
mdpi.com/journal/drones

Special Issue Reprint

When Deep Learning Meets 
Geometry for Air-to-Ground 
Perception on Drones

Edited by 

Dongdong Li, Gongjian Wen, Yangliu Kuai and Runmin Cong



When Deep Learning Meets Geometry
for Air-to-Ground Perception on
Drones





When Deep Learning Meets Geometry
for Air-to-Ground Perception on
Drones

Editors

Dongdong Li

Gongjian Wen

Yangliu Kuai

Runmin Cong

Basel • Beijing • Wuhan • Barcelona • Belgrade • Novi Sad • Cluj • Manchester



Editors

Dongdong Li

National University of

Defense Technology

Changsha

China

Gongjian Wen

National University of

Defense Technology

Changsha

China

Yangliu Kuai

National University of

Defense Technology

Changsha

China

Runmin Cong

Shandong University

Jinan

China

Editorial Office

MDPI AG

Grosspeteranlage 5

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Drones (ISSN 2504-446X) (available at: https://www.mdpi.com/journal/drones/special issues/

3080158YOJ).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-2507-3 (Hbk)

ISBN 978-3-7258-2508-0 (PDF)

doi.org/10.3390/books978-3-7258-2508-0

© 2024 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license.



Contents

Rui Chen, DongDong Li, Zhinan Gao ,Yangliu Kuai and Chengyuan Wang

Drone-Based Visible–Thermal Object Detection with Transformers and Prompt Tuning
Reprinted from: Drones 2024, 8, 451, doi:10.3390/drones8090451 . . . . . . . . . . . . . . . . . . . 1

Qingze Yin and Guodong Ding

A Large Scale Benchmark of Person Re-Identification
Reprinted from: Drones 2024, 8, 279, doi:10.3390/drones8070279 . . . . . . . . . . . . . . . . . . . 19

Minglei Li, Jia Li, Yanan Cao and Guangyong Chen

A Dynamic Visual SLAM System Incorporating Object Tracking for UAVs
Reprinted from: Drones 2024, 8, 222, doi:10.3390/drones8060222 . . . . . . . . . . . . . . . . . . . 36

Yuqi Han, Xiaohang Yu, Heng Luan and Jinli Suo

Event-Assisted Object Tracking on High-Speed Drones in Harsh Illumination Environment
Reprinted from: Drones 2024, 8, 22, doi:10.3390/drones8010022 . . . . . . . . . . . . . . . . . . . . 53

Gujing Han, Ruijie Wang, Qiwei Yuan, Liu Zhao, Saidian Li, Ming Zhang, et al.

Typical Fault Detection on Drone Images of Transmission Lines Based on Lightweight Structure
and Feature-Balanced Network
Reprinted from: Drones 2023, 7, 638, doi:10.3390/drones7100638 . . . . . . . . . . . . . . . . . . . 69

Xiaokun Si, Guozhen Xu, Mingxing Ke, Haiyan Zhang, Kaixiang Tong and Feng Qi

Relative Localization within a Quadcopter Unmanned Aerial Vehicle Swarm Based on Airborne
Monocular Vision
Reprinted from: Drones 2023, 7, 612, doi:10.3390/drones7100612 . . . . . . . . . . . . . . . . . . . 92

Zhinan Gao, Dongdong Li , Gongjian Wen, Yangliu Kuai and Rui Chen

Drone Based RGBT Tracking with Dual-Feature Aggregation Network
Reprinted from: Drones 2023, 7, 585, doi:10.3390/drones7090585 . . . . . . . . . . . . . . . . . . . 120

Xiaoxiong Liu, Changze Li, Xinlong Xu, Nan Yang and Bin Qin

Implicit Neural Mapping for a Data Closed-Loop Unmanned Aerial Vehicle Pose-Estimation
Algorithm in a Vision-Only Landing System
Reprinted from: Drones 2023, 7, 529, doi:10.3390/drones7080529 . . . . . . . . . . . . . . . . . . . 135

Meng Du, Yuxin Sun, Bing Sun, Zilong Wu, Lan Luo, Daping Bi and Mingyang Du

TAN: A Transferable Adversarial Network for DNN-Based UAV SAR Automatic Target
Recognition Models
Reprinted from: Drones 2023, 7, 205, doi:10.3390/drones7030205 . . . . . . . . . . . . . . . . . . . 160

Zifeng Qiu, Huihui Bai and Taoyi Chen

Special Vehicle Detection from UAV Perspective via YOLO-GNS Based Deep Learning Network
Reprinted from: Drones 2023, 7, 117, doi:10.3390/drones7020117 . . . . . . . . . . . . . . . . . . . 181

v





Citation: Chen, R.; Li, D.; Gao, Z.;

Kuai, Y.; Wang, C. Drone-Based

Visible–Thermal Object Detection

with Transformers and Prompt

Tuning. Drones 2024, 8, 451. https://

doi.org/10.3390/drones8090451

Academic Editor: Oleg Yakimenko

Received: 31 July 2024

Revised: 21 August 2024

Accepted: 29 August 2024

Published: 1 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Drone-Based Visible–Thermal Object Detection with
Transformers and Prompt Tuning

Rui Chen 1, Dongdong Li 1,*, Zhinan Gao 1, Yangliu Kuai 2 and Chengyuan Wang 3

1 College of Electronic Science and Technology, National University of Defense Technology,
Changsha 410073, China; chenrui23@nudt.edu.cn (R.C.); gaozhinan22@nudt.edu.cn (Z.G.)

2 College of Intelligent Science and Technology, National University of Defense Technology,
Changsha 410073, China; kuaiyangliu09@nudt.edu.cn

3 Information and Communication College, National University of Defense Technology,
Wuhan 430010, China; wangchengyuan@nudt.edu.cn

* Correspondence: lidongdong12@nudt.edu.cn

Abstract: The use of unmanned aerial vehicles (UAVs) for visible–thermal object detection has
emerged as a powerful technique to improve accuracy and resilience in challenging contexts, in-
cluding dim lighting and severe weather conditions. However, most existing research relies on
Convolutional Neural Network (CNN) frameworks, limiting the application of the Transformer’s
attention mechanism to mere fusion modules and neglecting its potential for comprehensive global
feature modeling. In response to this limitation, this study introduces an innovative dual-modal object
detection framework called Visual Prompt multi-modal Detection (VIP-Det) that harnesses the Trans-
former architecture as the primary feature extractor and integrates vision prompts for refined feature
fusion. Our approach begins with the training of a single-modal baseline model to solidify robust
model representations, which is then refined through fine-tuning that incorporates additional modal
data and prompts. Tests on the DroneVehicle dataset show that our algorithm achieves remarkable
accuracy, outperforming comparable Transformer-based methods. These findings indicate that our
proposed methodology marks a significant advancement in the realm of UAV-based object detection,
holding significant promise for enhancing autonomous surveillance and monitoring capabilities in
varied and challenging environments.

Keywords: drone-based object detection; visible–thermal object detection; vision transformer; vision
prompt tuning

1. Introduction

Object detection, a central challenge in computer vision, necessitates algorithms that
possess robust classification capabilities and precise spatial localization for the identification
and location of various targets, such as humans, animals, and vehicles, in images and videos.
The performance of detection has been markedly improved by the rapid advancement of
deep learning, particularly Convolutional Neural Networks (CNNs) [1], fueling progress
in the field and spurring interest in downstream tasks [2–4]. The rise of unmanned aerial
vehicles (UAVs), with their agility and efficient data collection capabilities, has given birth
to the task of drone-based object detection [5]. However, the significant scale variations and
variable angles in UAV imagery pose challenges to object detection. Existing algorithms for
rotated object detection [6–10], often designed for remote sensing images, struggle to meet
these demands.

In the field of drone-based object detection, current algorithms primarily depend on
visible light imagery, which inherently limits their effectiveness in complex environments
such as nighttime, rainy conditions, dense fog, and instances of occlusion (See Figure 1).
With the advancement of sensor technology, modern drones are equipped with a variety
of sensors, including infrared payloads, vastly expanding their range of applications and
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making dual-modal object detection a hot topic of research in the drone sector. The distinct
imaging mechanism of infrared, which captures thermal energy, complements visible light
imagery, markedly improving the precision and robustness of object detection. However,
existing dual-modal detection algorithms often employ dual-stream backbone networks to
process each modality separately, neglecting the issue of information imbalance between the
two modalities. This leads to a substantial amount of parameter redundancy, highlighting
the need for research into more efficient fusion strategies.

Figure 1. Difficulties and challenges faced by dual-modal object detection of UAV. (a) Low resolution
of infrared images, and unclear target textures. (b) Under occlusion conditions, parts of target in
visible light images are covered by trees. (c) Under night conditions, visible light imaging completely
fails. (d) Under heavy fog conditions, visibility of targets in visible light is obstructed. (e) Flight
height of drones is unstable, resulting in uneven target scales.

The Transformer architecture has achieved great success in the field of natural language
processing [11,12] and has since been adopted by researchers in the realm of computer
vision [13–15]. Its efficiency in processing long-range dependencies and parallelization
capabilities have established it as a new paradigm. Dealing with issues such as lighting
variations and target occlusions in dual-modal object detection poses challenges for CNNs.
CNNs excel at local feature extraction via convolutions but struggle with lighting changes
that alter pixel values and occlusion that disrupts these local patterns. Their limited global
context understanding and multi-modal interaction hinder performance. Transformers,
on the other hand, leverage global context capture capabilities, enabling better generaliza-
tion across different lighting conditions. For occlusions, Transformers utilize pre-trained
masking mechanisms to handle obscured regions, and their self-attention mechanism tracks
information changes before and after occlusion, facilitating robust multi-modal global infor-
mation interaction. However, in the domain of dual-modal object detection, the application
of Transformers is limited, with their attention mechanisms often confined to the fusion
module [16], not fully harnessing their potential for understanding global context. Ad-
ditionally, with the emergence of efficient self-supervised learning methods like Masked
Autoencoders (MAEs) [17], the Vision Transformer (VIT) [13] architecture can leverage
a wealth of pre-trained weights, offering superior feature extraction and generalization
for downstream tasks. Therefore, employing a VIT for dual-modal object detection is a
promising and innovative approach.

Considering the fine-tuning of models pre-trained on extensive datasets, visual prompt
tuning has emerged as a dominant approach. It significantly lightens the computational
load and storage requirements of model fine-tuning by introducing only a few parameters.
The VPT [18] integrates prompts into pre-trained networks through embeddings, yielding
favorable results across 24 downstream tasks in fine-grained classification. The ViPT [19]
creatively employs prompts as a dual-modal fusion tool, expanding visible light object
tracking to include infrared, depth, and event-based image tracking. Drawing from this
insight, we can conceptualize dual-modal object detection as a fine-tuning task. By refining
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single-modal benchmark models with prompts, we can transition them to dual-modal
detection, thereby improving their versatility and robustness for complex scenarios.

In conclusion, we develop a Transformer-based algorithm for visible–infrared object
detection, named Visual Prompt multi-modal Detection (VIP-Det). To fully exploit the
capabilities of Transformer-based dual-modal algorithms, the Vision Transformer is utilized
as the backbone for feature extraction, leveraging its strength in capturing long-range
dependencies and global context. To simplify the complex architecture of dual-modal
object detection, a prompt-based fusion module is devised that introduces prompts for
fusion within a single-stream network, significantly reducing the number of parameters.
To optimize pre-trained models and balance modal information, a stage-wise optimization
strategy is introduced that commences with training single-modal benchmark models
and subsequently refines features with additional modalities, fostering more effective
modal integration and refined feature extraction. Our algorithm is tested on the Dron-
eVehicle dataset, and the results demonstrate that it achieves high precision and adeptly
accommodates the demands of object detection in intricate settings.

In summary, the contributions of this paper are as follows:

• We propose a novel Transformer-based framework for dual-modal object detection,
which incorporates the Vision Transformer (VIT) as a backbone, capable of efficiently
extracting features and enhancing the precision of object detection;

• We introduce a prompt-based fusion module and a stage-wise optimization strategy,
utilizing prompts to guide feature fusion and enhance the aggregation capabilities of
dual-modal information. Additionally, we employ a phased fine-tuning approach to
guide parameter optimization, thereby better transferring the feature representation
capabilities of the original model;

• We assess the performance of our proposed framework on the DroneVehicle dataset
and showcase its superior accuracy when compared to other comparable Transformer-
based methods.

2. Related Work

2.1. Visible–Thermal Object Detection

Visible–thermal object detection algorithms stand as prime examples of image fusion
technology, overcoming the limitations of single-modality images in complex environments
by integrating complementary data from visible and thermal imagery. This synergy sig-
nificantly enhances the precision and robustness of object detection. Researchers have not
only compiled diverse datasets such as KAIST [20], DVTOD [21], and DroneVehicle [22]
but have also proposed various cutting-edge algorithmic frameworks. Halfway Fusion [23]
excels in merging visible and thermal information at the midlevel feature stage through a
unique ConvNet architecture. UA-CMDet [22] introduces an uncertainty-aware mechanism
that dynamically assesses the uncertainty of each modality and proposes a novel light-
aware cross-modal non-maximum suppression algorithm to further improve detection.
C2Former [16] focuses on cross-modal attention learning, facilitating interaction between
RGB and thermal data via the ICA module while enhancing computational efficiency with
the AFS module. TSFADet [24] offers the TSRA module for precise alignment of features.

However, current visible–thermal object detection algorithms, often based on dual-
backbone networks, grapple with high complexity and a large number of parameters.
The unequal significance of visible and thermal information under different environmental
conditions challenges the assumption of equal importance, necessitating the development
of more efficient, lightweight fusion strategies and intelligent mechanisms for adjusting
modal weights as a critical research focus.

2.2. Vision Transformer for Object Detection

Inspired by the way humans process information, attention mechanisms in deep learn-
ing models dynamically adjust the weights of different parts to enable the models to focus
on the critical portions of the input data, thereby enhancing their performance [25,26]. The
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Transformer is one of the best examples that showcases the power of attention mechanisms.
The Transformer model, renowned for its global modeling and parallel processing capa-
bilities in NLP [11,12], has intrigued the field of computer vision. The Vision Transformer
(ViT) [13] revolutionized image processing by treating image patches as core processing ele-
ments. In the realm of object detection, DETR [15] introduced a new approach by discarding
conventional anchor boxes and non-maximum suppression, utilizing an attention-based
encoder–decoder framework for direct bounding box and category prediction. The Swin
Transformer [14,27] significantly accelerates its computation speed through the use of a
sliding window mechanism and hierarchical structure. The innovation of Masked Au-
toencoders (MAE) [17] for ViT pre-training advanced the field, facilitating self-supervised
learning through the prediction of masked pixels, leading to the emergence of models like
ViTDet [28], MIMDet [29], and ImTed [30] that enhance detection with an MAE’s pre-trained
weights. For remote sensing, RVSA [31,32] tailored a ViT for detecting rotating objects by
adjusting attention mechanisms, while STD [33] employed separate network branches to
predict bounding box attributes, harnessing ViT’s spatial transformation abilities. In the
field of drone-based object detection, a Hybrid Convolutional–Transformer framework [34]
was proposed to address the challenge of weak supervision in drone-view imagery.

Nevertheless, the full capacity of Transformers in visible–thermal object detection
remains untapped. Currently, Transformers are predominantly used as fusion components
alongside CNNs [16], rather than independently harnessing their global modeling and spa-
tial transformation strengths. Future research should focus on the explicit and customized
application of Transformer models to visible–thermal object detection. This necessitates
developing Transformer architectures that cater to the unique aspects of visible and infrared
imagery, propelling advancements in this domain.

2.3. Vision Prompt Tuning

Fine-tuning large-scale pre-trained models on downstream tasks has become a preva-
lent training strategy for numerous NLP and CV tasks. The essence of this approach is to
perform a comprehensive update of the model parameters on a specific dataset. However,
this method is less efficient in terms of parameter utilization, as it necessitates creating
unique model replicas for each new task and requires storing the enormous pre-trained
models. In contrast to past conventional methods, Prompt has emerged as a novel training
paradigm and is increasingly becoming the dominant approach for fine-tuning in computer
vision. This involves training a large foundational visual model with extensive data and then
using different prompts to accomplish various tasks. The Image Inpainting [35] algorithm
has trained a model with the objective function, allowing it to rely on visual prompts to
perform various tasks. The SAM [36] algorithm uses repeated prompts to direct the model’s
output, with prompt formats such as points, bounding boxes, masks, and text, which de-
scribe target objects for segmentation. VPT [18] outperforms fine-tuning in classification
tasks by embedding prompt parameters before input. ViPT [19] learns modality-specific
prompts to adapt frozen pre-trained foundational models to a range of downstream dual-
modal tracking tasks, including RGB + Depth, RGB + Thermal, and RGB + Event tracking.

3. Models and Methods

In this section, we introduce VIP-Det (Visual Prompt dual-modal Detection), an in-
novative algorithm for drone-based visible–thermal object detection that leverages the
Vision Transformer architecture. This section commences with an exposition of the motiva-
tions that drove the development of the algorithm and an elucidation of its overarching
framework. Subsequently, it delves into the technical nuances of the implementation of the
prompt-based fusion module. This section concludes with an elucidation of the algorithm’s
stage-wise training optimization strategy.

3.1. Overview

Traditional drone-based object detection algorithms are often limited to visible light
imagery and may fail under complex environmental conditions such as nighttime, rainy
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weather, fog, and occlusions. Existing visible–thermal object detection algorithms typically
rely on dual-stream backbone networks for feature extraction, which significantly increases
the number of parameters and is hindered by the imbalance between the two modalities,
thereby limiting the efficiency of their fusion. Vision Transformers (ViTs) have demonstrated
impressive performance across a wide range of visual tasks; however, in the domain of
visible–thermal object detection, their attention mechanisms are often confined to the fusion
module, and the potential of their feature modeling has not been fully exploited.

To address these limitations, our VIP-Det, designed for visible–thermal object detection,
introduces the Vision Transformer as its backbone. The algorithm adopts a single-stream
network architecture to concurrently extract features from visible and infrared images.
A novel prompt mechanism is employed to introduce a small set of learnable parameters
for feature-level integration. During training, the algorithm first establishes a baseline
model on single-modal data and then refines the model parameters using dual-modal
data. The overall network architecture is designed to efficiently integrate the information
from both modalities, aiming to enhance the algorithm’s capability in object detection.
The overall architecture is illustrated in the accompanying Figure 2.

Figure 2. The overarching architecture of VIP-Det encompasses several principal components: a
data preprocessing module, a prompt-based fusion module, a feature extraction module, and a
rotation detection head. Firstly, the dual-modal images are input in the data preprocessing module to
generate visible light tokens and infrared tokens separately. Then, the prompt-based fusion module
initializes and generates prompt tokens, which are merged with the tokens from both modalities and
jointly input into the feature extraction module. The feature extraction module, comprising multiple
Transformer layers, performs feature extraction on the merged tokens. Finally, the extracted feature
maps are fed into the rotated detection head to obtain results.

Our VIP-Det algorithm is composed of four main components: a data preprocess-
ing module, a prompt-based fusion module, a feature extraction module, and a rotated
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detection head. The data preprocessing module processes both visible light and infrared
imagery by patching them into tokenized form and stacking them. The prompt-based
fusion module introduces prompts as learnable parameters, guiding feature fusion through
training iterations. These prompt-embedded tokens are then inputted into the feature
extraction module. This module employs an MAE pre-trained Vision Transformer model,
which features 12 layers of Transformer blocks, as its backbone network instead of ResNet-
50. The extracted features are then fed into the rotated detection head for classification
and regression. In our experiments, we utilized the rotated detection head of STD [33] to
achieve the most precise detection results. During the training process, we initially selected
one modality as the baseline model and trained it to establish a foundation. Subsequently,
we integrated the other modality to facilitate fusion, achieving dual-modal object detection
with minimal parameter adjustments for efficient fine-tuning.

3.2. Vision Transformer Architecture

The Vision Transformer (ViT) represents a significant advancement in computer vision,
reshaping the traditional approach of Convolutional Neural Networks (CNNs). Instead of
sliding convolutional kernels across an image to extract features, the ViT divides the input
image into a grid of nonoverlapping patches. Each of these patches is then flattened and
converted into a vector, effectively transforming the two-dimensional image data into a
sequence of one-dimensional vectors. To encode the spatial relationships between these
patches, positional encodings are added to the vector representations, ensuring that the
model can distinguish and utilize the positional information. These enriched embeddings
serve as the input to a stack of Transformer encoder layers, which form the core of ViT’s
architecture. Each encoder layer leverages self-attention mechanisms to allow each patch
to attend to and interact with every other patch in the sequence, capturing long-range
dependencies and contextual information. This is complemented by feedforward neural
networks, which introduce non-linearities and enable the model to learn complex feature
representations. As the embeddings traverse through the stacked encoder layers, they are
progressively transformed and enriched, ultimately encoding a rich semantic understanding
of the input image. In the context of this specific task, the output of the final encoder layer,
now enriched with features extracted from both visible and infrared modalities, serves as
the foundation for subsequent dual-modal target detection. These features, reflecting the
unique properties of both spectra, empower the model to detect and identify objects with
unprecedented accuracy and robustness, demonstrating the versatility and power of the
Vision Transformer framework in addressing complex computer vision challenges.

3.3. Prompt-Based Fusion
3.3.1. Overview

To fine-tune a single-modal object detection model based on prompts, we first need a
pre-trained baseline model for the specific modality, where the embedding layer and Vision
Transformer layers are already equipped with relevant parameters. During subsequent
fine-tuning, these layers are frozen to preserve their feature extraction capabilities. When
pre-training the baseline model, the embedding layer and Transformer layers for feature
extraction of that modality, along with the detection head, are trained, while the prompt
layer remains untrained.

For simplicity, let us assume there is a pre-trained baseline model for the visible light
modality; hence, the visible embedding layer is frozen, and a certain number of Vision
Transformer layers are also frozen as per the requirement. Since the infrared modality has
not been trained, the infrared embedding layer requires fine-tuning.

For input images, visible light and infrared images are separately fed into their cor-
responding embedding layers, where they undergo patch partitioning and encoding to
obtain visible tokens and infrared tokens. This step is performed in the data preprocessing
module. Subsequently, the prompt layer is initialized to generate a certain number of
prompt tokens, which are then combined with the previously extracted visible and infrared
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tokens to form fused tokens. As training progresses, the parameters of the prompt layer
are iteratively fine-tuned to produce prompt tokens with lower losses.

These fused tokens are then fed into the Transformer layers of the feature extraction
module, where the output from the previous layer, including the prompt tokens, serves as
input for the next layer. This process continues through all Transformer layers, from which
the visible and infrared tokens are extracted to obtain feature maps. These feature maps are
then input into the rotated detection head. For the specific code process, refer to Appendix A.

3.3.2. Introduction

Given a pair of prealigned and coregistered visible and thermal images, denoted
xv ∈ R3×H×W (where v stands for visible) and xt ∈ R3×H×W (where t stands for thermal),
respectively, with H and W being the height and width of the images, and assuming a
batch size of 1 for simplicity, we explore the integration of these modalities within a Vision
Transformer framework for object detection.

3.3.3. Image Patch Embedding

A typical ViT with N layers divides the input images into m fixed-size patches I j
v ∈

R3×h×w and I j
t ∈ R3×h×w for j ∈ N, 1 ≤ j ≤ m, where h and w are the height and width

of each patch. These patches are then embedded into a d-dimensional latent space and
position encodings are added:

ev
j
0 = Embed(Iv

j) ev
j
0 ∈ R

d, j = 1, 2, . . . , m

et
j
0 = Embed(It

j) et
j
0 ∈ R

d, j = 1, 2, . . . , m
(1)

The sets of patch tokens at layer i are represented as:

Evi = {ev
j
i ∈ R

d | j ∈ N, 1 ≤ j ≤ m}
Eti = {et

j
i ∈ R

d | j ∈ N, 1 ≤ j ≤ m}
(2)

3.3.4. Prompt-Based Feature Fusion

To facilitate dual-modal feature fusion, we introduce a set of continuous prompt
tokens P = {pk ∈ Rd | k ∈ N, 1 ≤ k ≤ p} initialized randomly and inserted before the first
encoder layer L1 of the pre-trained Transformer. During fine-tuning, only the task-relevant
prompts are updated, while the main Transformer parameters are frozen. This leads to:

[Ev1, Et1, Z1] = L1([Ev0, Et0, P]) (3)

where Z represents the prompt parameters after iteration within the network. The forward
pass through the Transformer layers can be expressed as:

[Evi, Evi, Zi] = Li([Evi−1, Eti−1, Zi−1]) i = 1, 2, . . . , N (4)

Each layer Li consists of multihead self-attention (MSA) and a feedforward network
(FFN), accompanied by Layer Normalization (LayerNorm) and residual connections.

3.3.5. Detection Head

Finally, a rotated object detection head denoted as Head processes the fused features
from the last layer to predict rotated bounding boxes and categories:

y = Head(Ev N , Et N) (5)

3.4. Stage-Wise Training Optimization

The typical approach to dual-modal object detection adheres to a standardized process:
Initially, two separate backbone networks are employed to extract features from paired
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visible and infrared images independently. Subsequently, these dual-modal features are
fed into a feature fusion module, integrating information from the two distinct modalities.
Ultimately, an object detection head is leveraged for regression prediction, enabling the
localization and classification of objects within the images.

However, a notable issue arises from this methodology: During a single training cycle,
all network architecture parameters must be learned, resulting in a substantial parameter
count and sluggish training speed. To address this challenge, we propose a stage-wise
training optimization strategy. See Figure 3.

Figure 3. A comparison between the stage-wise training optimization strategy and common dual-
modal object detection algorithms. (a) shows the common dual-modal object detection framework.
(b) represents the prompt-based fusion and stage-wise training optimization strategy. It is divided
into two stages. (b1) shows the process of training the baseline model. (b2) illustrates the process of
training the fusion model.

First, we individually train the mono-modal visible and infrared images using a Vision
Transformer backbone network, aiming to develop the capacity to extract fundamental and
generic features. This phase targets the establishment of benchmark mono-modal models.
Next, we proceed with dual-modal image inputs for modal fine-tuning, freezing partial
weights within the backbone networks and introducing prompt parameters for fine-tuning.
This promotes efficient dual-modal feature fusion.

By adopting this training paradigm, we not only drastically reduce the parameter
count but also simplify the overall model architecture. As there is no need for a separate
feature fusion module, our approach relies solely on a minimal set of prompt parameters
to achieve dual-modal feature fusion. This not only decreases model complexity but also
renders the model more concise and interpretable.

Furthermore, our method harnesses the power of pre-trained models, facilitating
seamless migration to dual-modal object detection tasks. By maintaining the invariance of
selected weights from the pre-trained models during the fine-tuning phase, our approach
effectively leverages the rich feature representations already learned, further enhancing the
performance of dual-modal object detection.

4. Results

In this section, we commence by detailing the datasets and evaluation metrics em-
ployed in our experiments. Subsequently, we provide the pertinent setup and configuration
details. We proceed with a series of ablation studies to validate the efficacy of our algorithm.
Finally, we conduct comparative experiments against related algorithms.

4.1. Datasets and Evaluation Metric

The DroneVehicle [22] dataset is a comprehensive and diverse collection of RGB–
infrared (RGB-IR) images captured by drones. This dataset encompasses a wide range of
scenarios, including urban roads, residential areas, parking lots, and other environments,
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spanning various times of the day and night. The dataset consists of 28,439 image pairs, each
pair containing corresponding RGB and infrared images that have been precisely aligned to
ensure accurate representation of the scene. The annotations provided by the dataset authors
are extensive and include oriented bounding boxes for five distinct vehicle categories: cars,
buses, trucks, vans, and freight cars. The dataset is organized into a training set and a test set,
with the training set comprising 17,990 image pairs and the test set consisting of 1469 image
pairs. Our experiments were conducted on this DroneVehicle dataset, leveraging its richness
and variability to test and refine our vehicle detection algorithm.

We utilized the mean average precision (mAP) as the primary evaluation metric for
our detection algorithm, applied to the validation set. To ensure accurate detections, we
employed an Intersection over Union (IoU) threshold of 0.5, which helped filter out false
positives and contributed to a reliable assessment of the algorithm’s performance.

4.2. Implementation Details

Utilizing pre-trained weights initialized from the MAE, we embarked on training our
network specifically for the DroneVehicle dataset, leveraging the computational prowess of
an NVIDIA RTX 4090 GPU. Our training strategy commenced with initializing a single-
modal base model through 12 epochs, subsequently transitioning into a 12-epoch fusion
model training phase, where prompts were integrated to enhance performance. The opti-
mization process employed stochastic gradient descent (SGD) equipped with a momentum
factor of 0.9 and a weight decay rate of 0.0001.

During each training iteration, we processed batches containing two images apiece,
initiating with a learning rate of 0.001. This learning rate underwent a strategic halving at
epochs 8 and 11 to facilitate a smoother convergence. To augment the training data and
bolster the model’s generalization capabilities, we applied various image transformations
such as flipping, cropping, and splicing.

Post-training, during the inference phase, we utilized non-maximum suppression (NMS)
with an Intersection over Union (IoU) threshold set at 0.3 to effectively eliminate redundant
bounding boxes, ensuring the precision of our detections. Throughout these endeavors, we
leveraged customized versions of the MMRotate and MMDetection frameworks.

4.3. Ablation Experiment
4.3.1. Ablation on Prompt-Based Fusion

To validate the efficacy of our prompt-based fusion module in enhancing the quality of
fusion outcomes, we conducted a rigorous ablation study. This investigation entailed a com-
parative analysis between two experimental setups: the baseline approach, which directly
stacked modalities without utilizing the fusion module, and our algorithm augmented
with the integrated prompt-based fusion module.

The outcomes of this study, tabulated in Table 1, reveal a notable improvement.
Specifically, the inclusion of the prompt-based fusion module resulted in a marked 1.3%
increase in mean average precision (mAP). This substantial gain underscores the pivotal
role played by our fusion module in bolstering the overall performance of the algorithm,
highlighting its effectiveness in fostering seamless and effective modality integration.

Table 1. Ablation on prompt-based fusion. Compared to direct feature stacking and fusion, the intro-
duction of prompts simplifies task complexity by minimizing direct modifications to model parameters.
This approach mitigates the risk of overfitting and, through the incorporation of additional parameters,
enables the model to adapt more flexibly to feature transformations and weight adjustments. Conse-
quently, it enhances the model’s generalization capabilities, making it more robust and versatile across
diverse scenarios. The red mark indicates an increase in the number of parameters.

Method Car Truck Freight Car Bus Van mAP Param

baseline 90.3 68.1 62.2 90.0 56.3 73.4 70.02 M
baseline + prompt 90.4 78.5 61.4 89.8 57.5 75.5 70.10 M (+0.08 M)
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4.3.2. Ablation on the Number of Frozen Layers

In the two-stage optimization training strategy, we strategically froze the Transformer
encoder layers to safeguard the model’s foundational representation and generalization ca-
pabilities. The experiment compared freezing the first 6 layers, fine-tuning the last 6 layers,
and fine-tuning all 12 layers, assessing the trade-off between accuracy and efficiency.

The results in Table 2, tabulated, reveal that freezing the first six layers results in a
minimal 0.4% decrease in mAP compared to fine-tuning of the full layer, showcasing the
effectiveness of partial freezing in reducing training parameters without compromising ac-
curacy. This approach accelerates training and reduces computational demands, facilitating
large-scale deployments and iterations.

Table 2. Ablation on the number of frozen layers. Due to the discrepancy between the pre-training
task and the new task, some features in the pre-trained model may not be suitable for the new task.
Freezing certain layers can potentially limit the model’s ability to represent features tailored to the
new task, resulting in a certain degree of accuracy degradation. However, this approach also brings
benefits such as reducing the number of parameters and accelerating the model training speed. The
red mark indicates an increase in the number of parameters.

Method Car Truck Freight Car Bus Van mAP Param

frozen 6 layers 90.3 71.2 63.2 90.1 57.8 74.5 59.45 M
fine-tune 12 layers 90.4 78.5 61.4 89.8 57.5 75.5 70.10 M (+10.65 M)

In conclusion, partial freezing of the backbone network layers in two-stage optimiza-
tion training is an efficient and practical method, allowing us to balance speed and accuracy
by adjusting the number of frozen layers. This discovery offers an innovative approach to
optimizing deep learning model training workflows.

4.3.3. Ablation on Stage-Wise Optimization

We conducted experiments to train both a single-stage mono-modal baseline model
and a two-stage dual-modal model to validate the effectiveness of the staged training
optimization for the detection of dual-modal objects. In our setup, we initially trained
mono-modal models for visible light and infrared data, and then we introduced the data
of the other modality to fine-tune the corresponding models. The results, as tabulated in
Table 3, show that the fine-tuned models exhibited impressive improvements in mAP: the
visible light model saw a remarkable 15.6% increase, and the infrared model experienced a
3% increase. The dual-modal object detection algorithms outperformed their mono-modal
counterparts on the dataset, which contains challenging environments such as nighttime.
The introduction of infrared data mitigates the limitations of using only visible light for
object detection, enhancing performance in complex scenarios.

Table 3. Ablation on stage-wise optimization. With the addition of information from another modality,
the fine-tuned model can fully leverage the complementary nature of the data, achieving higher
performance. Meanwhile, since the ground truth is uniformly adopted from infrared annotations,
the infrared detection performance tends to be better than that of visible light. The red mark indicates
an improvement in accuracy.

Method Car Truck
Freight

Car
Bus Van mAP Modality

visible baseline 78.3 54.9 38.8 83.8 43.8 59.9 RGB
thermal baseline 90.3 72.5 57.8 88.8 52.9 72.5 T

visible + fine-tune 90.4 78.5 61.4 89.8 57.5 75.5 (+15.6) RGB + Tthermal + fine-tune 90.4 78.5 59.8 89.6 56.9 75.0 (+2.50)
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4.4. Performance Comparison

For the purpose of comparison, our experiment involved the implementation of a dual-
modal object detection algorithm that underwent fine-tuning on the visible light base model,
referred to as VIP-Det. This was set against a range of baseline mono-modal object detection
algorithms, including the single-stage R3Det [8], the two-stage Oriented R-CNN [9], and the
anchor-free SASM [10]. To ensure a fair comparison, these baseline algorithms were trained
separately on either the visible light or infrared datasets. Furthermore, we conducted
a meticulous re-implementation of four established RGB + T multispectral methodolo-
gies—Halfway Fusion [23], UA-CMDet [22], TSFADet [24], and C2Former [16]—with the
objective of rigorously assessing their efficacy in the realm of RGB-IR object detection.

4.4.1. Comparison with Single-Modal Algorithm

The experimental results, as presented in Table 4, offer profound insights upon analysis.
Specifically, in the comparison of single-modality algorithms for visible light, Oriented
R-CNN emerges as the top performer, surpassing the single-modality benchmark VIP-Det
algorithm in terms of precision. This underscores the advanced detection framework and
optimization strategies employed by Oriented R-CNN in handling complex scenes and
recognizing intricate features.

Table 4. Performance comparison of single-modal and dual-modal object detection algorithms. This
concise table comprehensively evaluates the performance of diverse object detection algorithms
across single-modal (RGB or thermal IR) and dual-modal (RGB + thermal IR) setups. By analyzing
average precision (AP) in detecting cars, trucks, freight cars, buses, and vans and calculating mean
average precision (mAP), it underscores VIP-Det’s excellence in harnessing dual-modal information.
The table highlights the modality used, revealing how modality choice impacts detection accuracy,
offering valuable insights. The red mark indicates the maximum precision value in the column.

Method Car Truck Freight Car Bus Van mAP Modality

R3Det [8] 87.8 35.0 16.1 75.9 16.2 46.20

RGBOriented R-CNN [9] 88.9 61.7 39.7 87.9 40.5 63.74
SASM [10] 88.6 52.4 31.6 82.0 32.0 57.32

VIP-Det (V) 78.3 54.9 38.8 83.8 43.8 59.90

R3Det [8] 89.5 29.5 22.3 73.1 16.2 46.12

TOriented R-CNN [9] 90.1 61.7 48.2 88.6 39.7 65.66
SASM [10] 89.6 46.8 36.2 80.7 28.8 56.42
VIP-Det (T) 90.3 57.8 61.4 88.8 52.9 72.50

VIP-Det (ours) 90.4 78.5 61.4 89.8 57.5 75.50 RGB + T

However, when shifting our focus to infrared data, the narrative shifts. VIP-Det,
when trained solely on infrared datasets, demonstrates a remarkable superiority over other
single-modality object detection algorithms, including the formidable Oriented R-CNN
in visible light. Its precision advantage over Oriented R-CNN reaches a significant 6.84%,
highlighting VIP-Det’s unique strengths in processing infrared imagery, possibly attributed
to its sensitivity and adaptability to spectral characteristics.

Moreover, in the head-to-head comparison between single-modality and dual-modality
algorithms, VIP-Det claims the highest precision level. This achievement not only vali-
dates the inherent superiority of the VIP-Det algorithm but also underscores the profound
impact of multi-modality information fusion on enhancing object detection performance.
By integrating information from both visible and infrared spectra, VIP-Det is able to com-
prehensively capture target features, mitigating information loss and interference inherent
in single-modality approaches. Consequently, it achieves more precise and robust target
detection in complex environments.
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4.4.2. Comparison with Dual-Modal Algorithm

As shown in Table 5, when compared with the current state-of-the-art dual-modal
object detection algorithms, our algorithm has demonstrated remarkable performance,
achieving a significant mAP of 75.5%. This achievement not only surpasses other relevant
dual-modal algorithms but also validates the effectiveness of our algorithmic innovations
in multi-source information fusion and efficient feature extraction.

Table 5. A comparison with dual-modal algorithms. This refined table introduces a comparative anal-
ysis of VIP-Det against leading dual-modal (RGB + thermal) object detection algorithms. By assessing
their performance in detecting various vehicle types and calculating the mean average precision
(mAP), it offers valuable insights into how VIP-Det fares against the most advanced techniques in
the field, further elucidating its strengths and positioning within the current state of the art. The red
mark indicates the maximum precision value in the column.

Method Car Truck Freight Car Bus Van mAP Modality

Halfway Fusion [23] 89.85 60.34 55.51 88.97 46.28 68.19

RGB + T
UA-CMDet [22] 87.51 60.70 46.80 87.00 38.00 64.00

TSFADet [24] 90.01 69.15 65.45 89.70 55.19 73.90
C2Former [16] 90.20 68.30 64.40 89.80 58.50 74.20
VIP-Det (ours) 90.40 78.50 61.40 89.80 57.50 75.50

4.4.3. Comparison of Visual Detection Results

In this experiment, we aimed to validate the robustness of our algorithm and explore the
efficacy of multi-modal object detection in complex environments. To this end, we selected
Oriented R-CNN, the top-performing algorithm under single-modality conditions, as a
benchmark for comparison. Our objective was to demonstrate the advantages of dual-modal
object detection in the same environments where Oriented R-CNN is typically applied.

To comprehensively assess performance, we chose four distinct scenarios: daylight,
nighttime, rainy/foggy conditions, and scenes with occlusion. Each of these scenarios
poses unique challenges to object detection systems, requiring robust algorithms that can
overcome factors such as illumination variations, poor visibility, and partial visibility of
targets. The results are shown in Figure 4.

In daylight conditions, visible light predominates. Regarding the section highlighted
in the red frame, the single-modality Oriented R-CNN misclassifies it in infrared imagery,
whereas VIP-Det accurately determines the target category, effectively addressing the issues
of low resolution and lack of clarity in infrared images.

Under nighttime conditions, the Oriented R-CNN fails to detect the red-framed area
entirely in the single visible light modality due to insufficient information. Conversely, VIP-
Det supplements visible light information with infrared imagery, mitigating the inability of
visible light-based target detection at night.

In rainy or foggy environments, visible light images tend to blur due to light reflection
by raindrops or fog particles, whereas infrared imaging, relying on thermal conduction,
is less affected. For the red-framed section, Oriented R-CNN, operating solely on visible
light, misses the detection, while VIP-Det, leveraging infrared imagery as an aid, adeptly
resolves the issue of unclear textures and blurred contours in visible light images under
adverse weather conditions.

In cases of occlusion, such as by trees or other objects, visible light imaging suffers from
information loss due to reflection. However, thermal radiation from targets can penetrate
certain obstructions. For the red-framed region, Oriented R-CNN, using only visible light,
experiences missed detections, whereas VIP-Det, by successfully fusing infrared and visible
light information, is capable of detecting occluded targets. For a more extensive showcase
of visual results, please refer to Appendix B.
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Figure 4. A comparison of visual detection results. In this table, we present a visual comparison of
the detection results between the single-modal algorithm, Oriented R-CNN, and our dual-modal
algorithm, VIP-Det, across different scene environments. Each set of images encapsulates the detection
outcomes from the same pair of visible and infrared images within a given scene. The red bounding
boxes highlight the performance differences demonstrated by the algorithms under those specific
scenarios, providing a clear visualization of their respective strengths and capabilities.

5. Discussion

Our research is primarily focused on the dual-modal object detection task within the
UAV field. We have conducted a comprehensive set of ablation studies to validate the
reliability of our proposed modules, and we have compared our algorithm with relevant
state-of-the-art methods, showcasing its superior detection accuracy and impressive visual
results. In contrast to single-modal object detection algorithms, our approach ingeniously
fuses features through the use of prompts, endowing it with the capability of dual-modal
complementarity and heightened robustness. Compared to existing dual-modal detection
algorithms, our method fully exploits the representation and modeling power of Vision
Transformers, achieving even better dual-modal feature extraction.

Looking ahead, we envision numerous avenues for further exploration to enhance
the performance and practicality of our algorithm in real-world applications. Beyond de-
veloping more effective fusion modules and simplifying network architectures, we aim to
optimize our model for seamless integration with UAV edge devices, enabling real-time,
accurate detections under diverse environmental conditions. Additionally, we will investi-
gate the potential of leveraging both visual and thermal data for battlefield reconnaissance
and target identification, paving the way for safer and more efficient drone operations in
the field.
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6. Conclusions

In this work, our main contribution lies in the introduction of a Transformer-based
algorithm for visible–thermal object detection tailored for applications of unmanned aerial
vehicles (UAVs), named VIP-Det (Visual Prompt dual-modal Detection). VIP-Det employs
a Vision Transformer as its backbone network, innovatively incorporates a prompt-based
fusion module for refined feature integration, and adopts a stage-wise optimization strat-
egy for efficient fine-tuning. Through a series of quantitative and qualitative experiments
conducted on the DroneVehicle dataset, we demonstrate that VIP-Det surpasses exist-
ing dual-modal object detection algorithms, effectively tackling complex UAV-to-ground
target detection scenarios, including rainy conditions, nighttime environments, and occlu-
sion, with remarkable performance. This underscores the significant advancement of our
proposed methodology in the realm of UAV-based object detection, which has immense
potential to improve autonomous surveillance and monitoring capabilities in diverse and
challenging environments.
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Appendix A

To better elucidate the prompt-based fusion module, we offer a streamlined pseudo-
code flow of the algorithm, facilitating comprehension. Our algorithmic module encom-
passes two pivotal steps: pre-training and fine-tuning. During pre-training, the focus lies
in provisioning initial embedding weights and relevant Transformer layer parameters.
The fine-tuning phase, on the other hand, introduces prompt parameters for optimization.
By integrating these two steps, our prompt-based fusion module efficiently leverages pre-
trained knowledge while flexibly adapting to various tasks through optimized prompts,
enhancing overall performance and versatility.
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Algorithm A1 Prompt-based fusion

1: procedure PRE-TRAIN(xv)
2: Divide xv into patches Iv

j ∈ R3×h×w ,1 ≤ j ≤ m
3: for j = 1 to m do

4: ev
j
0 = Embedv(Iv

j), ev
j
0 ∈ Rd

5: Ev0 = Concatenate(ev
j
0)

6: end for
7: for i = 1 to N do
8: Ev i = Trans f ormeri([Ev i−1)
9: end for

10: y = Head(Ev N)
11: Loss(y)
12: update(parameters)
13: end procedure
14: Retrieve weights of visible light embedding and Transformer layers
15:
16: procedure FINE-TUNING(xv,xi)
17: Frozen weights of visible light embedding and Transformer layers
18: Divide xv and xt into patches Iv

j, It
j ∈ R3×h×w

19: for j = 1 to m do

20: ev
j
0 = Embedv(Iv

j), ev
j
0 ∈ Rd

21: et
j
0 = Embedt(It

j), et
j
0 ∈ Rd

22: end for
23: Initialize prompt tokens P = {pk ∈ Rd | k = 1, 2, . . . , p}
24: [Ev0, Et0, Z0] = Concatenate(Ev0, Et0, P)
25: for i = 1 to N do
26: [Ev i, Et i, Zi] = Trans f ormeri([Ev i−1, Et i−1, Zi−1])
27: end for
28: y = Head(Ev N , Et N)
29: Loss(y)
30: update(parameters)(excluding parameters of visible light embedding and Trans-

former layers)
31: end procedure

Appendix B

In this supplementary section, we incorporate four comprehensive sets of visual
comparison graphs to showcase the detection outcomes of our proposed method under
diverse and challenging environmental conditions. These include scenarios of daytime,
nighttime, foggy weather, and occlusion, providing a more prominent demonstration of
the superiority of our approach. Within each set of images, we include four pairs of images
specific to that environmental scenario. Each image pair comprises a visible light image on
the left and its corresponding infrared image on the right. With the left image depicting the
visible light influence and the right image corresponding to the infrared imagery, we can
more effectively demonstrate the inherent differences between these two modalities and
underscore the algorithm’s adept utilization of their complementary information.
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Figure A1. The additional visualization results obtained using VIP-Det in the daytime scenarios. This
set showcases the baseline performance under optimal lighting conditions.

Figure A2. The additional visualization results obtained using VIP-Det in the nighttime scenarios.
The nighttime set reveals the effectiveness of our algorithm in low-light environments.

Figure A3. The additional visualization results obtained using VIP-Det in the foggy scenarios. This
set highlights the ability of our method to penetrate visual obscurities and accurately detect objects,
demonstrating its resilience against atmospheric disturbances.
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Figure A4. The additional visualization results obtained using VIP-Det in the occlusion scenarios.
This set underscores the capability of our approach to recognize objects even when partially hidden
or obstructed, illustrating its robustness against occlusion challenges.
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Abstract: Unmanned aerial vehicles (UAVs)-based Person Re-Identification (ReID) is a novel field.
Person ReID is the task of identifying individuals across different frames or views, often in surveil-
lance or security contexts. At the same time, UAVs enhance person ReID through their mobility,
real-time monitoring, and ability to access challenging areas despite privacy, legal, and technical
challenges.To facilitate the advancement and adaptation of existing person ReID approach to the UAV
scenarios, this paper introduces a baseline along with two datasets, i.e., LSMS and LSMS-UAV. Both
datasets have the following key features: (1) LSMS: Raw videos captured by a network of 29 cameras
deployed across complex outdoor environments. LSMS-UAV: captured by 1 UAV. (2) LSMS: Videos
span both winter and spring seasons, encompassing diverse weather conditions and various lighting
conditions throughout different times of the day. (3) LSMS: Including the largest number of anno-
tated identities, comprising 7730 identities and 286,695 bounding boxes. LSMS-UAV: comprising
500 identities and 2000 bounding boxes. Comprehensive experiments demonstrate LSMS’s excellent
capability in addressing the domain gap issue when facing complex and unknown environments. The
LSMS-UAV dataset verifies that UAV data has strong transferability to traditional camera-based data.

Keywords: Person Re-Identification; UAVs-based Person Re-Identification; large scale dataset;
Multi-Scene; multi-time; multi-camera

1. Introduction

Unmanned aerial vehicles (UAVs), commonly known as drones, have seen a rise in
accessibility and have significantly impacted various domains such as photography [1],
transportation [2], and search operations [3], providing substantial benefits to the public.
Among them, utilizing drones for person ReID tasks in urban settings is a relatively novel
direction. Compared to traditional person ReID systems based on camera setups, UAV-
based person ReID offers faster response times. This is because it eliminates the need for
complex camera retrieval with multiple different parameters and allows for direct video
transmission on a single drone.

Traditional Person Re-Identification (ReID) aims to match and retrieve images of a
specific individual from a vast gallery dataset captured by camera networks. Due to its
significance in surveillance and security applications, ReID has garnered considerable
attention from both industrial and academic sectors [4–6]. With the advancements in
deep learning techniques and the various public datasets, the performance of ReID has
witnessed remarkable improvements. For instance, on the Market1501 [7] dataset, the
Rank-1 accuracy of a single query has increased from 43.8% [8] to 96.1% [9]. Similarly, on
the CUHK03 [10], the Rank-1 accuracy has risen from 19.9% [10] to 88.5% [11]. Furthermore,
on the MSMT17 [12] dataset, the Rank-1 accuracy has risen from 47.6% [12] to 89.7% [13].
A comprehensive review of current methodologies will be provided in Section 2.

Although the current ReID algorithms have a good effect on the existing datasets,
there are still some unresolved problems that impede its applications in reality. One
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major issue is the disparity between existing public datasets and real-world data. Many
current datasets are limited in scope, either containing only a limited number of identities
or are captured under controlled environments. For instance, even the largest dataset,
MSMT17 [12], comprises less than 4101 identities and features simplistic lighting variations.
However, in real-world scenes, ReID typically operates within camera networks that are set
up across diverse environments, processing videos captured over extended periods of time.
As a result, real-world applications must contend with challenges such as a huge number of
person identities, and complex variations in lighting, view, and weather conditions, which
current methods may struggle to adequately settle.

Another significant issue that has been identified is the domain gap between various
person ReID datasets. This refers to the phenomenon where ReID models trained on one
dataset while tested with another often experience a significant performance drop. For
instance, a model with a classic person ReID algorithm, Bag of Tricks (BoT) [14], trained
on Market1501 [7] achieves only a Rank-1 accuracy of 28.6% when tested on MSMT17 [12].
As illustrated in Figure 1, the domain gap can be attributed to various factors such as
differences in lighting conditions, viewpoints, resolutions, seasons, weather, backgrounds,
etc. For example, most pedestrians from Market1501 are captured during summer, wearing
bright-colored short sleeves and shorts. Conversely, the DukeMTMC-ReID dataset was
collected during winter, so pedestrians are mostly dressed in dark-colored and thick
clothing. The MSMT17 dataset has provided more variations in lighting, but pedestrians
still predominantly wear thick clothing, which, to some extent, limits the diversity of
dataset styles. This challenge poses a significant obstacle to the practical applications of
person ReID, as the data from the existing training set cannot be efficiently applied to the
new test set.

Figure 1. An illustration of the domain gaps across MSMT17, Market1501, and DukeMTMC-ReID
reveals distinct styles, including variations in lighting, resolution, human demographics, seasonal
conditions, and backgrounds. These discrepancies pose challenges in achieving high accuracy when
using any one of them as the training set and the others as the test set.

To advance research efforts toward real-world applications, this paper presents a
curated large-scale dataset named Large-Scale Multi-Scene (LSMS). Distinguished from
existing datasets, LSMS offers several novel features. Firstly, the raw videos were captured
by a network of 29 cameras deployed across complex outdoor environments on campus,
including academic and residential sectors. Consequently, the dataset showcases intricate
scene transformations and diverse backgrounds. For example, it includes images of pedes-
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trians, such as elderly people, children, and teenagers. It also features diversity with images
of both cyclists and walking pedestrians. Secondly, the videos span a considerable duration
of time, covering nine days within three months under different weather conditions across
winter and spring seasons. In addition, it features footage captured during the morning,
noon, and afternoon hours. This results in a dataset with complex variations in lighting
conditions and person clothes styles. Lastly, LSMS provides the largest number of labeled
bounding boxes and identities to date, comprising 286,695 bounding boxes and 7730 identi-
ties. To the best of our knowledge, LSMS stands as the most challenging and the largest
open dataset available for ReID research. We’ll elaborate on the dataset in Section 3.

In order to address the person ReID under drone surveillance, we also propose a
dataset collected using drones, namely, LSMS-UAV. It has the following features: Firstly,
the raw videos were captured by a drone on a different road from LSMS, including complex
outdoor environments such as academic and residential areas on campus. Secondly, the
videos span two days, with each day capturing 20 min of footage during various periods,
including morning, noon, and afternoon, showcasing different lighting conditions and
variations. Lastly, the dataset comprises 500 identities and 2000 bounding boxes, which is
sufficient for the test set.

