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1. Introduction

The world has witnessed the rapid development of autonomous marine vehicles,
such as surface vehicles and underwater vehicles, which have created fruitful innovative
approaches to previously unsolvable problems in marine and ocean engineering [1,2]. In
practice applications, single-vehicle operations inevitably face many difficulties and chal-
lenges, such as non-linearity, strong coupling, multi-inputs/multi-outputs, uncertainties
and multi-constraints. In addition, the information interaction-based swarm system has
complicated dynamics, such as high state dimensions and complicated connection topology,
thus leading to great challenges for autonomous operations. At present, the main subjects
for autonomous marine vehicle operations can be divided into perception, decision making
and control. In this context, this Special Issue “Autonomous Marine Vehicle Operations”
has been launched, including 11 selected hot topics.

Perception is the essential precondition for autonomous and intelligent operations [3,4].
Environment information with high precision is difficult to obtain by a single sensor. In this
context, multi-sensor fusion-based perception technology receives more attention. All kinds
of sensors are used to realize multi-level and multi-spatial information complementation
and optimal combination, thus generating the consistency explanation for the observation
environment. With the challenges of complicated marine environments, such as ocean
disturbances, uneven illumination and non-significant targets, the vehicles need to realize
information fusion of the appointed target based on the typical attributes of each sensor.
The system navigation unit and electronic chart are utilized to build a multi-dimensional
tridimensional situation picture of the task environment, contributing to the tasks of
target tracking, target detection, target recognition and cognition. For example, in [4], a
space-scale attention-based context-aware detection network model is proposed to realize
marine multi-scale target detection and recognition. In [5], considering the distributed
multi-platform data fusion, by utilizing the Dempster–Shafer evidence theory to analyze
multi-source information, the confidence conflict of different information sources during
information fusion is addressed successfully.

Decision making is at the core of autonomous and intelligent operations [6,7]. Un-
der complicated marine environments, obtaining effective information and generating
feasible control commands face great challenges. According to the differences in control
objectives and spatial constraints, the main results of single-vehicle decision making in-
clude target tracking, path following and trajectory tracking, where light-of-sight guidance,
backstepping and artificial potential field are widely utilized [8,9]. The main results of
swarm decision making include cooperative target tracking, cooperative path following
and cooperative trajectory tracking, where leader following and graph theory are widely
employed [10]. Considering operation environments and operation constraints, marine
vehicles are allocated one or more tasks in order during decision making. And the objective
is to optimize the system task efficiency in terms of task types, spatial constraints and
system performance [11]. In this context, the allocation model and the allocation algorithm
are available, where the former transforms the allocation problem to the multi-traveling

J. Mar. Sci. Eng. 2024, 12, 355. https://doi.org/10.3390/jmse12020355 https://www.mdpi.com/journal/jmse1



J. Mar. Sci. Eng. 2024, 12, 355

salesman or mixed integer linear programming, and the latter is responsible for obtaining a
solution based on the Hungarian algorithm, ant colony algorithm, game theory, Bayesian
theory, auction algorithm, etc.

Control is utilized to stabilize and control the system attitude, forcing vehicles to
accomplish the desired command generated by decision making [12]. According to the
differences in solving disturbances, the main results include passive anti-disturbance
control and active anti-disturbance control. The former depends on the inherent robustness,
such as adaptive control, sliding mode control and model predictive control, etc. And the
latter is also called disturbance observation-based control, where the unknown disturbance
is approximated by the approximator/observer and then applied to the feedback controller
as the feedforward compensation. The main types of observation-based control include
neural network approximators, fuzzy logic systems and normal model-based observers.
For example, in [13], the radial basis function neural network-based finite-time controller is
designed. In [14], the fixed-time disturbance observation-based terminal synovial controller
is proposed, reducing the time of disturbance estimation efficiently. In [15,16], based on
the form of differential inclusion, a finite time observer is designed to compensate system
unknowns and time-varying disturbances exactly. In [17], the active anti-disturbance
controller is developed by combining a fuzzy logic system and speed error-based prediction,
guaranteeing that the desired command can be tracked accurately despite the existence of
unknown dynamics.

2. An Overview of Published Articles

This Special Issue focuses on autonomous marine vehicle operations under complex
ocean environments and contains 12 published articles. The main contributions are as follows.

In contribution 1, considering the influence of situational static loads and varying
hydrodynamic forces during high-speed movement, a novel S-plane controller is devel-
oped for an underwater vehicle by using a sliding mode variable structure. Prototype
experiments including cruise control and path-following control are successfully carried
out, thereby demonstrating the superiority of the S-plane controller and enriching our
motion control technology for marine vehicles.

In contribution 2, to enhance the identification accuracy of underwater objectives under
the complex environment, an accurate identification and detection method is employed
using the sizeable convolutional-network-based You-Only-Look-Once (YOLO) algorithm.
With the aid of the improved YOLO network, the problem of low image quality and dense
objectives is well alleviated. The proposed network model can provide effective guidance
for the intelligent aquaculture of fishes.

In contribution 3, two key problems including path planning and tracking control
of USVs are considered. Within the planning module, a safe and optimal path can be
generated using rapidly exploring randomized trees. Within the control module, an active
anti-disturbance controller is designed for unmanned vehicles with unknown dynamics. In
addition, considering the potential occurrence of thruster failures, different fault-tolerant
schemes are developed based on the neural-network-based model predictive control. The
proposed path planning and control methods can guide obstacle avoidance for marine
vehicles in faulty conditions.

In contribution 4, an automatic alignment approach of an underwater charging system
is employed with the aid of monocular vision recognition, where the vehicle number can be
identified, guiding the charging pile to accurately insert into the charging port of the vehicle.
To enhance the accuracy and robustness of decoding, this research proposes a redundant
information-based encoding and ArUco code reconstruction approach. In addition, the
target position can be determined, thereby overcoming the difficulty of an underwater
two-dimensional location and meeting the accuracy requirements for alignment.

In contribution 5, considering the complexities of the maritime environment and the
non-holonomic characteristic of the operation system, a novel path planning method for
surface vehicles is creatively established, consisting of an optimization model, a meta-
heuristic solver, and a Clothoid-based path connector. By virtue of the proposed path
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planner, a path with both optimally safe and quick convergence can be generated, enhancing
its adaptability to time-varying environments. Compared with the existing results, this
study guarantees the continuity of paths and the consistency of planners and controllers,
solving the non-holonomic limitations.

In contribution 6, an underwater object detection model is developed for underwater
unmanned vehicles by using a mobile vision transformer and YOLOX, providing a good
balance between accuracy and memory. In addition, the double coordinate attention
strategy with fewer parameters is built to strengthen the ability of extracting data from
difficult objectives. This study is beneficial for underwater vehicles to identify small and
difficult targets in water.

In contribution 7, to enhance the hydrodynamic performance of the underwater
vehicle, the steady-stream (SS) active flow control (AFC) method is employed via numerical
calculation. The mechanism of the SS-AFC influencing the lift-to-drag performance is
revealed in terms of the flow field, contributing to operations of underwater vehicles with
large angles of attack. This proposed method improves the hydrodynamic performance of
the vehicle, thus guaranteeing vehicle stability, maneuverability and safety.

In contribution 8, a swarm key node identification method is developed using network
structure entropy to address the critical identification of underwater vehicles. The network
structure of multiple vehicles is built using the motion similarity model and the information
entropy of swarm nodes is solved by the aid of the weighted network structure entropy
method. Simulation and lake experiments are carried out, where the time-varying trajectory
of the swarm and the importance ranking of the swarm nodes can be successfully calculated.
This research provides a valuable reference for underwater cluster countermeasures.

In contribution 9, a dynamic data-driven operation system is employed, effectively
overcoming the difficulties of high-resolution and accurate flow field forecast in ocean
environments. The neural network structure is developed using information extracted
from historic flow data, thereby enhancing the flow forecast performance. In addition, the
Kalman filter is applied to assimilate spatially correlated flow-sensing data from vehicles,
thereby enabling efficient learning and accurate flow forecasts. This study offers a feasible
solution to high-resolution and accurate flow field forecasts in practice engineering.

In contribution 10, an accurate path-following controller including kinematics and
dynamics is developed for an unmanned surface vehicle suffering from system uncertainties
and wind, wave and current disturbances. At the kinematics level, the desired guidance
signals can be generated by the proposed surge-heading joint guidance method. At the
dynamics level, the deep-reinforcement-learning-based surge and heading control laws
are designed using the error feedback between the actual and desired signals. In addition,
actor networks and critic networks are established by utilizing the long-short time memory
network, helping the vehicle to take advantage of historical data. This study provides an
optional plan for path-following operations of surface vehicles.

In contribution 11, the hydrodynamic interaction between the underwater vehicle and
the submarine is studied using computational fluid dynamics, where the two systems are
defined as relatively static states. Simulation tests show that, in the recovery phase, the
submarine appreciably affects the velocities and relative attitudes of underwater vehicles.
This research offers a valuable reference for submarine recovery operations involving
underwater vehicles in terms of stability, safety and efficiency.

In contribution 12, aiming at small target detection on water surfaces using cameras in
complex environments, a novel millimeter-wave radar-based visual detection technology is
developed, achieving robust coordination of radar data and images in the presence of inac-
curate extrinsic parameters. Note that the developed technology has lower computational
complexity and has been successfully applied in practical engineering. And the results
show that the proposed target detection technology has obvious advantages compared
with the existing work.
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3. Conclusions

This Special Issue delves into the forefront of autonomous marine vehicle operations
in terms of perception, decision making and control. Within the perception community of
surface and underwater vehicles, an improved YOLO mode for identification and a mobile
vision transformer-based object detection model are developed under the complex envi-
ronment, alleviating the situation of low-quality underwater images and dense objectives.
Within the decision-making community of vehicles, with the aid of geometric optimiza-
tion, several path planning methods have been successfully developed, guaranteeing path
continuity and reliable coordination. Within the control community, improved S-plane
and reinforcement-learning-based dynamic control is proposed for underactuated systems
suffering from model uncertainties and environment disturbances, achieving accurate path
following and motion control. Additionally, this Special Issue explores the hydrodynamic
interaction of the submarine and the underwater vehicle by using computational fluid
dynamics, providing a valuable reference for submarine recovery operations. The current
studies presented in this Special Issue should not only be considered as the results of an
investigation accomplished by the respective scholars, but as a starting point, encouraging
readers to continue with new studies.
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Abstract: Unmanned surface vehicles (USVs) have wide applications in marine inspection and moni-
toring, terrain mapping, and water surface cleaning. Accurate and robust environment perception
ability is essential for achieving autonomy in USVs. Small object detection on water surfaces is
an important environment perception task, typically achieved by visual detection using cameras.
However, existing vision-based small object detection methods suffer from performance degradation
in complex water surface environments. Therefore, in this paper, we propose a millimeter-wave
(mmWave) radar-aided vision detection method that enables automatic data association and fusion
between mmWave radar point clouds and images. Through testing on real-world data, the proposed
method demonstrates significant performance improvement over vision-based object detection meth-
ods without introducing more computational costs, making it suitable for real-time application on
USVs. Furthermore, the image–radar data association model in the proposed method can serve as a
plug-and-play module for other object detection methods.

Keywords: unmanned surface vehicle; object detection; visual–radar fusion

1. Introduction

In recent years, unmanned surface vehicles (USVs) have been gradually used in
various fields, such as autonomous surface transportation [1], water quality testing [2],
autonomous surface cleaning [3], etc. To ensure that USVs complete their tasks safely
and intelligently, an excellent and robust perception system is essential. Among all the
perception tasks, object detection plays an important role in both safe navigation and
special task completion, and small object detection causes the most challenges, for example,
the small reefs and other small obstacles that may affect USVs or small floating wastes that
a cleaning USV needs to collect.

Recent development in computer vision makes vision-based object detection one of the
most cost-effective solutions for the detection system of USVs. However, for vision-based
small object detection on water surfaces, many can be missed and falsely detected due to
the water surface environments. For vision-based small object detection on water surfaces,
on the one hand, as the sky and water surfaces occupy the most area of the image, the
reflection of sunlight may cause overexposure. The small objects can be shaded by the halo
or fused with the background, which can cause miss detection. Besides, the reflection of
objects in the surrounding environments also disturbs the detection system and causes
false detection. In addition to the camera, LiDAR is also widely used for object detection
as it can provide precise location and shape information of the objects [4]. However, for
the small object detection on water surfaces, for LiDAR with a low number of beams, the
possibility of LiDAR beams falling on small objects is low and the objects might be unstable
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in sequential frames. In addition, dense fog is easy to appear on the water surface, which
can disturb the propagation of LiDAR and lead to more clutter points [5].

With the development of integrated circuits, the low-cost single-chip 77 GHz millimeter-
wave (mmWave) radar is gradually used in autonomous vehicles and mobile robots recently.
The mmWave radar can provide measurements of the range, azimuth, and Doppler velocity
of the objects. Besides, benefiting from the inherent propagation characteristics of 77 GHz
electromagnetic wave, the mmWave radar shows better robustness to harsh weather condi-
tions and lighting conditions compared to camera and LiDAR [6] and can be used during all
types of weather and all day. Despite this, there are still some challenges in using mmWave
radar for small object detection on water surfaces. The angular resolution of mmWave
radar point clouds is relatively low and the points of the objects are usually more sparse [7].
Furthermore, the semantic information of mmWave radar point clouds is often insufficient,
making it difficult to accurately discern the types of targets.

Therefore, for small object detection on water surfaces, vision and mmWave radar
data complement each other effectively, and fusion of vision and radar can improve the
detection performance. Compared to other levels of fusion, decision-level fusion has greater
robustness and adaptability, and the fused results are also more interpretable. However,
there are two challenges in the decision-level fusion of camera and radar in USVs scenes:

• Extrinsic Calibration. To perform decision-level fusion, the spatial relationship be-
tween the mmWave radar and camera needs to be found, which is referred to as
extrinsic calibration. Due to the characteristics of glittery and sparsity of mmWave
radar point clouds, extrinsic calibration between mmWave radar and cameras typically
requires specific markers, and the calibration process is usually complex. Current
extrinsic calibration is mainly conducted offline with human assistance. However,
the positions of sensors on the platform may change due to vibrations, shocks, or
structural deformations of USVs, leading to some degree of variation in the extrinsic
parameter between the mmWave radar and the camera.

• Data association. Traditional methods tend to manually craft various distance metrics
to represent the similarities between vision and mmWave radar data. However, these
manually crafted metrics are not adaptable when the data from different sensors
degrade, and setting the parameters is also challenging.

In this paper, we propose a water surfaces small object detection method based on the
decision-level fusion of vision and mmWave radar data. Compared to traditional methods,
the proposed method has the following advantages: (1) With an initial offline calibrated
extrinsic parameter, the proposed method is adapted to changes in extrinsic parameters
to some degree during USVs’ online operation; (2) The method has lower computational
complexity and can run in real time on embedded systems; (3) The method achieves a
higher detection accuracy in the water surface small object detection task.

The contribution of this paper mainly lies in the following aspects:

• We propose a new mmWave radar-aided visual small object detection method.
• We propose a new image–radar association model based on the metric learning model,

which can achieve a robust association of mmWave radar data and images with
inaccurate extrinsic parameters to some degree.

• We test the proposed method on real-world data, and the results show that our method
achieves significantly better performance than current vision detection methods.

The detailed composition of this paper is listed as follows. In Section 2, we discuss the
related works, including object detection on water surfaces and the visual–radar fusion-
based detection method. In Section 3, we introduce the proposed mmWave radar-aided
visual small object detection method in detail. Section 4 gives the results of experiments
based on real-world data. Finally, Section 5 concludes this paper.
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2. Related Works

2.1. Object Detection on Water Surfaces

Attention from researchers has been paid to object detection on water surfaces.
Hammedi et al. [8] proposed a relevant dataset for inland water navigation that con-
tains categories of riverside, vessel, person, etc. Moosbauer et al. [9] proposed a benchmark
for object detection in maritime environments based on the Singapore Marine Dataset [10]
to support relevant research. Vision-based detection methods are the ones that are mainly
used for water surface object detection. For example, the method proposed in [11] is based
on MobileNet for feature extraction and SSD for fast multi-scale detection to achieve real-
time marine object detection of high-speed USVs. Zhang et al. [12] proposed a method for
marine object detection and tracking based on improved YOLOv3 and used their method
on a real USV experiment platform. The authors of [13] fused DenseNet in YOLOv3 for
robust detection of marine objects under various weather conditions.

The vision-based methods for object detection on water surfaces are easily disturbed
by weather and lighting conditions. Besides, the methods mainly aim at detection and
cannot provide relative location information of the object. Therefore, methods based
on the fusion of LiDAR data and images are proposed to improve detection accuracy
and support object localization. Wu et al. [14] proposed a 3D object detection method
based on the fusion of image and LiDAR point cloud for USVs in marine environments.
They used a two-stage network which contains the proposal generation network and the
deep fusion detection network. Cardillo et al. [15] analyzed the detection performance of
radars with different frequency bands for USVs obstacle avoidance tasks, providing a
valuable reference for the perception applications of mmWave radar in USVs. Im et al. [16]
conducted object detection and tracking in USVs using frequency-modulated continuous
wave (FMCW) radar with improved density-based spatial clustering of applications with
noise (DBSCAN). Ha et al. [17] achieved autonomous obstacle avoidance tasks of USVs
based the on marine radar. Stanislas et al. [18] utilized the fusion of LiDAR point clouds,
camera, and 2D sparse radar point clouds for robust detection and classification in marine
environments. The fusion-based methods can provide location information of the object
in addition to object detection.

Current water surface object detection research mainly aims at maritime object detec-
tion. The objects are mostly vessels and other objects which are relatively big. However, for
USVs, there are many other small objects that may cause dangers, such as small fountain
nozzles, or are the searching targets of USVs, such as floating wastes. Besides, the Lidar
that can be applied to complex water body environments is relatively expensive.

2.2. Visual–Radar Fusion Detection

Using solely visual information for object detection is susceptible to the influence
of factors such as weather conditions, lighting, and object motion, which can result in
detection errors and unreliability. In contrast, mmWave radar offers robust localization
and velocity information for objects even in adverse weather conditions. Consequently,
the fusion of visual and radar modalities, known as camera–radar fusion detection, has
garnered increasing attention in the field of computer vision in recent years. Various fusion
methods have been proposed to combine the strengths of camera and radar modalities and
achieve improved detection performance in diverse scenarios. Based on the fusion stage
within the network, the fusion methods of camera and radar can be broadly categorized as
data-level fusion, feature-level fusion, and decision-level fusion. Data-level fusion [19–21]
integrates raw or preprocessed data from radar and camera sensors at the early stages of
deep learning models. Such methods necessitate addressing the correspondence between
the camera and mmWave radar data, often requiring object matching or association op-
erations. Long et al. [19] introduced Radar-Camera Pixel Depth Association (RC-PDA),
which enhances and densifies radar images by associating radar point clouds with nearby
image pixels. This approach resolves the challenge of associating radar point clouds with
image pixels. Nobis et al. [20] input cascaded camera and radar point clouds into a network
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and extract features from the combined data using VGG [22]. However, data-level fusion
methods typically impose high computational complexity and real-time requirements due
to the potential disparate update rates between the camera and mmWave radar data.

Feature-level fusion [23–27] combines features extracted from radar data and camera
images at the intermediate stages of deep learning-based fusion networks. Leveraging
the distinct characteristics and advantages of these two sensor types, fusing their features
provides a more comprehensive description of target objects. Chadwick et al. [24] proposed
generating image and radar features separately using ResNet [28] and subsequently fusing
them through concatenation and addition operations. Li et al. [25] introduced a feature
pyramid layer attention module that integrates radar information, extending the feature
pyramid module through the input interface of radar-projected images and attention
modules. Nevertheless, feature-level fusion methods face challenges in striking a balance
between fusion and aligning different sensor features.

Decision-level fusion [29] entails conducting separate object detection using camera
and radar, followed by combining their results through weighted averaging or voting to
obtain a comprehensive outcome. By amalgamating detection results from multiple sensors,
the reliability of object detection experiences significant improvement. Jha et al. [29] em-
ployed YOLOv3 [30] as the image detector, projecting radar-detection results onto the image
plane using transformation matrices, and subsequently aligning independently detected
objects from the two sensors. Compared to the first two fusion methods, decision-level
fusion exhibits greater robustness and adaptability, facilitating adaptive adjustments based
on real-world scenarios and requirements. However, decision-level fusion encounters
challenges associated with data inconsistency.

The existing methods primarily focus on road scenes, where visual information plays
a dominant role and radar information serves as a supplementary source. However, the
water surface environment is considerably more complex, characterized by water reflections
and a prevalence of small objects. Relying predominantly on visual information in such
scenarios can lead to a higher rate of false detections. Currently, there are limited camera–
radar fusion methods specifically designed for water surface detection. Only RISFNet [23] has
been proposed, which maps radar point clouds onto the image plane. It incorporates global
attention and self-attention mechanisms to achieve deep multi-scale feature fusion between
the two sensors, demonstrating robustness in detecting small objects on the water surface.
Nevertheless, feature-level fusion alone fails to address the issue of unreliable camera sensors,
and RISFNet heavily relies on accurate extrinsic parameters between radar and camera.

3. Our Method

For the task of small object detection on water surfaces, vision-based detection methods
always generate false detection due to the sunlight reflection and surrounding scene
reflection. The mmWave radar is robust to different lighting conditions but contains limited
semantic information compared to the RGB image, which makes it difficult to distinguish
objects of similar sizes using the radar-based detection method. Besides, the radar-based
detection method may generate false detection on water surfaces due to the water clutter.
Therefore, to improve the accuracy and robustness of small object detection on water
surfaces, we propose a radar-aided visual small object detection method on water surfaces.

3.1. Network Overview

Due to the inherent shortcomings of camera and radar sensors, in the water surface
small object detection task, both vision-based and radar-based detection methods have
false detection. However, the reasons that the two sensors generate false detection are
different, and the statistical probabilities of error occurrence in detection methods based on
the two sensors are also independent. Hence, we adopt a detection method based on the
decision-level fusion of vision and radar data. The visual object detection results are gained
first, and then the detection results are associated with radar data to reduce false detection.
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However, for the decision-level fusion method, the spatial position correlation of
different sensors is of vital importance and acquires accurate extrinsic parameters. Due to
the sparse and glittery characteristics of mmWave radar point clouds, corner reflectors or
LiDAR are usually needed as the auxiliary in the extrinsic calibration between radar and
camera, which involves complex calibration procedures [31]. For the applications of USVs,
there can be certain variations in the extrinsic parameters between the radar and camera
due to vibrations, shocks, or structural deformations of USVs during operations. In this
case, we propose a new image–radar association model based on the metric learning model.
By training the model using data based on the provided initial extrinsic parameters, the
model is adaptable to variations in extrinsic parameters in practical application.

As shown in Figure 1, there are two main stages in the proposed radar-aided visual
small object detection method: the detection stage and the association stage. Next, we will
introduce more details about the two stages.

✖

✖

✖

✖
✖ ✖

✖

Figure 1. The architecture of the proposed method.

3.2. Detection Stage

The detection stage includes a vision-based detection model and a radar-based detec-
tion algorithm. We adopt YOLOv5-l [32] as the vision-based model. YOLOv5-l shows good
performance in visual object detection tasks and it is a lightweight model which can carry
out real-time inference in an embedded system.

3.2.1. Vision-Based Detection

To make the object detection model specialize on our fusion algorithm, we modify the
original YOLOv5-l [32] as the vision-based model. As our fusion detection algorithm can
remove the false positive detection results efficiently through the radar-detection results
and vision detection results, we need to generate more detection results to improve the
recall rate of the vision-based model. The framework of enhanced YOLOv5-l is illustrated
in Figure 2. We adjust the prediction head of YOLOv5-l using a double prediction head
and transformer decoder module, then we will introduce the architecture of the prediction
head in detail.

(1) Double prediction heads. YOLOv5 object detector uses a single prediction head
to predict the location and classification of the detected bounding box at the same time.
In our vision-based model, we design a double prediction head including a classification
head and location regression head to predict, respectively, the location and classification of
objects. Independent double prediction heads will benefit from searching both the location
and classification of objects. While we utilize the full connection (FC) layer to obtain more
semantic information about objects in the classification head, we obtain the position of
detection objects in the location regression head.

(2) Transformer decoder module. Inspired by the vision transformer [33], we use
a transformer decoder module to replace the convolution blocks in the prediction head.
Compared with convolution operation, the transformer decoder module can capture global
information and abundant contextual information. Each transformer decoders contain a
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multi-head attention layer and a fully-connected layer. Furthermore, there are residual
connections between each sublayer. As the prediction head is at the end of the network
and the feature map has low resolution, applying a transformer decoder module in a low-
resolution feature map explores the feature representation potential with a self-attention
mechanism and enlarges the receptive field of the prediction head with low computation
and memory cost.

Figure 2. The framework of enhanced YOLOv5-l.

After applying the vision-based detection model to an RGB image, the image anchors,
expressed as B1, B2, . . . , Bm, where m denotes the number of image anchors, are extracted.
Each image anchor B contains four parameters, including the u-axis position, v-axis posi-
tion, box width, and box height in the u-v image coordinate system. Therefore, for each
image, the output size in the detection stage is m × 4.

3.2.2. Radar-Based Detection

A mmWave radar system senses its surroundings by transmitting and receiving FMCW
signals. The transmitted and reflected signals are mixed using a frequency mixer to obtain
beat signals. Then, 1D (range) Fast Fourier Transformation (FFT) and 2D (velocity) FFT
are applied to the sampled beat signals along the fast time and slow time, respectively,
resulting in the well-known range–Doppler matrix (RDM). The cells with strong energy in
the RDM are detected as targets. The most commonly employed detector for FMCW signal
processing is the constant false alarm rate (CFAR) detector, which adaptively estimates the
noise level based on nearby cells relative to the cell under test. After detection, the direction
of arrival (DOA) is estimated for each detected target using signals from multiple antennas.
Consequently, we obtain what is referred to as 4D radar point clouds, representing various
detected targets with distinct 3D positions and Doppler velocities. The illustration of the
radar signal processing chain is shown in Figure 3.

For radar-based detection, we use the spatial information of mmWave point clouds
and the size of the input radar point cloud is N × 3, where N denotes the number of radar
points in the current frame and each point contains three coordinates information x,y,z.
The radar point clouds are clustered into groups and the discrete radar clutter points are
also removed using DBSCAN [34]. The point clouds are divided into n clusters C1, C2, . . .,
Cn, where n denotes the number of radar point clusters. Then, we use the farthest point
sampling (FPS) [35] to sample the point clouds of each group Ci into a fixed number 32.
Therefore, the final size of outputs of radar-based detection is n × 32 × 3.

Through the detection stage, the vision-based and radar-based detection results are
gained. Then, the detection results are sent to the fusion association stage to generate fusion
detection results.
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Figure 3. Illustration of the radar signal processing chain.

3.3. Fusion Association Stage

The fusion association stage extracts image feature vectors from object detection
bounding boxes in the image plane and extracts radar feature vectors from radar point
clouds. The image features can represent the position and size of detection-bounding
boxes of corresponding objects in the image plane. The radar feature contains the spatial
information of objects in the radar coordinate system as well as the shape information
of objects. Therefore, by measuring the similarity between image and radar features,
the association of vision and radar-detection results can be achieved. The Hungarian
algorithm [36] is used for matching image and radar data according to the L2 distance
between two feature vectors. Thus, an end-to-end spatial correlation between image and
radar data can be achieved without the extrinsic parameter calibration procedure.

Next, we will introduce the radar and vision feature extraction model in detail. For
a frame of RGB image, m bounding boxes are generated from the detection stage and the
size of each bounding box is 1 × 4. We use the multi-layer perception (MLP) to extract the
image feature Fimg whose size is m × 16 from each vision detection result Bi:

Fimg = {Fimgi
|Fimgi

= MLP(Bi), i = 1, 2, ..., m}, (1)

where Fimgi
is the feature tensor of ith vision detection result Bi.

A frame of radar data contains n point cloud groups and the output size of the radar-
detection result is n × 32 × 3, where 32 × 3 denotes each group consisting of 32 points
with each point containing x, y, z coordinates. For radar feature extraction, we adopt
the mini-PointNet [37] architecture, which is a famous method to extract point cloud
features. Through the shared weighted MLPs, the max-pooling, and another MLP, each
point cluster generates a feature of size 1 × 16. The n × 16 radar feature vector of a whole
frame is generated by combining the n cluster features. The radar feature extraction can be
represented as follows:

Fr = {Frj |Frj = MLP
(
maxpool

(
MLP(Cj)

))
, j = 1, 2, ..., n}, (2)

where Frj denotes the radar point cloud feature of the ith cluster.
After obtaining a frame of image feature Fimg and corresponding radar feature Fr,

we compute the L2 distance between each object’s image feature Fimgi
and each object’s

radar feature Frj and obtain a cost matrix of size m × n. Based on the cost matrix, within
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the minimum distance threshold, the matching results are gained using the Hungarian
assignment algorithm.

Through the fusion association stage, the final fusion detection results which contain
the vision-based detection box, object classification result, and the range and azimuth of
the objects can be gained.

3.4. Loss Function

In our method, the detection model and the image–radar association model are trained
separately. The training loss function of vision-based detection model Lvis is the same as
the YOLOv5 object detection model, which is computed as:

Lvis = αb ∗ Lbox + αo ∗ Lobj + αc ∗ Lcla, (3)

where Lbox denotes the location loss, Lobj denotes the confidence loss, and Lcla denotes
the classification loss. The three loss weights αb, αo, and αc are constants. For the training
of the image–radar association model, we choose the triplet loss [38], which is commonly
used as the training loss function in the metric learning. Each training data pair for triplet
loss contains three samples: a vision-based detection bounding box Bi as a base anchor, a
positive radar sample Cj, which is the radar-detection cluster corresponding with Bi, and a
negative radar sample, which is randomly selected from rest of the radar-detection clusters.
The image and radar features are extracted from the training data pair, and the triplet loss
is used to minimize the L2 distance dpos between the image feature and positive radar
feature while maximizing the L2 distance dneg between the image feature and negative
radar feature using:

Ltriplet = max(dpos + dneg + β, 0), (4)

where β is a constant to express the minimum distance loss.

4. Experiment and Evaluation

4.1. Dataset, Evaluation Metric, and Baseline

To evaluate the performance of our method, we use the public FloW-RI dataset [39],
which contains synchronized images and mmWave radar data of floating bottles on water
surfaces. Besides, to test the model’s generalization performance on a broader range of data,
we supplement a new dataset for water surface small object detection using a USV platform
equipped with an RGB camera and a Texas Instruments 77 GHz single-chip mmWave radar
AWR1843. The dataset includes 1600 frames of synchronized RGB images and mmWave
radar point cloud data. The newly added data are shown in Figure 4. Finally, we use
4400 frames of data as the training set and 1200 frames of data as the test set.

To quantitatively evaluate the performance of our method, we use the mean of average
precision (mAP), which is widely used in object detection as the evaluation metric, and
compare the performance of our method with some famous baseline methods in object
detection. For vision-based methods, the YOLO [40] series object detection methods are
widely used in mobile robots due to the high inference speed. Therefore, we choose the
newest YOLOv5-l as one baseline method. Compared to the single-stage object detection
methods, the two-stage methods are usually slower but can achieve a higher detection
accuracy. Therefore, Fast R-CNN [41] and Cascade R-CNN [42] are also selected as baselines
in the experiment. In addition to methods based on the convolutional neural network,
in recent years, methods based on transformers also achieve SOTA performance in some
tasks. Therefore, we also choose the Swin Transformer [43] as one baseline method. For the
mmWave radar-based object detection method, we choose the VoteNet [44] and the method
of Danzer et al. [45] as baselines. In addition, we also compare our method with other
visual–radar fusion-based methods including feature-level fusion method RISFNet [23],
CRF-Net [20], the method in Li et al. [25], and a decision-level fusion method [29].
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Figure 4. Examples of the supplementary data. The blue and red boxes indicate the targets in the image
and radar point cloud respectively. (a,c,e,g) Images; (b,d,f,h) Corresponding radar point clouds.

4.2. Training Details

In our method, the detection model and the image–radar association model are trained
separately. In the training of the vision-based detection model, our model based on PyTorch
implements is pre-trained from the COCO dataset [46] and is trained on an Nvidia GTX
3090 with an initial learning rate set to 10−3 and the momentum of 0.937. The network is
trained for 100 epochs using the SGD optimizer with a batch size of 8 and the mini-batch
StepLR descent algorithm with step-size = 1, gamma = 0.94. Besides, in order to enhance
the performance of the detection model, multiscale data augmentation methods such as
image resizing image placing, color adjustment, and image left-right flipping are used for
the training images. During the training of the image–radar association model, using the
extrinsic parameters provided in the dataset, we generate 4600 pairs of objects’ radar point
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clouds and RGB image bounding boxes to train the metric learning model. The training
implementation of our association network is based on Pytorch and is trained with a batch
size set to 16 and an initial learning rate set to 10−4. We train the image–radar association
model for 200 epochs using an ADAM optimizer with weight decay of 5 × 10−4.

4.3. Quantitative Evaluation

To evaluate the performance of our method, we compared our method with other
baseline methods. All the baselines and our model are trained on the same training set.
As different model training parameters influence the final results, in the experiment, the
training parameters for the baseline models are primarily set by following its recommended
default values with only minor adjustments.

The result in Table 1 shows that, compared with other vision-based baseline methods,
the proposed method achieves better detection accuracy while keeping a relatively low
computation cost. The result in Table 2 shows that our mmWave radar-aided vision
detection method outperforms other radar-based and most visual–radar fusion-based
methods in detection accuracy. Although the RISFNet achieves higher detection accuracy,
it has a higher computation cost and requires accurate extrinsic parameters between the
radar and camera. When the extrinsic parameter is inaccurate, the performance of RISFNet
decreases significantly.

In addition, we also combine our image–radar association model with other vision-
based object detection methods. As shown in Table 3, by directly applying our image–radar
association model, other vision-based methods all achieve obvious improvement in detection
accuracy. As our image–radar association model has low computational complexity and the
inference speed of the image–radar association model is extremely fast with about 280 FPS,
the image–radar association model can also be seen as an independent plug-and-play model
to improve the detection accuracy of the vision-based detection method.

Table 1. Comparison of the detection accuracy using vision-based baseline methods and our method
on the dataset.

Method mAP (IoU = 0.35, %) FPS

YOLOv5-l [32] 74.66 29
Cascade-RCNN [42] 78.36 17

Faster-RCNN [41] 74.34 19
Swin-Transformer [43] 77.33 15

Ours 81.41 29

Table 2. Comparison of the detection accuracy using radar-based and fusion-based methods and our
method on the dataset.

Modality Method mAP (IoU = 0.35, %)

Radar VoteNet [44] 45.24
Danzer et al. [45] 32.65

Vision + Radar

CRF-Net [20] 74.35
Li et al. [25] 77.23

Jha et al. [29] 77.98
RISFNet [23] 83.25

Ours 81.41
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Table 3. The results of combining our image–radar association model with other vision-based object
detection methods.

Method mAP (IoU = 0.35, %) FPS
(with Image–Radar Association Model)

YOLOv5-l [32] 81.41 (+6.75) 29
Cascade-RCNN [42] 83.62 (+5.26) 15

Faster-RCNN [41] 79.53 (+5.19) 17
Swin-Transformer [43] 82.42 (+5.09) 19

4.4. Robustness Analysis

In order to validate the effect of camera–radar extrinsic parameter changes on the
performance of the proposed model, based on the known extrinsic parameter, we artificially
add a rotation and translation bias to the overall radar point clouds, to simulate variations in
the camera–radar extrinsic parameters. As shown in Table 4, when the extrinsic parameters
change slightly (with ±5° rotation bias, ±1 m translation bias), the model’s performance is
nearly not affected, indicating the model’s adaptability to small changes in the extrinsic
parameters. However, when the extrinsic parameters change a lot (with ±20° rotation
bias, ±4 m translation bias), there is a significant decrease in the model’s performance.
Nevertheless, in the practical application of USVs, extrinsic parameters are unlikely to have
large variations, and the model can adapt well to most scenes.

Table 4. Comparison of results of the fusion model with different extrinsic parameter variations.

Method mAP (IoU = 0.35, %)

Using origin radar data 81.41
Using radar data with slight bias 80.83
Using radar data with large bias 56.29

4.5. Ablation Analysis

To verify the contributions of the proposed modifications to the YOLOv5 model’s predic-
tion head, we conduct an ablation analysis by replacing it with the original prediction head.
Furthermore, to test the effectiveness of the newly proposed image–radar association model
for data fusion, we compare it with the traditional manual configuration fusion method. The
method directly projects the mmWave radar point cloud onto the RGB image plane based
on the initial extrinsic parameters. Then, data association is performed based on the spatial
relationships between radar point cloud clusters and 2D image boxes in the image plane with
a predefined distance threshold. The results are shown in Table 5, indicating that the proposed
improved double prediction heads effectively enhance the object detection accuracy. Besides,
the proposed metric learning-based image–radar association model achieves better fusion
results compared to the traditional manual association method.

Table 5. Results of the ablation analysis.

Method mAP (IoU = 0.35, %)

Without double prediction heads 79.85
Without image–radar association model 78.17

Our method 81.41

4.6. Discussion

The visualization of the detection results of our fusion detection method compared
with the vision-based YOLOv5-l is shown in Figure 5. As can be seen, our method achieves
a lower false object detection rate in various surrounding scenes.
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Figure 5. Visualization of results of the proposed method and vision-based YOLOv5-l. The red and
green boxes in the figures represent correct and false detection results, respectively.(a,c,e,g) Ours;
(b,d,f,h) YOLOv5-l.

To enhance the detection performance of the YOLOv5-l visual detector, we integrate
a transformer decoder module to replace the conventional convolutional blocks within
its prediction head. The transformer decoder uses multi-head attention to enhance the
low-resolution feature representation capability. We visualize the input and output feature
maps of the transformer decoder module in Figure 6. In Figure 6, each row represents a
frame, where the first column displays the original image with the final detection results
(highlighted in red bounding boxes), the second column shows the output features of the
backbone network, and the third column show cases the features strengthened through
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the transformer decoder module. The highlighted regions denote areas of high response,
indicating a higher probability of object presence in those regions. As can be seen, the
results demonstrate that small objects in the enhanced features of this module are more
distinguishable, so that our vision-based detector can locate all objects more accurately.

Figure 6. Feature maps of the transformer decoder module in enhanced YOLOv5-l.

5. Conclusions

In this paper, we propose a new mmWave radar-aided visual water surfaces small
object detection method. The method associates mmWave radar data and images through
the metric learning model, and is adapted to changes of extrinsic parameters to some
degree. Through the detection stage and the fusion association stage, the proposed method
outputs the final fusion detection results. Finally, we conduct experiments on the real-world
dataset to test the proposed method. The results show that our method outperforms other
visual detection methods on water surface small object detection.
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Abbreviations

The following abbreviations are used in this manuscript:

CFAR Constant false alarm rate
DBSCAN Density-based spatial clustering of applications with noise
DOA Direction of arrival
FC Full connect
FFT Fast Fourier Transformation
FMCW Frequency-modulated continuous wave
FPS Farthest point sampling
GNSS Global navigation satellite system
IMU Inertial measurement unit
mAP Mean of average precision
MLP Multi-layer perception
mmWave Millimeter wave radar
RDM Range–Doppler matrix
USV Unmanned surface vehicle

References

1. Wang, W.; Gheneti, B.; Mateos, L.A.; Duarte, F.; Ratti, C.; Rus, D. Roboat: An autonomous surface vehicle for urban waterways.
In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Venetian Macao, Macau,
4–8 November 2019; pp. 6340–6347.

2. Chang, H.C.; Hsu, Y.L.; Hung, S.S.; Ou, G.R.; Wu, J.R.; Hsu, C. Autonomous Water Quality Monitoring and Water Surface
Cleaning for Unmanned Surface Vehicle. Sensors 2021, 21, 1102. [CrossRef]

3. Zhu, J.; Yang, Y.; Cheng, Y. SMURF: A Fully Autonomous Water Surface Cleaning Robot with A Novel Coverage Path Planning
Method. J. Mar. Sci. Eng. 2022, 10, 1620. [CrossRef]

4. Wu, Y.; Wang, Y.; Zhang, S.; Ogai, H. Deep 3D object detection networks using LiDAR data: A review. IEEE Sens. J. 2020,
21, 1152–1171. [CrossRef]

5. Carballo, A.; Lambert, J.; Monrroy, A.; Wong, D.; Narksri, P.; Kitsukawa, Y.; Takeuchi, E.; Kato, S.; Takeda, K. LIBRE: The multiple
3D lidar dataset. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13
November 2020; pp. 1094–1101.

6. Patole, S.M.; Torlak, M.; Wang, D.; Ali, M. Automotive Radars: A Review of Signal Processing Techniques. IEEE Signal Process.
Mag. 2017, 34, 22–35. [CrossRef]

7. Brodeski, D.; Bilik, I.; Giryes, R. Deep radar detector. In Proceedings of the 2019 IEEE Radar Conference (RadarConf), Boston,
MA, USA, 22–26 April 2019; pp. 1–6.

8. Hammedi, W.; Ramirez-Martinez, M.; Brunet, P.; Senouci, S.M.; Messous, M.A. Deep learning-based real-time object detection in
inland navigation. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13
December 2019; pp. 1–6.

9. Moosbauer, S.; Konig, D.; Jakel, J.; Teutsch, M. A benchmark for deep learning based object detection in maritime environments.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA,
16–17 June 2019.

10. Prasad, D.K.; Rajan, D.; Rachmawati, L.; Rajabally, E.; Quek, C. Video processing from electro-optical sensors for object detection
and tracking in a maritime environment: A survey. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1993–2016. [CrossRef]

11. Zhou, Z.; Yu, S.; Liu, K. A Real-time Algorithm for Visual Detection of High-speed Unmanned Surface Vehicle Based on Deep
Learning. In Proceedings of the 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP),
Chongqing, China, 11–13 December 2019; pp. 1–5.

12. Zhang, W.; Gao, X.z.; Yang, C.f.; Jiang, F.; Chen, Z.y. A object detection and tracking method for security in intelligence of
unmanned surface vehicles. J. Ambient. Intell. Humaniz. Comput. 2020, 13, 1279–1291. [CrossRef]

13. Li, Y.; Guo, J.; Guo, X.; Liu, K.; Zhao, W.; Luo, Y.; Wang, Z. A novel target detection method of the unmanned surface vehicle
under all-weather conditions with an improved YOLOV3. Sensors 2020, 20, 4885. [CrossRef] [PubMed]

14. Wu, Y.; Qin, H.; Liu, T.; Liu, H.; Wei, Z. A 3D object detection based on multi-modality sensors of USV. Appl. Sci. 2019, 9, 535.
[CrossRef]

15. Cardillo, E.; Ferro, L. Multi-frequency analysis of microwave and millimeter-wave radars for ship collision avoidance. In
Proceedings of the 2022 Microwave Mediterranean Symposium (MMS), Pizzo Calabro, Italy, 9–13 May 2022; pp. 1–4.

16. Im, S.; Kim, D.; Cheon, H.; Ryu, J. Object Detection and Tracking System with Improved DBSCAN Clustering using Radar on
Unmanned Surface Vehicle. In Proceedings of the 2021 21st International Conference on Control, Automation and Systems
(ICCAS), Jeju, Republic of Korea, 12–15 October 2021; pp. 868–872.

19



J. Mar. Sci. Eng. 2023, 11, 1794

17. Ha, J.S.; Im, S.R.; Lee, W.K.; Kim, D.H.; Ryu, J.K. Radar based Obstacle Detection System for Autonomous Unmanned Surface
Vehicles. In Proceedings of the 2021 21st International Conference on Control, Automation and Systems (ICCAS), Jeju, Republic
of Korea, 12–15 October 2021; pp. 863–867.

18. Stanislas, L.; Dunbabin, M. Multimodal sensor fusion for robust obstacle detection and classification in the maritime RobotX
challenge. IEEE J. Ocean. Eng. 2018, 44, 343–351. [CrossRef]

19. Long, Y.; Morris, D.; Liu, X.; Castro, M.; Chakravarty, P.; Narayanan, P. Radar-camera pixel depth association for depth completion.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021;
pp. 12507–12516.

20. Nobis, F.; Geisslinger, M.; Weber, M.; Betz, J.; Lienkamp, M. A deep learning-based radar and camera sensor fusion architecture
for object detection. In Proceedings of the 2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF), Bonn, Germany, 15–17
October 2019; pp. 1–7.

21. Nabati, R.; Qi, H. Rrpn: Radar region proposal network for object detection in autonomous vehicles. In Proceedings of the 2019
IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 3093–3097.

22. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
23. Cheng, Y.; Xu, H.; Liu, Y. Robust Small Object Detection on the Water Surface Through Fusion of Camera and Millimeter Wave

Radar. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 10–17 October
2021; pp. 15263–15272.

24. Chadwick, S.; Maddern, W.; Newman, P. Distant vehicle detection using radar and vision. In Proceedings of the 2019 International
Conference on Robotics and Automation (ICRA), Paris, France, 31 May–4 June 2019; pp. 8311–8317.

25. Li, L.q.; Xie, Y.l. A feature pyramid fusion detection algorithm based on radar and camera sensor. In Proceedings of the 2020 15th
IEEE International Conference on Signal Processing (ICSP), Beijing, China, 6–9 December 2020; Volume 1, pp. 366–370.

26. Nabati, R.; Qi, H. Centerfusion: Center-based radar and camera fusion for 3D object detection. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, Online, 5–9 January 2021; pp. 1527–1536.

27. Chang, S.; Zhang, Y.; Zhang, F.; Zhao, X.; Huang, S.; Feng, Z.; Wei, Z. Spatial attention fusion for obstacle detection using
mmwave radar and vision sensor. Sensors 2020, 20, 956. [CrossRef] [PubMed]

28. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

29. Jha, H.; Lodhi, V.; Chakravarty, D. Object detection and identification using vision and radar data fusion system for ground-based
navigation. In Proceedings of the 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), Noida,
India, 7–8 March 2019; pp. 590–593.

30. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
31. Domhof, J.; Kooij, J.F.; Gavrila, D.M. An extrinsic calibration tool for radar, camera and lidar. In Proceedings of the 2019

International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 8107–8113.
32. Ultralytics. YOLO-v5. 2020. Available online: https://github.com/ultralytics/yolov5 (accessed on 20 August 2023 ).
33. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;

Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.
34. Bäcklund, H.; Hedblom, A.; Neijman, N. A density-based spatial clustering of application with noise. Data Min. TNM033 2011,

33, 11–30.
35. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Adv. Neural Inf.

Process. Syst. 2017, 30, 5105–5114.
36. Kuhn, H.W. The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 1955, 2, 83–97. [CrossRef]
37. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660.
38. Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 815–823.
39. Cheng, Y.; Zhu, J.; Jiang, M.; Fu, J.; Pang, C.; Wang, P.; Sankaran, K.; Onabola, O.; Liu, Y.; Liu, D.; et al. FloW: A Dataset

and Benchmark for Floating Waste Detection in Inland Waters. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 10953–10962.

40. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

41. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Washington, DC, USA, 7–13
December 2015, pp. 1440–1448.

42. Cai, Z.; Vasconcelos, N. Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162.

43. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October
2021; pp. 10012–10022.

44. Qi, C.R.; Litany, O.; He, K.; Guibas, L.J. Deep hough voting for 3d object detection in point clouds. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9277–9286.

20



J. Mar. Sci. Eng. 2023, 11, 1794

45. Danzer, A.; Griebel, T.; Bach, M.; Dietmayer, K. 2d car detection in radar data with pointnets. In Proceedings of the 2019 IEEE
Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 17–30 October 2019; pp. 61–66.

46. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in
context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer:
Cham, Switzerland, 2014; pp. 740–755.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

21



Citation: Luo, W.; Ma, C.; Jiang, D.;

Zhang, T.; Wu, T. The Hydrodynamic

Interaction between an AUV and

Submarine during the Recovery

Process. J. Mar. Sci. Eng. 2023, 11,

1789. https://doi.org/10.3390/

jmse11091789

Academic Editor: Constantine

Michailides

Received: 5 August 2023

Revised: 6 September 2023

Accepted: 7 September 2023

Published: 13 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

The Hydrodynamic Interaction between an AUV and Submarine
during the Recovery Process

Wanzhen Luo 1,2, Caipeng Ma 1,2, Dapeng Jiang 1,2,*, Tiedong Zhang 1,2 and Tiecheng Wu 1,2

1 School of Ocean Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China;
luowzh5@mail.sysu.edu.cn (W.L.); macp3@mail2.sysu.edu.cn (C.M.); zhangtd5@mail.sysu.edu.cn (T.Z.);
wutch7@mail.sysu.edu.cn (T.W.)

2 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
* Correspondence: jiangdp5@mail.sysu.edu.cn

Abstract: The hydrodynamic interaction between an AUV (Autonomous Underwater Vehicle) and
a recovery device, such as a real-scale submarine, is a crucial factor affecting the safe recovery of
the AUV. This paper employs the CFD (Computational Fluid Dynamics) method to investigate the
hydrodynamic interaction of the AUV and the submarine during the recovery process. Both the AUV
and the submarine are considered to be relatively stationary. The results indicate that the submarine
has a significant impact on the AUV during the recovery process, with sailing speed and relative
positions identified as key influential factors. Due to the influence of the submarine, it can be difficult
for the AUV to approach the submarine and be recovered safely. This study provides valuable
insights into the hydrodynamic interaction between the AUV and the recovery device, and offers
guidance for future submarine recovery operations involving AUVs. By considering the influence of
the submarine’s position and motion, as well as other relevant factors, it may be possible to improve
the stability, safety, and efficiency of AUV recovery operations.

Keywords: hydrodynamic interaction; AUV; submarine; AUV recovery

1. Introduction

Autonomous Underwater Vehicles (AUVs) have gained widespread applications in
various fields, including bathymetry, environmental monitoring, underwater operations,
and antimine activities, owing to their remarkable benefits [1–3]. However, with the
increasing demand for AUV utilization, it is crucial to enhance their performance by
increasing their underwater operation time, work efficiency, and endurance [4].

The recovery of an AUV after completing its mission is a critical aspect of AUV
operation, as it requires energy replenishment, data processing, and maintenance [5,6].
Over the years, researchers have proposed various methods for recovering AUVs, which
can be broadly classified into two categories: surface mother-ship recovery and underwater
docking recovery [7–9]. Surface mother-ship recovery typically involves the AUV returning
to a predetermined area and approaching the mother ship for recovery, where it is lifted
using cranes and other equipment onboard the surface vessel [10–12]. More recently,
unmanned surface vehicles (USVs) have been used in the recovery process, providing
a flexible and efficient solution for AUV recovery [13]. Underwater docking recovery
involves various methods and equipment, including capture rod docking [14], guided
docking [15,16], seated docking [17], and docking recovery through the torpedo launch
tube of submarines [18–20].

The hydrodynamic interaction between the AUV and recovery device is a crucial
factor that must be taken into consideration during the recovery process [21,22]. The
hydrodynamic interaction can have varying degrees of impact on the recovery process,
including issues such as long recovery time, failure of recovery, and even collisions between
the AUV and recovery device. As such, it is essential to study the hydrodynamic interaction
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between the AUV and recovery device to ensure a successful and safe recovery process.
This requires taking into account several factors, such as the size and shape of the AUV, the
hydrodynamic characteristics of the recovery device, and the surrounding water currents.

The hydrodynamic interaction during the AUV recovery process has indeed garnered
the interest of numerous researchers, and significant work has been devoted to understand-
ing this issue. One notable contribution to this field was made by Molland [23,24], who
conducted an extensive investigation into the viscous interaction between a pair of ellip-
soids in close proximity. This included low-speed wind tunnel experiments and numerical
simulations, which considered the effects of various factors, such as the Reynolds number
and the transverse distance between the ellipsoids on the drag and side force of a single
ellipsoid. The results of this work have enhanced our knowledge of viscous interactions
between two objects and provided valuable reference points for basic CFD algorithms.
Other researchers, such as Husaini [25], Zhang [26], and Rattanasiri [27], have focused
on studying the hydrodynamic interaction between AUV formations. Zhang’s research
analyzed a range of factors that might impact the hydrodynamic interaction between AUVs,
such as spacing, drift angle, appendages, and formation structure. Rattanasiri’s study, on
the other hand, focused on the detailed analysis of the influence of the relative positioning
between AUVs on the hydrodynamic interaction, dividing the dominant space around the
AUV into seven areas based on drag.

Research on the hydrodynamic issues related to AUV docking has also received
significant attention from researchers [28,29]. Wu et al. [30] investigated the docking of
AUVs to a cone-shaped dock, considering various factors, such as different velocities,
accelerations, dock shapes, gliding modes, cross currents from different directions, and
rudder angles, in their simulations. Their findings indicated that an unclosed dock tends
to decrease the drag of the AUV, and decelerating at a constant speed is beneficial for
successful docking. Additionally, Meng et al. [31,32] conducted extensive research on the
underwater docking of AUVs. This included exploring the influence of various docking
methods and different structural forms of the docking device on the recovery process, as
well as studying the hydrodynamic interaction between the AUV and the docking device
when stationary and in motion. Their work has yielded important results, including the
observation that installing the docking device in the middle of the submarine provides the
best stability and that the AUV’s speed plays a vital role in the recovery process.

The hydrodynamic interaction between submarines and Unmanned Underwater Vehi-
cles (UUVs) has been a focus of research for several years, and notable contributions have
been made in this field. Fedor [33] studied the hydrodynamic interaction between a subma-
rine and a much smaller UUV, attempting to identify an area around the submarine where
the effect of hydrodynamic interaction on UUV launch and recovery is relatively small.
His analysis considered the static situation of the submarine, and his results lacked exper-
imental verification. Leong and Randeni [34–36] used CFD methods and captive model
experiments to carry out steady-state analysis to estimate the hydrodynamic interaction
effects on an AUV operating in proximity to a submarine. They considered the longitudinal
and lateral positions of the AUV relative to the submarine and the diameter ratio between
the AUV and the submarine. Their results indicated that the force/moment coefficients of
the AUV due to hydrodynamic interaction were independent of the Reynolds number at
test speeds within the fully turbulent regime, and the interaction effects are minimal around
amidships of the submarine. Furthermore, Du [37] analyzed the variation of hydrodynamic
coefficients of the AUV moving around a submarine by solving the Reynolds-Averaged
Navier–Stokes (RANS) equation. His numerical results showed that the attack angles and
sideslip angles of the AUV had a significant influence on hydrodynamic coefficients, while
the effect of Reynolds numbers could be ignored.

Past studies on the hydrodynamic interaction between an AUV and submarines have
primarily focused on the model size. However, in practical applications, the size of the
submarine is significantly larger than that of the AUV. Thus, this paper seeks to address the
hydrodynamic interaction between a full-sized submarine and an AUV. The commercial
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CFD software Siemens PLM STAR-CCM+16.02 was used to carry out this research. The
submarine employed in this study was utilized as a recovery device and was magnified
by 20 times from the full appendage SUBOFF model. This approach enabled us to capture
the effects of a real-world-sized submarine on the hydrodynamic interaction with the AUV.
Moreover, to enhance the realism of the simulation, the AUV shape used in this study is
flat, unlike the traditional revolving body often used in previous research.

To provide a more comprehensive overview of the research conducted, the remainder
of this paper is organized as follows. Section 2 provides an introduction to both the
geometric and numerical models utilized in this study. In Section 3, we verify the numerical
method employed in our research. Next, in Section 4, we analyze the hydrodynamic
interaction between the AUV and submarine when they are relatively stationary, with
consideration given to various relative positions and speeds. Finally, we draw conclusions
based on our findings in Section 5.

