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Preface

In recent years, we have witnessed two major revolutions in the field of protein structural

biology. On one hand, experimental techniques are enhancing the ease with which the structural

details of complex protein systems are visualized with an astonishingly high resolution. More than

200,000 experimental structures are currently deposited in the Protein Data Bank (PDB), providing

us with a vast volume of data with which to decipher the protein structure–function relationship.

Cryogenic electron microscopy (cryoEM) has offered significant advances in this field, enabling

increasingly large proteins to be resolved at increasingly high resolutions. On the other hand,

significant advancements in machine learning (ML) and artificial intelligence (AI) have allowed huge

amounts of sequence and structural data to be mined, analyzed, and interpreted in a shorter time.

AI algorithms, such as AlphaFold, have been particularly valuable for the prediction of protein

structures, providing us with more than 1,000,000 new computer-generated structures in the PDB. Yet,

despite this huge volume of experimental and computational data, several fundamental questions

remain unanswered. How do proteins exploit their structural and dynamical features to initiate

biological activity? What triggers the conformational changes required for protein function? Does the

external environment play a role in driving protein-relevant dynamics? How do signals associated

with protein–ligand and protein–protein binding propagate to generate allosteric mechanisms? Do

deleterious mutations disrupt protein functionality by impairing the biologically relevant motions?

In this Special Issue, we have compiled recent works that attempt to answer these (and other)

relevant questions. All included research studies make use of one or more computational techniques

in order to elucidate the intimate relationship between the sequence, structure, dynamics, and

function of proteins. The reader will find that these techniques can range from molecular dynamics

(MD) to normal mode analysis (NMA), elastic network models (ENMs), the protein contact network

(PCN), and many more. We believe that the content of this Special Issue is particularly beneficial for

the computational and structural biology communities; it creates knowledge on the dynamics and

function of proteins and hopes to stimulate new and exciting research questions.

Robert Jernigan and Domenico Scaramozzino

Editors
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Proteins are fundamental macromolecules that sustain living organisms by performing
an astonishingly wide variety of tasks. They adopt extremely diverse shapes that perform
highly specific functions, achieved through temporal optimization over millions of years
of evolution. Proteins usually have specific flexibility that enables them to undergo the
conformational changes necessary to perform certain functions. Understanding protein
flexibility and conformational dynamics is thus pivotal to determine how proteins work.
In the era of advanced computing technologies, can we use computational approaches to
elucidate how proteins’ structures and dynamics drive their function? This Special Issue
collects recent studies that employ different computational methods to answer this question.

Molecular Dynamics (MD) is regarded as the gold standard when it comes to protein
dynamics. Molecular docking and virtual screening are popular computational methods to
discover novel drugs and protein inhibitors. Singh et al. [1] combined docking-based virtual
screening with MD simulations to find potential inhibitors of Mycobacterium tuberculosis
Fatty Acid Synthase type-I (Mtb FAS-I). By screening a database of ~55,000 compounds, the
authors narrowed their targets down to nine potential candidates. By carrying out short
MD simulations and binding energy calculations for the nine protein–ligand complexes, the
authors reduced their targets to four molecules that might act as pioneer FAS-I inhibitors,
paving the way to a novel treatment for tuberculosis.

Simpler than MD simulations, Elastic Network Models (ENMs) simulate protein dy-
namics and flexibility by modeling the protein as a network of elastic springs, and are often
used in combination with Normal Mode Analysis (NMA). Scaramozzino et al. [2] intro-
duced a dynamic solvent effect into ENMs to more effectively reproduce X-ray fluctuations
than using solvent-free ENMs. By investigating a dataset of ~1k protein structures, they
showed that the highest correlation with experimental data was obtained when random
perturbations were applied to the solvent-exposed surface and when water molecules
were included into the ENM. These findings suggest that a tightly bound water layer is
important for modulating protein flexibility, and that protein fluctuations likely originate
during the bombardment of the structure by the solvent.

ENMs were also used by Tarenzi et al. [3] to decipher structure–dynamics–function
relationships. ENM-NMA was applied to a dataset of 116 different proteases, and proteins
were clustered together based on their “dynamic distance” in the space of normal modes.
Proteins that belonged to the same sub-families, and thus, had similar sequences and
functions, also had similar dynamics. Interestingly, some sub-families were also clustered
together in certain cases, suggesting that they might share similar dynamic traits despite
having different evolutionary origins. This method also built a basis of dynamic vectors
that could describe the most important features of the large-scale motions in the dataset
and was validated by MD.

Structural modeling, protein–protein docking, and Protein Contact Networks (PCNs)
were used by Drago et al. [4] to analyze the interactions between the von Willebrand
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Factor (VWF) and Factor VIII belonging to the coagulation cascade. Two models of FVIII
(full-length and without the B-domain) were docked with VWF. The binding energies and
PCN results were subsequently analyzed to assess the stability of the FVIII-VWF interfaces
and find potential allosteric pathways. The results showed that the A3-C1 domains are
the preferential binding sites for VWF. This agrees with the experimental structure of
efanesoctocog alfa, a novel (B-domain free) FVIII-VWF complex used in medication for
hemophilia A.

The effect of ligand binding on the dynamics and allosteric pathways in human
Glutathione Transferase A1 (GTSA1) was investigated by Nicolaï et al. [5]. MD simulations
were carried out on apo GTSA1, and on GTSA1 bound to glutathione (GSH) or to a GS-
conjugate ligand. Free-energy surfaces and 1D profiles were reconstructed based on the
variability of two sets of coarse-grained angles. By looking at the differences between
free-energy landscapes, the authors recognized 11 residues known to be key in ligand
binding and identified 22 more that were previously unknown. Some of these residues are
distant from the binding sites, highlighting the importance of long-range allosteric effects
for protein-ligand interactions.

MD simulations were also used by Sogunmez and Akten [6] to analyze the dynamics
of human β2-adrenergic receptor (β2AR) in complex with a G-protein, and its signal
transmission in its fully active state. Mutual information and transfer entropy were used
to infer correlations between Cα displacements and the rotameric states of the backbone
and side-chain angles. The use of rotameric states enabled the recognition of strong
correlations in almost all loop regions; the authors identified the loops as potential allosteric
hot spots and highlighted the donor nature of polar residues and their importance in
signal transmission.

The intertwined relationship between protein sequence, structure, dynamics, and
function was broadly addressed by Orellana in a perspective article [7]. After a review
of the literature, the author highlighted specific examples in which functional motions
are conserved from bacteria to mammals. Emblematic of this is the mammalian proton
exchanger NHE9, which shares only 20% sequence similarity with its distant bacterial
homologs but exhibits a remarkably high overlap (~70–90%) in terms of functional motions,
as assessed via Principal Component Analysis (PCA) of experimental ensembles and NMA.
This is evidence that protein motions are a key phenotype selected during evolution. The
author argues that cancer might also adopt this strategy to favor mutations that disrupt
functional motions, supporting the emerging notion that disease mutations often affect
protein dynamics.
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Abstract: Mycobacterial fatty acid synthase type-I (FAS-I) has an important role in the de novo
synthesis of fatty acids, which constitute a major component of the cell wall. The essentiality of
FAS-I in the survival and growth of mycobacterium makes it an attractive drug target. However,
targeted inhibitors against Mycobacterial FAS-I have not been reported yet. Recently, the structure of
FAS-I from Mycobacterium tuberculosis was solved. Therefore, in a quest to find potential inhibitors
against FAS-I, molecular docking-based virtual screening and molecular dynamics simulation were
done. Subsequently, molecular dynamic simulations based on binding free energy calculations were
done to gain insight into the predicted binding mode of putative hits. The detailed analysis resulted
in the selection of four putative inhibitors. For compounds BTB14738, RH00608, SPB02705, and
CD01000, binding free energy was calculated as −72.27 ± 12.63, −68.06 ± 11.80, −63.57 ± 12.22, and
−51.28 ± 13.74 KJ/mol, respectively. These compounds are proposed to be promising pioneer hits.

Keywords: fatty acid synthase; molecular docking; virtual screening; molecular dynamics simula-
tions; MM/PBSA; binding free energy

1. Introduction

Tuberculosis (TB) is a leading health problem worldwide. According to the World
Health Organization estimation, 10 million new cases were reported in 2018 alone, and
1.5 million people have died of it [1]. Tuberculosis is contagious and an airborne disease
caused by Mycobacterium tuberculosis. The current drug regimen for the treatment of TB
relies upon a six-month course of anti-microbial drugs [2]. The lengthy regimen leads to
non-adherence and consequently the emergence and spread of drug-resistant strains. The
rise of multi drug-resistant strains and co-occurrence with HIV also pose challenges in
combating mycobacterium [2].

Mycobacterium has successfully evaded the host system since ancient times. Insight
into the success story of Mycobacterium shows that virulence is largely attributed to its thick
layer of mycolic acids, a major component of the cell wall [3–5]. It acts as an efficient barrier
due to low permeability and fluidity and provides intrinsic resistance to anti-microbial
drugs. The lipid biosynthesis in Mycobacterium is carried out by a combination of two
enzymatic systems—FAS-I and FAS-II. Mycolic acids are long fatty acids and characterized
by hydrophobic C54-C63 fatty acids with C22-C24 side chains in Mycobacterium [6]. The
FAS-II system is comprised of four discrete enzymes, which work successively and repeti-
tively to elongate the acyl chain, similar to the system found in prokaryotes and plants [7].
On the other hand, FAS-I is a multi-domain and multi-functional enzyme similar to fungi
and higher eukaryotes [6,8]. It catalyses the de novo synthesis of fatty acids starting from
acetyl-CoA and is capable of elongating fatty acids up to C24/26 [9]. The fatty acid chain is
further elongated to meromycolate (C56) through the FAS-II system and later condensed

Appl. Sci. 2021, 11, 6977. https://doi.org/10.3390/app11156977 https://www.mdpi.com/journal/applsci4
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with C26, resulting in the formation of mycolic acids [6,7]. Furthermore, fatty acid synthesis
has been reported to be essential in mycobacteria [10,11]. The importance of fatty acid
synthesis is also manifested by the use of drugs isoniazid, ethambutol, and pyrazinamide in
the current drug regimen, which are inhibitors of mycolic acid biosynthesis [12]. Isoniazid
and ethambutol targets enoyl reductase domain of the FAS-II system to inhibit mycolic acid
synthesis and be used as first- and second-line drugs against TB. Pyrazinamide is being
used as a first line drug and has a key role in shortening the drug regimen from nine to six
months [13]. Moreover, analogs of pyrazinamide have been reported to target the FAS-I
system of Mycobacterium [14,15]. The role of mycolic acids in forming the cell wall and
its key role in growth and survival of mycobacterium makes the FAS system an attractive
drug target. Recently the structure of mycobacterial FAS-I was elucidated by Nadav Elad
et al. [16]. This has paved the way for structure based inhibitor identification against the
mycobacterial FAS-I system.

The receptor-inhibitor design is the spirit of any drug design process and the infor-
mation of receptor-ligand complex can be channelized through many ways. Amongst
them, virtual screening is one of the most commonly used to discover novel scaffolds and
lead compounds [17–19]. Molecular docking is a popular choice to carry out the virtual
screening and has proved its mettle in hit identification and lead optimization. Molecular
docking has been successfully implemented to screen large compound libraries against the
drug targets and identification of mechanism of action of known active compounds [20–22].
Docking methods have been used to screen in-house as well as commercial libraries. For
example, virtual screening was successfully employed for the identification of antibacterial
inhibitors against NAD synthetase [23]. Docking-based virtual screening was done to
identify novel inhibitors against leishmanial nucleoside diphosphate kinases [24]. In a re-
cent study, docking-based screening was performed to identify potential inhibitors against
isocitrate lyase of Mtb [25]. There are several other studies in which docking-based virtual
screening has been successfully applied for the identification of novel inhibitors [26–30].
The Molecular Mechanics Poisson-Boltzman Surface Area (MM/PBSA) method is used to
estimate binding affinity of protein-ligand complexes predicted by the molecular docking.
The successful applications of MM/PBSA in virtual screening protocols has been reviewed
by Giulio Poli et. al. [31].

To date, inhibitors of enoyl reductase domain of Mtb FAS-I have not been reported.
Owing to the crucial role of FAS-I and available structural information, we were intrigued to
search potential inhibitors against mycobacterial FAS-I. For this, molecular docking-based
virtual screening protocol and molecular dynamics-based MM/PBSA calculations were
implemented to identify putative hit compounds. The binding mode of active compounds
has been proposed through molecular docking. The proposed inhibitors are pioneers and
can serve as the basis for the design and optimization of new inhibitory compounds against
TB.

2. Materials and Methods

2.1. Ligand Library Preparation

The commercial maybridge screening library [32] was selected to perform virtual
screening. The selected maybridge collection consist of compounds which obey Lipinski’s
“rule of five”; hence, demonstrating good ADME parameters. In addition, screening
collection represents over 87% pharmacophores in the world drug index. Therefore, the
hits obtained can undergo further development. The screening library is available online
and was downloaded from the website in sdf format. Firstly, the screening library was
prepared for docking using the “surflex for searching” protocol of Sybyl 2.1 software. It
follows the general clean-up and one least strained energy 3D conformer generation steps.
The compounds collection obtained (54,646) was saved and used for docking-based virtual
screening.
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2.2. Docking-Based Screening

Surflex Docking: The Mtb FAS-I structure in complex with FMN was retrieved from
the PDB database (PDBID: 6GJC). FAS-I is a large α6 subtype complex consisting of six
long polypeptide chains. Each chain is 3069 amino acids long and contains seven catalytic
domains. For primary screening and docking, the Surflex-Dock program of sybyl 2.1 was
used in screen mode [33]. For the receptor preparation step, only chain A was retained,
while the other chains and water molecules were removed. The FMN molecule was also
retained as it is found tightly bound to FAS-I. In addition, hydrogen atoms were added,
and atom types and AMBER charges were assigned to protein atoms. Ligand NADPH was
extracted from the structure of FAS-I of thermomyces lanuginosus (PDB:4V59), which is
homologous to mycobacterial FAS-I. Ligand-based protomol was generated using NADPH,
keeping the threshold 0.5 and bloat set to default. The molecular docking was done with
default settings. In the next step, re-ranking of high scoring hits was done using the
Geom-X mode. The spin density for search is higher in Geom-X mode and set to the value
of nine, while in screen mode it is three. Therefore, accuracy in ranking the hits on the
basis of docking score is enhanced as the search becomes denser. Surflex is based on the
Hammerhead procedure for docking the flexible ligands into the binding site of the receptor.
It is based upon the generation of ligand fragments and their alignment onto the identified
probes; the remaining fragments of ligands were then docked. The scoring function is
empirical and derived through a weighted sum of non-linear functions of protein-ligand
atomic Van der Waals surface distances. Hydrophobic, entropic, polar, solvation, repulsive,
and crash terms are included in the scoring function. The score predicts binding affinity in
–log 10(Kd) units.

2.3. Molecular Dynamics Simulation

To assess the suitability of the selected hits after docking score filter in terms of stability
of protein-ligand interactions, molecular dynamics simulations were carried out using
GROMACS 5.0 software [34]. The topology for ligands was generated through the cGenff
server [35,36]. The CHARMM36 force field was applied to the protein-ligand systems.
The system was kept in a cubic box and placed 10 Å from the box edge. The TIP3P water
model was used for protein-ligand complexes. The whole system was neutralized by
adding appropriate ions and energy minimization was done using the steepest descent
algorithm. In the next step, energy minimized systems were subjected to NVT and NPT
equilibration phases for 100 ps each. Isotropic pressure coupling was performed using the
Parrinello-Rahman method, keeping the pressure coupling time at 2 ps and isothermal
compressibility 4.5 × 10−5 bar−1. Electrostatic interactions were treated with Particle
Mesh Ewald method [37]. Coulomb and Van der Waals interactions were truncated at
1 nm. The systems were subjected to production run for ten ns each and at every ten ps,
conformations were saved. The gromacs rms utilities were employed to calculate root
mean square deviation (r.m.s.d) of ligands. The GRACE program was used to plot the
graphs [38]. The molecular dynamics simulation was used to calculate protein-ligand
interaction energy based upon the MM/PBSA method.

2.4. MM/PBSA-Based Protein–Ligand Interaction Energy Calculation

In order to calculate the binding energy for predicted complexes, the MM/PBSA
method was applied. The simulation-based end point methods, such as molecular me-
chanics with Poisson–Boltzmann (MM/PBSA) and molecular mechanics with generalized
Born and surface area (MM-GBSA) due to their computational efficiency [39–42]. For all
complexes, binding free energy calculations was carried out using the g_mmpbsa tool [40].
The binding free energy is given by:

ΔGbind = 〈ΔEMM〉 − TΔS + 〈ΔGsolvation〉 (1)

ΔEMM = ΔEbonded + ΔEvdW + ΔEelec (2)

6
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ΔGsolvation = ΔGpolar + ΔGnonpolar (3)

Here, ΔEMM represents the energy of bonded and non-bonded terms and is calculated
on the basis of molecular mechanics force-field parameters. In addition, in the single trajec-
tory approach, the protein ligand conformation in bound and unbound form is identical
and therefore is assumed to be zero [43]. The solvation free energy term includes polar
and non-polar terms. The polar solvation energy is solved using the Poisson-Boltzmann
equation [44] while non-polar solvation energy is calculated by attractive and repulsive
forces between the solute and solvent, generated through cavity formation and Van der
Waals interactions [45,46]. For the current study, MM/PBSA calculations were done on the
last 5 ns segment of the trajectory. For each system, 100 snapshots were extracted at the
interval of 50 ps along the trajectory.

3. Results

3.1. Structural Model of NADPH-Bound Mtb FAS-I

Mtb FAS-I is a large α6 subtype barrel-shaped complex consisting of six long polypep-
tide chains (α chains). Each α chain is 3069 amino acids long and comprised of seven
catalytic domains [16]. The overall architecture depicts the whole complex as a central
wheel capped by domes on each side. The seven catalytic domains are namely acetyl-
transferase, enoyl reductase (ER), dehydratase, malonyl transacylase, ketoacyl reductase,
ketoacyl synthase, and acyl carrier protein. The Mtb FAS-I was found to be similar to fungal
FAS which is a homolog that retains the barrel shape complex [37]. The comparison of cat-
alytic clefts between mycobacterial and fungal domains is given in detail [16]. Furthermore,
the crystal structure of fungal FAS-I has been reported in complex with NADP+ and FMN
(PDB:4V59). The structural comparison revealed that the enoyl reductase domain of Mtb
has a wider catalytic cleft and FMN is more exposed due to local amino acid composition.
The ER domain is involved in the catalysis of the last step of fatty acid elongation cycle
through FMN-dependent reduction of enoyl-ACP intermediate to saturated acyl-ACP.
The ER is embedded in the FAS-I complex so that it allows easy access of NADPH to the
binding site from outside of the FAS-I complex, while the catalytic centre is accessible
from the inside of the reaction chamber. A two-step ping-pong mechanism had been
proposed for catalytic mechanism of the ER of fungal FAS-I [47]. Moreover, analogs of
pyrazinamide have been reported to be competitive inhibitors of NADPH binding to Mtb
FAS-I [14]. Hence, we were intrigued to identify putative inhibitors of Mtb FAS-I. The
availability of the Mtb FAS-I structure paved the way for docking-based screening. Taking
in consideration the close homology with fungal FAS-I, NADPH was extracted from fungal
FAS-I and docked to the binding site of Mtb FAS-I (Figure 1a). The residues involved in the
binding site of NADPH were studied and compared (Table 1) to the NADPH binding site in
fungal FAS-I. The residues were found to be conserved and thus indicates the suitability of
NADPH binding. The residues Tyr636, Lys1026, and pro1027 hold adenosine moeity; Asp
1045 interacts with pyrophophate part, while His 751 acts as a catalytic residue in fungal
FAS-I. Similarly, the corresponding residues in Mtb FAS-I have been tabulated (Table 1).
Notably, the residue His584 in Mtb seems to act as a catalytic residue and can play an
important role in the function of the enoyl reductase domain.
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Figure 1. (a) Mtb FAS-I shown in cyan color with bound FMN and docked NADP (b) The enoyl re-
ductase domain of Mtb FAS-I (cyan color, PDB:6GJC) superimposed onto Thermomyces lanuginosus
FAS-I (pink color, PDB:4V59).

Table 1. The residue comparison for the NADPH binding site of enoyl reductase between fungal and
Mtb FAS-I.

NADPH Binding Site Residues from
Thermomyces Lanuginosus (PDB Code:
4V59)

NADPH Binding Site Residues from Mtb
(PDB Code: 6GJC) Obtained by Docking

Tyr636 Tyr495

Asp668 -

Asp952 -

Lys1026 Lys851

Pro1027 Pro852

Asp1045 Asp870

Ser1046 Ser871

Lys1044 Ser869

Leu1047 Leu872

Thr609 Thr436

Ile663 Leu490

Gly749 Gly582

Gly750 Gly583

His751 His584

Glu863 -

3.2. Docking-Based Screening

To discover novel Mtb FAS-I inhibitors, the cryo-EM structure of FAS-I in complex
with FMN (PDB ID: 6GJC) was used for molecular docking-based virtual screening utilizing
the Surflex-dock module of the Sybyl 2.1 software. The NADP binding pocket was used
for performing docking-based screening, comprised of residues Met435, Thr436, Pro437,
ValL440, Ala458, Gly460, GLY583, His584, His585, Ala693, Asp694, Ile695, Pro852, Arg868,
Ser869, Asp870, Ser871, Leu872, Trp873, Gln874, and the FMN molecule. To address
accuracy and efficiency, we carried out the screening protocol in a hierarchical strategy
summarized in a work-flow diagram (Figure 2).
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Figure 2. The work plan for molecular docking-based virtual screening.

Primary screening: The Maybridge screening library consisting of 54,646 molecules
was docked using Surflex-dock into the active site of Mtb FAS-I. The top scoring molecules
with a score equal to or higher than the score (8.0) for the binding site were considered
for the next step. The choice of cut-off value in this study was guided by reproduction of
docking pose of phenylimidazole derivative inhibitor enoyl–ACP reductase (FabK) from
Streptococcus pneumoniae, which is competitive inhibitor of NADPH (PDB:2Z6J). This
cut-off resulted in 528 molecules, which were docked again using Surflex-GeomX mode
for re-ranking and to improve pose accuracy. Subsequently, the top 150 molecules were
inspected visually for favorable interactions.

Visual inspection: The hits from GeomX were inspected visually for their binding
mode(s) for further selection. The following criteria were considered: (1) π-π stacking inter-
action between the ligand and the FMN molecule; (2) the interaction with residues His584
and Thr436; (3) the formation of hydrogen bonds and other hydrophobic interactions; and
(4) the stability in docked pose and fitness of molecule in the binding site. This step was
primarily used to enhance specificity and eliminate the compounds having higher score
due to interactions with other residues. Based on these criteria, a total of nine molecules
were selected for subsequent molecular dynamics simulations. The structures of these
compounds are shown in Figure 3.
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Figure 3. The structures of nine selected compounds after docking-based screening are shown along with the inhibitor of S.
pneumoniae Enoyl-Acyl Carrier Protein Reductase (FabK). The labels of four putative inhibitors are highlighted in boxes.
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3.3. Molecular Docking and Proposed Mode of Binding of Putative Hits

The predicted binding mode of compounds selected on the basis of molecular docking
and visual inspection are discussed in this section. The detailed 2D interaction plots for all
the complexes are given in detail (Figure S1), while the 3D interaction plots for protein-
ligand complexes are shown in Figure 4. The compound BTB14738 showed hydrogen
bonding with residues Thr436 and Arg868 and strong π-π stacking with FMN molecule.
The residues Leu872 and Ile695 are involved in hydrophobic interaction, while the sulfur
atom can be involved in π-sulfur interaction with residue His584 (Figure 4a). The com-
pound BTB14516 showed hydrogen bonds with the residues Thr436, Gly460, and His584
and π-π stacking with the FMN molecule (Figure 4b). The compound CD01000 showed
hydrogen bonds with the residues Arg868, Gln690, and Lys550 and π-π stacking with
the FMN molecule (Figure 4c). The compound SEW02765 showed extensive interactions
in the form of hydrogen bonds with the residues Thr436 and Arg868 and π-sulfur with
His584. The residues Leu490, Ala524, Ile888, Ile695, and Leu872 provided hydrophobic
contacts (Figure 4d). The compound HTS07760 showed favorable interactions in the form
of hydrogen bonds with the residues Thr436, His584, and Arg868 and π-π stacking with
the FMN molecule (Figure 4e). The compound HTS09453 showed hydrogen bonds with
residues His584, Thr436, Arg868, and Ser871 and π-π stacking with the FMN molecule
(Figure 4f). The next compound RH00608 showed hydrogen bond with the residues Thr436,
His584, Arg868, and halogen bond with the residue Asp870 and π-π interaction with FMN.
It is stabilized through various hydrophobic contacts to Ala524, Ala581, Ile695, Ile888, and
Leu872 (Figure 4g). The compound RJF01717 showed extensive hydrogen bonds with
residues His584, Thr436, Ser523, Gln690, Ser871 and Arg868 and retaining π-π stacking
with FMN (Figure 4h). The compound SPB02705 showed π-π stacking with residue His584
and the FMN molecule through two aromatic rings and hydrogen bonds with residues
His584 and Arg868 (Figure 4i). In brief, the compounds showed hydrogen bond formation
mainly with the residues Thr436, His584, and Arg868. Notably His584 is the catalytic
residue and is found to be conserved. The hydrophobic contacts are driven by Ala524,
Leu490, Leu872, Ile695, and Ile888. The strong π-π interactions are also predicted between
the ligand and FMN molecule or residue His584. Thus, favorable interactions between
protein-ligand complexes were predicted.

Figure 4. Cont.

11



Appl. Sci. 2021, 11, 6977

Figure 4. Cont.
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Figure 4. The 3D interaction plots for selected protein-ligand complexes (a) BTB14738, (b) BTB14516, (c) CD01000, (d)
SEW02765, (e) HTS 07760, (f) HTS09453, (g) RH00608, (h) RJF01717, (i) SPB02705.

3.4. Molecular Dynamics Simulation

In order to obtain a better insight as well as to assess the stability of the binding mode
of molecules, we conducted 10 ns long molecular dynamic simulations for all the nine
proteins–ligand complexes selected after the visual inspection step. The poses selected
from the Geom X docking experiment were used as the starting poses for simulation
studies. Keeping in consideration the large size of FAS-I, simulation was done for the
enoyl reductase domain (amino acid residue 394–1107). The NADPH binding site of
the ER domain is far away from the interaction sites between the ER domain and other
neighbouring domains; it is thus unlikely that the neighbouring domains contribute to
the interaction between the ER domain and the proposed inhibitors. The structure of the
ER domain is close to the one in the FAS-I complex, as indicated by the small RMSD in
all simulations. In the next step, the resultant trajectory was analyzed for assessing the
stability of the predicted protein-ligand complexes. The r.m.s.d of the ligand was calculated
using g_rms command in GROMACS. The r.m.s.d for ligands was plotted for all complexes
from the end of equilibration phase and was found to be low, indicating the stability of
ligand poses. The average r.m.s.d of ligand atoms was calculated to 0.24, 0.18, 0.12, 0.15,
0.21, 0.11, 0.16, 0.20, and 0.21 nm for BTB14516, BTB14738, CD01000, HTS07760, HTS09453,
RH00608, RJF01717, SEW02765, and SPB02705, respectively (Figure 5). The FMN molecule
was found to be very stable with average r.m.s.d calculated in the range of 0.05–0.11 nm
(Figure S2). The average r.m.s.d for backbone atoms of complexes was calculated in the
range of 0.19–0.26 nm (Figure S2). Overall, the protein-ligand complexes were found to be
significantly stable. Subsequently, the last five ns MD trajectory was used for performing
MM/PBSA-based binding free energy calculations and is discussed in the next section.
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Figure 5. The r.m.s.d plots for ligand are given for (A) BTB14516, HTS07760, RJF01717, BTB14738 (B) CD01000, HTS09453,
RH00608, SPB02705, and SEW02765.
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3.5. MM/PBSA-Based Interaction Energy Calculation

The computational efficiency and accuracy of simulation-based end point methods
such as molecular mechanics with Poisson–Boltzmann (MM/PBSA) and molecular me-
chanics with generalized Born and surface area (MM/GBSA) provides a reliable choice for
binding free energy calculations [42]. These methods are based upon sampling of the final
state of the system and the solvent is treated implicitly, thus reducing the computational
time. However, these methods possess limitations regarding the estimation of confor-
mational and solvation entropies [48]. In order to prioritize and re-rank the compounds,
MM/PBSA-based binding free energy was calculated for all the nine complexes. For each
system, 100 snapshots were fetched at the interval of 50 ps along the last five ns trajectory.
All the compounds showed favorable binding free energy values. The compound BTB14738
was predicted to show the highest binding free energy value of −72.27 ± 12.63 KJ/mol.
The other compounds RH00608, SPB02705, CD01000, and HTS07760 are also predicted to
show high binding free energy values of −68.06 ± 11.80, −63.57 ± 12.22, −51.28 ± 13.74,
and −53.17 ± 12.68 KJ/mol. However, the compound SEW02765 is predicted to show the
lowest binding free energy value. The binding free energies of protein-ligand complexes is
summarized in Table 2. The compounds were ranked upon the basis of predicted binding
free energy. The selected compounds showed high predicted binding free energy, indicat-
ing better binding and potentially better inhibitory efficiency. The MM/PBSA approach has
been reported to be applied reliably for re-scoring the protein-ligand complexes predicted
by molecular docking. Thus, it helps in boosting the virtual screening hit rates [31,49]. The
accuracy of the method is limited by the lack of conformational entropy, missing effect of
water molecules in the binding site and details in the method, such as dielectric constant,
continuum-solvation method, and charges [50]. Therefore, this method has been applied
to systems with a varying degree of success. Nevertheless, the method has been useful to
corroborate the docking results and understand the observed affinities [51,52].

Table 2. The predicted binding free energy and molecular docking score for selected protein-ligand
complexes is listed.

Serial Number Compound ID
Predicted Binding

Free Energy (KJ/mol)
Molecular Docking

Score

1. BTB14738 −72.27 ± 12.63 9.55

2. RH00608 −68.06 ± 11.80 10.80

3. SPB02705 −63.57 ± 12.22 9.30

4. HTS07760 −53.17 ± 12.68 9.28

5. CD01000 −51.28 ± 13.74 10.41

6. BTB14516 −48.91 ± 11.37 10.01

7. RJF01717 −44.82 ± 15.77 10.18

8. HTS09453 −43.30 ± 14.27 10.46

9. SEW02765 −16.44 ± 13.22 9.75

Taking into consideration the predicted binding free energy values, stability of the
bound ligand along with molecular docking score, four compounds (BTB14738, SPB02705,
RH00608, and CD01000) were selected as potential hits (Figure 3). For compound BTB14738,
the highest binding free energy of −72.27 ± 12.63 was estimated. The ligand r.m.s.d was
calculated to be 0.11 nm, indicating high stability. Similarly, the compounds RH00608,
SPB02705, and CD01000 also showed high favorable binding free energy values and stable
ligand binding. Thus, molecular docking-based virtual screening together with molecular
dynamics and the MM/PBSA method has resulted in the identification of pioneer putative
hits against Mtb FAS-I.
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3.6. Discussion

Firstly, the MM/PBSA result for the selected compounds BTB14738, RH00608, SPB02705,
and CD01000 is given in detail in Table 3. It has been shown that Van der Waals interaction
contributed more towards the favorable binding of compounds while the contribution of
electrostatic interaction was estimated to be lower. Hence, Van der Waals forces are an
important form of interaction between the ligand and the protein.

Table 3. The MM/PBSA results for the selected putative hits. All energies are in unit of KJ/mol.

Compound Code
Van der Waals

Energy
Electrostatic

Energy
Polar Solvation

Energy
SASA Energy

Binding Free
Energy

BTB14738 −165.92 ± 11.998 −33.77 ± 6.45 146.82 ± 13.80 −19.39 ± 0.97 −72.27 ± 12.63

RH00608 −219.005 ± 10.53 −14.61 ± 6.551 190.10 ± 10.54 −24.55 ± 1.22 −68.06 ± 11.80

SPB02705 −183.88 ± 16.99 −2.59 ± 10.16 145.40 ± 21.44 −22.50 ± 1.59 −63.57 ± 12.22

CD01000 −201.98 ± 15.30 −35.31 ± 9.28 209.04 ± 20.93 −23.04 ± 1.60 −51.28 ± 13.74

It is noteworthy that enoyl-acyl carrier protein reductases have been reported as
attractive targets for the development of novel antibiotics. In one such study, the crystal
structure of enoyl–ACP reductase (FabK) from Streptococcus pneumoniae in complex
with phenylimidazole derivative inhibitor has been reported [53] (Figure 3). This implies
that the enoyl reductase domain of FAS-I can be a promising target because it is crucial
in the regulation of the pathway. The inhibitor has been reported to bind competitively
with respect to NADH. The thiazole ring and a part of ureido moeity is involved in the
π-π stacking interaction with the isoalloxazine ring of the FMN molecule. Similarly, the
active site of Mtb FAS-I consists of the tightly bound FMN molecule and the catalytic
residue His584; hence, ligands containing aromatic rings possess potential for strong π-π
interactions with the FMN molecule. The presence of residues Thr436, His584, and Arg868
facilitates the formation of a hydrogen bond. Furthermore, the active site is large and open
in nature, offering wide scope for optimization of compounds through additional groups.
The proposed hit compounds can be pioneer inhibitors of Mtb FAS-I.

4. Conclusions

The key role of FAS-I in the survival and growth of mycobacterium makes it an
attractive drug target. Only the pyrazinamide analogs have been reported as competitive
inhibitors of FAS-I for NADPH binding. Therefore, in pursuit of finding potential inhibitors
against FAS-I, we carried out structure-based virtual screening, focusing on the NADPH
binding site of the enoyl reductase domain. Subsequently, molecular dynamics simulations
were done to assess the stability of predicted binding poses and to perform MM/PBSA-
based binding free energy. Based upon the predicted binding free energy values and
stability of the compounds in the binding pocket, the compounds BTB14738, RH00608,
SPB02705, and CD01000 have been proposed as putative hits. The calculated binding free
energy indicates significant binding of the selected compounds. The proposed compounds
can serve as pioneer inhibitors against Mtb FAS-I, which could pave the way for the
development of a novel treatment for TB.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app11156977/s1, Figure S1: 2D interaction plots for selected protein-ligand complexes.
Figure S2: The r.m.s.d plots shown for FMN molecule and protein backbone atoms.

Author Contributions: Conceptualization, W.L.; formal analysis, N.S.; investigation, N.S.; resources,
W.L.; data curation, N.S.; writing—original draft preparation, N.S.; writing—review and editing,
S.-Q.M. and W.L.; visualization, S.-Q.M.; supervision, W.L.; funding acquisition, W.L. All authors
have read and agreed to the published version of the manuscript.

16



Appl. Sci. 2021, 11, 6977

Funding: This research was funded by Natural Science Foundation of Guangdong Province, China
(Grant No. 2020A1515010984) and the Start-up Grant for Young Scientists (860-000002110384), Shen-
zhen University. The APC was funded by the Start-up Grant for Young Scientists (860-000002110384).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in the article and
supplementary material.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. WHO. Factsheet. 2019. Available online: https://www.who.int/tb/publications/factsheet_global.pdf?ua=1 (accessed on 22
October 2020).

2. WHO. News. 2019. Available online: https://www.who.int/news-room/fact-sheets/detail/tuberculosis (accessed on 20 October
2020).

3. Glickman, M.S.; Cox, J.S.; Jacobs, W.R. A Novel Mycolic Acid Cyclopropane Synthetase Is Required for Cording, Persistence, and
Virulence of Mycobacterium tuberculosis. Mol. Cell 2000, 5, 717–727. [CrossRef]

4. Barkan, D.; Liu, Z.; Sacchettini, J.C.; Glickman, M.S. Mycolic Acid Cyclopropanation is Essential for Viability, Drug Resistance,
and Cell Wall Integrity of Mycobacterium tuberculosis. Chem. Biol. 2009, 16, 499–509. [CrossRef] [PubMed]

5. Nataraj, V.; Varela, C.; Javid, A.; Singh, A.; Besra, G.S.; Bhatt, A. Mycolic acids: Deciphering and targeting the Achilles’ heel of the
tubercle bacillus. Mol. Microbiol. 2015, 98, 7–16. [CrossRef] [PubMed]

6. Takayama, K.; Wang, C.; Besra, G.S. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculo-sis. Clin.
Microbiol. Rev. 2005, 18, 81–101. [CrossRef] [PubMed]

7. Bhatt, A.; Molle, V.; Besra, G.S.; Jacobs, W.R., Jr.; Kremer, L. The Mycobacterium tuberculosis FAS-II condensing enzymes:
Their role in mycolic acid biosynthesis, ac-id-fastness, pathogenesis and in future drug development. Mol. Microbiol. 2007, 64,
1442–1454. [CrossRef] [PubMed]

8. Brennan, J.P.; Nikaido, H. The envelope of mycobacteria. Annu. Rev. Biochem. 1995, 64, 29–63. [CrossRef] [PubMed]
9. Schweizer, E.; Hofmann, J. Microbial type I fatty acid synthases (FAS): Major players in a network of cellular FAS sys-tems.

