
efficient. The Adam optimizer has been found to be faster in converging the algorithm to
the minima, hence reducing the training time [39]. The use of the SGD and other approaches
will be explored in future works. Here, only the last 5 layers, namely the global average
pooling 2D, dropout, dense, dropout and dense layers, were trained. The other layers were
frozen as we were only extracting the features from the base model. These steps resulted in
the models producing the relevant learnable parameters during the training process. For
example, for the ResNet model, out of the 27,794,309 parameters, 4,206,597 were trainable.
In this work, the sequential modelling approach was adopted for adding and customizing
the convolution, dropout, dense and optimizer layers. The sequential model is appropriate
for a plain stack of layers whereby each layer has exactly one input tensor and one output
tensor, which was the case in this application.

To improve the performance of the models and cater for underfitting/overfitting,
the 3 models were fine-tuned. The Adam optimizer was again used but this time with a
learning rate of 10−4. The learning rate was decremented by 10 as this has been shown
to both reduce the risk of overfitting [40] and to improve classification [41]. When the
validation loss metric stopped improving, the learning rate was halved as in [42]. Several
parameters were changed and added to the models for fine-tuning. Firstly, the loss function
was changed to binary cross entropy. Using the latter along with a SoftMax classifier helped
the model in reducing the cross entropy loss of each iteration in multiclass classification [43].
Afterwards, an early stopping feature was added to end training when the network began
to overfit the data according to the validation loss [44]. Eventually, all the convolutional
layers were unfrozen, and the models were set to be trained.

The enhanced transfer learning model that was trained on the augmented APTOS
dataset was tested on APTOS test data and on a blind Mauritian test datum annotated by a
medical practitioner.
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3. Results and Discussions

To evaluate the trained models both before and after fine-tuning, the accuracy regard-
ing training, validation and test sets was calculated. Classification accuracy is the fraction
of predictions that a given model predicted correctly. Firstly, a custom-built CNN model
similar to that developed by Jayalakshmi et al. [45] was used. The same fully connected
layers as in the case of our pre-trained models were joined, and the hyperparameters were
tuned to obtain the optimal accuracy. A classification accuracy of 0.73 was obtained here.
The model was only able to correctly predict classes 0 and 2. Although the accuracy is
quite satisfactory for a binary classification of DR and NoDR, this custom-built model
is very limited in the case of a multiclass DR classification. Next, pre-trained networks
were implemented. The training and validation accuracy obtained before fine-tuning of
the pre-trained networks are illustrated in Figure 8. From the results, it was found that
the accuracies were quite low for the models ResNet50 and DenseNet169. Hence, it was
deduced that these models were underfitting.

Figure 8. Overall training and validation accuracy before fine-tuning for the original APTOS dataset
(after 2 epochs).

Consequently, the models were enhanced, and the weights were adjusted. Different
learning rates were applied and evaluated to reach the minima. In addition, the number of
epochs were adjusted while analyzing the different accuracies, thus fine-tuning the models.
Each model was trained on the same training set used in the previous process. Figure 9
shows the results obtained for training and validation accuracy for each of the three models
after fine-tuning.

From Figures 8 and 9, it can be clearly seen that fine-tuning the models improved both
the training and the validation classification accuracy of the three models for the original
APTOS dataset. We also noticed that using the augmented data improved the generality
of transfer learning for the models for both the training and validation data. This can
be deduced from the accuracy for the augmented dataset being maintained or increasing
across all models compared to the original dataset. Furthermore, ResNet, with the highest
accuracy in all cases, showed a better generalization. In parallel, it was also observed that
the time taken to train the model decreased considerably (by at least 3 h).
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Figure 9. Overall training and validation accuracy of the CNN models after fine-tuning.

Both the overall training accuracy and the validation accuracy were above 90, which
is a good indication that the six trained models were able to guess the label for nearly all
of the training and validation sets of images. In three out of the six different CNN model
training, with ResNet50 using both the original APTOS dataset and the augmented APTOS
dataset as the training data, and the DenseNet169 model using the original APTOS dataset
as the training data, early stopping occurred to prevent the models from overfitting.

Next, the six models were used to predict the class of the images in the testing data of
both the APTOS and the Mauritian datasets. Figure 10 shows the overall testing accuracy
obtained with the three CNN models for the original and augmented APTOS datasets.
For the ResNet50 model and DenseNet169 model, increases of 9% and 7% were observed,
respectively, when dealing with the augmented and balanced dataset. As for the VGG16
model, a decrease of 6.9% was noted for the augmented APTOS dataset.

Figure 10. Testing accuracy of the CNN models for the APTOS dataset.

However, this overall testing accuracy for the data is not a good indicator of per-
formance as the proportion of classes in the datasets was different. For example, in the
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original APTOS dataset, the number of images belonging to class 0 makes up nearly half
of the original data, whereas the images in the augmented APTOS dataset are more or
less equally distributed among the different classes. Hence, the models will exhibit bias
towards class 0 when they are applied to the original APTOS dataset, whereas for the
augmented APTOS dataset, the proportion is nearly the same, so comparing the overall
testing accuracy between the two datasets is not recommended. To address this issue, the
class-wise accuracy was calculated for the three datasets and plotted as shown in Figure 11.

Figure 11. Detailed testing accuracy for each class for the 3 datasets and the 3 models.

A closer study of the plots in Figure 11 shows that the three models were able to
predict class 0, “No DR” cases, quite easily for both the original and augmented APTOS
datasets; however, only the ResNet50 model was able to classify “No DR” cases for the
Mauritius dataset. This is to be expected since class 0 is quite distinct from the other classes
given the absence of DR features such as microaneurysms.

For the VGG16 model, class 3 was the one that achieved the lowest accuracy out of all
three datasets with none of the 55 cases being correctly classified for the original APTOS
dataset. We also noted that none of the cases of class 1 for the Mauritian dataset were
correctly identified. This shows that the model was unable to learn to distinguish the
features of these two classes. A closer look at the results obtained shows that most of the
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cases for class 3 were misclassified as class 2 and a few cases as classes 1 and 4. Class 3
represents the moderate cases, which fall between the mild and proliferative cases and
therefore may be difficult to identify. There may be intraretinal haemorrhage, which also
complicates the task.

For the ResNet50 model, classes 1, 3 and 4 were the most difficult to classify for the
original dataset, classes 1 and 3 were the most difficult to classify for the augmented dataset,
and class 4 was the most difficult class to classify for the Mauritian dataset. The difficulty
in the classification of class 4 for the Mauritian cohort may be due to choroidal fronts and
troughs being more pronounced in the local dataset due to presence of pigments. This is
due to the local population having different skin colours.

For the DensetNet169 model, the results obtained for the three datasets are variable
with classes 1 and 4 being the less distinctive for the original dataset, classes 1 and 3 being
less distinctive for the augmented dataset and classes 1, 2 and 3 being less distinctive for
the Mauritian dataset. Here, none of the 202 cases for classes 1 and 4 in the original APTOS
dataset were correctly identified. A closer look at the class-wise results shows that most
of the images from class 1 were wrongly classified as class 2, and a few were classified as
classes 0 and 3. Similarly, for class 4, we found that most of the images from class 4 were
wrongly classified as class 2 and the rest as class 3. Based on these results, we concluded
that for the APTOS dataset, classes 1 and 3 were the most difficult to learn.

Although none of the models had been trained with the data from Mauritius, the
ResNet50 model achieved quite good results on this blind test dataset, achieving accuracies
of 60% and above. It also obtained the best results compared to the other two models. This
can be explained by the fact that the Densenet169 has more layers and may be overlearning
and therefore generalizing less. Resnet50 has residual connections between layers, meaning
that the output of a layer is a convolution of its input plus its input. It is also deeper than
VGG16 with fewer parameters and is better able to identify the features to distinguish
between the different classes of diabetic retinopathy. Moreover, although ResNet is much
deeper than VGG16, the model size is substantially smaller due to the use of global average
pooling rather than fully connected layers. Based on the results of the ResNet50 model, the
results were further investigated, and a confusion matrix of the predicted vs. actual results
was plotted, as shown in Figure 12.

Figure 12. Confusion matrix for Mauritian data classified by ResNet50.

The precision, recall and F1 score were computed for each individual class and are
displayed in Table 2. Additionally, the weighted average was also calculated.
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Table 2. Performance metrics for Mauritian data classified by ResNet50.

Precision Recall F1 Score

Class 0 0.9600 0.8889 0.9231
Class 1 0.8600 0.6935 0.7679
Class 2 0.7551 0.8222 0.7872
Class 3 0.7778 0.5000 0.6087
Class 4 0.6000 0.9091 0.7229

Weighted Average 0.8165 0.7933 0.7945

From the confusion matrix, we found that very good accuracies were achieved for all
the classes, and the cases that were wrongly classified were close to the diagonal, being
either from the class just before or just after. Thus, for class 0, the cases that were wrongly
classified were actually from classes 1 and 2, for class 1, they were from classes 0 and 2, for
class 2, they were from classes 1 and 3 with few cases from class 4, and for class 3, they
were from class 4. This behaviour is not followed by class 4, where the wrongly classified
classes were from all classes with the majority from class 2, which is quite far from class 4.
Class 4 is of interest and requires further investigation. A comparison of our proposed
model with the other available works in DR classification is given in Table 3.

Table 3. Comparison table of similar work.

Authors Techniques Used Discussions

Dai et al. [23]

Model: deep model based on ResNet
Dataset: Shanghai Integrated Diabetes Prevention
and Care System (Shanghai Integration Model,
SIM) between 2014 and 2017
Number of images: 666,383 images

Pre-trained models (ResNet and R-CNN) were
used. ROC was used to evaluate performance.
Performance: AUC scores of 0.943, 0.955, 0.960
and 0.972 for mild, moderate, severe and
proliferative cases were achieved, showing good
performance using transfer learning

Masood et al. [11]

Model: pre-trained Inception V3 model
Dataset: Eye-PACS dataset
Number of images: 3908 images (800 from each
class except 708 from class 4)

Performance: accuracy—48.2%, limitations:
low accuracy

Li et al. [12]

Model: different pre-trained networks such as
AlexNet, VGG-S, VGG16 and VGG19 Dataset: the
Messidor and DR1 datasets
Number of images: 1014 images (DR1), 1200
images (Messidor)

Performance: best area under the curve (AUC)
(VGG-S)—98.34% (Messidor dataset), 97.86%
(DR1 dataset)
Limitations: number of classes is limited to DR
and No DR only

Challa et al. [13]
Model: developed a deep All-CNN architecture
Dataset: Eye-PACS dataset
Number of images: 35,126 images

Performance: accuracy—86.64%, loss—0.46,
average F1 score—0.6318
Limitation: no detailed information
on overfitting

Khalifa et al. [16]

Model: AlexNet, Res-Net18, SqueezeNet and
GoogleNet
Dataset: APTOS dataset
Number of images: 3662 images

Performance: best accuracy (AlexNet)—97.9%
Limitation: high computational power needed
(Intel Xeon E5-2620 processor (2 GHz), 96 GB of
RAM) since the model needed to train on
14,648 images. Additionally, no detailed
information was given for model overfitting
during the training phase. The only method used
to counter overfitting was data augmentation,
which takes place before the model
training phase.
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Table 3. Cont.

Authors Techniques Used Discussions

Hagos et al. [17]

Model: pre-trained Inception V3 model
Dataset: APTOS dataset
Number of images: 2500 images (1250 for NoDR
and 1250 for DR)

Performance: accuracy—90.9%, loss—3.94%
Limitation: number of classes is limited to DR
and No DR only

Gangwar et al. [22]

Model: deep learning hybrid model with
pre-trained Inception-ResNet-v2 as a base model
Dataset: Messidor-1 and APTOS dataset
Number of images: 1200 images (Messidor-1), 3662
images (APTOS)

Performance: accuracy—72.33% (Messidor-1),
82.18% (APTOS dataset)
Limitation: did not check whether model
was overfitting

Benson et al. [24]

Model: pre-trained Inception V3 model
Dataset: DR dataset obtained from VisionQuest
Biomedical database
Number of images: 6805 images

Performance: sensitivity—90%, specificity—90%,
AUC—95%
Limitation: results for No DR, MildDR,
Moderate DR were 47%, 50% and 35%

Thota et al. [21]
Model: Fine-tuned and pre-trained VGG16 model
Dataset: Eye-PACS dataset
Number of images: 34,126 images

Performance: accuracy—74%, sensitivity—80%,
a specificity—65%, AUC—80%Limitation: low
accuracy compared to similar experimentations

Our proposed Model

Model: Fine-tuned and pre-trained ResNet50,
VGG16, DenseNet169 models
Dataset: APTOS dataset, Mauritian dataset
Number of images: 3662 images (APTOS), 208
images (Mauritius)

Performance: accuracy (ResNet50)—82%
(APTOS dataset), 79% (Mauritian dataset)
Novelty: performed multiclass classification
(5 different classes) for Mauritian dataset

Compared to similar work carried out in the field of DR classification, our proposed
enhanced model was able to classify the different stages of diabetic retinopathy for a
Mauritian dataset. The enhanced model was trained using the APTOS augmented dataset,
and this model was used to classify the Mauritian dataset images with an overall accuracy
of 79%. Furthermore, it can be said that our proposed model can be used for early detection
of DR compared to Benson et al. [24], where the proposed model had a low accuracy for
the early stages of DR. Meanwhile, Li et al. [12] and Hagos et al. [17] applied transfer
learning for a binary classification, namely images having DR or No DR, whereas our
model was used to classify all 5 stages of DR both for the APTOS and Mauritian dataset.
In this paper, we have reported the use of several parameters to address overfitting of the
models compared to the work of Gangwar et al. [22] and Challa et al. [13]. Finally, our
model outperforms Thota et al. [21] and Masood et al. [11] in terms of accuracy.

