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Abstract: Existing studies show sensor faults/error could double building energy consumption
and carbon emissions compared with the baseline. Those studies assume that the sensor error is
fixed or constant. However, sensor faults are incipient in real conditions and there were extremely
limited studies investigating the incipient sensor fault impacts systematically. This study filled in this
research gap by studying time-developing sensor fault impacts to rule-based controls on a 10-zone
office building. The control sequences for variable air volume boxes (VAV) with an air handling unit
(AHU) system were selected based on ASHRAE Guideline 36-2018: High-Performance Sequences
of Operation for HVAC Systems. Large-scale simulations on cloud were conducted (3600 cases)
through stochastic approach. Results show (1) The site energy differences could go −3.3% lower or
18.1% higher, compared with baseline. (2) The heating energy differences could go −66.5% lower or
314.4% higher, compared with baseline. (3) The cooling energy differences could go −11.5% lower
or 65.0% higher, compared with baseline. (4) The fan energy differences could go 0.15% lower or
6.9% higher, compared with baseline.

Keywords: building energy; sensor impact; building control; incipient sensor faults

1. Introduction

The building sector consumes 40% of energy consumption and 16% carbon emissions
in the United States, based on the 2020 Energy Outlook from the United States Energy
Information Administration [1]. It has remained a challenge to reduce building energy
consumption and carbon emissions, although many advanced building technologies have
been proposed. A few well-known technologies are continually evolving, such as ground
source heat pumps [2] and heat pumps in cold climates [3], with the goal of building elec-
trifications and carbon reductions. For any of those building heating/cooling equipment,
control loops are an essential part of the system, aiming for optimal operation to reduce
energy consumption, power demands, and carbon emissions.

In the past 10 years, building controls have been actively advancing and sensors have
not been well studied. Sensors are critical components for controls systems, collecting
inputs to controls for subsequent control actions. When sensors work in fault (or unhealthy)
conditions, the control benefits will be compromised regardless of the effectiveness of
the controls [4]. Buildings are easily operating under fault conditions [5]. For buildings,
multiple components directly influence the sensor placement and deployment, such as
sensor errors, sensor locations, sensor types, and sensor costs [4].

Buildings 2023, 13, 520. https://doi.org/10.3390/buildings13020520 https://www.mdpi.com/journal/buildings1
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Sensors are usually calibrated by manufacturers. However, sensor accuracy might drift
with time after being installed. There are many reasons for sensor abnormalities, such as
harsh environments and manufacturing defects. In such scenarios, sensor reading accuracy
might suffer, which is commonly regarded as a sensor fault. Usually, HVAC systems have
multiple sensors to assist the controls and multiple sensors might have multiple faults [6].
A study described a total of nine types of sensor fault patterns based on measurement
datasets [7]:

• Outlier: usually a small number of isolated sensor readings, unexpectedly far from the
majority of normal readings. This reason is usually unknown but could be related to
the data logger;

• Spike: a pattern with a much higher rate of change for multiple data points or sensor
readings in a short time period. It might be related to battery failure, other hardware
failure, or connection issues;

• Stuck-at: a pattern with zero variance or constant sensor readings or data points.
The reason is usually associated with hardware malfunction;

• High noise or variance: a pattern with higher variance or noise than historical data
suggests or normally expects for sensor readings or data points. The reasons might be
associated with hardware failure, environmental conditions, or weakening battery power;

• Calibration: a pattern in which the sensor readings are always offset from ground
truth values. It might be related to calibration error or sensor drifting. Often, incipient
sensor drift (the amount of drift change with time) is also common in modern sensors;

• Connection or hardware: usually inaccurate sensor readings because of malfunctioning
hardware (i.e., hardware dependent). Typical patterns are unusually high/low data
readings that are frequently out of normal ranges. The possible reasons might be
environment changes, sensor aging, short circuit, or loose wires;

• Low battery: usually inaccurate sensor readings because of low battery power.
Typical patterns are unexpected gradient followed by zero variance, or lack of data, or
excessive noise;

• Environment out of range: when the environment conditions go beyond what the
sensor system can read. Typical examples are extreme high and low temperatures.
Patterns might be much higher noise or flattening of the data. Similar patterns occur
with improper calibrations;

• Clipping: sensor readings max out. The patterns could be sticking with maximum or
minimum readings, perhaps because of environmental conditions.

Multiple sensors (e.g., temperature, flowrate) usually work together as a sensor sets.
Sensor sets are different, depending on the HVAC system types and the controls loops.
HVAC systems vary based on different building characteristics and functions. For small to
medium office buildings, rooftop units (RTUs) are usually used. Typical sensors are air-
related [8], such as air temperature, airflow rate, and pressure sensors. For large commercial
buildings (e.g., large office buildings), a chiller and cooling tower are usually applied.
More sensors are placed on water loops [9], such as water flow rate and water temperature
sensors. There are three types of controls: rule-based control, local control, and supervisory
control for HVAC systems. Different control strategies might require different sensor sets.
Demand control ventilations need zone CO2 sensors for control actions [8,10]. Occupant
control, relying on occupant sensors, is another popular topic attracting attention in the
past few years [11,12].

In the context of buildings and HVAC systems, limited studies have investigated
sensor fault impacts on HVAC systems. Past studies show that the impact of sensor faults
poses a great challenge to optimal performance of advanced control solutions [13,14].
Sensor fault modeling study could be classified into two groups: white-box and black-
box [5,15]. The majority of studies applied the white-box method. Black-box method is
suitable for fault detection. Due to the severe fault impacts, sensor calibration and fault
mitigation become more important. The detailed literature reviews are summarized as:
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(1) A study investigated sensor impact on building energy consumption [16], through a
small office model in the EnergyPlus platform. Their study proposed a new concept
for sensor fault impacts: one-way impact and two-way impact. The one-way impact
means that sensor faults cause decreased or increased energy consumption or thermal
comfort. The two-way impact means that there could be higher energy consumption
for a certain desired energy item (e.g., cooling), and simultaneously lower energy
consumption for another desired energy item (e.g., heating). Another recent study
proposed the sensor fault impact analysis framework [9] to investigate sensor fault
impacts. This framework is based on white-box methods, which opened a door
for sensor fault studies on building performance. Their results show that sensors
could cause more than double energy consumption. Another study, using white-box
modeling platform, demonstrated sensor fault impacts for demand control ventilation
(DCV) on building energy consumption [8]. Results show that sensor faults severely
downgraded the control performance, leading to increased energy consumption.
Another recent study developed a few fault models in the EnergyPlus platform, which
were validated through experiments [17,18];

(2) Black-box, or machine learning algorithm, is becoming a new trend in fault detection
and diagnostics. This study applied artificial intelligence (AI) algorithms to detect the
sensor faults, based on a large dataset. A review study [19] pointed out the biggest
issue for black-box method is how to identify the baseline data (data without fault)
from the building energy management system;

(3) Sensor fault calibration and mitigation are receiving attention. This study aimed to
calibrate the sensor faults [20], to which they applied the virtual in-situ calibration
method. Their results showed that the systematic errors of sensors were less than 2%
and the random errors were also reduced by as much as 74%. The benefit of such
sensor calibration significantly reduced the possibility of abnormal data and enhanced
the reliability of sensor measurements. This can effectively eliminate the sensor
negative impacts on building energy consumption and thermal comfort. A study [21]
applied fault mitigation techniques for sensors (read back for sensor readings and
nearest neighbor monitoring for fault sensor correcting), which demonstrated up to
38% improvement in energy consumption and up to 75% improvement in thermal
comfort. The sensor faults include stuck-at fault, spike-and-stay (SAS) fault with negative
spike, spike-and-stay (SAS) fault with positive spike, single-sample-spike (SSS) fault
with negative spike, and single-sample-spike (SSS) fault with positive spike.

However, current literature studies assume sensor fault or errors are constant [5,9,15,22,23].
In real conditions, sensor fault magnitude could evolve or develop over time, which is
often observed from field measurements. This is the essence of incipient sensor faults.
This is also the main purpose of this study. How to address such an issue is relying
on correct modeling of sensor errors. Another research gap is that there was no study
proposing a sensor impact evaluation framework. Available studies use their own sensor
impact evaluation platform.

The structure of this study is organized as follows: Section 2 summarizes the sensor
impact and evaluation framework, which is the methodology; Section 3 describes the
surrogate model; Section 4 describes the uncertainty analysis; Section 5 describes the
sensitivity analysis; and Section 6 provides conclusions.

2. Methodology

This study aimed to systematically investigate incipient sensor faults for building
control performance. The US Department of Energy’s Oak Ridge National Laboratory’s
(ORNL’s) two-story Flexible Research Platform (FRP-2) building was used to study the
sensor fault impacts. It is a two-floor building with five zones on each floor. The cooling
is from rooftop unit (RTU). The heating is from a gas heating coil and VAV electric coils.
The control strategy for single-duct variable air volume (VAV) terminal boxes and the air

3
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handling unit (AHU) is implemented based on the control logics from ASHRAE Guideline
36-2018, High-Performance Sequences of Operation for HVAC Systems [24].

A sensor-impact oriented framework is proposed for this purpose. The framework is
comprised of (1) a physics-based emulator integrated with sensor faults, control sequences,
and building/HVAC models; (2) large-scale simulations for sensor error samplings to the
controls on the cloud; (3) a surrogate model development based on cloud simulation results
for sensitivity analysis; and (4) sensitivity and uncertainty analyses for the sensors and
desired outputs (e.g., energy consumption, thermal comfort).

This study is based on EnergyPlus platform through building energy models.
The overall workflow is illustrated in Figure 1. Cloud simulation was used to quicken
the 3600 simulation cases, using a stochastic approach. The uncertainty and sensitivity
analyses are based on simulation data from cloud simulation. The building model details
are not presented here. Interested readers, please refer to the recent publications on the
building [25].

Figure 1. Sensor impact and evaluation framework.

The pseudo code for the sensor fault injection and simulation is shown in Figure 2.
The pseudo code follows the basic flowchart in Figure 1, which demonstrates the basic
principle of how to implement the sensor impact analysis.

Figure 2. Pseudo code for sensor fault injection and simulation.

2.1. Sensor Sets

Based on extensive literature reviews, 34 sensors were identified. They are typical
sensors used to operate RTU and variable air volume (VAV) systems in small to medium
office buildings. The sensors were prioritized based on the severity of indoor air (IA)
temperature impacts, which can significantly affect energy efficiency and occupant thermal
comfort. The identified sensors are frequently used in commercial buildings. They are
listed in Table 1.
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Table 1. Comprehensive sensor list.

Location Measurement Priority Location Measurement Priority

Room IA temperature 1 RTU OA CO2 4

Room IA humidity 3 RTU OA flow rate 3

Room IA CO2 4 RTU SA temperature 1

Room Lighting condition 5 RTU SA humidity 3

Room Occupancy 5 RTU SA CO2 4

VAV box SA temperature 1 RTU SA flow rate 3

VAV box SA humidity 3 RTU RA temperature 2

VAV box SA flow rate 1 RTU RA humidity 3

Main duct Static pressure 2 RTU RA CO2 4

Exhaust fan EA temperature 4 RTU RA flow rate 3

Exhaust fan EA humidity 4 RTU MA temperature 2

Exhaust fan EA flow rate 4 RTU MA humidity 3

Exhaust fan EA CO2 4 RTU MA CO2 4

Other Plug load 5 RTU MA flow rate 3

Other Lighting load 5 RTU Refrigerant
temperature 5

RTU OA temperature 1 RTU Refrigerant pressure 5

RTU OA humidity 3 RTU Refrigerant flow rate 5
SA = supply air; EA = exhaust air; OA = outdoor air; RA = return air; MA = mixing air; IA = indoor air.

Based on the actual HVAC system configuration of the FRP-2 building, five sensor
types were selected for the following reasons: (1) Those sensors were closely matching
with the selected control logics. Different control logics might need different sets of sensors;
(2) the IA temperature is the most important variable to be controlled to meet the heating
and cooling set point temperatures; (3) the VAV box supply air (SA) temperature and SA
flow rates (SAFs) directly affect the IA temperature from the control perspective; (4) RTU
system-level operation also directly affects the VAV box operations; and (5) RTU outdoor
air (OA) temperature (OAT) and SA temperature (SAT) are important for determining
system-level energy consumption. The sensor types are listed in Table 2. The specification
of the selected sensors is described in Table 3.

Table 2. Selected sensor list.

Location Measurement Priority Note

Room IA temperature 1 IA temperature

VAV box SAT 1 VAV box SAT

VAV box SAF 1 VAV box SAF

RTU OAT 1 OAT

RTU SAT 1 SAT

5
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Table 3. Specification of the selected sensor.

Measured Data Range

Outdoor air temperature

−50~100 ◦CIndoor air temperature

Supply air temperature

Supply airflow rate 0~15.24 m/s

2.2. Sensor Errors

Available literature assumes fixed or constant sensor errors. Here, we proposed
the incipient sensor error as bias error and precision (random) error. This research team
identified two components for sensor faults [4]: precision and bias. Precision is used to
measure how precise the sensor reading is from the true reading because of measuring
noise. Bias is used to measure how far the sensor reading is from the true reading because
of system bias. Figure 3 shows a diagram for precision and bias. A typical characteristic of
incipient faults is that the fault magnitude might change slowly with time and effects on
control performance might go unnoticed.

Figure 3. Sensor error component.

For a sensor, an ideal reading (or true reading) exists at a given time step, as shown by
the black line in Figure 4. The bias error is the system deviation from the ideal readings, as
shown by the green dotted lines in Figure 4. The precision error is the random deviation or
noise from the average sensor readings, as shown by the blue dashed lines in Figure 4.

Figure 4. Sensor error diagram.

The mathematical expression of such a fault profile is given as

X f (t) = Xo(t) + Xbias(t) + Xprecision(t) (1)

where X f is the fault reading, Xo is the ideal reading (no fault), Xbias is the bias error, and
Xprecision is the precision error.
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The bias error is a normal distribution with a certain standard deviation. The expres-
sion is given as

Xbias(t) = N(0, σbias) (2)

The precision error is also a normal distribution with a certain standard deviation. The
expression is given as

Xprecision(t) = N
(
0, σprecision

)
(3)

where σbias is the standard deviation of bias error and σprecision is the standard deviation of
precision error.

The sensor errors were incorporated based on the emulator of EnergyPlus and Python
EMS. Due to the technical difficulties from larger airflow sensor errors, the airflow sensor
errors need to be within an effective range. The standard deviations for the five types of
selected sensors are shown in Table 4.

Table 4. Standard deviation of selected sensor errors.

Location Measurement Bias Precision

Room IA temperature (◦C) 1 0.1

VAV box SAT (◦C) 1 0.1

VAV box SAF (m3/s) 0.005 0.0005

RTU OAT (◦C) 1 0.1

RTU SAT (◦C) 1 0.1

2.3. Control Logic for RTU and Single-Duct VAV System (ASHRAE Guideline 36)

The installed HVAC systems in the FRP-2 building are RTUs, in which cooling is from
a direct expansion cooling coil and heating is from a gas heating coil. The FRP-2 building
has 10 conditioned zones. Each conditioned zone is served by a VAV box with an electricity
reheat coil. The air handling unit (AHU) connects all the zone VAV boxes and the RTU.
Control logic from ASHRAE Guideline 36-2018, High-Performance Sequences of Operation
for HVAC Systems [24], was developed for the RTUs and VAV boxes.

1. AHU: Trim and Respond (T&R) Set Point Logic

The first control logic is the T&R set point logic for the AHU. T&R logic resets set
points of the pressure, temperature, or other variables on the AHU or plant side. T&R logic
reduces the set point at a fixed rate until the zone thermal comfort is no longer satisfied;
then, it generates the request. The set point is increased in response to a sufficient number
of requests. By adjusting the importance of each zone’s requests, the critical zones will
always be satisfied. If there are not a sufficient number of requests, then the set point
decreases at a fixed rate.

The term “request” refers to a request to reset a static pressure or temperature set point
generated by downstream zones or AHUs. These requests are sent upstream to the AHU
or plant that supplies the zone or area that generated the request. For more details of Trim
& Respond logic, please refer to the documents of [24,26].

T&R control was used to reset the RTU SA set point temperature in the emulator. When
the OAT was higher than the maximum OAT (21 ◦C), the RTU SAT was set to the minimum
RTU SA set point temperature (12 ◦C). When the OAT was lower than the minimum OAT
(16 ◦C), the RTU SAT was set to the maximum RTU SA set point temperature (18 ◦C). If
the OAT was between the minimum and maximum OAT when the OAT was increased,
then the RTU SAT was linearly increased from the minimum RTU SA set point temperature
to the maximum RTU SA set point temperature. For T&R control, as ASHRAE Guideline
36 describes, fewer than two requests were ignored.
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2. VAV box control logic

The VAV box control is the second control logic applied to the emulator. Figure 5
shows the control logic for the VAV box from ASHRAE Guideline 36. The control logic has
three sections, which correspond to the heating mode, cooling mode, and dead-band, and it
uses the heating loop demand concept. Heating loop demand is the ratio (as a percentage)
of the actual required heating load of the VAV box to the size of the VAV box. Equation (4)
describes how to calculate the heating loop demand.

Heating loop demand =
Heating load o f the VAV box

Capacity o f the VAV box
× 100 (4)

Figure 5. Control logic for VAV box from ASHRAE Guideline 36 [24,26].

The detailed logics are threefold:

a. In the heating mode, when the heating loop is less than or equal to 50%, the discharge
air (DA) set point temperature of the VAV box is increased from the RTU SAT to
the maximum DA set point temperature of the VAV box, and the minimum SAF is
maintained. When the heating loop is greater than 50%, if the DA temperature of
the VAV box is greater than the IA temperature plus 3 ◦C, then the SAF of the VAV
box is increased from the minimum SAF to the maximum SAF while maintaining the
maximum DA set point temperature of the VAV box;

b. In the cooling mode, the DA temperature of the VAV box is the same as the RTU SAT
because no option exists to decrease the SAT using the VAV box. Therefore, VAV box
control is linked with T&R control in the cooling season, when the VAV box control
must be considered the RTU SAT. The four cooling SA set point temperature reset
requests are as follows:

• If the IA temperature exceeds the indoor cooling set point temperature by 3 ◦C
for 2 min and after the suppression period resulting from an RTU SA set point
temperature change via the T&R control, then send three requests;

• Else, if the IA temperature exceeds the indoor cooling set point temperature by
2 ◦C for 2 min and after the suppression period resulting from an RTU SA set
point temperature change via the T&R control, then send two requests;

• Else, if the cooling loop is greater than 95%, then send one request until the
cooling loop is less than 85%;

• Else, if the cooling loop is less than 95%, then send no request.

In terms of the SAF in the cooling season, the SAF of the VAV box is increased from
the minimum SAF to the maximum SAF as the cooling loop is increased;
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c. In the dead-band mode, when neither heating nor cooling are needed, the SAF is set
to the minimum SAF, and the DA temperature of the VAV box is set to the RTU SAT.

The overall control logic is shown in Figure 6.

Figure 6. Overall control logic for VAV box and AHU. (DAT: discharge air temperature; SAFH: supply
air flow rate for heating; SAFC: supply air flow rate for cooling; R: number of requests; I: ignored
responses; SP: respond amount.)

2.4. Large-Scale Simulation

The large-scale simulation was based on a commercial cloud platform, Microsoft
Azure. In total, 3600 cases were simulated on the cloud. The inputs were the sensor errors
incorporated into the five selected sensors for the FRP-2 building emulator, as shown in
Table 2. The sensor errors were obtained using normal distribution samplings. EnergyPlus
internal programming limits caused simulation crashes when larger sensor errors were
incorporated. The standard deviations of sensor errors were based on multiple trials. The
thresholds were based on engineering experience, domain knowledge, and actual RTU-
and zone-level sensor ideal readings. The outputs were the target variables for energy
consumption and thermal comfort, such as fan electricity consumption and reheat coil
electricity energy in the VAV box.

The basic diagram is shown in Figure 7. The basic workflow is as follows:

(1) A Python script was developed to generate 3600 simulation input data files (IDF files).
Each IDF file was associated with a Python class of sensor errors through Python
EMS. During the simulation, at each time step, a new sensor error (including bias and
precision) was injected into the ideal sensor readings from EnergyPlus;

(2) After 3600 cases were generated, they were uploaded to the Azure cloud platform;
(3) In the Azure cloud platform, a bash script selected the appropriate virtual machine

configurations (e.g., memory and hard drive, as shown in Table 4) and a number of
virtual machines. The team’s subscription included 300 nodes (virtual machines);

(4) The Azure cloud provided a job scheduler, which automatically distributed all
3600 cases across 300 nodes;

(5) The simulation ran automatically until all cases were accomplished;
(6) Finally, all the results were selected to set up the data sets (inputs and outputs) to

create the black-box models.
(7) The configuration for the cloud is shown in Table 4.
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Figure 7. Cloud simulation workflow.

A total of 300 nodes were used for the cloud simulation, in which each node is a
standard node: 16 cores, 64 GB memory, and 600 GB storage capacity. The total simulation
time is about 9 h.

The sensor errors were sampled using a normal distribution for each time step.
The sensor readings from EnergyPlus used the sensor errors to form the faulty sensor
readings. The faulty sensor readings were used as inputs to control sequences to calculate
new set points. These new set points were used to control the performance of buildings.
Ultimately, the simulated energy consumption and thermal comfort were different from
the results obtained using the ideal sensor readings.

2.5. Other Aspects

In order to ensure that the simulation results are correct, there are a few extra explana-
tions summarized below.

(1) The baseline model was calibrated with the actual components and systems within
the FRP2 building at ORNL campus. The input values for the HVAC system are from
the measurement and nameplate values. The simulation results demonstrated the
consistency between model and measurements [25];

(2) The simulation cases have a total of 3600 sets. Each case matches with a sensor error
module. In each timestep, the sensor error value will be injected into the model
following the sensor error components (bias and precision). The energy consumption
differences were easily calculated between baseline case and sensor-error case, which
was caused by the sensor errors. If sensor errors were made to be zero all through the
simulation timesteps, the same energy consumption was obtained with baseline model;

(3) We analyzed the results and see that they are reasonable for sensor errors. For example,
(a) when we increase the sensor error to the zone temperature for cooling mode (lower
zone temperature than it is supposed to be), we can see the energy consumption
increasing. This is because the building model thinks it needs more cooling energy
to meet the cooling setpoints. (b) When we increase the sensor error to the zone
temperature sensor for heating mode (higher zone temperature than it is supposed
to be), we can see the energy consumption decreasing. This is because the building
model thinks it needs less heating energy to meet the heating setpoints;

(4) To explain in detail, the sensor error in this study followed the normal distribution
(Figure 4) and the sensor error range was calculated by bias sensor error plus precision
error. For example, if the standard deviation of sensor error of the temperature sensor
is 1 ◦C, the temperature sensor error range is within −3 ◦C and +3 ◦C with a probability
of 99.76%. Similarly, the probability of sensor error range between −1 ◦C and +1 ◦C
is about 68%. The probability of sensor error range within −2 ◦C and +2 ◦C is about
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95.4%. The extreme cases are within 0.24% of scenarios on the two ends. Therefore,
the differences (numbers) mentioned above occur when the sensor error is the largest
(either positive or negative values).

3. Surrogate Model

To accomplish sensitivity analysis, the surrogate model was developed based on cloud
simulations. The long short-term memory (LSTM) model was selected because it includes
previous time step input impacts. These impacts are important because inertia phenomena
exist in buildings. The LSTM model internally reflects thermal inertia.

3.1. LSTM Setup

The LSTM model is a neural network model suitable for time-series forecasting.
For building energy simulations, the results are time-series variables. The thermal state
of buildings at previous time steps has certain impacts on the later time steps. The main
purpose of the LSTM model is to find the mapping of inputs and outputs. Figure 8 shows
that the input variables were transformed into multiple routes as a way of including
previous states’ impacts. Detailed mathematics are not included here because the goal was
to use the LSTM model to make a black-box model. Many publications already investigated
the mathematical details, such as the inventor of LSTM algorithm [27].

Figure 8. LSTM cell structure.

3.2. Training and Setting

The whole data set was divided into a training data set (80% of total) and a validation
data set (20% of total). The training data set was used to learn the weights of input variables
to output variables. The validation data set was used to test the accuracy of the surrogate
model prediction from the emulator output variables. The data sets were shuffled to avoid
the input data internal impacts. The root mean square error was used to quantify the
modeling accuracy:

RMSE =

√
∑N

1 (yi − ŷi)
2

N
(5)

where RMSE is the root mean square error, yi is the emulator output variable, ŷi is the
surrogate model output variable, and N is the total number of variables in the prediction.

3.3. Input/Output Variables

The surrogate model established the mapping relationship between input and output
variables. The input variables were based on the FRP-2 EnergyPlus models. A detailed list
of variables is provided in Table 5.
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Table 5. Input variables.

Variable Name Quantity

OAT 1

OA relative humidity 1

OA pressure 1

Wind speed 1

Wind direction 1

Horizontal infrared radiation rate 1

Diffuse solar radiation rate 1

Direct solar radiation rate 1

Lighting energy 1

Internal heat gains: equipment 1

People activity 1

SensorBias: AHU OAT 1

SensorPrecision: AHU OAT 1

SensorTotalError: AHU OAT 1

SensorBias: AHU SAT 1

SensorPrecision: AHU SAT 1

SensorTotalError: AHU SAT 1

SensorBias: zone VAV SAF 10

SensorPrecision: zone VAV SAF 10

SensorTotalError: zone VAV SAF 10

SensorBias: zone VAV SAT 10

SensorPrecision: zone VAV SAT 10

SensorTotalError: zone VAV SAT 10

SensorBias: zone air temperature 10

SensorPrecision: zone air temperature 10

SensorTotalError: zone air temperature 10

Total 107

The output variables were also based on FRP-2 EnergyPlus simulation models.
A detailed list of output variables is provided in Table 6.

Table 6. Output variables.

Variable Quantity

Fan electricity rate (W) 1

Main cooling coil sensible cooling rate (W) 1

Main cooling coil electricity rate (W) 1

Main heating coil heating rate (W) 1

Zone air sensible heating rate (W) 10

Zone air sensible cooling rate (W) 10

Zone air temperature (◦C) 10

Zone predicted percentage dissatisfied (%) 10

VAV box reheat energy (W) 10

Total 54
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3.4. Workflow for Surrogate Model Training

In total, 3600 simulation cases were simulated on the cloud. Each case generated
1.3 GB of data with 1 min time resolution. A 4.7 TB data set was obtained. To expe-
dite the surrogate model training, a distributed machine learning framework was used.
The workflow is shown in Figure 9. Through the cloud, 32-core machines were used.
The 3600 cases were divided into 20 groups, or cores, with each group responsible for
180 cases. After all training was completed for each group, the final model parameters were
obtained by averaging model parameters from the 20 groups of training.

Figure 9. Distributed training of surrogate models.

4. Uncertainty Analysis

4.1. Uncertainty Analysis Setup

Uncertainty analysis assesses the uncertainty of output/target variables in the model in
which the inputs are under uncertainty samplings. The purpose of this uncertainty analysis
was to identify how output variables were distributed in response to uncertainties of input
values. Generally, a wider distribution of output variables corresponds with increased
sensitivity of the output variables to the input variables. For this uncertainty analysis, the
large-scale simulation (3600 cases) was conducted on a cloud platform. Figure 10 illustrates
the overall process of the uncertainty analysis. The standard deviations of input values
(sensor errors) of the uncertainty analysis are listed in Table 5 and selected output variables
are listed in Table 6. Before the uncertainty analysis, HVAC system controls based on
ASHRAE Guideline 36 [24] were applied using the Python EMS function, as described in
Section 2.3. Input values for the system control were obtained from the simulation results;
then, the total sensor error was added to the HVAC system control. Using the physics-based
emulator, 3600 cases were generated. The results are described in Section 4.2.

13



Buildings 2023, 13, 520

Figure 10. Uncertainty analysis process.

4.2. Uncertainty Analysis Results

For large-scale simulations, each case generated the aggregated energy consump-
tion: site energy, heating energy, cooling energy, and fan energy. The baseline results are
304,083 kBTU (site energy), 60,081 kBTU (heating energy), 105,482 kBTU (cooling energy),
and 50,422 kBTU (fan energy). Figure 11 demonstrates the energy distributions under sen-
sor fault and baseline energy items. It shows that the energy consumption varies drastically
from the baseline cases, due to the sensor errors.

Figure 11. Energy distributions and baseline energy items.

Figure 12 shows the site energy consumption with averaged sensor error distribu-
tions. The top left shows the AHU OAT and SAT sensor errors with site energy consump-
tion. The top right shows the VAV box SAT sensor errors and site energy consumption.
The bottom left shows the zone temperature sensor errors with site energy consumption.
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The bottom right shows the VAV box SAF sensor errors with site energy consumption.
From the distributions, the sensor errors show normal distributions instead of a linear
relationship. The site energy consumption was 294,000~359,000 kBtu/year based on
the distribution of sensor total errors. The change of total site energy consumption was
65,000 kBtu/year, which is 21.4% of the average site energy consumption (340,083 kBtu/year).
The site energy impacts could go −3.3% lower or 18.1% higher, compared with base-
line. The above energy patterns are a comprehensive demonstration of sensor errors.
The underlying logics are: (1) For negative sensor errors under cooling mode, zone temper-
ature sensors would deliver smaller sensor readings to the controls. This could make the
control systems call on a larger supply air flow rate or supply air temperature to meet the
zone thermal setpoints. This could cause more energy consumption for the cooling coils.
(2) For positive sensor errors under cooling mode, zone temperature sensors might deliver
higher sensor readings to the controls. This could fool the control system to call on a smaller
supply air flow rate or supply air temperature. This will cause the zone to be too hot, subject
to thermal comfort issue. (3) For negative sensor errors under heating mode, the zone
temperature sensor reading would be smaller, which fools the control system to increase the
supply air temperature or supply air flow rate to maintain the zone temperature setpoints.
This could cause more heating energy consumption from the heating coils. (4) For positive
sensor errors under heating mode, the zone temperature sensor reading would be higher,
which leads the control system to decrease supply air temperature or supply air flow rate
to maintain the thermal setpoints. This would cause less heating energy demands from the
heating coils. Since the sensor errors evolve each time step, this adds more complexity to
the control actions, which lead to complicated energy consumption patterns.

Figure 12. Site energy and sensor errors.
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Figure 13 shows the total heating energy consumption with averaged sensor error
distributions. The top left shows the AHU OAT and SAT sensor errors with heating energy
consumption. The top right shows the VAV box SAT sensor errors and heating energy
consumption. The bottom left shows the zone temperature sensor errors with heating
energy consumption. The bottom right shows the VAV box SAF sensor errors with heating
energy consumption. From the distributions, the sensor errors show normal distributions
instead of a linear relationship.

Figure 13. Heating energy and sensor errors.

The heating energy consumption was 20,130~249,000 kBtu/year based on the distribution
of sensor total errors. The change of total heating energy consumption was
228,870 kBtu/year, which is 380% of the baseline heating energy consumption (23,265 kBtu/year).
The heating energy impacts could go −66.5% lower or 314.4% higher, compared with baseline.

Figure 14 shows the total cooling energy consumption with averaged sensor error
distributions. The top left shows the AHU OAT and SAT sensor errors with cooling energy
consumption. The top right shows the VAV box SAT sensor errors with cooling energy con-
sumption. The bottom left shows the zone temperature sensor errors with cooling energy
consumption. The bottom right shows the VAV box SAF sensor errors with cooling energy
consumption. From the distributions, the sensor errors show normal distributions instead
of a linear relationship. The cooling energy consumption was 93,320~174,000 kBtu/year
based on the distribution of sensor total errors. The range of total cooling energy con-
sumption change was 80,680 kBtu/year, which is 76.5% of the baseline cooling energy
consumption (133,660 kBtu/year). The cooling energy impacts could go −11.5% lower or
65.0% higher, compared with baseline.
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Figure 14. Cooling energy and sensor errors.

Figure 15 shows the total fan energy consumption with averaged sensor error distribu-
tions. The top left shows the AHU OAT and SAT sensor errors with fan energy consump-
tion. The top right shows the VAV box SAT sensor errors with fan energy consumption.
The bottom left shows the zone temperature sensor errors with fan energy consumption.
The bottom right shows the VAV box SAF sensor errors with fan energy consumption.
From the distributions, the sensor errors show normal distributions instead of a linear relationship.

The fan energy consumption was 50,501~53,900 kBtu/year based on the distribution
of sensor total errors. The change of total fan energy consumption was 3399 kBtu/year,
which is 6.7% of the baseline fan energy consumption (50,422 kBtu/year). The fan energy
impacts could go 0.15% lower or 6.9% higher, compared with baseline.

17



Buildings 2023, 13, 520

Figure 15. Fan energy and sensor errors.

5. Sensitivity Analysis

5.1. Sensitivity Analysis Principle

The sensitivity analysis identified which sensor errors have stronger impacts on energy
consumption and thermal comfort. A ranking of sensor error impacts was obtained using
sensitivity analysis index values. Sensitivity analysis can be performed in various ways,
including through local and global approaches [28,29]. Different methods have certain
strengths and drawbacks. As a preliminary exploration, this project applied the Sobol
method [28] to calculate the sensitivity index.

The principle is described as

Y = f0 +
d

∑
i=1

fi(Xi) +
d

∑
i<j

fij
(
Xi, Xj

)
+ · · ·+ f1,2,...,d(X1, X2, . . . , Xd) (6)

where Y is one of the interested model outputs, Xi is the model input with uncertainty, d is
the total number of model inputs with uncertainties, f0 is the constant, fi is the function of
Xi, and fij is the function of Xi and Xj.

The sensitivity index is given as

Si =
Vi

Var(Y)
(7)

where Vi is the variance with respect to variable input Xi and Var(Y) is the total variance
of the output variable Y.
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The definitions of these variances are

Vi = VarXi (EX∼i (Y
∣∣Xi)) (8)

Var(Y) =
d

∑
i=1

Vi +
d

∑
i<j

Vij + . . . + V12...d (9)

where, ∼ i means all the input variables except Xi.
Note that

d

∑
i=1

Si +
d

∑
i<j

Sij + . . . + S12...d = 1 (10)

The workflow for the sensitivity analysis is shown in Figure 16.

Figure 16. Sensitivity analysis flowchart.

5.2. Sensitivity Analysis Results

Based on the simulation results, AHU- and zone-level sensitivity analyses were per-
formed. The results are presented in the following subsections. For zone-level analysis,
there are two floors and each floor has five zones. They have similar patterns in regard to
the sensitivity analysis. One zone from each floor (zone 102 and zone 204) was selected to
demonstrate the sensitivity analysis.

5.2.1. System SA Analysis

The AHU power consumption was studied. Figure 17 illustrates the sensitivity index
for cooling power. The cooling power is sensitive to the random errors of the SAT and
OAT sensors, total errors of the SAT and OAT sensors, and bias errors of the SAT and OAT
sensors. They have equal impacts on cooling power demands.
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Figure 17. SA for RTU cooling power.

Figure 18 illustrates the sensitivity index for fan power demands. The sensor impacts
are similar to the cooling power. Figure 19 illustrates the sensitivity index for main heating
coil heating rates. The SAT and OAT sensors are the most dominant sensors.

Figure 18. SA for RTU fan power.
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Figure 19. SA for RTU main heating coil heating rate.

5.2.2. Zone 204 SA Analysis

At the zone level, four energy consumption variables (zone temperature, zone sensi-
ble heating, zone sensible cooling, and reheat coil energy consumption) and one thermal
comfort variable (zone-predicted percentage of dissatisfied occupants [PPD]) were se-
lected. Figure 20 shows the ranking of the sensitivity index for zone air temperature.
Overall, the system- and zone-level sensors affected the zone temperature. The sensor
with the highest sensitivity index was the zone air temperature sensor with random error.
The random errors were the most influential, followed by total errors and then bias errors.
Figure 21 shows the ranking of the sensitivity index for zone sensible heating. The zone air
temperature sensor with random error had the highest sensitivity index. Figure 22 shows
the zone sensible cooling impacts from the sensors. Figure 23 shows the impacts on reheat
coil energy. Figure 24 shows the sensitive index ranking for zone thermal comfort (PPD).
Across zone 204 outputs, the random errors consistently had stronger impacts.

Figure 20. SA for zone 204 air temperature.
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Figure 21. SA for zone 204 sensible heating.

Figure 22. SA for zone 204 sensible cooling.

Figure 23. SA for zone 204 reheat coil energy.
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Figure 24. SA for zone 204 PPD.

5.2.3. Zone 102 SA Analysis

Sensitivity analysis for zone 102 was performed similarly to that of zone 204.
The impacts of sensor errors on four energy consumption variables (zone temperature,
zone sensible heating, zone sensible cooling, and reheat coil energy consumption) and one
thermal comfort variable (zone PPD) were demonstrated. Figure 25 shows the ranking of
the sensitivity index for zone 102 air temperature. The system-level sensors and zone-level
sensors affected the zone temperature. The zone air temperature sensor with random error
had the highest sensitivity index. Figure 26 shows the ranking of the sensitivity index for
zone sensible heating. The zone air temperature sensor with random error had the highest
sensitivity index. Figure 27 shows the zone sensible cooling impacts from the sensors.
Figure 28 shows the impacts on reheat coil energy. Figure 29 shows the sensitivity index
ranking for zone thermal comfort (PPD). Across zone 102 output variables, random errors
consistently had stronger impacts.

Figure 25. SA for zone 102 air temperature.
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Figure 26. SA for zone 102 sensible heating energy.

Figure 27. SA for zone 102 sensible cooling energy.

Figure 28. SA for zone 102 reheat coil energy.

24



Buildings 2023, 13, 520

Figure 29. SA for zone 102 PPD.

6. Conclusions

This study investigated the incipient sensor impacts on the ASHRAE Guideline 36
control sequences through sensitivity and uncertainty analyses. The sensor errors had
two components: bias error and precision (random) error. The sensor samplings were
performed with normal distributions. Cloud simulations were conducted based on the
sensor samplings and 3600 simulation cases. The results were collected to train surrogate
models for sensitivity analysis.

The energy consumption was classified into system levels (power demands) and zone
levels (zone air temperature, zone sensible heating, zone sensible cooling, and zone reheat
coil energy). The thermal comfort (PPD) at the zone level was also investigated.

The uncertainty and sensitivity analyses were conducted with respect to sensor errors
and energy/thermal comfort variables. The uncertainty analysis showed that the sensor
errors and energy consumptions have a nonlinear relationship. The energy consumptions
have wide distributions compared with the baseline model with sensor error uncertainties:

• The site energy differences could go −3.3% lower or 18.1% higher, compared
with baseline;

• The heating energy differences could go −66.5% lower or 314.4% higher, compared
with baseline;

• The cooling energy differences could go −11.5% lower or 65.0% higher, compared
with baseline;

• The fan energy differences could go 0.15% lower or 6.9% higher, compared
with baseline.

The sensitivity analysis was performed at both system and zone levels. At the system
level, the random errors for SAT and OAT sensors had the most significant impacts. At the
zone level, the random errors were the most influential, followed by total errors and then
bias errors.

In the future, there are a few works worth exploring:

• Other sensitivity analysis methods will be used for comparative analysis;
• Other control strategies or HVAC systems will be used for more demonstrations.

This study clearly demonstrated the severe impacts of incipient sensor faults.
The implications for research, policy, and study are: (1) calibrating sensors as recommended
by the manufacturer. (2) if calibration is feasible, fault mitigations are recommended.
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Abstract: Heating, ventilation, and air-conditioning (HVAC) systems play a significant role in
building energy consumption, accounting for around 50% of total energy usage. As a result, it
is essential to explore ways to conserve energy and improve HVAC system efficiency. One such
solution is the use of economizer controls, which can reduce cooling energy consumption by using
the free-cooling effect. However, there are various types of economizer controls available, and their
effectiveness may vary depending on the specific climate conditions. To investigate the cooling
energy-saving potential of economizer controls, this study employs a dry-bulb temperature-based
economizer control approach. The dry-bulb temperature-based control strategy uses the outdoor
air temperature as an indicator of whether free cooling can be used instead of mechanical cooling.
This study also introduces an artificial neural network (ANN) prediction model to optimize the
control of the HVAC system, which can lead to additional cooling energy savings. To develop the
ANN prediction model, the EnergyPlus program is used for simulation modeling, and the Python
programming language is employed for model development. The results show that implementing
a temperature-based economizer control strategy can lead to a reduction of 7.6% in annual cooling
energy consumption. Moreover, by employing an ANN-based optimal control of discharge air
temperature in air-handling units, an additional 22.1% of cooling energy savings can be achieved. In
conclusion, the findings of this study demonstrate that the implementation of economizer controls,
especially the dry-bulb temperature-based approach, can be an effective strategy for reducing cooling
energy consumption in HVAC systems. Additionally, using ANN prediction models to optimize
HVAC system controls can further increase energy savings, resulting in improved energy efficiency
and reduced operating costs.

Keywords: EnergyPlus; artificial neural network; economizer; discharged air temperature; optimal
control

1. Introduction

The building sector represents one of the largest consumers in the US [1]. Energy
consumption for heating, ventilation, and air-conditioning (HVAC) systems is approxi-
mately 50% of the total energy consumption of the building sector [2]. Therefore, to reduce
building energy, it is essential to reduce heating and cooling energy consumption. To
do so, the American Society of Heating, Refrigerating, and Air-Conditioning Engineers
(ASHRAE) continuously improves the insulation performance of buildings by lowering
the U-value of walls and windows every three years. However, in the case of enhanced
insulation performance, such improvements are introduced through retrofitting or in new
buildings. It is important to control the HVAC systems that are already installed in the
existing building for building energy savings without retrofitting. However, since most of
the existing control methods of the HVAC system are time-based control, optimal control
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may not be achieved. Therefore, the existing HVAC control method is difficult to predict for
the control of the future state of HVAC systems by simultaneously considering variables
that affect building energy consumption [3–5]. To predict and control the future state of the
HVAC system, an artificial neural network (ANN)-based HVAC control is required [3–5].
In addition, ANNs enable accurate prediction through adaptability to external changes.
They enable accurate and efficient control [5]. Previous studies using predictive models to
properly control HVAC systems are described as follows.

Mba et al. predicted indoor air temperature and relative humidity using an ANN to
save cooling energy in residential buildings. According to their findings, the correlation
coefficient between the outcomes of their developed ANN prediction model and the actual
data was 98% [6]. Zhao and Liu proposed a load-predicting method using regression
analysis and artificial intelligence [7]. Chae et al. proposed a data-driven forecasting model
for one-day-ahead energy consumption of commercial buildings at 15-min resolution. They
used a short-term building energy usage forecasting model based on an ANN algorithm [8].
Ding et al. proposed genetic algorithm-based short-term and ultra-short-term prediction
models to predict cooling load in office buildings [9]. Luo proposed an ANN model to
forecast a day-ahead cooling demand in an office building. The researcher argued that the
proposed method can be implemented in the building to predict cooling demand [10]. Nas-
ruddin et al. argued that the ANN-based HVAC control method performed better than the
conventional HVAC control method regarding thermal comfort and energy efficiency [11].

Additionally, Yilmaz and Atik used the ANN model for modeling a cooling system
with variable cooling capacity [12] and Moon et al. developed an ANN model that can
estimate the time needed to restore the indoor temperature from a setback period to the
normal set-point temperature in accommodation buildings during the cooling season [13].
Jani et al. used an ANN model for predicting the performance of the hybrid desiccant
cooling systems [14].

There have been many studies conducted on the appropriate control of the HVAC
system, verification of the accuracy of the predictive model, and HVAC system performance
through predictive control to reduce building energy consumption.

However, few studies have dealt with cooling energy savings through the economizer
system itself.

An economizer system that has a free-cooling effect while introducing outside air into
the room is used to reduce cooling energy and improve indoor air quality. An economizer
system is a cooling system that can reduce energy consumption by introducing outdoor air
into the building. Depending on the outdoor conditions, such as in humid, dry, hot, or cold
regions, control of the economizer should be considered to properly use the economizer.
The following outlines previous studies on economizer systems.

Ezzeldin and Rees conducted a performance evaluation of various cooling strategies
in office buildings in four climates using the EnergyPlus simulation program. The main
results indicated that economizers for free cooling have the advantage of reducing plant
energy consumption while maintaining indoor thermal comfort when compared with
a typical HVAC system. Furthermore, the application of the economizer needs to be
considered in dry climate conditions [15]. Hong et al. proposed an optimal outdoor
air fraction using the economizer control to reduce cooling energy consumption in a
hospital building. The main result was that 6–14% of the cooling energy consumption
could be saved by differential dry-bulb temperature-based control and 17–27% of the
cooling energy consumption using differential enthalpy-based control compared to no
economizer [16]. Lee and Chen examined the potential cooling energy consumption savings
through the free-cooling technology with differential enthalpy control for data centers in
17 climate zones. The results of this study showed that for every 2 ◦C decrease in the indoor
air temperature in the data center, the cooling energy consumption can be reduced by
2.8 to 8.5%, depending on the climate zones. Furthermore, this study revealed significant
potential for free cooling in data centers located in mixed-humid, warm-marine, and mixed-
marine climate zones [17]. Yao et al. conducted simulation research to reduce cooling energy
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consumption by controlling the air-side economizer system in an office building. Dry-bulb
temperature-based control operates on a shorter time scale than enthalpy-based control,
but can produce more cooling energy savings than enthalpy-based control. However, in
the south of China, dry-bulb temperature-based control operates on a longer time scale and
saves more cooling energy than economizer-based control systems [18]. Chowdhury and
Khan analyzed economizer control strategies using the EnergyPlus simulation program.
Measured chiller energy consumption is compared with TRNSYS simulation results, finding
that economizer control can save 72 kW/m2 per month in cooling loads [19]. Wang and
Song proposed an optimal AHU supply air set-point temperature to minimize energy
consumption while maximizing the economizer effect. Wang and Song accounted for a
balance between cooling consumption savings and the increased supply airflow rate when
setting a higher supply air set-point temperature [20]. Yiu et al. conducted an experimental
study to verify an air-side economizer system in an office building in Hong Kong. The
main result was 12.1% of the existing annual cooling energy consumption using the air-side
economizer system [21]. Bulut and Aktacir conducted a detailed analysis of economizers
in climate conditions present in Turkey. The free-cooling potential of the economizer was
determined using actual hourly dry-bulb temperatures. The main result was that the free-
cooling potential is dependent on the supply air temperature and season, and significant
energy savings were achieved, especially in the transition period [22].