Microbiol. Mol. Biol. Rev. 2004, 68, 501–517. [CrossRef] [PubMed]
10. Lamichhane, G.; Zignol, M.; Blades, N.J.; Geiman, D.E.; Dougherty, A.; Grosset, J.; Broman, K.W.; Bishai, W.R. A postgenomic

method for predicting essential genes at subsaturation levels of mutagenesis: Applica-tion to Mycobacterium tuberculosis. Proc.
Natl. Acad. Sci. USA 2003, 100, 7213–7218. [CrossRef]

11. Sassetti, C.M.; Boyd, D.H.; Rubin, E.J. Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl.
Acad. Sci. USA 2001, 98, 12712–12717. [CrossRef]

12. Ma, Z.; Lienhardt, C.; McIlleron, H.; Nunn, A.; Wang, X. Global tuberculosis drug development pipeline: The need and the reality.
Lancet 2010, 375, 2100–2109. [CrossRef]

13. Steele, M.A.; Prez, R.M.D. The Role of Pyrazinamide in Tuberculosis Chemotherapy. Chest 1988, 94, 845–850. [CrossRef]
14. Sayahi, H.; Pugliese, K.M.; Zimhony, O.; Jacobs, W.R.; Shekhtman, A.; Welch, J.T. Analogs of the Antituberculous Agent

Pyrazinamide Are Competitive Inhibitors of NADPH Binding to M. tuberculosis Fatty Acid Synthase I. Chem. Biodivers. 2012, 9,
2582–2596. [CrossRef]

15. Zimhony, O.; Cox, J.S.; Welch, J.T.; Vilchèze, C.; Jacobs, W.R., Jr. Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I
(FASI) of Mycobacterium tuberculosis. Nat. Med. 2000, 6, 1043–1047. [CrossRef]

16. Elad, N.; Baron, S.; Peleg, Y.; Albeck, S.; Grunwald, J.; Raviv, G.; Shakked, Z.; Zimhony, O.; Diskin, R. Structure of Type-I
Mycobacterium tuberculosis fatty acid synthase at 3.3 Å resolution. Nat. Commun. 2018, 9, 3886. [CrossRef]

17. Maia, E.H.B.; Assis, L.C.; De Oliveira, T.A.; Da Silva, A.M.; Taranto, A.G. Structure-Based Virtual Screening: From Classical to
Artificial Intelligence. Front. Chem. 2020, 8, 343. [CrossRef] [PubMed]

18. Singh, N.; Tiwari, S.; Srivastava, K.K.; Siddiqi, M.I. Identification of Novel Inhibitors of Mycobacterium tuberculosis PknG Using
Pharmacophore Based Virtual Screening, Docking, Molecular Dynamics Simulation, and Their Biological Evaluation. J. Chem. Inf.
Model. 2015, 55, 1120–1129. [CrossRef] [PubMed]

19. Kumar, A.; Siddiqi, M.I.; Miertus, S. New molecular scaffolds for the design of Mycobacterium tuberculosis type II dehy-
droquinase inhibitors identified using ligand and receptor based virtual screening. J. Mol. Model. 2010, 16, 693–712. [CrossRef]
[PubMed]

20. Vilar, S.; Sobarzo-Sanchez, E.; Santana, L.; Uriarte, E. Molecular Docking and Drug Discovery in β-Adrenergic Receptors. Curr.
Med. Chem. 2017, 24, 4340–4359. [CrossRef] [PubMed]

21. Lionta, E.; Spyrou, G.; Vassilatis, D.K.; Cournia, Z. Structure-Based Virtual Screening for Drug Discovery: Principles, Applications
and Recent Advances. Curr. Top. Med. Chem. 2014, 14, 1923–1938. [CrossRef] [PubMed]

22. Wang, T.; Wu, M.-B.; Chen, Z.-J.; Chen, H.; Lin, J.-P.; Yang, L.-R. Fragment-based drug discovery and molecular docking in drug
design. Curr. Pharm. Biotechnol. 2015, 16, 11–25. [CrossRef]

17



Appl. Sci. 2021, 11, 6977

23. Moro, W.B.; Yang, Z.; Kane, T.A.; Brouillette, C.G.; Brouillette, W.J. Virtual screening to identify lead inhibitors for bacterial NAD
synthetase (NADs). Bioorg. Med. Chem. Lett. 2009, 19, 2001–2005. [CrossRef]

24. Mishra, A.K.; Singh, N.; Agnihotri, P.; Mishra, S.; Singh, S.P.; Kolli, B.K.; Chang, K.P.; Sahasrabuddhe, A.A.; Siddiqi, M.I.; Pratap,
J.V. Discovery of novel inhibitors for Leishmania nucleoside diphosphatase kinase (NDK) based on its struc-tural and functional
characterization. J. Comput. Aided. Mol. Des. 2017, 31, 547–562. [CrossRef]

25. Lee, Y.-V.; Choi, S.B.; Wahab, H.A.; Lim, T.S.; Choong, Y.S. Applications of Ensemble Docking in Potential Inhibitor Screening
forMycobacterium tuberculosisIsocitrate Lyase Using a Local Plant Database. J. Chem. Inf. Model. 2019, 59, 2487–2495. [CrossRef]

26. Kwofie, S.K.; Adobor, C.; Quansah, E.; Bentil, J.; Ampadu, M.; Miller, W.A.; Wilson, M.D. Molecular docking and dynamics simu-
lations studies of OmpATb identifies four potential novel natural product-derived anti-Mycobacterium tuberculosis compounds.
Comput. Biol. Med. 2020, 122, 103811. [CrossRef]

27. Zhao, W.; Xiong, M.; Yuan, X.; Li, M.; Sun, H.; Xu, Y. In Silico Screening-Based Discovery of Novel Inhibitors of Human Cyclic
GMP–AMP Synthase: A Cross-Validation Study of Molecular Docking and Experimental Testing. J. Chem. Inf. Model. 2020, 60,
3265–3276. [CrossRef]

28. Newton, A.S.; Faver, J.C.; Micevic, G.; Muthusamy, V.; Kudalkar, S.N.; Bertoletti, N.; Anderson, K.S.; Bosenberg, M.W.; Jorgensen,
W.L. Structure-Guided Identification of DNMT3B Inhibitors. ACS Med. Chem. Lett. 2020, 11, 971–976. [CrossRef] [PubMed]

29. Vázquez-Jiménez, L.K.; Paz-González, A.D.; Juárez-Saldivar, A.; Uhrig, M.L.; Agusti, R.; Reyes-Arellano, A.; Nogueda-Torres, B.;
Rivera, G. Structure-Based Virtual Screening of New Benzoic Acid Derivatives as Trypanosoma cruzi Trans-sialidase Inhibitors.
Med. Chem. 2020, 16, 1–9. [CrossRef]

30. Gupta, D.; Singh, A.; Somvanshi, P.; Singh, A.; Khan, A.U. Structure-Based Screening of Non-β-Lactam Inhibitors against Class D
β-Lactamases: An Approach of Docking and Molecular Dynamics. ACS Omega 2020, 5, 9356–9365. [CrossRef] [PubMed]

31. Poli, G.; Granchi, C.; Rizzolio, F.; Tuccinardi, T. Application of MM-PBSA Methods in Virtual Screening. Molecules 2020, 25, 1971.
[CrossRef] [PubMed]

32. Maybridge Library. Available online: http://www.maybridge.com/ (accessed on 25 December 2020).
33. Jain, A.N. Surflex: Fully Automatic Flexible Molecular Docking Using a Molecular Similarity-Based Search Engine. J. Med. Chem.

2003, 46, 499–511. [CrossRef] [PubMed]
34. Berendsen, H.J.; van der Spoel, D.; van Drunen, R. GROMACS—A message-passing parallel molecu-lar-dynamics implementation.

Comput. Phys. Commun. 1995, 91, 43–56. [CrossRef]
35. Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.E.M.; Vorobyov,

I.; et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive
biological force fields. J. Comput. Chem. 2009, 31, 671–690. [CrossRef] [PubMed]

36. Vanommeslaeghe, K.; Raman, E.P.; MacKerell, A.D. Automation of the CHARMM General Force Field (CGenFF) II: As-signment
of bonded parameters and partial atomic charges. J. Chem. Inf. Model. 2012, 52, 3155–3168. [CrossRef]

37. Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys.
1993, 98, 10089–10092. [CrossRef]

38. Available online: http://plasma-gate.weizmann.ac.il/Grace/ (accessed on 12 April 2020).
39. Hou, T.; Wang, J.; Li, Y.; Wang, W. Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and

molecular me-chanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking. J.
Comput. Chem. 2011, 32, 866–877. [CrossRef]

40. Kumari, R.; Kumar, R.; Open Source Drug Discovery Consortium; Lynn, A. g_mmpbsa—A GROMACS tool for high-throughput
MM/PBSA calculations. J. Chem. Inf. Model. 2014, 54, 1951–1962. [CrossRef] [PubMed]

41. Wright, D.; Hall, B.A.; Kenway, O.A.; Jha, S.; Coveney, P.V. Computing Clinically Relevant Binding Free Energies of HIV-1
Protease Inhibitors. J. Chem. Theory Comput. 2014, 10, 1228–1241. [CrossRef]

42. Xu, L.; Sun, H.; Li, Y.; Wang, J.; Hou, T. Assessing the Performance of MM/PBSA and MM/GBSA Methods. The Impact of Force
Fields and Ligand Charge Models. J. Phys. Chem. B 2013, 117, 8408–8421. [CrossRef]

43. Homeyer, N.; Gohlke, H. Free Energy Calculations by the Molecular Mechanics Poisson−Boltzmann Surface Area Method. Mol.
Inform. 2012, 31, 114–122. [CrossRef]

44. Baker, N.A.; Sept, D.; Joseph, S.; Holst, M.J.; McCammon, J.A. Electrostatics of nanosystems: Application to microtubules and the
ribosome. Proc. Natl. Acad. Sci. USA 2001, 98, 10037–10041. [CrossRef]

45. Levy, R.M.; Zhang, L.Y.; Gallicchio, E.; Felts, A.K. On the nonpolar hydration free energy of proteins: Surface area and continuum
solvent models for the so-lute-solvent interaction energy. J. Am. Chem. Soc. 2003, 125, 9523–9530. [CrossRef]

46. Tan, C.; Tan, Y.-H.; Luo, R. Implicit Nonpolar Solvent Models. J. Phys. Chem. B 2007, 111, 12263–12274. [CrossRef]
47. Jenni, S.; Leibundgut, M.; Boehringer, D.; Frick, C.; Mikolásek, B.; Ban, N. Structure of Fungal Fatty Acid Synthase and Implications

for Iterative Substrate Shuttling. Science 2007, 316, 254–261. [CrossRef] [PubMed]
48. Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.; Hou, T. End-Point Binding Free Energy Calculation with MM/PBSA

and MM/GBSA: Strategies and Applications in Drug Design. Chem. Rev. 2019, 119, 9478–9508. [CrossRef]
49. Botelho, F.D.; Gonçalves, A.S.; França, T.C.; LaPlante, S.R.; de Almeida, J.S. Identification of novel potential ricin inhibitors by

virtual screening, molecular docking, molecular dy-namics and MM/PBSA calculations: A drug repurposing approach. J. Biomol.
Struct. Dyn. 2021. [CrossRef]

18



Appl. Sci. 2021, 11, 6977

50. Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov.
2015, 10, 449–461. [CrossRef] [PubMed]

51. Laurini, E.; Col, V.D.; Mamolo, M.G.; Zampieri, D.; Posocco, P.; Fermeglia, M.; Vio, L.; Pricl, S. Homology Model and Docking-
Based Virtual Screening for Ligands of the σ1 Receptor. ACS Med. Chem. Lett. 2011, 2, 834–839. [CrossRef] [PubMed]

52. Venken, T.; Krnavek, D.; Münch, J.; Kirchhoff, F.; Henklein, P.; De Maeyer, M.; Voet, A. An optimized MM/PBSA virtual screening
approach applied to an HIV-1 gp41 fusion peptide inhibitor. Proteins Struct. Funct. Bioinform. 2011, 79, 3221–3235. [CrossRef]

53. Saito, J.; Yamada, M.; Watanabe, T.; Iida, M.; Kitagawa, H.; Takahata, S.; Ozawa, T.; Takeuchi, Y.; Ohsawa, F. Crystal structure of
enoyl-acyl carrier protein reductase (FabK) from Streptococcus pneumoniae reveals the binding mode of an inhibitor. Protein. Sci.
2008, 17, 691–699. [CrossRef]

19



Citation: Scaramozzino, D.; Khade,

P.M.; Jernigan, R.L. Protein

Fluctuations in Response to Random

External Forces. Appl. Sci. 2022, 12,

2344. https://doi.org/10.3390/

app12052344

Academic Editor: Hervé

Quiquampoix

Received: 1 December 2021

Accepted: 19 February 2022

Published: 23 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Protein Fluctuations in Response to Random External Forces

Domenico Scaramozzino 1,*, Pranav M. Khade 2,* and Robert L. Jernigan 2,*

1 Department of Structural, Geotechnical and Building Engineering, Politecnico di Torino, Corso Duca degli
Abruzzi 24, 10129 Torino, Italy

2 Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University,
Ames, IA 50011, USA

* Correspondence: domenico.scaramozzino@polito.it (D.S.); pranavk@iastate.edu (P.M.K.);
jernigan@iastate.edu (R.L.J.)

Abstract: Elastic network models (ENMs) have been widely used in the last decades to investigate
protein motions and dynamics. There the intrinsic fluctuations based on the isolated structures are
obtained from the normal modes of these elastic networks, and they generally show good agreement
with the B-factors extracted from X-ray crystallographic experiments, which are commonly considered
to be indicators of protein flexibility. In this paper, we propose a new approach to analyze protein
fluctuations and flexibility, which has a more appropriate physical basis. It is based on the application
of random forces to the protein ENM to simulate the effects of collisions of solvent on a protein
structure. For this purpose, we consider both the Cα-atom coarse-grained anisotropic network model
(ANM) and an elastic network augmented with points included for the crystallized waters. We
apply random forces to these protein networks everywhere, as well as only on the protein surface
alone. Despite the randomness of the directions of the applied perturbations, the computed average
displacements of the protein network show a remarkably good agreement with the experimental
B-factors. In particular, for our set of 919 protein structures, we find that the highest correlation with
the B-factors is obtained when applying forces to the external surface of the water-augmented ANM
(an overall gain of 3% in the Pearson’s coefficient for the entire dataset, with improvements up to
30% for individual proteins), rather than when evaluating the fluctuations obtained from the normal
modes of a standard Cα-atom coarse-grained ANM. It follows that protein fluctuations should be
considered not just as the intrinsic fluctuations of the internal dynamics, but also equally well as
responses to external solvent forces, or as a combination of both.

Keywords: elastic network model; protein flexibility; B-factors; protein fluctuations; random force
application; protein surface

1. Introduction

The B-factors of a protein, the Debye-Waller factors or temperature factors, are mea-
sures of the atomic displacements about their equilibrium position, i.e., atomic fluctua-
tions [1–3], but also the effects of multiple conformations as well as errors in the structures.
They are generally accepted to be mostly the result of internal protein dynamics and any
static disorder [4]. They have also been shown to be associated with protein flexibility
and to correspond closely to protein mechanisms [5–9]. B-factors have been associated
with protein flexibility, which is strictly related to protein action and function [10–12]. The
experimental B-factors obtained from X-ray crystallography have been reproduced fairly
accurately by various computational models.

One of the most widely used computational methods for investigating protein dynam-
ics and fluctuations has been molecular dynamics (MD). MD simulations have proven their
usefulness for investigations of protein folding, enzyme catalysis, and protein mechanisms
in general [13–15]. Also, it has been shown that the MD-derived atomic fluctuations due
to the internal protein motions show some degree of agreement with the experimental
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B-factors [16,17]. However, due to the high computational burden of MD simulations, these
can sometimes be expensive for investigating the large molecular complexes, especially
regarding the slowest protein motions, accessible only at long simulation times. These slow
motions are in fact usually the ones most closely related to the functional mechanisms of
the protein and can take place on longer time scales than may be accessible in standard
MD simulations. The harmonicity assumption has been exploited for the extraction of the
low-frequency protein dynamics [18–21]. Normal mode analysis (NMA) came into play as
a simplified yet powerful tool to investigate the slower protein motions and for evaluating
protein fluctuations and mechanisms [22,23], even in torsional space [24].

The seminal work of Tirion [25] showed that even a single-parameter harmonic poten-
tial, only based on the elastic properties of a network of Hookean springs connecting the
protein atoms, was sufficient to reproduce the slow dynamics in good detail. All of the elas-
tic network models are essentially entropic models since there is not usually any distinction
of atom or amino acid types, i.e., all springs are taken to be similar in character. A further
step towards simplification came with the coarse-graining development for these elastic
network models (ENMs). Among the ENMs, the gaussian network model (GNM) was
developed to obtain insights into protein dynamics and fluctuations simply by diagonaliz-
ing the Kirchhoff matrix, built by using the network contacts between close neighboring
Cα atoms [26–31]. Despite the remarkable correlations obtained between the GNM-based
fluctuations and the experimental B-factors, the GNM lacks the information about the
directions of motions, since it assumes that the motions are fundamentally isotropic in all
directions [28]. The anisotropic network model (ANM) was then developed to include
the three-dimensional directionality in the calculation of protein motions [32]. The ANM
was then improved by various research groups to achieve higher correlations between the
computed fluctuations and the experimental B-factors [33–37]. These elastic models were
subsequently used to study the conformational changes of proteins arising from sets of
low-frequency modes [38–48] as well as to generate feasible pathways between two known
conformations [48–54].

Structural elastic models, particularly the ANM, were applied widely for the in-
vestigation of protein dynamics, fluctuations, and mechanism. However, they are also
well-suited for the analysis of the protein structural responses from the application of
external perturbations. Based on the work from Ikeguchi et al. [55], who showed that
protein conformational changes upon ligand-binding could be analyzed based on linear
response theory, the perturbation-response scanning (PRS) method was proposed by the
Atilgan group [56,57]. Randomly oriented forces were applied at selected residues, and the
corresponding response of the ferric binding protein [56] and another 24 proteins [57] were
found to agree fairly accurately with the experimentally detected conformational change.
A similar study was conducted by Gerek and Ozkan [58] to study the allosteric network in
PDZ domains. A PRS-based technique, coupled with energy-based Metropolis Monte Carlo
(MMC) simulations, was carried out by Liu et al. [59] to simulate the closed-to-open confor-
mational change of a GroEL subunit due to directional forces presumed to originate from
exothermic ATP hydrolysis. Interestingly, some of the apparent conformational changes
being attributed to the binding of ATP or ADP may originate from the exothermic forces
generated by hydrolysis. Recently, it was also shown that the application of forces in a
dynamic fashion is able to drive the conformational change with a strong directionality cor-
relation [60]. Eyal and Bahar [61] investigated the mechanical response of protein structure
to external pulling forces in order to detect the anisotropic mechanical resistance to explain
the outcomes of single-molecule manipulation techniques. More recently, we made use of
a similar pairwise force application methodology in order to measure the overall protein
flexibility by using the engineering concepts of structural compliance and stiffness [62].

Most of the works based on the coarse-grained ENMs include only one or a few repre-
sentative atoms of the amino acids in the protein network, e.g., the Cα atoms. Remarkably
it has been seen that this geometric coarse-graining at the level of one point per amino
acid yields almost exactly the same motions as from a full atomic elastic model. This
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result is believed to be the result of the dense packing leading to the strong stability of
protein domains [63]. However, most of these models do not explicitly account for the
protein surface, which is the part most exposed to the surrounding environment. Water
and small molecules can often be tightly bound to the protein surface, thereby affecting
what is actually considered to be the surface of a protein structure. The role of such
tightly bound crystalized waters in protein dynamics has been studied in the last few
decades [64–67]. There have also been investigations of the solvent network surround-
ing the protein and its effect on the dynamics [68–70]. The inclusion of water molecules
in the structure yields some increases in the quality of calculated enthalpies and of the
residue interaction network [71,72]. This is one of the important reasons why all-atom MD
simulations usually include these explicit waters.

This paper presents a novel method based on random perturbations applied to protein
ENMs to assess protein fluctuations and flexibilities. Random forces are applied both
throughout the complete protein elastic network and also separately to only the protein
surface, which is exposed to the surrounding environment. In addition, a water-enriched
ENM is considered, where the water molecules whose coordinates are given in the Protein
Data Bank (PDB) files [73] are used as additional nodes in the elastic network. These latter
force application simulations aim to mimic the random collisions occurring on the protein
structure due to the interaction with the solvent and other solutes. From the calculation of
the displacements within the protein network, i.e., the protein responses, we show that a
good correlation is found with the experimental B-factors, thus leading to a good prediction
of the protein flexibilities. The correlations with the usual mode-based fluctuations are also
reported for comparison. It is also found that, in most cases, applying random forces on
the surface of the water-enriched protein ENM leads to the highest correlation between
the resulting displacements and the experimental B-factors. This demonstrates that the
protein fluctuations may reflect more than the internal dynamics alone, and also include
some effects from the continuous random bombardments or restraints by the surrounding
solvent on the protein structure.

2. Methods

In this section, we briefly recount the fundamentals of the Anisotropic Network Model
(ANM) [32], that is commonly used for generating the fluctuations in terms of the normal
modes, and then we describe the computational framework related to the presently adopted
force applications on the elastic networks.

2.1. Anisotropic Network Model (ANM) and the Calculation of Normal Mode-Based Fluctuations

ANM relies on the assumption that proteins can be modeled as simple elastic networks,
made up of point nodes connected by linear elastic springs, allowing insights regarding
fluctuations and global mechanisms [32,34,74]. For a system of N points, e.g., N residues in
the one-bead-per-residue coarse-grained representation, the 3N × 3N Hessian matrix of
the system takes the following form:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H1,1 . . . H1,i . . . H1,j . . . H1,N
. . . . . . . . . . . . . . . . . . . . .

Hi,1 . . . Hi,i . . . Hi,j . . . Hi,N
. . . . . . . . . . . . . . . . . . . . .

Hj,1 . . . Hj,i . . . Hj,j . . . Hj,N
. . . . . . . . . . . . . . . . . . . . .

HN,1 . . . HN,i . . . HN,j . . . HN,N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1)

where each 3 × 3 submatrix Hi,j contains the stiffness coefficients of the springs connecting
nodes i and j. The off-diagonal submatrix Hi,j is computed based on the harmonic potential
of the elastic spring with force constant γi,j. The diagonal submatrices Hi,i are calculated as
the summation involving all the nodes linked to ith node with a negative sign [32]. The
model, and consequently the Hessian matrix, depends on some numerical parameters: the
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usual model uses a cut-off limit in distance to define the network topology. The original
ANM was developed by considering equal spring constants for all connections, i.e., γi,j = γ,
and a geometrical cut-off rc was applied in order to consider springs placed only between
close nodes. Typical values of rc in the ANM are around 15 Å. Later on, distance-dependent
force constants were introduced [33,34], as:

γi,j ∝
1

(ri,j
0)p , (2)

where p represents an inverse number for the decay parameter that allows connecting all
points in a structure, with springs with variable strength—lower spring constants for longer
inter-node distances ri,j

0. This distance-dependent spring network was shown to provide
an improved agreement between the results and experimental data [33,34].

Once the Hessian matrix is computed based on the protein coordinates from the PDB
file [73] and the spring connectivity, the 3N eigenvalues λn and 3N eigenvectors Un are
obtained by solving the eigenvalue-eigenvectors decomposition. Due to the fact that the
protein structure is usually not externally constrained, the first six eigenvalues are found
to be zero, with corresponding mode shapes associated with the six rigid-body motions
of the whole molecule. Therefore, these six motions are factored out and singular value
decomposition is used to obtain the normal modes. Hence, the fluctuations based on the
normal modes can be easily calculated as [22,75,76]:

Bi =
8
3

π2kBT
3N

∑
n=7

Ui,n
2

λn
, (3)

where Bi represents the computed B-factor for residue i, kB is the Boltzmann constant, T is
the absolute temperature, Ui,n stands for the displacement of node i in the nth mode, and
λn is the eigenvalue for the nth mode.

2.2. Force Application on Elastic Networks

Here, we propose a new approach for the calculation of protein flexibility and fluc-
tuations. This approach is based on the application of random forces on protein elastic
networks. These forces are intended to simulate the external perturbations that arise from
the external environment, i.e., protein-solvent interactions, Brownian motions, collisions
of molecules, etc. The reality, however, is that the environment is not usually known, but
cryoEM has the promise of providing some information about this.

In this work, we use two different ENMs for modelling the protein structure. The first
one is the parameter-free anisotropic network model (pfANM) [33], where the Cα atoms
are the only nodes used to build the protein network and all the Cα-Cα connections are
considered to be linked with distance-dependent springs. In the second model, the water
molecules contained in the PDB file are also added to the network as additional nodes.
Additional springs are correspondingly created that connect the water molecules to all the
other nodes of the network. We refer to this second model as the water-pfANM (wpfANM).
Both models are built by considering a decay exponent p for the spring constant equal to 3
(see Equation (2)), based on results shown to yield the best results analyzed in our previous
work [62].

The response of the protein structure to external perturbations is evaluated by applying
forces to the nodes of the network and consequently computing the corresponding elastic
displacements. Various force application patterns are considered here. For the pfANM,
the perturbations are applied both to the complete structure, i.e., on all Cα atoms, and
separately only to the nodes lying on the external protein surface. For the wpfANM, three
different force patterns are considered: (1) forces acting on the entire network, i.e., all the
Cα atoms and water molecules, (2) only on the nodes lying on the protein-water network
surface, and (3) only on the water molecules.
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For each of the models considered (pfANM and wpfANM) and their force application
patterns, the calculation is based on the generation of a random 3 × 1 force vector Fi

s for
each node i to be perturbed for each simulation s. The three scalar components of this force
vector, i.e., Fi,x

s, Fi,y
s and Fi,z

s, are sampled from a uniform distribution U in the interval
[–1,1]. The complete force vector Fs is then generated by assembling all the 3 × 1 nodal
vectors. Note that Fs is a 3N × 1 vector, with N the number of Cα atoms in the pfANM
case or the total number of Cα atoms plus water molecules in the wpfANM. Once the force
vector Fs is defined, it is straightforward to compute the 3N × 1 displacement vector δs

for each simulation s that contains the elastic displacements of the nodes, i.e., the protein
response, as follows:

δs = H−1Fs, (4)

where H−1 is the pseudo-inverse of the elastic network. H−1 can be computed from the
eigenvalues and eigenvectors of the Hessian matrix as:

H̃
−1

=
3N

∑
n=7

UnUn
T

λn
. (5)

From the displacement vector δs, the total displacement of each ith node can be
computed as:

δi
s =

√
(δi,x

s)2 +
(
δi,y

s
)2

+ (δi,z
s)2, (6)

With δi,x
s, δi,y

s and δi,z
s being the three Cartesian components of the node displacements.

This procedure is repeated multiple times in order to generate a sample with different
random force vectors Fs and evaluating the corresponding node displacements δs each
time. The average displacement of each node i is then evaluated as the average of all the
displacements δi

s over the total number of simulations S:

δi =
1
S ∑S

s=1 δi
s. (7)

In this analysis, we have generated a sample of 10,000, i.e., S = 10,000. Then, the aver-
age displacement δi of the ith residue for the sample can be compared to the experimental
B-factors available in the PDB file. Pearson’s correlation coefficient can finally be used
to estimate the similarity between the two distributions, i.e., between the experimental
B-factors and the simulated average displacements of the protein network due to the ran-
dom perturbations. As a result, high Pearson’s coefficients would indicate a high degree of
similarity between the computed protein fluctuations and the experimental B-factors.

We mention above that different force application patterns are considered in this
study. Specifically, besides applying forces to the entire protein network in the pfANM and
wpfANM, and to the water molecules alone in the wpfANM, we also apply forces only to
the nodes lying on the external protein surface (pfANM) and on the protein-water network
surface (wpfANM). The reason for this is due to the fact that the effect of random collisions
is more likely to occur on the exterior protein surface, rather than in the interior. For this
purpose, the surface residues were calculated by computing the boundary geometry of the
set of 3D coordinates of the network points. The external nodes were defined as those lying
on the boundary surface. In this analysis, the generation of this surface was dependent
on a parameter, known as the shrink factor. The shrink factor characterizes the amount of
shrinkage of the boundary geometry, with values ranging from 0 to 1: zero corresponds to
the convex hull, one corresponds to the maximum shrunk boundary. Note that the shrink
factors used here for the generation of the external surface correspond to the normalized
alpha shape, recently used by us [77] to extract hinge-domain information from protein
structures. By using the approach based on the shrink factor, different external surfaces are
generated by varying this numerical parameter from 0 to 1, in steps of 0.1. The surfaces
obtained are finally used to select the external nodes on which the external forces will
be applied.
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2.3. Protein Dataset and Summary of the Models and Analyses

The analysis was performed on the same dataset used in our previous work [62]
that includes 921 high-resolution X-ray single-chain protein structures from the PDB. The
resolution of the selected crystal structures is below 1.3 Å, with a maximum sequence
identity of 30%. Two structures were removed from the dataset, i.e., 1IXH and 2BK9,
because of errors found in the PDB file regarding the waters. The size of the 919 final
proteins range from 101 to 1174 residues.

As mentioned in Section 2.2, the pfANM and wpfANM were built for all protein
structures by neglecting and considering water molecules, respectively. For both models,
after evaluating the Hessian matrix, the mode-based fluctuations were evaluated according
to Equation (3) and compared to the experimental B-factors. Then, for the pfANM, random
forces were applied: (1) to all the nodes of the network and (2) only to the external nodes.
Similarly, for the wpfANM, forces are considered to be acting on: (1) the entire network,
(2) only on the external nodes and (3) only on the waters. From each of these simulations, the
nodal displacements are computed from Equation (7) and Pearson correlation coefficients
with the experimental B-factors are also calculated. In Table 1, the summary of the models
and simulations and their designators for their Pearson correlation coefficients are given.

Table 1. The Designators for the Pearson Collection Coefficients for the Various Elastic Network Models.

Model pfANM wpfANM

Nodes in the network Cα atoms Cα atoms + water molecules *

Analysis Mode-based
fluctuations Force application Mode-based

fluctuations Force application

Nodes perturbed - All nodes External
nodes - All nodes External

nodes **
Water nodes

***
Correlation coefficient ρFL ρFR,ALL ρFR,EXT ρW,FL ρW,FR,ALL ρW,FR,EXT ρW,FR,WAT

* All waters in the pdb are included, without checking whether they are exterior. ** All nodes lying on the external
surface (boundary geometry) of the protein-water network are perturbed by random forces; *** Only water
molecules in the protein-water network are perturbed by random forces.

3. Results and Discussion

3.1. Fluctuations and Force Application on the pfANM

In this section, the flexibility of the protein structure will be investigated by using
traditional pfANM mode-based fluctuations as well as from the outcome of the random
force applications to the protein. Figure 1 shows the correlation coefficients obtained from
a comparison of the experimental B-factors with the mode-based fluctuations as well as the
average displacements due to the applied random forces. Figure 1a,b report the Pearson
coefficients obtained for the 919 single-chain protein structures, with the values ordered
by ascending values of ρFL. Figure 1c shows the statistical distributions of the correlation
coefficients, whose median values and standard deviations are reported in the keys.

Figure 1a,b shows the distributions of correlation coefficients ρFR,ALL and ρFR,EXT, that
are due to the random force applications, and these are observed to oscillate near the
population of ρFL. This means that the average displacements of the protein elastic network
due to the force application are indeed well correlated with the experimental B-factors, with
a similar agreement as for the traditionally used mode-based fluctuations. The same con-
clusions can also be drawn by looking at Figure 1c, where the three statistical distributions
exhibit the same pattern and similar median values, i.e., 0.63, 0.63 and 0.64, for ρFL, ρFR,ALL
and ρFR,EXT, respectively. Therefore, it cannot be concluded that applying random forces
on the protein structures always enhances the correlation with the experimental B-factors,
while it can be concluded that perturbing the protein structure by applying random forces
leads to a good estimate of the experimentally determined fluctuations, at least as good as
those found with the normal modes.

25



Appl. Sci. 2022, 12, 2344

200 400 600 800

0

0.5

1

C
or

re
la

tio
n

co
ef

fic
ie

nt

FR,ALL

FL

200 400 600 800
Protein structure

0

0.5

1
C

or
re

la
tio

n
co

ef
fic

ie
nt

FR,EXT

FL

-0.2 0 0.2 0.4 0.6 0.8 1
Correlation coefficient

0

0.05

0.1

0.15

0.2

0.25

0.3

R
el

at
iv

e 
fre

qu
en

cy

FL, M = 0.63 -  = 0.16

FR,ALL, M = 0.63 -  = 0.17

FR,EXT, M = 0.64 -  = 0.15

(a)

(b)

(c)

Figure 1. Correlations of experimental B-factors with ENM-based fluctuations and the average
displacements due to random perturbations (pfANM): (a,b) correlation coefficients for the analyzed
919 protein structures (blue for ρFL, orange for ρFR,ALL, and red for ρFR,EXT); (c) statistical distribution
of the obtained correlation coefficients. The results are all very similar, showing relatively little
differences among them.

As mentioned in the previous section, the application of random forces on the external
protein surface requires the selection of the nodes that lie on the exterior. For this purpose,
various external boundaries were generated by changing the shrink factor of the surface,
varying from 0 to 1 with steps of 0.1. Figure 2 shows an example of different external
surfaces generated with shrink factors of 0, 0.2, 0.4, 0.6, 0.8 and 1 for the infrared fluorescent
protein (PDB: 5AJG). As can be observed, increasing the shrink factor leads to considering
a higher number of nodes lying on the surface, which in turn has a more detailed structure.
Since the primary determinant of a structure’s dynamics is its shape, clearly the most
detailed structure would be expected to be the best [78].

Figure 2. Dependence of the generated external boundary (external protein surface) on the value of
the shrink factor. Infrared fluorescent protein (PDB: 5AJG) is reported as an example, with shrink
factors equal to 0, 0.2, 0.4, 0.6, 0.8 and 1. Red points represent the nodes of the network (Cα atoms),
while the external surface is represented by Delaunay triangles (in light blue), which connect the
nodes in the external boundary.
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For each of these generated surfaces, the random forces were applied only to the nodes
lying on the external boundary. The resulting network displacements were then evaluated
from Equations (4)–(7). It follows that the correlation of the average displacements (from
10,000 samples) due to the application of the external forces, i.e., ρFR,EXT, also depends on
the adopted shrink factor. The shrink factor that leads to the maximum value of ρFR,EXT for
each protein is then selected as the optimal one. Figure 3 reports the statistical distribution
of the optimal shrink factors obtained for the 919 single-chain proteins. As can be observed,
the optimal shrink factor assumes almost all values, meaning that it is strongly protein-
specific. Nevertheless, a slight preference towards shrink factors equal to 1.0 is observed.
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Figure 3. Statistical distribution of the optimal shrink factor, based on a comparison between
experimental B-factors and average displacements due to the application of random forces on the
exterior protein surface.

In Figure 4 we show results for the example of the infrared fluorescent protein (PDB:
5AJG), where the correlation coefficients ρFL, ρFR,ALL and ρFR,EXT, are shown depending
on the shrink factor for the external surface representation. From these calculations, we
obtain a correlation between the B-factors and the traditional mode-based fluctuations ρFL
equal to 0.56, a correlation with the displacements resulting from the application of forces
to the entire structure ρFR,ALL equal to 0.62, and a correlation derived from perturbations
only on the external surface ρFR,EXT which varies with the shrink factor and reaches a
maximum value of 0.62 for an optimal shrink factor of 1.0. As can be seen from the results,
in this case, applying random forces on the protein network enhances the correlation
with the experimental B-factors of 6% (0.62 vs. 0.56) compared with the usual mode-based
fluctuations. This result points out the cohesive nature of the protein structure, showing that
the point of application of forces does not matter much, with the result of applying forces
in all possible directions on the surface yielding nearly the same result as applying them in
all directions throughout the structure when the surface representation is detailed enough.

Figures S1–S5 in the Supplementary Material report similar results, obtained by adopt-
ing different values of p for the decay exponent of the ENM spring constants (p = 1, 2, 4, 6
and 12). As can be seen there, similar conclusions can be drawn for these cases. Note that,
for this protein, higher values of p, e.g., p = 4 and 6, lead to a greater enhancement in the
correlation with experimental B-factors when the ENM forces are applied, rather than just
looking at the intrinsic dynamical fluctuations.
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Figure 4. Experimental B-factors vs. mode-based fluctuations and average displacements due to
random forces for the infrared fluorescent protein (PDB: 5AJG). The solid blue line refers to ρFL, the
dashed orange line to ρFR,ALL and the dotted red line to ρFR,EXT. The correlation arising from the
application of forces only on the external surface, i.e., ρFR,EXT, depends on the selected shrink factor,
which is in the range 0–1. For each shrink factor, the values reported close to the marker represent the
fraction of external nodes, out of the total 301 nodes of the network. This shows that the best result
is the structure representation with the greatest level of detail, and interestingly the most detailed
structure with forces applied to the surface only leads to nearly the same result as the application of
forces throughout the structure.

3.2. Incorporating Waters into the Computations

In this section, we show results obtained by also including the localized waters given
in the crystal structure as part of the structure for defining the elastic network. There is
some ongoing debate about whether or not these bound waters should be considered as
an actual part of the structure. Each high-quality protein structure available in the PDB
contains a substantial number of waters that were present in the crystal formed at low
temperatures. The open question is whether these remain bound at higher temperatures.
These molecules often typically form a network of hydrogen bonds with the side chains of
polar amino acids on the protein surface and thus can appear to be quite stable. It follows
that these waters may possibly cause some changes to the overall flexibility and dynamics
of any given protein. Moreover, since we are interested in looking at the responses of each
protein structure due to external perturbations, the inclusion of these external waters would
be expected to affect the motions to some extent. Figure 5 shows a surface representation
of the infrared fluorescent protein (PDB: 5AJG), with and without the addition of water
molecules in Figure 5a,b, respectively. The protein structure is shown in light-gray, with the
surface depiction highlighting the external surface and cavities. Water molecules available
in the PDB are shown in Figure 5a as blue spheres. As can be seen from the comparison
between the two figures, most of the crystallized water molecules are bound in concave
parts of the protein surface, and thus act to smooth the structure [79]. This smoothing
might restrict the flexibility of certain parts of the proteins that might cause problems for
the mechanisms otherwise; this can be looked at as flowing liquid that represents protein
motion, if a certain direction of the flow is restricted, it may change the overall flow of
the water, therefore, to have an optimal flow path (specific functional protein motion), the
restrictions (waters) are as important as the structure itself.