4. Conclusions

In this work, transfer learning was applied at multiple levels with the aim of train-
ing multiple models to classify diabetic retinopathy for a completely blind dataset, the
Mauritian cohort. At the initial stage, transfer learning was performed with three general
pre-trained models, VGG16, ResNet50 and DenseNet169, using the APTOS dataset for
diabetic retinopathy. Even after fine-tuning the three models, some classes were not being
classified, and accuracies were not very high. This could be due to the dataset being highly
imbalanced with almost 50% of the dataset belonging to “No DR” cases and the remaining
50% being distributed amongst the four DR classes. Hence, the dataset was augmented
to achieve a comparable number of cases in each of the classes. Transfer learning was
performed on the augmented APTOS dataset, and a better performance was achieved in the
various experiments. It was found that the ResNet50 model produced equivalent or better
results for all the classes compared to the VGG16 and DenseNet169 models. These trained
enhanced models were then applied to the blind Mauritian dataset, and the results obtained
are compared to the annotated local images. Again, the ResNet50, given its architecture,
achieved the best results amongst the three models, and the accuracies obtained were very
good. Class 0 achieved accuracies of 98%, 95% and 96% for the original APTOS dataset,
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the augmented APTOS dataset and the Mauritian dataset, respectively, clearly indicating
that the model is able to easily distinguish this class from the other classes, thus confirming
the potential of training a precursor model for class 0 versus others. It was observed that
some classes performed much better than others, and this needs to be further investigated.
Classes 1, 2 and 3 achieved acceptable performances while class 4 was the most difficult to
classify. The diabetic retinopathy expert observed that class 3 was graded more precisely.
Moreover, retinal images with pronounced choroidal fronds seemed to be identified as
class 4 by the software, which clinically rates as normal variants. This is an unexpected
behaviour of class 4, representing a major difference between the training APTOS data and
the Mauritius data. This can be solved by further transfer learning (or fine-tuning) from the
APTOS-based model to a Mauritian-specific model.

In the future, more data, such as patient demographics, can be included to ensure
clinical correlation. In addition, the Mauritian cohort can be analyzed to determine whether
the data are demographically representative of the population and also the extent to which
they are similar to those of the APTOS cohort. Our research shows the need for a precursor
software to identify normal retinal images.
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Abstract: Esophagogastroduodenoscopy (EGD) is a critical step in the diagnosis of upper gastroin-
testinal disorders. However, due to inexperience or high workload, there is a wide variation in EGD
performance by endoscopists. Variations in performance may result in exams that do not completely
cover all anatomical locations of the stomach, leading to a potential risk of missed diagnosis of gastric
diseases. Numerous guidelines or expert consensus have been proposed to assess and optimize the
quality of endoscopy. However, there is a lack of mature and robust methods to accurately apply
to real clinical real-time video environments. In this paper, we innovatively define the problem
of recognizing anatomical locations in videos as a multi-label recognition task. This can be more
consistent with the model learning of image-to-label mapping relationships. We propose a combined
structure of a deep learning model (GL-Net) that combines a graph convolutional network (GCN)
with long short-term memory (LSTM) networks to both extract label features and correlate temporal
dependencies for accurate real-time anatomical locations identification in gastroscopy videos. Our
methodological evaluation dataset is based on complete videos of real clinical examinations. A
total of 29,269 images from 49 videos were collected as a dataset for model training and validation.
Another 1736 clinical videos were retrospectively analyzed and evaluated for the application of the
proposed model. Our method achieves 97.1% mean accuracy (mAP), 95.5% mean per-class accuracy
and 93.7% average overall accuracy in a multi-label classification task, and is able to process these
videos in real-time at 29.9 FPS. In addition, based on our approach, we designed a system to monitor
routine EGD videos in detail and perform statistical analysis of the operating habits of endoscopists,
which can be a useful tool to improve the quality of clinical endoscopy.

Keywords: anatomy recognition; deep learning; endoscopy; multi-label; video analysis

1. Introduction

Gastric cancer [1] is the second leading cause of cancer-related deaths [2]. In clinical
practice, Esophagogastroduodenoscopy (EGD) is a key step in the diagnosis of upper
gastrointestinal tract disease. However, the rate of misdiagnosis and underdiagnosis of
gastric diseases is high, reducing the detection of precancerous lesions and gastric cancer.
This is because there is a great variation in EGD performed by endoscopists with different
qualifications. On one hand, some inexperienced physicians may miss some critical areas
and blind corners during the examination. On the other hand, physicians in densely
populated areas face long examinations every day, which may lead to missed examinations
and errors due to subjective mental or physical fatigue. This may result in the endoscopist
not being able to comprehensively cover all anatomical locations throughout the stomach
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during the examination. Studies have shown that high-quality endoscopy can lead to more
accurate diagnostic results [3], and it is crucial to further expand endoscopic techniques
and improve routine endoscopy coverage and examination quality. Many authorities have
now proposed clinical examination guidelines with corresponding expert consensus to
evaluate and optimize the quality of endoscopy. The American Society of Gastrointestinal
Endoscopy (ASGE) and the American College of Gastroenterology (ACG) have developed
and published quality metrics common to all endoscopic procedures in EGD. The European
Society of Gastroenterology (ESGE) systematically surveyed the available evidence and
developed the first evidence-based performance measures for EGD (procedural integrity,
examination time, etc.) in 2015 [4,5]. However, the lack of practical tools for rigorous
monitoring and evaluation makes it difficult to apply many quantitative quality control
indicators [6] (e.g., whether comprehensive coverage of anatomical location examination is
achieved) in practice, which is a major constraint to quality control efforts.

The quality standard of GI endoscopy can be defined as: when doctors do endoscopy,
they need to ensure that all key parts of the GI tract are within the scope of the examination,
and maintain an appropriate observation duration, leaving no blind spots and avoiding the
lens moving too fast or missing the observation of key areas. In recent years, advances in
deep learning-based artificial intelligence technologies have continued to soar, with signifi-
cant progress in the field of medical image recognition. Quality control of gastrointestinal
endoscopy is the basis for the application of AI technology in endoscopic imaging and the
prerequisite for applying artificial intelligence technology to disease screening and supple-
mentary diagnosis. Advances have been made in the identification of gastric diseases [7,8],
precancerous lesions [9–14] and gastric cancer [15–21]. It is important to use artificial intelli-
gence systems to monitor the indicators in the quality control of gastrointestinal endoscopy
in real time. However, previous studies have mainly focused on the intelligent auxiliary
diagnosis of GI lesions. Due to the lack of relevant datasets for anatomical structures
and the more complex and large data annotation efforts for this type of task, only a few
studies were devoted to quality monitoring of routine endoscopy. Wu et al. [22] divided the
anatomical location of the stomach into 10 and subdivided it into 26. DCNN was applied
for anatomy classification. The final accuracy rates were 90% and 65.9%, respectively. Based
on DCNN and reinforcement learning, 26 gastric anatomical locations were classified [23],
and blind spots in EGD videos were monitored with an accuracy of 90.02%, which served
to monitor the quality of real-time examinations. Ting et al. [24] proposed a deep ensem-
ble feature network to combine the features extracted by multiple CNNs, to boost the
recognition of three anatomic sites and two image modals with an accuracy of 96.9% and
23.8 frames per second(FPS). He et al. [25] divided the anatomical structure of endoscopy
to 11 sites, and achieved 91.11% accuracy by using DenseNet121 [26]. The model was
used to assist physicians in avoiding examination blind spots during examinations and to
achieve comprehensive coverage of endoscopy.

Despite the good results of the above-mentioned studies on quality control of gastroin-
testinal endoscopy, some problems and challenges remain. First, all the above-mentioned
work on anatomical location identification models is based on single-label multi-class
classification, which deviates from the reality of actual clinical examinations. Multiple
related anatomical sites are usually present simultaneously in the same image. When the
ratio of multiple anatomical locations in the field of view is equal, a single label is not
sufficient to accurately describe the currently examined location, which, in turn, increases
the bias of model feature learning. Multi-label classification learning is more accurate
in this application compared to multi-class image single-label classification [27], but it is
challenging to further exploit this a priori relationship to improve the model accuracy
due to the spatial correlation between anatomical locations, which leads to dependencies
between labels. Second, all of the above work is based on anatomical location recognition
models, which are trained based on static image data rather than real-time video data. It is
not sufficient to identify anatomical locations under videos based on static image datasets
alone. While consecutive video frames are highly similar, the dynamics of the scene cannot
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be expressed in static images, and this dynamically changing data is important for the
application of the model in real video scenes. Although the dynamic ones can produce
severe scene blurring [28] and thus affect judgment due to camera motion and gases gener-
ated during surgery, etc., the impact of such blurred data can be mitigated by some means.
In conclusion, spatial and temporal factors are strong priors for the anatomical relationships
within the endoscope and between consecutive frames, and are key to further improving
the performance of the recognition model.

In this paper, we present a novel combined structure of deep learning models to
process EGD videos to accurately identify anatomical structures of the gastrointestinal
tract on real-time white-light upper gastrointestinal tract. The task consists of classifying
each single frame of an EGD image sequence into a number of anatomical structures in
25 sites. Our model is built on a combination of a graph convolutional network (GCN) and
a long short-term memory (LSTM) network, where the GCN is used to capture label depen-
dencies, and the LSTM is used to extract inter-frame temporal dependencies. Specifically,
we train them jointly in an end-to-end way to relate coded label interdependencies and
extract high-level features of visual and temporal information of consecutive video frames.
The combined features learned by our method can correlate different anatomical structures
under endoscopy and are sensitive to camera movements in the video, allowing accurate
identification of all anatomical structures contained in each frame of a continuous video,
especially the transition frames between different anatomical locations.

The main contributions of this paper are summarized as follows: (1) Unlike previous
single-label multi-class studies, we define anatomical recognition as a multi-label classi-
fication task. This setting is more in line with clinical needs and real-time video-based
examination. (2) GCN-based multi-label classification algorithm. In this paper, graph
structure is introduced to learn domain prior knowledge, i.e., topological interdependen-
cies between anatomical structure labels. A ResNet-GCN model is then constructed to
implement multi-label classification. (3) Fusion of ResNet-GCN and LSTM modules. Due
to the complexity of EGD endoscopy scenes, it is very difficult to classify the anatomical
structures of each frame accurately. Considering that EGD videos have temporal continuity
and anatomical structures have spatial continuity in the video sequence, we use LSTM to
learn the temporal information and spatial continuity features of anatomical structures in
EGD videos based on the ResNet-GCN model. Then, we fuse the ResNet-GCN module
and the LSTM module to implement an end-to-end framework, called GL-Net, for the
accurate identification of UGI anatomical structures. The model fully reflects the topolog-
ical dependence of labels and the continuity of anatomical structures in time and space.
(4) Retrospective analysis of EGD video quality based on the GL-Net model. The quality
of 1736 real EGD videos was statistically analyzed in terms of the coverage of 25 anatomy
sites observed, the total examination time generated by the endoscopists, the examination
time of each specific site, and the ratio of valid to invalid frames according to the endo-
scopic guidelines and expert consensus. The statistical analysis of the indicators gives a
quantitative evaluation of the quality of the endoscopists, indicating the practical feasibility
of using AI technology to ensure the quality of EGD following clinical guidelines.

The rest of this paper is organized as follows. Section 1 describes the datasets and
introduces our proposed method in detail. Section 2 demonstrates the experimental results,
which are discussed in Section 3. Section 4 is the conclusion of our work.

2. Materials and Methods

An overview of our proposed approach is presented in Figure 1. We used a backbone
CNN model to extract visual features from static images and a GCN classification network
to learn the relationship between the labels. The LSTM structure was used to model the
temporal association of consecutive frames and focus on the invariant target features in the
spatio-temporal information to obtain more accurate recognition.

To better exploit the correlation between labels, recurrent neural networks [29,30],
attention mechanisms [31], and probabilistic graphical models [32,33] are widely used.
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Wang et al. [30] used RNNs to convert labels into embedding vectors to model the correla-
tion between each label. Zhu et al. [34] proposed a spatial regularization network (SRN)
with only image-level supervised learning of the spatial regularization between labels.
Recently, Chen et al. [35] proposed a multi-label image recognition model based on GCN
which can capture global correlations between labels and infer knowledge from beyond a
single image, and achieved good results. Inspired by Chen’s work, we use graph structures
to explore the dependencies between labels. Specifically, GCNs are used to disperse infor-
mation from multiple labels so as to learn associative and dependent classifiers for each
anatomically located label. These classifiers are further fused to image features to predict
the correct outcome with label associations.

In the work of incorporating time series into deep learning models, many approaches
based on dynamic time warping [36], conditional random fields [37], and hidden Markov
models (HMMs) [38] have been proposed. However, the existing methods have some prob-
lems and challenges. For example, when exploring temporal correlation, these methods
mostly focus on linear statistical models, which cannot accurately represent the complex
temporal information during endoscopy. Second, it is difficult for these methods to accu-
rately analyze transitional video frames where multiple targets are present at the same
times, which are important for the accurate identification of anatomical locations. Several
methods have been proposed to process sequential data by nonlinear modeling of temporal
dependencies, such as LSTM, and have been successfully applied to many challenging
tasks [28,39,40]. To address the problem of surgical procedure identification similar to EGD
inspection, Jin Y et al. [28] introduced LSTM to learn temporal dependencies, and trained
it in combination with convolutional neural networks. The learned temporal features are
very sensitive to the changes of the surgical procedure, and can accurately identify the
phase transition frames. Receiving inspiration from this approach, we proposed an LSTM
fused with a GCN-based multi-label classification model for end-to-end training.

Figure 1. Overall framework of our ResNet-GCN model for multi-label image recognition. D denotes
the dimension of the feature maps, h and w denote height and width. c denotes the number of
category classes. The blue dots indicate all class labels.

2.1. DataSets

Following the guidance of ESGE [41] and the Japanese systematic screening proto-
col [42], three experts were invited to label the EGD images into 25 different anatomy sites.
Representative images are shown in Figure 2. Since real endoscopy is performed under
videos, severe noise (e.g., blood, bubbles, defocusing, artifacts, etc.) is generated. It is
challenging to identify each image frame purely using video scenes alone. To improve the
generalization ability of the dataset, 49 endoscopy videos were collected from Sir Run Run
Shaw Hospital in this study. These videos were divided into a training set (39 videos) and
a test set (10 videos), ensuring that images of the same case were not divided into both the
training and test sets. We then split the videos into frames based on a sampling rate of 5 Hz,
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ensuring that the video clips contained temporal information while introducing as little
redundant information as possible. This is the offset adjusted according to experience [28].
The larger the span of frames, the greater the temporal variation, so adapting the model to
this variation facilitates the establishment of inter-frame relationships and the removal of
invalid frames (see Figure 3). After splitting and labeling, we have 23,471 training images
and 5798 test images with multi-label annotations. In the training phase, we divided the
training process into two stages. In the first ResNet-GCN phase, we put all qualified
images in the video together to train the gastric part classification network (GCN). In the
second training data preparation phase, we took ten consecutive frames as a segment and
input them together into the LSTM network. All EGD videos were captured in white light
endoscopy with an OLYMPUS EVIS LUCERA ELITE CLV-290SL at FPS of 25 and resolution
of 1920 × 1080 per frame. Inspection of personal information (such as date of inspection
and patient name) is removed to ensure privacy and security.

Figure 2. The representative images of UGI anatomical structures predicted by our model for
multi-label classification in this paper. Specially, antrum, lower body, middle-upper body, and r-
middle-upper body are further divided into four parts. Clockwise from the left side are the Anterior
wall (A), Lesser curvature (L), Posterior wall (P), and Greater curvature (G). In addition, r stands for
retroflex view.