2. Geometric Models and Numerical Methodology

2.1. Geometric Models

The prototype of the submarine in this paper is the SUBOFF AFF-8 developed by
DARPA (Defense Advanced Research Projects Agency) [38]. In order to approximate the
size of the actual submarine, SUBOFF AFF-8 has been enlarged by 20 times. In addition, the
AUV used in this paper is also different from the traditional AUV in the form of revolution.
The geometry and main dimensions of SUBOFF and AUV are shown in Figure 1 and
Table 1, respectively. For convenience, the length of the SUBOFF AFF-8 and submarine are
defined as LSUBOFF and Lsubmarine, respectively. The length, width, and height of the AUV
are defined as LAUV, WAUV, and HAUV, respectively.

Figure 1. Schematic of simulation mode; (a) SUBOFF AFF-8; (b) AUV (Top view); (c) AUV (Side view).

Table 1. The main parameters for the SUBOFF model, the submarine, and AUV (m).

- Length (m) Radius/Width (m) Height (m)

SUBOFF AFF-8 4.356 (LSUBOFF) 0.254 (RSUBOFF) -
submarine 87.120 (Lsubmarine) 5.080 (Rsubmarine) -

AUV 1.080 (LAUV) 0.923 (WAUV) 0.307 (HAUV)

2.2. Numerical Methodology
2.2.1. Governing Equations and Numerical Setting

The CFD software utilized in this study is Siemens PLM STAR-CCM+16.02; the
Reynolds-Averaged Navier–Stokes (RANS) equations discretized by the finite volume
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method (FVM) are applied to carry out the numerical simulation. The governing equations
for unsteady, three-dimensional, incompressible flow are described below [39,40]:

∂ui
∂xi

= 0 (1)
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where ui and xi denote the velocity component and coordinate component in i direction,
respectively; I = (1,2,3). P, v, and −u′

iu
′
j are the static pressure, kinematic viscosity, and the

Reynolds stress, respectively. δij is the Kronecker delta, and the Reynolds stress is expressed
as below:
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Here, vt = Cμk2/ε is the turbulent viscosity, where Cμ is an empirical number (Cμ = 0.09).
k is the turbulent kinetic energy, and ε is the turbulent dissipation rate.

The k-ε turbulent model is applied to close the momentum equation; the two transport
equations for k-ε are defined as:
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In this study, spatial discretization employs second-order schemes for increased nu-
merical accuracy. For temporal discretization, the first-order implicit Euler scheme is
adopted, striking a balance between computational efficiency and accuracy in capturing
time-dependent flow behavior. To solve the flow equations, a segregated flow solver based
on the SIMPLE algorithm is implemented. This algorithm iteratively couples the pressure
and velocity components to reach a converged solution. In each simulation, the time step
size is determined using the Courant–Friedrichs–Lewy (CFL) condition, determined by
CFL = UΔt/Δx, where U represents the characteristic velocity, Δt is the time step size, and
Δx is the characteristic length scale. The Courant number is calculated for each cell and is
typically kept below or equal to 1 for numerical stability. Finally, convergence is considered
achieved when the forces acting on the submarine and AUV, the flow field, and the residual
values reach a stable state. This indicates that the calculations have reached a reliable and
consistent solution.

2.2.2. Fluid Domain and Boundary Conditions

Figure 2 illustrates the schematic of the fluid domain used in our simulation, where
the AUV is positioned directly beneath the submarine. As the AUV is much smaller than
the submarine, we magnified it ten times for increased clarity. The length of the fluid
domain is 5.0 L, with 1.0 L located before the submarine and 3.0 L behind it. The width
and height of the fluid domain are both 1.0 L. Our simulation required a sufficiently large
fluid domain to prevent any potential backflow from affecting the numerical results. The
boundary conditions are shown in Figure 2.
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Figure 2. Schematic of fluid domain.

The inlet boundary of the region is specified with a velocity inlet condition, while
the outlet boundary is set with a pressure outlet condition. The bottom, side, and top
boundaries are treated as velocity inlets, consistent with the velocity inlet boundary. The
symmetry plane serves as a symmetric boundary condition. The submarine and AUV are
treated as impermeable walls with a no-slip condition. For detailed boundary conditions,
please refer to Table 2.

Table 2. Boundary parameters.

Boundary Boundary Parameter

Inlet Velocity Inlet, flow speed = (Uo,0,0) m/s, turbulence intensity 0.01
Outlet Pressure Outlet, hydrostatic pressure

Bottom/side/top Same as inlet
Submarine Impermeability wall with no-slip condition

AUV Impermeability wall with no-slip condition
Symmetry plane Symmetry plane

2.2.3. Meshing

In this study, to ensure accurate calculations of the flow field and resistance, the
mesh set must be able to accurately depict the model’s shape, while also capturing the
surrounding flow field and the force and vortex structure of the boundary layer of the
hull. Mesh generation in this study was performed using the advanced automatic meshing
capabilities of STAR-CCM+, which employs the highly efficient Cartesian cut-cell method.
To accurately capture the boundary layer near the surfaces of the submarine and AUV,
an orthogonal prism layer was generated. This layer consisted of prismatic cells that
gradually increased in thickness by a constant scale factor of 1.1, ensuring proper resolution
of the flow behavior. The first layer of the prism layer mesh was specifically placed
within the logarithmic region of the boundary layer, targeting the range of 30 < Y+ < 100.
This approach helped to accurately model the near-wall flow phenomena. In addition,
the trimmer mesh, consisting mostly of hexahedral elements, discretized the majority of
the computational domain. The trimmer mesh was chosen for its ability to efficiently
represent the complex geometry of the simulation. The total number of meshes employed
in the calculations amounted to 6,136,820. Around the AUV, the minimum grid step size
was determined to be 0.018 m (LAUV/242), whereas around the submarine, it was 0.4 m
(Lsubmarine/217.8). Figure 3 shows the meshes of the computational domain, Submarine,
and AUV.
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Figure 3. Mesh refinement of the computational domain; (a) Overall meshes; (b) Local mesh refine-
ment of the AUV.

3. Reliability of Numerical Models

Before applying any numerical method to carry out a simulation, it is essential to
first verify its reliability. In this section, we present two typical experimental results to
demonstrate the credibility of our numerical method. The first result involves the pressure
distribution on the surface of the SUBOFF in a uniform incoming flow. We compared the
simulated results against the corresponding experimental data and found that they were
in good agreement, validating the accuracy of our numerical method. The second result
involved a pair of similar ellipsoids in proximity at separation-length ratios.

3.1. The Pressure Distribution on the Longitudinal Section and Resistance of the SUBOFF

To verify the mesh independence of our research, we utilized SUBOFF as the research
object under the sailing condition of infinite depth with a speed of 5.144 m/s. We then
adjusted the mesh base size and defined three distinct mesh sizes: coarse mesh, medium
mesh, and fine mesh. The number of meshes under the same base size were 2.582 million,
3.846 million, and 6.823 million, respectively. Based on our calculations, the resistance
values under these three mesh conditions were 275.6 N, 280.25 N, and 281.4 N, respectively.
Notably, the experimental value is 283.8 N [41]. However, the errors between the calculated
results and experimental values under various mesh conditions were all within 5%. Con-
sidering both calculation accuracy and efficiency, we determined that the medium mesh
was the most suitable for our research. See Table 3.

Table 3. Resistance results for different mesh numbers.

-
Coarse
Mesh

Medium
Mesh

Fine
Mesh

Experimental
Results

Mesh number (Million) 2.582 3.846 6.823 -
Resistance (N) 275.6 280.25 281.4 283.8

Error (%) 2.89 1.25 0.85 -

Huang et al. [42] have conducted a lot of work on the DARPA SUBOFF model under
various Reynolds numbers, whether drag experiments or flow field measurements. Here,
the pressure distributions on the SUBOFF AFF-8 surface when the Reynolds number is
1.2 × 106 are used to verify the reliability of the numerical method. The dimensionless
pressure coefficient is defined as

Cp =
P − P∞

ρU2/2
(6)
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where P∞ and U are the free-stream static pressure and uniform flow velocity in the velocity
inlet, respectively. The Cp on the middle longitudinal section of the SUBOFF AFF-8 model
obtained by the numerical simulation is compared with the experimental results [41]. The
comparison between the numerical results and experimental results is shown in Figure 4. It
can be seen that the results obtained from the numerical simulation have good agreement
with the experiment results, which proves the reliability of the numerical methods used in
this paper.

Figure 4. Pressure coefficients on the middle longitudinal section of the SUBOFF AFF-8 model [42].

3.2. A Pair of Similar Ellipsoids in Proximity at Separation-Length Ratios

Molland [24,25] has conducted a lot of work on the hydrodynamic interaction be-
tween simple structures, such as the resistance change and pressure distribution when
two ellipsoids are very close. The experimental photographs and 2D (two-dimensional)
schematic of the two similar ellipsoids are shown in Figure 5. As shown in the figure,
the model ellipsoids were constructed from glass-reinforced plastic (GRP). They have an
overall length of 1200 mm, a maximum diameter of 200 mm, an eccentricity of 0, and a
surface area of 0.601 m2. The two ellipsoids are exactly the same, the ratio of their long
and short axes is 6, and s is defined as the separation between the center lines of the two
ellipsoids. Here, the pressure coefficient on the longitudinal section of the above ellipsoid
is used to verify the numerical method, where the Reynolds number Is 3.2 × 106 and
s/Le = 0.27 and 0.37.

Figure 5. The experimental photographs (left) and 2D schematic (right) of a pair of ellipsoids
in proximity.
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The results of the numerical simulation and the experiment are shown in Figure 6. It
can be seen that there is almost no difference between the two, which further proves the
accuracy of the numerical method in this paper.

Figure 6. The pressure coefficient on the longitudinal section of the above ellipsoid: (a) s/Le = 0.27,
(b) s/Le = 0.37 [23].

4. Results Analysis

This section aims to analyze the hydrodynamic interaction when the submarine and
AUV remain relatively stationary. Two factors are considered in this analysis: the speed
and position of the AUV relative to the submarine. The main focus is on the forces acting
on the AUV, with additional important flow field information also presented. As the size of
the submarine is significantly larger than that of the AUV, the hydrodynamic interaction
has minimal effect on the submarine. Accordingly, this paper chooses to disregard the
influence of the submarine on the simulation and analysis.

Figure 7 illustrates the relative position between the AUV and the submarine, with
the AUV magnified ten times for better visualization, as was done in Figure 2. The AUV is
positioned directly beneath the submarine, as shown. To accurately represent the position
of the AUV relative to the submarine, we introduce two additional parameters: s and l. The
length of the submarine (L) is 87.12 m, as previously defined. The parameter s represents
the vertical distance between the center line of the submarine and the AUV. The parameter
l represents the longitudinal distance from the geometric center of the AUV to the forefront
of the submarine.

Figure 7. The schematic of the relative position of the AUV and submarine.

In the following simulation, the position of the AUV relative to the submarine will
be dimensionless through the three parameters L, s, and l. In order to fully investigate the
hydrodynamic interaction of the AUV at different positions, l/L is taken as 0, 0.1, 0.2, 0.4, 0.6,
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0.8, 0.9, and 1.0. And, s/L is taken as 0.20, 0.15, 0.12, 0.10, 0.08, and 0.062. In addition, the
influence of velocity has also been considered. The simulations are investigated with five
speeds at each position, which are 2.0 kn (1.029 m/s), 3.0 kn (1.543 m/s), 4.0 kn (2.058 m/s),
5.0 kn (2.572 m/s), and 6.0 kn (3.087 m/s).

4.1. Results for Drag and Lift

In this study, we selected eight longitudinal positions along the length of the submarine
from bow to stern, which are denoted by l/L values of 0, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, and
1.0, respectively. Additionally, we selected six vertical positions from far to near, which
are denoted by s/L values of 0.20, 0.15, 0.12, 0.10, 0.08, and 0.062. As a result, there are
48 positions of the AUV relative to the submarine that are considered in this analysis. The
primary objective of this section is to examine the changes in the drag and lift of the AUV
with respect to speed at these 48 positions and then compare the influence of the submarine
on the AUV at different positions. All of the drag and lift values presented in this section
are dimensionless by 0.5ρU2L2

a; ρ is the density of water, which is 997.561 kg/m3. The
length of the AUV (La) is 1.08 m, as shown in Table 1. Finally, U represents the speed of
the AUV.

Figure 8 depicts the changes in drag with respect to speed at different vertical positions
of the AUV relative to the submarine, while keeping the longitudinal position fixed. As
evident from Figure 8a–h, the drag increases with an increase in speed. However, as the
vertical distance between the AUV and the submarine decreases gradually, the drag does
not change significantly. This observation suggests that when the AUV and the submarine
are relatively stationary, the drag of the AUV is primarily influenced by its speed rather
than the presence of the submarine. It is worth noting that when the AUV is positioned
in the middle of the submarine, i.e., l/L values of 0.4, 0.6, and 0.8, the drag curves almost
fully coincide. On the other hand, when the AUV is located towards the bow or stern
of the submarine, the drag curves differ slightly. This difference can be attributed to the
significant changes in the shape of the submarine towards its bow and stern resulting in
a larger disturbance to the flow field. As the AUV moves closer to the submarine, this
disturbance is stronger, thereby altering the drag. However, when the AUV is positioned
in the middle of the submarine, where the geometric shape of the submarine remains
relatively constant, the flow field is not disturbed, and the drag of the AUV remains
nearly unchanged.

Figure 8. Cont.
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Figure 8. The dimensionless drag of the AUV in different vertical positions: (a) l/L = 0, (b) l/L = 0.1,
(c) l/L = 0.2, (d) l/L = 0.4, (e) l/L = 0.6, (f) l/L = 0.8, (g) l/L = 0.9, (h) l/L = 1.0.

The lift, as shown in Figure 9, increases with an increase in speed, similar to drag.
However, the lift also exhibits a dependence on the vertical distance between the AUV
and the submarine, unlike drag. As the vertical distance decreases, the lift increases, with
this trend becoming more apparent as the AUV moves closer to the submarine. Another
crucial difference is that the lift properties differ significantly based on the position of the
AUV relative to the submarine. When the AUV is located at longitudinal positions l/L = 0,
0.1, 0.2, 0.4, 0.6, and 1.0, the lift is negative, indicating repulsive hydrodynamic interaction
between the AUV and the submarine. Moreover, when the AUV is closer to the submarine,
the repulsive force becomes stronger. However, at l/L values of 0.8 and 0.9, if the AUV
is positioned far away from the submarine, the lift remains negative. But, as the AUV
approaches the submarine, the lift becomes positive, indicating attractive hydrodynamic
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interaction. This attractive force increases rapidly with the increase in speed as the AUV
moves closer to the submarine.

Figure 9. The dimensionless lift of the AUV in different vertical positions: (a) l/L = 0, (b) l/L = 0.1,
(c) l/L = 0.2, (d) l/L = 0.4, (e) l/L = 0.6, (f) l/L = 0.8, (g) l/L = 0.9, (h) l/L = 1.0.
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Figure 10 presents a comparison of the drag of the AUV at various longitudinal
positions relative to the submarine. It is noticeable that when the vertical distance between
the AUV and the submarine is significant, i.e., s/L = 0.20, the hydrodynamic interaction has
little impact on the drag of the AUV. Consequently, the drag remains practically constant at
different longitudinal positions. However, as the AUV moves closer to the submarine, the
differences in drag become more pronounced across various positions. It can be observed
that the drag of the AUV is highest when it is located at the middle of the submarine, while
the drag is lowest when it is located towards the bow. These results indicate that the shape
of the submarine has a critical impact on the flow field around the AUV. The changes in
the shape of the submarine towards its bow and stern result in a larger disturbance to the
flow field, thereby modifying the drag coefficient. However, when the AUV is placed in
the middle of the submarine, where the geometric shape of the vessel remains relatively
constant, the flow field is not disturbed, resulting in higher drag values.

Figure 10. The dimensionless drag of the AUV in different longitudinal positions: (a) s/L = 0.2,
(b) s/L = 0.15, (c) s/L = 0.12, (d) s/L = 0.10, (e) s/L = 0.08, (f) s/L = 0.062.
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Figure 11 illustrates a comparison of the lift of the AUV at different longitudinal
positions relative to the submarine. It is apparent that the AUV’s lift varies significantly,
depending on its position in relation to the submarine. When the AUV is positioned
towards the bow and middle of the submarine, i.e., l/L = 0, 0.1, 0.2, 0.4, and 0.6, the lift
exhibits a similar trend. In these positions, the lift is always repulsive. Moreover, the
magnitude of the lift at the bow of the submarine is larger than that at the middle for the
same speed. This indicates that the geometry of the submarine has a critical impact on
the lift properties of the AUV. The flow field around the AUV is more disturbed by the
presence of the submarine towards its bow than in the middle region, resulting in higher
lift values.

(a) (b)

(c) (d)

(e) (f)

Figure 11. The dimensionless lift of the AUV in different longitudinal positions: (a) s/L = 0.2,
(b) s/L = 0.15, (c) s/L = 0.12, (d) s/L = 0.10, (e) s/L = 0.08, (f) s/L = 0.062.

When the AUV is positioned towards the stern of the submarine, the situation is
different. For l/L = 0.8 and 0.9, the lift exhibits a similar trend, where an increase in speed
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results in a rapid increase in lift. Additionally, when the AUV is far from the submarine,
the lift force is repulsive, while the lift force becomes attractive when the AUV is close to
the submarine. However, it can be observed that the lift is always a repulsive force for
l/L = 1.0. It is worth noting that the impact of speed on lift is relatively small, and the
increase in lift with speed is negligible. Furthermore, the influence of speed decreases as
the AUV moves closer to the submarine. These observations highlight the complexity of
the flow field around the AUV and submarine system. The intricate geometrical features
of the submarine result in an intricate flow pattern, affecting the lift characteristics of
the AUV.

4.2. Velocity Field
4.2.1. l/L = 0, s/L = 0.08

In this study, the AUV is much smaller than the submarine, making it more susceptible
to flow disruption. Therefore, only the influence of the AUV’s velocity field is analyzed in
this section. The distribution of AUV’s velocity field under different conditions is analyzed.
Figure 12 illustrates the velocity field distribution when the vertical distance between the
AUV and submarine is l/L = 0 and the longitudinal distance s/L = 0.08, with speeds of
2 kn, 4 kn, 5 kn, and 6 kn. The X-axis speed Ux is dimensionless and denoted as Ux/U0,
where U0 represents the initial sailing speed. The AUV navigates in the flow field of the
submarine’s bow area, where the surrounding flow field is disturbed by the submarine.
Due to the suction effect created by the submarine, the velocity field on the upper surface
of the AUV exhibits asymmetric distribution, while the lower surface is less disturbed,
showing a relatively symmetrical velocity field distribution. Low-speed areas appear in
the bow and stern regions of the AUV, with high-speed areas present on both the upper
and lower surfaces. At different speeds, the low-speed recirculation zone at the stern of the
AUV slightly decreases with an increase in speed.

Figure 12. Velocity field distribution with different speeds at l/L = 0, s/L = 0.08.

Figures 13 and 14 present the velocity field distribution at different speeds for l/L = 0.6,
s/L = 0.062 and l/L = 1.0, s/L = 0.08, respectively. As shown in Figure 13, when the AUV is
sailing in the middle of the submarine, the flow field on the upper surface is significantly
disrupted by the presence of the submarine. Moreover, as the speed increases, the high-
speed flow field area increases. On the other hand, the lower surface of the AUV exhibits
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relatively low disturbance, showing a relatively symmetrical velocity field distribution.
In Figure 14, the AUV is sailing at the stern of the submarine. Here, due to the relatively
far position from the wake area of the submarine, the influence on the AUV’s flow field
at different speeds is minimal, with negligible changes in the velocity field distribution
observed.

Figure 13. Velocity field distribution with different speeds at l/L = 0.6, s/L = 0.062.

Figure 14. Velocity field distribution with different speeds at l/L = 1.0, s/L = 0.08.
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4.2.2. s/L = 0.08, V = 2 kn

This study analyzes the velocity field distribution at different longitudinal distances.
Specifically, the longitudinal distance between the submarine and AUV is set at s/L = 0.08,
while the speed is 2 kn. Figure 15 shows the longitudinal position diagram of the AUV.
As the AUV is much smaller than the submarine, an enlarged view of the velocity field
distribution is presented in Figure 16 to provide a clearer visualization of the flow field.

Figure 15. Longitudinal position diagram of the AUV.

Figure 16. Enlarged view of velocity field distribution at different longitudinal positions.
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The velocity field surrounding the AUV is significantly influenced by the presence of
the submarine, causing disturbances in the flow field. The distribution of velocity fields
under different conditions reveals that low-speed reflux zones appear at the bow and stern
regions of the AUV, with high-speed zones appearing on both the upper and lower surfaces.
The velocity field distribution on the upper surface of the AUV appears asymmetric when
l/L = 0, 0.1, and 0.2, while the distribution on the lower surface is relatively symmetrical. In
contrast, the velocity field distribution on both the upper and lower surfaces of the AUV is
symmetric when l/L = 0.4 and 0.6. At l/L = 0.8, the velocity field distribution on the upper
surface of the AUV is symmetrical, while it becomes asymmetric on the lower surface.
In addition, when the AUV approaches the stern area of the submarine (l/L = 0.9), the
low-speed areas on both the upper and lower surfaces increase due to the interference of
the stern rudder. When l/L = 1.0, since the AUV is further away from the submarine, it is
less affected, and the distribution of velocity fields on both the upper and lower surfaces is
basically symmetrical.

4.2.3. l/L = 0.6, V = 2 kn

In this study, the velocity field distribution at different vertical distances has been
analyzed. To provide a clearer visualization of the flow patterns under different conditions,
Figure 17 presents an enlarged view of the velocity field distribution at different vertical
positions. As shown in Figure 16, all conditions have been presented in one diagram
for ease of comparison. When s/L = 0.062, it can be observed that the flow field on the
upper surface and bow and stern areas of the AUV is significantly disturbed due to the
adsorption effect of the submarine, resulting in a low-speed zone. This effect is caused
by the submarine’s interference with the surrounding water flow, leading to an uneven
velocity field distribution. However, when the longitudinal distance between the submarine
and AUV is further increased to s/L = 0.08, 0.10, and 0.12, the AUV is far away from the
submarine, and the influence of the submarine on the surrounding flow field is negligible.
Consequently, the flow field surrounding the AUV is basically unaffected by the presence
of the submarine, resulting in a more stable velocity field distribution.

Figure 17. Enlarged view of velocity field distribution at different vertical positions.
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Figure 18 depicts the velocity vectors of the AUV at different vertical positions when
l/L = 0.6 and V = 2 kn. The analysis indicates that when s/L = 0.062, the adsorption effect
of the submarine causes the low-speed reflux area at the stern of the AUV to be smaller
compared to other conditions. Conversely, when s/L = 0.08, 0.10, 0.12, 0.15, and 0.20,
the AUV is less affected by the submarine, leading to a relatively large low-speed reflux
zone. To visualize the vortex structure of the velocity vector affected by the submarine
more clearly, Figure 19 presents an enlarged view of the aft region of the AUV under the
s/L = 0.062 condition. As shown in Figure 18, a reflux zone appears at the stern area of the
AUV, accompanied by the formation of vortex structures. This observation further confirms
the effect of the submarine’s presence on the flow field surrounding the AUV.

Figure 18. Velocity vectors of AUV at different vertical positions.

Figure 19. Enlarged view of velocity vectors of AUV at l/L = 0.6, s/L = 0.062, and V = 2 kn.
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4.3. Pressure s/L = 0.08, V = 2 kn

Figure 20 illustrates the pressure distribution of the AUV under different vertical
distances, with s/L = 0.08 and V = 2 kn. Observations indicate that the high-pressure region
of the AUV primarily appears in the bow area and the shape transition region of the upper
surface. The AUV is significantly disrupted when it enters the bow flow field area of the
submarine. Therefore, as l/L increases from 0 to 0.8, the AUV gradually moves away from
the bow area, and the range of the high-pressure area gradually decreases. Furthermore,
at l/L = 0.9 and 1.0, the high-pressure range increases near the stern rudder area due to
the interference of the submarine’s stern rudder. The AUV experiences increasing pressure
levels in this area, which can affect its overall stability and maneuverability.

Figure 20. Pressure distribution.

5. Conclusions

The research background of this paper is based on the interference of the AUV by the
mother ship during the recycling process. The AUV remains relatively stationary with the
mother ship during the recovery process. The AUV sails at different vertical positions and
longitudinal positions relative to the mother ship. And, the optimal position for the AUV to
be least affected by the mother ship during the recovery process was obtained. The details
are as follows:

(1) When the vertical distance between the AUV and submarine changes, the resistance
has little change, but when the speed changes, the resistance changes significantly.

(2) When approaching the bow and stern area of the submarine, the AUV is more sus-
ceptible to interference, while in the parallel middle section, it is less susceptible to
interference because the shape of the bow and stern of the submarine changes greatly,
and the flow field disturbance is obvious.

(3) The lift increases as the vertical distance between the AUV and the submarine de-
creases, and the closer it approaches the submarine, the more significant the change in
lift. And, when the AUV is in different longitudinal positions on the submarine, when
the lift is negative, there is a repulsive effect between the submarine and the AUV.
When the lift is positive, the submarine exhibits an upward suction effect on the AUV.

(4) The velocity and pressure fields of the AUV are affected by the submarine when
sailing at different positions. At the mid-longitudinal position of the submarine, the
impact is minimal, and it is the best position for recovery.

(5) This paper focuses on the interference effects of the AUV and submarine when they
remain relatively stationary. Further research is needed to investigate the interference
effects of oblique motion recovery and non-relative static recovery.
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In conclusion, the AUV moving through the water generates a resistance force due
to the viscosity of the fluid. The submarine must, therefore, accelerate slowly during
the recovery process. The movement of the submarine can cause disturbances in the
surrounding fluid flow field. These disturbances may affect the motion of the AUV, causing
it to move erratically or become unstable. Therefore, careful consideration must be given to
the position and motion of the submarine during the recovery process.
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Abstract: In this article, a deep reinforcement learning-based path-following control scheme is
established for an under-actuated autonomous marine vehicle (AMV) in the presence of model
uncertainties and unknown marine environment disturbances is presented. By virtue of light-of-sight
guidance, a surge-heading joint guidance method is developed within the kinematic level, thereby
enabling the AMV to follow the desired path accurately. Within the dynamic level, model uncertainties
and time-varying environment disturbances are taken into account, and the reinforcement learning
control method using the twin-delay deep deterministic policy gradient (TD3) is developed for
the under-actuated vehicle, where path-following actions are generated via the state space and
hybrid rewards. Additionally, actor-critic networks are developed using the long-short time memory
(LSTM) network, and the vehicle can successfully make a decision by the aid of historical states,
thus enhancing the convergence rate of dynamic controllers. Simulation results and comprehensive
comparisons on a prototype AMV demonstrate the remarkable effectiveness and superiority of the
proposed LSTM-TD3-based path-following control scheme.

Keywords: autonomous marine vehicle; path-following control; surge-heading joint guidance;
twin-delay deep deterministic policy gradient; long-short time memory network

1. Introduction

The Autonomous marine vehicle (AMV) is a marine intelligent platform that performs
tasks autonomously or semi-autonomously [1], which is widely applied in military and
civilian fields due to its small volume, strong concealment, good flexibility and other
advantages [2]. In different missions, path following of the AMV plays a crucial role for
realized autonomous operation. Considering that, in practice, the AMV inevitably suffers
from marine environment disturbances, the path-following control method with high
precision and efficiency is crucial to the success of an operation, where a parameterized
path is expected to be tracked as accurately as possible [3].

In generally, the path-following control of an AMV consists of two critical parts: kine-
matics guidance and dynamics control. In the part of guidance research, by calculating
the desired heading angle, path-following errors can converge to zero, and in the part of
control research, control inputs including surge force and yaw torque are solved using
the desired guidance signals, thus contributing to the path following performance [4].
For the former, the light-of-sight (LOS) guidance was widely applied because of its high
precision and simplicity [5–8]. For the latter, fruitful methods were proposed and applied to
controller design, such as PID control [9,10], fuzzy control [11–13], adaptive control [14,15],
active disturbances rejection control [16,17], sliding mode control [18,19], and backstepping
control [20–22]. In [23], considering the path-following control under unknown environ-
ment disturbances, the modified integral LOS guidance law and the adaptive sliding
mode control law are developed, realizing the desired path following. In [24], to solve the
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path-following control of an under-actuated autonomous underwater vehicle subject to
environment disturbances, an adaptive robust control method is proposed using fuzzy
logic, backstepping and sliding mode technology, where the fuzzy logic system is utilized to
approximate the unknown uncertainties. In [25], a novel, adaptive, robust path-following
scheme is proposed by combining with the trajectory linearization control and the finite-
time disturbance observer. In [26], a fuzzy unknown observer-based, robust, adaptive
path-following control scheme is proposed, where the fuzzy observer is designed to esti-
mate lumped unknowns and the observer-based, robust, adaptive tracking control laws
are synthesized, thus ensuring that the guided signals are globally asymptotically tracked.
However, the above control method depends on a system model with high accuracy, and
the derivation process is complex.

With increasingly rapid development of machine learning, deep reinforcement learn-
ing (DRL) algorithms are widely applied to the relative studies of unmanned system
control [27]. The DRL is a combination of deep learning and reinforcement learning, which
has strong decision-making ability and anti-disturbance ability of reinforcement learning
and strong representation ability of deep neural network, thus effectively reducing the
complexity and difficulty of the controller design. At present, the popular DRL algorithms
include the soft actor-critic (SAC), the proximal policy optimization (PPO), and the deep
deterministic policy gradient (DDPG) [28–30]. In [31], the advantage of actor-critic (A2C)
is proposed to solve path-following control for a fish-like robot, where the desired path
is a randomly generated curve. In [32], a DRL controller is designed using the DDPG for
path following, and simulation shows that the proposed method is better than the PID in
terms of transient characteristics. In [33], a distributed DRL method is proposed to solve
the path-following control of an under-actuated AMV, where the DDPG-based controller
is designed and the radial basis neural network is utilized to approximate the unknown
disturbances. In [34], an improved DDPG control method was proposed for path following
based on an optimized sampling pool and average motion evaluation network, and the
simulation results show that the proposed method effectively improves the utilization
rate of samples and avoids falling into a local optimum in the training process. In [35],
a linear active disturbances rejection controller based on the SAC was proposed to solve
path-following control under wind and wave environments. In [36], the path-following
control laws were designed using the twin-delayed deep deterministic policy gradient
algorithm (TD3), where desired velocities were generated by the LOS guidance.

Considering the path following of an under-actuated AMV under unknown model
parameters and environment disturbances, this article establishes the motion model for an
AMV, and proposes a path-following control method by combining with the long short-term
memory network (LSTM) and the TD3 algorithm. The main contributions are as follows:
(1) within the kinematic level, the surge-heading joint guidance law is developed based
on the LOS, where the desired velocity signals are generated to guide the vehicle along
the desired path; (2) within the dynamic level, the TD3-based surge-heading controller is
developed for the vehicle, where states, actions and reward functions are defined; and (3) to
enhance the convergence rate of controller networks, the LSTM layer, using the historical
states, is added into the TD3.

The remainder of this article is organized as follows: preliminaries and problem
statement are described in Section 2; Section 3 presents the kinematic guidance law and the
DRL-based dynamic controller of an AMV; simulation results and analysis are presented in
Section 4; and Section 5 contains the conclusion.

2. Preliminaries and Problem Statement

2.1. Reinforcement Learning

Reinforcement learning is based on the Markov decision process. Four basic elements
are defined as {S, A, P, R}, where S is the set of all states, A is the set of all actions, P is the
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state transition probability, and R is the reward function [37]. The decay sum of all rewards
from a certain state to the final state can be calculated by

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞

∑
k=0

γkrt+k+1 (1)

where γ is the discount factor, satisfying γ ∈ [0, 1], and rt+i (i = 1, · · · , k + 1) is the reward
at the current time.

Additionally, the value functions under the policy η include action value function
Qμ(st, at) and state value function Vμ(st), where st and at are the state and action at the
current time. The value functions are described as⎧⎪⎪⎨⎪⎪⎩

Qμ(st, at) = Eμ[Rt|st, at] = Eμ[
∞
∑

k=0
γkrt+k+1|st, at]

Vμ(st) = Eμ[Rt|st] = Eμ[
∞
∑

k=0
γkrt+k+1|st]

(2)

where E expresses the expectation, and the optimal policy μ∗ can be achieved by maximiz-
ing the optimal state-action value functions [38].

μ∗ = argmaxVμ(st) = argmaxQμ(st, at) (3)

2.2. LSTM Network

The LSTM network has better memory ability, where important data is retained and
irrelevant noise is deleted, thereby relieving the gradient disappearance of the existing
recurrent neural network and the memory burden of networks [39]. The neuronal structure
is shown in Figure 1, where xt is the input; ht is the output; ct is the state value of the
memory cell at the current time; ht−1 and ct−1 are the input signals at the previous time; ft
is the forgetting gate; it is the input gate; ot is the output gate; and σ is the sigmoid function.

Figure 1. Neuronal structure of the LSTM.

As shown in Figure 1, when the information inputs to the neuron, it firstly goes
through the forgetting gate and input gate; then, it goes through the output gate, and the
state value of the memory cell ct are calculated based on the ft and it. Finally, the outputs
are calculated based on ot and ct. The renewal process can be described by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ft = σ(W1xt + W2ht−1 + b1)
it = σ(W3xt + W4ht−1 + b2)
ot = σ(W7xt + W8ht−1 + b4)
ct = ct−1 × ft + tanh(W5xt + W6ht−1 + b3)× it
ht = ot × tanh(ct)

(4)

where Wi is the weight coefficient with i = 1, 2, · · · , 8; bh is the bias with h = 1, · · · , 4, and
tanh is the activation function [40].
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2.3. Under-Actuated AMV Model

As described in [41], the under-actuated AMV model of three degrees of freedom in
the horizontal plane is written as{

η = R(η)ν
M

.
ν + C(ν)ν + D(ν)ν = τd + τ

(5)

where η = [x, y, ψ]T are the positions and heading angle of AMV in the earth-fixed
frame, and ν = [u, v, r]T are the surge, sway and yaw velocities in the body-fixed frame.
τ = [τu, 0, τr]

T are the control inputs of path-following, and τd = [τud, τvd, τrd]
T are the time-

varying marine environment disturbances. R(η) is the rotation matrix from the body-fixed
frame to the earth-fixed frame, which is defined as

R(η) =

⎡⎣cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

⎤⎦ (6)

M is the inertial matrix and satisfies M = MT > 0, which is written as

M =

⎡⎣m11 0 0
0 m22 m23
0 m32 m33

⎤⎦ (7)

C(ν) is the coriolis-centripetal matrix and satisfies C(ν) = −C(ν)T , which is written as

C(ν) =

⎡⎣ 0 0 c13(ν)
0 0 c23(ν)

−c13(ν) −c23(ν) 0

⎤⎦ (8)

and D(ν) is the damping matrix, which is written as

D(ν) =

⎡⎣d11(ν) 0 0
0 d22(ν) d23(ν)
0 d32(ν) d33(ν)

⎤⎦ (9)

with m11 = m − X .
u, m22 = m − Y .

v, m33 = Iz − N.
r, m23 = mxg − Y.

r, m32 = mxg − N .
v,

c13(ν) = −m11v − m23r, c23(ν) = −m11u, d11(ν) = −Xu − X|u|u|u| − Xuuu|u|2,
d22(ν) = −Yv −Y|v|v|v|, d33(ν) = −Nr − N|v|r|v| − N|r|r|r|, Y.

r = N.
r, where m is AMV mass,

and Iz is the moment of inertia in yaw. X∗, Y∗ and N∗ are the hydrodynamic coefficients.
As shown in Figure 2, the desired path (xd(s), yd(s)) is a continuous parameterized

curve with a time-independent variable s. For any moving point on the curve, a path-
tangential angle in the earth-fixed frame is defined as

α = atan2
(
y′d(s), x′d(s)

)
(10)

where y′d(s) = ∂yd/∂s, x′d(s) = ∂xd/∂s. The errors between (x, y) and (xd, yd) can be
formulated as [

xe
ye

]
=

[
cos α − sin α

sin α cosα

]T[ x − xd(s)
y − yd(s)

]
(11)

where xe is the along-track error, and ye is the cross-track error.
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Figure 2. Diagram of horizontal path-following control.

In this article, our objective is to design the DRL-based path-following control scheme
for an uncertain under-actuated AMV, such that the vehicle can follow the desired path with
the desired velocities regardless of model uncertainties and unknown marine environment
disturbances. To be specific, the objective can be formalized as{

lim
t→∞

xe ≤ δx

lim
t→∞

ye ≤ δy
(12)

where δx and δy are any small positive constants.

3. DRL-Based Path-Following Control Scheme

In this section, a DRL-based path-following control scheme is established for an under-
actuated AMV in the presence of model uncertainties and unknown marine environment
disturbances. The diagram of the proposed control scheme is shown in Figure 3, where
kinematic guidance and dynamic control are designed, respectively.

Figure 3. Diagram of the proposed path-following control scheme.

Within the kinematic level, according to the position errors and related motion states
obtained by the AMV model, the desired surge velocity and heading angle are generated
by the designed surge-heading joint guidance law based on the light-of-sight guidance.
Within the dynamic level, DRL-based surge-heading controllers are presented for following
the desired guidance signals. The reward function is designed to generate rewards by
comparing the desired signals with the actual vehicle states in the environment. The
controllers generate the control inputs based on the rewards, and the vehicle precisely
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tracks the desired signals based on the control inputs and the novel environment states to
realize path-following control. By combining with the kinematic guidance and dynamic
control, the objective (12) can be successfully completed.

3.1. Kinematic Guidance Design

Firstly, kinematic guidance is designed in this subsection, where desired surge veloci-
ties and heading angles are produced. Differentiating (11) along (5) yields{ .

xe = u cos(ψ − α)− v sin(ψ − α) +
.
αye − us.

ye = u sin(ψ − α) + v cos(ψ − α)− .
αxe

(13)

where us is velocity of the virtual point along the desired path, which is defined by

us =
.
s
√

x′d
2(s) + y′d

2(s) (14)

Define the sideslip angle of under-actuated vehicle as

β = arctan
( v

u

)
(15)

In this context, path-following error dynamics (13) is rewritten as{ .
xe = u cos(ψ − α)− u sin(ψ − α)tanβ +

.
αye − us.

ye = u sin(ψ − α) + u cos(ψ − α)tanβ − .
αxe

(16)

Then, select the Lyapunov function related to path following errors as

V =
1
2

(
x2

e + y2
e

)
(17)

The time derivative of (17) along the solution (16) is

.
V = xe

.
xe + ye

.
ye

= xe
(
u cos(ψ − α)− u sin(ψ − α)tanβ+

.
αye − us

)
+ye

(
u sin(ψ − α)− .

αxe +u cos(ψ − α)tanβ)

(18)

Thus, the surge-heading joint guidance law is designed as follows{
ud = k1

√
y2

e + Δ2

ψd = α − βd − arctan
( ye

Δ
) (19)

where k1 > 0; Δ > 0 is the look-ahead distance; βd = arctan(v/ud) and virtual velocity us
is determined by

us = Ud cos(βd + ψ − α) + k2xe (20)

with k2 > 0 and Ud =
√

u2
d + v2.

Using the fact ⎧⎪⎪⎪⎨⎪⎪⎪⎩
sin
(

tan−1
(
−ye

Δ

))
= − ye

(y2
e + Δ2)

1/2

cos
(

tan−1
(
−ye

Δ

))
= − Δ

(y2
e + Δ2)

1/2

(21)

and substituting the guidance law (19) into (18) yield

.
V = xe

( .
αye − k2xe

)
+ ye

(
− k1

cos βd
ye − .

αxe

)
= −k2x2

e −
k1

cos βd
y2

e

(22)
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Since 0 < cos βd ≤ 1 renders
.

V ≤ −k2x2
e − k1y2

e , it indicates that path-following
error xe and ye can globally asymptotically converge to the origin using the proposed
guidance method.

3.2. Dynamic Control Design

Because of inaccurate measurements and environment disturbances, AMV model
parameters cannot be obtained completely, thereby resulting in uncertainties of dynamics.
To enhance the engineering practicality and reduce the complexity of controllers, a TD3-
based reinforcement learning control method is presented within the dynamic level, where
control inputs of the AMV are generated successfully.

The main purpose of the DRL algorithm is to make the vehicle take actions in the case
of different path information. The proposed TD3 algorithm is based on the actor-critic
structure, where policy functions are produced using actor networks and critic networks
used to judge the performance of the actor [42]. Additionally, LSTM network layers are
introduced into the TD3 and thereby enhance the utilization rate of historical states.

Firstly, the network structure of TD3 algorithm is shown in Figure 4. By virtue of
initial environment states, actions of the AMV are generated using actor networks, and
rewards are accordingly calculated using reward functions; thus, the states can be updated
with the generated actions. The empirical value is defined as e(t) = {s, a, r, st+1} and
saved into buffer MemoryD. Through repeated training, the empirical replay sequence
D = {e1, e2, . . . , en} can be formed. Considering that the adjacent actions of path-following
have strong relevance, a batch of empirical sequences are selected randomly for training.
The actor network of target generates the action at+1 according to the state st+1 in the
empirical replay sequence, and the critic network of target calculates the Qmin value, where
Qmin is the smaller of the two Qtarget values generated by target networks. Two critic
networks are updated based on Q, Qmin and loss functions. Actor networks generate
actions using states. Critic networks generate the Q value using states and actions, and
thus calculate the policy gradient and update actor networks using the Q value.

Figure 4. Network structure of the TD3.

The specific renewal process is as follows. Considering that TD3 algorithm is a
deterministic policy and has the characteristic of target policy smoothing regularization,
random noise ε is added into target actions. Therefore, there is at+1 = μ′(st+1|w′)+ ε, where
μ′ is the policy of target actor networks, and w′ is the parameter of target actor networks.
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The target value is calculated as

y = r + γQmin(st+1, at+1|θ′i) (23)

where i = 1, 2, θ′i represents parameters of target critic networks.
The loss function is defined as

L(θi) =
1
N
(y − Q(s, a|θi))

2 (24)

where N represents the number of mini-batch, and θi represents parameters of critic
networks. The gradient is updated by

∂L(θi)

∂θi
= E

[
(y − Q(s, a|θi))

∂Q(s, a|θi)

∂θi

]
(25)

Subsequently, the policy gradient of actor networks is updated by⎧⎪⎪⎨⎪⎪⎩
∂J(w)

∂w
= E

[
∂Q(s, a|θ)

∂a
∂μ(s|w)

∂w

]
∇w J ≈ 1

N ∑(∇aQ(s, a|θ1)|a=μ(s)∇wμ(s|w))

(26)

After a couple of cycles, target parameters are soft updated by{
θ′i = ξθi + (1 − ξ)θ′i
w′ = ξw + (1 − ξ)w′ (27)

where ξ ∈ (0, 1) represents the learning rate.
Then, the LSTM network is introduced into actor-critic networks, thus contributing

to the LSTM-TD3-based reinforcement learning controllers. The LSTM-TD3 network still
retains the actor-critic structure, where LSTM inputs is a length of sequences. According to
the real-time navigational information, the continuous states are saved into the sequences.
The LSTM network layer is connected to generate the final hidden state ht, where ht is a
one-dimensional array. Via the multi-layer perceptron (MLP) neural networks, the path-
following control inputs of an AMV are generated, which include surge forces and yaw
torques. The network structure of the actor is shown in Figure 5. Note that the critic has
the similar network structure to the actor, and generates available actions.

Figure 5. Network structure of Actor.

Finally, the state space, action space and reward function are designed as follows.
To be specific, the state space represents perceived environment information of the AMV,
which is the basis of decision-making and reward-evaluating. The action space represents
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control inputs of the AMV, including surge forces and yaw torques. The reward function is
used to evaluate current state of the AMV.

In this context, the state space is defined as

st = [xe, ye, ψ, ψe, u, v, r, ue, τu(t−1), τr(t−1)] (28)

where τu(t−1) and τr(t−1) are control inputs at the previous moment. ue = u − ud and
ψe = ψ − ψd with ud, ψd are generated by the guidance law (19).

Taking path-following errors, surge velocity and heading angle errors into considera-
tions, the reward function r1 is designed as

r1 = λ
(

2 exp−k3|ue | −1
)
+
(

2 exp−k4|ψe | −1
)
+
(

2 exp−k5|
√

x2
e+y2

e | −1
)

(29)

where k∗(∗ = 3, 4, 5) > 0 and λ > 0. Note that the exponential function is used to calculate
rewards, which limits the size of rewards and avoids high rewards.

Furthermore, the reward function r2 is designed as

r2 = exp−k6|στu | + exp−k6|στr | −1 (30)

where k6 > 0; στu and στr are the standard deviation of two inputs, which are used to
reduce the chattering of control inputs.

By combining with (29) and (30), the hybrid rewards of path-following control are
established as

r = r1 + k7r2 (31)

where k7 > 0, and satisfies k7 ∈ (0, 1).
The framework of the dynamic control algorithm is summarized in Algorithm 1.

Algorithm 1. Dynamic control algorithm of an AMV.

Inputs: Learning rate ξ, lθ and lw, regular factor ε, gradient threshold parameter g, discount factor
γ, sequence length L, the maximum number of steps per training K, updating cycle of target
network parameter d, training cycle F, mini-batch N.

Initialize: Critic network Q(s, a|θi) and actor network μ(s|w) with random parameters θ1, θ2 and
w, target network θ′1 ← θ1 , θ′2 ← θ2 and w′ ← w , experience replay buffer Memory D,
navigation environment of an AMV.

Procedure:

1: for n1 = 1, . . . , F do

2: for n2 = 1, . . . , K do

3: Select actions with exploration noise a ∼ μ(s|w) + ε and obtain reward r and next
moment state st+1
4: Save transition tuple (s, a, r, st+1) into Memory D
5: Sample N transitions (s, a, r, st+1){

at+1 ← μ′(st+1|w′) + ε

y ← r + γQmin(st+1, at+1|θ′i)
6: Update Critic networks parameters θi as
θi ← argminθi

1
N (y − Q(s, a|θi))

2

7: if t mod d then

8: Update actor network parameters w as
∇w J ≈ 1

N ∑(∇aQ(s, a|θ1)|a=μ(s)∇wμ(s|w))

9: Update target network as{
θ′i = ξθi + (1 − ξ)θ′i
w′ = ξw + (1 − ξ)w′

end if

end for

Outputs: Actor network parameter w, critic network parameters θ1 and θ2.
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4. Simulation Studies

In this section, simulation studies are shown to verify the effectiveness and superiority
of the proposed DRL-based path-following control method. Consider an under-actuated
AMV described by (5) with model uncertainties and unknown marine environment distur-
bances. Model parameters of the prototype AMV can be found in [43].

Within the kinematic guidance level, relative parameters are chosen as follows: k1 = 0.2,
k2 = 2, Δ = 3. Within the dynamic control level, relative parameters are chosen as follows:
k3 = 1.5, k4 = 6, k5 = 1, k6 = 1, λ = 0.8, k7 = 0.3. Training hyper parameters and network
parameters of the LSTM-TD3 are shown in Tables 1 and 2, respectively.

Table 1. Training hyper parameters.

Parameters Value

Discount factor γ 0.99
State sequence length L 20

Training cycle F 1000
Maximum number of steps K 1000

Capacity of buffer D 100,000
Learning rate l 0.001

Optimizer Adam
Gradient threshold parameter g 1

Regular factor ε 0.00005
Mini-batch N 128

Table 2. LSTM-TD3 network parameters.

Parameters Value

Input layer of actor network 11
Input layer of critic network 13

Fully connected layer 200
LSTM layer of actor network 100
LSTM layer of critic network 100

Output layer of actor 2
Output layer of critic 1

Episode rewards with different DRL algorithms of path-following control of an AMV
are shown in Figure 6. It can be seen that the initial reward is extremely low since the
vehicle explores the environment randomly during the initial training stage. After collecting
enough data, the rewards converge to a stable value under the DRL control method.
Compared to the asynchronous advantage of actor-critic (A3C) developed in [44], the
TD3 and LSTM-TD3 can effectively increase the accumulated reward. Additionally, the
proposed LSTM-TD3 shows a faster convergence rate and a more stable convergence
process than the other two algorithms.

After training the algorithm for 1000 episodes, the optimal actor network parameters
of the LSTM-TD3 and TD3 are saved and utilized. Simulation time is set as 200s. The
initial positions and attitude are η = [−10, 0, 0]T and the initial velocities are ν = [0, 0, 0]T .
Time-varying marine environment disturbances are defined as

τd =

⎡⎣5 sin(0.1t + π/5)
2.2 cos(0.1t + 6)
1.2 cos(0.1t + 3)

⎤⎦ (32)

The desired path is defined as{
xd = s
yd = 10 sin(0.3s) + 2s

(33)
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Figure 6. Episode rewards with different DRL algorithms.

Simulation results are shown in Figures 7–11. Figure 7 shows the path-following
control performance of an under-actuated AMV where the desired path, actual path under
the proposed LSTM-TD3 and the traditional TD3 are plotted. Obviously, the proposed
control method has significant superiority in terms of transient responses and steady-
state performance. Figure 8 shows the path-following errors of an AMV subject to model
uncertainties and marine environment disturbances. It can be seen that the tangential error
and the normal error can converge to the origin faster under the proposed control method.
Figure 9 shows the surge velocity and heading angle, where desired signals are generated
by guidance law (19). The actual velocities gradually converge to the desired value by
the aid of the DRL controller. Note that the slight chattering of velocities is due to large
path inflection point, and under-actuated AMV have to reduce their speed to follow the
desired path. Figure 10 shows the velocity error and heading angle error of an AMV. It
can be seen that the LSTM network considers historical states and thus enhances control
performance. Figure 11 shows path-following control inputs of an AMV, including the
surge force and the yaw torque. Because of the hybrid rewards with standard deviation,
where 20 continuous inputs are set as a calculation group and dynamic sliding is introduced,
the control chattering is effectively relieved.

Figure 7. Path-following control performance of an AMV.
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Figure 8. Path-following errors of an AMV under LSTM-TD3 and TD3.

Figure 9. Surge velocity and heading angle of an AMV.

Figure 10. Velocity and heading errors of an AMV under LSTM-TD3 and TD3.
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Figure 11. Surge force and yaw torque of an AMV.

5. Conclusions

This article studies the path-following control of an under-actuated AMV subject to
unknown model parameters and marine environmental disturbances. Within the kinematic
level, a surge-heading joint guidance law is presented, and makes the vehicle follow the de-
sired path. Within the dynamic level, a LSTM-TD3-based reinforcement learning controller
is presented, where vehicle actions are generated by the state space and hybrid reward.
Additionally, actor-critic networks are developed using the LSTM network, and vehicles
can make a decision by the aid of historical states, thus enhancing the convergence rate of
controller networks. Simulation results and comprehensive comparisons demonstrate the
remarkable effectiveness and superiority of the proposed path-following control method.
By the aid of the proposed controller, the AMV can achieve path following regardless of
marine environment disturbances.
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Abstract: Efficiently predicting high-resolution and accurate flow fields through networked au-
tonomous marine vehicles (AMVs) is crucial for diverse applications. Nonetheless, a research gap
exists in the seamless integration of data-driven flow modeling, real-time data assimilation from flow
sensing, and the optimization of AMVs’ sensing strategies, culminating in a closed-loop dynamic
data-driven application system (DDDAS). This article presents a novel DDDAS that systematically
integrates flow modeling, data assimilation, and adaptive flow sensing using networked AMVs.
It features a hybrid data-driven flow model, uniting a neural network for trend prediction and a
Gaussian process model for residual fitting. The neural network architecture is designed using
knowledge extracted from historic flow data through tidal harmonic analysis, enhancing its capa-
bility in flow prediction. The Kriged ensemble transform Kalman filter is introduced to assimilate
spatially correlated flow-sensing data from AMVs, enabling effective model learning and accurate
spatiotemporal flow prediction, while forming the basis for optimizing AMVs’ flow-sensing paths.
A receding horizon strategy is proposed to implement non-myopic optimal path planning, and a
distributed strategy of implementing Monte Carlo tree search is proposed to solve the resulting large-
scale tree searching-based optimization problem. Computer simulations, employing underwater
gliders as sensing networks, demonstrate the effectiveness of the proposed DDDAS in predicting
depth-averaged flow in nearshore ocean environments.

Keywords: dynamic data-driven application system; autonomous marine vehicles; flow field
prediction; data assimilation; adaptive sampling

1. Introduction

The advancement of affordable, long-range autonomous marine vehicle (AMV) tech-
nologies, including unmanned surface vehicles (USVs), autonomous underwater vehicles
(AUVs), underwater gliders, and wave gliders [1], has presented opportunities for the
deployment of persistent, robotic, and autonomous Lagrangian networks in ocean environ-
ment sensing. In contrast to conventional ocean observation networks such as the ARGO
array [2], the utilization of mobile and autonomous networks composed of a collection of
AMVs offers a distinctive technical capability: controllable maneuverability in complex and
dynamic ocean environments. Therefore, effectively leveraging their controllable maneu-
verability to enable the networks to acquire cost-effective and information-rich sensing data
within nonuniform and dynamic ocean environments, aligning with the requirements of
observation missions, is a key issue within the research community focused on autonomous
ocean sensing with AMV networks.

The tracking of dynamic ocean features to gather in situ data for characterizing and pre-
dicting the evolution of these features, such as thermoclines [3], plumes [4], and mesoscale
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eddies [5], is an aspect of applying AMV networks for ocean sensing. Besides feature track-
ing, a foundational application objective in utilizing AMV networks is to autonomously and
adaptively collect a variety of informative Lagrangian data streams, such as temperature,
salinity, and flow velocity of seawater, that can be assimilated into predictive ocean models.
The assimilation of these data streams can lead to significant improvement in the accuracy
of temporal predictions for spatial fields in ocean environments [6]. Consequently, the
real-time optimization of the data streams for assimilation using numerical ocean models
is crucial in maximizing model prediction performance, and it plays an essential role in
both research and practical applications of ocean sensing with AMV networks. One key
approach to addressing this optimization problem is through the utilization of feedback
control theory and the formulation of a sensor management technical framework [7]. This
framework establishes a closed-loop system by integrating a numerical ocean model with
an AMV sensing network [8] and uses iterative feedback and optimization processes to
continuously adapt the network’s sensing strategies and improve prediction performance.
Different from conventional feedback control of dynamic systems, the feedback control
in the closed-loop adaptive ocean sensing and prediction system involves cooperative
control of the sensing actions of the networked AMVs, taking into account the constraints
imposed by ocean environments. And the primary objective of this feedback control is to
collect informative sensing data of ocean environments, which can be utilized in ocean
models to improve prediction performance. The AOSN II and ASAP projects have made
significant contributions to the research on autonomous and adaptive ocean sensing with
AMV networks, particularly regarding the utilization of underwater gliders as part of the
sensing network [9,10]. These projects have laid an important foundation for the further
advancements in this field.