As mentioned in the previous section, the wpfANM is built as the usual pfANM with
p equal to 3 (see Equation (2)), except that both the coordinates of the Cα atoms and the
water molecules are now considered as a part of the whole structure. Based on the resulting
wpfANM, the mode-based fluctuations are evaluated from Equation (3), whereas the
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average displacements resulting from the random perturbations are computed according
to Equations (4)–(7). In the latter cases, as explained above, three types of force application
are considered, as shown in Table 1. From the calculations, we then obtain four correlation
coefficients to compare with the experimental B-factors, namely ρW,FL, ρW,FR,ALL, ρW,FR,EXT
and ρW,FR,WAT, with these being described in Table 1.

Figure 5. Surface representation of infrared fluorescent protein (PDB: 5AJG): (a) protein structure
(light gray) + water molecules (blue spheres); (b) protein structure alone.

Figure 6 shows the correlation coefficients for the 919 proteins investigated. Figure 6a–c
report the correlations ordered by increasing values of ρW,FL, whereas Figure 6d displays the
statistical distribution for all four Pearson coefficients, whose median values and standard
deviations are shown in the key. From the results reported in Figure 6, it follows that
applying forces on the protein network slightly (<10%) enhances the prediction of the
B-factors with respect to the traditional mode-based fluctuations. As a matter of fact, the
median value of ρW,FL was found to be 0.57 for the selected dataset, whereas the median
values of ρW,FR,ALL, ρW,FR,EXT and ρW,FR,WAT were 0.60, 0.66, and 0.59, respectively. It is
evident that applying random forces on the surface of the network (which now considers
also the layer of water molecules) yields a significant 10% gain in the correlation with the
experimental fluctuations, compared to the mode-based fluctuations.

200 400 600 800

0

0.5

1

C
or

re
la

tio
n

co
ef

fic
ie

nt

W,FR,ALL

W,FL

200 400 600 800

0

0.5

1

C
or

re
la

tio
n

co
ef

fic
ie

nt

W,FR,EXT

W,FL

200 400 600 800
Protein structure

0

0.5

1

C
or

re
la

tio
n

co
ef

fic
ie

nt

W,FR,WAT

W,FL

-0.2 0 0.2 0.4 0.6 0.8 1
Correlation coefficient

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
el

at
iv

e 
fre

qu
en

cy

W,FL, M = 0.57 -  = 0.2

W,FR,ALL, M = 0.6 -  = 0.18

W,FR,EXT, M = 0.66 -  = 0.15

W,FR,WAT, M = 0.59 -  = 0.16

(a)

(b)

(c)

(d)

Figure 6. Experimental B-factors vs. mode-based fluctuations and average displacements due to
random perturbations (wpfANM—water molecules included): (a–c) correlation coefficients for the
919 protein structures (blue curve for ρW,FL, orange curve for ρW,FR,ALL, red curve for ρW,FR,EXT and
green curve for ρW,FR,WAT); (d) statistical distribution of the correlation coefficients. The highest
correlations are seen when perturbations are applied on the surface.
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Also in the case of the wpfANM, the surface of the network is not unique but depends
on the adopted shrink factor. The water molecules contained in the network play a major
role in the definition of the surface since they are mostly placed on the exterior of the
structure (see Figure 5). As an example, Figure 7 shows the different surfaces generated for
the infrared fluorescent protein (PDB: 5AJG, with water molecules included) with shrink
factors equal to 0, 0.2, 0.4, 0.6, 0.8 and 1. As can be seen by comparing Figure 7 to Figure 2,
other than the selected value of the shrink factor, the shape of the external surface also
depends on the presence of the water molecules within the network. Similarly to what was
shown in the previous section, Figure 8 shows the optimal shrink factors (with the best
correlation with B-factors) obtained for the 919 water-enriched protein structures. Again,
the distribution of the optimal shrink factor is rather uniform, although in this case a slight
bias towards the convex hulls surfaces appears, i.e., with a shrink factor equal to 0. This
probably reflects a preference for smoother structures when water molecules are added
(see Figure 5).

Figure 7. Dependence of the generated external boundary (external protein surface) on the value of
the shrink factor. Infrared fluorescent protein (PDB: 5AJG), with water molecules included from the
PDB structure file, is reported as an example, with shrink factors equal to 0, 0.2, 0.4, 0.6, 0.8 and 1. Red
points represent the nodes of the network (Cα atoms + water molecules), while the external surface is
represented by Delaunay triangles (in light blue), which connect the nodes in the external boundary.
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Figure 8. Statistical distribution of the optimal shrink factor, resulting from the comparison between
experimental B-factors and average displacements due to the application of random forces on the
external protein surface, with PDB water molecules included.
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Figure 9 shows the correlation coefficients of the wpfANM of the infrared fluorescent
protein (PDB: 5AJG), and how it depends on the adopted shrink factor for the surface.
From the calculations, we obtain a correlation with the mode-based fluctuations ρW,FL
equal to 0.84, a correlation with the displacements from the application of forces to the
entire structure ρW,FR,ALL equal to 0.85, a correlation with the displacements from the
application of forces only to the water molecules ρW,FR,WAT equal to 0.63, and a correlation
with the displacements due to the perturbations only on the surface ρW,FR,EXT that varies
with the shrink factor and reaches a maximum of 0.83 for the optimal shrink factor of
0.3. In this case, it is remarkable that by applying random perturbations on only 31% of
the nodes (corresponding to a shrink factor of 0.3), we obtain a high correlation with the
experimental data (0.83 Pearson coefficient). It should be noted that this correlation is
found by comparing the experimental B-factors of all protein residues (both on the surface
and within the core) to the computed average displacements due to the application of
perturbations only on the external part of the elastic network. Thus, it follows that even
perturbing a small portion of the protein surface (31%) allows us to predict fairly accurately
the fluctuations of the entire protein. This result has its origin in the strong coupling
throughout the elastic network model: since the ENM is a highly cooperative model, the
perturbation of only a small part of the structure can indeed generate fluctuations over
the entire protein. This arises from the specific features of the three-dimensional protein
structure and all of the internal connections, which are both built into the ENM.
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Figure 9. Experimental B-factors vs. mode-based fluctuations and average displacements due to
random forces for the infrared fluorescent protein (PDB: 5AJG), with PDB water molecules included.
The continuous blue line refers to ρW,FL, the dashed orange line to ρW,FR,ALL, the dotted red line to
ρW,FR,EXT, and the dashed-dotted green line to ρW,FR,WAT. The correlations from the application of
forces only on the protein’s external surface, i.e., ρW,FR,EXT, depends on the selected shrink factor, in
the range 0–1. For each shrink factor, the values reported close to the marker represent the fraction of
external nodes out of the total of 533 nodes (301 Cα atoms + 252 water molecules) of the network.

Figures S6–S10 in the Supplementary Material show similar results as those reported
in Figure 9, but for different exponents p in the water-augmented ENM, namely, p = 1, 2, 4,
6 and 12. Despite some differences in the numerical values of the correlation coefficients,
similar conclusions are reached as for those in Figure 9.

3.3. Comparison between pfANM and wpfANM Results

In the previous sections, it has been shown that perturbing the protein structure with
random forces, either on the entire structure or on the surface, generally leads to a fairly
accurate prediction of the protein fluctuations and flexibility. In a large number of cases,
it has also been found that the agreement with the experimental B-factors was improved
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with respect to considering the traditional fluctuations of the usual elastic network. As an
example, the results shown in the previous sections for the infrared fluorescent protein
(PDB: 5AJG) are reported together in Figure 10 in terms of correlation coefficients with the
experimental B-factors. Several observations can be made regarding this figure. First, it is
evident that the traditionally employed internal protein fluctuations provide the lowest
correlation with the experimental data, with a correlation of about 55% (ρFL). Conversely,
applying random perturbations on the same elastic network leads to a 5% gain in the
correlations with the B-factors (ρFR,ALL and ρFR,EXT). Furthermore, adding the PDB water
molecules to the elastic network further improves the correlation with the experimental
data. In this case, considering the internal protein fluctuations of the water-enriched elastic
network or applying random forces to it yields correlation coefficients of about 85% (ρW,FL,
ρW,FR,ALL and ρW,FR,EXT). Also, applying random forces only on these water molecules, i.e.,
not perturbing the protein molecule directly but only the water molecules attached to the
network (see Figure 5a), leads to a correlation of about 60% (ρW,FR,WAT), which is still higher
than the correlation obtained with the traditional mode-based internal protein fluctuations
of the ENM (ρFL = 55%).
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Figure 10. Infrared fluorescent protein (PDB: 5AJG): correlation coefficients obtained from the seven
types of analyses, as reported in Table 1 and in the previous sections.

Figures S11–S15 in the Supplementary Material show similar outcomes, but are ob-
tained by changing the exponent p of the ENM. As can be seen, similar conclusions are
drawn. In all cases, it is found that perturbing the protein with random forces provides an
enhancement of the correlation with experimental B-factors, rather than considering the
traditional ENM with only intra-protein interactions. Moreover, the inclusion of waters in
the ENM leads to further improvements in the correlation, with some gains in the Pearson
coefficient being as high as 30–35%.

The example shown in Figure 10 obviously refers to one single case, but these results
were found for a decent amount of protein structures. For other protein structures, the
addition of water molecules to the protein network led to results which were quite similar
to the ones obtained in the classical way, i.e., calculating the mode-based fluctuations of the
traditional no-water elastic network.

Figure 11a reports the median values and standard deviations of the seven correlation
coefficients obtained for the dataset of 919 single-chain protein structures, as reported in
the keys of Figures 1c and 6d. As can be observed, the median values lie in the range
0.60–0.65, and present a similar standard deviation (15–20%). However, the distribution
with the highest median value and the lowest standard deviation was found for the analysis
involving the application of random perturbation on the external surface of the wpfANM,
i.e., ρW,FR,EXT. A direct comparison between the statistical distribution of ρW,FR,EXT and
the one related to the traditional mode-based internal protein fluctuations of the no-water
pfANM, i.e., ρW,FL, is reported in Figure 11b. From the direct comparison of the two
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distributions, it is clear that applying random forces on the surface of the wpfANM leads
to an overall, yet slight, improvement of the correlation with the experimental data.

FL

FR,ALL

FR,EXT
W,FL

W,FR,ALL

W,FR,W
AT

W,FR,EXT
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
or

re
la

tio
n 

co
ef

fic
ie

nt

-0.2 0 0.2 0.4 0.6 0.8 1
Correlation coefficient

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
el

at
iv

e 
fre

qu
en

cy

FL, M = 0.63 -  = 0.16

W,FR,EXT, M = 0.66 -  = 0.15

(a) (b)

Figure 11. (a) Correlation coefficients obtained from the seven types of analyses (median values
and standard deviations of the statistical distributions) for the 919 single-chain protein structures;
(b) direct comparison between the statistical distributions of ρFL and ρW,FR,EXT.

Based on the correlation coefficients obtained for our entire dataset of protein struc-
tures, the analysis among the seven performed ones (Table 1) that gave the highest correla-
tions with the experimental data was noted. Figure 12a shows the relative number of such
occurrences for each type of analysis. It was found that, out of the 919 investigated protein
structures, the mode-based fluctuations of the pfANM provided the highest correlation
coefficient in 107 cases (11.6%), the application of random forces on the entire pfANM in
74 cases (8.1%), the application of forces on the external surface of the pfANM for 172 cases
(18.7%), the mode-based fluctuations of the wpfANM in 60 cases (6.5%), the application
of forces on the entire wpfANM in 70 cases (7.62%), the application of forces only on the
water molecules of the wpfANM in 93 cases (10.1%), while the application of forces on the
external surface of the wpfANM were provided in 343 cases (37.3%). As can be seen and
has already been discussed concerning Figure 11, the application of random forces on the
surface of the water-enriched protein network is statistically the best performing, although
not the only one, with regards to better predicting protein fluctuations and flexibility in
terms of experimental B-factors. Moreover, looking cumulatively at the analyses FR,EXT
and W,FR,EXT, in 515 cases (56.0%), the application of random forces on the external
surface of the protein network yields the highest correlation coefficients, thus confirming
that perturbing the external protein surface can induce a response in good agreement with
the experimental B-factors.
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Figure 12. (a) Relative frequency of the highest correlation coefficient for each type of analysis for
the dataset of 919 single-chain protein structures; (b) relative frequency of the highest correlation
coefficient for the pfANM or the wpfANM.
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Figure 12b shows the occurrence of the highest correlation coefficients for the two
models, i.e., the pfANM vs. wpfANM. From the outcomes, it was obtained that in 353 cases
(38.41%) the highest correlation with the B-factors was obtained with the pfANM, whereas
in the remaining 566 cases (61.59%) the wpfANM was allowed to reach the highest correla-
tion with the experimental data. This confirms that considering the PDB water molecules
might actually enhance the prediction of the protein fluctuations and therefore the numeri-
cal evaluation of the experimental B-factors.

4. Conclusions

Research carried out in the last decades has shown that protein fluctuations and
flexibility, as measured by the experimental B-factors, mainly arise from the internal protein
motions and inherent dynamics. The dynamics are known to originate from the tertiary
structure, as recognized within the fundamental sequence-structure-dynamics-function
paradigm of protein action. Therefore, it should be more appropriate to say that protein
fluctuations and flexibility arise from the protein structure and can be mediated by its
dynamics. As a matter of fact, in a recent work [62], we have shown that the overall protein
flexibility, as measured by the experimental B-factors, can also be retrieved by applying
pairwise static forces to the protein ENM and measuring the amount of compliance against
these external pulling forces.

In this paper we have proposed an additional viewpoint as regards protein fluctua-
tions and flexibility. We applied random static forces throughout the protein elastic network
and evaluated the response of the network via the computation of average nodal displace-
ments. From the comparison of these average displacements against the experimental
B-factors, we found that the protein flexibility, and therefore its fluctuations, can indeed be
elucidated with such a procedure. Also, we found that if these perturbations are applied
on the protein surface, and if crystallized water molecules are also inserted into the model,
higher correlations with experimental data can often be found. This suggests that protein
fluctuations can also be seen as (fully or partly) the response of the protein structure to
external forces, which might be induced by the continuous collisions of the solvent and
other solute molecules around the protein structure.

It is important to mention that the goal of the analysis presented here was to propose
a new methodology, and therefore a new perspective, to understand protein fluctuations.
However, no additional work has been carried out yet as regards the optimization of the
elastic model upon which the random perturbations are applied. This might eventually
improve the correlation with the experimental data and is our next goal. As described in
the text, the pfANM has been used for the standard ENM, whereas a wpfANM has been
generated in order to account for the presence of crystallized water, where water molecules
have simply been added as additional nodes to the network. We plan to optimize the
elastic model by including different spring constants for the Cα-Cα connections, Cα-water
connections and water-water connections, which should simulate more realistically the
different atomic interactions (residue-residue, residue-water, water-water).

Attention has been paid to the external surface of the network. Thus, we are also
planning to use a different version of ENM, where the contact topology is not generated
by using the traditional cut-off limit, but using alpha-shapes associated with Delaunay
tessellations. A recent work from Koehl et al. [36] showed that such a procedure is able
to generate elastic models with enhanced agreement with experimental data. Applying
external forces on such optimized models, and adding water molecules as well, might
enhance the correlation with experimental B-factors, allowing for the better explanation of
fluctuations, and therefore the way a protein moves and functions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app12052344/s1, Figures S1–S5: Experimental B-factors vs. mode-based fluctuations and
average displacements due to random forces for the infrared fluorescent protein (PDB: 5AJG), with
p = 1, 2, 4, 6 and 12 for the decay of spring constants in the ENM, Figures S6–S10: Experimental
B-factors vs. mode-based fluctuations and average displacements due to random forces for the
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infrared fluorescent protein (PDB: 5AJG), with PDB water molecules included, with p = 1, 2, 4, 6 and
12 for the decay of spring constants in the ENM, Figures S11–S15: Infrared fluorescent protein (PDB:
5AJG): correlation coefficients obtained from the seven types of analyses, as reported in Table 1 and
in the previous sections. Case with p = 1, 2, 4, 6 and 12 for the decay of spring constants in the ENM.
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Abstract: The paradigmatic sequence–structure–dynamics–function relation in proteins is currently
well established in the scientific community; in particular, a large effort has been made to probe
the first connection, indeed providing convincing evidence of its strength and rationalizing it in a
quantitative and general framework. In contrast, however, the role of dynamics as a link between
structure and function has eluded a similarly clear-cut verification and description. In this work,
we propose a pipeline aimed at building a basis for the quantitative characterization of the large-
scale dynamics of a set of proteins, starting from the sole knowledge of their native structures. The
method hinges on a dynamics-based clusterization, which allows a straightforward comparison
with structural and functional protein classifications. The resulting basis set, obtained through the
application to a group of related proteins, is shown to reproduce the salient large-scale dynamical
features of the dataset. Most interestingly, the basis set is shown to encode the fluctuation patterns of
homologous proteins not belonging to the initial dataset, thus highlighting the general applicability
of the pipeline used to build it.

Keywords: protein dynamics; elastic network models; normal mode analysis

1. Introduction

The internal motions of proteins are intimately linked to protein function [1]. Such
conformational movements span a wide range of spatial and temporal scales, going from
local sidechain rotations and loop motions (ps to ns), to conformational transitions involving
unfolding/refolding processes (ms to hours) [2]. In between these two extremes, internal
large-scale protein fluctuations happening on timescales of the order of ns-μs [3] typically
involve the collective movements of secondary structure elements; such fluctuations lead to
a variety of potential conformational states, which might promote the exposure of specific
binding sites [4,5] or facilitate the induced fit of the protein upon interaction with partner
molecules [6,7]. It has been shown not only that this large-scale dynamics is essential for
a protein to carry out its biological role [8], but also that a remarkable correlation exists
between a protein’s function and its specific dynamical signature [9], thus strengthening
the view of dynamics as a link between a protein’s structure and its specific function. This
is particularly evident for the case of allosteric proteins, where the binding of a ligand
conveys a signal that is propagated within the protein structure through a modulation of
its internal dynamics, resulting in alternative conformational states and an altered protein
function [10–12].

Several computational methods exist for the study of collective dynamics in pro-
teins [13–15]; however, in order to develop a more general view of how dynamics bridges
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structure and function, it is necessary to build a datasetwise approach for the compari-
son of such large-scale dynamics among proteins sharing different degrees of sequence
and structural similarity. Attempts in this direction have been performed in several
works [16–21]. Maguid et al. [22] based their analysis on a dataset of pairs of homologous
proteins; the comparison of vibrational backbone dynamics within each pair led to the
remarkable observation of a correlation between dynamics and evolutionary conservation.
Velázquez-Muriel et al. [23] performed a comparison between the protein flexibility shown
by the structurally aligned members of a CATH superfamily [24] and the protein flexibility
sampled by molecular dynamics simulation of a reference protein belonging to the same
superfamily. Singular-value decomposition was used to capture the essential components
of the two spaces, which show different size and complexity and are therefore suggested to
be combined for a thorough exploration of protein deformations. Analyses of the distance
in dynamics have also been performed in the case of structurally and functionally diverse
sets of proteins; in this regard, Hensen et al. [9] introduced the notion of the “dynasome”,
namely an ensemble of observables computed from molecular dynamics (MD) simulations
of a structurally heterogeneous protein dataset. The method highlights a striking correlation
between the dynasome descriptors (which include 34 observables for each protein, ranging
from the first five eigenvalues of the covariance matrix of Cα fluctuations to the average
ruggedness of the energy landscape) and the proteins’ functional classification. However,
this approach relies on time-consuming MD simulations, which limits its applicability to
large protein datasets. In addition, the large number and sophistication of the descriptors
employed do not enable a straightforward recognition and visualization of the similarities
in dynamics between proteins in terms of conformational movements.

To overcome these limitations, in this work, we set up and validate a novel pipeline
for the identification of a basis set of conformational motions in an enzymatic family, repre-
senting a common vocabulary of their large-scale dynamics. To this aim, we investigated
internal, collective protein dynamics in terms of fluctuations at the level of single residues.
Our approach does not require the acquisition of expensive MD simulations, since it is
based on the topology of native contacts derived from a protein’s experimental structure;
specifically, we made use of normal mode analysis (NMA) [25], which represents, together
with principal component analysis (PCA) [26], one of the main protocols employed to iden-
tify the most relevant patterns in the large-scale dynamics of proteins. While PCA requires
a large set of configurations (for example, from MD trajectories) to build the covariance
matrix, NMA can be performed with the sole knowledge of an equilibrium configuration
of the system. For this reason, NMA is often used in combination with simplified quadratic
models, such as the linearized versions of elastic network models (ENMs) [27]. Another
degree of simplification can also be introduced by building coarse-grained (CG) models of
the protein, where the atomistic degrees of freedom are replaced by a smaller number of
physically relevant representative beads. In spite of this simplicity, the collective, large-scale
dynamical features obtained by the NMA of the ENMs of proteins have been shown to be
successful to predict experimental B-factors [28] and also conformational changes [29,30].

Given the nature of the ENMs, the proposed pipeline is particularly suited for the
study of collective dynamics in globular proteins; ENMs might indeed show limitations for
biomolecules whose dynamics is strongly anharmonic, as in the case of intrinsically disor-
dered proteins. For this reason, the validation of the method is herein performed on a set of
globular enzymes, namely chymotrypsin-related proteases, for which in-depth analyses of
evolutionary relationships and structural similarities are available in the literature [31–34];
in addition, ENM-based NMA has been successfully applied to chymotrypsin-like pro-
teases in previous works, both in the Cartesian space [35,36] and the torsion space [37]. In
our approach, normal modes are computed from the β-Gaussian elastic network model of
the dataset members [38]. In the β-Gaussian model, each residue is described in a simplified
representation as two beads: one corresponds to the Cα atom and represents the main
chain, while the second, describing the sidechain, is positioned according to the degrees
of freedom of the first bead. An effective quadratic potential energy is used to model
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the bead fluctuations from the native conformation. We made use of this information to
perform a dynamics-based alignment between all pairs of proteins from the dataset; the
results from the alignment were used to construct a distance matrix in the space of protein
dynamics and to cluster together proteins with similar large-scale motions, thus adding an
additional layer of information to clustering procedures based on sequence identity [39,40]
or structural similarity [41–43].

Moreover, we developed a way to represent each protein’s large-scale normal mode as
a vector field on the 3D space. Thanks to this representation, we were able to build a high-
dimensional basis set of large-scale protein modes. The basis set is validated by comparison
with results from MD simulations, with the perspective of applying this methodology to
a dataset comprehensive of a large number of protein classes, differing in structure and
function. In this way, common fluctuations between distant proteins can be correlated to
the presence of local structural elements, with implications in protein engineering for the
design of scaffolds that are able to perform controlled conformational changes in functional
enzymes [44,45]. In addition, the large-scale dynamics might serve as a guide to the
identification of those patterns where the preservation of a high resolution is of paramount
importance in the construction of simplified, multiscale models [46–50] that retain the
original dynamics. In particular, by describing at an atomistic level the structural elements
identified as important for the desired conformational movements and simultaneously
coarse-graining the remainder of the protein, it might be possible to obtain a simplified and
computationally inexpensive protein model that shows the conformational dynamics of
the high-resolution one.

2. Overview of the Workflow

In our approach, the identification of a common set of conformational motions among
different proteins is based on the analysis of their dynamics in a CG representation; from
here, a representative set of normal modes is identified through a dynamics-based clustering
of the proteins comprising the initial dataset. The selected, representative modes are then
orthonormalized and ordered, so as to obtain the final basis set. An overview of the
workflow is given in Figure 1 and explained in detail in the following paragraphs.

The starting point is the identification of a set of proteins (Figure 1a). The choice of
this dataset is arbitrary and independent of the pipeline; however, the number of proteins
that the dataset contains is supposed to be large enough so as to be representative of the
families or superfamilies that are included, meaning that the more distant are the members
in terms of homology, the larger should be the dataset. This is necessary to ensure the
sufficient generality of the resulting basis set of conformational motions.

The selected set of structures is used to run pairwise dynamics-based protein align-
ments with the ALADYN software developed by some of us [51] (Figure 1b). ALADYN
takes two input structures and performs the maximization of a score function that takes
into account the spatial superposition of protein regions that have similar motion. The dy-
namical information is encoded in the low-energy (large-amplitude) eigenvectors obtained
from the diagonalization of the interaction matrix Mij of the Hamiltonian function of the
β-Gaussian network model:

H =
1
2 ∑

ij
δ�xi Mijδ�xj (1)

where δ�xi is the displacement vector of the i-th bead with respect to the equilibrium
configuration. Once the eigenvectors have been obtained, the extent and consistency of the
alignment are quantified through the root-mean-squared inner product (RMSIP) between
the spaces given by the first 10 modes of each aligned protein. If we call Ni and Nj the
total number of residues in the chains of the two aligned proteins, the RMSIP calculation
is limited to a subset q < Ni, Nj of marked Cα. These subsets of amino acids are chosen
by firstly grouping the amino acids into groups of 10 subsequent ones, then maximizing a
single scoring parameter via the standard Metropolis criterion over the space of possible
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pairs of groups among the two proteins’ sequences, as exhaustively explained in [51].
Specifically, the RMSIP is defined as:

RMSIP({�vk
l }i, {�wk

m}j) = RMSIPij :=

√√√√ 1
10

10

∑
l,m=1

∣∣∣∣∣
q

∑
k=1

�vk
l · �wk

m

∣∣∣∣∣
2

(2)

The RMSIP ∈ [0, 1] takes on the value of 1 in the case of the perfect correspondence
of the spaces and 0 in the case of their complete orthogonality. The quantity (1.0-RMSIP),
which still takes values in the interval [0, 1], is therefore suitable to define a distance
in dynamics between two proteins after alignment. The statistical significance of the
alignment, quantified by means of a z-score, is taken into account by weighting the RMSIP
by the hyperbolic tangent of the module of the z-score, so as to give more importance to
the most reliable results. The distance in dynamics between two aligned proteins i and j is
therefore defined as:

dij = 1.0 − (
RMSIPij · tanh|zij|

)
(3)
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2Q6D
3D23
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4XFQ
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...
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Figure 1. Schematic representation of the workflow proposed. Once the protein dataset is chosen (a),
dynamics-based alignment is performed between all protein pairs (b); the resulting similarity scores
(c) are used to perform a clustering and to identify one representative protein for each cluster and
one for the whole dataset (d). All the cluster representatives are dynamically aligned with respect to
the latter (e), and their normal modes are interpolated on a cubic lattice (f). Once orthonormalized
and ordered, the latter are used to construct the final basis set.

After all the pairwise alignments between the elements of the dataset are performed, a
distance matrix that expresses differences in the large-scale dynamics is obtained (Figure 1c);
then, the dataset undergoes hierarchical clustering [52] based on this distance matrix, in
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order to identify groups of dynamics-related proteins (Figure 1d). The optimal number
of clusters is identified from the interplay between resolution and relevance [53–57]. These
two quantities are entropies that are related to each other and depend on the clusterization
procedure adopted. We exploited them to select the number of clusters to retain, by
considering the smallest number of clusters (hence, the lowest resolution) that gives the
highest relevance (Figure 2). Specifically, given a labeling ŝ := (s1, . . . , sη) (e.g., a clustering)
to a sparse dataset made by N ≥ η data points (in our case, the single proteins in the
dataset), the resolution is defined as an entropy Ĥres representing the relative amount of
information loss in the process:

Ĥres[ŝ] := −∑
s

ps · log2(ps) ps :=
ks

N
(4)

where ks is the number of data points that fall into the same cluster s. It has been proven [54]
that Ĥres increases monotonically with the number of clusters, in accordance with the idea
that the coarser is our clustering, the more information we lose. On the other hand, the
relevance Ĥrel is defined as:

Ĥrel [k̂] := −∑
k

k · mk
N

· log2

(
k · mk

N

)
(5)

where mk is the number of clusters containing the same amount k = 0, . . . , N of data points,
for a given clustering process. By choosing the lowest resolution value corresponding to the
largest relevance (Figure 2), we can rely on the most compact clusterization (thus increasing
the statistics within each cluster) that preserves the highest empirical information content.

Figure 2. Resolution–relevance curve used to determine the optimal number of clusters in the
dynamics-based clusterization of the protein dataset. Each point corresponds to a different number
of clusters. The optimal subdivision, indicated with an orange star, corresponds to 9 clusters.

Once the optimal number of clusters is derived, protein representatives of each cluster
are identified as the cluster centroids, namely the proteins with the shortest distance
to every other protein of the cluster itself. In addition, a representative for the whole
dataset is selected as the protein with the most characteristic dynamics, expressed in terms
of the lowest distance with respect to all the other dataset members. The other protein
structures are then dynamically aligned to this one with ALADYN, so as to have a consistent
orientation in space (Figure 1e).

From an ENM representation of each of these newly oriented structures, normal
modes are computed. In order to facilitate the comparison between modes belonging to
proteins with a different sequence length, the first five reoriented normal modes of the
cluster representatives are placed on a cubic lattice and interpolated on the grid points so
as to obtain a smooth vector field (Figure 1f). In this way, we move from comparing the
3N-dimensional modes of different proteins (where N is the number of residues, different
for each protein), to comparing vector fields defined on identical 3D lattices having the
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same dimension. More details on the lattice construction and interpolation are given in
Section 3. Proteins belonging to the dataset employed in this work, despite displaying a
range of sequence length and radius of gyration, do not grandly differ in size; therefore, the
modes interpolated on the lattice can be directly compared. However, it might be the case
that the dataset includes proteins with very different size; this would require a rescaling of
the protein coordinates before the interpolation on the lattice, so as to compare motions
occupying similar volumes in space.

The interpolated modes are orthonormalized using the Gram–Schmidt algorithm [58].
The components of the basis are finally ordered according to decreasing entropy, considered
as a measure of their degree of collectivity. The entropy S of a mode k is defined as:

Sk = −∑i φk
i ln φk

i
ln N

, (6)

where N is the number of lattice sites and φk
i is the square modulus of the k-th mode on the

lattice site i. Sk takes a maximum value of 1 if the mode is delocalized on all the lattice sites
and a minimum value of 0 if the mode is localized on a single site.

The final set of orthonormalized and ordered vector spaces represents the basis of pro-
tein dynamics. In the next section, technical details of the methods employed are presented.

3. Materials and Methods

3.1. Preprocessing of the Dataset

A dataset of 116 chymotrypsin-related proteases, for which structural experimental
information is available, was selected. This dataset is based on the one used in [34], from
which proteins with sequence identity > 70% were removed. The dataset comprises serine
proteases from bacteria, eukaryotes, archaea, and viruses, in addition to chymotrypsin-
related cysteine proteases from positive-strand RNA viruses. The full list of the proteins’
PDB IDs is given in Table S1. The structures were downloaded from the Protein Data
Bank, and the coordinate files were cleaned-up from heteroatoms, from copies of the
protein in the crystallographic cell, and from residue-configurations with low occupancy.
The position of missing atoms was rebuilt and the protein conformations were optimized
using the software FoldX 4 [59]. Non-terminal missing residues were modeled with
MODELLER [60,61]. An analysis of the first 3 normal modes for each protein was run using
an elastic network model with a cutoff of 10 Å, in order to identify the problematic cases in
which the flexible protein termini impaired the analysis of the motion of the protein core.
Such analysis was conducted by visual inspection of the modes on the protein structures. In
those cases, flexible tails were not considered in the following analyses, which thus focused
on globular structures. Moreover, in the case of multi-domain structures, only the domain
known to have protease activity was retained.

3.2. Dynamics-Based Alignment and Clustering

The dynamics-based alignment of all the pairs of protein structures was performed
with the ALADYN software [51], developed by some of us, using as input the cleaned
coordinates files. From the resulting alignment scores, clustering of the structures was
performed with the Python library SciPy, using the ward linkage method. The calculation
of relevance and resolution, used to identify the optimal number of clusters, was performed
with an in-house script.

3.3. Lattice Interpolation and Basis Construction

Normal modes of each protein of the dataset were computed with an in-house code.
The first 5 reoriented normal modes of the cluster representatives were placed on a cubic
lattice, with a lattice constant of 1 Å (for a total of 45 modes, namely vector fields). The
vector on each protein Cα was translated on the nearest lattice grid point. The mode vectors
were interpolated on the lattice in order to create a smooth vector field (Figure 1), using
Gaussian functions with σ = 0.8 Å and truncated at a distance of 2 Å. This distance is slightly
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smaller than the lowest spatial distance between two Cα atoms to make sure that the vector
coming from the original protein mode is not spuriously modified during interpolation.
The chosen value of σ ensures that, in correspondence with the cutoff, the mode field is
close to zero. The resulting vector at each grid point ijk is the sum of the mode fields
centered on the nearby Cα grid points, calculated at ijk, within the cutoff. Eventually, the
orthonormalization and ordering of the modes were performed with Python scripts.

3.4. Molecular Dynamics Simulations

Molecular dynamics simulations have been performed on the representatives of each
cluster, using the software Gromacs 2019 [62]. The proteins were described with the
Amber99sb-ildn force field [63], and the TIP3P model [64] was used for water molecules.
Sodium and chloride ions were added at a concentration of 0.15 M and balanced so as
to neutralize the charge in the simulation box. All systems were energy minimized for
100 steps by steepest descent. The solvent was then equilibrated for 500 ps with positional
restraints on the protein heavy atoms, using a force constant of 1000 kJ·mol−1·nm−2. MD
simulations were carried out in the NPT ensemble for 250 ns for each system. Protein and
solvent were coupled separately to a 300 K heat bath with a coupling constant of 0.1 ps, us-
ing the velocity-rescaling thermostat [65]. The systems were isotropically pressure-coupled
at 1 bar with a coupling constant of 2.0 ps, using the Parrinello–Rahman barostat [66]. The
application of the LINCS [67] algorithm on hydrogen-containing bonds allowed for an
integration time step of 2 fs. Short-range electrostatic and Lennard–Jones interactions were
calculated within a cut-off of 1.0 nm, and the neighbor list was updated every 10 steps.
The particle mesh Ewald (PME) method was used for the long-range electrostatic interac-
tions [68], with a grid spacing of 0.12 nm.

The calculation of the root-mean-squared fluctuations from the trajectory coordinates
was performed on the protein Cα atoms using the Gromacs tool gmx rmsf. The dynamic
cross-correlation was computed with a Python script, using the library MDTraj [69]. Plots
were produced with Python libraries, and protein images were rendered with VMD [70].

4. Results and Discussion

4.1. Overview of the Protein Dataset

Proteases are enzymes catalyzing the reaction of the hydrolysis of peptide bonds. The
independent evolutionary origin of these enzymes [71] is reflected in their large variety of
sizes, shapes, and specificity [72]. In this work, we focus on a specific superfamily, namely
the chymotrypsin-related proteases. The latter share a common structure with two β-barrel-
like domains accommodating the binding site (Figure 3); however, the size and structural
completeness of the β-barrels and the length of the turns and loops connecting the sheets
greatly vary. The result of this structural variability is a range of sequence lengths and
protein sizes among the 116 proteins included in our dataset (Figure S1). The proteolytic
reaction is performed by a catalytic triad of residues, located between the β-barrels. The
type of amino acid playing the role of nucleophile in the mechanism of catalysis determines
the class of proteases: in the serine proteases, the catalytic triad contains His, Asp/Glu, and
Ser residues [73]; in the cysteine proteases, the triad is composed of His, Asp/Glu, and Cys
or of a dyad of His and Cys residues [74].

The classification used in the remainder of the paper is based on MEROPS, a hierar-
chical classification scheme for proteases [75,76]. In the MEROPS database, chymotrypsin-
related proteases constitute the PA clan, which contains 9 families of cysteine proteases
(representing proteases of positive-strand RNA viruses) and 14 families of serine proteases
(representing proteolytic enzymes from eukaryotes, bacteria, some DNA viruses, and
eukaryotic positive-strand RNA viruses). Families are defined on the basis of sequence
similarity and/or resemblance of the folds among their protein members. However, experi-
mental structural information is available for a limited number of these families; therefore,
not all of them are represented in the dataset employed in this work.
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Figure 3. Cartoon representation of chymotrypsin from Bos taurus (PDB ID: 2CGA). Colors are used
to differentiate the structural elements; in particular, the two β-barrels are distinguishable in yellow.
The catalytic triad is represented in licorice and colored in red.

4.2. Results of the Dynamics-Based Alignment

We performed an alignment based on the dynamical information entailed into the
first 10 lowest frequency modes obtained by the NMA on the β-Gaussian network model
of each pair of proteins in the dataset. The alignment consists of the optimization of a
score function that maximizes the RMSIP of the two sets of normal modes. For each pair of
dynamically aligned proteins, matching regions in the two structures are identified as the
subset of residues giving the best overlap. The number of residues belonging to these cores
shows great variability (Figure S2), and their RMSD values range from 0.6 to 4.0 Å; these
results are indicative of heterogeneity in dynamics within the dataset.

The distance matrix obtained from the pairwise dynamics-based alignments of all
proteins of this dataset is used as a measure of similarity in dynamics. This can be compared
to the MEROPS classification by computing the average distance between protein pairs
that fall into the same family. Following such a procedure, it is apparent that the average
distance in dynamics is lower within each family, with respect to the total average (Figure 4).
In other words, proteins belonging to the same family are significantly closer in dynamics
than they are to members of other families.