Figure 3. Invalid frame diagram in EGD video scene. The upper left figure shows the defocusing
caused by the lens being too close to the gastric mucosa, the upper right figure shows the motion
artifact caused by the rapid movement of the lens, the lower left figure shows the light reflection
of gastric mucus under light, and the lower right figure shows the large area of blood covering the
gastric mucosa.

2.2. Backbone Structure

Many innovative model design and training techniques have emerged at this stage,
including the attention mechanism [43], Transformer [44], and the excellent NAS-based
EfficientNet [45]. Considering the universality, stability and generality of the methods, we
selected ResNet [46] as the backbone network. The residual structure allows the model
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capacity to vary in a flexible range, so that the model with the ResNet block as the basic unit
can be built deep enough to complete the model convergence well. We use ResNet-50 [46],
which was pre-trained on ImageNet [47], as the backbone network for feature extraction.
Generally, the deeper the layers in the model, the larger the sensory field of the feature
map and the higher the level of abstraction of the image features. Therefore, the proposed
model structure attempts to extract features from one of the deepest convolutional layers
of the backbone network for the construction of an attention map combining feature maps
and association labels.

Let I denote an input static image or one of consecutive frames with ground-truth
multi labels y = [y1, y2, . . . , yC], where C is the count of all anatomical locations. The feature
extraction process is expressed as

x = fGMP( fBackbone(I; θBackbone)) ∈ R
2048×7×7, (1)

where fGAP(·) present the operation of global max pooling, fBackbone(·) denotes the feature
extraction from backbone structure. x is the compressed feature and contains the feature
expressions in the image associated with the classification labels, which will be fused with
the correlations between the labels in a matrix multiplication manner.

2.3. GCN Structure

In multi-label classification, multiple recognition targets usually appear together in an
image. In some cases they must appear simultaneously, and in some cases they absolutely
cannot appear at the same time. We need to efficiently establish the dependencies between
targets to accurately establish feature representations in images, and correlations between
multiple anatomical locations.

Since objects usually appear simultaneously in video scenes, the key to multi-label
image recognition is to model the label dependencies, as shown in Figure 4. Inspired by
Chen et al. [35], we model the interdependencies between anatomical locations using a
graph structure where each node is a word embedding of an anatomical location, and that
embedding feature is mapped to a set of classifiers constructed using GCN for image
feature attention feature combinations. Thus, the approach preserves the semantic structure
in the feature space and models label dependencies.

Figure 4. Multi-label images and their directed graphs. Within a single image, multiple anatom-
ical locations appear and the image is divided into multiple regions, (A) Angulus, (B) Antrum L,
(C) Antrum A and (D) Pylorus (the region indicated by the white arrow). At the right site, directed
graphs are used to model label dependencies. The bidirectional arrows indicate that they are related
and are likely to appear within the same view at the same time.

GCN is the operation on the graph structure. The structure uses the feature map and
the corresponding correlation matrix as the input, and then updates the node features. The
GCN structure can be written as follows:
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Hl+1 = h
(

ÂHlWl
)

, (2)

where h(·) represents a non-linear mapping, Â is the normalized matrix A and Wl is
the transformation weight. Hl+1 and Hl present the updated and current graph node
representation.

The graph node presentation is then incorporated into the model output feature
expression in the form of matrix multiplication, and the information is combined so that
feature representations and labels are weighted and associated. The loss function, multi-
label classification loss (e.g., binary cross entropy loss), is defined as follows:

L =
C

∑
c=1

yc log(σ(ŷc) + (1 − yc) log(1 − σ(ŷc))), (3)

where σ(·) is the activation function of sigmoid.

2.4. LSTM Structure

After the above structure is trained to process video frames based on static images,
the final prediction results may fluctuate due to the presence of some poor quality frames in
the video. Due to the continuity of video data, temporal information provides background
information for each frame identification. At the same time, individual frames may have
similar appearance under the same endoscopic anatomy and scene, or they may be slightly
blurred, making it difficult to distinguish them purely by their visual appearance. In con-
trast, the phase identification of the current frame would be more accurate if we could take
into account the dependence of the current frame on the adjacent past frames. Therefore,
time series information is introduced in this study to improve the stability of the model.

Temporal information modeling. In our GL-Net, we input the image features extracted
from the ResNet backbone network into the LSTM network, and use the memory units of
the LSTM network to correlate current frame and past frame information for improved
identification using temporal dependence.

Figure 5 demonstrates the fundamental LSTM [48] units used in GL-Net. Each LSTM
cell is equipped with three gates: it denotes input gate, ft denotes forget gate and ot denotes
output gate. Three units are used to regulate the interaction between memory cells ct.
At timestep t, given input xt, hidden state before ht−1, and memory cell before ct−1, LSTM
structural units are learned and updated in the following manner:

it = σ(Wxixt + Whiht−1 + bi), (4)

ft = σ(Wx f xt + Wh f ht−1 + b f ), (5)

ot = σ(Wxoxt + Whoht−1 + bo), (6)

gt = tanh(Wxcxt + Whcht−1 + bc), (7)

ct = ft � ct−1 + i � gt, (8)

ht = ot � tanh(ct), (9)
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Figure 5. The structure of LSTM storage unit [49]. The arrows indicate the path of data forward
propagation.

In order to fully exploit both the label association and temporal information, we
propose a new recursive convolutional network, GL-Net, as shown in Figure 6. GL-Net
integrates ResNet-GCN for visual descriptor extraction with label-dependent association,
and the LSTM network for temporal dynamic modeling. It outperforms existing methods
for independent learning of visual and temporal features. We train GL-Net end-to-end,
where the parameters of the ResNet structure and the LSTM structure are co-optimized to
achieve better anatomical location recognition.

Figure 6. Overall framework of GL-Net model.
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In detail, to identify the frames at time t, we extract the video clip containing a
set of current frames. The sequence of frames in the video clip is represented by x =
{xt′ , . . . , xt−1, xt}. We use f j to denote the representative image features of each single
frame xj. The image features f = { ft′ , . . . , ft−1, ft} of the video clips are sequentially put
into an LSTM network, which is denoted by Uθ with parameters θ. With the input xt and
the previous hidden state ht−1, the LSTM calculates the output ot and the updated current
hidden state ht as ot = ht = Uθ(xt, ht−1). Finally, the prediction of frame xt is generated by
feeding the output ot into the softmax:

p̂i
t = sigmoid(Wzot + bz), (10)

where Wz and bz respectively denote the weight and bias term, P̂t /∈ R
C is the predicted

vector and C denotes the number of classes.
Let P̂i

t be the i-th element of P̂t, which denotes the prediction probability of frame
xt and it belongs to the class i, lt denotes the ground truth of frame xt, the negative
log-likelihood of the frame of time t can be caculated as:

�(xt) = − log p̂i=lt
t (Uθ(x)). (11)

2.5. Experimental Setups

To efficiently train the proposed model structure, we train the ResNet-GCN network
first in order to subsequently initialize the entire network, considering that the parameter
size of the ResNet-GCN network is larger than that of the LSTM structural units. During the
training process, the images are augmented with random horizontal flips.

After training the ResNet model, we trained the GL-Net, integrating visual, labeling,
and temporal information to converge. At this point, the pre-trained ResNet parameters
were initialized as the parameters of its backbone model, and the parameters of the LSTM
structural unit were initialized using xavier, and, empirically, the learning rate of the LSTM
was set to 10 times that of the ResNet-GCN.

Our proposed model is implemented based on the Pytorch [50] framework, using a
TITAN V GPU. For the first stage, our proposed structure uses two connected GCN modules
with dimensions of 1024 and 2048, respectively. In the image representation learning branch,
we adopt ResNet-50 as the backbone of feature extraction, which is pretrained on ImageNet.
For label representations, 25-dim one-hot word embedding is adopted. SGD is employed
for training, with a batch size of 16 and momentum of 0.9, with a weight decay of 5 × 10−3.
The initial learning rate is set to 0.01, and decreased to 1/10 every 10 epochs, until 1 × 10−5.

In the end-to-end training stage, we use three LSTM layers. SGD is used as optimizer,
with a batch size of 8, a momentum of 0.9 with weight decay of 1 × 10−2, a dropout rate of
0.5, and we adopt LeakyReLU [51] as activation function. The learning rates are initially
set as 1 × 10−4 for ResNet and 1 × 10−3 for LSTM, and are divided by a factor of 10 every
5 epochs. A total of 100 epochs were trained in the model.

3. Results

3.1. Evaluation Metrics

The evaluation metrics adopted in this paper are consistent with [30,52]. We compute
the overall precision, recall, F1 (OP, OR, OF1) and per-class precision, recall, F1 (CP, CR,
CF1). For each image, the labels are predicted as positive if their confidences are greater
than the threshold (i.e., 0.5 in experience). Following [48,53], we computed the average
precision (AP) for each individual class, and the average precision (mAP) for all classes.

3.2. Experimental Results
3.2.1. GCN Sructure

The statistical results are presented in Table 1, and we compared them with related
current spatial-temporal methods, including CNN-RNN [30], RNN-Attention [31], etc.
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The models involved in the comparison all used the same set of training and test data.
The benchmark backbone was kept uniform for a fair comparison. It is clear to see that the
GCN-based approach obtains the best classification performance, which is due to capturing
the dependencies between the labels. Compared to advanced methods for capturing
dependencies of frames, our method achieves better performance in almost all metrics,
which proves the effectiveness of GCN. Specifically, the proposed GCN scheme obtained
93.1% of mAP, which is 21.1% higher than their method. Even using the ResNet-50 model
as the backbone model, we could still achieve better results (+17.1%). This suggests that
there are strong dependencies and correlations between anatomical location labels in full-
coverage examinations in white-light endoscopy scenarios, and the basic backbone of CNN
together with a GCN structure can capture them well.

Table 1. Comparison of average assessment results of anatomy multi-label identification with other
methods. Bold indicates the maximum value.

Method mAP CP CR CF1 OP OR OF1

CNN-RNN [30] 0.720 0.772 0.772 0.772 0.785 0.770 0.777
RNN-Attention [31] 0.649 0.665 0.578 0.618 0.610 0.660 0.634
ResNet-50 0.891 0.936 0.777 0.849 0.912 0.734 0.813
ResNet-GCN 0.931 0.941 0.855 0.896 0.929 0.820 0.871
GL-Net 0.971 0.955 0.959 0.957 0.937 0.954 0.945

We further use the heatmaps to explain the model. By weighting and summing the
class activation maps [54] of the final convolutional layer, the attention map can accurately
highlight the areas of the image that have a high weight on recognition, thus revealing the
network’s implicit attention to the image and intercepting the learning information of the
network [54]. The attention maps of models is shown in Figure 7.

Figure 7. Visualization of the attention maps. The label on the left indicates the label for visual
gradient back propagation and also the ground truth annotation. The upper label indicates the model
name of the visualization.The visualization region is approximately close to red, indicating that more
of the model inference weight tends to be in that region.

As illustrated in Figure 7, both in the middle and upper part of the stomach body,
the GCN-based model was the best in terms of visual representation. For the other models, it
is easy to randomly place weights at some locations in the image without constructing label
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associations. It is not possible to correctly distinguish between these anatomical structures
that do not differ much between classes (greater curvature, posterior wall, anterior wall
and less curvature of the body are difficult to distinguish). In contrast, the GCN-based
model can pay more attention to feature regions in the image where texture features are
prominent and responsive to the class. For the gastric angulus, because the structure of
the angulus is prominent in the visual field, the general model can pay attention relatively
accurately at this location. Compared to other models, the GCN-based model’s weights are
able to provide more comprehensive and complete coverage at this location, including the
lesser curvature of the antral.

3.2.2. GCN with LSTM Structure

To demonstrate the importance of combining label association and temporal features
for this task, we carried out a series of experiments by combining ResNet-50 with different
modeling approaches, namely (1) ResNet-50 with GCN, and (2) ResNet-50 with GCN
followed by LSTM.

The experimental results are listed in Table 1. The scheme with LSTM achieved
better results, demonstrating the importance of temporal correlation for more accurate
identification. A total of 97.1% of mAP, 95.7% CF1 and 94.5% OF1 can be seen from
the GL net method proposed in this paper. Specifically, compared with ResNet-GCN,
our end-to-end trainable GL-Net improves the mAP, CF1 and OF1 by 4.0%, 6.1% and
7.4%, respectively. Similarly, we compared the average accuracy of the two schemes
on each anatomical structure (see in Table 2). Compared with the ResNet-GCN model
without the LSTM module, the accuracy of GL-Net in the anterior wall of middle-upper
body, the lesser curvature of the lower body, the posterior wall of the middle-upper body,
the large curvature of the middle-upper body and angulus were improved by 22.5%, 17.6%,
11.2%, 8.8% and 8.3%, respectively.

Table 2. Comparison of average precision of each individual anatomy identification with other
methods. Bold indicates the maximum value.

Anatomy CNN-RNN RNN-Attention ResNet50 ResNet-GCN GL-Net

esophagus 0.903 0.821 0.998 0.999 1.0
Squamocolumnar juction 0.880 0.748 0.986 0.994 0.999
Cardia I 0.867 0.715 0.965 0.967 0.998
Cardia O 0.873 0.658 0.994 1.0 1.0
Fundus 0.855 0.757 0.978 0.979 0.902
Middle-upper body A 0.604 0.595 0.809 0.906 0.994
Middle-upper body L 0.585 0.594 0.813 0.872 0.984
Middle-upper body P 0.546 0.562 0.680 0.745 0.970
Middle-upper body G 0.586 0.518 0.601 0.885 0.904
Lower body A 0.595 0.548 0.841 0.918 0.918
Lower body L 0.575 0.517 0.713 0.802 0.821
Lower body P 0.585 0.454 0.816 0.876 0.936
Lower body G 0.541 0.568 0.731 0.812 0.988
Antrum A 0.746 0.727 0.977 0.979 0.999
Antrum L 0.732 0.710 0.987 0.984 0.997
Antrum P 0.755 0.722 0.983 0.985 0.995
Antrum G 0.706 0.730 0.976 0.981 0.997
Angulus G 0.793 0.756 0.898 0.905 0.988
R-middle-upper body A 0.621 0.534 0.855 0.900 0.980
R-middle-upper body L 0.648 0.542 0.892 0.925 0.959
R-middle-upper body P 0.770 0.651 0.919 0.951 0.956
R-middle-upper body G 0.766 0.636 0.908 0.945 0.997
Duodenal bulb 0.751 0.623 0.997 0.998 0.999
Duodenal descending 0.906 0.827 0.998 1.0 1.0
Pylorus 0.753 0.722 0.969 0.980 0.997
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By introducing label association and temporal information, our GL-Net can learn fea-
tures that are more discriminative than those produced by traditional CNNs that consider
only visual information. Figure 8 shows the comparison of the prediction results of the
two models in the video clips. It can be seen that due to the shooting angle, bubble reflection
and other reasons, the variance between some classes is small and difficult to distinguish,
or sometimes features are almost completely covered. Therefore, the ResNet-GCN network,
which only depends on the features of a single frame image, cannot classify correctly, while
GL-Net can avoid the error by considering time dependence, and each frame is identified
accurately. In addition, some frames in the video have no classification results, that is,
the confidence of all the predicted results does not exceed the set threshold, which may be
related to the noise in the video. GL-Net can also accurately recognize each frame in this
case, which indicates that GL-Net considering the temporal information can improve the
performance of UGI anatomical structure recognition in EGD video. In addition, GL-Net
can process these videos in real time at 29.9 FPS, a processing speed that has great potential
for application in real-time clinical scenarios.