In the context of ocean sensing and prediction systems, predictive ocean models play
an important role. Alongside traditional methods based on numerically solving partial
differential equations of geophysical fluid dynamics, data-driven techniques have emerged
as powerful and complementary tools for ocean modeling and prediction. Leveraging
machine learning and statistical approaches, data-driven methods extract patterns and
relationships from observed data, enabling them to make high-resolution and accurate
predictions with reduced computational costs. Extensive research efforts have been dedi-
cated to developing and applying data-driven techniques for ocean modeling and spatial
and temporal predictions. Notable approaches include objective analysis (OA) [11,12],
Gaussian process (GP) [13], Kriging geostatistical prediction [14], compressive sensing [15],
radial basis functions (RBFs) [16], proper orthogonal decomposition [17,18], dynamic mode
decomposition (DMD) [19], and neural networks [20,21]. Compared to conventional ocean
models, data-driven techniques rely more heavily on the information content within the
data for their implementation. Building upon the aforementioned data-driven techniques,
researchers have devised methodologies to optimize sensing strategies for both Eulerian
and Lagrangian platforms, as demonstrated in [11–13,16–18]. These optimized strategies
enable the collection of informative data, leading to enhancements in data-driven prediction
performance. Through the integration of data-driven techniques and adaptive observation
strategies within the closed-loop system, the ocean sensing and prediction capabilities of
AMVs can be significantly improved. This approach holds great potential in achieving
high-resolution and accurate ocean prediction with AMV sensing networks.

High-resolution and accurate flow field prediction is a fundamental component in
ocean prediction. The spatiotemporal flow information not only offers insights into the
multi-scale dynamic behavior of ocean currents but also plays a crucial role in path
planning [22,23], navigation [24,25], feature prediction and tracking [26], and motion con-
trol for both individual and swarms of AMVs [11,27] implementing ocean sensing missions.
Many studies have been conducted on data-driven flow prediction [22,24,25,28–30], ad-
dressing flow prediction in diverse oceanic environments where tidal or non-tidal flow is
dominant. However, a research gap exists in the specific area of integrating data-driven
flow modeling, online data assimilation of flow sensing data into data-driven flow models,
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and optimizing AMVs’ flow sensing strategy, based on the closed-loop feedback ocean
prediction and adaptive sensing technical framework.

Based on the above review and discussions, as well as recognizing the significance
of high-resolution and accurate flow field prediction in ocean prediction and AMVs’ op-
erations, this article is dedicated to exploring this data-driven closed-loop approach and
systematically developing methods for data-driven flow modeling, data assimilation, and
optimizing AMVs’ observations. The systematic development establishes a dynamic data-
driven application system (DDDAS) [31] for flow prediction and sensing with AMVs. The
DDDAS seamlessly integrates data-driven modeling, data assimilation, and an optimal
decision-making process, as depicted in Figure 1, thereby enhancing high-resolution and
accurate flow field prediction capabilities and enabling adaptive and efficient flow sensing
using AMVs.

Figure 1. Illustration of the DDDAS for flow field prediction and sensing with AMVs.

The main contributions and novelties of this article are as follows: (1) Pioneering
closed-loop DDDAS development: This article represents an advancement by introducing
the first-ever closed-loop data-driven DDDAS designed for predicting flow fields. The
system seamlessly integrates data-driven flow modeling, data assimilation, and adaptive
sensing with AMVs. (2) A hybrid data-driven flow model: This article proposes an innova-
tive hybrid data-driven flow model that combines the predictive power of a neural network
with the statistical estimation of a Gaussian process model. Notably, the neural network
architecture is designed to incorporate prior knowledge of tidal components, contributing
to accurate flow predictions. This hybrid model not only captures flow trends accurately
but also effectively handles residuals. (3) The Kriged ensemble transform Kalman filter
(ETKF) data assimilation: This article introduces a pioneering application of the Kriged
ETKF method for assimilating spatially correlated flow-sensing data from AMVs. This
methodology demonstrates exceptional efficacy in model learning and spatiotemporal
flow prediction. It also enhances the optimization of AMVs’ sensing paths. (4) A reced-
ing horizon strategy for optimal path planning: Addressing the challenge of non-myopic
optimal path planning for a network of AMVs, this article introduces a strategic reced-
ing horizon approach. To tackle the resulting computational complexity of large-scale
tree-searching-based optimization, this article proposes a novel distributed Monte Carlo
Tree Search (MCTS) method. This innovative approach harnesses the collective compu-
tational capabilities of networked AMVs to explore the search space and derive effective
planning solutions.

The rest of this paper is structured as follows. Section 2 presents the data-driven
hybrid flow model, including the neural network model and the Gaussian process model.
Section 3 elaborates on the state and observation models for data assimilation and the
implementation of the Kriged ETKF method for model learning and flow prediction.
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Section 4 presents the optimization of the AMVs’ paths for collecting informative flow-
sensing data to enhance flow prediction accuracy. Section 5 presents simulation studies to
demonstrate the performance of the DDDAS. Finally, Section 6 presents the conclusions.

2. Data-Driven Flow Prediction Model

The flow model serves as a fundamental component within the developed DDDAS.
The section introduces the developed hybrid data-driven model, which leverages the ma-
chine learning model of neural networks and the statical model of the Gaussian process.
Section 2.1 provides an overview of the hybrid model. Section 2.2 presents the utilization
of the tidal harmonic analysis method to extract essential prior knowledge of the flow, sup-
porting the design of the neural network model. Section 2.3 elaborates on the development
of the neural network model and Section 2.4 presents the Gaussian process model.

2.1. Model Overview

To enable the prediction of the flow speed at specific spatiotemporal locations x = (s, t),
where s ∈ R2 represents the spatial location and t ∈ R represents the time, a data-driven
spatiotemporal flow field model is established. This model comprises two submodels:

u(x) = μu(x) + ru(x) (1)

v(x) = μv(x) + rv(x) (2)

Equation (1) represents the submodel for the latitudinal flow speed u(x), and
Equation (2) represents the submodel for the longitudinal flow speed v(x), at the given
spatiotemporal locations x.

The flow model consists of two fundamental components: the mean component, and
the residual component. The mean component, denoted as μu(x) and μv(x), captures the
average or expected flow speeds, providing the trends in flow at the given spatiotemporal
location. In this article, a feedforward neural network is employed to approximate the
continuous and nonlinear function of μu(x) and μv(x). The choice is motivated by the
neural network’s universal approximation capabilities, which enable it to effectively learn
and represent the complex relationships between input parameters including longitude,
latitude, time, and the corresponding flow speed. To implement the flow model, a specific
neural network is designed, and its detailed architecture is described in Section 2.3. On the
other hand, the residual component, denoted as ru(x) and rv(x), accounts for variations
from the mean component. These residuals may arise due to unmodelled influences or other
factors affecting the flow speed. In this article, the Gaussian process is employed to model
ru(x) and rv(x), which will be described in detail in Section 2.4. The composition of the
flow prediction model, take u(x) for example, is depicted in Figure 2. By decomposing the
flow into mean and residual components, the spatiotemporal flow model could effectively
capture both the average behavior and the deviations from the average, which enhance the
accuracy and reliability of the predictions.

Figure 2. The composition of the data-driven flow prediction model.

Throughout the subsequent sections, the model for u(x) will be focused on as an
example for description and discussion. And to simplify expression and notation, the
subscript u in μu(x) and ru(x) will be omitted. It is important to note that both u(x) and
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v(x) share the same structural components and underlying principles. Therefore, the
descriptions, methodologies, and discussions related to u(x) can be directly applied to v(x).

2.2. Decomposition of Flow Using Tidal Harmonic Analysis

Driven by tidal forces, flow fields in nearshore ocean environments often exhibit
spatiotemporal periodic features, which can be characterized by the presence of multiple
periodic components. These components possess distinct frequencies and amplitudes,
playing significant roles in shaping the overall flow dynamics. Incorporating information
about the tidal components in the design of the neural network architecture allows for
capturing and learning about the relationships between the tidal components and the flow
speed more effectively. Therefore, this article implements this integration of knowledge of
tidal components into the neural network design, leveraging the periodic patterns present
in the flow field to enhance the accuracy of flow prediction.

Tidal harmonic analysis is an effective approach for decomposing the flow into dif-
ferent constituents, represented by trigonometric functions with distinct frequencies. It
processes the training data of a temporal sequence of flow fields to identify the domi-
nant tidal frequencies and their corresponding amplitudes. The tidal frequencies can be
calculated using methods such as least-squares harmonic estimation (LS-HE) [32] and mul-
tivariate LS-HE [33]. Once the frequencies are determined, the amplitudes and phases of
the corresponding trigonometric function for each tidal constituent can be calculated using
methods such as least-squares estimation. These constituents capture the fundamental
periodic components of the flow.

In this article, the tidal harmonic analysis is implemented to obtain the tidal con-
stituents. Each obtained tidal constituent corresponds to two orthogonal temporal basis
functions, given by: ⎧⎨⎩ ψi(t) = cos

(
2πt
Ti

)
ψi+Ntc(t) = sin

(
2πt
Ti

) i = 1, · · · , Ntc (3)

where Ti represents the period of the i-th tidal constituent, and Ntc represents the total
number of the chosen dominant constituents. These basis functions form a basis set that
captures the periodic variations in the flow over time.

For a specific spatial location s, the flow contributed by the i-th tidal constituent can
be expressed as follows:

μi(s, t) = βi(s)cos
(

2πt
Ti

)
+ βi+Ntc(s)sin

(
2πt
Ti

)
i = 1, · · · , Ntc (4)

where the coefficients βi(s) and βi+Ntc(s) represent the amplitudes of the basis functions
ψi(·) and ψi+Ntc(·) at location s, respectively. Considering the contributions of all tidal
constituents, the overall flow at the spatial location s can be expressed as:

μ(s, t) = β0(s) + ∑Ntc
i=1 μi(s, t)= βT(s)ψ(t) (5)

where β0(s) represents the non-tidal constant component of the flow at spatial
location s, β(·) = [β0(·), β1(·), · · · , β2Ntc(·)]T varies with the locations, and
ψ(·) = [1, ψ1(·), · · · , ψ2Ntc(·)]T .

2.3. Neural Network Model for the Mean Component

Based on the flow model in Equation (5), a feedforward neural network is designed to
model μ(x) in this article, and its architecture is depicted in Figure 3. The main objective
of the network is to learn about the relationship between μ(x) and x = (s, t), enabling the
prediction of the flow field.
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Figure 3. The architecture of the neural network.

In the model, the neural network takes the latitudinal coordinate slat and the longi-
tudinal coordinate slon of the spatial location s, along with the time t as input parameters.
It then outputs the predicted flow speed μ(x) at x = (s, t). The neural network consists
of three hidden layers: the h-layer, the β-layer, and the ψ-layer. The h-layer consists of Nh
nodes that are fully connected to the model inputs slat and slon. The β-layer has 2Ntc + 1
nodes that are fully connected to the h-layer. And the ψ-layer is a hidden multiplicative
layer with 2Ntc nodes, which is connected to the model input t. The model output is
obtained by calculating the inner product of the outputs from the β-layer and the ψ-layer.
The parameters of the neural network are denoted as follows: the connection weight matrix
between the h-layer nodes and the input nodes is denoted as W1, and the bias vector of
the h-layer nodes is denoted as b1. Similarly, the connection weight matrix between the
β-layer nodes and the h-layer nodes is denoted as W2, and the bias vector of the β-layer
nodes is denoted as b2. Additionally, the connection weight between the node βi(·) and
the node hj(·) is denoted as w2,i,j, and the bias of the node βi(·) is denoted as b2,i, where i
ranges from 0 to 2Ntc, and j ranges from 1 to Nh.

To introduce nonlinearity into the neural network, the S-type hyperbolic tan-
gent function gh(·) is selected as the activation function for the h-layer, i.e., h(s) =[
h1(s), · · · , hNh (s)

]T
= gh(W1s + b1) = tanh(W1s + b1). For the β-layer, the linear acti-

vation function gβ(·) is chosen, i.e., β(s) = [β0(s), · · · , β2Ntc (s)]
T = gβ(W2h(s) + b2) =

W2h(s) + b2. The temporal basis functions are chosen as the corresponding activation
functions for the ψ-layer.

For the offline learning of the network parameters using the data of flow and its learned
tidal constituents, the Levenberg–Marquardt backpropagation optimization method is
employed. This optimization technique efficiently adjusts the connection weights and
biases of the neural network to minimize the mean squared error function, which is chosen
as the objective function. Once the network is trained, it can effectively predict the flow
field at new spatiotemporal locations using the learned relationships from the training data.

2.4. Gaussian Process Model for the Residual Component

In this article, the residual component r(x) of the flow model is modeled using a Gaus-
sian process model. GPs, renowned in machine learning and statistics, prove invaluable
for representing complex data relationships and providing predictions along with uncer-
tainty estimations. In this article, the Gaussian process model adopts a zero mean and an
assumption is made that in the model the residuals do not exhibit temporal dependencies,
meaning that they are temporally uncorrelated, thus r(x)∼GP

(
0,k

(
(si, tk),

(
sj, tk

)))
. This

assumption allows the model to capture the spatial correlation between flow measurements
at different spatial locations.
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In the model, the kernel function k
(
(si, tk),

(
sj, tk

))
= E

[
(r(si, tk))

(
r
(
sj, tk

))]
quan-

tifies the covariance between the spatiotemporal locations (si, tk) and
(
sj, tk

)
, thereby

measuring the similarity or dissimilarity between the flow at different spatiotemporal
locations. Here, E[·] represents the expectation operator. In this article, the anisotropic
squared exponential kernel function is selected to describe the spatial correlation of the
residual component of the model at time tk:

k
(
(si, tk),

(
sj, tk

))
= COV

(
r(si, tk), r

(
sj, tk

))
= θ2

k,0exp

{
− 1

2
(
si − sj

)T
[

θ2
k,1 0
0 θ2

k,2

](
si − sj

)} (6)

Here, θk,0, θk,1, and θk,2 are the model hyper-parameters at time tk, where θ2
k,0 is the

overall variance, θk,1 is the latitudinal length scale, and θk,2 is the longitudinal length scale.
And θk = [θk,0, θk,1, θk,2]

T represents the vector of the model hyper-parameters.
The accuracy of the hyper-parameters θk significantly impacts the prediction accu-

racy of the model. To estimate the model hyper-parameters θk, the maximum likelihood
estimation method is employed. This estimation method uses the available data at time tk
to find the hyper-parameters that maximize the likelihood of the observed residuals. The
implementation details of this estimation process are provided in Section 3.5.

It should be noted that the modeling performance can be further enhanced by employ-
ing more advanced and sophisticated kernel functions. This article, however, focuses on
the widely used anisotropic squared exponential kernel function. Comparisons involving
different kernel functions fall beyond the scope of this article.

3. Data Assimilation with the Kriged ETKF

To achieve accurate predictions of flow speeds using the presented flow model, it is
essential to accurately estimate the model parameters, including the weights and biases in
the neural network model, as well as the hyper-parameters in the residual model. While
the parameters of the flow model can be learned from historical data, there are limitations
and uncertainties associated with the data used for training. These challenges include
data sparsity, noise, and discrepancies in the actual flow conditions that the model aims to
predict. To address these issues and improve the accuracy of flow predictions, this article
implements online real-time learning of the parameters of the model using in situ sensing
data of flow speeds provided by AMVs, employing the sequential Bayesian filtering method.
This real-time learning enables the model to adapt to changing conditions to closely align
with the actual flow conditions and to refine its predictions based on the most recent
observations, thereby leading to more accurate and reliable predictions of flow in nearshore
ocean environments.

This section delves into the implementation of data assimilation, a crucial aspect
of the developed DDDAS. Sections 3.1 and 3.2 provide the state model and observation
model, respectively, which serve as the foundation for the subsequent implementation of
the sequential data assimilation process. Section 3.3 presents the learning of the neural
network model using the ETKF method, and Section 3.4 presents the flow field prediction
using contributions from both the learned neural network model and the Gaussian process
model. Finally, Section 3.5 addresses the estimation of the hyper-parameters within the
Gaussian process model, thereby completing the comprehensive data assimilation process
with the Kriged ETKF method.

3.1. State Model

For the neural network model, all the connection weights
{

w2,i,j
∣∣i = 0, · · · , 2Ntc;

j = 1, · · · , Nh}, as well as all the biases {b2,i|i = 0, · · · , 2Ntc}, play a crucial role in estab-
lishing the nonlinear regression relationship between β(s) and s for the spatiotemporal
flow field model. These model parameters are selected as model state variables. And
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the model state vector, denoted as α, consists of all model state variables, represented
as follows:

α =
[
w2,0,1, · · · , w2,2Ntc ,Nh , b2,0, · · · , b2,2Ntc

]T (7)

And the temporal state evolution is assumed to be driven by white noise, and it
conforms to the following equation:

α
f
k = αa

k−1 + ηk (8)

In this equation, αa
k−1 represents the posterior analysis state at the previous time step

tk−1, which is the estimated state based on the available observations up to time step tk−1,
α

f
k represents the forecast state at time step tk based on αa

k−1, and ηk represents the Gaussian
white process noise at time step tk.

3.2. Observation Model

This section describes the observation model for the implementation of the online
learning with the sequential Bayesian filtering method, which establishes the relationship
between the observed flow speeds from AMVs and the underlying state variables.

Assuming that there are Ns flow speed observations
{

y1, · · · , yNs

}
at Ns spatial loca-

tions {s1, · · · , sNs} by Ns AMVs, and the Ns-dimensional observation vector

yk =
[
y1, · · · , yNs

]T
at time tk for all the Ns spatial locations is given by:

yk = uk + εk (9)

where uk = [u(s1, tk), · · · , u(sNs , tk)]
T is the true flow speed at time tk for all Ns spatial

locations, and εk is the observation noise at tk. εk follows a Gaussian distribution with
zero-mean vector and covariance matrix σ2

ε I, where σ2
ε is the observation noise variance,

and I is the Ns-dimensional identity matrix.
In Equation (9), the mean component μk of uk can be expressed as follows:

μk = Hkαk (10)

where Hk is the observation matrix. The observation matrix maps the flow from the model
state space to the observation space at tk for all Ns spatial observation locations and is
defined based on the architecture of the neural network as follows:

Hk =

⎡⎢⎣ h(s1) H1(s1, tk) · · · H2Ntc(s1, tk) ψT(tk)
...

...
. . .

...
...

h(sNs) H1(sNs , tk) · · · H2Ntc(sNs , tk) ψT(tk)

⎤⎥⎦ (11)

where h(si) =
[
h1(si), · · · , hNh(si)

]
, and H j(si, tk) = h(si)ψj(tk), in which i = 1, · · · , Ns

and j = 1, · · · , 2Ntc.
Based on the above equations, the measurement equation can be expressed as follows:

yk = Hkαk + rk + εk (12)

3.3. Filtering with ETKF

Based on the structure of the presented flow model and the need for model learning
and flow prediction using flow speed data from AMVs, this article employs the Kriged
Kalman filter method [34] to implement the data assimilation and flow prediction. The
Kriged Kalman Filter integrates Kriging’s spatial interpolation capabilities and the Kalman
filter’s optimal state estimation to effectively combine spatial correlations and temporal
dynamics. In the DDDAS system, the data assimilation process not only improves flow
predictions but also supports the optimization of AMVs’ observation strategies. To achieve
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this, the Kriged ETKF is introduced. The implementation of the Kriged ETKF is detailed
as follows, and the optimization strategy which further enhances the model’s predictive
capabilities will be elaborated on in Section 4.

In the ensemble-based filtering approach, a total of Nem ensemble members are con-
sidered. The initial model state vector is perturbed to generate the initial ensemble of the
model state vectors

{
α
(i)
0

∣∣∣i = 1, · · · , Nem

}
. These perturbations introduce variability and

diversity in the initial state estimates, which is crucial for robust data assimilation. The
forecast equation then drives the evolution of each ensemble member over time as follows:

α
f ,(i)
k = α

a,(i)
k−1 + η

(i)
k i = 1, · · · , Nem (13)

where
{

α
f ,(i)
k

∣∣∣i = 1, · · · , Nem

}
represents the forecast ensemble at tk,

{
α

a,(i)
k−1

∣∣∣i = 1, · · · , Nem

}
is the perturbed posterior analysis ensemble at tk−1, and

{
η
(i)
k ∼ NNα(0, τ)

∣∣∣i = 1, · · · , Nem

}
is the ensemble of forecast noise at tk, where Nα = (2Ntc + 1)× (Nh + 1) is the total number
of model state variables. This noise follows a Gaussian distribution with a zero-mean vector
and a covariance matrix τ.

By subtracting the forecast ensemble mean from each ensemble member, the forecast
ensemble perturbations matrix at tk can be obtained as follows [35]:

Z f
k =

1√
Nem − 1

[
α

f ,(1)
k − α

f
k , · · · , α

f ,(Nem)
k − α

f
k

]
(14)

where α
f
k is the mean forecast state at tk, which is defined as the ensemble mean of the

forecast state as follows:
α

f
k =

1
Nem

∑Nem
i=1 α

f ,(i)
k (15)

The forecast error covariance matrix at tk can be obtained as follows:

P f
k = 1

Nem−1 ∑Nem
i=1

(
α

f ,(i)
k − α

f
k

)(
α

f ,(i)
k − α

f
k

)T

= Z f
k Z f T

k

(16)

where P f
k represents the forecast error covariance matrix at time tk, and Z f

k is the forecast
ensemble perturbations matrix as defined in Equation (14). The forecast error covari-
ance matrix provides a measure of uncertainty in the forecast state, which is essential for
accurately estimating the flow field and making reliable predictions.

The mean posterior analysis state at time tk can be obtained as follows:

αa
k = α

f
k + Kk

(
yk − Hkα

f
k

)
(17)

where Kk represents the Kalman gain matrix at time tk as follows:

Kk = P f
k HT

k

(
HkP f

k HT
k + Σk

)−1
(18)

and Σk is the observation error covariance matrix at time tk given by:

Σk = COV(rk, rk) + σ2
ε I (19)

where rk = [r(s1, tk), · · · , r(sNs , tk)]
T is the residual vector at time tk, and I is the Ns-

dimensional identity matrix.
The ETKF [35] introduces a transformation matrix that efficiently transforms the fore-

cast ensemble perturbations into the posterior analysis ensemble perturbations, thereby
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reducing the complexity of the posterior analysis state calculation. At time tk, the transfor-
mation matrix is given by:

Tk = Ck(Γk + I)−1/2 (20)

where Ck is a matrix containing all the orthogonal eigenvectors of the matrix Z f T
k HT

k Σ−1
k HkZ f

k ,
Γk is a diagonal matrix with all corresponding eigenvalues as its main diagonal elements,
and I is the Nem-dimensional identity matrix. This transformation matrix plays a crucial role
in the data assimilation process by efficiently adjusting the forecast ensemble perturbations
to be consistent with the observations, leading to more accurate and reliable posterior
analysis state estimates.

The posterior analysis ensemble perturbations matrix at time tk can be obtained by
applying the transformation matrix Tk as follows [35]:

Za
k = Z f

k Tk (21)

By adding the mean posterior analysis state to each column of the posterior analysis
ensemble perturbation matrix Za

k, the perturbed posterior analysis ensemble at time tk can
be obtained as follows:{

α
a,(i)
k = αa

k +
√

Nem − 1Za,(i)
k

∣∣∣i = 1, · · · , Nem

}
(22)

The posterior analysis error covariance matrix at tk can be obtained as follows:

Pa
k = 1

Nem−1 ∑Nem
i=1

(
α

a,(i)
k − αa

k

)(
α

a,(i)
k − αa

k

)T

= Za
kZaT

k

(23)

Based on the above calculations, the posterior analysis of the flow and the correspond-
ing uncertainty for observed spatial locations under given observations at time tk can be
obtained, respectively, as follows:

ua
k = Hkαa

k (24)

COV(ua
k|yk) = HkPa

kHT
k + Σk (25)

3.4. Flow Prediction

After obtaining the posterior analysis state by assimilating the sensing data of flow
speeds, the Kriging method is employed to further estimate the flow speeds at
unobserved locations.

Let
{

s∗i
∣∣i = 1, · · · , Ns∗

}
represent the collection of spatial locations without sensing

data, and r∗k =
[
r
(
s∗1, tk

)
, · · · , r

(
s∗Ns∗ , tk

)]T
be the corresponding residual components of

the model at time tk, where Ns∗ is the total number of unobserved locations considered
for flow prediction. Define Σ∗

k = COV
(
rk, r∗k

)
as the Ns × Ns∗ -dimensional matrix of

covariances of residual components of the model evaluated at all pairs of spatial observed
and unobserved locations at tk, and Σ∗∗

k = COV
(
r∗k , r∗k

)
as the Ns∗ × Ns∗ -dimensional

matrix of covariances of residual components of the model evaluated at all pairs of spatial
unobserved locations at time tk. The observation matrix at time tk for all spatial unobserved
locations is defined as follows:

H∗
k =

⎡⎢⎢⎣
h
(
s∗1
)

H1
(
s∗1, tk

) · · · H2Ntc

(
s∗1, tk

)
ψT(tk)

...
...

. . .
...

...
h
(

s∗Ns∗

)
H1

(
s∗Ns∗ , tk

)
· · · H2Ntc

(
s∗Ns∗ , tk

)
ψT(tk)

⎤⎥⎥⎦ (26)
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Based on the abovementioned definition, the posterior analysis of the flow and the
corresponding covariance for all unobserved spatial locations under given observations at
time tk can be obtained, respectively, as follows [34]:

u∗,a
k = H∗

k αa
k + Σ∗T

k Σ−1
k (yk − Hkαa

k) (27)

COV
(
u∗,a

k

∣∣yk
)
= Σ∗∗

k − Σ∗T
k Σ−1

k Σ∗
k + ΦkPa

kΦT
k (28)

where u*
k =

[
u
(
s*

1, tk
)
, · · · , u

(
s*

Ns*
, tk

)]T
, and Φk = H*

k − Σ*T
k Σ−1

k Hk.

3.5. Estimation of Hyper-Parameters

To achieve flow prediction, it is essential to estimate the hyper-parameters in the
residual model at each data assimilation time. In this article, the maximum likelihood
estimation method is employed to estimate the model hyper-parameters using the flow
speed data collected by the AMVs at time tk.

According to Equation (12), the observed flow speed vector yk follows a multivariate
normal distribution, i.e., yk ∼ NNs

(
Hkαk, HkPkHT

k + Σk
)
. The likelihood function, denoted

as L(·), with respect to the model hyper-parameters θk at tk is expressed as follows:

L
(

θk

∣∣∣yk, α
f
k , P f

k

)
= p

(
yk

∣∣∣θk, α
f
k , P f

k

)
= 1

(2π)Ns/2|Dk |1/2 exp
{
− 1

2 ξT
k D−1

k ξk

} (29)

where Dk = HkP f
k HT

k + Σk, ξk = yk − Hkα
f
k , and p(·) is the probability density function

of the observations. The likelihood function L
(

θk

∣∣∣yk, α
f
k , P f

k

)
quantifies the likelihood of

observing the data yk given the model hyper-parameters θk, the mean forecast state α
f
k ,

and the forecast error covariance matrix P f
k . By maximizing this likelihood function, the

optimal values for the model hyper-parameters θk could be obtained. The logarithmic
likelihood function, denoted as lnL, is commonly used for numerical optimization to solve
the optimal values of θk, as follows:

lnL = −1
2

ln|Dk| − 1
2

ξT
k D−1

k ξk − Ns

2
ln(2π) (30)

To find the numerical solution for the model hyper-parameters θk, the genetic algo-
rithm is employed to solve the following objective function:

θk = arg min
θk∈R3

(
−lnL

(
θk

∣∣∣yk, α
f
k , P f

k

))
(31)

By using the genetic algorithm, the numerical solution for the model hyper-parameters
θk can be efficiently obtained, enabling accurate estimation of the model parameters and
improving the flow prediction performance.

4. Optimization of AMVs’ Sensing Paths

In the context of the DDDAS for flow prediction, the effective optimization of the
AMVs’ sensing paths is of utmost importance. The assimilation of the informative flow-
sensing data streams from AMVs enables improved estimation of model parameters,
leading to enhanced accuracy in flow prediction. The neural network model serves as
the backbone of the flow model, and this section focuses on the optimization of AMVs
sensing paths to improve the estimation of the neural network parameters. Through this

68



J. Mar. Sci. Eng. 2023, 11, 1617

optimization process, the developed DDDAS is completed, enabling adaptive flow sensing
using AMVs.

In the Kriged ETKF data assimilation, the ETKF method provides an effective means
to quantify the reduction in error variance of the forecast state variables and to access
the impact of different observation schemes. In the article, the optimization is built upon
the ETKF method, and two optimization scenarios are investigated. In the first scenario,
the optimization focuses on finding optimal AMVs’ sensing locations for improving the
estimation performance only in the subsequent data assimilation time step. This strategy
is relatively straightforward to implement. However, it has a myopic nature, as it only
considers the immediate impact on the subsequent time step. On the other hand, the second
scenario investigated extends the optimization to consider multiple data-assimilation time
steps over future time horizon. Compared to the greedy optimization in the first scenario,
the non-myopic optimization problem in the second scenario presents more complexities.
This article places a greater emphasis on non-myopic optimization.

This section elaborates on the optimization. Section 4.1 states the optimization prob-
lems for the two scenarios. Section 4.2 presents the strategies for solving the optimization
problems, with a particular emphasis on the proposed receding horizon strategy for the non-
myopic optimization scenario. And Section 4.3 presents a proposed distributed strategy for
implementing the MCTS method to solve the receding horizon optimization.

4.1. Problem Statement

In the Kriged ETKF data assimilation described in Section 3, the signal covariance
matrix at time tk, denoted as Sk and defined in Equation (32), as follows [35]

Sk = P f
k − Pa

k = Z f
k CkΓk(Γk + I)−1CT

k Z f T
k (32)

provides a means to assess the impact of assimilating observational information from
various observation schemes Hk(Sk) at time tk on the reduction in error variance of the
forecast state variables and posterior analysis, where Sk = {s1, · · · , sNs} represents the
spatial locations of Ns AMVs. This difference represents the information gained from the
observations, which leads to an improvement in state estimation.

The trace of Sk, denoted as tr{Sk}, serves as a measure of the improvement in the

model’s state estimation when assimilating the flow-sensing data yk =
[
y1, · · · , yNs

]T

obtained at Sk. A larger value of Sk indicates a more significant reduction in error vari-
ance, suggesting that the assimilated flow-sensing data have a substantial positive impact
on enhancing the accuracy of the model estimation. Therefore, in this article, the opti-
mization of the AMVs’ flow-sensing paths is based on maximizing the trace of the signal
covariance matrix.

For the first scenario of greedy optimization performed at time tk, the optimization of
AMVs’ sensing locations to be reached at time tk+1 is expressed as follows:

S∗
LO = arg max

SLO∈RSk+1(Sk)

tr(Sk+1) (33)

In this expression, S∗
LO represents the optimized locations, and RSk+1(Sk) represents

the set of possible sensing locations for the AMVs at time tk+1, which are constrained to be
within the reachable region determined by the previous sensing locations Sk at time tk. The
objective of the optimization is to find S∗

LO to maximize the data assimilation performance
at time tk+1. By implementing the optimization continuously at each data assimilation
time step, the DDDAS forms the optimal paths of AMVs that consistently improve the data
assimilation performance.

For the second scenario of non-myopic optimization performed at time tk, the objective
is to find the optimal paths of AMVs, covering multiple time steps from time tk+1 to time
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tk+NT , with the aim to enhance the data assimilation performance during the time step tk+1
to a user-defined future time step tk+NT . The optimization problem is expressed as follows:

S∗
PA = arg max

SPA∈RSk+NT
(Sk)

∑NT
i=1 tr(wk+iSk+i) (34)

In this expression, S∗
PA represents the optimized paths from time tk+1 to time tk+NT ,

where NT is the number of time steps in the optimization horizon. The weight wk+i reflects
the user’s preference for each time step from tk+1 to tk+NT . RSk+NT (Sk) represents the
set of possible sensing paths for the AMVs from time tk+1 to time tk+NT . These paths are
constrained to be within the reachable region determined by the sensing locations Sk at
time tk.

In the optimization process of AMVs’ sensing paths, Sk+1 may consist of two com-
ponents, one for the latitudinal direction and the other for the longitudinal direction,
calculated using the two submodels. This can be expressed as Sk+1 = wlatS

lat
k+1 + wlonSlon

k+1,
where wlat and wlon are user-defined weights with the constraint that wlat + wlon = 1. The
choice of these weights depends on the specific objectives and requirements of the mission.

4.2. Strategies for Solving the Optimization Problems

In the implementation of the optimization in this article, the AMVs are assumed
to navigate at a constant speed relative to the sea bottom, and the optimization focuses
on finding the optimal commanded heading angles for the AMVs, i.e., the commanded
heading angles are selected as the decision variables. With the optimized commanded
heading angles, the AMVs could navigate to desired flow-sensing locations using guidance
and control algorithms [36]. To solve the optimization problems, the commanded heading
angle of an AMV is discretized by dividing the range of heading angles into NH equal
parts. The heading angle i × 360◦/NH is selected as one of the possible decision choices,
where i ranges from 1 to NH . The user defined constant value of NH determines the level
of discretization. Selecting a higher value will achieve fine-grained exploration of heading
angle options, with an increase in computational costs.

For the optimization problem in Equation (33), the optimal solution can be obtained
by evaluating the objective function for each combination of the discretized heading an-
gles of AMVs and selecting the one that maximizes the tr(Sk+1). For a small number of
possible combinations, an exhaustive search could be performed. For a large number
of possible combinations, an exhaustive search becomes computationally expensive and
time-consuming. In such cases, this article employs the genetic algorithm to efficiently
implement the optimization.

For the optimization problem in Equation (34), the objective is to find the optimal
sequences of commanded heading angles for the AMVs, which will determine the paths of
the AMVs over multiple time steps. The temporal sequence of the possible combinations of
commanded heading angles of AMVs forms a tree structure, where each node in a layer
represents a possible combination of commanded heading angles of the AMVs at a specific
time step. The tree expands from one time step to the next, representing the different
possibilities for AMVs’ paths over the optimization horizon. To efficiently search for the
optimal solution in the tree structure, this article employs the MCTS method [37]. MCTS is
a heuristic search method commonly used in decision-making problems, particularly in
scenarios with large search spaces. It is suitable for the optimization problem addressed in
this article.

Considering the presence of uncertainties in the flow model, real flow conditions, and
the AMVs’ navigation and control, this article employs the receding horizon optimization
to implement the path planning considering multiple time steps. In this strategy, the opti-
mization is performed at time tk using the MCTS method, and the computed commanded
heading angles for time tk+1 are provided to the AMVs for implementation. This approach
implements the optimization process repeatedly at each time step tk. By this approach, the
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AMVs continuously update their paths based on the most recent information, making the
flow sensing and prediction capabilities more adaptive and robust.

It should be noted that the receding horizon strategy could be implemented in two
different ways to achieve continuous AMV paths and optimize the data assimilation
performance over a future time window, based on different mission requirements. In the
first approach, the process involves repeating the optimization with the same time horizon
at each data assimilation–optimization time step, i.e., at each time tk, the optimization of
S∗

PA in Equation (34) is implemented. This results in continuous AMV paths, where the
AMVs’ locations at each time step are chosen to be optimal for the future NT time steps.
In contrast, in the second approach, the paths of the AMVs are optimized for a fixed user-
defined time window, and at each time step the optimization only considers the remaining
time steps within the window. Specifically, at one time tk, the optimization of maximization
of ∑NT

i=1 tr(wk+iSk+i) is implemented, whereas at the subsequent time tk+1, the optimization
of ∑NT

i=2 tr(wk+iSk+i) is implemented, which considers the optimization of the remaining
time steps from tk+2 to tk+NT . This optimization process terminates at tk+NT−1, resulting in
continuous AMVs paths terminated at tk+NT . And the AMVs’ locations at each time step
are chosen to be optimal for the future remaining time steps within the time window.

4.3. A Distributed Strategy for Implementing MCTS

When implementing MCTS on a single processor with limited computational capa-
bility to solve large search problems within a constrained decision-making time frame,
obtaining an optimal solution may be difficult or impractical. To tackle this issue, and
considering the operation scenario of the DDDAS where the computation is implemented
on all Ns AMVs without the support of onshore stations, this article proposes a distributed
strategy to implement the optimization process. This strategy involves partitioning the
search tree into subtrees and assigning each subtree to a different computing device on
AMVs for simultaneous exploration. By conducting parallel searches on individual sub-
trees simultaneously and combining their results, the strategy can leverage the collective
computational power of multiple devices of the networked AMVs, facilitating an efficient
and optimal decision-making process.

The proposed distributed strategy partitions the original search tree into Ns subtrees.
Each subtree is then assigned to an AMV for independent execution. The final result is
obtained by combining the Ns outcomes of all subtrees. The initial state of the root nodes
nodeisub of the subtrees, i = 1, 2, · · · , Ns, is the same as that of the root node noder in the
original tree. The number of child nodes for each nodeisub is equal to Na/Ns, where Na

denotes the number of child nodes of each node in the original search tree.
After splitting the tree, all subtrees are executed simultaneously on the corresponding

computing devices. Once all the subtree searches are completed, the final optimal decision
is determined by selecting the decision with the highest quality among the best child nodes
of each subtree, as follows:

a∗ = arg max
ai∗

qi
∗

i = 1, 2, · · · , Ns (35)

where ai∗ represents the decision of the best child of nodeisub, and qi
∗

represents the quality
of that child.

Existing distributed MCTS methods often necessitate frequent information interactions
between multiple threads [38,39], and thus may not be suitable for scenarios like distributed
AMV networks with wireless communication, where frequent communication among
network nodes is unfavorable or impractical. The proposed distributed strategy in this
article requires minimal communication between devices, limited to allocating subtrees and
collecting results for determining the final optimal decision. With low data transmission
needs, it is well-suited for scenarios with limited wireless communication capabilities, such
as the AMV networks studied in this article.
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In the implementation of the MCTS, to balance exploitation and exploration in the
search process, nodes are selected based on the UCB1 (upper confidence bound 1)
method [40] commonly used in MCTS. By using the UCB1, the MCTS method ensures a bal-
ance between exploring promising nodes and exploiting nodes with high estimated quality.

5. Simulation Results

In this article, a comprehensive simulation study is conducted to validate and evaluate
the performance of the developed DDDAS, which is presented in this section.

Section 5.1 describes the simulation scenario, where four autonomous underwater
gliders are utilized to predict the depth-averaged flow in nearshore ocean environments
with tidal features. These gliders serve as the flow-sensing network, and their paths are
optimized to collect informative flow-sensing data. Section 5.2 presents a comparison of
three flow prediction approaches: (1) using the neural network alone; (2) incorporating
the data assimilation into the neural network; and (3) further incorporating the Gaussian
process. This comparison enables an assessment of the improvement in flow prediction
accuracy with each successive approach. Section 5.3 focuses on comparing three glider
sensing strategies: virtually moored at fixed locations, random motion, and optimized
motion. The accuracy of flow prediction is evaluated under each strategy, revealing the
impact of gliders’ flow-sensing locations on the performance of flow prediction. Lastly,
in Section 5.4, the results of implementing the receding horizon optimization with the
distributed MCTS are presented, comparing the results of greedy optimization and non-
myopic optimization and demonstrating the utilization of multiple AMVs’ computational
power for decision-making, when the computation of the DDDAS is implemented on the
AMVs without support from onshore stations.

5.1. Simulation Scenario

Underwater gliders are highly valuable autonomous mobile platforms for large-scale
and long-term ocean observation. Driven by buoyancy engines, gliders commonly navigate
at relatively slow speeds, thus their motion can be significantly influenced by ocean flow.
Therefore, accurate depth-averaged flow prediction information is crucial for navigation
and control of underwater gliders. In the simulation study of the developed DDDAS in
this article, the underwater gliders are employed as the sensing network, and their paths
are optimized to collect flow-sensing data for predicting the depth-averaged flow in the
nearshore ocean environment.

In the simulation, a designated region of 1◦ × 1◦ in the South China Sea is chosen as
the operational area. Within this operational area, four underwater gliders are deployed to
navigate and perform the sensing mission. For the simulation, the depth-averaged flow
data predicted by a numerical ocean model of POM (Princeton Ocean Model) during March
and June 2019 are employed as the true flow. This flow dataset serves as the basis for
supporting the glider sensing and acts as the ground truth for comparison and evaluation.
The flow data have a temporal resolution of 1 h and a horizontal spatial resolution of 1/15◦
in both the latitudinal and longitudinal directions. In Figure 4a, the flow field at 31 March
2019, 18:00 (UTC + 08:00) is depicted, where the flow is predicted on the 16 (latitudinal
direction) ×16 (longitudinal direction) = 256 uniformly distributed grid points. For the
initialization of the neural network model, the flow data covering the time range from
1 March 2019, 00:00 to 31 March 2019, 23:00 (UTC + 08:00) is utilized. The tidal analysis
method is then applied to this dataset to extract the tidal constituents and a total of primary
Ntc = 29 tidal constituents are selected, resulting in 2Ntc = 58 temporal basis functions
and 59 corresponding coefficients taking into account the non-tidal component for the
mean flow. Based on these tidal constituents, the neural network model is constructed,
with Nh = 7 nodes in the hidden layer, leading to a total number of Nα = 472 model state
variables. It should be noted that the flow data used for the tidal initialization of the neural
network with the gradient descent method is subsampled, with a spatial resolution of 0.2◦,
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as shown in Figure 4b. This approach aims to demonstrate the capability of predicting
high-resolution flow fields using a model taught with relatively sparse training data.

 
(a) (b) 

Figure 4. (a) The flow field predicted by the POM. (b) The subsampled flow field for model initialization.

In the simulation, four underwater gliders are deployed in the operational area, i.e.,
Ns = 4. The gliders are set to navigate at a constant speed of 0.7 kn relative to the sea bottom,
and the influence of the flow on the motion of the glider is not considered. Each glider
completes one saw-tooth dive cycle in one hour and reports its sensed depth-averaged
flow speed upon surfacing. The sensed depth-averaged flow is calculated by linearly
interpolating the four predicted flow values around the glider’s surfacing location, with
the addition of sensing noise having a variance of σ2

ε = 10−4. The model assimilates the
sensing data from the four gliders every hour. During the assimilation, the perturbation
covariance matrix of the initial ensemble of the model state vector is set as 10−6I, and the
total number of ensemble members is set as Nem = 100.

For the optimization of the gliders’ paths, both Slat
k+1 and Slon

k+1 are considered, and
the weights wlat and wlon are both set as 0.5, implying an equal contribution from both
components in determining the optimized sensing paths. And two sets of heading angles
of {0, 45, 90, 135, 180, 225, 270, 325} and {0, 90, 180, 270} are used as the decision choices for
the greedy and the non-myopic optimization, respectively. In the simulation, the gliders’
motion is constrained within the operational area. If a heading angle leads a glider out of
the operational area, that specific heading angle is not considered during the optimization
process, and the optimal heading angle is selected from the remaining feasible choices to
ensure that the glider’s navigation remains within the operational area.

During the simulation, the flow prediction, data assimilation, and adaptive sampling
processes are conducted for a total of 129 consecutive hours, specifically from 1 June
2019, 00:00 to 6 June 2019, 08:00 (UTC + 08:00). To simplify the description, the time
steps are labeled starting from 0 h, which corresponds to the 1 June 2019, 00:00, and each
subsequent time step represents one hour of the simulation. The predicted flow values
from the DDDAS are then compared with the true flow values at the 256 grid points in the
designated operational area, as shown in Figure 4a. To evaluate the prediction performance,
the root mean squared error (RMSE) is calculated for the 256 grid points at each hour,
as follows:

RMSE(t) =

√
1

256∑256
i=1(u

pre(si, t)− utrue(si, t))2 (36)
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where upre(·) represents the model’s prediction of the flow speed, and utrue(·) represents
the corresponding true flow speed from the POM dataset at the same spatiotemporal
location. The RMSE serves as a metric to measure the accuracy of the flow field prediction.

5.2. Comparision of Three Flow Prediction Approaches

In the comparison study described in this section, the paths of the gliders are optimized
using the greedy optimization strategy. Over the 129 consecutive hours, continuous paths of
the gliders are formed, and these trajectories will be depicted in Section 5.3. By assimilating
the optimized sensing data at each time step, the flow field is predicted and updated at
each time step. Figure 5 presents examples of the predicted flow field at the 1st hour
and the 9th hour, along with the corresponding variance of the predicted flow speeds in
both the latitudinal and longitudinal directions. The variance information is important for
many tasks such as the robust path planning or motion control of AMVs. Thanks to the
capabilities of the data-driven flow model, flow field predictions could be obtained with
any desired level of spatial resolution.

  
(a) (b) 

  
(c) (d) 

Figure 5. (a) Predicted flow field at the 1st hour. (b) Predicted flow field at the 9th hour. (c) Variance
of predicted flow speed along the latitudinal direction at the 9th hour. (d) Variance of predicted flow
speed along the longitudinal direction at the 9th hour.

To demonstrate the performance of the hybrid data-driven flow model and the data
assimilation, the RMSE is compared for the results predicted by the three approaches:
(1) using the neural network alone; (2) incorporating the data assimilation into the neural
network; and (3) further incorporating the Gaussian process. Figure 6 demonstrates the
variations in RMSE over the 129 time steps, where NN, NN + DA, and NN + GP + DA
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represent the three flow prediction approaches, respectively (NN: neural network alone,
NN + DA: neural network with data assimilation, NN + GP + DA: neural network with
Gaussian process and data assimilation). Figure 6a presents the RMSE results of the flow
speed component in the latitudinal direction, and Figure 6b presents the corresponding
RMSE results for the flow speed component in the longitudinal direction. The unit of
measurement is meters per second (m/s).

 
(a) 

 
(b) 

Figure 6. RMSE of the flow field prediction using three different flow prediction approaches.
(a) RMSE results of the flow speed component along the latitude direction. (b) RMSE Results of the
flow speed component along the longitude direction.

Table 1 shows the maximum, the minimum, and the maximum and the mean reduction
(compared with the NN approach) values of the RMSE shown in Figure 6 for each respective
flow prediction approach.

Table 1. Performance of RMSE for three flow prediction approaches, corresponding to Figure 6.

Approach Direction Maximum Value Minimum Value
Max Reduction

Value
Mean Reduction

Value

NN
Latitudinal 0.143 0.026 NA NA

Longitudinal 0.139 0.027 NA NA

NN + DA
Latitudinal 0.112 0.013 0.037 0.016

Longitudinal 0.124 0.015 0.028 0.013

NN + GP + DA
Latitudinal 0.043 0.009 0.128 0.042

Longitudinal 0.046 0.010 0.121 0.048

The results presented in Figure 6 and Table 1 highlight the significant impact of data
assimilation and the Gaussian process on improving flow field predictions. When compared
to the predictions without data assimilation, the inclusion of data assimilation leads to a
notable reduction in RMSE for both latitudinal and longitudinal flow field predictions. This
reduction indicates that data assimilation effectively incorporates observed data from the
gliders into the model. Furthermore, the integration of the residual component Gaussian
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process model with data assimilation yields more accurate predictions. The combination
of these techniques contributes to a substantial reduction in RMSE and enhances the
model’s ability to achieve accurate flow predictions. This study suggests that the hybrid
data-driven modeling approach, together with data assimilation, provides an effective
framework for obtaining high-resolution and accurate flow field predictions in nearshore
ocean environments.

5.3. Comparision of Three Flow Sensing Strategies

In this section, three glider sensing strategies are compared to evaluate their performance
in flow prediction. The first strategy involves virtually mooring the gliders at fixed locations
to sense the temporal variations in the flow. In the second strategy, the commanded heading
angle of each glider is randomly selected from the set of {0, 45, 90, 135, 180, 225, 270, 325} at
each time step, representing a more exploratory approach. In contrast, the third strategy
optimizes the paths of gliders using the greedy optimization method, allowing for adaptive
and optimized sampling based on the current situations. In Figure 7, the paths of the
gliders generated by the second (random heading angles) and the third (optimized paths)
sensing strategies are depicted. The starting locations of the optimized paths are set as the
same locations where the gliders are virtually moored for the first sensing strategy.

 

Figure 7. Paths of underwater gliders for the three sensing strategies. The circles represent the start
locations, and the rectangles represent the end locations of the glider paths.

The data collected along these paths from the three sensing strategies are then assim-
ilated into the hybrid data-driven flow model, enabling flow field predictions for each
strategy at every time step. Figure 8 illustrates the variations in RMSE over the course of
129 consecutive hours, with “static”, “random”, and “optimized” representing the three
sensing strategies, respectively. Specifically, Figure 8a plots the RMSE results of the flow
component in the latitudinal direction, while Figure 8b plots the RMSE results of the
flow component in the longitudinal direction. The unit of measurement is meters per
second (m/s).

Table 2 shows the maximum, the minimum, and the maximum and the mean reduction
(compared with the “static” strategy) values of the RMSE shown in Figure 8 for each
respective flow sensing strategy.
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(a) 

 
(b) 

Figure 8. RMSE of the flow field prediction using three different flow sensing strategies. (a) RMSE
results of the flow speed component along the latitudinal direction. (b) RMSE results of the flow
speed component along the longitudinal direction.

Table 2. Performance of RMSE for three flow prediction approaches, corresponding to Figure 8.

Strategy Direction Maximum Value Minimum Value Max Reduction Value Mean Reduction Value

Static
Latitudinal 0.086 0.030 NA NA

Longitudinal 0.101 0.027 NA NA

Random
Latitudinal 0.052 0.020 0.043 0.019

Longitudinal 0.056 0.019 0.066 0.023

Optimized Latitudinal 0.043 0.009 0.067 0.034
Longitudinal 0.046 0.010 0.081 0.037

The results above highlight the significant impact of using mobile and optimized
observations in the flow prediction process. When compared to the fixed observation
locations, the RMSE of the prediction results using observations from different spatiotem-
poral locations is notably reduced. More notably, the accuracy of the prediction results
corresponding to the optimal observation locations selected by the optimization method is
the most promising.

By optimizing data collection locations, more relevant and informative flow-speed data
are provided for the data assimilation process, which, in turn, accelerates the optimization
of model state variables and enhances the accuracy of continuous flow field predictions.
The simulation study validates the utility of the adaptive sensing approach, demonstrating
its potential to improve the overall performance of the hybrid data-driven flow model in
predicting flow fields.

5.4. Non-Myopic Optimization with Distributed MCTS

In certain applications of the DDDAS, the main objective may be to provide flow
information solely for the AMVs themselves to facilitate tasks such as path planning and
cooperative control in dynamic flow fields. These scenarios may not involve onshore
stations or external infrastructures for support, and as a result, the DDDAS is directly
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integrated into the networked AMVs. When implementing the DDDAS on AMVs, the
optimization considering multi-step information gain using the MCTS approach on a single
AMV can become time-consuming. To achieve timely decision-making, this article proposes
a distributed strategy to leverage the collective computational power of AMVs to reduce
tree-searching time. This section conducts a simulation study on non-myopic optimization
using the distributed MCTS approach.

In the simulation, three underwater gliders (Ns = 3) are deployed, and the data
assimilation–optimization process occurs at a time step of 6 h. The optimization process
involves planning gliders’ paths within a fixed time window of 18 h, i.e., 3 time steps, with
each step aiming to maximize the weighted sum of predicted information gain for future
remaining time steps within the fixed time window. This setup corresponds to the second
approach discussed in Section 4.2. Specifically, at time tk, the optimization aims to maximize
the weighted sum of 1/6 × tr(Sk+6) + 2/6 × tr(Sk+12) + 3/6 × tr(Sk+18), prioritizing flow
prediction accuracy at time tk+18. Subsequently, at the time tk+6, the optimization shifts to
1/3 × tr(Sk+12) + 2/3 × tr(Sk+18), and at time tk+12, the optimization considers tr(Sk+18).
The weights are set accordingly to prioritize improving flow prediction accuracy at the
targeted time tk+18. At each time step, the distributed MCTS is utilized to solve for the
optimal solution, where three subtrees are allocated to the three gliders. Then the receding
horizon strategy is implemented, and this optimization process concludes at time tk+18.
This process results in continuous paths over 18 h, facilitating the accurate flow field
prediction at time tk+18. Figure 9 shows the simulation result of the paths of three gliders
from a simulation run.

 

Figure 9. The paths of three underwater gliders correspond to the ID #1 simulation run in Table 3.
The circles represent the start locations, the solid dots represent the locations of gliders at the second
and the third data assimilation time steps, and the rectangles represent the end locations of paths.

In this simulation, ten simulation runs are performed, each starting from the time t0.
The initial starting locations of the three gliders are randomly set within the operational
area. For each run, both the non-myopic optimization and the greedy optimization are
performed with the same simulation setup. Figure 9 also shows the simulation result
of the paths of three gliders from a greedy optimization. After each simulation run, the
tr
(
Pa

0 − Pa
18
)

is calculated for both the cases of optimization considering greedy and non-
myopic information gain. The results are presented in Table 3. Additionally, in the last
column of Table 3, the percentage improvement in tr

(
Pa

0 − Pa
18
)

achieved through the
non-myopic optimization compared to the greedy optimization is also provided.
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Table 3. The tr
(
Pa

0 − Pa
18
)

values calculated in ten simulation runs.

ID of Runs Greedy (×10−5) Non-Myopic (×10−5) Improvement

1 5.714 6.519 14.1%
2 5.939 6.751 13.7%
3 4.904 5.378 9.7%
4 5.772 6.346 9.9%
5 4.396 4.835 10.0%
6 4.864 5.391 10.8%
7 4.551 5.074 11.5%
8 4.661 5.059 8.5%
9 4.654 5.198 11.7%

10 5.835 6.759 15.8%

Upon analysis of the results, it can be observed that the non-myopic optimization
consistently yields higher tr

(
Pa

0 − Pa
18
)

values compared to the greedy optimization for
all ten simulation runs. The improvement percentages range from approximately 9.7%
to 15.8%, with an average improvement of around 11.6% across the ten simulation runs.
By considering information gains from future time steps, the gliders can better plan their
paths and collect more informative data, leading to more accurate flow field predictions at
a future targeted time.

The results also validate the effectiveness of the distributed strategy for implementing
MCTS, enabling effective decision-making with about 1/3 of computation time compared
to the implementation of the MCTS on a single vehicle. This reduction in computation
time is crucial for the real-time decision-making of AMVs. It is worth noting that while the
distributed MCTS method has demonstrated promising results in this simulation study,
there is great potential for further performance improvement. One area of future research
work for the authors is to explore adaptively allocating computational budgets to the
subtrees, to further enhance the capability of distributed MCTS in obtaining optimal and
reliable decisions.

Overall, the consideration of multiple future time steps, the receding horizon optimiza-
tion, and the distributed MCTS demonstrate a promising approach to optimize the non-myopic
paths of AMVs and achieve more accurate flow field predictions for a targeted time.

6. Conclusions

This research article presents a novel data-driven closed-loop dynamic data-driven
application system that effectively addresses the challenge of high-resolution and accurate
flow field prediction in ocean environments. The DDDAS leverages a hybrid data-driven
flow model for trend prediction, along with a Gaussian process model for residual fit-
ting. The assimilation of spatially correlated flow-sensing data from AMVs using the
Kriged ETKF further enhances model online learning and achieves accurate spatiotem-
poral flow prediction. The proposed receding horizon strategy and distributed strategy
of implementing Monte Carlo tree search is demonstrated to be effective in optimizing
AMVs’ coordinated flow-sensing paths, enabling non-myopic path planning, and solving
large-scale tree searching-based optimization problems in a timely manner. The proposed
DDDAS offers a comprehensive and effective solution for achieving high-resolution and
accurate flow field prediction in ocean environments using AMV networks.