Figure 4. Average distances (in terms of dynamics) between proteins of the dataset belonging to the
same family. Only those subfamilies including more than one representative member are displayed
here. The histograms show that proteins are significantly closer in dynamics within the same family
than they are to members of other families.

The distance matrix is used as the input for the division of the dataset into dynamically
homogeneous protein clusters. The outcome of the hierarchical clustering is graphically
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expressed by the dendrogram in Figure S3. On the basis of the resolution–relevance
plot, nine clusters were identified (Figure 2); this corresponds to a threshold of ≈0.58 in
the clustering dendrogram. The resulting clusters appear to be quite homogeneous in
terms of protease classification (Figure S4). Importantly, the dynamics-based clustering
automatically tends to group proteins belonging to the same subfamily. Figure 5a shows
that in most of the cases (17 of the 19 subfamilies represented in the dataset), all the
members of each subfamily fall into the same cluster, thus suggesting that these proteins
share a similar conformational dynamics and strengthening the idea of homogeneity in
dynamics between homologous proteins [77,78]. On the other hand, each cluster groups
several subfamilies, and only 4 clusters out of 9 include proteins belonging to only one
subfamily (Figure 5b). Therefore, the clustering procedure proves able to effectively group
different protein subfamilies that, despite the different evolutionary origin, share similar
dynamics.

Figure 5. (a) Distribution of the members of each subfamily among the different clusters, expressed
as a percentage with respect to the total number of members of the subfamily. In (b), each row
represents the content of each cluster classified on the basis of the function (in percentage, with
respect to the total population of the cluster). The results show that the dynamics-based clustering
automatically tends to group proteins belonging to the same subfamily.

4.3. Comparison between the Dynamics-Based and the Structure-Based Clustering

We compared the results from the dynamics-based clustering on the proteases of the PA
clan with the structure-based distance tree calculated in the work of Mönttinen et al. [34].
There, the authors identified a common structural core of 72 residues for the set of PA clan
proteases taken into account; according to the structural similarities of this common core,
they built a distance tree between the members of the dataset. Five different clusters were
identified, contrary to the nine cluster found in this work.

Despite the two different approaches, the results present several similarities, showing
a close relation between structure and dynamics. The S1A subfamily, which includes both
bacterial and eukaryotic proteases, forms a clearly distinct and compact cluster both in
terms of structure and dynamics. On the other hand, the S1D subfamily, which includes
bacterial proteases, is split into two different groups in terms of structure, as well as
dynamics: in both cases, the S1D Achromobacter protease I (1ARB) is close to the bacterial
S1B proteases, while the S1D protease AL20 of Nesterenkonia abyssinica (3CP7) is close to
the members of the bacterial S1E subfamily. This difference between members of the S1D
subfamily has been explained on the basis of the different evolutionary history of the
bacteria in which they are expressed [34].

Another common feature emerging from the two clustering approaches is the similarity
between the S39 subfamily of positive-strand RNA viruses and the bacterial S1B proteases;
interestingly, such a degree of similarity is higher than between S39 and the other viral
proteases, as already reported on the basis of structural comparisons [79]. Moreover,
the bacterial S6 family forms an independent group in both clustering approaches. This
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peculiarity has been attributed to the presence of a long β-stalk structure at the C-terminus
(Figure S5), which is absent in all the other proteases of the PA clan [34,80]; the protease
domain alone, instead, shares high structural similarity with that of the S1A subfamily.
However, the β-stalk domain was cut before the dynamics-based alignment, meaning that
our analysis of the dynamics of the S6 protease domain alone is able to distinguish this
subfamily from the other members of the PA clan.

Importantly, the two types of clustering present also some differences. In the case of
the structure-based analysis, the cysteine proteases tend to be grouped together; however,
in the dynamics-based alignment, the similarity is only at the level of one of the two large
groups into which the dataset is divided, as evident from the dendrogram in Figure S4.
Within this group, C families are mixed with S families and appear to be more distributed
among different clusters than in the distance tree built on the basis of the structural features.
This is indicative of a clear differentiation of the C proteases in terms of dynamics, despite
their structural similarity in the protein core. This can be explained not only by the fact that
different classes of C proteases are involved in the processing of different viral polypro-
teins (therefore, requiring adaptation to the substrate), but also because some of them
have additional functions, playing the role of inhibitors of host cell protein synthesis [81].
Another difference regards the heat-shock proteases S1C, which include proteins from
bacteria, chloroplasts, and mitochondria; even though structurally similar in the proteolytic
core, members of this subfamily appear very scattered in the dynamics-based clustering.
Specifically, the observed similarities in the dynamics accentuates the structural relatedness
already observed between some eukaryotic S1C proteases and different viral protease sub-
families, in that these similarities are stronger than the similarity within the S1C subfamily
itself. This relatedness has been previously explained on the basis of exchanges of protease
genes between eukaryotic viruses and their hosts [34].

In the structure-based distance tree, proteases from flavivirus (families S29 and S7)
and from togavirus (family S3) are grouped together, even though the two viruses belong
to different families; on the other hand, S29/S7 and S3 are placed in different clusters
when their dynamics is included in the analysis. This distinction might arise from the
difference in function: the S3 protein togavirin, in fact, does not only function as a viral
protease, but plays also the structural role of the capsid protein of the virus [82]. S29 and
S7 proteases, on the other hand, possess only proteolytic function and do not work as
structural components.

Overall, the inclusion of dynamics in the comparison of the proteases from the PA
clan adds therefore an additional level of classification, which seems appropriate to bridge
structural and functional similarities.

4.4. Creation and Validation of the Basis Set of the High-Dimensional Space of Protein Dynamics

The representative proteins of the nine clusters are identified by the PDB codes: 3D23,
1HPG, 2YOL, 1VCP, 3QO6, 1L1J, 1WXR, 4JCN, and 4I8H. Their structures are represented in
Figure S6. Protein 1GDQ was chosen as the reference structure of the whole dataset, against
which the other representatives are dynamically aligned prior to lattice interpolation of
their normal modes (see Section 3). In the latter, the oriented protein modes are placed and
interpolated on a cubic lattice, orthonormalized, and finally, ordered. The interpolation on
the grid allows us to easily compare the dynamics of any pair of proteins, irrespective of
the number of residues. For instance, modes from proteins with a different number of Cα

cannot be directly compared in terms of scalar products, while different vector fields on the
grid have the same dimensionality.

We investigated the quality of the orthonormalized modes as a basis set for the
dynamics of the whole dataset, by computing the overlap between the spaces given by the
protein modes and by the basis. To this aim, the RMSIP was computed between the space
spanned by the first five modes of each protein in the dataset (after their interpolation on
the lattice) and the first n components of the basis. For each protein, the components of
the basis are ordered so as to maximize the RMSIP with the protein modes. The resulting
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RMSIP for each protein is plotted in Figure 6a as a function of the number n of basis vectors
considered for the calculation of the RMSIP. From the distribution of the values attained
when using the full basis set (45 vector fields), the RMSIP is greater than 0.5 for ≈94%
of the proteins, showing in those cases a good agreement between the dynamics of the
protein and the one expressed by the basis [83]. The agreement is excellent (RMSIP > 0.7)
for ≈61% of the proteins; therefore, we can conclude that the identified basis is indeed able
to describe with good generality the large-scale conformational dynamics of the dataset.
For each protein, we also computed the normalized RMSIP, by dividing each value of the
RMSIP with the value obtained with the use of the full basis set. The normalized RMSIP
curves show that, for each dataset member, as few as 15 basis components are sufficient
to reproduce 80% of the dynamics that would be attained with the use of the full basis set
(Figure 6b); however, such components differ from protein to protein, meaning that there
are no vector fields in the basis that can be considered more essential than others. This
suggests that a further reduction in the dimension of the basis set would lead to a loss of
generality in the description of the dynamics of this class of proteins.

Figure 6. (a) Root-mean-squared inner product (RMSIP) between the subspaces spanned by the
first 5 modes of each protein and the first n basis vectors, as a function of the basis size n. Each line
corresponds to one protein of the dataset. The histogram on the right represents the distribution
of the RMSIP values attained when the full basis is used. The RMSIP shows a good overlap of the
subspaces (RMSIP > 0.5) for ≈94% of the proteins. (b) RMSIP normalized with respect to the value
attained from the use of the full basis. For each dataset member, as few as 15 basis components are
sufficient to reproduce 80% of the dynamics that would be attained with the use of the full basis set.

4.5. Comparison with MD Simulations

In order to better assess the ability of the basis to reproduce the general dynamics of
chymotrypsin-like proteases, we performed MD simulations of four proteins belonging to
the same family and compared the per-residue fluctuations emerging from the simulations
with those obtained by filtering the trajectory along the vectors of the basis; a good agree-
ment would be indicative of the ability of the basis to describe the large-scale dynamics
of the protein. Two of the proteins used as a test-case belong to the dataset; these are
1EKB [84] and 1NPM [85], eukaryotic proteases belonging to the S1A subfamily. The other
two proteins, 4YOG [86] and 3W94 [87], are external to the dataset and, as such, have not
been used to define the basis. 4YOG is a C30 protease from the bat coronavirus HKU4,
while 3W94 is an S1A enteropeptidase. These two proteins have been included here in
order to test the generality of the identified basis for the description of the dynamics of the
PA clan, independently of the specific members of the initial dataset.

For each of the four proteins we compared the root-mean-squared fluctuations (RMSF)
as computed from the simulation and as computed from the same trajectory filtered along
the “modes” given by the backmapping of the protein structure on the basis vectors. The
comparison shows a good qualitative agreement (Figures 7 and S7), in particular in cor-
respondence with all the secondary structure elements. In the unstructured regions, the
comparison is slightly less accurate; this is particularly true for long loops, which are
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more sensitive to the limitations of the ENM and of the NMA employed to define the
modes of the basis, since both assume small-amplitude fluctuations from a well-defined
reference structure. From the two sets of trajectories, namely the original MD simula-
tions and the filtered ones, we also computed the dynamic cross-correlation matrices
(Figures S8 and S9), which give a measure of the degree of correlation between each pair of
Cα atoms in terms of fluctuations from their average position. When comparing the original
and filtered trajectories, the intensity of the resulting correlations are different, with higher
correlations/anti-correlations emerging from the trajectory filtered on the basis; however,
the patterns of correlation are strikingly similar between the two trajectories for all four
proteins. In addition, we computed the RMSIP between the first n modes obtained from
the PCA of the MD simulation and of the filtered trajectory, where n is the number of com-
ponents that capture 80% of the variance in the original simulation (Table S2); in all cases,
the results show a good overlap of the two subspaces, with RMSIP > 0.5. Therefore, the
basis set appears to be able to describe the relevant large-scale dynamics of the considered
protein systems.

Figure 7. Root-mean-squared fluctuations (RMSF) of the Cα atoms, normalized with respect to their
sum, computed on proteins belonging to the initial dataset (1EKB, 1NPM) and external to it (4YOG,
3W94). The shaded areas correspond to structured regions, identified with the DSSP algorithm [88,89].
The comparison shows a good qualitative agreement, particularly in correspondence with secondary
structure elements.

5. Conclusions

In this work, we proposed a workflow for the identification of common large-scale
conformational motions in a set of proteins. Specifically, we performed a dynamics-based
clusterization of 116 chymotrypsin-related proteases, belonging to the PA clan, and com-
pared the resulting clusters to the MEROPS classification and to a more recent structure-
based classification of the same dataset of proteases. The clustering based on the dynamics
adds interesting information to that known on the basis of structural and evolutionary
relationships between the members of the protein family, thus facilitating the interpretation
of dynamics as a bridge between protein structure and function. In addition, we used NMA
and the β-GNM to build a basis set of vectors of the high-dimensional space of the PA clan
large-scale dynamics and tested the basis set to demonstrate that it is sufficiently complete
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to describe the main large-scale dynamical features of the members of the dataset. The
basis set of conformational motions was also successfully validated by comparison with
results from MD simulations of proteins internal and external to the initial dataset.

In this regard, the method proved to deal particularly well with the conformational
dynamics of structured regions; loops and disordered regions are by definition challenging
to describe with an ENM, which is able to reproduce only small-amplitude fluctuations
with respect to a well-defined reference structure; the dynamics of such regions, however,
is qualitatively different from the functional one of the structured part, which is the one
responsible for carrying out the biological function in the proteins under examination.
Additionally, we note that the dataset employed contained only a number of proteins
belonging to the family of chymotrypsin-related proteases: a larger dataset is expected to
lead to more general results; however, the number of proteins included was limited by the
availability of experimental structures and by the choice to remove proteins with too high
sequence identity. The natural development of the methodology presented and discussed
in this work is its application to a larger dataset of proteins, comprehensive of multiple
enzyme superfamilies, with the aim of building a basis set of conformational motions
that represents a general vocabulary of proteins’ common dynamics. Once mapped on a
protein structure, the basis components can help to identify the most common—but diverse
among each other—movements that better describe the common large-scale dynamics
of the proteins belonging to the dataset. The dynamics of any protein not belonging to
the initial set can be projected on the basis, so as to describe it in terms of a few general
movements, thus facilitating the comparison between the dynamical features of different
proteins. In addition, the method can be employed to identify those common structural
signatures that characterize the dynamics encoded in the basis components and relate them
to specific biological functions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app12147157/s1, Figure S1: Histograms of the sequence length
(a) and radius of gyration (b) of the proteins in the dataset. Figure S2: Histograms of the number of
residues belonging to the superimposed protein cores, defined from the dynamics-based alignment
of each pair of proteins from the dataset. Figure S3: Dendrogram resulting from the hierarchical
clustering, performed on the basis of the distance in dynamics between the dataset elements. The
labels represents the PDB IDs, and colors are used to differentiate the clusters. Figure S4: Dendrogram
resulting from the hierarchical clustering, performed on the basis of the distance in dynamics between
the dataset elements. The labels represents the protease subfamily of each protein, and colors are used
to differentiate the clusters. Figure S5: (a) Full structure of the 1WXR protease from subfamily S6,
displaying the long β-stalk domain at the C-terminus. (b) Structural alignment of 1WXR (in cyan) and
4I8H from subfamily S1A (in orange), showing the similarity of their protein core. Figure S6: Structure
of the representatives of each protein cluster, resulting from the dynamics-based alignment. The color
corresponds to the type of secondary structure element: β-sheets in yellow, α-helices in magenta,
3–10 helices in blue and loops in cyan. Figure S7: Scatter plots of the root-mean-square fluctuation
(RMSF) values, computed on the Cα atoms, from the MD simulations of the protein and from the
same trajectories filtered on the basis set. ρ indicates the value of Pearson Coefficient computed
between the two sets of fluctuations. All cases show satisfactory results. Figure S8: Cross-correlation
computed from the simulations of the proteins 1EKB and 1NPM, both on the original and filtered
trajectories. Both proteins belong to the dataset. Figure S9: Cross-correlation computed from the
simulations of the two proteins 4YOG and 3W94, both on the original and filtered trajectories. The
two proteins are not part of the dataset from which the basis set is derived. Table S1: List of the PDB
IDs of the proteins comprising the dataset. Table S2: RMSIP computed between the first n modes
obtained from the PCA of the MD simulation and of the filtered trajectory, where n is the number of
components that capture the 80% of the variance in the original trajectory. The results show a good
overlap of the two subspaces in all the simulated systems.

50



Appl. Sci. 2022, 12, 7157

Author Contributions: Conceptualization: R.P.; methodology, data collection, and analysis: T.T. and
M.R.; writing—original draft preparation: T.T. and G.M.; writing—review and editing: T.T., G.M.,
M.R. and R.P.; supervision: R.P.; funding acquisition: R.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This project received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program (Grant 758588).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data produced and analyzed in this work are freely available
on the Zenodo repository at https://doi.org/10.5281/zenodo.6669245.

Acknowledgments: The authors thank Roberto Menichetti for a critical and insightful reading of
the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Berendsen, H.J.; Hayward, S. Collective protein dynamics in relation to function. Curr. Opin. Struct. Biol. 2000, 10, 165–169.
[CrossRef]

2. Henzler-Wildman, K.A.; Lei, M.; Thai, V.; Kerns, S.J.; Karplus, M.; Kern, D. A hierarchy of timescales in protein dynamics is
linked to enzyme catalysis. Nature 2007, 450, 913–916. [CrossRef] [PubMed]

3. Narayanan, C.; Bafna, K.; Roux, L.D.; Agarwal, P.K.; Doucet, N. Applications of NMR and computational methodologies to study
protein dynamics. Arch. Biochem. Biophys. 2017, 628, 71–80. [CrossRef]

4. Ma, B.; Kumar, S.; Tsai, C.J.; Nussinov, R. Folding funnels and binding mechanisms. Protein Eng. 1999, 12, 713–720. [CrossRef]
[PubMed]

5. Nussinov, R.; Ma, B. Protein dynamics and conformational selection in bidirectional signal transduction. BMC Biol. 2012, 10, 2.
[CrossRef]

6. Koshland, D., Jr. Application of a theory of enzyme specificity to protein synthesis. Proc. Natl. Acad. Sci. USA 1958, 44, 98.
[CrossRef]

7. Paul, F.; Weikl, T.R. How to distinguish conformational selection and induced fit based on chemical relaxation rates. PLoS Comput.
Biol. 2016, 12, e1005067. [CrossRef]

8. Yang, L.Q.; Sang, P.; Tao, Y.; Fu, Y.X.; Zhang, K.Q.; Xie, Y.H.; Liu, S.Q. Protein dynamics and motions in relation to their functions:
Several case studies and the underlying mechanisms. J. Biomol. Struct. Dyn. 2014, 32, 372–393. [CrossRef]

9. Hensen, U.; Meyer, T.; Haas, J.; Rex, R.; Vriend, G.; Grubmüller, H. Exploring protein dynamics space: The dynasome as the
missing link between protein structure and function. PLoS ONE 2012, 7, e33931. [CrossRef]

10. Kern, D.; Zuiderweg, E.R. The role of dynamics in allosteric regulation. Curr. Opin. Struct. Biol. 2003, 13, 748–757. [CrossRef]
11. Zhang, Y.; Doruker, P.; Kaynak, B.; Zhang, S.; Krieger, J.; Li, H.; Bahar, I. Intrinsic dynamics is evolutionarily optimized to enable

allosteric behavior. Curr. Opin. Struct. Biol. 2020, 62, 14–21. [CrossRef] [PubMed]
12. Liang, Z.; Verkhivker, G.M.; Hu, G. Integration of network models and evolutionary analysis into high-throughput modeling

of protein dynamics and allosteric regulation: Theory, tools and applications. Briefings Bioinform. 2020, 21, 815–835. [CrossRef]
[PubMed]

13. Balsera, M.A.; Wriggers, W.; Oono, Y.; Schulten, K. Principal component analysis and long time protein dynamics. J. Phys. Chem.
1996, 100, 2567–2572. [CrossRef]

14. Stein, S.A.M.; Loccisano, A.E.; Firestine, S.M.; Evanseck, J.D. Principal components analysis: A review of its application on
molecular dynamics data. Annu. Rep. Comput. Chem. 2006, 2, 233–261.

15. Kmiecik, S.; Kouza, M.; Badaczewska-Dawid, A.E.; Kloczkowski, A.; Kolinski, A. Modeling of protein structural flexibility and
large-scale dynamics: Coarse-grained simulations and elastic network models. Int. J. Mol. Sci. 2018, 19, 3496. [CrossRef]

16. Marsh, J.A.; Teichmann, S.A. Parallel dynamics and evolution: Protein conformational fluctuations and assembly reflect
evolutionary changes in sequence and structure. BioEssays 2014, 36, 209–218. [CrossRef]

17. Zou, T.; Risso, V.A.; Gavira, J.A.; Sanchez-Ruiz, J.M.; Ozkan, S.B. Evolution of conformational dynamics determines the conversion
of a promiscuous generalist into a specialist enzyme. Mol. Biol. Evol. 2015, 32, 132–143. [CrossRef]

18. Narayanan, C.; Bernard, D.N.; Bafna, K.; Gagné, D.; Chennubhotla, C.S.; Doucet, N.; Agarwal, P.K. Conservation of dynamics
associated with biological function in an enzyme superfamily. Structure 2018, 26, 426–436. [CrossRef]

19. Zhang, S.; Li, H.; Krieger, J.M.; Bahar, I. Shared signature dynamics tempered by local fluctuations enables fold adaptability and
specificity. Mol. Biol. Evol. 2019, 36, 2053–2068. [CrossRef]

20. Mikulska-Ruminska, K.; Shrivastava, I.; Krieger, J.; Zhang, S.; Li, H.; Bayır, H.; Wenzel, S.E.; VanDemark, A.P.; Kagan, V.E.; Bahar,
I. Characterization of differential dynamics, specificity, and allostery of lipoxygenase family members. J. Chem. Inf. Model. 2019,
59, 2496–2508. [CrossRef]

51



Appl. Sci. 2022, 12, 7157

21. Gaur, N.K.; Ghosh, B.; Goyal, V.D.; Kulkarni, K.; Makde, R.D. Evolutionary conservation of protein dynamics: Insights from
all-atom molecular dynamics simulations of ‘peptidase’domain of Spt16. J. Biomol. Struct. Dyn. 2021, 1–13. [CrossRef] [PubMed]

22. Maguid, S.; Fernandez-Alberti, S.; Echave, J. Evolutionary conservation of protein vibrational dynamics. Gene 2008, 422, 7–13.
[CrossRef] [PubMed]

23. Velázquez-Muriel, J.A.; Rueda, M.; Cuesta, I.; Pascual-Montano, A.; Orozco, M.; Carazo, J.M. Comparison of molecular dynamics
and superfamily spaces of protein domain deformation. BMC Struct. Biol. 2009, 9, 6. [CrossRef]

24. Pearl, F.; Todd, A.; Sillitoe, I.; Dibley, M.; Redfern, O.; Lewis, T.; Bennett, C.; Marsden, R.; Grant, A.; Lee, D.; et al. The CATH
Domain Structure Database and related resources Gene3D and DHS provide comprehensive domain family information for
genome analysis. Nucleic Acids Res. 2005, 33, D247–D251. [CrossRef] [PubMed]

25. Levitt, M.; Sander, C.; Stern, P.S. Protein normal-mode dynamics: Trypsin inhibitor, crambin, ribonuclease and lysozyme. J. Mol.
Biol. 1985, 181, 423–447. [CrossRef]

26. David, C.C.; Jacobs, D.J. Principal Component Analysis: A Method for Determining the Essential Dynamics of Proteins. In Protein
Dynamics: Methods and Protocols; Humana Press: Totowa, NJ, USA, 2014; pp. 193–226.

27. Tirion, M.M. Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis. Phys. Rev. Lett. 1996,
77, 1905–1908. [CrossRef]

28. Zheng, W. Anharmonic normal mode analysis of elastic network model improves the modeling of atomic fluctuations in protein
crystal structures. Biophys. J. 2010, 98, 3025–3034. [CrossRef]

29. Dobbins, S.E.; Lesk, V.I.; Sternberg, M.J.E. Insights into protein flexibility: The relationship between normal modes and
conformational change upon protein-protein docking. Proc. Natl. Acad. Sci. USA 2008, 105, 10390–10395. [CrossRef]

30. Delarue, M.; Sanejouand, Y.H. Simplified Normal Mode Analysis of Conformational Transitions in DNA-dependent Polymerases:
The Elastic Network Model. J. Mol. Biol. 2002, 320, 1011–1024. [CrossRef]

31. Gorbalenya, A.E.; Donchenko, A.P.; Blinov, V.M.; Koonin, E.V. Cysteine proteases of positive strand RNA viruses and
chymotrypsin-like serine proteases: A distinct protein superfamily with a common structural fold. FEBS Lett. 1989, 243, 103–114.
[CrossRef]

32. Di Cera, E. Serine proteases. IUBMB Life 2009, 61, 510–515. [CrossRef] [PubMed]
33. Laskar, A.; Rodger, E.J.; Chatterjee, A.; Mandal, C. Modeling and structural analysis of PA clan serine proteases. BMC Res. Notes

2012, 5, 1–11. [CrossRef] [PubMed]
34. Mönttinen, H.A.; Ravantti, J.J.; Poranen, M.M. Structural comparison strengthens the higher-order classification of proteases

related to chymotrypsin. PLoS ONE 2019, 14, e0216659. [CrossRef] [PubMed]
35. Ma, W.; Tang, C.; Lai, L. Specificity of trypsin and chymotrypsin: Loop-motion-controlled dynamic correlation as a determinant.

Biophys. J. 2005, 89, 1183–1193. [CrossRef]
36. Sola, R.J.; Griebenow, K. Influence of modulated structural dynamics on the kinetics of α-chymotrypsin catalysis: Insights through

chemical glycosylation, molecular dynamics and domain motion analysis. FEBS J. 2006, 273, 5303–5319. [CrossRef]
37. Dauber-Osguthorpe, P.; Osguthorpe, D.J.; Stern, P.S.; Moult, J. Low frequency motion in proteins: Comparison of normal mode

and molecular dynamics of streptomyces griseus protease A. J. Comput. Phys. 1999, 151, 169–189. [CrossRef]
38. Micheletti, C.; Carloni, P.; Maritan, A. Accurate and efficient description of protein vibrational dynamics: Comparing molecular

dynamics and Gaussian models. Proteins Struct. Funct. Bioinform. 2004, 55, 635–645. [CrossRef]
39. Li, W.; Fu, L.; Niu, B.; Wu, S.; Wooley, J. Ultrafast clustering algorithms for metagenomic sequence analysis. Briefings Bioinform.

2012, 13, 656–668. [CrossRef]
40. Gabler, F.; Nam, S.Z.; Till, S.; Mirdita, M.; Steinegger, M.; Söding, J.; Lupas, A.N.; Alva, V. Protein sequence analysis using the

MPI bioinformatics toolkit. Curr. Protoc. Bioinform. 2020, 72, e108. [CrossRef]
41. Holm, L.; Sander, C. The FSSP database: Fold classification based on structure-structure alignment of proteins. Nucleic Acids Res.

1996, 24, 206–209. [CrossRef]
42. Ravantti, J.; Bamford, D.; Stuart, D.I. Automatic comparison and classification of protein structures. J. Struct. Biol. 2013, 183, 47–56.

[CrossRef] [PubMed]
43. Holm, L. DALI and the persistence of protein shape. Protein Sci. 2020, 29, 128–140. [CrossRef] [PubMed]
44. Friedland, G.D.; Kortemme, T. Designing ensembles in conformational and sequence space to characterize and engineer proteins.

Curr. Opin. Struct. Biol. 2010, 20, 377–384. [CrossRef] [PubMed]
45. Campbell, E.; Kaltenbach, M.; Correy, G.J.; Carr, P.D.; Porebski, B.T.; Livingstone, E.K.; Afriat-Jurnou, L.; Buckle, A.M.; Weik, M.;

Hollfelder, F.; et al. The role of protein dynamics in the evolution of new enzyme function. Nat. Chem. Biol. 2016, 12, 944–950.
[CrossRef]

46. Neri, M.; Anselmi, C.; Cascella, M.; Maritan, A.; Carloni, P. Coarse-Grained Model of Proteins Incorporating Atomistic Detail of
the Active Site. Phys. Rev. Lett. 2005, 95, 218102. [CrossRef]

47. Tarenzi, T.; Calandrini, V.; Potestio, R.; Carloni, P. Open-Boundary Molecular Mechanics/Coarse-Grained Framework for
Simulations of Low-Resolution G-Protein-Coupled Receptor–Ligand Complexes. J. Chem. Theory Comput. 2019, 15, 2101–2109.
[CrossRef]

48. Fogarty, A.C.; Potestio, R.; Kremer, K. A multi-resolution model to capture both global fluctuations of an enzyme and molecular
recognition in the ligand-binding site. Proteins Struct. Funct. Bioinform. 2016, 84, 1902–1913. [CrossRef]

52



Appl. Sci. 2022, 12, 7157

49. Fiorentini, R.; Kremer, K.; Potestio, R. Ligand-protein interactions in lysozyme investigated through a dual-resolution model.
Proteins Struct. Funct. Bioinform. 2020, 88, 1351–1360. [CrossRef]

50. Giulini, M.; Rigoli, M.; Mattiotti, G.; Menichetti, R.; Tarenzi, T.; Fiorentini, R.; Potestio, R. From system modeling to system
analysis: The impact of resolution level and resolution distribution in the computer-aided investigation of biomolecules. Front.
Mol. Biosci. 2021, 8, 676976. [CrossRef]

51. Potestio, R.; Aleksiev, T.; Pontiggia, F.; Cozzini, S.; Micheletti, C. ALADYN: A web server for aligning proteins by matching their
large-scale motion. Nucleic Acids Res. 2010, 38, W41–W45. [CrossRef]

52. Defays, D. An efficient algorithm for a complete link method. Comput. J. 1977, 20, 364–366. [CrossRef]
53. Marsili, M.; Mastromatteo, I.; Roudi, Y. On sampling and modeling complex systems. J. Stat. Mech. Theory Exp. 2013, 2013, P09003.

[CrossRef]
54. Cubero, R.J.; Jo, J.; Marsili, M.; Roudi, Y.; Song, J. Statistical criticality arises in most informative representations. J. Stat. Mech.

Theory Exp. 2019, 2019, 063402. [CrossRef]
55. Marsili, M.; Roudi, Y. Quantifying relevance in learning and inference. Phys. Rep. 2022, 963, 1–43. [CrossRef]
56. Mele, M.; Covino, R.; Potestio, R. Information-theoretical measures identify accurate low-resolution representations of protein

configurational space. arXiv 2022, arXiv:2205.08437.
57. Holtzman, R.; Giulini, M.; Potestio, R. Making sense of complex systems through resolution, relevance, and mapping entropy.

arXiv 2022, arXiv:2203.00100.
58. Cheney, W.; Kincaid, D. Linear algebra: Theory and applications. Aust. Math. Soc. 2009, 110, 544–550.
59. Schymkowitz, J.; Borg, J.; Stricher, F.; Nys, R.; Rousseau, F.; Serrano, L. The FoldX web server: An online force field. Nucleic Acids

Res. 2005, 33, W382–W388. [CrossRef]
60. Fiser, A.; Do, R.K.G.; Šali, A. Modeling of loops in protein structures. Protein Sci. 2000, 9, 1753–1773. [CrossRef]
61. Webb, B.; Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinform. 2016, 54, 5–6. [CrossRef]
62. Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular

simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [CrossRef]
63. Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved side-chain torsion potentials

for the Amber ff99SB protein force field. Proteins Struct. Funct. Bioinform. 2010, 78, 1950–1958. [CrossRef] [PubMed]
64. Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for

simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [CrossRef]
65. Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101. [CrossRef]

[PubMed]
66. Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981,

52, 7182–7190. [CrossRef]
67. Hess, B.; Bekker, H.; Berendsen, H.J.; Fraaije, J.G. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem.

1997, 18, 1463–1472. [CrossRef]
68. Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N log (N) method for Ewald sums in large systems. J. Chem. Phys.

1993, 98, 10089–10092. [CrossRef]
69. McGibbon, R.T.; Beauchamp, K.A.; Harrigan, M.P.; Klein, C.; Swails, J.M.; Hernández, C.X.; Schwantes, C.R.; Wang, L.P.; Lane, T.J.;

Pande, V.S. MDTraj: A modern open library for the analysis of molecular dynamics trajectories. Biophys. J. 2015, 109, 1528–1532.
[CrossRef]

70. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [CrossRef]
71. Neurath, H.; Walsh, K.A.; Winter, W.P. Evolution of Structure and Function of Proteases: Amino acid sequences of proteolytic

enzymes reflect phylogenetic relationships. Science 1967, 158, 1638–1644. [CrossRef]
72. López-Otín, C.; Bond, J.S. Proteases: Multifunctional enzymes in life and disease. J. Biol. Chem. 2008, 283, 30433–30437. [CrossRef]

[PubMed]
73. Hedstrom, L. Serine protease mechanism and specificity. Chem. Rev. 2002, 102, 4501–4524. [CrossRef] [PubMed]
74. Verma, S.; Dixit, R.; Pandey, K.C. Cysteine proteases: Modes of activation and future prospects as pharmacological targets. Front.

Pharmacol. 2016, 7, 107. [CrossRef]
75. Rawlings, N.D.; Tolle, D.P.; Barrett, A.J. MEROPS: The peptidase database. Nucleic Acids Res. 2004, 32, D160–D164. [CrossRef]
76. Rawlings, N.D.; Barrett, A.J.; Finn, R. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and

inhibitors. Nucleic Acids Res. 2016, 44, D343–D350. [CrossRef] [PubMed]
77. Maguid, S.; Fernandez-Alberti, S.; Ferrelli, L.; Echave, J. Exploring the common dynamics of homologous proteins. Application

to the globin family. Biophys. J. 2005, 89, 3–13. [CrossRef]
78. He, Y.; Maisuradze, G.G.; Yin, Y.; Kachlishvili, K.; Rackovsky, S.; Scheraga, H.A. Sequence-, structure-, and dynamics-based

comparisons of structurally homologous CheY-like proteins. Proc. Natl. Acad. Sci. USA 2017, 114, 1578–1583. [CrossRef]
79. Gayathri, P.; Satheshkumar, P.; Prasad, K.; Nair, S.; Savithri, H.; Murthy, M. Crystal structure of the serine protease domain of

Sesbania mosaic virus polyprotein and mutational analysis of residues forming the S1-binding pocket. Virology 2006, 346, 440–451.
[CrossRef]

80. Khan, S.; Mian, H.S.; Sandercock, L.E.; Chirgadze, N.Y.; Pai, E.F. Crystal structure of the passenger domain of the Escherichia coli
autotransporter EspP. J. Mol. Biol. 2011, 413, 985–1000. [CrossRef]

53



Appl. Sci. 2022, 12, 7157

81. Sun, D.; Chen, S.; Cheng, A.; Wang, M. Roles of the picornaviral 3C proteinase in the viral life cycle and host cells. Viruses 2016,
8, 82. [CrossRef]

82. Choi, H.K.; Lee, S.; Zhang, Y.P.; McKinney, B.R.; Wengler, G.; Rossmann, M.G.; Kuhn, R.J. Structural analysis of Sindbis virus
capsid mutants involving assembly and catalysis. J. Mol. Biol. 1996, 262, 151–167. [CrossRef] [PubMed]

83. David, C.C.; Jacobs, D.J. Characterizing protein motions from structure. J. Mol. Graph. Model. 2011, 31, 41–56. [CrossRef]
[PubMed]

84. Lu, D.; Fütterer, K.; Korolev, S.; Zheng, X.; Tan, K.; Waksman, G.; Sadler, J.E. Crystal structure of enteropeptidase light chain
complexed with an analog of the trypsinogen activation peptide. J. Mol. Biol. 1999, 292, 361–373. [CrossRef]

85. Kishi, T.; Kato, M.; Shimizu, T.; Kato, K.; Matsumoto, K.; Yoshida, S.; Shiosaka, S.; Hakoshima, T. Crystal structure of neuropsin, a
hippocampal protease involved in kindling epileptogenesis. J. Biol. Chem. 1999, 274, 4220–4224. [CrossRef] [PubMed]

86. John, S.E.S.; Tomar, S.; Stauffer, S.R.; Mesecar, A.D. Targeting zoonotic viruses: Structure-based inhibition of the 3C-like protease
from bat coronavirus HKU4—The likely reservoir host to the human coronavirus that causes Middle East Respiratory Syndrome
(MERS). Bioorganic Med. Chem. 2015, 23, 6036–6048. [CrossRef] [PubMed]

87. Xu, J.; Hu, S.; Wang, X.; Zhao, Z.; Zhang, X.; Wang, H.; Zhang, D.; Guo, Y. Structure basis for the unique specificity of medaka
enteropeptidase light chain. Protein Cell 2014, 5, 178–181. [CrossRef] [PubMed]

88. Kabsch, W.; Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical
features. Biopolym. Orig. Res. Biomol. 1983, 22, 2577–2637. [CrossRef]

89. Touw, W.G.; Baakman, C.; Black, J.; Te Beek, T.A.; Krieger, E.; Joosten, R.P.; Vriend, G. A series of PDB-related databanks for
everyday needs. Nucleic Acids Res. 2015, 43, D364–D368. [CrossRef]

54



Citation: Drago, V.; Di Paola, L.;

Lesieur, C.; Bernardini, R.; Bucolo, C.;

Platania, C.B.M. In-Silico

Characterization of von Willebrand

Factor Bound to FVIII. Appl. Sci. 2022,

12, 7855. https://doi.org/10.3390/

app12157855

Academic Editors: Robert Jernigan

and Domenico Scaramozzino

Received: 4 July 2022

Accepted: 2 August 2022

Published: 4 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

In-Silico Characterization of von Willebrand Factor Bound
to FVIII

Valentina Drago 1,†, Luisa Di Paola 2,†, Claire Lesieur 3, Renato Bernardini 4,5, Claudio Bucolo 5

and Chiara Bianca Maria Platania 1,5,*

1 Clinical Pharmacology and Toxicology Residency Program, Department of Biomedical and Biotechnological
Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy

2 Unit of Chemical-Physics Fundamentals in Chemical Engineering, Department of Engineering,
Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128 Rome, Italy

3 University of Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère,
UMR5005, 69622 Villeurbanne, France

4 Unit of Clinical Toxicology, Policlinico “G. Rodolico”, University of Catania, Via Santa Sofia 97,
95123 Catania, Italy

5 Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97,
95123 Catania, Italy

* Correspondence: chiara.platania@unict.it
† These authors contributed equally to this work.

Featured Application: The computational approaches hereby shown can be used in the rational

design of biologic drugs.