In summary, most of the research on economizer systems has focused on how to control
the economizer itself depending on the climatic conditions. Some studies were conducted
by combining the air supply temperature and the economizer control, but the air supply
temperature was not proposed in consideration of the internal and external environment.

This study aims to confirm the free-cooling effect of the economizer system in of-
fice buildings. It also aims to confirm additional energy consumption reduction through
ANN-based optimal air-handling unit (AHU)-discharge air temperature (DAT) control. To
understand the cooling effect of the economizer and ANN-based optimal AHU-DAT con-
trol, a cooling dominant region and differential dry-bulb temperature-based control were
selected due to the climate characteristics. To analyze the cooling effect of the economizer
system, a prototype office building simulation model was used. To propose the ANN-based
optimal AHU-DAT control, the ANN-based load prediction model was established through
Python code.

The primary research inquiries addressed in this paper are as follows:

(1) What is the potential cooling energy savings through the use of ANN-based control?
(2) Does ANN-based control result in greater cooling energy savings compared to the

current rule-based economizer control?

2. Simulation Method

2.1. Simulation Program

Two software programs are used in this study: EnergyPlus version 9.1 for making
simulation models and Python ver. 3.6 for developing the ANN model.

EnergyPlus is a software for building energy simulation, developed by the U.S. De-
partment of Energy (USDOE). It uses the recommended heat balance calculation method
from ASHRAE and can analyze simulations using both heat and mass balance calcula-
tions, which is not possible in other existing simulation programs [5,23,24]. Using the
“Controller: Outdoor air” function in the EnergyPlus simulation program, the economizer
system is controlled.

Python is an interpreted language developed by Amsterdam’s Guido Van Rossum in
1990. Python has been widely used in many areas of social computing, such as web pro-
gramming, data analysis, numerical computation, object-oriented programming, graphic
user interface programming, and system utility building [5,25].
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2.2. Description of the Simulation Model

The simulation model was implemented using the EnergyPlus simulation program.
Figure 1 shows the building simulation model. In this study, an office building model,
developed based on ASHRAE 90.1-2004, is used as a baseline when analyzing energy
consumption, was selected. The size of the building is 52.3 m × 35.2 m (1841 m2), and
the floor-to-floor height is 3.96 m. The building is a three-story office building with a
40% window-to-wall ratio. The space to be analyzed in this study is the core zone on the
second floor that is not directly affected by the external environment, and the size of the
core zone is 43.7 m × 26.1 m (1140.6 m2).

Figure 1. Simulation model.

2.3. Simulation Conditions

Table 1 provides details on the simulation model’s construction and material properties,
which are based on ASHRAE Standard 90.1-2004 for climate zone 3. The cooling set-point
temperature for the model is 26 ◦C, and Table 2 shows the internal heat gains of the model.
The values for material, construction, and internal heat gains are based on ASHRAE 90.1-
2004 [26]. For this study, an AHU-based variable air volume (VAV) system commonly used
in office buildings [3] was selected as the HVAC system. Figure 2 shows that the HVAC
system of the simulation model is an AHU-based VAV system that consists of a hot water
coil and reheating coil receiving hot water from a district heating system, and a cooling coil
receiving chilled water from a district cooling system. The HVAC system operates from
7 a.m. to 10 p.m.

Table 1. Construction properties.

Construction
U-Value

(W/m2·K)
Visible

Transmittance
Solar Heat Gain

Coefficient

Exterior Wall 0.704 - -
Interior Wall 5.68 - -
Raised Floor 1.74 - -
Ceiling Slab 1.88 - -

Roof 0.358 - -
Exterior window 5.835 0.341 0.340

Table 2. Internal heat gain condition.

Type Input

People 0.057 person/m2

Light 10.76 W/m2

Equipment 10.33 W/m2

Cooling set-point temperature 26 ◦C
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Figure 2. System diagram.

2.4. Economizer System

The economizer system regulates the outdoor air damper located in the mixing box,
based on its control type, to introduce outdoor air into the mixing box. By comparing the
dry-bulb temperature or enthalpy of the return air from the zone with fresh air from outside,
the economizer system can reduce the cooling coil’s load while maintaining AHU-DAT. The
outdoor air volume is adjusted by an outdoor air damper, depending on the economizer
controls, such as dry-bulb temperature, and enthalpy. Dry-bulb temperature-based control
is used to determine the outdoor air volume by comparing the outdoor air’s dry-bulb
temperature with that of the return air from the zone. During cooling periods, such as
in the intermediate and summer season, if the outdoor air temperature is lower than the
return air temperature, the amount of outdoor air is increased. Conversely, if the outdoor
air temperature is higher than the return air temperature, the minimum amount of outdoor
air set is applied.

The dry-bulb temperature-based control method only accounts for sensible heat,
whereas the enthalpy-based control method considers both sensible and latent heat. In the
enthalpy-based control method, the enthalpy of the return air and outdoor air is compared.
If the outdoor air enthalpy is lower than the return air enthalpy, the outdoor air volume is
increased. Conversely, if the outdoor air enthalpy is higher than the return air enthalpy, the
minimum set outdoor air volume is used [27].

2.5. Simulation Cases

This study has three simulation cases. Case 1 is the base case in which the economizer
system is not installed, using a fixed AHU-DAT of 12 ◦C. Case 2 is Case 1 with the econo-
mizer system. Case 3 is Case 2 with AHU-DAT control based on an ANN. Cooling energy
consumption savings due to the installation of the economizer system can be analyzed
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by comparing Case 1 and Case 2. Further cooling energy consumption savings due to
ANN-based AHU-DAT control can be analyzed by comparing Case 2 and Case 3.

2.6. Artificial Neural Network (ANN) Modeling

In this study, we used the Numerical Python and Scientific Python libraries of Python
to develop an ANN model, following previous research [5]. Two crucial factors when
designing the ANN model are the selection of the activation function and the learning
method. For the activation function, we used a sigmoid function implemented in non-linear
programs such as energy consumption prediction. This function calculates results using
input values between 0.00 and 1.00 [5].

Regarding the learning method, we used a supervised learning method, commonly
employed in prediction models. This method requires both the input value and the ground
truth. The ground truth is used to determine the reliability of the ANN model against the
predicted result value from the ANN prediction model. The supervised learning method
includes an update process of the weight factors to enhance the ANN model’s reliability.

To elaborate, the input value is multiplied by the weight factor, added to each neuron,
and passed to the input value of the activation function. If the input values are within
the range of a particular threshold, the activation function does not output anything.
Conversely, if the input values are outside the threshold range, the neuron is activated to
transmit data to the next step. Hence, the ANN generates results by taking into account the
data, weight factors, and activation function [5].

2.7. Development Process of the Predictive ANN Model

The predictive ANN model comprises two main components: the ANN component
and the control logic component. The ANN component is responsible for predicting output
datasets and uses a three-step process, illustrated on the left side of Figure 3 [5].

Figure 3. Processes in the predictive ANN model.

The first step involves selecting highly correlated variables with the ground truth. To
achieve this, a correlation analysis of variables is performed to identify input variables
that are highly correlated with the ground truth, using objective indicators such as r2. This
helps to increase the training efficiency [3–5,28].
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The second step is training and testing, when training the ANN, weight factors are
initialized and updated during the learning process to minimize the error rate between the
ANN output and the simulation results. The activation function is applied to the input
data and weight factors to generate a prediction, which is compared to the correct answer
to calculate the error rate [3–5]. This process is repeated for a certain number of iterations,
called epochs, to obtain the weight factors at which the error rate is minimized. To evaluate
the performance of the trained ANN, a separate set of data, called test, or validation data,
is used to measure the accuracy of the model [5]. The test data should be new and unseen
during the training process to ensure the generalization ability of the model [5,28]. The
error rate between the ANN output and the ground truth labels is calculated for the test
data, but the weight factors are not updated during this process [28].

Optimizing the ANN involves tuning hyperparameters such as bias, learning rate,
number of hidden neurons, and number of hidden layers to minimize error rates [5,25].
This is an iterative process that involves training the model multiple times with different
hyperparameters until the desired performance is achieved [5,28].

The coefficient of variance of the root mean square error (cv(RMSE)) is used to ensure
the reliability of the ANN model, with lower values indicating better prediction perfor-
mance. The ASHRAE guideline 14-2014 suggests a tolerance of 30% for the cv(RMSE) value
for hourly data [29], and the user should modify the hyperparameter values and repeat
the process until the cv(RMSE) value is less than 30%. Equations (1) and (2) display the
formulas for RMSE and cv(RMSE), respectively, and Equation (3) shows how to calculate
the measurement period average [30]. The control logic sequence comprises four steps, as
demonstrated on the right side of Figure 3. The first step is to collect input data through
an experimental or simulation study. The second step is to predict the output from the
input datasets, which is linked with the ANN part. The output datasets in this research are
the cooling coil total cooling loads. The third step is to determine the optimal values for
the parameters to be controlled to suggest optimal control after the optimization process
concludes. In this research, the parameters to be controlled are the AHU-DAT to lower
cooling energy consumption. The final step is to operate the cooling system using the
optimal control suggested by the ANN model.

RMSE =

√
∑(S − M)2

interval
Ninterval

(1)

cv(RMSE) =
RMSEperiod

Aperiod
(2)

Aperiod =

√
∑period Minterval

Ninterval
(3)

where

S = ANN model prediction value,
M = EnergyPlus simulation results,
Ninterval = Number of EnergyPlus results, and
Aperiod = Measurement period average.

2.7.1. ANN Model Development

The dataset was partitioned into two distinct sets for different purposes: the training
dataset and the test dataset. During the training stage, the ANN model uses the training
dataset, while the test dataset is employed for testing. To determine the predictive perfor-
mance of the ANN model, it is essential to use different datasets for training and testing. In
this study, EnergyPlus simulation results from April to October, 5136 h, were randomly
shuffled and 70%, 3596 h, were selected as the training data set and 30%, 1540 h, as the test
data set.
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Seven input variables that displayed a high correlation with the cooling coil’s total
cooling load were selected for the model. The seven input variables are outdoor air
dry-bulb temperature, outdoor air relative humidity, direct solar radiation rate per area,
diffuse solar radiation rate per area, occupancy schedule, lights schedule, and electric
equipment schedule.

The initial ANN prediction model structure and input values are presented in Figure 4
and Table 3. The ANN model was initialized with seven input nodes, one hidden layer,
10 hidden nodes, and one output node. The learning rate was set to 10%, and the epoch
value indicated the number of times learning was repeated. The cv(RMSE) of the initial
ANN prediction model was 24.07%, which falls within the acceptable tolerance range of
30% specified in ASHRAE guideline 14-2014 [29].

Figure 4. ANN-based predictive model input data list and structure.

Table 3. Initial ANN structure and parameter values.

Division Range Initial Values

Number of Hidden Layers 1–n 1
Number of Hidden Neurons 1–n 10

Learning Rate 0.1–1.0 0.1
Epochs 1–n 100

The optimization of the ANN prediction model involves identifying the ideal values
for hyperparameters such as learning rate, hidden nodes, epochs, and the number of hidden
layers to improve prediction accuracy. Currently, there are no established methods for
determining optimal hyperparameter values, and it is best to adjust these values iteratively
based on the results. In this study, around 160,000 attempts were made to optimize the
ANN prediction model. Python was used to conceptualize the optimization process, and
the combination with the lowest cv (RMSE) value was chosen based on a comparison of
EnergyPlus simulation results with the cooling coil total cooling load predicted by the ANN
model. Table 4 shows the optimized hyperparameter values and their input range, with
the cv (RMSE) value decreased from 24.07% to 8.44%. Therefore, it was determined that the
optimized ANN prediction model is suitable for HVAC optimal control. Figure 5 shows the
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structure of Python programming code for the optimization process and Figure 6 illustrates
a comparison of the simulation results and those predicted by the ANN prediction model.

Table 4. Optimal ANN structure and parameter values.

Division Range Optimized Values

Number of Hidden Layers 1–n 2
Number of Hidden Neurons Layer 1 1–n 9
Number of Hidden Neurons Layer 2 1–n 8

Learning Rate 0.1–1.0 0.2
Epochs 1–n 267

cv (RMSE) [%] 0~100 8.44%

Figure 5. Structure of the Python programming code for the optimization process.

Figure 6. Comparison of simulation data and ANN results.
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2.7.2. Initial ANN Model Development Optimized Performance Analysis of the ANN Model
Heating, Ventilation, and Air-Conditioning Control Strategy Based on the ANN Results

In this study, a method for determining the appropriate AHU-DAT using the ANN-
based cooling coil total cooling load prediction model was developed. The method involves
determining an AHU-DAT within the range of 12 to 16 ◦C through linear interpolation
based on the cooling coil total cooling load predicted by the ANN prediction model during
the operating hours of the HVAC system. Thus, the predicted cooling coil total cooling
load is used to determine the appropriate AHU-DAT when cooling is required.

3. Analysis and Results

3.1. Weather Conditions

This study used weather data provided by EnergyPlus from the Brown Field Municipal
Airport, one of the cooling-dominated regions. Brown Field Municipal Airport is in
Southern San Diego, CA, USA. The analysis period in this study is the intermediate
and cooling seasons, which is from April to October, to understand the free cooling and
cooling effect of the economizer. April, May, September, and October are selected as the
intermediate season, and June, July, and August are selected as the cooling season. Figure 7
shows the outdoor air dry-bulb temperature and relative humidity in San Diego, CA,
USA. The range of the outdoor air dry-bulb temperature during the analysis period is
10.8–31.2 ◦C, and the range of the outdoor air relative humidity during the analysis period
is 7–100%. The analysis period is 5136 h. Observing the outdoor air relative humidity,
4831 h is more than 50% of the outdoor air relative humidity, which is 94% of the total
analyzed period.

Figure 7. Outdoor air dry-bulb temperature and relative humidity in San Diego, CA, USA.

3.2. Analysis of Representative Days of the Intermediate and Cooling Season
3.2.1. Comparison of the Pattern for Cooling Coil Total Cooling Load and Air-Handling
Units with Discharge Air Temperature in the Representative Days of the Intermediate and
Cooling Season

This paper uses 15 May as a representative day of the intermediate season and
11 August as a representative day of the cooling season. Representative days were chosen
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because they represent the average outdoor air temperature in the intermediate and cooling
seasons. Figure 8 shows the change in AHU-DAT according to the cooling coil’s total
cooling load during the representative days in the intermediate and cooling seasons. The
cooling load pattern is similar to outdoor air temperature in all three cases. Since the cooling
system operates from 7 a.m. to 10 p.m. in all cases, there is no cooling load from 11 p.m.
to 6 a.m. In the case of the AHU-DAT value, it was found that Cases 1 and 2 were tightly
controlled at 12 ◦C regardless of changes in the cooling load, and in Case 3, AHU-DAT is
controlled by fluctuating within the range of the maximum of 16 ◦C to the minimum of
12 ◦C as the cooling load changes.

Figure 8. Comparison of the cooling coil total cooling load and AHU-DAT pattern in the representa-
tive days.

When comparing the cooling load of each case on the representative day of the
intermediate season, compared to Case 1, Case 2 showed a maximum reduction in cooling
load of 53% at 7 a.m. when the outside temperature was relatively low, and Case 3 showed
99% less cooling load.

Considering the average daily data, Case 2 showed 35% less cooling load than Case 1,
and Case 3 showed 61% less cooling load than Case 1. The explanation of the difference
in the cooling load of each case is as follows. In both Cases 1 and 2, the AHU-DAT is the
same at 12 ◦C, but in Case 2, the cooling load is lower than that of Case 1, which introduces
only the minimum amount of outdoor air. This is because the economizer system performs
free cooling when the outside air temperature is lower than the return air temperature. In
addition, in Case 3, free cooling is performed through an economizer in the same manner
as in Case 2, but since AHU-DAT is controlled according to the cooling load, less cooling
load is required compared to Case 2.

When comparing the cooling load of each case on a representative day in the cooling
season, Case 2 required more cooling load than Case 1, contrary to the results of the
representative day in the intermediate season. In addition, Case 3 showed a relatively
higher cooling load than Case 1 from 9 a.m. to 5 p.m. Comparing this with daily average
data, compared to Case 1, Case 2 showed an average of about 18% and Case 3 an average
of about 3% more cooling load. This can be explained in Figure 9, which compares the
enthalpy of the outdoor air and mixed air of the representative days, where OA is outdoor
air, MA is mixed air, and RA is return air. The blue box in Figure 9 is the enthalpy of the
outdoor air and mixed air of Cases 2 and 3. The red box in Figure 9 is the enthalpy of the
return air from the zone in Case 1, and the grey box is the mixed air of Case 1.

The average value of the outdoor air enthalpy from 7 a.m. to 10 p.m. on the represen-
tative day of the intermediate season is about 41 kJ/kg, the return air enthalpy of Case 1 is
48 kJ/kg, and the mixed air enthalpy is 45 kJ/kg. In the case of the representative day in
summer, the average value of the outdoor air enthalpy is about 54 kJ/kg, the return air
enthalpy of Case 1 is 49 kJ/kg, and the mixed air enthalpy is 45 kJ/kg.
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Figure 9. Comparison of the enthalpy in the representative days.

The reason that the enthalpy of the outdoor air and the enthalpy of mixed air of Cases
2 and 3 are similar on the representative day of both intermediate and cooling seasons is
that the economizer system performs free cooling because the outdoor air temperature is
lower than the cooling set temperature of 26 ◦C. In addition, the reason the enthalpy of the
mixed air in Case 1 is higher than that in the other two cases in the intermediate season is
that Case 1 introduces only the minimum outdoor air when cooling is needed. Because the
enthalpy of the outside air is relatively lower than that of the return air, the enthalpy of
the mixed air in Case 1 is higher than that of the other two cases where 100% outdoor air
is introduced.

In contrast, in the case of the cooling season, the economizer system performs free
cooling using outdoor air, which has higher enthalpy than that of return air. Even if the
AHU-DAT of Case 2 is the same as Case 1, the enthalpy of the mixed air in Case 2 is higher
than that of Case 1, in which only the minimum outdoor air is introduced. Due to the
higher enthalpy, more cooling load is required in Case 2 compared to Case 1.

In addition, in Case 3, free cooling is performed through outdoor air in the same
manner as in Case 2; however, the AHU-DAT of Case 3 is relatively higher than that of
Case 2 by controlling the AHU-DAT according to the cooling load. As a result, it is judged
that relatively less cooling load is required compared to Case 2.

3.2.2. Comparison of the Fan Flow Mass Rate in the Representative Days of the
Intermediate and Cooling Season

Figure 10 shows the fan mass flow rate in each case in the representative days. In all
cases, the fan was operated only from 7 a.m. to 10 p.m., when the HVAC system operates.
On the representative day of the intermediate season, Cases 1 and 2 showed the same fan
mass flow rate of 1.54 kg/s at all times, and Case 3 showed the maximum fan air volume of
2.06 kg/s at 5 p.m., the minimum fan mass flow rate of Case 3 was 1.5393 kg/s, the same as
Cases 1 and 2 at 8 a.m. and from 6 p.m. to 10 p.m. Comparing the fan mass flow rate of
Case 3 to the other two cases, Case 3 required an average of 19% greater fan mass flow rate
per day.

Cases 1 and 2 showed the same fan mass flow rate because the temperature difference
between the indoor cooling set-point temperature and AHU-DAT was fixed at 12 ◦C
regardless of the cooling coil’s total cooling load. In addition, the reason that the fan mass
flow rate was the same at all times is that the outside air temperature was lower than the
indoor set temperature of 26 ◦C due to the characteristics of the intermediate season. That
is why the cooling load can be handled with only the minimum fan mass flow rate under
the condition that the AHU-DAT is set to 12 ◦C.
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Figure 10. Comparison of the fan flow mass rate in the representative days.

However, in Case 3, the temperature difference between the cooling set-point temper-
ature and the AHU-DAT changes continuously because the AHU-DAT changes according
to the cooling coil’s total cooling load. In accordance with this, the fan mass flow rate is
also increased or decreased to handle the cooling load. Therefore, although the cooling
loads of all the cases are the same, a relatively high fan mass flow rate is required because
the temperature difference between the AHU-DAT of Case 3 and the cooling set-point
temperature is smaller than in the other two cases.

On the representative day of the cooling season, the maximum fan mass flow rate of
1.68 kg/s was reached at 5 p.m. in Case 1 and Case 2, and the minimum fan air volume of
1.54 kg/s at 8 a.m. and from 6 p.m. to 10 p.m. Case 3 showed the maximum fan mass flow
rate of 1.85 kg/s at 4 p.m. and the minimum fan air volume of 1.54 kg/s at 8 a.m. and from
7 p.m. to 10 p.m. Comparing the fan mass flow rate of Case 3 to the other two cases, Case
3 required 7% more fan mass flow rate per day.

On the representative day of the cooling season, Case 3 shows that the AHU-DAT is
controlled at a lower temperature compared to the intermediate season, as a result of the
higher cooling load. Due to the lower temperature provided to the zone, the supply air
flow rate is decreased. In addition, the fan mass flow rate of Cases 1 and 2 is increased or
decreased according to the cooling load pattern. This is because the outside air temperature
in the cooling season is relatively high compared to the intermediate season, which is why
the cooling load cannot be handled with only the minimum fan mass flow rate.

3.2.3. Comparison of the Cooling Energy Consumption in the Representative Days

Table 5 shows the cooling energy consumption on the representative days. In the
case of the representative day in the intermediate season, Through the installation of the
economizer system, fan electric energy is the same as in Case 1 due to the same AHU-DAT;
however, electric energy for the chiller and pump is decreased. Additionally, 31.4% of total
cooling electric energy can be saved through the installation of the economizer system.
By optimal AHU-DAT control, electric energy for the chiller and pump can be reduced;
however, fan electric energy is increased due to the higher temperature of the AHU-DAT
than that of Case 1 and Case 2: 52.3% of total electric energy for cooling can be saved. In the
cooling season, Case 2 consumes 17.0% more cooling energy than Case 1 due to introducing
more outdoor air than Case 1. Case 3 consumes less cooling energy than Case 2; however,
it still consumes 5.3% more cooling energy than Case 1.
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Table 5. Comparison of the cooling energy consumption in each case on the representative days.

Intermediate Season Cooling Season

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

District cooling energy [kWh/day] 287.2 189.1 118.9 457.9 540.2 483.1
Chiller (COP 5) electric [kWh/day] 57.4 37.8 23.8 91.6 108.0 96.6

Fan electric [kWh/day] 4.9 4.9 6.1 5.1 5.1 5.6
Pump electric [kWh/day] 2.0 1.5 0.9 2.8 3.3 2.7

Total cooling energy [kWh/day] 64.3 44.1 30.7 99.5 116.4 104.8

3.3. Analysis of Cooling Energy Consumption in the Intermediate and Summer Seasons

Table 6 shows the cooling energy consumption in each component for each case in the
intermediate and cooling seasons. Case 2, with an economizer system with differential dry-
bulb temperature-based control, uses 25,292 kWh of district cooling energy and saves 18.9%
of district cooling energy compared to Case 1. As analyzed above, even if an economizer
is installed, AHU-DAT is equal to 12 ◦C for Cases 1 and 2. Therefore, since Cases 1 and
2 are the same as the temperature supplied to the room for cooling at 12 ◦C, the fan electric
energy consumption is the same regardless of the presence of an economizer system. Due to
the free-cooling effect of the economizer system, the pump electric energy used to circulate
chilled water in the cooling coil is 186 kWh, which uses 13.5% less electricity than Case 1.
When comparing the total cooling energy, it consumes 10.6% less cooling energy than Case
1 due to the economizer installation. When AHU-DAT is controlled, 45.8% of the district
cooling energy can be saved when compared to Case 1, and 33.2% of the district cooling
energy can be saved when compared to Case 2. In the case of fans, Case 3 uses more fan
electrical energy than the other two cases. This is because a higher air volume is required
since AHU-DAT, which is relatively higher than the other two cases, is supplied to the zone.
The total amount of electric energy used for cooling is 4088 kWh, which is 41.1% less than
Case 1 and 34.2% less than Case 2.

Table 6. Cooling energy consumption in the intermediate and summer seasons.

Intermediate Season Cooling Season

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

District cooling energy [kWh] 31,174 25,292 16,907 30,261 31,057 24,372
Chiller (COP 5) electric [kWh] 6235 5058 3381 6052 6211 4874

Fan electric [kWh] 496 496 600 386 386 444
Pump electric [kWh] 215 186 106 194 202 139

Total cooling energy [kWh] 6945 6211 4088 6632 6799 5458

In the case of the cooling season, the district cooling energy and pump electricity
consumption increase due to the installation of the economizer system, unlike during the
intermediate season. This is because of the enthalpy of the mixing air, which is described
in the analysis of a representative day. As with the intermediate season, the fan electric
energy consumption is the same regardless of the economizer system installation. Due to
the installation of the economizer, the total electric energy consumption used for cooling is
6799 kWh, which is a 2.5% increase compared to Case 1. In Case 3, only the electric energy
used in the fan increases, and the district cooling energy and pump electric energy use
decreases, as in the intermediate season. The total electricity consumption used for cooling
is reduced by 17.7% when compared to Case 1 and by 19.7% when compared to Case 2.

Figure 11 shows the amount of electric energy used for cooling in the intermediate
and cooling seasons. The total amount of electric energy for cooling in Figure 9 is under
the assumption that a chiller with a coefficient of performance (COP) of 5 is used. Case
2 consumes 12,539 kWh/year for cooling. Compared with Case 1, installation of the
economizer system can save 7.6% of electricity energy. The amount of electric energy in
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the cooling season is increased due to the installation of the economizer system, but the
free-cooling effect of the economizer system reduces the electric energy in the intermediate
season. For this reason, the total electric energy consumption for cooling is reduced.
Case 3 consumes 9545 kWh/year of electricity for cooling is used during a year. Compared
with Case 1, electric energy of 29.7% can be saved, and compared with Case 2, 23.9% of
electric energy can be saved.

Figure 11. Comparison of the total cooling energy consumption.

Figure 12 shows the cumulative time and hourly average cooling coil total cooling load
per hour for each range of AHU-DAT in Case 3. For the analysis of the AHU-DAT in Case
3, the data were divided into five ranges. In Case 3, the AHU-DAT changes according to
the cooling coil’s total cooling load. The cumulative time when the AHU-DAT is controlled
by 15 ◦C is the maximum, and the cumulative time decreases in the order of 14, 16, 13,
and 12 ◦C. Since AHU-DAT of Case 3 is usually controlled higher than the other two
cases whereas AHU-DAT is fixed at 12 ◦C, the cooling load of the cooling coil is reduced,
therefore reducing cooling energy consumption.

Figure 12. Cumulative operation hours and hourly average cooling coil total cooling load in each
AHU-DAT range.
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4. Conclusions

In this research, an ANN prediction model is used to propose an optimal AHU-DAT
control approach in an office building that implements differential dry-bulb temperature-
based economizer control. The results of the study demonstrate that the AHU-DAT optimal
control can lead to an additional cooling energy savings of approximately 23.9% in an office
building with an economizer control within the temperature range of 12 to 16 ◦C. The
installation of the economizer system showed a reduction in cooling energy consumption
due to the free-cooling effect in the intermediate season; however, it resulted in increased
cooling energy consumption in the summer season due to the higher enthalpy of the
introduced outside air. When comparing the annual cooling energy consumption, the
reduction of the cooling energy consumption in the intermediate seasons is larger than
the increase in the cooling energy consumption in the summer season, resulting in annual
cooling energy savings by installing the economizer system. Moreover, this research
confirms that further cooling energy savings can be attained through optimal AHU-DAT
control. Although this study focuses on hot and humid climates, future studies aim to
analyze the change in cooling energy consumption via the installation of an economizer
system and optimal control of AHU-DAT in different climate conditions. Furthermore, a
future study will analyze an enthalpy-based economizer with the on/off control strategy.
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Nomenclature

Abbreviations
HVAC Heating, ventilation, and air conditioning
ANN Artificial neural network
ASHRAE American Society of Heating, Refrigerating, and Air-Conditioning Engineers
AHU Air-handling unit-
DAT Discharge air temperature
USDOE U.S. Department of Energy
VAV Variable air volume
cv (RMSE) Coefficient of variance of the root mean square error
COP Coefficient of performance
OA Outdoor air
MA Mixed air
RA Return air
Units
m Meter
m2 Square meter
W/m2·K Watts per square meter-Kelvin
kg/s Kilogram per second
person/m2 Number of people per square meter
W/m2 Watts per square meter
◦C Degree Celsius
kJ/kg Kilojoule per kilogram
% Percentage
kWh Kilowatt-hour
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Symbol
S ANN model prediction value,
M EnergyPlus simulation results
Ninterval Number of EnergyPlus results
Aperiod Measurement period average
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Abstract: This paper proposes the optimal algorithm for controlling the HVAC system in the target
building. Previous studies have analyzed pre-selected algorithms without considering the unique
data characteristics of the target building, such as location, climate conditions, and HVAC system
type. To address this, we compare the accuracy of cooling load prediction using ANN and LSTM
algorithms, widely used in building energy research, to determine the optimal algorithm for HVAC
control in the target building. We develop a simulation model calibrated with actual data to ensure
data reliability and compare the energy consumption of the existing HVAC control method and
the two algorithms-based methods. Results show that the ANN algorithm, with a CV(RMSE) of
12.7%, has a higher prediction accuracy than the LSTM algorithm, CV(RMSE) of 17.3%, making it a
more suitable algorithm for HVAC control. Furthermore, implementing the ANN-based approach
results in a 3.2% cooling energy reduction from the optimal control of Air Handling Unit (AHU)
Discharge Air Temperature (DAT) compared to the fixed DAT at 12.8 ◦C in a representative day.
This study demonstrates that ML-based HVAC system control can effectively reduce cooling energy
consumption in HVAC systems, providing an effective strategy for energy conservation and improved
HVAC system efficiency.

Keywords: EnergyPlus; artificial neural network; long short-term memory; discharged air tempera-
ture; optimal control

1. Introduction

1.1. Background

According to the Annual Energy Outlook 2019 published by the U.S. Energy Infor-
mation Administration (EIA), the building sector accounts for 40% of the total energy
consumed in the United States. Commercial buildings constitute about 50% of total energy
consumption, of which about 40% is used for heating, ventilating, and air conditioning
(HVAC) [1]. The International Energy Agency (IEA) report “The Future of Cooling” af-
firmed that global energy demand and district cooling and heating demand had increased
rapidly over the past decade due to economic development—electricity energy consump-
tion for space cooling accounts for about 20% of total building energy. In addition, the
report emphasized that if space cooling systems remain inefficient, global cooling energy
demand will be three times higher in 2050 than in 2016 [2].

High-efficiency cooling systems or optimal control of cooling systems should be
considered to increase cooling system efficiency. High-efficiency cooling systems are
suitable for newly built buildings but are challenging to apply in existing buildings due to
the cost and time required for system replacement. Therefore, to increase the efficiency of
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cooling systems already installed in existing buildings, the better option is to ensure their
optimal control [3].

Various studies on optimal control methods for HVAC systems have used advanced
technology, such as machine learning (ML)-based controls [3–5]. Based on their learning
method, ML methods are generally categorized into three main types: supervised learning,
semi-supervised learning, and unsupervised learning. The selection of the learning method
primarily depends on the intended purpose. For tasks involving regression, such as
prediction and control, a supervised learning-based algorithm is generally suitable [3–5].
Artificial neural networks (ANNs), particularly those that imitate the human brain, and
Long Short-Term Memory (LSTM) algorithms specialized in time series data are widely
utilized as the primary algorithms in supervised learning [5–19].

Previous studies have utilized ANN and LSTM algorithms to predict building energy
consumption, cooling and heating load, and control HVAC systems. Using an ANN-
based prediction model, Lee et al. measured the cooling energy reduction effect during
summer according to Air Handling Unit (AHU) optimal temperature control. The research
results showed that compared to a conventional control method, the ANN-based predictive
control method could reduce cooling energy consumption by approximately 10%. The
authors argued that the ANN-based control algorithm could be applied to various forced
air systems by taking dynamic operating conditions [5]. Qian et al. asserted that accurate
HVAC system load forecasting is required for optimal control and design. They developed
an ANN-based load forecasting model and analyzed its accuracy. The proposed model
showed 10% more accuracy than the conventional load forecasting method [6].

Moon et al. developed an ANN-based Variable Refrigerant Flow system control
algorithm to increase the cost-effectiveness in the heating season. Comparing simulation
results with ANN prediction results, they found that the ANN model has a coefficient of
variation root mean square error (CV[RMSE]) of 7.42%. The ANN model was embedded
in the control algorithm to determine the intermittent operation. They confirmed that
the ANN model and the control algorithm could enhance the prediction accuracy and
cost-effectiveness of the heating system [7]. Park et al. proposed an ANN-based prediction
model to forecast the energy cost for a VRF heating system. In the performance evaluation,
the prediction accuracy of the proposed model was within the recommended level, with a
coefficient of variation root mean square error of 4.87%. They suggested that the predicted
energy cost can be used as a determinant for the control algorithm to reduce operating
costs [8]. Mtibaa et al. developed an LSTM-based model predictive control method. The
prediction model was used for energy consumption, peak demand, and indoor thermal
discomfort during occupied hours. The results showed that the LSTM model reduced
energy consumption and indoor thermal discomfort degree [9].

Sendra-Arranz and Gutierrez stated that the HVAC system predictive control is es-
sential to realize demand-side management strategies. They developed an LSTM-based
prediction model to forecast a day ahead of the energy consumption of an HVAC system.
The model showed outstanding results, supported by a Pearson test correlation coefficient
0.972 and a normalized root mean square error of 0.052 [10]. Mba et al. conducted a
study to predict room temperature and humidity in the past using ANN to reduce cooling
energy in residential buildings. The ANN model showed 98% accuracy [11]. Zhao and
Liu proposed a load-predicting method for office buildings based on regression analysis
and artificial intelligence [12]. Afram et al. studied ANN-based HVAC optimal control in
residential buildings. They found that HVAC operation costs can be lowered using the
proposed ANN-based HVAC control strategy [13]. Jang et al. developed an LSTM-based
prediction model to predict the heating energy consumption in daycare centres. They used
environmental data and building operation pattern data to train the LSTM model. The
optimized LSTM model showed a CV(RMSE) of 17.6% during the winter season [14]. Faid
et al. proposed prediction models based on LSTM, support vector regression, and Gaussian
process regression to predict the peak electricity usage of a target building. The electricity
usage included the electric equipment and HVAC systems energy consumption of the
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building. They found that the LSTM model showed the highest accuracy among the three
models. However, they cited the need for massive time series data as a drawback of LSTM
models [15]. Fang et al. developed an LSTM-based prediction model to determine the accu-
rate indoor temperature for controlling the HVAC system [16]. Bouktif et al. constructed a
model for predicting short- and mid-term building electric loads using the LSTM algorithm
and established that the proposed LSTM model has high accuracy [17].

Similarly, Somu et al. developed an LSTM model to predict building energy consump-
tion. Their proposed model also showed high accuracy [18]. Peng et al. claimed that their
LSTM model demonstrates high efficiency in building load forecasting [19].

In summary, many previous studies have analyzed pre-selected algorithms without
considering the data characteristics of the target building. However, many factors influence
building loads, such as location, climate conditions, and HVAC system type. It is, therefore,
crucial to carefully select an appropriate algorithm that considers the specific characteristics
of the target building. Furthermore, ensuring the reliability of the findings was challenging
in certain studies because simulations were not calibrated with actual building data. To
achieve reliable algorithm-based HVAC control, it is imperative to establish the credibility of
the algorithm. Ensuring the reliability of actual HVAC control is crucial, even if predictions
are accurate in an ideal environment. The use of unverified data can undermine this
reliability. Therefore, utilizing a calibrated model based on the actual data is essential. In
this study, we address this concern by developing a calibrated simulation model, which
enhances the reliability of the data used.

Our research objective is to determine the optimal algorithm for HVAC system control
in the target building. To achieve this, we compare the accuracy of cooling load prediction
using two widely utilized algorithms in building energy research: ANN and LSTM. Addi-
tionally, we investigate the impact of cooling load prediction accuracy on HVAC control
by comparing the patterns of AHU discharge air temperature (DAT) control values. We
select the most suitable ML algorithm for the target building based on these comparisons.
Furthermore, we evaluate the feasibility of applying ML-based HVAC control by selecting
representative dates for analysis.

1.2. Scope

This study aims to find the optimal algorithm for HVAC system control in the target
building. We used Python programming to develop prediction models using ANN and
LSTM algorithms. To train and test two models, we utilized an EnergyPlus simulation
model calibrated by the actual data. We compared the accuracy of the prediction mod-
els and then conducted a comparative analysis of AHU-DAT patterns to determine the
optimal algorithm for HVAC control in the target building. In addition, we performed a
feasibility analysis by analyzing a representative day to assess the potential for ML-based
HVAC control in the target building. A visual representation of our process can be found
in Figure 1.
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Figure 1. Overview of the research flow.

2. Machine Learning-Based Prediction Model: Concept and Formulation

2.1. Artificial Neural Network

Figure 2 shows the structure of an ANN algorithm with an input layer, a hidden layer,
and an output layer. In the following paragraphs, we explain the process and outline the
formulas related to the learning method of ANN.
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Figure 2. ANN algorithm structure.

The critical advantage of ANN is its robustness to noisy input data. They can learn
to generalize from training examples and make accurate predictions even in noise [3–12].
However, a limitation of ANN is that they are not inherently designed to capture temporal
dependencies in sequential data. They treat all inputs independently, which can be a
drawback in tasks where the order or timing of the data is essential [3–12].

First, ANN prints a predicted value through a certain calculation process in the input,
hidden, and output layers based on the input data using feed-forward propagation. After
which, it performs an error back-propagation process to identify the error between the pre-
dicted value and the correct determined value, which is then reflected in the next learning.

The feed-forward neural network, the basic algorithm of ANN, is transmitted from
the input layer and the hidden layer to the output layer. Each layer consists of nodes,
and each node is connected. When neurons in the input layer receive an external input,
weight factors are applied to input data and output values through the activation function.
Equations (1) and (2) [4,20] are the formulas used for data forward propagation in ANN,
using sigmoid as an activation function [4,20].

y = σ(b + ∑n
i=1 xiwi) (1)

where
y = output of the node,
σ = sigmoid function,
b = bias,
n = number of nodes in a previous layer connected to the node,
xi = input values of nodes in a previous layer connected to the node, and
wi = weight factor of all nodes connected to the node.

σ =
1

1 + e−x (2)

where
x = a value obtained by adding a bias to the value multiplied by all input values input

to the node and a weight factor.
When an error occurs in the resulting data, updating the weight factor by propagating

the error to the previous layer is repeated. This process is called back-propagation. The
optimal value is found by updating the weight factor during the back-propagation process
by repeating the gradient descent method. This process also minimizes the error rate of the
ANN model and increases the prediction accuracy of printed data.
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Equations (3)–(6) are the formulas used for updating the weight factor through the
gradient descent method [20]. Equation (3) is the final formula for calculating the error
function for the weight factor of each node located between the hidden layer and the output
layer [20].

∂E
∂who

= −(to − oo)× sigmoid(∑h who × oh)(1 − sigmoid(∑h who × oh))×oh (3)

where
∂E

∂who
= slope of the error for the weight factor located between the hidden layer and

the output layer,
to − oo = difference between the printed values and the correct answer,
sigmoid(∑h who × oh) = sum of the input values coming in the node located in the

output layer, and
oh = output value of the node located in the hidden layer.
Equation (4) is the formula for updating the weight factor between the hidden and

output layers based on the calculated error function [20]. The updated weight factor can
be calculated by subtracting the value obtained and multiplying the error slope calculated
in Equation (6) by a constant from the previous value of the weight factor. The constant α
adjusts the intensity of the change, which is called the learning rate [4,20].

New (who) = Old (who)− α
∂E

∂who
(4)

where
who = weight factor between the hidden layer and the output layer,
α = learning rate, and

∂E
∂who

= slope of the error for the weight factor between the hidden and output layers.
Equation (5) is the final formula for calculating the error function for the weight factor

of the nodes between the input and hidden layers [20].

∂E
∂wih

= −(eh)× sigmoid(∑i wih × oi)(1 − sigmoid(∑i wih × oi))×oi (5)

where
∂E

∂wih
= slope of the error for the weight factor between the input layer and the hidden

layer,
eh = back-propagation error transmitted to the hidden layer,
sigmoid(∑i wih × oi) = sum of the input values from the input layer to the node located

in the hidden layer, and
oi = output of the node in the input layer.
Equation (6) is the formula for updating the weight factor located between the input

layer and the hidden layer based on the calculated error function [20].

New (wih) = Old (wih)− α
∂E

∂wih
(6)

where
wih = weight factor between the input layer and hidden layer,
α = learning rate, and

∂E
∂wih

= slope of the error for the weight factor between the input layer and hidden
layer.

2.2. Long Short-Term Memory

Long Short-Term Memory is an algorithm that compensates for the shortcomings
of RNN. RNN was introduced in the study of David Rumelhart in 1986. It is a type of
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ANN characterized as having an internal circular structure of data [21]. It involves saving
previous data and feeding it back when inputting new data so it is not forgotten. Unlike
ANN, where all input data are independent, RNN processes input data in its internal
memory so that all input values are related [22]. As such, RNN is suitable for learning time
series data with temporal correlation [23].

In addition, RNN uses “back-propagation through time” during training, performing
back-propagation of errors up to the earliest time step for every time step [24]. If the time
step exceeds a certain period of time, gradient vanishing can occur in which the learning
rate is not updated, and long-term patterns cannot be learned [23]. To overcome these
shortcomings of RNN, Sepp Hochreiter and Jürgen Schmidhuberdm introduced LSTM in
1997 [22]. Figure 3 shows the structure of LSTM.

Figure 3. LSTM algorithm structure.

The LSTM structure, as shown in Figure 3, is designed to continuously transmit
information necessary for long-term learning by improving the existing RNN structure.
Learning is performed on time-dependent data input through a long-term memory device
called cell state—the core of LSTM. In LSTM, a forget gate, an input gate, a hidden state,
and an output gate are added to the existing RNN memory cell. The role of the forget gate
and input gate is to update the value of the cell state. Meanwhile, the hidden state and the
output gate’s role is to print a predicted value based on the updated cell state value and
input value.

LSTM has a key advantage in that it is specifically designed to model and capture
long-term dependencies in sequential data [14–19]. With a memory cell that can store
information over extended time intervals, LSTM is effective in tasks involving time series
analysis, natural language processing, and speech recognition [25]. However, a significant
drawback of LSTM is its higher computational cost than ANN [23].

The learning method of LSTM entails several formulas. Equations (7)–(11) calculate
the forget gate and input gate to update the cell state [25]. The forget gate calculates a value
based on the input data of the current time step and the predicted value of LSTM in the
previous time step. The value calculated for the forget gate is then multiplied by the cell
state value of the previous time step. The output value of LSTM in the previous time step
and the input data in the current time step helps determine if the value of the cell state in
the previous time step needs to be reduced through the forget gate.

Equation (7) is the formula for the forget gate [25].

ft = σ
(

Wf [ht−1, xt] + b f

)
(7)

where
ft = output of the forget gate,
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σ = sigmoid function,
Wf = weight factor assigned to the forget gate,
ht−1 = output value of LSTM in the previous time step,
xt = input data in the current time step, and
b f = bias assigned to the forget gate.
The input gate plays a role in determining how much new information is stored

in the cell state. First, the input gate calculates the output value of the input gate us-
ing Equation (8) and determines new values that can be added to the cell state using
Equations (9) and (10) [25]. After which, Equations (8) and (9) are multiplied to output
one value [25]. This value is then added to the updated cell state value through the forget
gate to determine the cell state value of the current time step, which is represented in
Equation (11) [25].

it = σ (Wi[ht−1, xt] + bi) (8)

where
it = output of the input gate,
σ = sigmoid function,
Wi = weight factor assigned to the input gate,
ht−1 = output value of LSTM in the previous time step,
xt = input data in the current time step, and
bi = bias assigned to the input gate.