Figure 8. The prediction results on the video clips of ResNet-GCN and GL-Net. The bottom of each
line corresponds to the results of ResNet-GCN, GL-Net and Ground Truth (GT) annotations separately.
Specifically, 0-esophagus, 1-squamocolumnar juction, 3-outside of cardia, 9-greater curvature of lower
body, 13-greater curvature of Antrum, 14-posterior wall of Antrum, 15-anterior wall of antrum,
17-angulus, 22-duodenal bulb, 24-pylorus.

3.2.3. Retrospective Analysis of EGD Videos

Based on the methodology proposed in this paper, we designed a framework for
statistical analysis of the examination quality of real EGD videos in hospitals according to
quality monitoring guidelines. We collected a total of 1736 EGD videos, all of which were
captured with an OLYMPUS EVIS LUCERA ELITE CLV-290SL at 25 FPS and operated by
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expert physicians. In addition to the anatomical position identification model proposed
in this paper, our system uses an invalid frame filtering model [55] to ensure that our
statistical results are performed on clear and valid images.

The outputs of the proposed system are: (1) coverage statistics of the 25 sites observed;
(2) total examination time; (3) examination time for each specific site; (4) the ratio of
valid frames versus invalid frames.

The average coverage of anatomical structures during the EGD produced by the
endoscopist was 85.81%, but only 19.28% of the patients were not blinded. In addition,
the rate of misses for each anatomical structure (total number of videos with undetected
anatomical structures/total number of videos) can be seen in Table 3. It can be clearly
seen that most of the anatomical structures had a probability of being missed, except for
the esophagus. Among them, the lower body lesser curvature had the highest miss rate
of 52.41%, indicating that this area tends to be a blind area in EGD surgery. In addition,
the small curvature of the middle and upper body, the descending duodenum, the posterior
wall of the lower body, and the large curvature of the middle and upper body also had a
blind spot rate of more than 20% in the retrograde view.

Table 3. The average miss rate of each UGI anatomical structure during EGD. Bold indicates the
maximum value.

Anatomy Miss Rate (%)

esophagus 0.00
Squamocolumnar
juction 0.60

Cardia I 10.24
Cardia O 0.6
Fundus 9.04
Middle-upper body A 7.83
Middle-upper body L 10.24
Middle-upper body P 15.06
Middle-upper body G 43.98
Lower body A 13.86
Lower body L 23.49
Lower body P 18.67
Lower body G 52.41
Antrum A 9.64
Antrum L 13.25
Antrum P 11.45
Antrum G 9.64
Angulus 6.05
R-middle-upper body A 22.89
R-middle-upper body L 13.86
R-middle-upper body P 10.24
R-middle-upper body G 15.06
Duodenal bulb 5.42
Duodenal descending 24.70
Pylorus 6.63

As shown in Table 4, the mean examination time for all the videos was 6.572 min,
but the variance is quite different, which may be because some videos take biopsies or
make abnormal findings. Considering that there were some blind spots in the process of
EGD, we further analysed the inspection time when 25 sites were completely observed.
As can be seen, it takes 7.37 min for endoscopists to check all the anatomical structures.
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Table 4. Statistics of inspection time during EGD.

Inspection Type Mean (min)

Regular endoscopy 6.57
Coverage of all anatomy 7.37

Table 5 shows the examination time of each specific anatomical structure. Obviously,
the most time-consuming site is the esophagus, which takes 85.8 s, far more than the other
24 sites. However, the endoscopists spend the least time in the lower gastric body, and the
average observation time of the lesser curvature of lower body is only 1.8 s.

Table 5. Inspection time of each UGI anatomical structures during EGD. Bold indicates the maxi-
mum value.

Anatomy Inspection Time (s)

esophagus 85.8
Squamocolumnar juction 15.6
Cardia I 31.2
Cardia O 26.4
Fundus 44.4
Middle-upper body A 39
Middle-upper body L 19.2
Middle-upper body P 7.8
Middle-upper body G 2.4
Lower body A 22.2
Lower body L 8.4
Lower body P 10.8
Lower body G 1.8
Antrum A 31.2
Antrum L 30
Antrum P 22.8
Antrum G 42
Angulus 45
R-middle-upper body A 15
R-middle-upper body L 16.8
R-middle-upper body P 34.2
R-middle-upper body G 25.8
Duodenal bulb 57.6
Duodenal descending 13.8
Pylorus 39.6

In addition, although no studies have clearly defined the effective time of endoscopists
in operation, the visibility of mucosa has become an important indicator in the quality
control guidelines of colonoscopy. Therefore, we believe that the proportion of invalid
frames (including blood, bubbles, defocusing or artifacts) in the process of EGD also reflects
the EGD quality. Based on this, we analysed the proportion of effective frames and invalid
frames in the duration. According to the results in Table 6, the average ratio is about 2:7.

Table 6. The ratio of effective frame and invalid frame during EGD.

/ Ratio (%)

Effective Frames 22.68
Invalid Frames 77.32

4. Discussion

In this study, we used actual clinical EGD videos for real-time identification of gastric
anatomical structures and quality control of computer-aided gastroscopy. We designed an
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efficient algorithm that integrates ResNet, GCN and LSTM networks to form the proposed
GL-Net. The model achieves 97.1% mAP. Compared with previous works [23,24,56], we
have the following advantages: (1) we propose a multi-label video frame-level gastric
anatomical location identification method that can more accurately describe the physician’s
current examination location with considerable clinical significance. (2) Our model can
accurately identify anatomical locations in video frames and transition frames by learning
label associations and spatio-temporal features correlation of images. (3) We conducted
a quantitative statistical analysis of real EGD videos to summarize existing physicians’
operating habits and deficiencies, and to provide a quantitative analysis tool for effective
implementation of examination quality control guidelines.

4.1. Recognition Evaluation

The purpose of this study was to use artificial intelligence to alleviate the problem
that EGD quality control guidelines are not easily carried out and implemented in the
clinic. In cases where the level of gastroscopy varies between physicians, there is a risk of
missing a diagnosis if the entire endoscopy is not covered in that particular examination.
Although similar work using CNN to assist in EGD quality control has been done in
previous studies, there are several shortcomings. First, the use of a single label to represent
the image is inaccurate, especially when the area occupied by different anatomical locations
of the image in adjacent transition frames is large. Second, previous studies have mainly
trained models on discrete still image data, which is insufficient in complex continuous
video scenes and prone to a high number of false positive analysis values. In this study,
we propose a new framework to address these problems. First, by introducing GCN in the
training task to construct label associations, which, in turn, improves the accuracy of the
location recognition. Second, the temporal associations in the video frames are addressed
by introducing LSTM and continuous video frame datasets.

The GCN-based model outperforms other models with a uniform backbone struc-
ture, demonstrating its effectiveness in label-dependent modeling. The GCN has more
advantages in multi-label modeling compared to the natural image dataset, which also
indicates a strong interdependence between gastric anatomical locations. For analogs with
lower scores, such as the large curvature and posterior wall in the upper middle body, and
the small curvature, anterior and posterior wall in the lower body, there was a significant
improvement. This is because GCN exploits the relationship between strong and weak
label features extracted by models.

More importantly, we optimize the visual performance and sequential dynamics
throughout the training process by introducing label associations and spatio-temporal
priors. In general, the features generated by introducing more label associations and
temporal feature constraints are more discriminative than those generated by traditional
CNNs that consider only spatial information. In Figure 8, GL-Net can achieve accurate
recognition results that conform to label association rules and correspond to image features,
especially for frames with changing locations. In addition, based on LSTM, the results are
more stable with fewer jumps, so the overall performance is improved, which is crucial
for this task. Although there are many novel video-based 3D CNN methods proposed,
we believe that compared to LSTM methods, 3D CNNs cannot provide correlations with
longer connections due to the limitation of computational volume and computational
speed. Therefore, we believe that using LSTM is the appropriate method for modeling
temporal correlations. For the categories with relatively low scores, this may be due to
the lack of distinct features and the insufficient number of datasets. However, considering
the network performance, computational resources, and training difficulty, we use a 50-
layer ResNet to implement GL-Net, so that the computational resources and training
time can be controlled within a satisfactory range and satisfactory results can be obtained.
With sufficient computational resources, we can choose a deeper CNN network to further
improve the performance, or use multi-GPU distributed training.
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In recent years, deep learning techniques in computer vision have made rapid progress,
and representative recognition network structures such as VGGNet [57], Inceptions [58],
ResNet [46], DenseNet [26], MobileNet [59], EfficientNet [45], and RegNet [60] have been
expanding the accuracy, effectiveness, scale, and real-time performance of the networks.
The Transformer [44], a self-attentive mechanism structure extending from the field of
natural language processing (NLP), has given a trend to unify and combine image and text
data. The reliance on data-driven deep learning models makes it easy for researchers to
overlook the important role played by clinical priors in the application of medical image
perception techniques; clinical tasks do not exist in isolation and data distributions are not
independent of each other. Relationships between lesions and data feature distribution
relationships have not been applied to the model design process. The research in this paper
is inspired by the combination of clinical priori knowledge and deep learning methods.
The major difference between our proposed method and previous single-label static frame
methods is that the correlations between anatomical locations and the spatio-temporal
relationship between consecutive frames are introduced into model design as constraints.
This allows us to achieve better evaluation of our model under the same feature extraction
backbone structure with the relational constraints introduced by GCN and LSTM.

4.2. Clinical Retrospective Analysis

Observing the integrity of all 25 locations is of paramount importance, however, we
found that only 19.28% of patients were observed at all locations and nearly five locations
had a leak rate of more than 20%. This suggests that the quality of endoscopy needs to
be improved.

Studies have shown that spending more time on EGD improves the diagnostic rate,
so we recorded the total procedure time during EGD and counted the procedure time
per anatomical location based on model analysis. This helps the endoscopist to control
the duration of each examination procedure, thereby reducing variability in the level
of examination due to competent factors such as experience and fatigue examinations.
This study concluded that “slow” endoscopists (who take on average more than 7 min to
perform a normal endoscopy) are more likely, or even up to two times more likely, to detect
high-risk gastric lesions [61]. However, in a retrospective analysis of experimental data
results, the total time of the procedure was lower than the recommended time. Therefore,
we recommend that endoscopists be able to increase the examination time further.

Among the various sites, the esophagus was the only one that was not missed in
all videos, and had the longest examination time. On the one hand, this is because the
esophagus has a certain length in space and is the entrance to the EGD. On the other
hand, we have patients with Barrett’s esophagus [62] in our videos. Studies have shown
that the examination time of Barrett’s esophagus is related to the detection rate of the
associated tumor [63]. The less time spent on the lower body curvature also contributes
to its high rate of missed diagnoses. The effective examination time is only 23%, so the
mucosal visibility of UGI is not high enough during most EGD examinations, which is
due to invalid frames when the endoscopist performs operations such as flushing and
insufflation, or when the lens shakes and fails to focus. This value can be used as a reference
indicator. For endoscopists with a high percentage of invalid frames, further demands can
be made on the operation level.

With these data, we can clearly see the behavioral habits of Chinese doctors in gas-
troscopy and the possible blind spots. It is beneficial for the system to achieve quality
monitoring, improve the quality of gastroscopy, and further improve the detection rate of
diseases. All the indicators mentioned in this paper can reflect the details of the gastroscopy
process to some extent. These indicators prove that our model has great potential value for
application to improve the quality of examination.

211



Appl. Sci. 2022, 12, 3306

5. Conclusions

In this paper, we propose a novel and effective recursive convolutional neural network,
GL-Net, for automatic recognition of the anatomical location of the stomach in EGD videos.
GL-Net consists of two partial structures, namely GCN and LSTM, which are used to
extract label-dependent and time-dependent features, respectively.

The GCN part of our method is able to extract the label dependency of multi-label im-
age recognition, compared to the currently related study of static image based recogni-
tion methods for single-label multi-class anatomical location recognition. Meanwhile,
the spatial-temporal features extracted by the LSTM part are able to identify adjacent
similar frames more accurately.

In addition, we designed a real-time system based on the GL-Net method to auto-
matically monitor detailed metrics during EGD (e.g., anatomical examination coverage,
effective observation frame statistics, observation statistics of each anatomical site, etc.)
and perform statistical analysis on the quality of EGD examinations. A quantitative as-
sessment of the quality of the endoscopist’s examination is performed to demonstrate the
professional operating habits of the endoscopist and the presence of potential accidents and
problems. It also demonstrates the feasibility of implementing endoscopic quality control
guidelines using artificial intelligence technology. It can effectively mitigate the subjective
and empirical differences among endoscopists, improve the quality of routine endoscopy,
and provide a reference for writing endoscopy reports and performing clinical procedures
in real time with anatomical positions. In the future, the combination of anatomical position
identification results and endoscopic mucosal health condition for comprehensive analysis
is expected to further improve the quality control of computer-assisted endoscopy and
assist in lesion diagnosis.