Abstract: Factor VIII belongs to the coagulation cascade and is expressed as a long pre-protein
(mature form, 2351 amino acids long). FVIII is deficient or defective in hemophilic A patients, who
need to be treated with hemoderivatives or recombinant FVIII substitutes, i.e., biologic drugs. The
interaction between FVIII and von Willebrand factor (VWF) influences the pharmacokinetics of FVIII
medications. In vivo, full-length FVIII (FL-FVIII) is secreted in a plasma-inactive form, which includes
the B domain, which is then proteolyzed by thrombin protease activity, leading to an inactive plasma
intermediate. In this work, we analyzed through a computational approach the binding of VWF
with two structure models of FVIII (secreted full-length with B domain, and B domain-deleted FVIII).
We included in our analysis the atomic model of efanesoctocog alfa, a novel and investigational
recombinant FVIII medication, in which the VWF is covalently linked to FVIII. We carried out a
structural analysis of VWF/FVIII interfaces by means of protein–protein docking, PISA (Proteins,
Interfaces, Structures and Assemblies), and protein contact networks (PCN) analyses. Accordingly,
our computational approaches to previously published experimental data demonstrated that the
domains A3-C1 of B domain-deleted FVIII (BDD-FVIII) is the preferential binding site for VWF.
Overall, our computational approach applied to topological analysis of protein–protein interface can
be aimed at the rational design of biologic drugs other than FVIII medications.

Keywords: hemophilia A; FVIII; von Willebrand Factor; protein contact networks; bioinformatics;
biologic drugs

1. Introduction

Hemophilic A patients are treated periodically with the coagulation factor FVIII sub-
stitutes, such as purified hemoderivatives or FVIII biological drugs, which are currently
biological advanced therapies approved for treatment of hemophilia A. This class of drugs
includes recombinant full-length FVIII and B domain-deleted FVIII [1]. B domain-deleted
FVIII (BDD-FVIII) biologics have been developed to improve the biotechnological pro-
duction of these proteins. Furthermore, BDD-FVIII conjugated with Fc immunoglobulin
fragment was reported to have the highest plasma half-life, providing the opportunity of
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scheduling a low number of infusions [2]. Therefore, BDD-FVIII biologics (products with ex-
tended half-life, EHL) have been claimed to decrease the number of infusions in hemophilic
patients. EHL products may allow less frequent dosing; however, due to inter-patient differ-
ences in FVIII plasma stability and clearance, less frequent infusions may cause longer time
periods with relatively low FVIII plasma levels, which could increase the risk of bleeding.
The safety cutoff for plasma FVIII levels was set to >1%, and patients with levels >12%
were subjected to less bleeding events, especially at joints [2,3]. Specifically, clinical trials
carried out so far highlighted a similar capability of different FVIII substitutes on bleeding
prevention, measured as annualized bleeding rate [2]. Interestingly, a pharmacokinetic (PK)
modeling study predicted that mean values of FVIII plasma levels were similar in patients
treated with either BDD-FVIII or full-length recombinant FVIII [1]. Furthermore, this study
predicted that patients treated with full-length FVIII (infusions every 48 h) spent more time
with FVIII above the 10 IU dL-1 than patients treated with BDD-FVIII product infusions
every 72 h. Therefore, full-length FVIII could be characterized by higher plasma stability
than B domain-deleted FVIII substitutes compared to BDD-FVIII [1]. This data raised a
controversy [4], but the high plasma stability of FL-FVIII was confirmed at pre-clinical
level [5].

FVIII half-life is strongly influenced by von Willebrand Factor (VWF), which is re-
ported to bind with FVIII [6–8]. Several studies reported that the binding sites of VWF
at FVIII are in the A3 and C1 FVIII domains [9–12] Therefore, with the aim to improve
BDD-FVIII plasma stability, a novel FVIII substitute has been developed, efanesoctocog alfa
(BIVV001). Efanesoctocog alfa is an investigational biologic drug where VWF D’-D3 do-
main is covalently bound (through a cleavable XTEN polypeptide linker) to an engineered
BDD-FVIII [13]. The atomic model of cryo-electron microscopy (Cryo-EM) of efanesoctocog
alfa was built and deposited on Protein Data Bank (PDB:7KWO); in this atomic model VWF
binding to A3 and C1 domains of FVIII is confirmed. Mature FVIII is a 2351 a.a pre-protein
that, during processing in the endoplasmic reticulum, is cleaved and reassembled in a
heavy and a light chain, interacting by means of Van der Waals interactions, and through a
metal complex interaction with a divalent cation (Figure 1).

Figure 1. FVIII processing. Capital letters refer to protein domains, while lowercase letters refer to
loops linking two protein domains (modified from Pipe SW. Haemophilia 2009 [14]).
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After secretion, the processed full-length FVIII (FL-FVIII) is cleaved mainly at a.a 1313,
corresponding to the secreted inactivated form of FVIII, containing about 572 amino acids
of B domain (secreted full-length FVIII) (Figure 1) [14,15]. However, several heterogenous
forms of secreted FL-FVIII were found in plasma [16]. The domain B function has been
linked to protection of FVIII against premature proteolysis. Moreover, B domain can inhibit
FVIII binding to activated platelets, decreasing overall the inactivation rate of FVIII. B
domain has also been involved in modulation of FVIII clearance through binding to the
asialoglycoprotein receptor [14]. Finally, FVIII stability to aggregation events is driven
by the content of B domain, since FVIII aggregation rate increases with shortening of
B domain length [16]. Protein aggregation should generally be avoided for biologics,
due to the increased risk of immunogenicity, adverse drug reactions, and modification
of pharmacokinetics and pharmacodynamic properties, which then affect overall drug
efficacy [17–19]. FVIII medication immunogenicity has been accounted to formation of
anti-FVIII antibodies in patients (i.e., inhibitor formation); however, to date, no significant
differences in FVIII inhibitor formation have been found in patients treated with full length
or BDD-FVIII [20]. Since the stoichiometry of VWF binding to FVIII has not been univocally
defined [21–24], and the VWF increases FL-FVIII stability [5,20], we explored through
structural computational approach the binding of VWF to modeled B domain of FVIII. To
date, the structure of B domain of FVIII has not been solved, although this domain has
been identified in magnified Cryo-EM images [25]. Moreover, we reported a structural
analysis of protein–protein interactions through molecular docking and structural analysis
of protein—protein interfaces [26,27]. We also applied the Protein Contact Networks (PCN)
methodology to analyze the topology of the VWF/FVIII complexes, which was validated
on more than 1000 protein systems [28]. This methodology, applied to the prediction of
interface binding energy, can depict the structure–function relationship in protein–protein
complexes along with identification of allosteric binding sites [29–33].

Recently, this approach has also been applied to the analysis of the molecular mecha-
nism behind the SARS-CoV2 infection, analyzing the protein–protein interactions of spike
protein/ACE2 complex, providing insight also in the development of new therapeutic
strategies [34–37]. Specifically, in our study we included computed novel PCN descriptors
of protein–protein interfaces, which identified the key residues involved in the protein–
protein interactions of FVIII/VWF complexes.

2. Materials and Methods

Structures have been retrieved from the Protein DataBank as PDB files: 2R7E (B
domain-deleted FVIII), 6N29 (D’D3 von Willebrand factor binding domain to FVIII), 7KWO
(D’D3 VWF bound to B-domainless FVIII, atomic model of efanesoctocog alfa).

2.1. Structure Modeling

The structure of secreted full-length FVIII was predicted through a two-step modeling
approach: (i) the B domain was modeled with the I-Tasser web server; (ii) full-length FVIII
model was built with the Advanced Molecular Modeling task of Schrodinger Maestro,
by sequence alignment of available structure of B domain-deleted FVIII and modeled
B domain, using as input primary sequences of heavy and light chains as reported in
Figure 1. Five models of B domain structure were generated with I-Tasser. These models of
B domain were used to build 5 models of secreted full-length FVIII, with the Advanced
Molecular Modeling task of Schrodinger Maestro. However, 4 models of B domain were
automatically excluded by the Advanced Molecular Modeling task due to steric clashes
between other protein domains, and just 1 model (Figure S1, secondary structure plot–
Supplementary Materials) was further optimized with automated energy minimization
steps in the Advanced Molecular Modeling task of Schrodinger Maestro. After energy
minimization steps, the optimized models of full-length FVIII (secreted FL-FVIII) and B
domain-deleted FVIII (BDD-FVIII) were then subjected to protein–protein docking with a
the D’D3 domain of von Willebrand Factor (PDB: 6N29) through PyDock, which provided
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the prediction of binding free energy of protein complexes (https://life.bsc.es/pid/pydock/
from 2016 to 2022) [38]. Pydock output also includes the scoring of predicted complexes.
Rescoring of predicted complexes was also carried out with Prodigy web server (http:
//milou.science.uu.nl/services/PRODIGY/ from 2016 to 2022) [39].

2.2. Protein Contact Networks

We built the protein contact networks (PCNs) on FVIII complexes starting from the
.pdb files, as previously described [27]. In a PCN, protein residues are the network nodes.
Links between nodes are active contacts between residues, e.g., when the inter-residue
distance lies between 4 and 8 Å, to account for non-covalent residue–residue interactions.

The mathematical representation of the PCN is given by the adjacency matrix, de-
fined as:

Aij =

{
1 i f 4 < dij < 8
0 otherwise

(1)

where dij is the Euclidean distance between the i-th and j-th residue, defined as:

dij =
√(

xi − xj
)2

+
(
yi − yj

)2
+

(
zi − zj

)2 (2)

where Pi = {xi, yi, zi} and Pj =
{

xj, yj, zj
}

are the coordinates in a cartesian space of the
i-th and j-th residues, respectively (represented by the coordinates of their α-carbons).

Once the PCN was built, we computed the node degree ki for the i-th node, defined as
the number of its links with other nodes, computed as the sum of the elements on the i-th
row of the adjacency matrix A:

ki = ∑
j

Aij (3)

In order to characterize the topology of the protein–protein interactions, for each
protein–protein interface we identified links between nodes belonging to the different
interfacing chains and, accordingly, we introduced the inter-chain degree of each node kIC

i
as the number of links it shares with residues belonging different protein chains.

Nodes (residues) endowed with high inter-chain degree are defined as network
hotspots of the protein complex interface, addressing their significant role in protein–
protein interactions.

The energy of a graph E is defined as the sum of the absolute values of the adjacency
matrix A eigenvalues. Although this is a purely topological descriptor, it captures some
physical energy properties of the protein molecular structures [40], particularly oligomers
interactions [41].

Focusing on a given interface between two chains, Ai and Aj, the overall inter-chain
degree for a given interface ∑kAiAj is computed as the sum of the inter-chain degree of
residues belonging to a single chain, characterizing the overall interface strength. We
defined the average inter-chain degree as the average inter-chain degree value over the
number of residues participating in the interface.

We adopted the geometrical descriptors of protein interfaces according to the method
of Mei et al. in [42] for each interface between two chains in the complex: 1. the total
number of residues Q for each chain in the interface; this number is in general lower
than the total interface degree, due to multiple links between residues participating to the
interface; 2. the length of the chain involved in the interface R; 3. the interface “roughness”
Q/R (previously introduced [9]); 4. the interface amino acid range, IAR = R/N being N the
total number of residues in the chain.

For a given interface between two chains, Ai and Aj, the average value of the inter-
chain degree is simply given as:

< kAi Aj >=
∑ kAi Aj

QAi + QAj

(4)
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We introduced energy descriptors, including the topological description provided by
the PCNs method. Considering that the interaction energy is higher if the contact distance
is smaller, we introduced a weight for each contact:

eij =
1

dij
(5)

which is also the generic element of the interface energy matrix E, defined as:

E = Eij =

{
eij =

1
dij

i f 4 < dij < 8 and the residues belong to di f f erent chains

0 otherwise
(6)

For each interface, we sorted out the corresponding minor of the interface energy
matrix E (corresponding as indices to the rectangular minors of the adjacency matrix) and
we introduced the overall interface energy EINT as the sum of eij for each of the active links
at the interface, and the average value 〈EINT〉 over the whole number of residues at the
interface. We also analyzed the single residue contribution to the interface energy, defining
the:

kINT
i = ∑

j
Eij (7)

The overall value of energy of interaction ∑kEM
AiAj

is then computed as the sum of all
contributions given by Equation (7) for all contacts between chain Ai and Aj. The average
value of the interaction energy is given by:

< kEM
Ai Aj

>=
∑ kEM

Ai Aj

QAi + QAj

(8)

Finally, we can define the graph energy of the interface EAi Aj as the difference between
the graph energy of the complex minus the graph energy computed for the single chains
(that is, considering the eigenvalues of the adjacency matrix minors corresponding to the
single chains).

Furthermore, we completed the analysis through a thermodynamic analysis of the pro-
tein complexes via the PISA web server [8] (https://www.ebi.ac.uk/pdbe/pisa/ from 2016
to 2022), reporting from the analysis the following properties: for monomers, a. number of
residues exposed at the surface; b. solvent-accessible surface area (ASA) in Å2; c. solvation
free energy of folding of the corresponding structures ΔGSOLV in kcal/mol; for interfaces,
a. number of residues exposed at the interface (not accessible to solvent); b. interface
area in Å2 for each monomer (surface area, accessible to solvent in the monomer and no
more accessible upon interface formation); c. solvation free energy gain upon formation
of the interface ΔΔGSOLV in kcal/mol; the value was calculated as difference in the total
solvation energies of isolated and interfacing structures; negative ΔΔGSOLV corresponds to
hydrophobic interfaces, or positive protein affinity.

2.3. Network Clustering and Participation Coefficient Calculations

Finally, we applied a network spectral clustering algorithm to identify functional
domains in all different conformations [43]; the methodology is based on the spectral
decomposition of the network Laplacian, defined as:

L = D − A (9)

where D is the degree matrix, a diagonal matrix whose diagonal is the degree vector,
and A is the network adjacency matrix, as defined in Equation (1). Cluster partition is
based on the value of the Fiedler vector v2 (the eigenvector corresponding to the second
minor eigenvalue of L): the cluster number nc is user-defined. The v2 components interval
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r2 = {min(v2), max(v2)} is divided into nc subintervals, so that nodes (residues) are parted
in clusters according to which subinterval their v2 components fall into.

On the basis of network clustering, the participation coefficient P is defined as:

Pi = 1 −
(

ksi
ki

)2
(10)

where ksi is the number of links the i-th node shares with nodes belonging to its own cluster.
The participation coefficient is able to identify residues’ role in transmitting signals

between functional protein regions (protein network clusters) [30,34,40,44].
The PCN methodology is now implemented in open-source software [45].
We projected values of participation coefficient as b-factor and colored the ribbon

structures of the complexes by means of an in-house Python script, according to the method
previously described [27].

3. Results

3.1. Protein Docking

Protein–protein docking studies were carried out with PyDock on the model of full-
length secreted form of FVIII, to predict VWF/FL-FVIII complex (Figure 2). To validate the
protein–protein docking and the computational structure interface analysis approaches,
we also docked the BDD-FVIII (PDB: 2R7E) with the fragment of von Willebrand factor
(PDB: 6N29) (Figure 3). Pydock predicted that von Willebrand factor interacts with the B
domain of secreted full-length FVIII with slightly more negative predicted binding free
energy, compared to the BDD-FVIII/VWF complex (Table 1).

Figure 2. VWF/FL-FVIII complex. (A) FL-FVIII is represented in cyan (light-chain) and green
cartoons (heavy-chain, including domain (B)), VWF is represented with magenta cartoon. (B) Surfaces
representation as mesh. Capital letters refer to protein domains of FVIII.
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Figure 3. VWF/BDD-FVIII complex. (A) BDD-FVIII is represented in cyan (light-chain) and green
cartoon, VWF is represented with magenta cartoon. (B) Surfaces representation as mesh. Capital
letters refer to protein domains of FVIII.

Table 1. Pydock output. Predicted interactions between FVIII structure models and von Willebrand
factor fragment (PyDock).

Complex
FVIII-Interacting

Domain
Electrostatic
Component

Desolvation
Component

VDW
Component

ΔGbinding

B domain-deleted FVIII A3-C1-light chain −44.864 −8.012 71.540 −45.722

Secreted full-length FVIII B domain −37.144 −10.343 −6.838 −48.172

Shiltagh et al. in 2014 identified the D’D3 (PDB: 6N29) as the domain of von Willebrand
factor (VWF) that interacts with FVIII [46]. Chiu et al. in 2015 found that the VWF interacts
with the A3 and C1 domain in light chain of the B domain-deleted FVIII [47]. The Pydock
output for VWF/BDD-FVIII complex is in accordance with the study results from Chiu
et al. 2015 and Fuller et al. 2021 (Figures 3 and 4) [13,47].
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Figure 4. Efanesoctocog alfa (A) FVIII is represented in green cartoon (heavy chain) and cyan cartoon
(light chain). VWF is represented with magenta cartoon. (B) Surfaces representation as mesh. Capital
letters refer to protein domains of FVIII.

Fuller et al., 2021, have solved the structure of the bioengineered clinical-stage FVIII
substitute, BIVV001 or efanesoctocog alfa (PDB: 7KWO). In efanesoctocog alfa, the VWF-
D′D3 is covalently linked to an Fc domain of a BDD-FVIII, resulting in a stabilized VWF-
D′D3/BDD-FVIII complex (Figure 4).

The two structures of predicted VWF/BDD-FVIII and of efanesoctocog alfa have been
superimposed, and RMSD of alignment was 1.4 Å. PRODIGY rescoring (Table 2) provided
binding energy and dissociation constants for analyzed complexes. The binding energy
(−14.1 kcal/mol, pKd 10.4) of the predicted complex VWF/FL-FVIII, characterized by the
binding of VWF with B domain, was higher (less favorable), although comparable to the
binding energy of VWF bound to the A3-C1 domains of BDD-FVIII (−15.3 kcal/mol, pKd
11.3), resembling the slight differences predicted by PyDock. We included the prediction
of binding free energy of VWF in efanesoctocog alfa. In the efanesoctocog alfa atomic
model, the predicted binding free energy of protein–protein interactions between VWF and
FVIII was more negative (~4 logs), compared to binding free energy of the other complexes
predicted through protein–protein docking (VWF/FL-FVIII and VWF/BDD-FVIII) (Table 2).
Therefore, our computational approach is in accordance with the experimental findings
reporting highly stable VWF and FVIII interactions in efanesoctocog alfa or BIVV001.
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Table 2. PRODIGY rescoring of PYDOCK-predicted complexes.

Complex
FVIII-Interacting

Domains
ΔGbinding

(kcal/mol)
pKd

BDD-FVIII A3-C1 light chain −15.3 11.3

Efanesoctocog alfa (BIVV001)–atomic
model (PDB: 7KWO.) A3-C1 light chain n −19.5 14.3

Secreted full-length FVIII B domain–heavy chain −14.1 10.4

3.2. Interface Analysis

Since binding free energy prediction with PyDock and PRODIGY, generally, pro-
vides an indication of binding driving forces, we further focused our calculations on
specific protein–protein interface descriptors. We analyzed the protein–protein interfaces
of VWF/FVIII complexes: B domain-deleted FVIII (Table 3), secreted full-length FVIII
(Table 4), and efanesoctocog alfa (Table 5). Two interfaces were analyzed: (i) one that
involves the heavy and the light chains interactions; (ii) and the VWF/FVIII interface. BDD-
FVIII and the FL-FVIII showed similar heavy/light chain interfaces (Tables 3 and 4) in terms
of ΔΔGSOLV, which was slightly lower in the VWF/FL-FVIII (more favorable) compared
to BDD-FVIII complex. These results are coherent with PyDock and Prodigy predictions.
Furthermore, according to prediction of binding free energy (PRODIGY calculations) the
interactions in the VWF/FVIIII interface of the efanesoctocog alfa were characterized by the
most favorable (lowest) predicted free energy ΔΔGsolv, kcal/mol (Table 5), compared to the
other analyzed complexes. This lower ΔΔGsolv, kcal/mol (more favorable) corresponded
to higher ΔΔGsolv, kcal/mol at interface between heavy and light chains in efanesoctocog
alfa, compared to other analyzed complexes. Therefore, it is likely that more stable inter-
actions between VWF/FVIII correspond to a destabilization of FVIII heavy/light chain
interface. The results reported in Tables 3–5 indicated that the efanesoctocog alfa is the
most stable VWF/FVIII complex, in terms of specific stability of monomers and interface
interaction, compared to the VWF/BDD-FVIII and VWF/FL-FVIII complexes, according to
findings of Fuller et al. [13].

Table 3. PISA results for the VWF/BDD-FVIII complex. Values within brackets refer to the value
specific per residue. Accessible surface area (ASA) of interface (Å2).

Protein Residues Interface Residues ASA, Å2 ΔGsolv, kcal/mol (Per Residue)

MON H (heavy chain) 693 681 38,466.4 −608.4 (−0.88)
MON L (light chain) 644 624 34,017.4 −570.1 (−0.89)

MON V (ligand VWF) 428 406 23,642.1 −370.7 (−0.87)

INTERFACE H-L

INTERACTING RESIDUES, MON H 90
INTERACTING RESIDUES, MON L 100

INTERFACE AREA, Å2 (per interacting residue) 3322.2 (17.50)
ΔΔGsolv, kcal/mol (per interacting residue) −42.7 (−0.22)

INTERFACE L-V

INTERACTING RESIDUES, MON L 42
INTERACTING RESIDUES, MON V 57

INTERFACE AREA, Å2 (per interacting residue) 1742.1 (17.60)
ΔΔGsolv, kcal/mol (per interacting residue) −13.3 (−0.13)
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Table 4. PISA results for the VWF/FL-FVIII complex. Values within brackets refer to the value
specific per residue. Accessible surface area (ASA) of interface (Å2).

Protein Residues Interface Residues ASA, Å2 ΔGsolv, kcal/mol (Per Residue)

MON H (heavy chain) 1312 1283 66,894.3 −881.3 (−0.67)
MON L (light chain) 644 627 33,987.6 −567.8 (−0.88)

MON V (ligand VWF) 428 407 23,645.2 −370.7 (−0.87)

INTERFACE H-L

INTERACTING RESIDUES, MON H 83
INTERACTING RESIDUES, MON L 91

INTERFACE AREA, Å2 (per interacting residue) 3039 (17.5)
ΔΔGsolv, kcal/mol (per interacting residue) −43.8 (−0.25)

INTERFACE H (B domain)-V

INTERACTING RESIDUES, MON H 47
INTERACTING RESIDUES, MON V 49

INTERFACE AREA, Å2 (per interacting residue) 1496.3 (15.59)
ΔΔGsolv, kcal/mol (per interacting residue) −14.3 (−0.15)

Table 5. PISA results for efanesoctocog alfa. Values within brackets refer to the value specific per
residue. Accessible surface area (ASA) of interface (Å2).

Protein Residues Interface Residues ASA, Å2 ΔGsolv, kcal/mol (Per Residue)

MON H (heavy chain) 585 522 25,123.4 −610.6 (−1.04)
MON L (light chain) 615 548 28,830.8 −636.5 (−1.04)

MON C (ligand VWF) 478 461 26,423.4 −567.8 (−1.19)

INTERFACE H-L

INTERACTING RESIDUES, MON H 90
INTERACTING RESIDUES, MON L 82

INTERFACE AREA, Å2 (per interacting residue) 3049.4 (17.7)
ΔΔGsolv, kcal/mol (per interacting residue) −29.0 (−0.17)

INTERFACE L-V

INTERACTING RESIDUES, MON L 67
INTERACTING RESIDUES, MON V 72

INTERFACE AREA, Å2 (per interacting residue) 2443.6 (17.58)
ΔΔGsolv, kcal/mol (per interacting residue) −26.8 (−0.19)

To obtain further insight in the protein–protein interactions, we carried out PCN
analysis of the three complexes: VWF/BDD-FVIII, efanesoctocog alfa, and VWF/FL-FVIII.
Results are shown in Table 6, according to the description provided in Materials and
Methods.

PCN analysis (Table 6) has shown that the interface roughness, (Q/R) was very similar
in analyzed FVIII structure models. The highest Q/R value was associated to heavy chain
of FL-FVIII, because FL-FVIII includes the aminoacids of B domain. In fact, the differences
in IAR can be accounted to different length of protein chains in contact with the ligand, the
VWF.
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Table 6. Topological descriptors for the complex interfaces. Q is the total number of residues for
each chain in the interface. R is the length of the chain involved in the interface. Q/R is the interface
“roughness.” IAR = R/N is the interface amino acid range, where N is the total number of residues in
the chain. EAiAj is the graph energy of the interface. ∑ kAiAj is the inter-chain degree. <kAiAj > is the
average value of the inter-chain degree. ∑ kEM

AiAj
is the energy of interface interaction, computed as

the sum of all contributions for all contacts between chain Ai and Aj. <kEM
AiAj

> is the average value of
the interaction energy. H is the label for heavy chain of FVIII, L is the label for light chain of FVIII,
and V is the label for VWF. In the VWF/FL-FVIII complex, the VWF interacts with B domain in the
heavy chain of FVIII.

QAi ( Q
R )Ai

IARAi EAiAj ∑kAiAj <kAiAj > ∑kEM
AiAj

〈kEM
AiAj

〉

efanesoctocog alfa (PDB: 7WKO)

H 63 0.13 0.85
42.86 144 1.17 21.10 0.17

L 60 0.11 0.88

L 44 0.08 0.87
31.20 95 1.07 14.29 0.16

V 45 0.14 0.67

VWF/FL-FVIII

L 662 0.37 0.94
81.07 4442 3.41 21.1 0.18

H 641 1.00 1.00

H 31 0.13 0.38
22.66 75 1.15 8.97 0.20

V 34 0.11 0.72

VWF/BDD-FVIII

H 54 0.10 0.82
40.49 146 1.27 21.42 0.19

L 61 0.11 0.84

L 33 0.14 0.36
28.92 94 1.32 14.31 0.20

V 38 0.12 0.75

The PCN analysis, as regards the topology of heavy/light chain interface (H:L), shows
that the number of residues involved into active links between heavy and light chains was
higher for the FL-FVIII, compared to the BDD-FVIII and the atomic model of efanesoctocog
alfa. This result diverges from PISA output, but PCN and PISA reside on two different
methods. However, the “absolute interface energy” EAiAj at heavy/light (H:L) chain
interface was higher (more favorable) in the VWF/FL-FVIII (81.07 a.u.), compared to values
of the VWF/BDD-FVIII (40.49 a.u.) and efanesoctocog alfa (42.89 a.u.) complexes. This
trend of energy values, calculated with PCN, are in accordance with interface energy values
calculated with PISA. Moreover, the “absolute interface energy” EAiAj is proportional to
the average inter-chain degree, which was greater at H:L interface of FL-FVIII, compared to
other VWF/FVIII complexes.

Looking at FVIII /VWF interface, the values of “absolute interface energy” EAiAj were
higher (more favorable) for the efanesoctocog alfa (31.20 a.u.) and BDD-FVIII (28.92 a.u.),
compared to FL-FVIII (22.66 a.u.); indeed, PCN parameters have been in accordance
with experimental data and PISA calculations. These differences were mirrored by other
topological PCN parameters, i.e., ∑ kEM

AiAj
the average value of the interaction energy.

Particularly in the comparison between efanesoctocog alfa and BDD-FVIII, we found
subtle differences in graph energy parameters regarding topology of protein–protein inter-
faces. Therefore, we carried out PCN clustering and participation coefficient (P) calculation,
in order to identify through a quantitative approach (see method section, i.e., 2.3 Network
clustering and participation coefficient calculations) residues involved in allosteric modula-
tion of protein structure, i.e., allosteric residues (Figures 5–7). The VWF/FL-FVIII (around
1%, Figure 5) complexes showed the lowest number of allosteric residues, compared to the
VWF/BDD-FVIII (about 4%, Figure 6) and the efanesoctocog alfa (more than 5%, Figure 7).
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Figure 5. VWF/FL-FVIII complex allosteric residues. Participation coefficient P heat map in color
scale (blue to red, increasing values of P). Blue residues have a P = 0. Capital letters refer to protein
domains of FVIII.
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Figure 6. VWF/BDD-FVIII complex allosteric residues. Participation coefficient P heat map in color
scale (blue to red, increasing values of P). Blue residues have a P = 0. Capital letters refer to protein
domains of FVIII.
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Figure 7. Efanesoctocog alfa allosteric residues. Participation coefficient P heat map in color scale
(blue to red, increasing values of P). Blue residues have a P = 0. Capital letters refer to protein domains
of FVIII.

The few allosteric residues (high P values) in the FL-FVIII/VWF complex (Figure 5)
are localized at domain-B/VWF interface, domain B, and A3-C1 interface. The main
difference between VWF/BDD-FVIII (Figure 6) and efanesoctocog alfa (Figure 7) stands
in the localization and number of allosteric residues. Particularly in VWF/BDD-FVIII
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(Figure 6), allosteric residues (P > 0) are more distributed in the C1 domain of heavy
chain at interface with VWF, compared to efanesoctocog alfa (Figure 7), where most of
the allosteric residues (high coefficient P value) are located at A3-C1 and A3-C2 domain
interfaces.

These results support the validity and accordance of different computational methods
hereby applied: protein–protein docking, docking rescoring, PISA, and PCN analysis of
protein and protein domains interfaces.

4. Discussion

FVIII is a key protein involved in the coagulation cascade, and genetic defects in the
FVIII gene (F8) cause hemophilia A, an x-linked recessive inherited disease. Hemophilia A
is a rare, life-threatening disease affecting 1 in 6000 males, which causes spontaneous and
prolonged hemorrhages due to FVIII deficiency. FVIII replacement therapy is the major
therapeutic strategy for treatment of hemophilia A, and FVIII medications are listed by the
World Health Organization (WHO) as essential medicines [48]. FVIII substitutes consist of
full-length FVIII extracted and purified from human plasma, along with several biologic
drugs, such as recombinant full-length FVIII (rFL-FVIII) and recombinant B domain-deleted
FVIII (rBDD-FVIII). BDD-FVIII products have been developed to improve production
yield and standardize recombinant protein production processes, but rBDD-FVIII were
also found to be associated to increased FVIII plasma half-life; therefore, these products
are also denominated as extended half-life (EHL) FVIII [49]. Interaction between von
Willebrand Factor (VWF) and FVIII has been reported to improve FVIII plasma stability and
pharmacokinetics properties, without modification of FVIII pharmacodynamics [8,9,50].
From this perspective, a novel FVIII investigational replacement medication has been
developed, i.e., the BIVV001 or efanesoctocog alfa, which is a recombinant fusion protein in
which the B domain-deleted FVIII is covalently linked to VWF, through a XTEN polypeptide
linker [13]. VWF binds with most favorable energy to A3-C1 domains of FVIII light chain,
however, binding of VWF to other domains of FVIII should not be excluded, since FVIII
and VWF stoichiometry has not been univocally identified [21,22]. Moreover, the VWF
binding to full-length FVIII has been linked to increased FVIII stability and decreased FVIII
immunogenicity (i.e., inhibitor formation). This explains the trend of FL-FVIII medication
to show a longer half-life over time and a similar or lower rate of inhibitor formation in
treatment-naïve patients, compared to BDD-FVIII medications [5,8,20]. These data can also
be attributed to binding of B domain to other plasma proteins, such as albumin [20]. Our
in silico study could be considered as a small step to translational investigation, because
it outlined how B domain in FL-FVIII/VWF would be an additional, but not the most
favorable, binding site for VWF, thus putatively contributing to high plasma stability of
FL-FVIII medication.

Our in silico study provided a structural insight on the binding of von Willebrand
Factor to FVIII, and our computational data are in accordance with the experimental
findings, i.e., FVIII A3-C1 domain is the most stable binding site of VWF. Our computational
approach suggested that one of the driving forces of VWF binding at this preferential
binding site could be related to conformational modifications of FVIII, through modulation
of allosteric residues.

The PISA and PCN analysis of topological parameters suggested an unfavorable
binding of VWF at B domain of FVIII, due to an increased stability of the interface between
the heavy and the light chain, compared to VWF/BDD-FVIII and efanesoctocog alfa. In fact,
the most stable VWF/FVIII complex (efanesoctocog alfa) was characterized by highest (less
favorable) interaction energy between heavy and light chains of FVIII. Differences between
the modeled VWF/BDD-FVIII complex and the atomic model of efanesoctocog alfa are not
likely to be attributed to the lower resolution of BDD-FVIII X-ray structure (PDB:2R7E),
compared to the atomic model of efanesoctocog alfa (PDB: 7KWO). Furthermore, the X-
ray structure of BDD-FVIII showed 4% of Phi and Psi angles in disallowed regions of
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the Ramachandran plot, but these residues are located in disordered loops of A1 and A2
domains of heavy chain, a region not involved in the binding with VWF [51].

Moreover, the PCN clustering and participation coefficient P calculations revealed that
VWF binding to the B domain of FL-FVIII was characterized by lower number of residues
with participation coefficient P > 0 (allosteric residues), compared to VWF/BDD-FVIII and
efanesoctocog alfa. The participation coefficient is an output parameter of PCN analysis,
and has been found useful for identification of allosteric residues in different protein
system and protein domains, according to the methodological approach hereby used and
previously applied [31,40]. The topological parameters, coming from PCN analysis, also
provided information on the local contribution to interface energy, which is useful for
identification of key residues (e.g., allosteric amino acids) in protein–protein complex
formation. Therefore, we can hypothesize that one of the driving forces in VWF binding to
FVIII is attributed to allosteric modulation of protein structure.

Further investigations can shed light on putative allosteric and cooperative protein–
protein interaction, e.g., by simulating FVIII structures with several replicas of VWF. These
studies may provide new hints about the structural role of different domains of FVIII, along
with interaction with other plasma proteins, such as the serum albumin. One of the main
limitations of our study is attributed to the intrinsic approximation structural modeling of
B domain, whose structure has never been solved, with the exclusion of Cryo-EM density
images [25]. Another limitation is related to approximation of intrinsic and essential FVIII
post-translational modifications, such as protein glycosylation (Figure 1), and the most
glycosylated domain of FVIII is the B domain.

5. Conclusions

In conclusion, we hereby carried out an integrated computational approach which
provided outputs that are in accordance with experimental data: i.e., most favorable binding
site for VWF in the FVIII (A3-C1 domains in the light chain). Our computational approach
provided new hints about the involvement of domain B of FVIII as another putative,
although less favorable, binding site for VWF. Additionally, we can hypothesize, given the
accordance between different computational methods, that the most stable VWF/FVIII
complex (efanesoctocog alfa) is characterized by most unfavorable interface energy between
heavy and light chains of FVIII, paralleled by the most favorable VWF/FVIII interface,
likely due to the involvement of the highest number of residues with high participation
coefficient (i.e., allosteric residues). Overall, our computational approaches provided new
hints on interdomain allosteric communication in proteins or protein–protein complexes,
which are considered as one of the driving forces in the protein–protein binding stability.
Thereby, our integrated computational approach will be helpful in the rational structure
design of biologic drugs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app12157855/s1, Figure S1: Secondary structure plot of secreted
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Abstract: Glutathione transferases (GSTs) are a superfamily of enzymes which have in common the
ability to catalyze the nucleophilic addition of the thiol group of reduced glutathione (GSH) onto
electrophilic and hydrophobic substrates. This conjugation reaction, which occurs spontaneously
but is dramatically accelerated by the enzyme, protects cells against damages caused by harmful
molecules. With some exceptions, GSTs are catalytically active as homodimers, with monomers
generally constituted of 200 to 250 residues organized into two subdomains. The first is the N-terminal
subdomain, which contains an active site named G site, where GSH is hosted in catalytic conformation
and which is generally highly conserved among GSTs. The second subdomain, hydrophobic, which
binds the substrate counterpart (H site), can vary from one GST to another, resulting in structures able
to recognize different substrates. In the present work, we performed all-atom molecular dynamics
simulations in explicit solvent of human GSTA1 in its APO form, bound to GSH ligand and bound to
GS-conjugated ligand. From MD, two probes were analyzed to (i) decipher the local conformational
changes induced by the presence of the ligand and (ii) map the communication pathways involved in
the ligand-binding process. These two local probes are, first, coarse-grained angles (θ,γ), representing
the local conformation of the protein main chain and, second, dihedral angles χ representing the local
conformation of the amino-acid side chains. From the local probes time series, effective free-energy
landscapes along the amino-acid sequence were analyzed and compared between the three different
forms of GSTA1. This methodology allowed us to extract a network of 33 key residues, some of
them being located in the experimentally well-known binding sites G and H of GSTA1 and others
being located as far as 30Å from the original binding sites. Finally, the collective motions associated
with the network of key residues were established, showing a strong dynamical coupling between
residues Gly14-Arg15 and Gln54-Val55, both in the same binding site (intrasite) but also between
binding sites of each monomer (intersites).

Keywords: enzyme; ligand binding; molecular dynamics; free-energy; coarse-grained angles

1. Introduction

Proteins are biological macromolecules that perform a large variety of functions in
living cells comprising biochemical (enzymes), structural, mechanical, and signaling func-
tions. To perform their functions, proteins interact with small molecules referred to as
ligands, which are able to bind to a protein with high affinity and specificity [1]. These
protein/ligand interactions are crucial in biology, particularly in the context of drug de-
sign [2]. Since proteins interact with a broad range of drugs, it is of particular interest to
study the mechanisms of binding of ligands to proteins and its impact on the structural
dynamics to gain insights into (i) phenomena involved in the biological process and related
to diseases [3] (misfolding, aggregation), and (ii) discovery, design, and development of
new drugs [4]. The experimental structural data (e.g., X-ray crystallography, NMR, or
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cryo-EM) provide key structural information of the ligand-bound and ligand-unbound
(APO) proteins [5]. Nevertheless, the static information is not always sufficient for under-
standing protein–ligand binding mechanisms, especially when pockets are highly flexible
and contain several binding sites. Therefore, molecular dynamics (MD) is a powerful tool
that provides a description of the dynamics and structures of protein–ligand systems with
a high spatial and temporal resolution.