C̃t = tanh (WC[ht−1, xt] + bC) (9)

where
C̃t = new values that can be added to the cell state,
tanh = hyperbolic tangent activation function,
WC = weight factor assigned to the layer,
ht−1 = output value of LSTM in the previous time step,
xt = input data in the current time step, and
bC = bias assigned to the cell state.

tanh(x) =
e2x − 1
e2x + 1

(10)

Ct = ( ft ∗ Ct−1) +
(

it ∗ C̃t

)
(11)

where
Ct = value of the cell state at this time step determined through the forget gate and

input gate,
ft = output of the forget gate,
Ct−1 = value of the cell state in the previous time step,
it = output of the input gate, and
C̃t = new values that can be added to the cell state.
The output gate plays a role in printing output values of LSTM in the current time

step. The output gate uses the calculated value of the output gate in Equation (12) and the
updated value of the cell state in Equation (11) to print the predicted output value of LSTM
in the current time step using Equation (13) [25].

ot = σ (Wo[ht−1, xt] + bo) (12)

where
ot = output of the output gate,
σ = sigmoid function,
Wo = weight factor assigned to the output gate,
ht−1 = output value of LSTM in the previous time step,
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xt = input data in the current time step, and
bo = bias assigned to the output gate.

ht = ot ∗ tanh(Ct) (13)

where
ht = output value of LSTM in the current time step,
ot = output of the output gate,
tanh = hyperbolic tangent activation function, and
Ct = value of the cell state at this time step determined through the forget gate and

input gate.
As previously shown in Figure 3, both the value of the cell state in Equation (11) for

long-term memory and the output value of LSTM in Equation (13) for short-term memory
are transferred to the input value of the next time step [25]. Due to this unique structure,
LSTM can long-term memory storage of input data without gradient vanishing.

2.3. Development Process of ML Models

In this study, we developed ANN and LSTM models using the Keras library through
Python version 3.9.5. Keras is a library for ML written in Python and an ML platform based
on TensorFlow. The Keras library offers a significant advantage in ease of implementation
and optimization, as the ML and Deep Learning algorithms can be structured simply
using the Keras. Layers and Keras.Models modules. It is currently used to build various
algorithms, such as ANN, recurrent neural networks, LSTM, and convolutional neural
networks [26].

Developing an ML-based prediction model entails three significant steps: input vari-
ables selection, algorithm training and testing, and optimization.

The first step in implementing an ML-based predictive model is input variables
selection. It is important to select input variables with high correlation, which can be
done through correlation analysis of input and output variables. To check the correlation
between two linearly related variables, we used the Pearson correlation coefficient, one of
the commonly used statistical methods.

The closer |r| is to 1.0, the higher the correlation between variables X and Y. The
closer |r| is to 0, the lower the correlation between the variables. In this study, we used
Falk and Miller’s determination (r2 > 0.7), the criterion for determining the suitability of
variables in the engineering field, as the primary criterion [27]. According to previous
research, if no variable meets the primary criterion, |r|> 0.3 can be used as the secondary
criterion to select and determine the appropriateness of the input variable [28].

Table 1 shows the results of the Pearson correlation analysis of input and output
variables for the ML-based cooling load prediction model. Among these variables, those
that satisfy the primary criterion for judging suitability r2 > 0.7 are lighting schedules
(%), people schedules (%), and day and hour types (-) [27]. The remaining five variables
do not satisfy the primary criterion but satisfy the secondary criterion |r| > 0.3 [28].
Accordingly, all eight variables are considered suitable for use in the ML-based cooling
load prediction model.

Table 1. Correlation analysis results.

Correlation
Factor with

Cooling
Load

Outdoor
Air Tem-
perature

(◦C)

Outdoor
Air

Relative
Humidity

(%)

Diffuse
Solar

Radiation
(W/m2)

Direct
Solar

Radiation
(W/m2)

Lighting
Schedules

(%)

Electric
Equipment
Schedules

(%)

People
Schedules

(%)

Day and
Hour Type

(-)

r 0.5621 −0.5022 0.4737 0.4863 0.8694 0.8353 0.9061 0.9446
r2 0.3159 0.2522 0.2243 0.2365 0.7558 0.6977 0.8210 0.8923
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When developing an ML model, if the same data set is used in the training and
validation process, ML can generate good predictions under certain conditions, but it may
not sufficiently consider new patterns of data that have not been experienced. Therefore,
in this study, we divided the data into two categories: learning data and testing data.
Only learning data was used in the learning part, while only testing data was used in
the verification part. Simulation data were collected from June to August 2017, a total
of 2208 hours. To check the adaptability of ML to a new pattern not experienced during
training, the entire data was divided at a ratio of about 66:34, and training and tests were
conducted. In this study, 1 June to 31 July was designated as a period for training, while
1 August to 31 August was designated as a period for testing.

The second step in implementing an ML-based predictive model is ML algorithm
training and testing. The training aims to obtain the lowest error rate between the ML’s
output and the answer. To ensure this, learning is repeatedly performed, called an epoch.
Unlike the training process, the testing process does not adjust the weighting factor based
on the error rate between the ML result and the “correct answer” but checks the predicted
accuracy rate of the trained ML model.

The final step is optimization. Optimization means optimizing by changing the
hyperparameters of the ML algorithms, such as the number of hidden neurons, hidden
layers, and epochs. Optimisation aims to improve the predictive performance and reliability
of ML-based predictive models. The statistical term, or the CV(RMSE), is used to confirm
the reliability of the ML model. When the CV(RMSE) value exceeds 30%, the user changes
the hyperparameter value and repeats it until the CV(RMSE) value is less than 30%.

2.4. A Comparative Method for Evaluating the Accuracy of Prediction Models

This study aims to compare the accuracy of cooling load prediction between ANN
and LSTM algorithms widely employed in building energy research to identify the optimal
algorithm for HVAC control in the target building. The goal is to select an algorithm
that aligns well with the data characteristics of the said building. ANN and LSTM are
supervised learning-based algorithms, but they differ in data processing methods, resulting
in potential variations in predicted values even when fed with the same input data.

As such, in this study, the optimization of prediction accuracy for both ANN and
LSTM algorithms involved selecting variables, such as the number of hidden layers, nodes,
and epochs, which are common hyperparameters in both algorithms. Table 2 presents
the hyperparameters and their corresponding ranges used to compare ANN and LSTM
prediction accuracy in this study.

Table 2. Hyperparameters and ranges.

Division
Hyperparameter Range

ANN LSTM

Number of hidden layers [n] 1, 2, 3

Number of hidden nodes [n] 10~15

Epochs [n] 100, 200, 300

Batch size [n] 24

Optimizer Adam

Activation Function Sigmoid and Rectified linear unit

Figure 4 shows an example of the optimization of ANN structure. The optimization
process involved evaluating the prediction accuracy of various conditions, ranging from
1 hidden layer, ten hidden nodes, and 100 epochs to 3 hidden layers, 15 hidden nodes,
and 300 epochs for each algorithm. In total, 774 conditions were compared to identify the
optimal structure for predicting the cooling load.
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Figure 4. Example of the optimization process.

3. Simulation Study

3.1. Simulation Program

This study used the EnergyPlus simulation program developed by the U.S. Depart-
ment of Energy (U.S. DOE) to ensure detailed analysis. The EnergyPlus program is a
simulation program that combines the advantages of BLAST and DOE-2 and uses the heat
balance method recommended by the American Society of Heating, Refrigerating, and
Air-Conditioning Engineers (ASHRAE).

For the reliability verification of the EnergyPlus simulation program, simulation tools
were developed and verified using ASHRAE Standard 140-2014 [29]. Eighty scenarios were
tested and verified in three categories: building air-conditioning load, heating equipment,
and cooling equipment. In addition, the EnergyPlus program was further reviewed using
the IEA’s Building Energy Simulation Test.

In the EnergyPlus program, zone simulation analysis based on the integrated thermal
and material equilibrium—the biggest drawback of the DOE-2 program—is possible. In
addition, the analysis of flow between multiple zones, the analysis of pollutants generated
in buildings, and the analysis of renewable energy systems are supported.

3.2. Target Building and Simulation Model

The Target building in this study is an office built in 2014 in the Research Triangle Park
(RTP) area, NC, USA. The three-story structure includes offices, conference rooms, common
areas, and storage spaces. The floor area is 4310 m2, and the window-to-wall ratio is 23.3%.
The HVAC system operates from 7 a.m. to 8 p.m. Figure 5 shows an overview of Target
Building A.

Figure 5. Overview of Target Building A.
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The simulation model was developed using EnergyPlus version 9.4. Simulation
conditions were mostly taken from real building values. Table 3 shows the people density
in each space type in the target building. For example, lighting power density is 8.07 W/m2,
while equipment power density is 10.76 W/m2. Table 4 provides details on the construction
and material properties of the simulation model, which are all based on the target building.

Table 3. Target Building A’s people density in each space type.

Zone People Density (m2/Person)

Break Room 5.0
Closed Office 12.1
Open Office 12.1
Conference 12.1

IT Room 12.1
Lobby 9.3

Corridor 9.3
Mechanical Room 14.0

Stair 12.1
Rest Room 14.9

Storage 14.0

Table 4. Target Building A’s construction properties.

Construction
U-Value

(W/m2 K)
Visible

Transmittance
Solar Heat Gain

Coefficient

Exterior Wall 0.232 X X

Interior Wall 2.867 X X

Roof 0.174 X X

Exterior window 1.65 0.60 0.31

Three AHUs are installed as the target building’s main heating and cooling system.
A district heating and cooling system supplies chilled water and hot water to the AHUs
for space cooling and heating. The AHUs provide cold or hot air to conditioned zones
through the variable air volume fan. The cooling setpoint of the target building is 22.2 ◦C
during office hours between 7 a.m. and 8 p.m. At night, the setback setpoint is 26.6 ◦C.
We also used a throttling range of 1.1 ◦C for the cooling setpoint. The AHUs discharge air
temperature (DAT) is 12.8 ◦C. For the detailed analysis, we selected the AHU installed on
the second floor for the space heating and cooling.

In our research, we utilized a district cooling system. We used Equations (14) and (15)
to convert the usage for chilled water (CHW) into the corresponding electricity consump-
tion of the district cooling system. The estimation was based on assuming a Coefficient of
Performance (COP) value of 5, equivalent to 0.7 kW/ton [30]. This COP value represents
the recommended minimum requirement for Chiller COP, as suggested by the NC De-
partment of Environmental Quality in their Energy Saving Fact Sheet: Chillers report [30].

CHWelectricity = TOR ∗ COPchiller,avg (14)

where
CHWelectricity = chilled water electricity consumption (kWh)
TOR = A ton of refrigeration (ton-hour); 1 TOR = 3.5169 kWh
COPchiller,avg = typical COP value of chiller (0.7 kW/ton)

TOR = CHWussed ∗ CF (15)
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where
TOR = A ton of refrigeration (ton-hour); 1 TOR = 3.5169 kWh
CHWused = chilled water usage (MJ)
CF = MJ to TOR conversion factor; 0.07898476 ton-hour/MJ

3.3. Calibration Process

In the measurement & verification (M&V) standard, the accuracy of the simulation
model is assessed by comparing simulation results with actual experimental data. The
ASHRAE Guideline 14-2014 [29], the International Performance Measurement and Verifica-
tion Protocol [31], and the Federal Energy Management Program are representative M&V
guides [32] and are indicators for the accuracy of simulation models.

The allowable error rate of the tolerance range varies depending on which of the three
M&V guides is used. When we performed a correction with monthly data, the allowable
tolerance range differed for each guide. However, when we calibrated the simulation model
with hourly data, the tolerance range for all three M&V guides was the same at ±10% for
normalized mean bias error (NMBE) and 30% for cv(RMSE) [29,31,32].

In this study, the simulation model was calibrated with hourly data, and the tolerance
range was based on NMBE ± 10% and cv(RMSE) 30%. We used Equations (16) to (18) to
calculate NMBE and cv(RMSE).

RMSE =

√
∑(S − M)2

interval
Ninterval

(16)

cv(RMSE) =
RMSEperiod

Aperiod
(17)

Aperiod =

√
∑period Minterval

Ninterval
(18)

where
S = ANN model prediction value,
M = EnergyPlus simulation results,
Ninterval = number of EnergyPlus results, and
Aperiod = measurement period average.
The data collection period for the target building A was from 10 May 2017 to 7 August

2017. Except for periods when there was a system problem, or the system was turned off, all
data were normally collected from 4 July 2017 to 7 August 2017. During the periods when
data were collected, the simulation model was calibrated, particularly during the hottest
week of 17–21 July 2017, as this study aims to propose a control to save cooling energy.

Figures 6–8 show the comparison of field data and simulation results for lighting
electricity energy consumption, electric equipment electricity energy consumption, and
electrical energy consumption for heating and cooling during the selected week. For lighting
electricity energy consumption, NMBE was 1.15%, whereas cv(RMSE) was 23%. For
electric equipment electricity energy consumption, NMBE was 8.96%, whereas cv(RMSE)
was 18.9%. Finally, regarding electricity energy consumption for heating and cooling, NMBE
was 1.13%, whereas cv(RMSE) was 21.3%. Since both NMBE and cv(RMSE) were within
the tolerance range described above, the simulation model was considered calibrated.
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Figure 6. Calibration results for lighting energy consumption.

Figure 7. Calibration results for electric equipment energy consumption.
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Figure 8. Calibration results for HVAC system energy consumption.

4. Case Study

4.1. Simulation Cases

This study had three simulation cases. In Case 1, the base case, the AHU-DAT was
fixed at the actual control value of 12.8 ◦C for the target building. In Case 2, an optimized
ANN-based cooling load prediction model was used to predict and control the AHU-DAT
within the range of 12.8 ◦C to 17.8 ◦C based on the partial load section. Meanwhile, in
Case 3, an optimized LSTM-based cooling load prediction model was used to predict and
control the AHU-DAT within the same range. Finally, we compared the cooling electricity
consumption on a representative day in a case study for each of the three cases. We
evaluated the energy-saving ability of ML-based AHU-DAT control.

4.2. ML-Based HVAC Control Methods

Figure 9 and Table 5 present the AHU-DAT determination method for Cases 1, 2, and
3 based on the part load ratio (PLR) change in this study. In Case 1, the AHU-DAT was
fixed at 12.8 ◦C, the actual AHU-DAT setpoint temperature in the test building. In Cases
2 and 3, the AHU-DAT setpoint temperatures were set within the 12.8 to 17.8 ◦C range
based on the PLR interval predicted by the ANN and LSTM models. We conducted a
simulation analysis and selected the temperature range of 12.8 to 17.8 ◦C, which falls within
the allowable range of ±1.1 ◦C for the indoor cooling set temperature of 22.2 ◦C during
office hours and 26.6 ◦C during the night. Notably, in Case 1, AHU-DAT was fixed at
12.8 ◦C regardless of changes in cooling load. In contrast, in Cases 2 and 3, AHU-DAT was
controlled at 12.8 ◦C when the cooling load was predicted to be in the PLR 90–100% range
and at 17.8 ◦C when the cooling load was predicted to be in the PLR 0–10% range to adapt
the AHU-DAT control according to the change in cooling load.
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Figure 9. Comparison of AHU-DAT control values by PLR section in each case.

Table 5. AHU-DAT control classes by PLR section in each case.

Class
AHU-DAT

(◦C)

Case 1
Class AHU-DAT

(◦C)

Cases 2 and 3

Interval Interval

1 12.8 0% ≤ PLR < 10% 1 17.8 0% ≤ PLR < 10%

2 12.8 10% ≤ PLR < 20% 2 17.2 10% ≤ PLR < 20%

3 12.8 20% ≤ PLR < 30% 3 16.7 20% ≤ PLR < 30%

4 12.8 30% ≤ PLR < 40% 4 16.1 30% ≤ PLR < 40%

5 12.8 40% ≤ PLR < 50% 5 15.6 40% ≤ PLR < 50%

6 12.8 50% ≤ PLR < 60% 6 15.0 50% ≤ PLR < 60%

7 12.8 60% ≤ PLR < 70% 7 14.4 60% ≤ PLR < 70%

8 12.8 70% ≤ PLR < 80% 8 13.9 70% ≤ PLR < 80%

9 12.8 80% ≤ PLR < 90% 9 13.3 80% ≤ PLR < 90%

10 12.8 90% ≤ PLR ≤ 100% 10 12.8 90% ≤ PLR ≤ 100%

5. Analysis and Results

5.1. Weather Conditions

Figure 10 presents the outdoor air temperature pattern in Raleigh, North Carolina,
where the target building is located. The Raleigh weather file provided by EnergyPlus was
modified using actual outdoor air temperature and humidity data collected from the target
building in 2017 and total solar radiation collected from Raleigh Durham Airport. The
outdoor air dry-bulb temperature range during the analysis period is 13.1–37.4 ◦C, and the
outdoor air relative humidity during the analysis period is 20–100%.
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Figure 10. Outdoor air dry-bulb temperature and relative humidity in Raleigh, North Carolina.

5.2. Evaluation of Cooling Load Prediction Model Accuracy

In this study, the hyperparameters (i.e., number of hidden layers, hidden nodes, and
epochs) were selected and optimized for ANN and LSTM algorithms to enhance their
performance. Figure 11 shows the cooling load prediction accuracy based on the different
configurations of hidden nodes, epochs, and several hidden layers in the ANN and LSTM
models. We observed that both algorithms achieved the highest prediction accuracy using
hidden triple layers and 300 epochs.

The optimized algorithm structures and their corresponding prediction accuracy are
presented in Table 6. The prediction accuracy, as indicated by CV(RMSE), was 12.7% for
ANN and 17.3% for LSTM, demonstrating a certain level of reliability for both optimized
algorithms. However, the ANN algorithm has a higher prediction accuracy than the
LSTM algorithm. This result can be attributed to the differences in the characteristics of
the two algorithms. For example, LSTM incorporates past output data into the current
input data, allowing for time-dependent learning. On the other hand, ANN treats all
input data independently without considering the time sequence [3–12]. Due to these
algorithm differences, LSTM is relatively more sensitive to patterns in past data than
ANN [14–19,23,25].

Table 6. Optimal structure and parameter values.

Division
ANN LSTM

Optimized Values Optimized Values

Number of Hidden Layers [n] 3 3

Number of Hidden Neurons Layer 1 [n] 13 12

Number of Hidden Neurons Layer 2 [n] 12 12

Number of Hidden Neurons Layer 3 [n] 11 12

Epochs [n] 300 300

CV(RMSE) [%] 12.7 17.3
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Figure 11. Comparison of the predictive accuracy of the ANN and LSTM models according to
hyperparameter changes.

Figure 12 depicts the pattern of outdoor air temperature, which directly impacts the
cooling load of the building, among the input data used for training the ANN and LSTM
models during June and July 2017. Examining the figure, we observed that the outside air
temperature exhibits rapid fluctuations in three sections.

A comparison of the average outdoor air temperature during the building’s office
hours from 7 AM to 8 PM revealed the following trends: In the first section, the average
outdoor air temperature on 11 June was 26.5 ◦C, which decreased to 22.5 ◦C on 12 June
and subsequently rose to 28.1 ◦C on 13 June. In the second section, the average outdoor
air temperature on 25 June was 29.7 ◦C, followed by a decrease to 23.5 ◦C on 26 June and
then a rise to 28.1 ◦C on 27 June. Meanwhile, in the third section, the average outdoor air
temperature was 31.4 ◦C on 6 July but decreased to 24.9 ◦C on 7 July. Considering the rapid
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changes in the data trends that impact the cooling load, we inferred that the learning rate of
the LSTM model shows a relatively lower prediction accuracy than that of the ANN model.

Figure 12. Outdoor air dry-bulb temperature and relative humidity in June and July in Raleigh,
North Carolina.

Figures 13 and 14 compare the predicted cooling load generated by the optimized
ANN and LSTM algorithms and the actual cooling load obtained from simulations from
1 August to 31 August.

Figure 13. Comparison of simulation data and ANN results.

64



Buildings 2023, 13, 1434

Figure 14. Comparison of simulation data and LSTM result.

5.3. AHU-DAT Operating Scenarios Comparison

Figure 15 and Table 7 present the AHU-DAT operating scenarios for the three cases. We
examined the impact of cooling load prediction accuracy on HVAC control by comparing
the patterns of AHU-DAT control values. For each case, we constructed the scenarios
based on the simulation results for Case 1 and the predicted cooling load for Cases 2 and 3.
Additionally, we developed AHU-DAT scenarios for different PLR intervals, as shown in
Table 5. The analysis focused on office hours in August.

Figure 15. AHU-DAT control scenarios during office hours in August.
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Table 7. AHU-DAT operating scenarios during office hours in August.

Class AHU-DAT
(◦C)

Case 1
AHU-DAT

(◦C)

Case 2 Case 3

Interval
Number of
Hours (h)

Interval
Number of
Hours (h)

Interval
Number of
Hours (h)

1 12.8 0% ≤ PLR < 10% 1 17.8 0% ≤ PLR < 10% - 0% ≤ PLR < 10% -

2 12.8 10% ≤ PLR < 20% 4 17.2 10% ≤ PLR < 20% 4 10% ≤ PLR < 20% 2

3 12.8 20% ≤ PLR < 30% 5 16.7 20% ≤ PLR < 30% 8 20% ≤ PLR < 30% 5

4 12.8 30% ≤ PLR < 40% 24 16.1 30% ≤ PLR < 40% 19 30% ≤ PLR < 40% 16

5 12.8 40% ≤ PLR < 50% 47 15.6 40% ≤ PLR < 50% 54 40% ≤ PLR < 50% 60

6 12.8 50% ≤ PLR < 60% 47 15.0 50% ≤ PLR < 60% 51 50% ≤ PLR < 60% 42

7 12.8 60% ≤ PLR < 70% 100 14.4 60% ≤ PLR < 70% 81 60% ≤ PLR < 70% 73

8 12.8 70% ≤ PLR < 80% 67 13.9 70% ≤ PLR < 80% 72 70% ≤ PLR < 80% 83

9 12.8 80% ≤ PLR < 90% 22 13.3 80% ≤ PLR < 90% 28 80% ≤ PLR < 90% 33

10 12.8 90% ≤ PLR ≤ 100% 5 12.8 90% ≤ PLR ≤ 100% 5 90% ≤ PLR ≤ 100% 8

Total hours (h) 322 322 322

According to Figure 15 and Table 7, when examining the load pattern of Case 1, a
considerable amount of time (i.e., 241 h or 74.8% of the total hours) belonged to the PLR
50% above section. Within this section, the PLR range of 60% to less than 70% accounted
for the highest duration, with 100 h. The next highest duration was observed in the PLR
range of 70% to less than 80%, totaling 67 h.

In the load pattern of Case 2, a substantial duration of time (i.e., 237 h or 73.6% of the
total hours) belonged to the PLR 50% above section. Within this section, the PLR range
of 60% to less than 70% accounted for the highest duration, with 81 h. The next highest
duration was observed in the PLR range of 70% to less than 80%, totaling 72 h.

In the load pattern of Case 3, a significant portion of the time (i.e., 239 h or 74.2% of
the total hours) belonged to the PLR 50% above section. Notably, the PLR range of 60% to
less than 70% had the highest duration, with 73 h. The next highest duration was observed
in the PLR range of 70% to less than 80%, totaling 83 h.

Comparing the cumulative hours of PLR ranges among the cases, for the PLR range of
60% to less than 70%, Case 2 showed 19% fewer cumulative hours than Case 1.
Case 3 exhibited 27% fewer cumulative hours compared to Case 1. Additionally, for
the PLR range of 70% to less than 80%, Case 2 showed 7% more cumulative hours than
Case 1. In contrast, Case 3 demonstrated 24% more cumulative hours than Case 1. Based
on the analysis of the AHU-DAT operating scenarios for the three cases and the evaluation
of prediction accuracy conducted in Section 5.2, it has been concluded that the ANN algo-
rithm exhibits superior performance in predicting the load pattern of the target building
compared to the LSTM algorithm. Considering the prediction accuracies of both models, it
can be determined that the ANN algorithm is the more appropriate choice for controlling
the HVAC system of the target building.

5.4. Weather Conditions on the Representative Day

In this study, we conducted a feasibility analysis by analyzing a representative day to
evaluate the potential of ML-based HVAC control in the target building. The test period for
the ANN and LSTM algorithms was the month of August. Regarding the hottest day, it
was difficult to compare the difference in control values by case because the PLR continued
to maintain more than 80% most of the time. Therefore, we selected August 15, the median
value of the outdoor air temperature, as the representative summer day. Figure 16 shows
the outdoor air temperature and humidity variations on the summer representative day.
The lowest outdoor air temperature was 19.0 ◦C, while the highest was 31.0 ◦C. The lowest
outdoor air relative humidity was 46%, whereas the highest outdoor air relative humidity
was 98%. Analyzing the characteristics of office hours between 7 a.m. and 8 p.m., we
observed that the outdoor air temperature was at its lowest at 22 ◦C, while the outdoor air
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humidity was at its highest at 86% at 7 a.m. The outdoor air temperature peaked at 31 ◦C,
while the outdoor air humidity reached its lowest point of 46% at noon.

Figure 16. Outdoor air dry-bulb temperature and relative humidity pattern on a representative day.

5.5. Sensitivity Analysis of Zone Mean Air Temperature According to AHU-DAT Change on the
Representative Day

Figure 17 illustrates the variation in the average indoor air temperature across all
zones connected to the AHU. DAT in the figure means AHU-DAT. The results indicate
that the indoor air temperature on a representative day consistently meets the cooling set
temperature of 22.2 ◦C, with a throttling range of 1.1 ◦C during office hours, regardless of
AHU-DAT conditions. Furthermore, during the night, the indoor air temperature does not
rise above the designated setback temperature of 26.6 ◦C, which means there is no need
for the cooling system to activate. For this reason, the set temperature range specified for
AHU-DAT control in Cases 2 and 3 is deemed suitable for maintaining the indoor cooling
set temperature. AHU-DAT control was based on the predicted cooling partial load on a
representative day, utilizing ANN and LSTM algorithms with AHU-DAT set in 10 selected
temperature ranges.

Figure 17. Sensitivity analysis of zone mean air temperature according to AHU-DAT change on a
representative day.
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5.6. Comparison of AHU-DAT Pattern on the Representative Day

Figure 18 depicts the variation in AHU-DAT based on the PLR on the summer repre-
sentative day, analyzed by case. The PLR pattern on a representative day increases sharply
from 8 a.m. across all cases, decreases around noon, and follows a pattern similar to the
change in outdoor air temperature until 8 p.m. This pattern is attributed to the rapid
fluctuation in outdoor air temperature from 22 ◦C at 7 a.m. to 25 ◦C at 8 a.m. and the
consideration of internal heat gain schedules, accounting for reduced building utilization
during lunchtime.

Figure 18. Comparison of the PLR and AHU-DAT pattern on a representative day.

When comparing the PLR in each case, Case 1 served as the base case. It reflected the
PLR obtained by dividing the cooling load for each hour, calculated through the EnergyPlus
simulation model, by the maximum cooling load during summer. Conversely, in Cases 2 and
3, as explained in Section 3.1, the algorithms learned the cooling load pattern according to the
input variables during the learning period, and based on this, they predicted the cooling load
on a representative day.

In Cases 2 and 3, the predicted cooling load was divided by the same maximum cooling
load value as in Case 1 to determine the PLR for control purposes. Although the same
input variables were employed, the predicted cooling PLR in Cases 2 and 3 tended to differ
due to variations in prediction accuracy arising from the characteristics of the algorithm.

An examination of the AHU-DAT set values for each case revealed that Case 1 main-
tained a constant temperature of 12.8 ◦C irrespective of changes in the PLR. In contrast,
Cases 2 and 3 exhibited distinct AHU-DAT values corresponding to the predicted PLR. For
example, in Case 2, AHU-DAT was controlled at 16.0 ◦C at 7 a.m.. As a result, the lowest
predicted PLR, and at 14.4 ◦C around 9 a.m., the highest predicted PLR. Meanwhile, in
Case 3, AHU-DAT was controlled at 16.0 ◦C at 7 a.m., the lowest predicted PLR, and at
13.9 ◦C around 9 a.m., the highest predicted PLR.

This discrepancy is attributed to the variation in AHU-DAT control values for each
10% interval of the PLR, as illustrated in Figure 9 and Table 5. The predicted PLR at 9 a.m.
for Case 2 falls within 60% or more and less than 70%, specifically at 68.4%. Meanwhile,
the predicted PLR for Case 3 is 70.9%, which falls within 70% or more and less than
80%. Although the predicted PLR at 9 a.m. for Case 1 is 67.3%, which is not significantly
different from that in Cases 2 and 3, differences in AHU-DAT occur as the PLR section
changes. However, it was determined that the 4.6% difference in Cases 2 and 3 prediction
accuracy was not significant enough to change control of the AHU-DAT at each hour. In this
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study, AHU-DAT control was performed by dividing the intervals by PLR at 10% intervals
(see Figure 8). Accordingly, we reckoned that there was a limit to control AHU-DAT by
sufficiently reflecting the 4.6% difference in prediction accuracy between Case 2 and Case 3.

During the night, the AHU-DAT of Case 2 and 3 was controlled at 17.8 ◦C because
no cooling load was required due to the indoor air temperature not rising above the set
temperature of 26.6 ◦C, as shown in Figure 18.

Figure 19 compares averaged indoor air temperature and relative humidity for each
case. It can be observed that all cases met the tolerance of 22.2 ± 1.1 ◦C for indoor air
temperature. Additionally, the indoor relative humidity remained below 70% in all sections.
Notably, Cases 2 and 3 exhibited a higher indoor air temperature of 22.2 ◦C compared to
Case 1, as AHU-DAT was controlled at a higher set temperature in these cases.

Figure 19. Comparison of the relative humidity and zone average temperature on a representative day.

5.7. Comparison of Total Cooling Energy Consumption on the Representative Day

Figure 20 and Table 8 show the total cooling electricity consumption, including CHW
used (MJ/day), TOR (ton-hour/day), CHW electricity consumption (kWh/day), CHW
pump electricity consumption (kWh/day), and fan electricity consumption (kWh/day)
in each case on the summer representative day. For example, case 1 showed CHW using
about 3060.0 MJ/day, while Case 2 showed about 2870.2 MJ/day and 2875.7 MJ/day on the
summer representative day. Also, Case 1 consumed a TOR of 241.7 ton-hour/day, whereas
Cases 2 and 3 consumed about 226.7 ton-hour/day and 227.1 ton-hour/day, respectively.

Regarding CHW electricity consumption, Case 1 consumed 169.2 kWh/day, while
Case 2 and Case 3 consumed 158.7 kWh/day and 159.0 kWh/day, respectively. Comparing
the CHW energy consumption of Cases 1 and 2, Case 2 saved 6.2% more CHW energy than
Case 1. Meanwhile, Case 3 saved 6.0% more CHW energy than Case 1.

On the summer representative day, Case 1 consumed about 12.3 kWh/day for CHW
pump electricity, while Case 2 and Case 3 consumed about 10.7 kWh/day and 10.8 kWh/day,
respectively. Comparing the CHW pump electricity consumption of Cases 1 and 2, Case
2 consumed 12.5% less than Case 1. Meanwhile, comparing the CHW pump electricity
consumption of Cases 1 and 3, Case 3 consumed 11.8% less than Case 1. Controlling the
AHU-DAT through the ANN and LSTM algorithms significantly reduced CHW electricity
consumption and CHW pump consumption compared to that of a fixed AHU-DAT.
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Figure 20. Comparison of the total cooling energy consumption on a representative day.

Table 8. Comparison of the total cooling energy consumption on a representative day.

Case 1 Case 2 Case 3

CHW used (MJ/day) 3060.0 2870.2 2875.7

TOR (ton-hour/day) 241.7 226.7 227.1

CHW electricity consumption (kWh/day) based on COP 5 (0.7 kW/ton) 169.2 158.7 159.0

CHW Pump electricity consumption (kWh/day) 12.3 10.7 10.8

Fan electricity consumption (kWh/day) 10.8 16.7 16.1

Total cooling electricity consumption (CHW+CHW pump+fan) [kWh/day] 192.3 186.1 185.9

Regarding the supply fan, the fan electricity consumption of Case 1 on the sum-
mer representative day was about 10.8 kWh/day, while Case 2 and Case 3 consumed
about 16.7 kWh/day and about 16.1 kWh/day, respectively. Comparing the fan electricity
consumption of Cases 1 and 2, Case 2 consumed 55.2% more than Case 1. Meanwhile,
comparing Cases 1 and 3, Case 3 consumed 49.4% more fan electricity than Case 1.

In Case 1, fan air volume was decreased when the required cooling load was reduced,
whereas in Cases 2 and 3, the AHU-DAT was increased in response to the lowered cooling
load, resulting in increased fan air volume and decreased CHW flow rate. As a result of
this difference, Cases 2 and 3 exhibited lower energy consumption for both CHW and
pump but higher fan consumption compared to Case 1. Regarding the combined electricity
consumption for CHW, pump, and fan, Case 2 achieved cooling energy savings of 3.2%,
while Case 3 showed cooling energy savings of 3.3% compared to Case 1. Through these
results, we determined that ML-based AHU-DAT control has the potential to save energy
compared to fixed AHU-DAT control.

6. Conclusions

In this study, we aimed to compare the accuracy of cooling load prediction using
ANN and LSTM algorithms, widely utilized in building energy research, to determine the
optimal algorithm for controlling HVAC systems in the target building.

Based on the comparison of CV(RMSE) values, the ANN algorithm demonstrated
higher prediction accuracy than LSTM, with a CV(RMSE) value of 12.7% for ANN and
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17.3% for LSTM. We analyzed that the rapid changes in historical data trends of the target
building made LSTM relatively less effective. This is because ANN treats all input data
independently, while LSTM processes input and output data in its internal memory to
relate all input and output values. Furthermore, by analyzing the AHU-DAT operating
scenarios for the three cases, we determined that the ANN algorithm exhibits superior
performance in predicting the load pattern of the target building compared to the LSTM
algorithm. Taking into consideration the prediction accuracies and the AHU-DAT operating
scenarios of both models, we concluded that the ANN algorithm is the more suitable choice
for controlling the HVAC system in the target building.

Three cases were considered to assess the cooling energy consumption of ML-based
HVAC control methods: Case 1 with a fixed AHU-DAT control at 12.8 ◦C, Case 2 with
an ANN-based predictive control, and Case 3 with an LSTM-based predictive control. In
addition, this study considered the control strategy of adjusting the AHU-DAT for each
10% interval of the PLR based on the cooling load predictions from Case 2 and Case 3.
The results indicated that Case 2 can save cooling energy consumption by 3.2%, while
Case 3 can save 3.3% consumption compared to Case 1. Therefore, it was determined that
ML-based AHU-DAT control could save energy compared to fixed AHU-DAT control.

However, according to the AHU-DAT pattern of the representative day, the 4.6% dif-
ference in Cases 2 and 3 prediction accuracy was not significant enough to change control
of the AHU-DAT at each PLR 10% interval. To address this issue in the future, we intend
to research predictive control of Air Handling Unit-Discharge Air Temperature (AHU-
DAT) by dividing Part Load Ratio (PLR) sections based on the load characteristics of the
target building in various scenarios. Instead of dividing sections into 10% intervals, this
approach will ensure more precise control. We also plan to conduct a comparative analysis
of Fuzzy logic-based HVAC control and ML-based HVAC control methods. Additionally,
we will evaluate the energy efficiency of ML-based HVAC control methods by selecting
low, medium, and high load days and performing a comparative analysis monthly.
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Abstract: Building design optimization is a highly complex problem, requiring long computational
running processes because of the many options that exist when a building is being designed. This
paper introduces an integrated approach through which to perform this optimization within an
acceptable time frame. The approach includes the methods of variable selection, model simplification,
and a sequential optimization process. Using singular value decomposition, a large number of design
variables is reduced to a smaller subset that can be solved more quickly through the optimization
algorithm. To expedite the variable selection process, a modeling approach that quickly simulates
annual energy consumption was developed to replace full annual energy simulations. The developed
methodology was applied to two residential buildings in the US, and the results are discussed
herein. To assess the accuracy of the integrated optimization methodology, the optimized life cycle
costs are compaa variables demonstrating the strongest contributions in the optimization study
were identified. The proposed methodology significantly shortened the time requirements for the
optimization processes of the two case studies by 74% and 84%; the optimized life cycle costs were
within 0.05% and 0.06%, respectively, of the optimum point.

Keywords: building design optimization; energy simulation; variable selection; life cycle cost

1. Introduction

According to energy usage data from the US Energy Information Administration, resi-
dential and commercial buildings contribute approximately 40% of energy consumption
and 16% of energy-related carbon emissions in the US [1,2]. Over the past 25 years, resi-
dential energy use has increased by approximately 7.0%, and that of commercial buildings
has increased by about 10.4% [3]. As energy consumption in the US continues to increase
and as energy-related carbon emissions need to be reduced, energy simulation tools have
been incorporated more regularly into the building design process for high-performance
buildings. Energy-efficient design optimization techniques for buildings are undoubtedly
important to reducing building energy consumption and its associated costs, which have
been active research topics [4].

Ideally, to find an optimal building design point that minimizes an objective function,
such as energy consumption or building life cycle cost (LCC), building energy simulation
software, such as EnergyPlus [5] and TRNSYS [6], can be coupled with an optimization al-
gorithm for accurate energy consumption calculations. However, such optimization studies
are usually prohibitive because of their very long calculation times, owing to large numbers
of design variables, and their relatively long simulation times related to the software used
to predict annual energy consumption at each iteration of the optimization process.
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A lot of research has been carried out on reducing the long computational times
associated with the optimization process. The primary focus of previous research has
been to develop simplified energy consumption models that can replace detailed energy
simulation software using, for example, neural networks and regression models. Magnier
and Haghighat [7], as well as Gossard et al. [8], used a genetic algorithm with an artificial
neural network model to optimize thermal comfort and energy consumption in a residential
house. Ghiaus [9] applied robust regression (an alternative of the least squares regression
method that is effective when outliers exist) to predict the heating load as a function of
outdoor temperature. Catalina et al. [10] used a quadratic polynomial regression model to
predict heating demand with multiple independent variables, such as shape factor, building
time constant, and more. To generate the database for creating the model, 18,144 simulations
were performed. Hygh et al. [11] used EnergyPlus to build a multivariate regression model
with 27 parameters; 20,000 full annual simulation datasets were generated to predict heating
and cooling loads. Assuming each simulation takes 30 s to 1 min, the process of generating
the dataset alone requires 166 to 332 h. The cooling regression model has a high value for
the coefficient of determination (R2) that indicates how well the data fit the model; however,
the heating regression model has a low value for R2 from 0.498 to 0.816. Ghiaus [9] used the
concept of balance point temperature to construct a regression model. Hygh et al. [11] used
a fixed 18 ◦C balance temperature to predict energy consumption, and Krarti [12] estimated
the exact balance temperature. Eisenhower [13] developed an analytical metamodel that fit
the building simulation data and then performed the optimization. Although a simplified
modeling approach is capable of carrying out the building design optimization process
with little computational effort, it essentially requires a tremendous number of pre-energy
simulation results to obtain a reliable model, which is the major disadvantage of this
approach. Consequently, regenerating the database is necessary when changing the design
variables to create a simplified model.

Another approach through which to accelerate the optimization process involves
employing variable selection methods to choose a subset of variables from the entire set
of variables. Bettonvil [14] applied a group screening method to detect important factors
by applying sequential bifurcation to a building energy model. Rahni [15] partitioned
building parameters into multiple groups and tested which groups make more significant
contributions to building energy performance. Corrado and Mechri [16] used the Morris
method to reduce the parameter dimensions from 129 to 10. Brohus et al. [17] used an
analysis of variance-based analysis to identify significant variables of residential building
energy consumption, and identified the 10 most important parameters out of a total of 57.

An alternative approach is using sensitivity analysis. In previous studies, sensitivity
analyses were employed in either the pre- or postoptimization phases or to efficiently
select a subset of variables significantly affecting the objective function, thus streamlining
the optimal design process with reduced effort compared with full optimization. Gunay
et al. [18] used sensitivity analysis to identify the key operational parameters of office
buildings, and Cheng et al. [19] used the Morris one-at-a-time method to design a sus-
tainable housing community. Østergård et al. [20] used sensitivity analysis to inform the
decision-making process in the early building design process. Sensitivity analysis is easy
to use and is a valuable tool for assessing model behavior and identifying critical input
parameters; therefore, it is frequently used in building simulation research. However,
sensitivity analysis becomes more challenging as the dimensionality of the input space
increases, and the interactions between variables can become complex, making it difficult
to isolate the effect of an individual variable [21].

To speed up building design optimization, the two approaches of simplified modeling
and variable reduction can naturally be combined. However, despite many previous
studies, it is hard to find studies testing the integrated optimization approach. Additionally,
the computational time needed to generate a reduced-order model or a variable selection
process is often neglected. Therefore, it is not clear how much the integrated approach is
able to accelerate building design optimization.
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This paper presents an integrated optimization methodology to tackle the building
design optimization problem. The developed methodology can be used for any residential
building design optimization process, including for the early design and engineering design
stages. Also, the developed methodology is not limited to any specific design variables for
the optimization process. A novel variable selection method is proposed and adopted for the
optimization problem to reduce the high dimensionality of the design variables. To overcome
the long computational time required to generate sufficient data that can be used during the
variable selection process, a new, simplified modeling approach is developed to replace the
full annual energy simulation for residential buildings. A strategy through which to approach
the true optimal point is also introduced. The integrated methodology is applied to two case
studies of typical residential buildings in the US, and comparisons of the results with those of
the full optimization processes for the entire design spaces are presented.

2. Overall Methodology

To derive an accurate but computationally efficient methodology for building design
optimizations, two main problems need to be solved: (1) reduce the number of optimization
variables and (2) reduce the amount of computational time consumed by the energy
simulation software. To overcome these problems, the following process shown in Figure 1
is proposed.

Figure 1. Building optimization process.

The first step, shown in the green box, is to define a building design optimization
problem by specifying appropriate design variables and their corresponding constraints,
along with the objective function (e.g., the minimization of LCC for residential buildings in
this paper). To evaluate energy costs accurately during the optimization process, detailed
building energy simulation software is incorporated rather than the simplified models that
are typically used in other research approaches. The second step is to reduce the number
of design variables using a variable selection method, which identifies subvariables that
have a significant influence on the objective function. To accelerate this process, which
requires a large number of annual building energy simulations, a simplified modeling
strategy is adopted. Then, an optimization algorithm is coupled to the building energy
software, which searches for the optimum point only in a reduced dimension of the design
space as defined by the variable selection method. In this approach, the simplified energy
consumption models are only used during the variable selection process (the second block
of Figure 1), and high-fidelity models are used in the actual optimization process (the third
block of Figure 1). The last step is to reduce the optimization error that is inherited from the
approximation approach (i.e., the variable selection algorithm) by sequentially adjusting
the insignificant variables.
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3. Variable Selection Algorithm and Optimization Process

In this section, each step shown in Section 2 is described in detail. Section 3.1 provides
the details of the variable selection algorithm, and Section 3.2 shows how this variable
selection algorithm is applied to an optimization problem. Section 3.3 shows the simplified
energy consumption model used for residential building applications that will be used only
in the variable selection process, and Section 3.4 shows the optimization process, with the
variables selected from the variable selection process and postoptimization process.

3.1. Variable Selection Algorithm Using Singular Value Decomposition

Consider a differentiable function, denoted as f : (x1, x2, · · · , xn) �→ y , where y ∈
R, xi ∈ Di, ∀i ∈ {1, 2, · · · , n}, and Di ⊂ R is a feasible set for a variable xi. The task
here is to select the important subvariables out of (x1, x2, · · · , xn), which influence y most
significantly. Selecting a metric that quantifies the magnitude of importance or significance
of a variable is the key step. We define the following operator L:

L(v) :=
1�
D dx

�
D

| < ∇ f (x), v > |2dx, (1)

where D = D1 × · · · × Dn, ∇ f (x1, x2, · · · , xn) = ∑n
i=1 ei

∂ f
∂xi

(x1, x2, · · · , xn), ei is the natural
basis corresponding to xi, < ·, · > is the inner product, and v(∈ Rn) is a unit vector. Operator
L measures the spatial average of the directional derivate of f over D in the direction of v.
When L(v) = 0, y does not change in the direction of v. When L(v1) >> L(v2), y varies
more significantly in the direction of v1 than that of v2 in the spatial average sense. Therefore,
employing L as a measure to gauge the significance or importance of a variable is a rational choice.

The following example is provided for further clarity. Let y = x1
2 + 0.01x2

2, and
assume that x1 and x2 are well-scaled such that −1 ≤ x1, x2 ≤ 1. Variable x1 clearly
influences the output variable y more significantly than it does x2. The L values for

e1 =

[
1
0

]
and e2 =

[
0
1

]
, which correspond to x1 and x2, respectively, are

L(e1) =
�

−1≤xi≤1
<

[
2x1

0.02x2

]
,
[

1
0

]
>2 dx1dx2 =

�
−1≤xi≤1

22x1
2dx1dx2 = 22 × 2

3
× 2 and

L(e2) =
�

−1≤xi≤1
<

[
2x1

0.02x2

]
,
[

0
1

]
>2 dx1dx2 =

�
−1≤xi≤1

0.022x2
2dx1dx2 = 0.022 × 2

3
× 2.

For these L values, L(e1) >> L(e2). This example shows that the operator L provides a
measure of the contribution of a variable to an output variable.