We believe that computer-aided detection and artificial intelligence techniques will
play an increasing role. The rapid changes in model structure in recent years have allowed
us to use increasingly advanced approaches to clinical data. However, the characteristics
of the data distribution should be considered more in studies, such as the multi-label
classification in this paper, which is more clinically realistic than single-label classification,
and the potential associations within clinical prior knowledge and tasks, such as the
construction of inter-label associations with the spatio-temporal association in this paper.
Incorporating researchers’ or clinicians’ prior knowledge into the model training process is
a more specific, accurate, and reliable solution to obtain practical solutions. We believe that
in the future development of deep learning medical imaging research work, AI technology
and medical knowledge will be further integrated to obtain further technical breakthroughs,
as well as playing a greater role in the clinic and being more easily accepted by the public.
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Abbreviations

The following abbreviations are used in this manuscript:

EGD Esophagogastroduodenoscopy
GCN graph convolutional network
LSTM long short-term memory
ASGE The American Society of Gastrointestinal Endoscopy
ACG The American College of Gastroenterology
ESGE The European Society of Gastroenterology
HMMs hidden Markov models
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Abstract: In 2020, according to the publications of both the Global Cancer Observatory (GCO) and
the World Health Organization (WHO), breast cancer (BC) represents one of the highest prevalent
cancers in women worldwide. Almost 47% of the world’s 100,000 people are diagnosed with breast
cancer, among females. Moreover, BC prevails among 38.8% of Egyptian women having cancer.
Current deep learning developments have shown the common usage of deep convolutional neural
networks (CNNs) for analyzing medical images. Unlike the randomly initialized ones, pre-trained
natural image database (ImageNet)-based CNN models may become successfully fine-tuned to
obtain improved findings. To conduct the automatic detection of BC by the CBIS-DDSM dataset, a
CNN model, namely CoroNet, is proposed. It relies on the Xception architecture, which has been
pre-trained on the ImageNet dataset and has been fully trained on whole-image BC according to
mammograms. The convolutional design method is used in this paper, since it performs better than
the other methods. On the prepared dataset, CoroNet was trained and tested. Experiments show that
in a four-class classification, it may attain an overall accuracy of 94.92% (benign mass vs. malignant
mass) and (benign calcification vs. malignant calcification). CoroNet has a classification accuracy
of 88.67% for the two-class cases (calcifications and masses). The paper concluded that there are
promising outcomes that could be improved because more training data are available.

Keywords: breast cancer; mammogram; coronet; deep learning; convolutional neural network;
transfer learning

1. Introduction

Cancer ranks a significant obstacle to rising life expectancy, and is a leading cause
of death worldwide. In 2019, WHO reported that the first or second major reason for
death earlier than the age of 70 is cancer, in 112 of 183 nations. It is ranked third or
fourth in the other 23 countries [1]. It causes an irregular growth of cells and is frequently
named depending on the part of the body in which it occurs. Cancer usually spreads
out rapidly throughout the body tissues [2]. It starts in cells, the smallest units of body
tissues and organs, e.g., in the breast. Mostly, cancer results from mutations, anarchic
division, and multiplication or abnormal changes in the cells. New cells usually replace
the old or damaged cells that die. This process occasionally fails, and the cell can keep up
uncontrollable or orderless division, creating more cells similar to it and causing a tumor.

A tumor is divided into benign (uncancerous) or malignant (cancerous). Benign
tumors are not dangerous, because they do not cause cancer: their cells appear close to
normal, grow slowly, and do not attack near tissues or harm other body parts. In contrast,
malignant tumors are dangerous. If they are not checked, they ultimately exceed the
original tumor and attack other body parts.

Cases and deaths are broken down by global region and type of cancer. In 2020, 19.3
million new cases of cancer (18.1 million excluding NMSC, excluding basal cell carcinoma)
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as well as 10 million deaths (9.9 million excluding NMSC, excluding basal cell carcinoma)
occurred in various countries of the world (Table 1). Figure 1 depicts the global distribu-
tion of new cases and fatalities for the 10 most common types of cancer among females
worldwide in 2020 [3].

Table 1. New cases and deaths for 10 cancer types in 2020.

Location of Cancer
Number of New Cases (% of

All Locations)
Number of New Deaths (% of

All Locations)

Brain, nervous system (1.6) 308,102 (2.5) 251,329
Colon (6.0) 1,148,515 (5.8) 576,858

Female breast (11.7) 2,261,419 (6.9) 684,996
Leukemia (2.5) 474,519 (3.1) 311,594

Liver (4.7) 905,677 (8.3) 830,180
Lung (11.4) 2,206,771 (18.0) 1,796,144

Nonmelanoma of skin (6.2) 1,198,073 (0.6) 63,731
Ovary (1.6) 313.959 (2.1) 207.252

Prostate (7.3) 1,414,259 (3.8) 375,304
Stomach (5.6) 1,089,103 (7.7) 768,793

Figure 1. Distributing the Cases and Deaths of the 10 Prevalent Cancers in 2020 for Both Sexes [3].

To detect the presence of cancer in the body, effective techniques are available. In the
early stages, Breast Cancer (BC) can be detected through screening; hence, the treatment
can be more effective. Several methods are available, including ultrasound, magnetic
resonance imaging (MRI), CT, tomosynthesis, and mammography, as well as molecular
breast imaging. Because mammography is cheap and available, it is considered the most
widely adopted screening method. When examining a human breast, mammography
employs low-dose X-rays. Notably, mammography is a simple and affordable method by
specialists. Actually, it is considered the gold standard method of detecting the early stages
of BC before the lesions turn into something clinically tangible. Its images show cancerous
masses and calcium deposits more brightly. As a result, the death rate decreased by 25 to
30%. A specialist receives two views of the breast, producing two images, namely MLO
(Medio Lateral Oblique) and CC (Cranio Caudal) views [4,5].

Specialists have accomplished results of cancer detection that have varied broadly.
Even the performances of top clinicians pave the way for further improvements [6,7]. Al-

217



Appl. Sci. 2022, 12, 7080

though mammography is used extensively, interpreting its images has challenged special-
ists. For instance, false positives may cause patient anxiety [8] and unimportant follow-ups,
as well as invasive diagnostic proceedings. The types of cancer that are not identified at
screening may be unidentifiable until the advanced stages, when they are hard to treat [9].

In the 1990s, mammography had computer-aided detection (CAD). Since then, many
assisting tools have been adopted for medical purposes [10]. Although they have been
thought of as promising [11,12], this generation of software did not succeed in obtaining
a better performance compared to readers in actual settings [6,12,13]. Lately, several
developments have resulted in the reissuance of the field, because of the successful attempts
of deep learning. Scholars and researchers employed several machine learning methods to
detect BC using mammograms [14].

The Digital Database for Mammography Screening (DDSM) [15] represents the high-
est generally utilized databases of the public mammogram. Several papers utilized the
traditional techniques of automatic, not manual, extraction of features, including fractional
Fourier transform, Gray Level Co-Occurrence Matrix (GLCM), and Gabor filter, in order
to secure features, followed by applying SVM or further classifiers to conduct the classifi-
cation [16,17]. Furthermore, neural networks were utilized as classifiers [18,19]. Recently,
several papers have employed CNN for feature generations, using mammograms [20,21].
Some authors utilized pre-trained CNN as transfer learning uses. Lévy et al. [22] surpassed
human performance in the classification of DDSM images using CNN, exploiting transfer
learning on pretrained models such as AlexNet, the ImageNet Large Scale Visual Recogni-
tion Challenge’s winning network in 2012 (ILSVRC), and GoogLeNet, which won the 2014
edition of the same competition [23,24]. Guan [25] only used one Convolutional CNN, with
the front convolutional layers being responsible for feature generation and the back fully
connected (FC) layers acting as the classifier. Therefore, our CNN uses mammographic
images as the input, and the (predicted) label as the output. With no evident overfitting,
the average validation accuracy for abnormal vs. normal cases converged at around 0.905.
In 2018, Xi et al. used VGGNet, the winner of the ImageNet challenge in 2014, to achieve a
92.53% classification accuracy [26,27]. The same authors exploited ResNet to localize the
abnormalities within the full mammography images [28]. Recently, Ragab et al. extracted
ROIs from mammography, both manually and with threshold-based techniques, then
classified them using AlexNet chained with SVM [29]. On the CBIS DDSM dataset, they
claimed an accuracy of 87.2% with a 0.94 AUC. Shen et al. further extended these studies
by comparing the findings of several state-of-the-art architectures; when averaging the top
four models, they were able to obtain a 0.91 AUC [30].

In 2020, an important article was published in Nature [31], in which the authors
trained an ensemble of three models on more than 28,000 mammogram images. Then,
they compared its predictions with the decisions of radiologists. The actual labels were
determined using follow-up exams or biopsies. It turns out that AI beats humans in terms
of sensitivity and specificity.

Some scholars have addressed the scarcity of images in the DDSM dataset by proposing
data augmentation techniques. Hussain et al. [32] compared different transformations,
proving that using augmentation functions that preserve a high amount of information
(i.e., not too disruptive) helps to increase the classification accuracy. Similar results were
obtained by Costa et al. in a less extensive study [33].

In this study, we aim to perform abnormality classification in mammography using
CNNs. The dataset of interest is the CBIS DDSM. The mammogram images feature two
kinds of breast abnormalities: mass and calcification, which can be either benign or malig-
nant. In supplementary, we display the advances of the CAD methods utilized in detecting
and diagnosing BC, using mammograms that encompass pre-processing, feature selection,
features extraction, and contrast enhancement, as well as methods of classification.

In this paper, Section 2 is dedicated to the Materials and Methods, whereas Section 3
is devoted to the methodology and pre-trained models. Section 4 explores the discus-
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sion of classification through classifiers and combined classifiers. Section 5 covers the
concluding remarks.

2. Materials and Procedures

2.1. Materials

The mammogram is one the most important methods on the effectiveness and sensi-
tivity of the screening modality [34].

2.1.1. Mammography Datasets

Various datasets are publicly accessible. They differ in terms of size, image format,
image type, and resolution, etc., such as DDSM and DDSM’s Curated Breast Imaging
Subset (CBIS-DDSM) as show (Table 2).

One of the most significant characteristics of a mammogram is the utilization of low-
energy X-rays, to screen and diagnose the human breast. Two master views are introduced
for acquiring the X-ray images: CC and MLO (Figure 2). Mammography mainly aims to
detect BC early [35,36], ordinarily by detecting abnormal regions or masses in the images
of the X-ray. These masses are often highlighted by a physician or an expert radiologist.

Figure 2. Mammography in CC and MLO views, respectively.

Table 2. Mammography datasets for breast cancer [1,37,38].

Dataset Type # of Images View Format Classes
Resolution
(Bit/Pixel)

Availability

DDSM [37] Digital
Mammogram (DM) 10,480 MLO/CC LJPEG Normal, benign

and malignant 8–16 Publicly
available

CIBS-DDSM [38] Digital
Mammogram (DM) 10,239 MLO/CC DICOM Benign and

malignant 10 Publicly
available

The paper applied mammographic images from databases. As a dataset, DDSM was
first assembled and became available online in 2007 by South Florida University. It contains
2620 scanned film mammographic images of normal, benign, and malignant cases, all
stored in Lossless Joint Photographic Experts Group format (LJPEG) with altered sizes and
resolutions [37].

DDSM is employed to conduct research in the systems of detecting and classifying
BC. It shows real breast data with a resolution of 42 microns, 16 bits, and an average
size of 3000 × 4800 pixels. It [15,36,39] holds 2620 scanned film mammography studies
distributed in 43 volumes. DDSM database holds 695 normal cases and 1925 abnormal
cases (914 malignant/cancer cases and 870 benign cases, as well as 141 benign without
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callback), specifying the boundaries and locations of the abnormal cases. For every case,
four images can be found to represent the left and right breasts in the MLO and CC views
(Figure 2) [34]. An experienced radiologist can recognize malignant and benign masses in
all mammograms. CBIS-DDSM Dataset: CBIS-DDSM is a developed and united edition of
DDSM. Table 3 displays the distribution of data.

Table 3. Distribution of data.

Type Normal
Abnormal

Total
Benign Malignancy

Train 1190 688 719 2597
Test 128 64 64 256
Total 1318 752 783 2853

2.1.2. Data Pre-Processing

The dataset is provided as a set of numpy arrays, containing the images and labels
to use for training and testing. Before these data can be actually used as input for the NN
models, a few pre-processing steps are necessary. Depending on the specific classification
task (e.g., mass/calcification, benign/malignant, . . . ), the actions to perform can be slightly
different. The following list describes the whole sequence for preparing the data:

1. Import the training and testing data as numpy arrays from shared npy files.
2. When the baseline patches are not needed, remove them and the corresponding labels

from the arrays (even indices).
3. Remap the labels, depending on how many, and which classes are involved in the

specific classification. If the task is to only distinguish between the masses and
calcification, only two labels (0–1) are needed. Conversely, four labels (03) are required
when it is also important to discriminate benign abnormalities from malignant ones.

4. Normalize the pixel values to be in a range that is compatible with the chosen
model. Scratch CNN models using input in the range (0, 1) floating point, while
VGGNet and other pretrained models are designed to work with images in (0, 255)
that are further pre-processed with custom transformations (channel swapping, mean
subtraction, . . . ).

5. Shuffle the training set and corresponding labels accordingly.
6. Distribute the training data to “validation” and “training” subsets. The former will be

used to compute the loss function exploited by the optimizer, where the actual perfor-
mance is monitored on an independent group during training, using a validation set.

7. Instantiate Keras generators as data sources for the network. Data augmentation
settings can be specified at this stage.

At the end of the pipeline, one or more of the resulting samples are effectively visual-
ized to verify that:

• The data are formatted as expected (size, range . . . )
• The images content is still meaningful and was not accidentally corrupted during

the process.

2.2. Methodology
2.2.1. Pre-Trained Models

CNNs have grown deeper in the past few years, because they have shown great
performance; with the state-of-the-art networks going from 7 layers to 1000 layers. In this
paper, we use some of these state-of-art architectures, pre-trained on ImageNet, for transfer
learning from natural images to breast cancer images.
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2.2.2. Pre-Trained VGG Architecture

A very deep convolutional network has many versions (VGG) [27], and has been
published by researchers from Oxford University as one of the best networks; it is known
as simple. Its architecture is very easy and deep; the convolution layers and dropout layers
are basically switched between. To replicate the influence of bigger receptive fields, the first
step is to use numerous small 3 × 3 filters in each convolutional layer and to merge them
in a sequence (VGG).

Despite the simple architecture, the network is costly regarding the cost of the com-
putation and memory, because the dramatically rising kernels cause more computational
time and a bigger sized model. The applied VGG16 architecture includes 13 convolutional
layers and five pooling layers, and attains 9.9% top-5 error on ImageNet. Its immense size
makes the training an extremely cumbersome process; notwithstanding, VGG16 is often
used for transfer learning, thanks to its flexibility.

2.2.3. Pre-Trained ResNet50 Architecture

Microsoft Research team introduced the ResNet50 for Image Recognition [28]; a
deep residual learning model. Notably, it is one of the best developed models. Due
to the novel concept of residual layers, some levels are bypassed to prevent a vanishing
gradient. The authors developed an elegant, simple, and straightforward idea by gathering
a standard deep CNN and adding shortcut connections that avoid limited convolutional
layers simultaneously. These connections generate residual blocks, as the convolutional
layer’s output is prompted by the block’s input tensor. The ResNet50 model, for example,
is made up of 50 layers of similar blocks connected by shortcuts. These connections keep
the computation time to a minimum, and provide a rich combination of features at the
same time; see Figure 3.