Glutathione transferases (GSTs) belong to a ubiquitous superfamily of enzymes that
metabolize a broad range of reactive toxic compounds by catalyzing the conjugation of
reduced tripeptide glutathione (γ-Glu-Cys-Gly; named GSH) to the electrophilic center of a
second substrate [6–8], the reactivity of GSH being due to the thiol group SH of the cysteine
residue. The conjugation reaction occurs spontaneously but GST accelerates it dramatically.
This process of detoxification protects cells against damages caused by both exogenous and
endogenous molecules. GSTs were first discovered in liver cells [9,10], and since then, they
have been found to exhibit ligand-binding properties for a large variety of compounds,
which are not always their enzymatic substrates [11]. Therefore, GSTs participate in diverse
biological processes, making them multifunctional proteins. Moreover, GSTs are classified
into three families according to their location in the cell: cytosolic, mitochondrial, and
microsomal, which is not evolutively related to the two other classes [12]. First-discovered
and most-abundant cytosolic GSTs are divided into 13 classes based on homology of their
sequences. Members of the same cytosolic class have at least 40% of sequence identity,
while members of different classes must have at most 25% of sequence identity. Even if
they present a low homology with the cytosolic GST, mitochondrial GSTs can be considered
as a particular class of GSTs (Kappa). Humans possess GST members in seven different
classes [13], particularly the Alpha-class (cytosolic GSTs), in which the GSTA1 protein,
which is the protein of interest in the present work, belongs. An alternative classification is
possible on the basis of the residue located in the G site and which favors the activation of
GSH (deprotonation of GSH plus reduction of pKa): the Cys-GSTs, whose structures are
very similar to the ancestral precursor of all GSTs, the Ser-GSTs (Delta, Theta, Zeta, and Phi
classes, including also Nu-GST activated by a threonine), and the Tyr-GSTs (Alpha, Pi, Mu,
and Sigma classes); this latter subfamily comprises the more recently evolved GSTs.

With some exceptions, GSTs are catalytically active as dimers. The GSTA1 dimer is
stabilized by a “lock and key” motif consisting of two key residues (Met51 and Phe52)
fitting into a hydrophobic cavity of the other dimer [14]. Human GSTA1 dimer revealed
negative cooperativity properties depending on the substrates. It was proposed that this
negative cooperativity allows the self-preservation of their functions [15,16]. Additionally,
there is no clear evidence that monomeric forms of GSTA1 are active as well as folded [17].
GST monomers are, in general, made of 200 to 250 residues with a molecular weight
generally comprising between 25 and 30 kDa [18,19] and are organized into two subdomains
(Figure 1A): the typically 80-residue-long N-terminal subdomain (I) has the typical fold of
thioredoxin. It contains a first active site where GSH is hosted in catalytic conformation,
named G site (Figure 1B). The thioredoxin fold is composed of a characteristic sequence
of α-helices and β-strands encountered in the thioredoxin protein family, i.e., β1 − α1 −
β2 − α2 − β3 − β4 − α3, which is characteristic of enzymes dealing with gluthatione, such
as glutaredoxin or glutathione peroxydase [20]. In addition, it has been shown that the
region β3 − β4 − α3 is well conserved among GSTs and enables GSH recognition by the
enzyme [7]. Residues forming the G site are generally conserved among GSTs [19]. A
noticeable exception is the residue of α1-helix which interacts with the sulfur atom of
GSH and which can be a cysteine, a serine, or a tyrosin (as is the case for human GSTA1).
Depending on the nature of this residue, GSTs develop slightly different catalytic functions
and target a different range of substrates [21]. The second subdomain (II) is all-helical
and contains the H site which binds the substrate. The number of helices varies between
four and seven among GSTs. Subdomain (II) is hydrophobic, and therefore attractive
for hydrophobic molecules. Together with the G site, the combined architecture of GST
monomers is adapted to bind GSH to hydrophobic substrates [22]. Contrary to the G site,
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the residues of the H site strongly vary from one GST to the others, resulting in H sites of
different natures and the ability to recognize different substrates [23].

Figure 1. (A) Cartoon representation of human GSTA1 monomer structures. Left panel: subdomains
(I) and (II) are indicated in magenta and red, respectively. Right panel: the color code is the following:
N-term (blue) to C-term (red). Secondary structures labels are also indicated. (B) Ligand binding
G (top panel) and H (bottom panel) sites of human GSTA1. Ligands are shown in green spheres,
and residues belonging to the binding sites are shown in yellow and purple sticks, respectively. The
color code is the following: hGSTA1 monomer A in red, hGSTA1 monomer B in blue. (C) Catalytic
cycle of GSH conjugation to electrophilic substrate. Three forms of hGSTA1 during the conjugation
reaction cycle are highlighted: APO (no-compound-bound), GSH (glutathione-bound), and GS-R
(gluthatione-S-conjugated substrate). The R form (substrate-bound) is not considered in the present
work. The color code is the same as in panel (B).

Hereafter, we focus our interest on the structure of human GSTA1 (hGSTA1), which is
a homodimer with each monomer made of 222 residues [24]. Among the 29 experimental
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structures of hGSTA1 available in the Protein Data Bank, 21 of them contain at least one
ligand, which is GSH, substrates (R), or GS-conjugates (GS-R). For each structure, a sequence
analysis is provided, featuring the residues of hGSTA1 which are in contact with the ligand.
Collecting these data (Figure S1), we determined the list of residues bound to GSH and
therefore involved in the G site of hGSTA1: Tyr9, Arg15, Arg45, Gln54, Val55, Pro56, Gln67,
Thr68, Asp101, Arg131, and Phe220 (Asp101 and Arg131 belong to the opposite monomer;
see Figure 1B). We performed the same analysis to identify residues bound to GS-conjugates
and therefore involved in the H site of hGSTA1: Phe10, Gly14, Ser18, Arg69, Leu72, Ile96,
Glu97, Ala100, Ile106, Leu107, Leu108, Val111, His159, Met208, Leu213, and Phe222. From
one experimental X-ray resolved structure, we performed all-atom classical molecular
dynamics (MD) in explicit solvent of hGSTA1 enzyme (see Supplementary Materials for
details about the MD protocol) in three different ligand-binding forms of the conjugation
reaction cycle shown in Figure 1C: (i) its APO form, when there is no compound bound to
GST, (ii) its GSH form, when the glutathione is bound to the G-site, and (iii) its GS-R form,
when the glutathione-S-conjugated substrate is bound to the G and H sites, the substrate
considered here being the 1-chloro-2,4-dinitrobenzene (CDNB). Another existing form of
the hGSTA1 enzyme is not considered in the present work, i.e., the R form (substrate-
bound). Indeed, the binding of the gluthatione ligand and of the substrate is not sequential.
The substrate can bind first to GST and then the GSH, or the opposite way, as presented in
Figure 1C.

Overall, the present study aims at deciphering the local conformational changes
and shifts of populations of different local minima of the main chain and side chains of
hGSTA1 enzyme in its three different ligand-binding forms. Predicting ligand-induced
local free-energy changes is relevant both for understanding sequence–structure–function
relationships in enzymes and also for structure-based drug design. From MD, we explore
local conformational changes using internal coordinates, i.e., coarse-grained angles of
the main chain and dihedral angles of the side chains. Dissimilarities between effective
free-energy landscapes of the internal coordinates were established in order to identify the
network of residues involved in the ligand-binding process of hGSTA1. Finally, the coupling
between internal coordinates was revealed by analyzing the correlation of their motions
using the principal component analysis, allowing the definition of collective motions to
which these degrees of freedom contribute the most.

2. Materials and Methods

2.1. Internal Angles as Local Probes of the Protein Main and Side-Chain Conformational Changes

Local conformational changes of the main chain of human GSTA1 were analyzed using
coarse-grained angles (CGAs) (θ, γ), which can be represented by a unit vector in spherical
coordinates, where γ is the azimuth angle and θ the polar angle [25]. For a residue i along
the amino-acid sequence (see Figure 2A), θi is the bond angle formed by the virtual bonds
joining three successive Cα atoms (i − 1, i and i + 1) and γi is the dihedral angle formed
by the virtual bonds joining four successive Cα atoms (i − 1, i, i + 1 and i + 2). The first
pair of CGA (θ, γ) along the sequence is (θ2, γ2) and the last one is (θN−2, γN−2), where N
is the total number of residues. The convention for γ angles is the following: each angle
varies between −180◦ and +180◦, with γ = 0◦ being chosen when Cα

i−1 is cis to Cα
i+2 and

the clockwise rotation of Cα
i+1 − Cα

i+2 is positive when looking from Cα
i to Cα

i+1. Because
the length of the Cα − Cα virtual bond between two consecutive residues is nearly constant,
the main-chain conformation is entirely described by the main-chain bond angles θ and the
main-chain torsional angles γ (Figure 2A). These CGAs (θ, γ), which represent the torsion
and curvature of the protein main chain and form a complete set of order parameters
for protein folding [26], are part of coarse-grained protein models [27] and were used to
analyze large conformational changes of proteins [28], protein folding, and dynamics in
all-atom simulations [25,29,30] and conformational ensemble of intrinsically disordered
proteins [31].

77



Appl. Sci. 2022, 12, 8196

Figure 2. (A) Cartoon representation of CGAs (θ, γ) and SCAs (χk) used as local probes to track local
conformational changes in hGSTA1 from MD. Cα atoms are shown with black spheres. The main
chain and side chains of each residue are shown in sticks. (B) Time series of CGAs θ (top panel), γ

(middle panel), and SCA χ1 (bottom panel) for residue 84, as an example, recorded during run 1
of hGSTA1 in its APO form. (C) Effective free-energy surface V(θ, γ)84 computed from time series
shown in panel (B). Effective free-energy profiles of each internal coordinate θ84 and γ84 are also
presented. (D) Effective free-energy profile V(χ1)84 computed from time series shown in panel B.

Moreover, local conformational changes of the side chains of human GSTA1 were
analyzed using side-chain dihedral angles (SCAs) χk. SCAs capture the rotation around
C − C or C − N bonds of the side chain from its Cβ to its extremity. Each SCA is built from
the coordinates of four successive atoms along the side chain of an amino acid. First of all,
dihedral angle χ1 is made of N − Cα − Cβ − X, where X depends on the amino acid. X
can be Sγ (Cys), Oγ (Ser, Thr), or Cγ for all the other amino acids except Gly and Ala, for
which χ1 dihedral angle is not defined. Second, χ2 corresponds to the rotation around the
bond Cβ − Cγ and is not defined for amino acids Gly, Ala, Cys, Ser, Thr, and Val. Third, χ3,
corresponding to the rotation around the bond Cγ − Cδ or Cγ − Sδ (Met), is only defined
for amino acids Gln, Glu, Met, Arg, and Lys. Finally, χ4 are only defined for Arg and Lys
amino acids and correspond to the rotation around the bond Cδ − Cε (Lys) or Cδ − Nε

(Arg), and χ5 is only defined for Arg and corresponds to the rotation of the side chain
around the bond Nε − Cζ (Figure 2A).
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2.2. Free-Energy Surface, Free-Energy Profile, and Similarity Index

Effective 2D Free-Energy Surfaces (FESs) V(θi, γi) were computed for each pair of
CGA (θi, γi) by using

V(θi, γi) = −kBT log P(θi, γi) (1)

where kB is the Boltzmann constant, T is the temperature, and P(θi, γi) is the probability
density function (PDF) of CGA pair (θi, γi). Two-dimensional PDFs were computed on a
sphere, using CGA time series (Figure 2B) extracted from concatenated MD trajectories
for each hGSTA1 binding-state: APO (2 runs of 900 ns), GSH (2 runs of 900 ns), and GS-R
(1 run of 1200 ns). An example of free-energy surface for CGA pair (θ84, γ84) (Gly83-Lys84-
Asp85-Ile86) is shown in Figure 2C.

Then, to quantify the modifications between two FESs of identical CGA pair (θi, γi)
due to different ligand-binding form of hGSTA1, i.e., APO vs. GSH, GSH vs. GS-R, or
GS-R vs. APO, as shown in Figure 1C, we computed the similarity index H between their
associated 2D PDFs using

H1|2(θi, γi) =
2
∫ π

0
sinθidθi

∫ +π

−π
P1(θi, γi)P2(θi, γi)dγi∫ π

0
sinθidθi

∫ +π

−π
P1(θi, γi)

2dγi +
∫ π

0
sinθidθi

∫ +π

−π
P2(θi, γi)

2dγi

(2)

where P1(θi, γi) is the PDF of CGA pair (θi, γi) in binding form 1 and P2(θi, γi) is the
PDF of CGA pair (θi, γi) in binding form 2. The similarity index H varies between 0
(dissimilar) and 1 (identical). We consider similarity between 2 FESs to be (i) large if
H > 0.70, (ii) moderate if 0.30 ≤ H < 0.70, and (iii) low if H < 0.3, as per a previous
work [28].

Similarly, effective 1D free-energy profiles (FEPs) V(χk
i ) were computed for each SCA

χk
i (k = 1, ..., 5) by using

V(χk
i ) = −kBT log P(χk

i ) (3)

where P(χk
i ) is the PDF of the dihedral angle χk

i . One-dimensional PDFs were computed on
a circle from time series extracted from MD (Figure 2B) using concatenated MD trajectories,
as performed for 2D PDFs (see above). An example of free-energy profile for side-chain
dihedral angle χ1

84 (Lys) is shown in Figure 2D. Moreover, modifications between two FEPs
of identical side-chain dihedral angle χk

i due to different ligand-binding forms of GST were
quantified using the similarity index H between their associated 1D PDFs [28]:

H1|2(χk
i ) =

2
∫ +π

−π
P1(χ

k
i )P2(χ

k
i )dχk

i∫ +π

−π
P1(χ

k
i )

2dχk
i +

∫ +π

−π
P2(χ

k
i )

2dχk
i

(4)

where P1(χ
k
i ) is the PDF of SCA (θi, γi) in binding form 1, and P2(χ

k
i ) is the PDF of SCA

(χk
i ) in binding form 2. The same scale of similarity, as described above for FESs, is used to

quantify similarities (large, moderate, and low).

3. Results

3.1. Structural Flexibility of Human GSTA1 in Its APO, GSH, and GS-R Form

Figure 3A presents thermal B-factors computed during MD simulations of hGSTA1 in
its APO, GSH, and GS-R form. First, the correlation between B-factors of monomers A and
B in each of the three forms independently is very high (more than 80%). Therefore, we
compare average B-factors computed over the two monomers for each form. Overall, four
regions of the hGSTA1 enzyme were found to exhibit a large flexibility (Figure 3B): the α2
region (residues 38–50), which contains residue Arg45 that belongs to the G site; the loop
between α4–α5 helices (residues 107–119), i.e., L4,5, which contains residues Leu107, Leu108,
and Val111 that belong to the H site, the loop between α8–α9 helices, i.e., L8,9 (residues
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199–206), and, finally, the C-terminal region (residues 210–222) containing the α9 helix with
residues Phe220 and Phe222 that belong to the G and H sites, respectively. By computing
the difference of flexibility of hGSTA1 between the three forms shown in Figure 1C, we
found that the APO and GSH forms are more flexible than the GS-R form in the α2 region,
which contains residue Arg45. This flexibility in the absence of the substrate (APO and
GSH forms) may promote its binding, the same region being constrained by the presence
of the conjugated substrate (GS-R form). On the opposite, the loop and extremities of α4
and α5 helices are more flexible in the GS-R and GSH forms of hGSTA1 than in its APO
form. It means that the presence of the ligand in the G and H sites of GST and, particularly,
the interactions with residues Ala100, Asp101, Ile106, Leu107, Leu108, Val111, (in α4) and
Arg131 (in α5) modify the flexibility of this region (Figure 1B). Moreover, the presence of
GSH in the G site strongly increases the flexibility of the loop L8,9 located a few residues
away for the C-terminal helix α9 of hGSTA1. This loop is also slightly flexible in the APO
form and is not at all in the GS-R form. Last, but not least, the APO form of hGSTA1 shows
a much larger flexibility in the C-terminal region (residue 210–222) than both the GSH and
the GS-R forms. The sum of the B-factors in this region for each of the forms is 39, 21, and
12 nm2 for APO, GSH, and GS-R, respectively. This result is in agreement with experimental
observations showing that the protein flexibility of hGSTA1, including the dynamics of
C-terminal α9 helix on nanosecond-millisecond timescale and the protruding extremities
of α4–α5 helices, contributes remarkably to the catalytic and noncatalytic ligand-binding
functions of GSTs [32,33].

Figure 3. (A) Thermal B-factors of hGSTA1 computed from MD in its three different forms: APO
(top), GSH (middle), and GS-R (bottom) panel. Yellow and purple circles correspond to residue that
belongs to the G and H site, respectively. Gray rectangles indicate residues in α helix, and black circles
at the top of each plot represent residues in β-sheets. The Pearson correlation between monomers A
and B, ρA|B, is also indicated for each form. (B) Cartoon representation of hGSTA1 structures colored
according to their B-factors in its three different forms: APO (top), GSH (middle), and GS-R (bottom)
panel. Ligand is shown in transparent spheres, and residues which belong to the G and H sites of
each monomer are shown in stick. Secondary structures of interest (see text) are also indicated: α2
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helix; the loop between α4–α5 helices, i.e., L4,5; the loop between α8–α9 helices, i.e., L8,9 and the
C-terminal region (α9 helix). The color code used is rainbow, from blue to red color corresponding to
0 and 5 nm2, respectively. (C) Difference of B-factors between two different forms of hGSTA1. (Top)
panel: APO vs. GSH, (middle) panel: GSH vs. GS-R, and (bottom) panel: GS-R vs. APO.

3.2. Identification of Key Residues Involved in Ligand Binding to hGSTA1 from Free-Energy
Landscape Analysis of CGAs and SCAs

The network of residues influenced by ligand binding into hGSTA1 in the three differ-
ent forms presented in Figure 1C is determined by computing similarity indices H between
(i) 2D free-energy surfaces of CGAs (θ, γ) and (ii) 1D free-energy profiles of SCAs (χ) along
the amino-acid sequence. First, only FESs that show large or moderate similarities (H > 0.3)
between monomers A and B of the homodimer are considered as the DATA. This ensures
that non-converged FESs and FEPs between the two monomers are not taken into account.
In fact, even though monomers A and B can have an asymmetrical dynamical behavior
from MD due to the fact they are flexible monomers (sampling issue), no information
can be exploited from these non-converged characteristics from a thermodynamical point
of view. They might or might not be relevant to the conformational fluctuations of the
protein. In total, 11 CGAs were excluded (i = 50 for APO, i = 141, 145, 220 for GSH, and
i = 144, 146, 147, 149, 217, 218, 219, 220 for GS-R form). These CGAs are mainly located in
the loop between helices α5 and α6 and in the C-terminal region, and they represent only
5% of the total number of CGAs (N = 218).

Second, we computed similarity indices H between FESs of CGAs (from DATA)
between the different forms of hGSTA1, (i) APO vs. GSH, (ii) GSH vs. GS-R, and (iii) GS-R
vs. APO. Figure 4 shows dissimilarity 1 − H along the amino-acid sequence for each
comparison for both CGAs (θ, γ) (panel A) and SCAs χ1 (panel B). On one hand, from APO
vs. GSH comparison, only one CGA (θ, γ)i presents moderate similarity of its FES between
the two forms. This result is not very surprising since at the microsecond timescale, the
association/dissociation of GSH ligands from G sites of monomer A and B of hGSTA1
were observed during MD simulations (see Figure S3). It concerns CGA (θ, γ)143 and
involves residues Ser142, His143, Gly144, and Gln145, which are not directly involved
in the ligand-binding sites of hGSTA1. However, these residues are located at the end of
α5-helix, which contains residue Arg131 of the G site. On the other hand, comparisons
involving the GS-R form of hGSTA1 present many more structural modifications. From
GSH vs. GS-R comparison, seven CGAs (θ, γ)i present moderate or low similarities of their
FESs between these two forms, for i = 13, 14, 15, 16, 17, 18, 51. These seven CGAs involve
13 different amino acids with Gly14, Arg15, and Ser18, which are directly involved in the
ligand-binding site of hGSTA1 (Figure 4C). Among the ten other residues detected and
which are not located in the binding sites of hGSTA1, Arg20 is of great interest since this
amino acid is highly conserved through GST classes. Moreover, by looking at FES of CGA
(θ, γ)15 in the three ligand-binding forms of hGSTA1 (Figure 4D), we show that both θ and
γ angles are modified by the presence of gluathione-S-conjugated ligand compared to the
APO and GSH forms. For instance, the global minimum of the FES V(θ15) is significantly
shifted to lower values of θ and there is the creation of a new global minimum for V(γ15)
in the GS-R form compared to the GSH form. It is also the case for residues 13 and 17 (see
Figure S5). Therefore, the presence of GS-R ligand modifies the structure of hGSTA1 for
some residues, which corresponds to an induced fit model of protein–ligand binding. On
the opposite, for the comparison between the APO and GSH forms, the population shift
model of protein–ligand binding is more pronounced since the similarity between FESs
and FEPs is larger than comparisons with GS-R forms (Figure 4A,B).

Finally, 10 FESs of CGAs were identified as moderately or largely modified due to
ligand binding for the comparison between GS-R and APO forms of hGSTA1. In detail,
CGAs (θ, γ)i for i = 10, 12, 13, 14, 15, 16, 17, 18, 53, and 158 were identified. Among these
10 CGAs, six were already detected from GSH vs. GS-R comparison (Table S1). It means
that these six CGAs are GS-R specific, i.e., they are similar in the APO and GSH forms
compared to the GS-R form. Particularly, CGA (θ, γ)53, which involves residues Gln54
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and Val55, is of special interest since both residues belong to the G site. In addition, CGA
(θ, γ)158, which involves residue His159, is also of special interest since this residue belongs
to the H site. In total, from the three different comparisons of ligand-binding forms of
hGSTA1 shown in Figure 4A, 12 unique CGAs were identified to be influenced by the
absence/presence of a ligand; some of them being detected in two different comparisons
(Table S1). It corresponds to a total of 26 different residues with four residues which belong
to the G site (Tyr9, Arg15, Gln54, and Val55) and four residues which belong to the H site
(Phe10, Gly14, Ser18, and His159). All 2D FESs of the 12 CGAs identified to be involved in
the ligand binding process in hGSTA1 are presented in Figure S5.

Figure 4. (A) Dissimilarity index 1 − H along the amino-acid sequence computed from FESs of CGAs
(θ, γ). The color code is the following: low dissimilarity: blue, moderate dissimilarity: green, large
dissimilarity: red (see Materials and Methods, Section 2.2). Yellow and purple circles correspond to
residue that belongs to the G and H site, respectively. Gray rectangles indicate residues in α helix,
and black circles at the top of each plot represent residues in β-sheets. (B) Dissimilarity index 1 − H
along the amino-acid sequence computed from FEPs of SCAs χ1. The color code is the same as
in panel A. (C) Location of CGAs and SCAs detected from free-energy landscape analysis in the
hGSTA1 structure. The color code is the following: N-term (blue) to C-term (red). (D) Effective 2D
FESs V(θ, γ)15 in the APO, GSH, and GS-R forms of hGSTA1. Effective 1D FEPs of each internal
coordinate θ15 and γ15 are also presented. (E) Effective FEPs V(χ3)15 in the APO, GSH, and GS-R
forms of hGSTA1. Diamonds indicate the global minimum in each form.

We applied the exact same procedure to compare the one-dimensional FEPs of SCAs χk.
First, three amino acids were excluded from the DATA since they do not exhibit converged
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FEPs of SCAs between monomers A and B of hGSTA1. It concerns residues Glu146 (χ1,2),
His159(χ1,2), and Arg221 (χ1,2,3,4,5). It represents only 1.5% of the total number of residues
characterized by SCAs (N = 192). Then, from dissimilarity indices, 1 − H, computed along
the amino-acid sequence for the three different comparisons APO vs. GSH, GSH vs. GS-R,
and GS-R vs. APO, as shown in Figure 4B for SCAs χ1 and in Figure S3 for the other SCAs
χ2,3,4,5, a total of 19 SCAs were identified to be influenced by the absence/presence of a
ligand in the binding sites of hGSTA1 homodimer. It concerns 15 different residues, i.e.,
Phe10, Arg13, Arg15, Met16, Glu17, Thr19, Arg45, Gln54, Leu102, Phe136, His143, Arg155,
Leu163, Phe220, and Phe222 (Table S1). Among these 15 residues, four are located in the G
site (Arg15, Arg45, Gln54, and Phe220) and two in the H site (Phe10 and Phe222). In detail,
the comparison between the APO and GSH forms of hGSTA1 highlights three SCAs, χ1,2

143
and χ1

222 (C-term). Particularly, residue His143 was also found to be crucial (the only one)
for ligand binding from the analysis of the CGA (θi, γi) FESs. It means that residue His143
is an unexpected probe of ligand binding as both its local main chain conformation and
its side chain are modified by the absence (APO) or presence (GSH) of the ligand, even
though His143 is not directly located in the G or H binding site. In fact, this residue is at
the surface of the hGSTA1 enzyme, at a distance around 30 Å from the binding sites.

Furthermore, 11 SCAs are found to show free-energy dissimilarities between their
GSH and GS-R forms, i.e., χ1,2

10 , χ3
15, χ3

16, χ1
19, χ3

45, χ2
54, χ2

136, χ1,3
155, and χ1

220. The six residues
mentioned above for the comparison of APO vs. GSH forms and which belong to the
G and H sites were also identified above from the comparison of CGA FESs for APO vs.
GSH. In particular, SCA χ3

15 is associated with Arg15 which is conserved in GST class
Alpha and located at the interface between G and H sites. For this SCA, as shown in
Figure 4E, the presence of GS-R ligand modifies the position of the global minimum of the
FEP, from −180◦ in both APO and GSH forms to −60◦. This local conformation exists in
APO and GSH forms but as a local minimum (population shift). Finally, 12 SCAs were
detected for the comparison GS-R vs. APO. Among these 12 SCAs, seven were already
identified from the comparison GSH vs. GS-R, i.e., residues Phe10, Arg15, Met16, Thr19,
Phe136, and Phe220 are, therefore, GS-R specific. The same kind of behavior was already
observed for CGAs of the main chain with six coordinates GS-R specific. Among these
six coordinates, residue Arg15 was identified, which support its case as one of the most
important residues involved in ligand binding of hGSTA1. The five supplementary SCAs
identified are χ3

13, χ3
17, χ1

102, and χ1,2
163, which correspond to residues Arg13, Glu17, Leu102,

and Leu163. Particularly, Leu102 is located very close to the G site, Asp101 belonging
to the G site and located in the opposite monomer of the dimer. All 1D FEPs of the 19
SCAs identified to be involved in the ligand binding process in hGSTA1 are presented in
Figure S6.

3.3. Collective Motions of the Network of Residues Involved in Ligand Binding in hGSTA1
Revealed by PCA

As described in detail above, the free-energy landscape (FEL) comparison of CGAs
(θ, γ) reveals that the absence/presence of ligands in hGSTA1 modifies at least 12 inter-
nal coordinates, located in both binding sites G and H or even further in the sequence
(Figure 4C). In other words, the modification of the (unknown) free-energy landscape
of hGSTA1 upon ligand binding can be represented here quantitatively by its projection
over 12 dimensions. Obviously, these 12 coordinates are not independent and the local
motions of the CGAs are coupled to each other. Hereafter, we establish the relation be-
tween these 12 local conformational changes by applying principal component analysis
(see Supplementary Materials for details). From PCA for CGAs (θ, γ) in the three different
forms of hGSTA1, we found that more than 30% of the total contribution to the MSF of the
12 CGAs is captured by the first two collective modes over the 72 existing ones (Figure S7).
Then, we computed time series of the projections of vectors qi along the eigenvectors of
collective modes 1 and 2, which defined the collective coordinates PC1 and PC2. From the
two-dimensional probability density functions of PC1 and PC2 time series computed from
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MD trajectories, the effective 2D FEL V1,2, shown in Figure 5, was computed for the three
forms APO, GSH, and GS-R. The largest motions defined by the first and second PCs can be
interpreted in terms of specific features of the two-dimensional FEL V1,2. The 2D FEL of the
APO form of hGSTA1 presents two minima defined from the contour lines of free-energy
(<2 kBT), whereas both GSH and GS-R forms present three minima. In addition, for GSH
and GS-R forms, the different minima are well separated by energy barriers from around
3 to 4 kBT, whereas in the APO form, the two minima are separated by a barrier around
1 kBT. These 2D FELs are, in fact, in agreement with the observation that FEPs of θ and γ
angles (Figures 4D and S5) are more spread out and therefore contain more wells for GSH
and GS-R forms in addition to the one(s) of the APO form.

From the 2D FEL shown in Figure 5A, the coupling between the 12 CGAs of the
network identified as important for ligand binding in hGSTA1 was estimated by computing
the influences of each coordinate into the largest amplitude collective motions, which are
of particular interest for the biological function of proteins [34]. First of all, as shown
in Figure 5B for each form, the dynamics of the 12 coordinates are highly asymmetrical
between monomers A and B of hGSTA1. For collective mode 1 of APO, GSH, and GS-R
forms, the contribution of monomer A is 66, 24, and 13%, respectively (with 34, 76, and
87% for monomer, B). For collective mode 2, the contribution of monomer A is even larger.
Moreover, for the collective mode 1 of GSH form, the Pearson correlation of influences along
the 12 CGAs is large, i.e., ρA|B = 0.84, whereas for the collective mode 2, the correlation
is low, i.e., ρA|B = 0.23. However, PCA reveals two major dynamical couplings between
residues. First, there is a coupling between CGAs 13–14–15 (including residues Gly14 of
the H site and Arg15 of the G site) and CGAs 51, 53 (including residues Gln54 and Val55
of the G site) in the same monomer A or B. This coupling can be more or less pronounced
between monomers and is modified by the presence of GS-R ligand, which modifies the
location of CGA fluctuations in collective mode 1 (Figure 5B). Second, there is a coupling
between the two binding sites of the two monomers, as shown particularly for CGAs 51,
53 in collective mode 1 for both APO and GSH form. This coupling is also present but
is less pronounced in collective mode 2 of GS-R form. Therefore, dynamical coupling of
intra-binding sites and inter-binding sites of hGSTA1 along the main chain of the enzyme
was found and appears to be crucial for ligand binding in hGSTA1.

We applied the same procedure to the 19 SCAs detected from FEPs similarities. First,
the two collective modes 1 and 2 contribute to 17, 18, and 36% for APO, GSH, and GS-R
forms of hGSTA1, respectively (Figure S6). As shown in Figure 5C, 2D FELs V1,2 from
SCAs present much more minima than for CGAs. It comes from the fact that SCAs show
unrestricted FEPs with values between −180 and +180◦ compared to CGAs. Moreover,
the shape of the FEL for the GS-R form of hGSTA1 is much more different compared to
the APO and GSH forms. The GS-R form of hGSTA1 explores the free-energy landscape
less and is more restricted. However, the free-energy barriers between minima are much
larger than the APO and GSH forms (up to 6 kBT), for which the multiple minima are
more easily accessible to the system. This behavior is related to the fact that the binding
of GS-R ligand, which is bigger than GSH ligand, involves more constraints on the side
chains of the residues and, therefore, larger free-energy barriers to overcome. In addition,
compared to CGAs, collective modes 1 and 2 are more spread out over the two monomers,
particularly in the GSH form (Figure 5D). The analysis of the influences of each SCA in the
collective motions of mode 1 and 2 reveals a strong coupling Leu163 and residue Glu17
and its neighbors in the G site in the APO form. In the GS-R form, the coupling is more
pronounced with residue Arg155.
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Figure 5. (A) 2D FEL computed from PCA applied on CGAs for hGSTA1 in its APO (left panel),
GSH (center panel), and GS-R (right panel) forms. Contours (black lines) are drawn every kBT. The
color scale for the free-energy is in kBT unit. (B) Influences Δk

i as a function of CGAs i for collective
modes k = 1, 2 computed from PCA. Left panels concern the APO form, middle panels the GSH form,
and right panels the GS-R form. Values in inset represent the percentage of contribution for the two
monomers A and B of hGSTA1. (C) 2D FEL computed from PCA applied on SCAs for hGSTA1 in its
APO (left panel), GSH (center panel), and GS-R (right panel) forms. (D) Influences Δk

i as a function
of SCAs i for collective modes k = 1, 2 computed from PCA.
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4. Discussion

From the three different comparisons of ligand-binding forms of human GSTA1
shown in Figure 1C, 12 CGAs and 19 SCAs were identified to be influenced by the ab-
sence/presence of ligands, most of them being gluthatione-S-conjugated-specific (Table S1).
It corresponds to a total of 33 different amino acids (15% of the total sequence), eight of them
being identified from both CGAs and SCAs analyses (Table 1). Among these 33 residues,
11 of them (32%) are directly located to the two binding sites of hGSTA1, with 6 which
belong to the G site, i.e., Tyr9, Arg15, Arg45, Gln54, Val55, Phe220, and 5 which belong
to the H site, i.e., Phe10, Gly14, Ser18, His159, and Phe222 (Figure S8). Furthermore, a
collective motion involving residues Arg15, Gln54, and Val55 of the G site and residue
Gly14 of the H site was identified using principal component analysis, revealing a strong
coupling between these residues. Particularly, residue Arg15, which is found here to be
involved in both local conformational changes of the main chain and of the side chains of
hGSTA1, was demonstrated to have crucial catalytic activity both theoretically [35] and
experimentally [36,37]. Finally, residues Phe220 (G site) and Phe222 (H site) belong to the
C-terminal part of hGSTA1 (α9-helix; see Figure S8) and it has been demonstrated that this
secondary structure contributes remarkably to the catalytic and noncatalytic ligand-binding
functions of GSTs [32,33].

Table 1. Summary of amino acids involved in the ligand binding to hGSTA1 and extracted from simi-
larity of FESs of CGAs and FEP of SCAs. Amino acids, which were detected from both analyses, are
underlined. Amino acids, which are highly conserved among GSTs, are denoted in bold. Secondary
structure location of amino acids are indicated in parentheses.

Location List of Amino Acids

G site Tyr9 (β1), Arg15 (Lβ1,α1 ), Arg45 (α2), Gln54, Val55 (Lα2,β3 ), Phe220 (α9)

H site Phe10, Gly14 (Lβ1,α1 ), Ser18 (α1), His159 (α6), Phe222 (α9)

Others
Asn11, Ala12, Arg13 (Lβ1,α1 ), Met16, Glu17, Thr19, Arg20 (α1), Leu50, Met51,
Phe52, Gln53 (Lα2,β3 ), Leu102 (α4), Phe136, Ser142, His143, Gly144, Gln145
(α5), Arg155, Asp157, Ile158, Leu160, Leu163 (α6)

At large distance from the ligand-binding sites of hGSTA1, 12 residues (from Leu102
to Leu163; see Table 1) were identified as sensitive to the ligand disturbance. For ex-
ample, His143 is involved in the main-chain and side-chain conformational changes of
hGSTA1 and is located around 30 Å away from the G and H sites Figure S8). Moreover,
GST sequence analysis indicates that some residues form an highly conserved local se-
quence GXXh(T/S)XXDh (h: hydrophobic), constituted by the α6-helix and its preceding
loop [38–40]. This motif belongs to a substructure named N-capping box and hydrophobic
staple motif of GST and has been shown to be critical for the protein folding and stabil-
ity [41]. In the present work, six residues were identified from the α6-helix, particularly
Arg155, Asp157 (highly conserved), and Ile158 (hydrophobic) which belongs to the cor-
responding motif GNKLSRADI. According to experimental structures, Ile158 can form
hydrophobic interactions with the α1-helix [41], which is an important structural element
supporting the active binding site of GSTs.