As future research directions, several potential avenues can be explored. Firstly, inves-
tigating the integration of other machine learning models, such as deep neural networks,
and data-driven techniques into the DDDAS may lead to further improvements in com-
putational efficiency and prediction accuracy of complex oceanic processes. Additionally,
the application of the DDDAS can be extended to incorporate a wider range of ocean data,
such as ocean temperature and salinity, to achieve a more comprehensive prediction of
ocean environments. Furthermore, optimizing the number of AMVs for environmental
sensing is crucial, as it can lead to ocean prediction with the required level of accuracy
with a minimum number of AMVs needed. This optimization has the potential to reduce
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costs and resource requirements for the system, considering the high costs associated with
deploying and operating AMVs in ocean environments.
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Abstract: In order to identify and attack the multi-UUV (unmanned underwater vehicle) groups,
this paper proposes a method for identifying the critical nodes of multi-UUV formations. This
method helps in combating multi-UUV formations by identifying the key nodes to attack them.
Moreover, these multi-UUV formations are considered to have an unknown structure as the research
object. Therefore, the network structure of the formation is reconstructed according to its space–time
trajectory, and the importance of nodes is determined based on network structure entropy. As for
the methodology, firstly, based on the swarm intelligence behavior method, the motion similarity of
multi-UUV nodes in the formation is analyzed in pairs; furthermore, the leader–follower relationship
and the network structure of the formation are calculated successively. Then, based on this network
structure, the importance of the network nodes is further determined by the network structure
entropy method. Finally, through simulation and experiments, it is verified that the algorithm can
accurately construct the network structure of the unknown multi-UUV formation, and the accuracy of
the calculated time delay data reaches 84.6%, and compared with the traditional information entropy
algorithm, the ordering of the important nodes obtained by this algorithm is more in line with the
underwater formation network.

Keywords: critical node; multi-UUV formation; network structural entropy; formation identification;
network reconstruction

1. Introduction

Compared to a single UUV, multi-UUV formations have the advantages of modularity,
high fault tolerance, high efficiency, etc., and they can also complete more challenging
work through cooperation between them [1]. While the technology of using multiple
UUV formations for coordinated search and exploration operations is becoming more
sophisticated, this technology poses a threat to national maritime security. Facing the
increasingly complex UUV formation structure, it is of great significance to effectively
configure the UUV nodes in different positions according to the position relationship
and the importance of UUV nodes in the cluster, save the equipment costs, improve the
formation operation efficiency, or strike the important nodes of the enemy’s UUV formation
to reduce the efficiency of the formation operation at a minimum cost [2].

The coordinated behavior of the underwater formations can be viewed as a form of
grouping of collaborative intelligence, which represents the traits of a group intelligence
behavior displayed by individuals with simple intelligence through mutual cooperation
and organization while maintaining the naturally distributed and self-organizing char-
acteristics [3,4]. In nature, there are several groups of cooperative intelligent behaviors,
such as flocks of birds and fish migrating in groups to adapt to air or seawater [5,6]. For
instance, using high-precision GPS tracking of pairs of pigeons, Biro et al. found that if the
conflict between two birds’ directional preferences was small, individuals averaged their
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routes [7]. This study shows that there is a leadership relationship exists between pairs of
pigeons when the directional relationship between them exceeds a certain value. Based on
the behavioral characteristics of crowd intelligence, several scholars have carried out a lot
of research on this topic. Based on the leadership stability of the flock, Huo et al. designed
a control model suitable for heterogeneous formation flight of UAVs, aiming to effectively
avoid obstacles in unknown environments [8]. Moreover, Park and Kahng proposed a syn-
chronous leader–follower switching method by observing the migration pattern of birds [9].
Furthermore, for hierarchical leader–follower networks with time-varying layer-to-layer
delay, Xu et al. propose a new Hierarchical Event-based Control (HEC) algorithm [10].

With the increase in UUV formation members, a complex network, along with complex
interaction relationships and a large number of nodes, has been formed; therefore, it is
necessary to further explore the impact of nodes on the entire network and improve
the management and the control efficiency of the actual UUV network [11]. Currently,
the identification methods of the critical nodes are mainly divided into adjacent node
methods and path propagation methods, such as the degree centrality method [12], the
local centrality method [13], and the mesocentric method [14]. For instance, Kitsak et al.
believed that the location of a node in the center of the network indicates that the node is
more critical, and they proposed a K-core decomposition method based on this theory [15].
Moreover, Yu et al. identified the key nodes from the perspective of entropy by using the
impact of node clustering coefficient and the number of first and second-order neighbors
on the node importance [16]. In addition, Wang et al. proposed a novel community-
based method to identify a set of vital nodes for influence maximization in the attributed
networks [17]. Finally, Jiang et al. developed an attenuation-based supra-adjacency matrix
(ASAM) modeling method to further evaluate the importance of the nodes by calculating
the similarity between adjacent layers and the cross-layer networks [18].

For underwater confrontation scenarios, Liu et al. proposed a multi-UUV maneuver-
ing decision-making algorithm for a counter-game with a dynamic target scenario [19]. The
algorithm uses interval intuitionistic fuzzy rules to model the game and uses fractional
order recurrent neural networks (RNN) to achieve optimal maneuvering strategies for the
confrontation. From another point of view, considering the characteristics of large delay
of underwater communication, the algorithm proposed in this paper is to reconstruct the
network structure of enemy formation based on the time delay from the perspective of
identification-strike, and then rank the importance of nodes based on the network, in order
to strike the critical nodes of enemy formation to maximize the destruction of enemy combat
effectiveness for confrontation. The innovations of this paper mainly include: 1. propos-
ing a network reconstruction algorithm for unknown structure underwater formation,
and reconstructing the formation network structure through its spatiotemporal trajectory;
2. based on the formation network, proposing a critical node identification algorithm with
comprehensive importance network structure entropy to analyze the importance of each
node in the multi-UUV formation.

To sum up, this paper is divided as follows: in Section 2, the formation network
reconstruction is provided whereas the key node identification algorithm is presented in
Section 3. As for Section 4, it represents the results and the discussion and finally, the
conclusion and some future works are proposed in Section 5.

2. Formation Network Reconstruction

2.1. Leader–Follower Relationship

According to the analysis method of group intelligence behavior, the formation with
group intelligence has some similarity with the leader in behavioral actions, and there is
a hierarchical relationship characterized by the time delay between individuals [20]. For
example, in a pigeon flock, the follower pigeons will observe the movements of the leader
pigeons visually and make corresponding movements to maintain the consistency of the
formation. In the underwater formation, other UUVs follow the trajectory of the leader
UUV and keep the relative angle and distance to stabilize the formation, i.e., there are also
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motion similarities between individuals and leaders in the group. In reverse analysis, the
leader–follower relation between UUVs in underwater formations can be derived based
on their motion similarity analysis. The spatiotemporal trajectory data of UUV nodes is
analyzed in arbitrary pairs by using the correlation function, and the obtained correlation
coefficient can be used to characterize the motion similarity between the paired UUVs.
Moreover, when the corresponding motion correlation coefficient remains at a fairly high
value at any given moment, it can be regarded as the behavior of one UUV being “inherited”
by another one, that is, it is considered that there is a leader–follower relation between the
UUVs. Among them, the “inherited” behavior is to follow the UUV whereas the other is to
pilot the UUV. To quantify this link, the spatiotemporal trajectory function of any UUV in
the formation and other UUVs is analyzed to determine the motion correlation, and the
motion similarity function is established as follows:

Rt
ij(τ) = dot

(
⇀
u i(t),

⇀
u j(t + τ)

)
(1)

where
⇀
u i(t) represents the UUVi’s normalized speed at moment t,

⇀
u j(t + τ) represents the

UUVj’s normalized speed at moment t + τ, τ is time delay which is a variable, dot is the
inner product operator sign, and Rt

ij(τ) is the function of the motion correlation coefficient
between UUVi and UUVj at time t but for different delay times.

In addition, we set a threshold RT : when the motion correlation coefficient at a certain
point in time is bigger than the threshold (e.g., Rt

ij(τ) > RT), it is believed that there is a
leader–follower relation between the two UUVs at this moment. Therefore, in order to
better determine the appropriate delay time, in the actual calculation process, individual
motion correlation coefficients, having smaller values than the threshold, and mainly
caused by the instability of the data or the error of acquiring the data, are used. Thus, the
average motion correlation coefficient is determined as follows:

Rij(τ) =
1

mt − 1

(
mt−1

Σ
t=1

Rt
ij(τ)

)
(2)

where mt is the number of spatiotemporal trajectories, t ∈ [1, mt − 1], that is, a total of
mt − 1 motion correlation coefficients are generated in mt trajectory points at time delay τ.
Rij(τ) is the average motion correlation coefficient between the UUVi and UUVj at different
delay times τ. Moreover, the similarity of motion between the pairs of UUV is determined.

By establishing the above similar motion model, the correlation coefficient Rij(τ)

relative to the action between the paired UUVs under different time delays τ is obtained,
and the threshold to RT is set. Moreover, if Rij(τ) > RT is obtained for any value of τ, it is
considered that there is a leader–follower relationship between the paired vehicle; therefore,
the delay time τ resulting in the maximum value of Rij(τ) is defined to be the relevant time
delay between the paired UUVi and UUVj, and it will be denoted by τ∗

ij . Thus, the next step

consists of setting the time delay matrix Tn×n =
(

τ∗
ij

)
to represent the delay relationship

between the formation UUVs: when τ∗
ij is positive, it means that the navigation direction

of UUVi is ahead of the UUVj, that is, UUVi is the leader, and UUVj is the following UUV.
However, if τ∗

ij is negative, the roles of the UUVs are the opposite.

2.2. Formation Hierarchy

Limited by the narrow bandwidth of the underwater acoustic channel and the UUV
formation method, the UUV formation movement mostly adopts a hierarchical interac-
tion structure [21]. Moreover, it is faster and more efficient in navigation and command
execution than in the equal interaction structure. While using hierarchical interaction in
the underwater unmanned cluster formation, there is a hierarchical structure relationship
between UUVs, and the higher the level of UUVs, the better its control and the greater the
importance in the formation network will be.
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Based on the similar motion model, the leader–follower relationship between all UUVs
and other UUVs in the formation is obtained and the hierarchical relationship of the entire
network is analyzed. In the leader–following model, the movement command is issued
according to the hierarchy, and the UUV at the top of the hierarchy has a certain leadership
relationship with the other UUVs. However, when both UUVi and UUVj of the previous
level have a leadership relationship with the UUVk pair of the next level, returning to the
judgment of the time delay τ∗ is performed: if τ∗

ji > τ∗
ki > 0, it Is considered that it has

a leadership following relationship of the UUV with a smaller delay, that is, UUVk has a
leadership relationship with UUVj.

2.3. Network Weight Matrix

In the network topology diagram, there is a certain weight coefficient between the two
nodes to characterize the location proximity relationship between them. For example, when
vertices represent some physical locations, the weight of the edge between two vertices can
be set to the actual distance. During network formation, the distance between the different
UUVs reflects the proximity relationship between the nodes, and here the normalized
distance is used to represent the weight of the connected edges of nodes, usually the closer
the distance the more reliable the interaction between two nodes is, and the weight of the
connected edges is considered to be higher. Moreover, the distance dij between UUVi and
UUVj is normalized as one of the factors affecting the weights on the edges; thus, one can
get the following equation:

Dij =

dij − min
i,j

(
dij
)

max
i,j

(
dij
)− min

i,j

(
dij
) (3)

where Dij is the result of normalized distance dij. In addition, considering that the correla-
tion between the different UUVs is related to the motion similarity, higher motion similarity
implies higher inheritance, and the more important the connected edge is considered to
be. Thus, the average motion correlation coefficient Rij(τ

∗) of UUVi and UUVj at the time
delay τ∗

ij is introduced into the weights on the edges of both nodes i and j in the network
topology. It is then combined with the above-normalized distance in order to obtain the
weight on the edge formed by both nodes:

wij =
1

Dij
+ Rij(τ

∗) (4)

2.4. Mobile Formation Network Structure

According to the above steps, the leader–follower relationship, the hierarchical struc-
ture, and the weights on the edges of two nodes in the network were obtained. Therefore,
the adjacency matrix An×n =

(
aij
)
, pointed to the network nodes, and the weight matrix

Wn×n =
(
ωij
)

representing the weights of the nodes, was established. In this matrix, if
there is a leader–following relationship between nodes, the value of the cell will be equal to
one (e.g., aij = 1), and vice versa, the absence of a relation yields a null value (e.g., aij = 0).
Based on these definitions, we attained a map of the network topology of the mobile UUV
formation. The following guidelines are made when creating the network topology dia-
gram, though, in order to be more in line with the characteristics of the underwater cluster
formation. This is because underwater communication has a distance limit, each UUV in
the unmanned cluster formation has a different task, and the sensors carried on the boat
are also different. Information is only dealt with layer by layer across neighboring levels;
each UUV only receives instructions provided by one UUV, but can issue instructions to
several UUVs. Thus, through regular filtering, the network structure reconstruction of the
mobile UUV formation is completed.
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3. Key node Identification Algorithm

3.1. Network Structure Model

In order to represent the connection between the different individuals in the mobile
UUV formation in a more intuitive and clear way, the use of diagrams, where the nodes
represent UUVs and the edges represent the interconnections between UUVs, was the
applied solution. This network structure model is usually expressed as G = (V, E, W),
where V = {v1, v2, · · ·, vn} is the set of network nodes and n = |V| is the total number of
nodes in the network. Moreover, E = {e1, e2, · · · , em} is the set of edges between nodes,
and m = |E| is the total number of edges in the network. Finally, W =

(
wij
)

N×N represents
the weight matrix where wij represents the weight value on the edge of nodes i and j, and
generally has wij = wji in directed networks. As for a weighted network, it can be thought
of as a weighted network with all the weight values of 1. Finally, it is important to mention
that there are four basic types of networks: undirected networks, weighted undirected
networks, unweighted directed networks, and weighted directed networks [22]. All types
are shown in Figure 1:

Figure 1. Four network types.

3.2. Network Structure Entropy

In the network topology, the performance of the network scalelessness is considered
a kind of network “heterogeneity”, and this “heterogeneity” of complex networks can be
described using the concept of “entropy”, that is, the entropy of the network structure [23].

In order to better establish the entropy model based on the network structure, the
following keywords have been defined:

(1) Degree value. The degree value of a node is called the node strength, and the
degree ki of node vi is defined as the number of nodes directly connected to the node vi.
Moreover, ki is expressed using the following relation:

ki =
n
Σ

j∈ Γi
vij (5)

where Γi is the collection of neighbor nodes of the particle node vi. As for the weighted network,

ki = Σ
j∈ Γi

wij (6)

where wij is the weight on the edge connecting node vi to node vj. In a directed network,
the degree value of a node is divided into an outdegree value and an in-degree value, and
it is generally believed that both values have different effects on the node, that is

ki = λkin
i + (1 − λ)kout

i (7)
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where kin
i and kout

i are the indegree and outdegree values of node vi, respectively, and λ is
the influence coefficient. When λ > 0.5, the relevance of the node is thought to be more
influenced by its input strength.

(2) Adjacency. To more accurately reflect the impact of a node on its connected neighbor
nodes, the adjacency of a node is defined as follows:

Qi = ∑
w∈ Γi

kiw + ∑
w∈ Γi

kwi (8)

where kiw and kwi are the degree value of the node pointing to vi and the node pointed by
vi in the neighboring nodes of node vi, Γi is the set of neighbor nodes of node vi, and Qi is
the degree of adjacency of node vi (the greater the value of Qi is, the higher its impact on
neighboring nodes will be).

(3) Importance. The nodes in the network affect each other, and considering only the
degree value will lose the influence of indirect neighbors on the nodes, and considering
the global nodes will increase the complexity of the algorithm, and the effect may not be
very good. The influence of a node is limited, and it only has a large influence on its nearby
neighbors. The probability function is used to describe the chance to select a given node
among its neighbors, which is defined as:

pi =
ki
Qj

, j ∈ Γi (9)

In the entropy of network structures based on the node degree, the probability func-
tions can be used to express the importance of nodes. However, in underwater mobile
formations, often the higher the level of UUV is, the greater its importance will be. There-
fore, considering the importance of the degree and level of nodes, the comprehensive
importance is introduced to express the importance of the network nodes. Considering
that the control commands and the information transmission in the formation are carried
out layer by layer, the high-level UUV will have an impact on the low-level UUV; therefore,
for an N-level network, the importance of the hierarchical nodes should be continuously
reduced, and the weight factor δi of the nodes on the level n is expressed as follows:

δi =
1
N
(N − n + 1) (10)

The comprehensive importance of the node is calculated as follows:

Hi = pi · δi =
ki
Qj

· 1
N
(N − n + 1) (11)

(4) Network structure entropy. Information entropy uses probabilistic and statistical
methods to measure the complexity of a system, which represents the expectation of the
amount of information brought by all possible events, and it can be used as well to measure
the importance of network nodes. Consider the unrelated events x and y to be equal to the
sum of the information obtained when the observed events occur at the same time, that
is h(x, y) = h(x) + h(y), and p(x, y) = p(x)× p(y). Therefore, it can be obtained that h(x)
must be related to the logarithm of p(x). Thus, the relation between both variables can be
written as follows:

h(x) = − log2 p(x) (12)

Moreover, the expected amount of information is defined as follows:

E = E(h(x)) = − n
Σ

i=1
p(x) log2 p(x) (13)
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Make sure, at this level, that the information entropy value is always positive, take
the absolute value of the node information entropy when calculating it, and replace the
probability function with the comprehensive importance Hi to obtain the entropy Ei of the
collar network structure. Therefore, the resulting equation is as follows:

Ei = ∑
j∈Γi

|(−Hi log2 Hi)| (14)

3.3. Critical Node Identification Algorithm

By analyzing the interaction between the nodes and their indirect nodes, the entropy
of the network structure is used to measure the importance of several nodes in the network.
Considering that in the formation network structure, the instruction is transmitted from
a high level to a low-level UUV, the node importance of the directed network is only
analyzed; therefore, it is considered that the entry value of the node is smaller than the
influence of the degree value on the node, and the impact factor is λ = 0.45. In more detail,
the milestone algorithm steps are presented as follows:

Step 1: Analyze the formation network according to the mobile UUV formation
spatiotemporal trajectory meter and get the adjacency matrix A and the weight matrix W.

Step 2: Calculate the node degree value according to the difference between the node
outdegree and indegree:

kin
i = ∑

j∈Γi

wji (15)

kout
i = ∑

j∈Γi

wij (16)

ki = λkin
i + (1 − λ)kout

i (17)

Step 3: Calculate the degree of adjacency:

Qj = λ ∑
w∈Γj

kwj + (1 − λ) ∑
w∈Γj

kwj (18)

Step 4: Calculate the overall importance:

pi =
ki
Qj

, j ∈ Γi (19)

Hi = pi · δi (20)

Step 5: Calculate the entropy of the network structure:

Ei = ∑
j∈Γi

|(−Hi log2 Hi)| (21)

The calculation process is shown in Figure 2. Based on the above steps, the network
structure entropy of each node in the network can be calculated. According to the size of
entropy, each node is ordered, and the node entropy value is classified from large to small
corresponding to the importance of this node.
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Figure 2. Algorithm flow of critical node identification.

4. Validation and Analysis

The identification of the key nodes of the mobile UUV formation is to establish the
network topology of the mobile formation by analyzing spatiotemporal trajectories in
order to further rank the importance of the nodes by the key node identification algorithm.
Therefore, this section sets up the simulation experiments and the lake experiments to
verify the efficiency of the proposed algorithm.

4.1. Simulation and Experiments Analysis

In order to verify the effectiveness of the key node identification algorithm based on
the entropy of the network structure, this section uses Matlab© to perform the simulation
experiments. Based on the leader–follower formation control model, we considered one
leader and seven followers to navigate a “U” trajectory in a triangular formation to verify
the discrimination effect of the algorithm. In this simulation, the distance matrix d and
delay matrix T are set as follows. (In the matrix d A W, the element 0 indicates that the two
nodes are not directly related and have no real physical significance):

d =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 10 10 0 0 0 0 0
10 0 0 0 6 0 6 0
10 0 0 6 0 6 0 0
0 0 6 0 0 0 0 5
0 6 0 0 0 0 0 0
0 0 6 0 0 0 0 0
0 6 0 0 0 0 0 0
0 0 0 5 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 3 3 3 3 4
−1 0 0 1 2 1 2 3
−2 0 0 1 1 1 1 2
−3 −1 −1 0 0 0 0 1
−3 −2 −1 0 0 0 0 1
−3 −1 −1 0 0 0 0 1
−3 −2 −1 0 0 0 0 1
−4 −3 −1 −1 −1 −1 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(22)

In addition, we added the trajectory of an unrelated UUV to the formation in the
simulation to compare and judge the effects of this additional feature. Therefore, the
simulation results are displayed in Figure 3.

Figure 3 shows that the follower trajectories the leader well at a predetermined angle
and distance based on the influence of the controller. Then, a pairwise analysis was
performed on the spatiotemporal trajectories of all UUVs using the aforementioned motion
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similarity model. The delay matrix and the motion correlation coefficient (refer to Table 1)
of the UUV formation are calculated as follows:

TU =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 3 3 3 3 4 6
−1 0 0 2 2 1 2 3 6
−2 0 0 1 2 1 2 3 6
−3 −2 −1 0 0 0 0 1 6
−3 −2 −2 0 0 0 0 1 6
−3 −1 −1 0 0 0 0 2 6
−3 −2 −2 0 0 0 0 1 6
−4 −3 −3 −1 −1 −2 −1 0 6
−6 −6 −6 −6 −6 −6 −6 −6 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(23)

Figure 3. “U”−shaped formation trajectory. It shows the trajectories of each node navigating in for-
mation in the simulation, and the enlarged portion of the figure shows the structure of the formation.

By comparing the time delay matrix T and TU , the accuracy of the time delay data
obtained by the algorithm was 84.6%, and in addition, the erroneous time delay data did
not appear between nodes with the direct leader–follower relationships, and the erroneous
data did not affect the accuracy of the subsequent reconstruction of the formation network
structure. Based on the above delay matrix, the time delay between UUVs with a leader–
following relationship represents an antisymmetric transfer, and the positive and negative
delays indicate whether the UUV is following or being followed. Moreover, these values
also specified the delay time for the follower to receive the leader’s movement information
and take action, which is in line with the law of following a relationship. When the time
delay was null, it means that there was no leader–following relationship between the
paired UUVs.

Referring to Table 1, the correlation coefficient corresponds to the time delay, and
the motion correlation coefficient between the UUVs is varying at different time delays,
as shown in Figure 4. Since the leader following the model does not introduce errors,
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such as propulsion, hydroacoustic delay, and complex environmental interference, the
motion correlation coefficient between each UUV at the corresponding delay time was
very large; however, when being compared to the motion correlation coefficient of the
unrelated-UUV, there was a significant gap, and the unrelated UUV’s motion correlation
coefficient was much smaller than others. Setting the threshold value Rmin = 0.9, and as
∀Runretaed(τ

∗) < Rmin, the correlation coefficient of the motion of the unrelated UUV and
any other UUV was less than the threshold; therefore, it is considered that the unrelated
UUV does not have a leader–follower relationship with any other UUV.

Table 1. “U” shape trajectory motion correlation coefficient.

Leader

Follower
Leader Follow1 Follow2 Follow3 Follow4 Follow5 Follow6 Follow7 Unrelated

Leader 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8271
Follow1 1.0000 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8347
Follow2 1.0000 1.0000 1 1.0000 1.0000 1.0000 1.0000 1.0000 0.8363
Follow3 1.0000 1.0000 1.0000 1 1.0000 1.0000 1.0000 1.0000 0.8438
Follow4 1.0000 1.0000 1.0000 1.0000 1 1.0000 1.0000 1.0000 0.8444
Follow5 1.0000 1.0000 1.0000 1.0000 1.0000 1 1.0000 1.0000 0.8424
Follow6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 1.0000 0.8448
Follow7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 0.8507

Unrelated 0.8250 0.8326 0.8341 0.8416 0.8423 0.8402 0.8427 0.8486 1

Figure 4. Correlation coefficient and time delay function.

Referring to the TU matrix Equation (23), and according to the size of the delay, the
leader–following relationship of UUVs between pairs was judged, and it was sorted ac-
cording to the leader–follower level, and the following points were calculated: all followers
had a following relationship for the leader, whereas Follow1 and Follow2 had a leadership
relationship for the remaining UUVs, and Follow3, Follow4, Follow5, and Follow6 had a
leadership relationship for Follow7.

Therefore, the formation network hierarchy was obtained: the UUV leader belonged
to the first level, Follow1, Follow2 were part of the second level, Follow3, Follow4, Follow5,
and Follow6 belonged to the third level, and, finally, Follow7 belonged to the fourth
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level. The network relationship, obtained through the above analysis, was still relatively
complex where one UUV had a following relationship with multiple UUVs at the same
time. Considering the communication restrictions of the underwater formation, etc., it was
considered to have a following relationship with the nearest vehicle. Through the analysis
of the network again using this rule, the network structure of the formation can be obtained,
as shown in Figure 5.

 

Figure 5. Mobile UUV formation network structure. The letters L and F stand for leader UUV and
follower UUV; F1 denotes Follow1 UUV and F2 denotes Follow2 UUV and so on. The arrows indicate
the direction of information transmission in the formation network.

Therefore, the collar matrix A of the formation network was obtained as follows, and,
when being combined with the behavioral correlation coefficient matrix, it was brought into
the established node edge weight coefficient model; hence, the weight coefficient matrix W
of the formation network can be expressed as follows:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 0 0 0
1 0 0 0 1 0 1 0
1 0 0 1 0 1 0 0
0 0 1 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(24)

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 2 0 0 0 0 0
2 0 0 0 1.2 0 1.2 0
2 0 0 1.2 0 1.2 0 0
0 0 1.2 0 0 0 0 1
0 1.2 0 0 0 0 0 0
0 0 1.2 0 0 0 0 0
0 1.2 0 0 0 0 0 0
0 0 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(25)

According to the formation network structure and its corresponding collar relationship
and weight coefficient matrices, the node importance is calculated by using the network
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structure entropy model. Firstly, according to the adjacency and the weight matrices of the
network, the input intensity value kin

i and the output intensity value kout
i of each node are

calculated. Moreover, according to Equation (17), the comprehensive strength value of each
node is calculated to get Table 2.

Table 2. Node comprehensive strength value.

Node Leader Follow1 Follow2 Follow3 Follow4 Follow5 Follow6 Follow7

ki 0.6 2.06 2.06 1.17 1.02 1.02 1.02 0.85

Then, also taking λ = 0.45, according to Equation (18), the comprehensive adjacency
strength value q of the node is calculated as shown in Table 3.

Table 3. Node adjacency strength value.

Node Leader Follow1 Follow2 Follow3 Follow4 Follow5 Follow6 Follow7

Qi 0.9 2 2.15 2.7 2.55 2.55 2.55 1.7

Finally, according to Equation (21), the entropy of each network structure is calculated,
and the following results are presented in Table 4.

Table 4. Node network structure entropy.

Node Leader Follow1 Follow2 Follow3 Follow4 Follow5 Follow6 Follow7

Ei 2.622 5.226 4.152 1.365 0.486 0.456 0.486 0.367

Based on the entropy of the network structure calculated above, the followers can be
arranged using the following order: Follow2 > Follow1 > Leader > Follow3 > Follow5 >
Follow4 = Follow6 > Follow7. According to the network structure, the relevance of the
Follow1 and Follow2 nodes was higher, since Follow1 and Follow2 regulated information
relative to the input and output flows. Moreover, Follow3 controlled Follow7; therefore,
it was more critical than other followers of the same level. Finally, Follow4, Follow5, and
Follow6 were all considered as edge nodes of the formation network; thus, their information
entropy was basically the same, and this was conforming to the network structure law.

By using the traditional information entropy algorithm [24], the information entropy
of each node under the network result was calculated as shown in Table 5.

Table 5. Node information entropy.

Node Leader Follow1 Follow2 Follow3 Follow4 Follow5 Follow6 Follow7

value 5.674 20.372 17.374 9.970 0.303 0.415 0.303 0.255

In the above table, the order of the information entropy of the nodes is: Follower1 >
Follower2 > Follower3 > Leader > Follower5 > Follower4 = Follower6 > Follower7, but
we believe that the node leader was more important than the node Follower3, and the
node Follower2 was more important than the node Follower1. Compared with the network
structure entropy results in Table 4, it can be obtained that the improved algorithm in this
paper was more in line with the actual situation in ordering the important nodes of the
underwater network structure than the traditional information entropy algorithm.

4.2. Lake Experiments and Analysis

In order to verify the effectiveness of critical node identification of the multi-UUV
formation algorithm proposed in this paper, the lake formation experiment was carried out,
and the real dead reckoning data were obtained to place the detection of UUV formations.
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Therefore, three vehicles set up the trajectory of vehicles, not linked to the formation
navigation, while sailing in linear and triangular formations on the Qiandao Lake in
Hangzhou City as the test location in order to confirm that the algorithm can successfully
recognize different network structures. Figure 6a shows the experiment platform and
Figure 6b shows UUV formation sailing on the water. Two sets of trajectory points recorded
by the UUV itself are shown in Figure 7:

  
(a) (b) 

Figure 6. Photos of lake experiments. (a) Experiment platform, (b) UUV formation navigation.

  
(a) (b) 

Figure 7. UUV formation waypoints in two groups of different formations. (a) Liner shape navigation
trajectory, (b) triangular navigation trajectory.

Referring to the paths of Figure 7, the follower has several degrees of error with respect
to the leader’s trajectory, but the trajectory it follows has generally the same shape. The
space–time UUV trajectories were substituted every two pairs with the motion similarity
model to obtain the following motion correlation coefficient (refer to Equation (25)) and
time delay tables (refer to Tables 6 and 7):
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Table 6. Liner shape motion correlation coefficient.

Leader

Follower
Leader Follow1 Follow2 Unrelated

Leader 1 0.995 0.987 0.769
Follow1 0.995 1 0.990 0.748
Follow2 0.987 0.990 1 0.788

Unrelated 0.767 0.742 0.788 1

Table 7. Triangular motion correlation coefficient.

Leader

Follower
Leader Follow1 Follow2 Unrelated

Leader 1 0.996 0.997 0.883
Follow1 0.997 1 0.999 0.861
Follow2 0.997 0.999 1 0.858

Unrelated 0.856 0.839 0.828 1

In the above motion correlation coefficients table, the average motion similarity be-
tween the leaders and the followers was high; however, the motion similarity coefficients
of spatiotemporal trajectories of unrelated UUV and other UUVs were quite different com-
pared to others. Setting the threshold Rmin = 0.9, the similarity coefficient of the motion
between the unrelated UUV and any other UUV was below the threshold; therefore, it is
considered that there is no leader–follower relationship with any other UUV.

Tline =

⎡⎢⎢⎣
0 3 5 6
−3 0 3 6
−5 −3 0 −6
−6 −6 −6 0

⎤⎥⎥⎦, Ttri =

⎡⎢⎢⎣
0 2 1 5
−2 0 0 5
−1 0 0 5
5 5 5 0

⎤⎥⎥⎦ (26)

In the above time delay matrix, when the formation was carried out in a liner shape,
if the UUV leader is the leader, the time delay between it and Follow1 and Follow2 is
greater than zero. However, when Follow1 was the leader, the time delay between it
and the UUV leader was less than zero, and the time delay with Follow2 was greater
than zero. Therefore, the UUV leader had the leadership relationships for Follow1 and
Follow2, and Follow1 also had leadership relationships for Follow2, which resulted in the
structural relationship shown in Figure 8a. When moving in a triangle, the UUV leader
had a leadership relationship with Follow1 and Follow2. Regardless of whether Follow1
or Follow2 were leaders or followers, the time delay between them was equal to zero,
that is, there was no leader–following relationship, belonging to the same level, and the
structural relationship, shown in Figure 8b, can be obtained, which was in line with the
experimental setting.

Thus, the adjacency matrix A1 and A2 of the formation network was obtained:

A1 =

⎡⎣0 1 0
1 0 1
0 1 0

⎤⎦, A2 =

⎡⎣0 1 1
1 0 0
1 0 0

⎤⎦ (27)

In this experiment, the distances between the vehicles were all the same, and, combined
with the motion similarity coefficient, the weight matrices under the two formations can
be obtained:

W1 =

⎡⎣ 0 1.005 0
1.005 0 1.01

0 1.01 0

⎤⎦, W2 =

⎡⎣ 0 1.004 1.003
1.004 0 0
1.003 0 0

⎤⎦ (28)
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(a) (b) 

Figure 8. Multi-UUV formation. (a) Linear shape formation structure, (b) Triangular shape formation
structure. The letters L and F stand for leader UUV and follower UUV; F1 denotes Follow1 UUV
and F2 denotes Follow2 UUV. The arrows indicate the direction of information transmission in the
formation network.

According to the weight coefficient matrix, we found out that the difference between
the weight coefficients was very small, so the directed weightless network structure entropy
algorithm was applied to calculate the importance between the nodes.

According to the Equation (17), the comprehensive strength value of each node in both
networks is calculated to get Tables 8 and 9.

Table 8. Liner shape node comprehensive strength value.

Node Leader Follow1 Follow2

ki 1.103 0.451 0.451

Table 9. Triangular node comprehensive strength value.

Node Leader Follow1 Follow2

ki 0.553 1.009 0.456

Then, also taking λ = 0.45, according to the Equation (18), the comprehensive adjacency
strength value of the node in both networks was calculated as shown in Tables 10 and 11.

Table 10. Liner shape node adjacency strength value.

Node Leader Follow1 Follow2

Qi 0.496 0.496 0.496

Table 11. Triangular node adjacency strength value.

Node Leader Follow1 Follow2

Qi 0.555 0.499 0.454

Finally, according to Equation (21), the entropy of each network structure was calcu-
lated, and the following results of both networks are presented in Tables 12 and 13.
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Table 12. Liner shape node network structure entropy.

Node Leader Follow1 Follow2

Ei 0.162 4.128 0.120

Table 13. Triangular node network structure entropy.

Node Leader Follow1 Follow2

Ei 5.120 0.125 0.125

According to the node network structure entropy obtained in the above tables, the
size of the entropy of each node was ordered, in the liner shape formation, as Follow1 was
responsible for connecting the UUV leader and Follow2 in the middle position of the line
shape; therefore, this position was more critical, and the UUV leader was responsible for
piloting and sending data, so its importance was greater than that of Follow2.

As for the triangular formation, the UUV leader was responsible for connecting
Follow1 and Follow2, and it was also responsible for calculating and sending the route
data, which was more critical than the other two; moreover, the other two followers had
the same position, the same role, and the same importance.

In this paper, the trajectory used was recorded by the aircraft itself. The experiment in
this paper was mainly to prove that under a series of continuous spatiotemporal trajectories,
the algorithm of this paper can be used to reconstruct the network structure of unknown
formations and effectively rank the importance of nodes. However, in real situations, the
results obtained when observing the formation’s trajectory through sonar equipment or
other methods will not be so dense, and the results obtained due to sensor interference will
be biased. It is possible to consider adding an error model and using a filtering algorithm
to process the tracks detected by the sonar.

5. Conclusions

Aiming at the critical node identification problem of UUV formation, this paper pro-
posed a formation key node identification method, based on network structure entropy,
which establishes the network structure of mobile UUV formation by presenting the motion
similarity model, and then calculating the information entropy of network nodes by using
the weighted network structure entropy algorithm to determine the importance of each
node. The simulation experiments and lake experiments in this paper fully verify the effec-
tiveness of the identification algorithm, which can be calculated from the spatiotemporal
trajectory of the formation to calculate the importance ranking of the formation nodes, and
also verify that it is feasible to use this method for underwater cluster countermeasures.
As for future works, it should be considered to use sonar equipment to acquire formation
trajectory data with disturbances to further validate the effectiveness of the algorithm. In
the next step, it is planned to further enhance the structure reconstruction of unknown
multi-UUV formations in other complex situations for discontinuous multi-UUV spatiotem-
poral trajectories, considering the impact of the hydroacoustic communication packet’s loss
and other effects on the control formation for more accurate critical node identification.
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Abstract: The BWB-UG is a glider with a smooth and integrated fuselage and wing. Its lift-to-drag
properties are some of the most significant factors affecting its performance. In order to improve its
hydrodynamic characteristics, the method of steady-stream active flow control (SS-AFC) is proposed.
The computational fluid dynamics method is used to numerically investigate the SS-AFC of the BWB-
UG. The mechanism of the SS-AFC effect on the lift-to-drag characteristics is revealed from the flow
field aspect. The flow field of the BWB-UG before and after installing the SS-AFC was simulated using
FLUENT. The results show that the SS-AFC can effectively optimise the hydrodynamic characteristics
of the BWB-UG and can optimise the structure of the flow field around the BWB-UG. The steady-
suction AFC can increase the lift-to-drag ratio of the BWB-UG by up to 45.01%. With the steady-jet
AFC, the lift-to-drag ratio of the BWB-UG can be increased by as much as 93.17%.

Keywords: underwater glider; active flow control; hydrodynamic characteristics

1. Introduction

The Blended-Wing-Body Underwater Glider (BWB-UG) is a tailless underwater ve-
hicle with a full-wing configuration. It can dramatically improve the lift-to-drag ratio by
increasing the area of the airfoil and providing internal space that overcomes many of the
shortcomings of the traditional UG. Since American oceanographer Stommel first proposed
the concept of the UG in 1989, researchers in many countries have gradually researched
related technologies of the UG. The United States Naval Research Laboratory began to
develop Liberdade-class large-scale BWB-UG in 2003, mainly including XRay, XRay2, and
ZRay [1]. Researchers conducted a sea trial of the XRay in California. The horizontal
velocity of the XRay was about, and the lift-to-drag ratio was 17. Northwestern Polytechni-
cal University has also conducted relevant research on the BWB-UG. Du established the
flow field calculation model for the BWB-UG, carried out the hydrodynamic simulation,
established the 6-DOF dynamic model, and analysed the glide motion performance [2–4].
Li used free-form deformation to optimise the framework of geometric parameterization.
An optimised BWB-UG was considered as the initial shape and four shape optimisation
cases were performed for different design purposes using the proposed framework [5].
Sun carried out a shape optimisation design of the BWB-UG based on a global optimi-
sation method with a maximum lift-to-drag ratio and maximum range as optimisation
objectives [6–8]. However, existing studies show an irreconcilable contradiction between
the optimisation of hydrodynamic performance and the maximization of piggyback space
in the shape optimisation design process. At the same time, further improvement of the
lift-to-drag ratio of the BWB-UG is limited by the occurrence of flow separation. In sum-
mary, the critical issue for further development in the field of overall BWB-UG design
is whether a method can be found to optimise the hydrodynamic characteristics of the
BWB-UG without modification of its shape.

Active flow control (AFC) is an emerging drag reduction technology to control the
local flow field of the object by actively inputting appropriate disturbances to the local
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flow field of the object. AFC can improve the whole-field fluid structure by inputting
or releasing energy at the critical point. At the same time, because of its initiative, this
technology can effectively carry out accurate phase control in complex dynamic systems.
The control method of steady-jet AFC is simple, and the device is easy to realize. GANESH
N et al. used the CFD method to numerically study the flow field structure of NACA63 (4)
-021 wing with steady-suction AFC. The results show that the aerodynamic performance
can be improved by 28% by equipping suction at 0.3 times the chord length from the wing’s
leading edge [9]. Fatahian et al. conducted numerical studies on the steady-suction AFC
of the NACA0012 flap. The results show that the steady-suction perpendicular to the
airfoil surface can effectively improve the aerodynamic performance of the airfoil [10]. AFC
technology was widely used in wind turbine lift drag reduction [11,12], ground vehicle
energy-saving drag reduction [13–15], aircraft airfoil aerodynamic performance improve-
ment [16–19], and other fields. Overall, AFC technology has broad application prospects in
many fields. It has shown considerable potential and is likely to become a future break-
through technology in fluid mechanics. The AFC has a good improvement effect on the
hydrodynamic performance, and the structure is simple. Du et al. achieved excellent
hydrodynamic optimisation results by applying the electromagnetic AFC technique to the
overall design of the BWB-UG [20]. The AFC has reasonable practicability for the BWB-UG.
However, from the current public research results, there are relatively few theoretical and
experimental results on the AFC of the BWB-UG. The research on SS-AFC of the BWB-UG
is still in the preliminary exploration stage. Therefore, studying the SS-AFC of the BWB-UG
is of great theoretical significance and application value.

In this paper, the effect of the SS-AFC on the BWB-UG is analysed using the computa-
tional fluid dynamics method. Firstly, an accurate and effective numerical computational
model is established. Secondly, the disturbance phenomenon of the BWB-UG equipped
with the steady-jet AFC and the steady-suction AFC is numerically calculated by analysing
the flow field structure characteristics and hydrodynamic trend characteristics of the BWB-
UG before and after being fitted with the AFC. The mechanism of the influence of the
SS-AFC on the BWB-UG is obtained.

2. Materials and Methods

2.1. Geometric Model and Reference Definition

The SS-AFC technology is considered equipped for the BWB-UG, as shown in Figure 1.
The AFC system of the BWB-UG mainly includes nozzles, a small pump, and a simple
pipeline. Since the AFC has a good improvement effect on the hydrodynamic performance
of the underwater glider and its structure is simple, the AFC has reasonable practicability
for the underwater glider. There are 20 nozzles on the BWB-UG. The jet or suction flow
rate is Vstream and its direction angle is θstream. The specific design parameters of the model
are shown in Table 1. The hydrodynamic characteristics of the BWB-UG at attack angles of
0◦∼12◦ are calculated. The hydrodynamic characteristics before and after the equipment of
the AFC are compared.

Figure 1. Steady-stream AFC of the BWB-UG.
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Table 1. Model design parameters.

Name Value

Spread length of UG 400 mm
Maximum chord length of UG 142.8 mm
Section of UG NACA0015
Length of nozzle 12 mm
Width of nozzle 1 mm
Number of nozzles 20

The wet surface area Sh is used as the characteristic area to define the lift coefficient Cl ,
the drag coefficient Cd, and the lift-to-drag ratio R of the BWB-UG.⎧⎪⎪⎨⎪⎪⎩

Cl =
2FL

ρv2
∞Sh

Cd = 2FD
ρv2

∞Sh

R = Cl
Cd

(1)

where FL is the lift force; FD is the drag force; v∞ is the flow velocity at infinity; and ρ is the
density of sea water. Define the dimensionless expressions of velocity and pressure.

Cp = 2
(P − P0)

ρU2 (2)

Cv =
Vpoint

Vstream
(3)

The Q-criterion is a fundamental law in fluid mechanics to characterize the change in
flow length of a fluid after deflection.

Q = 0.5×(−ddx(u)2 − ddy(v)2 − ddz(w)2

− 2 × ddz(u)× ddx(w)− 2 × ddz(v)× ddy(w)− 2 × ddy(u)× ddx(v))
(4)

2.2. Flow Field Calculation Model

The 3-D incompressible model is selected for the relevant research. The control
equation is:

∂(ρu)
∂x

+
∂(ρv)

∂y
+

∂(ρw)

∂z
= 0 (5)

ρ

(
ū

∂ū
∂x

+ v̄
∂ū
∂y

+ w̄
∂ū
∂z

)
=μ

(
∂2ū
∂x2 +

∂2ū
∂y2 +

∂2ū
∂z2

)

+

⎛⎝∂
(
−ρu′u′

)
∂x

+
∂
(
−ρu′v′

)
∂y

+
∂
(
−ρu′w′

)
∂z

⎞⎠− ∂p
∂x

+ S f x

(6)

ρ

(
ū

∂v̄
∂x

+ v̄
∂v̄
∂y

+ w̄
∂v̄
∂z

)
=μ

(
∂2v̄
∂x2 +

∂2v̄
∂y2 +

∂2v̄
∂z2

)

+

⎛⎝∂
(
−ρv′u′)

∂x
+

∂
(
−ρv′v′

)
∂y

+
∂
(
−ρv′w′

)
∂z

⎞⎠− ∂p
∂y

+ S f y

(7)
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ρ

(
ū

∂w̄
∂x

+ v̄
∂w̄
∂y

+ w̄
∂w̄
∂z

)
=μ

(
∂2w̄
∂x2 +

∂2w̄
∂y2 +

∂2w̄
∂z2

)

+

⎛⎝∂
(
−ρw′u′

)
∂x

+
∂
(
−ρw′v′

)
∂y

+
∂
(
−ρw′w′

)
∂z

⎞⎠− ∂p
∂z

+ S f z

(8)

where p is fluid pressure; μ is the dynamic viscosity coefficient of fluid; ū,v̄,w̄ are the time-
averaged velocity components of the fluid in x, y, z directions; u′,v′,w′ are the pulsating
velocity components of the fluid in x, y, z directions; S f x,S f y,S f z are generalized source
terms of momentum equations in x, y, z directions.

Taking into account the need for accuracy and efficiency in this numerical investigation,
the Reynolds averaging method is considered. The shear stress transport (SST) k − ω model
has excellent simulation accuracy for models such as inverse pressure gradient flow, airfoil
winding flow, and jet flow in the near-wall region. Therefore, the k − ω two-equation model
is used to close the basic governing equations. The transport equations of k and ω are
expressed as: ⎧⎨⎩

∂(ρk)
∂t + ∂

∂xj

(
ρujk − (μ + σ∗μt)

∂k
∂xj

)
= τtijSij − β∗ρωk

∂(ρω)
∂t + ∂

∂xj

(
ρujω − (μ + σμt)

∂ω
∂xj

)
= α ω

k τtijSij − βρω2
(9)

2.3. Computational Domain and Boundary Conditions

The BWB-UG equipped with the SS-AFC is divided into rectangular computational
domains. The fixed semimodal numerical calculation method is used. The model is 4 L
from the velocity inlet and 3 L from the upper/lower wall, as shown in Figure 2. The
boundary conditions, including symmetry surfaces, velocity inlets, pressure outlets, sliding
walls, and no sliding walls are set. The flow field calculation domain satisfies the far-field
boundary conditions.

Figure 2. Calculation domain and related boundary conditions of the BWB-UG.

The computational domain of the BWB-UG is divided into high-quality hexahedral
structural grids, as show in Figure 3. The mesh near the boundary layer of the BWB-UG
wall and the steady-stream nozzles is encrypted to ensure that the Y+ is less than 1. The
number of grid units is about 5.13 million.
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Figure 3. Grid meshing of the BWB-UG equipped with SS-AFC.

2.4. Validation of Numerical Calculation Method

Since the airfoil of the BWB-UG usually adopts the modified NACA airfoil, the
NACA0012 standard airfoil model is used to validate the numerical calculation method.
The chord length of the wing is c and the maximum thickness is 0.12c.

The lift-to-drag characteristics of NACA0012 are solved using the established numeri-
cal flow field calculation method. By changing the angle of attack of the airfoil, the Cl and
Cd of the airfoil at 0∼12◦ angle of attack are monitored, and the curve of the Cl and Cd
changing with the angle of attack is plotted.

The numerical calculation results are compared with the experimental results in the
literature [10]. The lift-to-drag ratio curve of the NACA0012 airfoil obtained by numerical
calculation is consistent with the experimental results, as shown in Figure 4. This shows the
feasibility of the established flow field numerical calculation method in the numerical cal-
culation of the hydrofoil flow field and verifies that the established flow field mathematical
model is reliable and accurate.

(a) The lift coefficient (b) The drag coefficient

Figure 4. Comparison between CFD numerical calculation results and experimental results.

2.5. Independence Validation of Flow Field Calculation Method

Grid convergence is a necessary condition to ensure the credibility of numerical
computation. The convergence of the grid is evaluated in this work by the grid convergence
index (GCI). The GCI rating method was proposed by P. J. Roache [21,22]. This method
requires that the computational results must satisfy the monotonic convergence condition:

0 < ( f3 − f2)/( f2 − f1) < 1 (10)
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where f1, f2, and f3 are the numerically computed discrete solutions obtained through
three grids ranging from rarefaction to denseness, respectively. The refinement rate of the
grid is defined as

rk,k+1 =
hk

hk+1
(11)

where h is the grid feature size. In general, the value of r is less than 2. The calculation
formula of GCI is: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

GCIk = Fs

∣∣∣∣ εk.k+1
rp

k,k+1−1

∣∣∣∣
GCIk+1 = Fs

∣∣∣∣ rp
k,k+1εk.k+1

rp
k,k+1−1

∣∣∣∣
εk.k+1 =

fk+1− fk
fk+1

(12)

where Fs is the grid convergence security factor; F is the numerically computed discrete
solutions; rk,k+1 is the mesh refinement ratio, which is usually required to be less than 1.2;
and p is the convergence accuracy.

By adjustment of the distribution of the mesh nodes, four groups of meshes with
different dispositions are calculated. The above four groups of grids are used to calculate
the SS-AFC of the BWB-UG under 12◦ angle of attack. Meanwhile, the Cl calculated by
different grids are monitored and the corresponding GCIs are calculated; the results are
shown in Figure 5. When the number of grids exceeds 5130000, the Cl gradually stabilizes
and the GCI is less than 1%. Therefore, 5.13 million grids are chosen to simulate the SS-AFC
of the BWB-UG.

Figure 5. The curves of GCI with the number of grids.

3. Results and Discussion of Flow Field Calculation

3.1. Study on Steady-Suction AFC

The CL and CL of the BWB-UG before and after the installation of the steady-suction
AFC are shown in Figure 6. The steady-state AFC can significantly enhance the CL of the
BWB-UG and increase the stall angle from 6◦ to 8◦ with the angle of attack in the range of
0∼12◦. The steady-suction AFC has a drag-reducing effect on the BWB-UG when the angle
of attack is in the range of 4∼12◦. When the angle of attack is 8◦, the drag reduction effect
is best. The drag reduction rate can reach 15.4%.
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(a) The lift coefficient (b) The drag coefficient

Figure 6. Effect of steady suction on the BWB-UG.

Figure 7 compares the change in the lift-to-drag ratio of the BWB-UG before and
after the installation of the steady-suction AFC. The steady-suction AFC can effectively
increase the lift-to-drag ratio of the BWB-UG. The lift-to-drag ratio of the BWB-UG at 0∼12◦
angle of attack is significantly improved by the addition of the steady-suction AFC. The
lift amplitude of the lift-to-drag ratio reaches the maximum value of 3.78 when the angle
of attack is α = 8◦. Under the condition of a large angle of attack range from 6∼12◦, the
steady-suction AFC can increase the lift-to-drag ratio of the BWB-UG by up to 45.01%.

(a) lift-to-drag ratio (b) The increase amplitude and increase Rate

Figure 7. Effect of steady-suction on the lift-to-drag ratio of the BWB-UG.

From the perspective of flow structure and surface pressure distribution, the impact
of the steady-suction AFC on the BWB-UG is further analysed. As illustrated in Figure 8,
the pressure contours of the upper and lower surfaces of the BWB-UG before and after the
installation of the steady-suction AFC at three typical angles of attack of 4◦, 8◦, and 12◦
are shown. Since the steady-suction nozzles are installed for the upper surface, the steady-
suction has only a slight change on the pressure of the lower surface. The distribution of
the pressure on the upper surface of the BWB-UG has been significantly changed. The
range of the low-pressure area at the leading edge of the wing is extended for the three
angles of attack mentioned above. This increases the pressure difference between the upper
and lower surfaces. As a result, the lift of the BWB-UG is improved to varying degrees.
Only at the angle of attack α = 8◦ does the pressure area of 0 ∼ 20 Pa on the lower surface
increase slightly, and the pressure on the lower surface does not change significantly at
other angles of attack.
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Figure 8. Pressure contours of the BWB-UG before and after the steady-suction AFC.

The flow control mechanism is further analysed by taking the flow field characteristics
of the BWB-UG before and after the installation of the steady-suction AFC at an angle
of attack of 8◦ as an example. It can be seen from Figure 9 that there is a region of fluid
countercurrent motion on the upper surface of the BWB-UG prior to the installation of
the steady-suction AFC. The steady-suction AFC realizes the boundary layer suction and
the upper surface turbulent vorticity reduction. After the equipment of the steady-suction
AFC, the separation is eliminated or weakened, the vorticity transported to the fluid is
significantly reduced, the energy dissipation of the fluid is significantly weakened, and the
purpose of drag reduction is achieved. According to Figure 9, the low-velocity fluid of the
boundary layer is sucked into the steady-suction nozzles, the flow rate of the boundary
layer fluid is increased, and therefore, the ability to resist fluid viscosity and adverse
pressure gradients is enhanced. At this time, the wall adhesion is more robust, the fluid
counter current motion area is significantly reduced, and the large separation vortex is
effectively suppressed. Meanwhile, the coupling effect of steady-suction flow and incoming
flow gives the fluid in the wing’s leading edge higher flow velocity, so there is higher energy
to overcome the flow separation. The flow separation vortex structure of the underwater
glider is significantly reduced, thereby effectively improving its lift-to-drag characteristics.

Figure 9. Pressure contours and streamline of the BWB-UG sections.
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As shown in Figure 10, we have carefully analysed the physical field characteristics at
the steady-suction AFC nozzle. The steady-suction side is the downward flow surface. The
steady-suction AFC has little effect on the pressure and velocity distribution in the local
flow field. The nature of the steady-suction AFC is that it will draw energy from the flow
field and weaken the energy of the local flow field. As a result, the vortex structure created
by the steady-suction AFC is very small.

(a) Pressure cloud at the nozzle (b) Velocity cloud at the nozzle

(c) Vortex structure at the nozzle (d) Q criterion at the nozzle

Figure 10. Detail at the nozzle of steady-suction AFC.

In summary, the hydrodynamic performance of the BWB-UG is effectively improved
by being equipped with the steady-suction AFC, and the lift-to-drag ratio can be increased
by up to 45.1%. Through the analysis of the flow field structure, it can be seen that the
steady-suction AFC can effectively improve the flow field structure and flow field stability.
This has noticeable beneficial effects on increasing the glide ratio, improving the motion
performance, enhancing the detection ability, and reducing the energy consumption of the
BWB-UG.

3.2. Study on Steady-Jet AFC

The lift-to-drag ratio of the BWB-UG before and after the equipment of the steady-jet
AFC is obtained in Figure 11. It can be seen that in the attack angle range of 0∼6◦, the
steady-jet AFC can significantly improve the lift of the BWB-UG. It is also found that
when the attack angle is greater than 12◦, the steady-jet AFC can significantly improve
the lift. Through the analysis of the flow field structure, it is found that when the angle
of attack is greater than 12◦, the vortex shedding phenomenon occurs in the flow field of
the BWB-UG, and the steady-jet AFC can effectively suppress this phenomenon. However,
the attack angle of the BWB-UG does not exceed 12◦ in regular operation. Therefore, it is
no longer necessary to conduct in-depth research on the total effect of the steady-jet AFC
when the attack angle is above 12◦. The steady-jet AFC has little effect on the resistance of
the underwater glider. When the attack angle is greater than 8◦, the drag reduction effect is
pronounced, and the drag reduction effect is maintained at about 4%.
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(a) The lift coefficient (b) The drag coefficient

Figure 11. Effect of steady-jet AFC on the BWB-UG.

As shown in Figure 12a, the steady-jet AFC significantly influences the lift-to-drag
ratio. Especially in the case of low angles of attack, the improvement effect of the lift-to-drag
ratio is pronounced. When the attack angle does not exceed 5◦, the steady-jet AFC can
effectively improve the lift-to-drag ratio of the BWB-UG. It can be seen from Figure 12b
that the increased amplitude of the lift-to-drag ratio gradually decreases with the increase
of attack angle, and the maximum increase amplitude of the lift-to-drag ratio is 1.56. When
the attack angle exceeds 5◦, the steady-jet AFC will slightly reduce the lift-to-drag ratio
of the BWB-UG. The steady-jet AFC can improve the lift-to-drag ratio of the BWB-UG by
93.17% at most. The improved hydrodynamic performance is extensively valued for its
glide motion stability, real-time maneuverability, and equipment safety.