For practical applications, Equation (1) can be approximated as

L(v) ≈ 1
N

N

∑
k=1

∣∣∣< ∇ f (xk), v > |2 , (2)

where N is a total number of samples of xk over a feasible domain D = D1 × · · · × Dn.
With this metric, the most important variable is represented by

argmax
||v||=1

L(v). (3)

The maximizer can be obtained by performing singular value decomposition (SVD)
of the matrix J JT , where J =

[∇ f (x1) ∇ f (x2) · · · ∇ f (xN)
](∈ Rn×N)

. We denote the
resulting form of the singular value decomposition as

J JT = VΣVT =
[
V1 V2

][Σ1
Σ2

][
VT

1
VT

2

]
, (4)
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where V1(∈ Rn×r), V2(∈ Rn×(n−r)), Σ1 ∈ Rr×r, Σ2 ∈ R(n−r)×(n−r) are submatrices of V
and Σ, and

Σ1 =

⎡⎢⎣σ1
. . .

σr

⎤⎥⎦, Σ2 =

⎡⎢⎣σr+1
. . .

σn

⎤⎥⎦.

The diagonal matrix Σ contains magnitudes of L in descending order corresponding
to each column vector of V. The first column vector of V maximizes the metric L (i.e., the
maximizer of Equation (3)), and the second column vector of V maximizes the metric L
over a space perpendicular to the first column vector of V. Consequently, the last column
vector has a minimum value of L. Therefore, primary coordinates can be selected out of V
in which y varies significantly by looking at the values of Σ; these coordinates can denote
V1 as the primary component. The criteria can be set to select V1 so that the cumulative
sum of the percentage of Σ1 is at least 99.5%, which means that 99.5% of the magnitudes of
L can be explained by primary component V1, and Σ2 is negligible [15].

3.2. Application to an Optimization Problem

Consider an optimization problem,

min
x∈Rn

f (x)

s.t.Ax ≤ b,
(5)

where f is a differentiable function for ∀x ∈ Rn. We define new variables of z such that
z = VTx. The ith element of z is the projection of x onto the ith column vector of V. Note
that x can be expressed as x = V1z1 + V2z2 because V =

[
V1 V2

]
and V is orthonormal.

Because L(V1) >> L(V2), the optimization problem can be searched over a subspace
spanned by the column vectors of V1 rather than over the entire Rn space. In other words,
neglecting the influence of z2 in the optimization problem becomes possible because the
magnitudes of the directional derivatives along the column vector of V2 are small. The new
optimization problem in a lower dimension then becomes

min
z1∈Rr

f (V1z1)

s.t.(AV1)z1 ≤ b.
(6)

For some cases, it is worthwhile to retrieve the important variables in the original
design space from z1 because z1 is a linear combination of design variables; thus, z1 may not
have a direct physical meaning. The significant design variables in the original space can be
retrieved by examining the column vectors of V1. For example, when the jth component of a
column vector of V1 is more predominant than the others, it means that the jth component of
x contributes to the output significantly. The retrieving process may increase the dimension
of the design space from r to m(≥ r).

The final optimization problem with the selected m variables in the original design
space becomes

min
x∈E

f (x)

s.t.Ax ≤ b,
(7)

where E ⊂ Rm.
The proposed method is very similar to that of principle component analysis (PCA).

PCA is also a dimensionality reduction technique commonly used in statistic and machine
learning. The method aims to reduce the data’s dimensionality while retaining as much
relevant information as possible [22]. However, it differs significantly because (1) the matrix
to be composed by SVD contains information of the output variable, and PCA does not,
and (2) the proposed method is developed from deterministic points of view, and PCA
is based on random variables. It also differs from the partial least squares method (PLS).
PLS is a multivariate statistical technique used for modeling the relationship between
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a set of independent variables and a set of dependent variables [23]. PLS is commonly
used in regression analysis and classification tasks to establish predictive models, but it
assumes a linear relationship between input and output variables. In contrast, SVD does not
inherently assume linearity. Additionally and more importantly, our proposed method can
be applied to an optimization process as described here, and PCA and PLS cannot [24,25].

3.3. Simplified Energy Consumption Modeling Approach

The introduced variable selection algorithm requires calculating the Jacobian matrix
of the objective function at multiple points in a design space (see Equation (4)). This
method would take a tremendous time with approximately (n variables) × (N design
points) × (T annual simulation times per a design point). To reduce the time required for
generating the series of Jacobian matrices, the modified degree day method is proposed.
The degree day method is easy to implement and requires only basic weather data, but it
has limitations because it assumes a linear relationship between temperature and energy
use, and other factors such as insulation level, building design, and occupant behavior can
also significantly affect energy use. Given the robust correlation between degree day data
and energy consumption in residential buildings, and coupled with the relatively limited
influence of occupant behavior, the degree day method continues to be a valuable and
straightforward tool for energy modeling in the residential sector. The proposed method is
based on the following assumptions and modifications to the existing degree day method,
and the detailed process is shown in Figure 2:

• The actual degree day varies with the chosen design variables. Consequently, the
balance temperature must be calculated for each design combination;

• The modified ANAGRAM method is used to shift the diagonal linear regression
models to the origin based on daily average degree days to separately predict heating,
cooling, and fan energy consumption;

• To find an appropriate number of data samples to yield an accurate regression model,
the recursive least square (RLS) algorithm is used;

• A simplified model is constructed specifically to replace energy simulation software
during the variable selection phase. This model is employed for the sole purpose of
identifying which variables significantly influence the output. Therefore, the model
must be sufficiently accurate to discern these influential trends.

Figure 2. Process of the simplified energy consumption model’s development.
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Suppose we want to evaluate annual energy consumption y for a residential building
at a design point x, which consists of building design parameters. The role of building an
energy simulation model, denoted as f , that maps x to y, is y = f (x, w), where w represents
any other inputs that influence y, such as weather data. The goal is to find a function
that approximates f . We adopt the degree day method for its simplicity and widespread
use in predicting energy consumption for a long time period for residential buildings.
More precisely, it can be represented as the following relationship over a heating season,
for example:

yP ≈ α× DDP

DDP =
∫ t0+P

t0
(Tb − Ta(τ))dτ,

(8)

where yP is the heating energy consumption for the period of [t0, t0 + P], and α is a building-
specific coefficient. The variable DDP is the number of heating degree days for the period,
and (Ta, Tb) are the ambient and balance temperatures of the building, respectively. Note
that once α and Tb are identified, the annual energy consumption for heating can be
easily predicted by only considering the weather data. In other words, when α and Tb
are known, annual heating energy consumption can be predicted without simulating a
detailed building energy model. The time-invariant parameters of α and Tb depend on x.
To estimate them, a regression approach is used with samples of yP obtained from building
energy simulations for selected days. The final form of our simplified model is

yP ≈ α̂(x)
∫ t0+P

t0

(
T̂b − Ta(τ)

)
dτ, (9)

where α̂ and T̂b are the estimated values of α and Tb at a design point of x. After the
simulation studies for residential buildings, a day is selected as P (i.e., P = 1 day). A
natural question regards the selection of an appropriate sample size to accurately estimate
the parameters; that is, the question of how many daily simulations are needed to accurately
estimate α and Tb. This problem can be handled by employing the RLS method because it
calculates confidence intervals for estimated parameters as each sample is updated. Because
the original model, Equation (8), is a nonlinear function with respect to the parameters, it
was reformulated as follows:

yP = θ1DDP,18 + θ2, (10)

where θ1 = α, and θ2 = αP(Tb − 18). The equation DDP,18 =
∫ t0+P

t0
(18 − Ta(τ))dτ repre-

sents the number of degree days with the assumption of an 18 ◦C balance temperature [9].
The model structure, shown in Equation (10), can be readily used with the RLS

method because of its linearity. Once the parameters of θ1 and θ2 are estimated, the balance
temperature can be retrieved by Tb = 18 + 1

P
θ2
θ1

.
As an initial dataset, 6 days from the weather file are selected and simulated; these

include the heating design day as well as 5 other days, which are uniformly distributed
and are found by preprocessing a typical meteorological year file at the location. Next, θ1
and θ2 are calculated from the six samples. Then, they are inserted into the RLS method
as the initial guess. Another day simulation is implemented, and those parameters are
updated. This process is repeated until the parameter covariance goes below a threshold.
For a description of the RLS method, refer to Appendix A. Because heating energy, cooling
energy, and fan energy consumption need to be considered to predict total annual energy
consumption, separate models for heating, cooling, and fan energies are developed using
the same methodology as used here. For brevity, in this paper, the equations for cooling
and fan energy are omitted.

To calculate ∂ f /∂xi(x), two simplified models at two design points of (x, x + Δxi) are
constructed. The process is repeated for each variable and each data point to construct a
series of Jacobian matrices (shown in Equation (4)).
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3.4. Optimization with the Significant Variables and Sequential Search Method

After identifying significant variables using the variable selection method with the
simplified modeling approach, an optimization routine can be implemented with those
variables while fixing the remaining variables, which are insignificant, to reference values.
In the current case study, a discrete binary version of the particle swarm optimization (PSO)
methodology [26] is adopted. This algorithm is selected based on its ability to efficiently
explore the design space and arrive at an optimal solution to overcome the problems of
the continuous version that cannot handle discrete variables. To prevent fast convergence
to a local optimum, the inertia PSO version [27] is used. The results that are discussed in
Section 4 demonstrate that it is possible to get close to the optimum point when using only
those significant variables that were identified using the variable selection method. Once
an optimal point is found with the significant variables, there may still be a chance to get
closer to the true optimum point by perturbing the insignificant variables, although their
contributions are expected to be small. One point of clarification is that the variables that
are identified as insignificant are not necessarily unimportant; they just do not demonstrate
a significant contribution within the scope of the optimization study, which is why they
are excluded in that phase. However, to further improve the final result, a sequential one-
dimensional optimization approach is used. This approach optimizes the first variable in
the group of insignificant variables while fixing the others. Once the process is terminated,
the second variable in that group is optimized while fixing those that remain. This process
is repeated until the last variable is optimized. The order of the sequential search approach
may be important because variables are sorted according to their contributions to the cost
function. Therefore, the order of variables in the sequential search approach follows that
determined in the variable selection process.

4. Case Studies

To validate the developed methodology, two cases studies for residential buildings
were selected. Two representative residential building types in the US were chosen, and
design variables were selected from typical variables that are often considered in the
engineering design stage.

4.1. Descriptions of Case Study Buildings

To develop detailed building models, the energy simulation software EnergyPlus
was used. The buildings are a typical slab-on-grade residential house and a house with a
heated basement. They were referenced from the Pacific Northwest National Laboratory
residential prototype [28] and were assumed to be located in Indianapolis, Indiana. Figure 3
shows the model dimensions of the houses.

  

Figure 3. Dimensions of the case study houses.

The first house has a gross floor area of 334.6 m2 with two different spaces, which
include a living space and attic. The living space is the only conditioned zone, and the net
conditioned area is 223.1 m2. The entry doors are located on the south and north sides of the
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building, and two windows are placed on each side of the building. The house is assumed
to have three bedrooms and three bathrooms. The second house has a gross floor area of
446.1 m2. The house has a living space, attic, and heated basement. The prototype complies
with the 2012 International Energy Conservation Code with modified construction layers
for optimization purposes. The living space is the only conditioned zone, and the net
conditioned area is 334.6 m2. The house has four bedrooms and four bathrooms, and the
basement is placed completely below the ground level.

4.2. Defining Design Variables for Optimization

To compare the results of the proposed method with those of the full optimization,
we chose a relatively small number of design variables in this paper. The following
considerations were made in defining the design variables for the case studies: select
elements that may have (1) a high impact on building energy consumption, (2) a strong
influence in the construction cost, and (3) energy-saving or cost-saving benefits, but whose
influence is not strictly known beforehand. Based on these considerations, 12 different
construction design variables were selected to investigate their effect on the LCC of the
residential building. The first eight variables were related to the building envelope, and
the remaining variables were associated with the heating, ventilation, and air-conditioning
(HVAC) system.

Commercially available products associated with those design variables are listed in
Table 1. For example, for roofing material, one can take either asphalt shingles, a metal
surface, or a concrete tile roof. Design variables of the wall core can be a given stud
dimension and filled with any type of insulation shown in the table. Structural insulated
panels or insulated concrete forms with various thicknesses were also considered to be
different wall core materials for this study. The under-floor insulation was used only for
case study 1, and the foundation wall insulation was used only for case study 2. The total
number of possible combinations, ∏n

i=1 Ni, is around 60 million for each case, where Ni
is the number of options for the ith variable. Notably, it can be reduced significantly to
∏r

i=1 Ni through variable selection, because the reduced dimension r is generally much
smaller than the original dimension n. For the case studies, n = 12, r = 5 (see the later
discussion), and, thus, the total number of combinations was reduced to around 700.

Table 1. Design variables and values.

Design Variables
(Number of Options)

Available Values

Roofing Material (3) Asphalt shingles, metal surface, concrete tile roof

Roof Eave Overhang Depth (3) 305 mm (12 in.), 457 mm (18 in.), 610 mm (24 in.)

Attic Insulation Material (12)

Loose fill cellulose: R3.3 (IP 1-R19), R4.4 (IP-R25), R5.3 (IP-R30), R6.7 (IP-R38), R8.6
(IP-R49), R10.6 (IP-R60)

Fiberglass batting: R3.3 (IP-R19), R4.4 (IP-R25), R5.3 (IP-R30), R6.7 (IP-R38), R8.6 (IP-R49),
R10.6 (IP-R60)

External Wall Siding Material (4) Vinyl siding, wood siding, fiber cement siding, brick

Wall Core (16)

Stud: 38 × 89 mm (2 × 4 in.) studs at 400 mm (16 in.), 38 × 140 mm (2 × 6 in.) studs at
600 mm (24 in.) on center, 38 × 184 mm (2 × 8 in.) studs at 600 mm (24 in.) on center

Insulation: filled with fiberglass batting insulation, sprayed-on foam insulation, loose-fill
cellulose insulation

Structural insulated panels: 114 mm (3 5/8 in.), 165 mm (5 5/8 in.), 210 mm (7 3/8 in.),
260 mm (9 3/8 in.)

Insulated concrete forms: 228 mm (9 in.), 278 mm (11 in.), 328 mm (13 in.)

81



Buildings 2024, 14, 107

Table 1. Cont.

Design Variables
(Number of Options)

Available Values

External Foam Board Insulation (6) Board insulation: 12.7 mm (0.5 in.), 25.4 mm (1 in.), 38.1 mm (1.5 in.), 50.8 mm (2 in.),
63.5 mm (2.5 in.), 76.2 mm (3 in.)

Under-Floor Insulation or Foundation
Wall Insulation (8)

Extruded polystyrene: 25.4 mm (1 in.), 50.8 mm (2 in.), 76.2 mm (3 in.), 101.6 mm (4 in.)

Expanded polystyrene: 25.4 mm (1 in.), 50.8 mm (2 in.), 76.2 mm (3 in.), 101.6 mm (4 in.)

Window Type (2) Double-pane window, triple-pane window

Air Conditioner Speed (2) Single-speed, multispeed

Heat Recovery Type (2) None, sensible heat recovery

Seasonal Coefficient of Performance
(Air Conditioner SEER 2) (6)

3.81 (SEER 13), 4.10 (SEER 14), 4.40 (SEER 15), 4.69 (SEER 16), 4.98 (SEER 17),
5.28 (SEER18)

Natural Gas Furnace Efficiency (4) 80%, 85%, 90%, 95%
1 IP stands for imperial units; 2 SEER represents Seasonal Energy Efficiency Ratio.

4.3. Optimization Objective Function

We considered an LCC over a 20-year time horizon as the objective function, as shown
in Equation (11). To estimate realistic construction costs, the material cost, labor, overhead,
and profit were all considered. The primary tool used for estimating construction costs is
RSMeans [29]. RSMeans is a construction cost database that is widely used and respected
in the United States. It provides comprehensive, up-to-date, and reliable information
related to construction costs, materials, labor, and equipment cost. To account for regional
variations in construction costs, a location influence factor (I f ) is used, and the I f of 92.5%
(applicable for Indianapolis) is multiplied by the national average cost. HVAC equipment
costs were modeled using multiple linear regression to fit cost data taken from online
equipment suppliers relative to both system capacity and efficiency. The discount rate was
assumed to be 3%, and the modified uniform present value (UPV∗) factors were taken
from the annual supplement to the NIST Handbook [30]. The UPV∗ factors are energy
price projections for different fuel types based on the US Department of Energy/US Energy
Information Administration regional projections.

LCC = I f CCon + CHVAC + CElecUPV*
Elec + CNGUPV*

NG (11)

Here, the following pertains:

LCC—incremental LCC of given building system;
I f —influence factor of the location;
CCon—construction cost;
CHVAC—HVAC equipment cost;
CElec—electricity cost;
CNG—natural gas cost;
UPV*

Elec—UPV* factor for electricity cost;
UPV*

NG—UPV* factor for natural gas cost.

5. Case Study Results

5.1. Validation Methodology

To validate and compare the accuracy and efficiency of the proposed methodology, a
full optimization with all design variables was first performed. The full optimization was
intended to minimize the LCC using all 12 variables. Following the full optimization study,
the proposed methodology was implemented. The required data size, N in Equation (4),
may be automatically selected by tracking the convergence behavior of singular values as
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N increases. However, for the feasibility study of the proposed method, a fixed size of data
(i.e., 100 data points) was generated to identify significant variables.

After finding the significant variables using the variable selection method, the remain-
ing variables were fixed to the cheapest material, and the optimization process was carried
out on the significant variables. For more detailed information about the initial setting
of variables, refer to Appendix B. Finally, the best values of the remaining insignificant
variables were determined using a sequential search method.

The inertia weight version of the binary PSO algorithm was used for both full and
proposed optimizations. Based on the suggestions of Parsopoulos and Vrahatis [31], the
swarm size for the PSO algorithm and the neighborhood size of a von Neumann topology
were set as 64 and 8, respectively, for the full optimization, and were 36 and 6, respectively,
for the proposed method.

5.2. Variable Selection Results

Figure 4 shows the singular values of the Gramian matrix (see Equation (4)) in de-
scending order. The singular values are scaled with respect to the sum of all singular
values. For both case studies, the first four coordinates are selected based on the fact that
their cumulative sum of singular values is at least 99.49% and 99.46% with respect to the
sum of all singular values. In other words, using only the first four coordinates, 99.49%
and 99.46% of data can be captured for case studies 1 and 2. Because the variables are
discrete, it is convenient to find the significant parameters in the original design space
using Equation (7).

 
(a) (b) 

Figure 4. (a) Result of singular values in case study 1. (b) Result of singular values in case study 2.

Table 2 displays the singular vectors of the first four coordinates with the higher values
shown in bold, indicating the variables that significantly contribute to the corresponding
coordinates. For example, external wall siding material and wall core type make the
strongest contributions to the first and second singular vectors, and roofing materials,
air-conditioning (AC) speed, and heat recovery type are the primary contributors to the
third singular vector. Through this process, 5 out of the 12 design variables, including
roofing material, external wall siding material, wall core, AC speed, and heat recovery,
were identified as significant variables in both case studies. Although the same five design
variables are selected for both case studies, this choice does not necessarily imply that these
five design variables are significant variables for all cases. The results will vary based on
the specified design parameter values and regional factors, including construction cost and
equipment cost, as well as weather conditions.
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Table 2. Singular vectors. 3

Case Study Building 1 Coordinate 1 Coordinate 2 Coordinate 3 Coordinate 4

Roofing Material −0.012 0.024 0.401 −0.910
Roof Eave Overhang Depth 0.000 −0.001 −0.030 0.003

Attic Insulation Material −0.006 −0.006 0.014 0.101
External Wall Siding

Material 0.999 0.028 0.017 −0.005

External Foam Board 0.000 −0.005 −0.041 −0.010
Wall Core −0.028 0.999 −0.008 0.023

Foundation Wall Insulation −0.003 −0.009 −0.021 −0.069
Window Type −0.002 0.001 0.125 0.053

AC Speed −0.004 −0.001 0.274 0.118
Heat Recovery Type −0.012 −0.002 0.847 0.367

Air Conditioner Seasonal Coefficient of Performance −0.001 0.000 0.041 0.018
Natural Gas Furnace

Efficiency −0.003 −0.002 0.163 0.071

Case Study Building 2 Coordinate 1 Coordinate 2 Coordinate 3 Coordinate 4

Roofing material −0.012 0.024 0.416 −0.903

Roof Eave Overhang Depth 0.000 −0.001 −0.030 0.003
Attic Insulation Material −0.006 −0.006 0.013 0.101

External Wall Siding
Material 0.999 0.028 0.017 −0.004

External Foam Board 0.000 −0.006 −0.041 −0.011
Wall Core −0.028 0.999 −0.009 0.023

Under-floor Wall
Insulation −0.002 −0.009 −0.023 −0.074

Window Type −0.002 0.001 0.130 0.057
AC Speed −0.004 −0.001 0.271 0.122

Heat Recovery Type −0.012 −0.002 0.837 0.379

Air Conditioner Seasonal Coefficient of Performance −0.001 0.000 0.040 0.018
Natural Gas Furnace

Efficiency −0.003 −0.002 0.176 0.080

3 Significant variables in both case studies are highlighted in blue in the first column.

5.3. Simplified Energy Consumption Model

To ensure that the simplified modeling approach is sufficiently accurate for the purpose
of the variable selection, the variable selection algorithm is also implemented using the full
annual energy model for comparison. Then, the first four singular vectors obtained from
the simplified model, denoted as Vs = [vs,1, vs,2, vs,3, vs,4], and from the full model, denoted
as Vf = [vf,1, vf,2, vf,3, vf,4], are compared. Table 3 shows the matrix of VT

s Vf for the case 1
and 2 buildings. If the simplified modeling approach is accurate, vs,i

Tvf,j ≈ ±δi,j where
δi,j is the Kronecker delta. That is, the diagonal elements of VT

s Vf must be close to either
1 or −1, and the off-diagonal elements must be close to 0. Notably, the 0 property arises
because of the orthonormal characteristic of singular vectors. The results satisfy the criteria,
which demonstrates that the resulting significant variables from the simplified modeling
approach are very similar to those of the full model for both case studies.

Table 3. Correlation matrices between singular vectors obtained from detailed and simplified models 4.

Case 1 Case 2

−1.00 −0.08 −0.02 0.02 −0.99 −0.11 −0.05 0.02
−0.08 0.99 0.05 0.04 −0.11 0.99 −0.01 −0.04
−0.02 −0.05 1.00 −0.07 0.05 0.00 −0.99 0.14
−0.02 0.04 −0.07 −0.99 −0.01 −0.04 −0.14 −0.97

4 Diagonal elements of VT
s Vf are shown in grey.
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5.4. Optimization Result Comparison

To compare the accuracy of the integrated optimization methodology, the optimized
LCCs were compared with the full optimizations, and they are shown in Table 4. Because
it is of interest to see the improvement resulting from incorporating the sequential search
method, the optimization results with only the selected variables (i.e., without the sequential
method) were also included.

Table 4. Comparison of optimized LCC. 5

Case Study Building 1 Optimized LCC (USD) Percentage Difference (%)

Optimization with the Significant Variables 53,062 4.19

Optimization with the Significant Variables and Sequential
Search 50,956 0.05

Optimization with All Design Variables 50,929 -

Case Study Building 2 Optimized LCC (USD) Percentage Difference (%)

Optimization with the Significant Variables 57,818 4.60

Optimization with the Significant Variables and S Search 55,308 0.06

Optimization with All Design Variables 55,273 -
5 This cost does not include construction and HVAC costs in Equation (11) that are not associated with design
variables.

The results show that the minimal LCC errors arising from only using the subset of
design variables were around 4% for both case studies. By further employing the sequential
search method, the errors were brought to within 0.05% (USD 27) and 0.06% (USD 35) for a
20-year horizon.

Table 5 shows a comparison of the optimized designs using full optimization and the
proposed methodology. In case study 1, the difference was caused only by the roof eave
overhang depth and attic insulation material. For case study 2, roof eave overhang depth
and air conditioner seasonal energy efficiency ratio (SEER) rating caused the difference. As
expected from the variable selection algorithm, the variables are insignificant in both cases.

All numerical experiments were run on a desktop computer with a 6 core 3.10 GHz
CPU, 6 GB RAM, and Windows (64-bit) operating systems. For both cases, the variable
selection process took a majority of the total optimization time. However, the variable selec-
tion process without introducing the simplified modeling approach took 13.5 for case study
building 1 and 9.98 h for case study building 2. This time demonstrates the efficiency of the
proposed modeling methodology. The full optimization process required approximately
33 and 29 h, and the proposed methodology required 8.7 and 5.7 h for each case. In other
words, the proposed optimization approach achieved 74% and 84% computational time
savings. These significant reductions were mainly because of the reduced design space and
the number of evaluations requested by the optimization algorithm.

Table 5. Comparison of optimal design. 6

Case Study Building 1
Optimal Design with Full

Optimization
Optimal Design with the Proposed Method

Roofing Material F12 asphalt shingles F12 asphalt shingles
Roof Eave Overhang Depth 305 mm (12 in.) 457 mm (18 in.)

Attic Insulation Material Attic loose fill—R3.3 (IP-R19) Attic loose fill—R4.4 (IP-R25)
External Wall Siding Material F11 wood siding F11 wood siding

External Foam Board 12.7 mm (0.5 in.) 12.7 mm (0.5 in.)

Wall Core
38 × 140 mm (2 × 6 in.) studs at 600 mm

(24 in.) on center filled with loose fill
cellulose insulation

38 × 140 mm (2 × 6 in.) studs at 600 mm
(24 in.) on center filled with loose fill cellulose

insulation
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Table 5. Cont.

Case Study Building 1
Optimal Design with Full

Optimization
Optimal Design with the Proposed Method

Foundation Wall Insulation Expanded polystyrene 50.8 mm (2 in.) Expanded polystyrene 50.8 mm (2 in.)

Window Type Triple-pane window Triple-pane window

AC Speed Multispeed Multispeed

Heat Recovery Type Sensible Sensible

Seasonal Coefficient of Performance
(Air Conditioner SEER) 5.28 (SEER 18) 5.28 (SEER 18)

Natural Gas Furnace Efficiency 0.95 0.95

Case Study Building 2
Optimal Design with Full

Optimization
Optimal Design with the Proposed Method

Roofing Material F12 asphalt shingles F12 asphalt shingles
Roof Eave Overhang Depth 305 mm (12 in.) 457 mm (18 in.)

Attic Insulation Material Attic loose fill—R4.4 (IP-R25) Attic loose fill—R4.4 (IP-R25)

External Wall Siding Material F11 wood siding F11 wood siding

External Foam Board 12.7 mm (0.5 in.) 12.7 mm (0.5 in.)

Wall Core
38 × 140 mm (2 × 6 in.) studs at 600 mm

(24 in.) on center filled with loose fill
cellulose insulation

38 × 140 mm (2 × 6 in.) studs at 600 mm
(24 in.) on center filled with loose fill cellulose

insulation

Under-Floor Insulation Expanded polystyrene 25.4 mm (1 in.) Expanded polystyrene 25.4 mm (1 in.)

Window Type Triple-pane window Triple-pane window

AC Speed Multispeed Multispeed

Heat Recovery Type Sensible Sensible
Seasonal Coefficient of Performance

(Air Conditioner SEER) 4.98 (SEER 17) 5.28 (SEER 18)

Natural Gas Furnace Efficiency 0.95 0.95
6 The differences are shown in blue rows in the table.

6. Conclusions

To make building design optimization feasible, a novel integrated approach is presented in
this paper. This work includes a method to reduce the dimensionality of a design space, which
aims to identify only a few significant variables that need to be considered as optimization
variables. The method formally defines a measure of significance and uses the SVD to order
variables based on the metric using sample data. A simplified modeling methodology to
reduce the time needed to generate samples for the variable selection process is introduced.
The developed methodology is applied to case studies for residential buildings, and the results
are compared with those of the full optimization process over the entire design space.

In summary:

• Using the variable selection process, significant variables (5 out of 12) that demonstrate
the strongest contribution to the optimization study are identified;

• The proposed methodology significantly shortens the time requirement for the opti-
mization process in the two case studies of 74% and 84%, and the optimized LCC is
within 0.05% and 0.06%, respectively, of the optimum point.

These findings not only validate the effectiveness of the integrated approach, but also
highlight its potential to streamline and expedite the design optimization process while
maintaining a high degree of accuracy in the results.
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Appendix A

To find an appropriate number of data samples to yield an accurate regression model,
the regression least square (RLS) algorithm is used. The RLS gives an advantage related
to computational efficiency by immediately acquiring coefficients of aj with the current
data sample without storing past observation data [32]. In addition to this advantage, the
required number of data samples can be determined based on the confidence of parameters.

Suppose a true model has the following general linear form:

y(k) = a0 + a1x1(k) + a2x2(k) + · · · amxm(k) + e(k), (A1)

where y(k) ∈ R and x(k) ∈ Rm are the outputs and inputs, respectively. Variable e(k) ∈ R
is a mean zero random variable. The coefficients of aj are the true parameters. Equation (A1)
can be rewritten as follows:

y(k) = φT(k)θT + e(k). (A2)

Let θ be candidate parameters for θT , and define model error as ε(k; θ) := y(k) −
φT(k)θ. For a single-output system, the least squares estimator tries to minimize
1
n ∑n

k=1 ε
(
k; θ)2 . In other words, the least square problem is min

θ

1
n ∑n

k=1

(
y(k)−φT(k)θ)2 ,

where n is the number of data points. Let the optimal solution with data length n be θ̂n.
The least squares solution is given by

θ̂n = (
1
n

n

∑
k=1

φ(k − 1)φ(k − 1)T)−1 1
n

n

∑
k=1

φ(k − 1)y(k).

The RLS algorithm tries to find θ̂n+1 from θ̂n iteratively without re-solving the opti-
mization problem as the data size increases. The iteration is given by [32,33].

θ̂(n) = θ̂(n − 1) + K(n − 1)(y(t)−φ(n − 1)Tθ̂(n − 1)), (A3)

P(n − 1) = P(n − 2)− K(n − 1)φ(n − 1)T P(n − 2), and (A4)

K(n − 1) = P(n − 2)φ(n − 1)× (1 +φ(n − 1)T P(n − 2)φ(n − 1))−1. (A5)

Here, the notation was switched to θ̂(n) rather than θ̂n, which is the least square
solution. This switch is intended to distinguish the solutions of the least square and
the RLS because of an initial condition of the RLS problem. A remark can made on

P in Equation (A4). It is well-known that P(n − 1) is proportional to E(
∼
θn

∼
θ

T

n ), where
∼
θn = θT − θ̂n, which is the covariance of the error associated with estimated parameters.
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In other words, it is the uncertainty of parameters estimated with data size of n. Therefore,
by tracking tr(P(n − 1)), the required data size can be determined. More precisely, the
optimal data size, denoted as nopt, is determined by the following criteria:

nopt = min {n|tr(P(n)) ≤ pthresh, n ∈ N}, (A6)

where pthresh is the threshold for determining the number of the data size of n. In this paper,
we set the initial condition of P, P0 as 105 and pthresh as 10−1 based on a simulation study.

Appendix B

Table A1 displays the initial variable values for both the full optimization and opti-
mization with the significant variables for case study buildings 1 and 2. Variables that are
not included in the optimization with significant values are set to the cheapest material,
and these variables are determined via the sequential search approach.

Table A1. Initial variable values used for optimization.

Case Study Building 1 Full Optimization Optimization with the Significant Variables

Roofing Material F12 asphalt shingles F12 asphalt shingles

Roof Eave Overhang Depth 305 mm (12 in.) -

Attic Insulation Material Attic loose fill—R3.3 (IP-R19) -

External Wall Siding Material Vinyl siding Vinyl siding

External Foam Board 12.7 mm (0.5 in.) -

Wall Core
38 × 89 mm (2 × 4 in.) studs at 400 mm

(16 in.) on center filled with loose fill
cellulose insulation

38 × 89 mm (2 × 4 in.) studs at 400 mm (16 in.)
on center filled with loose fill cellulose

insulation

Foundation Wall Insulation Extruded polystyrene 25.4 mm (1 in.) -

Window Type Double-pane window -

Air Conditioner Speed Single-speed Single-speed

Heat Recovery Type None None

Seasonal Coefficient of Performance
(Air Conditioner SEER) 3.81 (SEER 13) -

Natural Gas Furnace Efficiency 0.80 -

Case Study Building 2 Full Optimization Optimization with the Significant Variables

Roofing Material F12 asphalt shingles F12 asphalt shingles

Roof Eave Overhang Depth 305 mm (12 in.) -

Attic Insulation Material Attic loose fill—R3.3 (IP-R19) -

External Wall Siding Material Vinyl siding Vinyl siding

External Foam Board 12.7 mm (0.5 in.) -

Wall Core
38 × 89 mm (2 × 4 in.) studs at 400 mm

(16 in.) on center filled with loose fill
cellulose insulation

38 × 89 mm (2 × 4 in.) studs at 400 mm (16 in.)
on center filled with loose fill cellulose

insulation

Under-Floor Insulation Extruded polystyrene 25.4 mm (1 in.) -

Window Type Double-pane window -

Air Conditioner Speed Single-speed DX Single-speed DX

Heat Recovery Type None None

Seasonal Coefficient of Performance
(Air Conditioner SEER) 3.81 (SEER 13) -

Natural Gas Furnace Efficiency 0.80 -
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Abstract: In this study, we investigated the performance of air-to-water heat pump (AWHP) and
energy recovery ventilator (ERV) systems combined with photovoltaics (PV) to achieve the energy
independence of a dormitory building and conducted an analysis of the energy independence rate
and economic feasibility by using energy storage devices. Our data were collected for 5 months
from July to November, and the building energy load, energy consumption, and system performance
were derived by measuring the PV power generation, purchase, sales volume, AWHP inlet and
outlet water temperature, and ERV outdoor, supply, and exhaust temperature. When analyzing
representative days, the PV–AWHP integrated system achieved an energy efficiency ratio (EER)
of 4.49 and a coefficient of performance (COP) of 2.27. Even when the generated electrical energy
exceeds 100% of the electricity consumption, the energy self-sufficiency rate remains at 24% due to the
imbalance between energy consumption and production. The monthly average energy self-sufficiency
rate changed significantly during the measurement period, from 20.27% in November to 57.95% in
September, highlighting the importance of energy storage for self-reliance. When using a 4 kWp solar
power system and 4 kWh and 8 kWh batteries, the annual energy self-sufficiency rate would increase
to 67.43% and 86.98%, respectively, and our economic analysis showed it would take 16.5 years
and more than 20 years, respectively, to become profitable compared to the operation of an AWHP
system alone.

Keywords: photovoltaic; energy storage system; air-to-water heat pump; energy self-sufficiency;
dormitory building

1. Introduction

The global climate crisis has underscored the urgent need to reduce carbon emissions
from energy use, making this a key objective across various industries. In the construction
sector, one promising strategy to achieve this goal is the adoption of zero-energy buildings
(ZEBs) [1–3]. These buildings are designed to produce as much energy as they consume
over the course of a year, effectively eliminating their carbon footprint. The push for
ZEBs has become more pronounced due to concerns about energy security and the impact
of energy price volatility on the global economy [4,5]. To achieve ZEB status, buildings
must significantly reduce their energy consumption and meet any remaining energy needs
with renewable sources. This involves improving the insulation performance of buildings,
enhancing the efficiency of heating, ventilation, and air conditioning (HVAC) systems, and
integrating renewable energy sources like photovoltaic (PV) panels. Research is underway
to improve the efficiency of PV panels, particularly in terms of thermal performance, and
to explore the potential of photovoltaic–thermal (PV/T) systems that can simultaneously
generate electricity and heat [6–10]. As the electrification of major energy sources becomes
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more widespread, the use of solar energy is expected to increase significantly [11]. Addi-
tionally, heat pumps, which are powered by electricity, are being increasingly utilized in
various applications [12–15]. However, the performance of heat pumps can vary based on
factors such as technology, geographic location, and energy source [16,17]. Therefore, it is
crucial to analyze the performance characteristics of HVAC systems, including heat pumps,
PV generation facilities, and energy storage facilities, based on specific building conditions.
Recent studies have shown promising results. For instance, Long et al. [18] conducted a
simulation to evaluate the performance of solar–air source heat pump (SASHP) heating
systems in a low-humidity Tibetan region. Their simulation results showed that initially,
the solar heat could handle the entire heating load, but the overall proportion over the
entire period was only 42.79%. Therefore, their performance should be improved through
the optimization of the solar collector area, angle, and water tank capacity. Kong et al. [19]
presented the appropriate number of PV/T modules through a performance analysis and
an economic comparison of PV/T–cascade heat pumps for cooling and heating periods
in tropical climates. Bae et al. [20] found that a PV/T–ASHP system installed in a small
building improved heating and cooling performance coefficients by 52% compared to an
ASHP system used alone. They also demonstrated that the electricity generated by the
PV/T modules during certain periods exceeded the system’s power consumption, making
it possible to achieve a fully zero-energy building [21]. Dementzis et al. [22] monitored
a 16 kWp solar panel and a 74 m2 solar collector, along with a 58 kW heat pump, for
four years. They found that the PV system generated 6% more electrical energy than
the heat pump consumed. Additionally, the solar collector produced 20% more heat per
unit area than the heat pump powered by the PV system. Shono et al. [23] conducted a
time-resolution analysis of BIPV in large-scale commercial buildings, confirming that 33%
of their energy demand could be met by PV modules installed on exterior walls and 15% by
rooftop modules. Building on this, Perwez et al. [24] assessed the combined impact on the
overall decarbonization potential of buildings, including building-integrated photovoltaics
(BIPV). Their results indicate that implementing all measures simultaneously could lead to
an 84% reduction in annual CO2 emissions. BIPV emerged as a significant contributor, ful-
filling 8–16% and 34–63% of the electricity demand when considering threshold constraints
and the full utilization of the building surface, respectively. Sigounis et al. [25] investigated
the feasibility of achieving zero-energy implementation in library buildings through the
integration of BIPV/T, ERV, and AWHP systems. Their analysis revealed that controlling
the heat flow with BIPV/T can satisfy the heating demand and reduce energy consumption
for ventilation by up to 37%.

Other studies have focused on the integration of PV generation facilities and energy
storage systems. Aneli et al. [26] found that when a 4.8 kWp solar PV generator and a
10 kW heat pump were connected, an energy independence of about 34% could be achieved.
Perrella et al. [27] showed that when a heat pump, an 18 kWp PV panel, and a 24 kWh
battery were used together, 76% of the heat and electricity demand could be met. Nicoletti
et al. [28] conducted a study on the optimal capacity design of air-to-water heat pump
(AWHP), PV, and ESS systems considering their economic feasibility for a 20-year driving
period. They performed building energy simulations based on the climate of five regions
in Italy. Their results showed that the appropriate PV capacity depends on the building’s
energy usage independently of the solar source for each region, while the battery size is
significantly dependent on the climate characteristics and PV size. A sensitivity analysis of
initial costs confirmed a strong interdependence between AWHP, PV, and battery sizes. As
the capacities of PV generation facilities and energy storage systems increase, the energy
independence rate also increases. However, initial installation costs are high, necessitating
a sensitivity analysis of various capacities and prices [29]. Additionally, Yang et al. [30]
analyzed various scenarios using a real option model to explore the impact on optimal
investment decisions for residential PV–ESS installation projects. Their findings suggest
that it could be feasible to apply such installations to all local projects if the initial investment
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cost is reduced by 50% or the CO2 price is increased by about 33 times. Nonetheless, they
also indicate limitations to commercialization under the current circumstances.

Previous studies have been conducted to predict the performance and economic
feasibility of systems through mathematical models and energy simulations, as shown
in Table 1. In order to accurately evaluate the feasibility of the integrated system, the
actual building load and environmental conditions should be considered. Therefore, this
study aims to analyze the performance of a system integrating PV, AWHP, and energy
recovery ventilation (ERV) in a dormitory building. We analyzed the building load usage
patterns during the summer and winter periods, assessed the surplus and shortage of
power generation due to PV generation, and evaluated the energy independence rate
considering the performance of AWHP systems. Additionally, we performed an economic
analysis of the AWHP system alone to propose appropriate capacities considering the
energy independence rate and economic feasibility. By understanding the performance
characteristics of these integrated systems under actual operating conditions, we hope to
provide valuable insights for the design and implementation of ZEBs and renewable energy
systems in buildings.

Table 1. Literature review for the photovoltaic–heat pump integrated system.

Authors System Description
Analytical
Approach

Evaluation Method

Performance Economic
Energy Self-
Sufficiency

Long et al. [18] PVT/ASHP/HST Simulation o x x

Kong et al. [19] PVT/ASHP/HST Simulation x o x

Bae et al. [20] PVT/ASHP/HST Simulation o x o

Bae et al. [21] PVT/ASHP/HST Experiment o o x

Aneli et al. [21] PV/ASHP/HST/EES Simulation o x o

Perrella et al. [24] PV/AWHP/HST/EES Simulation x x o

Nicoletti et al. [25] PV/AWHP Simulation o o o

This work PV/AWHP/ERV/HST
/EES

Experiment
Simulation o o o

The objectives of this study are as follows: (1) to analyze the building load usage
patterns during the summer and winter periods; (2) to assess the surplus and shortage
of power generation due to PV generation; (3) to evaluate the energy independence rate
considering the performance of the AWHP systems; and (4) to perform an economic
analysis of the AWHP system alone to propose appropriate capacities considering the
energy independence rate and economic feasibility.

2. Methodology

2.1. Building and System Description

The building is located in Cheonan Asan, Republic of Korea (36◦46′12.7′′ N, 126◦59′30.9′′ E).
The climate zone is classified according to ASHRAE 90.1-2007 as hot and humid in the
summer and cold and dry in the winter (4A and 4B). Figure 1 shows the average monthly
outdoor temperature and solar radiation. The highest and lowest outdoor temperatures are
−2.2 C and 26.2 C, respectively. The monthly average solar radiation is 299.95 W/m2 in
May, which is the highest, and 88.69 W/m2 in December, which is the lowest. The building
is used as a dormitory, with two people staying in each room, and each person occupies an
area of 16.25 m2.
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Figure 1. Average monthly outdoor temperature and global solar radiation.

Through the remodeling of the existing building, a renewable energy (PV) and inte-
grated air conditioning system were installed. The integrated energy system (IES) con-
structed connects two rooms to IES_A and three rooms to IES_B, each responsible for
handling the load, as shown in Figure 2. This system can analyze the energy consumption,
reflecting the characteristics of the building load as all the loads required for the building
are used in the form of electrical energy, and can suggest the appropriate capacity design for
renewable energy. The system components include solar panels, power conversion system
(PCS), ERV, and AWHP as depicted in Figure 3, and the configuration and specifications of
each system are shown in Table 2. The direct current generated by PV is supplied through
PCS to operate ERV and AWHP and is connected to the external power grid to sell excess
power generated by the system or purchase power when the amount is insufficient. The
capacity of AWHP and the storage tank is designed based on ASHRAE Standard 90.1 [31],
and floor heating is used for heating, while ceiling-mounted FCUs are used for cooling. For
hot water supply, hot water at 65 ◦C is supplied to the storage tank, and the temperature
inside the storage tank is controlled to always be above 50 ◦C.

Table 2. HVAC system configuration and specifications of the building.

Component Specification

AWHP

Model HM051MR U44

Capacity 5 kW × 2EA

Refrigerant R32 (1.4 kg)

HST Capacity 220 L

ERV Air volume 250 CMH

PV Panel Capacity 4.44 kW (370 W × 12 EA)

PCS
AC 5 kW

Power conversion efficiency 96%

LED Power consumption 50 W × 5 EA13 W × 5 EA
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Figure 2. Drawing of the building layout and integrated energy system classification.

 

Figure 3. Energy flow diagram of integrated energy system.

2.2. Experimental Conditions

Throughout the five-month period from July to November, meticulous data collection
was conducted. Indoor and outdoor temperature and humidity were monitored using sen-
sors, while solar radiation was gauged utilizing an SR-05 solar radiation meter. The cooling
and heating loads were quantified through the utilization of an RCN8 ultrasonic heat meter,
which measured both inlet and outlet temperatures alongside flow rates. Furthermore,
the efficiency of the ERV was assessed using the QAF 3160 apparatus in accordance with
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ISO 5222-1 standards [32]. This involved meticulous measurement of temperature and
humidity at various points including outdoor air inlet (OA), supply air inlet (SA), and
exhaust air outlet (RA), facilitating a comprehensive evaluation of ERV performance.

For quantifying the performance of the PV system and related energy dynamics, an
EM415 power meter was employed. This meter facilitated the precise measurement of the
amount of PV power generation, power purchased from the grid, power sold, and power
consumption by auxiliary systems such as the AWHP and ERV. The collected data, spanning
minute intervals, were promptly transmitted to a centralized data server for analysis.

The reliability of the measurement equipment utilized in this study is detailed in
Table 3, ensuring confidence in the accuracy of the obtained data. Additionally, the precise
locations of our measurements are depicted in Figure 3, providing insight into the spatial
distribution of data collection points.

Table 3. Measuring equipment and specifications.

Equipment Metrics Specification

RCN8 Ultrasonic Heat Meter Heat and flow rate Accuracy class 2 (European EN1434)
Temperature sensor: Pt1000

EM415 Power meter Accuracy Class B

SR-05 Solar radiation ISO second class pyranometer
Uncertainty < 1.8%

QFA3160 Temperature and
humidity

Accuracy: 0.8 K (15~35 ◦C)
1 K (−35~50 ◦C)

Given the significant influence of climate data on system performance, specific days
representing peak energy consumption during summer and winter periods were selected
for in-depth analysis. Notably, August 7th and November 27th were identified as represen-
tative days for comparison and analysis. Through comprehensive examination of trends
in PV generation, integrated system energy consumption, and power transactions with
the external grid, a nuanced understanding of system behavior was attained, facilitating
informed decision-making and optimization strategies.