Finally, it has been reported that the sequence alignment of all known GST structures
(more than 100) shows that only 6–7 residues, i.e., less than 5% of the entire polypeptide
chain, are strictly conserved [42]. For instance, Pro56 of the GST Alpha class, which belongs
to the G site, is conserved through GST classes Mu, Pi, Sigma, Phi, Tau, Theta, Zeta, Omega,
and Beta. In the present work, four amino acids, i.e., Arg13, Arg20, Val55, and Asp157,
were detected and are highly conserved among GST classes. Particularly, Arg20 is strictly
conserved through GST classes Alpha, Mu, Pi, Sigma, Tau, Zeta, and Omega; Arg13 is
strictly conserved through GST classes Alpha, Mu, and Pi [43].
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5. Conclusions

In the present work, we performed all-atom classical MD simulations in explicit solvent
of human GSTA1 enzyme in the three different following forms of the protein: (i) the APO
form, when no ligand is bound to hGSTA1, (ii) the GSH form, when the gluthatione ligand
is bound to the G site of hGSTA1, and (iii) the GS-R form, when the gluthatione-S-conjugate
is bound to the G and H sites of hGSTA1. From MD runs, we performed a free-energy
landscape analysis of internal coordinates along the amino-acid sequence of the protein.
The analysis was conducted using coarse-grained angles (θ, γ) of the main-chain (CGAs)
and side-chain angles χ (SCAs), as local probe to track conformational changes. The
comparison between each form of hGSTA1 reveals 12 CGAs and 19 SCAs influenced by the
ligand binding into the G and H sites. It corresponds to a total of 33 residues of hGSTA1
which are involved in the protein–ligand binding process. Among the 33 residues identified,
11 of them belong to the two binding sites of hGSTA-1 identified experimentally from XRD
structures, which confirms that the method developed and applied here is very robust.
Finally, the dynamics of coarse-grained and side-chain angles were studied using principal
component analysis. It shows an asymmetrical behavior between the two monomers of
hGSTA1, particularly from CGAs. Moreover, the analysis of the first collective motions
reveals a strong dynamical coupling between residues Arg15-Gln54-Val55 of the G site
and Gly14 of the H site. These residues are coupled in the same binding site (intrasite) but
also between the two binding sites of each monomer of hGSTA1 (intersites), which is an
important result of the present work. Finally, residue Glu17 shows important coupling
with residues Arg155 and Leu163, depending on the binding form of hGSTA1 (APO and
GS-R, respectively). This free-energy landscape methodology, already applied successfully
to chaperone proteins [28] and now to protein–ligand binding of human GSTA1 enzyme, is
very powerful to identify network of residues and their dynamical coupling involved in
the communication between domains or binding sites of biological systems. An important
outcome of the present approach is its ability to decipher long-range effects, i.e., influence
of residues far from the binding site on the ligand–protein association. This might guide
engineered mutagenesis to tailor specific ligand–protein interactions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app12168196/s1, Section S1: details about MD protocol, structural stability of hGSTA1 dimer
and monomers, ligand association/dissociation, and principal component analysis applied to internal
angles coordinates. Figure S1 : Identification of residues which belong to the G and H site of hGSTA1
from PDB structures. Figure S2: RMSD of hGSTA1 structures in the APO, GSH, and GS-R forms
computed from MD trajectories. Figure S3: Distance between ligands and binding site G of hGSTA1
computed from MD trajectories. Figure S4: Dissimilarity index along the amino-acid sequence
for side-chain angles χ. Figure S5: 2D free-energy surfaces V(θ, γ) for all coarse-grained angles
identified to be influenced by ligand binding in hGSTA1. Figure S6: 1D free-energy profiles V(χ) for
all side-chain dihedral angles identified to be influenced by ligand binding in hGSTA1. Figure S7:
Contribution of collective modes extracted from PCA to the total fluctuations observed in MD.
Figure S8: Cartoon structure of hGSTA1, with the network of residues relevant for ligand binding
highlighted. Table S1: Summary of CGAs and SCAs involved in the ligand binding to hGSTA1
and extracted from similarity of FESs and FEPs. References [44–57] are cited in the supplementary
materials.
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Featured Application: Loop regions in β2AR are critical hot spot regions, likely in other GPCRs,

and can be used as potential allosteric drug targets.

Abstract: Two independent 1.5 μs long MD simulations were conducted for the fully atomistic model
of the human beta2-adrenergic receptor (β2AR) in a complex with a G protein to investigate the signal
transmission in a fully active state via mutual information and transfer entropy based on α-carbon
displacements and rotameric states of backbone and side-chain torsion angles. Significant correlations
between fluctuations in α-Carbon displacements were mostly detected between transmembrane
(TM) helices, especially TM5 and TM6 located at each end of ICL3 and TM7. Signal transmission
across β2-AR was quantified by shared mutual information; a high amount of correspondence was
distinguished in almost all loop regions when rotameric states were employed. Moreover, polar
residues, especially Arg, made the most contribution to signal transmission via correlated side-chain
rotameric fluctuations as they were more frequently observed in loop regions than hydrophobic
residues. Furthermore, transfer entropy identified all loop regions as major entropy donor sites,
which drove future rotameric states of torsion angles of residues in transmembrane helices. Polar
residues appeared as donor sites from which entropy flowed towards hydrophobic residues. Overall,
loops in β2AR were recognized as potential allosteric hot spot regions, which play an essential role in
signal transmission and should likely be used as potential drug targets.

Keywords: transfer entropy; rotameric state; loop region; allosteric network; mutual information

1. Introduction

Allostery is an essential property of all proteins that is accepted to be intrinsic, irre-
spective of their functional requirements [1,2]. In fact, all proteins are dynamic entities,
which sample distinct conformational states, and allostery is manifested as the shift in that
conformational ensemble when one site of a protein is triggered by either a bound ligand
or a mutation. In some proteins, the catalytic region at a distant site experiences a change
in its functional capacity; thus, allostery becomes a critical part of the protein’s functional
regulation [2–4]. In addition to conformational changes, allostery can also manifest itself
as a change in the global dynamics of the protein. Based on Cooper and Dryden’s model
proposed almost 30 years ago, allostery arises from the changes in frequencies and am-
plitudes of thermal fluctuations even in the absence of any conformational change in the
backbone [5]. In this entropic model of allostery, there is no redistribution in the preexisting
conformational substates. However, there is a change in the depth of the corresponding
local minima in which a coordinated fluctuation of residues transmits the change from one
site to another distant site [6–8].

Another important aspect of allostery is the pathway along which the residues fluc-
tuating in the correspondence are distributed. These so-called “hot spot” residues are
essential for site-to-site communication and are valuable for computer-aided drug design
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studies as they often provide high specificity/selectivity in comparison to orthosteric
binding site residues, which are mostly conserved among species [9–14]. Over the years,
several graph-based algorithms have been developed to estimate this functional allosteric
circuit with its constitutive residues [15–17]. Here, we used correlated fluctuations between
residues to establish an allosteric communication network, which is described in terms of
entropy/information transfer from one site to another. Transfer entropy was previously
introduced by Schreiber in 2000 as an information-theoretic measure to quantify the ex-
change of information between two systems [18] and was later used in several MD studies
as an analysis tool to understand the effects of various structural changes [19–23].

In our current study, the transfer information of coupled fluctuations was not only
based on translational Cα displacements, as often considered in several studies, but also
on rotational displacements of backbone and side-chain torsion angles in each residue.
The thermodynamic importance of side-chain variability was previously emphasized
in calmodulin-ligand binding studies [24,25]. Furthermore, NMR mutational studies
demonstrated the contribution of side-chain fluctuations to long-range communication
networks [26]. Previously, using Monte Carlo sampling, DuBay and his coworkers demon-
strated that allosteric communication in proteins can be transmitted by correlated side-chain
fluctuations only [27]. However, they assumed a fixed backbone rotation and quantified
the correspondence using a mutual information metric only. Here, our study will be the
first to consider both backbone and side-chain rotatable bonds altogether to identify the
correlated fluctuations in the rotameric states of these torsion angles. In addition, we will
use another information-theoretic measure, the so-called “transfer entropy” to determine the
dynamics of information transport, i.e., the direction of the exchange of information from
one site to another distant site in the receptor at a future time.

The system under study is a human beta2-adrenergic receptor (β2AR) in complex with
G protein representing the active state. It was subjected to two separate 1.5 μs long MD
simulations, which amounted to a 3 μs long trajectory. Dynamic cross-correlation analysis
based solely on α-Carbon displacements was followed by mutual information and transfer
entropy calculations based on fluctuations in both α-Carbon displacements and rotameric
state of backbone and side-chain rotatable bonds. A significant amount of correspondence
was observed for fluctuations in rotameric states for residues in loop regions. This over-
looked information carried via fluctuations within the rotameric well was emphasized for
the first time in this study as an important component of allosteric regulation. Furthermore,
the information transfer was directed from polar residues located in loop regions towards
hydrophobic residues found in the transmembrane regions of the receptor, i.e., fluctuations
in rotameric states of polar loop residues dictated the future fluctuations of rotameric states
of hydrophobic transmembrane residues. This driver–follower relation between the loop
and transmembrane regions of the receptor via polar/hydrophobic residue pairs elucidated
for the first time an important allosteric communication network that can be used for
allosteric drug design studies.

2. Materials and Methods

System Preparation. The active state of human β2AR in a complex with a Gs complex
and bound to agonist BI-167107 with a PDB id of 3SN6 [28] was used as an initial state con-
formation for MD simulations. Prior to the runs, T4 Lysozyme, nanobody, and the agonist
were removed, the missing extracellular (Ala176-His178) and intracellular (Phe239-Phe265)
residues were completed via a MODELLER homology modeling tool [29], and the muta-
tions T96M, T98M and E187N, which were used as linkers in crystal structure formation
were reverted to their original state via the mutate plugin of the VMD visualization tool [30].
The system was then embedded into a palmitoyloleoyl-phosphatidylcholine (POPC) lipid
bilayer using VMD’s membrane plugin tool [30], solvated with TIP3P water molecules, and
later ionized with 160 Na+2 and 154 Cl−1 counter ions for neutralization, which is neces-
sary for the Particle-Mesh Ewald summation method. The system with the dimensions
of 125 × 125 × 165 Å was prepared with a total of 228,299 atoms, of which 54,707 were
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water molecules. The CHARMM36 forcefield was used to describe the interaction potential
of protein and lipids [31]. Periodic boundary conditions were applied in an isothermal,
isobaric NPT ensemble with a constant temperature of 310 K and a constant pressure of
1 bar. Temperature and pressure were controlled by the Langevin thermostat and Langevin
piston barostat, respectively [32]. The equations of motion were integrated with a 2 fs time
step, and the SHAKE algorithm was used to constrain covalent bonds involving non-water
hydrogen bonds with a non-bonded cutoff value of 12 Å.

Two independent 1.5 μs long MD runs were performed via the NAMD v2.13 software
tool. Each run was initiated with three steps of initial energy minimizations under flexible
cell conditions, including (i) the melting of lipid tails when the rest of the atoms were fixed,
(ii) minimization and equilibration when protein was constrained but lipid, water, and
ion atoms were released, and (iii) minimization and equilibration with the release of all
atoms, which was then followed by equilibrium and production runs under constant area
according to the membrane proteins’ simulation protocol of NAMD [33]. The lipid bilayer
in the system was continuously monitored in the minimization and equilibration steps
until reaching 63.69 Å2 area per lipid ratio, which was in the range of the experimentally
reported value of 64.3 ± 1.3 Å2 [34,35].

Dynamic Cross-Correlation. Correlations between atomic fluctuations from average
positions of two residues i and j were calculated using the following equation:

Ci,j = C
(
ΔRi, ΔRj

)
=

〈
ΔRi(t)·ΔRj(t)〉√
〈(ΔRi)

2〉〈(ΔRj
)2〉

(1)

The time average of the dot product of ΔRi(t) and ΔRj(t) was taken and normalized.
ΔRi(t) and ΔRj(t) represent the atomic fluctuations of α-Carbons only. If Cij = 1, then the
fluctuations of atoms i and j are perfectly correlated (fluctuates in the same direction), if
Cij = −1, then the fluctuations of atoms i and j are perfectly anticorrelated (fluctuates in
opposite directions), and if Cij = 0, then the atoms i and j fluctuate independently.

Contact map generation. The cutoff distance (Rc) for heavy atoms (C, N, O, S) was
taken as 6 Å, below which the atoms were considered to be in contact. The incorporation of
all heavy atoms provides a more accurate representation of the contact profile than that of
α-Carbons only. The formula used for contact map calculation was defined as:

Mi,j =

{
1, i f δi,j ≤ Rc
0, Otherwise

(2)

Contact percentages over the MD trajectory were calculated with ∑
ncon f
n=1 Mi,j/ncon f

and the threshold was set to 75% of the whole trajectory to recognize stable contacts.
Mutual Information (MI). Mutual information based on α-Carbon positional fluctua-

tions between residue pairs i and j was calculated using the following expression:

MI(i, j) = ∑
k

p
(
ΔRi(tk), ΔRj(tl)

)
log2

p
(
ΔRi(tk), ΔRj(tl)

)
p(ΔRi(tk)). p

(
ΔRj(tl)

) (3)

where p
(
ΔRi(tk), ΔRj(tl)

)
represents the joint probability of observing the fluctuation of

residue i in state k and that of residue j in state l. Mutual information is a non-negative
and symmetric quantity, and zero if the fluctuations of residue i are independent of the
fluctuations of residue j. To calculate the probability of occurrence, p

(
ΔRi(tk), ΔRj(tl)

)
, the

number of states k and l, also described as the number of bins, Nbins, were determined for
each residue separately using Shannon’s entropy criterion. The number of bins (or states)
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for each residue was determined as the value for which Shannon’s entropy reaches its
maximum. The convergence criterion was expressed as:

|H(Nbins + 1)i − H(Nbins)i|
H(Nbins)i

< 0.02 (4)

where H(Nbins)i is the Shannon entropy for residue i with Nbins. Similarly, mutual informa-
tion based on fluctuations in backbone and side torsion angles were expressed as:

MIi,j = ∑
Θi

∑
Θj

p(Θi, Θj) log2

(
p
(
Θi, Θj

)
p(Θi), p

(
Θj

)) (5)

where p
(
Θi, Θj

)
denotes the joint probability of observing the joint state

(
Θi, Θj

)
of

residues i and j. Here, Θi and Θj represent the rotameric states of backbone ϕ, ψ and side-
chain dihedrals χi, i = 1, 2, 3, 4 in residues i and j, respectively. Based on the distribution of
rotameric states, the number of discrete rotameric states (or bins) for backbone dihedrals
was set to 3, whereas for side-chain dihedrals, the number of states varied between 0 and 6
according to the rotamer library [36].

Transfer Entropy. Transfer entropy is defined as the reduction in uncertainty in future
states of residue j at t + τ by knowing the states of residue i at time t. Based on Shreiber’s
work [18], it was defined by Erman et al. [22,23] as;

TEi→j(τ) = H
(
ΔRj(t)

∣∣ΔRj(t − τ)
)− H

(
ΔRj(t)

∣∣ΔRj(t − τ), ΔRi(t − τ)
)

(6)

where H
(
ΔRj(t)

∣∣ΔRj(t − τ)
)

is the conditional entropy of residue j at time t given the
values of ΔRj at time t − τ. The second term H

(
ΔRj(t)

∣∣ΔRj(t − τ), ΔRi(t − τ)
)

is the
conditional entropy of residue j at time t given the values of ΔRi and ΔRj at time t − τ.
When entropies are expressed as a function of the probability of occurrences of positional
fluctuations ΔR, TEi→j(τ) becomes,

TEi→j = −〈
log2 p

(
ΔRj(t), ΔRj(t − τ)

)〉+ 〈
log2 p

(
ΔRj(t − τ)

)〉
+
〈
log2 p

(
ΔRj(t), ΔRj(t − τ), ΔRi(t − τ)

)〉 − 〈
log2 p

(
ΔRj(t − τ), ΔRi(t − τ)

)〉 (7)

A similar expression for transfer entropy was used for rotameric states, where ΔR was
replaced by Θ, which includes the information of the rotameric state of all rotatable sp3-sp3

bonds in each residue (ϕ, ψ, χi, i = 1, 2, 3, 4). However, for a residue pair such as Lys-Arg,
where both residues include four side-chain rotatable bonds, each having 3 alternative
rotameric states, the joint probability p

(
Θj(t), Θj(t − τ), Θi(t − τ)

)
is comprised of 318

(= 36 × 36 × 36) different rotameric states. For a protein system with 312 residues, the
calculation of the transfer entropy becomes computationally intractable as it exceeds the
maximum size an array can hold. Thus, only the first side-chain rotameric state was
considered together with two backbone torsion angles, i.e., (ϕ, ψ, χ1), which yielded
39 (

= 33 × 33 × 33) different states per residue. Finally, the net transfer entropy was
determined by taking the difference between TE from i to j and that from j to i as,

NetTEi→j = TEi→j − TEj→i (8)

The source codes for both mutual information and transfer entropy calculations were
written by the authors using C programming language and can be provided upon request.

3. Results and Discussion

The active state of the receptor was well preserved throughout the simulation. As
all members of the G protein-coupled receptor (GPCR) superfamily, human β2AR shares
the 7TM structural motif, which consists of seven transmembrane-spanning alpha helices
connected by loop regions at the intra- and extracellular sides of the membrane (See
Figure 1a). Among other loop regions, the intracellular loop 3 (ICL3) plays a critical
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role in the recognition of G proteins [28]. In addition, there exists an allosteric coupling
between ICL3 and the extracellular regions of the receptor, which incorporate the orthosteric
binding site [37–39]. Conformational changes observed at the intracellular part affect the
extracellular part, specifically the binding site, which holds key residues such as Asp113 on
transmembrane helix 3 (TM3), Ser203, Ser204, Ser207 on TM5, Phe289, Asn293 on TM6, and
Asn312 on TM7.

 

Figure 1. (a) Representation of human β2AR in a complex with Gs complex in a membrane envi-
ronment (created via VMD visualization tool [30]), (b) Intracellular views of 20 snapshots of ICL3
(c) side views of β2AR-Gs complex for 4 different snapshots colored from red (initial) to white (inter-
mediate), to blue (final) during simulation (d) RMSD profiles of ICL3 and transmembrane regions,
(e) RMSF profiles (f) RMSD profile of extracellular parts of TM3 and TM5 helices, (g) RMSD profiles
of intracellular parts of TM6, (h) RMSD of NPxxY motif of TM7 with respect to the inactive state (PDB
id:2RH1) versus ionic lock distance (Arg131Cα-Leu272Cα), (i) distance profile for Asp113Cα-Ser207Cα

residue pair.
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The most important conformational changes observed in two independent runs were
summarized in Figure 1. The active state of the receptor was well characterized by an
approximately 11 Å outward movement in the cytoplasmic end of TM6, and consequently,
the adjoining ICL3 was pushed aside towards the lipid molecules (See Figure 1a–c). This
unique conformation of the active state was only preserved in the presence of a G pro-
tein, which displaces TM6 and ICL3 outward for easy access to the receptor’s binding
cavity. Aligned snapshots of the receptor indicated high mobility in ICL3 in both runs,
slightly enhanced in the second run. RMSD profiles of transmembrane helices 3, 5, 6,
and 7 (TM3, TM5, TM6, and TM7) indicated that their initial states were well preserved
throughout the simulation within the boundaries characterizing the active state of the
receptor (Figure 1d–h). On the other hand, the distance between α-Carbons of two key
residues at the orthosteric binding site, Asp113, and Ser207, displayed a slight increase
from a range of 10–12 Å up to 13–16 Å in both runs, especially more noticeable in Run #1
(See Figure 1i). Our simulations were conducted with no ligand attached at the orthosteric
binding site. Thus, the increase in the distance between these two key residues clearly
indicated the tendency of the cavity to expand a bit in the absence of any agonist attached,
irrespective of the fact that the active state was well preserved throughout the receptor,
especially at the G protein binding site.

Previously, we attempted to simulate the active state in its free form, i.e., its G protein
partner removed (PDB id: 3SN6), and observed that the initially opened and swept away
ICL3 region and its adjoining transmembrane helix 6 (H6) swiftly changed position towards
the core of the receptor at the very early stages of the simulation (in the first 50 ns), closed
itself towards the core of the receptor, and blocked the G protein binding cavity. Moreover,
in a simulation study conducted by Ozgur et al. [37], bond restraints were employed at the
orthosteric binding site to preserve certain key distances between TM3 and TM5 within
the experimentally reported range that represented the active state. No G protein was
attached, yet ICL3 preserved its initial open conformation as if there was a G protein
nearby, although the TM6’s upward tilt characterizing the active state was not observed.
Clearly, the conformational state of the orthosteric binding site allosterically affects the
conformational state of the distant G protein binding site. It might facilitate the opening of
the cavity for the initial binding of G protein, yet the fully active state can only be achieved
and preserved when there is a G protein nearby interacting with the receptor. In other
words, the major conformational shift for the characteristic tilt in TM6 requires an energy
boost that a G protein can only provide and thus cannot be achieved in the course of an
MD simulation, which is confined to low energy conformational states. Moreover, the
absence of an agonist, which is accompanied by only a slight expansion at the unoccupied
orthosteric binding site, does not destabilize the active state, which is already securely
preserved by a G protein.

Cross-correlations between α-Carbon displacements disclosed TM6 as the domi-

nating site fluctuating in concert with the rest. It is important to highlight distant regions
that display positional fluctuations that are correlated with each other, as they might indi-
cate the presence of some potential sites in communication along the allosteric pathway.
Thus, the contact map was overlaid with the residue-pair cross-correlation map, as depicted
in Figure 2. The contact map was generated by using the heavy atoms with a threshold
distance of 6 Å. Distant and correlated regions were mainly detected in the second half of
the receptor composed of TM5, TM6, ICL3, TM7, and its small extension H8, especially
TM6, which incorporated most critical sites for binding intracellular G proteins and small
extracellular molecules. Especially, Phe289, Asn293 on TM6, and Asn312 on TM7, which
are known to be key residues interacting with the ligand at the orthosteric site, fluctuated
in the same direction, with ICL3 having correlation values as high as 0.8. Another set of
critical residues at the orthosteric binding sites Ser203, Ser204, and Ser207 located at the
extracellular part of TM5 negatively correlated with the distant helical segment TM7 with a
Cij value of around −0.5. Specifically, it is interesting to observe both Ser203 and Ser207
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on one side of the binding cavity fluctuating in opposite directions with Asn312 on the
opposite side.

 

Figure 2. Residue-pair cross-correlation map for 3 μs MD trajectory. Only Cij > +0.4 and Cij < −0.4
are represented. Magenta dots represent the contact map (threshold distance of 6 Å).

Moreover, ICL2, the second-most important intracellular loop after ICL3, distantly
fluctuated in concert with the second half of the receptor (TM5–H8). Finally, the first trans-
membrane helix TM1, which incorporated the free amino-terminal tail, mostly fluctuated
in the opposite direction from the rest of the receptor, especially the distant helices TM6,
TM7, and to some extent with TM3 and TM5, which all incorporated critical key residues
at the orthosteric binding site.

Rotamer-based mutual information is mostly observed between loop regions and

shared among polar residues. Cross-correlation is a metric that ignores the correlated
motions in orthogonal directions. Therefore, even perfectly correlated motions important
for allosteric signaling may be overlooked if the positional fluctuations are perpendicular
to one another. On the other hand, mutual information, a metric in information theory,
determines the correspondence between fluctuations of residue pairs, irrespective of their
directions. MI was first calculated for the positional fluctuations of backbone Cα atoms, and
as anticipated, the highest MI values (max. 4.01) were observed for residues close in space
(see the diagonal line in Figure 3a). In addition, it is important to recognize high MI values
observed between spatially distant residues as they would likely indicate the existence of
an allosteric communication network, which is usually characterized by distant regions
with a high degree of correspondence. As depicted in Figure 3a, mutual information was
plotted together with a contact map to unravel the long-distance coupled motions of the
allosteric network (see magenta dots). However, the only significant correspondence in
distant Cα fluctuations was detected between a few residues located in ICL3’s midpoint
and the distant extracellular parts of TM6, extracellular loop 3 (ECL3), and TM7, which
incorporate critical orthosteric binding site residues such as Phe289, Asn293, and Asn312. It
is obvious that mutual information between backbone atomic fluctuation was mostly shared
by neighboring residues either close in sequence or space. For all MI maps in Figure 3, red
dots represent MI values greater than 0.5, and green dots represent MI between 0.25 and
0.5. Any MI less than 0.25 was not displayed. For clarity, the contact map was illustrated in
Figure 3a only.
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Figure 3. Cont.
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(e) 

Figure 3. Residue-pair mutual information (MI) plotted with contact map (threshold: 6.0 Å) for
(a) backbone Cα, (b) backbone torsion angles (φ, ψ) (c) backbone torsion and first side-chain torsion
angles (φ, ψ, χ1), (d) backbone torsion and all side-chain torsion angles (φ, ψ, χi, i = 1, 2, 3, 4).
(e) Mean mutual information per residue averaged over the rest of the receptor. (Green dots:
0.25 < MI ≤ 0.5; red dots: MI > 0.5).

The residue-pair MI was next determined for backbone torsion angles φ and ψ in
each residue. Despite low MI values observed almost everywhere in the receptor (highest
MI = 2.59), the relatively high correspondence between ICL3 and ICL2 regions is noticeable
(See Figure 3b). Conformational degrees of freedom were mostly dominated by torsion
angles in loop regions; thus, the correspondence of loop regions was anticipated. However,
the amount of such correspondence appeared to be limited to a few loop regions when
only backbone torsion angles were incorporated. Hence, the next attempt was to combine
the information of backbone torsion angles with that of the first side-chain torsion angle,
χ1. Maximum MI was slightly increased to 3.72 from 2.59, and the highest MI values were
still observed between ICL3 and ICL2 with increased intensity, as depicted in Figure 3c.
Additionally, both ICL3 and ICL2 started to share information with the intracellular part
of TM7, and moreover, two distant extracellular loop regions, ECL2 and ECL3, displayed
some noticeable correspondence with each other.

The total effect of rotational degrees of freedom on MI values can only be disclosed
when all possible side-chain torsion angles (χi, i = 1, 2, 3, 4) were considered together with
backbone torsion angles. As illustrated in Figure 3d,e, the increasing trend in MI values
between ICL3 and ICL2 was noticeable. Maximum MI reached a value of 6.55. In addition,
ICL3 started to share information with the majority of the receptor, including mainly loop
regions such as ICL1, ICL2 at the intracellular part, two ends of the extracellular loop ECL2,
the entire ECL3, and also the intracellular part of TM7 with its adjacent tail H8. Overall, it
is clear that mutual correspondence driven by torsional degrees of freedom mainly existed
between loop regions.

It is important to identify residue types most often involved in sharing mutual infor-
mation, especially among distal ones, as they might point to potential allosteric hub regions.
Residue pairs were categorized based on the degree of separation of two residues in the
primary sequence, as proximal if 1–4 positions apart and otherwise distal. As illustrated in
Figure 4, the highest amount of MI was shared among polar residues, which incorporated
Arg predominantly. Moreover, two bulky residues Phe and Tyr, with the highest MI values
among hydrophobic residues, also paired with polar Arg to a large extent. On the other
hand, no significant correspondence was observed among hydrophobic residues. The dom-
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inating feature of polar residues in sharing MI can be attributed to their abundance in loop
regions, which displayed a noticeably higher amount of MI than transmembrane regions in
addition to their higher amount of rotational degrees of freedom. As illustrated in Figure 4c,
the frequency of a residue type in loop regions is slightly proportional to its average shared
MI. Almost all polar residues indicated with red dots displayed frequency values above
5%, which represents the random occurrence, whereas only three hydrophobic residues,
Gly, Phe and Leu, had frequencies above 5%. On the other hand, two polar residues Ser
and Thr, both with hydroxyl groups in their side-chains and frequency values above 7%,
displayed low average MI values.

 
Figure 4. Mutual information for pairs of distal residues classified as either hydrophobic
(blue tones) or polar (pink tones) considering all backbone (φ, ψ) and side-chain torsion angles
(χk, k = 0, 1, 2, 3, 4), averaged over (a) residue pairs, (b) residue types with the number of side-chain
torsion angles k and (c) residue frequency in loop regions versus average MI.

Interestingly, Arg and Lys, with four rotatable bonds on their positively charged side-
chains, displayed slightly different average MI values with respect to each other; with an
average MI of 0.23 ± 3.64, Arg shared twice as much information as that of Lys despite the
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fact that both residues were found in nearly equal amounts everywhere in the receptor
(~7% in loops and ~3% in transmembrane helices, See Supplementary Figure S1). The
side-chain of Arg has a positively charged guanidium moiety, which favors π-stacking with
aromatic rings and has the potential of forming five hydrogen bonds. As the side-chain
of Arg protrudes from the surface of the protein, it has a crucial role in protein–protein
interactions. Hence, it is not surprising to see the highest correspondence between Arg and
the majority of residues, especially polar ones.

Mutual information is a measure of correspondence between two residues i and j
with respect to their dynamic behaviors, such as positional fluctuations (Cα) or torsional
changes happening at the exact same moment. Transfer entropy is another important
feature that relates the dynamic states of two residues separated by a time lag parameter
τ. In other words, transfer entropy measures the amount of information transferred from
residue i to residue j at a later time. Knowing the state of residue i, the state of another
residue j at a distant site can be predicted if there exists an allosteric communication
pathway connecting the two sites. Similar to mutual information analysis, net transfer
entropy was first calculated based on the backbone Cα atom’s positional fluctuations (see
Equations (7) and (8) in Section 2). As depicted in Figure 5a, in one of two MD runs, the
intracellular loops ICL3, ICL2, TM3, and TM4 moderately appeared as entropy donor sites,
whereas the intracellular part of TM1 was detected as a dominant acceptor site. The second
MD trajectory displayed a relatively different distribution profile for donor/acceptor sites;
ICL3, together with the extracellular part of TM7, appeared as two dominant entropy donor
sites, whereas no major acceptor site was detected (See Figure 5b). The maximum amount
of information transferred was observed as 16.32 in Run#1 and 18.15 in Run#2. These
results clearly indicate alternative communication pathways that can be established via
positional fluctuations of Cα atoms for the same system in two separate runs.

 

Figure 5. (a,b) Net transfer entropy from residue i to residue j (See Equation (8)) based on Cα

fluctuations for two independent MD runs. (c,d) Net transfer entropy averaged for each residue type
categorized as either hydrophobic (blue tones) or polar (pink tones) and the number of side-chain
torsion angles k indicated at the top of each bar. Color code for (a,b): no display for 〈netTE〉 ≤ 4;
magenta for 4 < 〈netTE〉 ≤ 8, green for 8 < 〈netTE〉 ≤ 12 and red for 12 > 〈netTE〉.
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Furthermore, net transfer entropy was averaged for each residue type categorized
as either hydrophobic or polar, as depicted in Figure 5c,d, where positive and negative
〈netTE〉 values correspond to entropy donor and acceptor residues, respectively. Clearly,
no correspondence was detected between the number of side-chain torsion angles and the
net entropy in both runs. In addition, there is no clear tendency for polar or hydrophobic
residues to display either entropy donor or acceptor features. Furthermore, two runs
displayed two completely different donor/acceptor profiles with respect to residue types.
This is especially noticeable in 〈netTE〉 maps illustrated for all residue pairs, such as entropy
donor versus entropy acceptor depicted in Supplementary Figure S2. Several residues
displayed opposite features, e.g., entropy donor in one run and acceptor in the second
run, such as Pro, Cys, Val, Ile, Leu, Tyr, Met, Ser, Thr, Asn, Asp, Glu, and Lys. Apparently,
fluctuations in Cα displacements were not driven by residue type, which incorporates the
information of both polarity/hydrophobicity and the number of degrees of freedom.

Transfer entropy was next determined using backbone torsion angles, (ϕ, ψ). As
depicted in Figure 6a, ICL3 appeared as the only source of entropy donor to a few isolated
acceptor regions detected on mostly loops such as ICL1, ECL1, ECL2, ECL3 and the
intracellular part of TM7 adjacent to segment H8. Maximum TE values were determined
as 10.86 and 11.54 for two runs, which are well below Cα-based TE values. Next, the
first side-chain torsion angle (χ1) was considered together with two backbone angles for
identifying the information of the rotameric state transferred from one residue to another
in the receptor. As illustrated in Figure 6b, the same loop regions still appeared as entropy
donor sites with an increased intensity dominating the future fluctuations of torsional
angles everywhere in the receptor. In addition, maximum TE values reached 26.46 and
31.54 in two runs.

Unfortunately, the addition of more than one side-chain torsion angle made the
computation intractable due to triple joint probability calculations (See Equation (7)), as
it roughly required a memory space of 523, 792, 501, 128 bytes (= 318 × NArg × NLys ×
8(bytes/ArrayCell)) only for calculating the p

(
ΔRj(t), ΔRj(t − τ), ΔRi(t − τ)

)
parameter

of the transfer entropy equation between all Arg and Lys pairs, which exceeded the maxi-
mum amount available for today’s computer technology. However, the same analysis was
conducted for all possible side-chain torsion angles χk, k = 1, 2, 3, 4 only. As anticipated,
information transferred from one region to another site increased significantly, with a maxi-
mum TE value reaching 61.34 for Run #1 and 63.38 for Run #2 (see Figure 6c). All intra- and
extracellular loops that extended slightly towards the neighboring helices were detected
as important entropy donor sites. These results clearly represent that the conformational
states of the side-chains at loop regions extensively dominated the future conformational
states of side-chain torsion angles everywhere in the receptor.

Finally, the net transfer entropy was further decomposed and replotted for each of
the 20 residue types, as depicted in Figure 7, using a bar plot to display the average net
transfer entropy where the entropy source (donor) and sink (acceptor) residues can be
identified by their positive and negative values, respectively. Corresponding plots that
display net transfer entropy for a pair of residue types such as entropy donor versus entropy
acceptor are provided in Supplementary Figure S3. Further categorization of residues as
hydrophobic and polar clearly demonstrated the dominancy of polar residues as entropy
donors, whereas hydrophobic ones were most often identified as entropy acceptors. In the
case of backbone rotation angles only, Trp appeared as the strongest entropy acceptor site
in both MD runs, whereas His displayed the highest positive average net transfer entropy
(See Figure 7a). Exceptionally, Gly residue with no side-chain atoms appeared as a strong
entropy donor site.
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Figure 6. Net transfer entropy from residue i to residue j (see Equation (8)) for two independent
MD runs using (a) backbone torsion angles, (φ, ψ), (b) backbone torsion angles, (φ, ψ) and the first
side-chain torsion angle (χ1 ) and (c) all possible side-chain torsion angles χk, k = 1, 2, 3, 4. Color
code for (a,b): no display for 〈netTE〉 ≤ 4; magenta for 4 < 〈netTE〉 ≤ 8, green for 8 < 〈netTE〉 ≤ 12
and red for 12 > 〈netTE〉.
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Figure 7. Net transfer entropy averaged for each residue type categorized as either hydrophobic
(blue tones) or polar (pink tones). The number of side-chain torsion angles k indicated at the top of
each bar is determined for both MD runs using (a) backbone torsion angles, (φ, ψ), (b) backbone
torsion angles, (φ, ψ) and the first side-chain torsion angle (χ1 ) and (c) all possible side-chain torsion
angles χk, k = 1, 2, 3, 4.

Noticeably, the close correspondence between polarity/hydrophobicity and donor/acceptor
features was the strongest when all side-chain torsion angles were considered in transfer
entropy calculations (See Figure 7c). Most hydrophobic residues, except Met, which is
mostly located at the protein’s core region, displayed strong entropy acceptor characteristics,
especially Pro, with the lowest average net transfer entropy value of −7.38 calculated so
far. Furthermore, on the polar side, Arg and Lys, with a total of four side-chain torsion
angles, displayed the highest entropy values exceeding +10. Upon incorporating the first
side-chain torsion angle (χ1) along with two backbone torsion angles, the profile changed
slightly, yet the dominancy of polar residues as entropy donor sites persisted (See Figure 7b).
Three polar residues, Lys, Glu, and Gln, displayed the highest positive transfer entropy
values in both runs. Interestingly, the two polar Ser, Thr, and the hydrophobic Tyr, which
all contain a hydroxyl group in their side-chain, displayed entropy sink (acceptor) features.
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4. Conclusions

Two independent 1.5 μs long MD simulations were conducted on the apo form of the
active state of human β2AR in a complex with a Gs protein. Throughout both trajectories,
the active state of the receptor was well preserved with the characteristic tilt in transmem-
brane helix 6 and ICL3 towards the lipid bilayer to give Gs full access to the binding cavity
at the intracellular part. On the extracellular part, since no ligand was attached at the
orthosteric site, a minor expansion was observed because of the slightly distancing motion
of TM5 from TM3. However, this slight conformational shift at the extracellular part did
not cause any allosteric interference in the intracellular region.

Distant regions fluctuating in the correspondence are critical as they might point to
potential sites along the allosteric pathway. In this study, we attempted to use several
metrics for that purpose. First, residue-pair cross-correlations were calculated for α-Carbon
atomic fluctuations from average positions. Distant and correlated regions were mainly
observed within the last three transmembrane helices (TM5, TM6, and TM7), including
the longest loop region ICL3 and the small extension H8 adjacent to TM7. Moreover,
TM6 and TM7 fluctuated in opposite directions with TM1. As cross-correlation ignores
the correlated motions in orthogonal directions, the mutual information metric was next
used to identify all possible distant sites in correspondence that might be critical for
allosteric signaling. First, only α-Carbon atomic fluctuations were considered. However,
not much correspondence was detected in the receptor except between ICL3 and the distant
extracellular parts of TM6 and TM7. The next step was to replace α-Carbon fluctuations
with rotameric states of backbone torsion angles φ and ψ in each residue when formulating
the mutual correspondence. A considerable change was observed in the profile where
ICL3’s rotameric states fluctuated in concert and with respect to ICL2. Incorporating side-
chain torsion angles further increased the mutual information transferred between ICL3
and ICL2. In addition, ICL3 started to share information with all the other loop regions,
including some limited portions of transmembrane helices, TM3, TM6, and TM7.

When mutual information was further decomposed based on types of residue pairs,
polar ones, especially Arg, were identified as the dominating group sharing the highest
correspondence with other polar residues. Hydrophobic residues shared the least amount
of mutual information, except Tyr and Phe, which paired with polar Arg. The lowest
amount of MI was observed among hydrophobic residues. The dominating feature of
polar residues was attributed to their higher abundance in loop regions where the highest
mutual information was detected. However, despite its low abundance in loop regions,
hydrophobic Tyr with two side-chain torsion angles had average mutual information of 0.11,
which was comparable with that of other polar residues with two side-chain torsion angles.