Our contributions can be delineated into four key aspects. (1) A challenging large-scale
dataset LSMS is curated, available at https://github.com/QingzeYin/LSMS, for realistic
person ReID tasks, advancing research in the field. (2) A UAV-based person ReID dataset
is proposed, with tests conducted on several other classic camera-based ReID datasets.
Experimental results demonstrate that models trained on traditional person ReID datasets
perform well on UAV-based datasets. This provides a benchmark for subsequent research
on ReID based on UAVs. (3) The comparison and analysis of the most typical person ReID
algorithms were conducted on four public classic camera-based ReID datasets and one
LSMS-UAV dataset. LSMS demonstrated significant advantages in complexity, authenticity,
and robustness. (4) This paper comprehensively analyzes the issues hindering practical
applications of person ReID, such as monotonous backgrounds in training data, uniform
clothing, and limited variation in person samples. It also highlights the potential of LSMS
to drive future research in the field.

2. Related Work

This research is closely related to the standard ReID datasets, descriptor learning in
person ReID and UAV applications. We provide a brief summary of these three categories
of research as follows.

2.1. Standard ReID Datasets

To improve the performance of person ReID gradually, researchers have proposed
most of the related datasets. Earlier, Cheng et al. [15] introduced a novel dataset named
CAVIAR which includes 72 identities with 610 bounding boxes captured from two cameras.
Then, Hirzer et al. [16] proposed a novel dataset named PRID which includes 934 identities
with 1134 bounding boxes captured from two cameras. Recently, Li et al. [10] proposed
a novel dataset named CUHK03 which includes 1467 identities with 28,192 bounding
boxes captured from two cameras. Zheng et al. [7] introduced the Market1501 dataset for
person ReID, addressing limitations of existing datasets by offering over 1501 identities
with 32,668 annotated bounding boxes across 6 cameras. Images are produced using the
Deformable Part Model (DPM) as a pedestrian detector, and the dataset features multiple
images for each identity under each camera. Ristani et al. [17] introduced new precision-
recall measures and the largest fully-annotated dataset named DukeMTMC-ReID for multi-
target, multi-camera tracking, which includes 1812 identities with 36,411 bounding boxes
captured from 8 cameras. Wei et al. [12] introduced the MSMT17 dataset with features
captured from a 15-camera network and 4101 annotated identities with 126,441 bounding
boxes, aiming to address challenges in person ReID.
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2.2. Descriptor Learning in ReID

Descriptors based on deep learning have demonstrated significant superiority over
hand-crafted features in the majority of ReID datasets. Some studies [18,19] employ deep
descriptors learned from entire images using classification models, treating each person
ID as a distinct category. Others [20,21] combine classification and verification models to
train descriptors. In [22], Hermans et al.have shown that triplet loss efficiently enhances
person ReID accuracy, while Chen et al. [23] have proposed quadruplet networks for
representation learning.

However, the aforementioned approaches focus on learning global descriptors and
overlook detailed cues that may be crucial for distinguishing individuals. To explicitly
leverage local cues, Yin et al. [24] introduce a multi-view part-based network for discrim-
inative descriptor learning. Wu et al. [25] discovered that hand-crafted features could
complement deep features by dividing the global picture into five fixed-length areas and ex-
tracting histogram descriptors for each region concatenated with the global deep descriptor.
Despite their effectiveness, these methods overlook misalignment issues that stem from the
rigid division of body parts. Addressing this concern, Wei et al. [26] detected three coarse
body regions by utilizing Deepercut [27] and subsequently learned a global-local-alignment
descriptor. Zhao et al. [28] localized the fine-grained part areas and input them into the
raised Spindle Net to learn descriptors. Similarly, in [29], Li et al. detected latent part
regions by employing Spatial Transform Networks (STN) [30] and then training descriptors
on those regions.

2.3. UAV Detection, Classification, and 3D Tracking Techniques

The integration of deep learning methods across diverse sensor modalities has signif-
icantly advanced UAV detection [31,32] and classification techniques [33]. Vision-based
detection systems, leveraging neural networks for processing visual data from cameras,
have demonstrated notable success. Notably, models from the YOLO series [34] have exhib-
ited remarkable accuracy in bounding box classification and regression tasks. Liu et al. [35]
proposed an enhanced detection and classification approach utilizing clustering support
vector machines, yielding improved performance. Additionally, segmentation methods [36]
have been employed to augment detection capabilities.

In real-world applications, UAV 3D tracking finds extensive utility across various
domains such as military, transportation [37], and security [38]. Techniques leveraging
learning-based methodologies have been pivotal in enhancing tracking accuracy. For
instance, Lan et al. [39] utilized a sparse learning approach for RGB-T tracking, effectively
mitigating cross-modality discrepancies. Moreover, transformer-based algorithms for multi-
object tracking [40] hold promise for UAV detection scenarios, demonstrating potential
effectiveness in handling complex data associations.

3. LSMS and LSMS-UAV Dataset

3.1. Overview of Previous ReID Datasets

The current landscape of person ReID datasets has significantly propelled research
in this field. Notably, as shown in Table 1, datasets such as MSMT17 [12], DukeMTMC-
ReID [17], CUHK03 [10], and Market1501 [7] exhibit larger scales in terms of the number
of cameras and identities compared to predecessors like VIPeR [41], CAVIAR [15], and
PRID [16]. This abundance of training data enables the development of deep models that
showcase their discriminative prowess in person ReID tasks. Despite the high accuracy
achieved by current algorithms on these datasets, the practical application of person ReID in
real-world scenarios remains a challenge. Therefore, it is imperative to conduct a thorough
analysis of the limitations present in existing datasets.
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Table 1. Comparison between LSMS and other person ReID datasets.

Dataset LSMS
MSMT17

[12]
DukeMTMC-ReID [17] Market-1501 [7]

CUHK03
[10]

VIPeR
[41]

PRID
[16]

CAVIAR
[15]

BBoxes 286,695 126,441 36,411 32,668 28,192 1264 1134 610

Identities 7730 4101 1812 1501 1467 632 934 72

Cameras 29 15 8 6 2 2 2 2

Detector Faster
RCNN

Faster
RCNN hand DPM DPM,

hand hand hand hand

Current datasets, in contrast to those gathered in real-world scenes, exhibit limitations
across four key dimensions: (1) The number of bounding boxes and identities is insufficient,
particularly when compared to authentic surveillance video data. For instance, the largest
dataset comprises only 126,441 bounding boxes and less than 4101 identities, as indicated
in Table 1. (2) Most of the existing datasets contain fewer cameras, such as the largest
dataset MSMT17 only utilizes 15 cameras. A deficient number of cameras would lead
to a weak performance of person ReID because of image conditions of pedestrians are
changeless, which is reflected in the resolution, viewpoints, background, and occlusion.
(3) Many datasets originate from short-duration surveillance system videos that lack dis-
tinct variations in lighting conditions, limiting their applicability to real-world scenarios.
(4) The consistent weather conditions lead to uniform pedestrian attire, consequently re-
ducing pedestrian attribute features, such as umbrellas, among others. Unlike real-world
weather conditions, this scenario does not favor the robustness of training models. These
constraints underscore the need for larger and more representative datasets to advance
person ReID research.

3.2. Description to LSMS and LSMS-UAV
3.2.1. Description to LSMS

To mitigate the aforementioned constraints, we have curated a novel person ReID
dataset named LSMS, which aimed at emulating real-world scenarios as closely as feasible.
Leveraging a network of 29 cameras stationed across three major thoroughfares spanning
over a dozen intersections within the campus, encompassing both academic and residential
sectors. We meticulously selected nine days over three months to capture varying weather
conditions, with each day featuring 4-h video segments captured during the morning,
forenoon, noon, and afternoon periods, facilitating pedestrian detection and annotation.
The resultant dataset comprises 486 h of final raw video footage across 29 outdoor cameras,
spanning 36 distinct time slots. Pedestrian bounding box detection was performed using
Faster Region-based Convolutional Neural Networks (Faster RCNN) [42], with 13 labelers
assigned to annotate ID labels over a two-month period, yielding a total of 286,695 bounding
boxes corresponding to 7730 unique identities.

Figure 2 showcases and compares sample images from this dataset. It is evident
that the LSMS dataset poses a more challenging and realistic ReID challenge. Figure 3
provides statistical insights into LSMS. In Figure 3a, the distribution of person bounding
box numbers across different training and test sets based on various seasons is shown.
It can be observed that the training set contains the highest proportion of bounding box
numbers, which is intended to train a more robust model. Additionally, the number of
bounding boxes in spring is higher than in winter because people’s clothing styles are
more varied in spring compared to winter. Figure 3b,c, respectively, show the comparison
of person identities and the number of bounding boxes captured by different cameras in
different seasons. Firstly, both figures indicate that the number of images in spring is greater
than in winter. Secondly, it can be seen that the cameras positioned in the front, middle,
and end captured more images. This is because these cameras are located at intersections
where person traffic is higher, making it easier to collect more images. Finally, Figure 3d
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shows the distribution of the number of bounding boxes across different time periods in
different seasons. It can be observed that the bounding box collection in spring is evenly
distributed across various time periods, whereas in winter, there are more bounding boxes
collected at noon and fewer in the morning and evening. This is due to the insufficient
sunlight in the morning and evening during winter, making it harder to capture suitable
person images for model training.

Figure 2. Comparing person images across Market1501, MSMT17, DukeMTMC-ReID, LSMS, and
LSMS-UAV. Each column contains paired pictures of the same individual, except for the LSMS ’season
changes’, where each row represents a different season.

In comparison to existing datasets, the novel features of LSMS are delineated as follows:
(1) Larger number of identities and bounding boxes. As far as we know, LSMS currently

stands as the largest person ReID dataset. As demonstrated in Table 1, LSMS encompasses
286,695 bounding boxes and includes 7730 identities, representing a significant increase
compared to previous datasets.

(2) Complex viewpoints and backgrounds. LSMS boasts the highest camera count among
existing datasets, with a total of 29 cameras strategically positioned in various locations.
The distribution of cameras takes into account the activity patterns of pedestrians. For in-
stance, the academic area mainly comprises young students dressed uniformly, whereas the
residential area encompasses a broader demographic, including brightly dressed children
and elderly individuals. This inclusion contributes to the dataset’s complexity by introduc-
ing diverse backgrounds and viewpoints variations, rendering LSMS more captivating and
demanding for research purposes.

(3) Multiple time slots introduce variations in lighting conditions. LSMS comprises 36 time
slots, encompassing morning, forenoon, noon, and afternoon over nine days. Although this
setup better mirrors real-world scenarios compared to previous datasets, it also introduces
substantial variations in lighting conditions.

(4) More reliable individuals outfits. Compared with existing datasets, LSMS captures
pedestrian clothing styles from both winter and spring seasons, enhancing the realism and
complexity of the dataset’s appearance features. Additionally, it includes various weather
conditions, adding additional attributes to pedestrians, such as umbrellas.
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In addition, for better comparison and analysis of the influence of pedestrian attire
across different seasons on person ReID, we also calibrated the distribution of data in the
LSMS dataset according to different seasons. As shown in Table 2, it can be observed that
the proportion of pedestrian images in the spring season in the LSMS dataset exceeds
a large portion, spanning more cameras than in the winter season. The aforementioned
advantages illustrate that LSMS possesses broader applicability and robustness, which can
better drive the advancement of person ReID solutions in real-world scenarios.

(a)

(b)
Figure 3. Cont.
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(c)

(d)
Figure 3. Statistics of LSMS. (a) Distribution of Bounding Box numbers across two seasons. (b) Com-
parison of the distribution of identity numbers based on two seasons for each camera in the training
set. (c) Comparison of the distribution of Bounding Box numbers based on two seasons for each
camera in the training set. (d) Comparison of the distribution of Bounding Box numbers based on
two seasons for each time slot in the training set.
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Table 2. Detailed distribution of LSMS across spring and winter seasons.

Seasons
Spring Winter

Training Testing Training Testing
Query Gallery Query Gallery

Bboxes 148,186 8511 30,466 78,022 3915 17,595
Identities 3869 1217 1217 1905 739 739
Cameras 28 27 27 22 22 23

3.2.2. Description to LSMS-UAV

Current person ReID algorithms primarily train and test models on person ReID
datasets. To enhance the application of UAVs in the ReID field, it is crucial to train a
more effective model. For this purpose, a large-scale ReID dataset, LSMS, is introduced
for training ReID models. Additionally, for testing purposes, a novel UAV-based dataset,
LSMS-UAV, is proposed for transfer learning comparisons to assess the performance of
UAVs in the person ReID domain. Here, the LSMS-UAV dataset is used as the test set for
the ReID model, while the LSMS dataset serves as the training set.

During the image collection process, both datasets were gathered within the same
campus, encompassing both academic and residential areas. The difference lies in the fact
that they were collected on different days and on different streets, ensuring no overlap in
person identities.

The LSMS-UAV dataset has the following characteristics: (1) It includes 500 identities
and 2000 bounding boxes. (2) Data was collected using a single UAV. (3) Data collection
spanned 2 days, with 20-min sessions each in the morning, forenoon, noon, and afternoon,
totaling 160 min of video. (4) Compared to the LSMS dataset, LSMS-UAV was collected on a
different road. Since the LSMS-UAV dataset was collected using a UAV, the images feature
varying resolutions due to the nature of capturing from afar to near. The angles are pre-
dominantly overhead, and there are variations in lighting conditions. These characteristics
can be seen in Figure 2.

3.3. Evaluation Protocol

We employ a random division approach to partition our LSMS dataset into training
and test sets. Unlike previous datasets, where the two parts are divided equally, we set the
training-to-testing ratio as 3:1. Consequently, the training set comprises 226,208 bounding
boxes corresponding to 5774 identities, while the test set includes 60,487 bounding boxes
representing 1956 identities. Within the test set, 12,426 bounding boxes are stochastically
chosen as query images, with the remaining 48,061 bounding boxes serving as gallery
images. This is also shown in Table 3.

Table 3. Detailed distribution of LSMS.

LSMS Bounding Boxes Identities

Training set 226,208 5774
Query set 12,426 1956
Gallery set 48,061 1956

Similarly, as shown in Table 4, the LSMS-UAV dataset serves as the test set, comprising
a total of 2000 bounding boxes and 500 identities. Due to the smaller data size, the query
set contains 500 bounding boxes, while the gallery set includes 1500 bounding boxes.
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Table 4. Detailed distribution of LSMS-UAV.

LSMS-UAV Bounding Boxes Identities

Query set 500 500
Gallery set 1500 500

Consistent with the majority of existing datasets, the Cumulative Matching Charac-
teristics (CMC) curve is employed to assess the accuracy of ReID. This evaluation method
considers that each query bounding box may yield multiple true positives. Consequently,
we treat ReID as a searching task. In addition to the CMC curve, the mean Average Precision
(mAP) is also used as an evaluation metric.

4. Classic ReID Algorithms

To better evaluate the advantages of the LSMS dataset, validation is performed against
three classic person ReID algorithms. Below, introductions to each of these algorithms
are provided.

4.1. Bag of Tricks (BoT)

In recent years, deep neural networks have propelled person ReID to high-performance
levels, but many state-of-the-art methods employ complex network architectures and fea-
ture concatenation. Luo et al. [14] collect and assess effective training tricks in person ReID,
achieving notable performance improvements with ResNet50 [43] reaching 94.5% rank-1 ac-
curacy and 85.9% mAP on Market1501 using global features. However, a survey of articles
from high-quality journals reveals that most works build upon weak baselines. This paper
addresses this by enhancing the standard baseline with training tricks to establish a robust
baseline, emphasizing the importance of considering these tricks in method comparisons.
Additionally, the industry’s preference is for simple and efficient models, hence focusing
on leveraging global features to attain high accuracy while minimizing computational
overhead. The contributions of this paper include identifying and evaluating six effective
training tricks, introducing a new neck structure named BNNeck, and providing a strong
ReID baseline, achieving exceptional performance on Market1501 with global features
from ResNet50.

4.2. Part-Based Convolutional Baseline (PCB)

Deeply-learned representations, especially when aggregated from part features, demon-
strate high discriminative ability. State-of-the-art results on ReID benchmarks are achieved
using part-informed deep features. However, accurately locating parts remains crucial for
learning discriminative features.

Recent methods for partitioning vary in their strategies. Some leverage external
cues, such as human pose estimation, while others abandon semantic cues and achieve
competitive accuracy. In this context, a network called Part-based Convolutional Baseline
(PCB) [44] is proposed, which conducts uniform partitioning on the convolutional layer
for learning part-level features. PCB does not explicitly partition images but outputs
a convolutional feature, demonstrating higher discriminative ability compared to fully
connected descriptors. Additionally, an adaptive pooling method named Refined Part
Pooling (RPP) is introduced to improve uniform partitioning. RPP relocates outliers within
each part to reinforce within-part consistency without requiring part labels for training.

4.3. Pose-Driven Deep Convolutional (PDC)

To address the challenges posed by pose variations, Su et al. [11] propose a Pose-
driven Deep Convolutional (PDC) model for ReID. This model simultaneously learns
global representations of the whole body and local representations of body parts. The
global representation is trained using Softmax Loss [11], while a Feature Embedding sub-
Net (FEN) automatically adjusts and relocates body parts for improved recognition across
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different cameras. A Pose Transformation Network (PTN) further eliminates pose varia-
tions, enabling the learning of local representations on transformed regions. Additionally,
a Feature Weighting sub-Net (FWN) was introduced to learn weights for global and local
representations, facilitating more effective feature fusion for similarity measurement.

Detailed illustrations of the local representation generation process are provided,
demonstrating how key body joints are located, body parts are extracted and normalized,
and pose variations are eliminated using PTN. These normalized and transformed part
regions are then used to train a deep neural network for learning local representations.
This then emphasizes the importance of considering human pose cues and weights of
representations on different parts, which are jointly learned end-to-end.

5. Experiments

5.1. Typical Datasets

Except as LSMS and LSMS-UAV, our experiments utilize three widely used person
ReID datasets.

DukeMTMC-ReID [17] comprises 36,411 bounding boxes and 1812 identities. In the
training set, it has 702 identities and 16,522 bounding boxes of that. The remaining identities
are reserved for the test set.

Market1501 [7] is composed of 32,668 bounding boxes and 1501 identities. In the
training set, it encompasses 751 identities and 12,936 bounding boxes of that, while the
remaining 750 identities constitute the test set. Market1501 is abbreviated as Market.

MSMT17 [12] includes 4101 identities and 126,441 bounding boxes generated by
Faster RCNN. Here, 32,621 bounding boxes of 1041 identities are designated for training,
while 93,820 bounding boxes of 3060 identities are reserved for testing. Out of the test
set, 11,659 bounding boxes are chosen at random for query images, with the remaining
82,161 bounding boxes allocated for use as gallery images.

5.2. Implementation Details

Based on the approach outlined in [45], the batch size is configured to 64, with an
input image size of 256× 128. Training epochs are 120, starting with an initial learning rate
of 3.5× 10−4, which is reduced to 0.1× after 40 epochs and further to 0.01× after 70 epochs.
A warm-up period of 10 epochs is implemented.

5.3. Performance on LSMS and LSMS-UAV across Different Datasets

In order to demonstrate our dataset LSMS can achieve outstanding performance on
person ReID and the LSMS-UAV dataset enjoys excellent transferability, we compare the
domain transfer learning by using the classic ReID method BoT [14] across three widely
used ReID datasets, including DukeMTMC-ReID, MSMT17, and Market1501, also with
LSMS and LSMS-UAV datasets. The compared results are reported in Figure 4.

In summary, as Figure 4a shows, when the training set and test set are Market1501,
the results of BoT are the best which are 99.8% Rank-1 and 99.7% mAP. While the test set
is DukeMTMC-ReID, the model achieves 58.1% Rank-1 and 38.1% mAP, which are the
sub-optimal results. This is because the Market1501 dataset and the DukeMTMC-ReID
dataset enjoy a similar distribution of data scales, hence yielding relatively good results. On
the contrary, the results are much weaker when MSMT17 and LSMS are used as the test set.
This is because MSMT17 and LSMS, serving as the test set, encompass many scenarios not
present in the training set. These include a larger number of bounding boxes, more complex
lighting conditions, and richer variations in human body poses. Consequently, models
trained on Market1501 and tested on MSMT17 and LSMS exhibit poorer performance.
Additionally, due to the fact that LSMS contains a more diverse range of pedestrian images
and background conditions compared to MSMT17, the performance of the model tested on
LSMS is weaker than those tested on MSMT17.
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The same pattern is also observed when DukeMTMC-ReID is used as the training set,
which can be observed in Figure 4b. When the test sets are Market1501 and DukeMTMC-
ReID, both mAP (36.4%, 98.6%) and Rank-1 (67.0%, 99.3%) are relatively high. How-
ever, when the test sets are MSMT17 and LSMS, their mAP (13.2%, 12.1%) and Rank-1
(31.4%, 30.6%) are comparatively low. Similarly, this is also because the data included in
DukeMTMC-ReID as the training set is weaker in terms of both quantity and complexity
compared to MSMT17 and LSMS.

(a)

(b)
Figure 4. Cont.
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(c)

(d)
Figure 4. The performance of the BoT algorithm is compared across different datasets using transfer
learning. (a) The transfer learning performance across different datasets, with Market1501 as the
source domain and Market1501, DukeMTMC-ReID, MSMT17, LSMS, and LSMS-UAV as the target
domain, separately. (b) The transfer learning performance across different datasets, with DukeMTMC-
ReID as the source domain and Market1501, DukeMTMC-ReID, MSMT17, LSMS, and LSMS-UAV as
the target domain, separately. (c) The transfer learning performance across different datasets, with
MSMT17 as the source domain and Market1501, DukeMTMC-ReID, MSMT17, LSMS, and LSMS-UAV
as the target domain, separately. (d) The transfer learning performance across different datasets, with
LSMS as the source domain and Market1501, DukeMTMC-ReID, MSMT17, LSMS, and LSMS-UAV as
the target domain, separately.
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When MSMT17 and LSMS are used, respectively, as their own training and test sets,
the results show that MSMT17 outperforms LSMS. As shown in Figure 4c,d, when LSMS
is both the training and test set, its mAP and Rank-1 are 89.4 and 89.7%, respectively.
When MSMT17 is both the training and test set, its mAP and Rank-1 are 82.8% and 92.9%,
respectively. This is because our dataset LSMS is more challenging, as it contains a greater
variety of complex variations in person images, such as variations in seasons, person pose,
lighting, viewpoint, background, etc. In addition, when LSMS is used as the training set
and MSMT17 as the test set, the mAP (19.9%) and Rank-1 (45.2%) are lower compared
to when MSMT17 is the training set and LSMS is the test set (mAP: 41.9% and Rank-1:
70.3%). This is because LSMS contains many images of pedestrians riding bicycles, which
introduces more complex noise features during model training. However, this can also be
considered a characteristic of the LSMS dataset: unlike the traditional person ReID datasets,
LSMS contains images of both pedestrians and cyclists, making it more representative of
real-world person ReID scenarios.

Additionally, when Market1501, DukeMTMC-ReID, MSMT17, and LSMS are used
as the training sets, and LSMS-UAV is used as the test set, the resulting mAP are 7.8%,
10.6%, 39.9%, 88.1% and its Rank-1 accuracy are 25.5%, 30.1%, 68.1%, 88.2%, respectively.
As a conclusion, the lower performance of the LSMS-UAV dataset as a test set compared to
LSMS can be attributed to the fact that LSMS-UAV data consists mainly of overhead angle
images. This strong bias towards specific features may result in lower performance when
facing diverse training features. However, despite this bias, the performance is still close to
that of LSMS.

5.4. Performance on LSMS across Different Methods

This subsection aims to validate the assertion made in Section 3 regarding the chal-
lenging yet realistic nature of LSMS. This is achieved through the examination of existing
algorithms on the LSMS dataset.

We review the classic advancements in the field. Notably, BoT, introduced by Luo et al. [14],
demonstrated superior performance on most ReID datasets. While PDC, introduced by
Su et al. [11], showcased the best results on CUHK03 [10]. Additionally, as a common
practice in person ReID research, PCB proposed by Sun et al. [44] also served as our
comparison method.

The experimental findings are summarized in Table 5. The baseline model PDC [11]
achieves a Rank-1 and mAP are 82.9% and 80.3% on LSMS. Notably, PCB [44] and BoT [14]
significantly surpass the baseline by incorporating additional part and regional features.
Among them, BoT obtains the best performance, with a Rank-1 of 89.7% and mAP of 89.4%,
which notably lags behind its reported results on other datasets, such as Rank-1 of 94.5%
on Market [14]. These results underscore the challenges posed by LSMS.

Table 5. The performance of the classic methods on LSMS.

Methods Rank-1 mAP

PDC [11] 82.9 80.3
PCB [44] 86.7 86.1
BoT [14] 89.7 89.4

We qualitatively present retrieval results in Figure 5, which underscore the realism and
challenges encapsulated within the ReID task defined by LSMS. In real-world scenarios,
individuals may exhibit similar clothing cues, while images of the same person can vary
significantly in terms of lighting, background, and pose. As depicted in Figure 5, false
positive samples often bear resemblances to the query person, while true positives exhibit
diverse lighting conditions, poses, and backgrounds. Thus, LSMS emerges as a valuable
resource for advancing research in ReID.
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Figure 5. Sample person ReID outcomes produced by the BoT [14] on LSMS.

6. Conclusions

This paper introduces two novel datasets: LSMS and LSMS-UVA for the person ReID
task. The former is a large-scale camera-based dataset for traditional person ReID, while the
latter provides UAV-captured person images, facilitating UAV-based person ReID. LSMS
offers significant variations in lighting conditions, seasons, backgrounds, human poses,
etc. Similarly, the LSMS-UAV dataset exhibits characteristics such as resolution disparities,
variations in lighting, and person images captured from an overhead perspective. As the
largest dataset for person ReID currently available, LSMS defines a more realistic and
challenging task compared to existing datasets. In future work, we will focus on exploring
more effective and efficient strategies for transferring knowledge between persons in large
datasets. Additionally, we will continue to research the transfer learning between persons
and cyclists’ studies based on UAV datasets.
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Abstract: The capability of unmanned aerial vehicles (UAVs) to capture and utilize dynamic object
information assumes critical significance for decision making and scene understanding. This paper
presents a method for UAV relative positioning and target tracking based on a visual simultane-
ousocalization and mapping (SLAM) framework. By integrating an object detection neural network
into the SLAM framework, this method can detect moving objects and effectively reconstruct the 3D
map of the environment from image sequences. For multiple object tracking tasks, we combine the
region matching of semantic detection boxes and the point matching of the optical flow method to
perform dynamic object association. This joint association strategy can prevent trackingoss due to the
small proportion of the object in the whole image sequence. To address the problem ofacking scale
information in the visual SLAM system, we recover the altitude data based on a RANSAC-based
plane estimation approach. The proposed method is tested on both the self-created UAV dataset
and the KITTI dataset to evaluate its performance. The results demonstrate the robustness and
effectiveness of the solution in facilitating UAV flights.

Keywords: visual SLAM; UAVs; multiple object tracking; dynamic objects

1. Introduction

Unmanned aerial vehicles (UAVs) have been used in diverse domains, such asogistics,
rescue operations, and wildlife protection. Enhancing the visual perception capabilities
of UAVs is essential for robust navigation in some challenging flight scenarios. The UAVs
equipped with cameras can capture images of surroundings, which provide motion cues for
trajectory estimation and 3D mapping. This visual perception approach primarily relies on
the utilization of simultaneousocalization and mapping (SLAM) or visual odometry (VO)
technologies [1]. While there are various visual SLAM frameworks available [2–6], their
direct application to UAV navigation applications often overlooks the presence of dynamic
objects within the environment. Thisimitation hampers their applicability in real-world
scenarios, where the detection, tracking, and mapping of dynamic objects are crucial for the
safety of UAVs [7]. Therefore, there is a need for specialized algorithms that can effectively
handle dynamic objects in visual SLAM systems for UAVs.

Over the past decade, significant attention has been devoted to addressing the chal-
lenge of handling dynamic objects in SLAM algorithms. Traditional approaches employ
two main strategies: (1) detecting moving regions within the scene and disregarding these
regions [8–11]; (2) synthesizing plausible color, texture, and geometry in regions occluded
by dynamic objects during image stream processing [12,13]. Both strategies result in the
exclusion of information about dynamic objects, leading to the generation of static-only
maps. Most recently, certain researchers have adopted a different perspective by integrating
dynamic object tracking into the SLAM problem [14]. By taking into account the dynamics
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of moving objects, these approaches strive to go beyond static mapping andocalization,
aiming to improve the overall understanding of the environment.

Despite the numerous efforts aimed to enhance the capabilities of visual SLAM by
incorporating the detection and tracking of dynamic objects, there is still a significant gap
in the field of UAV navigation. A common problem is that the UAV-borne monocular
camera oftenacks the ability to restore real scale information, making it challenging to
estimate the actual speed of dynamic objects. In addition, objects captured in UAV-borne
images often exhibit sparsity and uneven distribution, which consequently increases the
probability of missed detections. In this paper, we present a monocular visual SLAM
algorithm explicitly designed for UAVs, which aims to achieve efficient 3D mapping and
target tracking and positioning. The scale recovery method enables converting the semantic
detection results into meaningful geometric motion results of objects, which can provide
target motion parameters with actual physical quantities. Our work was inspired by the
VDO-SLAM method. However, one innovation is its ability to estimate object motion
models for UAV-borne images, and the proposed method can obtain motion parameters of
the targets with real physical scale, which cannot be solved by VDO-SLAM or ORB-SLAM2.

Indeed, we proposed two innovations:

(a) Combining object-wise matching and point-wise matching to track dynamic objects.
It solves the problem of tracking instability caused by small target pixel regions and is
of great significance for airborne observation systems.

(b) A new trained network model for UAV datasets. It should be noted that the appli-
cation scenarios of UAVs are different from traditional vehicle scenarios, and simple
combinations cannot fully solve such problems. So, we trained a network model
suitable for UAV datasets and achieved success through experimental testing.

The proposed SLAM algorithmeverages the random sample consensus (RANSAC)
method [15] to estimate and restore scale information by fitting a ground plane. Both object-
wise matching and point-wise matching are employed within the algorithm to achieve joint
tracking of dynamic objects. Object-wise matching enables efficient and rapid tracking of
dynamic objects, while point-wise matching addresses missed detections from the object
detection network. Consequently, the final map constructed encompasses both dynamic
objects and static environments.

This paper is organized into the following sections. Next, Section 2 provides a compre-
hensive review of related work in this field. Section 3 outlines the methodology employed
in our study. The experimental setup is presented in Section 4, followed by the results and
evaluations. Finally, Section 5 summarizes and presents concluding remarks.

2. Related Work

The visual SLAM algorithms applied to UAV flight include several steps, covering
a range of research topics. To provide a thorough understanding of the background,
we present a review of theiterature in Sections 2.1 and 2.2, covering visual SLAM and
dynamic object tracking, respectively. Furthermore, in Section 2.3, we discuss the existing
technologies for UAV systems.

2.1. Dynamic Visual SLAM

Early pioneering approaches in visual SLAM are mainly pure feature-based meth-
ods. They relied on extracting and matching distinctive features in the images to estimate
the cameras’ poses relative to the world coordinate system, such as MonoSLAM [16],
PTAM [17], ORB-SLAM [4], and ORB-SLAM2 [6]. Inheriting the framework of ORB-
SLAM2, subsequent SLAM systems commonly comprise three distinct threads: (1) a
tracking thread, responsible for tracking point-wise features (i.e., ORB features [18]) and
estimating poses; (2) a mapping thread, which constructs aocal 3D map and eliminates re-
dundant keyframes; and (3) aoop closing thread, which corrects the accumulated drift and
performs global optimization. This design enables the algorithms to operate continuously
for extended periods inarge-scale scenes with significantoops, ensuring global consistency
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of the trajectory and the map. Benefiting from the efficiency of this design, many new
methodologies [10,11,19–22] are integrated and tested on the widely used ORB-SLAM2
frameworks. The selection of keyframes is important to the system’s performance by
maintaining good accuracy and robustness [23]. The understanding of dynamic scenes
is generally based on keyframes. In many applications, prior knowledge is of great sig-
nificance for understanding dynamic scenes. However, unlike someiDAR-based SLAM
systems [24,25], a purely visual SLAM system cannot directly obtain true physical scale in-
formation. Thisack of scale informationimits the use of prior knowledge such as geometric
and motion models in the mapping and object tracking algorithms.

With the effectiveness of neural networks, some SLAM algorithms have been pro-
posed to enhance performance in dynamic environments. One such algorithm is Detect-
SLAM [19], which incorporates SSD-NET [26] for dynamic object detection within the
SLAM pipeline. This algorithm updates the motion probability of feature points in each
frame by employing feature matching and neighboring points, thereby capturing the
motion of all feature points. Similarly, DynaSLAM [10] leverages Mask R-CNN [27] for
semantic segmentation of dynamic objects, and it uses a multi-view geometric method to
evaluate the reliability of matched features. Subsequently, Li et al. [21] propose a DP-SLAM
algorithm, which integrates the outcomes of geometry constraints and semantic segmenta-
tion within a Bayesian probability estimation framework, enabling the tracking of dynamic
key points.

The aforementioned SLAM algorithms all utilize the semantic information provided by
deepearning to improve system stability. By combining semantic information to detect dy-
namic objects, these algorithms could differentiate between the static and moving elements
in the scene, allowing for more accurate camera pose estimation and map construction.
Nevertheless, these methods do not address the challenges related to the positioning of
dynamic objects or the restoration of scale in monocular visual mapping.

2.2. Object Tracking in Visual SLAM

The traditional method to solve 3D multi-object tracking is to perform SLAM and
multiple object tracking (MOT) separately [28–32]. Notably, Wangsiripitak and Murray [29]
present a parallel implementation of monoSLAM with a 3D object tracker, where monocular
SLAM supplies the tracker with camera pose information, restoring occluded features and
preventing SLAM from utilizing features of dynamic objects. On the other hand, the bearing
only tracking (BOT) algorithm [30] aims to reconstruct the motion of dynamic points from
a monocular camera and build a 3D dynamic map that encompasses both static structures
and the trajectories of moving objects. In a subsequent study [31], a multi-layer dense
conditional random field (CRF) is used for motion segmentation and object classabeling.
This model incorporates semantic constraints enhancing 3D reconstruction. DYNSLAM [32]
is a stereo-based dense mapping algorithm that utilizes sparse scene flow to estimate the
3D motions of detected moving objects. This approach enables the reconstruction of the
static background, dynamic objects, and potentially moving but currently stationary objects
inarge-scale dynamic urban environments. The limited field of view (FoV) of the camera
may cause tracking failure due to sudden changes in perspective or textureless scenes.
Fish-eye or panoramic cameras become an alternative [33]. However, these complex camera
models increase the tedious work of data calibration and are prone to the calculation error
of epipolar geometry.

Recent approaches [20,34–36] try to solve the two problems of SLAM and MOT in a
unified framework. Among them, ClusterSLAM [34], as a general SLAM backend, can
simultaneously cluster rigid bodies and estimate their motions. Since it is only the backend
of the SLAM system, its performance depends on the quality ofandmark tracking and
correlation from the front end. Dynamic SLAM [35] exploits semantic segmentation to
estimate the motion of rigid objects and generates a map of dynamic and static structures
without having any prior knowledge of their 3D models. This method is applied to RGB-
D/stereo images, so the authorsater propose a new VDO-SLAM system [36] to explore
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depth information from a single image. VDO-SLAMeverages semantic information and
dense optical flow to achieve accurate motion estimation and tracking of dynamic objects.
Similarly, DynaSLAM II [20] utilizes instance semantic segmentation and ORB features for
dynamic object tracking. Given these advancements, it is now feasible and applicable to
integrate MOT with SLAM for dynamic scene exploration.

2.3. Visual Navigation for UAVs

UAVs equipped with visual navigation systems canocate themselves in GPS-denied areas,
which helps them explore unknown environments and avoid obstacles. In general, visual
navigation systems can be categorized into map-based navigation and mapless navigation.

Map-based navigation relies on pre-stored maps, which are matched with captured
images to determine the UAVs’ positions [37–40]. Shan et al. [37] employ a method of
the histogram of oriented gradient (HOG) for the registration of UAV-borne images with
Google Maps. The method relies on a particle filter to expedite the matching process
with an onboard sensor. To tackle the problems ofarge differences in scale and rotation,
Zhuo et al. [38] propose an image-matching approach, consisting of a dense feature detec-
tion step, a one-to-many matching strategy, and a global geometric verification step. This
method requires initial poses from GNSS/IMU to eliminate scale differences in the images.
Whenocating a UAV in a wide area, semantic object-based matching [39,40] is sometimes
more reliable than feature point-based matching. The algorithms detect the objects in the
airborne image by machineearning methods and use the configuration of the objects to find
the correspondingocation in the map database.

However, accurate maps are not always available [41], especially in some emergency
situations. Consequently, mapless visual navigation approaches, such as SLAM-based
algorithms, become more appealing. Qin and Shen [42] present a tightly coupled monocular
visual-inertial system (VINS) estimator that enables the autonomous flight of a rotorcraft
micro aerial vehicle (MAV) in unknown and unstructured environments. The approach
optimizes a fixed history of vehicle states as well as environment features using nonlinear
optimization. Subsequently, VINS-Mono [43] is proposed based on this work. The system
uses a tightly coupled, nonlinear, optimization-based method to obtain high accuracy visual-
inertial odometry by fusing pre-integrated IMU measurements and feature observations.
It is successfully applied to medium-scale drone navigation tasks. Fu et al. [44] present a
PL-VINS method, which efficiently makes use ofine features to improve the performance
of the VINS-Mono. However, these algorithms have not taken into account the presence of
moving objects, whichimits the system’s wider applicability.

3. Proposed Method

3.1. Overview

The proposed visual SLAM algorithm for UAVs is built upon the ORB-SLAM2 frame-
work [6], which incorporates an object tracking module for avoiding obstacles. It takes
images captured by a downward-looking camera on the UAV as input and generates the
poses of the camera and dynamic objects along with a map. An overview of the algorithm
is presented in Figure 1. Integrating new methodology on the widely used SLAM system,
such as ORB-SLAM2, is not a trivial task. In addition to the conventional mapping and
positioning steps in a visual SLAM system, our method comprises three main components:
image pre-processing, map scale recovery, and object tracking.

The method takes a sequence of images as input. To effectively utilize semantic
information, we employ a single-image depth estimation method based on NeW CRFs [45]
to derive depth information from the image sequence. Pre-processing of input images
involves generating object detection boxes, depth maps, and dense optical flow. We employ
two different methods to extract key points for different regions in the images. For static
regions, we extract ORB features and calculate depth through a triangulation algorithm.
ORB features are also used for the SLAM process, which calculates the camera poses and
sparse map points. For regions that potentially contain movable objects (such as pedestrians
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and vehicles), we directly sample the area at every two points and acquire depth from
the depth map. A potential ground plane is fitted, and we calculate the ratio between
the distance of the ground plane and the height provided by a barometer to restore the
scale of the model. For object motion tracking, we use the Kalman filter [46] to predict the
detection boxes of objects and match them with the detection boxes of the target detector to
track the detection boxes. Through optical flow, we associate the sampling points in the
detection box and estimate the object pose. Finally, the method outputs a static map as well
as trajectories of the camera and dynamic objects.

Figure 1. Overview of the visual SLAM method.

3.2. Pre-Processing Module

The pre-processing module faces two challenging problems. Firstly, it needs to effec-
tively distinguish between the static background and the dynamic foreground. Then, it
needs to ensure the tracing of dynamic objects over extended periods. When the UAV’s
camera is used for capturing images, the small proportion of the target within the entire
image area poses difficulties in extracting and matching an adequate number of feature
points. To overcome this challenge, we utilize recent advancements in computer vision
techniques, including monocular depth estimation, object detection, and dense optical flow
estimation. These techniques enable accurate dynamic object recognition and stable object
tracking. The pre-processing module completes the following three tasks.

(1) Dynamic object detection. Object detection plays a crucial role in identifying dynamic
objects within a scene. For instance, buildings and trees are typically static, whereas
vehicles may be either stationary or moving. By utilizing object detection results, we
can further partition the semantic foreground into distinct areas, thereby facilitating
the tracking of individual objects. The dynamic objects in UAV-borne images usually
have fewer pixels and are mainly observed from a top-down view.
Compared to pixel-level segmentation, some first-stage object detection networks,
such as the YOLO series [47], can offer notable advantages in terms of detection
accuracy and speed [48]. Hence, we employ the YOLOv5 network to detect potential
dynamic objects and generate object bounding boxes. Our network model used the
trained weights from COCO dataset [49] and then fine-tuned them using the VisDrone
dataset [50]. A trained deep network model can effectively process UAV-borne images
and extract potential dynamic objects.

(2) Monocular depth estimation. Depth estimation facilitates the retrieval of depth
information for every pixel in a monocular image, which is crucial for maximizing
tracked points on dynamic objects. However, dynamic objects typically occupy only a
small portion of UAV-borne images. By employing estimated depth, we can densely
sample the monocular images, thereby ensuring stable tracking of moving objects.
We have employed two methods to acquire scene depth. For static regions, we
construct sparse maps and calculate the depth map through a triangulation algo-
rithm. For the potential dynamic regions, we derive the depth map from monocular
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depth estimation. Specifically, we employ a cutting-edge monocular depth estimation
method, i.e., NeW CRFs [45], to calculate the depth map. This method utilizes a
novel bottom-up-top-down network architecture and has a significant improvement
in the monocular depth estimation. The model is trained on the KITTI Eigen split [51].
The visualization results are shown in Figure 2b.

(3) Optical flow estimation. Dense optical flow provides an alternative approach to
establishing feature correspondences by matching sampling points across image
sequences, thereby facilitating scene flow estimation. It assists in the consistent
tracking of multiple objects, as the optical flow can assign an object recognition
marker to each point in the dynamic region and propagate it between frames. This
capability becomes particularly valuable in cases where object tracking fails, as dense
flow can recover the object area.
We use PWC-Net [52] as the optical flow estimation method. The model is initially
trained on the FlyingChairs dataset [53] and subsequently fine-tuned on the Sintel [54]
and KITTI training datasets [55]. The visualization results are shown in Figure 2c.
The deep network trained in our work can effectively extract the optical flow of targets
from drone images. These optical flows form some independent rough contours
of objects.

To summarize, in the preprocessing stage, we employed advanced deep network
models to achieve some essential tasks, such as depth map estimation, object detection,
and optical flow tracking. These network models contribute to extracting valuable informa-
tion from the input images and enabling subsequent analysis.

(a) Input image. (b) Depth map. (c) Optical flow.
Figure 2. Visualization results of the pre-processing module.

3.3. Map Scale Restoration

Inheriting the framework of ORB-SLAM2 [6], our SLAM module uses ORB features to
reconstruct a sparse environment map. Notably, UAV-borne downward-looking images
contain many ground regions, facilitating the fitting of the ground plane from the 3D map
points. Assuming the ground is a relatively flat region, the depth values of the ground
plane fall within a certain range. To fit the ground plane, our method sorts the sparse map
points in ascending order of depth value and selects theowest 40% of points. In practice,
we apply the RANSAC-based fitting algorithm to calculate the plane function from the
selected points. Then, we use the 2D-pixel positions corresponding to the selected 3D map
points to query their depth in the depth map.

The previous calculation can only acquire a reconstructed model scale from monocular
images, rather than real physical scale. Therefore, it needs to rely on additional information
to restore the true scale. The height h of the camera to the ground plane can be measured
using the airborne barometer. It is defined that the camera coordinate system of the first
frame is consistent with the world coordinate system. The method computes the ratio
between the model distance of the ground plane and the camera’s height to restore the
scale of the model, as shown in Figure 3.
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Figure 3. Restore scale information based on height ratio. The grey region in the middle represents a
ground plane using a RANSAC-based fitting algorithm.

3.4. Object Tracking and Positioning

In the following, we derive the mathematical calculation process of object tracking.
Let Tk

CkW, Tk
OkW ∈ SE(3) represent the camera pose and object pose in the world coordinate

W at time k, with k ∈ T the set of time steps. To distinguish from other symbols, we
use calligraphic capitaletters to represent sets of indices. Let Tk

CkCk−1
∈ SE(3) be the

homogeneous transformation of the camera motion between times k− 1 and k. In Figure 4,
the poses of cameras and objects in the world coordinate are depicted as solid curves,
and their relative motion transformations are depicted as dashed curves.

Let mk,i
W be the homogeneous coordinates of the ith 3D point at time k, with mi

W =[
mi

x, mi
y, mi

z, 1
]T
∈ R4. The coordinate of a point in camera frame is written as mk,i

Ck
=

Tk
CkW·m

k,i
W. Define Ik as the image captured by the camera at time k, and let Pi

Ik
=

[
ui, vi, 1

]
∈

R3 be the pixelocation on frame Ik corresponding to the homogeneous 3D point mk,i
Ck

.
The imaging equation is:

Pi
Ik
= λK ·

(
Tk

CkW·mk,i
W

)
= λK ·mk,i

Ck
(1)

where K represents the camera intrinsics. λ indicates that a real physical scale is missing.

Figure 4. The dynamic object tracking process between airborne images.

Firstly, we need to achieve a spatiotemporal correlation of the same objects, namely
object association. The image is divided into possible dynamic regions and static regions,
using the semantic information obtained from the previous object detection step. In the
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static regions, a set of ORB features is extracted and tracked through the feature matching
method for camera pose estimation and 3D mapping. Dynamic objects usually occupy
a small proportion of UAV images, which makes it difficult to track them for aong time
through ORB feature points. We sample every two points within an object region and
track them.

The association of dynamic objects across consecutive frames is performed by employ-
ing a combined approach. First, we use the intersection over union (IoU) of the detected
object boxes [56] to perform the object-wise matching. At the same time, point-wise match-
ing within bounding boxes is conducted by the optical flow between consecutive frames.
The combination of object matching and point matching for dynamic object association can
be adapted to objects of different sizes and is more robust to occlusion.

For object-wise matching, the Kalman filter is initially employed to predict theocation
of tracklets in the new frame. The IoU between the detection boxes and the predicted
boxes is then computed as a measure of similarity to associate high-scoring detection boxes
with the tracklets. To minimize missed detections and enhance trajectory consistency, we
associateow-score detection boxes with unmatched tracklets.

For the point-wise matching, let Ik φi ∈ R2 be the optical flow produced by the
movement of the camera and objects. It represents the displacement vector of pixel Pi

Ik−1
from frame Ik−1 to Ik, and as follows:

Ik φ
i
=
∼
P

i

Ik
− Pi

Ik−1
(2)

where
∼
P

i

Ik
is the correspondence of Pi

Ik−1
in Ik. We estimate scene flow based on optical flow,

which can be used for dynamic object identification. Firstly, the scene flow fi
k of a 3D point

mi
W can be calculated through the camera pose Tk

CkW as in [57]:

fi
k = mk−1,i

W −mk,i
W = mk−1,i

W − Tk
CkW

−1 ·m
k,i

Ck
(3)

Unlike optical flow, scene flow can directly decide whether some structure is moving
or not. In theory, the magnitude of the scene flow vector should be zero for all static 3D
points. By calculating the scene flow of sampling points in an object to determine whether
it is dynamic, if the value of the scene flow of a point is greater than the set threshold,
the point is considered dynamic. If the proportion of dynamic points to all points in the
object area is greater than the set threshold, the object is judged as a dynamic object.

Then, we predict the motion model of an object. Let Tk
OkOk−1

∈ SE(3) describe the
homogeneous transformation of the object between times k− 1 and k, according to:

Tk
OkOk−1

= Tk
OkW · Tk−1

Ok−1W
−1

(4)

In Figure 4, the above motion transformations are depicted as dashed curves. A point
in its corresponding object coordinates is written as mk,i

Ok
= Tk

OkW·m
k,i
W, substituting the

object pose at time k from Equation (4), this becomes:

mk,i
W = Tk

OkW
−1 ·mk,i

Ok
= Tk−1

Ok−1W
−1 · Tk

OkOk−1

−1 ·m
k,i

Ok
(5)

Note that the relative positions of the points inside the rigid body remain unchanged:

mk,i
Ok

= mk−1,i
Ok−1

= Tk−1
Ok−1W·m

k−1,i
W (6)

Substituting Equation (6) into Equation (5):

mk,i
W = Tk−1

Ok−1W
−1 · Tk

OkOk−1

−1 · Tk−1
Ok−1W ·m

k−1,i
W (7)
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Let k
k−1TW = Tk−1

Ok−1W
−1 · Tk

OkOk−1

−1 · Tk−1
Ok−1W, which represents the motion of the 3D

point on a rigid object. The point motion in the global reference frame is then expressed as:

mk,i
W = k

k−1TW ·mk−1,i
W (8)

Based on the re-projection error, we solve the object motion k
k−1TW by constructing a

cost function. According to Equation (8), the error term is represented as:

ek,i
repr =

∼
P

i

Ik
−K · Tk

CkW · k
k−1TW ·mk−1,i

W =
∼
P

i

Ik
−K ·Gk,i ·mk−1,i

W (9)

where Gk,i = Tk
CkW · k

k−1TW ∈ SE(3). We parameterize the Gk,i by elements of theie-algebra
gk,i ∈ se(3):

Gk,i = exp
(

gk,i
)

(10)

The optimal solution is found via minimizing:

gk,i∗V
= argmin

gk,iV

nd

∑
i

ρh

(
eT

i

(
gk,i

)
∑p

−1
ei

(
gk,i

))
(11)

where nd represents the number of 3D–2D dynamic point correspondences. Here, ρh is
the Huber function [58], and ∑p is the covariance matrix related to the re-projection error.

The object motion, k
k−1TW = Tk

CkW
−1 ·Gk,i, can be recovered afterwards. This formulation

enables us to jointly optimize the poses of the cameras and the dynamic objects, as well as
the 3D map points.

4. Experimental Results

4.1. Experiment Setup

We collected a new dataset of visual monocular data using a UAV, as there are currently
no publicly available UAV datasets specifically designed for outdoor scenarios that include
dynamic objects. Our dataset aims to fill this gap in the research community by providing
a valuable resource for studying and developing methods that address the challenges
of dynamic object detection, tracking, and mapping in UAV-based visual systems. The
data collection was conducted using the built-in monocular camera of the DJI Mini3 UAV,
while the GNSS system provided navigation information. The 6D pose ground truth of the
data was obtained through the aero triangulation method based on the photogrammetric
software [59]. During data collection, the drone’s camera was oriented toward the ground,
and the flight altitude ranged between 30 and 50 m. The collected data encompassed
dynamic vehicles, pedestrians, as well as static elements such as roads, buildings, and trees.
The dataset is available at https://github.com/lemonhi/UAV_dataset/tree/main (accessed
on 1 March 2024).

Our method is evaluated in terms of UAVocalization and object tracking performance.
The evaluation is performed on our UAV dataset and KITTI tracking dataset [60]. We use
UAV data for qualitative analysis of the method and the KITTI dataset for quantitative
analysis of the method. It is worth noting that even if some tests are conducted on terrain
images of the KITTI dataset, they can give an insight into the general performance of our
method. Due to the non-deterministic nature of running the proposed method, such as
RANSAC processing, we run the SLAM algorithm five times on each sequence and take
median values as the demonstrating results.

As a suggestion from reference [36], we use the translational error Et (meter) and the
rotational error Er (degree) as evaluation metrics for camera pose and object motion.
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4.2. Test on Our UAV Dataset

Figure 5 illustrates the output of the proposed method on our UAV dataset, showcasing
a spatiotemporal map that encompasses tracks for each detected dynamic object and camera
as well as static map points. The first row presents the satellite maps of the test area (the
yellow curves are the UAV’s trajectories), while the bottom images show the reconstructed
3D map points (black), the trajectories of the cameras (green), and the traces of the detected
objects (blue).

Figure 5. Illustration of the results on the UAV dataset. The first row presents the satellite maps of the
test area, while the bottom images show the corresponding maps (2.8 points/m2) and the trajectories
of cameras and objects. (Image numbers and resolution: DJI01, 272 keyframes, 1920 × 1080; DJI02,
340 keyframes, 2720 × 1530; DJI03, 272 keyframes, 2720 × 1530; DJI04, 370 keyframes, 2720 × 1530).

Throughout the UAV flights, our method demonstrates effective tracking capabilities
for both the UAV-carried camera and dynamic objects in the surrounding environment.
The break of the object trajectories in the DJI01 sequence is due to a missed detection caused
by tree shading. When the object is detected again, the method can recover the track and
map it correctly.