2.3. Key Performance Indicators

The heating and cooling capacity (Qh and Qc) of an air-to-water heat pump (AWHP) is
determined by Equations (1) and (2), and the coefficient of performance (COP) and energy
efficiency ratio (EER) are calculated using Equations (3) and (4).

Qh =
.

m × cp,w × (Tw,i − Tw,o) (1)

Qc =
.

m × cp,w × (Tw,o − Tw,i) (2)

where
.

m and cp,w are mass flow rate of water (kg/s) and specific heat capacity of water
(kJ/kg◦C). Tw,i and Tw,o are the water temperatures at the inlet and outlet of the con-
denser (◦C).

COP =
Qh

PAWHP
(3)

EER =
Qc

PAWHP
(4)

where PAWHP is the power usage of the AWHP (kW).
The energy saved by operating an energy recovery ventilator (Qsaved) is calculated us-

ing Equation (5), and the energy saving efficiency of the ERV is calculated using Equation (6).

Qsaved = ηt × ρ × cp,a × G × (TOA − TRA) (5)
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ηt
TOA − TSA
TOA − TRA

× 100 (6)

where ηt is the efficiency of the ERV. ρ and cp,a are the density of air (kg/m3) and specific
heat capacity of air (kJ/kg◦C). G is the indoor and outdoor ventilation amount per sec
(m3/s). TOA, TSA, and TRA are the outdoor air temperature, supply air temperature, and
indoor air temperature (◦C), respectively.

2.4. Building Energy Self-Sufficiency Rate

The building energy self-sufficiency rate is an indicator of the percentage of en-
ergy used in the entire building that can be covered by renewable energy. As shown
in Equation (7), the building energy self-sufficiency rate was calculated by dividing the
total power generated by renewable energy by the total energy consumption.

Energy sel f − su f f iciency rate = ∑ Renewable energy generation system
Total energy consumption

× 100 (7)

2.5. Economic Analysis

The initial investment (I) includes the cost of purchasing and installing the AWHP,
PV, and ESS. The annual operating cost (AOC) includes the cost of electricity to run the
AWHP and the cost of maintaining the system. Annual savings (AS) come from the energy
generated by the PV and ESS. Initial investment, annual operating cost, and annual savings
can be calculated according to Equations (8)–(10).

I = CAWHP + CPV + CESS (8)

AOC = EAWHP × Pelectricity + MAWHP (9)

AS = (EPV + EESS) × Pelectricity (10)

where CAWHP, CPV, and CESS are the cost of AWHP, PV, and ESS. EAWHP is the annual
energy consumption of the AWHP (kWh). Pelectricity is the annual energy consumption per
kWh. MAWHP is the annual maintenance cost of the AWHP.

The net present value (NPV) is the difference between the present value of the ben-
efits and the present value of the costs. Payback period (PP) is the time it takes for the
system to pay for itself. Net present value and payback period can be calculated as
Equations (11) and (12).

NPV = ∑n
t=0

ASt − AOCt

(1 + r)t − I (11)

PP =
I

AS − AOC
(12)

where ASt is the annual savings in year t, and AOCt is the annual operating cost in the year
t. r and n are the discount rate and number of years.

3. Result and Discussion

3.1. Representative Day Analysis
3.1.1. System Performance Analysis

To accurately understand the system’s operational characteristics and assess the suit-
ability of its PV generation capacity, the days with the highest energy consumption during
the entire measurement period are selected as representative days. Specifically, 8 July
and 27 November are chosen as representative days for the summer and winter seasons,
respectively. During the entire cooling operation of the AWHP system, the average energy
consumption per hour was 0.64 kWh, and the EER was 4.49. However, there is a tendency
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for the cooling EER to decrease during the transition period when the system switches to
hot water operation at around 7 A.M. and 7 P.M. The hourly load and energy consumption
of the AWHP system are shown in Figure 4. During the heating operation of the AWHP sys-
tem from 12 P.M. to 7 P.M., there is almost no heating load due to the absence of occupants.
The average energy consumption per hour during the heating operation is 2.25 kWh, and
the COP is 2.27. The heating COP and cooling EER of the systems proposed in previous
studies range from 1.2 to 5.3 and 3.31 to 16, respectively, and the performance of the AWHP
system used in this study falls within this range. If the ventilation frequency is satisfied
once per hour, it is possible to reduce the ventilation load by an average of 87 W in the
summer and 650 W in the winter compared to natural ventilation. The ERV efficiency and
load reduction are calculated using Equations (5) and (6). The outdoor temperature and
hourly load reduction are shown in Figure 5.

(a) 

(b) 

Figure 4. Cooling and heating performance of AWHP: (a) summer period; (b) winter period.
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Figure 5. Energy savings using energy recovery ventilator.

3.1.2. PV Generation and Power Flow Analysis

On the representative summer day, the daily PV generation is 15.29 kWh, and the
energy consumption is 33.05 kWh. The energy self-sufficiency rate is 46.3%. However,
due to the imbalance in energy demand, 12.8% of the renewable energy generation, which
is 1.96 kWh, is sold to the external grid, and 80.7% of the energy consumption, which is
26.68 kWh, is purchased from the external grid. On the representative winter day, the daily
PV generation is 9.74 kWh, and the energy consumption is 48.74 kWh. The renewable
energy production ratio is 19.97% compared to the energy consumption, and due to the
imbalance in energy demand, 33.25% of the renewable energy generated, which is 3.24 kWh,
is sold to the external grid, and 98.18% of the energy consumed, which is 47.86 kWh, is
purchased from the external grid. The hourly power flow on the representative days is
shown in Figure 6.

3.2. Building Energy Independence Analysis

The daily average value of the energy self-sufficiency rate, determined by Equation (7),
varied throughout the period from July to November: 47% in July, 39.2% in August, 57.95%
in September, 55.94% in October, and 20.27% in November. Notably, the presence of
solar power generation significantly elevated the energy self-sufficiency rate, particularly
during the mid-term, summer, and winter periods. The average solar radiation levels—
214.75, 179.27, 219.83, 201.28, and 147.87 W/m2—were identified as a primary contributing
factor to this self-sufficiency. Concurrently, our analysis of the average energy sold to the
external grid revealed percentages of 47.78, 36.22, 57.47, 55.94, and 53.22%, underscoring the
impact of energy demand imbalances on the energy independence rate. These relationships
between the average solar radiation, renewable energy sales ratio, and energy independence
rate are visually represented in Figure 7 below.
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(a) 

(b) 

Figure 6. Electrical energy flow; (a) summer (7 August) (b) winter (27 November).

Figure 7. Relationship between solar radiation, electricity sales, and energy self-sufficiency.
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The distribution of the energy self-sufficiency rates by outdoor temperature is shown
in Figure 8a. In this study, since there were no batteries, the excess power generated from
the PV was not stored and was sold to the grid. Although revenue can be expected from
selling electricity, the energy self-sufficiency is reduced because electricity needs to be
purchased and used during non-generating hours. As shown in Figure 8b, even when
the energy self-sufficiency rate is close to 100%, a significant portion of the load required
for the HVAC system needs to be purchased from the grid, highlighting the need for ESS
installation to improve the building’s energy self-sufficiency. Figure 8c shows the difference
between daily PV generation and energy consumption, and it was observed that in the
winter, the PV energy generated was not enough to be stored. The daily power production,
purchase and sales volume, and energy consumption during the measurement period are
shown in Figure 9.

3.3. Energy Independence Analysis by PV–ESS Capacity

Through a building energy simulation, the annual load demand of a building with the
same insulation performance, floor area, and AWHP capacity as the building taken as our
subject was calculated. The power consumption required for heating and cooling loads was
calculated based on the AWHP performance coefficient, and the energy self-sufficiency rate
was analyzed for different PV–ESS capacities, as shown in Table 4. When the PV capacity is
4 kW and the ESS capacity is 2, 4, and 8 kWh, the building’s energy self-sufficiency rates are
55.84%, 67.43%, and 86.98%, respectively. As the PV and ESS capacities increase, the energy
self-sufficiency rate naturally increases. However, it was observed that the rate of increase
significantly decreases as the capacity increases excessively. Therefore, it is necessary to
compare energy self-sufficiency and economic feasibility to select an appropriate capacity.

Table 4. Energy self-sufficiency rate according to PV–ESS capacity.

PV Capacity (kW) (%)

1 2 3 4 5 6 7 8

ESS
Capacity

(kWh)

1 27.74 43.62 47.68 49.97 51.71 53.03 54.09 55.02

2 27.76 48.13 53.45 55.84 57.65 58.95 60.02 60.94

3 27.77 51.57 58.99 61.68 63.52 64.87 65.94 66.87

4 27.79 53.81 64.00 67.43 69.36 70.76 71.86 72.79

5 27.80 55.08 68.47 73.06 75.19 76.61 77.75 78.70

6 27.82 55.50 72.44 78.41 80.93 82.42 83.58 84.50

7 27.84 55.56 75.78 83.28 86.28 87.66 88.65 89.44

8 27.85 55.57 78.11 86.98 90.61 91.98 92.76 93.37

3.4. Economic Analysis of PV–ESS System

Through Equations (8)–(10), the initial investment cost and annual operating cost were
compared and analyzed for scenarios in which the energy production limit cost for the
AWHP system alone is used and that of the PV–ESS system with different capacities is
used. Compared to using the AWHP system alone without a PV–ESS system, the period
required to make a profit is 14 years for a 4 kW–2 kWh PV–ESS capacity, 16.5 years for a
4 kW–4 kWh PV–ESS capacity, and 20 years for a 4 kW–8 kWh PV–ESS capacity. However,
since an energy self-sufficiency of 87% is possible, it may be a better choice than using
the AWHP system alone when considering carbon emissions reductions. Focusing on an
energy self-sufficiency of over 90% and an 8 kWh battery capacity, an economic analysis
was performed for PV capacities of 4, 5, 6, and 7 kW. The results showed that the difference
in energy cost reductions was negligible in each case due to the large initial investment
cost. Figure 10a shows the annual operating cost of 4 kW PV–2, 4, and 8 kWh ESS, and
Figure 10b shows the annual operating cost of 4, 5, 6, and 7 kW PV–8 kWh ESS.
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(a) 

(b) 

(c) 

Figure 8. Renewable energy rate distribution. (a) Energy self-sufficiency rate for outdoor temperature;
(b) Energy self-sufficiency rate based on ratio of power purchase amount to system energy consump-
tion; (c) Energy self-sufficiency rate for difference in power production and energy consumption.
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(a) (b) 

(c) (d) 

 
(e) 

Figure 9. Electrical energy flow of integrated energy system. (a) July; (b) August; (c) September;
(d) October; (e) November.
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(a) 

(b) 

Figure 10. Annual electricity cost according to PV–ESS capacity. (a) PV capacity changes; (b) ESS
capacity changes.

4. Conclusions

This study investigated the potential of a building-integrated air-to-water heat pump
system coupled with photovoltaics to achieve energy independence. We analyzed the
energy independence rate and economic feasibility based on different PV–ESS capacities.
The integrated PV–AWHP system shared indoor electrical loads with the building’s energy
recovery ventilator. The AWHP system achieved an average cooling EER of 4.49 and
a heating COP of 2.27. The energy independence rate varied significantly during the
measurement period, ranging from 20.27% in November to 57.95% in September. This
finding underscores the critical role of energy storage systems in enhancing self-sufficiency
by storing surplus PV power for later use. With a 4 kW PV capacity, an energy independence
of 67.43% was achieved with a 4 kWh battery and 86.96% with an 8 kWh battery. However,
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it is crucial to note that while increasing PV and ESS capacities might lead to a higher self-
sufficiency, a cost/benefit analysis remains essential to determine the optimal capacity for
both energy and economic efficiency. Compared to using AWHP alone, the payback period
when combined with PV–ESS takes 14 years for a 4 kW–4 kWh system and over 20 years for
a 4 kW–8 kWh system. Implementing an ESS remains an attractive option despite the longer
payback period compared to that of a standalone AWHP system, considering its potential
for carbon emissions reductions. Future research could explore optimizing the sizing of
PV and ESS systems for a balance between energy self-sufficiency and economic feasibility.
Additionally, integrating smart energy management systems could further optimize their
energy use and improve their cost-effectiveness.
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Abstract: Cross-Laminated Timber (CLT) panels have many structural benefits but do not have
much thermal resistance. We have developed a solution to insulate CLT structures that uses high-
performance insulation panels that provide R-values up to R40/inch. The CLT panels are made
of layers of wood laminates (three, five, seven or more). The solution replaces some of the wood
laminates in the CLT production with the insulation panels in a staggered fashion so that the wood
laminates maintain contact throughout the panel, ensuring the CLT panel’s structural integrity.
The insulated CLT panels have factory-installed water-resistive barriers reducing the installation
time by eliminating installing insulation and water-resistive barriers on site. Per simulations, the
CLT/insulation panel achieved code-required insulation levels with commonly available insulation
materials. The significance of the thermal mass of CLT/insulation hybrid building envelopes was
quantified by comparing the whole building energy performance and peak demand of traditional
low mass and CLT wall assemblies resulting in up to 7% reduction in peak demand for cooling in
Knoxville, TN, in a multifamily building. Buildings contribute over 40 percent of carbon emissions.
The proposed CLT/insulation hybrid building envelope addresses both operational and embodied
carbon by having high thermal resistances due to the embedded insulation sections and eliminating
the use of high embodied carbon materials such as steel and concrete. The carbon benefit is estimated.

Keywords: cross-laminated timber; insulation; thermal performance

1. Introduction

Cross-laminated timber (CLT) has gained significant traction in the building con-
struction industry for several reasons, ranging from environmental benefits to structural
performance. There are multifaceted reasons behind the increasing popularity of CLT in
building construction, such as its sustainability, efficiency, versatility, and positive impact
on the construction process and the built environment. The prefabrication of CLT panels
off-site allows for quicker assembly times on construction sites, significantly reducing the
overall build time of projects. This efficiency translates to cost savings and minimizes
the environmental impact and disruption typically associated with construction activities.
Compared to traditional construction materials, the lightweight nature of CLT further re-
duces transportation and handling costs, contributing to the economic and environmental
efficiency of construction projects. This paper discusses an innovative product that further
reduces construction times while providing a compact, thermally insulated CLT panel.

In April 2024, the U.S. Department of Energy released the first-ever federal blueprint
to decarbonize America’s buildings sector [1]. The blueprint is designed to cut greenhouse
gas emissions from U.S. buildings by 65% by 2035 and by 90% by 2050, compared to levels
in 2005, focusing on fairness and community advantages. It establishes three overarching
goals related to fairness, cost-effectiveness, and resilience, aimed at ensuring that the transi-
tion to low-carbon buildings aids underserved communities, lowers energy expenses, and
enhances the resilience of communities to stressors. Additionally, the blueprint outlines
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four key strategic objectives, each with defined performance goals, to facilitate the overall
reduction in emissions: Increase building energy efficiency, accelerate onsite emissions
reductions, transform the grid edge, and minimize embodied life cycle emissions. Com-
pared with steel and concrete construction, CLT is a low-impact material with a much
lower carbon footprint. Using a material such as CLT offers carbon benefits through the
sequestered carbon throughout the lifetime of the timber, and unlike concrete and steel, it
is a regenerative material.

In their comprehensive literature review, Cabral and Blanchet [2] highlight the sig-
nificant energy efficiency advantages of mass timber and hybrid construction systems,
despite the current scarcity of specific design codes and standards for these innovative
building methods. They particularly emphasize the potential of Cross-Laminated Timber
(CLT) to outperform traditional construction materials like concrete and light steel frames,
with possible energy savings reaching up to 40%. A notable advantage of CLT lies in
its ability to minimize thermal bridging, thereby facilitating achieving stringent energy
performance benchmarks. Moreover, the inherent airtightness of CLT structures contributes
to further energy conservation by reducing uncontrolled ventilation and enhancing the
operational energy efficiency of buildings. Salonvaara et al. [3] studied the benefits of
mass timber in buildings, demonstrating notable reductions in annual energy use and peak
demand, alongside improved thermal comfort, compared to conventional lightweight wall
systems. The laboratory tests and simulation research revealed mass timber’s ability to
shift heating and cooling energy demand away from peak hours, resulting in a 30–50%
reduction in peak demand and enhancing thermal comfort by reducing uncomfortable
hours by up to 46%. The thermal mass of CLT contributes to energy efficiency, maintaining
stable indoor temperatures and reducing the need for mechanical heating and cooling.
Setter et al. [4] showed a 38% reduction in annual heating energy in Minneapolis, MN,
and a 17% reduction in annual cooling energy in Phoenix, AZ, with simulations. These
findings advocate for integrating mass timber as an effective energy efficiency and thermal
management strategy in various climate zones. In their comprehensive review within the
context of Cross-Laminated Timber (CLT) development and application, Ren et al. [5] assert
that CLT emerges as a superior building material when evaluated against criteria such as
energy consumption, environmental impact, and structural integrity as corroborated by
the majority of sources referenced in their study. They forecast that future research in CLT
could pivot around several areas, such as the innovation of non-adhesive CLT solutions to
eliminate reliance on chemical binders, enhancements in CLT logistics aimed at optimiz-
ing energy efficiency, advancements in the design and functionality of edge connections,
mass CLT elements, and the investigation into the airtightness of CLT structures and their
energy performance.

Past research on combining insulation with CLT panels is available. Santos et al. [6]
focused on a sandwich wall-panel solution based on CLT, aiming to improve thermal
insulation and reduce weight by combining wood with a low-density core layer. They
presented a Life-Cycle Analysis (LCA) study about the product’s environmental impact.
The layout of the new panel is like that of a five-layer CLT panel, but they replaced the inner
layer with rigid polyurethane foam. In a follow-up paper [7], they explored the new panel
layout named Cross-Insulated Timber (CIT), which uses polyurethane (PUR) rigid foam
instead of timber for the inner layer to improve thermal insulation and reduce weight for
acoustic and thermal behavior. The CIT panel included four layers of solid wood lamellae
with one solid rigid insulation layer in the middle.

Reducing wood content inside the CLT panels impacts its acoustical and structural
performance and fire rating. Huang et al. [8] showed that the hollow cores have little effect
on the static bending stiffness of the CLT panels. However, there were indications that the
hollow cores could degrade the floor dynamic bending stiffness.

This manuscript’s investigation exclusively concentrates on thermal performance
aspects. The novel method, replacing pieces of wood boards inside the CLT panel in a
staggered fashion, provides a compact, readily insulated CLT panel. The paper constitutes a
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preliminary analysis, emphasizing the steady-state thermal behavior and the thermal delay
characteristics of heat flow through the assembly. Should this foundational examination
prove satisfactory, subsequent investigations will encompass fire safety, structural integrity,
and other pertinent parameters.

2. Materials and Methods

In this study, we enhanced the thermal performance of Cross-Laminated Timber
(CLT) by integrating insulation within its structure and devising an innovative insulated
CLT panel. Traditional CLT comprises multiple layers of lumber, with each layer’s wood
grain oriented perpendicularly to adjacent ones. Our modification involved substituting
a portion of the wood with insulation material in two or three layers, thereby creating
partially insulated lamellae within the CLT matrix.

The standard configuration of the CLT used in our experiments was a five-ply structure,
with each ply measuring 34.9 mm in thickness, culminating in a total panel thickness of
174.6 mm. To assess the impact of varying insulation properties, we experimented with
insulation materials offering a range of thermal conductivity, including 0.0036 W/m·K
(vacuum insulation panel) and extending up to 0.11 W/m·K (typical of wood), representing
a broad spectrum of thermal conductivity.

A key variable in our study was the ‘insulation ratio’, which refers to the proportion
of insulation substituted for wood in the partially insulated layers. Values range from
30% to 70%. This parameter allowed us to explore the structural integrity and thermal
performance balance.

We compared the thermal efficiency of our modified CLT panels against a conventional
insulation strategy, termed the ‘1D-assembly’. This conventional model consists of a solid
wood panel paired with a continuous layer of insulation, maintaining the same overall
thickness but lacking the integrated approach of the insulated CLT. The volumes of the
wood and insulation materials are identical in the 1D assembly and the insulated CLT.

Our analysis included two configurations: (1) one with insulation replacing wood in
two CLT layers and (2) another with three middle layers substituted with insulation. We em-
ployed the COMSOL Multiphysics® software v6.2 [9] for our simulations, enabling detailed
modeling and calculating the effective surface-to-surface R-value, thereby quantifying the
thermal performance enhancements achieved through our insulated CLT design.

3. Results

The simulations for heat transfer through the CLT panels with varying degrees of
insulation were carried out for a panel size mimicking one that would be used in a heat
flow meter apparatus. The panel size was 0.61 m × 0.61 m with an overall thickness of
175 mm for a five-ply CLT with 35 mm layers.

The thermal properties of the wood used in the simulations for the CLT were

• Density 500 kg/m3

• Specific heat capacity 1880 J/kg·K
• Thermal conductivity 0.11 W/m·K

Staggering the insulation layers in the CLT was created in the test sample by placing
the insulation layers at 0.61 m on-center distance from each other, creating a symmetric
boundary condition on the sides.

3.1. Staggered Insulation in Two Lamellae of CLT

An insulated CLT assembly was created by replacing some pieces of wood in two
layers of a CLT assembly with insulation (Figure 1). Both layers had the same percentage
of insulation in the total area.
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Figure 1. Staggered insulation layers in two lamellae of CLT.

The assembly is a five-ply CLT with the layers listed in Table 1.

Table 1. The material arrangement in the CLT with two insulated layers.

Layer Materials

1 Wood only
2 Wood (1.0-insulation ratio *), insulation (insulation ratio *)
3 Wood only
4 Wood (1.0-insulation ratio *), insulation (insulation ratio *)
5 Wood only

* Insulation ratio = area of insulation/total area in a layer.

The resulting effective R-values as a function of insulation’s R-value and area coverage
are shown in Table 2. The insulation ratio is the same for each partially insulated layer (2
and 4).

Table 2. Assembly R-values for a staggered two-layer system and a one-dimensional (1D) assembly
with average material thicknesses.

k, W/m·K 0.0036 0.0180 0.0240 0.0288 0.0400 0.0500 0.1100

Insulation ratio R-value (m2, K/W): Staggered two layers
0.3 2.60 2.13 2.02 1.96 1.85 1.78 1.59
0.4 3.50 2.44 2.25 2.14 1.96 1.86 1.59
0.5 5.06 2.81 2.51 2.34 2.08 1.94 1.59
0.6 6.82 3.15 2.74 2.52 2.19 2.01 1.59
0.7 8.32 3.44 2.94 2.68 2.30 2.08 1.59

Homogeneous thickness as a
single layer

R-value (m2, K/W): 1D-assembly d-wood, mm d-ins, mm
0.3 7.22 2.56 2.27 2.12 1.92 1.82 1.59 153.7 21.0
0.4 9.09 2.89 2.50 2.30 2.03 1.89 1.59 146.7 27.9
0.5 10.97 3.21 2.73 2.48 2.14 1.97 1.59 139.7 34.9
0.6 12.85 3.53 2.95 2.66 2.25 2.04 1.59 132.7 41.9
0.7 14.72 3.86 3.18 2.84 2.37 2.12 1.59 125.7 48.9

R-value ratio (-): Staggered/1D-assembly
0.3 36% 83% 89% 92% 96% 98% 100%
0.4 38% 84% 90% 93% 97% 98% 100%
0.5 46% 88% 92% 94% 97% 98% 100%
0.6 53% 89% 93% 95% 97% 98% 100%
0.7 56% 89% 93% 94% 97% 98% 100%
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Figures 2 and 3 demonstrate that the overall R-value of the partially insulated CLT
panel depends linearly on the insulation ratio in the two-layer staggered system. The impact
of thermal bridging between the insulation layers is less than 12% when the insulation’s
thermal conductivity is higher or equal to 0.018 W/m·K. The thermal bypasses in the
system with vacuum insulation, 0.0036 W/m·K, reduce the overall R-value to half that of a
system with continuous insulation when the insulation ratio is 0.3 and the volume of the
insulation material is the same. The higher the insulation ratio, the smaller the impact of
thermal bridging on the overall R-value.

 

Figure 2. Effective R-value of the five-ply CLT with varying degrees of insulation in two layers
(layers 2 and 4). Results for insulation materials with thermal conductivity ranging from 0.0036 to
0.11 W/m·K. The dotted line is for the vacuum-insulated panel (VIP).

 

Figure 3. R-value ratio (%) in the five-ply CLT with varying degrees of insulation in two layers
(layers 2 and 4) compared to a solid CLT with a homogeneous insulation layer. Results for insulation
materials with thermal conductivity ranging from 0.0036 to 0.11 W/m·K. The dotted line is for the
vacuum-insulated panel (VIP).
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3.2. Staggered Insulation in Three Lamellae of CLT

The insulated CLT system with insulation in two lamellas of CLT was further improved
by adding insulation in the third lamellae (Figure 4). This layer runs perpendicular to the
other two layers with insulation. All three layers had the same percentage of insulation in
the total area.

Figure 4. Staggered insulation in three lamellae of a five-ply CLT.

The assembly is a five-ply CLT with the lamellae listed in Table 3.

Table 3. Material arrangement in the CLT with staggered insulation in three lamellae.

Layer Materials

1 Wood only
2 Wood (1.0-insulation ratio *), insulation (insulation ratio *)
3 Wood (1.0-insulation ratio *), insulation (insulation ratio *)
4 Wood (1.0-insulation ratio *), insulation (insulation ratio *)
5 Wood only

* Insulation ratio = area of insulation/total area in a layer.

The resulting effective R-values as a function of the insulation’s R-value and area
coverage are shown in Table 4. The insulation ratio is the same for each partially insulated
layer (2, 3, and 4).

Table 4. Assembly R-values for a staggered three-layer system and 1D assembly with average
material thicknesses.

k, W/m K 0.0036 0.0180 0.0240 0.0288 0.0400 0.0500 0.1100

Insulation ratio R-value (m2, K/W): Staggered three layers
0.3 3.26 2.41 2.25 2.15 1.98 1.87 1.59
0.4 4.84 2.89 2.59 2.41 2.14 1.99 1.59
0.5 7.63 3.44 2.97 2.71 2.32 2.11 1.59
0.6 11.01 3.97 3.33 2.99 2.49 2.22 1.59
0.7 14.31 4.46 3.67 3.25 2.66 2.34 1.59

Homogeneous thickness as a single layer

R-value (m2, K/W): 1D-assembly d-wood, mm d-ins, mm
0.3 10.03 3.05 2.61 2.39 2.09 1.93 1.59 143.2 31.4
0.4 12.85 3.53 2.95 2.66 2.25 2.04 1.59 132.7 41.9
0.5 15.66 4.02 3.29 2.93 2.42 2.16 1.59 122.2 52.4
0.6 18.48 4.51 3.64 3.20 2.59 2.27 1.59 111.8 62.9
0.7 21.29 5.00 3.98 3.47 2.75 2.39 1.59 101.3 73.3
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Table 4. Cont.

R-value ratio (-): Staggered/1D-assembly
0.3 32% 79% 86% 90% 95% 97% 100%
0.4 38% 82% 88% 91% 95% 97% 100%
0.5 49% 86% 90% 92% 96% 98% 100%
0.6 60% 88% 91% 93% 96% 98% 100%
0.7 67% 89% 92% 94% 96% 98% 100%

Figures 5 and 6 demonstrate that the overall R-value of the partially insulated CLT
panel depends linearly on the insulation ratio in the two-layer staggered system.

 

Figure 5. Effective R-value of the five-ply CLT with varying degrees of insulation in three layers
(layers 2, 3, and 4). Results for insulation materials with thermal conductivity ranging from 0.0036 to
0.11 W/m·K. The dotted line is for the vacuum-insulated panel (VIP).

 

Figure 6. R-value ratio (%) in the five-ply CLT with varying degrees of insulation in three layers
(layers 2, 3, and 4) compared to a solid CLT with a homogeneous insulation layer. Results for
insulation materials with thermal conductivity ranging from 0.0036 to 0.11 W/m·K. The dotted line
is for the vacuum-insulated panel (VIP).
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In a two-layer insulated system, the impact of thermal bridging between the insulation
layers is less than 17% when the insulation’s thermal conductivity is equal to or higher than
0.018 W/m·K. The thermal bypasses in the system with vacuum insulation, 0.0036 W/m·K,
reduce the overall R-value by 64% of that of a system with continuous insulation when the
insulation ratio is 0.3 and the volume of the insulation material is the same. Comparing
these results to the three-layer insulation system, we notice that the impact of thermal
bridges is higher in the three-layer system, up to 21% with k = 0.018 W/m·K insulation
and 68% with k = 0.0036 W/m·K. The higher the insulation ratio, the smaller the impact of
thermal bridging on the overall R-value.

3.3. Comparing the Two- and Three-Layer Staggered Insulation CLTs

Figure 7 compares the two- and three-layer staggered insulated systems with thermal
conductivity values of 0.0036 and 0.024 for the insulation. The three-layer staggered
system provides a better R-value than the two-layer system with the same insulation ratio.
However, the three-layer insulation system uses more insulation at the same ratio. Table 5
shows the volume percentage of insulation when the insulation is placed in two or three
layers of the CLT. Comparing the two systems at the same volume of insulation used, we
can take, for example, an insulation ratio of 0.5 for the two-layer system and 0.33 for the
three-layer system. In this case, both systems have one full layer of insulation out of five in
the CLT. The two-layer system with R-40 per inch insulation (k = 0.0036 W/m·K) achieves
an R-value of 5.1 m2K/W, whereas the three-layer system achieves only 3.8 m2/K/W.
Therefore, the arrangement in the two-layer system is more efficient in recovering the
R-value of a continuous insulation layer.

 

Figure 7. Comparison of the system R-value with k = 0.0036 W/m·K and k = 0.024 W/m·K insulation
staggered in CLTs’ two and three insulation lamellae.

Table 5. Volume fraction of insulation (%) in the insulated CLTs.

Volume Percentage of Insulation, %

Insulation Ratio, - 2-Ply 3-Ply

0.3 12% 18%
0.4 16% 24%
0.5 20% 30%
0.6 24% 36%
0.7 28% 42%
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3.4. Validating Simulations with an Experimental Test

Simulations can provide theoretical values that are not necessarily replicated in real
assemblies due to imperfections such as gaps between components. To validate that the
simulations mimic reality, we tested one assembly with insulation in three lamellae of a
five-ply CLT in a heat flow meter apparatus for a sample size of 610 mm × 610 mm. The
assembly had three solid 203 mm wide wood layers of 16.7 mm thick on top and bottom.
Out of the three 19.1 mm middle layers, the top and middle layers had 33% insulation in a
staggered fashion (insulation ratio = 0.33) (Figure 8). The bottom 19.1 mm layer has 2/3
insulation of the total area. The total thickness of the assembly was 90.5 mm.

Figure 8. The assembly for comparing the effective R-value based on heat flow meter results to
simulated performance. The top square area shows where heat flux is measured and outputted in the
simulation for comparison.

The insulation’s thermal conductivity was measured in the heat flow meter and was
found to be 0.033 W/m·K. The thermal conductivity of the wood was not measured but
assumed to be 0.11 W/m·K. The materials and assembly were tested using a FOX 600 heat
flow meter with an absolute thermal conductivity accuracy of ±1% and reproducibility of
±0.5%. The heat flow meter measures the heat flow in the center of the surfaces in an area
of 254 mm × 254 mm (Figure 8). The tested and simulated steady-state results are shown
in Table 6 for a temperature difference of 22.2 K at an average temperature of 23.9 ◦C. The
difference between the simulated and tested results is small, less than 2%, indicating that
the simulations provide accurate predictions.

Table 6. Simulated and tested heat flow meter results for an insulated CLT panel.

Area
Measured Heat Flux

W/m2
Simulated Heat Flux

W/m2
Difference between

Simulated and Measured

Top 254 mm × 254 mm 14.42 14.68 +1.8%
Bottom 254 mm × 254 mm 15.27 15.57 +1.9%
Total area 0.61 m × 0.62 m 17.00 N/A

Overall R-value for 0.61 m × 0.61 m area 1.31 N/A

3.5. Dynamic Calculations

The thermal mass inherent in construction materials facilitates the absorption and
storage of heat, adapting to fluctuating environmental conditions. The integration of heat
capacity and thermal conductivity modulates the heat transfer rate through the material,
thereby attenuating the intensity of peak thermal fluxes. The effect of thermal mass is well
characterized in homogeneous material layers. The insulated CLT panels have staggered
internal layers, and the dynamic performance is not as easy to estimate without advanced
modeling. We simulated the transient response of the uninsulated and insulated CLT panels
of the same thickness to show the impact of the insulation on the time delay and magnitude
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of the heat flux on the interior side when the panel was exposed to sine wave temperature
on the exterior side. The sine wave had a 24 h cycle, which could be expected in natural
weather exposure in buildings. The exterior and interior surface had a convection heat
transfer coefficient of 10 W/m2K.

The simulations were conducted for the staggered two-layer insulation system with an
insulation ratio of 0.5 and a thermal conductivity of insulation 0.024 W/m·K. Five systems
were simulated with the same overall thickness of 175 mm:

1. Solid CLT panel
2. Staggered two-layer insulated CLT panel
3. CLT panel with continuous insulation on the exterior side
4. CLT panel with continuous insulation in the middle of the panel
5. CLT panel with continuous insulation on the interior side

Figure 9 shows how the insulation layers in the CLT panel lower the heat flux through
the panel while still providing the same long time delay for the peak (~12 h). Shifting the
peak heat flux from the daytime to night reduces energy use during peak demand hours,
typically in the afternoon and evening hours for cooling climates.

 

Figure 9. Heat flux on the interior surface under dynamic conditions for the uninsulated and insulated
CLT panels.

3.6. Targeted Thermal Performance

The integration of insulation within Cross-Laminated Timber (CLT) panels represents
a significant advancement in construction technology. It aligns with rigorous building
codes for thermal performance without necessitating additional insulation applications
on-site. Our study evaluates the compatibility of these innovative hybrid CLT panels with
the 2021 International Residential Code (IRC) [10], focusing on the mandated insulation
R-value and U-value requirements across diverse International Energy Conservation Code
(IECC) climate zones (Table 7).

According to the IRC, walls possessing a thermal mass exceeding 123 kJ/m2·K are
classified as mass walls within the thermal envelope of a building. The IECC standards
for commercial buildings set this threshold at 103 kJ/m2·K for materials weighing under
1900 kg/m3. Our analysis indicates that 175 mm thick CLT panels, comprised of solid wood,
have a thermal mass of 164 kJ/m2·K, qualifying them as mass walls. Notably, embedding
insulation up to 25% by volume within these panels does not affect their classification as
mass walls in residential constructions. However, this percentage might vary depending
on the wood used in the CLT panels.
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Table 7. Thermal requirements for mass walls in IRC 2021 [10] (Tables R402.1.3 and R402.1.2) and in
IECC 2021 Table C402.1.4 for commercial buildings Group R (residential) [11]. Dual units are given to
show original content as written in the building codes. The SI units have been converted from IP.

Climate Zone
Mass Wall R-Value *

ft2·◦F·h/Btu
(m2·K/W)

Mass Wall U-Value
Btu/ft2·◦F·h (W/m2·K)

Frame Wall U-Value
Btu/ft2·◦F·h (W/m2·K)

Commercial Buildings
Mass Wall U-Value, Group

R
Btu/ft2·◦F·h (W/m2·K)

0 3/4 (0.53/0.70) 0.197 (1.12) 0.084 (0.47) 0.151 (0.86)
1 3/4 (0.53/0.70) 0.197 (1.12) 0.084 (0.47) 0.151 (0.86)
2 4/6 (0.70/1.06) 0.165 (0.94) 0.084 (0.47) 0.123 (0.70)
3 8/13 (1.41/2.29) 0.098 (0.56) 0.060 (0.34) 0.104 (0.59)

4 except marine 8/13 (1.41/2.29) 0.098 (0.56) 0.045 (0.26) 0.104 (0.59)
5 and marine 4 13/17 (2.29/2.99) 0.082 (0.47) 0.045 (0.26) 0.080 (0.45)

6 15/20 (2.64/3.52) 0.060 (0.34) 0.045 (0.26) 0.071 (0.04)
7 19/21 (3.35/3.70) 0.057 (0.32) 0.045 (0.26) 0.071 (0.04)
8 19/21 (3.35/3.70) 0.057 (0.32) 0.045 (0.26) 0.037 (0.21)

* The second R-value applies when more than 50% of insulation is on the interior of the mass wall.

From a thermal performance standpoint, a 175 mm thick uninsulated CLT panel, with
a thermal conductivity of 0.11 W/m·K, achieves an R-value of 1.6 m2·K/W. This results in
a U-value of 0.63 W/m2·K, meeting the IECC requirements for climate zones 0 to 2. Thus,
the superior thermal efficiency of wood is underscored.

Further analysis of insulated CLT configurations, such as a two-layer staggered ar-
rangement with 20% insulation volume of k = 0.024 W/m·K insulation, revealed an R-value
of 2.5 m2·K/W. A similar three-layer configuration yielded an R-value of 2.4 m2·K/W,
with the two-layer system’s improved thermal efficiency mainly due to reduced thermal
bridging. The U-value for the two-layer insulated system was calculated at 0.40 W/m2·K,
demonstrating that hybrid CLT panels can meet building code requirements across a broad
range of climate zones.

Including additional layers, such as gypsum boards and exterior sidings, along with
surface resistances, can further enhance thermal resistance by at least R-0.35 m2·K/W,
leading to a U-value of 0.34 W/m2·K. This is adequate for meeting the thermal requirements
of climate zone 6 for mass walls and zones 0 to 3 for frame walls. Increasing the insulation
ratio to 28% of the total volume, with an insulation thermal conductivity of 0.024 W/m·K,
results in a U-value of approximately 0.30 W/m2·K, fulfilling the insulation criteria for all
climate zones for mass walls.

While traditional rigid foam insulations provide thermal conductivity down to
0.024 W/m·K, advanced materials like vacuum insulation panels offer higher insula-
tion properties. However, these materials require protection from mechanical damage to
maintain their insulating effectiveness. Embedding such panels within CLT structures can
safeguard them, ensuring the durability and performance of the insulation.

3.7. Impact of CLT on Peak Demand

The impact of thermal mass on peak demand and annual energy use for heating
and cooling was predicted by using a whole-building simulation model, EnergyPlus [12].
EnergyPlusTM is a comprehensive building energy simulation program developed with
contributions from several national labs and organizations under the funding and guidance
of the U.S. Department of Energy (DOE). Since its inception in 1997, EnergyPlus has been
subject to continuous updates and enhancements, reflecting the latest in building energy
modeling research and technology.

DOE has created prototype building models for EnergyPlus for different types of
buildings [13]. For the simulations, we chose a three-story multifamily building (Figure 10)
with a heat pump for heating and cooling in Knoxville, TN. Of the total building area,
3623 m2, 2007 m2 is conditioned. The base model has features, such as the exterior wall
construction, per the International Energy Conservation Code 2021. The base model with

117



Buildings 2024, 14, 1089

the lightweight wall assembly was modified by replacing the wood-frame structure with
an insulated CLT assembly while maintaining the U-value of 0.271 W/m2·K. No other
changes were made to the model inputs except changing the location and weather file
to Knoxville, TN. Thus, all the equipment, internal loads, occupancy schedules, and set
points were preserved. The wall layers and their properties are listed in Table 8. Note that
EnergyPlus treats wall assemblies as one-dimensional components. The two-dimensional
staggered system must be simplified to a three-layer setup with half the thickness of CLT
on each side of an insulation layer. Columns LW and CLT show which layers are part of
the lightweight and CLT wall assemblies.

 

Figure 10. Multifamily building as modeled in EnergyPlus software.

Table 8. Wall assembly details for the base case (lightweight wall) and the mass wall (insulated CLT)
with effective layer properties, including thermal bridges.

Layer from Outside to Inside LW CLT
Thickness

(mm)
Density
(kg/m3)

Specific Heat
Capacity (J/kg·K)

Thermal
Conductivity

(W/m·K)

Synthetic stucco X X 3 400 879 0.087
Insulation X 31 20 1465 0.035

Oriented StrandBoard X 11 545 1213 0.116
Half CLT X 67 500 1880 0.110
Insulation X 40 20 1200 0.018
Half CLT X 67 500 1880 0.110

Wood Framed Cavity X 140 121 1036 0.057
Gypsum Board X X 13 801 1089 0.16

The annual energy consumption for heating and cooling exhibited a reduction of
2.4% when employing the Cross-Laminated Timber (CLT) wall assembly, compared to the
lightweight construction. Specifically, the building outfitted with CLT walls recorded an
electricity usage of 53,215 kWh, whereas the structure with lightweight walls accounted
for 54,500 kWh. Figure 11 delineates the diurnal heating demand, identifying a morning
peak where the CLT wall assembly facilitates a 5.2% decrease in heating requirements
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compared to its lightweight counterpart. Figure 12 illustrates the cooling demand patterns
during August, pinpointing the peak cooling load. Notably, in August, the CLT wall
assembly demonstrated a 7.1% reduction in peak cooling demand relative to the lightweight
construction, underscoring its efficiency in thermal management.

 

Figure 11. Heating demand on average for each hour in January.

 

Figure 12. Cooling demand on average for each hour in August.

The results show that the CLT wall assembly dampens the heat flows through the
exterior wall and flattens the heating and cooling demand between night and day. For
example, the CLT building has higher cooling demand at night but lower in the afternoon
and evening.
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3.8. Carbon Benefits of the Insulated CLT

Considering sequestered carbon in the embodied carbon calculations for mass timber
and Cross-Laminated Timber (CLT) is a topic of ongoing debate within the sustainability
and construction communities. Trees absorb carbon dioxide from the atmosphere as they
grow, known as carbon sequestration. When trees are harvested and used in building
materials like mass timber and CLT, that carbon is effectively stored in the built environ-
ment, potentially for decades or centuries. Including sequestered carbon in embodied
carbon calculations acknowledges this benefit and can show mass timber and CLT as more
sustainable options than materials like steel or concrete, which have higher embodied
carbon and do not sequester carbon.

Accounting for sequestered carbon adds complexity to embodied carbon calculations
due to the need to consider factors like the source of the timber, forest management
practices, and the likelihood of the carbon being released back into the atmosphere at
the end of the product’s life (e.g., through decay or combustion). These factors can vary
widely and introduce uncertainty into the calculations. There is a risk that the same
sequestered carbon could be counted multiple times in different products or accounting
systems, leading to overestimating the actual carbon benefits. For example, if the carbon
sequestered by a forest is counted in national carbon inventories, counting it again in the
embodied carbon of timber products could lead to double counting. The carbon stored
in mass timber and CLT will eventually be released back into the atmosphere when the
material decomposes or is burned at the end of its life. Unless there are guarantees that
the material will be reused, recycled, or permanently sequestered, including sequestered
carbon in embodied calculations could give a misleading impression of the material’s
long-term environmental impact.

The impact of internally insulated CLT on carbon released to the atmosphere is mul-
tifaceted, involving considerations of operational and embodied carbon, carbon seques-
tration, construction efficiency, and end-of-life scenarios. The overall impact will depend
on factors such as the choice of insulation materials, the energy sources used during the
building’s operation, and the practices for managing the building materials at the end of
their life. Substituting some wood layers with insulation material will alter the embodied
carbon of the CLT panels. The net effect on embodied carbon will depend on the type of in-
sulation material used. If the insulation is made from materials with low embodied carbon,
the overall embodied carbon of the insulated CLT panels may be lower than standard CLT
panels. Conversely, if the insulation material has high embodied carbon (e.g., certain foams
or plastics), it could increase the total embodied carbon of the panels. The pre-installation
of water-resistive barriers and the integration of insulation can streamline the construction
process, reducing the time and potentially the energy required on-site. This efficiency can
lead to lower carbon emissions associated with construction activities.

Improved energy efficiency in buildings can reduce the overall energy demand, po-
tentially leading to decreased carbon emissions at a larger scale within the energy grid,
assuming a mix of fossil fuels and renewable energy sources.

On a negative note, non-wood materials (like insulation and water-resistive barriers)
within the CLT panels could complicate recycling or reuse at the end of the building’s life,
potentially leading to higher carbon emissions associated with waste processing or disposal.
However, the impact could be mitigated if these materials are selected for recyclability or
systems are in place for recovery.

4. Discussion

This paper presents a novel method for enhancing the thermal efficiency of Cross-
Laminated Timber (CLT) panels, which are traditionally characterized by their low thermal
resistance. By embedding high-performance insulation within the CLT framework in a
staggered arrangement, this approach not only preserves the structural integrity of the CLT
panels but also significantly boosts their thermal insulation capabilities. This innovative
technique streamlines the construction process by diminishing the need for additional

120



Buildings 2024, 14, 1089

insulation and water-resistive barriers to be applied on-site. The research assesses the
impact of this integrated CLT-insulation system on the building’s energy performance and
carbon footprint, juxtaposing it with conventional construction materials. The findings
underscore the dual benefits of this system in enhancing energy efficiency during the
building’s operational phase and reducing embodied carbon, thereby underscoring its
potential to advance more ecologically responsible construction methodologies.

This study highlights the potential of hybrid CLT panels with integrated insulation
to streamline construction processes and enhance thermal performance, aligning with
energy conservation goals outlined in building codes. Future work will involve detailed
species-specific analysis to further optimize this innovative building solution. Additionally,
the structural and fire performance requirements must be evaluated to comply with the
code referenced ANSI/APA PRG 320: Standard for Performance-Rated Cross-Laminated
Timber to allow the use of novel products in buildings [14].