Transfer entropy, which is another metric in information theory, relates two states at
different times. If the state of residue j in the future time can be predicted knowing the state
of residue i at the present time, then two sites might communicate with each other as part of
an allosteric signaling network. First, transfer entropy was determined for the information
about positional fluctuations (Cα). Different profiles were observed in two independent
MD runs. In one run, ICL3, ICL2, TM3, and TM4 moderately appeared as entropy donor
sites, whereas the intracellular part of TM1 was detected as a dominant acceptor site. In the
second run, ICL3, together with the extracellular part of TM7, appeared as two dominant
entropy donor sites, whereas no major acceptor site was detected. Clearly, there is no
unique communication pathway for backbone Cα displacements. When the information
type was replaced by the fluctuation in the rotameric states of backbone torsion angles
(ϕ, ψ), a completely different profile of communication network appeared and persisted in
both runs; ICL3 was the only source of entropy donor to a few isolated acceptor regions
detected mostly on loops such as ICL1, ECL1, ECL2, ECL3 and the intracellular part of TM7
adjacent to segment H8. The intensity of transferred information was relatively weak, 10.86
and 11.54 for two runs, which were well below Cα-based TE values (16.32 and 18.15). Then,
the rotameric states of the first side-chain torsion angle (χ1) were combined with those of
backbone torsion angles. As anticipated, the intensity of transferred information noticeably
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increased with a maximum value of 26.46 and 31.24 in two runs. Due to computational
limitations, the addition of another side-chain torsion angle was not achievable, yet the
increasing trend in transfer entropy was predictable. When only the rotameric states of
side-chain torsion angles were used, transfer entropy significantly increased to its highest
values (61.34 and 63.38), yet the distribution profile among regions was preserved, i.e., the
fluctuations of torsion angles in the loop regions drove the future fluctuations of rotameric
states everywhere in the receptor. This result clearly elucidates an important aspect of
all GPCRs where both extra- and intracellular loops protruding from the transmembrane
bilayer play a major role in the functional regulation. Thus, loop regions can be essential
targets for the design of allosteric drug molecules with fewer side effects.
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for residue pairs classified as either hydrophobic (blue) or polar (pink) for two MD runs based on
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Abstract: At the very deepest molecular level, the mechanisms of life depend on the operation of
proteins, the so-called “workhorses” of the cell. Proteins are nanoscale machines that transform
energy into useful cellular work, such as ion or nutrient transport, information processing, or
energy transformation. Behind every biological task, there is a nanometer-sized molecule whose
shape and intrinsic motions, binding, and sensing properties have been evolutionarily polished for
billions of years. With the emergence of structural biology, the most crucial property of biomolecules
was thought to be their 3D shape, but how this relates to function was unclear. During the past
years, Elastic Network Models have revealed that protein shape, motion and function are deeply
intertwined, so that each structure displays robustly shape-encoded functional movements that can
be extraordinarily conserved across the tree of life. Here, we briefly review the growing literature
exploring the interplay between sequence evolution, protein shape, intrinsic motions and function,
and highlight examples from our research in which fundamental movements are conserved from
bacteria to mammals or selected by cancer cells to modulate function.

Keywords: protein dynamics; evolution; intrinsic motions; elastic network models

1. From the Structure–Function Paradigm to Structure–Motion–Function

Over 60 years ago, Anfinsen’s postulate that “the native secondary and tertiary struc-
tures are contained in the amino acid sequence itself” [1] laid out the foundations of the
central dogma of structural biology, i.e., that the sequence of a protein contains the in-
formation required to adopt a defined 3D-structure and, hence, function (see historical
overview in [2]). This so-called structure–function paradigm was formulated during the
time when biomolecular crystallography was flourishing. According to Martin Karplus,
X-ray crystallography created “the misconception . . . that the atoms in a protein are fixed
in position” [3]. This view is also shared by cryo-EM pioneer Joachim Frank, who wrote
that “the idea of “a” molecular structure has been largely created by X-ray crystallographic
practice” [4]. As a consequence, a static view of proteins, in which one sequence folds into
a unique “native conformation” responsible for function, became prevalent. Nevertheless,
an alternative, dynamic view of proteins as an ensemble of conformations, more akin to
the principles of physics, had been proposed long before by Pauling, Landsteiner, and
others in the 1930s [5]. Fast forward in time to our days, and this early dynamic vision
appears prescient. As our technology to capture proteins in action evolved (NMR, cryo-EM,
etc.), it became clearer every day that proteins do not fold into a single static “native”
structure, but are rather dynamic machines in continuous motion that explore complex and
rugged energy landscapes [6], transitioning between multiple meta-stable minima. Such
transitions encompass a wide hierarchy of time and length scales—from picosecond atomic
fluctuations to microsecond or millisecond allosteric changes or breathing motions—and,
importantly, are instrumental for proteins to sense and respond to environmental signals
like ions or ligands [6–8].

Protein motions not only mediate or execute biological work—channel gating, ion
pumping, transport, etc.—but also reshape interactions with other partners. Therefore, they
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are central for molecular recognition [9–11], no matter whether it involves conformational
selection or induced fit [12,13]. Even eminently local processes such as enzyme catalysis
can involve dynamic changes such as side chain fluctuations or the unfolding of binding
sites [14–16]. For intrinsically disordered proteins, flexibility is so extreme that the classical
concept of a discrete number of well-defined native 3D shapes or conformers becomes
almost meaningless; they can only be statistically described as ensembles of interconverting
conformations [17,18]. Nevertheless, a majority of proteins fall in the middle ground
between perfect rigidity and chaotic disorder, a boundary where discrete rigid domains
or subunits exquisitely rearrange in response to signals. Cooperative motions, allosteric
propagation, and large-scale conformational changes spontaneously emerge from this
frontier of harnessed flexibility to create function, as pioneering work by Dorothee Kern
showed [16].

Back in 1987, Elber and Karplus first noted the similarity of MD fluctuations with
evolutionary changes across the globin family [19], inaugurating a fruitful line of evolu-
tionary and structural dynamics comparisons to this day. Since then, structural data have
grown exponentially, and Elastic Network Models (ENMs) [20–23] have revealed that such
fluctuations are largely defined by molecular shape and determine functional motions.
Overall, this has led to a new structure–motion–function dogma, where molecular shape
determines intrinsic motions, and motions make function, a concept increasingly supported
via cryo-EM ensembles [24,25]. Therefore, it is time to ask: if molecular motions mediate
function, are they maybe a key object of evolutionary selection? Here, we briefly review
evidence from structural biology and ENMs research, that points to shape-encoded motions
as an essential matter for evolution.

2. ENMs Overview and the Surprising Accuracy of Shape-Encoded Harmonic Motions

A central problem in the study of protein dynamics has always been the difficulty
of capturing motion, i.e., fully sampling conformational spaces. Protein flexibility is
challenging to trap, describe, and predict, both experimentally and computationally [26].
Despite advances in hardware and algorithm parallelization, fully atomistic Molecular
Dynamics (MD) simulations are still only feasible for ns–μs timescales and middle-sized
proteins. To gain insight into the mechanisms of bigger sub-mesoscopic systems or the slow
large-scale transitions associated with biological function, the physical description needs to
change accordingly to lower-resolution Coarse-Grained (CG) models. Among the plethora
of CG methods to model the dynamics of proteins, ENMs stand out as possibly the most
simple and powerful, considering the balance between their minimal computational cost
and striking predictive power. ENMs can be described as the CG flavor of Normal Mode
Analysis (NMA), a classical mechanics technique used since the 1940s–1950s to analyze
the vibrational spectra of simple molecules [27,28]. Soon after the first MD simulations, in
1982–1983 [29–33], NMA was applied for the first time to proteins to gain insight into their
near-equilibrium dynamics. Instead of numerically solving Newton’s equations as MD
does, NMA assumes the harmonicity of the system around an energy minimum and, thus,
through diagonalization of the mass-weighted Hessian matrix, allows the computation
of a unique analytical solution, i.e., a set of linearly independent Normal Nodes (NMs)
(see details in [21,34]). NMs are a series of eigenvectors (νi) ordered by their eigenvalues
or frequencies (λi), that describe the natural motions of the system. Importantly, the first
5–10 ones, the so-called lowest frequency, “soft” or “slow” modes, capture the largest
amplitude, more collective, and energetically “easiest” movements, which usually coincide
with the experimentally and biologically relevant ones, as we will discuss below.

Despite its simplicity versus MD, NMA was still computationally heavy for large
systems, as it required energy minimization and significant memory resources for matrix
diagonalization. Inspired by early “random networks” and “beads-and-springs” polymer
models developed by Flory and Rouse [35,36], ENMs took the simplification of NMA one
step further, replacing detailed physical force fields with a minimalist representation of
proteins as networks of residue nodes connected with elastic springs, devoid of chemical
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or sequence information. Moreover, the system was assumed to be already at a minimum,
skipping energy minimization. The first ENM [37] was still an all-atom model but with a
simple pairwise Hookean potential: the native structure was defined as the minimum, and
detailed interactions were replaced with a squared potential and a uniform constant within
a cutoff. Shortly after, Bahar’s one-dimensional Gaussian Network Model (GNM) [38]
introduced the coarse-graining of structures to the Cα trace, and finally, the Anisotropic
Network Model (ANM) [39] combined Tirion’s 3D-model with GNM coarse-graining,
becoming the basis for most ENM methods nowadays [22,40]. The similarity of the motions
described using coarse-grained ENMs with the atomistic Tirion’s model, and of Tirion’s
with classical NMA based on accurate molecular potentials, was initially puzzling. How
can such minimal one- or two-parameter models reproduce the vibrational properties of
a complex macromolecule? The answer lies in the fact that soft modes involve coherent
motions of large groups of atoms, and thus are mostly defined by the overall mass/domain
architecture. For that matter, CG and atomistic mappings are nearly equivalent.

ENM–NMA can have apparent simplicity—with “toy” ad hoc force fields and the
naïve assumption that structures are in an energy minimum—but it is often unsurpassed
in the prediction of experimentally observed large-scale conformational changes (Figure 1,
center). There have been endless studies comparing ENMs with functional transitions
between bound/unbound, active/inactive and open/closed pairs derived from X-ray con-
formers, NMR ensembles, etc., which show that the lowest-frequency modes are indeed
both biologically and functionally relevant [41–44] and can unravel complex allosteric
mechanisms [45], even for subtle transitions such as those seen in GPCRs [46–48]. Protein
conformational changes often involve large rigid-body motions, e.g., domain swapping,
hinge-bending, or shear movements, which are strikingly well described via a small num-
ber of ENM modes [49–51]. An early study on the first database of molecular motions,
MolMov [52], determined that 95% of experimentally observed transitions can be described
using just a couple of soft ENM modes. Further benchmark studies have confirmed that
large-scale motions also coincide with the collective modes extracted from MD simulations
or experimental ensembles [53–57] via Principal Components Analysis (PCA, see [58–60]).
Systematic comparison with MD of representative meta-folds in the MODEL database as
well as with experimental data [61,62] confirmed that ENMs are extremely robust to spring
definitions and perform exceedingly well in predicting large-scale transitions, occasionally
surpassing MD simulations.

Nevertheless, as often happens with CG models, a major weakness of ENMs is the lack
of a consistent and universal consensus on force-field parameterization, i.e., the functions
used to determine the “springs” connecting different residues or “beads”. This has both
positive and negative aspects. On one hand, although ENMs can predict the preferred
directions for conformational change, the time and length scales of the motions (i.e., the
magnitudes of the eigenvalues) are usually arbitrary. On the other, and paradoxically, this
weakness reflects their major strength: ENMs are determined by protein shape, topology,
and local packing density, and are thus insensitive to fine details. Despite these shortcom-
ings and their dramatic simplicity, soft ENM modes are surprisingly accurate at predicting
anharmonic, far-from-equilibrium transitions [20,40]. Together with the lack of a solvent
and thus damping, this was initially a major point of controversy, questioning the validity
of both NMA and its CG approximation [63]. What is the time and length scale of NMs?
How can harmonic NMs capture anharmonic, damped and slow transitions over high
energy barriers? It has been argued that proteins oscillate around the equilibrium, with
energy increasing as they stretch along NMs’ directions. This could elegantly agree with a
dynamical systems perspective, as the Kolmogorov Arnold Moser (KAM) theorem assures
the persistence of quasi-periodic motions under small perturbations [21,64]. Under this
view, NMs would define major directions around a potential well, that hold relatively
far from equilibrium. Following these, the high energy states reached would be further
stretched and stabilized by different ligands or signals capable of “tipping” the free energy
landscape (the so-called pre-existing equilibrium model [65,66], experimentally observed

110



Appl. Sci. 2023, 13, 6756

in enzymes [16]). Already in the 1990s, MD studies showed that indeed, the energy surface
probed via simulations is well-approximated by a rescaled version of the harmonic poten-
tial [67,68]. Recent work has related anharmonicity to mode collectivity: low-frequency
modes that are collective enough, remain harmonic even for large displacements and better
correlate with experimental transitions [69]. The power of ENMs to explore the boundaries
of free energy minima is thus being more and more recognized, to the point that they
are now used to enhance sampling via MD [70]. Regarding the timescales question, it is
clear that NMs cover all the protein motion timescales, from MHz (μs) large-scale motions
to 1–10 THz (ps) backbone/atomic vibrations. However, the actual NM eigenvalues are
typically meaningless and need rescaling, with few exceptions like the nearest-neighbors
ED-ENM model [54]. Apart from this arbitrary amplitude of single modes, ENM–NMA
tends to spread variance at higher frequencies in comparison to MD Essential Dynamics
(ED) modes [58,71], probably as a consequence of the absence of damping. Our ED-ENM
model [54], developed from database-wide comparisons with MD force fields, attempted
to solve these issues by fitting spring functions not only to predict conformational changes
but also to obtain realistic amplitudes for the eigenvalues and their distribution (i.e., the
actual time and length scales in solution). This study also revealed that even extremely
simple ENMs, just connecting the first three neighbors in the peptide chain, can predict
MD and experimental flexibility, which critically depend on peptide backbone topology
and local cohesiveness.

In brief, despite their many weaknesses—inconsistent parameterization, arbitrary time
and length scales, lack of damping—the ability of ENMs to track functional large-scale
motions—regardless of CG levels, spring definitions, or any sequence or local details—is
stunning. Precisely in this fact lies the greatest physical insight they reveal: that proteins’
overall packing, local connectivity, and shape determine intrinsic collective motions that
poise them for function. These motions hold far beyond equilibrium and also across
extremely long evolutionary scales, as we will discuss now.

Figure 1. Shape-encoded ENM Normal Modes (NMs) and protein dynamics evolution examples from
recent literature. (a) Signature Dynamics (SignDy) allows to build dynamics-based dendrograms
comparable to those derived from sequence and structural similarity; see Ref. [72]. (b) Perturbative
ENM suggests structural divergence relates more to mutational sensitivity (RMSDMM) than selection
(�), which only deepens the profiles. See details in Ref. [73]. (c) Prokaryotic–eukaryotic conservation
of NMs coupled to function and (d) Mutational convergence to favor an NM transition towards an
oncogenic intermediate characterized by the exposure of a cryptic epitope (purple circle). See also
the discussion in Section 4 and further details in Figure 2 and Refs. [74,75], respectively. Images (a,b)
have a Creative Commons Attribution License and (c,d) are adapted by the author from her work.
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Figure 2. A closer look at CPA exchangers’ “elevator modes” conserved from bacteria to mammals.

(a) Left: Core alignment between a mammalian exchanger, NHE9 (black) and distant bacterial
homologs NapA, PanNhaP and MjNhaP1 (sequence identity ≈ 20%). The first principal component
(PC1) of this ensemble of n = 8 structures renders the well-known “elevator-like” motion that
distinguishes outward and inward states. Right: Projections onto PC1 of the experimental ensemble
track the conformational inward-to-outward pathway and assigns the conformational status of the
solved structures along it. (b) ENM of the mammalian NHE9 structure and derived “elevator-like”
NM. (c) Similarity between NMs, PC1 and the prokaryotic NapA transition are all above 70%, despite
the low sequence identities. Overlaps between vectorial spaces shaded in gradient; note that overlaps
around 20% are considered random and from 40–50% significant. Adapted from figures and data by
L. Orellana in Ref. [74], under the Creative Commons Attribution 4.0 License.

3. Lowest-Frequency Modes and Evolution

At the macroscopic level, we can easily appreciate how form, biological motion, and
function evolve together under the laws of physics, shaping animal and plant morpholo-
gies [76]. Evolution seems to select the shapes best suited to perform functional motions. In
the molecular world, if we assume the structure–motion–function paradigm, i.e., from mo-
tion comes function, it just follows to wonder whether evolution is selecting dynamics and
resulting function rather than sequence or shape. Is there evidence of direct evolutionary
pressure on protein motion? It is in this arena—where molecular evolution meets protein
biophysics—that conformational dynamics becomes central [77]. Lowest-frequency modes
allow for quantitative comparisons of the dynamics linked to function between similar
cores [78], which are shedding new light on these questions.

Back in the 1980s, as soon as enough structures accumulated in the Protein Data
Bank, it emerged that homologous proteins share similar folds, but this similarity wanes
with increasing evolutionary distance [79,80]. Still, in practice, proteins with sequence
similarities as low as 20% can display identical cores. The space of protein sequences is
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known to be much larger than that of structures, close to optimal [81] and restrained by the
length, stability, and topology of each fold [82]. Importantly, from this fact, it also follows
that structural folds, i.e., protein shapes, are highly robust against mutations. What about
conformational spaces? ENMs have revealed that each structure preferentially samples
a limited set of elemental motions; the shape determines the conformations/motions,
and the motions define the function. Being defined by global shape, soft modes are also
incredibly robust to perturbations like mutations [83] or local structural features, and
therefore hold across protein families and even remote homologs. Hence, when two
sequences have low but sizeable sequence similarity, they often share a common core,
motions, and probably function [84]. Moreover, proteins sharing one similar conformation
often share other conformations, i.e., their conformational spaces are conserved, a concept
exploited to predict new conformers or model conformational changes [85]. Therefore, we
could argue that, in the same way the sequence space is bigger than the structure space,
the structure space is bigger than the motion space—and this inversely relates to fold and
function robustness.

Based on mounting evidence from ENMs [20] and parallel studies on residue flexibil-
ity [86], protein global dynamics has been suggested to be maximally conserved versus
sequence and structure. Nevertheless, the degree of conservation of conformational spaces
as well as the contributing factors are unclear. Due to the entanglement of function, motion,
and shape, together with protein biophysical and evolutionary constraints, the issue is
intensely debated [87–89]. There are two central questions to be addressed: Is it function
that primarily drives the conservation of dynamics? Or is it due to physical constraints such
as stability, topology, local packing, etc., or properties like mode energies or robustness?
What about evolutionary constraints such as population sizes, mutational rates or bias?
In other words: are soft modes conserved because they are functional or because they are
energetically “easy” and robust? Probably, the truth is in the middle.

Evidence for direct evolutionary pressure on normal modes is still scarce, as quantita-
tive comparisons of functional dynamics are relatively recent [78]. It has been proposed
that there is negative selection against the divergence of functionally important modes,
while other studies suggest that they are conserved just because they are more robust
to mutational perturbations (Figure 1a,b). Soon after ENMs were developed, it became
evident that proteins with similar architecture shared similar motions [90]. Early studies on
the evolution of soft modes, led by Ortiz and colleagues, focused on how structural cores
modify their shape across homologous proteins [91–93]. These pioneering works revealed
significant similarity in the conformational ensembles explored within a superfamily and
the soft modes, i.e., proteins seem to evolutionarily diverge along soft modes or, vice versa,
protein topology constrains evolutionary divergence. In parallel, Echave also showed that
the lowest-frequency modes are conserved in homologous proteins [94], and there is a sig-
nificant correlation between mode collectivity and its conservation [95]. The conservation
of lowest-frequency modes is apparent in residue fluctuation patterns, which can be easily
aligned for homologous proteins [96]. Some studies have also pointed out that protein
sites evolve at different rates depending on properties such as their solvent accessibility,
packing density, and flexibility [97,98]. In general, there is an inverse relation between local
flexibility and evolutionary rates [99] i.e., exposed and flexible loops are less conserved than
cores or rigid regions [100], which can act as hinges for global motions. Consequently, ENM
analyses show clear correlations between sequence evolution and structural dynamics,
especially relevant for hinge regions [100,101]. These rigid regions are so critical that hinge
migration has been proposed as a mechanism for protein evolution [102]. Moreover, cancer
and disease-related mutations tend to focus on hinge-like areas [103,104]. Therefore, ENM
dynamics is a key predictor of functional impact for point mutations [105,106] as well as
for insertions and deletions [107], further discussed below.

Importantly, even in the case of random mutations, structural changes correlate with
the lowest frequency modes [108], as happens also for ensembles of the same protein deter-
mined in different experimental conditions [109]. Perturbative ENMs indicate that the con-
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servation of soft modes might arise precisely from their robustness against mutations [110]
and, conversely, structural divergence is proportional to mutational sensitivity [73]. Only
mutations targeting critical regions such as rigid hinges could thus have the potential to
change ENM mode patterns and function, causing either disease or driving evolution.
The majority of changes would have no effect due to mode robustness, which would be
the primary factor for evolutionary conservation. Apart from mode robustness, protein
modularity and size also contribute to the overlap between the NMs and evolutionary
modes and explain their low dimensionality, according to recent studies [111]. Altogether,
these studies point out that biophysical properties are key for mode conservation.

Nevertheless, the functional motions observed experimentally seem to correlate with
the soft modes more than expected based on just their amplitude and energies, indicating
that selection plays a central role [112]. ENM studies indicate that selection guides sequence
evolution to favor dynamical properties required for function, such as allosteric behavior or
protein–protein interactions [113,114]. An exhaustive study by the Bahar group on nearly
27 K proteins representing 116 CATH superfamilies [72] characterized the cooperative
mechanisms and convergent/divergent features that underlie the shared/differentiated
dynamics of family members, developing an integrated pipeline to evaluate the signa-
ture dynamics of families based on ENMs (SignDy). They confirmed that global lowest-
frequency modes of motion are conserved within a family, but there is a subset of motions
that sharply distinguishes subfamilies at low-to-intermediate frequencies and is responsible
for functional differentiation. Then, modulation of robust/conserved global dynamics
via low-to-intermediate frequency fluctuations could be a versatile mechanism ensuring
fold adaptability and subfamily specificity, subject to both positive and negative selection.
Finally, taking one step further with this “selectionist” view, recent works have attempted
to predict functional dynamics directly from sequence evolutionary couplings, skipping
structures altogether [115].

4. Examples of Evolutionary Conservation, Convergence and Divergence

As we have seen, it is extremely difficult to disentangle the relevance of sequence,
structure, and dynamics for evolutionary selection as they are intertwined. Database-wide
comparative quantitative studies of protein dynamics are essential, but it is also impor-
tant to keep in mind that, in the biological realm, “the devil can be in the details”, and
a closer look at key conserved systems can be illuminating to understand how and to
what extent evolution polishes protein shape and motions (Figure 1c,d). This is especially
true for proteins executing the most fundamental life processes, prevalent in almost all
living species; it is also true for the disease almost intrinsic to the mechanisms of pluri-
cellular life, cancer, which can be viewed as an evolutionary process in miniature [116].
For example, it is well known that cells critically depend on pH and ion homeostasis, as
well as membrane transport. Unsurprisingly, solute carriers and ion channels mediating
these processes are incredibly well conserved from bacteria to humans, despite diverging
2–4 billion years ago [117,118]. Despite very low sequence identities, prokaryotic and
eukaryotic versions of proteins such as cation/proton antiporters (CPAs), major facilitator
superfamily transporters (MFSs), or pentameric ligand-gated ion channels (PLGICs), are
incredibly conserved from a structural and conformational point of view. CPAs mediate the
exchange of protons and monovalent cations such as Na+ or K+, while MFS facilitates the
movement of small solutes in response to gradients through cell membranes. Both MFSs
and CPAs operate through an alternating-access mechanism, which requires a transition
between states, where the substrate-binding site is exposed to opposite sides of the mem-
brane alternately [119]. Structures show that MFSs follow a “rocker-switch” or “rocking
bundle” mechanism, where the substrate-binding site is located at the interface of the
so-called “transport” and “scaffold” domains. In contrast, CPAs work through an “elevator
mechanism”, where the substrate-binding site is confined largely to a single “transport”
domain that traverses the membrane along a relatively rigid, immobile, and central “core”.
In the first, the barrier re-shapes and moves across the membrane while the substrate stays,
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while in the second, it stays at a fixed position, and it is the substrate that moves across it.
Both transport mechanisms are dependent on large-scale transitions between the so-called
“inward” and “outward” states. Remarkably, despite sequence identities around just 20%,
structures of the mammal SLC/NHE CPA family of Na+/H+ exchangers bear striking simi-
larity with prokaryotic ones, like those of bacterial Thermus thermophilus NapA, archaeal
Pyrococcus abyssii PaNhaP or Methanocaldococcus jannaschii MjNhaP1. This makes it possible
to extract a highly conserved structural core (756 residues per homodimer) to achieve
an incredibly low RMSD near 3.0 ± 1.3 Å [74], which corresponds to the conformational
transition tracked in the ensemble—when only one conformation is included, RMSD drops
to 2 Å, close to thermal fluctuations (Figure 2 and Table 1). Both bacterial and mammal
structures are thus solved in inward- and outward-facing states, and therefore, their core
ensemble’s main Principal Component (PC, see [26,60]) tracks the elevator motion respon-
sible for transport. Significantly, this motion is also encoded in each one of the proteins:
there is a high overlap (70–80%) between the transitions seen in the prokaryotic–eukaryotic
ensemble and the lowest-frequency ENM modes from every individual member (Figure 2).
Similarly, for MFSs, it is also possible to build a eukaryotic–prokaryotic “core” ensemble
(353 residues) encompassing human, bovine, and rat GLUTs to Plasmodium PfHT1 or Es-
cherichia coli XylE [120], that despite the sequence identity around 30% has an RMSD as
low as 2.7 ± 1.2 Å and extremely similar rocking-bundle movements embedded on each
structure. In the case of PLGICs, the notable resemblance between eukaryotic neurotrans-
mitter channels and their simple prokaryotic counterparts like Gloeobacter GLIC has turned
the latter into the perfect model to study gating mechanisms. As often happens with
ancestral protein machines, their function (channel opening/closing) requires complex
motions (extracellular blooming coupled to tilting/twisting of intracellular pore-gating
helices), which are both embedded in their pentameric ring-like architecture and extremely
conserved across evolution [55,121,122].

Table 1. Sequence, structural and dynamical similarity between mammalian NHE9 and bacterial
proton exchanger NapA 1.

Identity Similarity TM-Score

NHE9—NapA 22% 42% 0.82
Overlap NHE9—NapA NMA 75%

Overlap NHE9—NapA X-ray transition 82%
1 Adapted from Ref. [74].

Finally, another example of evolutionary selection acting on conformation could be
behind mutational asymmetries in cancer, which tend to target signaling proteins. Global
dynamics is a predictor of missense mutation pathogenicity [105,123] and in cancer genes,
it has been shown that mutations tend to cluster in specific functional spots and specifically
hinge regions as determined via ENMs [104]. One striking example is the oncogene EGFR,
which displays a puzzling tissue-specific mutational asymmetry. In brain glioblastoma
(GBM), mutations are highly heterogenous but tend to cluster on the extracellular ligand-
binding domain (ectodomain, ECD), even coexisting in the same tumor. In contrast,
mutations in lung cancer concentrate in the intracellular kinase domain (KD), mostly
focused on the catalytic cleft. This asymmetry results in intriguingly opposite responses
to drugs binding to different KD conformers. Our ENM study of the ECD revealed that
GBM mutations neatly cluster at hinge and interdomain regions, which control a large-scale
conformational change of nearly 25 Å between the closed-unbound and open-bound states.
Further MD simulations revealed that GBM mutations favor spontaneous ECD opening
following the lowest frequency modes, to acquire a transient conformation known to exist
but never trapped experimentally. This ENM/MD intermediate was validated through
structural, in vitro, and in vivo experiments [75,124,125], is shared by missense mutants
from different ECD hotspots, and mimics the configuration of the most frequent change in
GBM, the deletion EGFRvIII (Figure 1d). Specifically, the first tandem repeat of EGFR is
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deleted in EGFRvIII but rotates in missense mutations. The ultimate goal of this remarkable
structural “equivalence” or “convergence” trick is to allosterically activate the KD in a
specific way, distinct from that favored by lung cancer mutations, which explains their
different sensitivity to drugs. Importantly, lung and brain cancer mutations are known to
activate different signaling pathways [126], and our ENM–MD studies suggest that this
is directly governed by the different conformational dynamics they favor. On one hand,
this could be an example of convergent evolution of missense mutations and deletions to
achieve a similar functional outcome, driven by positive selection of those variants that
explore the soft modes opening the structure in a “GBM-preferred” mode. On the other,
the same protein, EGFR, apparently experiences divergent evolutionary trajectories in
GBMs versus lung cancer to fine-tune its conformation and trigger cell growth in different
niches—a potentially compelling case of evolution selecting lowest-frequency dynamics to
modulate function.

In summary, the examples discussed above provide food for thought to question
both the “selectionist-functional” view and the “biophysical-energetical” view of protein
structure and dynamics evolution. Some works have focused on the interpretation of
flexibility patterns under a predominantly evolutionary prism, while others favor the idea
that the main cause of structural–dynamical divergence lies in the physical properties of
proteins, such as their sensitivity to mutations. Observing the degree of conservation in
ancestral proteins such as CPAs over scales of billions of years, despite having sequence
identities in the “twilight” zone, strongly suggests a role for natural selection to keep key
functional, structure-embedded mechanisms intact, especially for those proteins perform-
ing the most fundamental cellular tasks. These intrinsic motions have survived almost
intact, from archaebacteria to the human species, probably because of both their biophysical
robustness and their biological fitness. Conversely, the striking clustering of mutations
observed in cancer proteins to modulate not only their intrinsic dynamics but also their
interactions with other proteins, etc., shows that, at high mutational rates and under se-
lection pressure, evolution can quickly remodel and adapt what we could call protein
“molecular phenotypes” [77], directly determined by their conformational dynamics and
the resulting biological function. Importantly, there is mounting evidence that even local
dynamics coupled to processes such as enzyme catalysis show clear footprints of evolution-
ary selection [127–131]. Looking forward, there are wide opportunities to apply ENMs to
deepen studies of molecular evolution, which can illuminate its connections with protein
biophysics or even guide protein design [132]. From analysis of the conservation of flexible
versus rigid regions and how they relate to function, to evolutionarily classifying proteins
based on their shape-encoded dynamics rather than strict sequence information, ENMs
will allow us to explore the interplay of flexibility and evolutionary changes in the different
kingdoms to an extent never imagined before, even more thanks to the incredibly expanded
structural spaces that AI has opened [133,134].

Overall, we foresee that as experimental and computational evidence accumulates,
and the increasingly active research on ENMs and evolution develops, we might reach
a new paradigm. One in which biomolecular dynamics and, specifically, the large-scale
motions intrinsic to 3D structures, could effectively be considered what biologist Ernst
Mayr called “an object of selection” [135] at the most basic, microscopic scale of life.

Funding: This research was funded by Karolinska Institute, the Swedish Foundations for Cancer
Research (Cancerfonden Junior Investigator Award CF 21 0305 JIA and Project Grant CF 21 1471
Pj), the Swedish Scientific Research Council (Vetenskapsrådet, VR 2021-02248) and the Jeanssons,
Hedlund and Sagen Foundations.

Data Availability Statement: Data used to generate the figures are available upon request.

Conflicts of Interest: The author declares no conflict of interest.

116



Appl. Sci. 2023, 13, 6756

References

1. Anfinsen, C.B.; Haber, E.; Sela, M.; White, F.H. The Kinetics of Formation of Native Ribonuclease during Oxidation of the Reduced
Polypeptide Chain. Proc. Natl. Acad. Sci. USA 1961, 47, 1309–1314. [CrossRef] [PubMed]

2. Daggett, V.; Fersht, A. The Present View of the Mechanism of Protein Folding. Nat. Rev. Mol. Cell Biol. 2003, 4, 497–502. [CrossRef]
[PubMed]

3. Karplus, M.; McCammon, J.A. The Dynamics of Proteins. Sci. Am. 1986, 254, 42–51. [CrossRef] [PubMed]
4. Frank, J. New Opportunities Created by Single-Particle Cryo-EM: The Mapping of Conformational Space. Biochemistry 2018,

57, 888. [CrossRef] [PubMed]
5. James, L.C.; Tawfik, D.S. Conformational Diversity and Protein Evolution—A 60-Year-Old Hypothesis Revisited. Trends Biochem.

Sci. 2003, 28, 361–368. [CrossRef] [PubMed]
6. Henzler-Wildman, K.; Kern, D. Dynamic Personalities of Proteins. Nature 2007, 450, 964–972. [CrossRef]
7. Karplus, M.; Kuriyan, J. Molecular Dynamics and Protein Function. Proc. Natl. Acad. Sci. USA 2005, 102, 6679–6685. [CrossRef]
8. Karplus, M.; McCammon, J.A. Molecular Dynamics Simulations of Biomolecules. Nat. Struct. Biol. 2002, 9, 646–652. [CrossRef]
9. Amaral, M.; Kokh, D.B.; Bomke, J.; Wegener, A.; Buchstaller, H.P.; Eggenweiler, H.M.; Matias, P.; Sirrenberg, C.; Wade, R.C.;

Frech, M. Protein Conformational Flexibility Modulates Kinetics and Thermodynamics of Drug Binding. Nat. Commun. 2017,
8, 2276. [CrossRef]

10. Tuffery, P.; Derreumaux, P. Flexibility and Binding Affinity in Protein–Ligand, Protein–Protein and Multi-Component Protein
Interactions: Limitations of Current Computational Approaches. J. R. Soc. Interface 2012, 9, 20–33. [CrossRef]

11. Teague, S.J. Implications of Protein Flexibility for Drug Discovery. Nat. Rev. Drug Discov. 2003, 2, 527–541. [CrossRef] [PubMed]
12. Changeux, J.-P.; Edelstein, S. Conformational Selection or Induced-Fit? 50 Years of Debate Resolved. F1000 Biol. Rep. 2011, 3, 1–15.

[CrossRef] [PubMed]
13. Csermely, P.; Palotai, R.; Nussinov, R. Induced Fit, Conformational Selection and Independent Dynamic Segments: An Extended

View of Binding Events. Trends Biochem. Sci. 2010, 35, 539–546. [CrossRef]
14. Thulasingam, M.; Orellana, L.; Nji, E.; Ahmad, S.; Rinaldo-Matthis, A.; Haeggström, J.Z. Crystal Structures of Human MGST2

Reveal Synchronized Conformational Changes Regulating Catalysis. Nat. Commun. 2021, 12, 5721. [CrossRef]
15. Mhashal, A.R.; Romero-Rivera, A.; Mydy, L.S.; Cristobal, J.R.; Gulick, A.M.; Richard, J.P.; Kamerlin, S.C.L. Modeling the Role of a

Flexible Loop and Active Site Side Chains in Hydride Transfer Catalyzed by Glycerol-3-Phosphate Dehydrogenase. ACS Catal.
2020, 10, 11253–11267. [CrossRef]

16. Henzler-Wildman, K.A.; Thai, V.; Lei, M.; Ott, M.; Wolf-Watz, M.; Fenn, T.; Pozharski, E.; Wilson, M.A.; Petsko, G.A.;
Karplus, M.; et al. Intrinsic Motions along an Enzymatic Reaction Trajectory. Nature 2007, 450, 838–844. [CrossRef] [PubMed]

17. Babu, M.M.; Van Der Lee, R.; De Groot, N.S.; Gsponer, J. Intrinsically Disordered Proteins: Regulation and Disease. Curr. Opin.
Struct. Biol. 2011, 21, 432–440. [CrossRef]

18. Uversky, V.N. Intrinsically Disordered Proteins and Their “Mysterious” (Meta)Physics. Front. Phys. 2019, 7, 10. [CrossRef]
19. Elber, R.; Karplus, M. Multiple Conformational States of Proteins: A Molecular Dynamics Analysis of Myoglobin. Science 1987,

235, 318–321. [CrossRef]
20. Bahar, I.; Lezon, T.R.; Yang, L.-W.; Eyal, E. Global Dynamics of Proteins: Bridging between Structure and Function. Annu. Rev.

Biophys. 2010, 39, 23–42. [CrossRef]
21. Bastolla, U. Computing Protein Dynamics from Protein Structure with Elastic Network Models. Wiley Interdiscip. Rev. Comput.

Mol. Sci. 2014, 4, 488–503. [CrossRef]
22. López-Blanco, J.R.; Chacón, P. New Generation of Elastic Network Models. Curr. Opin. Struct. Biol. 2016, 37, 46–53. [CrossRef]

[PubMed]
23. Sanejouand, Y.-H. Elastic Network Models: Theoretical and Empirical Foundations. Network 2011, 26, 601–616.
24. Bonomi, M.; Vendruscolo, M. Determination of Protein Structural Ensembles Using Cryo-Electron Microscopy. Curr. Opin. Struct.

Biol. 2019, 56, 37–450. [CrossRef] [PubMed]
25. Krieger, J.M.; Sorzano, C.O.S.; Carazo, J.M.; Bahar, I. Protein Dynamics Developments for the Large Scale and CryoEM: Case

Study of ProDy 2.0. Acta Cryst. D Struct. Biol. 2022, 78, 399–409. [CrossRef]
26. Orellana, L. Large-Scale Conformational Changes and Protein Function: Breaking the in Silico Barrier. Front. Mol. Biosci. 2019,

6, 117. [CrossRef]
27. Herzberg, G. Molecular Spectra and Molecular Structure; D. Van Nostrand Company, Inc.: Princeton, NJ, USA, 1945.
28. Wilson, E.B.; Decius, J.C.; Cross, P.C. Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra; McGraw-Hill: New

York, NY, USA, 1955.
29. Brooks, B. Harmonic Dynamics of Proteins: Normal Modes and Fluctuations in Bovine Pancreatic Trypsin Inhibitor. Proc. Natl.

Acad. Sci. USA 1983, 80, 6571–6575. [CrossRef]
30. Go, N.; Noguti, T.; Nishikawa, T. Dynamics of a Small Globular Protein in Terms of Low-Frequency Vibrational Modes. Proc. Natl.

Acad. Sci. USA 1983, 80, 3696–3700. [CrossRef]
31. Levitt, M.; Sander, C.; Stern, P.S. The normal modes of a protein: Native bovine pancreatic trypsin inhibitor. Int. J. Quantum Chem.

1983, 24, 181–199. [CrossRef]
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