Figure 6 displays the estimated camera trajectories of two sequences generated by
our method, alongside their corresponding ground truth trajectories. Figure 7 displays the
error plots for x, y, z separately for both trajectories. The algorithm can provide a suitable
estimate for the pose of the UAV. By integrating depth map estimation and optical flow
estimation into our tracking framework, it becomes more resilient to occlusion andoss,
providing enhanced tracking performance in challenging scenarios. Due to the use of drone
barometers as reference heights, there may be a certain gap between the measured height
and the actual height, which can cause errors in scale estimation.

45



Drones 2024, 8, 222

Figure 6. Trajectories on the sequences DJI01 and DJI04.

Figure 7. The error plots for x, y, z separately for both trajectories.

4.3. Evaluation on the KITTI Dataset

The KITTI tracking dataset is designed for autonomous driving scenarios, but it
can provide a quantitative analysis basis for the validation of drone tracking algorithms.
The KITTI tracking dataset contains 21 sequences in total with ground truth for camera
poses and object traces. Among these sequences, some are not included in the evaluation of
our method, as they contain no obvious dynamic objects. Finally, we chose sequence Seq.00,
Seq.01, Seq.02, Seq.03, Seq.04, Seq.05, Seq.06, Seq.18, and Seq.20 as our evaluation data.

(1) Evaluation of the camera poses and object motion. Table 1 shows our results of both
camera pose and object trace estimation compared to VDO-SLAM [36] and CubeSLAM [61]
on nine image sequences. We directly used the experimental results in the paper for
comparison, as we all tested using the same KITTI datasets. The CubeSLAM uses monocular
images as the input to the method, while the data tested in the VDO-SLAM system include
both monocular and stereo images. As our system is for monocular images, we chose the
results of aearning-based monocular version of VDO-SLAM for comparison.
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Table 1. Comparison of camera pose and object trace estimation with VDO-SLAM [36] and
CubeSLAM [61] on 9 sequences from the KITTI dataset. The bold numbers indicate the best result.

CubeSLAM [61] VDO-SLAM [36] Ours

Camera Pose Object Trace Camera Pose Object Trace Camera Pose Object Trace

Seq Er(deg) Et(m) Er(deg) Et(m) Er(deg) Et(m) Er(deg) Et(m) Er(deg) Et(m) Er(deg) Et(m)

00 - - - - 0.1830 0.1847 2.0021 0.3827 0.08240 0.08851 1.7187 0.5425

01 - - - - 0.1772 0.4982 1.1833 0.3589 0.07378 0.1941 1.4167 0.8396

02 - - - - 0.0496 0.0963 1.6833 0.4121 0.03120 0.06210 1.4527 0.6069

03 0.0498 0.0929 3.6085 4.5947 0.1065 0.1505 0.4570 0.2032 0.08360 0.1559 1.4565 0.5896

04 0.0708 0.1159 5.5803 32.5379 0.1741 0.4951 3.1156 0.5310 0.06888 0.1755 2.2280 0.8898

05 0.0342 0.0696 3.2610 6.4851 0.0506 0.1368 0.6464 0.2669 0.1371 0.0367 1.0198 1.0022

06 - - - - 0.0671 0.0451 2.0977 0.2394 0.04546 0.02454 2.4642 0.9311

18 0.0433 0.0510 3.1876 3.7948 0.1236 0.3551 0.5559 0.2774 0.03618 0.09566 2.1584 0.9624

20 0.1348 0.1888 3.4206 5.6986 0.3029 1.3821 1.1081 0.3693 0.08530 0.5838 1.1869 1.2102

The translation error Et (meter) is computed as the L2 norm of the translation com-
ponent of relative pose error. The rotational error Er (degree) is calculated as the angle
of rotation in an axis-angle representation of the rotational component of relative pose
error. In comparison with VDO-SLAM, our proposed method demonstrates competitive
and high accuracy in estimating camera poses. However, when it comes to object pose
estimation, our method exhibits slightly higher errors than VDO-SLAM. We attribute this
weaker performance in object pose estimation to the inaccuracy resulting from object detec-
tion outcomes. The detection box encompasses a small portion of the static environment,
and despite our utilization of the optical flow method for filtering, certain static points
are still misclassified as dynamic object points. VDO-SLAM may face challenges when
dealing with extensive object occlusion, while our system has a better performance by
taking advantage of the optical follow estimation.

Our method has an errorevel similar to CUbeSLAM in camera pose estimation, which
may be because we are both based on the ORB-SLAM2 framework. Additionally, our
method achieves slightlyower errors in object motion estimation compared to CubeSLAM,
perhaps due to theoss of information caused by CubeSLAM in the process of extracting
geometric models, thereby introducing uncertainty.

Figure 8 illustrates the output of our method for three of the KITTI sequences. Mean-
while, Figure 9 presents both the output map and the corresponding input image of the
method running up to a specific frame within the sequence highlighted in Figure 8. This
visual representation provides a clearer depiction of the system’s ability to detect and map
dynamic objects. From the figures, it can be seen that our method performs relatively
robustly inong-distance tracking of dynamic objects.

(2) Evaluation of the object tracking results. The performance of tracking dynamic
objects is also demonstrated in our study. Figure 10 displays the results of object trackin-
gength, which shows the selection of objects withonger trajectories. In the majority of
sequences, our method achieves object trackingengths of 80% or higher. Notably, objects
with trajectoryengths surpassing 200 frames, such as object 32 in Seq.05 and objects 3
and 4 in Seq.18, are successfully tracked by the system for over 80% of their duration.
In this paper, optical flow estimation enables the detection and tracking of object motion
by tracking pixel-level movement patterns between consecutive frames. This technique
can help maintain the continuity of object tracking even in the presence of occlusions or
temporaryoss of objects. The limited tracking performance observed in a small number of
objects can be attributed to extensive occlusion or a significant distance from the camera.
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Figure 8. Illustration of the results on the KITTI dataset. (Topeft: Seq.03, top right: Seq.18, and
bottom: Seq.20).

Figure 9. Illustration of system map for a certain frame and corresponding image. The bounding box
and the speed of the objects are inferred in the image. The left figure represents Seq.03, the middle
figure represents Seq.18, and the right figure represents Seq.20.

Figure 10. Tracking performance. Results of object trackingength for some selected objects (tracked
for over 20 frames) due toimited space. The color bars represent the number of objects appearing in
the image. “GT” refers to ground truth and “EST.” refers to estimated values.“Sequence” represents
the sequence number of the KITTI dataset used in the experiment, and “Object id” represents the
dynamic object id that appears in the sequence.

4.4. Timing Analysis

All the experiments were conducted on a desktop computer with an Intel Core i5
2.6 GHz CPU and 16 GB RAM. In this paper, the depth estimation and optical flow results
are produced offline as input to the system. The timing of our method is highly dependent
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on the area size and number of detected objects in the scene. In KITTI sequencesike
Seq.06, there are only two objects at a time as maximum. and it can thus run at 8 fps.
However, Seq.18 can have up to 15 objects at a time, and its performance is seen as slightly
compromised, running at 4 fps.

Due to the scale characteristics of UAV images, dynamic objects occupy fewer pixels in
the UAV dataset compared to the KITTI dataset. Thus, the proposed method is able to run
at the frame rate of 7–10 fps in our UAV datasets, which have resolutions of 1920 × 1080 or
2720 × 1530. The keyframe interval in our pipeline is around 15 frames. We do not include
within these numbers the time of the monocular depth estimation and dense optical flow
computation since it depends on the GPU power and the model complexity.

Like most frameworks that combine SLAM and dynamic object tracking, our system
may encounter scalability issues when the number of dynamic objects in the scene increases
significantly. Tracking aarge number of objects simultaneously can be computationally
demanding and may impact the real-time performance of the system. As the complexity of
the scene increases, the computational requirements mayimit the scalability of our system.

5. Conclusions

In this paper, we present a novel dynamic monocular SLAM method for UAV flight.
The proposed approach exploits image-based semantic information to seamlessly integrate
object tracking within the SLAM framework, eliminating the need for prior knowledge of
object pose or geometry. Depth map estimation and optical flow estimation are designed
to enhance target tracking capability, particularly in scenarios involving object occlusion
andoss. To evaluate the proposed algorithm, extensive experiments are performed with
various UAV-borne image sequences as well as the widely used KITTI dataset. Experi-
mental results show that our method consistently delivers robust and accurate outcomes,
particularly excelling in object motion estimation. The estimated motion information of
the object can be further used for subsequent tasks, such as path planning and obstacle
avoidance. Therefore, our framework has been proven to be suitable for unmanned aerial
vehicle visual navigation applications.
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Abstract: Drones have been used in a variety of scenarios, such as atmospheric monitoring, fire rescue,
agricultural irrigation, etc., in which accurate environmental perception is of crucial importance
for both decision making and control. Among drone sensors, the RGB camera is indispensable
for capturing rich visual information for vehicle navigation but encounters a grand challenge in
high-dynamic-range scenes, which frequently occur in real applications. Specifically, the recorded
frames suffer from underexposure and overexposure simultaneously and degenerate the successive
vision tasks. To solve the problem, we take object tracking as an example and leverage the superior
response of event cameras over a large intensity range to propose an event-assisted object tracking
algorithm that can achieve reliable tracking under large intensity variations. Specifically, we propose
to pursue feature matching from dense event signals and, based on this, to (i) design a U-Net-based
image enhancement algorithm to balance RGB intensity with the help of neighboring frames in the
time domain and then (ii) construct a dual-input tracking model to track the moving objects from
intensity-balanced RGB video and event sequences. The proposed approach is comprehensively
validated in both simulation and real experiments.

Keywords: drones; harsh illumination; image enhancement; event-assisted object tracking; multi-
sensor fusion

1. Introduction

As lightweight, flexible, and cost-effective [1–3] platforms, drones have often been
used in a variety of remote tasks, such as surveillance [4,5], detection [6], and delivery [7].
In such applications, drones need to accurately perceive the surrounding environments
to support subsequent decisions and actions. In general, common sensors used on UAVs
include visible-wavelength optical cameras [8], LiDAR [9], NIR/MIR cameras [10], etc.
Each type of sensor has its own advantages and disadvantages, so multi-mode sensing has
been the typical solution in this field. Among the various sensors, the visible-wavelength
camera is an indispensable sensing unit due to its high resolution, capability of collecting
rich information, and low cost of construction.

As one of the most important tasks of a drone, object tracking [11–14] has been widely
studied. Broadly speaking, object-tracking algorithms take either the RGB frame as input
or its combination with other sensing modes. RGB-only methods [15–18] prevail in frame-
based object tracking but are limited in harsh illumination scenarios. Some researchers
proposed to incorporate information from event-based cameras, which show superior
performance in both low-light and high-dynamic-range scenes. To fuse the information
from RGB frames and event sequences, Mitrokin et al. [19] proposed a time-image represen-
tation to combine temporal information of the event stream, and Chen et al. [20] improved
event representation by proposing a synchronous Time-Surface with Linear Time Decay
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representation. These approaches exhibit promising performance in object tracking with
high time consistency.

However, the above methods are difficult to apply on 24/7 UAVs due to the lim-
ited sensing capability of RGB sensors in cases with complex illumination. Because
overexposure and underexposure both lead to the image quality degrading greatly and
hamper accurate tracking, the reliable drone-based sensing of harshly lit scenes is quite
challenging [21,22]. Taking the video in Figure 1 as an example, when capturing a car
traveling through a tunnel, there exist a large intensity range in each frame and abrupt
variation among different frames; the car is even undetectable in some frames by both
tracking algorithms and human vision systems due to underexposure. Fortunately, drones
are subjected to continuously varying illumination while in flight, causing recordings with
different quality for a target region. Considering that the feature points of neighboring
video frames are mostly consistent [23,24], we are inspired to compensate low-quality
images with guidance from high-quality counterparts, achieving continuously high-quality
videos as well as robust downstream tasks. One of the most crucial problems is to recognize
the matching features in adjacent frames that undergo abrupt intensity changes.

Figure 1. A typical high-dynamic-range RGB video of a car driving through a tunnel, in which the
car is almost invisible in the last 5∼6 frames due to underexposure.

To increase the image quality under harsh illumination, researchers have made a lot
of explorations in recent years. One most common way is to reconstruct HDR images by
merging the set of multi-exposure LDR images [25]. For dynamic scenes, image align-
ment is required to address the inconsistency among frames with different exposures.
Kang et al. [26] initially aligned neighboring frames with the reference frame and merged
these aligned images to craft an HDR image. Later works [27,28] modified it by adding a
motion estimation block and a refinement stage. Differently, Kalantari et al. [29] proposed
a patch-based optimization technique, synthesizing absent exposures within each image
before reconstructing the ultimate HDR image. Gryaditskaya et al. [30] enhanced this
method by introducing an adaptive metering algorithm capable of adjusting exposures,
thereby mitigating artifacts induced by motion. Instead of capturing frames with different
exposure times, some methods use deep neural networks to reconstruct the HDR image
from a single input image. However, due to relying on a fixed reference exposure, the
reconstruction is strongly ill-posed and cannot achieve high between-frame consistency.
Additionally, many existing HDR video reconstruction methods focus on developing some
special hardware, such as scanline exposure/ISO [31–33], per-pixel exposure [34], modulo
camera [35], etc., but these new cameras are still being research and not ready for commer-
cial use in a near future. Some other recent approaches work under the deep-optics scheme
and focus on jointly optimizing both the optical encoder and CNN-based decoder for HDR
imaging challenges. The above methods usually make assumptions about the lighting
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conditions, which might not hold in real scenes. Additionally, most of these algorithms
need ground-truth high-dynamic-range images for supervised network training and exhibit
limited performance in scenes different from the training data. Hence, these methods are
enlightening but difficult to be directly applied on practical UAV platforms working in
open environments.

The event camera, also known as neuromorphic vision sensor, is an emerging technique
that records intensity changes exceeding the threshold asynchronously [36,37]. In recent years,
event signals have been used in a variety of high-speed tasks due to their high sensitivity
and fast response, such as high-speed tracking [38–41], frame interpolation [42,43], optical
flow estimation [44–46], motion detection [47], etc. Unlike conventional optical camera
sensors, event cameras output the “events” indicating that there occurs sufficiently large
intensity variation at certain positions and instants and also indicate the polarity of the change.
Considering that an event camera can record the motion over a large intensity range and is
insensitive to abrupt intensity changes, we propose to use event signals to explicitly align
the RGB frames and thus compensate for the quality degradation harming the successive
object tracking. In other words, with the consistent description of event signals, we
enhance low-quality images under guidance from their high-quality counterparts and
achieve continuous high-quality scene perception. Specifically, we match the key points
occurring at different instants [48] and utilize the matching to balance the intensity change
in sequential RGB frames. Afterward, we construct a fusion network to aggregate the
enhanced RGB frames and event signals for robust object tracking.

The contributions of this paper are as follows:

• We propose an event-assisted robust object-tracking algorithm working in high-
dynamic-range scenes, which successfully integrates the information from an event
camera and an RGB camera to overcome the negative impact of harsh illumination
on tracking performance. As far as we know, this is the first work of object tracking
under harsh illumination using dual-mode cameras.

• We construct an end-to-end deep neural network to enhance the high-dynamic-range
RGB frames and conduct object tracking sequentially, and the model is built in an un-
supervised manner. According to the quantitative experiment, the proposed solution
improves tracking accuracy by up to 39.3%.

• We design an approach to match the feature points occurring at different time instants
from the dense event sequence, which guides the intensity compensation in high-
dynamic-range RGB frames. The proposed feature alignment can register the key
points in high-dynamic-range frames occurring within a 1 s window.

• The approach demonstrates superb performance in a variety of harshly lit environ-
ments, which validates the effectiveness of the proposed approach and largely broad-
ens the practical applications of drones.

In the following, we first introduce the framework and algorithm design for the
proposed event-assisted object tracking in Section 2, including event-based cross-frame
alignment, RGB image enhancement, and dual-mode object tracking. In Section 3, we
present the experimental settings, including the datasets and training details. The qual-
itative results and quantitative results are discussed in Section 4. Further, we present
the results for the real-world data as well as the ablation study. Finally, in Section 5, we
summarize the paper, discuss the limitation of the proposed solution, and highlight future
work to be conducted on efficient collaborative sensing around drones.

2. Framework and Algorithm Design

This section presents the details of the proposed event-assisted robust object-tracking
approach working under harsh illumination. Here, we first briefly introduce the framework
and then describe the design of three key modules, including the retrieval of feature regis-
tration across frames, the enhancement of high-dynamic-range frames, and the successive
dual-mode object tracking.
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The basic idea of the proposed approach is to utilize the reliable motion cue perception
capability of event cameras to prevent the quality degradation of RGB frames and then
combine the event signals and the enhanced RGB video to boost the successive tracking
performance suffering from overexposure and underexposure. The whole framework of
the proposed event-assisted object-tracking approach is shown in Figure 2; it consists of
mainly three key modules:

(i) Retrieving the motion trajectories of key feature points from the dense event sequence.
We divide the event sequence into groups occurring in overlapping, short time win-
dows, and the key points from Harris corner detection in each event group can
construct some motion trajectories. Further, we integrate these short local trajectories
to figure out the motion over a longer period across the RGB frames, even under
harsh illumination.

(ii) Enhancing the high-dynamic-range RGB frame according to inter-frame matching and
information propagation. Based on the matching among feature points across frames,
we build a deep neural network to compensate for the overexposed or underexposed
regions using neighboring frames with higher-visibility reference frames to guide
low-visibility objective frames. In implementation, we build a U-Net-based neural
network for image enhancement.

(iii) Tracking the target objects by fusing information from both RGB and event inputs.
We design a tracking model taking dual-mode inputs to aggregate the information
from the enhanced RGB frames and event sequences to locate the motion trajectories.
Specifically, we construct 3D CNNs for feature extraction, fuse the features from two
arms using the self-attention mechanism, and then employ an MLP to infer the final
object motion.

Figure 2. The framework and working flow of the event-assisted robust tracking algorithm under
harsh illumination. The whole pipeline is fully automatic and consists of three key steps, with
the first one including conventional optimization and the latter two being implemented by deep
neural networks.

2.1. Event-Based Cross-Frame Alignment

Event-based key feature extraction and matching are conducted here to utilize the
stable event signals under harsh illumination for cross-frame alignment of the degraded
RGB video, facilitating frame compensation using corresponding positions with decent
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quality in neighboring frames. We locate the key features of moving objects from the event
sequence, as illustrated in Figure 3.

Figure 3. The illustration of event-based key point alignment. We locate the key feature points
through Harris detection and search the matching counterparts locally (circular candidate regions are
highlighted with different colors) to constitute the motion trajectories, as shown in the right column.

Given a time duration T, we assume that there are N RGB frames and S event signals.
We define the captured RGB frames as {I0, I1, · · · , IN}, and the corresponding time stamps
are defined as {T0, T1, · · · , TN}. Event signal s is defined as a quadruple xs, ys, ts, Ps, where
xs, ys denote the coordinates of s; ts presents the response time instant; and Ps indicates
the polarity of intensity change. Firstly, we divide the S event signals into K× N groups
along the time dimension and project each group into K × N 2D images, named event
frame. We adopt the Harris corner detection algorithm for the above event frames to extract
individual key feature points. Further, we align the key feature points at different time
instants. Assuming that the shape of the moving objects is fixed within a very short time
slot, i.e., the key features in adjacent frames are similar, we construct a small circular search
region with radius r around each key feature. In other words, the key feature at the eth
frame matches the features inside the searching circle of the e + 1th frame.

For the nth RGB frame, we first align the event frames between n× S and (n + 1)× S.
From the displacement between the features of multiple event frames, one can construct
the moving trajectory of the key event feature points, which reflects the displacement of
the corresponding key features in the RGB frame. Naturally, we can eventually infer the
position of the corresponding key feature from nth to n + 1th RGB frames.

2.2. RGB Image Enhancement

After matching the feature points in different RGB frames, we enhance the under-
exposed and overexposed regions utilizing the high-visibility counterparts to adjust the
intensity and supplement the details. For description simplicity, we define the low-visibility
frames as the objective and the high-visibility frames as the reference. To achieve enhance-
ment, there are two core issues to be addressed: (i) how to determine the objective frame
that needs to be enhanced; (ii) how to design the learning model to improve the visibility
to match the reference frame while preserving the original structure of the objective frame.

We first estimate the visibility of the frames to determine which frames are highly
degraded. Intuitively, since harsh illumination leads to local overexposure or underexpo-
sure, which is usually of lacking texture, we use information richness to characterize the
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degeneration degree. In implementation, we define the visibility (Vi) of input RGB image
Ri as the difference from its low-pass-filtered version (R̂i), i.e.,

Vi = Var(Ri − R̂i), (1)

where Var(·) denotes the variance calculation.
In general, we divide the frames into groups and conduct compensation within each

group. We iteratively find the objective frame with the lowest visibility score and the
reference frame with the highest visibility and then conduct enhancement. The iteration
ends when the number of iterations exceeds a predetermined number P or the difference be-
tween the visibility of the target and the reference frame smaller than η. In our experiments,
we set P = 10 and η = 0.1.

For enhancement, we designed a U-Net-shaped network structure inferring the en-
hanced frame from the objective and reference frames, as shown in Figure 4. (The corre-
sponding optimization process is detailed in [49].) The network consists of a three-layer
encoder for feature extraction and a three-layer decoder. Skip connections are used to
facilitate the preservation of spatial information. The network is trained in an unsupervised
manner. We define the loss function based on aligned feature points. Considering that the
enhanced frame is expected to be similar to the reference image around the key feature
points and close to the original frame at other locations, we define a combinational loss
function. To guarantee the former similarity, we minimize the MSE difference, and we use
the LPIPS loss for the latter. Denoting the reference image by Iref, the original objective
image as Iobj, and the output as Iout, we define the loss function as

L = MSE(Iref(k)− Iout(k)) + αLPIPS(Iobj(¬k)− Iout(¬k)) (2)

where k denotes the positions of key features and ¬k denotes the remaining pixels; α is the
hyper-parameter, which is set to 0.05 during training.

Figure 4. The structure of the RGB image enhancement module. We input the captured RGB frame
into the U-Net network, which comprises a three-layer encoder for feature extraction and a three-
layer decoder for image enhancement. The network includes skip connections to connect encoder
and decoder layers, facilitating the preservation of spatial information. This diagram showcases
convolutional, pooling, upsampling, and downsampling layers, with the following key operations:
conv denotes convolution; BN denotes batch normalization; ReLU refers to the ReLU activation
function; max pool denotes the max pooling operation; concat and Up-conv denote the concatenation
and transposed convolution, respectively.
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2.3. Dual-Mode Object Tracking

To leverage the motion cues in both the event sequence and the enhanced RGB frames,
we construct a dual-mode tracking module for reliable object tracking. The proposed dual-
mode tracking module is based on RT-MDNet [50]. The module consists of a shared feature
mapping network aiming at constructing the shared representation to distinguish the object
from the background and a domain-specific network focusing on domain-independent
information extraction. Different from RT-MDNet [50], the proposed dual-mode design fo-
cuses on feature fusion from two types of inputs and constructs two self-attention modules
to highlight the combinational representation from two individual inputs.

The architecture of the network is shown in Figure 5. We first construct two individual
3D CNNs to extract features from the inputs and output feature vectors of the same
size. Subsequently, we concatenate the two feature vectors and use convolution to obtain
a combinational representation of the fused features. Subsequently, we construct the
self-attention network to retrieve the information underlying independent feature inputs.
(Please refer to [51] for the steps of the optimization process.) A two-layer fully connected
MLP is used to output the common feature. We refer to RT-MDNet [50] to construct the
domain-specific layer afterward, outputting the final tracking results.

During model training, for each detection bounding box, a cross-entropy loss function
is constructed to ensure that the target and background are separated as much as possible,
and the same also applies to multiple domains. In the latter, fine-tuning stage, we apply
different strategies for the first frame and the subsequent ones of a given sequence. For
the first frame, we choose multiple bounding boxes following a Gaussian distribution to
conduct domain-specific adaption, while for the subsequent frames, we build random
samples based on the results from the previous frame and search for the proper bounding
box through regression.

Figure 5. The structure of the object-tracking module. The RGB frames and event sequence are
individually fed into two 3D CNN modules for feature extraction, and the extracted features are
concatenated and sent to another CNN module for fusion. Then, the individual and fused features
are separately sent to the self-attention network. Finally, two MLPs are applied to derive the object
detection and tracking results.

3. Experimental Settings

Datasets. We verify the proposed method on both simulated and real datasets. We
use VisEvent [52] as the simulated data and mimic harsh illumination by modifying the
brightness and contrast of the RGB frames. Specifically, we modify the luminance and
contrast as follows: We let the luminance vary linearly, quadratically, or exponentially
across the frames, and the image contrast undergoes a linear change with different slopes.
We first randomly select 1/3 of the data for luminance modification and then apply contrast
modification to 1/3 randomly selected videos. Two examples from the simulated dataset
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are shown in Figure 6. The first scene mimics the brightness changes in the underexposed
scenes, and the second scene simulates overexposure, through modification of image bright-
ness and contrast. One can see that we can generate videos under complex illumination
from the original counterpart with roughly uniform illuminance. In the generated high-
dynamic-range RGB frames, the textures of some regions are invisible in some frames due
to either underexposure or overexposure. In contrast, the contours across the whole field of
view are recorded decently.

Figure 6. Two exemplar scenes from the simulated high-dynamic-range videos based on the VisEvent
dataset. For each scene, we list the original RGB frames, the synthetic high-dynamic-range frames,
and the corresponding events from top to bottom. The first scene has a linear increase in intensity
and a linear decrease in contrast to mimic underexposure in the 1st frame. The second sequence
undergoes linearly decreasing intensity to mimic overexposure in the first frame.
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For the real-world data, we captured some typical nighttime traffic scenes with a
pair of registered cameras (one RGB and the other events). The scenes consist of complex
illumination (e.g., traffic lights, neon signs, etc.) and large intensity variations. From
the two exemplar scenes in Figure 7, it can be seen that these scenarios exhibit large
illuminance variations and the traffic participants are almost invisible in some frames,
due to either underexposure or overexposure. This challenging dataset can be directly
used to test the effectiveness of the proposed object-tracking algorithm in real scenarios, as
shown in Figure 7.

Figure 7. Two typical examples from the real-world dataset captured in harshly lit traffic scenarios,
collected under a bridge during the daytime and at a crossroad at night, respectively. For each scene,
the RGB and event cameras are pre-calibrated for pixel-wise registration.

Baseline algorithms. We choose three different algorithms with state-of-the-art tracking
performance as baselines for the proposed solution, i.e., RT-MDNet [50], Siamrpn++ [53],
and VisEvent [52]. RT-MDNet [50] and Siamrpn++ [53] are two RGB-input trackers per-
forming well under normal illumination. So far, there are few objective algorithms specially
developed for harsh illumination scenarios; we chose the above two robust and widely used
tracking solutions as baselines. VisEvent [52] constructs a two-modality neural network
fusing RGB and event signals, and we compare the proposed solution with VisEvent [52] to
verify the effectiveness of the image enhancement module under harsh illumination. This
benchmark has input similar to our method’s and exhibits state-of-the-art performance,
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serving as a good option to validate the proposed image enhancement module under
harsh illumination.

Training. Training is implemented on the NVIDIA 3090 for about 4.7 h. We set the input
image size as well as the spatial resolution of the event sequence to 640 × 480 pixels
and seven continuous RGB frames (∼350 ms) for intensity balancing. We use the Adam
optimizer, with the learning rate being 5 × 10−4, the momentum being 0.9, and the weight
decay being 5 × 10−4.

4. Results

In this section, we construct a series of experiments to verify the effectiveness of
the proposed method on two tasks in high-dynamic-range scenes: image enhancement
and object tracking. We first show the visual and quantitative performance against some
baseline algorithms. Also, we give the qualitative results based on the real data to further
show the visual difference between the proposed solution and baselines. Finally, we conduct
ablation experiments to quantify the contribution of the key module of the algorithms.

4.1. Results Based on Simulated Data

In this subsection, we validate our approach in terms of image enhancement and object-
tracking accuracy, based on simulated data. Here, we give both qualitative and quantitative
experimental results to comprehensively analyze the effectiveness of the proposed solution.
For the qualitative results, we show the result of image enhancement first and compare
the object-tracking performance with that of the baseline algorithms afterwards. For the
quantitative results, we compare the precision plot (PP) and success plot (SP) to assess the
tracking performance.

4.1.1. Qualitative Results

Figure 8 shows the qualitative results for an exemplar video from the simulated dataset.
The top row shows the raw RGB sequence, with large intensity changes both within and
across frames. In this scene, a person runs from a location with strong illumination toward
a destination with a large shadow. Due to the extremely dark intensity, it is challenging
to recognize their silhouette in the last frame. We enhance the RGB frames according to
the temporal matching extracted from the event signals, and the results are shown in the
middle row. The enhanced version is of much more balanced intensity and can highlight
the human profile even under weak illumination.

We further show the object-tracking result in the bottom row. The bounding boxes of
our approach and the other three competitors are overlaid, with different colors. When
sufficiently illuminated, all the algorithms can track the object with high accuracy. RT-
MDNet, VisEvent, and the proposed algorithm are comparable, while there exists some
deviation in the bounding box output by Siamrpn++ tracking. When the light becomes
weak, the proposed algorithm can still identify the person’s location, while RT-MDNet’s and
VisEvent’s bounding boxes deviate. When the light is extremely weak, only the proposed
method, RT-MDNet, and VisEvent can track the object, because of high sensitivity and
robustness to abrupt intensity changes in the event signals. In comparison, the RGB image
in RT-MDNet and VisEvent is not enhanced and thus reduces the final tracking accuracy,
while our approach demonstrates reliable tracking consistently.

4.1.2. Quantitative Results

We introduce the typical matrix PP and SP here to evaluate accuracy in object track-
ing. Specifically, the PP indicates the frame percentage where the deviation between the
estimated object center location and ground truth is less than the determined threshold.
The SP denotes the frame percentage where the IoU between the estimated bounding box
and the ground-truth bounding boxes is higher than the determined threshold. Table 1
shows the PPs and SPs of our approach and three state-of-the-art object-tracking algorithms.
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Since there is no ground truth for the real data, we only conduct quantitative analysis on
simulated data.

Figure 8. Performance of RGB enhancement in object tracking in a typical exemplar scene in
the simulated dataset. (Top) The captured RGB video frames. (Middle) The corresponding en-
hanced images obtained with the proposed method. (Bottom) The tracking results of different
object-tracking algorithms.

Table 1. The quantitative performance of different object-tracking algorithms on the simulated
dataset, in terms of PPs and SPs.

Our Algorithm VisEvent Siamrpn++ RT-MDNet

PP 0.783 0.712 0.390 0.405

SP 0.554 0.465 0.232 0.321

According to Table 1, the proposed algorithm demonstrates the tracking results with
the highest accuracy. Even under harsh illumination, we can track the target object con-
tinuously, while Siamrpn++ and RT-MDNet show poor tracking results under the same
conditions. Moreover, though VisEvent takes the event signal as the input, it ignores the
influence of the low-quality RGB frames and produces inferior tracking accuracy. From
the ranking, we can draw two conclusions: first, the event signals can help address per-
formance degeneration in high-dynamic-range scenes; secondly, enhancing the degraded
RGB frames can further raise accuracy in object tracking.

4.2. Results Based on Real-World Data

To investigate the performance of our approach in real high-dynamic-range scenes,
we test our algorithm on some videos under challenging illumination, with one typical
example being shown in Figure 9. The video is captured at a tunnel entrance, and the
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frames in the top row show a car traveling through the tunnel. When the car enters the
tunnel, it is difficult to capture images with high visual quality due to insufficient light, and
the car turns indistinguishable in the last frame. The middle row shows the result of image
enhancement, demonstrating that the visual quality of the RGB frames is largely increased
compared with the raw input.

Figure 9. Demonstration of our image enhancement of the tracking result and performance compar-
ison with existing object-tracking algorithms on a real-world high-dynamic-range scene—a white
car driving through a tunnel. (Top) The captured RGB frames. (Middle) Our enhanced RGB images.
(Bottom) The tracking results of different algorithms.

The tracking results are shown in the bottom row of Figure 9. All four algorithms
can track the car at high brightness. When the light becomes weaker, the performance of
the two RGB-based tracking algorithms decreases: Siamrpn++ cannot track the car, and
RT-MDNet produces a bounding box with a large offset; on the other hand, VisEvent can
achieve relatively higher robustness, but the bounding box is not accurate. On the contrary,
we can achieve reliable tracking over the whole sequence. Based on the above experiments,
we can further verify that (i) the illumination condition affects accuracy in object tracking
and (ii) the event signal can assist object tracking under harsh illumination.

4.3. Ablation Studies

The ablation experiment focuses on validating the contribution of event-based tempo-
ral alignment to RGB image enhancement and object tracking. In the proposed approach,
we use Harris corner detection to retrieve key feature points from the dense event sequence,
and here, we compare its performance against two methods: using random event signals
as key features and using the detected Harris corner points from the RGB images rather
than event signals.
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From the upper row in Figure 10, one can see that there exist large intensity variations
within each frame and abrupt changes among frames, which is quite challenging for
object-tracking algorithms and even human vision systems, especially in the third frame.
Here, we adopt the person in the third frame as the tracking target, and the results with
different key feature guidance are shown in the bottom row. One can see that the proposed
alignment strategy performs best in terms of both the quality of the enhanced image and
object-tracking accuracy. In comparison, the result produced through registration from
random event signals slightly enhances image quality and results in a looser bounding
box, while registration from RGB frames provides little help, which again validates the
strategy of introducing event cameras for such harshly lit scenes. The inferior performance
of the two benchmarking implementations is mainly attributed to the fact that they cannot
identify the temporal matching properly due to the lack of descriptive features.

Figure 10. An example showing the results of ablation studies. The upper row displays the RGB
frames of a high-dynamic-range scene. The lower row shows the image enhancement and object-
tracking results based on three different types of temporal registration guidance, with the person in
the third frame (the darkest and most challenging one) as the target object. From left to right: key
feature alignment using the proposed event-based Harris corner points, random event signals, and
Harris corner points in RGB frames.

5. Summary and Discussions

Visible-wavelength optical cameras provide rich scene information for the environ-
mental sensing of drones. However, harsh illumination causes high dynamic ranges (e.g.,
at nighttime, at entrances or exits, etc.) and hampers reliable environmental perception. In
order to extend the applicability of visible-wavelength cameras in real scenes, we propose
a dual-sensing architecture that leverages the advantages of event cameras to increase the
imaging quality of the RGB sensor as well as the successive object-tracking performance.

The proposed event-assisted robust object tracker exploits two main features of event
signals, i.e., robust imaging under complex illumination and fast response. These advanta-
geous and unique features support extracting the continuous trajectories of corner points
to guide the temporal registration of high-dynamic-range RGB frames. Registration plays a
central role in compensating the intensity changes. Experimentally, the proposed event-
assisted robust object tracking can work quite well in a high-dynamic-range environment
that goes beyond the capability of RGB cameras.

The performance of the proposed algorithm is superior to both the counterpart taking
only the RGB frames as input and that directly taking two inputs, and the advantages
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hold in a wide range of applications. From the comparison, we can obtain the following
two conclusions: (i) Under harsh illumination, the quality of RGB images greatly affects
performance in downstream tasks. In order to ensure the robustness of performance in
tasks such as object tracking, the RGB frames need to be enhanced first. (ii) Event signals,
as lightweight and efficient sensors, can be used to capture critical information in high-
speed-moving scenes. In addition, event signals are insensitive to lighting conditions and
can be used for scene sensing under extreme illumination.

Limitations. The proposed algorithm mainly has two limitations. First, because of the
involved complex calculations, it is difficult to deploy the algorithm into a UAV due to the
limited arithmetic power. To achieve UAV deployment, it is necessary to further optimize
the network structure for lightweight computation. Second, since the event camera can
only capture the intensity changes in the scene, it is difficult to sense the targets being
relatively stationary with respect to the event camera. Therefore, other complementary
sensors need to be equipped for highly robust object tracking.

Potential extensions. In the future, we will dig deeper into the characteristics of event
signals and construct neural networks that are more compatible with event signals to realize
lightweight network design and efficient learning. In addition, we will integrate sensing
units such as LIDAR and IMUs to achieve depth-aware 3D representation of scenes.
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Abstract: In the context of difficulty in detection problems and the limited computing resources of
various fault scales in aerial images of transmission line UAV inspections, this paper proposes a
TD-YOLO algorithm (YOLO for transmission detection). Firstly, the Ghost module is used to lighten
the model’s feature extraction network and prediction network, significantly reducing the number of
parameters and the computational effort of the model. Secondly, the spatial and channel attention
mechanism scSE (concurrent spatial and channel squeeze and channel excitation) is embedded
into the feature fusion network, with PA-Net (path aggregation network) to construct a feature-
balanced network, using channel weights and spatial weights as guides to achieving the balancing of
multi-level and multi-scale features in the network, significantly improving the detection capability
under the coexistence of multiple targets of different categories. Thirdly, a loss function, NWD
(normalized Wasserstein distance), is introduced to enhance the detection of small targets, and the
fusion ratio of NWD and CIoU is optimized to further compensate for the loss of accuracy caused by
the lightweightedness of the model. Finally, a typical fault dataset of transmission lines is built using
UAV inspection images for training and testing. The experimental results show that the TD-YOLO
algorithm proposed in this article compresses 74.79% of the number of parameters and 66.92% of the
calculation amount compared to YOLOv7-Tiny and increases the mAP (mean average precision) by
0.71%. The TD-YOLO was deployed into Jetson Xavier NX to simulate the UAV inspection process
and was run at 23.5 FPS with good results. This study offers a reference for power line inspection and
provides a possible way to deploy edge computing devices on unmanned aerial vehicles.

Keywords: TD-YOLO; Ghost module; feature-balanced network; NWD loss

1. Introduction

1.1. Research Background

Due to the complex and diverse environments in which transmission lines are erected,
they are exposed to the wind, sun, rain, snow, and ice all year round, which can easily
cause different degrees of failure and damage to power equipment [1,2]. In recent years,
UAV inspection has been an important mode of inspection of transmission lines at home
and abroad. This inspection mode can effectively overcome the disadvantages of manual
inspection, such as “expensive, slow, difficult, and dangerous”, and has the advantages of
safety, high efficiency, flexible control, fewer restricted conditions, and low cost. However,
UAV inspections are bound to generate a large number of inspection images [3,4]. For the
inspection of electrical equipment in a large number of UAV aerial images, the method of
manually checking the fault results is mainly used, which consumes a lot of labor costs
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and is likely to cause missed inspections or false inspections. Therefore, it is of great
significance to carry out research on artificial intelligence-based inspection methods under
the background of UAV inspection big data. At present, target detection based on deep
learning is an important research direction in the field of computer vision. While the drone
is inspecting the transmission line, the deep learning algorithm carried out by the drone is
used to detect faults in the aerial images, which saves time. The human work conducted
after the drone inspection also ensures the accuracy of the inspection [5,6].

1.2. Methods Based on Deep Learning and Its Limitations

Typical fault detection algorithms for transmission lines in UAV inspection, based on
deep learning, are divided into two categories [7]: one is the two-stage detection algorithm,
and representative algorithms include R-CNN [8], Fast R-CNN [9], Faster R-CNN [10], and
Cascade R-CNN [11]. Compared with the traditional algorithm, the two-stage detection
algorithm has significantly improved accuracy. However, because the detection process
needs to be completed in two steps, the speed could be faster, and the application range
could be narrower. The other is a one-stage detection algorithm, which directly predicts the
category and location of the target through the target detection network. Representative
algorithms include SSD (single-shot multibox detector) [12] and the YOLO series (You
Only Look Once) [13–19]. The SSD algorithm has contributed to the idea of a one-stage
detection algorithm. Still, because it does not have an FPN (feature pyramid network), the
accuracy is not enough. At present, the most researched one-stage algorithm is mainly the
YOLO series.

However, the current typical fault detection of transmission lines based on deep learn-
ing still has three limitations. The first limitation is the lack of detection accuracy due to
aerial scale shifts during drone inspections, resulting in seriously missed inspections. To
address this problem, literature [20] proposed three improved strategies based on Faster
R-CNN for transmission line multi-target detection, including the adaptive image pre-
processing algorithm, area-based non-maximum suppression algorithm, and cut detection
scheme, to achieve accurate localization and recognition of multiple targets in complex
backgrounds. Literature [21] introduced a Gaussian function to improve the non-maximum
value suppression method and reduce the missed detection of partially occluded fault tar-
gets. Literature [22] introduced YOLOv5 to detect 12 types of fault samples in transmission
lines and adopted CBAM (convolutional block attention module) and bi-FPN (bi-directional
feature pyramid network) improvement strategies to integrate target multi-scale features
effectively. This method can accurately detect multi-scale fault targets in transmission
lines in complex environments. Based on YOLOv5, literature [23] proposed a transmission
line small-target fault detection network that integrates prior knowledge and an attention
model. Compared with the literature [21], a more advanced target detection model is used
to enhance the precise detection of small targets. The parameters of the improved models
in the above literature are large, which is inconvenient for deployment and application
on UAVs.

The second limitation is the large number of parameters derived while improving the
model’s accuracy, making it difficult to deploy on UAVs. In response to this problem, the
literature [24] proposed a lightweight model embedded in the double attention mechanism
combined with MobelieNetV2 to detect multiple foreign objects on the transmission line.
This method has high accuracy and detection speed, and its lightweight model idea lays
the groundwork for model deployment. Literature [25] replaced the backbone network
of YOLOv4 with a lightweight network, MobileNetV3, which is used to detect insulators
and their damage in transmission lines. Literature [26] selects the pruned YOLOv4-Tiny
model and combines the attention mechanism to realize the insulator research and defect
detection under the hardware end. The lightweight improvement strategies for the model
in the above literature are mainly divided into replacing the lightweight backbone, using
lightweight convolution, and model pruning. However, the selected basic algorithm is
relatively backward, with room for improvement.
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The third limitation is that the single detection object leads to low inspection efficiency.
Literature [27] improved Faster R-CNN (FPN). It proposed Pin-FPN, which uses various
data-enhancement methods to detect pin defect faults in transmission lines and can achieve
the accurate detection of small targets. Literature [28] improved YOLOv5 to detect bird
nests in transmission lines and improved the detection effect of bird nests in complex
backgrounds through the attention mechanism. Literature [29] combines the feature pyra-
mid structure based on R-CNN to position insulators in complex backgrounds accurately.
Literature [30] improves YOLOv5 to detect insulators and their damage in transmission
lines and uses a lightweight network to reduce the model’s size and increase the speed.
Literature [31] adds CAT-BiFPN and ACmix attention mechanisms based on YOLOv7 to
detect various defects of insulation, and the detection effect is better for targets of different
scales. Judging from the current research results, the detection objects are only faults of
insulators, bird’s nests [32], and fittings, and there are few kinds of research on multiple
types of fault inspections. The efficiency is low if applied to actual transmission line UAV
inspections. Therefore, there is an urgent need for a typical fault detection algorithm for
transmission lines with the advantages of convenient deployment, fast inference speed,
high precision, and high inspection efficiency.

1.3. This Work

Based on the above problem analyses, this paper proposes a TD-YOLO algorithm (a
lightweight object detection network that can detect multi-scale faults in real-time). The
network adopts a structure combining the context lightweight structure and the feature-
balanced network, which effectively solves the problems that different faults are difficult
to detect simultaneously, occupy too many computing resources, and the detection speed
is too slow in the detection process. Specifically, the innovations and contributions of this
paper are as follows:

(1) To solve the problem that the calculation resources of the algorithm carried by the
UAV are limited and the fault cannot be accurately detected, this paper proposes a new
context lightweight structure (C2fGhost) from the perspective of the model lightweight,
which will be calculated. While the volume is compressed by 43%, the mAP is increased by
0.14%. In addition, we combine the advantages of the Ghost module, SPPCSPC structure,
and convolution, and propose two lightweight structures, GhostSPPCSPC and GhostConv.
Compared with the original model, the calculation amount of the improved model is
reduced by 69%, and the number of parameters is reduced by 75.7%.

(2) To solve the problem that it is difficult to detect different fault scales during the
UAV inspection process, a feature-balanced network is proposed. Based on the attention
mechanism and PA-Net, the network can better integrate deep information and shallow
information and effectively improve the problem that it is difficult to detect targets of
different scales at the same time.

(3) To solve the problem that it is difficult to detect small targets in aerial images,
NWD was initially used to replace the positioning loss function in the model, and it was
found that the calculation amount of the model increased suddenly, and the training time
was greatly increased. Then, a loss function was proposed for the fusion of NWD and
CIoU in proportion, and the best fusion ratio (70%NWD + 30%CIoU) was found. While
reducing the number of parameters and training time, the accuracy is higher than that of
all NWD loss functions. By using the missed detection rate to measure the detection effect
of small targets, the test results show that the missed detection rate of the defects decreased
by 6.76%, and the missed detection rate of anti-vibration hammer corrosion decreased
by 14.61%.

(4) Deploy the algorithm in this paper to the embedded device Jeston Xavier NX to
simulate the UAV inspection process and put forward the deployment condition limit
index. The accuracy of the algorithm in the embedded device reached 93.5%, and the
detection speed reached (23.5 ± 2.2) FPS. Meet the accuracy and real-time performance of
drone inspections.
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2. Materials and Methods

2.1. Datasets

The dataset used in this paper is provided by the State Grid Corporation of China.
The dataset records fault images of transmission lines taken by M300-RTK. There are 3824
pictures in total. Each picture contains one or more targets. The target labels include
four types of typical faults of transmission lines: Corrosion of insulators, insulator defects,
bird’s nests, and anti-vibration hammers, corresponding to ‘Insulator’, ‘Defect’, ‘Nest’, and
‘Fzc_xs’ in the first row of Table 1. At the same time, the number of labels corresponding to
each category is shown in the second row of Table 1. LabelImg software is used to label the
image, and the dataset is divided by a ratio of 8:1:1 (training set: validation set: test set).
The number of categories in each group is higher than that of the standard VOC2017 dataset
in the production of the VOC format dataset; therefore, this dataset has the same training
ability as the standard dataset in the sample size. Some faults are shown in Figure 1.

Table 1. Fault abbreviation and quantity.

Fault Abbreviation Insulator Defect Nest Fzc_xs

Numbers 4556 1333 1525 7287

 
(a) (b) 

Figure 1. (a,b) The typical fault sample diagram was selected in this paper.

2.2. Overview of YOLOv7 Methods

The YOLOv7 algorithm is a new YOLO series algorithm proposed after the YOLOv4
and YOLOv5 algorithms. The detection speed and accuracy of YOLOv7, in the range of
5FPS to 160FPS, are ahead of the current mainstream target detection algorithms. YOLOv7-
Tiny is a lightweight version of YOLOv7. The overall structure is shown in Figure 2. The
model structure consists of three parts: feature extraction network (backbone), feature
fusion network (neck), and prediction network (head).

For the feature extraction network, YOLOv7-Tiny adopts the ELAN (efficient layer
aggregation networks) structure, which is an efficient layer aggregation network. ELAN
is mainly composed of VOV-Net and CSP-Net. Its function is to avoid using too many
transition layers and reduce those that are unnecessary. The necessary parameters shorten
the feature extraction path and increase the extraction efficiency.

The feature fusion network still uses the PA-Net structure in YOLOv5. The top-down
and bottom-up paths can extract multi-scale features from feature maps at different levels,
capturing rich semantic and spatial information.
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The prediction network consists of three convolution modules that output target
classification information, localization information, and confidential information, and three
prediction heads with different detection scales (80 × 80, 40 × 40, 20 × 20). Through
three pieces of information, the model’s loss function can make better predictions on the
classification and location of the target. The model loss calculation formula is as follows:

Lcls =
S×S
∑

t=0

B
∑

j=0
Iobj
ij ∑

c∈classes
[pi
′(c) log(pi(c))]

+
S×S
∑

t=0

B
∑

j=0
Iobj
ij ∑

c∈classes
[(1− pi

′(c)) log(1− pi(c))]
(1)

 
Figure 2. YOLOv7-Tiny structure diagram.

Equation (1) is the classification loss function of the model, denoted as Lcls. Where
S × S is the image input size 640 × 640, i represents the i-th square of the feature map, j
represents the j-th prediction box predicted by the square, c ∈ classes represents the correct
category, pi (c) and pi’ (c) represent the predicted confidence score and the actual confidence
score, respectively.

SIoU = A∩B
A∪B

v = 4
π2

(
arctan wgt

hgt − arctan w
h

)2

α = v
(1−SIoU)+v

Lbox = 1− SIoU + ρ2(A,B)
c2 + αv

(2)

Equation (2) is the locus loss function of the target box, also known as the regression
loss, notated as Lbox, which is mainly used as the CIoU loss function [33]. In Figure 3, box
A is the real box, box B is the prediction box, and SIoU is the intersection ratio between
the real box and the prediction box; box M is the smallest external rectangle containing
box A and box B. Where ρ2(A, B) is the Euclidean distance between the centroids of the
real box and the predicted box, i.e., the length of d in the diagram; c in Equation (2) is the
diagonal length of the smallest outer matrix M that encloses box AB; wgt and hgt are the
width and height of box A of the real box, and w and h are the width and height of box B of
the predicted box. Compared with the traditional IoU, the CIoU introduces a penalty term
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v, which can better handle targets with different aspect ratios; it can measure the distance
between the predicted box and the real box more accurately and improve the accuracy of
target detection for the situation that boxes of different sizes have different overlap when
the IoU values are the same, i.e., the problem of scale sensitivity.

Lcon f =
S×S
∑

i=0

B
∑

j=0
Iobj
ij [C′ i log(Ci) + (1− C′ i) log(1− Ci)]

-
S×S
∑

i=0

B
∑

j=0
Inobj
ij [C′ i log(Ci) + (1− C′ i) log(1− Ci)]

(3)

Figure 3. Calculation diagram of CIoU.

Equation (3) is the confidence loss function of the target, denoted as Lconf. Among
them, obj and nobj represent the presence or absence of the target in the grid, and Ci and
Ci
′ represent the categories of the real box and the predicted box. Then, the total loss

function of YOLOv7-Tiny is composed of the addition of the three according to a certain
ratio, such as Equation (4).

Ltotal = 0.5× Lcls + 0.05× Lbox + Lcon f (4)

Finally, during prediction, a large number of redundant prediction frames are elimi-
nated after non-maximum value suppression and other processing operations, and finally,
the prediction category with the highest confidence score is output, and the coordinate
information of the target is returned by positioning the target.

2.3. The Overall Architecture of TD-YOLO

During the test, it was found that YOLOv7-Tiny runs at a slow speed on the embedded
device. The detection of complex and variable-scale faults and tiny target faults in the
transmission line inspection process has missed detection and false detection, and the
accuracy is low. Therefore, this paper proposes a TD-YOLO algorithm. The structure is
shown in Figure 4.
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Figure 4. TD-YOLO structure diagram.

2.3.1. Various Improvements of Model Lightweight Based on the Ghost Module

Due to the limited computational resources required for UAV-carried embedded
devices, the deployment of a model with many parameters to the UAV for detection is slow.
It cannot meet the real-time detection requirements of this paper. Therefore, the approach
of this paper is to consider the characteristics of each part of the YOLOv7 model, combined
with the Ghost lightweight module (the Ghost structure is shown in Figure 5), and design a
light optimization strategy that is best suited to fit with each part of the network. Based
on the above analysis, this paper proposes the C2fGhost structure in the feature extraction
network, the GhostSPPCSPC structure in the feature fusion network, and the Ghost (head)
part combined with the Ghost module in the prediction part.

Figure 5. Ghost module structure.

Compared with the unnecessary, redundant feature maps generated in the normal
convolution process, the Ghost module uses simple and easy-to-operate linear operations
to enhance features and increase channels’ mining information from original features with
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a small computational cost, which is a lightweight and efficient convolution module. The
principle of the Ghost module is shown in Equation (5) [34]:

Y = X× f , X ∈ RC×H×W , Y ∈ RC′×H′×m

yij = φij(yi), ∀i = 1, · · ·, m, j = 1, · · ·, s
(5)

As can be seen from Equation (5), the Ghost module operates by first generating
m original feature maps using fewer convolution kernels in the common convolution
way (*) and later generating the remaining n feature maps by performing a simple linear
transformation Φ on the already developed, m ≤ n.