(a) lift-to-drag ratio (b) The increase amplitude and increase Rate

Figure 12. Effect of steady-jet AFC on the lift-to-drag ratio of the BWB-UG.

From the perspective of flow field structure and surface pressure distribution, the
mechanism of steady-jet AFC on the BWB-UG is further analysed. Figure 13 shows the
pressure contours of the surface of the BWB-UG at typical angles of attack before and after
the installation of the steady-jet AFC. At angles of attack 4◦, 8◦, and 12◦ the effect of the
steady-jet AFC on the lower surface pressure distribution is mainly reflected around the
steady-jet nozzles on the wing and has little effect on the upper surface pressure distribution.
The influence on the lower surface pressure distribution is mainly reflected around the
steady-jet nozzles. The pressure from the steady-jet nozzles towards the leading edge is
increased, while the pressure from the forward steady-jet nozzles towards the trailing edge
of the wing is decreased. As the angle of attack increases, the area of high pressure on the
underside gradually increases. Therefore, combined with the increase in the pressure area
above 40 Pa and the change in the range of the same pressure area from 20 Pa to 0 Pa, it
can be seen that the range of the pressure area increases most when the angle of attack is
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4◦. After equipping the steady-jet AFC at angles of attack of 8◦ and 12◦, the depression
between the pressure surface and the suction surface is slightly lower than that of the
ground state due to the smaller range of the pressurization region and the larger range of
the decompression region. The macroscopic manifestation is that the lift of the BWB-UG is
lower than before. This is in agreement with the results of the previous studies on the lift
and the drag in this work.

Figure 13. Pressure contours of the BWB-UG before and after the steady-jet AFC.

The lift and drag calculation results show that the steady-jet AFC, unlike the steady-
suction, cannot optimise the high angle of attack hydrodynamical performance. From the
perspective of the fluid-structure at the 8◦ angle of attack, the reason why the steady-jet
AFC cannot increase the lift and reduce the drag at high angles of attack is analysed. It can
be seen from Figure 14 that after the steady-jet AFC is installed on the underside of the
wing, the range of the counter flow motion area above the wing of the BWB-UG is extended
to varying degrees compared to that before the control. This phenomenon is most obvious
in Sections 2 and 3.

(a) Velocity contours on the BWB-UG sections (b) Streamline on the BWB-UG sections

Figure 14. The velocity distribution after the equipment of steady-jet AFC.

As can be seen in Figure 15, after the installation of the steady-jet AFC, the high-
pressure area at the leading edge of the wing increases significantly and the low-pressure
area at the trailing edge decreases significantly. The pressure drag increases as the pressure
differential increases. In addition, since the differential pressure resistance is greater than
the frictional resistance in the total resistance of the underwater glider at the angle of attack
of 8◦, the total resistance of the underwater glider after the installation of the steady-jet
AFC is greater than that before the application of the control. The steady-jet AFC has little
effect on the velocity distribution near the upper surface of the hydroplane. However, it
has a coupling effect with the incoming flow. A huge flow separation vortex is formed
near the trailing edge of the wing. The separation vortex bypasses the trailing edge of
the wing to interfere with the flow separation region on the upper surface of the wing,
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which reduces the ability of the fluid near the upper wall to resist the fluid viscosity and
the inverse pressure gradient. This increases the instability of the fluid flow and expands
the flow separation area. As a result, at high angles of attack, the flow field characteristics
of the submersible are worse than before the control.

Figure 15. Pressure contours and streamline of the BWB-UG sections.

The physical field characteristics at the nozzle have been carefully analysed, as shown
in Figure 16. The steady-jet side is the upward flow surface. The pressure and velocity
distribution in the local flow field are significantly affected by the steady-jet AFC. The
nature of the steady-jet AFC is to inject the energy into the flow field and perturb the local
flow field. Therefore, the vortex structure created by the steady-jet AFC is very pronounced.

(a) Pressure cloud at the nozzle (b) Velocity cloud at the nozzle

(c) Vortex structure at the nozzle (d) Q criterion at the nozzle

Figure 16. Detail at the nozzle of the steady-jet AFC.
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4. Conclusions

This paper proposes the steady-stream active control method for the underwater
glider. The steady-suction and steady-jet AFC methods are investigated separately by
numerical calculation methods. The effects of the steady-stream active control methods on
the hydrodynamic and flow field structure of the glider are analysed. It is found that both
steady-flow active control methods can significantly improve the lift-to-drag ratio of the
underwater glider without changing its shape. The main conclusions are as follows:

(1) The lift-to-drag ratio of the BWB is greatly improved after the steady-suction AFC
is installed. Especially at a large angle of attack, the steady-suction AFC can increase the
lift-to-drag ratio of the BWB-UG by a maximum of 45.01%. In the angle of attack range 4∼12◦,
the steady-suction AFC will reduce the drag of the BWB-UG. When the angle of attack is 8°,
the drag reduction effect is at its best, and the drag reduction rate can be as high as 15.4%.

(2) The steady-jet AFC has a significant effect on the lift-to-drag ratio. The effect of
improving the lift-to-drag ratio is particularly pronounced at low angles of attack. The
steady-jet AFC can improve the lift-to-drag ratio of the BWB-UG by a maximum of 93.17%.
The improved hydrodynamic performance of the BWB-UG is of great value for its glide
stability, real-time maneuverability, and equipment safety.
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Nomenclatures and Abbreviations

Vstream Jet /suction flow rate
θstream Direction angle
Cl Lift coefficient
Cd Drag coefficient
Cp Pressure coefficient
psur f ace Surface pressure
p0 Reference pressure
Cv Velocity coefficient
Vpoint Local fluid flow velocity
R Lift-to-drag ratio
Sh Wetted surface area
FL Lift force
FD Drag force
v∞ Flow velocity at infinity
ρ Density of seawater
p Fluid pressure
μ Dynamic viscosity coefficient
ū,v̄,w̄ Time-averaged velocity component
u′,v′,w′ Pulsating velocity components
S f x,S f y,S f z Generalized source terms
L Spread length of BWB-UG
f Discrete solution of the numerical calculation;
h Grid feature size
r Refinement ratio of the grid
Fs Grid convergence security factor
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Abstract: The underwater imaging environment is complex, and the application of conventional
target detection algorithms to the underwater environment has yet to provide satisfactory results.
Therefore, underwater optical image target detection remains one of the most challenging tasks in-
volved with neighborhood-based techniques in the field of computer vision. Small underwater targets,
dispersion, and sources of distortion (such as sediment and particles) often render neighborhood-
based techniques insufficient, as existing target detection algorithms primarily focus on improving
detection accuracy and enhancing algorithm complexity and computing power. However, excessive
extraction of deep-level features leads to the loss of small targets and decrease in detection accuracy.
Moreover, most underwater optical image target detection is performed by underwater unmanned
platforms, which have a high demand of algorithm lightweight requirements due to the limited com-
puting power of the underwater unmanned platform with the mobile vision processing platform. In
order to meet the lightweight requirements of the underwater unmanned platform without affecting
the detection accuracy of the target, we propose an underwater target detection model based on
mobile vision transformer (MobileViT) and YOLOX, and we design a new coordinate attention (CA)
mechanism named a double CA (DCA) mechanism. This model utilizes MobileViT as the algorithm
backbone network, improving the global feature extraction ability of the algorithm and reducing
the amount of algorithm parameters. The double CA (DCA) mechanism can improve the extraction
of shallow features as well as the detection accuracy, even for difficult targets, using a minimum
of parameters. Research validated in the Underwater Robot Professional Contest 2020 (URPC2020)
dataset revealed that this method has an average accuracy rate of 72.00%. In addition, YOLOX’s
ability to compress the model parameters by 49.6% efficiently achieves a balance between underwater
optical image detection accuracy and parameter quantity. Compared with the existing algorithm, the
proposed algorithm can carry on the underwater unmanned platform better.

Keywords: YOLOX; underwater target detection; MobileVIT; coordinate attention

1. Introduction

The rapid advancement of science and technology has led to a shift in human behavior
and spurred an interest in the exploitation of aquatic resources at the expense of land-based
ones [1]. Since 70% of the planet is covered by water, there are plenty of underwater
resources to drive future advances in science and technology, and, as the forerunner of
subsurface resource utilization, underwater exploration has had ample time to make signif-
icant advances. Several researchers have devoted themselves to the study of underwater
optical image detection, a cornerstone of modern underwater detection that has been used
successfully in many areas of ocean exploration. However, underwater detection is limited
by several issues that do not impede land detection. The complexity of the underwater
imaging environment causes problems, such as location dispersion, color deviation, and
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blur, to name just a few. Furthermore, determining the target volume of an underwater
object presents additional challenges. These factors make conventional target detection
techniques incapable of meeting the demands of the modern industry. In addition to
these issues, the limited use of underwater detection and underwater unmanned platforms
transport has resulted in storage limitations for underwater equipment and vehicles, and
the typically large models that land algorithms are based on are difficult to transport in
underwater environments. Therefore, the development of an underwater optical image
detection method with low parameters and high accuracy that is suited to the needs of
underwater unmanned platforms is essential.

Existing target detection algorithms are mainly divided into two types: two-stage [2–4]
and one-stage [5–8]. The former has stronger detection accuracy but a complex structure,
while the latter has lower accuracy but a lightweight structure. In order to ensure the
carrying on the underwater unmanned platform, we chose YOLOX [9] in the first-order
algorithm. On the basis of inheriting CSPDarknet53 [10] and the feature pyramid network
(FPN) [11] of YOLO series algorithms, YOLOX applies frameless detection in the YOLO
algorithm for the first time, which reduces the computational complexity of YOLOX.
However, due to the complex feature extraction of CSPDarknet, it is not friendly to the
detection of underwater targets. In addition, the underwater unmanned platform has higher
requirements for the storage of the algorithm, but the existing lightweight algorithm has
insufficient feature extraction ability. Therefore, we chose the MobileVIT [12] lightweight
model as the backbone network of the algorithm. In addition, in order to extract the shallow
information of the target better, we proposed a new attention mechanism DCA based on
CA [13] attention and applied it to YOLOX, so that the algorithm can obtain higher accuracy.
Experiments show that the accuracy of URPC2020 data is up to 72.00% and the number of
parameters is reduced by 49.6%.

With this background in mind, we present the main contributions of this paper:

(1) Within the mainstream of target detection methods, we chose YOLOX algorithms
as the basic structure. By using MobileViT as the backbone network in YOLOX, we
further improved the global feature extraction ability of the algorithm while reducing
the number of parameters.

(2) To address problems posed by underwater targets characterized by small volumes,
scattered distributions, and blurred imaging, we designed a DCA mechanism based
on prior CA mechanisms. By improving the shallow feature extraction ability of the
algorithm model, we enhanced its ability to extract the data of difficult targets.

(3) The results of our evaluation of the URPC2020 dataset show that our network model
has better accuracy compared with the baseline method while reducing the number
of parameters. Therefore, our method is not only feasible but also superior to the
original baseline method.

2. Related Work

2.1. Object Detection

Researchers in the field of underwater target detection have applied convolutional
neural networks (CNNs) extensively [14], and the existing target detection algorithms
based on CNNs are mainly divided into two types: one-stage algorithms and two-stage
algorithms. Two-stage algorithms, on the other hand, extract a series of candidate regions
and classify them for target detection. Two-stage algorithms include the R-CNN [2],
Fast R-CNN [3], and FasterR-CNN [4], among others. Two-stage algorithms have high
accuracy, but their detection efficiency is lower than that of one-stage algorithms. One-
stage algorithms use a first-order network to complete classification and location tasks,
greatly improving detection efficiency and achieving a good balance between accuracy and
algorithm volume. Some first-stage algorithms include the Single-Shot MultiBox Detector
(SSD) [15] and the YOLO (You Only Look Once) [5–8] series. Although the YOLO series
algorithm achieves a good balance in accuracy and complexity, the YOLO series algorithm
has a poor detection effect on small targets and low recall rate, which affects the application
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of the YOLO algorithm underwater. Therefore, researchers have carried out a lot of studies
based on YOLO series algorithms.

Chen et al. [16] proposed an underwater target recognition network based on improved
YOLOv4. Lei et al. [17] applied YOLOv5 in underwater target detection. These tasks
integrate the YOLO series into underwater target detection, Chen et al. [18]. Proposed an
underwater target detection lightweight algorithm based on multi-scale feature fusion but
do not take into account the hardware limitations of underwater detection.

Underwater targets are frequently dispersed, resulting in the loss of small targets,
and the deep extraction of features often produces images that are blurred [19]. Therefore,
there is a need to improve algorithms’ abilities to extract shallow information, the low-level
features and patterns typically captured by the initial layers of a neural network. Our
proposed model extracts shallow information by utilizing an attention mechanism during
the shallow information extraction stage.

In order to solve the problems surrounding feature extraction, we propose the in-
troduction of a transformer [20]. Although transformers are still in their early stages,
transformer-based models have already achieved excellent results in the field of natural
language processing. In 2020, researchers applied the transformer model to computer
vision [21] domain tasks and achieved promising results. Algorithms built on transformer-
based models are better able to focus on feature extraction and, therefore, have stronger
global feature extraction capabilities. Lei et al. [17] proposed YOLOv5 combined with a
Swin Transformer. Chen et al. [22] proposed a lightweight underwater target detection al-
gorithm based on dynamic sampling transformer and knowledge-distillation optimization,
but they ignored the cost of the transformer.

Researchers are also starting to incorporate lightweight transformers into the algo-
rithms they use for underwater detection. In 2021, MobileVIT combined a transformer
with a lightweight algorithm for the first time, which can greatly reduce the amount of
calculation, while guaranteeing the feature extraction capability, and can meet the needs
of underwater unmanned platforms. Thus, we chose MobileVIT [12] to combined with
YOLOX [9].

2.2. Lightweight Network and Attention

Considering the storage limitations of underwater unmanned platforms, underwater
target detection algorithms normally face additional challenges due to large amount of algo-
rithm parameters, which limits their speed and efficiency. To address this issue, lightweight
algorithm research for target detection has attracted the attention of researchers in recent
years and they have sought to develop algorithms optimized for resource-constrained
devices. MobileNet (v1/v2) [23,24], SqueezeNet [25], ShuffleNet [26], GhostNet [27], and
other lightweight CNN architectures have all been developed to provide deep learn-
ing algorithms that can extract features more efficiently by improving their convolution
methods. Yeh et al. [28] proposed a lightweight deep neural network for joint learning
of underwater object detection and color conversion. Wang et al. [29] applied a novel
attention-based lightweight network for multiscale object detection in underwater images.
The downside is that the use of lightweight methods inevitably leads to reductions in
detection accuracy.

In underwater target detection, attention mechanisms are frequently used in feature
extraction, and, in mobile networks, attention mechanisms have proven their usefulness in
computer vision through their ability to achieve efficient feature extraction at a relatively
low cost. The squeeze-and-excitation network (SENet) [30], convolutional block attention
module (CBAM) [31], and CA mechanism [13] are among the definitive attention mecha-
nisms noted for their high efficiency. SENet compresses and maps 2D features to prioritize
informative channels; CBAM further improves on spatial information coding by applying
a large-size kernel to the feature map and using convolutional layers. Zhang et al. [32]
proposed underwater object detection based on YOLOv4 and multi-scale attentional feature
fusion. Li et al. [33] applied YOLOv4 combined channel attention to detect underwater
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biology. In order to enhance the feature extraction capability of the algorithm, we designed
a new attention mechanism named DCA. DCA can integrate feature information extracted
by CNN and the transformer to further enhance the shallow information extraction of
the algorithm.

The rest of this paper is organized as follows: in Section 3, we introduce the YOLOX
algorithm, MobileViT algorithm, and CA attention mechanism based on which the algo-
rithm in this paper is based; in Section 4, we introduce the new DCA attention mechanism
proposed in this paper and the improved algorithm combining the MobileViT and YOLOX
algorithm; in Section 5, we verify the effectiveness of the algorithm through experiments;
and in the fifth chapter, we draw a conclusion. The flow chart of this paper is shown in
Figure 1.

Basic Structure

Introduction
and related work

YOLOX structure

MobileVIT Strcture

Coordinate 
attention structure

Improved YOLOX 
strcucture

Double CA 
strcuture

Improved Structure

Experiment

Figure 1. The flow chart of algorithm structure.

3. Basic Structure

3.1. YOLOX Structure

YOLOX improves on prior YOLO object detection algorithms, which are a series
of single-shot detectors developed by Megvii Technology in 2021. A key innovation of
YOLOX is the compartmentalization of tasks performed by separate components, such
as the image pre-processor, the backbone network, the neck network, and the predictive
head network. YOLOX uses mosaic data enhancement during the image pre-processing
stage and selects four images from the dataset for stitching and testing, which can enrich
image backgrounds. In the backbone network, YOLOX uses CSPDarknet CNNs for feature
extraction, consistent with previous generations of YOLO algorithms. FPN and PANNet
are used in the neck network to combine features from different layers, allowing shallow
information to guide the deep information, thereby retaining the position information
of the input image. A major innovation of YOLOX is its decoupled head architecture;
the head network makes predictions about objects in the input image—such as target
category, background, and coordinate information—before relegating the classification and
regression tasks into separate modules. This improves the expression ability and accuracy
of the algorithm and accelerates convergence. In addition, YOLOX optimizes the number
of parameters and further improves the accuracy of the algorithm using anchor-free [34]
detection and SimOTA [35] tag allocation. Despite its excellent detection accuracy, YOLOX
operates at a low cost; therefore, we chose YOLOX as our baseline method. In order to
extract special features of underwater targets, we optimized the original YOLOX by further
improving the model’s detection accuracy and reducing the number of parameters. The
YOLOX structure is shown in Figure 2.
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Figure 2. The network structure of YOLOX.

3.2. MobileVIT Structure

MobileViT is a computer vision model that combines mobile-friendly CNNs with vi-
sion transformers. CNNs focus on the extraction of local information, ignoring correlations
within this information, and their use of excessive convolution leads to the loss of key
information from the target. Compared with CNNs, transformer methods perform better
in global feature extraction, and transformers are also better able to identify correlations
between adjacent positions, improving how the shallow information of an image is saved.
However, because the transformer is a heavyweight model lacking the inductive bias that
would allow it to migrate directly to target detection, it often results in algorithms that
operate poorly. MobileViT, on the other hand, combines CNN and transformer layers,
resulting in a model featuring the efficient and lightweight aspects of CNNs as well as the
strong overall vision capacity of the transformer method. The two core components of
MobileViT are MobileViTBlock and MobileNetV2Block. MobileNetV2Block is the inverted
residual block component in MobileNetV2. The Mobilenet v2 block is shown in Figure 3

Conv
1×1 BN Relu DWConv BN Relu Conv

1×1 BN

Figure 3. The network structure of MobileNet v2Block.

This component enables an algorithm to retain its CNN while significantly reducing
the amount of calculation and number of parameters required, while additionally avoiding
the need for the extensive transformer operations typically performed by MobileViT. Mo-
bileNetBlock, a building block in MobileNet, first adjusts the number of channels through
3 × 3 convolution and 1 × 1 convolution, and then extracts global features through the
unfold, transformer, and fold technique. After the channel is adjusted via 1 × 1 convolution,
it is concatenated with the original special diagnosis map by shortcut, and then feature
fusion is performed by 3 × 3 convolution. The MobileVIT block is shown in Figure 4
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3.3. Coordinate Attention

Attention mechanisms have been proven to significantly improve the performance
of neural networks. However, due to the large amount of computation required by self-
attention modules (also known as self-attention mechanisms), they can only be used in
large models and are not suitable for mobile networks. Most of the attention mechanisms
applicable to mobile networks are based on global pooling, which reduces the spatial
dimensions of a feature map to a single value per channel—ignoring the location infor-
mation of the features. This lack of position information affects the structure of the object
captured by target detection. In addition, CNNs can only capture local relationships; our
proposed coordination attention mechanism solves this problem by decomposing channel
attention into two one-dimensional feature coding processes, which are characterized in
two directions. This allows for the capture of remote dependencies in one direction while
retaining accurate location information in the other direction. The two directional feature
maps are then combined with the input feature maps to enhance the direction and position
information of the target. This method allows an algorithm to focus on the global area of a
network at a low computational cost, while the use of two parallel one-dimensional feature
decoding can reduce the feature information loss caused by global pooling.

We use spatial extents of pooling kernels (H, 1) or (1, W) to encode each channel along
the horizontal coordinate and the vertical coordinate separately. Thus, the output of the
c-th channel at height h can be formulated as:

Zw
c (w) =

1
W ∑

0≤i<W
xc(h, i) (1)

Similarly, the output of the c-th channel at width w can be formulated as:

Zw
c (w) =

1
H ∑

0≤i<H
xc(j, w) (2)

Specifically. Equations (1) and (2) produce the aggregated feature maps, and then we
start to concatenate and then send them to a shared 1 × 1 convolutional transformation
function F1,which can be formulated as:

f = δ
(

F1([zh, zw])
)

(3)

where [., .] denotes the splicing operations along the spatial dimension, δ denotes the
non-linear activation function, and f ∈ R

C/r×(H+W) is the intermediate feature map en-
coding spatial information in both horizontal and vertical directions. In addition, r is the
reduction ratio. We then split f along the spatial dimension into two separate tensors,
fw ∈ R

C/r×W and fh ∈ R
C/r×H . Fh and Fw are 1 × 1 convolutional transformations which
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are utilized to separately transform fh and fw to tensors with the same channel number as
the input, which can be formulated as:

gh = σ
(

Fh(f
h)
)

(4)

gw = σ(Fw(fw)) (5)

where σ denote the sigmoid function. To satisfy the demand of the lightweight model, we
frequently reduce the channel number f with an appropriate reduction ratio r. The outputs
gh and gw are expanded and used as attention weights separately. Finally, Figure 5 shows
the structure of the CA mechanism, and the output of the coordinate attention block can be
formulated as:

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (6)

BatchNorm+Non linear

Conv2d Conv2d

Sigmoid Sigmoid

X Avg Pool Y Avg Pool

Concat + Conv2d

Residual

Re weight

Input

Output
Figure 5. The network structure of coordinate attention.

4. Proposed Structure

4.1. Double Coordinate Attention

Underwater small target detection methods require improvements in shallow infor-
mation feature extraction. To this end, we found that shallow feature extraction can be
further strengthened by utilizing a CA mechanism and fusing the feature information in
the backbone network before and after the block. Additionally, we aggregated the features
in different directions, so that the algorithm can focus more attention on the location of
shallow information. After obtaining the weight in each direction, it is combined with
the input from both sides, allowing the shallow information of the output feature map
to be better expressed. With this improved backbone network structure, we confirmed
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that MobileViT block does not change the structure of the input features when features
are fused before or after this group of layers. Thus, we designed proposed coordinate
attention named double coordinate attention (DCA). We tested this in consideration of how
global features and local features are emphasized during feature extraction, and the results
suggest distinct advantages for detecting the location of small targets.

We encoded the two input feature graphs Zn and Zv along two directions, respectively,
and carried out feature convolution feature fusion on the feature codes in the same direction.
Therefore, the horizontal output after convolution fusion Zh can be formulated as:

Zh = Zh
n(h)⊗ Zh

v(h) (7)

Similarly, the vertical output Zw can be formulated as:

Zw = Zw
n (w)⊗ Zw

v (w) (8)

where ⊗ represents the convolution operation. n and v represent the feature graphs of
different inputs, respectively. Similar to the CA mechanism, we convolved the two input
feature graphs and multiplied them with the attention weights of the two directions gh and
gw to obtain the output Y, which can be formulated as:

yc(i, j) = (xn(i, j)⊗ xv(i, j))× gh
c (i)× gw

c (j) (9)

By combining the two input weights and inputting the special detection map with
attention into FPN, the multi-feature extraction can be further guided. The DCA attention
mechanism extracted in this paper can not only retain the acquisition of global features
in the transformer, but also take into account the capture of local features in CNN and
enhance the feature extraction of shallow information. This can better satisfy the needs of
underwater target detection. Figure 6 shows the structure of the DCA mechanism.

Input1 Input2

Residual Residual

X1 Avg Pool X2 Avg PoolY1 Avg Pool Y2 Avg Pool

Concat + Conv2d Concat + Conv2d

Conv2d+Split

Conv2d Conv2d

Sigmoid Sigmoid

Re weight

Output

BatchNorm+Non linear

Figure 6. The network structure of double coordinate attention.
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4.2. Improved Network Structure

Because YOLOX has advantages in image enhancement, target classification, and label
classification in the YOLO series of algorithms, we optimized the backbone network and
feature extraction. YOLOX follows the backbone network of the previous generation of
YOLO algorithm, CSPDarknet53, which has excellent and different performance in feature
extraction. However, because the extraction of shallow information for underwater small
targets is very important, the multi-layer convolution of CSPDarknet will cause serious
loss of shallow information, make the detection of small targets more difficult, and the
multi-layer convolution layer will make the algorithm cumbersome. Therefore, we chose
MobileVIT as the backbone network of the algorithm for small target feature extraction.
MobileVIT combines the lightweight algorithm MobileNet and vision transformer. It not
only retains the lightweight and efficient features of CNN, but also reflects the feature that
the transformer focuses on global features. For the support of shallow information to small
targets, we added the attention mechanism DCA when outputting the first two features,
which can greatly enhance the extraction of shallow information in the algorithm and
enhance the detection accuracy of underwater small targets. Figure 7 shows the structure
of the proposed YOLOX.
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Figure 7. The network structure of improved YOLOX.

5. Experiment and Analysis

5.1. Datasets

This experiment uses the URPC2020 dataset for validation experiments, which in-
cludes five categories: starfish, scallops, waterweeds, echinus, and holothurian. It also
included 5543 training images, of which aquatic plants were officially recognized as a
negligible target, and it only contains 82 targets. However, in order to verify the algorithm’s
ability to detect small underwater targets, we still included aquatic plants in the detection
category, and this paper ultimately uses 5543 images and five categories and, according to
the ratio of 9:1, it is randomly divided into training set and validation set.

5.2. Experimental Enviroment

The experimental environment is shown in Table 1. The hardware used for this
experiment was a Ryzen 7 3700x; NVIDIA RTX 3090 graphics card; Ubuntu 18.04
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operating system; CUDA version 11.6; PyTorch version 1.11.0; and Python environment
3.9.12.

Table 1. The environment for the experiments.

Environment Versions or Model Number

CPU Ryzen 7 3700x
GPU
OS

CUDA
Python
Pytorch

NVIDIA RTX 3090
Ubuntu 16.04

11.6
V1.11.0
V3.9.12

5.3. Parameter Settings

We validated the improved YOLOX algorithm proposed in this paper on the URPC2020
dataset. The input resolution was uniformly resized to 608 × 608. For the task, the
original YOLOX-S model was adopted as the basis for experimental comparison. For fair
comparison, we trained all models across 300 epochs by using SGD with weight decay of
0.0005. The initial learning rate was set to 0.001 and the batch size was set to 16. All other
parameters were kept the same as YOLOX-S.

5.4. Results and Analysis

We used the URPC dataset to train and test the model. mAP was the standard
to measure the accuracy of the model in target detection. Since the model size was
also one of the evaluation criteria in this paper, we also took the parameter size,
Flops, as one of the measurement criteria. In order to verify the effectiveness of the
experiment, this paper uses the ablation experiment, in which Model 1 uses the main
framework of the YOLOX algorithm, and replaces the backbone network of YOLOX
with MobileVIT. Among the models, Model 1 adopts the main framework of the
YOLOX algorithm, while replacing the backbone network of YOLOX with MobileViT,
and replacing the convolution in FPN with depthwise separable convolution. The rest
of the network structure is consistent with YOLOX. Model 2 is based on Model 1 and
adds CA attention mechanism to the two layers of shallow information output, with
the rest remaining unchanged. Model 3 is based on Model 2 and replaces the shallowest
layer’s CA attention mechanism with the DCA attention mechanism, with the rest
remaining unchanged. Model 4 is based on Model 2 and replaces both instances
of the CA attention mechanism with the DCA attention mechanism, with the rest
remaining unchanged.

The results in Table 2 show that using MobileVIT as the backbone network in this
paper demonstrates the advantage of MobileVIT in reducing the number of parameters and
improving the accuracy of target detection. Furthermore, the added attention mechanism
proves that the coordinate attention mechanism can less sacrifice the parameter and Flops,
and the DCA attention mechanism proposed in this paper can also better control the
number of parameters. Model 4, proposed in this paper, can meet the carrying demand of
underwater unmanned platforms.

Table 2. Parameter of ablation experiment.

Model
Method

Parameter(M) Flops
Baseline Dw CA DCA

YOLOX
√

8.94 26.64
Model 1

√
4.37 24.88

Model 2
√ √

4.39 24.92
Model 3

√ √ √
4.42 25.18

Model 4
√ √

4.51 25.35

123



J. Mar. Sci. Eng. 2023, 11, 1178

The results in Table 3 show that Model 1 proposed in this paper demonstrates the
advantages of the transformer algorithm in feature extraction, and Model 4, compared with
Model 2 and Model 3, proves that the proposed DCA attention mechanism can perform
better in shallow information extraction. Furthermore, the water seeds category listed
in this paper has a significant increase in mAP compared with the baseline algorithm,
proving that the DCA attention mechanism has a better prospect for detecting difficult and
small targets.

Table 3. Results of ablation experiment on the URPC2020 dataset.

Model mAP Holothurian Echinus Starfish Scallop Waterweeds

YOLOX 66.92 67.00 87.09 79.49 83.05 17.96
Model 1 68.69 71.64 87.13 80.59 83.23 20.87
Model 2 71.01 73.24 86.93 80.42 82.81 31.66
Model 3 70.75 75.23 87.19 80.29 82.84 28.22
Model 4 72.00 73.42 87.37 79.40 82.97 36.87

The results in Table 4 show thatcompared with existing algorithms, the proposed
algorithm achieves the best balance in precision and parameter quantity, and proves that
the proposed algorithm can be carried on the underwater unmanned platform. Figure 8
shows the results of the proposed method for the detection.

Table 4. Result of different algorithms on the URPC2020 dataset.

Model mAP Holothurian Echinus Starfish Scallop Parameter (M)

YOLOv4 81.01 71.21 89.94 85.58 77.30 64.04
T-YOLOv4 68.69 54.09 80.43 77.94 58.87 5.96

YOLOX 79.16 67.00 87.09 79.49 83.05 8.94
Model 4 80.79 73.42 87.37 79.40 82.97 4.51

Note: Data YOLOv4 and T-YOLOv4 are quoted from the literature [32].

Figure 8. The detection results of our method in URPC2020.
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6. Discussion

6.1. Underwater Target Detection Combined with Transformer

CNN-based object detection algorithms have always been a research hotspot and have
been considered the foundation of object detection algorithms for many years. However, in
underwater environments, the lack of global features and target loss caused by multiple
convolutions limit the development of object detection algorithms. Previously, transformers
have been widely used in the field of natural language processing. It was not until 2021 that
transformers entered the field of image processing and achieved good results. Therefore,
this paper focuses on combining MobileViT with YOLOX for object detection. Experiments
show that this method can improve the accuracy of object detection while reducing the
number of parameters. Thus, the transformer’s ability to extract features from targets is
more suitable for underwater imaging environments, reducing target loss and demonstrat-
ing better accuracy for detecting difficult targets. However, since transformers need to
consider global features, the detection speed will face significant challenges. Therefore,
the optimization of the network structure should also consider improving the detection
speed. In addition, compared with the existing YOLO algorithm, CNN-based deep feature
information extraction still has certain advantages in high-precision categories. Therefore,
further experiments are needed to combine CNN with the transformer.

6.2. Challenges of Underwater Small Target Detection

Existing detection algorithms enhance object detection accuracy through data aug-
mentation, multi-feature fusion, and attention mechanisms. Among them, the impact of
feature maps at different scales in multi-feature fusion on small object detection varies. In
the experiments, we added attention mechanisms at different scales to enhance feature
extraction, but the experimental results show that the large scale has a much greater impact
on shallow information extraction than the small scale, and adding attention at the small
scale may even reduce algorithm accuracy. Therefore, for underwater small targets, there
should be more improvements in feature fusion. In addition, attention mechanisms mostly
act as removable components added to existing algorithms, and experimental results show
that attention mechanisms perform well in underwater small object detection. However,
attention mechanisms rely too heavily on the structure of existing algorithms, and the
improvement of experimental results is uncertain. The DCA attention mechanism pro-
posed in this paper is not universal in improving the accuracy of target detection, and some
categories are difficult to be improved. Therefore, there is still considerable room for the
development of attention mechanisms in the field of underwater object detection.

6.3. Future Research Focus on Underwater Small Target Detection

From the experimental results, we analyzed that the reason why sea urchins can obtain
the best performance is that the color of the sea urchin is monotonous and has obvious
color difference with the color of underwater imaging, and the underwater dataset is large.
Compared with other targets with high accuracy, the sea cucumber has a similar color
and smaller size to the underwater background. Moreover, compared with the YOLOX
algorithm, the detection rate of sea-participating seagrass has been significantly improved
after combining with MobileViT feature extraction. Therefore, we believe that shallow
feature extraction is positive for the detection of small underwater targets. Therefore, in the
detection of small underwater targets, it is necessary to strengthen the shallow features.
In addition, since the detection category with color difference has higher accuracy, it may
bring unexpected results to be added into the target detection algorithm, such as reducing
underwater color bias and increasing contrast.

7. Conclusions

This paper proposes an underwater object detection model that provides a good
balance between accuracy and memory. In our work process, in order to establish an
underwater object detection algorithm that can be mounted on underwater unmanned
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platforms, we chose YOLOX as the base algorithm and used MobileViT as the backbone
network to replace YOLOX’s CSPDarknet53 for extracting global features from images. At
the same time, depthwise separable convolution is used in the neck for reconstruction to
control the number of parameters in the algorithm. We also improved the DCA attention
mechanism based on the CA attention mechanism to enhance feature extraction capability
between the backbone network and the neck, strengthening the global and shallow features
of the algorithm. This is beneficial for underwater unmanned platforms to extract small
and difficult targets in water. Experiments show that the proposed network is feasible. Our
algorithm reduces the number of parameters by 49.6% compared with YOLOX, and the
accuracy on the URPC dataset is still improved, especially in the detection of small targets
in the dataset. The results show that the algorithm has certain advantages and performs
better in terms of parameter count and accuracy compared with the listed algorithms.

In our future work, we will further advance the balance between parameter count and
accuracy in underwater object detection. We will also consider incorporating algorithm
speed into the algorithm evaluation. The following methods will become important direc-
tions for our upcoming work: model pruning, numerical acceleration techniques, and loss
function improvements.
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Abstract: The increasing demand for safe and efficient maritime transportation has underscored the
necessity of developing effective path-planning algorithms for Unmanned Surface Vehicles (USVs).
However, the inherent complexities of the ocean environment and the non-holonomic properties
of the physical system have posed significant challenges to designing feasible paths for USVs. To
address these issues, a novel path planning framework is elaborately designed, which consists
of an optimization model, a meta-heuristic solver, and a Clothoid-based path connector. First, by
encapsulating the intricate nature of the ocean environment and ship dynamics, a multi-objective path
planning problem is designed, providing a comprehensive and in-depth portrayal of the underlying
mechanism. By integrating the principles of the candidate set random testing initialization and
adaptive probability set, an enhanced genetic algorithm is devised to fully exploit the underlying
optimization problem in constrained space, contributing to the global searching ability. Accounting
for the non-holonomic constraints, the fast-discrete Clothoid curve is capable of maintaining and
improving the continuity of the path curve, thereby promoting strong coordination between the
planning and control modules. A thorough series of simulations and comparisons conducted in
diverse ocean scenarios has conclusively demonstrated the effectiveness and superiority of the
proposed path planning framework.

Keywords: path planning; unmanned surface vehicles; path smoothing; multi-objective; genetic algorithm

1. Introduction

With artificial intelligence at the helm, the advent of unmanned surface vehicles (USVs)
has garnered significant attention, fueled by their potential to revolutionize maritime oper-
ations by enhancing safety and efficiency [1–6]. However, the successful deployment of
USVs depends on the development of autonomous technology, which refers to the ability
of these vehicles to plan and execute their missions in complex environments without
human intervention, thereby enabling safe and efficient navigation [7,8]. Generally speak-
ing, the most common approaches that contribute to the autonomous level of USVs are
perception, localization and mapping, path planning and decision-making, and control
system design. Central to achieving autonomy in USVs is the challenge of path planning,
which involves determining an optimal path for the vehicle to traverse in order to accom-
plish its mission objectives while adhering to a set of predetermined rules and regulations.
Compared to other types of autonomous vehicles, such as unmanned ground vehicles
(UGVs), USV path planning may incorporate specialized techniques to handle challenges,
such as wave prediction models, collision avoidance strategies for vessels, or algorithms,
that account for hydrodynamic effects on the vehicle’s motion. This task is particularly
challenging due to the dynamic nature of maritime environments, which are subject to
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constantly changing weather conditions, currents, and other environmental factors that can
impact navigation [9]. Achieving this goal requires the development of sophisticated path
planning algorithms that enable these vehicles to navigate complex environments with
minimal human intervention, paving the way for a future of safe and efficient maritime
navigation [10].

The field of path planning for USVs has been an active area of research in recent years,
with numerous studies investigating the development of effective planning strategies for
USVs. In general, two primary categories of path planning algorithms have been proposed:
global approaches and local approaches [7]. Global approaches involve the generation
of a complete path for the USV based on prior knowledge of the environment, usually
represented as a map. Such methods typically employ high-level planning techniques that
treat the USV as a point object, neglecting its maneuverability and physical constraints.
These methods are, therefore, more suitable for planning routes for long-distance voyages,
where the emphasis is on efficient and safe navigation over extended periods. In contrast,
local approaches generate a path by utilizing local information collected during the mission,
enabling the USV to adapt to unexpected obstacles or changes in the environment. These
methods fully consider the physical bounds of the USV’s mechanical system, leading to
more precise tracking performance for the low-level controller. Although the design of such
methods is generally more complex, as it requires the integration of high-level planning and
low-level control techniques to ensure effective operation, it is more applicable in practice.

Presently, there is a growing affinity for deterministic approaches in path planning,
with various methods, such as A* and D* lite, basking in the limelight of scientific pop-
ularity. In particular, Yu and Wang [11] have put forward a hybrid algorithm that fuses
artificial potential field (APF) and D* lite to navigate complex environments. This approach
not only minimizes time cost but also enhances path safety through the APF. Nonethe-
less, it overlooks disturbances and energy consumption. Similarly, Yu et al. [12] have
proposed an improved D* lite that reduces expanded nodes, validated via simulations.
However, the simulation fails to consider ship dynamics, smoothness, and safety. Mean-
while, Song et al. [13] have utilized various smoothing techniques to mitigate the jagged
effect in A*, which has been demonstrated to be effective through both experiments and
simulations, making it a practical choice. Furthermore, Shah and Gupta [14] have pre-
sented a quadtree representation of the marine environment, which accelerates the A*
algorithm without significantly sacrificing solution optimality, as shown in simulations. To
facilitate path planning for working ships in offshore wind farms, Xie et al. [15] devised a
multi-direction A* algorithm modified by an artificial potential field. Compared with the
real-case trajectory, the minimum distance to the wind turbines has increased, and the path
length outside the wind farm decreased dramatically. To solve the path planning problem
under changing environments with multiple dynamic obstacles, Yao et al. [16] proposed an
Improved D* lite algorithm, which has demonstrated its efficacy in real-time path planning
through simulation results. Although deterministic approaches have emerged as popular
and reliable methods for path planning, these methods can be computationally expensive,
particularly when operating in large and complex environments. This can have a significant
impact on their performance, making them less suitable for real-time applications.

As a result, the meta-heuristic algorithms, including ant colony optimization (ACO) [17],
particle swarm optimization (PSO) [18], and genetic algorithms (GA) [19], have emerged as
promising alternatives for path planning in marine robotics. These algorithms offer a set of
high-level strategies to search for solutions, allowing them to optimize paths while consid-
ering multiple objectives with a comparatively low computational burden. Considering the
effects of currents, Krell et al. [20] devised an improved PSO method implemented in visibil-
ity graphs. For the safe navigation of ships, a quasi-reflection-based PSO was proposed by
Xue [21]. Incorporating the environmental loads, a hierarchical path planning framework
based on GA is developed by Wang and Xu [10]. For rapid path generation, a leader-vertex
ant colony optimization algorithm is proposed by Liang et al. [22], which ensures a leader
of the ant colony and optimizes the route by vertex method. For both global and local
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path planning, a series of studies on artificial fish swarm algorithms have been conducted
by Zhao et al. [7,8,23]. Under different current distribution, a comprehensive study has
been conducted by Ma et al. [24] using multi-objective dynamic augmented PSO. Organi-
cally bridging the planning and tracking, Wang et al. [25] devised an elite-duplication GA
(EGA) strategy to optimally generate sparse waypoints in a constrained space. However,
meta-heuristic algorithms commonly encounter a significant hurdle with regard to their
global searching capabilities, as they are prone to be trapped in local minima or subopti-
mum, thereby impeding the identification of the global optimum necessary for producing
high-quality trajectories. Additionally, the computational efficiency of existing methods
is not satisfactory enough to facilitate efficient path generation within high-dimensional
configuration spaces [26]. Therefore, there is an imperative need for innovative techniques
that can enhance the global searching capability and convergence rate of meta-heuristic
algorithms for path planning.

In addition, a noteworthy limitation of most existing methods is the neglect of the
non-holonomic constraints of the vehicle, which can lead to paths that are potentially
infeasible. Specifically, the USV, being a non-holonomic robot, often functions as an un-
deractuated system during its missions, resulting in limited maneuverability and motion
flexibility [27,28]. Analogous to unmanned ground vehicles (UGVs), this restricts the USV’s
motion to forward velocity and manipulation of the heading angle to attain its desired
position, thus precluding lateral movement. Consequently, it is of paramount importance
to ensure smooth and continuous transitions of yaw and curvatures at turning points in
order to devise an effective trajectory for a USV. For instance, sharp turns may be deemed
unfeasible for a USV due to the significant sideslip that ensues, deviating from the planned
path. Thus, the motion dynamics of the USV should be meticulously accounted for in the
path planning process [10].

Inspired by the aforementioned literature review, this paper proposes a novel GA-
variant meta-heuristic algorithm in combination with a fast-discrete Clothoid curve to
optimize path generation. The main contributions of this paper are illustrated as follows:

• By capturing the non-holonomic nature of USVs and the intricate ocean dynamics, a
sophisticated optimization model is carefully devised for the path planning problem,
whereby the effects of currents, increments of curvatures, and constraints of physical
system are addressed jointly.

• Introducing the random testing initialization algorithm and the adaptive design in
the selection procedure, the proposed GA-variant facilitates strong global searching
capabilities and a fast convergence rate, thereby contributing to the optimal generation
of waypoint sequence.

• Accommodating the non-holonomic constraints, the fast-discrete Clothoid curve is
able to preserve and enhance the continuity of the path curve, resulting in robust
coordination between the planning and control module.

This paper is organized in the following structures: Section 2 presents the detailed
modeling of the environment, USV, and the optimization model. Section 3 introduces the
methodology. Illustrative simulation results are shown in Section 4. The conclusion is
drawn in Section 5.

2. Problem Formulation

2.1. Environment Model

In this research, we consider the marine surface area represented as M in the Eu-
clidean space R

2. M is divided into obstacle area Mo and obstacle-free motion area Mf ,
respectively. The relationship between these two grids is illustrated in Equation (1). The
path P of the USV is defined as a sequence of connected elementary waypoints, denoted
by pi(i = 1, 2, 3, . . . , m). By following the path P, the USV moves from the initial posi-
tion pS(xS, yS) to the final position pE(xE, yE) while avoiding numerous obstacle areas
Mo (Mo = {O1, O2, . . . , Ok}, where k denotes the number of obstacles).
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Mf +Mo = M (1)

Accordingly, to guarantee the safety, the generated path should be restricted to Mf
domain which is given as:

P = ∪m
i=1pi ⊂ Mf (2)

2.2. Currents Model

According to previous research [20], ocean currents have a significant impact on the
energy consumption of USVs. Therefore, when carrying out activities, USVs tend to choose
a path that allows them to take advantage of the currents. Two types of currents exist: fixed
and time-varying. Fixed currents are common in inland water voyages while time-varying
currents are present in large-scale ocean environments. Assuming that the velocity of the
USV in the body frame is v = [u, v, r]T and the current velocity in the body frame is vc,
the USV velocity, taking the effects of the currents into account, can be expressed as:

vr = v + vc (3)

2.3. USV Model

Typically, the motion of the USV can be regarded as a rigid body motion on the
horizontal plane, as shown in Figure 1a, with three degrees of freedom: surge, sway, and
yaw. Consequently, the state-space model for the USV, accounting for the impact of the
current, can be derived as follows:

.
η = R(ψ)vr

M
.

vr + C
( .
vr
) .
vr + Dvr = τ

(4)

where the position and yaw angle in the earth-fixed inertial frame {n} are represented by the
vector η = [x, y, ψ]T , while the relative velocities in the body-fixed frame {b} are denoted
by vr = [ur, vr, r]T , and the control signals are represented by the vector τ = [τu, 0, τr]

T .
This paper considers the underactuated configuration of the USV, which means that the
surge force and yaw moment are the only control forces. With these assumptions, the
rotation matrix R(ψ), mass matrix M, Coriolis matrix C, and damping matrix D can be
expressed as:

R(ψ) =

⎡⎣cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

⎤⎦
M =

⎡⎣m − X .
u 0 0

0 m − Y .
v 0

0 0 Iz − N.
r

⎤⎦ =

⎡⎣m11 0 0
0 m22 0
0 0 m33

⎤⎦
C =

⎡⎣ 0 0 −(m − Y .
v)v

0 0 (m − X .
u)u

(m − Y .
v)v −(m − X .

u)u 0

⎤⎦
=

⎡⎣ 0 0 −m22v
0 0 m11u

m22v −m11u 0

⎤⎦
D =

⎡⎣d11 0 0
0 d22 0
0 0 d33

⎤⎦

(5)

To represent the USV’s orientation relative to the earth-fixed inertial frame, we use a
rotation matrix R(ψ) that transforms the body-fixed frame. The mass matrix M = MT > 0
takes into account the USV’s inertial properties and hydrodynamic added mass. The matrix
D incorporates damping coefficients, while the Coriolis matrix C captures the Coriolis and
centripetal effects and can be obtained from M.
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Figure 1. (a) Coordinate system; (b) Definition of a path curve.

Due to its non-holonomic nature, a USV typically has limited maneuverability and
motion flexibility during most operations [28]. Similar to UGVs, the non-holonomic con-
straint restricts its lateral motion, meaning that the USV can only use its forward velocity
while adjusting the heading angle to reach a desired position.

In Figure 1b, let di = [xi+1 − xi, yi+1 − yi, 0]T denote the position vector between
two points, and pi and pi+1 represent the waypoints. The angles between di and pi and
pi+1 are defined as bi, i and bi, i+1, respectively. In order to ensure a continuous path, the
straight line and turning motions require that two consecutive positions pi and pi+1 lie on
a common arc of constant curvature, which can be expressed as:

bi, i = bi, i+1 (6)

Moreover, the turning angle at any point on the path must be restricted in the dynamic
bounds, which gives:

Δψi ≤ Δψmax (7)

2.4. Optimization Terms
2.4.1. Cruising Time

Since the path length and energy consumption objectives are interdependent, modify-
ing the design variables affects both objectives equally. To jointly represent these objectives,
we have adopted the cruising time t as the first objective. Let vi be the velocity of the USV
at pi and vc be the current velocity. The resultant velocity is denoted by vr = vi + vc. The
cruising time ti between pi and pi+1 can be calculated as follows:

ti =
||pi+1 − pi||

vi,c
(8)

Then, the total cruising time is calculated by:

T =
m−1

∑
i=1

ti (9)

The calculation of vc is performed using the current distribution function. In most
cases, vi is considered to be a constant value in the same direction as pi. Therefore, ti repre-
sents the nominal cost of travel time and does not accurately reflect the actual travel time.

2.4.2. Smoothness and Continuity

The additional cost incurred due to yaw is closely linked to the motion control per-
formance of the USV. In order to enhance the smoothness of the trajectory, an objective
function is introduced. To achieve this, constraint (9) is added as a quadratic penalty
term to the objective function. The turning angle Δψi between waypoints pi and pi−1 in
the path P is calculated as Δψi = |ψi − ψi−1|, where ψi = atan((yi − yi−1)/(xi − xi−1))
and ψi−1 = atan((yi−1 − yi−2)/(xi−1 − xi−2)). The smoothest path is achieved when the
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changes in Δψi (i = 2, 3, . . . , m) and curvature |bi−1, i−1 − bi−1, i| are minimized. Hence,
the objective function for achieving the smoothest path is defined as:

ϑ =
m

∑
i=2

Δψi +
m

∑
i=2

|bi−1, i−1 − bi−1, i| (10)

2.4.3. Path Safety

To ensure the safe movement of the USV, it is crucial to find a collision-free path that
also maintains a safe distance from the obstacles. In addition to satisfying the conditions
outlined in Equation (2), the minimum clearance from obstacles, denoted as di, is used to
determine the safety of the solution. Specifically, we define two circular areas with radii
dmin and dmax around each path waypoint pi. The distance between each path waypoint
pi and its closest obstacle Oi (Oi ⊂ Mo) is represented by di =||pi, Oi||, (i = 1, 2, 3, . . . , m) .
The safety of each point along the path can then be evaluated by:

Di =

⎧⎪⎨⎪⎩
0, di ≥ dmax

dmax−di
dmax−dmin

, dmin < di < dmax

1, di ≤ dmin

, i = 1, 2, 3, . . . , m (11)

Therefore, to ensure the safety of the path, the third objective is to minimize the
minimum value of Di, see the following:

D = argmin {D1, D2, . . . , Di}, i = 1, 2, 3, . . . , m (12)

2.5. Problem Statement

The path planning model for the problem is formed as:

minJ = T + ϑ +D (13)

s.t.
Mf = M −Mo

P = ∪m
i=1pi ⊂ Mf , i = 1, 2, 3, . . . , m

p1 = (x1, y1) = (xS, yS)

pm = (xm, ym) = (xE, yE)

v + νc ≥ 0

vr = v + vc, i = 1, 2, 3, . . . , m

bi, i = bi, i+1, i = 1, 2, 3, . . . , m − 1

ti =
||pi+1−pi ||

vi,c
, i = 1, 2, 3, . . . , m − 1

T =
m−1
∑

i=1
ti, i = 1, 2, 3, . . . , m

ψi = atan((yi − yi−1)/(xi − xi−1)), i = 2, 3, . . . , m

Δψi = |ψi − ψi−1|, i = 2, 3, . . . , m

Δψi ≤ Δψmax

ϑ =
m
∑

i=2
Δψi +

m
∑

i=2
|bi−1, i−1 − bi−1, i|, i = 2, 3, . . . , m

di = ||pi, Oi||, (i = 1, 2, 3, . . . , m)

Di =

⎧⎪⎨⎪⎩
0, di ≥ dmax

dmax−di
dmax−dmin

, dmin < di < dmax

1, di ≤ dmin

, i = 1, 2, 3, . . . , m

D = argmin {D1, D2, . . . , Di}, i = 1, 2, 3, . . . , m

(14)
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3. Solver Design

3.1. Adaptive-Elite Genetic Algorithm

The genetic algorithm (GA) was initially proposed by Professor J. Holland in 1973
as a meta-heuristic optimization method. By simulating the evolutionary process of an
artificial population, the GA manipulates each individual in the population through genetic
operations, such as selection, crossover, and mutation. The process generates a new
population with the best-performing individuals from the previous generation as the
parents. The population evolves through several generations, and the individuals with the
best fitness values are selected as the optimal solutions.

The GA’s strength lies in its ability to search a large solution space using stochastic
searches and evolutionary operations, such as crossover and mutation, making it effec-
tive in handling non-linear and non-convex optimization problems. Moreover, the GA’s
population size enables it to mitigate the impact of hyperparameter selection by allowing
the algorithm to sample from a diverse set of solutions. Given that the optimization prob-
lem presented in this paper is an NP-hard nonlinear problem, we choose the GA as the
primary framework.

3.1.1. Chromosome Representation

In evolutionary algorithms, chromosomes can be represented in various ways, such
as binary-coded, real-coded, and decimal-coded. In our paper, we utilized the real-coded
chromosome to directly represent the USV’s path. Specifically, we use a sequence of points
that begins at an origin position and ends at a destination point. Each point, denoted as
pi = (xi, yi), is saved along with its x and y coordinates and a pointer to the next point in
the path. Figure 2 illustrates this representation.

Figure 2. Definition of chromosome.

3.1.2. Initialization

The original population for the algorithm is obtained through population initialization.
In the case of the original GA, a certain number of solutions are randomly generated in
the solution space without the use of a heuristic function. This can lead to a random and
unfocused solving process, resulting in a high proportion of poor solutions and low-quality
genes in the population. This, in turn, requires a long convergence time during subsequent
evolution and makes the solving process prone to being trapped in a local optimum.

To address this issue, we have developed a modified initialization method for GA
inspired by failure analysis techniques used in software systems. Specifically, we have
incorporated a candidate set adaptive random testing (ART) approach to improve the
diversity of the initial population. By enhancing the initial diversity, the ART-based
initialization method allows the GA to explore a broader range of potential solutions.
This exploration can improve the algorithm’s ability to escape local optima and discover
better solutions in the search space. Consequently, it enhances the chances of finding
high-quality solutions and can potentially accelerate the convergence toward optimal or
near-optimal solutions. In summary, compared to standard random initialization, the
ART-based initialization method in the GA offers the advantage of generating an initial
population that is more diverse and better distributed throughout the search space. This
increased diversity can facilitate improved exploration of the solution space and potentially
lead to better overall performance and convergence in the GA.

The main steps of the initialization process are illustrated as follows:
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Step 1: m candidate individuals C = c1, c2, . . . , cm are randomly generated.
Step 2: The objective distances between each candidate individual and the current

individuals in the population set P = p1, p2, . . . , pn are calculated.
Step 3: The shortest distance between each candidate individual and the population

set is identified.
Step 4: The candidate individual with the maximum distance value is selected and

added to the population set P.

3.1.3. Selection Operator

In a genetic algorithm, the selection operator is responsible for choosing individuals
from a population for the crossover operator. This selection process is carried out based on
a predefined regulation called the Roulette Wheel Selection (RWS) method. To perform
Roulette Wheel Selection (RWS) in a genetic algorithm (GA), first, we compute the fitness
values for each individual in the population and normalize them to obtain probabilities.
Then, calculate the cumulative probabilities by summing up the normalized fitness values.
After that, generate a random number between 0 and 1, and select individuals whose
cumulative probability exceeds this random number. Repeat the selection process as
needed to obtain the desired number of parents. Use the selected parents for crossover
or recombination to generate offspring for the next generation. This iterative process
allows individuals with higher fitness to have a greater chance of being selected, promoting
the propagation of favorable traits in the GA. The RWS method ensures that the fitter
individuals have a higher chance of being selected for the crossover, thus improving the
overall quality of the population in the subsequent generation. The selection probability of
each individual can be expressed as follows:

Pi
select = F(xi)/

n

∑
i=1

F(xi) (15)

where xi denotes the individual and f (xi) is the corresponding fitness value. As can be seen
from Equation (15), better individuals have more chances to be selected by RWS, which
leads to better solutions.