Figure 3. The architecture of VGG16 and ResNet50.

2.2.4. Pre-Trained MobileNet Architecture

MobileNet [40] is a scooped architecture proposed by Google to operate via mobile
phones and embedded devices or systems that do not have computational power. Its
architecture employed depthwise separable convolutions to radically decrease the sum
of trainable parameters, in rapprochement with regular CNNs with corresponding depth.
Both the spatial and depth dimensions are handled by the depthwise separable convolution
(number of channels). It breaks up the kernel into two parts, one for depthwise convolution,
and the other for pointwise convolution. The cost of calculation is considerably reduced
when kernels are used. MobileNet provides findings of rapprochement with AlexNet, while
drastically reducing the trainable parameters. Table 4 shows Summary of the architectures
of CNN.
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Table 4. Summary of the architectures of CNN.

Model Main Finding Depth Dataset Error Rate Input Size Year

AlexNet Utilizes Dropout and ReLU 8 ImageNet 16.4 227 × 227 × 3 2012

VGG Increased depth, small filter size 16, 19 ImageNet 7.3 224 × 224 × 3 2014

ResNet Robust against overfitting because of
symmetry mapping-based skip links 50,152 ImageNet 3.57 224 × 224 × 3 2016

Xception A depthwise convolution followed by a
pointwise convolution 71 ImageNet 0.055 229 × 229 × 3 2017

MobileNet-v2 Inverted residual structure 53 ImageNet - 224 × 224 × 3 2018

3. New Method

The present part tackles the work method of the suggested methods.

3.1. Convolutional Neural Network (CNN)

Deep CNN represents one of the distinctive types of neural networks that have found
major and popular use in machine learning and computer-aided detection applications [41]
for better performance and efficiency. The CNN has demonstrated extraordinary perfor-
mance in several competitions regarding image processing and computer vision. The
fantastic uses of CNN involve speech recognition, natural language processing, video
processing, and object detection, as well as image classification and segmentation.

CNN is a mathematical structure, which usually includes three types of building blocks:

� Convolution layers;
� Pooling layers;
� Fully connected layers.

Convolution and pooling building blocks perform feature extraction, while the third
charts the extracted features into a final output, such as classification. A convolution
layer has an interesting part of CNN that is made of many mathematical operations, like
convolution, which represents a specialized type of linear operation.

The strong learning ability of the deep CNN network is firstly due to it using several
feature extraction phases that can acquire representations based on data automatically.
There has been an acceleration in the CNN network by research, due to the large amounts of
available data and hardware improvements. Researchers have reported exciting deep CNN
architectures. Many inspirational ideas have been discovered for achieving developments
in CNN networks, including the use of several activation and loss functions, architectural
innovations, regularization, and parameter optimization. They are achieved through
architectural innovations and important developments in the representation capacity of
CNN deep networks.

3.2. Architecture and Development of the Model

The CNN model, i.e., CoroNet, was proposed to automatically detect BC from mammo-
gram images according to Xception CNN architecture [42,43]. Xception Extreme Inception
architecture represents the major feature of Xception (the predecessor model). In addition,
it consists of a 71-layer deep CNN architecture pre-trained on an ImageNet dataset. The
major conception behind Xception is its depthwise separable convolution. Using this
method, the operations’ number is decreased using a factor proportional to 1/k. Xception
employs depthwise separable convolution layers with residual connections instead of tra-
ditional convolutions. Separable in-depth Convolution replaces the traditional n × n × k
convolution with a 1 × 1 × k point-wise convolution followed by a channel-wise n × n
spatial convolution.

Residual connections represent “skip connections” whose authorized gradients flux
directly via a network, without travelling via non-linear functions of activation; conse-
quently, disappearing gradients are avoided. In the case of residual connections, the output
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of a weight layer series is combined with the original input and passed via a non-linear
activation function.

Out of the 33,969,964 parameters in CoroNet, 54,528 are non-trainable, and the other
33,969,964 are trainable. Xception represents the base model of CoroNet while adding
a dropout layer, and two completely connected layers, ultimately. In Table 5, CoroNet’s
architecture, layer-wise parameters, and output shape are all depicted. In order to specify
the overfitting problem, we used Transfer Learning to initialize the model’s parameters.

Table 5. CoroNet Architecture Details.

Layer (Type) Output Shape No of Parameters

Xception (Model) 5 × 5 × 2048 20,861,480
flatten (Flatten) 51,200 0

dropout (Dropout) 51,200 0
dense (Dense) 256 13,107,456

dense_1 (Dense) 4 1028
Total parameters: 33,969,964

Trainable parameters:33,915,436
Non-trainable parameters: 54,528

4. Results and Discussion

The authors performed two scenarios for CoroNet, for the detection of BC from
mammogram images. The first model was the major multi-class model (two-class CoroNet),
trained to categorize mammogram images into two groups: masses and calcifications.
The other was the four-class CoroNet (malignant mass vs. benign mass and malignant
calcification vs. benign calcification).

CoroNet, the proposed model, was implemented in Keras on top of Tensorflow 2.0. It
was pre-trained on the ImageNet dataset before being retrained end-to-end on the prepared
dataset using the Adam optimizer with a learning rate of 0.0001, a batch size of 128, and an
epoch value of 200. The data were shuffled before each epoch was activated, which was
known as data shuffling. Google Colab was used to perform all of the experiments and
training attempts.

The adopted models’ training and performance were evaluated with reference to sig-
nificant parameters, namely, validation loss, training loss, validation accuracy, and training
accuracy, at various epochs. Table 6 shows these parameters’ results. The parameters were
considered to estimate the trained models’ under-fitting and over-fitting. The graphs of
training loss vs. validation loss and training accuracy vs. validation accuracy of each model
were presented (Figures 4–7). In sum, CoroNet demonstrates the minimum training and
validation loss, and shows the best accuracies of training and validation.

Table 6. Training performance of the CNN models in the present paper.

Models Epoch Stop
Validation
Accuracy

Training
Accuracy

Validation
Loss

Testing Loss

VGG 16 13 86.54 68.90 0.2886 0.4320
CoroNet 84 94.73 99.73 0.6079 0.0069

MobileNet 29 68.41 70.24 0.5759 0.6054
ResNet50 12 72.15 74.40 0.5457 0.5948
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Figure 4. VGG16 Feature Extraction.

Figure 5. ResNet50 Feature Extraction.

Figure 6. MobileNet Feature Extraction.
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Figure 7. CoroNet Feature Extraction.

5. Conclusions

Deep convolutional neural networks (CNNs) are frequently used for medical im-
age analysis, Unlike the randomly initialized ones, pre-trained natural image database
(ImageNet)-based CNN models have a better chance of being successfully fine-tuned to
produce better results than those that are randomly initialized. A CNN model called
CoroNet is suggested to perform the automatic detection of BC by the CBIS-DDSM dataset.
It leverages the Xception architecture, which was completely trained on whole-image BC
based on mammograms, and pre-trained on the ImageNet dataset. This paper proved
that the convolutional design method “CoroNet” outperforms its alternative networks. In
four-class classification, experiments demonstrate that it can achieve an overall accuracy
of 94.92 percent (benign mass vs. malignant mass and benign calcification vs. malignant
calcification). For the two-class examples, CoroNet has a classification accuracy of 86.67%.
(calcifications and masses).

High-resolution mammography handling is seen as a significant difficulty. In order to
see the fine features contained in these high-resolution mammograms, the models must also
be updated. Although there are various imaging modalities that can be employed, such as
MRI and ultrasound, the majority of the current CAD relies on X-ray mammography. The
use of 3D mammograms for diagnosis rather than 2D mammograms is another difficult
issue that necessitated research in order to make the most of the 3D property, and to
improve detection and classification performance.
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Abstract: In clinical diagnosis, radiological reports are essential to guide the patient’s treatment. How-
ever, writing radiology reports is a critical and time-consuming task for radiologists. Existing deep
learning methods often ignore the interplay between medical findings, which may be a bottleneck
limiting the quality of generated radiology reports. Our paper focuses on the automatic generation
of medical reports from input chest X-ray images. In this work, we mine the associations between
medical discoveries in the given texts and construct a knowledge graph based on the associations
between medical discoveries. The patient’s chest X-ray image and clinical history file were used as
input to extract the image–text hybrid features. Then, this feature is used as the input of the adjacency
matrix of the knowledge graph, and the graph neural network is used to aggregate and transfer
the information between each node to generate the situational representation of the disease with
prior knowledge. These disease situational representations with prior knowledge are fed into the
generator for self-supervised learning to generate radiology reports. We evaluate the performance of
the proposed method using metrics from natural language generation and clinical efficacy on two
public datasets. Our experiments show that our method outperforms state-of-the-art methods with
the help of a knowledge graph constituted by prior knowledge of the patient.

Keywords: radiology report; computer-aided diagnosis; prior knowledge; knowledge graph; deep learning

1. Introduction

Medical images are important to diagnose and detect underlying diseases, and ra-
diological reports are essential to aid clinical decision making [1]. They describe some
observations of the image such as the extent, size, and location of the disease. The physician
communicates findings and diagnoses from the patient’s medical scan through the medical
report. This process is often laborious, taking an average of 5 to 10 min to write a medical
report [2]. The daily task of a radiologist involves analyzing a large number of medical im-
ages, which helps the physician to locate the lesion more accurately. Due to the increasing
demand for medical images, radiologists still have a large workload. However, the process
of writing radiology reports can be time-consuming and tedious for radiologists [3], and
it can also be error-prone when writing a report. In addition, the ability to automatically
generate accurate reports helps radiologists and physicians to make quick and meaningful
diagnoses. Its potential efficiency and benefits can be substantial, especially in critical
situations such as outbreaks of COVID or similar pandemics. In order to reduce the burden
on radiologists, it is important to be able to generate reports accurately and automatically.
These reasons provide a good motivation for our research into the automatic generation of
medical reports.

With the development of image captioning and the availability of large-scale datasets,
the application of deep learning in the automatic generation of medical reports has been
continuously deepened. However, how to generate accurate radiology reports is still a
challenging task, because the radiology report generation task is quite different from the
image captioning task. First, a radiology report is generated to output a paragraph, which
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is usually composed of several sentences, while image captioning generally only needs to
generate one sentence. Secondly, the generation of radiology reports requires extensive
domain knowledge to generate clinically coherent text and the use of medical terms to
describe normal and abnormal medical observations [4]. In addition, in the image caption,
the model needs to cover all the details of the image as much as possible to generate rich
captions. However, in radiology report generation, the model only needs to focus on
abnormal areas and infer potential diseases to generate radiology reports. The relationship
between potential diseases can determine the accuracy of the generated radiology reports.

Most existing methods focus on the image-to-fluent text aspect of the medical report
generation problem. These methods generally perform reasonably well in addressing verbal
fluency, but their results are significantly unsatisfactory in terms of clinical accuracy. The
possible reason is that their results are far from proficient in revealing the topics related to
the expected diseases and symptoms in the generated texts, and they ignore the associations
between these underlying diseases. Adding a knowledge graph can alleviate this problem.
A knowledge graph describes the relationships between concepts, entities, and their keys
in the objective world in a structured way. Knowledge graphs are also often used as
prior knowledge, which can provide complementary information for accurate reporting.
Medical reports typically consist of many long sentences describing various disease-related
symptoms and related topics in precise and domain-specific terms, which may potentially
influence each other. Deep learning methods often suffer from a lack of knowledge when
not explicitly taught compared to experienced radiologists, which limits the accuracy of
the generation. Modeling the associations between medical observations in the form of a
knowledge graph allows us to further leverage prior knowledge to generate high-quality
reports. To this end, Zhang et al. [5] and Li et al. [6] combined knowledge reasoning based
on the knowledge graph with encoders and decoders for radiology report generation.
However, their prior knowledge is manually predefined and, therefore, requires domain
experts to be closely involved in the design and implementation of the system, which is a
waste of time and effort. Due to the nature of the graph, their method can usually achieve
high accuracy, but may miss some important findings. While it is feasible to manually
identify and implement a high-quality knowledge graph to obtain good accuracy, it is often
impractical to exhaustively encode all nodes and relationships in this way. Our work uses
prior knowledge from text mining to build a generic knowledge graph to alleviate some of
these concerns.

We propose an innovative framework for automatic report generation based on prior
knowledge, which seamlessly integrates prior and linguistic knowledge at different levels.
First, we investigate a data-driven approach to automatically obtain associations between
disease labels in radiology reports. This prior knowledge is a natural extension of human-
designed knowledge. Disease labels are defined as nodes in the knowledge graph, which
are related and influence each other during the propagation of the graph. Secondly, we
establish a graph convolutional neural network to aggregate and transmit information
between each node to obtain prior knowledge [7]. Specifically, a set of multi-view chest
X-ray images are sent to the convolutional neural network for image feature extraction, and
then the content of the clinical document instructed by the doctor is used for text feature
extraction using Transformer [8]. The two extracted features are summed and normalized to
wound together to obtain a hybrid image–text feature, called a contextualized embedding.
The image–text hybrid features and the adjacency matrix constructed according to the
knowledge graph are transferred to the three-layer graph convolutional network, and
the special features of each knowledge graph node are learned to obtain the episodic
representation with prior knowledge. Then, these node features are transferred to two
branches, a linear classifier for disease classification, and a generator made of a transformer
to generate reports. After generating the report, the generated report is passed into the text
classifier again to fine-tune the generated report. Unlike previous studies, additional text
mining concepts are added to the model as labels for classification as well as nodes in the
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knowledge graph, and the expressive power of the model is enriched by training on the
chest X-ray image dataset with structured labels.

We evaluate our proposed method on the publicly accessible Open-I [9] and MIMIC-
CXR [10] datasets, where we employ Natural Language Generation (NLG) and clinical
efficacy (CE) metrics to analyze the quality of clinically generated reports. The results show
that the proposed method achieves good performance in both natural language generation
and clinical efficacy indicators. It is also shown that the addition of prior knowledge helps
to improve the quality and accuracy of the automatic generation of radiology reports.

Our contributions are outlined below:

1. We mine and model the text, and according to the mined information, we use prior
knowledge to build the knowledge graph and construct the corresponding adjacency
matrix (Section 3.1.1).

2. We combine text–image hybrid features with knowledge reasoning based on the
knowledge graph to improve the quality and accuracy of radiology report generation
(Section 3.1.4).

3. Our experiments show that our proposed model outperforms state-of-the-art methods.
The knowledge graph composed of prior knowledge of patients plays a crucial role in
improving the quality of generated reports.