Firstly, to address the problem of information redundancy caused by the multi-layer
intersection of ELAN modules, this paper designs a C2fGhost structure based on the idea
of residuals combined with a lightweight module. The original C2f structure (shown in
Figure 6b) continues the advantages of the ELAN structure of multi-gradient triage while
adding the residual branch of BottleNeck to enable the model to learn a richer feature
representation. Based on the Ghost module for C2f, this paper is further improved by
replacing BottleNeck with Ghost BottleNeck (shown in Figure 7).

 
  

(a) (b) (c) 

Figure 6. (a) ELAN module structure diagram; (b) C2f module structure diagram; (c) C2fGhost
structure diagram.

Figure 7. Ghost bottleneck structure.

The C2fGhost structure connects features at different levels to achieve multi-scale per-
ception and strengthen the model’s ability to detect targets with medium-scale changes in
transmission lines. At the same time, through the residual branch of Ghost BottleNeck, the
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model can learn richer feature representations and still, the advantages of low complexity
and a small amount of calculation of the Ghost module are retained. Then, while retaining
the original structure of SPP, the ghost replacement is performed on some convolutions
to achieve the purpose of lightweighting the model, which is denoted as GhostSPPCSPC.
Finally, the convolution module that is in front of the three different scale detection heads in
the head part is replaced by the Ghost module, and the model is further simplified, which
is recorded as GhostConv(Head), and the calculation amount and model parameters are
significantly reduced.

2.3.2. Improvement of Multi-Scale Feature Fusion Based on Feature-Balanced Network

In the inspection of transmission lines, the scale of fault targets spans large scales, and
it is challenging to detect multi-type faults and multi-scale features. Different detection
targets can be effectively identified if a higher weight ratio is assigned to the detection
targets, improving detection accuracy. The attention mechanism refers to the behavior of
human beings to selectively pay attention to the important parts of the received information.
It can assign different proportions of weights according to different detection objects and
solve the problem that multi-scale features are challenging to identify. However, a single
spatial or channel attention mechanism has limitations, and it is stretched in target detection
tasks with frequent scale changes. Therefore, this paper chooses the currently widely
used attention mechanism, scSE [35], that combines spatial and channels. Compared
with the attention mechanism CBAM [36], which also belongs to the combination of
spatial and channel mechanisms, it is primarily used in the medical field of high-precision
segmentation. It has the advantage of accurate recognition of fault multi-scale information.
Its structure is shown in Figure 8.

Figure 8. The scSE structure diagram [35].

The scSE process principle is shown in Equation (6). The calculation of the scSE
attention mechanism consists of two steps, cSE and sSE. In cSE, the input feature map U is
transformed into a feature map of 1 × 1 × C after global pooling Z. It is then normalized
using a sigmoid function, noted as activations σ (Zi), and these activations are adaptively
adjusted to ignore the less important channels and emphasize the important ones, and
finally, the calibrated feature map (U’cSE) is obtained by channel-wise multiplication. In
the sSE part, U undergoes a 1 × 1 × 1 convolution into a 1 × H × W feature map, with
each value σ(qi, j) corresponding to the relative importance of the spatial information (i, j)
for a given feature map. This recalibration provides the more important relevant spatial
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locations and ignores the irrelevant ones. The final output of the two is summed to obtain
scSE [35].

U =[u1, u2, · · ·, uC], ui ∈ RH×W

Zk = AvgPool2D(U) = 1
H×W

H
∑
i

W
∑
j

uk(i, j), Z ∈ R1×1×C

U′cSE = FcSE(U) = [σ(Z1)u1, σ(Z2)u2, · ··, σ(ZC)uC]
q = Wsq·U, Wsq ∈ R1×1×C×1, q ∈ RH×W

U′sSE = FsSE(U) =
[
σ(q1,1)u1,1, · · ·, σ

(
qi,j

)
ui,j, · · ·, σ(qH,W)ui,j], ui,j ∈ R1×1×C

U′scSE = U′cSE + U′sSE

(6)

However, there is still the problem of the complex fusion of features at different scales
in the model. Hence, this paper addresses the problem by proposing a feature-balanced
network (FBN) that combines PA-Net with the scSE attention mechanism. The feature-
balanced network forms the neck part of the improved algorithm, and the structure is
shown in Figure 9.

Figure 9. FBN structure diagram.

The entire network takes the high-level feature map H and the low-level feature map L
as output and fuses the output features of the two branches. In the channel attention branch,
high-level feature maps guide low-level features with channel attention masks. The channel
attention cSE enhances the network’s feature extraction in transmission lines, leading to a
low-level feature map L′ with rich semantic information. In the spatial attention branch, a
spatial attention mask guides the high-level feature map using the low-level feature map.
The spatial attention module sSE strengthens the capture of spatial information, resulting
in a high-level feature map H′ with spatial information. Finally, after the two are fused, a
feature quantity containing spatial and channel information is output, and then the deep
and shallow features are fused through PA-Net to balance the multi-scale features.

2.3.3. Small Target Detection Optimization Based on NWD Loss Function

When the object-to-image ratio is less than 0.1, it can be called a small object, a relative
definition of small objects [34]. The anti-vibration hammer corrosion and insulator damage
in the detection objects of this paper can be divided into small target ranges, as shown
in Figure 9. Also, in Table 2 of 4.5, the results show that the detection accuracy of the
anti-vibration hammer is the lowest. Hence, the detection optimization for small targets
is the focus and difficulty of this paper. To solve this problem, TD-YOLO first introduces the
NWD loss function for small object detection to replace part of the CIoU of the localization loss in
the YOLOv7-Tiny loss function. Secondly, it explores the fusion ratio of NWD and CIoU so that
the algorithm can improve the detection accuracy of small objects while retaining the advantage of
the fast training speed of CIoU, effectively reducing the amount of calculation of the model.
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Table 2. Comparison of lightweight ablation experiments based on Ghost modules.

mAP (%) FLOPs (G) Params (MB)

YOLOv7-Tiny 92.79 13 12.3
YOLOv7-Tiny-C2fGhost 92.93 7.5 7.3

YOLOv7-Tiny-GhostSPPCSPC 92.84 10.3 9.5
YOLOv7-GhostConv(Head) 92.81 10.3 9.3

YOLOv7-Tiny-C2fGhost
-GhostSPPCSPC 92.55 7 6.15

YOLOv7-Tiny-C2fGhost
-GhostConv(Head) 92.74 4.7 4.3

YOLOv7-Tiny-C2fGhost-
GhostSPPCSPC-GhostConv(Head) 91.98 4.1 3

CIoU is very sensitive to the position deviation of small targets that occupy fewer
pixels [37]. If there is a slight position deviation in the position of the tiny target, the
intersection of union (IoU) will drop significantly, greatly affecting the model accuracy.
Taking Figure 10a as an example, damaged insulators belong to small objects, while insula-
tors belong to ordinary objects, and the bounding boxes generated by them are shown in
Figure 11. Box A represents the ground-truth bounding box, and boxes B and C represent
the predicted bounding boxes with 1-pixel and 4-pixel diagonal deviation, respectively;
thus, the corresponding intersection ratios can be calculated.

 
(a) (b) 

Figure 10. (a) Example of a broken insulator in a small target; (b) example of vibration hammer rust
in small targets.

  

(a) (b) 

Figure 11. (a) IoU transformation of small targets; (b) IoU transformation of normal targets.

For the small target in Figure 11a, the IoU changes as follows:

IoU =
|A ∩ B|
|A ∪ B| = 0.53 ⇒ IoU =

|A ∩ C|
|A ∪ C| = 0.06 (7)
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For the normal target in Figure 11b, the IoU changes as follows:

IoU =
|A ∩ B|
|A ∪ B| = 0.9 ⇒ IoU =

|A ∩ C|
|A ∪ C| = 0.65 (8)

It can be seen from Equations (7) and (8) that for small targets, a minor position
deviation leads to a significant IoU drop (from 0.53 to 0.06). The IoU drop (from 0.9 to 0.65)
is not evident for ordinary objects under the same position deviation. This means that the
CIoU is very sensitive to the position deviation of small targets that occupy fewer pixels.
If there is a slight position deviation in the position of the tiny target, the IoU will drop
significantly, which will greatly affect the model’s accuracy.

Therefore, TD-YOLO chooses the NWD loss function that is insensitive to objects
of different scales. NWD uses a two-dimensional Gaussian distribution to model the
peripheral bounding box of the object, which can better describe the weight of different
pixels, where the importance of pixels decreases from the center to the boundary. Bounding
box A and bounding box B can be converted into the distribution distance between two
Gaussian distributions. This new measurement method can evaluate the similarity between
the model boundary and the Gaussian distribution and can more accurately judge the
position information between the two boxes. To continuously improve the performance of
the detector, the principle of NWD is shown in Equation (9) [38].
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[
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]
, Σ =

[
w2

4
0

0
h2

4

]

W2
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2 , ha

2

]T
,
[
cxb, cyb, wb

2 , hb
2

])T
∥∥∥∥∥

2

2

NWD(Na, Nb) = exp
(
−
√

W2
2 (Na ,Nb)

C

)
(9)

In Equation (9), cxa, cya, wa, ha, cxb, cyb, wb, and hb are the center coordinates, height,
and width of bounding boxes A and B, and according to box A = (cxa, cya, wa, ha), box
B = (cxb, cyb, wb, hb) can construct the inscribed ellipse of frame A and frame B; then, model
the two-dimensional Gaussian distribution N (μ, Σ) according to the Gaussian density, and
the Gaussian distribution of frame A and frame B is Na, Nb; C is the constraint quantity
of the dataset, and the calculation of NWD is realized through this process. NWD is a
better way to measure the similarity between two frames, and its insensitivity to differently
scaled targets makes it more suitable for detecting small targets, which improves the
accuracy of detecting anti-vibration hammer corrosion and insulator breakage significantly
in this paper.

3. Experimental Results

3.1. Experimental Environment

This paper adopts the deep learning framework based on the PyTorch 1.7.1 environ-
ment; the environment is Ubuntu 20.04, python 3.7.11, CUDA = 11.4, and the training
graphics card is configured as an NVIDIA RTXA6000/48 G graphics card. The processor is
an Intel Xeon Platinum 8171 M CPU@2.60 GHz. The RAM is 96 G. The graphics card used
by the local test computer is an NVIDIA RTX 3060 Ti, the processor is an AMD Ryzen5 5600
X, and the RAM is 32 G.

3.2. Training Process and Parameter Settings

In this paper, the backbone network is significantly modified in the improvement
process; therefore, pre-training weights are not applicable. To reduce the likelihood of the
model falling into a local optimum, a stochastic gradient descent (SGD) optimizer is used.
The training batch was set to 8, and 300 rounds were trained. A cosine annealing learning
rate was used, and a decaying learning rate was applied to the bias layer to improve the

80



Drones 2023, 7, 638

convergence speed of the model to enhance the diversity of the data with the robustness
of the model itself. Figure 12a–c show the three loss curves before and after the model’s
improvement. It can be seen that the improved model has improved compared to the
original model, especially in Figure 12b. For the dataset containing more small targets
in this paper, the improvement of the localization loss effect after replacing the NWD
is particularly obvious. From Figure 12d, it can be seen that the improved model has a
significant improvement in mAP, which verifies the feasibility of the improved algorithm
in this paper.

 

(a) (b) 

 
(c) (d) 

Figure 12. (a) Comparison chart of classification loss curves; (b) comparison of positioning loss
curves; (c) comparison of loss-of-confidence curves; (d) mAP curve comparison chart.

3.3. Performance Evaluation Indicators

To better evaluate the missed detection of small targets caused by the difference in
scale transformation, this paper introduces the missed detection rate (miss rate) [39] and the
indicators for the conventional evaluation of the advantages of target detection algorithms:
mean average precision (mAP), inference delay (speed), model size (params), and number
of floating point operations (FLOPs).

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

missRate =
FN

TP + FN
(12)

mAP =
∑N

i APi

N
(13)
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In Equations (10)–(13): TP, FP, and FN represent the number of correct detections,
false detections, and missed detections; AP is the integral of the P–R curve; and N is
the detection category. Figure 13 is the mAP curve drawn by the improved algorithm
in this paper.

Figure 13. This paper improved the algorithm mAP curve.

4. Experimental Discussion

4.1. Validation of Model Lightweight Effects

To evaluate the impact of different improvement strategies on the detection perfor-
mance of YOLOv7-Tiny, comparative experiments are carried out on the typical fault dataset
of transmission lines. First, the model is improved based on Ghost Module lightweight,
and the test results are shown in Table 2.

From Table 2, it can be seen that the C2fGhost improvement, due to its structural
excellence, still improves mAP by 0.14% compared to YOLOv7-Tiny, with a reduced
number of parameters and computation, and the GhostSPPCSPC and GhostConv(Head)
improvements only replace part of the ordinary convolution, with a reduced number of
parameters and computation and a slight accuracy. The three Ghost-based lightweight
improvements were then subjected to ablation experiments, and after ablation for the latter
two, while retaining C2fGhost, it was found that the replaced convolution in YOLOv7-
C2fGhost-GhostConv(Head) involved a change in the number of channels of the three
scale detection heads, the computational power decreased by 63.9%, and the number of
parameters decreased by 65.1%. In terms of accuracy (mAP), since the convolution in the
prediction part mainly generates a series of feature mappings that contain information on
the position, category, and size of the object, and the ones in the Ghost module can obtain
this information through another residual branch, then, based on this, the decrease in
accuracy is not significant with fewer convolution layers, and the mAP decreases by 0.05%.
The final three-improvement ablation experiment, therefore, results in a 67.7% decrease in
model computation, a 76.7% decrease in the number of parameters, and a 0.81% decrease
in accuracy.

4.2. Validation of Feature-Balanced Network Validity and Comparison of Similar
Attention Mechanisms

The impact of feature-balancing networks on model size, computational effort, and
accuracy, as well as a comparison of the attention mechanism scSE used in the FBN with
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CBAM, which is also a combination of spatial and channel attention, previously used, is
shown in Table 3 [39].

Table 3. Experimental results of feature-balanced networks embedding different attention mechanisms.

Models Map (%) FLOPs (G) Params (MB)

YOLOv7-Tiny-Ghost 91.98 4.1 3
YOLOv7-Tiny-Ghost-FBN(CBAM) [40] 92.18 4.4 3.1

YOLOv7-Tiny-Ghost-FBN(scSE) 92.31 4.2 3.1

It can be seen in Table 3 that based on YOLOv7-Tiny-Ghost, CBAM and scSE are,
respectively, added to form a feature-balanced network with different attention mechanisms.
The mAP of the former increased by 0.2%, and the latter increased by 0.33%; the amount of
calculation and the amount of parameters increased by 0.3 G, 0.1 G, and 0.1 MB, respectively.
While the accuracy improved, the amount of calculation and the number of parameters
did not increase significantly; however, the reason why scSE is ahead of CBAM is its better
channel-attention mechanism structure and its parallel connection method. The former
increases the accuracy, and the latter reduces the amount of calculation, which is why scSE
is chosen in this paper.

To further verify its effectiveness, this paper visualizes the Grad-CAM heat map for
the following typical situations, and the test results are shown in Figure 14. It can be seen in
Figure 14 that in Figure 14a,b, the thermal region of the improved model is enlarged, which
means that the model assigns more weights to the targets to be detected, and the darker the
color, the more weights are allocated. Figure 14c shows that the model before the improvement
assigns incorrect weights to areas with no detection target. Although the improved model has
fewer thermal areas than before, it accurately identifies the thermal area.

YOLOv7-Tiny-Ghost YOLOv7-Tiny-Ghost-scSE 

  
(a) Improved model with larger thermal region 

  
(b) Improved model with more thermal region 

Figure 14. Cont.
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(c) Improved model with more accurate thermal region 

Figure 14. Comparison of the results of Grad-CAM after adding scSE.

4.3. Validation of the Effect of NWD Loss Function and the Effect of NWD on the Model with
Different Fusion Ratios

In this paper, CIou is replaced with an NWD loss function with better detection
accuracy for small targets, and the training time is found to increase substantially after
training. Then, an improvement strategy of mixing different proportions of NWD with
CIoU is proposed to retain the accuracy of NWD while speeding up the training time.
Finally, the models with loss functions fused in different proportions are retrained and
tested on a typical fault dataset of transmission lines. The proportion of NWD loss functions
in the experiments was set to 100%, 90%, 80%, 70%, and 60%, respectively, and the model
performance for different fusion proportions is shown in Table 4. The 90% NWD + 10%
CIoU in the table is the localization loss function consisting of 90% of the NWD loss function
and 10% of the CIoU loss function together, and the others are similar.

Table 4. Experimental results after fusion of NWD with CIoU at different ratios.

Models
Training Time

/(h)
mAP
/(%)

Miss Rate
(Fzc_xs)/(%)

Miss Rate
(Defect)/(%)

YOLOv7-Tiny-Ghost 11.2 91.98 16.96 23.07
−(100%NWD) 24.5 92.92 11.03 10.24

−(90%NWD + 10%CIoU) 23 92.53 14.23 13.84
−(80%NWD + 20%CIoU) 21.5 92.83 14.35 11.31
−(70%NWD + 30%CIoU) 20 93.18 10.20 8.46
−(60%NWD + 40%CIoU) 18.5 92.5 13.04 12.3
−(50%NWD + 50%CIoU) 17 91.8 13.99 14.6

Figure 15 shows the test results of models with different fusion ratios on the dataset. It
can be seen in Table 4 and Figure 16 that as the proportion of NWD decreases, the training
time also gradually increases, and mAP presents a process of rising first and then falling,
and 70% is the critical value. The mAP is 1.2% higher than the initial model; the training
time decreases as the proportion of NWD decreases. This study adopts a fusion ratio model
of (70%NWD + 30%CIoU) to balance the training time and model accuracy. The detection
effect of small targets is improved, the missed detection rate of anti-vibration hammer
corrosion is reduced by 6.76%, and the missed detection rate of insulator damage is reduced
by 14.61%, proving the method’s effectiveness and feasibility in this paper.
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Figure 15. Test results of models with different fusion proportions on datasets.

Figure 16. mAP-Params scatter plots of different models.

4.4. Comparison of Ablation Experiments

Table 5 is based on YOLOv7-Tiny and the comparison of the experimental results
before and after adding the improvement strategy proposed in this paper. Among them,
YOLOv7-Tiny is recorded as Algorithm 1.

Table 5. Ablation experiment results.

Models Ghost FBN NWD
Fzc_xs
(AP%)

Defect
(AP%)

Insulator
(AP%)

Nest
(AP%)

mAP
(%)

Parmas
(MB)

FLOPs
(G)

Algorithm 1 90.81 94.67 92.85 92.84 92.79 12.3 13
Algorithm 2

√
89.35 92.87 93.15 92.55 91.98 3 4.2

Algorithm 3
√ √

89.38 93.4 93.9 92.71 92.31 3.1 4.2
Algorithm 4

√ √
89.7 95.94 93.18 91.07 92.47 3 4.2

Algorithm 5
√ √ √

90.7 96.1 93.7 93.7 93.5 3.1 4.3

It can be seen in Table 5 that Algorithm 1 is the initial YOLOv7-Tiny, and Algorithm 2
optimizes the lightweight structure of the Ghost module based on Algorithm 1, the amount
of calculation is reduced by 67.7%, the amount of parameters is reduced by 75.6%, and
mAP is only reduced by 0.81%. For Algorithm 3 and Algorithm 4, based on Algorithm 2,
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the scSE attention mechanism is added to form a feature-balanced network and the NWD
loss function is added to enhance the detection effect of small targets. Compared with
Algorithm 2, Algorithm 3 has improved AP values for all detected objects. The problem
of low accuracy, caused by scale transformation in the detection process, has been greatly
improved; compared with Algorithm 2, Algorithm 4 has greatly improved the accuracy of
small-target anti-vibration hammer corrosion and insulator damage, which also verifies
the effectiveness of NWD for small target detection. Algorithm 5 is TD-YOLO, which
combines three improvement strategies. The accuracy of each type of detection object is
improved. Compared with Algorithm 2, the number of parameters remains unchanged,
and the amount of calculation only increases by 0.1 G.

4.5. Horizontal Comparison of Experimental Results

To verify the model’s performance and detection effect of the algorithm (TD-YOLO) in
this paper, the original model and the other eight models were selected for comparison, as
shown in Table 6.

Table 6. Comparison of various indicators of different models on the test set.

Models
Fzc_xs
(AP%)

Defect
(AP%)

Insulator
(AP%)

Nest
(AP%)

mAP
(%)

Inference
(ms)

Params
(MB)

Faster R-CNN 55.72 85.76 89.34 80.18 77.75 78 114
YOLOv4 83.74 86.48 91.87 81.89 86 22.8 256

YOLOv4-Tiny 62.58 75.33 84.15 71.18 73.31 6.28 23.6
YOLOv5s 87.86 83.94 91.33 82.05 86.3 13 28.5
YOLOXs 90.84 95.42 96.18 88.63 92.77 15 36
YOLOv6s 89.6 88.1 92.6 88.8 89.8 9 18.5

YOLOv7-Tiny 90.81 94.67 92.85 92.84 92.79 5 12.3
YOLOv8n 90.6 93.8 92.8 90.9 92 4 6.2
TD-YOLO 90.7 96.1 93.7 93.7 93.5 3.5 3.1

It can be seen in Table 5 that the accuracy and speed of the second-stage algorithm
Faster R-CNN have a significant gap compared with the first-stage algorithm YOLO series,
especially for tiny target anti-vibration hammer corrosion, with only a 55.72% mAP. From
the algorithm extension of YOLOv4 to YOLOv4-Tiny, the YOLO series algorithms are
developing towards becoming lightweight. In the table, YOLOv5s, YOLOXs, YOLOv6s,
YOLOv7-Tiny, and YOLOv8n are all their corresponding lightweight versions, and the
accuracy is gradually increasing. For the model, the number of parameters gradually
decreases; TD-YOLO compares with the original algorithm, mAP is improved by 0.71%,
and the number of model parameters is reduced by 74.8%. Further, we analyzed the
position of the improved algorithm in the current mainstream lightweight algorithm and
drew the data as a parameter-precision floating-point diagram, as shown in Figure 16. It
can be seen from the verification results on the transmission line fault detection data that
the performance of TD-YOLO is in a leading position compared with the other YOLO series
lightweight algorithms in various indicators.

To further verify the advantages of the proposed algorithm, three representative
scenarios are selected to verify the model, namely, target faults under shadow occlusion,
multi-scale target faults, and multiple small target faults [41,42]. In the experiment, it was
compared with Faster R-CNN, the mainstream lightweight algorithm in Table 6, and our
TD-YOLO algorithm. The detection results are shown in Figure 17.
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(a) Faster R-CNN 

   
(b) YOLOv4-Tiny 

   
(c) YOLOv5s 

   
(d) YOLOv6s 

   
(e) YOLOXs 

   
(f) YOLOv7-Tiny 

Figure 17. Cont.
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(g) TD-YOLO 

Figure 17. Comparison of three representative scene detection effects in different model test sets.

5. Edge-Side Deployment

The edge deployment object uses Jetson Xavier NX, which has 384 CUDA cores,
48 Tensor cores, and two NVIDIA engines. It can run multiple modern neural networks
in parallel, processing high-resolution data from multiple sensors simultaneously. It can
be mounted onto a UAV to simulate the inspection conditions of UAVs. Real-time data
collection is performed by calling the hardware camera, and the test results are shown in
Table 7. It can be seen in Table 7 that the improved model reduces the inference delay by
12 ms compared with the original YOLOv7-Tiny, and the real-time detection speed increases
by 4.8 FPS, reaching 23.5 ± 2.2 FPS. The simulation of the live drone inspection image
is shown in Figure 18. The detection results meet the typical faults of transmission lines
in the process of UAV inspection testing requirements. Finally, we explored whether the
hardware parameters met the conditions for UAV deployment, and the test results are
shown in Table 8 [43].

Table 7. Test results on the Jetson Xavier NX before and after the improved model.

Models Inference (ms) NMS (ms) Speed (FPS) mAP (%)

Algorithm 1 50 ± 4 4.5 ± 1.5 18.3 ± 1.8 92.79
Algorithm 2 33 ± 3 4.5 ± 1.5 26.7 ± 2.3 91.98
Algorithm 3 35.7 ± 2.8 4.5 ± 1.5 24.8 ± 2.4 92.31
Algorithm 4 34.9 ± 2.1 4.5 ± 1.5 25.3 ± 2.2 92.47
Algorithm 5 38 ± 3 4.5 ± 1.5 23.5 ± 2.2 93.5

 

Figure 18. Simulation of live drone inspection image.
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Table 8. Comparison of indicators of Jeston Xavier NX and M300-RTK.

Indicators Jeston Xavier NX M300-RTK Effective

Weight 260 g Maximum load of 2.7 kg
√

Form Factor 70 mm × 45 mm 180 mm × 130 mm
√

Power Consumption Maximum 15 W Rated power 17 W
√

Frame Rate 23.5 ± 2.2 FPS Maximum 30 FPS
√

The name of the algorithm in Table 7 is the same as that in Table 5. Algorithm 1 is the
YOLOv7-Tiny model, and Algorithm 5 is TD-YOLO after the ablation experiment.

As can be seen from Table 8, the embedded devices tested in this paper are all suitable
for deployment in the UAVs used for transmission line inspection, which further validates
the feasibility of the algorithms in this paper.

6. Conclusions

1. This paper proposes a typical fault detection algorithm for transmission lines
based on a lightweight module and a feature-balanced network. Through the Ghost
module, YOLOv7-Tiny is reorganized in a lightweight way to reduce the parameters and
computation of the model so that it can meet the deployment conditions. Through the
introduction of the scSE attention mechanism and PA-Net to form a feature-balancing
network, the information of the upper and lower layers is better integrated, which, to a
certain extent, reduces the missed detection caused by the insufficient feature expression
capability during the scale transformation process of faults. The NWD loss function is used
to replace part of the CIoU to improve the detection of small target faults while ensuring
the training speed of the model.

2. Based on the self-built dataset, the model designed in this paper has obvious advan-
tages in terms of detection accuracy and detection speed compared with the lightweight
models of the same stage, and the effectiveness of the model’s improvement is verified by
the mobile hardware.

3. The self-built dataset in this paper mainly includes transmission line equipment
faults (typically broken insulators), transmission line foreign object faults (typically bird’s
nests), and transmission line metalwork faults (typically anti-vibration hammer corrosion),
and the fault types are not limited to these typical faults. Further research will be carried
out by adding fault-type detection to make the model more universal.
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Abstract: Swarming is one of the important trends in the development of small multi-rotor UAVs.
The stable operation of UAV swarms and air-to-ground cooperative operations depend on precise
relative position information within the swarm. Existing relative localization solutions mainly rely on
passively received external information or expensive and complex sensors, which are not applicable
to the application scenarios of small-rotor UAV swarms. Therefore, we develop a relative localization
solution based on airborne monocular sensing data to directly realize real-time relative localization
among UAVs. First, we apply the lightweight YOLOv8-pose target detection algorithm to realize the
real-time detection of quadcopter UAVs and their rotor motors. Then, to improve the computational
efficiency, we make full use of the geometric properties of UAVs to derive a more adaptable algorithm
for solving the P3P problem. In order to solve the multi-solution problem when less than four motors
are detected, we analytically propose a positive solution determination scheme based on reasonable
attitude information. We also introduce the maximum weight of the motor-detection confidence into
the calculation of relative localization position to further improve the accuracy. Finally, we conducted
simulations and practical experiments on an experimental UAV. The experimental results verify the
feasibility of the proposed scheme, in which the performance of the core algorithm is significantly
improved over the classical algorithm. Our research provides viable solutions to free UAV swarms
from external information dependence, apply them to complex environments, improve autonomous
collaboration, and reduce costs.

Keywords: UAV swarm; relative localization; Perspective-n-Point; GNSS-denied environments;
YOLO; keypoint detection

1. Introduction

Small multi-rotor UAVs have the advantages of good maneuverability, rich expansion
functions, and great intelligence potential, but the limited performance of a single aircraft
and poor survivability have also been exposed in use [1]. Swarming can compensate
for the weaknesses of a single UAV while further leveraging its strengths [2]. Currently,
UAV swarms have shown great value and potential in missions such as aerial Internet
of Things (IoT) [3,4], relay communication support [5,6], aerial light shows, regional se-
curity [7], and military operations [8], which have become one of the inevitable trends
in the development of UAV applications. Accurate real-time position information is the
basis for UAVs to accomplish a variety of air-to-ground missions. In addition to absolute
position information, it also involves the relative position relationship between each UAV
within a swarm. It is no exaggeration to say that relative location information is no less
important than absolute location information from a swarm perspective. It enables UAVs to
maintain planned formations, avoid collisions with each other, and accomplish coordinated
maneuvers [9]. Therefore, precise relative localization is a must for swarm UAVs, which is
of great significance in reducing the swarm’s reliance on absolute position information and
improving the swarm’s ability to survive in hazardous environments.

Drones 2023, 7, 612. https://doi.org/10.3390/drones7100612 https://www.mdpi.com/journal/drones92
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In recent years, solutions based on various hardware and methods have emerged
for relative localization problems. While they show good performance, the different
characteristics and conditions of use make many of these solutions inappropriate for small
multi-rotor UAV swarms. Currently, the acquisition of relative localization information
between UAVs still relies heavily on the absolute position data of each UAV from the
Global Navigation Satellite System (GNSS) [10]. In addition, similar problems exist with
relative localization via motion capture systems, simultaneous localization and mapping
(SLAM) [11,12], and ground-based ultra-wide band (UWB) localization systems [13]. They
all need to first obtain their respective position coordinates in the same spatial coordinate
system from external infrastructure or environmental information and then solve for the
relative localization information based on this. These methods have obvious drawbacks.
Firstly, once absolute localization has failed, relative localization will also not be possible, for
example, when encountering a GNSS-denied environment, when the coverage of ground-
based localization stations is exceeded or when the environmental features required for
SLAM are not evident. Secondly, errors in absolute localization will be superimposed
and magnified during the conversion to relative localization information [14]. In addition,
absolute localization will take up limited resources per swarm UAV, which could have
been avoided.

The model for UAV swarms is derived from the group behavior of flying creatures
in nature [15]. They usually rely on organ functions such as vision and hearing to di-
rectly obtain information about their relative positions to each other. UAV swarms, as
multi-intelligence systems, should also have the ability to achieve relative localization
without relying on external facilities or information. Similar functions have already been
implemented in the rapidly developing field of advanced driving assistance system (ADAS)
research [16,17]. Based on the information provided by vision, laser, and other sensors, it
has been possible to achieve accurate relative positioning of objects within a certain range
while the vehicle is in motion. However, the environment in which vehicles are driven
can be approximated as a two-dimensional space, whereas drones are in a more complex
three-dimensional scenario.

Relative localization based on radio signals is a classical approach, currently repre-
sented by airborne UWB and relative localization based on carrier phase [18,19]. Although
they are superior in terms of localization accuracy, they will significantly increase the cost,
power consumption, and system complexity of each UAV, as well as taking into account
mutual interference problems. While LIDAR has superior performance and proven appli-
cations, the same expensive price and high power consumption prevent it from being the
first choice for swarm UAVs [20]. Millimeter-wave radar is less expensive, but it has lower
localization accuracy and a smaller measurement range [21].

While relative localization achieved based on vision SLAM is not considered due to its
indirectness and instability, vision sensors can also directly provide useful information for
relative localization [22]. Wide-angle lenses, gimbals, camera scheduling algorithms, and
target tracking algorithms [23] ensure flexible acquisition of environmental images [24].
Binocular cameras and depth cameras are the current mainstream vision solutions [25].
Binocular vision localization uses the principle of triangular geometric parallax to achieve
relative localization. However, the co-processing of binocular data requires high computing
resources and speed, and the accuracy and range of measurements are limited when the
parallax is small. Depth cameras can obtain depth data based on the principle of structured
light or time of flight (ToF), but they have a relatively small applicable distance and imaging
field of view, making them unsuitable for the relative localization of drones in motion [26].

Monocular cameras are common onboard sensors for UAVs and have the advantage
of being cheap and easy to deploy. However, information based solely on a single frame
from a single camera can only measure direction but not distance unless more auxiliary
information is introduced, which is also the core problem that needs to be solved for
monocular visual localization [27]. The implementation of relative localization based on
airborne monocular vision offers significant advantages in terms of cost, complexity, and
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hardware requirements compared to the other methods mentioned above, but there is a lack
of mature solutions. Therefore, the development of a relative localization method based
only on airborne monocular vision is of great practical importance to solve the relative
localization problem of small multi-rotor UAV swarms.

In this research, we develop an airborne monocular-vision-based relative localization
scheme using a small quadrotor UAV as an experimental platform. It achieves accurate
real-time relative localization between UAVs based only on a single airborne camera’s data
and simple feature information of the quadrotor UAV. In summary, our contributions are
as follows:

• We propose a new idea of directly using only the rotor motors as the basis for local-
ization and use the deep-learning-based YOLOv8-pose keypoint detection algorithm
to achieve fast and accurate detection of UAVs and their motors. Compared to other
visual localization information sources, we do not add additional conditions and data
acquisition is more direct and precise.

• A more suitable algorithm for solving the PnP (Perspective-n-Point) problem is derived
based on the image plane 2D coordinates of rotor motors and the shape feature
information of the UAV. Our algorithm is optimized for the application target, reduces
the complexity of the algorithm by exploiting the geometric features of the UAV, and
is faster and more accurate than classical algorithms.

• For the multi-solution problem of P3P, we propose a new scheme to determine the
unique correct solution based on the pose information instead of the traditional
reprojection method, which solves the problem of occluded motors during visual
relative localization. The proposed method breaks the limitations of classical methods
and reduces the amount of data necessary for visual localization.

A description of symbols and mathematical notations involved in this paper is shown
in Table 1.

Table 1. Description of symbols and mathematical notations.

{Ai} The set of points corresponding to all values of i.
(a, b) Coordinates in the specified coordinate system.

Oxyz The spatial coordinate system with O as the origin and Ox, Oy and Oz as the positive
directions of the coordinate axes.

∠AOB The angle between the rays OA and OB with O as the vertex.
A Matrices, including vectors.
AB A vector with A as the starting point and B as the ending point.

tm
n

The displacement matrix of the Om-coordinate system with respect to the On-coordinate
system.

Rm
n

The rotation matrix of the Om-coordinate system with respect to the On-coordinate
system.

A× B Multiply matrix A with matrix B.
[·]T The transpose of the matrix.
‖·‖ The modulus of the vector.

2. Related Work

2.1. Monocular Visual Localization

Currently, the main specific methods for monocular visual localization are feature
point methods, direct methods, deep-learning-based methods, and semantic-information-
based methods. References [28,29] both propose the use of deep learning target detection
algorithms to classify and detect images from different angles of the UAV and then combine
this with the corresponding dimensional information to estimate the relative position of
the UAV. However, this places high demands on the detection model; an accurate detection
model often means a larger amount of data collection for training as well as slower detection
speeds, while simplifying the model will lead to a significant increase in error. Another
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idea is to artificially add features to the UAV to aid detection. In reference [30], Zhao et al.
used the derived P4P algorithm to solve the relative position information of the target UAV
based on the image positions of four LEDs pre-mounted on the UAV, but only semi-physical
simulation experiments were carried out. Walter et al. obtained real-time relative position
information of the UAV by detecting scintillating UV markers added to the UAV and using
a 3D time-position Hough transform [31]. In reference [32], Saska et al. achieved relative
localization in their study by deploying geometric patterns on the UAV and detecting them,
with the study also incorporating inertial guidance information. Zhao et al. instead used the
April Tag algorithm to achieve the acquisition of UAV position and attitude information by
detecting and processing the onboard 2D code [33]. While these methods can achieve good
results, the additional addition of features is not conducive to practical application and is
not a preferred option. In reference [34], Pan et al. propose a learning-based correspondence
point matching model to solve the position information of ground targets based on multiple
frames from the UAV’s onboard monocular camera. But this method is based less on real
time and cannot adapt to the high-speed movement characteristics of UAVs. Reference [35]
presents a method for obtaining UAV position and attitude information by inspecting the
four rotor motors and other key components of the UAV and applying an improved PnP
algorithm. However, we do not believe it is possible to detect so many characteristics of a
UAV at the same time when detecting it in the air.

Based on the above analysis, harsh condition constraints, higher acquisition difficulty,
and lower real-time and accuracy are the main problems in acquiring data sources for visual
localization. We believe that relative localization based on the image feature information of
the UAV itself is a feasible idea. Moreover, the number of feature points should be required
to be as small as possible to facilitate detection and fast solving. The rotor motors are a
necessary component of a quadcopter drone, and there are at least three of them visible
when viewed from almost any angle. Therefore, we consider the motors as a reference point
for visual localization and explore solving the PnP problem based on better parameters
and computational effort.

2.2. Target and Keypoint Detection

Accurate detection of the UAV and its motors is the basis for visual localization.
Deep-learning-based target detection algorithms are the current mainstream solution, with
representative algorithms such as Faster R-CNN, YOLO, and SSD. Compared to other
algorithms, the YOLO algorithm is based on the idea of one-off detection, which is faster to
process and more suitable for applications in real-time scenarios [36]. Thanks to the simple
network architecture and optimized algorithm design, the YOLO algorithm is simple
to deploy and more conducive to deployment on lower-performance edge computers.
Based on these advantages, the YOLO algorithm is widely used in ground-to-UAV and
UAV-to-ground target detection in real time. However, detection accuracy, localization
precision, and performance on small targets have been the relative disadvantages of the
YOLO algorithm and have been the focus of its iteration and improvement [37].

The YOLO algorithm has now evolved to the latest v8 version, with many improve-
ments referencing the strengths of previous versions. YOLOv8 improves on the FPN
(feature pyramid networks) idea and the Darknet53 backbone network by replacing the
C3 structure in YOLOv5 with the more gradient flow-rich C2f structure. This improves
the multi-scale predictive capability and lightness of the algorithm. In the Head section,
YOLOv8 uses the mainstream decoupled head structure and replaces Anchor-Base with
Anchor-Free. in addition, YOLOv8 is optimized for multi-scale training, data enhance-
ment, and post-processing optimization, making it easier to deploy and train [38]. The
YOLOv8 development team has also released a pre-trained human pose detection model,
YOLOv8-pose, as seen in reference [39]. Pose estimation is realized based on the detection
and localization of specific parts and joints of the human body. Therefore, YOLOv8-pose
can be considered as a method for keypoint detection [40].
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Previous related work has focused on detecting UAV motors as area targets based on
their additional characteristics [30,31,35]. In this study, we apply YOLOv8-pose, which
is used for human posture detection, to the detection of the motors of UAVs. We hope
to realize direct, accurate, and real-time access to localization data sources based on the
advantages of YOLOv8-pose.

2.3. Solving the PnP Problem

The PnP problem is one of the classic problems in computer vision. It involves
determining the position and orientation of a camera, given n points in three-dimensional
space and their corresponding projection points on the camera image plane, combined
with the camera parameters. Common solution methods include Gao’s P3P [41], direct
linear transformation (DLT) [42], EPnP (Efficient PnP) [43], UPnP (uncalibrated PnP) [44],
etc. They have different requirements for the number of 2D–3D point pairs and are suitable
for different scenarios. In practice, there are often errors in the coordinates of the projected
points. More point pairs tend to help improve the accuracy and robustness of the results
but increase the amount of work involved in matching and solving the point pairs. Due
to the occurrence of occlusion, when photographing another quadcopter UAV with the
onboard camera, often only three motors are detected. Three sets of point pairs are also the
minimum requirement for solving the PnP problem, also known as the P3P problem.

Current solution methods for P3P problems can be divided into two-stage methods and
single-stage methods. The classical Gao’s method [41] mainly uses similar triangles, the co-
sine theorem, and Wu’s elimination method to solve the problem. In reference [45], Li et al.
proposed a geometric feature based on a perspective similar triangle (PST), reducing the un-
known parameters, reducing the complexity of the equations, and showing a more robust
performance. However, they all require the distance from the camera to the three points to
be found first, and then use methods such as singular value decomposition (SVD) to obtain
position and pose information. The single-stage method eliminates the intermediate process
of solving for distance values, which is more in line with the application needs of this study.
The method proposed by Kneip is representative of the single-stage method, which derives
the solution for camera position and pose directly by introducing an intermediate camera
and a series of geometrical treatments [46]. It offers a significant speed improvement over
Gao’s method, although at the cost of complex geometric transformations. Furthermore,
all P3P solutions mention the need to deal with the non-uniqueness of the solution of the
P3P problem by the reprojection method using the fourth set of point pairs. However, in
reality, when viewed from a partial angle, only three motors are often observable due to
the fuselage’s shading.

Classical PnP solution methods are devoted to solving general problems and do not
satisfy the special cases in this study. Meanwhile, more geometric features of rotor UAVs are
not utilized in these methods. In this research, we follow the idea of the single-stage method
and derive the position result of the P3P problem directly from an algebraic resolution
perspective based on the dimensional characteristics of the quadrotor UAV. For the multi-
solution problem of P3P, we propose a solution that does not require a fourth set of point
pairs based on the attitude characteristics of the UAV.

3. Detection of UAVs and Motors

3.1. Detection Model Training

First, we simulate the perceptual behavior of on-board vision by photographing a
quadrotor UAV hovering in the air from different angles and distances, as shown in Figure 1.
We then label the captured images, where UAVs are labeled as detection targets with
rectangles and motors are labeled as keypoints with dots. In order to correctly correspond
to the 2D–3D point pairs, the motor labeling order is specified as clockwise from the first
motor on the left, viewed from the bottom up. Obscured motors are not labeled. Finally,
following the general steps of YOLOv8-pose model training, the labeled images and data
were imported to generate the training model.
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Figure 1. Acquisition of UAV images.

3.2. Sequencing of Motor Keypoints

Although the labeling order of the motors has been specified, the output order of the
motor keypoints may still be wrong due to the complexity of the UAV’s flight attitude and
the multiple angles of detection. Therefore the sequence of keypoints of motors needs to
be calibrated. Due to the presence of occlusion, two to four motors can be detected in one
frame, as shown in Figure 2.

Figure 2. Three cases of the number of motors can be seen.

We set the pixel coordinates of the motors on the image plane to be {P0
i = (u0

i , v0
i )}

(i = 1,2,3,4), and the correct coordinates after sorting to be {Pi = (ui, vi)}. When two to three
motors can be detected, we specify that the motors appearing on the screen are sorted from
left to right. When all four motors are detected, we use the condition that the two midpoints
of the lines connecting the non-adjacent motors should theoretically overlap to judge and
correct the motor order. The specific algorithm for sorting is shown in Algorithm 1:
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Algorithm 1 Sorting the four motors

Require: {P0
i = (u0

i , v0
i )}, i ∈ {1 : n}

Ensure: {Pi = (ui, vi)}
1: if n < 4 then

2: Sort P0
1:n by u0

1 < u0
2 ( < u0

3 )

3: else

4: for i, j ∈ {1 : n}, i < j do

5: oij = [
u0

i +u0
j

2 ,
v0

i +v0
j

2 ]

6: end for

7: d1 = ‖o12o34‖, d2 = ‖o13o24‖, d1 = ‖o14o23‖
8: if min{d1:3} = d1 then

9: Swap the values of P0
2 and P0

3
10: else if min{d1:3} = d3 then

11: Swap the values of P0
3 and P0

4
12: end if

13: end if

14: {Pi} = {P0
i }

4. Relative Position Solution Method

4.1. Problem Model

Typically, the onboard vision sensor can detect three to four motors of the UAV within
the field of view. The solution of the relative position at this point is a P3P problem.

The model of the P3P problem is shown in Figure 3. Camera coordinate system,
pixel coordinate system, and motor coordinate system are established separately. Oc is
the optical centre of the camera and Opuv is the pixel coordinate system. The right-angle
coordinate system Ocxcyczc is established with Oc as the origin, where the xc-axis is in the
same direction as the u-axis, the zc-axis is reversed with the v-axis, and the yc-axis is on
the optical axis. {Mi}(i = 1, 2, 3, 4) represents the four motors of the UAV and Om is the
intersection of the central axis of the UAV with the plane where the motors are located,
here representing the spatial position of the UAV. We set up the right-angle coordinate
system Omxmymzm with the point Om as the origin, where the xm-axis and ym-axis are in
the positive direction of Om M3 and Om M4, respectively, and the zm-axis points above the
top of the UAV.

In fact, the camera coordinate system and the motor coordinate system express the
motion attitude of the camera gimbal and the UAV, which can be understood as the result
of the transformation with respect to the Earth coordinate system or the inertial coordinate
system. The pixel coordinate system is fixed with respect to the camera coordinate system
and is determined by the internal parameters of the camera. Then, the P3P problem is
converted to solving for the translation tm

c and rotation Rm
c of the motors coordinate system

with respect to the camera coordinate system, which are set as

tm
c =

⎡
⎣ tx

ty
tz

⎤
⎦, Rm

c =

⎡
⎣ r11 r12 r13

r21 r22 r23
r31 r32 r33

⎤
⎦, (1)
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Figure 3. The model for the P3P problem.

4.2. Improved Solution Scheme for the P3P Problem

We first consider the general case where only three motors are detected. The pixel
coordinates Pi of the motors and the camera focal length f are known. The vectors αi
represent OcPi. Obviously,

αi = [uc
i , f , vc

i ]
T, i = 1, 2, 3, (2)

where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

uc
i =

ui − Wp
2

Wp
2

· WI
2

,

vc
i = −

vi − Hp
2

Hp
2

· HI
2

,

(3)

where Wp and Hp represent the pixel width and height of the image plane, and WI and HI
represent the actual width and height of it.

Obviously, the point Pi is the projection on the image plane of the reflected rays from
the point Mi when they strike the focal point Oc along a straight line. So, Oc Mi can be
expressed as

Oc Mi = kiαi, i = 1, 2, 3. (4)

We set ‖Om Mi‖ = d, which can be obtained by measuring. Accordingly,

Om M1 = [−d, 0, 0]T,

Om M2 = [ 0,−d, 0]T,

Om M3 = [ d, 0, 0]T.

(5)

Based on the rules of vector transformation, Oc Mi can also be obtained from Om Mi by the
following transformation,

Oc Mi = Rm
c ×Om Mi + tm

c , i = 1, 2, 3. (6)
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From (1), (4), (5), and (6), it follows that

k1α1 = −

⎡
⎣ r11

r21
r31

⎤
⎦d + tm

c ,

k2α2 = −

⎡
⎣ r12

r22
r32

⎤
⎦d + tm

c ,

k3α3 =

⎡
⎣ r11

r21
r31

⎤
⎦d + tm

c .

(7)

To eliminate the unknown quantity ki, the first and second rows of each equation in
(7) are divided by the third row, respectively, and substitute (2), thus obtaining

−r11d + tx

−r31d + tz
=

uc
1

vc
1

,
−r21d + ty

−r31d + tz
=

f
vc

1
,

−r12d + tx

−r32d + tz
=

uc
2

vc
2

,
−r22d + ty

−r32d + tz
=

f
vc

2
, (8)

r11d + tx

r31d + tz
=

uc
3

vc
3

,
r21d + ty

r31d + tz
=

f
vc

3
.

Then, divide both the numerator and denominator on the left side of the Equation (8) by tz,
and we can obtain

−r11d/tz + tx/tz

−r31d/tz + 1
=

uc
1

vc
1

,
−r21d/tz + ty/tz

−r31d/tz + 1
=

f
vc

1
,

−r12d/tz + tx/tz

−r32d/tz + 1
=

uc
2

vc
2

,
−r22d/tz + ty/tz

−r32d/tz + 1
=

f
vc

2
, (9)

r11d/tz + tx/tz

r31d/tz + 1
=

uc
3

vc
3

,
r21d/tz + ty/tz

r31d/tz + 1
=

f
vc

3
.

For ease of expression, we make the following definitions:

uc
i = mivc

i , f = nivc
i , i = 1, 2, 3, (10)

a1 = tx/tz, a2=ty/tz, a3 = r11/tz, a4 = r21/tz,

a5 = r31/tz, a6 = r12/tz, a7 = r22/tz, a8 = r32/tz.
(11)

Substituting (10) and (11) into (9) gives

−da3 + a1

−da5 + 1
= m1,

−da4 + a2

−da5 + 1
= n1,

−da6 + a1

−da8 + 1
= m2,

−da7 + a2

−da8 + 1
= n2, (12)

da3 + a1

da5 + 1
= m3,

da4 + a2

da5 + 1
= n3.
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In (12), only ai(i = 1, 2, ..., 8) are unknown quantities, which can be simplified as

a1 = M2d2a5 + M1, a2 = N2d2a5 + N1,

a3 = M1a5 + M2, a4 = N1a5 + N2,

a6 = m2a8 −M2da5 + M3, a7 = n2a8 − N2da5 + N3,

(13)

where
M1 =

m1 + m3

2
, N1 =

n1 + n3

2
,

M2 =
m1 −m3

2d
, N2 =

n1 − n3

2d
, (14)

M3 =
2m2 −m1 −m3

2d
, N3 =

2n2 − n1 − n3

2d
.

By the nature of the rotation matrix, we have

r11r12 + r21r22 + r31r32 = 0, (15)

r11
2 + r21

2 + r31
2 = r12

2 + r22
2 + r32

2 = 1. (16)

Divide both sides of (15) and (16) by t2
z , and substitute (11) and (13) into, and we

can obtain
p1a5

2 + p2a5a8 + p3a5 + p4a8 + p5 = 0, (17)

q1a8
2 + q2a5

2 + q3a5a8 + q4a8 + q5a5 + q6 = 0. (18)

where
p1 = −d(M1M2 + N1N2),

p2 = m2M1 + n2N1 + 1,

p3 = M1M3 + N1N3 − d(M2
2 + N2

2),

p4 = m2M2 + n2N2,

p5 = M2M3 + N2N3,

(19)

q1 = m2
2 + n2

2 + 1,

q2 = d2(M2
2 + N2

2)−M1
2 − N1

2 − 1,

q3 = −2d(m2M2 + n2N2),

q4 = 2m2M3 + n2N3,

q5 = −2d(M2M3 + N2N3)− 2(M1M2 + N1N2),

q6 = M3
2 + N3

2 −M2
2 − N2

2.

(20)

From (17) we can also obtain

a8 = − p1a5
2 + p3a5 + p5

p2a5 + p4
. (21)

By substituting (21) into (18) and simplifying it, we can obtain

s1a5
4 + s2a5

3 + s3a5
2 + s4a5 + s5 = 0, (22)
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where

s1 = p2
1q1 + p2

2q2 − p1 p2q3,

s2 = 2p1 p3q1 + 2p2 p4q2 − p1 p4q3 − p2 p3q3 − p1 p2q4 + p2
2q5,

s3 = p2
3q1 + 2p1 p5q1 + p2

4q2 − p3 p4q3 − p2 p5q3 − p1 p4q4 + p2
2q6 − p2 p3q4 + 2p2 p4q5,

s4 = 2p3 p5q1 − p4 p5q3 − p3 p4q4 − p2 p5q4 + p2
4q5 + p2 p4q6,

s5 = p2
5q1 − p4 p5q4 + p2

4q6.

(23)

Using the formula for the roots of an unary quartic equation, we can quickly obtain
the value of a5 by (22). The filtering of multiple solutions is described in the next subsection.
The remaining value of ai can then be solved for by (13) and (21).

From (11) and (16), we can obtain the value of tz by

tz =
1√

a32 + a4
2 + a52

, (24)

and solve for the values of tx and ty from (11). Here, we use the non-negativity of ty to
exclude the wrong solution of (24) and obtain the translation vector tm

c . Since rotation
matrices are special orthogonal matrices, Rm

c also satisfies

rij = Aij, i, j = 1, 2, 3, (25)

where Aij stands for the algebraic cosine formula of rij. So, the rotation matrix Rm
c can

be solved from (11) and (25). Due to the accuracy limitations of the actual calculations,
Schmidt orthogonalization of Rm

c is also required.

4.3. Conversion of Coordinate Systems

The relative localization model of the two UAVs is shown in Figure 4. Multiple
coordinate systems are established with Ob, Oc, and Om as the origin, respectively. The
definitions of Oc and Om are given in the previous section, and Ob is determined in the same
way as Om. Obixbiybizbi, Ocixciycizci, and Ouixuiyuizui are three inertial coordinate systems,
so each of their axes corresponds to parallel, respectively. Ocxcyczc and Omxmymzm are
defined in the previous section. Obxbybzb and Ouxuyuzu are the fuselage coordinate systems
of the two UAVs, where the xb(xu)-axis points directly to the right of the fuselage, the yb(yu)-
axis points directly in front, and the zb(zu)-axis is perpendicular to Obxbyb(Ouxuyu) and
points above the fuselage. The difference between Ouxuyuzu and Omxmymzm is that unlike
Omxmymzm, which is set up to simplify calculations, Ouxuyuzu is a common coordinate
system used when expressing UAV attitude. Due to the symmetry of the quadcopter UAV,
we start by assuming that the positive direction of the yu-axis is always in the first quadrant
of the Omxmym.