3.1.4. Hybrid Crossover

Crossover operators are utilized to combine two solutions and generate a new off-
spring with better performance in terms of a predefined objective. These operators can be
applied to solutions with the same or different number of waypoints. The first crossover op-
erator involves calculating the mean of the two parent solutions to produce a new offspring.

x f =
xp

1 + xp
2

2
, y f =

yp
1 + yp

2
2

(16)

where two parents have gene coordinates denoted by xp
1 , yp

1, and xp
2 , yp

2, respectively.
The gene coordinates of the offspring are represented by x f and y f . First, two parent
chromosomes are selected according to the selection operator. Second, we select one of the
parents as a reference chromosome. In this procedure, if the number of waypoints in the
parents are the same, we choose the reference randomly. Otherwise, the one with smaller
waypoint number is chosen. Then, waypoints of the offspring

(
x f , y f

)
are calculated by

taking the mean of each waypoint of the reference chromosome and the nearest waypoint of
the other parent. To determine the gene coordinates of the offspring

(
x f , y f

)
, the average

of each gene in the selected parent and the closest gene in the other parent are computed.
To enhance the variability of the population and explore the entire available space, the

second crossover operator is utilized in which the two parents are randomly merged:

x f = kxp
1 + (1 − k)xp

2 , y f = kyp
1 + (1 − k)yp

2 (17)
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where vector k consists of random numbers ranging from −1 to 1. When the number
of genes differs between the parents, a similar approach to the first operator is used
to combine genes with minimal distance. The primary aim of the first operator is to
escape local optima, while the second one explores the environment randomly, preventing
premature convergence.

3.1.5. Mutation Operator

The mutation operator in a Genetic Algorithm has a critical function in maintaining
diversity within the population. The primary goal of the mutation operator is to randomly
modify the value(s) of one or more genes within an individual’s chromosome. By intro-
ducing such changes, the mutation operator assists in preventing the GA from becoming
trapped in a local optimum, which would hinder the search for the global optimum. In the
absence of the mutation operator, the GA may converge to a suboptimal solution that is in
close proximity to the initial population. Hence, mutation serves as a crucial component of
GA by promoting exploration of the search space and preventing premature convergence
to suboptimal solutions. This paper introduces two mutation operators to facilitate the
genetic process:

The first operator is a random mutation that selects one position on chromosomes and
changes the value in the free space as shown in the following figure:

A different mutation operator is utilized to enhance the path’s smoothness and length
by adjusting the position of a gene. The operator integrates the present position (pi) of a
gene with the directions towards the genes located on either side, pi−1 and pi+1, using the
subsequent expressions:

x f
i = xp

i + m
(

xp
i−1 − xp

i

)
+ n

(
xp

i+1 − xp
i

)
y f

i = yp
i + m

(
yp

i−1 − yp
i

)
+ n

(
yp

i+1 − yp
i

) (18)

where m and n are random positive coefficients from 0 to 1. As illustrated in Figure 3b, this
mutation operator leads to the creation of paths with shorter lengths and better smoothness.
Combining both mutation operators result in a powerful tool that enhances both the
searching and convergence capabilities of the algorithm.

Figure 3. Mutation operators. (a) first mutation, (b) second mutation.

3.1.6. Fitness Design

In this paper, a multi-objective fitness function is devised. For this purpose, a weighted
linear combination of the mentioned objectives is considered:

F = c1wtT + c2wθϑ + c3wdD (19)

The formula involves several parameters, including T (cruising time), ϑ (smoothness
objective), and D (safety level), where wt, wθ , and wd represent weight values, and their
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sum is equal to 1. To maintain consistency in the indicators’ magnitudes, coefficients c1, c2,
and c3 have been set to 0.1, 1, and 100, respectively, as shown in the equation.

Selecting appropriate weight values is a vital aspect of the algorithm’s performance.
However, relying solely on empirical methods can be subjective. In an effort to achieve
more balanced results, the Delphi weighting method [19] was employed to determine the
weight of each indicator. As a result, the weight coefficients for cruising time, smoothness,
and safety are 0.395, 0.275, and 0.330, respectively.

3.1.7. Determination of pc and pm

The conventional Genetic Algorithm for USV path planning relies on two essential
parameters, namely, the crossover rate and mutation rate, to regulate pc and pm of indi-
viduals in each iteration. However, using fixed values for these parameters may pose
certain challenges. For instance, employing a large crossover and mutation probability can
make it difficult to retain the best individuals, slow down population convergence, and
consequently, delay the generation of the inspection path, thereby impacting operational
efficiency. Conversely, a small pc and pm can negatively affect the searching process, leading
to the local optimum. This, in turn, causes the USV to travel longer distances, reducing
its efficiency.

To tackle the aforementioned challenges, a modified approach is suggested. This
approach involves adjusting pc and pm during the algorithm execution. Specifically, in the
early stages of the algorithm, pc and pm are increased to improve the global search ability,
while in the final stage, the probabilities are decreased to facilitate good convergence.
Adaptive probabilities allow the GA to dynamically adjust the rates of crossover and
mutation based on the progress of the algorithm. Initially, higher probabilities promote
exploration by encouraging diverse offspring. As the GA progresses, the probabilities can
be reduced, shifting the focus towards exploitation of promising solutions. This balance
between exploration and exploitation helps the GA efficiently search for optimal or near-
optimal solutions.

To achieve this, adaptive functions are formulated as follows:

pc = pc0e−
a
F (20)

where pc0 represents the initial pc, a is the scaling coefficient, and F here is the average
fitness of the population. Similarly, the mutation probability can be obtained with same
structure as follows:

pm = pm0e−
b
F (21)

where pm0 represents the initial pm and b is the scaling coefficient. These functions dynami-
cally adjust the crossover probability based on the mean fitness degree of the population
at each generation. As a result, the USV can achieve a balance between exploration and
exploitation, leading to faster convergence and better results.

3.2. Fast-Discrete Clothoid Curve

To ensure real-time performance and accommodate the USV’s kinematic constraints,
we introduce a Fast-Discrete Clothoid Path (FDCP) to construct and connect the path.
The FDCP employs a sequence of control points, referred to as waypoints, which are
linked together using Clothoid segments. However, accurately generating Clothoids can
be difficult due to their non-linear nature and multiple solutions. Thus, instead of directly
computing the parameters of the Clothoid segments, our algorithm utilizes a variational
approach that produces a polyline with linear discrete curvature, which approximates the
Clothoid segment. This approach allows for efficient and precise path planning for the
USV, while taking into account the vehicle’s non-holonomic features.

To determine the position of intersection points, the following conditions must be
met when inserting or updating point C between neighboring points B and D, as shown
in Figure 4. To simplify the calculations, a normalized configuration is used where point
B is located at (−1, 0) and point D at (1, 0). For each of the five control points denoted as

137



J. Mar. Sci. Eng. 2023, 11, 1164

P, its left and right neighbors are identified as Pl and Pr, respectively. The insertion point
C must satisfy the following conditions to approximate the Clothoids accurately between
these control points:

• C must lie on the perpendicular bisector between B and D.
• The curvature at each point should vary linearly.

Figure 4. Locating point C.

From the abovementioned conditions, we have the following equation:

ρC =
1
2
(ρB + ρD) (22)

where ρ denote the curvature at each point, it can be approximated by:

ρP = 2
π − φP

|Pl P|+ |PPl | (23)

where φP is the angle between |Pl P| and |PPl |, and |Pl P| is the scalar value of the length
between Pl and P. According to the geometric relations in Figure 4, we obtain:

φB = π − α + γ

φC = π − 2γ

φD = π − β + γ

(24)

Substituting φP in previous equation using Equation (16), we have:

ρB = 2 α−γ
|AB|+|BC|

ρC = 2 2γ
|BC|+|CD|

ρD = 2 β−γ
|CD|+|DE|

(25)

As more and more points are inserted, the polyline gets refined and the angles between
segments approach π. Therefore, with a large number of sample points, we can approximate
|BC| = |CD| = 1. Solving Equation (14), γ can be obtained by:

γ =
β(|AB|+ 1) + α(|DE|+ 1)

2|AB||DE|+ 3(|AB|+ |DE|) + 4
(26)

Point C is now inserted on the perpendicular bisector between B and D in distance
|CD| tan γ. By iteratively inserting the intersection points (such as point C), we can approx-
imate the Clothoid path with satisfactory computational performance.

Clothoid curves provide a continuous change in curvature, resulting in a smooth
transition between straight segments and curved segments of a path. This helps reduce
abrupt changes in the path and improves the vehicle’s stability and comfort. Moreover, by
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gradually changing the curvature, Clothoid curves minimize lateral acceleration during
turns. This reduces the forces acting on the USV, enhancing safety and stability during ma-
neuvering. Additionally, Clothoid curves enable more precise and controlled maneuvering.
They allow for gradual changes in heading angle, facilitating smooth turns, and transitions
between different paths or waypoints.

The flowchart of the methodology is illustrated by Figure 5.

Figure 5. Flowchart of the proposed algorithm.

4. Results and Discussion

In this section, illustrative simulations have been carried out to evaluate the perfor-
mance of our proposed method progressively through convergence test and simulation
under a time-varying environment. The simulations are conducted via MATLAB 2021a
environment with a PC configured with Intel (R) Core (TM) i7-13400 CPU and 16-GB RAM.

4.1. Convergence and Quality Test

In this section, simulations have been carried out to analyze the convergence character-
istic of our proposed method. We have selected some other state-of-the-art methods from
existing reliable references for comparison, including conventional genetic algorithm, D*
lite [16], Hybrid A* [29], and RRT* [30]. The selected environment maps are presented in
Figure 6, the start and goal points are marked as blue and red dots, respectively. It is worth
noting that since we only test the convergence behavior and solution quality, the effects of
time-varying currents are not considered. To maintain the efficiency and without loss of
solution quality, we set the maximum number of waypoints in each path is 20 according
to [31]. Table 1 shows the dimensions and coordinates of the given points.

Table 1. Environment setting.

Map Size Start Destination

Scenario 1 300 × 400 (150, 300) (200, 90)
Scenario 2 300 × 400 (50, 330) (250, 250)
Scenario 3 400 × 400 (290, 350) (390, 60)
Scenario 4 400 × 400 (150, 240) (350, 120)
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Figure 6. Environment map (a) Scenario 1; (b) Scenario 2; (c) Scenario 3; (d) Scenario 4.

The parameters are set as follows:

• In this case, the ocean current is fixed with velocity of 0.3 m/s and direction of −70◦.
• Proposed: Population size = 100; generation = 200; pc0

= 0.8; pm0
= 0.05; dmin = 5 m;

dmax = 30 m; wt = 0.395; wθ = 0.275; wd = 0.330; a = 150; and b = 50.
• Traditional GA: Population size = 100; generation = 200; pc = 0.8; and pm = 0.05.
• D* lite: search directions = 8.
• Improved hybrid A*: Minimum turning radius = 4 m; Motion primitive length = 4 m.
• RRT*: Max-iteration = 2500; Max-Connection distance = 1 pixel.

The tabulated data presented in Table 2 provides quantitative results for the proposed
algorithm. The results reveal that the algorithm exhibits a significant reduction in time cost
with 0.36 s, 0.613 s, 0.484 s, and 0.391 s for the four scenarios, respectively. This represents
a considerable improvement of over 60% when compared to the traditional GA. The
algorithm’s increased speed is primarily due to the new initialization process. Additionally,
the algorithm’s robustness is evaluated through the standard deviation (SD) of the time cost,
which is 0.012 s, 0.022 s, 0.022 s, and 0.008 s for each case, respectively. Furthermore, the
proposed algorithm is shown to provide a satisfactory minimum path length of 253.5 pixels,
352.0 pixels, 356.0 pixels, and 298.0 pixels for each scenario, respectively. Although other
methods may produce slightly smaller values in some cases, the proposed algorithm
provides more practical and reasonable solutions. It is important to note that the relatively
low path lengths produced by D* lite and Hybrid A* are due to their reliance on optimal
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search based on A*, which aims for the shortest path. However, this approach often results
in paths that are too close to obstacles.

Table 2. Statistical results.

Methods Performance Scenario 1 Scenario 2 Scenario 3 Scenario 4

Proposed

Time (s) 0.360 0.613 0.484 0.391
Time SD (s) 0.012 0.022 0.022 0.008

AVG length (pixels) 253.880 354.020 358.460 300.210
Minimum length (pixels) 253.500 352.000 356.000 298.000

GA

Time (s) 0.905 1.113 1.132 1.179
Time SD (s) 0.068 0.074 0.102 0.115

AVG length (pixels) 273.590 373.000 368.490 395.340
Minimum length (pixels) 251.000 348.000 353.500 296.500

D* lite

Time (s) 3.789 14.946 2.589 3.683
Time SD (s) 0.155 0.603 0.037 0.064

AVG length (pixels) 253.296 356.718 353.480 299.841
Minimum length (pixels) 253.296 356.718 353.480 299.841

Hybrid A*

Time (s) 4.731 1.093 9.127 3.612
Time SD (s) 0.096 0.035 0.376 0.065

AVG length (pixels) 253.676 351.758 369.485 303.112
Minimum length (pixels) 253.676 351.758 369.485 303.112

RRT*

Time (s) 0.449 1.906 1.571 3.346
Time SD (s) 0.171 0.457 0.552 1.309

AVG length (pixels) 324.637 487.845 497.646 458.019
Minimum length (pixels) 287.810 403.188 413.889 358.982

The visualized results of the simulations are presented in Figure 7. The red curve
depicts the smoothed path generated by the proposed method. The results demonstrate
that the curve is smooth without any abrupt turns. On the other hand, the results generated
by GA, D* lite, Hybrid A*, and RRT* exhibit relatively large angle changes, particularly
RRT*, which exhibits the poorest performance in terms of smoothness. Furthermore, the
proposed method produces a safer path than the other methods. This is primarily due
to the inclusion of a safety distance term in the cost function, which forces the path to
remain at a safe distance from its nearest obstacle. In contrast, the results produced by
other methods often remain too close to the obstacles in some sections of the path.

Table 3 presents a comparative study of path quality, focusing on two key features:
minimum clearance d from obstacles and path smoothness. The minimum clearance from
obstacles measures the safety level of the results by calculating the distance between each
path segment and its nearest obstacle. It is important to note that the safety distance utilized
in the simulation is set at 5 m. Path smoothness measures the degree of smoothness of the
path. The results presented in Table 3 reveal that the proposed method produces the safest
path with the minimum distance from obstacles of 12.649 m, 11.663 m, 10.557 m, and 5.0 m
for each scenario, respectively. In contrast, traditional GA and RRT* fail to satisfy the safety
requirement in most cases. Moreover, the methods given by D* lite and Hybrid A* exhibit
the worst performance in terms of safety, failing in all scenarios. Therefore, they are not
suitable for real-world applications. In terms of path smoothness, the proposed method
produces the smoothest paths (as seen in Figure 7) with values of 174.547, 149.454, 129.088,
and 211.538 for each case, respectively, significantly outperforming the other methods. For
instance, the proposed method’s path smoothness value is 5–6 times smaller than that of
Hybrid A* and D* lite.
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Figure 7. Visualized results (a) Scenario 1; (b) Scenario 2; (c) Scenario 3; (d) Scenario 4.

Table 3. Comparison of path quality.

Methods Performance Scenario 1 Scenario 2 Scenario 3 Scenario 4

Proposed
d 1 (m) 12.649 (�) 11.663 (�) 10.557 (�) 5.000 (�)

Smoothness (deg) 174.547 149.454 129.088 211.538

GA
d (m) 1.000 (�) 1.414 (�) 1.414 (�) 5.099 (�)

Smoothness (deg) 590.291 343.702 528.768 227.737

D* lite
d (m) 1.000 (�) 1.000 (�) 1.000 (�) 0 (�)

Smoothness (deg) 945 720 720 450

Hybrid A*
d (m) 1.000 (�) 1.000 (�) 0 (�) 1.000 (�)

Smoothness (deg) 1223 1404 1912 1263

RRT*
d (m) 1.414 (�) 1.000 (�) 5.831(�) 2.236 (�)

Smoothness (deg) 303.395 555.388 426.283 762.342
1 A safety distance of 5 m is established. If the minimum clearance requirement is met, a symbol of � is displayed
within the bracket, while � is used when it is not met.
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4.2. Testing in USV Model

In this subsection, simulation studies and comprehensive comparisons are provided
by conducting experiments on a prototype USV Otter (see Figure 8, www.maritimerobotics.
com (accessed on 1 May 2023), Table 4 shows the maneuvering derivatives). It is worth
mentioning that the paths generated by D* lite and Hybrid A* are not suitable for real
application because they would collide with the obstacles. Therefore, the paths given by
GA and RRT* are selected for the simulation.

 
Figure 8. USV model.

Table 4. Maneuvering derivatives of Otter.

Inertial Related Value Damping Related Value

m11 85.28 d11 −77.55
m22 162.50 d22 −0.02
m33 41.45 d33 −41.45

In simulations, Figure 9 demonstrates the alterations in course angle and speed for
scenario 1 and scenario 2. The proposed method generates a path with gentle and steady
changes in course and velocities, as depicted in the figures. The small deviation between the
actual and desired signals suggests the feasibility of the proposed method in conjunction
with the USV control system. However, the path created by GA exhibits sudden changes in
both signals, resulting in a significant deviation at the point of the sudden course alteration.
On the other hand, RRT* generated the poorest solution, with jagged changes in course
angle and a substantial deviation between the reference and actual signals. Additionally,
the simulation shows unstable velocity. Similar results are obtained by scenario 3 and
scenario 4.

In Table 5, the energy and time cost of the simulations are displayed. The proposed
method exhibits the lowest energy and time cost among all cases, as demonstrated in the
table. This outcome is mainly attributed to the novel cost function incorporated into the
proposed method, which directs the USV to move along the current direction. Conversely,
the results produced by RRT* display the poorest performance with the highest energy
consumption and computational time. This inferior performance is primarily due to the
numerous abrupt changes in course angle and unnecessary turns.
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Figure 9. Simulation results for proposed method, GA, and RRT*: (a) Scenario 1; (b) Scenario 2.

Table 5. Energy cost and time cost during the mission.

Proposed GA RRT*

Energy cost (kJ) Time cost (s) Energy cost (kJ) Time cost (s) Energy cost (kJ) Time cost (s)
Scenario 1 27.4 194.8 29.8 219.9 42.7 349.9
Scenario 2 36.8 298.9 39.1 310.0 94.0 849.6
Scenario 3 37.4 266.6 39.6 289.8 65.8 530.0
Scenario 4 31.7 246.9 35.0 285.0 82.4 708.9

4.3. Simulation in Time-Vary Ocean Environments

In this section, we will evaluate the method under time-varying ocean currents. We
have selected some state-of-the-art methods from existing reliable references for compari-
son, including improved artificial fish swarm algorithm [8] and multi-objective enhanced
GA (MOEGA) [32]. The ocean current model used in this paper is based on the numerical
solution of water jet structure [33]:
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φ(x, y) = 1 − tan h(
y − B(t) cos(k(x − ct))

(1 + k2B(t)2 sin2(k(x − ct)))
1
2
) (27)

where B(t) and k are the properly adimensionalized amplitude and wavenumber of the
undulation in the stream function. The specific expression for B(t) is:

B(t) = Bo + ε cos(ωt + θ) (28)

with Bo = 1.2, c = 0.12, k = 0.84, ω = 0.4, ε = 0.3 and θ = π/2. The velocity field is
obtained by the following expression:

U(x, y, t) = −∂φ

∂y
V(x, y, t) =

∂φ

∂x
(29)

where U(x, y, t) and V(x, y, t) are the x– and y- components of the velocity vector at time
in the location (x, y).

The parameters are set as follows:

• Environment: map size: 500 * 500, Start = (80, 150), Goal = (480, 330), and the ocean
current is set as Equation (27) for Case 1 while we multiply −1 on the y component for
Case 2.

• Proposed: Population size = 100, generation = 200, pc0
= 0.8, pm0

= 0.05, dmin = 5 m,
dmax = 30 m, wt = 0.395, wθ = 0.275, wd = 0.330, a = 150, and b = 50.

• IAFSA: Population size = 100, δ = 0.618, step = 1; visual = 10, and try_number = 8.
• MOEGA: Population size = 100, generation = 200, pc = 0.8, pm = 0.05, dmin = 5 m,

dmax = 30 m, wt = 0.395, wθ = 0.275, and wd = 0.330.

Table 6 presents the quantitative outcomes, including path distance, cruising time (T),
smoothness (ϑ), and minimum distance to obstacles (d), for both Case 1 and Case 2. The
visualized solutions for each case are also depicted in Figures 10 and 11. According to the
results in Table 6, the proposed algorithm delivers solutions with higher quality paths (as
highlighted in bold in the table), outperforming other methods in terms of cruising time,
smoothness, and safety in most scenarios. However, it is noteworthy that the proposed
algorithm results in the lowest safety value (8 m to the obstacle) due to the significant impact
of energy consumption on optimization. It should be noted that an 8 m safety distance is
acceptable in real application [34]. Moreover, the IAFSA method yields the worst outcomes,
which may be attributed to its random behavior during the algorithm process, leading to
abrupt points along the path. As demonstrated in Figures 10 and 11, our proposed model
leverages the currents to reduce energy consumption by selecting intersection points that
align with the current direction. Overall, the presented results indicate that the proposed
method exhibits superior performance to the other two algorithms.

Table 6. Statistical measurements of the paths.

Indicators Proposed IAFSA MOEGA

Case 1

Distance (m) 458.166 471.691 483.598
T (s) 209.198 214.430 221.039

ϑ (deg) 123.130 212.378 145.872
d (m) 18.682 5.000 16.279

Case 2

Distance (m) 540.065 543.593 566.971
T (s) 245.489 254.095 257.724

ϑ (deg) 155.034 164.404 228.242
d (m) 8.062 18.934 17.029
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Figure 10. Visualized results of Case 1.

Figure 11. Visualized results of Case 2.

5. Conclusions

This paper presents a thorough investigation into the path planning problem for
USVs. The proposed algorithm generates a path that is both optimally safe and quickly
convergent, exhibiting strong adaptability to complex environments. In comparison to the
existing literature, our method outperforms other algorithms across all problem variations.
Additionally, the fast-discrete Clothoid curve is utilized to maintain path curve continuity
and ensure reliable coordination between the planning and control modules, while also
accommodating non-holonomic constraints. Simulation studies and comprehensive com-
parisons in various ocean scenarios have been conducted to illustrate the effectiveness and
superiority of the proposed path planning framework.
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Abstract: To enhance the crypticity and operational efficiency of unmanned underwater vehicle
(UUV) charging, we propose an automatic alignment method for an underwater charging platform
based on monocular vision recognition. This method accurately identifies the UUV number and
guides the charging stake to smoothly insert into the charging port of the UUV through target
recognition. To decode the UUV’s identity information, even in challenging imaging conditions, an
encryption encoding method containing redundant information and an ArUco code reconstruction
method are proposed. To address the challenge of underwater target location determination, a target
location determination method was proposed based on deep learning and the law of refraction. The
method can determine the two-dimensional coordinates of the target location underwater using the
UUV target spray position. To meet the real-time control requirements and the harsh underwater
imaging environment, we proposed a target recognition algorithm to guide the charging platform
towards the target direction. The practical underwater alignment experiments demonstrate the
method’s strong real-time performance and its adaptability to underwater environments. The final
alignment error is approximately 0.5548 mm, meeting the required alignment accuracy and ensuring
successful alignment.

Keywords: real-time control; underwater image restoration; thresholding; visual servoing; target
recognition; monocular vision; alignment

1. Introduction

Unmanned underwater vehicles (UUVs) play an irreplaceable role in various fields,
serving as oceanic equipment suitable for underwater tasks. They are widely utilized for
tasks including seafood fishing, subsea pipeline tracking, seafloor mapping, submarine
cable laying, and marine resource exploration. However, as the scope of UUV missions con-
tinues to expand, the issue of their endurance has become a focal point. Due to the limited
energy carried by UUVs, frequent charging becomes necessary. However, surface charging
not only reduces the operational efficiency of UUVs and increases costs but also compro-
mises their stealth capabilities during mission execution [1,2]. To address this challenge,
underwater charging platforms have emerged, enabling UUVs to recharge without the
need to surface. Currently, there is a wealth of research on UUV docking. Researchers have
utilized navigation systems such as acoustics [3,4], optics [5], and electromagnetics [6,7] to
guide UUVs into docking station (DS). However, to the best of our knowledge, there are
few methods available for guiding the charging stake to accurately insert into the UUV’s
charging port after docking. Achieving automatic alignment of underwater charging plat-
forms is a current trend in the development of underwater equipment technology and
holds significant research and practical value.

Although there is limited research on automatic alignment of underwater charging
platforms, the process of inserting the charging stake into the UUV’s charging port can
be conceptualized as a peg-in-hole assembly. The solution to this problem can be broadly
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categorized into contact-based and non-contact-based methods. Contact-based methods [8]
typically involve the end of the shaft contacting the plane where the hole is located, fol-
lowed by using a force sensor to search for the hole’s position on the plane. This method has
low safety and can potentially damage the outer surface of the UUVs. Non-contact-based
methods can be divided into methods based on laser alignment instruments, acoustic
sensors, and vision sensors. The core components of a laser alignment instrument are a
semiconductor laser that emits laser beams and a photoelectric semiconductor position
detector that collects information about the position of the laser spot [9]. Therefore, precise
alignment can be achieved by installing laser alignment instruments on the hole axis. How-
ever, underwater small planktonic organisms cause light scattering, affecting the alignment
accuracy, and suspended particles in the water obstruct the laser, rendering the alignment
process unable to continue. Due to the slow attenuation of sound waves underwater, acous-
tic sensors are widely used in various underwater positioning and navigation tasks [4],
but their alignment accuracy is lower in short-distance scenarios. Vision-based alignment,
on the other hand, corrects alignment deviations through visual feedback, providing posi-
tioning and guidance for fragile or easily disturbed objects without physical contact [10].
It exhibits robustness in underwater environments and meets alignment requirements in
terms of accuracy. Therefore, we adopt a vision-based non-contact alignment approach to
guide the charging stake into the UUV’s charging port.

Alignment operations using vision sensors have been widely studied in various fields.
For instance, Fan et al. [11] proposed a laser-vision-sensor-based method for initial point
alignment of narrow weld seams by utilizing the relationship between laser streak feature
points and initial points. They obtain a high signal-to-noise image of the narrow weld
seam using the laser vision sensor, and then calculate the 3D coordinates of the final image
feature point and the initial point based on the alignment model. Finally, they control the
actuator to achieve the initial point alignment. In another study, Chen et al. [12] developed
an automatic alignment method for tracking the antenna of an unmanned aerial vehicle
(UAV) using computer vision technology. The antenna angle is adjusted using the relative
position between the center of the UAV image and the center of the camera image fixed
on the antenna. The two image centers overlap during antenna alignment. Similarly,
Jongwon et al. [13] designed a vision system that uses three cameras to locate the wafer’s
position for wafer alignment.

Underwater image processing techniques are of great importance in the field of un-
derwater charging platform alignment due to the problems of low contrast, blurred edges
with blue-green tones, and other problems. Traditional underwater image processing
techniques can be divided into two categories: image enhancement and image restora-
tion. Image enhancement algorithms [14] include histogram equalization, white balance,
Retinex, wavelet transform, etc. These algorithms can render underwater objects clearer by
enhancing image contrast and denoising. Image restoration techniques recover images by
solving two unknown variables in the Jaffe–McGlamery [15,16] underwater imaging model:
the transmission map and background light. For example, the dark channel prior algorithm
(DCP) proposed by He et al. [17,18], which simplifies the JM model by introducing a priori
knowledge that the dark channel value of a clear, fog-free image is close to zero. Variants of
the DCP algorithm [19–22] have been developed and optimized over time, achieving better
results. In recent years, convolutional neural networks have made remarkable achieve-
ments in multiple fields such as image classification [23], object detection [24], and instance
segmentation [25]. Increasingly, many networks are being used to process underwater
images. Some of these networks are end-to-end [26–28], which output the recovered image
directly after inputting the original image, while others use deep learning to derive some
of the physical parameters of the underwater imaging model and then perform image
restoration [29]. This method has good performance and strong robustness but is not
suitable for situations with limited hardware resources.

Accurate pose estimation is a primary prerequisite for successful alignment. Pose
estimation technology recovers the position and orientation of an object by observing
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the correspondence between its image and features [30], which can be divided into three
types: corners, lines, and ellipses (circles). Luckett et al. [31] compared the performance of
these three features and found that the accuracy and precision of corner and line features
increase as the distance decreases, but in high-noise environments, ellipse features have the
strongest robustness. To address the issue of ellipse detection accuracy, Zhang et al. [32]
improved the circle-based ellipse detection method and designed a sub-pixel edge-based
ellipse detection method. This improved the accuracy of ellipse detection, especially in
cases where the ellipse is incomplete. It was the first to prove that improving the accuracy
of ellipse edges helps to improve the detection accuracy of ellipses. Huang et al. [33]
proposed a universal circle and point fusion framework that can solve pose estimation
problems with various feature combinations, combining the advantages of both features
with high accuracy and robustness. Meng et al. [30] proposed a perspective circle and
line (PCL) method that uses the perspective view of a single circle and line to recover the
position and orientation of an object, which solves the duality and restores the roll angle.

We proposed an automatic alignment method for an underwater charging platform
based on monocular vision recognition. After the UUV enters the underwater charging
platform, the method accurately identifies its number and guides the charging platform to
move towards the target direction using target recognition. This is achieved by calculating
the deviation between the current position of the target keypoints and the target position,
which aligns the charging stake with the UUV’s charging port. The main contributions of
this paper are as follows:

1. A single-camera visual-recognition-based UUV underwater alignment method is
proposed that includes an encoding and decoding method for encrypted graphic targets,
a method for determining the two-dimensional coordinates of the target location, and a
target recognition algorithm, which can guide the charging stake on the charging platform
to smoothly insert into the UUV’s charging port.

2. The method can adapt to underwater environments and has certain robustness
to partial occlusion. Additionally, this method requires less computational resources,
lower hardware requirements, shorter processing times, and satisfies real-time control
requirements. Moreover, the detection accuracy of this method meets the requirements for
smooth alignment.

The rest of this paper is organized as follows. Section 2 describes the proposed single-
camera visual-recognition-based UUV underwater alignment method in detail. Section 3
presents the experimental results of the proposed method. In Section 4, we analyze the
experimental results from Section 3 and describe the shortcomings of our method. Finally,
Section 5 presents our conclusions.

2. Methods

The structure of the charging platform utilized in this method is illustrated in Figure 1,
where both the camera and charging stake are attached to the axial sliding table, which is
fixed on the circumferential turntable. Meanwhile, the UUV is secured onto the alignment
platform. Due to the positioning of the alignment platform, the camera’s distance from
the UUV target at the target position is a known, fixed value. Consequently, the two-
dimensional coordinates of the target’s keypoints on the UUV remain unchanged at the
target position. By comparing the two-dimensional coordinates of the target keypoints at
the current position and the target position, the direction of motion of the charging stake
can be determined.

151



J. Mar. Sci. Eng. 2023, 11, 1140

Figure 1. Structure of the underwater charging platform used in this method.

The proposed method comprises three stages, as shown in Figure 2. In the first
stage, the UUV’s identity information is decoded to obtain its number, which serves as
an index to retrieve the registered information of the UUV within the charging platform.
This information includes the UUV’s charging voltage, size, and target spray position.
Subsequently, the UUV is firmly clamped onto the alignment platform by the clamping
device of the underwater charging platform. In the second stage, the UUV’s size and target
spray position are obtained based on the retrieved information, and the target position for
docking is determined. This target position is the two-dimensional coordinate on the camera
imaging plane where the keypoints of the UUV’s target are located when the charging
stake on the underwater charging platform can be inserted into the UUV’s charging port.
In the third stage, the keypoints of the UUV’s target are recognized, and the charging stake
is guided to move towards the target position by calculating the deviation between the
current position and the target position. The stake is first aligned circumferentially and
then aligned axially until the distance between the current position and the target position
is within the allowable error range, as shown in Figure 3.

Figure 2. Schematic diagram of the proposed method.
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Figure 3. Schematic diagram of charging process. (a) UUV enters the underwater charging platform.
In the figure, the arrow represents the direction of UUV movement. (b) Circumferential alignment. In
the figure, the arrow represents the rotational direction of the stake during circumferential alignment.
(c) Axial alignment. In the figure, the arrow represents the translational direction of the stake during
axial alignment.

2.1. Encoding and Decoding
2.1.1. Encoding

Before UUVs can charge or exchange information with underwater charging platforms,
their identity information should be determined to identify their model and charging volt-
age, and to confirm their mission type and ensure secure information exchange. Therefore,
a UUV identity information encryption and coding method is necessary to ensure informa-
tion security. Firstly, the UUV number is expanded to three digits, with leading zeros added
if necessary. The UUV number is denoted as A1A2A3(A1, A2, A3 ∈ [0, 9], A1, A2, A3 ∈ Z).
Next, four coding values are obtained: A1A2, A2A3, A1A3, A1 + A2 + A3. These coding val-
ues are used to query their corresponding ArUco codes, which are graphic codes obtained
by converting the numeric codes. Finally, the four ArUco codes obtained from the previ-
ous step are rotated clockwise by 0◦, 90◦, 180◦, and 270◦, respectively, and their position
information is added to each coding value through the ArUco code’s pose information.
The resulting encoding pattern is shown in Figure 4. This encoding method has some
redundancy; when decoding, it is only necessary to recognize the position and ID of any
two of the four coding values to infer the UUV number.

Figure 4. Encoding pattern.

2.1.2. Decoding

Due to the challenging imaging conditions, the ArUco codes in the original images
cannot be recognized directly. Therefore, this paper proposes a method for ArUco code
detection, which involves image restoration, thresholding, and template-filling techniques
to reconstruct the ArUco codes in the respective regions. The specific steps are illustrated
in Figure 5.
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Figure 5. Schematic diagram of ArUco code detection.

In the first step, the original image is subjected to image restoration. The core of
the image restoration method involves solving for two unknowns, t(x, λ) and B∞(λ),
based on the underwater imaging model as represented by Equation (1). We adopt the
method proposed in [19] and use the difference between the red channel and the maximum
value of the blue and green channels to estimate the transmission of the red channel. The
transmission map of the blue and green channels is then obtained based on statistical
analysis [34], as shown in Equation (2). Furthermore, we apply the gray world assumption
theory [9] in the field of image restoration to estimate the background light, as shown in
Equation (3). By substituting the calculated values of t(x, λ) and B∞(λ) into Equation (1),
the restored image can be obtained.

I(x, λ) = J(x, λ)t(x, λ) + B∞(λ)(1 − t(x, λ)), λ ∈ {R, G, B} (1)

where I(x, λ) is the original image, J(x, λ) is the restored image, t(x, λ) is the transmission
map, B∞(λ) is the background light, λ is the wavelength of light.

D(x) = max
x∈Ω,λ=R

I(x, λ)− max
x∈Ω,λ∈{B,G}

I(x, λ), λ ∈ {R, G, B}

t(x, R) = D(x) +
(

1 − max
x

D(x)
)

c(λ) = −0.00113 × λ + 1.62571, λ ∈ {R, G, B}
t(x, G) = t(x, R)

c(G)
c(R)

t(x, B) = t(x, R)
c(B)
c(R)

(2)

where Ω is a local patch in the image.

B∞(λ) =
I(x, λ)− M × t(x, λ)

1 − t(x, λ)
, λ ∈ {R, G, B} (3)

where M is a constant value that represents the desired mean gray value of the restored
image, which is set to 0.5 in this paper.

In the second step, the restored image is subjected to a thresholding operation. Al-
though the contrast of the restored image has been improved, it still does not meet the
recognition criteria for ArUco codes. Traditional methods utilize contrast enhancement
and image binarization techniques to assist in ArUco code recognition. However, these
operations can amplify the noise in the image and result in the failure of ArUco code
recognition. Therefore, this paper proposes an improved approach to local thresholding, as
shown in Equation (4). This method creates small window w1 and large window w2 around
each pixel in the image. It compares the mode of the pixel grayscale values in w1 with the
average grayscale value of the pixels in w2 and returns the grayscale value of the pixel at
the center. Compared to traditional binarization methods, this approach has the advantage
of using the mode of the grayscale values in a small window centered around each pixel for
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comparison, which helps with noise reduction. Additionally, it categorizes all pixels into
five classes instead of two (0 and 255), resulting in smoother transitions between grayscale
values and enhancing the robustness of the ArUco code recovery process in the third step.

d1 = mode(w1)
d2 = mean(w2)

I(i, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, d2 − d1 > 0.5

60, d2 − d1 > 0.1
180, d1 − d2 > 0.1
255, d1 − d2 > 0.5
125, others

(4)

where w1 and w2 are sliding windows with radii of dw1 and dw2, as shown in Figure 6. In
this paper, dw2 = 10dw1.

Figure 6. w1 and w2 are sliding windows with I(i, j) as the center and dw1 and dw2 as the radii.

In the last step, the ArUco codes are reconstructed. After obtaining the thresholded
image, the regions of interest (ROIs) containing the ArUco codes can be determined.
Each ROI is then divided into 36 equally sized rectangles, with the central 16 rectangles
containing the encoding information of the ArUco codes. The color of the corresponding
blank positions in the template is determined based on the average grayscale value within
each rectangle. By filling in the template, the reconstructed ArUco codes are obtained.
Finally, the ID and angle of the reconstructed ArUco codes are identified.

2.2. Determination of Target Position

Due to the complex underwater environment, fixing all UUVs to a position that allows
the charging stake to be smoothly inserted into their charging port and recording the two-
dimensional coordinates of the current target keypoints would require a lot of manpower
and resources. Therefore, this paper proposes a method to determine the two-dimensional
coordinates of the target keypoints underwater based on the target spraying positions on
the UUV. This method first determines the above-water coordinates of the target position
based on the target spraying position and then uses the law of refraction to determine the
underwater coordinates.

2.2.1. Above-Water Coordinates of the Target Position

The schematic diagram of the two-dimensional coordinates of the water surface target
position is shown in Figure 7. The two-dimensional coordinates of the above-water target
position refer to the coordinates of the keypoint of the target T in the o-uv coordinate
system. During the UUV target spraying, the relative position between the keypoint of the
target and the UUV charging port can be obtained, that is, the coordinates (X, Y, Z) of the
keypoints of the target in the coordinate system O-XYZ. Since the target position of the
underwater charging platform is the position where the charging stake can be inserted into
the charging port of the UUV, the coordinates (XW , YW , ZW) of the keypoint of the target in
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the coordinate system Ow −XWYWZW are (X, Y, Z + L). The value of L is determined by the
type of UUV and can be obtained during the decoding process since the clamping device
of the charging platform in this method will fix and move the UUV to a specific position.
The process of converting the coordinates in the coordinate system Ow − XWYWZW to
the coordinates in the coordinate system o-uv can be regarded as the camera calibration
process. The conversion process is shown in Equation (1):⎡⎢⎢⎣

Xc
Yc
Zc
1

⎤⎥⎥⎦ =

[
R T
0 1

]⎡⎢⎢⎣
Xw
Yw
Zw
1

⎤⎥⎥⎦
Zc

⎡⎣u
v
1

⎤⎦ =

⎡⎣αx f 0 u0
0 αy f v0
0 0 1

⎤⎦⎡⎣Xc
Yc
Zc

⎤⎦
(5)

where
[

R T
0 1

]
represents the camera’s extrinsic matrix, which represents the position

relationship between the world coordinate system Ow − XWYWZW and the camera co-

ordinate system Oc − XcYcZc.

⎡⎣αx f 0 u0
0 αy f v0
0 0 1

⎤⎦ represents the camera’s intrinsic matrix,

which represents the transformation relationship between the camera coordinate system
Oc − XcYcZc and the image coordinate system o-uv. The parameters αx and αy represent
the scaling factors in the x and y directions, respectively. The parameter f represents the
camera’s focal length, and (u0, v0) represents the principal point of the camera, which is
the coordinate of the camera’s optical center in the image.

Figure 7. The schematic diagram of the two-dimensional coordinates of the above-water target
position is shown above. In the diagram, T represents the spray position of the target on the UUV, S
represents the position of the UUV charging port, and P represents the charging pile of the underwater
charging platform. The O-XYZ coordinate system has the center of the UUV charging port as the
origin, the Ow − XWYWZW coordinate system has the center of the charging pile on the underwater
charging platform as the origin, the Oc − XcYcZc coordinate system has the camera center as the
origin, and the o-uv two-dimensional coordinate system has the upper left corner of the image as the
origin. L represents the distance between the UUV and the charging platform, which is determined
by the UUV model and can be obtained during the decoding process. In this method, the UUV is
fixed and moved to a specific position by the clamping device of the charging platform.

The camera’s intrinsic parameters can be obtained and image distortion can be cor-
rected using Zhang’s calibration method [35]. However, due to the installation errors of
the camera, it is necessary to accurately determine the camera’s extrinsic matrix through
further hand–eye calibration [36].

Inspired by neural network concepts, this paper transforms the camera calibration
problem into estimating the function f in the Equation (6). To achieve this, the paper controls
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the movement of the slider and captures 25 photos, as shown in Figure 8. The coordinates
of the four concentric circle centers in the world coordinate system

(
Xi

W , Yi
W , Zi

W
)

and
their corresponding coordinates in the image coordinate system

(
ui, vi) are recorded for

each photo. This resulted in 100 samples, where
(
Xi

W , Yi
W , Zi

W , 1
)

serve as data and
(
ui, vi)

as labels. Fifty percent of the samples were used for training, and the remaining fifty
percent for testing. A single-hidden-layer neural network without activation functions
was constructed, as shown in Figure 9. The mean squared error (MSE) loss function was
employed, and the external parameter matrix estimate was used to initialize the first layer
of the network, while the calibrated internal parameters were used to initialize the second
layer. The initialized network showed fast convergence, small oscillations, and ultimately
converged to a smaller loss value.

[u, v]T = f
(
[XW , YW , ZW ]T

)
(6)

Figure 8. The dataset.

Figure 9. Structure of the neural network.

After training, the network weights consist of two matrices, Ê and Î, with dimensions
of 4 × 3 and 3 × 3, respectively. Given a coordinate (XW , YW , ZW) in the world coordinate
system, its corresponding coordinate in the image coordinate system can be calculated
using Equation (7). It is worth noting that Ê and Î obtained from training do not have
physical meaning, and the intermediate variables X̂c, Ŷc, and Ẑc in Equation (7) are not the
coordinates of the point in the camera coordinate system.[

X̂c, Ŷc, Ẑc
]T

= Ê[XW , YW , ZW , 1]T

[û, v̂, 1]T =
Î[X̂c ,Ŷc ,Ẑc]

T

Ẑc

(7)
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2.2.2. Underwater Coordinates of the Target Location

The imaging principle of the underwater camera is shown in Figure 10. In air, the light
reflected by the target propagates in a straight line, and the size of an object with a size of
h projected onto the camera imaging plane is a. However, underwater, due to refraction
of light between different media, the size of an object with a size of h projected onto the
imaging plane is b, and according to Snell’s Law [37], as shown in Equation (8), since the
refractive index of water is 1.333, α > θ and b> a.

n =
sin α

sin θ
(8)

where θ represents the angle of incidence, α represents the angle of refraction, and n
represents the refractive index of the medium.

Figure 10. The imaging principle of the underwater camera. In the diagram, o represents the camera’s
optical center, f represents the camera’s focal length, K represents the distance from the refraction
surface (the outer glass of the camera) to the camera’s optical center, and D represents the distance
from the target to the refraction surface. Similar to L mentioned earlier, D is a known constant value
determined by the positioning of the clamp and the structure of the underwater charging platform.

It can be inferred that the projection of underwater objects on the imaging plane can
be obtained by magnifying the projection of objects above water with the camera center as
the projection center by a certain factor. The magnification factor b

a can be obtained from
Equation (9).

b
a
=

(D + K)(
D × tanθ

tanα + K
) ≈ (D + K)(

D × 1
n + K

) (9)

2.3. Target Recognition and Instruction Provision

This method utilizes a target designed by Tweddle et al. [38], as shown in Figure 11.
The target consists of four concentric circles with area ratios of 1.44, 1.78, 2.25, and 2.94, and
the keypoints of the target are the centers of the four concentric circles. During the alignment
process, the camera image is preprocessed first, followed by contour detection to identify
circles that may originate from the target according to their area and roundness. Then, based
on the area ratios, the concentric circles are matched, and the coordinate values of each
concentric circle are obtained. Finally, based on the relative position between the visible
concentric circle center of the current position and the corresponding target concentric circle
center, the charging station is guided to move until the coordinate difference between the
current and target positions is less than the maximum allowable error, and the movement
of the charging station is controlled to stop. During the alignment process, the x-coordinate
of the concentric circle center is compared first to guide the charging station to rotate
tangentially for azimuthal alignment, followed by the y-coordinate of the concentric circle
center to guide the charging station to move axially for axial alignment.
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Figure 11. The employed target.

To address the problem of low contrast in underwater images, this paper employs
the Niblack binary thresholding method [39]. It calculates the pixel threshold by sliding a
rectangular window over the grayscale image [40], as shown in Equation (10). If the pixel
value surpasses the threshold, it is set as foreground; otherwise, it is set as background.
Because the Niblack binary thresholding algorithm can adaptively adjust the threshold
based on local blocks, it can preserve more texture details in the image. However, due to
its need for more computational resources and time to process images, the Niblack binary
thresholding method is computationally expensive.

T = m − k

√
1
n ∑

iεΩ

(pi − m)2 (10)

where T represents the pixel threshold, Ω represents the sliding window, n represents the
number of pixels in the window, pi represents the grayscale value of each point in the
window, m represents the pixel mean value of all points in the window, and k represents
the correction parameter.

To accelerate the processing speed of Niblack thresholding, this paper is inspired by
the ResNet network [41] and adopts a structure similar to the bottleneck architecture that
first reduces and then restores the size of the image. As the processing time required for
Niblack thresholding is directly proportional to the size of the image, the size of the image
is reduced to one quarter of its original size, and then Niblack thresholding is performed.
Finally, the thresholded image is enlarged four times to restore its original size. Although
the size of this image is the same as that of the original image, its information content
is only one quarter of that of the original image, and its contour details are relatively
blurred. Directly using this image for contour detection would lower the detection accuracy.
Therefore, inspired by the coarse-to-fine idea in the LoFTR algorithm [42], this paper uses
the image to determine the region of interest (ROI) and performs Niblack thresholding on
the ROI of the original image. This significantly reduces the number of pixels processed by
Niblack thresholding, ensuring the real-time performance of the algorithm.

To address the problem of partial occlusion caused by bubbles and suspended particles
in underwater images, this paper enhances the robustness of the algorithm by utilizing
the redundancy of target information. During the alignment process, only one of the four
concentric circles in the target needs to be identified, and then the two-dimensional coordi-
nates of its center are compared with the center of the concentric circle corresponding to the
target position area ratio, thus providing the motion instructions in both the circumferential
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and axial directions. If multiple concentric circle centers are detected, the center point of
multiple circle centers is used for comparison.

3. Results

3.1. Result of the Decoding Experiment

In this paper, decoding experiments were conducted underwater. During the encoding
process, assuming the UUV is numbered 123, its corresponding four-digit code would be
12, 23, 31, and 6. These four digits were then converted into ArUco codes and rotated at 0◦,
90◦, 180◦, and 270◦, respectively, resulting in the final encoded patterns. The ArUco code
recognition result is shown in Figure 12.

Figure 12. Result of ArUco code recognition.

The proposed image restoration method is compared with image enhancement algo-
rithms based on the gray world assumption theory [43], the UDCP algorithm [44], and the
Shallow-UWnet method [28] based on end-to-end convolutional neural networks. The re-
sults are shown in Figure 13. Furthermore, the proposed thresholding method is compared
with Niblack and Bernsen methods [45]. Table 1 presents the detection results of ArUco
codes after being processed by different thresholding methods.

Figure 13. Result of image processing. (a) Original image; (b) image enhancement result of the
algorithms based on the gray world assumption theory; (c) image restoration result of the UDCP
algorithm; (d) image restoration result of the Shallow-UWnet method; (e) image restoration result of
the proposed method.
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Table 1. ArUco code detection results of different image processing methods.

Thresholding

Restoration Gray World
Assumption Theory

UDCP Shallow-UWnet Proposed

Niblack

    

Bernsen

    

Proposed

    

3.2. Result of the Experiment on Determining Target Position
3.2.1. Result of the Experiment on Above-Water Target Position Calibration

Figure 14 shows the loss variation of the proposed network architecture and the
network architecture proposed by Cao et al. [46] during the training and testing processes.

Figure 14. Result of ArUco code recognition.

The training configuration is as follows: there are a total of 100 samples, with labels of(
ui, vi) and data of

(
Xi

W , Yi
W , Zi

W , 1
)
; half of them are training sets and the other half are

test sets. The initial learning rate is set to 0.1, which decreases by half every 1000 epochs
to optimize the training process. The MSE loss function is employed as the loss func-
tion during the training phase. Training ends when the test loss does not decrease for
500 consecutive epochs.
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3.2.2. Result of the Experiment on Underwater Target Position Calibration

Based on Figure 15, the two-dimensional coordinates of the underwater target position
can be obtained by enlarging the two-dimensional coordinates of the on-water target
position with the projection of the camera center on the imaging plane as the center.
The enlargement factor can be obtained from Equation (9). To determine the distance
between the camera center and the refraction surface, as well as the projection of the
camera center on the imaging plane, the projection of the same target on the camera
imaging plane was recorded both underwater and above water. The targets were located
200 mm from the refraction surface, as shown in Figure 11. The corresponding keypoints
A2A1, B2B1, C2C1, D2D1 were connected and extended, and their intersection point P
was taken as the projection of the camera’s optical center on the imaging plane. The
average values of PA2

PA1
, PB2

PB1
, PC2

PC1
, PD2

PD1
, which were 1.308, were used as b

a in Equation (9). By
substituting D = 200 mm into Equation (9), the distance between the camera center and the
refraction surface, K was obtained as 10.618 mm.

Figure 15. Projection of the same target on the imaging plane underwater and above water. (a) When
D = 200 mm, record the same target’s projection on the imaging plane underwater and above water
and mark its keypoints. In this figure, A1, B1, C1, D1 represents keypoints of the above-water image,
A2, B2, C2, D2 represents keypoints of the underwater image. (b) When D = 260 mm, the location of
the underwater keypoints is predicted from the calculated value of K and compared with the actual
value. In this figure, A2, B2, C2, D2 represents predicted keypoints of the underwater image.

Once the value of K is calculated, the camera’s field of view (FOV) can be determined.
The camera model used in this study is LI-IMX185MIPI-CS, with a sensor type of 1/1.9”,
which corresponds to a diagonal length of 1/1.9 inches. The aspect ratio of the image is
16:9. Therefore, the sensor size is 7.3396 mm × 4.1285 mm.

In air, using Equation (11), the camera’s field of view is calculated to be
173.9073 mm × 309.1704 mm.

Ha = h×(K+D)
f = 4.1285×(10.618+200)

5 = 173.9073 mm

Wa =
w×(K+D)

f = 7.3396×(10.618+200)
5 = 309.1704 mm

(11)

where Wa and Ha represent the width and height of the FOV, and w and h are the width
and height of the sensor, respectively. f denotes the camera’s focal length. The definitions
of K and D are illustrated in Figure 10.
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Underwater, due to the refraction of light between different media, the camera’s FOV
will be reduced. Using Equation (12), the camera’s FOV is calculated to be 132.6537 mm ×
235.8289 mm.

tan αh = h
f

Hw = D × tan θh + K × tan αh = 132.6537 mm

tan αw = w
f

Ww = D × tan θw + K × tan αw = 235.8289 mm

(12)

where αh and θh represent the refraction angle and incident angle in the height direction of
the sensor, and αw and θw represent the refraction angle and incident angle in the width
direction of the sensor. These parameters are illustrated in Figure 10.

The accuracy of determining the underwater target position was verified below. The
projection of the same target on the camera imaging plane was again recorded both un-
derwater and on-water, with the target located 260 mm from the refraction surface. With
the value of K calculated above, b

a was determined as 1.313. Using P and b/a, the pre-
dicted two-dimensional coordinates of the underwater target position, A2, B2, C2, and D2,
were obtained, as shown in Figure 11. The error between the predicted and true values is
presented in Table 2.

Table 2. Deviations between the predicted and true values.

Δx (Pixel) 2.35 0.74 2.49 1.79

Δy (Pixel) 0.7 0.17 5.21 1.21

3.3. Result of Image Processing

We downsized the images by different scales, applied Niblack binarization, and then
resized them back to their original size. The average processing time for each frame is
shown in Table 3. The fluctuations of the keypoint detection results for the target at different
scaling ratios over 90 consecutive frames are illustrated in Figure 16.

Table 3. Average processing time per frame.

Scale = 1 Scale = 2 Scale = 4 Ours

0.24592 s 0.08923 s 0.03511 s 0.092 s

Figure 16. Fluctuations of the keypoints.
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3.4. Result of the Actual Alignment Experiment

During the experiment, the first stage is the circumferential alignment process, where
the circumferential hydraulic cylinder moves until the difference between the x coordinates
of the current position and the target position is within the allowable error range. The
second stage is the axial alignment process, where the axial hydraulic cylinder moves until
the difference between the y coordinates of the current position and the target position
is within the allowable error range. The third stage is the charging process, where the
hydraulic cylinder controls the charging stack to rise and insert into the UUV charging
port. The distance between the camera and the alignment platform was 200 mm. The
displacement changes of each hydraulic cylinder during the alignment process are shown
in Figures 17–19, and the distance changes between the current position of the target and
the target position are shown in Figures 20 and 21.

Figure 17. Displacement of the circumferential hydraulic cylinder. In the figure, the first dash line
represents the completion of circumferential alignment, transitioning to axial alignment. The second
dash line represents the completion of axial alignment, transitioning to the charging process. The
following are the same.

Figure 18. Displacement of the axial hydraulic cylinder.

Figure 19. Displacement of the charging hydraulic cylinder.
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Figure 20. Deviation of the x-coordinate between the current position of the target and the target position.

Figure 21. Deviation of the y-coordinate between the current position of the target and the target position.

4. Discussion

The experimental results of underwater encoding are presented in Figure 12. Although
some ArUco codes were not recognized due to occlusion, two ArUco codes were identified
with IDs 31 and 6 and their yaw angles were 179◦ and −95◦, respectively. Based on machine
pose estimation, it can be inferred that ID 31 represents A3A1; therefore, A1 = 1 and A3 = 3.
ID 6 represents A1 + A2 + A3, thus A2 = 2. Decoding yields the UUV number 123.

As shown in Figure 13, the original image suffers from low contrast, blurry contours,
and a color shift towards blue and green due to light absorption and scattering in the
underwater environment. The method based on the gray world assumption theory [43]
corrects the color shift but fails to enhance the image contrast. The UDCP method [44]
intensifies the color shift towards green. The Shallow-UWnet method [28] enhances the
image contrast but introduces an additional color shift towards yellow. In contrast, the
proposed method in this paper corrects the color shift while enhancing image details. As
shown in Table 1, by applying the proposed image restoration and thresholding methods,
eight out of nine ArUco codes can be detected. When only the proposed image restoration
method is applied, a maximum of four codes can be detected, while applying only the
proposed image thresholding method can detect up to six codes. The best result of the
remaining methods is achieved by combining the Niblack and the gray world assumption
theory methods, which detects five codes. Therefore, both the proposed image restoration
method and thresholding method effectively improve the detection rate of ArUco codes.

As shown in Figure 14, Cao’s method [46] exhibits a fast convergence rate during the
initial stages of training, but it also shows significant oscillations during the convergence
process. In contrast, the proposed method in this paper has a slower convergence rate but
demonstrates a stable convergence process, with the final loss value consistently reaching a
smaller value. The minimum testing error achieved by Cao’s method [46] is 0.3828 pixels,
while the proposed method in this paper achieves a minimum training error of 0.0036 pixels.