2. Related Work

2.1. Image-Based Captioning and Medical Report Generation

Most of the work on image-based captioning is based on the classical structure of
CNN + LSTM, which aims to generate real sentences or relevant paragraphs of a topic
to summarize the visual content in an image or video [11–14]. With the development
of computer vision and natural language processing technology, many works combine
radiology images and free text to automatically generate radiology reports to help clinical
radiologists make a quick and meaningful diagnosis [15]. Radiology report generation
takes X-ray images as input and generates descriptive reports to support inference of better
diagnostic conclusions beyond disease labels. Many radiology report generation methods
follow the practice of image captioning models [16–18]. For example, ref. [19] adopted an
encoder–decoder architecture and proposed a hierarchical generator and attention mecha-
nism to generate long reports. Xue et al. [20] fused the visual features and semantic features
of the previous sentence through the attention mechanism, used the fused features to
generate the next sentence, and then generated the whole report in a loop. Wang et al. [21]
proposed an embedding network with text and image as input to jointly learn text and
image information and train the CNN-LSTM architecture end-to-end, which was then com-
bined with a multi-level attention model to generate a chest X-ray report. Chen et al. [22]
recorded important information during the generation process and then further assisted the
generation of radiology reports by providing memory-driven transformers. Jing et al. [23]
used reinforcement learning to exploit structural information between and within reports to
generate high-quality radiology reports. Liu et al. [24] combined self-key sequence training
and reinforcement learning to optimize the emergence of disease keywords in radiology
reports. Shin et al. [25] adopted the CNN-RNN framework to generate radiological reports
describing detected diseases based on visual features on chest X-ray image datasets.

Our work is mainly similar to that of Hoang et al. [26], who proposed a fully distin-
guishable end-to-end structural model, which mainly consists of three complementary
modules for classifier, generator, and interpreter, which increase the linguistic fluency and
clinical accuracy of generated reports. However, it does not add the association between
disease labels, and lacks the association between disease labels in the classification. We use
the association between labels learned from the text knowledge base to promote the seman-
tic alignment between disease labels and images, which can better show the correlation
between disease labels in classification, improve the accuracy of label classification, and
further improve the accuracy of report generation.
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2.2. Knowledge Graph

The concept of the knowledge graph was formally proposed by Google in 2012 to
achieve a more intelligent search engine. Since 2013, it has gained popularity in academia
and industry and plays an important role in intelligent question answering, intelligence
analysis, anti-fraud, and other applications. A knowledge graph is essentially a knowledge
base known as a semantic network, which is a knowledge base with a directed graph
structure where the nodes of the graph represent entities or concepts. The edges of the
graph represent semantic relations between entities/concepts, such as similarity relations
between two entities, or syntactical correspondences.

In our knowledge graph, we use the tool SentencePiece [27] to obtain entities and then
determine the relationship between entities based on the number of co-occurrences to build
a knowledge graph, which is a structured way to represent knowledge graphically. In a
knowledge graph, information is represented as a set of nodes, which are connected by
a set of labeled directed lines to represent the relationship between nodes. A knowledge
graph can well represent the relationship between nodes.

2.3. Transformer

Transformer was first introduced in the context of machine translation with the aim
of speeding up training and improving remote dependency modeling. It is implemented
by parallel processing of sequential data and an attention mechanism, which consists of a
multi-head self-attention module and a feed-forward layer. By considering multi-head self-
attention mechanisms and graph attention networks [28], recent transformer-based models
have shown considerable progress in many difficult tasks, such as image generation [29],
question answering, and linguistic reasoning [30]. Radiology reports are usually composed
of several long sentences. As the traditional RNN is not suitable for generating long
sentences and paragraphs, Chang et al. [31] designed a hierarchical RNN architecture as
the decoder to generate long sentences, but the effect was not satisfactory. The recently
emerged Transformer architecture can alleviate this problem. Therefore, we mainly use
Transformers to compose our text codec in our work.

3. Our Approach

Our framework consists of a classification module, a generation module, and an
interpretation module, as shown in Figure 1. The classification module consists of a
multi-view image encoder, a text encoder, and a graph convolutional network based on a
knowledge graph. We first build a knowledge graph in a data-driven manner (Section 3.1.1),
then use a multi-view image encoder to read multiple chest X-ray images and extract
the global visual feature representation, which is passed to a fully connected layer to
decouple the global visual feature representation into multiple low-dimensional visual
embedding (Section 3.1.2). At the same time, the text encoder reads the clinical documents
and summarizes the content into text summary embedding, and then uses the “Add
&LayerNorm” operation to wrap the visual embedding and text summary embedding
together to obtain the image–text hybrid features, which are referred to as context-related
embedding of the disease topic (Section 3.1.3). The episodic embedding is passed to a
graph convolutional network (GCN) based on a knowledge graph that propagates semantic
correlations between disease topics based on the knowledge graph to inject prior knowledge
into concept representation learning (Section 3.1.4). The generation module takes as initial
input the rich disease embedding that passes through the graph convolutional network
to generate the text (Section 3.2). Finally, the generated text is sent to the interpreter for
fine-tuning to align with the disease-related topics of the classification module (Section 3.3).
In what follows, we elaborate on these three modules.
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Figure 1. Our model mainly includes three parts. The classifier is used to read chest X-ray images and
clinical history to extract visual features and text features, and then the image–text hybrid features
and the adjacency matrix of the knowledge graph are passed into the graph convolutional network
to obtain the features containing prior knowledge. The obtained features are combined with topic
features and state features and fed into the generator based on the visual self-attention model to
generate the radiology report. The generated report is then passed into the interpreter to adjust the
generated radiology report.

3.1. Classifier
3.1.1. Construction of Knowledge Graph

In our study, the nodes of the knowledge graph are disease-related topics. Edges
are semantic associations between concepts. Our knowledge graph consists of two parts.
The first part is defined by the CheXpert [32] tagger, a rule-based system that extracts and
classifies medical reports into 14 common diseases. The label of each disease has four
states, namely positive, negative, uncertain, or unmentioned. The MIMIC-CXR dataset
has been annotated by the CheXpert tagger. The second part consists of supplementary
concepts and their interrelationships, mined from radiology reports in a data-driven manner.
Specifically, we count nouns in radiology reports using the SentencePiece tool, which is an
unsupervised text tagger and de-tagger, and then we select nouns with top-k occurrences as
additional disease labels, if they are not included in the fourteen disease labels defined by
the CheXpert tagger. We establish the knowledge graph according to the co-occurrence of
labels in radiology reports (Figure 2), and then construct the incidence matrix and binarize
the matrix to form the adjacency matrix of the knowledge graph [33]. Specifically, we build
a n × n matrix, where each row or column represents a label, and then calculate the values
in the matrix based on the number of co-occurrences of the labels in the radiology report. If
the number of co-occurrences between two labels is greater than the average number of
co-occurrences, the two labels are considered to be associated, and the corresponding value
of the matrix is assigned a value of 1. On the contrary, if the number of co-occurrences
between two labels is less than the average number of co-occurrences, the two labels are
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regarded as not associated, and the corresponding value of the matrix is assigned a value
of 0. This matrix is then regarded as the adjacency matrix of the knowledge graph.

Figure 2. Construction of the knowledge graph. The knowledge graph is built based on the co-
occurrence of the tags in the radiology report, and only the tag names of some nodes are shown. In the
figure, part (a) represents all node names in the knowledge graph; part (b) represents the knowledge
graph, where the green nodes represent the 14 common disease labels defined by CheXpert, and the
blue nodes represent the additional disease labels defined by us.

3.1.2. Multi-View Image Encoder

Each medical study consists of m chest X-ray images {Xi}m
i=1, as DenseNet can achieve

better performance than ResNet [34] with fewer parameters and computational cost. We
extract its corresponding latent features {Xi}m

i=1 ∈ R
c via a Densenet-121 [35] image

encoder with shared weights, where  is the number of features. Then, we obtain multi-
view latent features X ∈ R

 by combining m latent feature sets {Xi}m
i=1, referring to the

method proposed by Su et al. [36]. When m = 1, the multi-view encoder reduces to a
single-image encoder.

3.1.3. Text Encoder and Disease Contextualized Representation

Let T be a text document of length l with word embedding { 1, 2, . . . , l}, where
i ∈ R

e denotes the i-th word in the text and e is the embedding dimension. We use
the Transformer encoder as our text feature extractor to extract a set of hidden states
H = {h1, h2, . . . , hl}, where hi ∈ R

e denotes the attention feature of the i-th word to other
words in the text.

hi ∈ Encoder( i| 1, 2, . . . , l) (1)

n disease-related topics are queried from the whole document T, which is summarized
as Q =

{
q1, q2, . . . , qn

}
. We refer to this retrieval process as text summarization embedding

Dtxt ∈ R
n×e:

Dtxt = So f tmax
(

QHT
)

H (2)
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qi ∈ R
e is randomly initialized and updated by the attention mechanism. So f tmax

(
QHT)

represents the word-attention heat-map of n query diseases in the document.
As shown in Figure 1, we decouple the multi-view latent features X ∈ R

 extracted
by the image encoder into a low-dimensional disease representation Dimg ∈ R

n×e, where
each row is a vector ϕj( ) ∈ R

e, j = 1, 2, . . . , n. ϕj( ) is defined as follows:

ϕj( ) = AT
j + bj (3)

where Aj ∈ R
c×e and bj ∈ R

e are trainable parameters for the j-th class of disease repre-
sentation. n denotes the number of disease representations and e is the dimension of the
embedding. Then, the visual embedding Dimg and the text summary embedding Dtxt are
twisted together to form the disease situational representation D f used ∈ R

n×e:

D f used = LayerNorm
(
Dimg + Dtxt

)
(4)

The fusion of visual and textual information allows our model to simulate the work-
flow of a hospital to screen the visual manifestations of a disease based on a patient’s
clinical history.

3.1.4. Graph Convolutional Networks and Contextualized Representations of Diseases
with Prior Knowledge

We use the GCN to model the intrinsic association between diseases or topics, and the
adjacency matrix is built based on the knowledge graph detailed above. The GCN updates
its node representation via message passing, and graph convolution is represented as [37]:

Ĥl = ReLU
(

BN
(

Convld
(

Hl
)))

(5)

m = ReLU
(

D−1/2 ÂD−1/2HlWl
)

(6)

Hl+1 = ReLU(BN(Convld(concat(Ĥl , m)))) (7)

where Hl is the state in layer l and H0 is initialized using the disease contextualized
representation. Â = A + IN is the adjacency matrix with self-connection, A is the adjacency
matrix of the knowledge graph, IN is the identity matrix of order N, D = diag ∑j Aij

is the degree matrix of the graph, BN is the batch normalization, and Wl is a trainable
layer-specific weight matrix. We extract D f used to the semantic information between nodes
by the GCN, and obtain the disease situational representation Dpri- f used ∈ R

n×e with
prior knowledge.

3.1.5. Rich Disease Representation with Prior Knowledge

To further improve the accuracy of generated reports, we introduce rich disease
representations with prior knowledge. The main idea behind rich disease representations
with prior knowledge is to further encode informative attributes about the disease state,
such as positive, negative, uncertain, or unmentioned. Formally, let k be the number of states
and the state embedding be S ∈ R

k×e, then the confidence of each disease classification as
one of k disease states is:

p = Softmax
(

Dpri- f usedST
)

(8)

S is a trainable parameter initialized randomly. D f used is used as the feature of multi-
label classification, and the classification loss function is as follows:

Lp−c = − 1
n

n

∑
i=1

k

∑
j=1

yij log
(

pij
)

(9)
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where yij ∈ {0, 1} and pij ∈ [0, 1] represent the true and predicted values of the i-th disease
label, respectively. The state embedding Dstates ∈ R

n×e can be calculated as follows:

Dstates

{
yS , Training stage

pS, Other stages
(10)

Finally, Denriched ∈ R
n×e is the disease representation enriched with prior knowledge,

and is composed of disease embedding states, disease name topics, and episodic disease
representations with prior knowledge.

Dpri-enriched = Dstates + Dtopics + Dpri- f used (11)

where Dtopics ∈ R
n×e is randomly initialized to represent the disease or topic to be generated

and is a trainable parameter. The rich disease representation with prior knowledge provides
a clear and accurate disease description, which provides strong data support for the
subsequent generation module.

3.2. Generator

Our report generator is derived from Transformer. As shown in Figure 1, the network
consists of the masked multi-head self-attention module and the feed-forward layer super-
imposed on each other N times. The previous disease embedding and word embedding
are then used to calculate the hidden state hi ∈ R

e for each word of the medical reporter
species, and the disease embedding is denoted as Dpri-enriched = {di}n

i=1:

hi = Encoder( i| 1, 2, . . . , i−1, d1, d2, . . . , dn) (12)

Then, we predict the possible words based on the hidden state H = {hi}l
i=1 ∈ R

l×e.

pword = So f tmax
(

HWT
)

(13)

W ∈ R
v×e is this vocabulary embedding, v is the vocabulary size, l is the length of

the document, and pword,ij represents the confidence that the i-th position in the generated
medical report selects the j-th word in the vocabulary. The loss function of the generator is
the cross entropy of the real word yword,ij and the predicted word pword,ij.

Lg = −1
l

l

∑
i=1

v

∑
j=1

yword,ij log
(

pword,ij

)
(14)

The final generated report Ŵ ∈ R
l×e is:

Ŵ = pwordW (15)

3.3. Interpreter

To make the generated report more consistent with the original output of the classifier,
we refer to the idea of CycleGAN [38]. We build a text classifier based on the text encoder
above, input the generated report into the text classifier, output the state of the disease-
related topic, compare it with the original output of the classifier module, and then fine-tune
the generated report by adjusting the word representation output Ŵ.

First, the text encoder summarizes the current medical report Ŵ and outputs the
report summary embedding of the queried disease Q.

D̂txt = So f tmax
(

QĤT
)

Ĥ ∈ R
n×e (16)
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where Ĥ is calculated from the medical report Ŵ using Equation (1). Each report summary
embedding d̂i ∈ R

e is classified into one of k disease-related states, and d̂i is the i-th line
of D̂txt.

pint = So f tmax
(

D̂txtST
)
∈ R

n×k (17)

The loss function of the interpreter is similar to the loss function of the classifier.

Li = − 1
n

n

∑
i=1

k

∑
j=1

yij log
(

pint,ij
)

(18)

Here, yij ∈ {0, 1} denotes the confidence of the true disease label, and pint,ij denotes
the confidence of the predicted label. Overall, the training loss function of the whole model
can be summarized as follows.

Lall = Lp−c + Lg + Li (19)

4. Experiments

The experimental section evaluates the medical report generation task from two
aspects: verbal performance and clinical accuracy performance. The evaluation of the
experiments is performed on two widely used chest X-ray datasets, the Open-I and MIMIC-
CXR datasets.