Figure 4. The coordinate system of interest for relative localization of the UAV.
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Obviously, the relative position of the positioned UAV can be expressed as tu
bi = ObiOu.

Due to the same orientation of the inertial coordinate systems, the attitude of the positioned
UAV can be expressed as the rotation matrix Ru

bi of Ouxuyuzu with respect to Obxbybzb.
Ru

bi and tu
bi can be considered as the result of a series of coordinate system transforma-

tions and the flexible kinematic properties of UAVs and gimbals increase the difficulty of
solving them.

The solution scheme for Rm
c and tm

c is given in the previous section. The attitude
rotation matrices of the localization UAV and gimbal can be obtained based on their Euler
angles acquired in real time. The Euler angle consists of roll angle ϕ, pitch angle θ, and yaw
angle ψ, and the order of rotation is, based on an inertial coordinate system, first ψ degrees
around the z-axis, then θ degrees around the transformed x-axis, and finally ϕ degrees
around the transformed y-axis. The conversion formulas for Euler angles to the rotation
matrix R in the right-handed coordinate system are

Rx(θ) =

⎡
⎣ 1 0 0

0 cos θ − sin θ
0 sin θ cos θ

⎤
⎦,

Ry(ϕ) =

⎡
⎣ cos ϕ 0 sin ϕ

0 1 0
− sin ϕ 0 cos ϕ

⎤
⎦,

Rz(ψ) =

⎡
⎣ cos ψ − sin ψ 0

sin ψ cos ψ 0
0 0 1

⎤
⎦,

(26)

and
R = Rz(ψ) · Rx(θ) · Ry(ϕ). (27)

The attitude rotation matrices Rb
bi and Rc

ci can be obtained by substituting the Euler angles
ϕb, θb, ψb and ϕc, θc, ψc of the localization UAV and the gimbal into (26) and (27), respectively.

Based on the above known information, we give the solution scheme for Ru
bi and tu

bi.
Since the isotropy of inertial coordinate systems it follows that

Ru
bi = Ru

ci. (28)

where Ru
ci denotes the rotation matrix of the positioned UAV relative to the camera inertial

coordinate system. By the transitivity of the rotation matrix, Ru
ci can be expressed as

Ru
ci = Rc

ci · Rm
c · Ru

m, (29)

where, according to the direction in which the coordinate system is set up, it is easy to
know that

Ru
m = Rz(−

π

4
). (30)

By the additive property of vectors, tu
bi can be expressed as

tu
bi = tci

bi + tu
ci, (31)

where tci
bi can be obtained from

tci
bi = Rb

bi · t0, (32)

where t0 represents the initial value of tci
bi when ϕb, θb, ψb=0, which can be easily obtained

by measurement. And we can obtain tu
ci by

tu
ci = Rc

ci · tm
c . (33)
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In summary, the relative position and attitude of the positioned UAV are finally given as

tu
bi = Rb

bi · t0 + Rc
ci · tm

c ,

Ru
bi = Rc

ci · Rm
c · Ru

m.
(34)

4.4. Determination of Correct Solution

Theoretically, the quartic equation of one unknown of (22) has at most four different
real roots. However, according to the conclusions of [47], in the P3P problem, the equation
can be considered to have only two sets of real solutions, i.e., two sets of three-dimensional
spatial points can be derived from one set of two-dimensional projected points. We verified
this conclusion in simulation experiments, and the simulation model is shown in Section 5.

The two sets of solutions correspond to two sets of UAV positions and attitudes, as
shown in Figure 5. {M′

i}(i = 1, 2, 3, 4) represents another set of erroneous motor positions
derived from the projected points {Pi}, and O′m is the erroneous position of the UAV.
The degree of inclination of the UAV body corresponding to the two sets of solutions
can be represented by the angle ∠zuOmzui and angle ∠z′uO′mz′ui, which are set as βu and
β′u, respectively.

Figure 5. The position and attitude of the UAV corresponding to the two sets of solutions.

βu is a result of the roll and pitch that occurs in the UAV, so the value of βu should be
within a limited range during normal flight. According to the vector angle formula, we
can obtain

cos βu =
w3 · zci

‖w3‖‖zci‖
, (35)

where w3 denotes the third row of Ru
bi, which also represents the unit vector of the zu-axis

in the inertial coordinate system. Let w3 = [w31, w32, w33] and zbi = [0, 0, 1]; βu can be
obtained from

βu = arccos w33. (36)

From (26) and (27), we have w33 = cos ϕu cos θu. The roll and pitch angles of UAVs are
usually finite, denoted as θu ∈ [ϕmin

u , ϕmax
u ] and θu ∈ [θmin

u , θmax
u ]. And, due to the symmetry

of quadrotor UAVs, usually ϕmax
u = θmax

u = −ϕmin
u = −θmin

u . Then, the range of βu can be
expressed as

βu ∈ [ 0, cos2 ϕmax
u ]. (37)

We therefore set the maximum value of pitch and roll angles uniformly to αmax
u .

Since it is difficult to obtain the range of β′u by mathematical derivation, we each
obtained the approximate distribution of β′u at ϕmax

u = θmax
u = π/6 and ϕmax

u = θmax
u = π/4

based on 10,000 simulation experiments, respectively, as shown in Figure 6.
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(a) ϕmax
u = θmax

u = π/6 (b) ϕmax
u = θmax

u = π/4

Figure 6. Distribution of UAV body tilt angles corresponding to the two sets of solutions.

It can be seen that the vast majority of the values of β′u are greater than βmax
u , the

maximum value of βu, compared to the values of βu that are strictly in the range shown
in (37). In the two sets of experiments, the values of β′u greater than βmax

u are approximately
99.8% and 98.8%, respectively. Therefore, in the vast majority of cases, the correct solution
can be identified based on the value of βmax

u . Subject to errors in the projection points of
motors, the value of βmax

u tends to be slightly larger than cos2 ϕmax
u . Approximate values of

βmax
u can be obtained based on a large number of simulation experiments.

When β′u is also smaller than βmax
u , partially incorrect solutions can be further detected

based on whether θu and ϕu corresponding to each set of solutions are simultaneously
smaller than ϕmax

u and θmax
u , respectively. We set the maximum value of pitch and roll

angles uniformly to αmax
u . Similar to βmax

u , the actual values obtained for αmax
u are slightly

larger than ϕmax
u and θmax

u , and their approximations can be obtained through extensive
randomized experiments.

For the mis-solutions that remain unfiltered, we find that their average error is much
smaller than the measured distance and much lower than the average error of the full set
of mis-solutions. When ϕmax

u = θmax
u = π/6 and ϕmax

u = θmax
u = π/4, simulation results

show that the average errors of these incorrect solutions are only about 0.05%
∥∥tu

bi

∥∥ and
0.63%

∥∥tu
bi

∥∥, which are about 1/30 and 2/5 of the overall average error, respectively. We
therefore take the average of these group solution pairs as the result.

In summary, the algorithm for determining the correct solution is shown in Algorithm 2:

4.5. Four Motors Detected

When all four motors are detected, positioning accuracy can be further improved. We
divide the four projection points of motors into groups of three each in the order specified
in Section 3.2. By substituting each of the four sets of projection points into the above
solution scheme, four sets of localization results can be obtained. We set ti to denote the
relative position obtained based on the three points other than point Pi.

The keypoint detection module gives the detection confidence for each motor, set to
c1:4. The weight Wi of ti can be obtained based on ci by

Wi =

(
4
∑

j=1
cj)− ci

3
4
∑

j=1
cj

. (38)
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Then tu
bi can be given by

tu
bi =

4

∑
i=1

Witi. (39)

Algorithm 2 Determining the correct solution

Require: T = {tu
bi1, tu

bi2}, B = {βu1, βu2}, A = {{θu1, ϕu1}, {θu2, ϕu2}}
Ensure: tu

bi
1: if min(B) < βmax

u and max(B) > βmax
u then

2: idx = min(B)’s index of B
3: else if max(abs(A1)) < αmax

u and max(abs(A2)) > αmax
u then

4: idx = 1
5: else if max(abs(A1)) > αmax

u and max(abs(A2)) < αmax
u then

6: idx = 2
7: else if max(abs(A1)) < αmax

u and max(abs(A2)) < αmax
u then

8: idx = 0
9: end if

10: if idx = 0 then

11: tu
bi =

tu
bi1+tu

bi2
2

12: else

13: tu
bi = Tidx

14: end if

4.6. Two Motors Detected

Since the case where only two motors are detected rarely occurs, we give a transitional
estimation scheme. The problem model at this point is shown in Figure 7.

Figure 7. Schematic diagram when two motors are detected.

Taking into account the occlusion, we approximate that Oc is coplanar with {M1:4}
and that ‖Oc M1‖ = ‖Oc M2‖. So, OcOm intersects M1M2 at the midpoint of M1M2 and the
intersection is set to M0. The projection point of Om on the image plane is set to P0 and α0
represents the vector OcP0. Then, the displacement vector tm

c can be expressed as

tm
c =

‖Oc M0‖+ ‖Om M0‖
‖α0‖

α0, (40)

where ‖Om M0‖ is known to be
√

2
2 d.
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Make a parallel line of M1M2 through P0, intersecting Oc M1 and Oc M2 at N1 and N2,
respectively. From the properties of similar triangles we have

‖α0‖
‖Oc M0‖

=
‖N1N2‖
‖M1M2‖

, (41)

where it is easy to see that ‖M1M2‖ =
√

2d. Since P1 and P2 are known, the angles of
∠P1OcP2, ∠OcP1P2, and ∠OcP2P1 can be obtained based on the vector pinch equations,
which are set to η1, η2 and η3, respectively. Here, it is specified that η2 < π/2 < η3. By the
sine theorem, it can be obtained that

‖P0N1‖
sin η2

=
‖P0P1‖

sin(π
2 + η1

2 )
,

‖P0N2‖
sin(π − η3)

=
‖P0P2‖

sin(π
2 −

η1
2 )

.
(42)

It is also known that
‖P0N1‖ = ‖P0N2‖, (43)

and
‖P0P1‖+ ‖P0P2‖ = ‖P1P2‖. (44)

From (42)–(44), we can obtain

‖N1N2‖ = 2‖P1P2‖
sin η2 sin(π − η3)

sin(π
2 + η1

2 ) sin(π − η3) + sin η2 sin(π
2 −

η1
2 )

, (45)

and

‖α0‖ =
1
2‖N1N2‖

tan η1
2

. (46)

Then, we can obtain ‖Oc M0‖ first by (41) and then tm
c by (40). Finally, after the

coordinate transformation of Section 4.3, tu
bi can be obtained.

5. Experimental Results and Analysis

Our experiment is divided into three parts. First, we obtained a self-training model of
YOLOv8 by training based on the captured images and tested its effectiveness in detecting
experimental UAVs and their motors. In the second part, we constructed the high-fidelity
airborne gimbal camera model and localized UAV model based on the actual parameters,
and examined the performance of the relative localization algorithm in various situations.
Finally, we conducted system experiments based on two UAVs to verify the feasibility of
our overall scheme using GPS-based relative localization data as a reference.

5.1. Experiment Platform

The hardware composition and operational architecture of the UAV experimental
platform used to validate the proposed scheme is shown in Figure 8. We conduct secondary
development and experiments based on two Prometheus 450 (P450) UAVs producted by
Amovlab, Chengdu, China [48]. Each UAV is equipped with NVIDIA’s Edge AI super-
computer Jeston Xavier NX and a Pixhawk 4 flight controller. The Jeston Xavier NX has a
hexa-core NVIDIA Carmel ARM CPU, 6GB of LPDDR4x RAM and a GPU with 21TOPS of
AI inference performance, which is capable of meeting the arithmetic requirements under
Ubuntu 18.04. The Pixhawk 4 flight controller is the control hub of the UAV. We retrofitted
the UAV with amovlab’s G1 gimbal camera to stream real-time images to the Jeston Xavier
NX. The edge computer also obtains attitude data from the gimbal and flight controller
through their ROS topics published in real time via the serial port. Based on the above
data, the UAV achieves real-time detection and relative localization for other UAVs within
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its visual perception range on the Jeston Xavier NX. All experimental data were obtained
based on this platform system. Key parameters of the UAV: d = 21 cm, t0 = [0, 13,−6] cm.

5.2. Detection Performance Experiment

We labeled 1250 collected images of experimental UAVs and used them as a dataset
to obtain a self-training model by training. We conducted UAV-to-UAV target detection
experiments at distances ranging from 2 to 12 m. The experimental results show that the
YOLOv8-pose target detection module based on the self-trained model is able to stably
detect the target UAV and its visible motors. The motor’s image plane positioning point
can basically remain within the range of the motor’s projected image. Screenshots of the
detection results are shown in Figure 9, where the motors are marked by blue dots. The
average detection time of the on-board target detection module for each image frame is
about 43.5 ms.

Figure 8. The hardware composition and operational architecture of the UAV experimental platform.

Figure 9. Detection effects of the UAV and its motors.

In summary, we verified the feasibility of realizing real-time detection of UAVs and
their motors with an airborne camera based on YOLOv8.

5.3. Relative Localization Simulation Experiment

We tested the speed and accuracy of the proposed algorithm based on a self-built
simulation model and compared it with three mainstream algorithms, which are Gao’s,
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iterative method (IM) and AP3P. In order to increase the fidelity, all of our simulation
experiments were performed on the edge computer of the P450 UAV.

5.3.1. Simulation Model

We constructed a virtual camera model based on the parameters of the G1 gimbal
camera with an intrinsic matrix K of

K =

⎡
⎣ 640 0 640

0 640 360
0 0 1

⎤
⎦. (47)

Based on the camera calibration work that has been performed, we assume that the
camera’s distortion is zero. The pitch angle of the gimbal θc ∈ [−π/3, π/3]. The camera is
capable of detecting drones from 2 to 12 m away from itself, which means that D ∈ [2, 12] m,
where D = ‖ttrue‖.

In order to describe the situation where the motor is obscured, we designed a UAV
model based on the P450, as shown in Figure 10. In the aforementioned Omxmymzm
coordinate system, the body of the fuselage is represented by a sphere with Of as the center
and radius R = 10 cm, and the motors are represented by spheres with M1:4 as the center
and radius r = 2 cm. The coordinate of Of is [ 0, 0,−5] cm.

Figure 10. Simplification of the UAV.

The attitude of the UAV is determined by randomly generated Euler angles and Euler
angles ϕb, θb, ψb ∈ [−π/4, π/4]. The coordinates of Of and M1:4 in the Oxyz coordinate
system can be obtained based on the Euler angles. Then, based on the projection relation,
the projection points Pf and P1:4 of Of and M1:4 on the image plane, and the radius Rp and
rp1:p4 of the projection circles of the fuselage and motors can be obtained.

According to the masking relation, the decision condition that three motors can be
detected is expressed as ∥∥Pf P4

∥∥ < Rp, (48)

and the decision condition for detecting only two motors is

‖P1P4‖ < rp1 ∧ ‖P2P3‖ < rp2. (49)

To simulate the error in motor detection, we add white noise obeying a two-dimensional
Gaussian distribution to the image plane projection point {Pi(ui, vi)} (i = 1, 2, 3, 4) of mo-
tors, i.e., the actual projection point P′i (u

′
i, v′i) is denoted as

(u′i, v′i) ∼ N(ui, vi, σ2
i1, σ2

i2, 0), (50)

where
σi1 = σi2 = σ

f
yi

. (51)

109



Drones 2023, 7, 612

σ is the standard deviation in centimeters of the 3D spatial point corresponding to the
motor’s localization point on the image plane and the position of the motor’s true point.
f represents the focal length and yi denotes the coordinates of the motor Mi in the y-axis
under the camera coordinate system, in meters.

We designed three values of σ, which are 0.5 cm, 1.0 cm, and 1.5 cm, based on the
actual radius of the P450, which is 2 cm for the motor. The three values from small to large
correspond to high to low accuracy and can be described as the localization point basically
on the motor center, basically on the motor, and partially on the motor, respectively.

5.3.2. Execution Speed

The time taken to solve the P3P problem is the main factor affecting the speed of
the relative localization algorithm. We performed execution time tests of the proposed
algorithm as well as other classical algorithms at the same performance state of the edge
computer. Each algorithm was run for 10,000 rounds. The distribution of single execution
time is shown in Figure 11, and the average time taken is shown in Table 2.

Figure 11. Distribution of single execution time for four algorithms.

Table 2. Average single execution time for the four algorithms.

Algorithms Time [ms] Proportionality

Ours 0.534 1
Gao’s 1.845 3.46

IM 2.614 4.90
AP3P 0.722 1.35

It can be seen that our algorithm executes approximately 3.5 times faster than Gao’s,
5 times faster than IM, and 35% faster than AP3P. Experimental results show that our
proposed algorithm executes significantly faster than Gao’s and IM. Compared to AP3P,
we have a smaller but more consistent speed advantage. This is largely due to the fact
that we have taken full advantage of the geometric characteristics of UAVs for targeted
problem modeling. Our algorithm takes relative position as the unique objective and
solves for it directly instead of obtaining it indirectly, reducing the accumulation and
amplification of errors. Based on the results of the previous mathematical derivation, we
only need to carry out simple algebraic calculations in the actual solution, which avoids
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the solution of the angle and the operation of the matrix and significantly reduces the
computational complexity.

5.3.3. Computational Accuracy

In order to measure the accuracy of the relative localization and the correct choice of
the solution, we denote the relative localization error as

et = ‖test − ttrue‖. (52)

Following the approach of Section 4.4, we obtain reasonable values of βmax
u and αmax

u
for three levels of detection accuracies with a sufficient number of randomized simulation
experiments with known correct solutions. The values taken are shown in Table 3.

Table 3. Values of βmax
u and αmax

u for different detection accuracies.

σ [cm] βmax
u αmax

u

0.5 70◦ 52◦

1.0 75◦ 58◦

1.5 80◦ 62◦

We randomly generated 10,000 sets of UAV position and attitude data in the simulation
scenario. According to our occlusion model determination, there are 7871 sets of data where
all four motors are detected, 2114 sets of data where three motors are detected, and 15 sets
of data where only two motors are detected. This suggests that it is common for all four
motors not to be detected. And given the simplified nature of the model and the fact that
UAV swarms are often at similar altitudes during actual flight, the probability of detecting
less than four motors should be greater. This supports the need for the study.

We first tested the overall accuracy of the proposed algorithm based on the simulation
data and the experimental results are shown in Figure 12, and the vertical coordinate
indicates the value of the kernel density estimate.

Figure 12. Error distributions of our algorithm under three levels of noise corresponding to σ = 0.5,
1.0 and 1.5, respectively.
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The average localization errors at the three levels of noise are 1.53% D, 2.39% D,
and 3.01% D, respectively, and are marked with vertical dashed lines in the figure (the
same below). The data show that the localization accuracy of our algorithm has generally
stabilized at a high level, and continues to provide less error-prone and stable localization
data in the presence of increased noise. To further study the performance of the proposed
algorithm, we analyze the specific performance of the algorithm when different numbers
of motors are detected.

We solved the 7871 sets of data detected for the four motors by applying Gao’s, IM,
and AP3P methods, respectively, and compared them with the results of our algorithm.
The error distribution of the four algorithms under different levels of noise is shown in
Figure 13, and the corresponding average errors are shown in Table 4.

It is clear that the accuracy of IM and AP3P is significantly reduced when noise is
present. The large error indicates that these two methods are not applicable to the solution
of our research problem. The proposed algorithm is slightly more accurate than Gao’s.
We speculate that this advantage may stem from our weighting of the data based on the
detection confidence of each motor. We speculate that this advantage may be the result of
our multi-resolution solution as well as the regrouping weighting process. Therefore, we
replaced our proposed post-processing scheme for the P3P solution with the reprojection
method used by Gao and compared the experimental results with the results of our and
Gao’s schemes. The results of this experiment are shown in Figure 14.

(a) σ = 0.5 (b) σ = 1.0 (c) σ = 1.5

Figure 13. Error distributions of the four algorithms for the three noise levels corresponding to
σ = 0.5, 1.0 and 1.5.

Table 4. Localization errors of four algorithms with different detection accuracies.

σ [cm] Ours Gao’s IM AP3P

0.5 0.015 0.019 0.242 0.239
1.0 0.024 0.029 0.251 0.239
1.5 0.030 0.036 0.252 0.240
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(a) σ = 0.5 (b) σ = 1.0 (c) σ = 1.5

Figure 14. Error distributions of our original, adjusted, and Gao’s algorithm for three levels of noise
corresponding to σ = 0.5, 1.0, and 1.5.

It can be seen that the accuracy of our algorithm is very close to that of Gao’s after
using the reprojection method instead of our post-processing scheme. This verifies the
effectiveness of our post-processing scheme for accuracy improvement. By comparing
the data in detail, we found that our post-processing algorithms are able to keenly detect
outliers with large deviations and eliminate them or reduce their impact. Thus, our post-
processing algorithm improves the robustness of the solution. However, our regrouping-
weighted processing approach increases the computational cost, so we can choose to discard
this part of the scheme when the arithmetic power is limited.

Due to the lack of other algorithms for obtaining the correct displacement based on
the three key points, we can only compare the localization accuracy when three motors are
detected with that when four motors are detected. Additional experiments were conducted,
resulting in 7871 sets of localization data based on three motor points at each of the three
levels of detection accuracy. The localization errors are shown in Figure 15.

As can be seen from the figure, our algorithm maintains a similar localization accuracy
when only three motors are detected as when four motors are detected, specifically 1.68% D,
2.58% D, and 3.19% D. Localization errors still come mainly from detection errors. This
shows that the performance of our pose-based multi-resolution determination scheme is
robust. In the absence of a fourth motor point as a reprojection point, our method can
effectively replace the reprojection method to obtain a stable and accurate solution.

We also tested the performance of the transitional solution when only two motors
were detected. We obtained the results of 1,000 sets of experiments through a much larger
number of randomized experiments, as shown in Figure 16.

(a) σ = 0.5 (b) σ = 1.0 (c) σ = 1.5

Figure 15. Error distribution of our algorithm when only two motors are detected.
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Figure 16. The localization error of our algorithm when two motors are detected.

It can be seen that the average error of our localization scheme when detecting
two motors is controlled within 10% D, specifically 6.58% D, 7.33% D, and 8.10% D,
respectively. Although some of the errors are large, given the small probability of the event
occurring, we believe that its performance is acceptable as a transitional solution for special
cases. In the process of processing data from consecutive frames, it is possible to combine
the data from previous frames when more than two motors were detected and reduce the
error by methods such as Kalman filtering.

5.3.4. System Experiment

Based on the demonstration of simulation experiments, we conducted real system
experiments based on two P450 UAVs in a real environment. Due to the temporary lack of
other more accurate means of localization, we generate the true relative position coordi-
nates of the two UAVs based on GPS positioning data in an unobstructed environment. To
minimize the increase in error due to other factors, we controlled the UAV used for local-
ization to remain hovering in the air, and the localized UAV flew within the field of view
of the camera for one minute, as shown in Figure 17. The real-time true relative position
during the flight and the estimated relative position based on the proposed algorithm are
shown in Figure 18, and Figure 19 illustrates the corresponding error distribution.

114



Drones 2023, 7, 612

Figure 17. Real experimental scene diagram.

As shown in the figures, our scheme is generally able to achieve real-time vision-based
relative localization between UAVs. The average relative error of the real experiment
is 4.14%, which is slightly larger than the maximum average error of the simulation
experiment. The error in the y-axis direction is significantly larger than that in the x-axis and
z-axis directions, which is in line with the principle of our scheme. More outliers with larger
deviations appear in the estimation results. By analyzing the data, we determined that this
was the result of larger errors in the image plane coordinates of the motors. In addition,
ttrue itself, which is generated based on GPS and barometric altimeter data, actually has
some error.
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(a) True and estimated values in the x-axis direction

(b) True and estimated values in the y-axis direction

(c) True and estimated values in the z-axis direction

Figure 18. Comparison of true and estimated values of relative positions.

Figure 19. Error distribution in real experiments.
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6. Conclusions

In order to realize real-time accurate relative localization within UAV swarms, we
investigate a visual relative localization scheme based on onboard monocular sensing
information. The conclusions of the study are as follows:

• Our study validates the feasibility of accurately detecting UAV motors in real time
using the YOLOv8-pose attitude detection algorithm.

• Our PnP solution algorithm derived based on the geometric features of the UAV
proved to be faster and more stable.

• Through the validation of a large number of stochastic experiments, we propose for
the first time a fast scheme based on the rationality of UAV attitude to deal with the
PnP multi-solution problem, which ensures the stability of the scheme when the visual
information is incomplete.

Our scheme improves speed and accuracy while reducing data requirements, and the
performance is verified in experiments.

However, there are limitations to our study. First, limited by the detection performance
of the detection module for small targets, our relative localization can currently only be
achieved at a distance of less than 12 m. Of course, with the improvement in the detection
performance, the action distance will be larger. Second, our currently generated position
data has not been filtered. So based on the experimental conclusions, our next research
direction is to improve the detection performance of the detection module for the motors
as small targets at long distances, and the second is to improve the overall stability of the
estimation value under the time series through the filtering algorithm.
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Abstract: In the field of drone-based object tracking, utilization of the infrared modality can improve
the robustness of the tracker in scenes with severe illumination change and occlusions and expand the
applicable scene of the drone object tracking task. Inspired by the great achievements of Transformer
structure in the field of RGB object tracking, we design a dual-modality object tracking network based
on Transformer. To better address the problem of visible-infrared information fusion, we propose a
Dual-Feature Aggregation Network that utilizes attention mechanisms in both spatial and channel
dimensions to aggregate heterogeneous modality feature information. The proposed algorithm has
achieved better performance by comparing with the mainstream algorithms in the drone-based
dual-modality object tracking dataset VTUAV. Additionally, the algorithm is lightweight and can
be easily deployed and executed on a drone edge computing platform. In summary, the proposed
algorithm is mainly applicable to the field of drone dual-modality object tracking and the algorithm is
optimized so that it can be deployed on the drone edge computing platform. The effectiveness of the
algorithm is proved by experiments and the scope of drone object tracking is extended effectively.

Keywords: RGBT tracking; Drone based object tracking; transformer; feature aggregation

1. Introduction

Object tracking is one of the fundamental tasks in computer vision and has been widely
used in robot vision, video analysis, autonomous driving and other fields [1]. Among them,
the drone scene is an important application scenario for object tracking which assist drones
in playing a crucial role in urban governance, forest fire protection, traffic management,
and other fields. Given the initial position of a target, object tracking is to capture the
target in subsequent video frames. Thanks to the availability of large datasets of visible
images [2], visible-based object tracking algorithms have made significant progress and
achieved state-of-the-art results in recent years. Currently, due to the diversification of
drone missions, visible object tracking is unable to meet the diverse needs of drones in
various application scenarios [3]. Due to the limitations of visible imaging mechanisms,
object tracking heavily relies on optimal optical conditions. However, in realistic drone sce-
narios, UAVs are required to perform object tracking tasks in dark and foggy environments.
In such situations, visible imaging conditions are inadequate, resulting in significantly
noisy images. Consequently, object tracking algorithms based on visible imaging fail to
function properly.

Infrared images are produced by measuring the heat emitted by objects. Compared
with visible images, infrared images have relatively poor visual effects and complementary
target location information [4,5]. In addition, infrared images are not sensitive to changes in
scene brightness, and thus maintain good imaging results even in poor lightning environ-
ments. However, the imaging quality of infrared images is poor and the spatial resolution
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and grayscale dynamic range are limited, resulting in a lack of details and texture informa-
tion in the images. In contrast, visible images are very rich in details and texture features.
In summary, visible and infrared object tracking has received increasing attention as it can
meet the mission requirements of drones in various scenarios, due to the complementary
advantages of infrared and visible images (Figure 1).

Currently, two main kinds of methods in visual object tracking are deep learning
(DL)-based methods and correlation filter (CF)-based approaches [1]. The methods based
on correlation filtering utilize Fast Fourier Transform (FFT) to perform correlation operation
in the frequency domain, which have a very fast processing speed and run in real-time.
However, their accuracy and robustness are poor. The methods based on neural network
mainly utilize the powerful feature extraction ability of neural network. Their accuracy is
better than that of correlation filtering based methods while their speed is slower. With the
proposal of Siamese networks [6,7], the speed of neural network-based tracking methods
has been greatly improved. In recent years, the neural network-based algorithm has become
the mainstream method for object tracking.
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Figure 1. These are some visible-infrared image pairs captured by drones. In some scenarios, visible
images may be difficult to distinguish different objects, while infrared images can continue to work
in these scenarios. Therefore, information from visible and infrared modalities can complement each
other in these scenarios. Introducing information from the infrared modality is very beneficial for
achieving comprehensive object tracking in drone missions.

The transformer structure has achieved great success in the field of computer vi-
sion [8]. By introducing long-range attention mechanisms, it alleviates the problem of
limited receptive fields in CNNs and has achieved State-of-the-art (SOTA) performance in
multiple tasks in the field of computer vision [9,10]. Inspired by the remarkable success of
transformer-based Siamese networks in object tracking on visible images, we propose a
similar approach using a transformer-based Siamese network for RGB-Thermal (RGBT)
tracking. Additionally, we drew inspiration from the transformer structure and used an
attention mechanism to fuse visible and infrared image features in both spatial and chan-
nel dimensions. We visualized the effectiveness of this module through heat maps and
achieved promising results on the drone dataset VTUAV [11] and drone hardware platform.
The main contributions can be summarized as follows:
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• A lightweight network applied to a drone visible-infrared object tracking mission is
porposed with Swin transformer as the backbone network.

• A Dual-Feature aggregation module is integrated into this network, which aggregates
visible-infrared image features from both spatial and channel dimensions using atten-
tion mechanisms. Ablation experiments are conducted to vefify the effectiveness of
this module in fusing two modalities.

• Extensive experiments are conducted on the VTUAV dataset and drone hardware
platform, the results showed that our tracker achieved good performance compared
with other mainstream trackers.

2. Related Works

2.1. RGBT Tracking Algorithms

Many RGBT trackers have been proposed so far [12–15]. Due to the rapid develop-
ment of RGB trackers, current RGBT trackers mainly consider the problem of dual-modal
information fusion within mature trackers finetuned on the RGBT tracking task, where the
key is to fuse visible and infrared image information. Several fusion methods are proposed,
which are categorized as image fusion, feature fusion and decision fusion. For image fusion,
the mainstream approach is to fusion image pixels based on weights [16,17], but the main
information extracted from image fusion is the homogeneous information of the image
pairs, and the ability to extract heterogeneous information from infrared-visible image
pairs is not strong. At the same time, image fusion has certain requirements for registration
between image pairs, which can lead to cumulative errors and affect tracking performance.
Most trackers aggregate the representation by fusing features [18,19]. Feature fusion is a
more advanced semantic fusion compared with image fusion. There are many ways to fuse
features, but the most common way is to aggregate features using weighting. Feature fusion
has the potential of high flexibility and can be trained with massive unpaired data, which
is well-designed to achieve significant promotion. Decision fusion models each modality
independently and the scores are fused to obtain the final candidate. Compared with image
fusion and feature fusion, decision fusion is the fusion method on a higher level, which uses
all the information from visible and infrared images. However, it is difficult to determine
the decision criteria. Luo et al. [12] utilize independent frameworks to track in RGB-T
data and then the results are combined by adaptive weighting. Decision fusion avoids the
heterogeneity of different modalities and is not sensitive to modality registration. Finally,
these fusion methods can also be used complementarily. For example, Zhang [11] used
image fusion, feature fusion and decision fusion simultaneously for information fusion and
achieved good results in multiple tests.

2.2. Transformer

Transformer originates from natural language processing (NLP) for machine trans-
lation and has been introduced to vision recently with great potential [8]. Inspired by
the success in other fields, researchers have leveraged Transformer for tracking. Briefly,
Transformer is an architecture for transforming one sequence into another one with the
help of attention-based encoders and decoders. The attention mechanism can determine
which parts of the sequence are important, breaking through the receptive field limitation
of traditional CNN networks and capturing global information from the input sequence.
However, the attention mechanism requires more training data to establish global relation-
ships. Therefore, Transformer will have a lower effect than traditional CNN networks in
some tasks with smaller sample size and more emphasis on regional relationships [20].
Additionally, the attention mechanism is able to replace correlation filtering operations in
the Siamese network by finding the most relevant region to the template in the search area
in a global scope. The method of [9] applies Transformer to enhance and fuse features in
the Siamese tracking for performance improvement.
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2.3. UAV RGB-Infrared Tracking

Currently, there are few visible-light-infrared object tracking algorithms available
for drones, mainly due to two reasons. Firstly, there is a lack of training data for visible-
light-infrared images of drones. Previously, models were trained using infrared images
generated from visible images due to the difficulty in obtaining infrared images. With
the emergence of datasets such as LasHeR [21], it is now possible to directly use visible
and infrared images for training. In addition, there are also datasets such as GTOT [22],
RGBT210 [23], RGBT234 [24], etc. available for evaluating RGBT tracking algorithm per-
formance. However, in the field of RGBT object tracking for drones, only the VTUAV [11]
dataset is available. Due to the different imaging perspectives of images captured by drones
compared to normal images, training algorithms with other datasets does not yield good
results. Secondly, existing algorithms have slow running speeds, making them difficult
to use directly. Existing mainstream RGBT object tracking algorithms are based on deep
learning, which have to deal with both visible and infrared images at the same time, with a
large amount of data, a complex algorithmic structure and a low processing speed,such as
JMMAC (4fps) [25], FANet (2fps) [18], MANnet (2fps) [26]. In drone scenarios, there is a
high demand for speed in RGBT object tracking algorithms for drones. It is necessary to
simplify the algorithm structure and improve its speed.

3. Material and Methods

This section introduces our visible-infrared object tracking algorithm. which is inspired
by siamese-based RGB object tracking algorithms and adapted to RGBT tracking tasks
based on SwinTrack [10]. The network is mainly divided into four parts: Feature Extraction
Network, Dual-Feature Aggregation Network, Transformer-based Feature Fusion and
Detection Head. The structure of network is shown as Figure 2.
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Figure 2. Architecture of our Transformer RGBT Tracking framework. This framework contains four
fundamental components: Feature Extraction Network,Dual-Feature Aggregation Network, Feature
Fusion Network and Detection Head.

3.1. Feature Extraction Network.

Traditionally, the ResNet network [27] is commonly used for feature extraction in
computer vision tasks. However, with the development of the Transformer in the field
of computer vision, feature extraction networks based on the Transformer have achieved
better results than ResNet [10]. Moreover, our model is entirely based on the Transformer
structure, using Swin-Transformer as the feature extraction network, which can provide
a more compact feature representation and richer semantic information. This is very
advantageous for the subsequent modules.The structure of Swin-Transformer is shown as
Figure 3.
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Figure 3. Architecture of Swin-Transformer. To accelerate the computation speed, images are divided
into patches by Patch partition and fed into the network.

Our tracker follows the Siamese network structure, which requires a pair of im-
age patches as inputs, i.e.,a template image z ∈ RHz×Wz×3and a search region image
x ∈ RHx×Wx×3. The image pairs are firstly segmented into small patches and fed into the
network. Attention operations are performed on these small patches, which significantly

reduces the computation cost of the transform. Finally, template tokens tz ∈ R
Hz
S ×

Wz
S ×C

and region tokens tx ∈ R
Hx
S ×

Wx
S ×C are generated, where s is the stride of the backbone

network and C is the hidden dimension of the feature. To reduce model complexity, the
lightweight Swin-Transform is used,where s = 16 and C = 386.

For single-modality tracking, a shared feature extraction network that shares param-
eters between the template and search images is sufficient. However, our task is RGB-T
tracking with different imaging characteristics in each modality. Therefore, here visible and
infrared features are extracted separately and two independent feature extraction modules
are needed to extract features separately.

3.2. Dual-Feature Aggregation Network

Inspired by works such as Convolutional Block Attention Module (CBAM) [28] and
Squeeze-and-Excitation Networks (SENet) [29], in the process of fusing visible and infrared
information, we used attention mechanisms to enhance useful feature information in both
spatial and channel dimensions. We proposed a Dual-Feature aggregation network and its
structure diagram is shown in Figure 4.
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Figure 4. Architecture of Dual-Feature Aggregation Network. It mainly consists of two modules,
namely Spatial Aggregation Module (SAM) and Channel Aggregation Module (CAM).

Different from other feature fusion methods that use a single modality to enhance
another modality, we simultaneously enhance the visible-infrared dual-modality feature
information by attention mechanism during the fusion process, which is very useful in
some scenarios where single-modality algorithm is limited. The expression of the attention
mechanism is:

Attention(Q, K, V) = So f tmax(
QKT
√

dk
V) (1)
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where Q, K and V stand for Query, Key and Value respectively,
√

dk means dimensional-
ity normalization.

The attention mechanism is a feature weighting method. By selecting different Query,
Key and Value, the image can be searched as a whole and the features of important areas in
the image can be enhanced, so that the algorithm can pay more attention to important target
areas in the image. For visible-infrared heterogeneous images, although their imaging meth-
ods are different, the target information is similar. For dual-modality object tracking, such
similar target information is needed. By using the attention mechanism on heterogeneous
images, by selecting different values of Query, Key and Value on heterogeneous images,
one modality information can be used to enhance another modality information. In this
case, the attention mechanism will strengthen the important target region in heterogeneous
images and suppress the noise region in each modality. It is more conducive to the fusion
of dual-modality features. The Dual-feature aggregation network consists of two modules:
Spatial Aggregation Module (SAM) and Channel Aggregation Module (CAM). Below we
will introduce these two modules respectively.

The Spatial Aggregation Module mainly focuses on the spatial features of the image.
Inspired by the transformer structure, the attention mechanism searches for the regions of
interest at any position in the image. By using the attention mechanism with an infrared
image as the template and a visible image as the search image, the model can search for
the most similar region in the visible image based on the information from the infrared
image. This effectively aligns the information from the two modalities and highlights the
parts of the visible image that are most similar to the infrared image. This approach allows
for the incorporation of information from one modality into another while preserving the
original information as much as possible. Similarly, by swapping the inputs of the visible
and infrared images, the visible information can be used to calibrate the infrared image,
resulting in calibrated features for both the infrared and visible images. This is why this
module is called “Dual-feature”. This process can be represented as:

SARGB = FI + (MCA(FI , Concats(FRGB, FI))) (2)

SAI = FRGB + (MCA(FRGB, Concats(FI , FRGB))) (3)

where FRGB and FI are the visible-infrared feature information extracted by the backbone
network. MCA is a multi-head Cross-Attention module, Concats means concatenate in
spatial domain.

The Channel Aggregation Module focuses on the features of image channels. The
calibrated visible and infrared image features are obtained after spatial aggregation. If
these features are directly fed into the encoder, the channel dimension will be twice that of
the original features, which will seriously affect the efficiency of the encoder. Therefore,
channel aggregation is needed to select the most important channel features from visible
and infrared images, reduce the channel dimension and further fuse the information from
visible and infrared images. The process can be expressed as:

weightRGB = So f tmax(FRGB(Concatc(SARGB, SAI))) (4)

weightI = So f tmax(FI(Concatc(SARGB, SAI))) (5)

Fout = weightRGB × SARGB + weightI × SAI (6)

where SARGB and SAI represent the features that have been spatially aggregated. FRGB and
FI are pooling layers used to generate weight parameters on channels. Concatc means con-
catenate in channel domain. Fout is the output of the Dual-Feature Aggregation Network.
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3.3. Transformer-Based Feature Fusion Network

After the Dual-Feature aggregation network, fused template and search features are
obtioned. During the fusion process, an encoder and decoder are utilized to fuse the
template and search information and the resulting output is then refined. The encoder
compresses the template and search features into a more compact representation. The de-
coder then decodes the compressed features back into the original feature space, achieving
feature fusion. In the search regions, we utilize the fused features to locate the region that
has the highest correlation with the template in the candidate region. Finally, these regions
are fed into the detection head for detection. It is worth noting that we have employed
concatenation-based fusion architecture in SwinTrack [10], which significantly reduces the
model size and number of parameters compared to traditional methods.

The encoder consists of a sequence of Transformer blocks. Each block contains a
Multi-Head Self-Attention (MSA) module and a Feed-Forward Network (FFN). The FFN
contains a two-layer Multi-Layer Perceptron (MLP) with a GELU activation layer inserted
after the first linear layer. To avoid overfitting, Layer Normalization (LN) is used. Moreover,
residual connections are employed in both the MSA and FFN modules to facilitate gradient
backpropagation. To reduce model complexity, four layers of Transformer blocks are used
here as encoder. The process of encoder can be expressed as: Concatenate the features of
template and search:

F = Concat( fz, fx) (7)

Perform Attention operation on concatenated features in each encoder block:

FMSA = F + MSA(LN(F)) (8)

FFFN = MLP(LN(FMSA)) + FMSA (9)

Separate the concatenated features into their original template and search features:

fz, fx = DeConcat(FFFN) (10)

Here fx and fz are respectively the template and search from Dual-Feature Aggregation
Network. MSA is a multi-head Self-Attention module.

The decoder is composed of a Multi-Head Cross-Attention (MCA) module and the
remaining parts are the same as the encoder and one layer of Transformer block is used
here as decoder. The entire process of the decoder can be represented as follows:

FMCA = fx + MCA(LN( fx), LN(Concat( fx, fz))) (11)

F = MLP(LN(FMCA)) + FMCA (12)

Here fx and fz are produced by DeConcat in Encoder module. F will be fed to the Head
network to generate a classification response map and a bounding box regression map.

3.4. Head and Loss

The Head network is split into two branches: classification and bounding box regres-
sion. Both are three-layer MLP networks that receive the feature map output from the
decoder and respectively predict the classification response map Rcls ∈ RHx×Wx×2 and
bounding box regression map Rreg ∈ RHx×Wx×4.

The classification Head receives the feature map output from the decoder and predicts
the binary classification results of the search region. Only the annotated box is considered
as a positive sample, while the rest are negative samples. As a result, the number of positive
and negative samples is imbalanced. To alleviate this issue, we use a hyperparameter μ,
which is set to 0.0625 based on experimental results, to reduce the loss from negative
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samples by a factor of μ. We use the standard binary cross-entropy loss for classification,
which is defined as follows:

Lcls = −∑
i
[yilog(pi) + μ(1− yi)log(1− pi)] (13)

Here, yi denotes the ground-truth label of the i-th sample, yi = 1 denotes foreground
and pi denotes the probability belong to the foreground predicted by the learned model.

For the bounding box regression, we use a linear combination of L1-norm loss L1(., .)
and the generalized IoU loss LGiou(., .) [30]. The loss is calculated only for positive samples,
while negative samples are ignored. The regression loss is defined as follows:

Lreg = ∑
i
[λGLGiou(bi, b̂) + λ1L1(bi, b̂)] (14)

where b̂ denotes the normalized ground-truth bounding box. λG = 3 and λ1 = 4.3 are
hyperparameter weights determined through experiments.

4. Results

4.1. Implementation Details

Offline training. Experments are conducted on the VTUAV dataset and it is worth
noting that the VTUAV dataset is annotated every ten frames. Therefore, there are only
about 20,000 pairs of accurately usable training samples. To overcome this problem, the
Lasher dataset is used for pre-training. The sizes of search region patch and template patch
are 224× 224 and 112× 112, respectively. We trained the model using an AdamW optimizer
with different initial learning rates for different modules. The backbone network used the
Swin Transformer-Tiny pre-trained on Imagenet1K [31], with a stride of 16 and producing
a feature map of size 14 × 14. The visible backbone network was most compatible with the
pre-trained network and was set with a learning rate of 5× 10−5. The infrared backbone
network required task fine-tuning, so its learning rate was set to 1× 10−4. The learning
rates for all other modules were set to 5× 10−4, with a weight decay of 1× 10−4. Due to the
use of concatenation-based Transform structures, our model has much lower GPU memory
consumption compared to Transt [9]. We set the batchsize as 40, which can be trained on a
single Nvidia Titan RTX GPU. We trained the model for 100 epochs and the learning rate
decreased by a factor of 10 after 80 epochs.

Online Inference. We follow the inference steps of the Siamese network. First, we
initialize the template based on the annotation results of the first frame. The target object is
placed in the center of the image with a background area factor of 2. Then, we generate
the search region based on the detection results. The background area factor for the search
region is 5. During the inference process, the Detection Head outputs a 14× 14 classification
response feature map. We use a Hanning window to incorporate the prior information of
the target’s position into the tracking process, thereby suppressing sudden changes in the
target’s position. The process can be expressed as:

cls = (1− γ)× rcls + γ× h (15)

Here rcls is classification response feature map, γ is the weight parameter and h is the
Hanning window with the same size as rcls. And γ = 0.49 always get a very good result
by experiments. After determining the target position based on the classification response
feature map, the target’s bounding box is estimated on the position response map. The
new search region is then fed into the tracking network, completing a full target tracking
inference process.
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Evaluation metrics. In our experiment, all the trackers are run in one-pass evaluation
(OPE) protocol and evaluated by Maximum Success Rate (MSR) and Maximum Precision
Rate (MPR), which are widely used in RGB-T tracking [22–24]. A total of 175 short-term
tracking video sequences from the VTUAV dataset were used, with each test sequence
ranging from 2000 to 15,000 frames. The annotation results were labeled every ten frames,
and the final evaluation results were tested using a sampling method.

4.2. Ablation Experiment

In order to verify the effectiveness of each component in the network, ablation experi-
ments were conducted on the modules in the network and the results are shown as Table 1
and Figure 5.

Figure 5. Ablation experiment result.

Table 1. Comparative Experiment Analysis Table.

RGBT Tracker
Maximum Success

Rate(MSR)
Maximum Precision

Rate (MPR)
Parameter

Concat 41.3 51.0 41.9 M
ResNet 33.6 42.7 41.3 M
+CAM 40.4 50.2 41.6 M
Ours 51.6 64.2 47.9 M

Firstly, the network without the Dual-Feature Aggregation Network (Concat) was
tested as a baseline on the VTUAV dataset, and its MSR and MPR decreased by 10.3 and
13.2, respectively, which fully demonstrated the effectiveness of the Dual Feature Aggre-
gation Network in RGB-T tracking. Secondly, experiments were conducted by replacing
SwinTransform with ResNet as the backbone network (ResNet), and it was found that its
performance decreased. This is because the stride of ResNet is 8, which requires the use
of smaller template (56× 56) and search (112× 112) sizes, thus increasing the problem of
limited receptive fields. Based on the baseline network (Concat), directly aggregating the
visible and infrared channels after concatenation (+CAM) resulted in a relative decrease of
0.9 and 0.8 compared to the baseline. But performing spatial aggregation before channel
aggregation has greatly improved its effectiveness (Ours).

Through analyzing the heatmap (Figure 6), it was found that when directly performing
channel aggregation, multiple non-target areas with high confidence scores appeared in
the heatmap. This would interfere with the network and easily lose the target, which is the
main reason for the performance degradation. Although direct channel aggregation also
complete the fusion of dual-modal information, this method has large errors and lead to
tracking failure. However, by first using a spatial aggregation module to aggregate visible
and infrared channels, the target information in the dual-modal can be selectively retained
while suppressing noise. This reflects the effectiveness of the Dual Feature Aggregation
Network in preserving bimodal information.
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a. +CAM b. Dual-Feature Aggregation

Figure 6. Ablation experiment result.

4.3. Contrastive Experiment

Currently, the main mainstream deep-Learnning based RGBT object tracking algo-
rithms are JMMAC [25], FANet [18], MANnet [26], DAFNet [32], ADRNet [14], FSRPN [15],
etc., but some of these algorithms are too slow and not applicable to UAV RGBT object
tracking tasks. We tested our algorithm on the VTUAV dataset and compared it with three
additional fast trackers (DAFNet, ADRNet, FSRPN). Both DAFNet [32] and ADRNet [14]
are the best performing multi-domain network trackers. The multi-domain network mainly
performs classification and regression tasks in each domain such as visible and infrared and
finally obtains the final tracking result of RGBT through competitive learning. FSRPN [15]
is a Siamese-based tracker, which uses the pipeline of Siamese to improve the tracking
accuracy and speed up the processing speed of the algorithm. The results are shown as
Table 2 and Figure 7.

Figure 7. Comparison experiment result.

Table 2. Comparative Experiment Analysis Table.

RGBT Tracker
Maximum

Success
Rate(MSR)

Maximum
Precision Rate

(MPR)
FPS Parameter

DAFNet 45.7 62.1 21.0 68.5 M
ADRNet 46.6 62.3 25.0 54.1 M
FSRPN 54.4 65.3 30.3 53.9 M
Ours 51.6 64.2 31.2 47.9 M

In the comparative experiments, our algorithm outperformed DAFNet and ADRNet
in Maximum Success Rate and Maximum Precision Rate (MSR higher than DAFNet by
19% and ADRNet by 17%, MPR higher than DAFNet and ADRNet by 3%), but was slightly
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inferior to the FSPRN algorithm. Our algorithm has been specifically designed for drone
missions, focusing on simplifying the network structure, reducing the number of network
parameters and enhancing algorithm speed. As a result, our algorithm has successfully
achieved a favorable balance between performance and efficiency on VTUAV in comparison
to mainstream algorithms.

4.4. Drone Hardware Platforms

Our algorithms will eventually be deployed on a drone hardware platform, the com-
ponents of which are described here, and the composition diagram is shown in Figure 8.

The DJI M300 drone is an industry-level unmanned aerial vehicle that can fly for 30 min
in the air with a payload of up to 9 kg. It has a maximum flight altitude of 1500 m, making it
suitable for most drone scenarios and tasks. The H20T camera is a visible-light and thermal
infrared camera that can capture both visible-light and infrared images simultaneously. We
use the H20T camera to complete our drone RGBT tracking tasks. We use Nvidia Orin NX
as the on-board processing platform with the specific parameters shown in Table 3.

Figure 8. Structure of Drone Hardware Platforms. It mainly consists of three components, the DJI
M300 drone, the H20T camera load, the Airborne Computing Platform Nvidia Orin NX.

Table 3. Nvidia Orin NX parameters Table *.

CPU CPU Frequency Display Memory
Computational

Performance

Arm Cortex-A78AE 2 GHz 16 GB 100TOPS
* Parameters from official Nvidia documentation.

4.5. Visualization and Analysis
4.5.1. Algorithmic Effect of Drone Hardware Platform

We tested the images captured by the drone hardware platform with a processing
speed of 13.1 fps when running the RGBT object tracking algorithm on the onboard com-
puting platform, and the tracking results are shown in Figure 9.

From the tracking results, it can be observed that the infrared modality can solve the
problem of tracking failure under conditions such as occlusion and lighting changes in
complex scenes. Therefore, using visible-infrared object tracking can expand the scope of
drone object tracking tasks and improve the environmental adaptability of drone object
tracking tasks.
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Figure 9. Graph of actual results of the algorithm.

4.5.2. Heatmap

We present the heatmaps generated from various main modules in the network, as
shown in Figure 10. From the heatmaps, it can be observed that the backbone network
extracts features separately from the visible and infrared images. Due to the differences
between visible and infrared images, the features extracted by the network are also different.
These features are then fed into the Dual Feature Aggregation Network, which combines
the information from both modalities to obtain a fused feature map. In pedestrian-211 and
Tricy-006 sequences, it can be seen more clearly that the aggregated feature map integrates
all the features from both images. The fused feature map is then passed through the
encoder and decoder modules, which focus the network’s attention on the target. Finally,
the maximum target response map is fed into the Head for classification and regression.
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Figure 10. Heatmaps of Various Modules in the Network. The left two images are the visible-infrared
template and search images input into the network. Following the direction of the network data
flow, the heatmaps show the responses of the Backbone network, Feature Aggregation Network,
Transform Fusion Network and Head modules, respectively.

4.5.3. Typical Failure Cases

We show some typical failure cases of our tracker in Figure 11.
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Similar appearance Shape changes Image noise

Figure 11. Picture of the typical failure cases of our tracker.