5. Conclusions

This paper explored the development and performance evaluation of partially in-
sulated Cross-Laminated Timber (CLT) panels, integrating high-performance insulation
within the panel structure to enhance thermal efficiency without compromising structural
integrity. Through a comprehensive literature review, we identified a gap in existing re-
search regarding the thermal optimization of CLT panels. We addressed this by proposing
an innovative configuration incorporating hollow or insulated core layers. Experimental
results demonstrated that these modified CLT panels meet and exceed current thermal per-
formance standards, offering a viable solution for energy-efficient, sustainable construction.
The discussion highlighted the broader implications of our findings for the construction
industry, particularly in terms of meeting stringent energy codes and sustainability goals.
Our conclusions underline the potential of insulated CLT panels to revolutionize building
practices, emphasizing the need for further research into long-term performance, cost
analysis, and adaptability to various climatic conditions. This study contributes to the
growing body of knowledge on sustainable building materials and paves the way for future
innovations in green construction.
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Abstract: The development of high-rise buildings worldwide has given rise to significant concerns re-
garding their excessive electricity consumption. Among the various categories of high-rise structures,
hotels used for business and conferences stand out as particularly extravagant in their energy use.
The consequence arising from excessive energy usage is an escalation in carbon emissions, which is a
primary driver of global warming. Therefore, this study aims to investigate the energy use intensity
(EUI) of a hotel building located in Jakarta, Indonesia. In order to improve energy performance,
this study explored various options for renovating the building envelope, such as incorporating
insulation and a roof covering, as well as implementing building-integrated photovoltaics (BIPV).
The building envelope renovations demonstrated a notable reduction in energy use by 15.8–27.7%
per year. BIPV, such as curtain walls and double-skin façades, generated an energy use reduction of
4.8–8.6% per year. Remarkably, by combining the two approaches (i.e., adding insulation and a roof
covering in the building envelope and adopting BIPV as double-skin façades), the potential reduction
in energy use reached up to 32.2% per year. The findings can assist decision-makers in developing
building renovation strategies for high-rise buildings while considering energy conservation.

Keywords: building integrated photovoltaics; energy use intensity; energy analysis; BIM

1. Introduction

Buildings use a significant amount of energy, comprising approximately 40% of overall
energy usage [1]. The 2021 United Nations Climate Change Conference (COP 26) high-
lighted the crucial role of buildings in climate action, emphasizing the requirement to cut
emissions by 50% by the year 2030 through building energy efficiency [2]. In particular,
high-rise buildings require enormous electricity consumption throughout operational peri-
ods, which increases carbon emissions, leading to environmental issues [3]. Among the
various types of high-rise buildings, hotels are ranked as the highest energy-intensive
structures, alongside shopping centers and office buildings [4]. As hotels use more energy
compared to other commercial buildings [5], it is essential to improve energy performance
in hotels to minimize their environmental impacts.

Two main strategies that can be implemented for such buildings are building envelope
renovation and building-integrated photovoltaics (BIPV) installation. Building envelope
renovation aims to reduce the energy demands of buildings, while BIPV installation aims to
provide additional opportunities for energy generation. BIPV has the potential to transform
the hotel industry by lowering energy expenses; enhancing hotels’ sustainable image,
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giving them a competitive edge; and contributing additional value towards achieving
green building certification

Typically, the evaluation standard for investigating building energy use is the Energy
Use Intensity (EUI) value, which is the ratio of energy used to the building’s gross floor
area [3]. The EUI value, expressed in units of (kWh/(m2·year)), quantifies the annual
energy used (kWh) per square meter of building area (m2) [6]. The impact of both strategies
on influencing the EUI value is commonly assessed using building information modeling
(BIM) tools such as Revit for building modeling and Insight 360 for EUI value analysis [7].
BIM enables the rapid analysis of energy performance across numerous design alternatives,
proving particularly advantageous during the initial design phase of new buildings or the
retrofitting design phase of existing buildings [8].

The approaches of these two renovation strategies differ significantly, with building
envelope renovations focusing on enhancing thermal performance to resist heat transfer
between the warmer and colder environments within a building [9], while BIPV installation
hinges on the self-generation of renewable energy. These two strategies can function
independently or in combination. As per Ochoa and Capeluto [10], integrating both
passive building envelope renovations and BIPV strategies can yield a reliable energy
reduction ranging from 50% to 55%, surpassing the savings achieved by implementing
individual active features or passive design strategies alone. Therefore, this study aims to
explore the potential for reducing EUI values by considering building envelope renovation
and BIPV strategies independently and in combination.

1.1. Building Envelope Renovation Strategies

A building envelope consists of elements such as the walls, fenestration, foundations,
roof, shading devices, etc., which separate indoor and outdoor environments [11]. The
building envelope plays a vital role in regulating the temperature within indoor spaces [12].
Among the modifiable components of a building envelope, insulation stands out as the
most effective and primary contributor to energy savings [13,14].

Correct utilization of thermal insulation within the building envelope proves to be
the most efficient approach in diminishing the heat transmission rate and lowering energy
consumption for heating and cooling internal spaces [15]. Adequate thermal insulation can
notably decrease the annual cooling load and peak cooling demands for buildings situated
in hot regions (both dry and humid) [16]. The factors considered in choosing insulation
materials include material properties, material thickness, availability, ease of application,
life-cycle cost, climate condition, and energy-saving rate [17].

The properties that influence insulation materials include thermal conductivity, ther-
mal resistance, thermal transmittance, etc. [18]. The U-value (thermal transmittance),
measured in W/m2·K, represents the overall heat flow coefficient, indicating the rate of
heat transfer through one square meter of a building component with a 1-degree Kelvin
temperature gradient. On the other hand, the R-value (unit: m2·K/W), the thermal re-
sistance, is the inverse of the U-value and is crucial in insulation selection [19]. To be
effectively integrated and operate efficiently within the building’s design, it is essential to
attain low U-values in the building envelope [20].

In tropical climates, thermal insulation can be advantageous by maintaining cooler
indoor temperatures through the reduction of heat transfer from the outside to inside [21].
Insulation helps in reducing the load on cooling systems, leading to energy savings. This
is particularly relevant in regions with hot climates where air conditioning is commonly
used [22].

Currently, there are many types of insulation materials on the market, each with
distinct thermal properties, material composition, and associated costs. Their application
methods vary depending on the overall structures of walls and roofs. Some studies con-
ducted analysis using various insulation materials in tropical climate [23–25]. A study
conducted in Maldives examined the potential for cost savings and emission reductions
through the installation of various insulation materials at the optimal thickness in building
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walls [23]. The research revealed that using fiberglass (rigid) and fiberglass urethane (roof
deck) at their ideal thicknesses could decrease fuel consumption by over 77%. Another
study explored the application of extruded polystyrene (XPS) in two common wall struc-
tures, concrete blocks and compressed stabilized earth blocks, in Cameroon [24]. The
research revealed that the orientation of the walls significantly influenced the optimal
insulation thickness, consequently impacting energy savings.

A research project in Malaysia assessed the impact of ten different thermal insulation
materials, including urethane, fiberglass, and XPS, on air-conditioning energy consumption
for cooling purposes, considering the tropical climate [25]. The findings showed that
energy savings ranged from 85 to 92%/m2 depending on the insulation material at its
optimal thickness. Finally, a study carried out in Iran focused on optimizing the thicknesses
of various insulation materials and assessing them through life-cycle cost analysis [26].
Despite Iran not being situated in a tropical region, buildings in the country face substantial
cooling demands. The study determined that as the thermal resistance of the insulation
material increased, the cost of insulation also increased, but the cooling expenses decreased.

Roof technologies, alongside insulation, play a significant role in enhancing energy
efficiency. Recent innovations, such as cool roofs and green roofs, have been employed
in roof design to reduce cooling needs in buildings [27]. These strategies not only aid in
conserving energy but also contribute to providing thermal comfort for occupants. One
current approach suggests an optimum combination of surface reflectivity and insulation
to maximize energy savings in buildings [28]. Among the various cool roof technologies
and methods are reflective coatings, light-colored roofing materials, metal roofs, asphalt
shingles, and roof ventilation.

1.2. BIPV Strategies

BIPV is an energy efficiency strategy that complements primary electrical energy
with electricity generated from solar panels through energy conversion, which can reduce
the use of fossil fuels and greenhouse gas emissions [29,30]. In its installations, BIPV
integrates solar panels into building envelope components such as façades, roofs, and
shading devices, rather than using separate mounting materials and spaces [31]. BIPV
functions not only as an on-site electricity generator but also as an envelope material that
can decrease the room temperature and save energy consumption for indoor lighting [32].
BIPV may act as additional layer, providing shading which therefore lowers the building’s
cooling demand [33].

Currently, semi-transparent BIPV modules are frequently employed to curtain walls
and façades to allow sunlight into the building interior while still fulfilling their role in
generating electricity [34]. Semi-transparent BIPV curtain walls and BIPV double-skin
façades (DSF) are two examples of BIPV. Apart from preserving the amount and intensity
of natural light that goes in, semi-transparent solar panels also increase the aesthetic value
of buildings. Semi-transparent BIPV can be accomplished either by using transparent
thin film or spacing opaque solar modules [35]. BIPV modules are comprised of PV cells
arranged with gaps between them, enabling a portion of solar radiation to penetrate. This
feature proves particularly valuable in situations where there is a need for decreased or
filtered sunlight [36].

The use of BIPV on building envelopes has been proven to reduce building energy
consumption. Several studies have incorporated BIPV into the curtain wall. Chen et al. [37]
presented evidence that the incorporation of BIPV into building windows could mitigate
cooling loads, resulting in substantial energy savings of up to 63.71%. An et al. [38] showed
that BIPV on building windows reduced the heating and cooling load by 18.2% when
compared to double-layer windows.

Regarding BIPV DSF, some studies have investigated its energy performance. Peng
et al. [39] provided evidence demonstrating that implementing a BIPV double-skin façade
(DSF) featuring semi-transparent PV modules resulted in a significant reduction (of approx-
imately 50%) in net electricity usage. Additionally, Peng et al. [40] illustrated that a BIPV
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DSF comprising a translucent amorphous silicon (a-Si) PV module and inward-opening
windows offers a low solar heat gain coefficient (SHGC). Furthermore, Italos et al. [41]
analyzed the energy performance pre- and post- an energy renovation that incorporated
a BIPV DSF. The BIPV system contributed to around 26,706 kWh of electricity generation
annually, covering 63% of the building’s projected energy use. Lastly, a study by Aguacil
et al. [42] evaluated a combination of passive, active, and BIPV strategies for energy sav-
ing using a multi-criteria evaluation approach. This research revealed that the combined
implementation of these strategies achieved energy savings of over 89%.

1.3. Aims and Scope

Few studies have focused on the impact of retrofitting strategies for high-rise hotel
buildings, which are among the most energy-intensive buildings worldwide. One novel
aspect of this research is that it addresses the existing gap in the literature, focusing
specifically on the relatively limited retrofit studies of hotels. Another novel aspect of this
study is the hotel building’s location and Indonesia’s unique climatic conditions as an
equatorial country. In such regions, due to the consistent cooling demands throughout the
year, the potential to minimize energy use through retrofitting strategies (both passive and
active) is underrepresented in the existing literature. This makes the research a valuable
contribution to reducing the energy demand in buildings located in equatorial countries.
Therefore, this study aims to investigate the potential for reducing EUI in a high-rise hotel
building in Indonesia through building envelope renovation and BIPV strategies. Three
strategies were defined: (1) building envelope renovation by adding insulation materials
to walls and roof; (2) semi-transparent BIPV installation in the form of curtain walls and
double-skin façades; and (3) the combination of the first and second strategies.

Each strategy was subdivided into multiple sub-scenarios, with slight variations
introduced in each of the sub-scenarios. The results of this study are expected to assist
designers in planning the optimum building envelope renovation strategies for high-rise
buildings while attaining the ideal EUI value for low-carbon buildings.

The structure of this paper is outlined as follows: Section 2 includes data from a
hotel building case study along with the process of developing building envelope and
BIPV installation strategies. Section 3 presents the resulting EUI values for each scenario
and their comparison. Section 4 discusses the results and possibilities for future studies.
Section 5 presents the conclusions of the research.

2. Methodology

2.1. Case Study Hotel

Indonesia, situated in Southeast Asia, possesses a tropical rainforest climate charac-
terized by consistent high temperatures, humidity, and abundant rainfall throughout the
year. The temperature typically ranges from 23 ◦C to 32 ◦C. Due to the hot and humid
conditions, a significant portion of electricity, approximately 50–60%, is consumed for
cooling and ventilation purposes [43]. Urban areas such as Jakarta heavily rely on heat-
ing, ventilation, and air conditioning (HVAC) systems, which contribute substantially to
electricity consumption.

The selected case study is a high-rise hotel located in Jakarta, Indonesia, which was
chosen due to Jakarta having 11% of the total hotel units in Indonesia [44]. Figure 1 shows
the hotel from front and rear views. The selected hotel consisted of 21 floors, and the
total building area of 9320 m2 (44.4 m in length and 26.35 m in width) served as a suitable
representative of Indonesian hotels. The guest rooms, lobby, and convention hall of the
hotel were designed to use a centralized air conditioning system for temperature control
convenience. The remaining spaces utilized a single-mounted or exhaust fan due to lower
population density, making a targeted cooling approach more feasible and effective.
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Figure 1. 3D view of building model in Autodesk Revit: (a) front view; (b) rear view.

The initial modeling of the case study was referred to as the base case, representing
the existing condition without any improvement. The building components of the hotel
were assembled in Revit using the default settings, with slight adjustments made to comply
with Indonesia’s standards. Table 1 presents the characteristics of the building components
of the case study.

Table 1. Initial characteristics of building components of the case study.

No. Building Part Building Products

1 Basement wall
Cement plaster 15 mm

Cast in situ 400 mm

2 Interior walls
Light brick 100 mm

Cement plaster 15 mm
Frame partition with 19 mm gypsum board
Adding soft board for both inner coverings

3 Exterior walls
Lightweight concrete 200 mm—no insulation

Cement plaster 15 mm
Adding aluminium composite panel for outer coverings panel and

soft board for inner coverings

4 Curtain wall Double glazed with reflective coating 30 mm

5 Ceilings
Lightweight concrete 200 mm—no insulation

Cement plaster 15 mm
Frame partition with 19 mm gypsum board

6 Flat roof deck
Cement plaster 15 mm

100 mm lightweight concrete-no insulation

7 Room floor
Cement plaster 15 mm

100 mm lightweight concrete—no insulation
Adding ceramic tile and carpet tile

2.2. Research Framework

The framework of this study is outlined in Figure 2. The workflow consists of three
steps: (1) model preparation of initial design, (2) development of renovation scenarios
related to passive building envelope and BIPV strategies, (3) combination scenario of
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passive and BIPV strategies. In the first step, the base case was built using BIM software
(Autodesk Revit 2023.1). Material type and thickness, building dimension, building location,
and weather data were obtained from the existing data of the hotel building study case.
After the BIM model was developed, the EUI of the initial design was calculated using
Insight 360. Then, renovation scenarios were developed, which were denoted as Scenarios
A, B, and C for passive renovation strategies and Scenario D for BIPV installation. Scenario
A emphasized adding building envelope insulation to walls, Scenario B focused on the
addition of a roof covering, Scenario C was a combination of Scenarios A and B, and
Scenario D was the implementation of BIPV installation. Lastly, optimal passive strategies
were combined with BIPV application to obtain the maximum possible EUI reduction. This
combination strategy was referred to as Scenario E.

Figure 2. Research methodology.

2.3. Scenario Development

As mentioned earlier, the developed scenarios for this study are the base case, four
individual scenarios, and one combination scenario. The EUI calculation for the base
case was conducted in three phases: modelling, zone setting, and EUI calculation. In the
modelling phase, the model was built based on existing data for the hotel building (see
Table 1) and also from studies conducted by Fitriani et al. [45] and Berawi et al. [46]. In
the zone setting phase, each room (or thermal zone) in the building was defined by its
type, such as guest room, meeting room, etc. In the third phase, the EUI calculation was
performed using Insight 360.

Scenarios A, B, and C were related to building envelope renovation, whereas Scenario
D was related to BIPV application. Scenario A involved the addition of insulation to the
building envelope, where the building envelope was modified by incorporating an addi-
tional insulation layer with three different material types (all having the same thickness):
A1, A2, and A3. These insulations were 50 mm of polyurethane foam (PU), fiberglass batt,
and extruded polystyrene (XPS) for A1, A2, and A3, respectively. The thickness of 50 mm
was chosen to maintain the thickness of the existing wall. If the insulator was thicker than
50 mm, it would reduce the room size. Furthermore, in Scenario A, the previous curtain
wall was replaced with triple energy-efficient glazing to improve energy performance.
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Scenario B concentrated on building envelope renovation through the addition of
roof coverings. Two types of renovation were developed in Scenario B: the application
of reflective white paint and the incorporation of asphalt, designated as Scenarios B1
and B2, respectively. Meanwhile, Scenario C was a combination of Scenarios A and B,
which entailed the installation of building envelope insulation and improvement of the
roof coverings. As a result of Scenarios A and B being integrated, six distinct renovation
configurations (3 × 2) were obtained in Scenario C.

Scenario D involved the application of an integrated solar panel system, referred
to as BIPV, at two distinct building parts, namely the southeast (SE) and northeast (NE)
sides of the hotel. BIPV was only modeled on the SE and NE sides of the building due to
surrounding buildings that had been built on the west side of the building. The calculation
of PV generation was performed using the solar analysis feature of Revit. A 13.3% panel
efficiency was set due to the use of semi-transparent solar panels. The average efficiency
value of 13.3% is derived from the efficiencies reported in two studies: 12.4% in the study
by Zhao et al. [47] and 14.3% in the study by Wong et al. [48]. Lastly, the average for solar
radiation was set to 2–6 kWh/m2 [49].

Scenario D encompassed two primary configurations: semi-transparent BIPV inte-
grated within curtain wall panels and semi-transparent BIPV employed as a double-skin
façade, designated as Scenarios D1 and D2, respectively. Within Scenario D2, an aluminum
mullion frame was utilized as the second façade layer, assuming its robust capacity to
sustain the semi-transparent solar panels, which were attached to the glazing panels. Both
D1 and D2 utilized the exact same dimensions of semi-transparent solar panels, measuring
1 m × 2 m. Moreover, Scenarios D1 and D2 shared an equivalent installation area of 882 m2

for the NE side and 360 m2 for the SE side. The depiction of BIPV installation for Scenarios
D1 and D2 is shown in Figure 3.

Figure 3. (a) Scenario D1 with BIPV integrated within curtain wall panels; (b) Scenario D2 with BIPV
as double-skin façade.

Finally, the best passive strategies (from Scenario A to Scenario C) were merged with the
most effective BIPV strategies (Scenario D) to form a combined scenario, called Scenario E.

2.4. EUI Calculation

For the renovation scenarios of the building envelope (Scenarios A, B, and C), the final
EUI is obtained by conducting simulation in Insight 360 3.0. The software directly displays
the final EUI results by doing calculations as shown in Equation (1). Equation (1) achieves

129



Buildings 2024, 14, 1646

EUI calculation (kWh/m2·year) by considering annual energy use (kWh/year) and total
area of building (m2).

EUIscenario =
Annual Energy Use

Area
(1)

For the analysis, EUI percentage reduction is calculated by comparing the EUI results
from each scenario with the EUI value of the base case. The calculation is conducted by
dividing the difference between the EUI of each scenario and the EUI of the base case by
the EUI of the base case, as shown in Equation (2).

EUI% reduction =
EUIbase case − EUIscenario

EUIbase case
× 100% (2)

Meanwhile, EUI calculation for Scenario D, which implements BIPV, requires several
steps. The first step is to determine the building’s electricity consumption after installing
solar panels, which might differ from the EUI of the base case. The calculation is performed
using Equation (1). The second step is finding the production of solar panels. Equation (3)
shows PV output (kWh/m2·year) considering energy production (kWh/year) and area of
building (m2).

PVoutput =
Energyproduction

Areabuilding
(3)

Third, the final EUI of the BIPV scenario was obtained by subtracting the building’s
electricity consumption from the solar panel production, as shows in Equation (4). Finally,
the reduction percentage compared to the base case was calculated as shown in Equation (2).

EUI f inal = EUIinitial − PVoutput (4)

3. Results

After establishing the baseline condition, the simulation outcomes for the base case
yielded an EUI value of 336.7 kWh/m2·year. This value acted as a base value for the EUI
reduction percentage of the four analyzed scenarios (Scenarios A–D).

Scenario A involved the addition of building insulation material, with 50 mm PU
foam in A1, fiberglass batt in A2, and XPS in A3. The thermal conductivity (unit: W/m·K)
of these insulation materials is considered to be 0.022 [50], 0.032 [51], and 0.036 [52,53],
respectively.

The EUI results, calculated using Equation (1) by dividing the annual energy con-
sumption by the total building area, are shown in Insight 360 and summarized in Table 2.
The selected hotel has a total building area of 9320 m2. From Scenario A, Scenario A1
(addition of 50 mm PU foam) achieved the lowest EUI value (275.8 kWh/m2·year). Using
Equation (2) to compare the EUI value with the EUI of the base case, Scenario A1 achieved
the highest percentage reduction in EUI, which was 18.1%. This suggests that the use of PU
foam, which has the lowest thermal conductivity value, produced the lowest EUI value
among other scenarios related to building wall renovation. The low thermal conductivity
of PU foam enables the minimization of transmission losses and thus results in a lower
U-value, even when using the exact same thickness. Scenario A1, A2, and A3 yielded a
U-value of 0.155, 0.199, and 0.213 W/m2·K, respectively.

The roof coverings used in Scenario B were a reflective coating in B1 and asphalt
shingle in B2. The results of the EUI calculation for scenario B are summarized in Table 3.
The thermal conductivity (unit: W/m·K) of these roof coverings is 0.63 [54] for reflective
coating and 1.594 for asphalt shingle [55]. The EUI value for Scenario B1 demonstrated the
reflective capabilities of using a reflective coating, efficiently deflecting heat from sunlight.
Meanwhile, the asphalt layer in Scenario B2 tended to absorb solar heat due to its higher
emissivity compared to Scenario B1. This indicates that energy demand is affected not
only by material thickness and thermal conductivity but also by the material’s capacity to
reflect solar heat. As a result, the reflective coating from Scenario B1 yielded a lower EUI
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value and a higher EUI percentage reduction than the asphalt shingle from Scenario B2.
Furthermore, Scenario B1 yielded a U-value of 0.549 W/m2·K, while Scenario B2 showed a
U-value of 0.553 W/m2·K. Consistently with Scenario A, a lower U-value for roof coverings
also resulted in a higher EUI reduction.

Table 2. Thermal conductivity, U-value, and EUI calculation results of Scenario A.

Scenario Material
Thermal

Conductivity
(W/m·K)

U-Value
(W/m2·K)

Annual Energy Use
(kWh/year)

EUI Value
(kWh/m2·year)

EUI Reduction to
Base Case (%)

A1 Polyurethane
foam 0.022 0.155 2,570,456 275.8 18.1%

A2 Fiberglass batt 0.032 0.199 2,582,572 277.1 17.7%

A3 Extruded
Polystyrene (XPS) 0.036 0.213 2,585,368 277.4 17.6%

Table 3. Thermal conductivity, U-value, and EUI calculation results of Scenario B.

Scenario Material
Thermal

Conductivity
(W/m·K)

U-Value
(W/m2·K)

Annual Energy Use
(kWh/year)

EUI Value
(kWh/m2·year)

EUI Reduction to
Base Case (%)

B1 Reflective coating 0.630 0.549 2,595,154 278.45 17.3%
B2 Asphalt shingle 1.594 0.553 2,644,643 283.76 15.8%

Scenario C is the combination of Scenarios A and B; the results are summarized in
Table 4. There was no notable difference in the EUI values between Scenarios A and B.
However, combining Scenarios A and B into Scenario C resulted in a significantly reduced
final EUI value when compared to the base case’s EUI value. Scenario C1, which was the
combination of PU foam insulation on the walls and roof and a reflective coating, produced
the lowest EUI of 243.4 kWh/m2·year and an EUI reduction percentage of 27.7%. This was
due to both materials having the lowest thermal conductivity.

Table 4. EUI calculation results for Scenario C.

Scenario Description
Annual Energy Use

(kWh/year)
EUI Value

(kWh/m2/year)
EUI Reduction to

Base Case (%)

C1 PU foam + reflective
coating 2,268,488 243.4 27.7%

C2 PU foam + asphalt 2,280,604 244.7 27.3%

C3 Fiberglass +
reflective coating 2,307,632 247.6 26.5%

C4 Fiberglass + asphalt 2,311,360 248.0 26.4%

C5 XPS + reflective
coating 2,315,088 248.4 26.2%

C6 XPS + asphalt 2,326,272 249.6 25.9%

In Scenario D, BIPV was implemented as curtain walls (Scenario D1) and as double-
skin façades (Scenario D2); the results are summarized in Table 5. The PV output results for
both scenarios are the same because they use the same type of panels and the same area of
coverage. The BIPV system generated 142 MWh annually. Dividing this by the building’s
area (9320 m2) yields a PV output of 15.24 kWh/m2·year. The distinction between Scenarios
D1 and D2 lies in their initial EUI values. Scenarios D1 and D2 yield initial EUI values
of 335.6 and 322.9 kWh/m2·year, respectively. The lower initial EUI value in Scenario D2
is due to the shading caused by the solar panels acting as façades being more impactful
compared to the solar panels acting as curtain walls. The final EUI values for the BIPV
scenarios were calculated by considering the initial EUI value and the energy generated
from BIPV, as outlined in Equation 4. Therefore, Scenarios D1 and D2 yielded final EUI
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values of 320.3 kWh/m2·year and 307.6 kWh/m2·year, respectively. This corresponds to
EUI reductions of 4.8% for D1 and 8.6% for D2 compared to the base case.

Table 5. EUI calculation results of Scenario D.

Scenario D Description
PV Output

(kWh/m2·year)
Initial EUI Value
(kWh/m2·year)

Final EUI Value
(kWh/m2·year)

EUI Reduction to
Base Case (%)

D1 BIPV as curtain walls 15.24 335.6 320.3 4.8%

D2 BIPV as double-skin
façades 15.24 322.9 307.6 8.6%

The EUI values for Scenario C can be further reduced with the implementation of BIPV,
as demonstrated by the results of Scenario D. To achieve the maximum EUI reduction, this
study combined the optimum scenarios from both passive building envelope strategies
and BIPV strategies. Specifically, the optimal among the passive strategies is Scenario C,
particularly Scenario C1, while the best among the BIPV strategies is Scenario D2. In the
calculation of the combined scenario, named Scenario E, the final EUI value of Scenario
C1 was adjusted with the PV output from Scenario D2, resulting in 228.16 kWh/m2·year.
When compared to the EUI value of the base case (336.73 kWh/m2·year), this equates to a
32.2% reduction in energy use.

Figures 4 and 5 display the compilation of EUI values and the percentage reduction
in EUI from Scenarios A–E compared to the base case’s EUI value. From Figures 4 and 5,
it is evident that renovating building walls or roof coverings individually has a more
significant impact on reduction of EUI than installing BIPV alone. However, when these
efforts are combined in Scenario E, the maximum reduction in energy use is achieved. This
phenomenon can be attributed to several factors. Firstly, renovating the building envelope
can address all sides of the building, whereas BIPV installations are limited to the NE and
SE sides due to the proximity of adjacent buildings. Secondly, given the extensive building
area of 9320 m2, the energy production from BIPV, when divided by the total building area,
results in a PV output of 15.24 kWh/m2·year. This output does not significantly offset the
hotel’s high energy demand.

Figure 4. Compilation of EUI values of the base case and Scenarios A–D.
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Figure 5. Compilation of EUI reduction (in percentage) from Scenarios A–E compared to the base
case’s EUI value.

4. Discussion

The energy analysis results showed differences in approaches between passive enve-
lope renovation strategies and BIPV implementation in reducing EUI values in a high-rise
hotel building in Indonesia. Passive renovation minimizes heat transfer and, thus, energy
use through wall insulation and roof coverings. Additionally, insulating the building enve-
lope can mitigate structural damage risks from moisture, reduce material waste, and extend
building lifespan, as shown by Cusenza et al. [56]. Meanwhile, integrating PV systems
into a building not only generates clean energy and reduces electricity usage but also
enhances property value and elevates architectural appeal, as demonstrated by Polo López
et al. [57]. The combination of passive strategies and BIPV implementation, as explored
in this study, yielded the most significant EUI reduction. Specifically, integrating 50 mm
PU foam insulation into the building envelope, applying a reflective coating on the roof,
and implementing BIPV as a double-skin façade emerged as the most effective strategy,
achieving up to a 32.2% reduction in EUI.

A direct relationship was observed between the thermal properties of materials and
EUI reduction. Thermal properties influence U-values, which regulate heat transfer and,
consequently, lower EUI. In Scenario A, PU foam stood out for its heat transfer control,
leading to a considerable EUI reduction. Scenario B benefited from reflective coating that,
due to low emissivity, effectively reflected heat. As a result, the combination of PU foam
insulation in the building envelope and a reflective coating on roof in Scenario C showed
the most substantial EUI reduction, though this finding requires experimental validation.
Future research could thus include prototype testing to evaluate the performance of various
insulation materials and roof coverings.

Incorporating a PV system into the northeast and southeast of the building, as seen in
Scenarios D1 and D2, contributed to a reduction in the building’s EUI. BIPV, by efficiently
generating electricity, present a practical alternative to conventional energy sources. Specif-
ically, in Scenario D2, utilizing BIPV as a double-skin façade (DSF) was more effective in
lowering EUI than its application on the curtain wall in Scenario D1. The enhanced effi-
ciency observed in Scenario D2 is primarily due to the shading conferred by the additional
layer of BIPV as double-skin façade, which effectively mitigates solar heat gain, thereby
lowering the building’s cooling demands. In contrast, Scenario D1, featuring BIPV on the
curtain wall, fails to offer sufficient shading, which could have contributed to a reduction
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in cooling and energy demands. Thus, utilizing a BIPV double-skin façade in Scenario D2
leads to a more significant reduction in EUI, despite using the same solar panels and the
same area for installation.

Nonetheless, installing BIPV on all sides of a building poses significant financial
considerations. Solar panel initiatives demand substantial investment, as reported by
Hajir et al. [58], who spent approximately 635 million IDR on 80 solar panel modules for
a manufacturing facility. Based on this investment, the current study, which used nearly
600 semi-transparent panel modules, would face renovation expenses of around 4.7 billion
IDR for BIPV installation. Additionally, Gholami et al. [59] highlighted the lengthy payback
period for BIPV projects, which can extend up to 22 years. Given that the PV output from
BIPV fell short of meeting the building’s energy demands, the main challenge with BIPV
lies in its high investment costs and a prolonged payback period. Hence, further research is
required to explore the life-cycle cost–benefits of BIPV as well as the combined life-cycle
cost–benefits of integrating passive strategies with BIPV.

5. Conclusions

This study highlights the advantages of BIPV applications and building envelope
renovations that use insulation materials and roof coverings to reduce energy use for a high-
rise hotel building in Indonesia. Scenarios A1–A3 explored different insulation materials,
including PU foam, fiberglass batt, and XPS, while Scenarios B1–B2 investigated roofing
materials such as reflective coatings and asphalt shingle. The findings indicated that PU
foam (used in Scenario A) was the most effective insulation material for building envelopes
for minimizing heat transfer, and reflective coating (used in Scenario B) was identified as
the optimal roofing material due to its high sunlight reflectivity. U-values, significantly
affected by thermal properties and material emissivity, were key in determining EUI
outcomes. The study found that combining 50 mm PU foam in the building envelope with
a reflective coating on the roof yielded the lowest EUI value for the building case in Scenario
C. Regarding renewable strategies, the study analyzed the integration of PV systems on
the building’s curtain wall in Scenario D1 and as a double-skin façade in Scenario D2.
The results demonstrated that while both scenarios produced the same amount of energy
(15 kWh/m2.year), integrating BIPV as a double-skin façade achieved a more substantial
reduction in EUI value (8.6%) compared to the curtain wall BIPV. This significant reduction
was attributed to the shading benefits provided by the double-skin façade BIPV, which
effectively minimized solar heat gain and, consequently, the building’s cooling demand.
Finally, to explore the maximum EUI reduction for the case study building, the most
effective passive strategy from Scenario C was combined with the leading renewable
strategy from Scenario D. This synergistic strategy involved incorporating 50 mm PU
foam insulation into the building envelope, applying a reflective coating on the roof, and
installing BIPV as a double-skin façade on the building’s northeast and southeast faces.
This holistic approach led to a significant EUI reduction of 32.2%.
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Abstract: Curtain wall systems stand out as a pivotal domain within the construction sector’s
endeavors towards energy efficiency and carbon mitigation. To refine the evaluation framework for
carbon emissions within this industry, this paper explores the calculation and assessment method
for building curtain walls. The article first reviews the current research status regarding carbon
emissions from materials and the impact of curtain walls on buildings in the operational stage. Based
on lifecycle theory, the carbon emissions from building curtain walls are divided into six stages:
material acquisition, processing and production, installation and construction, transportation, use
and maintenance, and dismantling. On this basis, this paper proposes a method for calculating carbon
emissions from building curtain walls. Following that, a case study is conducted using a specific glass
curtain wall project for illustrative analysis. The results indicate that the carbon emissions from the
material acquisition stage constitute approximately 90% of the total, serving as the primary source
of carbon emissions for glass curtain walls. Furthermore, the scientific application of photovoltaics
can significantly reduce the carbon emission levels of building curtain walls. Finally, an analysis was
conducted on the current issues existing in the evaluation of carbon emissions.

Keywords: building curtain walls; building energy conservation; calculation method of carbon
emission; life cycle theory; carbon emission evaluation

1. Introduction

To restrain global climate change and its negative impacts, 178 contracting parties
worldwide jointly signed the Paris Agreement in 2015, which sets long-term goals that will
guide all nations to achieve carbon neutrality [1,2]. The United States and the European
Union plan to achieve carbon neutrality in 2050 [3,4]. China plans to reach a carbon peak
before 2030 and carbon neutrality before 2060 [5]. The construction industry is one of the
primary contributors to carbon emissions. In China, the total carbon emissions from the
entire process of construction nationwide amounted to 40.7 billion tCO2, accounting for
38.2% of the country’s total carbon emissions in 2021 [6]. Worldwide, the building sector
accounts for almost 38% of global energy-related carbon emissions, with at least 20% of
these coming from the materials production industry [7].

Curtain walls are an important component of building carbon emissions, especially
for public buildings. On the one hand, aluminum alloy and silicate glass, as the primary
materials for building curtain walls, have high carbon emission factors. On the other
hand, compared to the minimum service life of the main structure, which is usually
around 50 years, the design lifespan of curtain walls is typically 25 years, implying the
need for at least one retrofitting. According to research by the World Business Council
for Sustainable Development on carbon emissions from different types of buildings, the
embodied carbon emissions of external envelope structures account for approximately
10% to 31% of the total construction carbon emissions [8]. Therefore, the calculation and
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evaluation of carbon emissions from building curtain walls are of significant importance to
the construction industry.

Currently, two main types of commonly used carbon accounting methods exist. The
first one is the “bottom-up” model, which is based on process analysis and is also known
as Life Cycle Assessment (LCA). It serves as the core theory for calculating and evaluating
carbon emissions in the construction field. The second is the “up-bottom” model, which is
based on input-output analysis and is mainly applicable to the economic sector. The LCA
method has garnered recognition with several high-profile accounting standards. Examples
include the first global accounting standard, the Greenhouse Gas Protocol, developed by
the World Resources Institute (WRI), and the IPCC Guidelines for National Greenhouse Gas
Inventories by the Intergovernmental Panel on Climate Change (IPCC). These standards
have contributed to the formation of two widely influential life cycle assessment theoretical
frameworks: SETAC and ISO. In recent years, many scholars have conducted research on
the accounting and analysis of the complete lifecycle of carbon emissions of buildings using
methods such as input-output analysis [9,10] or LCA [11–13]. In 2019, China released the
national standard GB/T 51366-2019 Standard for Calculation of Building Carbon Emissions [14],
which divides building carbon emissions into the operational stage, the construction and
dismantling stage, and the building materials production and transportation stage. The
standard specifies detailed calculation methods to guide carbon emission calculations in
the construction sector. However, for non-structural components such as curtain walls,
there are still many gaps in carbon emission calculations.

As non-structural components, curtain walls differ significantly from the main struc-
ture in terms of construction methods, material usage, and engineering calculations. Firstly,
the weight of the non-structural curtain wall components is relatively small compared to
the main structural system, while the area is large. Therefore, area-based units are more
appropriate than mass-based units for carbon emission calculations. Secondly, carbon emis-
sions from the main structural system mainly consider major materials such as steel and
concrete, making it difficult to account for small components within curtain walls, which
are crucial for the curtain wall industry. Additionally, the carbon emission calculation for
the main structural system makes it difficult to compare carbon emissions for different
types of curtain walls. Therefore, there is a lack of specific carbon emission calculation
methods for building curtain walls.

To fill the gap in carbon emission calculation methods for building curtain walls
and guide the development of carbon emission evaluation and reduction strategies, this
study summarizes the current status of carbon emissions from building curtain walls.
Based on the LCA theory and the GB/T 51366-2019 Standard for Calculation of Building
Carbon Emissions [14], a method for calculating carbon emissions from building curtain
walls was proposed, in which the carbon emission was divided into six stages: material
acquisition, processing and production, transportation, installation and construction, use
and maintenance, and dismantling. For the convenience of application in curtain walls,
the carbon emission calculation method in this paper uses area (m2) as the benchmark
unit. Then, a glass curtain wall project was analyzed as a case study, detailing the process
of a carbon emission calculation. Finally, the main issues in the current research and
evaluation work were analyzed in this paper, and suggestions were made for addressing
these problems and proposing directions for future development.

2. Research Status of Carbon Emissions from Building Curtain Walls

2.1. Material Carbon Emissions

During the operational phase of buildings, curtain walls contribute negligibly to
carbon emissions. Therefore, the contribution of building curtain walls to carbon emissions
primarily occurs during the construction phase, especially due to the embodied carbon
emissions of building materials. Categorized by panel materials, curtain walls encompass
glass, metal, stone, and artificial board varieties. The construction of curtain walls varies
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in accordance with the architectural form, necessitating the determination of material
quantities specific to each project.

Currently, the curtain wall market is still predominantly occupied by glass curtain
walls. These mainly comprise aluminum alloy framework profiles, insulating tempered
glass panels, and sealing materials. According to rough estimates provided by the U.S.
Department of Energy [15], the embodied energy of a standard aluminum alloy-framed
glass curtain wall stands at 734.5 kWh/m2, with a corresponding embodied CO2 emission of
322.7 kg/m2. Furthermore, scholars have extensively investigated the production processes
and carbon emission levels associated with the frame materials of glass curtain walls [16,17],
which include wood, aluminum, PVC, wood–aluminum composites, fiberglass, and others.
By comparing glass curtain wall systems with different frame materials but identical
specifications, Azari and Kim [18] found the carbon emission levels of frame curtain wall
systems, from low to high, as follows: wood frame, steel frame, and aluminum alloy. The
production of aluminum and its alloys, recognized as a high-energy and high-emission
industry, emits greenhouse gases per unit product at rates 12.4 and 2.3 times higher than
steel and copper [19], respectively. Aluminum alloy profiles remain predominant in glass
curtain wall frameworks. Over 90% of their carbon emissions throughout the lifecycle
originate from the production phase, specifically from ore to aluminum ingot, with surface
corrosion treatments accounting for approximately 5%. Statistics indicate that China’s
carbon emission factor for electrolytic aluminum is around 11,200 kgCO2e/t, significantly
higher than Russia’s at about 3300 kgCO2e/t and the United States’ at approximately
6900 kgCO2e/t. As a comparison, the carbon emission factor of concrete C30 in building
materials is 295 kgCO2e/t, and the carbon emission factor of steel is 2050 kgCO2e/t in
China [14]. This substantial difference in carbon emission factors is attributed to the
energy structure of aluminum production, with China relying mainly on thermal power
and Russia on hydropower. Additionally, the process of extruding aluminum metal into
aluminum profiles for glass curtain walls results in carbon emissions of approximately
11,131.04 kgCO2e/t in China [20].

The carbon emissions throughout the lifecycle of glass panels mainly stem from
the energy consumption in the production process, particularly from sand to float glass
production, accounting for 80%. The deep processing process of tempered glass contributes
15%, while the remaining emissions arise from the assembly process of hollow glass. Yan
et al. [21] investigated over 300 flat glass production lines in China and, based on 2015
production conditions, found that the carbon emissions per unit weight of boxed glass
were approximately 52.46 kg, equivalent to 1049 kgCO2e/t. Additionally, Yu et al. [22],
based on extensive research data, determined that the carbon emissions for flat glass
were 1130 kgCO2e/t, tempered glass emissions were 1530 kgCO2e/t, and laminated glass
emissions were 1280 kgCO2e/t. In addition to controlling carbon emissions during the
production process, the recycling and utilization of materials are also effective ways to
reduce glass carbon emissions. Statistics show that when the glass recycling rate reaches
50%, production process carbon emissions can be reduced by 42%, and when the recycling
rate reaches 90%, production process carbon emissions can be reduced by 75% [23]. The
efficiency of material recycling and reuse, in addition to the recycling rate, also depends
on the quantity of raw materials produced, which is another major factor influencing the
implicit carbon emission levels of building curtain walls. In 2019, China’s waste flat glass
production was 98.67 million tons, with a recovery of 59.16 million tons, yielding an almost
60% recovery rate, higher than the international level of 35%. Unfortunately, due to the lack
of data on carbon emissions from the process of sand to glass liquid in glass production, it
is difficult to estimate the contribution of glass recycling to carbon emission reduction.

Sealant, including silicone structural sealant, weather-resistant sealant, and secondary
sealant for insulating glass, is another material widely used in glass curtain walls. Ac-
cording to industry data [24], Ethylene Propylene Diene Monomer emits 2670 kgCO2e/t,
while silicone sealant emits 2910 kgCO2e/t. Despite their high carbon emission factors,
sealant materials significantly improve curtain wall performance in energy conservation.
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Compared to carbon dioxide released during production, silicone resin provides an average
benefit nearly nine times higher before the end of its service life, with applications in
insulating glass showing benefits exceeding 27 times.

In comparison to glass curtain walls, metal curtain walls exhibit a similarly significant
level of carbon emissions. Industry data [24] suggests that 2 mm aluminum veneer emits
around 159.6 kgCO2e/m2, equivalent to 29,600 kgCO2e/t. In contrast, stone curtain walls
have relatively lower carbon emissions. Zhao et al. [25] calculated that the carbon emissions
during the production stage of 30 mm stone panels were only 18.75 kgCO2e/t when
converted, owing to the low energy consumption inherent in the mechanical processing
of stone materials. In recent years, the rapid development of artificial panel curtain walls,
such as porcelain panels, ceramic panels, PC panels, and UHPC panels, has been observed.
The carbon emissions during the production stage of UHPC panels are approximately
1245.84 kgCO2eq/m3, which is 1.58 times that of ordinary concrete. Despite the relatively
high carbon emissions, artificial panel materials typically offer superior performance
advantages. However, due to significant differences in the production processes of artificial
panels, current carbon emission data remains incomplete.

The evaluation of embodied carbon emissions in building curtain walls should encom-
pass not only the emissions generated during the material production phase but also integrate
considerations of material longevity and recyclability. Currently, in China, the design lifespan
of building curtain walls is 25 years, primarily limited by factors such as the surface corrosion
resistance level of frame materials, the aging limit of sealants for insulating glass panels,
and the fatigue performance of hardware systems in opening parts. Especially for organic
sealant materials serving as sealing or structural connection functions, the industry gener-
ally recognizes a lifespan ranging from 10 to 25 years, directly determining the lifespan of
building curtain wall systems. However, with technological advancements, the international
community has been researching and achieving breakthroughs in the goal of achieving a
50-year lifespan for sealant materials [26]. Considering current engineering practices and
technological levels, the requirement for building curtain wall materials to have the same
lifespan as the system is realistic and feasible. This requirement can significantly reduce the
carbon emission levels of building curtain walls caused by their lifespan.

According to the standards in China [14,24], the carbon emission data, which were
mainly from comprehensive industry surveys, and crucial carbon emission factor data
pertaining to primary materials have been scrutinized and compiled for the benefit of the
industry, as delineated in Table 1.

Table 1. Carbon Emission Factors for Main Materials of Building Curtain Walls.

Materials Values Units

Profile

Electrolytic aluminum 20,300 kgCO2e/t
Ordinary carbon steel 2050 kgCO2e/t

Hot-rolled carbon steel small-profiled sections 2310 kgCO2e/t
Hot-rolled medium-sized carbon steel profiles 2365 kgCO2e/t
Hot-rolled medium-thick carbon steel plates 2400 kgCO2e/t

Hot-rolled carbon steel H-beams 2350 kgCO2e/t
Hot-rolled carbon steel rebars 2340 kgCO2e/t

Hot-rolled carbon steel seamless pipes 3150 kgCO2e/t
Cold-drawn carbon steel seamless pipes 3680 kgCO2e/t

Timber 310 kgCO2e/t

Panel

Flat glass 1130 kgCO2e/t
Aluminum sheet and strip 28,500 kgCO2e/t

Copper sheet 218 kgCO2e/m2

Carbon steel hot-dip galvanized sheet/coil 3110 kgCO2e/t
Carbon steel electro-galvanized sheet/coil 3020 kgCO2e/t

Aluminum-plastic composite panel 8.06 kgCO2e/m2

Copper-plastic composite panel 37.1 kgCO2e/m2
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Table 1. Cont.