Figure 15b presents the difference between the predicted underwater target position
and the actual underwater target position. The predicted underwater keypoints and the
actual underwater keypoints overlap almost perfectly. The errors are shown in Table 2,
with a maximum error of 5.21 pixels, which meets the accuracy requirements for alignment.
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Table 3 shows the average processing time per frame under different scaling ratios.
Figure 16 shows the data fluctuation under different scaling ratios. The algorithm proposed
in this paper has the same processing results as no scaling detection, the data fluctuation
is minimal, but the processing time is only 37.41% of the original time. It can meet the
real-time requirements in the alignment control process.

The displacement changes of each hydraulic cylinder during the alignment process are
shown in Figures 17–19. Finally, the hydraulic cylinder controls the piston rod to move up
by 119 mm, indicating that the piston rod has successfully inserted into the hole on the UUV.
As shown in Figures 20 and 21, the error between the final alignment position and the target
position in the x direction is −0.69661 pixels, and in the y direction it is −0.58738 pixels.
Therefore, considering the calibration errors in Figure 14, the underwater coordinate
transformation errors in Table 2, and the motion errors in Figures 20 and 21, the maximum
alignment error is 4.517 pixels. Based on the calculation of FOV using Equation (12), the
maximum alignment error is 0.5548 mm, which meets the accuracy requirements.

Although the method proposed in this paper has successfully achieved the automatic
alignment of the UUV underwater charging platform, there is still room for improvement.
Firstly, for partially occluded targets, this paper uses redundant information processing
methods in both the decoding and target recognition processes. However, accurately
completing the occluded parts in real time would further enhance the robustness of the
method. Secondly, in determining the camera’s intrinsic and extrinsic parameters, this
paper still needs to use Zhang’s calibration method to determine the distortion coefficients
and initialize the network parameters using the calibrated intrinsic parameters. This
method is not concise enough. Finally, this paper did not explicitly express the camera’s
intrinsic and extrinsic parameters. These three points will be our future research directions.

5. Conclusions

This paper presents an automatic alignment method for UUV underwater charging
platforms using monocular vision recognition. This method accurately identifies the UUV’s
identity information and guides the charging stake to smoothly insert into the charging
port of the UUV through target recognition. To ensure the accuracy and robustness of
decoding, this study introduces an encoding method based on redundant information
and proposes an ArUco code reconstruction method specifically designed for underwater
imaging environments for decoding purposes. Additionally, a method for determining
the target position is proposed to overcome the difficulty of directly determining the
underwater target position. The proposed method accurately determines the underwater
two-dimensional coordinates of the target keypoints based on the location of the UUV target
spray using deep learning and the law of refraction. The experimental results demonstrate
that the proposed ArUco code reconstruction method can improve the detection rate of
ArUco codes by at least 22.2%. The proposed target detection algorithm has an average
processing time of 0.092 s per frame, meeting the requirements for real-time control. The
maximum alignment error is 0.5548 mm, meeting the accuracy requirements for alignment.
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Abstract: Path planning and tracking are essential technologies for unmanned surface vessels (USVs).
The kinodynamic constraints and actuator faults, however, bring difficulties in finding feasible paths
and control efforts. This paper proposes a collision avoidance strategy for USV by developing the
kinodynamic rapidly exploring random tree-smart (kinodynamic RRT*-smart) algorithm and the fault-
tolerant control method. By utilizing the triangular inequality and the intelligent biased sampling
strategy, the kinodynamic RRT*-smart shows its advantages in terms of path length, cost and running
time. With consideration of kinodynamic constraints, a feasible and collision-free trajectory can be
provided. Then, a radial basis function neural network-based model predictive control (RBF-MPC)
method was designed that compensates for the model’s uncertainties by developing the radial basis
function neural network (RBF-NN) approximator and by constructing a feedback-state training
dataset in real time. Furthermore, two types of fault situation were analyzed considering the thruster
failure. We established the faults’ mathematical models and investigated the fault-tolerant strategies
for different fault types. The simulation studies were conducted to validate the effectiveness of the
proposed strategy. The results show that the proposed planning and control methods can avoid
obstacles in faulty conditions.

Keywords: path planning; unmanned surface vessel; learning-based MPC; fault-tolerance strategy

1. Introduction

Unmanned surface vessels (USVs), as an intelligent water work platform, have been
widely used in oceanic exploration, personnel search and rescue, water surface cleaning
and other aspects [1–5]. Compared with man-operated ships, USVs are not only more
economical and safe but are also more suitable for harsh environments, which attracts
enormous attention from both the academic and industrial fields. Planning a path that
aligns harmoniously with its own motion properties is an indispensable prerequisite for
an unmanned surface vehicle (USV) to fulfill its objectives. Once a reference path has
been assigned, the paramount challenge lies in tracing the reference trajectory amidst
the intricate interplay of maritime elements. However, these considerations alone prove
insufficient for that the USV’s propulsion systems are often susceptible to compromise.
Therefore, how to achieve stable control of USVs in the face of modeling error and thruster
failure is also crucial for accomplishing the designated missions.

By obtaining the environmental information, the path planning component is able to
provide a collision-free path that guides the USV from the start position to the destination.
Intensive research efforts have been devoted to the path planning of USVs over the past
decades. The A* algorithm is proposed to generate a fast node path from its heuristics
by searching the road graph [6]. Ref. [7] proposes a dynamic A* method that generates
the reference trajectories considering the moving obstacles in the dynamic environment.
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Furthermore, sampling-based path planning algorithms, such as rapidly exploring random-
ized trees (RRTs) and the probabilistic roadmap method (PRM) [8,9], have been developed
to solve planning problems. The asymptotic optimal variant of RRT and PRM, namely
RRT* and PRM* [10], almost surely converges. However, these algorithms place more
emphasis on geometric optimality, without considering the motion characteristics of the
planning object. In response to this issue, kinodynamic RRT* has been proposed for linear
dynamics, which have extended the RRT* to kinodynamic systems [11]. These kinodynamic
planning algorithms require solving a large number of two-point boundary value problems
(TPBVPs), resulting in high computational costs. To avoid this, Li et al. [12] designed SST
and SST*, which provide asymptotic near-optimal and optimal paths for kinodyanmic
planning without the TPBVP solver. Li et al. [13] developed a near-optimal RRT (NoD-RRT)
to avoid solving the TPBVP by utilizing the neural networks as an approximator consider-
ing nonlinear kinodynamic constraints. Zheng et al. [14] proposed the Kino-RRT*, which
shows faster convergence compared with kinodynamic RRT*, by reducing the sampling
dimension. When it comes to the USVs’ path planning, Mao et al. [15] proposed a state pre-
diction RRT for USVs by taking into account complete dynamic constraints. In [16], a novel
planning algorithm based on the artificial vector field method and RRT* was proposed for
USV low-cost path planning. Zhang et al. [17] improved the feasibility and efficiency of the
planned path by utilizing the dual sampling space strategy and the Dubins curve. Inspired
by DWA, Han et al. [18] presented an extended dynamic window approach (EDWA) for
the automatic docking of USVs. However, the above planning algorithms are limited by
the high computational costs and kinodynamic constraints of the USVs.

The accurate path-tracking control of USVs is a guarantee for completing tasks in
the complex and ever-changing oceanic environment. Model predictive control (MPC)
has become a rising control method in recent years. It can systematically handle multi-
input, multi-output problems with constraints in the controller design processes. At
present, the research on MPC has become one of the mainstream research directions in
the field of motion control of USVs [19]. USVs need to face the problems of modeling
errors and external disturbances such as waves, wind, and ocean currents [20,21]. To deal
with these uncertainties, Kabzan et al. [22] presented an online learning model predictive
control algorithm. This method utilized the data points for Gaussian process predictions
to implement online learning. In [23], the dynamic sliding mode control (DSMC) theory
was adopted to improve the system robustness under the effects of the ocean current and
model uncertainties. Ning et al. [24] proposed a novel online-learning-based risk averse
stochastic MPC framework, which utilized external disturbance data in real time to update
the training data set. In [25], the Lyapunov filtered probabilistic model predictive control
(LFP-MPC) was developed based on reinforcement learning. Shen et al. [26] utilized the
adaptive unscented Kalman filter (AUKF) to estimate the full states of USV in real time
for parameter identification of the MPC algorithm. In [27], the authors studied the path-
following control problem of USVs. A novel control method based on the wavelet neural
network and heading-surge (HS) guidance scheme was proposed.

The thrusters during USV path tracking in fault conditions may be entangled by
plastic bags, branches, aquatic plants and fishing nets in the water [28–30]. There are many
studies in the field of USV fault-tolerant control. In [31], an adaptive fuzzy sliding mode
tracking control strategy was developed for Takagi–Sugeno fuzzy model-based nonlinear
systems. Guo et al. [32] presented a fault estimator via the extended Kalman filter. Then,
the MPC scheme utilized the estimation to realize the function of fault-tolerant control.
Ding et al. [33] designed a novel fault-tolerant control strategy combining the MPC and
the fault-tolerant reconstruction algorithm. This method uses the weighted pseudo inverse
and quantum particle swarm optimization (QPSO) to achieve hybrid fault-tolerant control
for different degrees of thruster fault. In [34], Zhang et al. presented an adaptive neural
fault-tolerant control algorithm for the path-following activity of a USV using the novel
output-based triggering approach. Some other unmanned platforms also have thruster
failures. A fault-tolerant controller based on nonlinear model predictive control (NMPC)
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was developed for a quadrotor subjected to the complete failure of a single rotor [35].
In [36], Chen et al. proposed a fault-tolerant control (FTC) method and a fault-prevention
control (FPC) method for vehicle motion control considering motor thermal protection.
However, the actuator faults and model errors were not handled simultaneously by the
control methods mentioned above.

The depicted methodology for obstacle avoidance is visually presented in Figure 1.
Initially, a novel approach referred to as “Kindoyanic RRT*-smart” was devised, leveraging
the optimization techniques and a biased sampling strategy. The method generates a refer-
ence path that adheres to the kinodynamic constraints. Subsequently, a model predictive
controller, employing radial basis function neural networks, was introduced. This controller
capitalizes on real-time feedback data to facilitate online training of the neural networks,
thus rectifying the nominal models within the MPC framework. Lastly, drawing from the
inherent constraint characteristics of MPC, fault-tolerant strategies are designed to cater to
various fault types.

Figure 1. The proposed obstacle avoidance strategy.

The contributions of this paper lie in the following aspects: (1) A kinodyanmic RRT*-
smart algorithm is proposed by synthesizing the RRT*-smart and kinodyanmic RRT*
methods. This algorithm utilizes the triangular inequality concept and the biased sampling
strategy to optimize the paths and to reduce the computational cost. (2) An online-learning
MPC scheme based on RBF-NNs is utilized to address the modeling errors. The real-time
state-feedback data are selected for neural network online training. (3) Two types of USV
thruster faults are modeled and considered in the controller design. The corresponding
fault-tolerant control strategies are designed through the proposed RBF-MPC method for
different fault types.

The remaining parts of this paper are structured as follows. The main procedure
of the kinodynamic RRT*-smart algorithm is explained in Section 2. The RBF-MPC with
fault-tolerant strategy is illustrated in Section 3. Simulation results are shown in Section 4
and the conclusion is given in Section 5.

2. Collision Avoidance Path Generation

A practical and feasible reference path is generated for the USV to avoid obstacles.
The path not only evades obstacles but also considers the motion characteristics of the USV.
The subsequent section illustrates the processes of planning the collision-free paths.
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2.1. Preliminaries

In this paper, we address the problem of kinodynamic motion planning for a USV
on the basis of a sampling-based algorithm. The state space is defined as χ ∈ R

n, and the
obstacle space is set as χobs. Consequently, we obtain the obstacle-free space as:

χ f ree = χ
/

χobs (1)

The initial state of the USV is defined as xinit, and the goal state is defined as xgoal .
Let Br(p) = {x ∈ χ|d(x, p) < r} represent the ball centered at p with a radius r. Then, we
obtain the definition of goal region around the target goal point as

Z(xgoal , t) = Br(xgoal) ∩ χ f ree (2)

The goal of this part is to find a path:

π : [0, T] �→ χ f ree (3)

where the initial state π(0) = xinit, the terminal state π(T) ∈ Z(xgoal , T), and all states
π(t) ∈ χ f ree(t),∀t ∈ [0, T]. Let U ∈ R

m and ε be the control space and the control parame-
ters of the USV. The path corresponds to a series of control inputs u : [0, T] �→ U ; therefore,
∀t ∈ [0, T] {

π(t) = f (π(t − 1), u(t))
u(t) ∈ U(u(t − 1), ε)

(4)

where f (·) represents the dynamic function of the USV, and U(·) denotes the set of the
possible control outputs from the last node on the path.

Let Λ be the set of all nontrivial trajectories. The optimal motion planning problem is
then formally defined as searching the feasible path π∗ that minimizes a given cost function
c: Λ �→ R ≥ 0. The path connects xinit to xgoal through X f ree with corresponding control
inputs u under the control constraints of the USV:

π∗ = argmin
σ∈Σ

c(π)

s.t. π(0) = xinit
π(T) ∈ Z(xgoal , T)
π(t) ∈ X f ree(t), ∀t ∈ [0, T]

(5)

2.2. State Equations and Control Inputs

By analyzing the kinodynamic property of the USV, the dynamic model is defined by
the following equations:

.
X =

⎡⎢⎢⎢⎢⎢⎣
.
x
.
y
.
θ
.
v
.

w

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
v cos(θ)
v sin(θ)

w
0
0

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
0
0
0
1
0

⎤⎥⎥⎥⎥⎦u1 +

⎡⎢⎢⎢⎢⎣
0
0
0
0
1

⎤⎥⎥⎥⎥⎦u2 (6)

amin ≤ u1 ≤ amax (7)

αmin ≤ u2 ≤ αmax (8)

Equation (6) describes the state transition equation for the two-thruster surface vessel.
The state vector X = (x, y, θ, v, w)T consists of the Cartesian coordinates (x, y), yaw angle
θ, forward speed v and angular speed w. The control inputs are bounded by dynamic
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constraints. The USV in this research cannot move backward. Thus, the velocities are
bounded as v ∈ (0, vmax).

2.3. Kindynamic RRT*-Smart Algorithm

In this section, the kinodynamic RRT*-smart is designed based on RRT*-smart [37].
The procedure of our algorithm is similar to the RRT* algorithm except for two distinct
points. The first point is that the proposed algorithm aims to find a path that satisfies
the USVs’ kinodynamic constraints. The second point is the intelligent biased sampling
strategy employed in the algorithm.

Algorithm 1 shows the main procedures of the proposed algorithm. First, the original
state should be initialized as the root of the exploring tree. The main loop (lines 6 to 14)
is similar to the RRT* algorithm. The termination condition for the algorithm is based on
two criteria: either reaching the maximum number of iterations (K) or reaching the goal
region. Once either of these conditions is met, the algorithm terminates its execution. Some
essential steps in the progress are illustrated as follows.

Nearest Neighbor Given the vertex set V and considering metric function, the function
Nearest_Neighbor returns the vertex in V that is “closest” to xrand. In this paper, the Euclidean
distance is used, and hence

Nearest(T = (V, E), x) = argminv∈V‖x − v‖ (9)

Parent Given the set of vertices V, the function returns the best “parent” vertex xparent
in V that minimizes the value of distance

(
xparent, xnew

)
.

Algorithm 1 Kinodynamic RRT*-Smart

Input: Goal, Map, K
Output: The feasible path

1 Trajectory ← ∅

2 V ← {xinit}, E ← {∅}, Tree1 = (V, E)
3 V2 ← {xinit}, E2 ← {∅}, Tree2 = (V2, E2)
4 xgoal ← Goal, Map ← Load()
5 for k = 1 to K do
6 xrand ← Random Sampling()
7 xnear ← Nearest Neighbor(xrand, Tree1)
8 if Obstacle f ree(xnearest, xnew) then
9 xparent ← Parent(Vnearest, xnew),
10 V ← V ∪ {xnew}, E ← E ∪ {Vnearest,xnew}
11 Tree1 = (V, E)
12 if xnew ∈ Br(xgoal) then
13 Break
14 end
15 if xgoal is already reached then
16 Tree2(V2, E2) = Path_Optimization(Tree1)
17 Return Trajactory = Tree2(V2, E2)

Path_Optimization Given the feasible path Tree1 in a geometric sense, the function
returns a path Tree2 satisfying the kinodynamic properties of the USV. More details about
this part are described in Algorithms 2 and 3.
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Algorithm 2 Path_Optimization

Input : Tree1(V, E)
Output : Tree2(V2,E2)

1 sbegin = xinit
2 for i = 1 to i = N do
3 send = V(i)
4 if Obstacle Free(sbegin, send) then

5 continue
6 else
7 send = V(i − 1)
8 V2 = V2 ∪ {send}
9 E2 = E2 ∪

{
sbegin, send

}
10 sbegin = send
11 end
12 Tree2 = Rewiring Edges(V2, E2)
13 Return Tree2

Algorithm 2 outlines the optimization process based on the RRT*-Smart algorithm,
utilizing the triangular inequality concept to optimize the path. In essence, if the path node
x1 is visible to xi, they can be directly connected.

From line 1 to line 11, an optimized path is already acquired. However, this path is
only reachable to the goal region in the perspective of planar geometry. In other words,
when applied to the real plant, it may not be practical to execute the path. To address
this issue, the edges of Tree are rewired, as detailed in algorithm 3. This rewiring process
ensures that the optimized path is practically executable by the USVs, considering its
kinodynamic constraints.

Algorithm 3 Rewiring Edges

Input: E ← ∅, V
Output: The feasible path

1 sbegin = V(1)
2 for i = 1 to i = N do
3 send = V(i)
4 if Trajectory Feasible(sbegin, send) then

5 for j = 1 to j = k do
6 Snew = IntelligentBiasedSampling(Send)
7 send = CostJudgement

(
sbegin, send, snew

)
8 sbegin = send
9 E = E ∪ FeasibleTrajctory(sbegin, send)

10 end
11 else
12 send = FindFeasiblePoint(send)
13 for j = 1 to j = k do
14 snew = IntelligentBiasedSampling(send)

15 send = CostJudgement
(

sbegin, send, snew

)
16 sbegin = send
17 E = E ∪ FeasibleTrajctory(sbegin, send)

18 end
19 end
20 Return Tree(V, E)

The main loop of the Rewiring Edges algorithm is shown above. First, the vertices
of Tree will be checked if they can reach each other in a kinodynamic sense. If not, the
Find Feasible Point will be utilized to find a feasible point by biased sampling. After that,
the edges will be calculated by solving the two-point boundary problem (TPBVP). Then,
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we designed IntelligentBiasedSampling to find a more appropriate point with a lower path
cost. Some key steps in the algorithm are given as follows:

Path Feasible Given the initial state sinitial and final state sgoal , the path is calculated by
utilizing Equations (4)–(6).

IntelligentBiasedSampling The main idea of this step is to find an optimized path by
selecting nodes as close as possible to the vertices generated by the triangular inequality
concept aforementioned. The biased ratio is defined to set the biasing radius around the
selected node of the sampling strategy. Furthermore, the generated node will be checked for
if it is Path Feasible to the other nodes. The Ratio of this strategy is given by the Equation (10).

BiasRatio =

(
n

χ f ree

)
∗ B (10)

where B is the designed constant inflecting the convergence speed of the algorithm, and n
represents the iteration times.

CostJudgement The main purpose of this step is to determine whether the new node
can reduce the path cost [38], as shown in Formulas (11) and (12).

xcheck = argmin
xi

Cost(xi, xgoal) (11)

Cost(x1, x2) = ω1‖x2 − x1‖+ ω2arccos
→
v 1·x1x2∣∣∣→v 1

∣∣∣|x1x2|
+ ω3t(x1, x2) (12)

FindFeasiblePoint This step is designed for finding a reachable point around the serror
that is in the set of vertices but is checked unreachable by Path Feasible.

3. RBF-MPC for USV with Actuator Faults

The RBF-MPC approach is developed to track the predetermined collision-free path
considering the modeling error and actuator faults. The actuator faults are modeled and
introduced in the controller design for motion control in the presence of actuator faults.

3.1. Assumptions

In order to simplify the problem, this paper focuses solely on the horizontal plane
motion of the USV [39]. The planar motion of the USV is illustrated in Figure 2. To facilitate
computer simulations of the USV motion, certain simplifications were made, which are
outlined as follows:

a. Neglecting roll, pitch, and heave motion: The motion of the USV in the roll, pitch,
and heave directions is disregarded for simplicity.

b. Neutral buoyancy and body-fixed coordinate: The USV is assumed to have neutral
buoyancy, and the origin of the body-fixed coordinate system is positioned at the
center of mass of the USV.

c. Three planes of symmetry: The USV possesses three planes of symmetry, which aid
in simplifying the analysis and modeling process.

By adopting these simplifications, the focus is placed on the planar motion of the USV,
allowing for more manageable simulations and analyses.
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Figure 2. Vessel motion system.

3.2. Vehicle Kinematic Model and Dynamic Model

The vessel’s kinematic model is utilized to describe its planar motion, as follows:⎧⎪⎨⎪⎩
.

X = u cos ψ − v sin ψ
.

Y = u sin ψ + v cos ψ
.
ψ = r

(13)

where u and v represent the longitudinal and lateral velocities. X is the longitudinal
position, and Y is the lateral position. ψ is the yaw angle, and r is the yaw rate.

The kinematic model illustrates the correlation between the vehicle’s potion and
velocity. Furthermore, the dynamic model of the USV can be expressed as

M
.
v = τT + τTw − C(v)v − D(v)v (14)

where M = diag{m11, m22, m33} is the inertial matrix, and D = diag{d11, d22, d33} is the
damping matrix. The centripetal force matrix of the kinematic model is

C =

⎡⎣ 0 0 −m22v
0 0 m11u

m22v −m11u 0

⎤⎦ (15)

τT =
[
τu 0 τr

]
contains forward thrust τu and the yawing moment τr. τTw = [τTwu, τTwv, τTwr]

represents the external disturbance’s effect on [u, v, r].
From the aforementioned information, the dynamic model can be written as:⎧⎨⎩

.
u = (τu − d11u + m22vr)/m11.
v = (−d22v − m11ur)/m22.
r = (τr − d33r − m22uv + m11uv)/m33

(16)

where d11 = −(Xu + Xu|u||u|), d22 = −(Yv + Yv|v||v|), d33 = −(Nr + Nr|r||r|).Xu, Xu|u|, Yv,
Yv|v|, Nr, Nr|r| are the first-order and second-order fluid coefficients, respectively.

3.3. RBF Neural Network-Based Model Predictive Control

The above part follows the classical kinematic model and dynamic model of USV.
However, due to the different characteristics of each USV in practical applications, the
vessel’s motion cannot be accurately described by the universal model alone.

To enhance the accuracy of the vehicle model, we introduce an online learning neural
network component to take the residual model uncertainty into account. This method
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is improved based on the measurement tools and the neural network. The main idea is
shown in Figure 3.

 

Figure 3. Architecture of NN-MPC.

Here, we identify an unknown function dtrue : Rnz → R
nd from a collection of inputs

zk ∈ R
nz and outputs yk ∈ R

nd . Then, the considered model used for control can be
expressed as:

xk+1 = f (xk, uk) + Q·nn(qk) (17)

where f (xk, uk) describes the nominal vehicle dynamics, and nn(·) is the additional neural
network part, estimating the modeling error of the nominal model mentioned above.
uk = [Tl Tr] is the control efforts. The learned part nn(·) of the dynamics is assumed to
only affect the subspace spanned by Q, corresponding to the velocity states of the vehicle.
The learning part depends on a set of features qk that are relevant to the neural network.

Based on physical assumptions, we presume that the vehicle model error is mainly
caused by the dynamic part of the system equations. In the following research, a learning
vector was drawn into the USV model independently, as:

q = [u; v; r; Tl ; Tr] (18)

The difference between the nominal model predictions and the actual measurement
state will be used as a database for online learning of the neural network, which is

yk = Q†·(xk+1 − f (xk, uk)) = nn(qk) (19)

where Q† is the Moore–Penrose pseudo-inverse, and the true modeling error function is
nn(qk).

Therefore, the USV path tracking control problem can be described as the following
constrained dynamic optimization problem:

minJ(k) = min
N−1

∑
i=0

‖e(k+i|k)‖2
R + ‖u(k+i|k)‖2

Q (20)

s.t.xk+1 = fnom(xk, uk) + Q·nn(qk) (21)

e(k+1) = xk+1 − xref (22)
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umin ≤ uk ≤ umax, k = 1, . . . , Nc (23)

x0 = xk (24)

where R is the weight matrix of the path tracking state deviation, and Q is the control
input weight matrix. xk+1 represents the model state after the compensation of the neural
network. Let xre f be the reference state. Let uk = [Tl Tr] be the control input, x0 be the
initial states of prediction and xk be the current state feedback of the real plant.

The radial basis function neural network (RBF-NNs) approximator was chosen to
tackle the structural and parameter uncertainties. The structure of RBF-NNs is depicted in
Figure 4, consisting of three layers: the input layer, the hidden layer and the output layer.
The first layer of structure, the input layer, is expressed as X = [xi]

T . This layer assigns n
inputs to m nodes of the second hidden layer. The output of the second hidden layer is
H = [hj]

T , where xi is the ith input of the input layer, and hj is jth output of the hidden
layer. In this paper, the Gaussian function is chosen as the activation function of the neural
network, which is

hj(x) = exp

(
−‖ x − cj ‖2

2σ2
j

)
(25)

where
∥∥x − cj

∥∥ represents the Euclidean distance between x and cj. Let cj and σj be the
center and width of the Gauss basis function.

Figure 4. RBF-NN structure.

The third output layer represents the overall output of the neural network. The
prediction output of the network is calculated through a linear combination of hidden
layers’ output. Thus, we obtain:

yq(t) =
m

∑
j=1

h · wjq
T = h1w1q + h2w2q + · · ·+ hmwmq (26)

where wjq represents the weight vector from the jth hidden layer node to the qth output
layer node.

By combining Equation (26), the uncertainty of USV can be expressed as:

nn(qk) = WT H(xk) + ε (27)

where W is the weight matrix from the hidden layer to the output layer. H is the vector
calculated by Equation (25), and ε is the deviation term. The dimensions of the weight
matrix W and H are m × l and n × m. Let n, m and l be the number of nodes in the input
layer, hidden layer and output layer.
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3.4. Fault-Tolerance Strategy

The studied USV is equipped with two propellers that generate the forward force.
However, in the fault condition, the propellers are unable to provide the desired output
torque. Thus, the USV is incapable of tracking the reference path, potentially resulting in
collisions. The actuator fault is taken into account in the controller design process.

Regarding the proportional fault, the propeller torque under the faulty conditions is
proportional to that of the health state. Let λ represent the fault parameter, and the torque
of the propeller under the faulty condition is written as

Ti f = λTi (28)

where Tif is the output torque of the i th thruster and i = 1, r. For the reduced output torque
under the fault condition, the fault parameter λ is confined as

0 ≤ λ ≤ 1 (29)

In the fault condition, the control efforts need to be modified. Therefore, the final
output of the controller is changed under consideration of the proportion case mentioned
above in order to guarantee the USV’s path tracking. This can be specifically expressed as

u f = [Th λTf ] (30)

Then, we substitute the above equation into Equation (21) and use the updated model,
shown as Equation (31), to adaptively adjust the calculation output of MPC.

xk+1 = fnom(xk, uk) + Q·nn(qk), uk f = [Th λTf ] (31)

Furthermore, the limiting fault is considered and introduced in the following equations.
The output torque is limited to a fixed value that is reduced when the fault occurs. This can
be expressed as

Timax = Tf aultmax < Thmax (32)

where Tf aultmax is the maximum of the faulty thrusters’ torque, and Thmax is the maximum
of the healthy thrusters’ torque.

In this case, we set the maximum thrust of the faulty thruster as Ti f max, as shown in
the following equation:

0 < Ti f ≤ Ti f max < Thmax (33)

Then, we obtain Equation (34) by substituting the new thrust constraint into Equation (23),
as follows:

u f min ≤ uk f ≤ u f max, k = 1, . . . , Nc (34)

4. Simulation Results

For the simulations, a computer with MATLAB 2019a on an Intel i7-127000 CPU with
32 GB of RAM was utilized. In order to evaluate the performance of the proposed method,
we conducted a series of simulations and compared the results with those obtained from
the other methods. First, the collision avoidance performance of the Kino-RRT* algorithm
is shown as a comparison of the proposed algorithm. Then, we show the advantage of
RBF-MPC with the fault-tolerance strategies by comparing it with the traditional MPC
under faulty conditions. Furthermore, we demonstrate the well-tracking performance of
the designed fault-tolerant controller for the planned path.

4.1. Collision Avoidance Path Performance Comparison in Simulation Studies

In the simulation environment, the global map is represented as a rectangular area
with pixels of 500 × 500 representing an ocean area of 500 × 500 m. The obstacles are
randomly set to represent floats or observation stations to be avoided. The results of the
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Kino-RRT* algorithm and the kinodynamic RRT*-smart algorithm are given in Figure 5.
In Figure 5, we can see that the proposed algorithm found a better path under the same
sampling conditions.

Furthermore, due to the unique randomness of the RRT algorithm, we conducted ten
sets of simulation experiments and took their average values. The data are shown in Table 1.
Upon analyzing the data, it becomes apparent that increasing the number of sampling
times in the RRT algorithm leads to longer planning times. However, it also results in
improved planning effectiveness. From Table 1, we can draw a conclusion that the path
length is 20.48% less than Kino-RRT*’s result when the sampling times are 5000. This is
because the triangular inequality concept optimizes the path cost directly. The running
time is reduced by 31.34% for less TPBVP problem solving. At the same time, our biased
sampling strategy also reduces the path costs via the kinodynamic constraints, and the cost
is 29.59% lower than Kino-RRT*. This also resulted in a 2.98% reduction in our path length
compared to RRT*-smart.

(a) (b) 

Figure 5. Planning simulation results: (a) sampling times = 2500; (b) sampling times = 5000.

Table 1. Summary of comparative analysis.

Sampling
Times

Algorithm
Running

Time
Path
Cost

Path
Length

2500
RRT*-smart 0.45 × 608.73

Kino-RRT* 0.67 748.65 752.49

proposed method 0.56 534.57 612.31

5000
RRT*-smart 0.63 × 572.46

Kino-RRT* 1.34 647.55 698.65

proposed method 0.92 455.93 555.58

To be more practical, we chose a part of the Dalian Port image as the planning map
from the Electronic Chart Display and Information System (ECDIS), as shown in Figure 6.
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(a) (b) 

Figure 6. Conversion from the ECDIS image to the binarization map: (a) Dalian Port partial (location:
38◦57′ N, 121◦38′ E, width: 2000 m, height: 1500 m); (b) binarization map.

We set the initial position of the USV as [250, 100] m and the goal region as [1560,
260] m. The planning result in the real environment is shown in Figure 7.

Figure 7. The planning path in a real environment.

From Figure 7, we see that the planning path is free from collisions, indicating that the
proposed algorithm is capable of navigating in the actual ocean environment. As depicted
in the aforementioned illustrations, we can deduce that the planning path is viable for the
USV. This achievement is attributed to our incorporation of motion characteristics and
kinodynamic constraints into the planning process. Consequently, the proposed algorithm
is applicable for practical USV path planning.

4.2. RBF-MPC with Fault-Tolerance Strategy Performance Comparison in Simulation Studies

In order to evaluate the effectiveness of the proposed algorithm in terms of model
correction and fault tolerance, comparative simulations were conducted between the
proposed method and the traditional MPC. The specific kinetic parameters of the USV used
in the simulations are presented in Table 2. The nominal model parameters listed in the
table intentionally differ from the actual model parameters. This mismatch is performed to
simulate the modeling errors that commonly exist in real-world scenarios. By introducing
such modeling errors, the simulations can realistically assess the capability of the proposed
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algorithm to handle model inconsistencies and to provide accurate control. The external
disturbance is set as⎧⎨⎩

τTwu = −3 cos(0.5t) cos(t) + 1.5 cos(0.5t) sin(0.5t)
τTwv = 0.6 sin(0.1t)
τTwr = 0.9 sin(1.1t)cos(0.3t)

Table 2. The parameters of the nominal model and real plant.

Parameter m11 m22 m33 Xu Xu|u| Yv Yv|v| Nr Nr|r|
Nominal
Model 141.85 197.75 15.6 −45.6 −67.26 −29.54 −73.85 −10.71 −5.59

Real
Plant 153.65 204.35 18.2 −40.3 −67.26 −30.54 −70.25 −10.71 −5.59

In order to ensure the intuitive optimization effect, we chose linear path tracking for
simulation. The original position of the USV was set as [0, 5] m and its original speed as
[0.5, 0] m/s. In the first fault condition, the fault parameter was set as λ = 0.5. The fault of
the right thruster occurred at x = 75 m. The simulation results in the first fault case are
as follows.

From Figure 8c and the locally enlarged images in Figure 8a, it can be seen that RBF-
MPC can enable the USV to achieve the line tracking faster. This observation demonstrates
the effectiveness of online RBF neural network learning in compensating for model errors.
From Figure 8b, it can be seen that external interference has an impact on the USV yaw
angle. From the local enlarged image, it can be seen that under the same interference
conditions, RBF-MPC is less affected by disturbances. Therefore, we can analyze that
compared to the traditional MPC, our designed RBF-MPC has stronger anti-interference
ability. As shown in Figure 8b,c, after the fault occurs, the yaw angle of RBF-MPC with
the fault-tolerant strategy does not change significantly, and it can still stably track the
preset trajectory, but the traditional MPC cannot. This verifies the effectiveness of the
fault-tolerant strategy.

In Figure 9a, the fault tolerant strategy makes the USV’s forward speed change
smoother. Figure 9b shows that the RBF-MPC with the fault-tolerant strategy can make
the USV’s lateral speed converge to 0 m/s faster and changes little when the fault occurs
compared with the traditional MPC. From Figure 10d, it is evident that during the initial op-
eration stage of the USV (0–20 m), the torque variation in the computed output of RBF-MPC
is smaller. By analyzing the other figures, the traditional MPC exhibits more significant
changes in control output compared to RBF-MPC integrated with the fault-tolerant strategy
when a fault occurs. Moreover, the traditional MPC is more susceptible to external distur-
bances. In Figure 11b, we can see that the real force of the right thruster is half of the MPC
output, which represents the proportional failure. From Figures 10 and 11, a conclusion
can be drawn that the MPC with the fault-tolerant strategy can autonomously adapt to the
proportional fault and adjust thrust output to ensure the normal operation of the USV.
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(a) (b) 

 
(c) (d) 

Figure 8. Trajectory tracking result in the first fault case. (a) position; (b) yaw angle; (c) X-direction
displacement; (d) Y-direction displacement.

  
(a) (b) 

Figure 9. The speed of USV in the first fault case: (a) forward speed; (b) lateral speed.
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(a) (b) 

  
(c) (d) 

Figure 10. The force of the thrusters in the first fault case: (a) left thruster; (b) right thruster;
(c) forward force; (d) torque.

  
(a) (b) 

Figure 11. MPC output and real control effort in the first fault case: (a) left thruster; (b) right thruster.

In the second fault case, the fault parameter is set as Tf max = 50 N. The fault of the
right thruster occurs at x = 100 m. The simulation results of the second type of fault are
as follows.

From Figure 12c and the magnified images in Figure 12a, it is evident that RBF-MPC
effectively modifies the nominal model used within the MPC framework. The magnified
image in Figure 12b demonstrates that the yaw angle of the USV under RBF-MPC control is
less affected by external disturbances. Hence, we conclude that RBF-MPC exhibits a certain
degree of disturbance attenuation. By analyzing Figure 12b–d collectively, we can deduce
that after the fault occurs, the yaw angle of the USV controlled by the traditional MPC
changes greatly, and the displacement in the Y direction becomes unstable. In contrast,
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the RBF-MPC demonstrates the effectiveness of the designed fault-tolerant strategy as
it maintains relatively stable yaw angles and stable displacement even in the presence
of faults. The simulation proves that when the limiting fault occurs, the MPC controller
incorporating a fault-tolerant strategy enables the USV to stably track straight lines, which
verifies the effectiveness of the fault-tolerant strategy for limiting faults.

  
(a) (b) 

  
(c) (d) 

Figure 12. Trajectory tracking result in the second fault case. (a) position; (b) yaw angle; (c) X-direction
displacement; (d)Y-direction displacement.

From Figure 13, it can be observed that the introduced external disturbances have
an impact on both the forward velocity and longitudinal velocity, but RBF-MPC is less
affected by these disturbances. Additionally, in the event of a fault, the velocity of the USV
under MPC control without the fault-tolerant strategy exhibits increased oscillations. In
Figure 14a,b, it can be observed that when a fault occurs in the right thruster, the thrust is
constrained to 50 N. However, RBF-MPC with the fault-tolerant strategy adjusts the thrust
output of the left thruster to ensure the normal operation of the USV. From Figure 14c,d, it
can be deduced that RBF-MPC with the fault-tolerant strategy exhibits a small variation in
thruster output after a fault occurs. However, the traditional MPC, due to the combined
effect of the fault and external disturbances, fails to achieve stable control of the USV.
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(a) (b) 

Figure 13. The speed of the USV in the second fault case: (a) forward speed; (b) lateral speed.

  
(a) (b) 

  
(c) (d) 

Figure 14. The force of the thrusters in the second fault case: (a) left thruster; (b) right thruster; (c)
forward force; (d) torque.

In Figure 15, the simulation illustrates that RBF-MPC with the fault-tolerant strategy
makes the USV track the planned path even under the thruster-fault condition. From
the partial enlarged view, the traditional MPC cannot control the USV well, and the USV
collides with an obstacle when the fault occurs.

In summary, the proposed RBF-MPC combined with the fault-tolerant strategy has
shown the effective performances in terms of model error correction and fault-tolerant control.
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Figure 15. The planned path tracking result.

5. Conclusions

This paper focuses on two key issues in USV technology: path planning and tracking
control. We developed the kinodynamic RRT*-smart algorithm and an online-learning-
based MPC algorithm for the USV, considering the modeling error and actuator faults. The
planning algorithm uses geometric optimization theory to optimize the paths generated by
random trees in a geometric sense. Then, the optimized path points are utilized for biased
sampling and generating paths that adhere to the kinodynamic constraints. Compared to
the traditional methods, the proposed approach exhibits a lower computational cost for
solving the optimized path. After the reference path was given, we designed the RBF-MPC
scheme, which utilizes the learning ability of neural networks to approximate modeling
errors. This method introduces the training results of RBF-NNs into the cost function
calculation of MPC, making the nominal model used in MPC approximate the actual
model, and achieving accurate control of the USV. Building upon this method, different
fault-tolerant strategies were developed, taking into account the potential occurrence of
thruster failures. The strategies were integrated into the RBF-MPC framework, and their
effectiveness was verified by comparing them with the traditional MPC in the numerical
simulation.

In our future research endeavors, we will prioritize the following issues:

(1) Application to a USV physical platform: We aim to implement and validate the effective-
ness of the proposed method on an actual USV physical platform through experimentation.

(2) Learning-based MPC: We will develop the learning-based MPC algorithm that ob-
viates the need for explicit fault-tolerant strategy design. By leveraging the power
of neural networks, we aim to approximate the changes in the USV dynamic model
induced by faults, thereby circumventing the task of fault-tolerant strategy design.

(3) Optimization of sampling strategy: We will delve deeper into the optimization of
the sampling strategy employed in our path planning algorithm. Additionally,
we will try to provide evidence of the algorithm’s probability completeness and
asymptotic optimality.
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Abstract: In aquaculture, the accurate recognition of fish underwater has outstanding academic value
and economic benefits for scientifically guiding aquaculture production, which assists in the analysis
of aquaculture programs and studies of fish behavior. However, the underwater environment is
complex and affected by lighting, water quality, and the mutual obscuration of fish bodies. Therefore,
underwater fish images are not very clear, which restricts the recognition accuracy of underwater
targets. This paper proposes an improved YOLO-V7 model for the identification of Takifugu rubripes.
Its specific implementation methods are as follows: (1) The feature extraction capability of the original
network is improved by adding a sizeable convolutional kernel model into the backbone network.
(2) Through ameliorating the original detection head, the information flow forms a cascade effect
to effectively solve the multi-scale problems and inadequate information extraction of small targets.
(3) Finally, this paper appropriately prunes the network to reduce the total computation of the model;
meanwhile, it ensures the precision of the detection. The experimental results show that the detection
accuracy of the improved YOLO-V7 model is better than that of the original. The average precision
improved from 87.79% to 92.86% (when the intersection over union was 0.5), with an increase of
5.07%. Additionally, the amount of computation was reduced by approximately 35%. This shows
that the detection precision of the proposed network model was higher than that for the original
model, which can provide a reference for the intelligent aquaculture of fishes.

Keywords: Takifugu rubripes; accurate identification; improved YOLO-V7 network; large
convolution kernel

1. Introduction

Triggerfish, commonly known as “puffer fish” [1], are a kind of bony fish with a high
economic value and are an important aquaculture group in northeast Asia. The usual
species are Takifugu rubripes (T. rubripes), Takifugu obscurus, and Takifugu pseudommus, etc.
The mariculture species are mainly T. rubripes, and the production mode of combining sea
cage and land-based industrialization is adopted. Takifugu rubripes is delicious and nutri-
tious and, as a high-quality food, it is in great demand for exports. With the development of
digitalization and informatization, the traditional aquaculture fishery management model
relying on human resources and experience now encounters limitations [2]. Problems of
manual observation and purely empirical methods such as misdetection, missing detection,
and untimely feedback happen occasionally. At present, the fish movement posture in
water is variable. The underwater environment, lights, and the mutual occlusion between
fish bodies reduce the accuracy of static fish identification in breeding ponds, which leads
to the problem of a low accuracy of fish identification [3–5]. Traditional methods can
no longer meet the needs of precision and intelligence for modern aquaculture [6]. The
accurate identification of fish requires more and more attention and the automatic detection
and identification of fish underwater are significant for fishery resource assessment and
ecological environment monitoring [7–9]. Therefore, this paper focuses on the accurate
identification algorithms for fish in underwater images to solve these above problems.
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Traditional target detection algorithms typically use a sliding window model, in which
a window sequentially slides on the detected image [10]. Feature extraction is carried out
on each sliding window, respectively, and machine learning algorithms are used for the
extracted features to determine whether the window contains the object. This method
means that the feature extraction and matching have certain defects. Meanwhile, the
adaptability, accuracy, and detection speed of traditional algorithms are relatively poor [11].
With the development of deep learning [12–14], Hinton’s group won the ImageNet image
recognition competition in 2012 by building the AlexNet [15] convolutional neural network
to crush the performance of the second-place SVM classifier. As a result, many scholars
have shifted their attention from traditional image processing to deep learning target
recognition [16,17]. With the advantages of a simple structure, higher efficiency, and higher
accuracy, the target detection algorithm based on deep learning has quickly caught up
with the traditional target detection algorithms [18,19]. It has become the most mainstream
target detection algorithm.

There are currently two main types of mainstream object detection algorithms. The
first are known as two-stage algorithm models, such as R-CNN [20], Fast R-CNN [21], and
Faster R-CNN [22]. This model first uses heuristics or RPN structures to generate a series
of candidate boxes. Subsequently, it uses convolutional neural networks to regress and
classify the samples. Using this process, it gains a higher precision, but a lower inference
speed. The other algorithm is the single-stage algorithmic model, which uses regression
ideas to input images into the convolutional neural network and output the result directly
after the detection, such as YOLO [23], SSD [24], and Retina-Net [25]. This algorithm lacks
the screening and optimization process of the prediction frameworks, which reduces the
accuracy of the detection. Despite this, its detection speed is faster and higher than those of
the two-stage methods.

With the fast development of deep learning, it has quickly been applied in fish detec-
tion, but there are still many challenges in the model for the accurate identification of fish.
Liu et al. [26] detailed a fish recognition detection algorithm based on the FML-Centernet,
which introduces a feature fusion module in a Centernet algorithm network structure to
fuse low-level feature information and high-level feature information. On this basis, they
put forward a more complete feature map, but the detection accuracy was not ideal. Cai
et al. [27] constructed a CNN model for fish identification, using the ReLU function as the
activation function through dropout and regularization, but increased the detection time.
Dong et al. [28] detailed a network that mixed the spatial domain attention mechanism
and hierarchical streamlined bilinear features together. Its feature extraction network was
initialized with the parameters trained on the ImageNet dataset and further fine-tuned
using the fish dataset, while the amount of computation was increased.

YOLO (You Only Look Once) [29–31], a classical single-stage detection algorithm,
has achieved a good balance between accuracy and speed and is widely used in various
target detection tasks. For example, Wu et al. [32] used a modified YOLO model to detect
how pine nematode disease affected trees at different stages of infection. Wang et al. [33]
used improved YOLO-V4 and binocular positioning for real-time vehicle identification and
tracking during an agricultural operation. Qiu et al. [34] used a YOLO-based method to
detect sidewalk cracks in real-time drone images. The above results show good accuracy
when detecting targets that are more dispersed from the background. However, there will
be still many problems if this model is to be directly applied to the accurate recognition of
T. rubripes:

(1) Compared to common scenarios, underwater images are affected by lighting, water
flow, and water quality, etc., and the fish bodies in the images form a relatively
complex background due to overlapping and occlusion, which increases the difficulty
of the detection and causes inaccurate detection results.

(2) In the feature extraction and fusion, the feature map output from each node is not fully
utilized and the feature extraction ability can be further strengthened during training.
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(3) Due to the high density of cultured T. rubripes and the different target sizes in the
images, the detection head of the YOLO-V7 needs to be improved.

In response to the above issues, based on the YOLO-V7 [35] algorithm framework, this
paper proposes an accurate identification and detection algorithm for T. rubripes to solve
the problem of the low accuracy of fish recognition in images.

2. Materials and Methods

2.1. Dataset
2.1.1. Data Acquisition and Image Features

This paper collected experimental data from the breeding ponds of the Dalian
Tianzheng Breeding Factory, which raises different sizes of T. rubripes in ponds, and finally
collected videos of the T. rubripes. The light in the breeding ponds was relatively fixed and
soft. To avoid the influence of vertical light, the camera shot the water surface from bottom
to top at a 30-degree angle. Considering the changes in light and turbidity, etc., the camera
used a zoom lens and was kept in auto mode. The captured video size was 1920 × 1080
and one frame was extracted from the video every six seconds, eventually selecting 3870
images of T. rubripes.

2.1.2. Image Annotation and Dataset Production

The open-source script LabelImg (https://github.com/tzutalin/labelImg, accessed
on 11 June 2021) on GitHub was used to annotate the dataset. After running the LabelImg
script, the target samples in each image were marked. With these produced datasets, an
XML file containing the target type and coordinate information was generated and trained.
An example of an annotated image is shown in Figure 1. In the production of the dataset,
3870 images of T. rubripes were used. These comprised 3096 pictures used for the training
dataset and 774 images used for the validation dataset.

 
Figure 1. Example of annotated image. (The green frame represents the labeled Takifugu rubripes).
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2.2. Related Works
2.2.1. YOLO-V7

As the most typical representation of a single-stage object detection algorithm, the
YOLO algorithm is based on deep neural networks for object recognition and localization.
It uses a single CNN model to achieve end-to-end target detection, takes the whole image as
the input into the network structure, and directly regresses the location of the bounding box
and the category to which it belongs in the output layer. The YOLO-V7 network represents
a continuous improvement over the previous the YOLO series, which provides a good
balance between the accuracy and operating speed. The YOLO-V7 network consists of
four main modules: input, backbone, head, and prediction. It adopts strategies such as
extended efficient layer aggregation networks (E-ELAN), model scaling for concatenation-
based models [36], re-parameterized convolution [37], and other techniques. The algorithm
structure of YOLO-V7 is shown in Figure 2.
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Figure 2. The overview architecture of YOLO-V7.

E-ELAN is a computational block in the YOLO-V7 backbone network that can guide
different groups of computation blocks to learn more diverse characteristics. In large-
scale ELANs, the network always reaches an equilibrium state, regardless of the gradient
direction, path length, and total number of blocks. However, such equilibrium states
may be destroyed and the usage of the main parameters will be reduced if the blocks
are stacked endlessly. The E-ELAN algorithm uses expansion, random scrambling, and
merging cardinality to continuously enhance the ability of the network learning without
destroying the original gradient path, and to also guide the different computational block
groups to learn more diverse features. The primary purpose of the model scaling is to
adjust the specific properties of the model and generate models of different sizes to meet
the needs of varying inference speeds. When scaling the model for a cascade-based model,
only the depth in the computational block needs to be scaled, and the rest of the transport
layer is scaled with the corresponding width. When scaling the depth factor of a calculated
block, the change in the output channel of the block is calculated and makes the same
changes to the transition layer. RepConv without constant connection is used to redesign
the architecture of the reparametrized convolution and proposed to generate coarse to
acceptable hierarchical labels with guidance from the prediction results of the guidance
head, which are used to assist the learning of the guidance head. This paper presents an
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improved algorithm based on YOLO-V7, and the research content flowchart is shown in
Figure 3.

Figure 3. Research content flowchart.

2.2.2. Evaluation Metrics

An experiment needs performance indexes to evaluate an algorithm model. According
to the evaluation indexes of the neural network model [38], this paper uses accuracy, recall
rate, F1 score, and average precision as its evaluation indicators. The calculations of the
accuracy, recall, F1 score, and average precision are shown in Equations (1)–(4).

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1=
2 × Precision × Recall

Precision + Recall
(3)

AP =
∫ 1

0
Precision × Recall dr (4)

AP@0.5:0.95 =
1

10
(AP@0.50 + AP@0.55 + . . . + AP@0.90 + AP@0.95) (5)

TP is the real example, that is, the sample correctly identified as T. rubripes; FP is the
false positive example, which is the incorrectly identified sample of the T. rubripes; FN is
the false counter example, that is, the sample wrongly identified as the background; TN
is the true counter example, that is, the sample correctly identified as the background; ‘r’
represents the integral variable, which is used to determine the integration of precision
∗ recall and is between 0 and 1; AP is the size of the area under the curve drawn by
the accuracy–recall ratio (P-R); AP@0.5 is the average of the accuracy at different recall
values when the Intersection Over Union (IOU) is 0.5; and AP@0.95 is the average of the
accuracy at different recall values when the IOU is 0.95. AP@0.5:0.95 is the average of the ten
values, AP@0.50, AP@0.55, . . . , AP@0.90, and AP@0.95, and the calculation formula is shown
in Equation (5).

2.3. The Proposed Algorithm

This paper proposes an algorithm that is an improvement on YOLO-V7, based on
data set characteristics. The sample code and pseudocode of the proposed algorithm are
provided in Appendix A.

To solve the problem of the receptive field not being significantly improved after
adding depth, it is necessary to increase the convolutional kernel. Compared to a large
number of small convolutional kernels, a small number of large convolutional kernels can
improve the receptive field and optimize the network backbone model. By these means,
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the proposed algorithm will capture more effective information and enhance the ability of
the feature extraction (Figure 4).

Figure 4. Improvements in feature extraction capability.

Based on the difficulty of the feature loss caused by the excessive occlusion between the
targets, this paper upgrades the original detection head. With the progressive information
flow, it clears up issues such as the multi-scale and insufficient extraction of small targets,
thereby improving the accuracy of the target detection task (Figure 5).
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Figure 5. Improvements to the detection head.
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2.3.1. Improvements in Feature Extraction Capabilities

During the experiment, there were missed and incorrect results when the original
algorithm was used to detect the T. rubripes. After the evaluation, we found that most
of the false detection or missed detection occurred in the area of dense fish. In order to
capture the features clearly, this study hoped to expand the effective receptive field of the
model. According to the effective receptive field theory, the size of the receptive field is
proportional to the size of the convolution kernel, and the square root of the convolution
kernel layers has a positive effect as well. Therefore, we considered that increasing the
receptive field by adding depth was more effective for improving the receptive field than
directly expanding the convolution kernel. For example, while ResNet [34] looks like it
can go very deep, or go up to hundreds or thousands of layers, its effective depth is not
very deep and a lot of its signals are from the shortcut layer, which does not increase its
effective depth. However, if the convolution kernel size is increased, its effective receptive
field tends to go up very significantly.

This paper added a large convolution kernel into an ELANB module to expand the
effective receptive field of YOLO-V7, so that we could train a larger area. The structure of
the improved algorithm is shown in Figure 4. We increased the convolution kernel of the
second layer from 3 × 3 to 21 × 21. This upgraded the extraction ability and achieved a
more precise recognition result.

2.3.2. Improvement of the Detection Head

The head of the original YOLO-V7 algorithm has three sizes: large, medium, and small.
Based on the actual distribution and sample situation of T. rubripes, the experiment found
that obscured targets increased the error rate during the feature extraction. Furthermore,
short distances caused interference and reduced the precision of the target detection,
making the target extraction insufficient. Thus, this study proposed adding an object
detection layer, abandoning the initially extracted feature map, deepening the layer based
on the original, and further informing the information flow. The improved feature map
found it easier to inform the feature information of the target and achieve the purpose of
improving the detection accuracy, as shown in Figure 5.

3. Results

The software environment of our experiment is shown in Table 1. Considering the
GPU memory limitation after adding large convolution kernels during the training, the
batch size was set to 16. In order to analyze the training process perfectly, our study selected
300 iterations in the experiment. During the test, a batch of images was chosen with the
same resolution in the training phase to verify the algorithm.

Table 1. Experimental environment.

Configuration Parameter

CPU Intel Xeon(R) Gold 5128R
GPU Nvidia RTX 3090 Ti
Operating system Ubuntu 20.04
Development environment Pycharm 2022.2
Accelerated environment CUDA11.1

3.1. Analysis of Training Results

Our study statistically analyzed the test results of the verification set. The sample
number of T. rubripes in the verification set was 2280, the conf threshold (target confidence
threshold) was set to 0.25, and the IOU was set to 0.45 for verification. The results are
displayed in Table 2. In the improved model, the accuracy, recall rate, and F1 score were
all improved by varying degrees. Among them, the accuracy increased by five percent,
the recall by eight percent, and the F1 score by seven percent. The main reasons for this
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increase in the recall rate were the significant increase in the TP and the significant decrease
in the FN, which meant that more and more T. rubripes were correctly identified. This
demonstrates the effectiveness of the improved algorithm.

Table 2. Comparison of evaluation indicators before and after improvement.

Conf-Thresh = 0.25
IOU = 0.5

Precision Recall F1-Score TP FP FN

YOLO-V7 0.91 0.82 0.86 1859 174 421
Improved YOLO-V7 0.96 0.94 0.95 2154 79 126

3.2. Algorithm Performance Evaluation
3.2.1. Pre-Training

The pre-training dataset was composed of 3870 T. rubripes images, for which a weight
file was obtained and the parameters during the pre-training set were as follows: firstly,
this study set the initial learning rate to 0.01, made the weight attenuation 0.0005, set the
batch size to 16, and performed 300 iterations to generate the pre-training weight files. The
dataset was trained using transfer learning. Figure 6 shows the difference between using
these transfer learning strategies and not using them. It points out that transfer learning
improved the AP by 1.02%, which indicates that this strategy is effective.

Figure 6. Pre-training comparison chart.