The first image shows similar appearance, where the target is interfered with by
similar targets in visible and infrared images. The Siamese network lacks the ability to
distinguish between similar targets as its core is the matching of templates and searches.
Although we introduce prior information about the target position by using the Hanning
window and penalize sudden changes in the target’s position, tracking similar targets at
close range is still prone to failure. The second image shows shape changes. our tracker
is non-temporal. When the appearance of the target in the search is significantly different
from that in the template, the tracker will loses the target. Thus, temporal information is
essential in some long sequence tracking processes. The third image shows imaging noise.
In some environments, the infrared images obtained contain noise, severely affecting the
quality of infrared images. When the single-mode noise is too strong, the tracker will be
affected by interference from noise, affecting the tracking effect.

5. Discussion

This study primarily focuses on visible-infrared dual-modality object tracking in
drone scenarios. We have conducted ablation experiments and visualization analysis to
validate the effectiveness of the proposed dual-feature aggregation network in aggregat-
ing visible-infrared modality information. Our algorithm outperforms other mainstream
algorithms in terms of tracking accuracy, while utilizing fewer parameters and achieving
faster running speeds. Our algorithm is specifically designed for drone scenarios and can
be seamlessly deployed and executed on the Nvidia Orin NX, a drone edge computing
platform with limited computing resources. To evaluate the algorithm’s performance,
we conducted tests in an open scene using the aforementioned hardware platform. The
results demonstrate that leveraging dual-modality information can significantly enhance
the accuracy and robustness of object tracking, particularly in scenarios with illumination
changes and occlusions. Additionally, we have analyzed the failure cases encountered
during the experiments to identify potential areas for future research. The performance of
our algorithm is degraded in scenes with similar appearance, shape changes and image
noise. Furthermore, the algorithm’s processing speed still falls short of meeting real-time re-
quirements on edge computing devices. These challenges serve as important considerations
for future improvements.

6. Conclusions

In this work, we mainly designed a visible-infrared object tracking network based on
the Transformer architecture. It consists of four components, among which we focused on
designing a Dual-Feature Aggregation Network to fuse visible and infrared information.
Through ablation experiments and visualization analysis, we demonstrated the effective-
ness of the Dual-Feature Aggregation Network. The algorithm is mainly for the task of
RGBT object tracking in drone scenarios and the algorithm is simplified so that it can run on
the drone edge computing platform. Compared with the mainstream RGBT object tracking
algorithms, our algorithm still achieves better performance.
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Abstract: Due to their low cost, interference resistance, and concealment of vision sensors, vision-
based landing systems have received a lot of research attention. However, vision sensors are only
used as auxiliary components in visual landing systems because of their limited accuracy. To solve
the problem of the inaccurate position estimation of vision-only sensors during landing, a novel
data closed-loop pose-estimation algorithm with an implicit neural map is proposed. First, we
propose a method with which to estimate the UAV pose based on the runway’s line features, using a
flexible coarse-to-fine runway-line-detection method. Then, we propose a mapping and localization
method based on the neural radiance field (NeRF), which provides continuous representation and
can correct the initial estimated pose well. Finally, we develop a closed-loop data annotation system
based on a high-fidelity implicit map, which can significantly improve annotation efficiency. The
experimental results show that our proposed algorithm performs well in various scenarios and
achieves state-of-the-art accuracy in pose estimation.

Keywords: vision-only landing system; runway-line detection; pose estimation; implicit neural
mapping; data closed-loop

1. Introduction

Safe and reliable flight is an important research topic in aircraft, and the process of
approaching and landing is the phase with the highest accident rate during the flight of
fixed-wing aircraft, so it is very important to guide the landing safely. traditional landing
systems rely on landing systems with instruments, which are a proven landing solution,
but the system requires expensive equipment and maintenance. For UAV (unmanned
aerial vehicle) landing, typical ground-based landing systems include OPATS and SADA.
With the continuous development of visual perception and positioning technologies, it has
become possible to apply vision to guided landing systems in recent years. Vision sensors
are resistant to interference and not easily detected compared to active sensors, such as
radar and laser, so the application of vision sensors to guided landings has received a lot of
attention [1].

Vision-based landing systems for fixed-wing aircraft are composed of ground-based
visual landing systems and space-based visual landing systems according to the implemen-
tation principle. Ground-based visual landing systems place vision sensors around the
runway to determine the position of the UAV through multi-point observation to achieve
landing. The scheme has sufficient computing resources, but it needs to rely on commu-
nication links, and its autonomy and applicability are somewhat limited. Space-based
visual landing systems use the information provided by vision to achieve navigation and
positioning, which further completes the vision-guided landing. The C2Land project is a
typical example of this solution [2].
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The space-based visual landing system can be divided into image-based visual ser-
voing (IBVS) and position-based visual servoing (PBVS). IBVS compares the image signal
obtained from real-time measurements with a given image signal and uses the acquired im-
age error for closed-loop control. However, PBVS uses the camera parameters to establish
the relationship between the image signal and the aerial vehicle’s attitude and utilizes the
attitude information in the closed-loop control. IBVS does not need to rely on the camera
model, but the scheme is more scene-dependent. PBVS achieves the decoupling of vision
problem and control problem, but the scheme requires an accurate camera model [3].

This paper proposes a solution to the pose-estimation problem in vision-only landing
systems. We use the PBVS strategy to make the whole pose-estimation system robust and
interpretable. To achieve higher accuracy, we propose a novel pose-estimation algorithm in
a visual landing system, which is an implicit neural mapping solution (refer to Figure 1).
We use camera images as input and the pose estimation as output. The runway detection,
initial pose estimation, and NeRF-inverting [4] modules are computed on the on-board
device (blue color in Figure 1; implicit mapping and GT annotation modules are computed
on the cloud device (red color in Figure 1). The detection algorithm proposed in this paper
is abbreviated as FMRLD (flexible multi-stage runway-line detection) in the experiment.

Figure 1. Our proposed implicit neural mapping pose estimation method in a vision-only landing
system.

Our proposed algorithm follows the basic paradigm of pose estimation. Firstly, we
perform feature extraction on the runway lines. The extracted features are then used for
initial pose estimation, which is further optimized to obtain accurate estimation results. In
the feature extraction phase, we use deep learning-based runway line detection methods
to enhance accuracy and robustness (Section 3.1.1). These methods rely on high-quality
datasets, so we utilize diverse data sources to construct datasets and perform data aug-
mentation accordingly (Section 3.3.1). Since the accuracy of runway line detection directly
affects the initial pose, we propose hump randomness filtering to refine the detection
results (Section 3.1.2). During the initial pose estimation phase, we utilize the principle of
multi-view geometry to estimate the pose. To ensure accuracy, we eliminate some incorrect
estimation results (Section 3.2.1). The pose optimization is divided into two parts: on-board
and cloud-based. On the on-board computing platform, the pose optimization results are
obtained through inverting NeRF (Section 3.2.3). Meanwhile, on the cloud computing
platform, the initial pose estimation results of the current trip are combined with the poses
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from historical trips for incremental pose optimization. The optimized results are then
utilized for NeRF implicit mapping (Section 3.2.2). To address the challenges of expen-
sive and inefficient runway data annotation, we propose a data closed-loop annotation
strategy that leverages mapping results to assist in the annotation process. Specifically, we
export the explicit point cloud of NeRF and allow annotators to annotate directly on the 3D
point cloud. This approach significantly enhances the efficiency of data reuse compared
to traditional image annotation methods. As a result, the entire algorithm operates in a
closed-loop data flow (Section 3.3.2). The modules included in our proposed method are
described below.

Runway detection: Accurate detection of runway lines is extremely important for
navigation and positioning. Our structured runway line-detection and hump-randomness
filtering modules provide consistent and reliable information on runway features. During
the landing process, the visual features vary greatly among different runways, different
weather conditions, and different landing phases, and these problems pose certain chal-
lenges to the accurate detection of runway lines. In this paper, our proposed coarse-to-fine
accurate runway line-detection method fully considers the change in viewpoint during the
landing of the aerial vehicle and the applicability of the algorithm to different scenarios.
First, we use an object-detection algorithm to extract high-level semantic information about
the runway, which ensures the uniform distribution of the runway in the image and facili-
tates the detection of subsequent runway lines. Then, we extract the left and right runway
lines and the virtual start line in the focused image. We propose a column-anchor-based
detection and parallel acceleration scheme for virtual start-line detection. Last, a runway
line fine-tuning method based on clustering and optimization is proposed due to the ran-
domness of detection arising from the width of the runway line. Our runway-detection
module can provide good front-end detection information for pose estimation.

Initial pose estimation: The goal of our initial pose-estimation module is to estimate
the UAV pose information with scales using a runway line feature. To obtain the scale,
the module needs to input the runway width as a priori information. We use multi-
view geometry, such as the vanishing point principle, to estimate the UAV’s initial pose.
However, the pose is generated from a single image and does not guarantee the stability of
the pose. We adopt the results of the visual odometry pose estimation as a reference to fix
the instability in the initial pose estimation.

Incremental implicit mapping: The incremental implicit mapping module provides
map information to the initial pose estimation and improves the accuracy of the pose
estimation. It also provides high-quality point-cloud maps due to the differentiability and
high fidelity of the neural radiance field (NeRF [5]). Due to the limitations of NeRF [5]
in pose optimization in large scale scenes, we have split the implicit mapping module
into two sub-modules: offline pose optimization and NeRF mapping. In the offline pose
optimization sub-module, we have adopted the standard structure from the motion (SfM)
process. However, we have two modifications. One is that we introduce a sky segmentation
sub-module, which ensures that SfM does not extract feature points from the sky during
the feature-extraction stage, preventing the problem of poor pose-estimation results due to
feature mismatch. The other point is that we use the results of the initial pose estimation
as prior information for triangulation and bundle adjustment, thus preventing the failure
of pose estimation caused by local optima that SfM may fall into in large-scale scenes.
In NeRF mapping, a submodule and a grid-based NeRF approach [6] are adopted. We
introduce appearance embedding to ensure robustness in different weather conditions. In
addition, based on some characteristics of the runway itself, we introduce regularization
losses (smoothness loss, sky loss, etc.) to improve the geometry of the NeRF mapping.
Please refer to Section 4 for more details.

Inverting NeRF: Inverting NeRF aims to optimize the pose-estimation result based on
the implicit map when a new initial pose arrives. We use the initial pose to query the NeRF
map, and we can obtain a rendered image. Meanwhile, we can also obtain the camera
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image on that timestamp. Using the pose as an optimization variable, we optimize the pose
by constructing a loss of the observed and rendered images.

GT annotation: The runway-detection network must be trained using annotated
data, which is an extremely labor-intensive process. The GT annotation module reduces
the annotation cost significantly by generating a 3D point-cloud map, annotating the
runway in 3D space, and then projecting it into the 2D image. At the same time, due to
the differentiable representation, NeRF can synthesize images with a novel view, thus
providing true 3D data augmentation. The GT annotation module achieves a closed loop of
data and enhances the iterative efficiency of the whole system.

Combining the above modules, we propose a complete algorithm for estimating the
pose in a vision-only landing system. The proposed algorithm has been proven effective in
simulation experiments.

The main contributions of our work are follows.

(1) A novel pose-estimation framework in a vision-only landing system is proposed,
which introduces implicit mapping and ground-truth annotation modules to improve
the pose-estimation accuracy and data-annotation efficiency.

(2) We build a runway-detection pipeline. The multi-stage detection framework pro-
posed in this paper makes full use of the features of different stages, which can
guarantee semantic features and positioning ability and therefore greatly improves
the runway line detection accuracy.

(3) We present a NeRF-based mapping module in a visual landing system, whose
high fidelity provides the possibility of reusing ground truth annotation, while its
differentiability provides the basis for accurate pose estimation. Our NeRF-based
mapping allows for the coding of different temporal styles, which is not possible
with other mapping methods.

This paper is organized as follows: in Section 2, we introduce related work, including
runway detection algorithms and neural radiance fields; in Section 3, we provide a detailed
description of our algorithm, including implementation details of runway line detection,
pose estimation, implicit mapping, and the data loop-closure module; in Section 4, we
validate our proposed algorithm through experiments on runway line detection, pose
estimation, and lightweight network; in Section 5, we discuss the advantages and disad-
vantages of our proposed algorithm, as well as future research directions; the conclusion is
given in Section 6.

2. Related Work

2.1. Runway Detection

Runway detection methods can be roughly divided into three categories: detection
based on a priori information, detection based on templates, and detection based on
features. Feature-based detection methods have become the dominant detection method in
recent years.

A Priori information-based runway detection: In a priori information-based methods,
runway detection is achieved using known runway models and the aircraft attitude, and
the upper limit of landing is considered in terms of safety and reliability, with the vision
system primarily used as an auxiliary navigation system. The authors of [7] propose a
model-based runway detection method that requires a known runway model (available
through aeronautical information publication), the internal reference of the camera, and the
rough pose provided by other sensors, and each line segment in the runway model can be
mapped into the image using the above information. In [8], a camera model is also mapped
to the image first, but unlike [7], the ROI given in this paper is the ROI of the smallest
rectangle containing the left and right runway lines rather than the ROI of each segment of
the runway model line. However, in tasks such as emergency landings, the initial attitude
estimation is noisy and the sensor type is limited, and the model-based runway detection
is less effective in this case.
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Template-based runway detection: Template-based runway line detection uses the
comparison of the query image and the template image to achieve detection. In [9], LSD
is used for line feature extraction, and chamfer matching is later used to achieve runway
search, but due to the limitations of template matching itself, the template often cannot
adapt to the large changes in view during the landing process. The authors of [10] used a
manually designed template to find the ROI and rotates the image in different directions
after obtaining the binarized edge gradient map. Then, the sum of the pixel values in
different columns is counted to find their peaks, and the peaks are clustered under dif-
ferent rotation angles. Finally, the clustering centers are mapped to straight lines in the
original image to achieve runway line detection. Template-based detection methods are
poorly generalized and often fail because they are more sensitive to runway geometry and
light conditions.

Feature-based runway detection: Runway line detection based on image features is
mainly achieved using visual images. Unlike remotely sensed runway detection [11], the
proportion of the runway in the image changes continuously in the landing scenario, and
the left and right runway edges no longer have parallel characteristics. In [12], the HSV
color model and LSD algorithm were used to detect non-standard airfields, and the paper
concluded that using the HSV color model could achieve better detection results than
the RGB color model. In [13], ROIs are formed by corner-point detection and clustering,
and then a neural network is used to classify these ROIs to determine the location of
runway edges. However, it is a challenge to choose the number of clusters effectively.
The authors of [14] use an end-to-end segmentation network for runway line detection
and a self-attention module to enhance the segmentation, while a lightweight network is
used to ensure real-time detection, but the paper does not give the impact of detection on
subsequent tasks.

None of the above detection methods consider the effectiveness of detection under
large viewpoint changes during landing, resulting in these methods only being effective
when there is a small variation in perspective and therefore requiring different detection
models to be set up for different landing stages (e.g., detection parameters need to be
fine-tuned). Additionally, the detection of the starting line can enhance pose estimation
performance; however, the above-mentioned methods often fail to detect the virtual start
line as it often does not exist. Our proposed method overcomes these problems effectively
and provides accurate and reliable runway line detection results.

2.2. Neural Radiance Field

NeRF is a recent breakthrough in the field of computer vision that allows for the
generation of highly realistic 3D models of objects and scenes from 2D images. The method
works by training a deep neural network to predict the radiance at any point in 3D space,
given a set of images and corresponding camera poses. This allows for the creation of
photorealistic renderings of objects and scenes from any viewpoint and even enables the
synthesis of novel views that were not captured by the original images.

NeRF has been applied to a wide range of applications, including virtual reality,
augmented reality, and robotics. It has also been used to generate 3D models of real-world
objects and scenes, such as buildings, landscapes, and even human faces.

While NeRF has shown remarkable success in generating high-quality 3D models from
a small number of images, it faces several challenges when applied to large-scale scenes.

Computation complexity: The continuity expression of NeRF and the weak assump-
tion of spatial consistency result in slow convergence during training and while requiring
large networks to compute the RGB and density of spatial sampling points, which also
leads to the slow inference speed of the network. In large-scale scenes, a large number of
points in the scene need to be calculated, so the computational requirements can become
prohibitively large.

To address the challenge, several approaches have been proposed. It has been shown
in recent research that grid-based representations can be used to speed up the training
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and inference of NeRF significantly. Plenoxels [15] store density values and colors directly
on a voxel grid, rather than relying on an MLP network. Instant-NGP [6] greatly im-
proves the training efficiency by utilizing hash encoding and multi-resolution mechanisms.
F2NeRF [16] delves deep into the mechanism of space warping to handle unbounded scenes
and achieves fast free-viewpoint rendering by allocating limited resources to highlight the
necessary details.

Few shot: The original NeRF method requires a 360-degree view of the target object,
allowing the network to effectively learn the geometric properties of the scene due to the
large amount of co-visible areas. However, in some scenes, the number of input views is
limited or the view directions are relatively uniform, which may deceive the network and
prevent it from learning the correct geometric information from the images. RegNeRF [17]
alleviates artifacts caused by the sparse input by adding regularizations on both geometry
and appearance. DS-NeRF [18] and Urban-NeRF [19] improve the geometry of the scene
by adding depth supervision.

During the visual landing process, the observation viewpoint is relatively uniform
and falls into this category. To address these challenges, prior regularization constraints or
depth supervision are often required to be added to the network.

Different resolutions: When there are multiple resolutions present in the input images,
NeRF can exhibit blurring and aliasing. MipNeRF [20] solves this problem effectively by
using cone sampling. In the process of visual landing, there is a significant difference in
resolution between the early and late stages of landing. Therefore, our paper adopts a
MipNeRF-based approach to address this issue.

3. Method

3.1. Multi-Stage Flexible Runway Detection

Our multi-stage runway-line-detection algorithm constructed in this paper follows the
design principle from coarse to fine, which can largely improve the reliability and accuracy
of runway-line detection. The first stage uses the object-detection algorithm, which can
effectively extract the high-level semantic information of the runway. By extracting ROIs
(regions of interest), it can ensure the uniform distribution of the runway in the image and
facilitate the detection of subsequent runway lines. The second stage of the runway-line-
detection algorithm is used to extract left and right runway lines and the virtual start line
in the focused image, and the extracted runway lines are described in the form of point
sets. The runway-line-detection algorithm does not use object segmentation techniques but
rather row- and column-specific classification, which is able to reduce the computational
effort and increase the inference performance. The third stage mainly adjusts the results of
runway-line detection using pixel tuning and sub-pixel tuning to ensure that the detection
results of runway lines are attached to the inner edges of the runway lines, thus effectively
reducing the randomness of runway line detection.

3.1.1. Structured Runway-Line Detection

We adopt a row anchor-based [21] mechanism for runway-line detection, which
samples the image in equally spaced rows, then uses the sampled rows as anchor rows
and classifies several adjacent columns into the same grid. With these two processing
techniques, the computational effort of the algorithm can be significantly reduced. Below,
the network feature of the image is denoted as F, the runway-line-detection classifier is
denoted as f , and the predicted results of the runway line are denoted as P.

For the i-th runway line and the j1-th row anchor, the prediction result can be ex-
pressed as:

Pj1
i = f j1

i (F), (1)

where the number of row anchors is ar the number of column grids is nc, and Pj1
i is an

nc + 1 dimensional vector, where the extra dimension is used to indicate the presence or
absence of the runway line.
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However, the method does not allow for virtual start-line detection, as the slope of
the start line is close to zero and the start line can not be effectively detected using the
row anchor. In order to solve this problem, we design a column-anchor-based virtual
start-line-detection method.

Similar to row anchors, column-anchor detection is defined as follows. For the i-th
runway line and the j2-th column anchor, the prediction can be expressed as:

Pj2
i = f j2

i (F), (2)

where the number of column anchors is ac, the number of row grids is nr, and Pj2
i is an

nr + 1 dimensional column vector.
Although such a design works in theory, the left and right runway lines and the virtual

start line need to be predicted separately; i.e., two sets of models are required, which is
detrimental to the reuse of network features, the management of the network model, and
parallel GPU acceleration. Considering the pairwise characteristics between column and
row, we propose an ingenious design approach to unify the left and right runway line and
the start line in a unified detection framework.

The left runway line, right runway line, and the virtual start runway line are numbered
i as 1–3, respectively, and then the prediction can be expressed in the following form:

⎧⎪⎨
⎪⎩

Pj1
1 = f j1

1 (F)
Pj1

2 = f j1
2 (F)

Pj2
3 = f j2

3 (F)

(3)

To ensure matching dimensions, two merging methods can be generated, which are:
{

ar = nr
ac = nc

(4)

or: {
ar = ac
nc = nr

(5)

If the form of Equation (4) is used, the Pj1
1 , Pj1

2 , and Pj2
3 column vectors may have different

dimensions, and in this case, if the different runway lines are processed uniformly, there
will be invalid elements in the matrix P. If the form of Equation (5) is used, the Pj1

1 , Pj1
2 and

Pj2
3 column vectors have the same dimension, in which case all the data in the matrix P are

valid, and P can be expressed as:

P =
[

Pj1
1 Pj1

2 Pj2
3

]
=

[
f j1
1 (F2) f j1

2 (F2) f j2
3 (F2)

]
(6)

We use this combined form to unify the three runway lines and then interpret them
differently in the post-processing stage.

Although the detection of three runway lines can be achieved using the above ap-
proach, in order to enable the runway-line-detection network to learn more essential
features and achieve better generalizability, we add regular terms based on the geometric
properties of the runway. There is a certain constraint relationship between the left and
right runway lines. Due to perspective, the closer one gets to the top of the image, the
closer the left and right runway lines are from the perspective of the image. For the i-th
runway line and the j1-th row anchor, the probability can be expressed as:

pj1
i = so f tmax

(
Pj1

i

)
(7)
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So the location prediction results are:

Lj1
i =

nc

∑
k=1

k · pj1
i (k) (8)

For the same anchor row, the difference between the predicted positions of the left and
right runway lines is:

Dj1 = Lj1
1 − Lj1

0 , s.t. j ∈ [0, h] (9)

The difference in distance between the left and right runway lines between adjacent anchor
rows is expressed as:

ΔDj1 = Dj1+1 − Dj1 , s.t. j1 ∈ [0, h− 1] (10)

Ideally, no loss is caused in the case of ΔDj1 > 0, while a loss is caused when ΔDj1 < 0.
However, in the actual detection process, a certain tolerance threshold needs to be set. The
reason for designing the threshold is mainly due to the fact that the constraint of a zero
threshold is too strict, and the use of a zero threshold may reduce the performance of the
detection. Assuming that the tolerance threshold is T, then, for each anchor row, the loss
can be expressed as:

Mj1 = 0.5×
(∣∣∣ΔDj1 + T

∣∣∣−ΔDj1 − T
)

, s.t. j1 ∈ [0, h− 1] (11)

Therefore, the correlation loss of the left and right runway lines can be expressed as:

Lossrelation =
h−1

∑
j1=1

∥∥∥Mj1
∥∥∥

1
(12)

For the starting runway line, which is itself a virtual line, the distortion is prevented
by adding a linear constraint-regularization term. The experimental results show that the
structured loss of the left and right runway lines proposed in this paper and the linear loss
of the starting line can improve the generalization.

3.1.2. Hump Randomness Filtering

The accuracy of the runway-line detection directly affects the subsequent position
estimation. However, as the result of the width of the runway lines themselves, there is
randomness in the location of the detection points in the structured runway-line detection.
During the initial period of access to the visual landing system, the runway lines occupy
fewer pixels in the image, but the positioning is more sensitive to small fluctuations in
detection, and when the UAV is about to reach the ground, the runway lines occupy a
certain width in the image, and if each runway is still considered as one edge in this case, it
will produce great detection uncertainty. In this paper, the left and right runway line edges
are absorbed toward the inner side of the runway, which effectively solves the problem of
detection uncertainty.

Although there are off-the-shelf edge-detection algorithms, such as Sobel [22], Canny [23],
etc., such generic edge-detection algorithms do not have direction selection characteristics
and tend to introduce non-runway edge information, which causes some interference in
the subsequent steps. In addition, since the general location of the runway line is already
given in the second stage, there is no need to take the gradient of the whole map, but only
to find the gradient at some specific locations, which can reduce the computational effort.

In order to enhance the gradient information of runway edges while suppressing the
gradient information of non-runway edges, a directional gradient strategy is proposed in
this section. The initial slope of the runway line krough can be determined from the detection
points of the previous stage, so the directional gradient convolution kernel is determined
based on the initial slope. Specifically, consider convolution kernel Ke as an N × N grid,
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given a straight line passing the center of the convolution kernel with slope krough. The
straight line divides the original grid into three categories: grids on the top side of the
straight line, grids on the bottom side of the straight line, and grids passing through the
straight line. The values for these three types of grids are set to 1, −1, and 0, respectively.
After the convolution kernel K is solved for, a directional gradient image can be obtained.

The detection point (x0, y0) is sampled in the directional gradient image along the
orthogonal direction y = n(x) to the left and right for N0 pixels. The sampling sequence is
defined as:

S(x0,y0)
=

[
s0 ... s2×N0

]
, (13)

where st(t = 0, ..., 2× N0) denotes the gradient value on the specific sample point. S(x0,y0)

is normalized to obtain Sn(x0,y0)
.

The values of Sn(x0,y0)
are first filtered to remove the points whose amplitude is less

than the specified threshold, e.g., 0.5, and then the remaining points are clustered by two-
dimensional K-means++ [24]. The clustering results are shown in Figure 2. Assuming that
the peaks of two categories are rmax

i , where i = 0, 1, and then we can obtain the adjust
points, and the result is used as initial value for subsequent optimization, which can be
expressed as: ⎧⎨

⎩
xrough

i = x0 + arg max
Δx

rmax
i

yrough
i = n(xrough

i )
(14)

Figure 2. Sampling points and cluster. The blue and red points indicate different two types of data,
and the green points are invalid. The yellow dashed line indicates the dividing line between the
invalid and valid points.

Ideally, the edge gradient of an image is an impulse signal, but due to factors such as
image blurring and filtering, the edges often do not conform to this model. We assume
that the change in the image edge gradient conforms to the Gaussian model. Under
this assumption, the horizontal coordinate corresponding to the peak of the Gaussian
distribution is the edge position. For the runway line, there is a certain width itself, and
the points on the runway line may be affected by both the left edge and the right edge. A
hump model is proposed to deal with the sub-pixel fitting of the runway to obtain more
accurate detection results. B(Δx) is defined as:

B(Δx) =
k0√
2πσ2

(
exp

(
− (Δx− μ0)

2

2σ2

)
+ exp

(
− (Δx− μ1)

2

2σ2

))
, (15)
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where the horizontal coordinates of the two peaks, denoted μ0 and μ1, respectively, are the
coordinates of the left and right edges of the runway to be sought. The standard deviation
of the Gaussian function is denoted as σ, which is shared by two Gaussian functions.

We use the Levenberg–Marquardt method to optimize. In order to speed up the
optimization and prevent the algorithm from falling into local optima, we add a regular
term. Specifically, the distance of the peak points actually reflects the width of the runway
line, which is actually relatively narrow. By constraining the distance between the two
peaks, the result can be made to satisfy the actual physical scene. The experiments show
that the regular term can effectively prevent the algorithm from falling into a local optimum,
and the optimization problem can be described as follows:

ψ∗ = arg min
ψ

1
2N0 + 1

N0

∑
i=−N0

(
Bψ(i)− Sn(x0,y0)[i + N0]

)2
+ λ‖μ0 − μ1‖2, (16)

where the parameters are defined as ψ = {μ0, μ1, σ, k0}, the model under a particular set of
parameters p is defined as Bψ(Δx), and λ is the regularization coefficient. The initial values
of μinitial

i are selected as arg max
Δx

rmax
i , where i = 0, 1.

After obtaining μi, similarly to Equation (14), we can obtain (x f ine
i , y f ine

i ). We then use
the following criteria to check the optimized result, which is:∣∣∣∣∣μi − arg max

Δx
rmax

i

∣∣∣∣∣ < τ (17)

We set τ to 1 or less because the optimized model is fine-tuned sub-pixel and an adjustment
value greater than 1 is considered unreasonable. When the optimization result does not
satisfy this criterion, the initial value is used as the final result.

The hump randomness filtering algorithm is shown in Algorithm 1.

Algorithm 1 Hump Randomness Filter

Input: Detection Points Set S, Image I;
Output: Adjust Points Set S′

Directional convolution kernel Ke ← Detection points set S;
for s in S do

Sequence Q ←Sampling along the gradient direction for point s
Sequence Sn ← Get the directional gradient value of each point in Q using kernel Ke
Initialize μinitial

i ← Clustering with Sn to get two peak
μi ← Using Sequence Sn and μinitial

i to optimize the hump model

if
∣∣∣μi − μinitial

i

∣∣∣ < τ then

Use optimized parameters to get S′

else
Use init parameters to get S′

end if
end for

3.2. Implicit Reconstruction-Based Pose Estimation
3.2.1. Initial Pose Estimation

We use runway line features to initialize the UAV pose. The runway coordinate system
and camera coordinate system are defined as shown in Figure 3. The origin Or of the
runway coordinate system is chosen as the midpoint of the runway start line, the xr points
from Or to the front of the runway, and zr starts from Or and is perpendicular to the runway
plane, and yr can be determined according to the right-handed coordinate system.
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The origin Oc of the camera coordinates system is located at the optical center of the
camera, the zc points from Oc to the camera directly in front, xc points to the camera directly
to the right, and yc can be determined according to the right-handed coordinate system.

Figure 3. Runway coordinate system and camera coordinate system.

The positions of the 3D points in the runway coordinate system and the positions of
the points in the pixel coordinate system are mathematically related as follows:

−→v p =
1

Zc
KRcr

[
I3×3| −�tcr

][ �vr
1

]
=

1
Zc

P
[
�vr
1

]
, (18)

where P = KRcr[I3×3| −�tcr] is the projection matrix, Rcr denotes the rotation matrix from
the runway coordinate system to the camera coordinate system, K is the camera’s intrinsic
matrix, and�tcr denotes the coordinates of the origin of the camera coordinate systems in
the runway coordinate system. Assuming that the slope and bias of the runway line in the
pixel coordinate system are denoted as ki and bi, where i is selected from {l, r, h}, which
denote the left runway line, the right runway line, and the start runway line, respectively.
The following location algorithm is given without proof [25,26]:

�Ai =
[

ki −1 bi
]
KRcr (19)

The first three columns of �Ai are denoted as a1
i , a2

i , a3
i , respectively, and the width of the

runway is W. The positioning result can be expressed as follows:⎧⎪⎨
⎪⎩
[

ycr
zcr

]
=

[
1 a3

l /a2
l

1 a3
r /a2

r

]−1[ −W/2
W/2

]

xcr = −a3
l zcr/a2

l

(20)

With this method, the real width of the runway and the relative poses between the
runway and the camera need to be given. The attitude of the camera can be obtained
using an IMU and magnetometer, but the attitude of the runway is often difficult to obtain
directly, so the relative attitude of the runway and the camera is more difficult to obtain.
Below is a method to estimate the relative attitude of the UAV and the runway based on
the runway line features [27].

The extinction points of the left and right runway lines are:

vp
lr =

(
(br − bl)/(kl − kr) (klbr − krbl)/(kl − kr)

)
(21)

And the extinction point vp
s of the starting line can be obtained from Equation (22):

[ (
vp

lr

)T(
K−TK−1)
lT
s

]
vp

s = 0 (22)

Based on the above, the rotation matrix Rcr can be expressed as follows:

Rcr =
[

1
α1

K−1vp
lr

1
α2

K−1vp
s

1
α3

(
K−1vp

lr

)
×

(
K−1vp

s

) ]
(23)
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In Equation (23), α1, α2, and α3 are normalized coefficients.
Based on the above, we obtain the single-frame pose of the UAV camera in the runway

coordinate system. For the k-th frame, the pose estimated using above method can be
abbreviated as Γframe

k .
However, a single-frame pose can suffer from unstable pose estimation. We used

a visual odometer-based filtering method to remove the jumps. We initialized the scale
of the monocular odometer using a single-frame pose. In feature extraction, we use the
trained sky segmentation model to remove invalid feature points in the sky and increase
the proportion of feature points in the runway area. Using the odometer’s pose-estimation
results, we are able to obtain pose transformation from k to k + 1, denoted as Γodom

k→k+1.

Meanwhile, we are able to obtain Γframe
k→k+1 = Γframe

k+1 (Γframe
k )

−1
. Then, we use the similarity

metric Γodom
k→k+1(Γ

frame
k→k+1)

−1
to determine whether to use a single-frame pose. If the threshold

condition is not met, the odometer pose is used as the estimation pose. We denote the result
as Γinitial

k .

3.2.2. Implicit Mapping

Cloud computing, like offline computing, can see all the pose data of the previous
flight trajectories in one batch, while cloud-based platforms have more computing resources,
which is an advantage of cloud-based mapping and pose estimation over the onboard
platform. We propose a scheme to reconstruct the implicit map using an implicit radiance
field and optimize the UAV’s pose attitude online.

We use Γinitial as an a priori pose and use SfM for pose optimization [28]. During
feature extraction, we use the segmentation model to remove sky feature points and moving
objects such as birds. The feature matching is made more efficient by using a priori poses to
guide this process. In the triangulation process, the SfM process itself has a real scale due
to the a priori poses. During bundle adjustment, a priori poses are used as optimization
regularization to prevent failure. In landing scenarios, there are often multiple trips with
different flight paths, and it is important to merge them. One strategy is to optimize all
trajectory poses together. However, this is computationally inefficient and often leads to
optimization failure due to the high degree of freedom in the optimization process. We
adopt a progressive merging strategy, where new trip data arrive and are first reconstructed
separately and then merged with existing results. The experimental results show that
the feature point extraction strategy, a priori poses, and incremental reconstruction can
effectively improve the reconstruction accuracy of the SfM. We denote the pose optimization
result as Γopt. This result is used for NeRF reconstruction.

Assume that the RGB color of a certain pixel is Ct; to render this pixel in NeRF, a ray
r(t) = o + td is emitted from the camera’s center of projection o in the direction d that
passes through the pixel, and distance t ∈ (tn, t f ), where tn and t f are the predefined near
and far distances. A sampling strategy is used to obtain the sampled tk. For each distance
tk ∈ t, the 3D position can be expressed as x = r(tk). Then, a positional encoding strategy
is used to improve rendering quality. The output of the specific sampling points k after
passing through the neural radiance field are RGB colors ck and a density σk, which can be
expressed as:

[σk, ck] = MLP(γ(r(tk))), ∀tk ∈ t, (24)

where MLP represents the neural radiance network, while γ(·) denotes the positional
encoding function.

The estimated densities and colors are utilized for approximating the volume-rendering
integral through numerical quadrature, which is discussed in the volume-rendering review
by Max [29]:

Cp(r) = ∑
k

Tk(1− exp(−σk(tk+1 − tk)))ck, (25)
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in which Tk = exp
(
− ∑

k′<k
σk′(tk′+1 − tk′)

)
, and Cp(r) is the final predicted color of the

pixel. During the training of the NeRF network, the predicted pixel value Cp(r) is mini-
mized with respect to the true pixel value Ct(r) using gradient descent.

Theoretically, we have the optimized poses Γopt, camera intrinsic matrix K, and the
corresponding images to perform the NeRF implicit reconstruction. However, there are
some challenges in our specific scenario. Problem I is that the drastic changes in the
viewpoint during landing and the large variation in runway resolution are also difficult
problems for the NeRF model. Problem II is the problem of large-scale scenes: visual
landing requires the representation of large scenes, which the original NeRF model is
unable to handle. Problem III is the issue of appearance style: landing scene data may
come from different times, and if this problem is not effectively addressed, it can affect the
performance of the implicit map. Problem IV: due to the few viewpoints during landing, it
is difficult to learn the geometric information of the scene in the mapping process.

To address Problem I, we adopt the approach proposed in MipNeRF [20], using conical
frustum instead of rays in NeRF to alleviate the aliasing issues caused by multi-resolution.

To address Problem II, we utilize the scene parameterization mechanism from MipN-
eRF360 [30]. Specifically, we achieve coordinate transformation through defining contract(·):

contract(x) =
{

x ‖x‖ � 1
(2− 1/‖x‖)(x/‖x‖) ‖x‖ > 1

(26)

This approach allows us to compress the range of spatial points from [0,+∞) to [0, 2).
By choosing an appropriate unit scale, we can effectively represent unbounded scenes.

To address Problem III, we apply the appearance-embedding mechanism from NeRF-
W [31] to our approach. NeRF-W assigns a unique appearance encoding to each image and
obtains a corresponding word vector. This vector is then fed into a multilayer perceptron
for backpropagation optimization, resulting in an appearance encoding that captures the
style of the current image. However, unlike the “wild” images in NeRF-W, the images in
the visual landing system maintain a consistent style throughout each trip. By setting the
same appearance encoding for all images in a trip, we reduce the degree of freedom in
appearance encoding and allow it to capture the essential features of the appearance. We
denote the appearance encoding as ei, where i denotes the i-th trip. After the appearance
embedding is incorporated, Equation (24) can be rewritten as:

[σk, ck] = MLP(γ(r(tk)), ei), ∀tk ∈ t (27)

To address the problem IV, we add some regularization constraints based on the
physical properties of the real scene to limit the geometric degrees of freedom.

The sky’s depth is considered to be infinite. Since the sky often lacks effective features,
if the depth of the sky is not constrained, many floaters will appear in the scene. By adding
regularization constraints to the sky, this problem can be alleviated [19]. All the rays
belonging to the sky can be obtained based on the sky segmentation model, denoted as the
set Rs, which contains ns elements, and we define sky loss Lsky to encourage sky rays to
have zero density:

Lsky =
1
ns

∑
r∈Rs

∑
k
[Tk(1− exp(−σk(tk+1 − tk)))]

2 (28)

The runway area, which is the focus of our attention, conforms to the assumption of
planar smoothness. Therefore, we use the geometry regularization [17] to constrain the
geometry of the runway. The depth of NeRF is generally represented as:

dp(r) = ∑
k

Tk(1− exp(−σk(tk+1 − tk)))tk (29)
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All the rays belonging to the runway can be obtained based on the runway-detection
model, denoted as the set Rr, which contains nr elements, and we define runway loss
Lrunway as:

Lrunway =
1
nr

∑
r∈Rr

(
d
(
ri,j

)
− d

(
ri+1,j

))2
+

(
d
(
ri,j

)
− d

(
ri,j+1

))2 (30)

In addition to the aforementioned losses, we propose a multi-view consistency loss. In
this loss, we add a random rigid transformation Tr. To simplify the notation, we denote the
function mapping from rays to rendered pixel colors as M(·). The set of common pixels
between the images before and after the rigid transformation is denoted by Rc, which
contains nc elements, and we define consistency loss Lconsistency as:

Lconsistency =
1
nr

∑
r∈Rc

(
T−1

r (M(Tr(r), ei))−M(r, ei)
)2

(31)

The loss function for our proposed method can be expressed as:

Ltotal = Lrgb + Lsky + Lrunway + Lconsistency, (32)

in which Lrgb = 1
ni

∑
r∈Ri

∥∥Cp(r)− Ct(r)
∥∥2, Ri represents all the rays that can be formed from

the image, and ni represents the number of rays.

3.2.3. Inverting NeRF

After training the implicit representation of the scene with NeRF, we use the scene map
for online pose estimation. Unlike implicit mapping, the “inverting NeRF” module does
not need to use subsequent frames of the current trip, so it is able to compute on an airborne
platform. First, we perform appearance-style initialization after obtaining the image of this
trip. We freeze all network parameters except for the appearance embedding and optimize
it by minimizing the difference between the observed image and the predicted image; the
appearance embedding of the new trip can be represented as enew.

For the k-th frame, we can obtain a set of rays Rk based on the initial pose Γinitial
k and

intrinsic camera K. The mapping function from the rays to the RGB values for the k-th
frame is denoted as Ck(·), and the optimization problem can be represented as:

Tk = arg min
T∈SE3

∑
r∈Rk

‖T(M(r, enew))− Ck(r)‖2
2, (33)

where T is the optimization variable. Then, we can obtain the optimized pose Γopt
k = TkΓinitial

k ,
which is a non-convex over the 6DoF space of SE(3). We used the optimization procedure
from the paper [4].

3.3. Data Closed-Loop Strategy
3.3.1. Dataset

In order to achieve reliable runway-line detection, it is necessary to have a high-quality
dataset [32]. However, to the best of our knowledge, there is no open-source dataset for
this particular scenario of vision-based landing systems. Although runways exist in some
remote sensing datasets, these runways are not directly applicable to the landing scenario
as they are taken from a different perspective than in the vision-based landing system.
Based on the information above, the dataset was produced for the landing system in this
paper. We used four customized datasets. The first type was the Vega-Prime and X-plane
runway image, which were directly generated by the simulator (Vega-Prime and X-Plane
are simulators). The second type was the runway data collected from the real runway.
The third type was the available data obtained using the perspective transformation of
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some remotely sensed runway data. The fourth type is the data collected from the internet.
Runways come from different sources as shown in Figure 4.

(a) (b) (c) (d)

Figure 4. Different data sources of runways. (a) Vega-Prime runway. (b) Real runway. (c) Remote
sensing dataset. (d) Internet collected.

The remote sensing runway dataset is transformed through perspective to form the
view of the landing runway, which expands the diversity of the dataset. One remote sensing
runway data point can simulate the runway of different landing stages through different
perspective transformations, as shown in Figure 5.

(a) (b) (c)

Figure 5. Different perspective transformations. (a) Original runway data. (b) Simulation landing
angle 1. (c) Simulation landing angle 2.

The runway-line-detection framework proposed in this paper contains two deep
network models, so two datasets are required. Directly labeling two datasets has a large
labor overhead, and since there is some correlation between the two datasets, the datasets
are only labeled with the runway lines in the images, and then the two datasets are
automatically generated using the dataset preprocessing procedure. Considering the
characteristic that the runway line itself is a straight line segment, in order to further reduce
the annotation workload, the straight line segments are annotated instead of the point
set in the program. For the bounding-box-localization dataset, the minimum axis-aligned
rectangular box containing the runway can be generated according to the endpoints of
the left and right runway lines and the start line marked in the original figure. In order
to enhance the adaptability of the runway-line-detection algorithm to different scales
of detection frames, the runway rectangular frames are scaled up and down, and three
different scaling scales of 0.8, 1.0, and 1.2 are used in the experiment; this paper’s strategy
for dataset generation is shown in Figure 6.

Figure 6. Dataset annotation strategy.

The annotation strategy used in this paper can effectively solve the image-rotation
data-enhancement problem in the runway-detection process. In the generic object-detection
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task, the bounding boxes need to be rotated after image rotation. However, the problem
of rotated data enhancement is often handled by means of the maximum frame due to
the target-detection ground-truth axis-alignment target feature. Studies have shown that
the maximum frame degrades the network performance [33]. In this paper, we adopt the
method of labeling runway lines and rotate the runway lines in the process of rotating data
enhancement before generating bounding boxes. This method is effective in avoiding the
performance damage caused by the maximum frame, as shown in Figure 7.

(a) Maximum box (b) Rotating the minimum box

Figure 7. Different annotation boxes in the rotation-data augmentation. In Figure 7a, the red box
shows the result obtained by rotating the conventional bounding box, while the blue box represents
the bounding box generated from the red box after image rotation. The blue bounding box, known as
the maximum box, includes a significant amount of irrelevant background information. In contrast,
Figure 7b presents red line segments representing our proposed annotation method. The blue box
represents the generated bounding box after image rotation, based on the annotated information,
which contains less background information.

3.3.2. Data Closed-Loop Ground-Truth Annotation

Compared to other visual composition methods, NeRF has the advantage of high
fidelity. At the same time, due to the continuity expression of the network, its point cloud
export results can be infinitely densified.

The steps to export a point cloud from NeRF are described below. Firstly, we use the
rays emitted by all effective pixels in training images as a set of rays. Secondly, for each ray,
we use Equation (29) to calculate the mean depth, which is denoted as dp(r). Thirdly, we
extract the appearance embedding of the most visually effective one from multiple trips,
and then we can obtain the RGB value of that ray, which is denoted as Cp(r). Fourthly,
by performing the aforementioned calculations, we are able to obtain the RGB values and
depth values for all relevant pixels in the training images. By using the intrinsics and
extrinsics of camera, we can then determine the coordinates of each 3D point within the
runway coordinate system, ultimately forming a comprehensive point cloud. Finally, we
divide the generated point cloud into blocks (with a size of 5 m × 5 m in our experiments)
and calculate thickness mean and standard deviation statistics on each block. This process
allows us to filter out outliers that fall outside of the 3σ range. By adding this step, we can
significantly enhance the visualization of the point clouds.

Using the exported point cloud, manual 3D annotation can be performed on the left,
right, and virtual-start runway lines in the point cloud. Then, using NeRF rendering with a
new perspective, image annotation can be projected using the 3D annotation projection.
By using different poses and appearance, labeled images can be generated, which can be
used for the training of the runway line-detection network. The exported 3D point cloud is
explained in Section 4.2.

4. Experiments

4.1. Runway Line Detection Experiments

To verify the effectiveness and accuracy of the algorithm proposed in this paper, we
designed performance-evaluation metrics for runway-line detection. Unlike the evaluation
metrics of general object detection and semantic segmentation, the runway-line-detection
algorithm focuses on the error and accuracy of the slope and the bias of the runway lines.
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The slope and bias of the detection results of a runway line are denoted as kp and bp,
respectively, while the true labeling results are denoted as kt and bt. The detected angular
error and bias error are expressed as follows:

⎧⎨
⎩

Δraw = arctan kp − arctan kt
Δangle = min(180− |Δraw|, |Δraw|)
Δbias = |bp − bt|

(34)

We denote the angle threshold as T1(degree) and the distance threshold as T2(pixel).
The detection result under these thresholds is correct if the following conditions are met,
abbreviated as TA− T1 − T2: {

Δangle < T1

Δbias <
√

1 + k2
t T2

(35)

To ensure the reliability of the experimental results, all results in this section are the
average of 1000 random experiments in which the PyTorch deep learning framework is
used and the GPU used in the training and inference process is NVIDIA 3090.

The experimental results from Table 1 show continuous improvement in detection
performance with the addition of different strategies with the exception of a few cases.
FMRLD-basic represents the basic structured runway-line-detection algorithm.

Table 1. Detection algorithm performance. Bold indicates the best performing result. The strategy
“correlation constraint” can be found in Section 3.1.1. The strategy “rotational data augmentation”
can be found in Section 3.3.1. The strategy “hump filter” can be found in Section 3.1.2. The definition
of TA− T1 − T2 can be found in Equation (34).

Methods TA-1-5 TA-2-10 TA-3-20 TA-5-30 FPS

FMRLD-basic 42.0 63.3 80.2 87.1 40.7

+correlation constraint 42.4 (+0.4) 64.3 (+1.0) 81.6 (+1.4) 88.4 (+1.3) 40.7

+rotational data augmentation 45.5 (+3.1) 68.1 (+3.8) 84.9 (+3.3) 90.9 (+2.5) 40.7

+hump filter (rough) 51.0 (+5.5) 70.8 (+2.7) 85.3 (+0.4) 91.5 (+0.6) 24.2

+hump filter (fine) 52.3 (+1.3) 70.5 (−0.3) 86.1 (+0.8) 92.0 (+0.5) 10.6

The correlation constraint leads to an increase in detection accuracy. Specifically, the
correlation loss has at least two effective gains to the algorithm. First, the addition of the
correlation loss can improve the accuracy of the precision measurement of points, as shown
in Figure 8. Second, the addition of correlation loss can reduce the missed detection, as
shown in Figure 9.

(a) (b)

Figure 8. Correlation loss improves detection accuracy. (a) Low detection accuracy (without correla-
tion loss). (b) High detection accuracy (with correlation loss).
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(a) (b)

Figure 9. Correlation loss eliminates missed detection. (a) Missed detection line (without correlation
loss). (b) High detection accuracy (without correlation loss).

To further illustrate the performance of the FMRLD algorithm proposed in this pa-
per, the algorithm is experimentally compared with other runway-line-detection algo-
rithms [1,8,10,34–36]. To ensure the fairness of the comparison between different algo-
rithms, the algorithm involving ROI extraction uses the same processing as in our paper,
and the neural-network-based algorithm uses the same dataset as the FMRLD algorithm.
As seen in Figure 10, the FMRLD-basic proposed in this paper has the highest accuracy of
all comparison algorithms.

Figure 10. Performance comparison of different runway-line-detection algorithms. UNet-
PolygonFitting’s errors are directly transmitted, while FMRLD-basic prevents the transmission
of errors through data enhancement in the runway detection stage.

Canny–Hough [8]: This method uses the Canny operator for edge detection and
Hough transform for straight line extraction and then determines the slope and bias of the
straight line according to the geometric constraints between the left and right lines.

LSD-SegConnection [34]: This method uses LSD linear detection to detect runway
lines, and LSD is faster than Hough transform, but for images with low resolution, LSD
will detect many small, discontinuous line segments. To address this issue, the method of
pairing small line segments is adopted.

Rotation Mapping [10]: This method continuously rotates the image after extracting
the edges, counts the average value of grayscale on each column of the image after each
rotation, and records the column where the current rotation angle and the maximum
grayscale average are located. After the image is rotated 180 degrees, the clustering is
performed using the improved KMeans algorithm, and the cluster centers are used as
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the detection results and remapped back to the original image to obtain the detected
runway lines.

Energy Difference [36]: The edge-based line-detection method is susceptible to inter-
ference, so a method to determine the runway line by maximizing the difference between
the two sides of the runway line is proposed, and an iterative optimization strategy for
determining the runway line is given.

UNet-PolygonFitting [37]: The runway is segmented using the segmentation network
UNet to obtain the runway edge point set, and the quadrilateral is fitted using the edge
point set to finally determine the slope and bias of the runway line.

The Canny–Hough and LSD-SegConnection algorithms based on edge detection
can achieve better detection performance in specific landing scenarios by adjusting the
parameters, but the datasets in this paper are more extensive, and the runway features and
lighting conditions vary significantly, so the detection performance of such methods is poor.
The energy difference method, based on energy difference, is more suitable for naturally
formed runway edges (such as the edges formed by the concrete of the runway and the
grass around the runway), but it is less effective in scenes where artificial runway lines
exist. The difficulty of the rotation mapping method is to filter out the pseudo-peaks and
determine the number of detection lines, so adjusting the parameters of this algorithm is
also complicated.

Segmentation-based methods have higher detection accuracy than other methods.
However, there is still a certain gap in detection performance compared to the method
we proposed. To further investigate the reasons for the poor detection performance of the
segmentation-based algorithm, we compare the differences in detection performance in
detail between the FMRLD-basic algorithm and UNet-PolygonFitting. The analysis shows
that the FMRLD-basic algorithm has a stable detection effect in all stages, while the UNet-
PolygonFitting algorithm has a better detection effect in the early stage of landing when
the runway occupies a relatively small proportion of the image. However, the detection
result is poorer in the late stage of landing, which causes the overall performance of the
algorithm to deviate. Our analysis show that the reason for this problem is the difference in
the implementation of the two types of algorithms. The viewpoint changes rapidly in the
late landing phase, and the dataset has relatively few samples of this type of data, which
can lead to poor performance of both the UNet-PolygonFitting algorithm and the ROI
phase of the FMRLD algorithm proposed in this paper. The segmentation result of the
UNet-PolygonFitting is directly used for runway line detection, resulting in poor detection
accuracy. However, the performance of the ROI phase detection frame in the FMRLD
algorithm does not directly affect the performance of runway line detection. In addition,
the rotation enhancement and scaling in the algorithm-design process make the FMRLD
algorithm more fault-tolerant than the UNet-PolygonFitting algorithm.

4.2. Pose-Estimation Experiments

Unlike the evaluation method for runway detection, pose estimation evaluation re-
quires a reference value for the pose. The Vega-Prime simulation environment can meet
this requirement effectively.

Experiments were conducted using the FMRLD-detection algorithm and the pose-
initialization algorithm mentioned in Section 3.2.1. In order to avoid the randomness of the
experiments, the localization algorithm was performed in 1000 random experiments, and
the RMSE (root mean square error) was calculated as the final result. The error of the pose
initialization algorithm is shown in Figure 11.

To further compare the effects of different detection algorithms on localization accuracy,
we examined the position estimation of the FMRLD algorithm and the UNet-PolygonFitting
algorithm. The Table 2 shows that FMRLD has a significant improvement in pose-estimation
accuracy compared to UNet-PolygonFitting.
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(a) x-axis RMSE. (b) y-axis RMSE. (c) z-axis RMSE.