Materials Values Units

Fireproof insulation materials Rockwool board 1980 kgCO2e/t

Sealing materials
Ethylene Propylene Diene Monomer sealing strip 2670 kgCO2e/t

Silicone sealant 2910 kgCO2e/t
Polyurethane foam 4330 kgCO2e/t

Fasteners and hardware materials

Mild steel 2050 kgCO2e/t
Carbon steel 1960 kgCO2e/t

Stainless steel 6800 kgCO2e/t
Galvanized steel 2487 kgCO2e/t

Packaging materials Plastic film 2570 kgCO2e/t
Corrugated paper 1230 kgCO2e/t

Other materials

Tap water 0.168 kgCO2e/t
High-density polyethylene 2620 kgCO2e/t
Low-density polyethylene 2810 kgCO2e/t

Polyvinyl chloride 7300 kgCO2e/t
Linear low-density polyethylene 1990 kgCO2e/t

2.2. Impact of Carbon Emissions on Construction Operation Phase

In the operational phase of buildings, curtain walls contribute negligibly to direct
carbon emissions. However, the energy-saving performance of curtain walls significantly
affects the carbon emissions of buildings. Curtain walls facilitate thermal exchange between
indoor and outdoor environments through mechanisms such as conduction, radiation,
and convection, due to solar radiation and temperature differentials. To maintain indoor
comfort, heating and air conditioning systems are necessary, the energy consumption of
which is significantly influenced by the energy performance of curtain walls.

Based on experiments, theoretical analyses, and simulation software such as Energy
Plus 8.2.0, PKPM V3.1, and DeST3.0, the insulation [27–29], air tightness [30–32], and
shading performance [33–35] on building energy consumption of building curtain wall
have been extensively investigated. The results underscore the pivotal role of curtain walls
in building energy consumption. In 2021, China implemented the mandatory general
specification GB55015-2021, titled General Specification for Building Energy Conservation and
Utilization of Renewable Energy [36], which stipulates that the carbon emission intensity of
newly constructed residential and public buildings should be reduced by an average of
40% compared to the energy-saving design standards implemented in 2016. Additionally,
it requires that the carbon emission intensity should be reduced by an average of at least
7 kgCO2/(m2·a). To ensure the achievement of the target, it is crucial to enhance the
energy efficiency of building curtain wall systems, which account for over 50% of energy
consumption. Globally, the potential for energy savings from the construction of high-
performance buildings and energy retrofitting of existing building envelope structures
exceeds the total energy consumption of all G20 countries in 2015, with an accumulated
energy saving of approximately 330 EJ by 2060.

However, due to the complexity of energy consumption during the operational stage
of buildings, it is challenging to contain the carbon emissions of this part within the
curtain walls. Therefore, it is usually considered in carbon emissions of the whole building.
Similarly, the calculation method proposed in this paper only considers the implicit carbon
emissions. It should be noted that when evaluating the carbon emissions of building curtain
walls, it should be based on the same performance standards. Curtain wall types with lower
emissions but inferior performance may not necessarily have an advantage in actual carbon
emission levels. This aspect requires further in-depth research for reasonable consideration.
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3. Calculation Method of Carbon Emissions of Curtain Walls

3.1. Framework and System Boundaries

Referring to the calculation method for building carbon emissions and considering the
engineering characteristics of building curtain walls, the life cycle of building curtain walls
is divided into six stages, consisting of material acquisition, processing and production,
installation and construction, transportation, use, and dismantling; this includes the entire
life cycle from raw materials to waste disposal, as shown in Figure 1. In practical engi-
neering, various response measures may be taken in retrofitting, including minor repairs,
energy-saving renovations, safety improvements, and overall refurbishments. Considering
the uncertainty of renovation, the carbon emission calculation method proposed in this
paper adopts a conservative approach, treating the carbon emissions caused by renovation
as if it were a complete refurbishment. Considering that the area is commonly used as
the engineering measurement unit in the design, construction, and budgeting of building
curtain wall projects and to meet the habits of the industry and facilitate comparisons under
different engineering conditions, the carbon emission calculation method in this paper uses
area (m2) as the benchmark unit.

Figure 1. Framework of carbon emissions from building curtain walls.

Due to differences in energy consumption pathways, it is challenging to quantify
which portion of this carbon emission reduction originates from the curtain wall. In con-
trast, with photovoltaic curtain walls, the contribution to reducing carbon emissions from
the curtain wall can be clearly identified. Therefore, in the carbon emission calculation
method proposed in this paper, the influence of curtain walls on building carbon emis-
sions during the operational phase is not considered, and photovoltaic curtain walls are
treated separately.

3.2. Calculation Method

Based on the different materials of curtain wall panels, they can be roughly categorized
into glass curtain walls, metal curtain walls, stone curtain walls, and artificial board curtain
walls. Due to the significant differences in materials and construction methods among
different types of curtain walls and the possibility of multiple types of curtain walls being
used in the same project, the carbon emissions are calculated separately for each type of
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curtain wall in this paper. Then, the total carbon emissions of the entire curtain wall project
are obtained by adding up the emissions from each type as follows:

GHGcw,all =
n

∑
j

GHGcw,j Aj(Nj + 1). (1)

In the equation, GHGcw,all represents the total carbon emissions of curtain walls over
the lifespan of a single building or buildings in kgCO2e; GHGcw,j represents the carbon
emissions per unit area of the j-th type of curtain wall in kgCO2e; Aj represents the area of
the j-th type of the curtain wall in m2; Nj represents the number of replacements of the j-th
type of curtain wall over the entire lifespan.

According to the delineation of different stages within the boundary of the building of
the curtain wall, the carbon emissions per unit area of different types of curtain wall can be
represented as follows:

GHGcw,j = GHGgain,j + GHGproc,j + GHGtran,j + GHGcons,j + GHGuse,j + GHGaban,j, (2)

In the equation, GHGgain,j represents the carbon emissions per unit area of the curtain
wall during the material acquisition stage, GHGproc,j represents the carbon emissions
per unit area of the curtain wall during the processing and production stage, GHGtran,j
represents the carbon emissions per unit area of curtain wall during the transportation
stage, GHGcons,j represents the carbon emissions per unit area of the curtain wall during the
installation and construction stage, GHGuse,j represents the carbon emissions per unit area
of curtain wall during the use and maintenance stage, and GHGaban,j represents the carbon
emissions per unit area of the curtain wall during the dismantling stage. For building
curtain walls, the carbon emissions at different stages can be categorized into three parts:
materials, energy consumption, and combustion of fossil fuels, where the combustion of
fossil fuels refers to the generation of greenhouse gases.

Considering the differing statistical practices across various stages of engineering,
no uniform calculation formula has been established. Therefore, each stage is computed
separately. The carbon emissions during the material acquisition stage of the unit area
curtain wall can be represented as follows:

GHGgain,j =
n

∑
i=1

Gi,j Mi. (3)

In the equation, Gi,j denotes the consumption per unit area of a specific material i for a
given curtain wall j, in kg/m2 or m2/m2, while Mi represents the carbon emission factor
of material i, in kgCO2e/kg or kgCO2e/m2. Building curtain wall materials encompass
profiles, glass, stone, aluminum panels, fireproof insulation materials, sealing materials,
fasteners, embedded parts, hardware materials, packaging materials, etc. Typically, the
manufacturers provide the carbon emission factors of materials.

The processing and production stage of curtain walls mainly includes the processing
of profiles, assembly of unit modules, assembly of opening fans, assembly of sun shading
louvers, glass gluing, and storage packaging processes. During the processing and produc-
tion process, materials such as packaging, cleaning, and auxiliary materials are involved,
as well as energy consumption from equipment operation and on-site transportation. The
carbon emission intensity of curtain wall processing and production per unit area can be
expressed as follows:

GHGproc,j =
n

∑
i=1

Gi,j Mi +
n

∑
i=1

Pi,jEi + GHGcomb,j. (4)

In the equation, Pi,j represents the consumption per unit area of a specific energy i for
curtain wall j, in (kW·h)/m2 or L/m2 or kg/m2, where energy types may include electricity,
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petroleum, coal, etc.; Ei represents the carbon emission factor of energy i, measured in
kgCO2e/(kW·h), kgCO2e/L, or kgCO2e/kg; GHGcomb,j represents the carbon emissions
per unit area generated by the combustion of fossil energy i for curtain wall j, which can be
calculated using the following formula:

GHGcomb,j =
n

∑
i=1

(
FCi,j × NCVi × CCi × OFi × 44

12

)
. (5)

In the equation, FCi,j represents the consumption per unit area of a specific type of
fossil energy i for curtain wall j, in L/m2 or kg/m2; NCVi represents the average lower
heating value of fossil energy type i, in GJ/L or GJ/kg; CCi represents the carbon content
per unit heat value of fossil energy type i, in kgC/GJ; OFi represents the carbon oxidation
rate of fossil energy type i, in %.

The transportation stage of building curtain walls primarily involves two parts: trans-
porting the acquired materials to the processing workshop and then transporting them
to the construction site after processing. Transportation within the workshop or site, as
well as the external transportation of waste during the dismantling phase, are not included.
Unlike other stages, carbon emissions during transportation are typically calculated based
on different transportation methods and distances. The carbon emissions of curtain wall
transportation per unit area can be expressed as follows:

GHGtran,j =
m

∑
k=1

n

∑
i=1

Qk,i,jDk,i,jFk, (6)

In the equation, Qk,i,j denotes the quantity per unit area of the material i for transporta-
tion mode k of the curtain wall j, in kg/m2; Dk,i,j represents the transportation distance of
the material i for transportation mode k of the curtain wall j, in km; Fk signifies the carbon
emission factor of the transportation mode k, in kgCO2e/(kg·km).

The calculation of carbon emissions GHGcons,j during the installation and construction
phase of unit-area curtain wall construction relies on Equations (4) and (5), encompassing
measures such as the on-site storage of components, on-site transportation, auxiliary
installation of scaffolding, installation processes, and curtain wall cleaning.

Similarly, the calculation of carbon emissions GHGuse,j during the use and mainte-
nance phase of the unit-area curtain wall is also based on Equations (4) and (5). The stage
involves activities such as replacing aged materials, repairing faulty components, daily
cleaning of curtain walls, and energy consumption of control systems like electric sun-
shades. When the photovoltaic curtain wall is applied, Pi,j in Equation (4) should include
the electricity generation resulting from the photovoltaic, with a negative value indicating
carbon reduction due to photovoltaic capacity.

The calculation of carbon emissions GHGaban,j during the dismantling phase of a
unit-area curtain wall is likewise based on Equations (4) and (5), primarily including the
material and energy consumption from dismantling and auxiliary measures during the
dismantling process, as well as carbon emissions from waste transportation.

3.3. Case Study

A specific aluminum-glass curtain wall is considered, comprising both framed and
photovoltaic curtain walls. The building is designed to endure for 50 years. The area of the
framed glass curtain wall is 8000 m2, with a designated service life of 25 years, while the
photovoltaic curtain wall spans 1000 m2, similarly engineered for a 25-year period. The
design drawing for the curtain wall section is shown in Figure 2.

The material quantities and carbon emission factors during the material acquisition
phase of the curtain wall are outlined in Table 2. When calculating the consumption of
materials, material loss should be considered and converted based on the service life of the

145



Buildings 2024, 14, 1647

materials and the projects. Utilizing Equation (3), the carbon emissions GHGgain,j during
the material acquisition phase of the curtain wall were calculated to be 310.9 kgCO2e/m2.

Figure 2. Framework of carbon emissions from building curtain walls.

Table 2. Activity level data and carbon emission factors during the material acquisition stage.

Materials Technical Specifications
Material Quantity Carbon Emission Factors

Values Units Values Units

Aluminum alloy
profiles Thermal break, powder coating 10 kg/m2 20.3 kgCO2e/kg

Hollow glass 1 Low-E float glass 10 mm + 12Air + Tempered
glass 10 mm, homogenization treatment 0.36 m2/m2 57.9 kgCO2e/m2

Hollow glass 2 Low-E float glass 6 mm + 12Air + Tempered
glass 6 mm, homogenization treatment 0.64 m2/m2 34.7 kgCO2e/m2

Aluminum plate 2 mm, powder coating 0.29 m2/m2 159.6 kgCO2e/m2

Fireproof
insulation

100 mm thick rock wool insulation, density
100 kg/m3 2.90 kg/m2 1.98 kgCO2e/kg

Steel components Hot-dip galvanized steel 0.9 kg/m2 2.4 kgCO2e/kg
Sealant material 1 Ethylene Propylene Diene Monomer 1.6 kg/m2 2.67 kgCO2e/kg
Sealant material 2 Silicone sealant 1.8 kg/m2 2.91 kgCO2e/kg

Fasteners Stainless steel fasteners 0.15 kg/m2 6.8 kgCO2e/kg
Auxiliary materials Polyethylene foam rods 0.04 kg/m2 2.81 kgCO2e/kg

The material and energy consumption, as well as the carbon emission factors during
the processing and production stage of the curtain wall, are delineated in Table 3. These
factors primarily encompass the electricity consumption of processing machinery and
packaging materials. Based on Equations (4) and (5), the carbon emissions GHGproc,j

during this stage were calculated to be 1.13 kgCO2e/m2.

Table 3. Activity level data and carbon emission factors during the processing and production stage.

Materials and Energy Purpose
Material Quantity Carbon Emission Factors

Values Units Values Units

Electricity Operation of machinery, on-site
transportation, etc. 0.9 (kW·h)/m2 0.9419 kgCO2e/(kW·h)

Corrugated paper Packaging materials, etc. 0.2 kg/m2 1.41 kgCO2e/kg
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Table 4 presents the materials, energy consumption, and carbon emission factors for
the transportation phase of the curtain wall. Usually, aluminum alloy profiles and glass
materials are sourced from manufacturing companies, resulting in longer transportation
distances. Steel components can be purchased from the market, allowing for sourcing from
nearby locations. Semi-finished products typically come from processing plants near the
construction site, thus minimizing transportation distances.

Table 4. Activity level data and carbon emission factors during the transport stage.

Product Purpose
Values
(kg/m2)

Distance
(km)

Transportation Mode
Carbon Emission Factors

(kgCO2e/(kg·km))

Materials

Aluminum alloy
profiles 10 500 Medium-sized diesel trucks

(Load capacity of 8 tons) 0.179 × 10−3

glass 50 400 Medium-sized diesel trucks
(Load capacity of 8 tons) 0.179 × 10−3

Steel components 0.9 300 Small-sized diesel trucks
(Load capacity of 2 tons) 0.286 × 10−3

Other materials 10 300 Small-sized diesel trucks
(Load capacity of 2 tons) 0.286 × 10−3

Semi-finished
products - 60 80 Large-sized diesel trucks

(Load capacity of 10 tons) 0.162 × 10−3

Considering the carbon emissions during the return journey of the transportation
vehicle, the transportation distance needs to be calculated twice. Consequently, employ-
ing Equation (6) yielded the carbon emissions GHGtran,j for the transportation phase as
12.38 kgCO2e/m2.

The materials, energy consumption, and carbon emission factors during the installation
and construction stage of the curtain wall are detailed in Table 5. The carbon emissions
primarily encompass the energy consumption during the construction process and the
utilization of non-recyclable auxiliary materials. The average low-heat NCVi of diesel,
essential for calculation purposes, stands at 42.652 × 10−3 GJ/kg. Correspondingly, the
carbon content per unit calorific CCi is estimated to be 20.2 kgC/GJ, with a carbon oxidation
rate of 99%. Consequently, the carbon emissions GHGcons,j of the curtain wall installation
and construction stage were derived through the application of Equations (4) and (5),
resulting in 4.37 kgCO2e/m2.

Table 5. Activity level data and carbon emission factors during the installation and construction stage.

Materials and Energy Purpose
Material Quantity Carbon Emission Factors

Values Units Values Units

Electricity Operation of machinery, on-site
transportation, etc. 2 (kW·h)/m2 0.9419 kgCO2e/(kW·h)

Diesel fuel On-site transportation, etc. 0.36 kg/m2 0.3383 kgCO2e/kg

Carbon steel Carbon structural steel, Q235B,
Hot-dip galvanizing 0.6 kg/m2 2.05 kgCO2e/kg

Tap water Building water supply 0.03 kg/m2 0.168 × 10−3 kgCO2e/kg

Table 6 presents the annual material and energy consumption, along with carbon
emission factors during the usage phase of the curtain wall. With a service life of 25 years,
the carbon emissions GHGuse,j resulting from the consumption of materials or energy
during this stage amounted to 17.02 kgCO2e/m2, calculated using Equations (4) and (5).
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Table 6. Activity level data and carbon emission factors during the using stage (annually).

Materials and Energy Purpose
Material Quantity Carbon Emission Factors

Values Units Values Units

Electricity Maintenance and upkeep 0.5
(kW·h)/m2 0.9419 kgCO2e/(kW·h)

Power consumption of control systems 0.01
Tap water Building water supply 1.5 kg/m2 0.168 kgCO2e/kg

Cleaning agent Glass cleaner 0.1 kg/m2 2.0 kgCO2e/kg

The material and energy consumption, as well as the carbon emission factors during
the dismantling phase of the curtain wall, are presented in Table 7. The activity level data
and carbon emission factors during the transportation process are shown in Table 8. Based
on Equations (4)–(6), the carbon emissions GHGaban,j during the dismantling phase of the
curtain wall were calculated to be 5.43 kgCO2e/m2.

Table 7. Activity level data and carbon emission factors during the dismantling stage.

Materials and Energy Purpose
Material Quantity Carbon Emission Factors

Values Units Values Units

Electricity Dismantling machinery 1.8 (kW·h)/m2 0.9419 kgCO2e/(kW·h)
Diesel fuel Dismantling machinery 0.35 kg/m2 0.3383 kgCO2e/kg

Mild carbon steel Carbon structural steel, Q235B, Hot-dip
galvanizing 0.3 kg/m2 2.05 kgCO2e/kg

Table 8. Activity level data and carbon emission factors during garbage transportation.

Product Purpose
Values
(kg/m2)

Distance
(km)

Transportation Mode
Carbon Emission Factors

(kgCO2e/(kg·km))

Demolition
waste

From the demolition site
to the waste disposal

facility
61 80 Medium-sized diesel trucks

(Load capacity of 8 tons) 0.179 × 10−3

From the waste disposal
facility to the recycling

center
14 20 Small-sized diesel trucks

(Load capacity of 2 tons) 0.286 × 10−3

Based on the cumulative analysis, the carbon emissions per unit area of the framed
glass curtain wall for this building project amounted to 351.23 kgCO2e/m2. The photovoltaic
curtain wall of the project generates approximately 100 kWh/m2 of electricity annually. The
design lifespan realistic with photovoltaic products is 25 years. Utilizing the electricity carbon
emission factor from Table 6, the carbon reduction during its usage phase was calculated to
be −100 × 25 × 0.9419 = −2354.75 kgCO2e/m2. Apart from the usage phase of electricity
generation, other phases’ configurations were similar to the framed glass curtain wall, with
negligible differences. Referring to the carbon emission calculation results of the framed glass
curtain wall, the cumulative carbon emissions per unit area of the photovoltaic curtain wall in
this building project were −2354.75 + 351.23 = −2003.52 kgCO2e/m2.

The total carbon emissions GHGcw,all of the building curtain wall over its lifecycle
amounted to 1612.640 tCO2e, calculated according to Equation (1). The carbon emissions
data for different stages are illustrated in Figure 3. Insights from the case study reveal
the following: (1) Excluding photovoltaic components, the material acquisition stage
contributes nearly 90% of carbon emissions, serving as the primary source of emissions for
glass curtain walls. Consequently, mitigating emissions should primarily focus on material
reduction; (2) The scientific application of photovoltaic curtain walls can significantly
reduce the carbon emissions associated with building curtain walls.
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Figure 3. Calculation of carbon emission results at different stages.

4. Carbon Reduction Pathways for Building Curtain Walls

Carbon emissions in building curtain walls primarily encompass embodied carbon
emissions from the materials and operation stage. The reduction of this in the operation
stage can be facilitated through the application of photovoltaics. As for the materials, the
methods for carbon reduction can be categorized into three main aspects:

(1) Optimizing structures to reduce material usage: For instance, curtain wall frame
and panel strength designs are considered unfavorable positions, leading to similar
construction and material usage for both lower and upper levels in buildings, which
may lead to redundancy on the low floor of the building. Therefore, by improving
and optimizing the structural forms of curtain walls while ensuring no reduction
in performance, the carbon emissions of these structures can be reasonably reduced.
Actually, through the analysis of the frame mechanical performance, the optimization
of wall thickness and dimensions based on different application positions, such as
using thicker and larger profiles for high-rise and high-wind pressure areas while
using the thinner and smaller profiles for low-rise and low-wind pressure areas, can
effectively reduce the carbon emissions of frame materials. In addition, developing
energy-saving and material-saving panel materials and promoting new insulation
materials, such as vacuum glass, low-emissivity glass, and aerogel-filled materials,
are equally effective;

(2) Material recycling and substitution: With the advancement of carbon emission as-
sessment for building curtain walls, there is a growing emphasis on materials with
low implicit carbon emissions, high recyclability, and long lifespans, such as bamboo,
wood, and plant-based framing materials which inherently store carbon, offering
significant carbon reduction advantages. Traditional frame materials like aluminum
alloy and steel profiles, with similar lifespans and recyclability as buildings, can
fully leverage their advantages through enhanced surface anti-corrosion treatment
techniques. As for glass, addressing the improvement of aging resistance in sealing
materials for assembled hollow glass and refining the recycling processes for raw
glass are necessary;

(3) Reducing carbon emissions during the production process: Considering the techno-
logical characteristics of curtain wall materials and the energy structure of factories,
the technical pathways for reducing carbon emissions may include: (1) Optimizing
product production processes by prioritizing the use of state-encouraged advanced
technology processes and advocating for green production concepts; (2) Constructing
distributed photovoltaic systems using unused roofs of factories for photovoltaic
power generation to improve the sustainability of enterprise operations and reduce
the use of non-renewable energy sources; (3) Applying air-source heat pumps and
ground-source heat pumps to replace externally purchased thermal energy and split
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air conditioning systems; (4) Establishing smart energy island systems by enhancing
factory energy data collection, upgrading control systems.

In fact, in addition to reducing carbon emissions from the perspective of building
curtain wall engineering, it is equally crucial to establish a unified standard and evaluation
method for calculating carbon emission levels from policy and market perspectives. This
is also the objective of the work presented in this paper. Relevant standards can regulate
the carbon emission levels of curtain walls, while the evaluation system can incentivize
enterprises to reduce this through market competition.

5. Current Existence of Problems

While the assessment and calculation of carbon emissions have become a focal point
in the curtain wall industry, there are still many pressing practical issues that need to be
addressed, as follows:

(1) Inadequate database of carbon emission factors: The building curtain wall sector lacks
a comprehensive database for carbon emission factors associated with key materials,
including glass, profiles, hardware, and sealing materials. This deficiency hinders the
selection of materials based on accurate data, leading to uncertainty in assessments.
Additionally, considering that recycling and reuse have a significant impact on balanc-
ing the carbon emission levels of raw materials, the lack of sufficient data on recycling
and reuse rates can lead to overestimated results in the final evaluation;

(2) Lack of unified assessment methodology for carbon emissions: There is no standard-
ized system specifically for assessing carbon emissions in building curtain walls. The
diverse construction forms of building curtain walls in real projects introduce complex-
ities to carbon emission assessments. In the absence of a unified evaluation technique,
the evaluation results provided by different evaluation agencies and personnel may
lack scientific data collection, be incomplete in the evaluation process, or be based on
different sources of calculation. These issues result in evaluation outcomes that lack
objective comparability;

(3) Lack of correlation research between curtain wall performance and carbon emissions
of buildings during the operation phase: Building envelope structures are significant
pathways for building energy consumption, with doors and windows accounting
for over 40% of total energy consumption and building curtain walls sometimes
exceeding 80%. Therefore, the question of how to consider the carbon emissions
caused by the operational stage of buildings attributed to curtain walls is a question
that requires further research.

6. Conclusions

Based on the analysis of the current research status of carbon emissions from curtain
walls, this paper proposes a carbon emission calculation method based on the entire life
cycle. Through the analysis of a glass curtain wall case study, the following conclusions
are drawn:

(1) High-carbon-emission materials such as aluminum profiles, glass panels, and sealing
agents are commonly utilized in architectural curtain walls, significantly contributing
to the overall carbon emissions of buildings. At the same time, the impact of cur-
tain wall energy efficiency on the operational carbon emissions of buildings cannot
be overlooked;

(2) Findings from a case study on a glass curtain wall project indicate that the material
acquisition stage constitutes nearly 90% of the total carbon emissions associated with
glass curtain walls. In addition, the scientific application of photovoltaics presents
a viable approach to substantially reducing the carbon footprint of architectural
curtain walls.

Overall, the calculation method for curtain wall carbon emissions plays a crucial role
in promoting the application of green and low-carbon building materials and advancing
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the construction of carbon emission standard systems. However, challenges persist in
the current evaluation of carbon emissions in the curtain wall field, including severe
deficiencies in the database of material carbon emission factors, a lack of uniformity in
carbon emission level calculation and evaluation methods, and the need for further research
on the correlation between curtain wall performance and carbon emissions of buildings
during the operation phase.
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Abstract: Centrifugal chillers have been widely used in medium- and large-scale air conditioning
projects. However, equipment running with faults will result in additional energy consumption.
Meanwhile, it is difficult to diagnose the minor faults of the equipment. Therefore, the Extreme
Gradient Boost (XGBoost) algorithm was used to solve the above problem in this article. The ASHRAE
RP-1043 dataset was employed for research, utilizing the feature splitting principle of XGBoost to
reduce the data dimension to 23 dimensions. Subsequently, the five important parameters of the
XGBoost algorithm were optimized using Multi-swarm Cooperative Particle Swarm Optimization
(MSPSO). The minor fault diagnosis model, MSPSO-XGBoost, was established. The results show that
the ability of the proposed MSPSO-XGBoost model to diagnose eight different states is uniform, and
the diagnostic accuracy of the model reaches 99.67%. The accuracy rate is significantly improved
compared to that of the support vector machine (SVM) and back propagation neural network (BPNN)
diagnostic models.

Keywords: centrifugal chillers; fault diagnosis; extreme gradient boosting; MSPSO-XGBoost

1. Introduction

Centrifugal chillers have the characteristics of a high energy efficiency ratio and large
single-machine capacity, which makes them the most used model in medium and large
air-conditioning systems. Due to the continuous improvements in modern industrial levels,
the structure and system of centrifugal chillers have become more complex [1]. This will
increase energy consumption by 20% to 50% for the centrifugal chillers without timely
troubleshooting [2]. Therefore, it is critical to use the micro-fault diagnosis technology in
the early fault diagnosis of chillers. It can determine the type of fault occurrence quickly
and accurately and shorten the maintenance time effectively. It plays a role in guaranteeing
refrigeration efficiency, reducing equipment loss, and saving energy [3].

The minor fault diagnosis techniques may be classified into three types, namely
engineering experience, mechanisms, and data-driven models. Profiting from the large data
technology industry, fault diagnosis with data-driven models has become the mainstream
method. Data-based fault diagnosis is essentially a search for the mapping relationship
between the monitoring data and the unit state without relying on a priori knowledge of the
system. However, for complex systems such as chillers, there is no simple correspondence
between monitoring data and unit status [4]. In addition, the operating conditions of chiller
units are varied, and certain operating parameters are highly similar in the micro-fault
state and the no-fault state in incipient faults [5]. Due to the complexity and uncertainty
of the system, machine learning algorithms like Artificial Neural Networks (ANNs) [6]
and support vector machines (SVMs) [7] were applied to the diagnosis of minor faults, and
some results have been achieved. In the study of chiller fault diagnosis, study [8] used an
ANN to diagnose various faults in chillers and found that the diagnosis of system faults is
more difficult than local faults. An SVM is used in chiller fault diagnosis with information
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from factory-installed sensors. And, the experimental results show that the information
from eight sensors can satisfy the needs of the diagnosis task [9].

SVMs [10] are based on statistical learning theory [11] and skilled in different classes of the
small sample dataset by finding the optimal hyperplane. However, SVMs are not appropriate
for training large sample datasets because they cannot manage the complicated nonlinear
correlations that large-scale datasets—especially those with high dimensionality—present
in the high-dimensional space [12]. ANNs [8,13] have strong robustness and flexibility,
learning complex nonlinear relationships between data by adjusting the connection weights
between neurons. However, ANNs usually obtain sub-optimal solutions and often obtain
non-global minimum values, which means that during the training process, they may fall
into local optima. Therefore, in order to obtain a suitable model, ANNs need a lot of data
for training. ANNs are generally used for classification problems in the form of data such
as images, text, etc., and are not optimal for dealing with the problem of classifying discrete
table data.

To address the above problems, integrated learning algorithms can be used in the
fields of fault diagnosis and signal classification [14]. In integrated learning algorithms, the
type of data can be detected and classified by a weak classifier with the advantages of a
fast training speed and the ease of adjusting parameters; however, the accuracy is not high.
A strong classifier is constructed by combining multiple weak classifiers, thus improving
the overall generalization performance. Typical integrated learning algorithms include
Random Forest (RF) and Extreme Gradient Boosting (XGBoost). XGBoost is proposed
by Chen [15] on the basis of a Boosting algorithm based on GBDT. XGBoost has better
modelling capabilities, higher computational accuracy, and faster training speed [16],
and is suitable for the classification of table data, compared to other data types such as
images and signals. XGBoost has been popular in fields such as statistics, data mining,
and machine learning since its release. As a typical representative of Boosting technology
in ensemble learning, XGBoost can effectively handle large-scale machine learning tasks.
Since the introduction of XGBoost, it has been widely used in various research fields, such
as cancer diagnosis [17], credit risk assessment [18], and macro genomics [19], due to
its performance advantages and affordable time and memory complexity. However, the
predictive performance of XGBoost without parameter optimization is often unsatisfactory
due to its low fit with the dataset, resulting in poor generalization and adaptability. Its
predictive performance highly depends on the tuning of hyper-parameters. Therefore, it is
necessary to propose an efficient method to optimize these hyper-parameters [20].

However, there is little research on using the XGBoost method in the fault diagnosis
of chillers [21]. This research aims to study the XGBoost algorithm and its parameter
optimization. For seven typical minor faults in centrifugal chillers, this paper builds an
XGBoost diagnostic framework and analyzes the impact of hyper-parameters on model
performance. It implements the optimization of the hyper-parameters using the MSPSO
algorithm, thus establishing the MSPSO-XGBoost diagnostic model. Consequently, the
MSPSO-XGBoost model is further compared and analyzed with the SVM and BPNN models
to verify the effectiveness of the proposed method in the micro-fault diagnosis of chillers.

The paper is organized as follows. Firstly, a description of the principle content for the
research process is introduced in Section 2. Then, the description of the implementation
and validation process of fault diagnosis is introduced in Section 3. Finally, the main
contributions of the current study are summarized in Section 4.

2. Basic Principles

2.1. XGBoost

The core idea of the Boosting framework is to form a stronger classifier by combining
multiple weak classifiers. The weak classifier chosen by XGBoost is Classification and
Regression Trees (CARTs).

As shown in Figure 1, XGBoost belongs to a type of boosting tree model. Initially, a tree
independently predicts a value based on the actual value and then obtains the deviation
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between the actual and forecast values. After that, the deviation is used as the actual value
of the second tree, and new deviations are continuously obtained. When t trees are added,

ŷ(t)i = ŷ(t−1)
i + η ft(xi), 0 < η < 1 (1)

where ft(xi) is the discriminant function of the t-th tree for the i-th datapoint, ŷ(t)i is the
discriminant result of the strong model integrated by t decision tree models, and η is the
learning rate.

Figure 1. XGBoost principle.

The essence of CART is to construct a binary tree to divide the feature space; training
CART is to find an optimal binary tree structure to make the minimum objective function.
Similarly, the XGBoost objective function is defined as follows:

Obj(t) =
n

∑
i=1

l(yi, ŷi) +
t

∑
i=1

Ω( fi) (2)

The first term on the right side of the formula is the deviation between the actual value
and the predicted value, where n is the number of training samples. The last term on the
right side of the formula is the regularization term, which mainly serves to suppress model
complexity.

Ω( f ) = γT +
1
2

λ‖ω‖2 (3)

where T is the depth of the current subtree and ω is the node value of the leaf node. γ
represents the node segmentation threshold and λ is the L2 regularization coefficient.

According to the objective function, the optimal output obtained is as follows:

Obj* = −1
2

T

∑
j=1

G2
j

Hj + λ
+ γT (4)

Gj = ∑
i∈Ij

∂
ŷ(t−1)

i
l(yi, ŷ(t−1)

i ) (5)

Hj = ∑
i∈Ij

∂2
ŷ(t−1)

i
l(yi, ŷ(t−1)

i ) (6)
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Equation (4) is the rating function of the tree, with smaller values indicating better
structure. XGBoost relies on the greedy strategy of recursive node splitting to generate
sub-model trees. Equation (7) is the expression of the splitting profit Gain. When selecting
the optimal splitting Gain, the feature with the largest difference in Obj* values before
and after splitting is considered, and the feature with the largest Gain value is used as the
splitting point to construct a CART.

Gain =
1
2

[
G2

L
HL + λ

+
G2

R
HR + λ

− (GL + GR)
2

HL + HR + λ

]
− γ (7)

The index L represents the optimal value of the objective function when the value is
divided into the left subtree, and the index R represents the optimal value of the objective
function when the value is divided into the right subtree.

When generating XGBoost models, it is possible to count the instances in which
features engage in splitting, thereby establishing a ranking of feature contribution, because
the process of developing CART adheres to inference rules and has practical physical
significance and interpretability. Then, the top-ranked features are selected to construct
low-dimensional training samples, which can reduce feature redundancy and improve
model training speed.

2.2. Principles of MSPSO-XGBoost

The XGBoost algorithm is an efficient classification algorithm. The performance of the
XGBoost model is highly dependent on the optimization of the hyper-parameters, and it
has a large number of parameters. Hence, it is difficult to adjust using the empirical method
and cannot achieve the global optimum [22]. Based on the basic principles of XGBoost and
existing studies [22,23] on optimizing XGBoost parameters, five parameters were chosen
that affect the classification accuracy significantly, as listed in Table 1.

Table 1. XGBoost algorithm partial parameter information table.

Parameter Range Describe

eta [0, 1] Learning rate: η, reducing the weight of each step. If a learning rate is too high
or too low, it is impossible to find the position of the minimum loss function.

gamma [0, ∞]
Gain threshold: γ, gamma specifies the loss reduction which is necessary to
split tree nodes rightly in a loss function. In other words, it is a parameter that
contributes to making an algorithm conservative.

max_depth [0, ∞]
The maximum depth of the tree; the larger the max_depth value is, the more a
model learns a very characteristic relation for a particular sample. The
parameter is used to adjust over-fitting.

min_child_weight [0, ∞] The minimum weight of leaf nodes; when the value is large, the model can
avoid learning the local optimal solution.

n_estimators [100, 500]
The number of sub-model trees; if the value is too small, the problem of model
underfitting will occur, and if the value is too large, the calculation amount
will be greatly increased.

PSO [24] is a commonly used heuristic optimization algorithm that has the characteris-
tics of a simple implementation mechanism, strong interpretability, and fast convergence
speed. Its speed and position update formulas are as follows:

Vt+1
i = ωVt

i + c1r1(Pt
g − Xt

i ) + c2r2(Pt
i − Xt

i ) (8)

Xt+1
i = Xt

i + Vt+1
i (9)
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where c1 and c2 are the learning factors, r1 and r2 are the random factors, ω is the inertia
weight coefficient, Vt

i and Xt
i are the velocity and position of the particle at the current time,

Vt+1
i and Xt+1

i are the updated velocity and position, Pt
i is the historical optimal position

of the i-th particle, and Pt
g is the optimal particle position of all the particles.

When facing complex problems, reducing ω according to inertia can easily trap the
algorithm into local optima. Based on the literature [23,25,26], and inspired by the idea of
group decision-making, MSPSO is employed to address this issue. The particle swarm is
divided into multiple subgroups, each of which independently seeks optimization. After
each iteration, the optimal particle information for each subgroup is shared, and the most
adaptable particle is selected as the global guiding particle. When updating the speed,
the global guide particles guide all particles, and the formula for updating the speed is
as follows:

Vt+1
i = ωVt

i + c1r1(Pt
g − Xt

i ) + c2r2(Pt
i − Xt

i ) + c3r3(Pt
G − Xt

i ) (10)

where c3 is the learning factor for the i-th particle to learn the global guide particle, r3 is
a random factor with values in the [0, 1] interval, and Pt

G is the optimal position for the
global guide particle.

The steps to optimize XGBoost using MSPSO are the following:
Step 1: First, initialize, set the number of particles to N, divide them equally into S

subgroups, set the particle dimension to D, and iterate T times;
Step 2: Calculate the fitness value of particles at time t = 0, that is, the accuracy of each

particle’s corresponding model;
Step 3: S subgroup updates speed and position in parallel according to Equations (9)

and (10);
Step 4: Process boundary constraints and calculate the fitness value of particles at time

t + 1;
Step 5: Determines whether the current iteration count has reached its maximum

setting. If so, end the optimization and output the model; otherwise, jump to step 3.

2.3. Evaluation Indicators and Model Establishment Process

The multi-classification confusion matrix is shown in Table 2. A to I show classification
number (for example, B represents the number of misclassified datapoints in C1 to C2).
Based on the confusion matrix, the accuracy rate (AR), precision rate (PR), and recall rate
(RR) are defined.

Table 2. Confusion matrix.

Diagnosed Faults

Category C1 C2 C3

True Faults
C1 A B C
C2 D E F
C3 G H I

Define AR to measure the overall classification performance of diagnostic models:

AR = (A + E + I)/(A + B + C + D + E + F + G + H + I) (11)

Taking C1 as an example, define PR and RR to measure the diagnostic model’s ability
to separate and identify different fault states:

PR = A/(A + D + G) (12)

RR = A/(A + B + C) (13)
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Figure 2 shows the flowchart for training a fault diagnosis model, which includes
two parts: data preprocessing and the optimization of the model. Data preprocessing
includes reading data from a database, adding labels, feature selection, and dataset splitting.
In the model optimization, the training set and particle positions are used to establish the
model, while the test set is input into the model to obtain the confusion matrix, which can
evaluate the model. Based on the overall diagnostic accuracy of the model, the performance
is evaluated. The evaluation indicators of the model are taken as the fitness function of
the particles and the particle positions are adjusted according to Equations (9) and (10).
The particle positions are repeatedly updated to establish the diagnostic model until the
maximum number of iterations stops training; then, the diagnostic model is output.

Figure 2. Model training flowchart.

3. Examples of Fault Diagnosis for Chiller Units

The minimum classification loss function is chosen as the penalty function for the
diagnostic model. This model is based on the Python 3.6.15 platform and references the
Numpy 1.19.5, Scikitlearn 0.17.1, Pandas 1.2.4, Matplotlib 3.4.3, and Seaborn 0.12.2 [27]
scientific computing packages.

3.1. Fault Sample Information

The dataset used in this article comes from the ASHRAE RP-1043 chiller fault simula-
tion experiment [28], and the system sketch is shown in Figure 3.

In Figure 3, a centrifugal chiller with a capacity of 90 refrigeration tons can be used
to simulate the cooling effect of the cooling tower by exchanging heat between tap water
and cooling water. Steam and hot water are used to simulate user load, and 64 parameters
are recorded, including 48 measured parameters and 16 calculated parameters such as
compressor efficiency and heat exchanger efficiency. The parameters are numbered 0–7
in the order shown in Table 3 according to reference [28]. The experiment simulated four
types of local faults and three types of system faults and simulated four degradation levels
from small to large for these seven faults to obtain operational data. In order to explore the
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diagnostic ability of minor faults in chillers, seven types of minimum simulated monitoring
data with different fault levels were selected as the research samples for this article. The
fault description is detailed in Table 3, and the percentage after the unit status description
text in the table represents the degree of change compared to the normal state.

Figure 3. RP-1043chiller system fault simulation experimental device schematic diagram.

Table 3. RP-1043 fault information.

Type of Fault Unit Status Abbreviation Label

—— Normal state Normal 0

partial fault

Reduced condenser water flow (−10%) FWC 1
Reduced evaporator water flow (−10%) FWE 2

Condenser fouling (12%) CF 3
Non-condensable gas in refrigerant (1%) NC 4

system fault
Refrigerant leak (−10%) RL 5

Refrigerant overcharge (+10%) RO 6
Excess oil (+14%) EO 7

The experimental period for each state is up to 14 h, and the data collection interval
is 10 s. Due to the drastic fluctuations in some parameters during the brief moments of
starting and stopping the chiller unit, the data validity is not high. Therefore, this part of
the data is removed when selecting the dataset. In the remaining data, 4000 samples are
uniformly extracted for each of the eight states mentioned in Table 3. This forms a training
sample set of 32,000 × 64 dimensions, ensuring a balanced number of samples among
different classes.

3.2. Data Preprocessing

Among the 64 parameters, the calculated parameters are all obtained from the mea-
sured parameters, and the parameters numbered 0–8 are repeated measurements of temper-
ature parameters related to the condenser and evaporator using a Resistance Temperature
Detector (RTD) and thermistors. In addition, the complex nonlinear relationship between
the parameters of the refrigeration system results in a highly coupled situation among
the 64 parameters. The contribution degree is defined as the ratio of the splitting times
of a feature participating in the decision tree to the total splitting times of the model. All
features are ranked in order to lower the input feature dimension of the training set. Table 4
shows that the cumulative contribution is the sum of the current feature contribution and
all feature contributions before the current feature ranking. The accuracy is the overall
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accuracy of the XGBoost model classification under the current cumulative contribution,
and then the optimal feature dimension is determined together with the training time.

Table 4. Original data feature parameter contribution analysis.

Number
Contribution

Degree
Ranking

Accumulated
Contribution

Accuracy
Training
Time/s

56 18.42% 1 18.42% 26.87% 6.28
25 14.11% 2 32.53% 39.76% 7.56
24 10.64% 3 43.17% 48.04% 9.14
47 8.66% 4 51.83% 73.17% 12.03
4 5.31% 5 57.14% 79.28% 13.12
45 4.08% 6 61.22% 83.67% 14.99
58 3.74% 7 64.96% 85.71% 16.17
27 3.14% 8 68.10% 87.19% 16.81
48 2.66% 9 70.76% 88.46% 17.93
28 2.42% 10 73.18% 89.35% 20.20
39 2.31% 11 75.49% 90.02% 24.43
33 2.11% 12 77.60% 90.12% 26.51
3 1.86% 13 76.69% 90.39% 26.99
20 1.73% 14 79.46% 90.81% 28.80
30 1.62% 15 79.97% 91.18% 30.42
49 1.51% 16 81.08% 91.61% 32.51
9 1.39% 17 82.47% 91.82% 33.69
7 1.31% 18 83.78% 92.01% 33.99
46 1.26% 19 85.04% 92.43% 34.48
36 1.23% 20 86.27% 92.54% 35.34
11 1.18% 21 87.45% 92.89% 38.86
16 1.09% 22 88.54% 93.15% 39.21
18 1.00% 23 89.54% 93.35% 42.75
52 0.96% 24 90.50% 93.23% 43.93
32 0.87% 25 91.37% 92.11% 45.41

. . .
63 0% 64 100% 93.51% 79.16

Table 4 shows that as the number of features increases, the model training time
continues to increase, with accuracy first increasing and then decreasing. The cumulative
contribution reaches 89.54% with the feature number at 23, and the XGBoost model has
the best accuracy rate of 93.35%. Considering that the original feature parameters, such
as pressure and temperature, belong to slowly changing process parameters, and the
training time is 41.75 s, which meets the practical requirements of engineering applications,
the top 23 features ranked in contribution are selected to form a new low-dimensional
learning sample.

The set of training samples after dimensionality reduction is a matrix of 32,000 × 23.
Based on the size of the sample and the perspective of statistical learning, cross-validation is
adopted and the samples are randomly and evenly divided into a training set of 24,000 × 23
and a test set of 8000 × 23 in a 3:1 ratio. First, the training set data were input into the
given algorithm to train the fault diagnosis model, then the test set data were input into the
trained diagnostic model and the confusion matrix and other evaluation indicators were
used to evaluate the performance of fault diagnosis models.

3.3. XGBoost Parameter Optimization

Table 5 shows the optimization results of XGBoost parameters using MSPSO and PSO,
respectively. Figure 4 shows the accuracy curves of XGBoost optimized via both methods.
As shown in Figure 4, the PSO algorithm has a faster convergence speed in the early stages
but it falls into a local optimum at 20 iterations and is unable to escape. The classification
accuracy of the XGBoost algorithm optimized using PSO increased from 93.35% to 97.71%
after 50 iterations. The MSPSO algorithm has a slow convergence speed in the early stages
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but particles search for the optimal solution through multi-group cooperation, which can
effectively prevent the local optima [29]. The accuracy of the XGBoost optimized using
MSPSO can be considerably enhanced when compared to the PSO-optimized version. The
classification accuracy of the MSPSO-optimized XGBoost algorithm is now 99.67%, up from
93.35% previously.