3.2.2. Performance Comparison to Improve Feature Extraction Capabilities

The experiment changed the effective receptive field of YOLO-V7 by changing the
network structure of the ELANB. Although adding convolution kernels improved the
precision, it also required more running memory. We selected convolution kernels with
the sizes of 13 × 3, 17 × 17, 21 × 21, and 27 × 27 for comparison. We comprehensively
compared the number of parameters and running speeds and finally decided on a size of
21 × 21 for the convolution kernel. The following experiments were conducted to add the
number of improved modules, replacing one, two, and four enhanced modules. The results
of this experiment are shown in Figure 7. Considering the running speed and accuracy,
we finally replaced two ELANB blocks. After strengthening the feature map, the trained
AP increased from 87.7% to 91.3%. These results show that the enhanced ELANB block
improved the correction of the training. At the same time, the large convolution kernel
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strengthened the ability of the feature extraction and positively reduced the occurrence of
error detection.

Figure 7. Improved feature extraction capability performance comparison.

3.2.3. Performance Comparison to Improve Head

This paper improved the detection head of the original YOLO-V7, abandoned the
feature map of the original, and deepened it based upon the last feature extraction. Through
this, the progressive information flow, multi-scale problem [39,40], and inadequate extrac-
tion of the small target information were effectively solved during the detection. The results
of the enhanced comparative experiment are shown in Figure 8. The AP of the improved
training increased from 87.79% to 89.81%. This shows that the enhanced head improved
the detection accuracy.

Figure 8. Comparison of the results of the improved detection head.

198



J. Mar. Sci. Eng. 2023, 11, 1051

3.2.4. Comparison of Network Pruning Performance

Takifugu rubripes detection is a challenging detection task. Still, the network structure
of YOLO-V7 is large and its accuracy has been improved by increasing the convolution
kernel. This task selected the depth of the convolutional layer. Under the premise of
ensuring the detection accuracy, we pruned the network appropriately. Table 3 shows
the total amount of computation for each algorithm in a billion floating-point operations
(GFlops). The results show that, after pruning the network, the whole calculation amount
of the model was reduced by about 35%.

Table 3. Comparison of the number of network pruning parameters.

Model YOLO-V7
Feature

Extraction
Improved

Head
Network
Pruning

GFLOPs

1
√

104.8
2

√ √
109.9

3
√ √

119.4
4 (Ours)

√ √ √ √
68.2

3.3. Performance Comparison of the Overall Algorithm

Table 4 compares the results of the different improvement strategies. The results show
that the AP50 increased from 87.79% to 92.86%, with an increase of 5.07%. Through a series
of improved operations, we successfully improved the detection accuracy for T. rubripes.

Table 4. Ablation experiment comparison results.

Model YOLO-V7 Feature Extraction Improved Head Network Pruning AP@0.5 (%) AP@0.5:0.95 (%)

1
√

87.79% 52.76%
2

√ √
91.37% 55.82%

3
√ √

89.81% 56.65%
4 (Ours)

√ √ √ √
92.86% 57.94%

In order to further analyze the performance of the proposed method, we compared it
with YOLO-V5, Faster R-CNN, and SSD. We used the same training, verification, and test
set to compare the five networks, the results of which are shown in Table 5. The improved
YOLO-V7 has a higher accuracy than the other models.

Table 5. Comparison with current mainstream detection algorithms.

Model AP@0.5 (%) AP@0.5:0.95 (%)

YOLO-V5 87.11% 51.80%
Faster R-CNN 88.71% 53.55%

SSD 82.26% 46.43%
YOLO-V7 87.79% 52.76%

Ours 92.86% 57.94%

Figure 9 compares the PR curves of the T. rubripes before and after the improvement of
YOLO-V7. The closed area of the PR curve before the improvement was much smaller.
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Figure 9. Comparison of PR curves of the model.

Figure 10 shows an example image of the before and after comparison results of some
of the test picture improvements. The red box represents the detection result of the original
YOLO-V7 and the purple box represents the result of the improved YOLO-V7. The yellow
box indicates that the T. rubripes could be correctly detected after improving the algorithm.
The modified YOLO-V7 network could effectively improve the detection accuracy for the T.
rubripes. The reason for this was that the enhanced network increased the ability to process
feature maps. In this way, T. rubripes could be detected correctly when they occurred at
higher densities, with an overlapping environment between the fish.

Figure 10. Comparison of test picture results.

The results of the whole screen, before and after the improvement, are shown in
Figure 11. Under the interference of high density, the grid units in the feature map extraction
network did not perform accurately enough to predict the target, resulting in omissions
and error detection in the original YOLO-V7. After the improvement, the detection effect
was improved, 47 targets were obtained from the original analysis, 56 targets were obtained
after the improvement in picture (a), 40 targets were obtained from the original analysis,
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and 47 targets were obtained after the improvement in picture (b). This shows that the
improved network was better than the unimproved one.

Figure 11. Comparison of test results. (a) 47 targets were obtained from the original analysis, 56
targets were obtained after the improvement and (b) 40 targets were obtained from the original
analysis, and 47 targets were obtained after the improvement.(The first line shows the detection result
of the original YOLO-V7 and the second line shows the result of the improved YOLO-V7).

4. Conclusions and Discussion

In this paper, we proposed an improved YOLO-V7 network for accurately detecting
T. rubripes. The feature extraction ability and detection head of YOLO-V7 were all modified
in our new model. The new model ameliorated the situation of low-quality underwater
images and more overlapping and dense identification targets, leading to a higher precision.
The experimental results show that the AP increased from 87.79% to 92.86%, with a total
increase of 5.07%, which means that the improved YOLO-V7 network was better the
original version.

This paper effectively solved the problem of fish identification needing to be improved
in the cultivation of T. rubripes when the background is relatively simple. The recognition
of fish images with a complex background is not as good as that with a single background
in a practical situation. The intelligence of aquaculture still needs more research and
exploration, and our next step will be studying fish identification in complex backgrounds.
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Appendix A

Algorithm A1: The pytorch style code of the improved LgConv & LKDeXt module

1: class LgConv(nn.Module):
2: def __init__(self, in_channels, dw_channels, block_lk_size, small_kernel, drop_path,
small_kernel_merged=False):
3: super().__init__()
4: self.pw1 = conv_bn_relu(in_channels, dw_channels, 1, 1, 0)
5: self.pw2 = conv_bn(dw_channels, in_channels, 1, 1, 0)
6: self.large_kernel = ReparamLargeKernelConv(dw_channels, dw_channels,
block_lk_size, 1, dw_channels, small_kernel, small_kernel_merged)
7: self.lk_nonlinear = nn.ReLU()
8: self.prelkb_bn = get_bn(in_channels)
9: self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

10: def forward(self, x):
11: out = self.prelkb_bn(x)
12: out = self.pw1(out)
13: out = self.large_kernel(out)
14: out = self.lk_nonlinear(out)
15: out = self.pw2(out)
16: return x + self.drop_path(out)

17: class LKDeXt(nn.Module):
18: def __init__(self, c1, c2, n=1, True, g=1, e=0.5):
19: super().__init__()
20: c_ = int(c2 * e)
21: self.cv1 = Conv(c1, c_, 1, 1)
22: self.cv2 = Conv(c1, c_, 1, 1)
23: self.cv3 = Conv(2 * c_, c2, 1)
24: self.m = nn.Sequential(*(LgConv(c_, c_, 21, 5, 0.0, False) for _ in range(n)))
25: def forward(self, x):

26: return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))

Algorithm A2: The pseudocode of the improved ConvBlock & LKDeXt

1: def ConvBlock(x):
2: x = Conv(x)
3: x = Batch_norm(x)
4: x = ReLU(x)
5: return x
6: def LgConv(x):
7: y = Batch_norm(x)
8: y = ConvBlock(y)
9: y = ReparamLargeKernelConv (y)
10: y = ReLU(y)
11: y = ConvBlock(y)
12: return x + dropout(y)

13: def LKDeXt(x):
14: y = Conv(concat(LgConv(Conv(x)),Conv(x),dim=1))
15: return y
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Abstract: The classic S-plane control method combines PD structure with fuzzy control theory, with
the advantages of a simple control structure and fewer parameters to be adjusted. It has been
proved as a practical method in an autonomous underwater vehicle (AUV) motion control at low and
medium speeds, but it takes no account of the situational static load and varying hydrodynamic forces
which influence the control quality and even result in a “dolphin effect” at the time of high-speed
movement. For this reason, an improved S-plane controller is designed based on the sliding mode
variable structure, sliding mode surface, and control items in order to respond to the situational static
load and high-speed movement. The improved S-plane controller is verified by Lyapunov stability
analysis. The thrust allocation strategies are also discussed with constraints introduced in accordance
with task requirements. In order to verify the practicability and effectiveness of the improved S-plane
controller, both simulation experiments and field trials of AUV motion control, long-range cruise,
and path point following were carried out. The results have demonstrated the superiority of the
improved S-plane controller over the classic S-plane controller.

Keywords: autonomous underwater vehicle; S-plane control; high speed; situational static load;
sliding mode variable structure

1. Introduction

With the advancements in automation technology, artificial intelligence, deep learning,
and system identification, notable breakthroughs have been made in intelligent underwater
vehicles [1–4]. Autonomous underwater vehicles (AUVs) have played a decisive part in
workplaces where human divers find it difficult or impossible to access. By far, AUVs have
been widely used in underwater pipeline detection, undersea cable maintenance, dam
detection, deep-sea resource exploration, etc. [5–7]. AUVs have presented a bright prospect
in civilian and military fields as a practical tool for special or demanding underwater
operations [8].

AUVs are subject to significant coupling and high nonlinear characteristics [9]. The
different modes of movement, complex environments, and uncertain factors jointly make it
difficult to establish an accurate AUV motion model. For this reason, the design of the AUV
motion control system must take the control quality into consideration for the purpose of
the admirable completion of operational tasks. A number of control methods have been
put forward over the past years to meet different requirements for AUV motion control.

Shi et al. [10] proposed a fuzzy PID method by combining fuzzy logic with PID control
in the design of a motion control system for a novel underwater vehicle. The 3D simulation
experiments of motion control were conducted to prove the superiority of the proposed
method over the conventional PID method in robustness and dynamic response. Hasan
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Mustafa Wassef et al. [11] developed an adaptive fuzzy nonlinear PID controller for un-
derwater vehicles to eliminate the effect of the disturbances caused by ocean currents.
Its anti-interference advantage was verified in contrast simulation experiments with the
fuzzy PID controller and the conventional PID controller. The simulation results showed
that the proposed controller improved the vehicle’s confrontation against deep-water and
near-surface wave disturbances. Keymasi Khalaji Ali et al. [12] proposed a finite time
sliding mode controller to reduce external disturbances. The performance and stability of
the method were compared with the sliding mode controller. The numerical comparison
results showed that the proposed approach was effective and applicable in practice. A
fuzzy control system was designed by Zhilenkov Anton [13]. The comparison with the PD
controller showed that the designed fuzzy controller provides a higher quality of control
of the plant under uncertainties. Cruz Ulloa Christyan et al. [14] combined closed-loop
fuzzy theory with visual control and proposed a fuzzy visual control method. The sim-
ulation results showed that the robot movements were very close to the morphological
behavior of a real jellyfish regarding the curves of displacements, speeds, and accelerations.
Keymasi Khalaji Ali et al. [15] put forward a tracking control approach based on passive
self-adaption. The adaptive rules were used to estimate and reduce the influence of un-
known interference. The stability of the proposed method was analyzed using passivity
properties and the Lyapunov theory. The comparative results showed the advantages of the
proposed method. Xue et al. [16] developed a model-independent adaptive controller for an
underwater vehicle manipulator system. The proposed controller showed good trajectory
tracking performance without a precise dynamic model of the manipulator system, which
was of great importance to applications in engineering. A robust nonlinear predictive
method was proposed by Nikou Alexandros et al. [17]. The proposed controller fell within
the tube-based non-linear model predictive control methodology and could handle the rich
expressivity in both safety and reachability specifications. Oliveira Everton L. et al. [18]
came up with a model predictive method based on interference observation whose ro-
bustness and performance were verified in simulation experiments of underwater vehicle
manipulator systems. Shojaei Khoshnam [19] worked on an adaptive neural network con-
troller. The combination of multi-layer neural networks (NNs) and adaptive robust control
techniques were designed to handle the compensation of model uncertainties including
unknown parameters, time-varying environmental disturbances induced by waves and
ocean currents, and NN approximation errors. Simulation results showed the effective
performance of the method for practical applications. Tony Salloom et al. [20] proposed an
adaptive neural network for parameter regulation via the genetic algorithm. The contrast
simulation experiments showed the advantages of the proposed network in regulation
efficiency and control accuracy over manual parameter regulation. Deep reinforcement
learning was applied to adaptive path planning and intelligent control of underwater
vehicles [21]. The study proposed an adaptive motion planning and obstacle avoidance
technique based on deep reinforcement learning for an AUV. The research adopted a
twin-delayed deep deterministic policy algorithm. The simulation results showed that
the motion planning system could precisely guide an AUV with six degrees of freedom
dynamics toward the target. Elhaki Omid et al. [22] combined a saturated adaptive robust
neural network with reinforcement learning, and the stability of the proposed closed-loop
system was investigated by Lyapunov’s direct methodology, and simulations along with
a comparative study certified the contributions. The radial basis function was combined
with sliding mode control [23] to improve the performance of target tracking. Lyapunov
stability analysis and homogeneity theory proved that tracking errors can converge on
a small region that contained the origin with prescribed performance in finite time. A
comparative study with sliding mode control verified the superiority of the proposed
method in steady-state error and convergence time. Liang et al. [24] completed the design
of a PID neural network sliding mode controller based on nonlinear high-order observation,
together with a comparative analysis with the neural network sliding mode controller.
The strength of the proposed controller in tracking accuracy and anti-interference was
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verified in simulation experiments. Karpenko Mark et al. [25] designed a bias feedback
attitude control system based on point following, and the simulation experiments showed
that the proposed system was able to reduce the overall resources together with quality
control performance. Cortes Perez Noel et al. [26] designed a mirror active vision system
for underwater vehicles and applied it to target tracking experiments. The active vision
system is tested by an experiment. The experiment results showed that the target could be
detected and tracked under low light conditions. Shi et al. [27] proposed an underwater
vehicle dynamic target tracking control method based on deep reinforcement learning,
whose performance was verified in simulation experiments. Simulation experiment re-
sults demonstrated good control performance regarding both stability and computational
complexity, indicating the effectiveness of the proposed algorithm in target tracking tasks.

Simulation experiments have been carried out for all the above-mentioned control
methods, some of which have been practically applied in engineering. The existing methods
primarily deal with motion control of underwater vehicles at low and medium speed
(≤1.0 m/s). However, there are few studies on high-speed underwater vehicle motion
control and operations demanding high speeds. In addition, some of the existing control
methods are complicated in structure or involve many parameters that require a long
adjustment process, which makes them ineffective in engineering practices.

The classic S-plane method has been recognized as a practical approach in engineering
fields [28]. In practical operations, however, the static loads such as buoyancy and gravity
of an AUV may vary due to the sensors or facilities it carries as required by the operational
tasks. The classic S-plane method fails to consider the variable static loads and the changing
hydrodynamic force at the time of high-speed movement, causing difficulty in high-speed
control or even failure in convergence. In addition to motion control, there are more
demanding operation tasks in different situations that expect better performance and
higher control accuracy in which the classic S-plane is currently incompetent. According
to the analysis of field trial results, the average overshoot of velocity control based on the
classic S-plane method in the horizontal plane is approximately 0.1 m/s and that in heading
control is approximately 3.9◦. In regard to operations with high requirements on control
quality, such as an overshoot of less than 0.05 m/s in velocity control or an overshoot of
less than 2.0◦ in heading control, the classic S-plane method would find it difficult to meet
the requirements.

In order to deal with the influence of variable static load and high-speed movement in
AUV motion control, an improved S-plane controller is developed. The improved controller
introduces the concept of sliding mode surface and sliding mode variable structure and
considers the above factors in form of control items to counter the influence of situational
static load and high-speed movement. A Lyapunov analysis is conducted to prove the
stability of the improved S-plane controller. Both simulation experiments and field trials
of AUV motion control, long-range cruise, and path point following were carried out.
The results have demonstrated the superiority of the improved S-plane controller over
the classic S-plane controller. The improved S-plane controller admirably coped with the
impacts of situational static loads and high-speed movement and improved the high-speed
control quality in different operation tasks.

This paper is organized as follows. In the second section, the underwater vehicle platform
is introduced, including the structure design and propulsion system, as well as software and
hardware architectures. In the third section, the motion coordinate system and the dynamical
model are established. In the fourth section, an improved S-plane controller is designed. The
stability analysis of the controller is carried out based on the Lyapunov function, together
with the thrust allocation strategies for the redundant propulsion system. In the fifth and
sixth sections, a detailed analysis of the results of the simulation experiments and field trials is
carried out to verify the feasibility and effectiveness of the improved method.
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2. Underwater Vehicle Platform

2.1. AUV Structure

As shown in Figure 1, the research is carried out on a composite platform composed of
a fundamental control system, target detection system, emergency system etc. [29]. With the
top priority to control quality in multiple functions including motion control, long-range
cruise and path point following [30], the platform is driven with a thruster-based layout.

Figure 1. Profile of the AUV.

The platform weighs over 2 t and is approximately 5 m long with a maximum radius
of 0.45 m. It is designed into a streamlined droplet with slightly positive buoyancy. The
platform is in a double shell structure with the outer layer as the protective shell and the
inner layer as the pressure shell. The streamlined protection shell is designed to reduce
drag force with composite materials for the bow and the stern. The pressure shell bears
high strength with waterproof sealing rings. The batteries and electronic control cabin are
placed inside the pressure shell which is made up of a ball head in front, a main housing,
and a ball head at the stern.

2.2. Propulsion System

Without a rudder or fin, the propulsion system includes eight thrusters and corre-
sponding accessories, including four conduit thrusters and four slot thrusters. 1© and 2©
are the left thruster and right thruster, respectively. 3© and 4© are the side thruster at the
bow and the side thruster at the stern, respectively. 5© and 6© are the vertical thruster at the
bow and the vertical thruster at the stern, respectively. 7© and 8© are the upward thruster
and downward thruster, respectively.

2.3. Hardware Architecture

The hardware architecture shown in Figure 2 contains the intelligent planning sector,
the autonomous navigation sector, and the motion control sector. These sectors allow
real-time data transmission with each other via a PC/104 ISA bus [31]. The hardware
architecture has been tested on several underwater vehicles of the same series in lake
trials and sea trials, whose feasibility and effectiveness have been verified. The intelligent
planning sector interprets and delivers target instructions. The autonomous navigation
sector is connected with a GPS and an inertial navigation system (INS), providing high-
precision navigation data [32]. The motion control sector deals with sensor data sampling
and decoding, control algorithm calculation, thrust allocation strategy, thrust instruction
sending, etc. The target instructions from the intelligent planning sector are transmitted
through UDP. The longitude and latitude data from the autonomous navigation sector is
transmitted through TCP. The attitude angle from the fiber optical gyrocompass (FOG) and
velocity information from the Doppler velocity logger are collected through a serial card.
The depth and leakage data are acquired through the A/D card, and the D/A card sends
analog voltage instructions to the thrusters.
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Figure 2. Hardware architecture of the platform.

2.4. Software Architecture

The control program is developed in C programming language [33]. The modular
design aims to improve the expansibility and portability of the software [34,35]. The
controlling software architecture fulfills functions of sensor data acquisition, data prepro-
cessing and fusion, control algorithm calculation, thrust allocation, thrusting instruction
transmission, and data storage.

The test platform follows the information flow as shown in Figure 3 at the time
of motion control. The unit of target generating and processing receives the objective
instructions and classifies the instructions according to the tasks. The control target is
initialized in the unit of control commands, including the selection of the motion control
model and the type and parameters of motion control. The aforesaid information is then
sent to the unit of control algorithm where the data from different sensors gather after being
pre-processed, filtered, and fused. The unit of the control algorithm is the core section that
has the control target processed, such as remote control or automatic control. In automatic
control, the target is calculated by the control algorithm and then the results are sent to the
thrust allocation module. After strategy selection and force calculation, the thrusting force
required from each thruster is obtained. The calculated force is then converted into analog
instructions that drive the thrusters to enable the AUV to move as expected. Meanwhile, the
inspection module of the actuators and sensors transmits the information of the emergency
module, acoustic visual module, optical visual module, and the thrusters to the memory
where such data are stored.

Figure 3. Information flow of the motion control sector.
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3. Dynamics Modelling

3.1. Coordinate Systems

Based on the standard symbol system, the body coordinate system G − xyz and the
inertial coordinate system E − ξηζ are constructed, as shown in Figure 4 [36]. G − xyz
reflects the dynamic characteristics of the AUV while E − ξηζ describes the attitude angles.

Figure 4. Body coordinate system and inertial coordinate system.

The two coordinate systems can be transformed as follows [37]:⎡⎣ξη
ς

⎤⎦= T−1

⎡⎣x
y
z

⎤⎦ (1)

T =

⎡⎣ c(ψ)c(θ) s(ψ)c(θ) −s(θ)
c(ψ)s(θ)s(φ)− s(ψ)c(φ) s(ψ)s(θ)s(φ) + c(ψ)c(φ) c(θ)s(φ)
c(ψ)s(θ)c(φ) + s(ψ)s(φ) s(ψ)s(θ)c(φ)− c(ψ)s(φ) c(θ)c(φ)

⎤⎦ (2)

Where T is the transformation matrix, φ is the rolling angle, θ is the pitch angle, and ψ
is the heading angle. s() stands for sin() and c() stands for cos().

3.2. Dynamical Model

The AUV motion equations are as follows [38]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X = m
[( .

u − vr + wq) − xG
(
q2+r2)+yG(pq − .

r
)
+ zG

(
pr +

.
q
)]

Y = m
[( .

v − wp + ur) − yG(r
2+p2) + zG(qr − .

p
)
+ xG

(
qp +

.
r
)]

Z = m
[( .

w − uq + vp) − zG(p
2+q2) + xG(rp − .

q
)
+ yG

(
rq +

.
p
)]

K = Ix
.
p + (I z − Iy)qr + m

[
yG
( .

w + pv − qu) − zG
( .

v + ru − pw)
]

M = Iy
.
q + (I x − Iz)rp + m

[
zG
( .

u + wq − vr
)− xG

( .
w + pv − uq

)]
N = Iz

.
r + (I y − Iz)pq + m

[
xG
( .

v + ur − pw
)− yG

( .
u + qw − vr

)]
(3)

where X, Y, Z, K, M, N are the external forces and torques acting upon the AUV. m is the
mass of the AUV. Ix, Iy, Iz are inertia moments. u, v, w stand for linear velocity and p, q, r
are angular velocity. xG, yG, zG mean the center of gravity.

Static loads such as buoyancy and gravity are variable since the AUV needs to be
equipped with different facilities or sensors as required by different operation tasks. The
research object in this paper is symmetrical in structure, so its movement model is estab-
lished as follows with full consideration of the situational static loads and high speeds [39].

FT − I(ν)ν − A(ν)ν − RG= M
.
ν (4)
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FT is the force/moment vector provided by the thrusters, I(ν) is the inertia force,
and A(ν) is the coefficient matrix of the damping force. RG is the force/moment vector
caused by the static loads in the body coordinate system. M is the mass matrix (including
additional mass) and ν is the speed vector in the body coordinate system.

The AUV is presumed symmetrical in three planes, and thus:

I(ν) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −Z .
ww Y .

vv

0 0 0 Z .
ww 0 −X .

uu

0 0 0 −Y .
vv X .

uu 0

0 −Z .
ww Y .

vv 0 −N .
rr M .

qq

Z .
ww 0 −X .

uu N .
rr 0 −K .

pp

−Y .
vv X .

uu 0 −M .
qq K .

pp 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

m − X .
u 0 0 0 0 0

0 m − Y .
v 0 0 0 0

0 0 m − Z .
w 0 0 0

0 0 0 Ix − K .
p 0 0

0 0 0 0 Iy − M .
q 0

0 0 0 0 0 Iz − N .
r

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(6)

Where X .
u, Y .

v, Z .
w and N .

r are the first-order hydrodynamic derivatives of the hull, and:

RG =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(W − BF)s(θ)
−(W − BF)c(θ)s(j)

−(W − BF)c(θ)c(j)

−(y GW − yBBF)c(θ)c(j) + (z GW − zBBF)c(θ)s(j)

(z GW − zBBF)s(θ) + (x GW − xBBF)c(θ)c(j)

−(x GW − xBBF)c(θ)s(j) − (y GW − yBBF)s(θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

where BF is the buoyancy and W is the gravity of the AUV. xB, yB, zB indicate the buoy-
ancy center.

The AUV motion model shown in Equation (4) derives the following properties.
Property I. The mass matrix M is positive definite and symmetric. M = MT > 0

and 0 < λmin(M) ≤ ‖M‖ < λmax(M). λmin(M) and λmax(M) are the minimum and
maximum of M. ‖M‖ is the modulus of M.

Property II.
.

M − 2I(v) is anti-symmetric. xT(
.

M − 2I(v))x = 0.
Property III. A(ν) is a positive definite matrix. A(ν) > 0.
Property IV. The uncertainty of the model is assumed to be determined with the upper

bound based on a known function, with ˆ standing for the estimation matrix, ~ standing
for the estimation deviation matrix, and Δ standing for the upper limit of the modulus of
the estimation deviation matrix; hence:

‖ M̃‖ = ‖M − M̂‖ ≤ ΔM < ∞
‖ Ĩ (ν)‖ = ‖I(ν) − Î (ν)‖ ≤ ΔI(ν) < ∞

‖ Ã (ν)‖ = ‖A(ν) − Â (ν)‖ ≤ ΔA(ν) < ∞
‖ R̃G‖ = ‖RG − R̂G‖ ≤ ΔRG < ∞

4. Motion Controller

4.1. S-Plane Controller

Based on the combination of PD control structure with fuzzy control theory, the classic
S-plane method is very effective with a simple structure and few parameters, which makes
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it rather practical in engineering applications. Its practicability in AUV motion control has
been soundly verified in plenty of field trials [40].

The S-plane controller functions are based on the mathematical model [28]:{
O = 2

1+exp( − kee − k .
e

.
e )

− 1

Tc= TmaxO
(8)

O is the normalized output of control. exp () means the exponential function. e is the
normalized deviation and

.
e is its variation rate, where e = (ud − u yd − y zd − z φd − φ θd

−θ ψd −ψ)T and
.
e = (au v w p q r)T . ke and k .

e are, respectively, the control parameters
of e and

.
e. Tc is the expected thrusting force (or torque) calculated by the control algorithm.

Tmax is the maximum thrusting force (or torque) that the AUV can provide.
It can be seen that the static load of the AUV is not considered in the mathematical

model. The existence of considerable static loads will surely influence the control quality.
In addition, the damping force that varies with the increasing speed is also prone to cause
difficulties in high-precision motion control.

4.2. Improved S-Plane Controller

With the reference to the sliding mode variable structure and S-plane function, the design
of the improved S-plane control method derives from Equation (4), where the situational
static load and high speed are initially considered. K2vt+K1e is used to indicate high-speed
movement. The item K3sgn(SE) reflects the concept of sliding mode surface. KEs · f(SE) means
the reference to the S-plane function. R̂G stands for the situational static load. Therefore, an
improved S-plane control method is designed by bringing in the sliding mode variable structure
and giving thought to the situational static load and high-speed movement.{

FT= M̂ (K 2
.
vt+K1

.
e
)
+
(

Î (v) + Â (v)
)
(K 2vt+K1 e) + K3sgn(S E) + R̂G+KEs · f(S E

)
f(S E) =

2
1+exp(S E)

− 1 (9)

FT is the control output matrix of the improved S-plane controller and M̂ the estimated
mass matrix.

.
vt indicates the derivative of the desired speed vector. K1 and K2 are positive

definite diagonal gain matrices and K3 is a positive definite diagonal matrix. sgn() means
sign function. Î (v) stands for the estimated matrix of inertia force coefficients, Â (v) stands
for the estimated matrix of damping force coefficients, and R̂G stands for the estimated
static load vector, including force and torque. KEs means positive definite diagonal matrix.
f(S E) is the chosen sigmoid function and SE is similar to the sliding mode surface in sliding
mode variable structure control.

In Equation (9), e and SE are defined as:{
e = T ξ̃
SE= K1e + K2

.
e = K1e + K2vt − K2v

(10)

where ξ = [ξ η ς φ θ ψ] indicates the attitude angle and position matrix of the AUV in the
geodetic coordinate system. ξ̃ = [ξ t − ξ ηt − η ςt − ς φt − φ θt − θ ψt − ψ] is the estimated
deviation matrix of ξ.

To ensure the stability of the proposed control model, the Lyapunov function shown
in Equation (11) is constructed:

VL =
1
2

SE
TMSE (11)

The derivation of VL in Equation (11) leads to:
.

VL =
1
2

SE
T

.
M SE+SE

TM
.
SE (12)

With respect to the bounded K1 and K2, the derivation of SE in Equation (10) leads to:
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.
SE=

.
K2vt+K2

.
vt −

.
K2v − K2

.
v +

.
K1e + K1

.
e

= K2
.
vt − K2

.
v + K1

.
e

(13)

When equivalently transformed, Equation (4) is changed into Equations (14)–(16).

− M
.
ν = I(ν)ν+ A(ν)ν+ RG − FT (14)

−M−1M
.
ν = M−1

[I(ν)ν+ A(ν)ν+ R G − FT

]
(15)

− .
ν = M−1

[I(ν)ν+ A(ν)ν+ R G − FT

]
(16)

When Equation (13) is substituted with Equation (16):
.
SE= K2

.
vt+K1

.
e + K2M−1[(I(ν) + A(ν))ν+ R G − FT

]
(17)

When Equation (12) is substituted with Equation (17):
.

VL = 1
2 SE

T
.

M SE+SE
TM{K2M−1[(I(ν) + A(ν))ν+ R G − FT] + K2

.
vt+K1

.
e }

= 1
2 SE

T
.

M SE+SE
T{K2[(I(ν) + A(ν))ν+ R G − FT] + M(K 2

.
vt+K1

.
e
)
}

(18)

When equivalently transformed, Equation (10) is changed into:

v = K2
−1K1e + vt − K2

−1SE (19)

When Equation (18) is substituted with Equation (19):
.

VL = 1
2 SE

T
.

M SE+SE
T{K2[(I(ν) + A(ν))(K 2

−1K1e + vt − K2
−1SE) + RG − FT] + M(K 2

.
vt+K1

.
e
)
}

= 1
2 SE

T
.

M SE+SE
T[K 2(I(ν) + A(ν))(K 2

−1K1e + vt) − K2(I(ν) + A(ν))K−1
2 SE+M(K 2

.
vt+K1

.
e
)
+ RG − FT

]
= 1

2 SE
T

.
M SE+SE

T[M(K 2
.
vt+K1

.
e
)
+ K2(I(ν) + A(ν))(v t+K2

−1K1 e) + RG − FT] − SE
TK2(I(ν) + A(ν))K2

−1SE

(20)

According to Property II, Equation (20) can be simplified as:
.

VL= [ 1
2 SE

T
.

M SE − SE
TK2(I(ν) + A(ν))K2

−1SE] + SE
T[M(K 2

.
vt+K1

.
e
)
+ K2(I(ν) + A(ν))(v t+K2

−1K1 e) + RG − FT

]
= 1

2 [S E
T

.
M SE − SE

TK2(2I(ν))K2
−1SE − SE

TK2(2A(ν))K2
−1SE] + SE

T[M(K 2
.
vt+K1

.
e
)
+ K2(I(ν) + A(ν))(v t+K2

−1K1 e) + RG − FT

]
= 1

2 [S E
T
( .

M − 2I(ν))SE] − SE
TA(ν)SE+SE

T[M(K 2
.
vt+K1

.
e
)
+ K2(I(ν) + A(ν))(v t+K2

−1K1 e) + RG − FT

]
= −SE

TA(ν)SE+SE
T[M(K 2

.
vt+K1

.
e
)
+ K2(I(ν) + A(ν))(v t+K2

−1K1 e) + RG − FT
]

(21)

When Equation (21) is substituted with Equation (9):

.
VL = −SE

TA(ν)SE+SE
T[M(K 2

.
vt+K1

.
e
)
+ (I(ν) + A(ν))(K 2vt+K1 e) + RG − M̂ (K 2

.
vt+K1

.
e
) − (

Î (ν) + Â (ν)
)
(K 2vt

+K1 e) − R̂G − KEs · f(S E) − K3 · sgn(S E)]

= −SE
TA(ν)SE − SE

TKEs

[
2

1+exp(S E)
− 1] − SE

TK3sgn(S E) + SE
T
[

M̃ (K
2

.
vt+K1

.
e
)
+
(

Ĩ (ν) + Ã (ν)
)
(K

2
vt+K1 e) + R̃G

] (22)

According to Property I and III, and with the consideration of bounded KEs in Equation (9),
.

VL in Equation (22) is bounded and:
.

VL ≤ −λmin(A(ν))‖SE‖2 − λmin(K Es

)
‖SE‖ − λmin(K 3)‖SE‖+ ‖SE

T
[

M̃ (K
2

.
vt+K1

.
e
)
+
(

Ĩ (ν) + Ã (ν)
)
(K

2
vt+K1 e) + R̃G

]
‖ (23)

where λmin(A(ν)), λmin(KEs), and λmin(K 3) are the minimum eigenvalues of their corre-
sponding matrix. ‖SE‖ is the modulus of SE.

According to Property IV and triangle inequality, Equation (23) can be changed into:
.

VL ≤ −λmin(A(ν))‖SE‖2 − λmin(K Es

)
‖SE‖ − λmin(K 3) ‖SE‖+[‖ M̃‖‖K2

.
vt+K1

.
e‖+(‖ Ĩ (ν)‖+ ‖ Ã (ν)‖

)
‖K2vt+K1e‖+ ‖ R̃G‖

]
‖SE‖

≤ −λmin(A(ν))‖SE‖2 − λmin(K Es

)
‖SE‖ − λmin(K 3) ‖SE‖+[ΔM ‖K2

.
vt+K1

.
e‖+(ΔI(ν) + ΔA(ν))‖K2vt+K1e‖+ΔRG

]‖SE‖
(24)

where ΔM,ΔI(ν),ΔA(ν), and ΔRG are, respectively, the upper limits of the modulus of the
estimated deviation matrix.

Based on the appropriate KEs and K3, when Equation (24) satisfies
.

VL< 0, KEs and
K3 satisfies:
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[λmin(K Es) + λmin(K 3)] ≥ [ΔM‖K2
.
vt+K1

.
e‖+(ΔI(ν) + ΔA(ν))‖K2vt+K1e‖+ΔRG

]
(25)

The sliding mode surface of the improved S-plane controller is defined as:

SE= K1e + K2
.
e (26)

where K1 is the matrix of control parameters over deviation and K2 is the matrix of control
parameters over deviation variation rate.

At the time of high-speed movement, the AUV is controlled with speed in the surge
direction while it is controlled with the position in the other degrees of freedom. For this
reason, the control inputs in the surge direction are speed deviation and accelerated speed,
while the inputs in the other degrees of freedom are the deviation and its variation rate of
angle or position.

K1 and K2 are expressed as:{
K1= diag(k 1, k2, k3, k4, k5, k6)
K2= diag(k 21, k22, k23, k24, k25, k26)

(27)

The model of the improved S-plane controller is finalized as:{
FTi= M̂i(K 2i

.
vti+K1i

.
ei) +

(
Î (ν) i+Â (ν)i)(K 2ivti+K1iei) + K3i · sgn(S Ei) + R̂Gi+KEsi · f(S Ei

)
f(S Ei) =

2
1+exp(S Ei)

− 1 (28)

where FTi,
.
vti,vti,

.
ei,ei, R̂Gi, and SEi are the ith component of their corresponding vector.

M̂i,K1i,K2i,K3i, Î (ν)i, and Â (ν)i are the element at the ith row and the ith column in their
corresponding matrix.

4.3. Thrust Allocation Strategy

Due to the slender and symmetric outline of the research object, the movement in
the roll direction is typically ignored [41]. In accordance with the configuration of the
propelling system as illustrated in Figure 1, f1 and f2 are left thruster and right thruster,
respectively, with l1 and l2 as the arm of force and α as the included angle to the center of
the research object. f3 and f4 are the thrusting forces from side thrusters at the bow and the
stern, with l3 and l4 being the arm of force to the center of the research object. f5 and f6
are the thrusting forces from the vertical thrusters at the bow and the stern, with l5 and l6
being the arm of force to the center of the research object. f7 and f8 are the thrusting forces
from the upward thruster and downward thruster, with l7 and l8 being the arm of force
and β is the included angle to the center of the research object. The forces required in the
five degrees of freedom and the thrusting forces provided by the eight thrusters follow the
relationship below.

⎡⎢⎢⎢⎢⎣
Fx
Fy
Fz
My
Mz

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
c(α) c(α) 0 0 0 0 c(β) c(β)
−s(α) s(α) 1 1 0 0 0 0

0 0 0 0 1 1 −s(β) s(β)
0 0 0 0 −l5 l6 −l7 l8
−l1 l2 l3 −l4 0 0 0 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1
f2
f3
f4
f5
f6
f7
f8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(29)

It can be inferred from Equation (29) that the control over thrusters is redundant. For
the purpose of simplified calculation, constraints are introduced for thrust allocation in
accordance with practical task requirements.

In regard to the significant drag force in the sway direction, the heading angle is
adjusted to achieve path tracking at the time of a high-speed cruise.

Fy= 0 (30)
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In the case of high-speed movement, since the movement in the heave direction
produces great hydrodynamic force, the trimming angle is adjusted to achieve depth
control. For this reason, there is no requirement for external force in the heave direction.

Fz= 0 (31)

Considering the deduction of thrusting force, the four slot thrusters stop service at the
time of high-speed movement; hence:{

f3 · l3 − f4 · l4= 0
f5 · l5 − f6 · l6= 0

(32)

The thrust allocation strategy for control in the surge direction is developed according
to the respective maximum thrust provided by the upward thruster, downward thruster,
left thruster, and right thruster, with τ as the ratio of the maximum force between the
upward and downward thrusters, as well as the left and right thrusters.

τ =
(f 7+f8)c(β)
(f 1+f2)c(α)

(33)

Equations (29)–(33) jointly lead to the force provided by each thruster at the time of
high-speed navigation.

In position control, the AUV proceeds stably and potent forces can be provided by the
slot thrusters. Therefore, the constraints are added as follows. The upward and downward
thrusters are shut; thus, f7 = f8 = 0. The left and right thrusters provide force in the surge
direction and steering moment. The side thrusters at the bow and the stern provide force
in the sway direction. The vertical thrusters at the bow and the stern provide force in the
heave direction. Accordingly, Equation (29) is simplified as:

⎡⎢⎢⎣
Fx
Fy
Fz
Mz

⎤⎥⎥⎦ =

⎡⎢⎢⎣
c(α) c(α) 0 0 0 0
−s(α) s(α) 1 1 0 0

0 0 0 0 1 1
−l1 l2 l5 −l6 0 0

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

f1
f2
f5
f6
f7
f8

⎤⎥⎥⎥⎥⎥⎥⎦ (34)

Equations (35) and (36) are the constraints.

f3 · l3 − f4 · l4= 0 (35)

f5 · l5 − f6 · l6= 0 (36)
Equations (34)–(36) jointly lead to the force provided by each thruster in the case of

AUV position control.

5. Simulation Experiments and Analysis

The static loads of the AUV may vary with the sensors or facilities it carries as required
in different operation tasks. Based on the experience of sea trials and analysis of the static
loads in different situations, it is concluded that the possible static loads range between
20 N and 150 N. Given the applicability of the assumptions, simulation experiments were
carried out with 20 N, 100 N, and 150 N selected as the static loads.

Contrastive simulation experiments were considered to be an effective way to highlight
the superiority of the improved S-plane method over the classic S-plane method under
the same static load. In the improved S-plane controller, R̂G3 was 50 N, with K1 = diag
(0.8,1.0,2.0,1.0,1.2,0.4 ) , K2 = diag (0.4,0.5,1.0,0.5,0.6,0.2) , K3 = diag (1.0,1.5,2.0,1.5,1.0,0.5),
and K3 = diag (120,120,150,100,100,500).

It is noteworthy that the static load of the AUV varies in different situations, it( R̂G3 = 50)
was set differently from that in the simulator so as to verify the robustness of the improved
controller. Moreover, different current conditions were also included to examine the
robustness of the controller to external disturbances.
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Simulation I. In the contrastive simulation experiment, the static load was set to 20 N,
with no current. The AUV was stationary on the water’s surface at the beginning. The
desired velocity in the surge direction was 3.0 m/s and the desired depth was 5 m. The
contrastive simulation results are shown in Figure 5.

  

(a) (b) 

 
(c) 

Figure 5. Contrastive control results with a static load of 20 N. (a) Results of velocity control;
(b) results of depth control; (c) changes of trimming angle.

It can be seen from the results that both the classic and improved S-plane controllers
reached the desired value with no steady-state error. With the classic S-plane controller, a
maximum overshoot of 0.15 m/s and significant fluctuations can be seen in the velocity
control in Figure 5a, and a maximum overshoot of 0.35 m together with oscillations from
30–70 s in depth control in Figure 5b. In contrast, based on the improved S-plane controller,
there was barely any overshoot or oscillation in the velocity control and the depth control.
Additionally, the system based on the improved S-plane method produced a much milder
influence on the trimming angle in contrast with the drastic changes caused by the classic
S-plane controller, as shown in Figure 5c.

Simulation II. The static load was set to 100 N, with a current velocity of 0.25 m/s and
a direction of 0◦. The rest of the conditions were the same as in Simulation I. The simulation
results are shown in Figure 6.
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(a) (b) 

 
(c) 

Figure 6. Contrastive control results with a static load of 100 N. (a) Results of velocity control;
(b) results of depth control; (c) changes of trimming angle.

With a static load of 100 N, the classic S-plane controller showed a maximum overshoot
of 0.20 m/s in the velocity control in Figure 6a and significant oscillations of over 0.5 m
from 18–65 s in the depth control in Figure 6b. However, the improved S-plane controller
provided admirable control results with almost no overshoot and reached the stability
state in a smooth way. Although both controllers caused impacts on the trimming angle,
the influence caused by the classic S-plane controller lasted almost 70 s during the control
process, while that caused by the improved S-plane controller immediately cleared off
within the first 25 s during the control period, as shown in Figure 6c.

Simulation III The static load was set to 150 N, with a current velocity of 0.25 m/s
and a direction of 45◦. The rest of the conditions were the same as in Simulation I. The
simulation results are displayed in Figure 7.
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(a) (b) 

 
(c) 

Figure 7. Contrastive control results with a static load of 150 N. (a) Results of velocity control;
(b) results of depth control; (c) changes of trimming angle.

With a much greater static load this time, the classic S-plane controller produced
a maximum overshoot of 0.25 m/s in the velocity control in Figure 7a and significant
oscillations of over 0.6 m from 20–62 s in the depth control in Figure 7b. However, the
improved S-plane controller provided marvelous results with a much shorter time reaching
the stability state than that with a static load of 100 N. As shown in Figure 7c, the improved
S-plane controller enabled the trimming angle to recover within a much shorter time
than that of the classic S-plane controller. The contrastive simulation experiments have
verified the robustness and superiority of the improved S-plane controller and justified the
feasibility of the sliding mode variable structure.

The controller has no prior knowledge of the currents, so the currents are treated as
external interferences in the controller. As the results show, the control quality presents barely
any difference with and without the existence of currents. This means the controller is capable of
dealing with external interference, which verifies its strong robustness. In addition, the smooth
responses from the improved S-plane method benefit from the strategies developed to solve
the chattering effect. Based on the strategies of slow start–smooth running–slow stop, the small
input at the initial stage is provided to avoid abrupt state change. Moreover, the outputs of the
symbolic function are also saturated. These measures jointly help to reduce the chattering effect
of the sliding mode variable structure to a large extent.

6. Field Trials and Analysis

Field trials were conducted with the purpose of verifying the control performance,
as well as the stability and reliability of the improved S-plane controller in continuous
operation. Motion control is the foundation for all the other functions, so contrastive field
trials of AUV motion control were carried out between the classic and the improved S-plane

218



J. Mar. Sci. Eng. 2023, 11, 646

methods, and the long-range cruise and path point following were completed to examine
the improved S-plane method.

The contrastive controls over velocity and heading angle in the horizontal surface
were first carried out. Then, contrastive controls over velocity and depth in the vertical
plane were conducted to verify the effectiveness of the proposed controller, followed by
the long-range cruise and trial of path point following. The surroundings and environment
of the sea trials are shown in Figure 8.

 
Figure 8. Environment of the sea trials.

6.1. Contrastive Trials of Velocity and Heading Control on a Horizontal Surface

On an equal basis, the AUV was stationary on the water surface at the beginning, with
an initial heading angle of 0◦. The desired velocity was 2.0 m/s in the surge direction and
the desired heading angle was 60◦. The results of velocity and heading control based on
the classic S-plane method and the improved S-plane method are shown below, together
with a detailed view of the control values from 200–250 s during the control process.

As shown in Figure 9a, the velocity control curve based on the classic S-plane method
is satisfactory on the whole. It takes the system approximately 100 s to reach stability. In the
detailed view shown in Figure 9b, oscillations go up and down around the desired value
with the maximum offset over 0.112 m/s. In contrast, the system based on the improved
S-plane method reaches stability within a much shorter time of about 60 s, and as shown in
Figure 10b, the bias is smaller than that based on the classic S-plane method.

  
(a) (b) 

Figure 9. Results of velocity control in horizontal surface based on the classic S-plane method.
(a) Results of velocity control; (b) detailed local values.
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(a) (b) 

Figure 10. Results of velocity control in horizontal surface based on the improved S-plane method.
(a) Results of velocity control; (b) detailed local values.

As shown in Figures 11 and 12, the improved S-plane method proves its effectiveness
and superiority again in the heading control with barely any fluctuations or overshoot.
Although both methods have caused deviations, the improved S-plane method excels
compared to the classic method with a smaller and milder offset.

  
(a) (b) 

Figure 11. Results of heading control based on the classic S-plane method. (a) Results of heading
control; (b) detailed local values.

  
(a) (b) 

Figure 12. Results of heading control based on the improved S-plane method. (a) Results of heading
control; (b) detailed local values.
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With maximum overshoot, standard deviation, and arithmetic mean value, the contrast
of the velocity and heading control results based on the two methods ranging from 200–250 s
during the control process are listed as shown in Table 1.

Table 1. The contrast of velocity and heading control results with two different methods (200–250 s).

Target Methods
Maximum
Overshoot

Standard
Deviation

Arithmetic
Mean Value

Velocity (2.0 m/s) classic S-plane 0.112 m/s 0.017 m/s 2.081 m/s
improved S-plane 0.011 m/s 0.008 m/s 2.000 m/s

Heading (60◦) classic S-plane 3.93◦ 1.39◦ 61.38◦
improved S-plane 1.24◦ 0.56◦ 60.23◦

In the stability state, it can be seen from the parameters that the proposed improved S-
plane controller provides admirable control quality and higher control precision in motion
control on the horizontal surface, with greater robustness against the time-varying control
system. Such superiority is especially noticeable in the heading control.

6.2. Contrastive Trials of Velocity and Depth Control on the Vertical Plane

Again, for the purpose of contrasting the two different methods, sea trials were carried
out for velocity and depth control on the vertical plane.

On an equal basis, the velocity control proceeded with the AUV at the depth of 0.5 m
for both methods. The velocity control began with an initial velocity of 0 m/s with a desired
velocity of 1.5 m/s. In the depth control, the AUV was expected to dive from the water
surface down to the desired depth of 1.8 m. The results of velocity and depth control based
on the two methods are shown below, together with a detailed view of the control values
from 200–250 s during the control process.

As shown in Figures 13 and 14, both methods present admirable performance in
velocity control in the vertical plane. The improved S-plane method wins out with a control
curve that almost perfectly fits the desired value as shown in Figure 14b.

  
(a) (b) 

Figure 13. Results of velocity control in vertical plane based on the classic S-plane method. (a) Results
of velocity control; (b) detailed local values.

As shown in Figures 15 and 16, in depth control, it takes both methods a little while
to begin to go under the water’s surface. When reaching the stability state, the classic S-
plane method causes frequent oscillations, while the improved S-plane method enables the
system to stabilize at the desired depth with mild oscillations and insignificant overshoot,
as shown in Figure 16b.
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(a) (b) 
Figure 14. Results of velocity control in vertical plane based on the improved S-plane method.
(a) Results of velocity control; (b) detailed local values.

  
(a) (b) 
Figure 15. Results of depth control based on the classic S-plane method. (a) Results of depth control;
(b) detailed local values.

  
(a) (b) 

Figure 16. Results of depth control based on the improved S-plane method. (a) Results of depth
control; (b) detailed local values.
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With maximum overshoot, standard deviation, and arithmetic mean value, the contrast
of the velocity and depth control results based on the two methods ranging from 200–250 s
are listed as shown in Table 2.

Table 2. The contrast of velocity and depth control results with two different methods.

Target Methods
Maximum
Overshoot

Standard
Deviation

Arithmetic
Mean Value

Velocity (1.5 m/s) classic S-plane 0.089 m/s 0.031 m/s 1.547 m/s
improved S-plane 0.016 m/s 0.005 m/s 1.503 m/s

Depth (1.8 m) classic S-plane 0.092 m 0.030 m 1.827 m
improved S-plane 0.041 m 0.016 m 1.816 m

The improved S-plane method proves its superiority over the classic S-plane method
again with a smaller maximum overshoot and standard deviation. Despite almost the
same arithmetic mean value from both methods, the improved S-plane method showed
much milder deviations in depth control, as shown in Figure 16b, which guarantees the
stability of the AUV motion control system. Such superiority is of great significance to real
operations with high requirements on control precision.

6.3. Long-Range Cruise

The long-range cruise was carried out to verify the performance, reliability, and
stability of the improved S-plane controller. The AUV was expected to cruise along a
quadrilateral route of 12 km × 4 km. The cruise lasted for approximately 4 h, with an
average speed of 2 m/s and a maximum cruising speed of 2.5 m/s.

It can be seen from the long-range cruise results that the actual route fit the desired
route. The improved S-plane controller proved its control competence, especially at the
apex of the quadrangle. The detailed route data during the first part of the cruise are
shown in Figure 17b. Although the torrential currents caused a few deviations, the offsets
were within the permissible range of engineering requirements. The AUV control system
functioned normally with no hardware or software failure during the long-range cruise,
which verified the stability and reliability of the improved S-plane method.

 
(a) (b) 

Figure 17. Results of the long-range cruise. (a) The curve of the long-range route; (b) detailed route values.

6.4. Path Point Following

The trial of the path point following was conducted to examine the AUV’s competence
in the search or scanning operations of underwater pipelines or cables based on the improved
S-plane controller. The pectinate path was marked with eight points to be covered, as shown

223



J. Mar. Sci. Eng. 2023, 11, 646

in Figure 18, with a long side of approximately 550 m and a short side of 200 m. To test the
performance and robustness of the improved S-plane method, the eight points were selected
to be non-orthogonal with the longitude or latitude. The AUV was expected to reach the
eight points (A–H) in succession in the scanning. It ran along the path at a constant speed of
2.0 m/s. Considering the challenging water conditions, a circle with a radius of 10 m with
each marked point as the center was defined as the acceptable range of reach.

Figure 18. The trajectory of path points following.

Based on the detailed view of reaching the eight points, as shown in Figure 19, and the
analysis of the deviations from the connection lines between the points, as shown in Table 3,
the AUV was able to reach all eight acceptable circles in a stable way, with a maximum
deviation of 9.44 m, which was within the permissible range in engineering. The following
trial verified the control accuracy of the improved S-plane method, which could be of
practical use in improving the efficiency of sweeping search operations.

Table 3. An analysis of path point following based on the improved S-plane method.

Position Maximum Overshoot Mean Deviation

A-B 8.65 m 4.95 m
B-C 7.56 m 5.15 m
C-D 6.29 m 3.63 m
D-E 9.44 m 8.53 m
E-F 7.29 m 3.85 m
F-G 6.97 m 3.86 m
G-H 8.61 m 4.73 m

The control trials in the horizontal plane, vertical plane, long-range cruise, and path
point following have all witnessed the superiority and excellence of the improved S-pane
method. This is because the novel controller is based on the sliding mode variable structure
and takes the situational static load into account, which enhances the method’s robustness
to external disturbances. In addition, the control items introduced in the improved S-plane
model could directly offset the adverse influences from the static load.
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

 
(g) (h) 

Figure 19. Detailed view of reaching the eight points. (a) Detailed view of reaching Point A;
(b) detailed view of reaching Point B; (c) detailed view of reaching Point C; (d) detailed view
of reaching Point D; (e) detailed view of reaching Point E; (f) detailed view of reaching Point F;
(g) detailed view of reaching Point G; (h) detailed view of reaching Point H.
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7. Conclusions

This paper focuses on an improved S-plane controller designed for high-speed AUVs
with different static loads, as required in multi-purpose operations. The existing control
methods, including the classic S-plane method, can sufficiently deal with low- and medium-
speed AUV motion control but they are limited in performance, with a lack of consideration
of situational static load and hydrodynamic force as the result of high-speed movement.

On the basis of the classic S-plane control model and giving thoughts to the static load
and hydrodynamic forces that change with AUV speed, an improved S-plane controller
based on the sliding mode variable structure is developed by taking the static load and
hydrodynamic forces as the control items. The stability of the proposed control method is
testified by Lyapunov’s stability theory.

In order to compare and analyze the influence of situational static loads on the control
quality of the classic S-plane controller and the improved S-plane controller, simulation
experiments were carried out. Given the commonly used sensors or facilities that the
AUV may carry in operations, the static loads of minimum, maximum, and medium
weights together with the current disturbances were set in the contrastive simulations.
It is especially noteworthy that the situational static load R̂G was intentionally set to be
different from that of the simulator, so as to verify the robustness of the improved S-plane
controller. The simulation results show that the system based on the classic S-plane method
suffered from overshoot in the velocity control and oscillations in the depth control with
drastic fluctuations in the trimming angle as the result of a failure to consider the static load.
By contrast, the improved S-plane controller countered the static loads and guaranteed
control quality. The contrastive simulation experiments have verified the robustness of the
improved S-plane controller.

On the basis of the simulation experiments, field trials were also carried out to further
test the performance of the improved S-plane controller. Since motion control is the
foundation of all the other functions, it was firstly conducted in velocity, heading, and
depth control in the horizontal plane and the vertical plane, respectively, followed by
the long-range cruise and path point following to examine the stability and reliability of
the improved S-plane method. In the horizontal plane, the improved S-plane controller
presented a maximum overshoot and standard deviation of approximately 0.011 m/s and
0.008 m/s in the velocity control, as well as 1.24◦ and 0.56◦ in the heading control. In the
vertical plane, the improved S-plane controller showed a maximum overshoot and standard
deviation of approximately 0.016 m/s and 0.005 m/s, as well as 0.041 m and 0.016 m in the
depth control. The precision in AUV high-speed motion control was verified. In addition,
the stability of the improved S-plane method was proved during the approximately 4 h
long-range cruise with no failures on the hardware and software architectures. The path
point following was finally conducted to examine the AUV’s competence in the search
or scanning operations of underwater pipelines or cables based on the improved S-plane
controller. The AUV was able to reach all eight path points, with a maximum deviation
of 9.44 m, which was within the permissible range in engineering. The improved S-plane
method can be of great use to field tasks that have high expectations on AUV motion control
quality, especially in cases of high-speed movement or challenging working environments.

The research object in the study is driven by thrusters, but theoretically, the research
findings are also of great value to AUVs with propellers and rudders. Later studies will
concentrate on the effectiveness of the improved S-plane controller on AUVs with different
propulsion structures or outer dimensions so as to lay the foundation for a wide application
of the proposed technology.
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