Figure 11. Pose-initialization Result.By using visual odometry filtering (odometry-based pose), some
jump points were effectively removed. The localization error in the x is relatively large, but it tends
to decrease as the landing approaches. The estimation results in the y and z directions are relatively
stable. Compared to the precise control in the y and z directions, the x direction’s position only
provides landing guidance. Therefore, an exact position is not required in the x direction.

Table 2. Initialization pose estimation RMSE using different runway-detection methods. Bold indi-
cates the best performing result.

Method x y z Roll Pitch Yaw

FMRLD 10.72 m 1.01 m 0.81 m 0.525° 0.338° 0.615°
UNet-PolygonFitting 36.42 m 8.34 m 2.39 m 2.412° 3.183° 4.264°

We used SfM for pose optimization and compared the optimization results with and
without the addition of the priors for initialization pose, as shown in Figure 12.

(a) (b)

Figure 12. The differences in adding prior pose constraints. The red area represents the camera
pose, and the black points represent the constructed sparse point clouds. Figure 12a illustrates that
without prior pose constraints, there are serious pose estimation errors. With the addition of prior
pose constraints in Figure 12b, there is a significant improvement in the camera pose. (a) Initialization
without pose priors. (b) Initialization with pose priors.

We constructed an implicit map and used inverse NeRF for pose estimation. Table 3
and Figure 13 show the experimental results for the one-trip reconstruction and progressive
implicit reconstruction mentioned in Section 3.2.2. From the figures and tables, it can
be seen that the accuracy of the one-trip reconstruction is higher than that of progressive
implicit reconstruction, but this conclusion is only valid for the current trip. In a real landing
scenario, each trip is different from the previous trip, and in such cases, the estimated
RMSE is shown in Table 4. From the table, it can be seen that during the online pose-
estimation process, progressive pose estimation has higher accuracy compared to one-trip
pose estimation.

Table 3. SfM pose estimation RMSE.

Method x y z Roll Pitch Yaw

Initialized pose 10.75 m 1.04 m 0.96 m 0.542° 0.339° 0.617°
One trip pose (offline) 5.35 m 0.48 m 0.50 m 0.347° 0.284° 0.482°
Progressive implicit pose (offline) 6.94 m 0.56 m 0.54 m 0.425° 0.310° 0.535°
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(a) x-axis RMSE. (b) y-axis RMSE. (c) z-axis RMSE.

Figure 13. Pose optimization result. The three subplots represent the RMSE for the three axes.

Table 4. Implicit pose estimation. Bold indicates the best performing result.

Method x y z Roll Pitch Yaw

Initialized pose 10.96 m 1.08 m 1.04 m 0.548° 0.346° 0.621°
One-trip pose (online) 9.32 m 1.01 m 0.63 m 0.492° 0.334° 0.587°
Progressive implicit pose (online) 7.08 m 0.63 m 0.55 m 0.437° 0.315° 0.538°

In order to demonstrate the effect of the regularization terms introduced in the im-
plicit reconstruction, we performed implicit scene reconstruction using the original NeRF
method and our proposed method and then exported the point clouds. As shown in
Figure 14, our method effectively improves the reconstructed geometry by incorporating
regularization terms.

(a) (b)

Figure 14. Comparison between point clouds generated by original NeRF and our proposed method
(both methods using the same pose input). In Figure 14a, the left point cloud shows the original
method and the right one shows our proposed method. In Figure 14b, the bottom point cloud shows
the original method and the top one shows our proposed method. (a) Bird’s-eye view point cloud.
(b) Side view point cloud.

We used the point cloud map generated by NeRF for annotation. As shown in Figure 14,
the point clouds generated by our method contain complete geometric information and
visual effects, making it easy to annotate from a bird’s-eye view perspective. The improved
point cloud quality in our method can be primarily attributed to the regularization terms
mentioned in Equations (30) and (31) and the point cloud generation method discussed in
Section 3.3.2.

By annotating on the point cloud and then projecting it back to the image, we can
compare it with the ground truth manual annotation and obtain the accuracy of the projec-
tion. By statistics, the accuracy of TA1-5 after projection is 83.5 percent, and the accuracy
of TA2-10 is 89.2 percent. On the other hand, we manually checked the annotated images
after projection and found that 8% of the data needed to be modified and 25% needed to
be fine-tuned, while the remaining annotated data could be used directly. By using our
annotation tool, we were able to greatly improve the efficiency of data annotation.
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4.3. Lightweight Neural Network Experiments

We have balanced the accuracy and time delay of the algorithm and designed a
lightweight landing pose-estimation algorithm, FMRLD-Light, that can achieve real-time
performance on edge computing devices. In this model, we have removed the steps of
cloud-based mapping and pose optimization. The trained model is deployed on the Jetson
Xavier NX platform, a low-power AI computer developed by NVIDIA. To fully exploit
the performance of the platform, the TensorRT network model is used for inference in the
experiments, and Numba is used for acceleration in the more time-consuming operations.
In addition, the algorithm ensures minimal environmental dependencies, including only
the image processing library OpenCV and the matrix processing library Numpy, in addition
to the library functions necessary for TensorRT model inference. The average time of the
algorithm running is 55.3 ms, which can meet the real-time requirements for detection
and positioning during the landing process. The histogram of the time distribution of the
FMRLD-Light algorithm is shown in Figure 15, with the quantization sampling at one
second intervals in the histogram. The results of the histogram show that the detection
time of the algorithm is relatively stable after the normal start-up of the system, and there
is no systematic risk caused by too long of a detection time.

Figure 15. FMRLD–Light algorithm time distribution histogram.

The detection and localization accuracy of the FMRLD–Light algorithm is shown in
Table 5. The results indicate that the lightweight algorithm has limited accuracy loss.

Table 5. Accuracy metrics for lightweight methods.

Method TA-1-5 TA-2-10 TA-3-20 TA-5-30 x y z

FMRLD-Light 43.5 65.2 82.8 90.3 13.17 m 1.44 m 1.32 m
FMRLD 52.3 70.5 86.1 92.0 7.08 m 0.63 m 0.55 m
UNet-PolygonFitting 35.7 47.1 60.5 71.2 36.42 m 8.34 m 2.39 m

5. Discussion

Compared with conventional pose-estimation algorithms for landing systems, the
pose-estimation algorithm proposed in this paper uses the runway coordinate system
as the reference coordinate system, which naturally compensates for the runway slope.
This paper proposes a new method for pure visual landing systems, aiming to explore
the accuracy limit of the landing system in unfamiliar or complex environments and the
accuracy limit of pure visual landing when other sensors are lost. In an engineered visual
landing system, the pure visual solution proposed in this paper can function as a robust
subsystem and provide more reliable pose data through multi-sensor fusion. However,
there are still some limitations in this algorithm, specifically, the requirement for prior
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knowledge of the runway width, which can be removed through joint optimization of
visual landing and IMU after introducing IMU. We are currently focusing on and exploring
this research direction.

Next, the issue of real-time is discussed. The real-time aspect of the on-board detec-
tion algorithms has been thoroughly validated. The real-time performance of the pose
estimation algorithm primarily depends on the speed of NeRF inference and inversion.
With the widespread application of NeRF in various fields, acceleration schemes have been
extensively studied. In the near future, this issue will no longer be a problem.

6. Conclusions

This paper proposes a novel pose-estimation algorithm for vision-based landing that
achieves an accuracy level suitable for guidance and control using visual sensors. On
the on-board computing platform, the algorithm first performs runway line detection
and fine-tuning. It utilizes the detection results to estimate the initial pose, followed
by pose optimization through NeRF inversion. On the cloud computing platform, we
propose a multi-trip incremental reconstruction approach for pose estimation. And then
we use the optimized pose for NeRF mapping. The lightweight algorithm presented in
this paper can achieve real-time pose estimation on board and has strong engineering
value. In addition, this paper proposes a closed-loop labeling scheme, which effectively
improves labeling efficiency. Compared with previous runway line detection algorithms,
this paper improves the detection accuracy by more than 10 points compared to previous
runway-line-detection algorithms, and the position estimation accuracy can also achieve
state-of-the-art performance.

Author Contributions: Conceptualization, X.L. and C.L.; methodology, C.L.; software, C.L.; vali-
dation, C.L. and X.X.; formal analysis, C.L.; investigation, C.L.; resources, X.L.; data curation, X.L.,
C.L., B.Q. and X.X.; writing—original draft preparation, C.L.; writing—review and editing, C.L., X.X.
and B.Q.; visualization, C.L., X.X. and N.Y.; supervision, X.L.; project administration, X.L.; funding
acquisition, X.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant num-
ber No. 62073266, and the Aeronautical Science Foundation of China, grant number No. 201905053003.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Gratitude is extended to the Shaanxi Province Key Laboratory of Flight Control
and Simulation Technology.

Conflicts of Interest: The authors declare that they have no known competing financial interest or
personal relationships that could have appeared to influence the work reported in this paper.

References

1. Kong, W.; Zhou, D.; Zhang, D.; Zhang, J. Vision-based autonomous landing system for unmanned aerial vehicle: A survey. In
Proceedings of the 2014 International Conference on Multisensor Fusion and Information Integration for Intelligent Systems
(MFI), Beijing, China, 28–29 September 2014; pp. 1–8.

2. Kügler, M.E.; Mumm, N.C.; Holzapfel, F.; Schwithal, A.; Angermann, M. Vision-augmented automatic landing of a general
aviation fly-by-wire demonstrator. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019;
p. 1641.

3. Tang, C.; Wang, Y.; Zhang, L.; Zhang, Y.; Song, H. Multisource fusion UAV cluster cooperative positioning using information
geometry. Remote Sens. 2022, 14, 5491. [CrossRef]

4. Yen-Chen, L.; Florence, P.; Barron, J.T.; Rodriguez, A.; Isola, P.; Lin, T.Y. inerf: Inverting neural radiance fields for pose estimation.
In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic,
27 September–1 October 2021; pp. 1323–1330.

5. Mildenhall, B.; Srinivasan, P.P.; Tancik, M.; Barron, J.T.; Ramamoorthi, R.; Ng, R. Nerf: Representing scenes as neural radiance
fields for view synthesis. Commun. ACM 2021, 65, 99–106. [CrossRef]

157



Drones 2023, 7, 529

6. Müller, T.; Evans, A.; Schied, C.; Keller, A. Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans.
Graph. 2022, 41, 1–15. [CrossRef]

7. Tang, Y.L.; Kasturi, R. Runway detection in an image sequence. In Image and Video Processing III; SPIE: Bellingham, WA, USA,
1995; Volume 2421, pp. 181–190.

8. Angermann, M.; Wolkow, S.; Schwithal, A.; Tonhäuser, C.; Hecker, P. High precision approaches enabled by an optical-based
navigation system. In Proceedings of the ION 2015 Pacific PNT Meeting, Honolulu, HA, USA, 20–23 April 2015; pp. 694–701.

9. Wang, J.; Cheng, Y.; Xie, J.; Niu, W. A real-time sensor guided runway detection method for forward-looking aerial images. In
Proceedings of the 2015 11th International Conference on Computational Intelligence and Security (CIS), Shenzhen, China, 19–20
December 2015; pp. 150–153.

10. Guan, Z.; Li, J.; Yang, H. Runway extraction method based on rotating projection for UAV. In Proceedings of the 6th International
Asia Conference on Industrial Engineering and Management Innovation: Innovation and Practice of Industrial Engineering and Management
(Volume 2); Springer: Berlin/Heidelberg, Germany, 2016; pp. 311–324.

11. Akbar, J.; Shahzad, M.; Malik, M.I.; Ul-Hasan, A.; Shafait, F. Runway detection and localization in aerial images using deep
learning. In Proceedings of the 2019 Digital Image Computing: Techniques and Applications (DICTA), Perth, WA, Australia, 2–4
December 2019; pp. 1–8.

12. Lin, C.E.; Chou, W.Y.; Chen, T. Visual-Assisted UAV Auto-Landing System; DEStech Transactions on Engineering and Technology
Research: Lancaster, PA, USA, 2018.

13. Hiba, A.; Zsedrovits, T.; Heri, O.; Zarandy, A. Runway detection for UAV landing system. In Proceedings of the CNNA 2018, the
16th International Workshop on Cellular Nanoscale Networks and Their Applications, Budapest, Hungary, 28–30 August 2018;
pp. 1–4.

14. Wang, Y.; Jiang, H.; Liu, C.; Pei, X.; Qiu, H. An airport runway detection algorithm based on Semantic segmentation. Navig. Posi-
tion. Timing CSTPCD 2021, 8, 97–106.

15. Fridovich-Keil, S.; Yu, A.; Tancik, M.; Chen, Q.; Recht, B.; Kanazawa, A. Plenoxels: Radiance fields without neural networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–20 June 2022;
pp. 5501–5510.

16. Wang, P.; Liu, Y.; Chen, Z.; Liu, L.; Liu, Z.; Komura, T.; Theobalt, C.; Wang, W. F2-NeRF: Fast Neural Radiance Field Training with
Free Camera Trajectories. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver,
BC, Canada, 18–22 June 2023; pp. 4150–4159.

17. Niemeyer, M.; Barron, J.T.; Mildenhall, B.; Sajjadi, M.S.; Geiger, A.; Radwan, N. Regnerf: Regularizing neural radiance fields for
view synthesis from sparse inputs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
New Orleans, LA, USA, 18–24 June 2022; pp. 5480–5490.

18. Deng, K.; Liu, A.; Zhu, J.Y.; Ramanan, D. Depth-supervised nerf: Fewer views and faster training for free. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 12882–12891.

19. Rematas, K.; Liu, A.; Srinivasan, P.P.; Barron, J.T.; Tagliasacchi, A.; Funkhouser, T.; Ferrari, V. Urban radiance fields. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022;
pp. 12932–12942.

20. Barron, J.T.; Mildenhall, B.; Tancik, M.; Hedman, P.; Martin-Brualla, R.; Srinivasan, P.P. Mip-nerf: A multiscale representation for
anti-aliasing neural radiance fields. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal,
BC, Canada, 11–17 October 2021; pp. 5855–5864.

21. Qin, Z.; Wang, H.; Li, X. Ultra fast structure-aware deep lane detection. In Proceedings of the Computer Vision–ECCV 2020: 16th
European Conference (Proceedings, Part XXIV 16), Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany,
2020; pp. 276–291.

22. Sobel, I.; Feldman, G. A 3 × 3 isotropic gradient operator for image processing. In A Talk at the Stanford Artificial Project; 1968;
pp. 271–272. Available online: https://www.researchgate.net/publication/285159837_A_33_isotropic_gradient_operator_for_
image_processing (accessed on 15 July 2023).

23. Canny, J. A computational approach to edge detection. In IEEE Transactions on Pattern Analysis and Machine Intelligence; IEEE:
New York, NY, USA, 1986; pp. 679–698.

24. Arthur, D.; Vassilvitskii, S. K-means++ the advantages of careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, Philadelphia, PA, USA, 7–9 January 2007; pp. 1027–1035.

25. Liu, C.; Liu, L.; Hu, G.; Xu, X. A P3P problem solving algorithm for landing vision navigation. Navig. Position. Timing 2018,
5, 58–61.

26. Tang, C.; Wang, C.; Zhang, L.; Zhang, Y.; Song, H. Multivehicle 3D cooperative positioning algorithm based on information
geometric probability fusion of GNSS/wireless station navigation. Remote Sens. 2022, 14, 6094. [CrossRef]

27. Zhou, L.; Zhong, Q.; Zhang, Y.; Lei, Z.; Zhang, X. Vision-based landing method using structured line features of runway surface
for fixed-wing unmanned aerial vehicles. J. Natl. Univ. Def. Technol. 2016, 9, 38.

28. Schonberger, J.L.; Frahm, J.M. Structure-from-motion revisited. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4104–4113.

29. Max, N. Optical models for direct volume rendering. IEEE Trans. Vis. Comput. Graph. 1995, 1, 99–108. [CrossRef]

158



Drones 2023, 7, 529

30. Barron, J.T.; Mildenhall, B.; Verbin, D.; Srinivasan, P.P.; Hedman, P. Mip-nerf 360: Unbounded anti-aliased neural radiance fields.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June
2022; pp. 5470–5479.

31. Martin-Brualla, R.; Radwan, N.; Sajjadi, M.S.; Barron, J.T.; Dosovitskiy, A.; Duckworth, D. Nerf in the wild: Neural radiance fields
for unconstrained photo collections. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Montreal, BC, Canada, 11–17 October 2021; pp. 7210–7219.

32. Lindén, J.; Forsberg, H.; Haddad, J.; Tagebrand, E.; Cedernaes, E.; Ek, E.G.; Daneshtalab, M. Curating Datasets for Visual Runway
Detection. In Proceedings of the 2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC), San Antonio, TX, USA,
3–7 October 2021; pp. 1–9.

33. Kalra, A.; Stoppi, G.; Brown, B.; Agarwal, R.; Kadambi, A. Towards rotation invariance in object detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 3530–3540.

34. Dong, Y.; Yuan, B.; Wang, H.; Shi, Z. A runway recognition algorithm based on heuristic line extraction. In Proceedings of the
2011 International Conference on Image Analysis and Signal Processing, Wuhan, China, 21–23 October 2011; IEEE: Piscataway,
NJ, USA, 2011; pp. 292–296.

35. Abu-Jbara, K.; Alheadary, W.; Sundaramorthi, G.; Claudel, C. A robust vision-based runway detection and tracking algorithm for
automatic UAV landing. In Proceedings of the 2015 International Conference on Unmanned Aircraft Systems (ICUAS), Denver,
CO, USA, 9–12 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1148–1157.

36. Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. Unet++: A nested u-net architecture for medical image segmentation.
In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: Proceedings of the 4th International
Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain,
20 September 2018; Proceedings 4; Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–11.

37. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image
Computing and Computer-Assisted Intervention—Proceedings of the MICCAI 2015: 18th International Conference, Munich, Germany,
5–9 October 2015, Proceedings, Part III 18; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

159



Citation: Du, M.; Sun, Y.; Sun, B.;

Wu, Z.; Luo, L.; Bi, D.; Du, M. TAN:

A Transferable Adversarial Network

for DNN-Based UAV SAR Automatic

Target Recognition Models. Drones

2023, 7, 205. https://doi.org/

10.3390/drones7030205

Academic Editor: Sanjay Sharma

Received: 1 March 2023

Revised: 10 March 2023

Accepted: 13 March 2023

Published: 16 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

TAN: A Transferable Adversarial Network for DNN-Based UAV
SAR Automatic Target Recognition Models

Meng Du 1, Yuxin Sun 2, Bing Sun 3, Zilong Wu 1, Lan Luo 4, Daping Bi 1 and Mingyang Du 1,∗

1 College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China
2 Science and Technology on Electro-Optical Information Security Control Laboratory, Tianjin 300308, China
3 China Satellite Maritime Tracking and Control Department, Jiangyin 214430, China
4 College of Communication Engineering, Lanzhou University, Lanzhou 730030, China
* Correspondence: dumingyang17@nudt.edu.cn

Abstract: Recently, the unmanned aerial vehicle (UAV) synthetic aperture radar (SAR) has become
a highly sought-after topic for its wide applications in target recognition, detection, and tracking.
However, SAR automatic target recognition (ATR) models based on deep neural networks (DNN) are
suffering from adversarial examples. Generally, non-cooperators rarely disclose any SAR-ATR model
information, making adversarial attacks challenging. To tackle this issue, we propose a novel attack
method called Transferable Adversarial Network (TAN). It can craft highly transferable adversarial
examples in real time and attack SAR-ATR models without any prior knowledge, which is of great
significance for real-world black-box attacks. The proposed method improves the transferability via
a two-player game, in which we simultaneously train two encoder–decoder models: a generator
that crafts malicious samples through a one-step forward mapping from original data, and an
attenuator that weakens the effectiveness of malicious samples by capturing the most harmful
deformations. Particularly, compared to traditional iterative methods, the encoder–decoder model can
one-step map original samples to adversarial examples, thus enabling real-time attacks. Experimental
results indicate that our approach achieves state-of-the-art transferability with acceptable adversarial
perturbations and minimum time costs compared to existing attack methods, making real-time
black-box attacks without any prior knowledge a reality.

Keywords: unmanned aerial vehicle (UAV); synthetic aperture radar (SAR); automatic target
recognition (ATR); deep neural network (DNN); adversarial example; transferability; encoder–
decoder; real-time attack

1. Introduction

The ongoing advances in unmanned aerial vehicle (UAV) and synthetic aperture
radar (SAR) technologies have enabled the acquisition of high-resolution SAR images
through UAVs. However, unlike visible light imaging, SAR images reflect the reflection
intensity of imaging targets to radar signals, making it difficult for humans to extract
effective semantic information from SAR images without the aid of interpretation tools.
Currently, deep learning has achieved excellent performance in various scenarios [1–3],
and SAR automatic target recognition (SAR-ATR) models based on deep neural networks
(DNN) [4–8] have become one of the most popular interpretation methods. With their
powerful representation capabilities, DNNs outperform traditional approaches in image
classification tasks. However, recent studies have shown that DNN-based SAR-ATR models
are susceptible to adversarial examples [9].

The concept of adversarial examples was first proposed by Szegedy et al. [10], which
suggests that a carefully designed tiny perturbation can cause a well-trained DNN model to
misclassify. This finding has made adversarial attacks one of the most serious threats to ar-
tificial intelligence (AI) security. To date, researchers have proposed a variety of adversarial
attack methods, which can be mainly divided into two categories from the perspective of
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prior knowledge: the white-box and black-box attacks. In the first case, attackers can utilize
a large amount of prior knowledge, such as the model structure and gradient information,
etc., to craft adversarial examples for victim models. Examples of white-box methods in-
clude gradient-based attacks [11,12], boundary-based attacks [13], and saliency map-based
attacks [14], etc. In the second case, attackers can only access the output information or
even less, making adversarial attacks much more difficult. Examples of black-box methods
include probability label-based attacks [15,16] and decision-based attacks [17], etc. We now
consider an extreme situation, where attackers have no access to any feedback from victim
models, such that existing attack methods are unable to craft adversarial examples until
researchers discover that adversarial examples can transfer among DNN models perform-
ing the same task [18]. Recent relevant studies focused on improving the basic FGSM [11]
method to enhance the transferability of adversarial examples, such as gradient-based
methods [19,20], transformation-based methods [20,21], and variance-based methods [22],
etc. However, the transferability and real-time performance of the above approaches are
still insufficient to meet realistic attack requirements. Consequently, adversarial attacks are
pending further improvements.

With the wide application of DNNs in the field of remote sensing, researchers have
embarked on investigating the adversarial examples of remote sensing images. Xu et al. [23]
first investigated the adversarial attack and defense in safety-critical remote sensing tasks, and
proposed the mixup attack [24] to generate universal adversarial examples for remote sensing
images. However, the research on the adversarial example of SAR images is still in its infancy.
Li et al. [25] generated abundant adversarial examples for CNN-based SAR image classifiers
through the basic FGSM method and systematically evaluated critical factors affecting the
attack performance. Du et al. [26] designed a Fast C&W algorithm to improve the efficiency of
generating adversarial examples by introducing an encoder–decoder model. To enhance the
universality and feasibility of adversarial perturbations, the work in [27] presented a universal
local adversarial network to generate universal adversarial perturbations for the target region
of SAR images. Furthermore, the latest research [28] has broken through the limitations of
the digital domain and implemented the adversarial example of SAR images in the signal
domain by transmitting a two-dimensional jamming signal. Despite the high attack success
rates achieved by the above methods, the problem of transferable adversarial examples in the
field of SAR-ATR has yet to be addressed.

In this paper, a transferable adversarial network (TAN) is proposed to improve the
transferability and real-time performance of adversarial examples in SAR images. Specifi-
cally, during the training phase of TAN, we simultaneously trained two encoder–decoder
models: a generator that crafts malicious samples through a one-step forward mapping
from original data, and an attenuator that weakens the effectiveness of malicious samples
by capturing the most harmful deformations. We argue that if the adversarial examples
crafted by the generator are robust to the deformations produced by the attenuator, i.e., the
attenuated adversarial examples remain effective to DNN models, then they are capable
of transferring to other victim models. Moreover, unlike traditional iterative methods,
our approach can one-step map original samples to adversarial examples, thus enabling
real-time attacks. In other words, we realize real-time transferable adversarial attacks
through a two-player game between the generator and attenuator.

The main contributions of this paper are summarized as follows.

(1) For the first time, this paper systematically evaluates the transferability of adversarial
examples among DNN-based SAR-ATR models. Meanwhile, our research reveals that
there may be potential common vulnerabilities among DNN models performing the
same task.

(2) We propose a novel network to enable real-time transferable adversarial attacks. Once
the proposed network is well-trained, it can craft adversarial examples with high trans-
ferability in real time, thus attacking black-box victim models without resorting to any
prior knowledge. As such, our approach possesses promising applications in AI security.
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(3) The proposed method is evaluated on the most authoritative SAR-ATR dataset. Ex-
perimental results indicate that our approach achieves state-of-the-art transferability
with acceptable adversarial perturbations and minimum time costs compared to exist-
ing attack methods, making real-time black-box attacks without any prior knowledge
a reality.

The rest parts of this paper are arranged as follows. Section 2 introduces the relevant
preparation knowledge, and Section 3 describes the proposed method in detail. The
experimental results and conclusions are given in Sections 4 and 5, respectively.

2. Preliminaries

2.1. Adversarial Attacks for DNN-Based SAR-ATR Models

Suppose xn∈[0, 255]W×H is a single channel SAR image from the dataset X and f (·) is
a DNN-based K-class SAR-ATR model. Given a sample xn as input to f (·), the output is
a K-dimensional vector f (xn)=[ f (xn)1, f (xn)2, · · · , f (xn)K], where f (xn)i∈R denotes the
score of xn belonging to class i. Let Cp = arg maxi( f (xn)i) represent the predicted class of
f (·) for xn. The adversarial attack is to fool f (·) with an adversarial example x̃n that only
has a minor perturbation on xn. The detail process can be expressed as follows:

arg max
i

f (x̃n)i �= Cp, s.t.‖x̃n − xn‖p ≤ ξ (1)

where the Lp-norm is defined as ‖v‖p=(∑i|vi|p)
1
p , and ξ controls the magnitude of adver-

sarial perturbations. The common Lp-norm includes the L0-norm, L2-norm, and L∞-norm.
Attackers can select different norm types according to practical requirements. For example,
the L0-norm represents the number of modified pixels in x̃n, the L2-norm measures the
mean square error (MSE) between x̃n and xn and the L∞-norm denotes the maximum
variation for individual pixels in x̃n.

Meanwhile, adversarial attacks can be mainly divided into two modes. The first basic
mode is called the non-targeted attack, making DNN models misclassify. The second one is
more stringent, called the targeted attack, which induces models to output specified results.
There is no doubt that the latter poses a higher level of threat to AI security. In other words,
the non-targeted attack is to minimize the probability of models correctly recognizing samples;
conversely, the targeted attack maximizes the probability of models identifying samples as
target classes. Thus, (1) can be transformed into the following optimization problems:

• For the non-targeted attack:

minimize(
1
N

N

∑
n=1

D(arg max
i

f (x̃n)i == Ctr)), s.t.‖x̃n − xn‖p ≤ ξ (2)

• For the targeted attack:

maximize(
1
N

N

∑
n=1

D(arg max
i

f (x̃n)i == Cta)), s.t.‖x̃n − xn‖p ≤ ξ (3)

where the discriminant function D(·) equals one if the equation holds; otherwise, it equals zero.
Ctr and Cta represent the true and target classes of the input. N is the number of samples in
the dataset. Obviously, the above optimization problems are exactly the opposite of a DNN’s
training process, and the corresponding loss functions will be given in the next chapter.
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2.2. Transferability of Adversarial Examples

We consider an extreme situation where attackers have no access to any feedback from
victim models, in which existing white-box and black-box attacks are unable to craft adver-
sarial examples. In this case, attackers can utilize the transferability of adversarial examples
to attack models. Specifically, the extensive experiments in [18] have demonstrated that
adversarial examples can transfer among models, even if they have different architectures
or are trained on different training sets, so long as they are trained to perform the same
task. Details about the transferability are shown in Figure 1.

Figure 1. Transferability of adversarial examples.

As shown in Figure 1, for an image classification task, we have trained three recogni-
tion models. Suppose that only the surrogate model fs(·) is a white-box model, and victim
models fv1(·), fv2(·) are black-box models. Undoubtedly, given an sample x, attackers can
craft an adversarial example x̃ to fool fs(·) through attack algorithms. Meanwhile, given
the transferability of adversarial examples, x̃ can also fool fv1(·) and fv2(·) successfully.
However, the transferability generated by existing algorithms is very weak, so this paper is
dedicated to crafting highly transferable adversarial examples.

3. The Proposed Transferable Adversarial Network (TAN)

In this paper, the proposed Transferable Adversarial Network (TAN) utilizes the
encoder–decoder model and data augmentation technology to improve the transferability
and real-time performance of adversarial examples. The framework of our network is
shown in Figure 2. As we can see, compared to traditional iterative methods, TAN in-
troduces a generator G(·) to learn the one-step forward mapping from the clean sample
x to the adversarial example x̃, thus enabling real-time attacks. Meanwhile, to improve
the transferability of x̃, we simultaneously trained an attenuator A(·) to capture the most
harmful deformations, which are supposed to weaken the effectiveness of x̃ while still
preserving the semantic meaning of x. We argue that if x̃ is robust to the deformations
produced by A(·), i.e., x̃∗ remains effective to DNN models, then x̃ is capable of transfer-
ring to the black-box victim model fv(·). In other words, we achieve real-time transferable
adversarial attacks through a two-player game between G(·) and A(·). This chapter will
introduce our method in detail.
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Figure 2. Framework of TAN.

3.1. Training Process of the Generator

For easy understanding, Figure 3 shows the detailed training process of the generator.
Note that a white-box model is selected as the surrogate model fs(·) during the training phase.

Figure 3. Training process of the generator.

As we can see, given a clean sample x, the generator G(·) crafts the adversarial
example x̃ through a one-step forward mapping, as follows:

x̃ = G(x) (4)

Meanwhile, the attenuator A(·) takes x̃ as input and outputs the attenuated adversarial
example x̃∗:

x̃∗ = A(x̃) (5)

Since x̃ has to fool fs(·) with a minor perturbation, and x̃∗ needs to remain effective
against fs(·), the loss function of G(·) consists of three parts. Next, we will give the
generator loss LG of non-targeted and targeted attacks, respectively.

For the non-targeted attack: First, according to (2), x̃ is to minimize the classification
accuracy of fs(·), which means that it has to decrease the confidence of being recognized as
the true class Ctr, i.e., to increase the confidence of being identified as others. Thus, the first
part of LG can be expressed as:

LG1( fs(x̃), Ctr) = − log
(

∑i �=Ctr exp( fs(x̃)i)

∑i exp( fs(x̃)i)

)

= − log
(

1− exp( fs(x̃)Ctr )

∑i exp( fs(x̃)i)

) (6)

Second, to improve the transferability of x̃, we expect that x̃∗ remains effective to fs(·),
so the second part of LG can be derived as:

LG2( fs(x̃∗), Ctr) = − log
(

∑i �=Ctr exp( fs(x̃∗)i)

∑i exp( fs(x̃∗)i)

)

= − log
(

1− exp( fs(x̃∗)Ctr )

∑i exp( fs(x̃∗)i)

) (7)
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Finally, the last part of LG is used to limit the perturbation magnitude. We introduce
the traditional Lp-norm to measure the degree of image distortion as follows:

LG3(x, x̃) = ‖x̃− x‖p

= (∑
i
|Δxi|p)

1
p

(8)

In summary, we apply the linear weighted sum method to balance the relationship
among LG1, LG2, and LG3. As such, the complete generator loss for the non-targeted attack
can be represented as:

LG = ωG1 · LG1( fs(x̃), Ctr) + ωG2 · LG2( fs(x̃∗), Ctr) + ωG3 · LG3(x, x̃) (9)

where ωG1 + ωG2 + ωG3 = 1. ωG1, ωG2, ωG3∈[0, 1] are the weight coefficients of LG1, LG2,
and LG3, respectively. The weight coefficients represent the relative importance of each
loss term during the training process. A larger weight implies that the corresponding loss
will decrease more rapidly and significantly, allowing attackers to adjust the parameters
flexibly according to their actual needs.

For the targeted attack: According to (3), x̃ is to maximize the probability of being
recognized as the target class Cta, i.e., to increase the confidence of Cta. Thus, LG1 here can
be expressed as:

LG1( fs(x̃), Cta) = − log
(

exp( fs(x̃)Cta)

∑i exp( fs(x̃)i)

)
(10)

To maintain the effectiveness of x̃∗ against fs(·), LG2 here is derived as:

LG2( fs(x̃∗), Cta) = − log
(

exp( fs(x̃∗)Cta)

∑i exp( fs(x̃∗)i)

)
(11)

The perturbation magnitude is still limited by the LG3 shown in (8). Therefore, the
complete generator loss for the targeted attack can be represented as:

LG = ωG1 · LG1( fs(x̃), Cta) + ωG2 · LG2( fs(x̃∗), Cta) + ωG3 · LG3(x, x̃) (12)

3.2. Training Process of the Attenuator

According to Figure 2, during the training phase of TAN, an attenuator A(·) was
introduced to weaken the effectiveness of x̃ while still preserving the semantic meaning of
x. We show the detailed training process of A(·) in Figure 4.

Figure 4. Training process of the attenuator.
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As we can see, the attenuator loss LA also consists of three parts. First, to preserve the
semantic meaning of x, fs(·) has to keep a basic classification accuracy on the following
attenuated sample x∗:

x∗ = A(x) (13)

It means that the first part of LA should increase the confidence of x∗ being recognized
as the true class Ctr, as follows:

LA1( fs(x∗), Ctr) = − log
(

exp( fs(x∗)Ctr )

∑i exp( fs(x∗)i)

)
(14)

Meanwhile, to weaken the effectiveness of x̃, A(·) also need to improve the confidence
of the attenuated adversarial example x̃∗ being identified as Ctr, so the second part of LA
can be expressed as:

LA2( fs(x̃∗), Ctr) = − log
(

exp( fs(x̃∗)Ctr )

∑i exp( fs(x̃∗)i)

)
(15)

Finally, to avoid excessive image distortion caused by A(·), the third part of LA is used to
limit the deformation magnitude, which can be expressed by the traditional Lp-norm, as follows:

LA3(x, x∗) = ‖x∗ − x‖p

= (∑
i
|Δxi|p)

1
p

(16)

As with the generator loss, we utilize the linear weighted sum method to derive the
complete attenuator loss as follows:

LA = ωA1 · LA1( fs(x∗), Ctr) + ωA2 · LA2( fs(x̃∗), Ctr) + ωA3 · LA3(x, x∗) (17)

where ωA1 + ωA2 + ωA3 = 1. ωA1, ωA2, ωA3∈[0, 1] are the weight coefficients of LA1, LA2,
and LA3, respectively.

3.3. Network Structure of the Generator and Attenuator

According to Sections 3.1 and 3.2, the generator and attenuator are essentially
two encoder–decoder models, so the choice of a suitable model structure is necessary.
We mainly consider two factors. First, as the size of original samples and adversarial
examples should be the same, the model has to keep the input and output sizes identical.
Second, to prevent our network from overfitting while saving computational resources,
a lightweight model will be a better choice. In summary, we applied ResNet Generator
proposed in [29] as the encoder–decoder model of TAN. The structure of ResNet Generator
is shown in Figure 5.

Figure 5. Structure of ResNet Generator.
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As we can see, ResNet Generator mainly consists of downsampling, residual, and
upsampling modules. For a visual understanding, given an input data of size 1× 128× 128,
the input and output sizes of each module are listed in Table 1.

Obviously, the input and output sizes of ResNet Generator are the same. Meanwhile,
to ensure the validity of the generated data, we added a tanh function after the output
module, which restricts the generated data to the interval [0, 1]. The total number of
parameters in ResNet Generator has been calculated to be approximately 7.83M, which is a
fairly lightweight network. For more details, please refer to the literature [29].

Table 1. Input–output relationships for each module of ResNet Generator.

Module Input Size Output Size

Input 1× 128× 128 64× 128× 128
Downsampling_1 64× 128× 128 128× 64× 64
Downsampling_2 128× 64× 64 256× 32× 32

Residual_1 ∼ 6 256× 32× 32 256× 32× 32
Upsampling_1 256× 32× 32 128× 64× 64
Upsampling_2 128× 64× 64 64× 128× 128

Output 64× 128× 128 1× 128× 128

3.4. Complete Training Process of TAN

As we described earlier, TAN improves the transferability of adversarial examples through
a two-player game between the generator and attenuator, which is quite similar to the working
principle of generative adversarial networks (GAN) [30]. Therefore, we also adopted an alter-
nating training scheme to train our network. Specifically, given the dataset X and batch size S,
we first randomly divided X into M batches {b1, b2, · · · , bM} at the beginning of each training
iteration. Second, we set a training ratio R∈N∗, which means that TAN trains the generator
R times and then trains the attenuator once, i.e., once per batch for the former and only once
per R batch for the latter. In this way, we can prevent the attenuator from being so strong that
the generator cannot be optimized. Meanwhile, to shorten training time, we set an early stop
condition Esc so that training can be ended early when certain indicators meet the condition.
Note that the generator and attenuator are trained alternately, i.e., the attenuator’s parameters
are fixed when the generator is trained, and vice versa. More details of the complete training
process for TAN are shown in Algorithm 1.

4. Experiments

4.1. Data Descriptions

To date, there is no publicly available dataset for UAV SAR-ATR, thus this paper exper-
iments on the most authoritative SAR-ATR dataset, i.e., the moving and stationary target
acquisition and recognition (MSTAR) dataset [31]. MSTAR is collected by a high-resolution
spotlight SAR and published by the U.S. Defense Advanced Research Projects Agency
(DARPA) in 1996, which contains SAR images of Soviet military vehicle targets at different
azimuth and depression angles. In standard operating conditions (SOC), MSTAR includes
ten classes of targets, such as self-propelled howitzers (2S1); infantry fighting vehicles
(BMP2); armored reconnaissance vehicles (BRDM2); wheeled armored transport vehicles
(BTR60, BTR70); bulldozers (D7); main battle tanks (T62, T72); cargo trucks (ZIL131); and
self-propelled artillery (ZSU234). The training dataset contains 2747 images collected at a
depression angle of 17◦, and the testing dataset contains 2426 images captured at a depres-
sion angle of 15◦. More details about the dataset are given in Table 2, and Figure 6 shows
the optical images and corresponding SAR images of each class.
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Algorithm 1 Transferable Adversarial Network Training

Input: Dataset X ; batch size S; surrogate model fs; target class Cta; training loss function
LG of the generator; training loss function LA of the attenuator; training iteration
number T; learning rate η; training ratio R of the generator and attenuator; early stop
condition Esc.

Output: The parameter θG of the well-trained generator.
1: Randomly initialize θG and θA
2: for t = 1 to T do
3: According to S, randomly divide X into M batches {b1, b2, · · · , bM}
4: for m = 1 to M do
5: Calculate LG(θG, θA, fs, bm, Cta)

6: Update θG = θG − η · ∂
∂θG
LG

7: if m%R == 0 then
8: Calculate LA(θG, θA, fs, bm)

9: Update θA = θA − η · ∂
∂θA
LA

10: else
11: θA = θA
12: end if
13: end for
14: if Esc == True then
15: Break
16: else
17: Continue
18: end if
19: end for

Figure 6. Optical images (top) and SAR images (bottom) of the MSTAR dataset.

Table 2. Details of the MSTAR dataset under SOC, including target class, serial, depression angle,
and sample numbers.

Target Class Serial
Training Data Testing Data

Depression Angle Number Depression Angle Number

2S1 b01 17◦ 299 15◦ 274
BMP2 9566 17◦ 233 15◦ 196

BRDM2 E-71 17◦ 298 15◦ 274
BTR60 k10yt7532 17◦ 256 15◦ 195
BTR70 c71 17◦ 233 15◦ 196

D7 92v13015 17◦ 299 15◦ 274
T62 A51 17◦ 299 15◦ 273
T72 132 17◦ 232 15◦ 196

ZIL131 E12 17◦ 299 15◦ 274
ZSU234 d08 17◦ 299 15◦ 274
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4.2. Implementation Details

The proposed method is evaluated on the following six common DNN models:
DenseNet121 [32], GoogLeNet [33], InceptionV3 [34], Mobilenet [35], ResNet50 [36], and
Shufflenet [37]. In terms of data preprocessing, we resized all the images in MSTAR to
128× 128 and uniformly sample 10% of training data to form the validation dataset. During
the training phase of recognition models, the training epoch and batch size were set to 100
and 32, respectively. During the training phase of TAN, to minimize the MSE between
adversarial examples and original samples, we adopted the L2-norm to evaluate the image
distortion caused by adversarial perturbations. Meanwhile, for better attack performance,
the hyperparameters of TAN are fine-tuned through numerous experiments, and the follow-
ing set of parameters is eventually determined to best meet our requirements. Specifically,
we set the generator loss weights [ωG1, ωG2, ωG3] to [0.25, 0.25, 0.5], the attenuator loss
weights [ωA1, ωA2, ωA3] to [0.25, 0.25, 0.5], the training ratio to 3, the training epoch to 50,
and the batch size to 8. Due to the adversarial process involved in TAN, training can
be challenging to converge. As such, we employed Adam [38], a more computationally
efficient optimizer, to accelerate model convergence, which also performs better in solving
non-stationary objective and sparse gradient problems. The learning rate is set to 0.001.
When evaluating the transferability, we first crafted adversarial examples for each surrogate
model and then assessed the transferability by testing the recognition results of victim
models on corresponding adversarial examples. Detailed experiments will be given later.

Furthermore, the following six attack algorithms from the Torchattacks [39] toolbox
were introduced as baseline methods for comparison with TAN: MIFGSM [19], DIFGSM [21],
NIFGSM [20], SINIFGSM [20], VMIFGSM [22], and VNIFGSM [22]. All codes were written
in Pytorch, and the experimental environment consisted of Windows 10 with an NVIDIA
GeForce RTX 2080 Ti GPU and a 3.6 GHz Intel Core i9-9900K CPU.

4.3. Evaluation Metrics

We mainly consider two factors to comprehensively evaluate the performance of
adversarial attacks: the effectiveness and stealthiness, which are directly related to the
classification accuracy Ãcc of victim models on adversarial examples and the norm value
L̃p of adversarial perturbations, respectively. For the Ãcc metric, the formula is as follows:

Ãcc =

⎧⎪⎨
⎪⎩

1
N ∑N

n=1 D(arg maxi( fv(x̃n)i)==Ctr) for the non-targeted attack

1
K×N ∑K

Cta=1 ∑N
n=1 D(arg maxi( fv(x̃n)i)==Cta) for the targeted attack

(18)

where Ctr and Cta represent the true and target classes of the input data, K is the number
of target classes, and D(·) is a discriminant function. In the non-targeted attack, the Ãcc
metric reflects the probability that the victim model fv(·) identifies the adversarial example
x̃n as Ctr, while in the targeted attack it indicates the probability that fv(·) recognizes x̃n as
Cta. Obviously, in the non-targeted attack, the lower the Ãcc metric, the better the attack.
Conversely, in the targeted attack, a higher Ãcc metric represents fv(·) is more likely to
recognize x̃n as Cta, and thus the attack is more effective. In conclusion, the effectiveness of
non-targeted attacks is inversely proportional to the Ãcc metric, and the effectiveness of
targeted attacks is proportional to this metric. Additionally, there are other three similar
indicators, Acc, Acc∗, and Ãcc∗, that represent the classification accuracy of fv(·) for the
original sample xn, the attenuated sample x∗n, and the attenuated adversarial example
x̃∗n, respectively. Note that whether it is a non-targeted or targeted attack, Acc∗ always
represents the accuracy with which fv(·) identifies x∗n as Ctr, while the other three accuracy
indicators need to be calculated via (18) based on the attack mode. In particular, Ãcc∗

represents the recognition result of fv(·) on x̃∗n, which indirectly reflects the strength of the
transferability possessed by x̃n.
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Meanwhile, we applied the following Lp-norm values to measure the
attack stealthiness: ⎧⎪⎪⎨

⎪⎪⎩
L̃p = 1

N ∑N
n=1‖x̃n − xn‖p for the generator

L∗p = 1
N ∑N

n=1‖x∗n − xn‖p for the attenuator

(19)

where L̃p and L∗p represent the image distortion caused by the generator and attenuator,
respectively. In our experiments, the Lp-norm defaults to L2-norm. In summary, we can set
the early stop condition Esc mentioned in Section 3.4 with the above indicators, as follows:

Esc =

⎧⎪⎨
⎪⎩

Ãcc ≤ 0.05, Acc∗ ≥ 0.9, Ãcc∗ ≤ 0.1, L̃2 ≤ 4, L∗2 ≤ 4 for the non-targeted attack

Ãcc ≥ 0.95, Acc∗ ≥ 0.9, Ãcc∗ ≥ 0.9, L̃2 ≤ 4, L∗2 ≤ 4 for the targeted attack

(20)

Furthermore, to evaluate the real-time performance of adversarial attacks, we introduced
the Tc metric to denote the time cost of generating a single adversarial example, as follows:

Tc =
Time

N
(21)

where Time is the total time consumed to generate N adversarial examples.

4.4. DNN-Based SAR-ATR Models

A well-trained recognition model is a prerequisite for effective adversarial attacks, so
we have trained six SAR-ATR models on the MSTAR dataset: DenseNet121, GoogLeNet,
InceptionV3, Mobilenet, ResNet50, and Shufflenet. All of them achieve outstanding recog-
nition performance, with the classification accuracy of 98.72%, 98.06%, 96.17%, 96.91%,
97.98%, and 96.66% on the testing dataset, respectively. In addition, we show the confusion
matrix of each model in Figure 7.

Figure 7. Confusion matrixes of DNN-based SAR-ATR models on the MSTAR dataset. (a) DenseNet121.
(b) GoogLeNet. (c) InceptionV3. (d) Mobilenet. (e) ResNet50. (f) Shufflenet.
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4.5. Comparison of Attack Performance

In this section, we first evaluated the attack performance of the proposed method
against DNN-based SAR-ATR models on the MSTAR dataset. Specifically, during the
training phase of TAN, we took each network as the surrogate model in turn and assessed
the recognition results of corresponding models on the outputs of TAN at each stage. The
results of non-targeted and targeted attacks are detailed in Tables 3 and 4, respectively.

Table 3. Non-targeted attack results of our method against DNN-based SAR-ATR models on the
MSTAR dataset.

Surrogate Acc ˜Acc Acc∗ ˜Acc∗ L̃2 L∗
2

DenseNet121 98.72% 1.90% 81.53% 24.03% 3.595 4.959
GoogLeNet 98.06% 3.83% 89.78% 36.11% 2.884 3.305
InceptionV3 96.17% 0.82% 89.41% 19.62% 3.552 4.181
Mobilenet 96.91% 2.72% 87.88% 36.81% 3.218 4.083
ResNet50 97.98% 3.34% 83.80% 28.65% 3.684 4.568
Shufflenet 96.66% 3.46% 84.30% 23.66% 3.331 3.286

Mean 97.42% 2.68% 86.12% 28.15% 3.377 4.064

Table 4. Targeted attack results of our method against DNN-based SAR-ATR models on the
MSTAR dataset.

Surrogate Acc ˜Acc Acc∗ ˜Acc∗ L̃2 L∗
2

DenseNet121 10.00% 98.08% 88.47% 78.09% 3.086 3.587
GoogLeNet 10.00% 99.09% 89.25% 85.90% 3.377 4.289
InceptionV3 10.00% 98.81% 86.87% 78.97% 3.453 3.495
Mobilenet 10.00% 97.40% 88.38% 81.37% 3.257 3.553
ResNet50 10.00% 97.69% 87.29% 82.10% 3.408 3.490
Shufflenet 10.00% 98.36% 86.85% 83.11% 3.345 3.874

Mean 10.00% 98.24% 87.85% 81.59% 3.321 3.714

In non-targeted attacks, the Acc metric of each model on the MSTAR dataset exceeds
95%. However, after the non-targeted attack, the classification accuracy of all models on the
generated adversarial examples, i.e., the Ãcc metric, is below 5%, and the L̃2 indicator is
less than 3.7. It means that adversarial examples deteriorate the recognition performance of
models rapidly through minor adversarial perturbations. Meanwhile, during the training
phase of TAN, we evaluate the performance of the attenuator. According to the Ãcc∗

metric, the attenuator leads to an average improvement of about 25% in the classification
accuracy of models on adversarial examples, that is, it indeed weakens the effectiveness
of adversarial examples. We also should pay attention to the metrics Acc∗ and L∗2, i.e., the
recognition accuracy of models on the attenuated samples, and the deformation distortion
caused by the attenuator. The fact is that the Acc∗ indicator of each model exceeds 80%,
and the average value of the L∗2 metric is about 4. It means that the attenuator retains most
semantic information of original samples without causing excessive deformation distortion,
which is in line with our requirements.

In targeted attacks, the Acc metric represents the probability that models identify
original samples as target classes, so it can reflect the dataset distribution, i.e., each category
accounts for about 10% of the total dataset. After the targeted attack, the probability of each
model recognizing adversarial examples as target classes, i.e., the Ãcc metric, is over 97%,
and the L̃2 indicator shows that the image distortion caused by adversarial perturbations is
less than 3.5. It means that the adversarial examples crafted by the generator can induce
models to output specified results with high probability through minor perturbations.
As with the non-targeted attack, we evaluate the performance of the attenuator. The
Ãcc∗ metric shows that the attenuator results in an average decrease of about 17% in the
probability of adversarial examples being identified as target classes. Meanwhile, the Acc∗
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metric of each model exceeds 85%, and the average value of the L∗2 indicator is about 3.7.
That is, the attenuator weakens the effectiveness of adversarial examples through slight
deformations, while preserving the semantic meaning of original samples well.

In summary, for both non-targeted and targeted attacks, the adversarial examples
crafted by the generator can fool models with high success rates, and the attenuator is
able to weaken the effectiveness of adversarial examples with slight deformations while
retaining the semantic meaning of original samples. Moreover, we ensure that the generator
always outperforms the attenuator by adjusting the training ratio between the two models.
To visualize the attack results of TAN, we took ResNet50 as the surrogate model and display
the outputs of TAN at each stage in Figure 8.

Finally, we compared the non-targeted and targeted attack performance of differ-
ent methods against DNN-based SAR-ATR models on the MSTAR dataset, as detailed
in Table 5. Obviously, for the same image distortion, the attack effectiveness of the pro-
posed method against a single model may not be the best. Nevertheless, we focused
more on the transferability of adversarial examples, which will be the main topic of the
following section.

Figure 8. Visualization of attack results against ResNet50. (a) Original samples. (b) Adversarial
examples. (c) Adversarial perturbations. (d) Attenuated samples. (e) Deformation distortion.
(f) Attenuated adversarial examples. From top to bottom, the corresponding target classes are None,
2S1, and D7, respectively.

Table 5. Attack performance of different methods against DNN-based SAR-ATR models on the
MSTAR dataset.

Surrogate Method
Non-Targeted Targeted

˜Acc L̃2 ˜Acc L̃2

DenseNet121

TAN 1.90% 3.595 98.08% 3.086
MIFGSM 0.00% 3.555 98.61% 3.613
DIFGSM 0.00% 3.116 95.39% 2.816
NIFGSM 0.21% 3.719 68.72% 3.550

SINIFGSM 1.15% 3.676 82.32% 3.648
VMIFGSM 0.00% 3.665 98.14% 3.602
VNIFGSM 0.08% 3.691 96.89% 3.635
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Table 5. Cont.