4.1. Datasets
4.1.1. MIMIC-CXR Dataset

The MIMIC-CXR dataset is a large publicly available dataset of chest X-ray images
in JPG format, containing 377,110 images and 227,835 medical reports of 65,379 patients
from multiple viewpoints. Chest X-ray images from three main perspectives are reported:
anterior-posterior (AP), posterior-anterior (PA), and lateral (LA). Each study included a
comparison, clinical history, indication, reason for examination, impression, and findings
section. In our approach, we use multi-view images and concatenate the clinical history,
reason for examination, and indication sections as contextual information. For consistency,
we follow the experimental setup of [39] and focus on generating the “findings” section as
the corresponding radiology report.

4.1.2. Open-I Dataset

The Open-I dataset, collected at Indiana University Hospital, is a public radiology
dataset containing 3955 radiology studies corresponding to 7470 frontal and lateral chest
X-ray images. These radiological studies are related to one or more chest X-ray images.
Each study reported impression, findings, comparison, and indication sections. Similar to
the MIMIC-CXR dataset, we use multi-view chest X-ray images (frontal and lateral) and
the indicator part as context input. In our approach, we follow the approach of the existing
literature [2] and concatenate the impression part and the survey results part as the correct
generated report.

4.2. Implementation Detail

We use Densenet-121 as the core of our CNN model, and all images are resized
to 256 × 256. We use Transformer as the core of the text encoder. Both generators and
interpreters are implemented based on Transformers and trained from scratch, all hyper-
parameters are selected based on the performance on the validation set, and the number of
reporting encoder layers is set to 12. We train the classification and generation reports on
the Open-I and MIMIC-CXR datasets using the Adam optimizer with an initial learning
rate of 3 × 10−4 and weight decay of 1 × 10−2. For the interpreter, the Open-I dataset is
trained using a learning rate of 3 × 10−5, and the MIMIC-CXR dataset is trained using
an Adam optimizer with a learning rate of 3 × 10−6 and a weight decay of 1 × 10−2. We
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train the model with epochs of 50 for both Open-I and MIMIC-CXR datasets. We evaluate
the proposed model on the validation set. Our experiments are trained in parallel on two
RTX3090 sheets, and the experiment for each dataset is mainly divided into two parts. The
first part is the training of the classifier and generator, and then the trained model is added
to the interpreter for the second part of training. Each part is trained for 50 epochs in our
experiments. The training time of the first and second parts is about 54 s and 59 s per round
for the Open-I dataset, and about 34 min and 35 min per epoch for the MIMIC-CXR dataset,
respectively.

4.3. Experimental Results
4.3.1. Language Generation Performance

We employ the widely used NLG metric to evaluate the proposed model, which
includes scores from BLEU-1 to BLEU-4 [40], ROUGE-L [41], and METEOR [42]. We use
the nlg-eval library [43] to calculate the BLEU-1 to BLEU-4 scores, ROUGE-L scores, and
METEOR scores. In Table 1, our experimental results are compared with other state-of-
the-art methods, and all metrics have a certain improvement. The scores of BLEU-1 to
BLEU-4 are obtained by analyzing the sequence of consecutive words appearing in the
prediction report. In our results, BLEU-1 to BLEU-4 are significantly improved, indicating
that our method ignores some meaningless words and focuses more on describing diseases
with long sentences. ROUGE-L and METEOR are also much better than previous excellent
methods, which mean that our method can generate accurate reports and the framework is
effective.

Table 1. A comparison of our method and many existing methods, using different linguistic metrics:
BLEU-1 to BLEU-4, METEOR, and ROUGE-L, with the best results highlighted in bold.

Datasets Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

Open-I

TieNet [21] 0.330 0.194 0.124 0.081 N/A 0.311
Liu et al. [24] 0.359 0.237 0.164 0.113 N/A 0.354

KERP [6] 0.482 0.325 0.226 0.162 N/A 0.339
HRGR-Agent [44] 0.438 0.298 0.208 0.151 N/A 0.322

SD&C [23] 0.464 0.301 0.210 0.154 N/A 0.362
CoAtt [2] 0.455 0.288 0.205 0.154 N/A 0.369

R2Gen [22] 0.470 0.304 0.219 0.165 0.187 0.371
PPKED [45] 0.483 0.315 0.224 0.168 0.190 0.376

SGF [46] 0.467 0.334 0.261 0.215 0.201 0.415
Hoang et al. * [26] 0.490 0.362 0.286 0.233 0.213 0.440

Ours 0.505 0.379 0.303 0.251 0.218 0.446

MIMIC-CXR

Liu et al. [24] 0.313 0.206 0.146 0.103 N/A 0.306
R2Gen [22] 0.353 0.218 0.145 0.103 0.142 0.277

GumbelTransformer [39] 0.415 0.272 0.193 0.146 0.159 0.318
PPKED [45] 0.360 0.224 0.149 0.106 0.149 0.284

Hoang et al. * [26] 0.489 0.351 0.267 0.211 0.209 0.381
Ours 0.491 0.358 0.278 0.225 0.215 0.389

* indicates that the experimental results are reproduced in our experimental environment.

4.3.2. Clinical Accuracy Performance

We use the CheXpert [10] label as a measure to evaluate the clinical accuracy of
generated reports. We compare 14 common diseases proposed in CheXpert and MIMIC-
CXR based on precision, precision, recall, and F-1 metrics. We show the macro and micro
scores, respectively. A high macro score indicates an improvement in the detection of all 14
diseases, while a higher micro score indicates an improvement in the impact caused by the
imbalance of the dataset, such as the higher frequency of some diseases than others. The
results of our comparison are shown in Table 2. Compared with other experiments, our
clinical performance has improved in most of the indicators in the macro and micro scores.
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Table 2. The clinical accuracy of the generated reports was quantitatively compared by evaluating 14
common diseases defined together in the CheXpert and MIMIC-CXR datasets, with the best results
highlighted using bold font.

Datasets Methods Acc.
Macro Scores Micro Scores

AUC. F-1. Prec. Rec AUC. F-1. Prec. Rec

Open-I

S&T [11] 0.915 N/A N/A N/A N/A N/A N/A N/A N/A
SA&T [16] 0.908 N/A N/A N/A N/A N/A N/A N/A N/A
TieNet [21] 0.902 N/A N/A N/A N/A N/A N/A N/A N/A

Liu et al. [24] 0.918 N/A N/A N/A 0.190 N/A N/A N/A N/A
Hoang et al. [26] 0.937 0.702 0.152 0.142 0.173 0.877 0.626 0.604 0.649

Ours 0.938 0.749 0.193 0.246 0.181 0.925 0.636 0.614 0.660

MIMIC-
CXR

SA&T [16] N/A N/A 0.101 0.247 0.119 N/A 0.282 0.364 0.230
AdpAtt [17] N/A N/A 0.163 0.341 0.166 N/A 0.347 0.417 0.298
Liu et. al [24] 0.867 N/A N/A 0.309 0.134 N/A N/A 0.586 0.237

GumbelTransformer [39] N/A N/A 0.214 0.327 0.204 N/A 0.398 0.461 0.350
Hoang et al. [26] 0.887 0.784 0.412 0.432 0.418 0.874 0.576 0.567 0.585

Ours 0.890 0.858 0.560 0.587 0.593 0.907 0.640 0.579 0.715

4.4. Ablation Studies

The quantitative results of our method in the Open-I dataset are shown in Table 3.
Because the MIMIC-CXR dataset is too large and the effects of our method in both datasets
are improved, we mainly focus on the smaller dataset Open-I when analyzing the quantita-
tive results. By observing Table 3, it can be seen that after adding rich disease embedding
containing prior knowledge to the classifier, all evaluation indicators are improved, and
after adding the interpreter on this basis, the indicators are again improved to a certain
extent. Compared with the model that only uses rich disease embedding and adds prior
knowledge, the BLEU-1 value of the highest index is increased by 6.7% from 0.445 to 0.475.
After adding rich disease embedding with prior knowledge to the classifier, our model
adds an interpreter to obtain the best performance. Compared with the basic model with
the interpreter, our final model also has a great improvement in various indicators. The
BLEU-4 value is improved compared with the basic model without the interpreter and the
model with the interpreter, and it is 7% higher than the basic model with the interpreter. It
can be seen that the prior knowledge we incorporate is aided by the automatic generation
of accurate radiology reports.

Table 3. Ablation studies. Base with Denriched refers to the model composed of the classifier and
generator mentioned in this paper, and the classifier uses enriched disease embedding. Base with
Dpri-enriched refers to the model composed of the classifier and generator mentioned in this paper.
Rich disease embedding with prior knowledge is used in the classifier. Interpreter is the Interpreter
mentioned above. The best results are highlighted in bold.

Datasets Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

Open-I

Base with Denriched 0.445 0.328 0.256 0.206 0.198 0.434
Base with Denriched +

Interpreter 0.490 0.362 0.286 0.233 0.213 0.440

Base with Dpri-enriched 0.475 0.349 0.273 0.222 0.208 0.433
Base with Dpri-enriched

+ Interpreter 0.505 0.379 0.302 0.251 0.218 0.446

4.5. Qualitative Results

In Figure 3, we visualize the radiology reports of the three sets of images. The same
color in the reference report and the generated report indicates the same description of
the chest X-ray image, and the underscore indicates additional findings of our model for
the chest X-ray image. In the first example, the reports generated by our model are almost

238



Appl. Sci. 2022, 12, 11111

identical to the actual situation. In the second example, the report generated by our model
completely covers the actual situation and finds an additional disease based on the input
image. Although this disease may indeed not exist, it can be used as a reminder to assist
the doctor to make a more comprehensive diagnosis. In the third example, our model
generates a longer report based on the obtained features, and it is almost the same as
the actual situation, indicating that our model also has a relatively good performance in
generating complex sentences. It can be seen that our method can extract features from
images and clinical documents combined with prior knowledge to generate readable and
accurate reports.

 

Figure 3. Examples of three visual reports selected from the Open-I dataset. The same color empha-
sizes the same description of the chest X-ray image. Additional findings of our model for images are
highlighted by underlines.

5. Conclusions and Outlook

In this work, we propose a model to enhance the accuracy of generated medical
reports based on prior knowledge. We validate the proposed model experimentally, and
we validate the effectiveness of our added prior knowledge on the Open-I and MIMIC-
CXR datasets. The experimental results show that our model achieves relatively excellent
performance in the indicators of natural language generation and clinical efficacy. Ablation
experiments show that our model can learn visual features and text features better after
adding prior knowledge, so it can generate medical reports more accurately. In addition,
the establishment of our knowledge graph is built according to the dataset, which does not
need additional experts to build, so it can be more convenient to apply to other datasets.

In our work, we have not considered the influence of location information on the
generation of radiology reports, which is important. In the future, we will explore the
impact of including location information in disease classification on improving the accuracy
of generated reports. Next, we will explore how to improve the accuracy of our classifier,
which is related to the accuracy of our automated reports. Specifically, we will pre-train our
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image encoder and text encoder using a public dataset and then try to incorporate location
information into the classifier.
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28. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
29. Chen, M.; Radford, A.; Child, R.; Wu, J.; Jun, H.; Luan, D.; Sutskever, I. Generative pretraining from pixels. In Proceedings of the

International Conference on Machine Learning, Virtual Event, 13–18 July 2020; pp. 1691–1703.
30. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
31. Yin, C.; Qian, B.; Wei, J.; Li, X.; Zhang, X.; Li, Y.; Zheng, Q. Automatic generation of medical imaging diagnostic report with

hierarchical recurrent neural network. In Proceedings of the 2019 IEEE International Conference on Data Mining (ICDM), Beijing,
China, 8–11 November 2019; pp. 728–737.

32. Irvin, J.; Rajpurkar, P.; Ko, M.; Yu, Y.; Ciurea-Ilcus, S.; Chute, C.; Marklund, H.; Haghgoo, B.; Ball, R.; Shpanskaya, K.; et al.
Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison. In Proceedings of the AAAI
Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 590–597.

33. Chen, Z.M.; Wei, X.S.; Wang, P.; Guo, P. Multi-label image recognition with graph convolutional networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 5177–5186.

34. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

35. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

36. Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-view convolutional neural networks for 3d shape recognition. In
Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 945–953.

37. Jia, N.; Tian, X.; Zhang, Y.; Wang, F. Semi-supervised node classification with discriminable squeeze excitation graph convolutional
networks. IEEE Access 2020, 8, 148226–148236. [CrossRef]

38. Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In
Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232.

39. Lovelace, J.; Mortazavi, B. Learning to generate clinically coherent chest X-ray reports. In Proceedings of the Findings of the
Association for Computational Linguistics: EMNLP 2020, Punta Cana, Dominican Republic, 8–12 November 2020; Volume 2020,
pp. 1235–1243.

40. Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.-J. Bleu: A method for automatic evaluation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, PA, USA, 7–12 July 2002; pp. 311–318.

41. Lin, C.Y. Rouge: A Package for Automatic Evaluation of Summaries; Text Summarization Branches Out; Association for Computational
Linguistics: Barcelona, Spain, 2004; pp. 74–81.

241



Appl. Sci. 2022, 12, 11111

42. Banerjee, S.; Lavie, A. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In
Proceedings of the Acl Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization,
Ann Arbor, MI, USA, 29 June 2005; pp. 65–72.

43. Sharma, S.; Asri, L.E.; Schulz, H.; Zumer, J. Relevance of unsupervised metrics in task-oriented dialogue for evaluating natural
language generation. arXiv 2017, arXiv:1706.09799.

44. Li, Y.; Liang, X.; Hu, Z.; Xing, E.P. Hybrid retrieval-generation reinforced agent for medical image report generation. In
Proceedings of the Neural Information Processing Systems 2018, held at Palais des Congres de Montreal, Montreal CANADA, 2–8
December 2018 Advances in Neural Information Processing Systems 2018, Montreal, QC, Canada, 2–8 December 2018; Volume 31.

45. Liu, F.; Wu, X.; Ge, S.; Fan, W.; Zou, Y. Exploring and distilling posterior and prior knowledge for radiology report generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp.
13753–13762.

46. Li, J.; Li, S.; Hu, Y.; Tao, H. A Self-Guided Framework for Radiology Report Generation. arXiv 2022, arXiv:2206.09378.

242



MDPI AG
Grosspeteranlage 5

4052 Basel
Switzerland

Tel.: +41 61 683 77 34

Applied Sciences Editorial Office
E-mail: applsci@mdpi.com

www.mdpi.com/journal/applsci

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s).

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from

any ideas, methods, instructions or products referred to in the content.





Academic Open 

Access Publishing

mdpi.com ISBN 978-3-7258-2526-4