Surrogate Method
Non-Targeted Targeted

˜Acc L̃2 ˜Acc L̃2

GoogLeNet

TAN 3.83% 2.884 99.09% 3.377
MIFGSM 0.04% 3.615 98.36% 3.601
DIFGSM 0.04% 3.090 94.47% 2.830
NIFGSM 0.41% 3.674 64.32% 3.520

SINIFGSM 4.04% 3.647 69.79% 3.615
VMIFGSM 0.04% 3.587 97.84% 3.601
VNIFGSM 0.37% 3.588 95.74% 3.636

InceptionV3

TAN 0.82% 3.552 98.81% 3.453
MIFGSM 0.00% 3.599 96.00% 3.563
DIFGSM 0.04% 3.010 86.72% 2.811
NIFGSM 0.21% 3.671 51.66% 3.397

SINIFGSM 2.93% 3.689 62.46% 3.593
VMIFGSM 0.00% 3.614 91.54% 3.577
VNIFGSM 0.00% 3.632 84.02% 3.605

Mobilenet

TAN 2.72% 3.218 97.40% 3.257
MIFGSM 8.29% 3.557 99.86% 3.538
DIFGSM 6.64% 2.821 91.64% 2.610
NIFGSM 6.88% 3.575 80.05% 3.519

SINIFGSM 1.77% 3.664 85.14% 3.662
VMIFGSM 2.35% 3.572 99.40% 3.499
VNIFGSM 1.32% 3.635 95.58% 3.582

ResNet50

TAN 3.34% 3.684 97.69% 3.408
MIFGSM 0.95% 3.659 97.08% 3.613
DIFGSM 0.33% 3.141 90.35% 2.824
NIFGSM 0.33% 3.710 45.34% 3.501

SINIFGSM 3.96% 3.720 71.64% 3.652
VMIFGSM 0.87% 3.644 96.17% 3.618
VNIFGSM 0.25% 3.692 94.17% 3.632

Shufflenet

TAN 3.46% 3.331 98.36% 3.345
MIFGSM 0.00% 3.567 100.00% 3.518
DIFGSM 0.00% 2.790 97.54% 2.599
NIFGSM 0.16% 3.632 91.77% 3.455

SINIFGSM 0.00% 3.660 95.79% 3.568
VMIFGSM 0.00% 3.617 100.00% 3.511
VNIFGSM 0.04% 3.654 99.73% 3.568

4.6. Comparison of Transferability

In this section, we evaluated the transferability of adversarial examples among DNN-
based SAR-ATR models on the MSTAR dataset. Specifically, we first took each network
as the surrogate model in turn and crafted adversarial examples for them, respectively.
Then, we assessed the transferability by testing the recognition results of victim models
on corresponding adversarial examples. The transferability in non-targeted and targeted
attacks are shown in Tables 6 and 7, respectively.

In non-targeted attacks, when the proposed method sequentially takes DenseNet121,
GoogLeNet, InceptionV3, Mobilenet, ResNet50, and Shufflenet as the surrogate model, the
highest recognition accuracy of victim models on the generated adversarial examples are
12.90%, 26.88%, 23.45%, 18.59%, 11.01%, and 23.54%, respectively. Equivalently, the highest
recognition accuracy of victim models on the adversarial examples produced by baseline
methods are 36.11%, 44.44%, 56.06%, 65.99%, 33.84%, and 68.51%, respectively. Meanwhile,
for each surrogate model, victim models always have the lowest recognition accuracy on
the adversarial examples crafted by our approach. Obviously, compared with baseline
methods, the proposed method slightly sacrifices the performance on attacking surrogate
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models, but achieves state-of-the-art transferability among victim models in non-targeted
attacks. Detailed results are shown in Table 6.

Table 6. Transferability of adversarial examples generated by different attack algorithms in non-
targeted attacks.

Surrogate Method DenseNet121 GoogLeNet InceptionV3 Mobilenet ResNet50 Shufflenet

DenseNet121

TAN 1.90% 4.25% 7.46% 9.93% 9.11% 12.90%
MIFGSM 0.00% 10.10% 12.82% 26.46% 16.32% 28.65%
DIFGSM 0.00% 8.16% 11.46% 26.01% 19.17% 30.83%
NIFGSM 0.21% 14.67% 14.67% 26.75% 20.07% 30.67%

SINIFGSM 1.15% 16.69% 19.29% 35.66% 17.64% 36.11%
VMIFGSM 0.00% 8.86% 11.62% 24.40% 15.13% 25.89%
VNIFGSM 0.08% 8.04% 11.62% 22.38% 13.60% 23.54%

GoogLeNet

TAN 6.88% 3.83% 8.16% 23.62% 10.51% 26.88%
MIFGSM 10.18% 0.04% 17.72% 32.36% 27.66% 42.13%
DIFGSM 8.33% 0.04% 14.47% 32.52% 24.73% 38.66%
NIFGSM 22.88% 0.41% 24.28% 32.32% 35.16% 44.44%

SINIFGSM 7.96% 4.04% 13.15% 33.22% 15.09% 28.07%
VMIFGSM 8.57% 0.04% 16.32% 29.72% 25.64% 38.58%
VNIFGSM 10.02% 0.37% 15.50% 27.99% 26.30% 36.93%

InceptionV3

TAN 8.20% 9.60% 0.82% 21.43% 14.67% 23.45%
MIFGSM 19.25% 35.00% 0.00% 39.45% 33.14% 42.54%
DIFGSM 16.86% 33.22% 0.04% 43.69% 33.76% 47.07%
NIFGSM 32.11% 34.46% 0.21% 42.09% 43.08% 44.89%

SINIFGSM 27.37% 38.05% 2.93% 49.22% 41.18% 56.06%
VMIFGSM 18.51% 26.92% 0.00% 34.46% 31.04% 37.18%
VNIFGSM 21.68% 26.38% 0.00% 33.80% 34.50% 37.63%

Mobilenet

TAN 14.34% 15.83% 13.56% 2.72% 14.18% 18.59%
MIFGSM 65.99% 59.32% 53.59% 8.29% 55.56% 59.77%
DIFGSM 51.28% 53.34% 49.34% 6.64% 49.34% 52.18%
NIFGSM 65.75% 58.66% 51.85% 6.88% 52.31% 55.56%

SINIFGSM 64.67% 45.14% 49.01% 1.77% 51.81% 58.37%
VMIFGSM 62.49% 52.10% 50.45% 2.35% 49.63% 52.84%
VNIFGSM 56.27% 50.04% 43.61% 1.32% 43.82% 48.19%

ResNet50

TAN 5.94% 9.27% 10.14% 12.94% 3.34% 11.01%
MIFGSM 14.59% 24.15% 17.72% 16.90% 0.95% 26.42%
DIFGSM 11.13% 17.07% 15.09% 20.45% 0.33% 26.59%
NIFGSM 21.72% 28.19% 20.28% 19.74% 0.33% 29.43%

SINIFGSM 26.50% 24.15% 22.59% 30.50% 3.96% 33.84%
VMIFGSM 13.31% 22.42% 16.36% 15.95% 0.87% 23.33%
VNIFGSM 15.00% 22.67% 16.45% 14.47% 0.25% 22.63%

Shufflenet

TAN 17.72% 23.54% 16.49% 22.22% 17.85% 3.46%
MIFGSM 66.69% 70.03% 65.00% 55.81% 65.00% 0.00%
DIFGSM 53.46% 57.58% 55.32% 51.44% 55.44% 0.00%
NIFGSM 67.23% 61.58% 58.62% 48.35% 61.62% 0.16%

SINIFGSM 68.51% 58.33% 60.92% 50.41% 56.64% 0.00%
VMIFGSM 57.25% 55.32% 54.29% 40.23% 53.34% 0.00%
VNIFGSM 56.68% 54.25% 51.57% 37.30% 52.14% 0.04%

In targeted attacks, the proposed method still takes DenseNet121, GoogLeNet,
InceptionV3, Mobilenet, ResNet50, and Shufflenet as the surrogate model in turn, and
the minimum probability that victim models identify the generated adversarial examples
as target classes are 52.39%, 55.02%, 54.57%, 57.66%, 66.26%, and 47.78%, respectively.
Correspondingly, the minimum probability that victim models recognize the adversarial
examples produced by baseline methods as target classes are 22.18%, 19.63%, 19.49%,
15.52%, 19.36%, and 13.06%, respectively. Moreover, for each surrogate model, victim
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models always identify the adversarial examples crafted by our approach as target classes
with the maximum probability. Thus, the proposed method also achieves state-of-the-art
transferability among victim models in targeted attacks. Detailed results are shown in
Table 7.

Table 7. Transferability of adversarial examples generated by different attack algorithms in targeted attacks.

Surrogate Method DenseNet121 GoogLeNet InceptionV3 Mobilenet ResNet50 Shufflenet

DenseNet121

TAN 98.08% 79.12% 70.71% 59.03% 62.31% 52.39%
MIFGSM 98.61% 52.47% 49.05% 39.47% 43.78% 37.62%
DIFGSM 95.39% 51.08% 46.62% 35.02% 39.51% 32.29%
NIFGSM 68.72% 33.06% 27.61% 22.18% 25.78% 22.92%

SINIFGSM 82.32% 40.62% 33.17% 29.95% 31.93% 30.59%
VMIFGSM 98.14% 48.94% 44.10% 33.56% 39.29% 34.06%
VNIFGSM 96.89% 48.78% 46.03% 34.70% 39.80% 35.52%

GoogLeNet

TAN 81.04% 99.09% 66.59% 56.72% 63.86% 55.02%
MIFGSM 61.56% 98.36% 47.57% 34.16% 37.57% 29.75%
DIFGSM 58.81% 94.47% 47.91% 32.17% 36.20% 26.88%
NIFGSM 31.46% 64.32% 25.34% 19.85% 23.14% 19.63%

SINIFGSM 41.97% 69.79% 34.39% 28.21% 29.77% 25.48%
VMIFGSM 53.37% 97.84% 42.19% 30.67% 34.94% 26.36%
VNIFGSM 56.26% 95.74% 43.96% 32.31% 36.11% 29.49%

InceptionV3

TAN 75.11% 71.56% 98.81% 67.23% 63.62% 54.57%
MIFGSM 42.64% 35.92% 96.00% 32.49% 35.00% 29.51%
DIFGSM 42.99% 33.70% 86.72% 31.16% 34.13% 28.20%
NIFGSM 27.12% 24.67% 51.66% 19.49% 23.76% 22.45%

SINIFGSM 26.76% 25.23% 62.46% 21.90% 24.36% 22.59%
VMIFGSM 36.38% 34.05% 91.54% 30.15% 31.43% 28.52%
VNIFGSM 37.82% 33.55% 84.02% 31.44% 32.28% 28.58%

Mobilenet

TAN 61.30% 57.66% 61.53% 97.40% 60.97% 63.11%
MIFGSM 19.98% 18.66% 22.87% 99.86% 23.55% 20.31%
DIFGSM 23.96% 21.92% 23.79% 91.64% 24.51% 22.65%
NIFGSM 15.76% 15.58% 16.85% 80.05% 18.06% 15.91%

SINIFGSM 16.81% 15.52% 18.96% 85.14% 21.20% 16.63%
VMIFGSM 18.46% 17.84% 18.70% 99.40% 21.49% 19.61%
VNIFGSM 21.60% 18.41% 22.34% 95.58% 24.67% 21.96%

ResNet50

TAN 71.39% 71.54% 71.02% 73.68% 97.69% 66.26%
MIFGSM 43.23% 30.51% 41.57% 42.41% 97.08% 36.29%
DIFGSM 45.18% 34.25% 42.37% 39.40% 90.35% 34.36%
NIFGSM 22.07% 20.45% 20.33% 19.36% 45.34% 19.75%

SINIFGSM 25.81% 21.38% 27.15% 31.01% 71.64% 26.02%
VMIFGSM 36.44% 26.33% 35.75% 38.61% 96.17% 32.79%
VNIFGSM 40.80% 27.10% 38.26% 38.87% 94.17% 36.49%

Shufflenet

TAN 53.91% 47.78% 51.69% 60.35% 58.78% 98.36%
MIFGSM 18.29% 16.43% 17.06% 19.46% 17.20% 100.00%
DIFGSM 23.55% 20.36% 20.80% 22.55% 21.35% 97.54%
NIFGSM 13.96% 13.06% 13.14% 14.47% 13.66% 91.77%

SINIFGSM 15.83% 15.23% 15.34% 19.42% 16.05% 95.79%
VMIFGSM 17.58% 16.34% 17.09% 21.65% 18.46% 99.94%
VNIFGSM 19.43% 17.97% 18.68% 22.87% 19.98% 99.73%

In conclusion, for both non-targeted and targeted attacks, our approach generates
adversarial examples with the strongest transferability. In other words, it performs better
on exploring the common vulnerability of DNN models. We attribute this to the adversarial
training between the generator and attenuator. Figuratively speaking, it is because of the
attenuator constantly creating obstacles for the generator that the attack capability of the
generator is continuously enhanced and completed.
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4.7. Comparison of Real-Time Performance

According to (4), compared to traditional iterative methods, the generator in our
approach is capable of one-step mapping original samples to adversarial examples. It acts
like a function that takes inputs and outputs results based on the mapping relationship.
To evaluate the real-time performance of adversarial attacks, we compared the time cost
of generating a single adversarial example through different attack algorithms. The time
consumption of non-targeted and targeted attacks is shown in Tables 8 and 9, respectively.

As we can see, there is almost no difference in the time cost of crafting a single
adversarial example in non-targeted and targeted attacks. Meanwhile, for all the victim
models, the time cost of generating a single adversarial example through our method is
stable around 2 ms. As for baseline methods, it depends on the complexity of victim models,
the more complex the model, the longer the time cost. However, even for the simplest
victim model, the minimum time cost of baseline methods is about 4.5 ms, consuming twice
as much time as our approach. Thus, there is no doubt that the proposed method achieves
the most superior and stable real-time performance.

Table 8. Time cost of generating a single adversarial example through different attack algorithms in
non-targeted attacks.

Method DenseNet121 GoogLeNet InceptionV3 Mobilenet ResNet50 Shufflenet Mean

TAN 0.002029 s 0.002201 s 0.002039 s 0.002218 s 0.002031 s 0.002045 s 0.002094 s
MIFGSM 0.018285 s 0.006351 s 0.012636 s 0.005093 s 0.013445 s 0.004451 s 0.010044 s
DIFGSM 0.018276 s 0.006363 s 0.012653 s 0.005103 s 0.013468 s 0.004488 s 0.010059 s
NIFGSM 0.018312 s 0.006354 s 0.012646 s 0.005111 s 0.013477 s 0.004456 s 0.010059 s

SINIFGSM 0.091032 s 0.031499 s 0.063015 s 0.024865 s 0.067202 s 0.021676 s 0.049882 s
VMIFGSM 0.109252 s 0.037827 s 0.075580 s 0.029803 s 0.080479 s 0.025968 s 0.059818 s
VNIFGSM 0.109184 s 0.037804 s 0.075483 s 0.029776 s 0.080560 s 0.025907 s 0.059786 s

Table 9. Time cost of generating a single adversarial example through different attack algorithms in
targeted attacks.

Method DenseNet121 GoogLeNet InceptionV3 Mobilenet ResNet50 Shufflenet Mean

TAN 0.002070 s 0.002069 s 0.002036 s 0.002055 s 0.002087 s 0.002097 s 0.002069 s
MIFGSM 0.018281 s 0.006353 s 0.012634 s 0.005088 s 0.013451 s 0.004446 s 0.010042 s
DIFGSM 0.018291 s 0.006369 s 0.012652 s 0.005104 s 0.013490 s 0.004488 s 0.010065 s
NIFGSM 0.018306 s 0.006358 s 0.012661 s 0.005105 s 0.013486 s 0.004460 s 0.010063 s

SINIFGSM 0.091064 s 0.031539 s 0.063066 s 0.024871 s 0.067216 s 0.021664 s 0.049903 s
VMIFGSM 0.109262 s 0.037860 s 0.075579 s 0.029776 s 0.080481 s 0.025984 s 0.059823 s
VNIFGSM 0.109176 s 0.037819 s 0.075502 s 0.029798 s 0.080546 s 0.025923 s 0.059794 s

4.8. Visualization of Adversarial Examples

In this section, we took ResNet50 as the surrogate model and visualized the adversarial
examples crafted by different methods in Figure 9. Obviously, the adversarial perturbations
generated by our method are continuous, and mainly focus on the target region of SAR
images. In contrast, the perturbations produced by baseline methods are quite discrete, and
almost cover the global area of SAR images. First, from the perspective of feature extraction,
since the features that have a greater impact on recognition results are mainly concentrated
in the target region rather than the background clutter area, a focused disruption of key
features is certainly a more efficient attack strategy. Second, from the perspective of physical
feasibility, the fewer pixels modified in adversarial examples, the smaller range perturbed
in reality, so localized perturbations are more feasible than global ones. In summary, the
proposed method improves the efficiency and feasibility of adversarial attacks by focusing
perturbations on the target region of SAR images.
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Figure 9. Visualization of adversarial examples against ResNet50. (a) TAN. (b) MIFGSM. (c) DIFGSM.
(d) NIFGSM. (e) SINIFGSM. (f) VMIFGSM. (g) VNIFGSM. From top to bottom, the corresponding
target classes are None, BMP2, BTR60, D7, T72, and ZSU234, respectively. For each attack, the first
row shows adversarial examples, and the second row shows corresponding adversarial perturbations.

5. Discussions

So far, the proposed method has been proven to be effective for SAR images. Further
studies should verify its effectiveness in other fields, such as optical [40,41], infrared [42,43],
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and synthetic aperture sonar (SAS) [44–47] images, etc. Although different imaging princi-
ples lead to huge differences in the resolution, dimension, and target type of images, we
argue that TAN can be well-suitable to these fields. The reason is that adversarial examples
essentially attack the inherent vulnerability of DNN models, independent of the input data.
However, the non-negligible challenge is how to realize these adversarial examples in the
real world. Specifically, the physical implementation depends on the imaging principle,
e.g., crafting adversarial patches against optical cameras, changing temperature against
infrared devices, and emitting acoustic signals against SAS, etc. This is a worthwhile topic
in the future.

6. Conclusions

This paper proposed a transferable adversarial network (TAN) to attack DNN-based
SAR-ATR models, with the benefit that the transferability and the real-time performance of
adversarial examples is significantly improved, which is of great significance for real-world
black-box attacks. In the proposed method, we simultaneously trained two encoder–
decoder models: a generator that learns the one-step forward mapping from original data
to adversarial examples, and an attenuator that captures the most harmful deformations
to malicious samples. It is motivated by enabling real-time attacks by one-step mapping
original data to adversarial examples, and enhancing the transferability through a two-
player game between the generator and attenuator. Experimental results demonstrated
that our approach achieves state-of-the-art transferability with acceptable adversarial
perturbations and minimum time costs compared to existing attack methods, making
real-time black-box attacks without any prior knowledge a reality. Potential future work
could consider attacking DNN-based SAR-ATR models under small sample conditions. In
addition to improving the performance of attack algorithms, it makes sense to implement
adversarial examples in the real world.
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Abstract: At this moment, many special vehicles are engaged in illegal activities such as illegal
mining, oil and gas theft, the destruction of green spaces, and illegal construction, which have serious
negative impacts on the environment and the economy. The illegal activities of these special vehicles
are becoming more and more rampant because of the limited number of inspectors and the high
cost required for surveillance. The development of drone remote sensing is playing an important
role in allowing efficient and intelligent monitoring of special vehicles. Due to limited onboard
computing resources, special vehicle object detection still faces challenges in practical applications.
In order to achieve the balance between detection accuracy and computational cost, we propose a
novel algorithm named YOLO-GNS for special vehicle detection from the UAV perspective. Firstly,
the Single Stage Headless (SSH) context structure is introduced to improve the feature extraction
and facilitate the detection of small or obscured objects. Meanwhile, the computational cost of
the algorithm is reduced in view of GhostNet by replacing the complex convolution with a linear
transform by simple operation. To illustrate the performance of the algorithm, thousands of images
are dedicated to sculpting in a variety of scenes and weather, each with a UAV view of special vehicles.
Quantitative and comparative experiments have also been performed. Compared to other derivatives,
the algorithm shows a 4.4% increase in average detection accuracy and a 1.6 increase in detection
frame rate. These improvements are considered to be useful for UAV applications, especially for
special vehicle detection in a variety of scenarios.

Keywords: drone; special vehicle; object detection; YOLO; SSH; GhostNet

1. Introduction

Special vehicles refer to motorized machines that are distinct from conventional automo-
biles in terms of their physical characteristics, such as shape, size, and weight. Those vehicles
are typically used for a variety of purposes, including traction, obstacle removal, cleaning,
lifting, loading and unloading, mixing, excavation, bulldozing, and road rolling, etc.

The detection of special vehicles in oil and gas pipelines [1], transmission lines [2],
urban illegal construction [3], theft, and excavation scenarios is of great importance in order
to ensure the security of these areas. This is because in the above scenarios, the presence of
special vehicles often represents a high risk that these scenarios will occur, and the nature
of special vehicles may cause damage to important property. The use of unmanned aerial
vehicles to patrol and search for special vehicles in these scenarios has gradually become a
mainstream application trend [4]. However, due to the particular shape of special vehicles,
manual interpretation has low efficiency, high misjudgment, and omission. The application
of a deep neural network in the automatic detection of special vehicles has been applied to
some extent, but it is not mature yet, and the accuracy of existing methods is relatively poor.

Experts and scholars have proposed a variety of depth neural network methods for
target detection in UAV aerial images including various vehicles. Various techniques
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including CNNs, RNNs, autoencoders, and GANs have been used in vehicle detection
and have yielded interesting results for many tasks [5]. To detect small objects, some
techniques divide the last layer of the neural network into multiple variable-sized chunks
to extract features at different scales, while other approaches remove the deeper layers
of the CNN, allowing the number of feature points of the target to increase [6]. Liu W
et al. proposed the YOLOV5-Tassel network, which combines CSPDarknet53 and BiFPN
to efficiently extract minute features and introduces the SimAM attention mechanism in
the neck module to extract the features of interest before each detection head [7]. Zhou
H et al. designed a data augmentation method including background replacement and
noise increase in order to solve the detection of tiny targets such as cars and planes, and
constructed the ADCSPDarkent53 backbone network based on YOLO, which was used to
modify the loss of localization function and improve the detection accuracy [8]. In order to
solve the problems of low contrast, dense distribution, and weak features of small targets,
Wang J et al. constructed corresponding feature mapping relations, solved the level of
adjacency between misaligned features, adjusted and fused shallow spatial features and
deep semantic features, and finally improved the recognition ability of small objects [9].
Li Q et al. proposed a “rotatable region-based residual network (R3-Net)” to distinguish
vehicles with different directions from aerial images and used VGG16 or ResNet101 as
the backbone of R3-Net [10]. Li et al. presented an algorithm for detecting sea targets
based on UAV. This algorithm optimizes feature fusion calculation and enhances feature
extraction at the same time, but the computational load is too large [11]. Wang et al. used
the Initial Horizontal Connection Network to enhance the Feature Pyramid Network. In
addition, the use of the Semantic Attention Network to provide semantic features helps to
distinguish interesting objects from cluttered backgrounds, but how the algorithm performs
as expected in complex and variable aerial images needs further study [12]. Mantau et al.
used visible light and thermal infrared data taken from drones to find poachers. They used
YOLOv5 as their basic network and optimized it using migration learning, but this method
did not work well with the fusion of different data sources [13]. Deng et al. proposed a
network for detecting small objects in aerial images. They designed a Vehicle Proposal
Network, which proposed areas similar to vehicles [14]. Tian et al. proposed a bineural
network review method, which classifies the secondary characteristics of the suspicious
target area in the unmanned aerial vehicle image, quickly filters the missing targets in
one-stage detection, and achieves high-quality detection of small targets [15].

In terms of drone inspection of vehicles, Jianghuan Xie et al. proposed an anchor-free
detector, called residual feature enhanced pyramid network (RFEPNet), for vehicle detec-
tion from the UAV perspective. RFEPNet contains a cross-layer context fusion network
(CLCFNet) and a residual feature enhancement module (RFEM) based on pyramid con-
volution to achieve small target vehicle detection [16]. Wan Y et al. proposed an adaptive
region selection detection framework for the retrieval of targets, such as vehicles in the
field of search and rescue, adding a new detection head to achieve better detection of small
targets [17]. Liu Mingjie et al. developed a detection method for small-sized vehicles in
drone view, specifically optimized by connecting two ResNet units with the same width
and height and adding convolutional operations in the early layers to enrich the spatial
information [18]. Zhongyu Zhang et al. proposed a YOLOv3-based Deeply Separable
attention-guided network (DAGN) that combines feature cascading and attention blocks
and improves the loss function and candidate merging algorithm of YOLOv3. With these
strategies, the performance of vehicle detection is improved while sacrificing some detection
speed [19]. Wang Zhang et al. proposed a novel multiscale and occlusion-aware network
(MSOA-Net) for UAV-based vehicle segmentation, which consists of two parts, including
a multiscale feature adaptive fusion network (MSFAF-Net) and a region-attention-based
three-headed network (RATH-Net) [20]. Xin Luo et al. developed a fast automatic vehicle
detection method for UAV images, constructed a vehicle dataset for target recognition, and
proposed a YOLOv3 vehicle detection framework for relatively small and dense vehicle
targets [21]. Navaneeth Balamuralidhar proposed MultEYE that can detect, track, and
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estimate the velocity of a vehicle in a sequence of aerial images using a multi-task learning
approach with a segmentation head added to the backbone of the object detector to form
the MultEYE object detection architecture [22].

When drones patrol oil and gas pipelines, power transmission lines, urban violations
and other fields, the size of special vehicles in the images change greatly, and there are
many small targets. The feature information carried by camera overhead is limited and
changeable, which increases the difficulty of detection. Secondly, the UAV cruises across
complex and changeable scenes such as cities, wilderness, green areas, bare soil, and
so on. Some areas contain dense targets, which makes it difficult to distinguish some
similar objects. Finally, the shooting angle also brings more noise interference, and the
special vehicle will be weakened, obscured, or even camouflaged, unable to expose the
characteristics of the target. Due to the characteristics of variable target scale, a number
of small targets, and the complex background of special vehicles, it is difficult to meet the
requirements of speed and accuracy for patrol tasks if the above research methods are
directly applied to special vehicle detection from a UAV perspective.

In order to solve the problem of special vehicle detection in complex backgrounds
from the perspective of drones, we propose a deep neural network algorithm (YOLO-GNS)
based on YOLO and optimized by GhostNet (GN) and Single Stage Headless (SSH), which
can be used to detect special vehicles effectively. Firstly, the SSH network structure is
added behind the FPN network to parallel several convolution layers, which enhances the
convolution layer perception field and extracts the high semantic features of the special
vehicle targets. Secondly, in order to improve the detection speed to meet the requirements
of UAV, the GPU version of GN (G-GN) is used to reduce the computational consumption
of the network. Finally, we have searched for a large number of rare places to take aerial
photos and created a dataset containing a large number of special vehicle targets. We have
experimented with YOLO-GS on the special vehicle (SEVE) dataset and public dataset to
verify the effectiveness of the proposed method.

The rest of this paper is arranged as follows. Section 2 describes the proposed tar-
get detection method YOLO-GNS and the necessary theoretical information. Section 3
introduces the special data sets, evaluation methods, and detailed experimental results. In
Section 4, we draw conclusions and determine the direction of future research.

2. Materials and Methods

2.1. Principle of YOLOv7 Network Structure

YOLO (You Only Look Once) is a one-stage target detection algorithm based on regres-
sion method proposed by Redmon et al. It has been developed into several versions [23–29].
As the latest upgrade of YOLO series, YOLOv7 has been improved from data enhancement,
backbone network, activation function, and loss function, so that it has higher detection
accuracy and faster detection speed.

The YOLOv7 algorithm employs strategies such as extended efficient long-range atten-
tion network (E-ELAN), Concatenation-Based models, and convolution parameterization
to achieve a good balance between detection efficiency and accuracy.

As shown in Figure 1, YOLOv7 network is composed of four parts: Input, Backbone,
Neck, and Head.

The Input section scales the input image to a uniform pixel size to meet the input
size requirements of the backbone network. The Backbone part is composed of several
CBS modules, E-ELAN modules, and MP1 modules. The CBS module is composed of
convolution layer, batch normalization layer (BN), sigmoid-weighted linear unit activation
function to extract image features at different scales, as shown in Figure 2.
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Figure 1. The original structure of yolov7.

 
Figure 2. The structure of CBS module.

ELAN module consists of several CBS modules, whose input and output feature sizes
remain the same. By guiding the computing blocks of different feature groups to learn
more diverse features, the learning ability of the network is improved without destroying
the original gradient path, as shown in Figure 3.

Figure 3. The structure of E-ELAN module.

MP1 module adds Maxpool layer on the basis of CBS module, which constitutes the
upper and lower branches. The upper branch halves the image length and width through
Maxpool and the image channel through CBS module. The lower branch halves the image
channel through the first CBS module; the second CBS layer halves the image length and
width and finally uses the Cat operation to fuse the features extracted from the upper and
lower branches, which improves the feature extraction ability of the network, as shown in
Figure 4.
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Figure 4. The structure of MP1module.

The Neck part is composed of Path Aggregation Feature Pyramid Network (PAFPN)
structure, mainly including SPPCSPC module, ELAN-H module, and UP module. By
introducing the bottom-up path, the bottom-level information can be easily transferred to
the top level, which enables the efficient fusion of different hierarchical features.

The SPPCSPC module is mainly composed of CBS module, CAT module, and Maxpool
module, which get different perception fields through maximum pooling, as shown in
Figure 5.

 
Figure 5. The structure of SPPCSPC module.

EH-ELAN module is similar to E-ELAN module but slightly different in that it selects
five branches to add up with different number of outputs, as shown in Figure 6.

Figure 6. The structure of EH-ELAN module.

The UP module is composed of CBS and up sampling modules, as shown in Figure 7.

 
Figure 7. The structure of UP module.

Head adjusts the number of image channels for three different scales of Neck output
through RepVGG Block (REP) structure, and then passes through 1 × 1 Convolution is
used for predicting confidence, category, and anchor frame.

The REP structure is divided into train and deploy versions, as shown in Figure 8. The
train version has three branches. The top branch is 3 × 3 convolution, which is used for
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feature extraction; the middle branch is 1 × 1 convolution, which is used for smoothing
features; and the bottom branch is an Identity, which is moved without convolution and
finally added together. The deploy version contains a 3 × 3 convolution with a stride of 1,
which is converted from the training module parameterization.

Figure 8. The structure of REP module.

Although the YOLOv7 algorithm framework performs well in common task scenarios,
such as pedestrian and normal vehicle detection, there are still many problems when it
is applied directly to the detection of special vehicles from the perspective of unmanned
aerial vehicles: (1) Compared with common scenarios, the target scale in unmanned aerial
vehicle images changes more, and there are more small targets, which further increases the
difficulty of special vehicle detection; (2) The background of the scene in which the special
vehicle is located is complex, and there is no corresponding context mechanism to handle
the complex background, which results in the inaccurate detection of the special vehicle in
the complex background; (3) UAV images require higher detection speed, but conventional
YOLOv7 does not have the detection acceleration function for UAV. To solve the above
problems, the algorithm in this paper is based on YOLOv7 and improved.

2.2. YOLO-GNS Algorithm

This section introduces the special vehicle target detection algorithm from the per-
spective of UAV, as shown in Figure 9. With YOLOv7 as the framework, the Backbone is
improved based on GhostNet to enhance the feature extraction ability and improve the
detection speed; in the view of UAV, it is beneficial to detect the weakened or occluded
special vehicles from the complex scene. In order to improve the ability to detect small
targets, SSH modules are added behind the pafpn structure of yolov7 to merge context
information. Therefore, the algorithm is named YOLO-GNS. Compared with YOLOv7 and
other derivatives, YOLO-GNS can achieve the best balance between detection accuracy and
calculation cost.

2.2.1. Improvement of Backbone Network Based on GhostNet

In the backbone network of the original YOLOv7, due to the high redundancy of the
intermediate feature map calculated by a large number of conventional convolutional CBS
modules, the computing cost will increase. YOLO-GNS built GhostMP and GhostELAN
modules to form a backbone network to extract UAV image features by drawing on the
ideas of GhostNet [30]. GhostNet has the advantages of maintaining the recognition
performance of similarity and reducing the convolution operation at the same time, which
can greatly reduce the number of model parameters while maintaining high performance.
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Figure 9. The structure of YOLO-GNS algorithm.

The GhostMP module is composed of Maxpool, GhostS2, CBS, CAT. The GhostELAN
module is composed of GhostS1, GhostS2, CBS, and CAT. GhostS1 consists of two stacked
Ghost convolutions (Ghost Conv), the first Ghost Conv increasing the number of channels
and the second Ghost Conv reduces the number of channels to match the shortcut path,
making the number of channels for the input signature map the same as which in the output
signature map for the second Ghost Conv. The shortcut path of GhostS2 is implemented by
depth-wise convolution (DW Conv) with a downsampling layer and a stride = 2 to reduce
the number of channels. Add represents a signature graph addition operation where the
number of channels does not change.

The implementation of GhostConv is divided into three steps: the first step is to use
ordinary convolution calculation to get a feature map with less channel information, the
second step is to use inexpensive operation to generate more feature maps, and the last
step is to connect different feature maps to form a new output.

In ordinary convolution, given input data X ∈ Rc×h×w, c denotes the number of input
channels; h and w denote the height and width of the input data, respectively, and are used
to generate any convolution layer of N feature map, as shown in Equation (1):

Y ∈ X∗ f + B (1)

where: * is a convolution operator, B is a deviation term, Y ∈ Rh′×w′×n represents the output
feature map of N channels, f ∈ Rc×k×k×n is the convolution kernel size in a convolution
layer, h′ and w′ represent the height and width of the output data, respectively, k × k
denotes the size of the convolution kernel f . In ordinary convolution operations, because
the number of convolution cores n and channel c is very large, the number of FLOPs
required is n · h′ · w′ · c · k · k.

Thus, the parameters to be optimized for operation ( f and B) are determined by the
size of the input and output feature maps. Since the output feature maps of ordinary
convolution layers are usually redundant and may have similar redundancy to each other,
it is not necessary to use a large number of parameters FLOP to generate redundant
feature maps, which are “Ghost” converted from a few original feature maps by some
inexpensive linear operations. These original feature maps are usually generated by
ordinary convolution kernels and have less channel information. Generally, m original
feature map Y′ ∈ Rh′×w′×m is generated by once convolution:

Y′ = X∗ f ′ (2)
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where: f ′ ∈ Rc×k×k×m is a convolution kernel, m � n. To maintain the same spatial size
as the output feature map, the hyperparametric (convolution size, stride, padding) is the
same as the ordinary convolution. To further obtain the required n feature maps, a series of
inexpensive linear operations are used for each original feature in Y′, resulting in s Ghost
feature maps, as shown in Formula (3):

yij = φi,j

(
y
′
i

)
; ∀i = 1, 2, · · · , m, j = 1, 2, · · · , s (3)

where:yij represents the first primitive feature map in Y′. φi,j represents the jth linear
operation used to generate the jth Ghost feature graph. By using inexpensive linear
operations, we can get n = m · s feature maps as output of the Ghost module, as shown in
Formula (4):

Y = [y11, y12, · · · , yms] (4)

The Ghost module divides the original convolution layer into two phases, as shown in
Figure 10. The first phase uses a small number of convolution cores to generate the original
feature map, and the second phase uses inexpensive transformation to generate more Ghost
feature maps. Linear operations are used on each channel to reduce computational effort.

Figure 10. The structure of GhostNet in YOLO-GNS.

2.2.2. Prediction Optimization Based on SSH Structure

In order to improve the small target detection ability and further shorten the inference
time, Single Stage Headless (SSH) algorithm [31] is introduced into the network, which is a
single-stage context network structure. The two-stage context network structure combines
more context information by increasing the size of the candidate box. Nevertheless, SSH
combines context information through a single convolution layer, where the Context-
Network structure of the SSH detection module is shown in Figure 11, which requires less
memory to detect and locate more accurately.

 

Figure 11. The structure of Context-Network in SSH.

In YOLO-GNS, add the SSH context network structure before the REP structure. First,
reduce the number of channels to X/2 through 3 × 3 convolution layer and SILU activation
function (3C-SILU), and then send this result to two branches. One branch contains only
one 3C-SILU operation, which results in the feature that the channel is X/2. The other
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branch contains two consecutive 3C-SILU operations, which also results in the feature that
the channel is X/2. Finally, concatenate the two feature maps to get the final output of the
SSH context network structure.

The SSH context network structure incorporates more context information and is
approximated by increasing the sensory field of the feature maps. For example, a small
field can only see the special vehicle itself, while a larger field can see the excavator head,
caterpillar, and other places.

Generally, deeper feature layers contain more abstract semantic information to facili-
tate classification, while shallow features have more specific information, such as edges,
angles, and so on, to facilitate the positioning of bounding box.

Therefore, the SSH context network structure integrates the current and high-level fea-
ture information, effectively improves the detection ability of the weakened and obstructed
special vehicles in complex environments, helps to improve the accuracy of the algorithm,
and does not significantly increase the additional computational load.

3. Results

In order to evaluate the special vehicle detection performance of YOLO-GNS algorithm
in this paper, this experiment conducts training and testing on special vehicle (SEVE)
dataset. Additionally, to evaluate the general performance of the algorithm, this experiment
adds training and testing on the Microsoft COCO dataset.

3.1. Special Vehicle Dataset

Heretofore, there is no public data set of special vehicles from the perspective of
drones. Therefore, from January 2021 to June 2022, we used UAV to shoot a large number
of videos at multiple heights and angles over construction areas, wilderness, building sites,
and other areas. After that, frames are extracted and labeled from these videos to form a
special vehicle dataset. This dataset contains 17,992 pairs of images and labels, including
14,392 training sets, 1800 validation sets, and 1800 test sets. The image resolution in SEVE
dataset is 1920 × 1080. The types of special vehicles include cranes, traction vehicles, tank
trucks, obstacle removal vehicles, cleaning vehicles, lifting vehicles, loading and unloading
vehicles, mixing vehicles, excavators, bulldozers, and road rollers. The different scene types
include urban, rural, arable, woodland, grassland, construction land, roads, etc. Some
examples of the dataset are shown in Figure 12.

3.2. Experimental Environment and Settings

The experiment is based on 64-bit operating system Windows 10, the CPU is Intel Xeon
Gold 6246R, the GPU uses NVIDIA GeForce RTX3090, and the deep learning framework is
Pytorch v1.7.0. We use Frames Per Second (FPS) to measure the detection speed, which
indicates the number of images processed by the specified hardware per second by the
detection model. In the experiment, the FPS for each method is tested on a single GPU
device. IOU is set to 0.5, The mAP (mean Average Precision), an index related to the
IOU threshold, was used as the standard of detection accuracy. In multi-category target
detection, the curve drawn by each category based on its accuracy (Precision) and recall
(Recall) is called a P-R curve, in which the average recognition accuracy of a category
is equal. AP@0.5 (Average Precision, IoU threshold greater than 0.5) is the size of the
area below the P-R curve of this category. mAP@0.5 Average recognition accuracy by all
categories AP@0.5 add up to get the average.
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 12. Sample Images of SEVE dataset. (a) Cranes in construction areas; (b) Excavator and loaders
in building sites; (c) Forklifts in construction areas; (d) Excavator and tank trucks in wilderness.
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Precision and recall are defined as:

Recall =
TP

TP + FN
(5)

Precision =
TP

TP + FP
(6)

AP =
∫ 1

0
P(R)dR (7)

mAP =
1
c

c

∑
i=1

APi (8)

Among them, TP was the real case, FP was the false positive case, FN was the false
negative case, and C was the total number of categories detected for the target.

Due to the limitation of the experimental device, the input image size is scaled to
800 × 800 pixels. The optimizer uses SGD; the learning rate is 1 × 10−2; the momentum
is 0.9; the weight decay is 5 × 10−4, using the Cosine Annealing algorithm to adjust the
learning rate; the batch size is 8; and the training durations are 300 epochs, 10 training
epochs, and 1 test epochs alternately.

3.3. Experimental Results and Analysis

This paper conducts experiments on the open dataset COCO and the SEVE dataset
created in this paper to verify the validity of the proposed methods. The experiment is
divided into three parts:

(1) Experiments are carried out on the SEVE dataset to verify the feasibility of the
proposed method, and to compare the results with those of other target detection methods
on this dataset to illustrate the advantages of this method;

(2) Verify the universality of this method on COCO datasets;
(3) Designing an ablation experiment further demonstrates the validity of the method.

3.3.1. Experiments on SEVE Dataset

In this experiment, the YOLO-GNS algorithm is compared with the prevailing target
detection algorithms in the SEVE dataset created in this paper. The experimental results
are shown in Table 1. Table 1 contains nine categories: C, L, T, M, F, P, R, EL, and EX,
corresponding to the SEVE dataset and referring to cranes, loader cars, tank cars, mixer
cars, forklifts, piling machines, road rollers, elevate cars, and excavators. The resulting
data AP@0.5 represent the average recognition accuracy of this category under different
methods, while data in column mAP@0.5 represents the average recognition accuracy of all
categories. Params represent the size of the paraments of each method. The resulting data
represent the average recognition accuracy for all categories for different datasets under
different methods.

Table 1. Comparison of Detection Accuracy of Different Target Detection Algorithms on SEVE dataset.

Methods
AP@0.5(%) mAP@0.5

(%)
Params(M) FPS

C L T M F P R EL EX

Faster-
RCNN 73.2 75.5 76.1 80.2 78.1 81.3 56.3 45.5 21.3 65.3 186.3 16.8

RetinaNet 77.5 78.6 85.1 82.3 81.5 80.6 57.6 49.1 23.5 68.4 28.5 19.5
YOLOV4 78.7 80.1 82.3 83.5 82.6 78.3 60.5 55.8 30.3 70.2 64.4 25.6

YOLOV5-X 79.8 78.1 85.6 83.9 83.1 82.5 59.1 58.3 32.5 71.4 86.7 29.2
YOLOV7 80.5 82.3 86.4 88.6 85.3 86.4 65.3 60.8 45.8 75.7 36.9 31.5

YOLO-GNS 85.9 86.9 89.4 91.3 90.1 89.6 69.5 67.3 50.8 80.1 30.7 33.1
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In the SEVE dataset, special vehicle targets vary greatly in scale and there are mostly
small targets. The image background is complex and volatile, and it is difficult to distinguish
the targets into the background, and some targets are also obscured, which brings some
difficulty to the detection. The improved network in this paper has significant accuracy
advantages compared with other mainstream target detection algorithms. The method in
this paper achieves the best results on the SEVE dataset with 80.1%, which is 4.4% higher
accuracy compared to YOLOV7; meanwhile, the mAP is 14.8%, 11.7%, 9.9%, and 8.7%
higher compared to four target detection algorithms, namely Faster R-CNN, RetinaNet,
YOLOV4, and YOLOV5, respectively; although the YOLOv7 and YOLOv5 detection speeds
are close to that of YOLO-GNS, the mAPs are all lower than the methods in this paper.
Owing to GhostNet applied in the backbone section, the parameters of YOLO-GNS are
reduced by 6.2M. In the case of low differentiation of YOLO series backbone networks, the
mAP of this paper’s method is higher and the detection speed is faster, which indicates that
this paper’s method makes up for the difference of backbone networks and reflects greater
advantages. Due to the reconstructed backbone network and the parallel SSH context
network that makes the network structure of this paper in the case of increasing complexity,
the detection speed is not reduced and can meet the needs of engineering applications.

The detection results of YOLOV7 and this paper’s method YOLO-GNS are shown in
Figures 13–15. Column (a) shows the recognition results of the YOLO-GNS network, and
column (b) shows the recognition results of the original YOLOV7 network. A comparison
of the results of the two networks shows that the YOLO-GNS network in this paper has
improved accuracy in terms of bounding box and category probabilities. On the other
hand, the recognition of special vehicles, such as cranes, loader cars, tank cars, mixer cars,
forklifts, and excavators, and their differences from ordinary vehicles are improved in the
proposed model.

  
(a) (b) 

Figure 13. Recognition results in crowded environments of SEVE Dataset. (a) Recognition results of
the YOLO-GNS network; (b) Recognition results of the YOLO-V7 network.
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(a) (b) 

Figure 14. Recognition results in complex background of SEVE Dataset. (a) Recognition results of the
YOLO-GNS network; (b) Recognition results of the YOLO-V7 network.

In Figure 13, it is shown that in crowded environments such as cities and roads, YOLO-
GNS can identify obscured special vehicles and does not cause false detections, while
YOLOV7 produces false detections and missed detections and has lower class probability
values than the modified model. In Figure 14, it is shown that YOLO-GNS distinguishes
special vehicles from ordinary vehicles by extracting smaller and more accurate features in
environments with camouflage characteristics, such as construction sites, and can identify
special vehicles that are highly similar to the background. In Figure 15, it is shown that
the YOLO-GNS network is able to identify different special vehicle types in complex and
challenging conditions under poor lighting conditions and bad weather, while the original
YOLOV7 model would show quite a few missed and false detections. In conclusion,
the YOLO-GNS proposed in this paper is able to identify targets with a high prediction
probability under a variety of complex scenarios. In some cases, the base model YOLOV7
cannot accurately identify special vehicles, or it has a lower probability than YOLO-GNS.
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(a) (b) 

Figure 15. Recognition results in adverse light environment of SEVE Dataset. (a) Recognition results
of the YOLO-GNS network; (b) Recognition results of the YOLO-V7 network.

3.3.2. Experiments on COCO Datasets

The evaluation metrics are mAP0.5, mAP0.75, and mAP0.5:0.95. mAP0.5 and mAP0.75
are the average accuracy of all target categories calculated at IOU thresholds of 0.5 and 0.75.
mAP0.5:0.95 is the average accuracy of 0.5 to 0.95 at 0.05 intervals of 10. mAP0.5:0.95 is the
average accuracy at 10 threshold values from 0.5 to 0.95 at 0.05 intervals.

As shown in Table 2, the experimental data show that the method in this paper also
works well on the COCO dataset. The mAP0.5:0.95 is improved by 0.1% for YOLO-GNS
compared to the original method with a similar speed. The mAP0.5 of YOLOV4 reaches
65.7% under this dataset; the mAP0.5 of YOLOV5-X is 68.8% under this dataset, but both
networks are based on Darknet and its improvements with complex structures, and the
detection speed is slightly lower than that of the present method. YOLO-GNS has 0.2%
lower mAP0.75 than YOLOV7 on the COCO dataset but 0.1% higher mAP0.5; YOLO-GNS
has improved detection speed and higher mAP than YOLOV4 and YOLOV5-X methods,
indicating that the method in this paper is still effective on the public dataset COCO.
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Table 2. Experimental results on coco dataset.

Methods Backbone mAP0.5:0.95 mAP0.5 mAP0.75

Faster-RCNN ResNet50 36.2 59.2 39.1
RetinaNet ResNet50 36.9 56.3 39.3
YOLOV4 CSPDarknet-53 43.5 65.7 47.3

YOLOV5-X Modified CSP v5 50.4 68.8 -
YOLOV7 E-ELAN 51.4 69.7 55.9

YOLO-GNS GhostELAN 51.5 69.8 55.7

3.3.3. Ablation Experiment

Ablation experiments were conducted on the SEVE dataset to verify the effect of
different network structures on the final detection results, and the experimental results are
shown in Table 3.

Table 3. Results of ablation experiments.

Methods Backbone GhostNet SSH mAP@0.5(%)

YOLOV7 E-ELAN × × 75.7
YOLOV7 E-ELAN × √

78.9
YOLOV7 E-ELAN

√ × 79.2
YOLOV7 E-ELAN

√ √
80.1

“×” means no addition, “
√

” means addition.

With the addition of GhostNet in YOLOV7, the mAP value is improved by 3.5%.
GhostNet forms the backbone network by forming GhostMP and GhostELAN modules,
which has the advantages of maintaining the recognition performance of similarity and
reducing the convolution operation at the same time and continuing to effectively increase
the exploitation of feature maps, which is beneficial to the recognition of small targets. The
addition of SSH structure in YOLOV7 improves the mAP value by 3.2%. SSH contextual
network structure incorporates more concrete information and enhances the recognition of
multiple details of special vehicles by increasing the perceptual field of the features, thus
improving the detection performance. After adding both GhostNet and SSH structures
in YOLOV7, the AP increases by 4.4%, further demonstrating that GhostNet and SSH can
improve detection accuracy.

4. Discussion

The evaluation metrics examined in this study were AP and mAP. In the modified
network, the values obtained from these criteria were as follows. The AP of cranes was
85.9%, the AP of loader cars was 86.9%, the AP of tank cars was 89.4%, the AP of mixer cars
was 91.3%, the AP of forklifts was 90.1%, the AP for piling machines is 89.6%, the AP for
road rollers is 69.5%, the AP for elevate cars is 67.3%, and the AP for excavators is 50.8%.
Based on the basic results of the YOLOv7 network, it can be said that the proposed network
has improved on average by 4.4% in accuracy and 1.6 in FPS, indicating that the improved
network has improved speed to some extent with improved accuracy.

In recent years, the employment of artificial intelligence and deep learning methods
has become one of the most popular and useful approaches in object recognition. Scholars
have made many efforts to better detect vehicles in the context of UAV observations.
Jianghuan Xie et al. proposed the residual feature enhanced pyramid network (RFEPNet),
which uses pyramidal convolution and residual connectivity structure to enhance the
semantic information of vehicle features [16]. One of the problems of these studies is
the inability to detect small vehicles over long distances. Zhongyu Zhang et al. used
a YOLOv3-based deep separable attention-guided network (DAGN), improved the loss
function of YOLOv3, and combined feature tandem and attention blocks to enable the
model to distinguish between important and unimportant vehicle features [19]. One of
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the limitations of this study is the lack of types of vehicles and the lack of challenging
images. Wang Zhang et al. helped the feature pyramid network (FPN) to handle the scale
variation of vehicles by using the multi-scale feature adaptive fusion network (MSFAF-
Net) and the region attention-based three-headed network (RATH-Net) [20]. However,
the study did not address the crowded background images, hidden regions, and vehicle
target-sensor distance, etc. Xin Luo et al. constructed a vehicle dataset for target recognition
and used it for vehicle detection by an improved YOLO [21], but the dataset did not include
special vehicles.

Previous research has focused on general vehicle detection, with a few studies examin-
ing the identification of different types of vehicles. In addition, the challenges of specialty
vehicle identification, such as the small size of vehicles, crowded environments, hidden
areas, and confusion with contexts such as construction sites, have not been comprehen-
sively addressed in these studies. Thus, it can be argued that the unauthorized presence of
specialty vehicles in challenging environments and the inaccurate identification of sensitive
infrastructures remain some of the most important issues in ensuring public safety. The
main goal of this study is to identify multiple types of specialty vehicles and distinguish
them from ordinary vehicles at a distance, despite challenges such as the small size of
specialty vehicles, crowded backgrounds, and the presence of occlusions.

In this study, the YOLOV7 network was modified to improve the challenges of spe-
cialty vehicle identification. A large number of visible images of different types of special
vehicles and ordinary vehicles at close and long distances in different environments were
collected and labeled to identify multiple types of special vehicles and distinguish them
from ordinary vehicles. Considering the limited computational power of the airborne
system, GhostNet is introduced to reduce the computational cost of the proposed algorithm.
The proposed algorithm facilitates the deployment of airborne systems by using linear
transformation to generate feature maps in GhostNet instead of the usual convolutional
computation and requires less FLOP. On the other hand, the SSH structure is shown to
have the ability to improve the detection accuracy of the algorithm. The context network
is able to compute the contexts of pixels at different locations from multiple subspaces,
which facilitates YOLO-GNS to extract important features from large-scale scenes. For
example, in Figure 13, there are examples of special vehicles that the basic model cannot
recognize in some cases. However, the modified model is able to recognize them; moreover,
in other cases, they operate with lower accuracy than the modified network. This result
indicates that the current network has improved in identifying special vehicles compared
to the basic network. By applying these changes in the network structure and using a wide
range of data sets, the proposed method is able to identify all specialty vehicle types in
challenging environments. In Figures 14 and 15, examples of difficult images and poor
lighting conditions are provided, all of which have higher recognition accuracy in the
modified network than in the basic network.

5. Conclusions

As already pointed out, specialty vehicle recognition in various scenarios is a complex
process; the usual approaches and even traditional deep learning network methods do
not work well in some cases. When using UAVs to detect small or obscured specialty
vehicles from large-scale scenes, both detection accuracy and computational consumption
need to be considered. In this work, we propose a novel UAV-based algorithm for special
vehicle target detection that enhances feature extraction while optimizing the feature fusion
computation. A dedicated dataset of 17,992 UAV image datasets including multiple types
of special vehicles is introduced, and extensive comparative experiments are conducted to
illustrate the effectiveness of the proposed algorithm. The results show that the AP and FPS
are improved by 4.4% and 1.6, respectively, compared to the primary YOLOv7. It can be
demonstrated that the algorithm provides a single optimal solution for UAV-based target
detection in the field of special vehicle identification. In the next work, the special vehicle
detection method with visible and infrared fusion will be investigated.
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