Table 5. Model parameter optimization results.

Parameter Default PSO MSPSO

Learning rate (η) 0.3 0.12 0.033
Gain threshold (γ) 0 0.11 0.02

The maximum depth of the tree 6 4 3
Minimum weight of leaf nodes 1 2 3

Number of sub-model trees 100 345 203

Figure 4. MSPSO and PSO optimize the XGBoost accuracy curve.

3.4. Diagnostic Results and Analysis

Figure 5 illustrates the diagnostic accuracy of fault models that were trained using
the same dataset with the SVM, back propagation neural network (BPNN), XGBoost,
PSO-XGBoost, and MSPSO-XGBoost algorithms for eight distinct states. The SVM and the
BPNN parameter sets are shown, and the parameters are listed in Tables 6 and 7. The AR
in Figure 5 represents the overall diagnostic accuracy of the five models.

Figure 5. The precision rate of the diagnosis of 8 states using 5 algorithms.
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Table 6. SVM parameter values.

Kernel Function Type
Kernel Function
Parameters (γ)

Penalty Factor (C)

Gaussian kernel 0.6 32

Table 7. BPNN parameter values.

Hyper-Parameters Value

Number of input layer neurons 23

Number of hidden layers 3
Number of neurons per hidden layer 12

The activation function of the hidden layer sigmoid
Number of output layer neurons 8

From Figure 5, some results can be concluded.

1. The performance of the local fault diagnosis is superior to that of system fault diagno-
sis, indicating that the difficulty of diagnosing local faults is lower than that of system
faults in the minor faults of chillers. The reason for this phenomenon is that local faults
can usually be judged with a small number or even a single parameter change, while
system faults often require more parameter changes to be judged comprehensively.
From the perspective of engineering practice, for example, FWC failure is usually
based on the chilled water flow and cooling water flow changes can be relatively
accurate judgements, while the RL failure needs to be combined with the degree of
subcooling, chilled water flow, cooling water flow, compressor operating power, the
condenser temperature, the evaporator temperature, condensing pressure, oil supply
temperature, oil pressure temperature, and oil supply pressure parameter changes to
make a comprehensive diagnosis decision;

2. According to the literature [30,31], it can be concluded that BPNNs are superior to
SVMs in the diagnosis of local faults, but inferior to SVMs in the diagnosis of system
faults. Except for slightly lower diagnostic accuracy in FWC and FWE faults compared
to BPNNs, XGBoost outperforms BPNNs and SVMs in diagnostic accuracy in other
faults. In terms of overall accuracy ratio (AR), XGBoost is better than BPNNs and
SVMs for chiller micro-fault diagnosis;

3. Compared with XGBoost, the PSO-XGBoost has improved diagnosis accuracy of all
faults except EO; the accuracy of MSPSO-XGBoost diagnosis in eight states is better
than XGBoost. The diagnosis performance of the MSPSO-XGBoost is prior to PSO-
XGBoost in three types of system faults and normal states, demonstrating that MSPSO-
XGBoost is more capable of diagnosing micro-faults in chillers than PSO-XGBoost.

4. Compared to SVMs and BPNNs, the AR of MSPSO-XGBoost is improved by 14.58%
and 11.92%, respectively. The gap in diagnostic performance for various types of
faults is narrowed by XGBoost after parameter optimization.

Tables 8–12 show the confusion matrices of SVMs (Gaussian kernel), BPNNs, XGBoost,
PSO-XGBoost, and MSPSO-XGBoost. The confusion matrix is partitioned into nine parts
with four black dashed lines according to the three levels of normal, local, and systematic
faults, which is known as the nine-grid. In this case, the middle part of the nine-grid
(4 × 4 matrix) represents the classification results of local faults, while the bottom-right
corner (3 × 3 matrix) represents the classification results of systematic faults.
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Table 8. SVM (Gaussian kernel) confusion matrix.

Number
True Faults Precision

Rate
Recall
Rate0 1 2 3 4 5 6 7

Diagnosed
Faults

0 Normal 752 42 57 0 0 64 6 45 77.84% 78.08%
1 FWC 39 850 12 2 1 46 23 17 85.85% 85.00%
2 FWE 89 11 808 0 1 21 11 22 83.90% 87.06%
3 CF 7 4 5 875 0 54 22 21 88.56% 92.59%
4 NC 0 3 3 3 1002 0 6 0 98.52% 99.30%
5 RL 46 71 28 39 0 746 88 47 70.04% 71.93%
6 RO 6 13 9 25 5 71 883 9 86.48% 84.98%
7 EO 24 6 6 1 0 35 0 918 92.72% 85.07%

Table 9. BPNN confusion matrix.

Number
True Faults Precision

Rate
Recall
Rate0 1 2 3 4 5 6 7

Diagnosed
Faults

0 Normal 777 2 37 0 0 105 5 40 80.43% 79.12%
1 FWC 2 974 1 2 5 3 3 0 98.38% 98.58%
2 FWE 10 0 947 0 1 2 0 3 98.33% 94.22%
3 CF 3 0 0 881 5 57 29 13 89.17% 86.54%
4 NC 0 2 0 5 1000 0 9 1 98.32% 98.23%
5 RL 151 4 10 66 0 708 89 37 66.47% 69.54%
6 RO 13 6 2 54 7 88 838 13 82.07% 85.67%
7 EO 26 0 8 10 0 55 6 885 89.39% 89.21%

Table 10. XGBoost confusion matrix.

Number
True Faults Precision

Rate
Recall
Rate0 1 2 3 4 5 6 7

Diagnosed
Faults

0 Normal 892 22 0 0 2 28 17 5 92.33% 88.84%
1 FWC 47 923 0 0 2 7 9 2 93.23% 96.44%
2 FWE 13 5 938 0 0 2 1 4 97.40% 99.57%
3 CF 0 0 2 937 1 30 15 3 94.83% 99.57%
4 NC 0 0 2 2 1010 0 1 2 99.31% 99.51%
5 RL 29 4 0 2 0 871 126 33 81.78% 86.66%
6 RO 8 2 0 0 0 58 927 26 90.69% 83.49%
7 EO 15 1 0 0 0 9 13 952 96.16% 92.69%

Table 11. PSO-XGBoost confusion matrix.

Number
True Faults Precision

Rate
Recall
Rate0 1 2 3 4 5 6 7

Diagnosed
Faults

0 Normal 937 2 0 4 0 21 1 1 96.99% 99.26%
1 FWC 0 979 0 0 9 0 1 1 98.89% 99.69%
2 FWE 0 0 958 2 0 0 0 3 99.48% 100.00%
3 CF 0 1 0 975 12 0 0 0 98.68% 99.19%
4 NC 1 0 0 2 1004 0 10 0 98.72% 97.95%
5 RL 4 0 0 0 0 976 80 5 91.64% 97.80%
6 RO 1 0 0 0 0 0 1015 5 99.41% 88.26%
7 EO 1 0 0 0 0 1 43 945 95.45% 97.72%
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Table 12. MSPSO-XGBoost confusion matrix.

Number
True Faults Precision

Rate
Recall
Rate0 1 2 3 4 5 6 7

Diagnosed
Faults

0 Normal 963 0 0 1 0 1 0 1 99.68% 99.27%
1 FWC 0 988 0 0 0 0 1 1 99.79% 99.89%
2 FWE 0 0 963 0 0 0 0 0 100.00% 100.00%
3 CF 0 1 0 985 2 0 0 0 99.69% 99.69%
4 NC 1 0 0 2 1013 0 1 0 99.70% 99.80%
5 RL 4 0 0 0 0 1056 1 4 99.15% 99.81%
6 RO 1 0 0 0 0 0 1019 1 99.80% 99.51%
7 EO 1 0 0 0 0 1 2 986 99.59% 99.29%

From Table 8, it can be found that the diagnostic accuracy of NC is significantly better
than the other faults in the table, while the diagnostic accuracies of NC faults in Tables 8–12
are quite close to each other. From the perspective of refrigeration principles, the variables
that will be affected first are analyzed when an NC fault occurs. It is found that they coincide
with the four variables listed in the top five contributions in Table 4. The raw data feature
parameter numbers, namely 56, 25, 24, and 4, are the VE, FWE, FWC, and TWEO variables
in the RP-1043 dataset, respectively. This phenomenon indicates that the key features
have a greater impact on the fault diagnosis performance compared to the diagnostic
model. It is also found that for NC faults XGBoost, PSO-XGBoost, and MPSO-XGBoost
diagnostic performance gradually and slightly decreases. It can be concluded that the
overall diagnostic performance index of the model will be improved by optimizing the
model parameters, but it may not necessarily be improved for certain types of faults.

As can be seen from Table 10, the XGBoost diagnostic model is prone to confuse
normal with the three system-level faults of RL, RO, and EO due to the fact that in the
early stage of the occurrence of the tiny faults, the monitoring data of the system faults
are coupled with the monitoring data of the normal state, which results in the difficulty of
the diagnosis and the existence of a high rate of misclassification. From the comparison
between Tables 8 and 9, it is obvious that in the BPNN and SVM diagnostic models, there is
a coupling between the normal state and system faults, as well as a certain coupling with the
local faults of FWC and FWE. Table 10 shows that the XGBoost diagnostic easily confuses
normal with the three system-level faults of RL, RO, and EO. The reason is that in the early
stages of micro-faults, the monitoring data of system faults are coupled with the monitoring
data of normal states, resulting in high diagnostic difficulty and a high misclassification rate.
It can be concluded that the normal state is coupled with other faults, possibly due to the
fact that experiments on fault-free data are conducted intermittently between various fault
experiments. Various faults can cause changes in the physical properties of the chiller unit,
resulting in a constantly changing physical state of the fault-free state, which is coupled
with other fault states. Therefore, the diagnosis of minor faults at the system level of chillers
is difficult.

In analyzing Tables 8–12, it was found that compared to SVMs and BPNNs, XGBoost
has the highest overall correctness for local fault diagnosis, with improved recall and
precision for each system fault diagnosis. PSO-XGBoost has shown considerable improve-
ment in the diagnosis of most fault categories, but it still needs to be improved in some
system faults, like RL and EO. The recall and accuracy of FWE for local faults under the
MSPSO-XGBoost composite model diagnosis are 100%, and the classification performance
of other local faults is likewise optimal. For system failures, the recall and accuracy rates
of the three types of failures have been improved, with the accuracy rate of RL increasing
to 99.81% and the recall rate of RO increasing to 99.51%. Therefore, MSPSO-XGBoost
can significantly enhance the accuracy of minor fault diagnosis in chillers and facilitate
timely detection.

164



Buildings 2024, 14, 1835

Table 13 shows the comparison of the research of this work and the references; it can
be concluded that the MSPSO-XGBoost method has a significant improvement in diagnosis,
compared to the SVM and BPNN models.

Table 13. Comparative analysis of present work with other references.

Reference Classifier
Sample

Size

Ratio of
Training

Set to
Test Set

0
Normal

1
FWC

2
FWE

3
CF

4
NC

5
RL

6
RO

7
EO

Accuracy
(Minor
Grade)

[32] SVM 41,528 4:1 0.924 0.998 0.998 0.994 0.947 0.949 0.922 0.929 95.8%
[33] BPNN 12,000 2:1 0.9243 0.9634 0.9981 0.9899 0.9922 0.9153 0.9482 0.9025 95.50%

Present
Work XGBoost 32,000 3:1 0.9233 0.9233 0.9740 0.9483 0.9931 0.8178 0.9069 0.9616 93.37%

Present
Work

MPSO-
XGBoost 32,000 3:1 0.9968 0.9979 1.000 0.9969 0.9970 0.9915 0.9980 0.9959 99.67%

4. Conclusions

A minor fault diagnosis model for centrifugal chillers based on the XGBoost algorithm
was proposed in this paper. Five important parameters of the XGBoost algorithm were
optimized using MSPSO. The minor fault diagnosis model (MSPSO-XGBoost) was estab-
lished. By comparing and analyzing the diagnostic results of the XGBoost, PSO-XGBoost,
MSPSO-XGBoost, BPNN, and SVM models, the following conclusions are drawn:

1. The cumulative contribution reaches 89.54% with the feature number at 23. The
XGBoost model has the best accuracy rate of 93.35%;

2. The MSPSO algorithm is a good choice for optimizing XGBoost parameters. Com-
pared to PSO, it may effectively prevent the local optimal solution, while MSPSO has
a slower initial convergence speed;

3. For chillers, the high similarity of the data between minor faults and the normal
state leads to distinguishing difficulty. Therefore, system-level minor faults are more
difficult to distinguish compared to local minor faults;

4. The diagnostic ability of the proposed MSPSO-XGBoost model on the eight differ-
ent states is uniform. The diagnostic accuracy of the model reaches 99.67%. The
classification performance of MSPSO-XGBoost is superior to the SVM and BPNN
diagnostic models;

5. Critical features have a greater impact on fault diagnosis performance compared to
the diagnostic model. Optimizing the model parameters will improve the overall
diagnostic performance metrics of the model, but it may not necessarily improve for
certain types of faults.
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Abstract: This study examined spatial and temporal thermal performance and energy consumption.
The temperature distribution in the running period was monitored in test rooms with integrated
electric- and hot water-heated floors. The short- and long-term energy consumption of the two
heating systems were recorded and compared. The results indicated that the integrated electric
heating system generated higher temperatures for indoor air and on the exterior surface of the
wooden floor than the hot water heating system; meanwhile, the difference in the mean temperatures
of the exterior and rear surfaces of the electric-heated floor was 2.44 ◦C, while that of the hot water-
heated test room was 13.25 ◦C. The efficient structure of the integrated electric heating system saved
22.97% energy compared to the hot water system after short-term (7 h) charging and reaching a
dynamic balance, and it efficiently increased the energy utilization rate to 11.81%. After long-term
charging, the daily energy consumption of the integrated electric heating system consumed much
less energy than the hot water system every month. The integrated electric heating system saved
62.55% and 34.30% of energy in May and January, respectively, and consumed less than half of the
energy the hot water system consumed in the less cold months. Therefore, a high-efficiency and
energy-saving integrated electric-heated floor could be a potential indoor heating solution.

Keywords: radiant heating; energy saving; indoor thermal environment; carbon fiber paper

1. Introduction

Indoor thermal environments are increasingly popular as they involve human health [1],
comfort [2,3], environmental pollution [4], and energy consumption [5]. Given the current
increasingly strong awareness of energy conservation, energy conservation research of indoor
heating has been vitally important in developing energy consumption [5].

Bojić et al. compared the performance of different radiant heating systems on walls,
ceilings, and floors and reported that floor heating involved the lowest energy and opera-
tion costs [6], which was consistent with Fabrizio’s study [3]. Using energy substitution
technology, Zhang et al. proposed that the radiant floor heating system is highly efficient
and environmentally protective [7]. The earliest radiant floor heating systems used hot
gases and were termed “kang” and “dikang”, which were used in China in the 11th century
BC [8]. The modern fluid-based systems began with the circulating hot water patent from
Europe in 1839. Since then, the circulating hot water-based radiant floor heating system
has improved and developed into a widely used indoor heating system in residential
buildings [9,10]. Rohdin et al. investigated energy-conservation strategies for improving
the hot water floor heating system, such as a proportional flux modulation strategy and
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a two-parameter on–off control strategy [11]. Cho explored a predictive control strategy
involving the intermittently heated radiant floor heating system and reported that 10–12%
of energy could be saved [12]. However, the disadvantages of hot water floor heating
systems were as apparent as the advantages. Hu et al. [13] summarized the practical
application of the radiant floor heating system in mainland China, where the long response
time of the hot water floor heating systems was a drawback. A compared simulation
analysis of low-temperature hot water floor radiant heating and electrical floor radiant
heating by Qi et al. [14] indicated a more uniform floor surface temperature distribution of
electrical radiant floor heating. While the hot water system warming is time-consuming
and the temperature is inhomogeneous, the system is still widely used in many residential
buildings. Thus, the hot water heating system must be used as a reference in electrical
radiant floor heating system analysis.

Various forms of electrical radiant floor heating systems have been developed. In the
mid-20th century, radiant heating using concrete-embedded copper pipes was extensively
applied in the first large-scale multi-building project in New York, the United States [9]. Af-
ter that, energy-saving and thermal performance improvement strategies were researched.
The 1970s marked the early phase of radiant floor heating system research and application.
For example, steel wire fabric was used to form an electrical loop in concrete floors for
storing heat [15]. The structure of the cable-embedding matrix material might influence
temperature transformation and distribution [16,17]. Yan et al. [18] compared the thermal
performance of cable radiant heating floors in three different structures and reported that
the ready-made thin structure had relatively good thermal and mechanical properties. Sim-
ilarly, heating system structures significantly affect thermal performance [19]. Furthermore,
the aforementioned report involved energy saving and reported that electrically heated
floors shifted 84% of the building load to nighttime, which saved costs based on off-peak
electricity prices [19].

Based on the above literature review, embedded structures generally conduct much
more heat loss to the ground and consume more energy, while the heating unit of wire-like
materials causes temperature inhomogeneity on the floor surface. Fontana [20] placed a
thick aluminum sheet above the electrical heater to reduce the surface temperature non-
uniformity. However, this action might complicate the structures, which is not conducive
to manufacturing. A heating unit that uses advanced materials converts wire-like materials
(cables) to facet materials (carbon crystal membrane, carbon black mortar slabs, and carbon
fiber paper (CFP)). Carbon fiber is an advanced high-strength material with an efficient
electro-thermal conversion efficiency approach nearing 100% [21,22], from which integrated
electric floor heating was developed. Carbon fiber is blended with plant fiber [23] to
produce CFP [24,25], which is generally used in high-performance capacitors [26] and fuel
cells as electrodes [27,28]. CFP has substantial potential for indoor thermal application
due to its prominent advantages of electro-thermal conversion efficiency > 97% [29] and
emission of health-beneficial infrared rays of 8~15 μm [30].

Electric-heated floors consist of three layers [30,31]: a wooden facial layer [32], a
heating unit [33], and a wooden matrix layer, and they are connected to the energy source
using two electrodes at both ends of the floorboards [31]. Compared with the wire-like
heating unit (electric cables and water pipes), CFP has a much greater heating area and
uniform temperature distribution as a facet heating unit. While the properties of wooden
electric heating composites were comparatively well investigated, investigations of the
performance of electric floor heating as compared with the conventional heating system
remain indispensable to researchers and consumers.

The literature review indicates that the radiant floor heating system is a highly efficient
and energy-saving indoor heating system. Furthermore, the application of advanced
materials is an inevitable trend due to their high performance and as a solution to surface
temperature non-uniformity. However, previous works mainly focused on theoretical and
trial sample experimental studies of wooden electric heating composites, which cannot
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represent its performance as a radiant heating system in practical projects, including its
energy-saving and thermal performance attributes.

This study developed an electric heating system with the CFP integrated in a wooden
floor which could be used directly on electricity, and two identical experimental rooms were
used for short- and long-term energization experiments with the electric heating system
and the hot water heating system. A comparative study was conducted to investigate the
temperature distribution, energy consumption and energy utilization of the two heating
systems and aimed to visually demonstrate the indoor temperature and energy efficiency
of the designed electric heating system. The authors intended to propose a high-efficiency
and energy-saving radiant floor heating system.

2. Materials and Methods

2.1. Materials

Figure 1a demonstrates that the integrated electric-heated floor consisted of a wooden
floor, heating unit, power cables, and a temperature controller. The CFP was obtained in
accordance with the methodology outlined in reference [34], and its volume resistivity was
found to range 10−1~104 Ω·cm. The front board was constructed from red oak, while the
matrix board was made from eucalyptus composite board.

Figure 1. Schematic sketch of (a) integrated electric-heated floor and (b) test room. Author’s
drawings.

2.2. Methods of Preparing Integrated Electric Floor and Test Room

As shown in Figure 2, the heating unit (CFP with two electrodes pasted on two sides)
was embedded in wood veneers with glue between the front board and matrix board.
The hot water floor heating system involved water pipes embedded in a cement matrix,
placed on concrete, and covered by a wood floor. A temperature regulatory controlled the
temperature approaches of the two systems. In this study, both systems used electricity as
the energy source. The wooden floor in the integrated electric heating system was directly
connected to the electricity power supply. In the hot water heating system, water was
heated by an electric boiler with 98% conversion efficiency, flowed cyclically, and was
turned into the indoor heat source.
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Figure 2. Schematic sketch of heating unit distribution in the two systems. Author’s drawings.

The two systems were tested in two adjacent empty rooms in an experimental base of
China National Bamboo Research Center, which was the new laboratory building, located
at Jieruo Village, Huzhou City, Zhejiang Province. Figure 1b displays that the test rooms
covered approximately 22 m2 and were 3.70 m high indoors. The walls of the rooms are
constructed of 240 mm brick walls covered with layers of cement, putty, and paint. The
original floor is composed of poured cement. Each test room contained a south-facing
window (2400 mm wide × 2800 mm high) opposite a north-facing door.

Figure 2 presents that the integrated electric-heated floor was laid on floor joists as a
standard floor. However, the floor joists in the integrated electric-heated floor were filled
with thermal insulation materials and covered with a reflective film. The electric cables
were linked to the back of the floor with a pair of fasteners. A series connection was used
for the power supply between floorboards. The hot water floor heating system consisted
of a wooden floor layer, cement matrix layer, and insulating layer, which were laid on
the concrete layer of the structure. The cement matrix layer was 40 mm high and laid on
the 20 mm thick insulating layer. The electric boiler was set up on the veranda with no
exposed pipes.

2.3. Methods of Temperature Distribution Test

Based on human foot and chest comfort zones [35], the temperature test experiment
was conducted by establishing eight test points at eight evenly distributed locations within
the test room. The aforementioned points were positioned vertically at the rear surface
of the floorboard, on the exterior surface of the floorboard, and at 100 mm and 1100 mm
above the floorboard, respectively. The temperature data were collected in real time by
a 64-channel portable temperature tracker mentioned in the reference [32], which has an
accuracy of 0.1 ◦C. The power was shut off when the temperature reached equilibrium.

2.4. Methods of Energy Consumption Computation

Both heating systems used electricity as the energy source, which was convenient
for comparative analysis of energy consumption. Water in the hot water system was
heated using an electric boiler, and the integrated electric system used CFP as the electro-
thermal conversion unit. During the experiment, the doors, windows and other channels
connected to the outside of the two experimental rooms were all closed and sealed in
order to exclude the interference of external factors and to ensure that the data collected by
fixed temperature sensors was as accurate as possible. In order to carry out the relevant
calculations, the airflow in the experimental rooms was set to be purely natural convection.
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Based on the law of energy balance, the heat balance of the system was calculated using
the following equation:

ΦT = Φa + Φl (1)

where ΦT is the heat supply by CFP under charging or water, Φa is the heating capacity for
heating the air in the test room, and Φl is the heat loss from the entire heating system. The
heat supply by CFP under charging or hot water, Φ, was calculated as follows:

ΦT = WT · η (2)

where W is the electric power, T is the charging duration, and η is the heat efficiency. The
heating capacity for heating the air in the test room, Φa, was calculated as follows:

Φa = htot A(ts − ta) (3)

where A is the floor surface area, ts and ta are the wooden floor surface and room air
temperatures, respectively, and htot is the total heat transfer rate of the wooden floor surface,
which consisted of the convective heat transfer coefficient hc and radiant heat transfer
coefficient hr. The hc was calculated as follows according to recommendations in the
literature [36]:

Nu = 0.15(GrPr)
1/4, 107 ≤ GrPr ≤ 1011 (4)

Gr =
gαVΔtl3

v2 (5)

Pr =
v
a

(6)

hc =
Nuλ

l
(7)

where Nu, Gr, and Pr are the Nusselt, Grashor, and Prandtl numbers, respectively. αV , v,
a, and λ are the coefficient of cubical expansion, kinematic viscosity, thermal diffusivity,
and thermal conductivity of air, respectively. l is the characteristic length calculated by
A/P (surface area divided by perimeter) [36,37]. The values of each parameter in the
aforementioned equation, as calculated in this paper, are presented in Table 1, which was
sourced from reference [36]. The hr was calculated as follows as described previously [36]:

hr = εσ
(

T2
s + T2

a

)
(Ts + Ta) (8)

where ε is the floor surface emissivity with the value of 0.81 [36], and σ is the Stefan–
Boltzmann constant with the value of 5.67 E−8 W m−2 K−4 [37]. The energy utilization rate
was defined as the percentage of the heating capacity for heating air in the heat supply and
was calculated as follows:

c =
Φa

ΦT
× 100% (9)

Table 1. Parameters in the calculation formula [36].

Parameters
g

m s−2
v

m2 s−1
a

m2 s−1
λ

W m−1 K−1
l

m

Value 9.8 15.06 × 10−6 21.4 × 10−6 2.59 × 10−2 1.2

3. Results

3.1. Temperature Distribution

The vertical temperature curves of the two test rooms according to time and height
over 20 h are depicted in Figure 3 and were measured at 8:00 a.m. to 12:00 p.m. the following
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day. Both the floor’s exterior surface and rear surface reached their set temperature at
the fastest rate and maintained equilibrium. Nevertheless, the vertical temperature of the
integrated electric heated floor exhibited a rapid increase to its maximum value, after which
it remained stationary.

Figure 3. Temperature distribution of the two test rooms. Author’s drawings.

The vertical temperatures in both rooms were stratified. Both heating systems em-
ployed a process whereby heat radiated from the floor to the air, thus providing a means
of heating. Table 2 presents the temperature distribution in the vertical direction. The
average temperature of the exterior surface of the electric heating system was 42.55 ◦C,
which was higher than the average temperature of the rear surface, which was 40.11 ◦C.
This is in contrast to the hot water heating system, where the exterior surface temperature
was lower than the rear surface temperature. In terms of vertical distribution, the indoor air
temperature was observed to be higher at a height of 100 mm above the floor surface than at
1100 mm above the floor surface for both systems. However, at the same height, the electric
heating system was observed to be hotter than the water heating system. The average
temperature under dynamic balance status was 18.37 ◦C at the 1100 mm measurement
point in the electric-heated room, which reached 18 ◦C indoor air temperature and led to the
lowest energy consumption rate according to Koca et al. [38], while of the hot water-heated
room was 16.75 ◦C. The electric-heated room felt warmer under the feet as the temperature
was 40–45 ◦C on the wooden floor exterior surface.

Table 2. Statistical analysis data (mean value M, standard deviation SD and coefficient of variation
CV) of temperature under dynamic balance status in the test rooms.

Statistic

Integrated Electric-Heated Floor Test Room Hot Water-Heated Floor Test Room

Exterior
Surface

Rear Surface 100 mm 1100 mm
Exterior
Surface

Rear
Surface

100 mm 1100 mm

M 42.55 40.11 19.68 18.37 25.09 38.34 17.10 16.75
SD 2.17 1.49 1.05 0.90 2.29 6.23 0.68 0.78
CV 5.10% 3.71% 5.35% 4.88% 9.12% 16.25% 3.98% 4.65%
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Both heating systems radiated heat from the floor to the air for the purposes of heating.
However, the average temperature of the surface plate in an electric heating system is
42.55 ◦C, which is higher than the temperature of the back plate, which is 40.11 ◦C. This
is in contrast to the water heating system, where the temperature of the surface plate is
lower than that of the back plate. The indoor air temperature of both systems is found to be
higher at a depth of 100 mm than at a depth of 1100 mm. However, it is observed that the
temperature is higher at the same depth in the electric underfloor heating system.

Figure 4 depicts that the exterior and rear surface temperatures were measured in the
coldest winter months. In the integrated electric heating systems, the temperature of the
exterior surface was found to be higher than that of the rear surface, whereas in the hot
water heating system, the temperature of the exterior surface was lower than that of the rear
surface. The temperature discrepancy of the exterior and rear surfaces of the electric-heated
floor was significantly small. The difference in the mean temperatures of the exterior and
rear surfaces of the electric-heated floor was 2.44 ◦C, while that of the hot water-heated test
room was 13.25 ◦C.

Figure 4. Floor surface temperature distribution of the two heating systems. Author’s drawings.

3.2. Energy Consumption

The energy consumption of the two heating systems for 7 h was calculated after
reaching dynamic balance. Figure 5 presents that the energy consumption value (Φ) of the
integrated electric-heated floor and the hot water-heated floor test rooms were 31.70 and
41.16 kW h−1, respectively. The integrated electric heating system used 22.97% less energy
than the hot water heating system.

The thermal mass transferred from the wooden floor exterior surface to the indoor air
in the two systems presented different energy utilization rates (c) based on the calculations
of Equation (9). The energy utilization rate of the hot water system was 2.79%, while it was
9.02% higher in the integrated electric system (11.81%).

The average daily power consumption of the two heating systems per month was
computed after long-term operation in the warm spring months and cold winter months
(Figure 6). The systems consumed much more energy when the weather became colder.
Specifically, the integrated electric system consumed less than half of the energy the hot
water system consumed in the less cold months of May and November. The integrated
electric heating system saved 62.55% and 34.30% of energy in May and January, respectively.
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Figure 5. Dynamic balance of 7 h energy consumption. Author’s drawings.

Figure 6. Long-term test of average daily power consumption. Author’s drawings.

4. Discussion

4.1. Temperature Distribution

Radiant floor heating may be conceptualized as a process of natural convection in a
large space with a horizontal thermal surface oriented upwards. Convective and radiative
heat transfer occurred from the heated wooden floor to the air, resulting in the gradual
heating of the air above the wooden floor from near to far as the feature length. Therefore,
the air temperature disparity of the test rooms was caused by the disparate wooden floor
exterior surface temperatures. Nevertheless, the transfer of heat between the wooden floor
and the heating unit occurred via thermal conduction. The location of the heat-generating
unit has a significant impact on the efficiency of heat transfer and utilization. Meanwhile,
wood has a low thermal conductivity; for example, pine has a thermal conductivity of
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0.15 W m−2 K−4 [35], which makes heat transfer inefficient. Therefore, it is necessary to
reduce the obstruction of the heat conduction process by the wooden floor in order to
improve the heat transfer efficiency.

Figures 2 and 4 manifest that the wooden floor exterior surface of the integrated
electric heating system benefitted from the effective structure as its temperature was much
higher than the rear surface, which was opposite to the hot water-heated floor. The CFP is
the heating unit of electric-heated floors [31,33] and has an efficient conversion of ~97% [29].
The CFP was placed between the front panel and wood laminated timber matrix [32]
(Figure 2), resulting in a 4 mm distance to the exterior surface and efficient heat transfer.
Furthermore, CFP instantly heats while charging [31,33], resulting in more energy transfer
to the indoor air. Figure 4 indicates that the temperature of the exterior surface of the
electric-heated floor reached 40 ◦C in 30~60 min. Contrastingly, the hot water heating floor
system required ~4 h to reach dynamic balance.

The disparity in temperature of the exterior surface and rear surface between the
integrated electric heating floor and the hot water heating floor could be attributed to
the distinct structural characteristics of each. As illustrated in Figure 2, the heating unit
of the integrated electric heating floor was embedded directly in the floor, a mere 4 mm
below the floor surface. During the charging process, heat was transferred directly from
the heating unit (CFP) to the floor surface. Due to the low thermal conductivity of wood
and the aforementioned fact that the thickness from CFP to the rear surface was much less
than that to the exterior surface, the exterior surface temperature of the floor was higher
than that of the rear surface of the floor in the integrated electric heating floor system. In
contrast, the heat unit of the hot water heating floor system was situated beneath the floor,
as illustrated in Figure 2. The transfer of heat from the hot water occurs via the concrete
layer to the rear surface of the wooden floor, subsequently reaching the exterior surface of
the wooden floor, which resulted in a higher temperature at the rear surface than at the
exterior surface of the wooded floor.

4.2. Energy Consumption

The utilization of high-efficiency heating units is a significant contributing factor to the
energy efficiency of radiant floor heating. According to the literature [21,22], the efficient
electro-thermal conversion efficiency of carbon fiber approached nearing 100%, and CFP,
which is manufactured from carbon fiber, exhibits an electro-thermal conversion efficiency
of greater than 97% [29]. The rationale behind the utilization of CFP as a heat-generating
unit in this study is to enhance the efficiency of electro-thermal conversion. The use of CFP
allowed the integrated electric heating floor system to function as an instantaneous electric
radiation heating floor system, thereby demonstrating the effect of energy saving, which
was consistent with Cho’s research [12].

Conversely, the reliability of structural design is a contributing factor to the enhance-
ment of energy efficiency in radiant floor heating. The integrated electric heating floor
system saved energy and achieved higher energy efficiency than the hot water heating
floor system, which was primarily due to structural improvements, as the heating units
were relocated to a higher position. In contrast to the heating unit of the hot water heating
floor system embedded in the concrete matrix layer, the closer the heating unit of the
integrated electric heating floor system was to the surface, the lower the heat lost to the
underground, thus allowing for a greater transfer of heat to the indoor air, which is essential
for the purpose of heating. Consequently, the enhancement of the electric heating floor
system structure in this study represents an efficacious energy-saving strategy and indoor
heating solution.

5. Conclusions

In terms of vertical distribution, the average temperature of the indoor air decreased
with increasing height in both radiant heating systems. However, the average temperature
of the exterior surface of the electric heating system was higher than that of the rear
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surface, which was in contrast to the hot water heating system. The smaller temperature
discrepancy between the exterior and rear surfaces led to the high rate of temperature rise
of the integrated electric floor heating system, which addressed the shortcomings of the
long reaction time of the water heating system proposed in reference [13].

The integrated electric floor heating system saved 22.97% energy compared to the
hot water heating system for 7 h charging after reaching dynamic balance and efficiently
increased the energy utilization rate to 11.81%. The long-term charging demonstrated that
the integrated electric heating consumed much less energy daily than hot water heating
every month. Furthermore, the integrated electric heating system consumed less than half
of the energy consumed by the hot water system in the less cold months. This corroborates
the efficacy of radiant floor heating systems, as described in the literature, as a highly
efficient and energy-saving indoor heating system.

The results indicated that integrated electric floor heating was a more efficient and
energy-saving radiant floor heating system for indoor heating. Generally, the integrated
electric floor heating system is a potential solution for efficient and energy-saving in-
door heating.
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Nomenclature

A Area, m2

c Energy utilization rate
Gr Grashor number
htot Total heat transfer rate, W m−2 K−1

hc Convective heat transfer coefficient, Wm−2 K−1

hr Radiant heat transfer coefficient, W m−2 K−1

Nu Nusselt number
Pr Prandtl number
T Time, h
t Temperature, ◦C
W Electric power, kW h−1

Greek symbols
Φ Energy, W
η Heat efficiency
ε Floor surface emissivity
σ Stefan–Boltzmann constant, W m−2 K−4

υ Kinematic viscosity of air, m2 s−1

αV Coefficient of cubical expansion of air, m2 s−1

α Thermal diffusivity of air, m2 s−1

λ Thermal conductivity of air, W m−1 K−1

ι Characteristic length
Subscripts
s Wooden floor surface
a Indoor air
l Heat loss
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Abstract: This study aims to propose a sustainable shelter design involving energy savings, less
environmental impact, and rapid construction. The structural design of the shelter is based on
3D-printing technology. Sustainability assessments, including life cycle analysis (LCA), life cycle
energy assessment (LCEA), and energy justice of the designed shelter, were conducted to prove
the sustainable shelter design. The outcomes of this study for several scenarios will not only allow
decision-makers to design permanent shelters with maximized utilization of limited resources but
also help local communities strengthen their ability to recover with minimal outside assistance
post-disaster. Furthermore, residents can utilize the sustainable shelter to maintain critical functions,
including business continuity and local business in emergencies.

Keywords: shelter design; sustainability; life cycle assessment (LCA); life cycle energy analysis
(LCEA); energy justice

1. Introduction

Natural hazards result in an average of 45,000 deaths yearly [1]. The 2004 Sumatra
tsunami caused between 200,000 and 310,000 deaths, while Hurricane Katrina, which struck
the US Gulf Coast in August 2005, resulted in the deaths of 1833 people and caused property
damage valued at USD 81 billion [2]. Moreover, Hurricane Katrina damaged 200,000 homes
in New Orleans, of which 41,000 were rental homes for low-income families [3]. The impacts
of such disasters extend to housing instability, especially among low-income families who
face significant challenges in coping with the aftermath [4]. Disaster shelters play a crucial
role in providing temporary accommodation, but existing solutions often lack adequate
space, protection, and amenities. Additionally, currently provided temporary shelters are
made of nylon, polyester wool, and fiber-reinforced mylar, which are unsustainable in terms
of cost and environmental impact [5,6]. Therefore, addressing the shelter needs of disaster-
affected populations requires a coordinated and comprehensive approach involving pre-
disaster planning, immediate response, and long-term rehabilitation efforts [7].

The primary purpose of this study is to propose a sustainable permanent shelter design
involving energy savings, reduced environmental impact, rapid construction, and cost-
effectiveness, which will contribute to the resilience of local communities and positively
affect business continuity post-disaster. This study considers the availability of energy to
power a 3D printer onsite and adequate road conditions for transporting heavy precast
modules to create alternative solutions post-disaster. The proposed methodology consists
of five steps: (1) structural design, (2) construction method, (3) scenario development,
(4) sustainability assessments, and (5) decision-making for the shelter design. The structural
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design of the shelter is developed with disaster-resistant construction materials and a shape
that enhances resilience. Three-dimensional printing (3DP) printing technology is rapidly
being applied in the construction field. Due to its quick construction and design flexibility,
the market value of concrete 3D printing was expected to reach USD 56.4 million by 2021 [8].
Three-dimensional printing technology is utilized for the rapid construction method of
the shelter. The sustainability assessment includes a life cycle assessment (LCA), life
cycle energy assessment (LCEA), and energy justice assessment. Various scenarios are
created based on onsite 3DP, insulation types, and HVAC (Heating, Ventilation, and Air
Conditioning) systems. Therefore, the proposed shelter design scenario would provide a
permanent shelter design pre- and post-disaster for resilience, promoting sustainability in
terms of the environment, energy consumption, and the economy. The designed shelter also
offers commercial uses, which can uplift the economic conditions of the local community
after the transition of the victims to their habitat.

2. Background and Related Studies

2.1. Current Research in Sustainability

In the construction sector, there is a growing recognition that sustainable development
must address the goals of environmental quality, well-being, and social justice. To assess
and promote sustainability in building practices, Building Industry Reporting and Design
for Sustainability (BIRDS) has introduced a new measurement system [9]. This system
encompasses three essential components: environmental performance (assessed through
LCA), energy performance (evaluated through LCEA), and economic performance (ana-
lyzed using life cycle cost analysis—LCCA). Current research in the construction sector
demonstrates a significant focus on utilizing LCA, LCEA, and LCCA for studying building
and infrastructure projects.

Ashworth et al. [10] stated that LCA and LCCA assist stakeholders in making well-
informed decisions during the early design phase of buildings and infrastructure. In
addition, they discussed the promising benefits of integrating life cycle tools with Building
Information Modeling. Researchers have utilized this integration to compare different
solutions and select sustainable options that prioritize both environmental well-being
and user well-being. Choosing a method for decision-making can greatly increase the
effectiveness and implementation of a project, such as the many methods shown by [11].
Similarly, LCA and LCCA were applied in the study to evaluate the use of phase change
materials (PCMs) in office buildings considering environmental and economic performance.
The results revealed that while the overall environmental impact was reduced, the cost of
the construction stage increased significantly [12]. Vasishta et al. [13] aimed to understand
the environmental impacts and costs over the complete life cycle for precast and cast-
in-place building systems and found that precast building systems have lower life cycle
environmental impacts and life cycle costs compared to cast-in-place building systems.
Liang et al. [14] conducted LCA and LCCA to compare a mass timber building and a
concrete building to contribute more information to building developers and policy makers.
The study concluded that the mass timber building has less environmental impact than
concrete construction. The authors of [15] compared the eco-efficiency of 3D printing
technology to conventional construction methods using LCA and LCCA techniques, and
the results revealed that 3D-printed buildings are environmentally favorable, and the cost
of construction is reduced by 78%.

Utama and Gheewala [16] performed LCEA to determine the energy consumption
of buildings considering envelope materials. They showed that double-wall envelopes
have almost two times less energy consumption than single-wall envelopes in the long
run. Similarly, ref. [17] compared the embodied energy and operational energy of concrete-
and steel-framed structures using the LCEA method. The results show that concrete has
the highest influence on embodied energy for concrete-framed structures, while beams
represent the largest component of embodied energy for steel-framed structures, with no
significant differences in operational energy between the two structures. An integrated
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assessment (LCA, LCEA, and LCCA) was performed to compare the environmental impacts,
energy use, and economics of a green roof against a built-up roof. The environmental impact
analysis indicates that the built-up roof has 3 times more environmental emissions, 2.5 times
more energy, and 50% higher costs than the green roof over the building life span when
considering the material acquisition life stage, use stage, and maintenance stage. The
authors of [18,19] found that LCA, LCCA, and LCEA are mostly carried out for advanced
building designs but rarely in traditional buildings.

2.2. Shelter for Disaster Relief

Emergency shelters provide natural disaster victims with safety, security, support, and
their own place to cope with the destruction during disaster recovery [20]. Table 1 outlines
the current state of emergency shelters that are provided to refugees and disaster survivors.

Table 1. Current disaster relief shelters.

Authors Shelter Name Material Used Cost
Construction

Duration
Total Area

[21] WeatherHyde, 2013 Nylon, polyester wool,
fiber-reinforced mylar USD 199 15 min 2.69 m2

[22] Better Shelter, 2015
Polyolefin panels and galvanized

steel, woven high-density
polyethylene fibers

USD 1260 4–6 h 17.47 m2

[23] Hexyurt, 2011
Cloth, wood, plastic, Polyiso

insulation, OSB, sandwich
panels, cardboard

USD 229.71 4 h 3.8–25.64 m2

[24] Emergency Smart Pod, 2015 Aluminum panels and steel frame USD 195K–
USD 485K 20 min 36.98 m2

[25] MTS DOMO Systems, 2014 Aluminum, polyester PVC
tarpaulin, cotton USD 4625 25 min 23.4 m2

As shown in Table 1, WeatherHyde was designed by Parsoon Kumar to solve home-
lessness targeted at people in Southeast Asia. This temporary shelter can be ready in 15 min
and is made of nylon, polyester wool, and fiber-reinforced mylar. The total area of the
shelter is 2.69 m2 and costs USD 199 [21]. Better Shelter [22], constructed with polyolefin
panels and galvanized steel, along with high-density polyethylene fibers, costs USD 1260.
The construction duration is about 4–6 h, and its total area is 17.47 m2 [22]. The temporary
shelter Hexyurt (2011) is the modern adaptation of a Yurt (a tent used by nomads for a
hundred years), and its design is less susceptible to the winds. It varies in size from 3.8
to 25.64 m2, can be built in 4 h, and costs approximately USD 229.71. The materials used
are cloth, wood, plastic, Polyiso insulation, OSB, sandwich panels, and cardboard [23].
The Emergency Smart POD (2015) is constructed of all metal with a steel frame covered
in aluminum, making it the most durable and permanent option. This comes with the
fastest erection time of 20 min and the largest area, but it is also the most expensive at
USD 195K–USD 485K. The MTS DOMO System [25] offers similar features to the Hexyurt
with a Yurt dome-like structure but offers a slightly more durable design with higher-grade
materials, with the biggest difference being its lack of insulation. This also comes with
a faster erection time of just 25 min but also a much higher cost of USD 4625. Though
the current temporary shelters provided are fast to construct, they lack space, protection,
sanitation, and reusability after people move back to their homes.

2.3. The 3D Printing of Structures

One of the emerging technologies in the construction sector is 3D printing. Along
with rapid construction, 3D printing involves less waste production due to construction
and design flexibility [8]. Specifically, there has been a significant expansion of concrete 3D
printing, with a projected value of USD 56.4 million in 2021 due to the increasing number
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of innovative construction projects being planned [8]. Table 2 showcases notable examples
of concrete 3D-printed buildings from around the world. One such example is the WinSun
ten 3D-printed house, which was unveiled in 2014. These houses were constructed using
offsite 3D printing, and each took just one hour to print. With an area of 18.58 m2, the
cost of these houses amounted to USD 4800 [26]. Another noteworthy project is the onsite
3D-printed home by SQ4D, located in New York. This home, with an area of 12.91 m2,
was printed in just two days and is currently available for sale at USD 3 million [27]. The
3D-printed community by ICON and Lennar, with homes costing over USD 470K and
measuring around 148 m2, exemplifies strong and energy-efficient construction. From
Table 2, it becomes evident that 3D printing requires less time for the printing process,
whereas offsite 3D printing offers the advantage of lower construction costs.

Table 2. Three-dimensional-printed houses.

Authors Building Name
Printed

Onsite/Offsite
Construction Cost

Printing
Durations

Total Area

[26] WinSun ten 3D-printed house Offsite USD 4800 1 Day 18.58 m2

[28] Dubai 3D-printed
Commercial Building Offsite USD 140K 17 Days 22.48 m2

[29] Belgium onsite 3D-printed house Onsite - 3 Weeks 8.36 m2

[30] SQ4D 3D-printed house Onsite USD 299.99K 2 Days 12.91 m2

[31] Netherland 3D-printed house Offsite USD 946/month 2 Days 8.73 m2

[32] East 17 Street Residencies Onsite USD 450K and above 7 Days/home 8.36–17.19 m2

3. Methodology

This research proposes an optimal design of a shelter considering sustainability with
five steps, as shown in Figure 1. The first step is (1) structural design, focusing on disaster-
resistant shelters with modular features to facilitate multipurpose usage. Next, step (2) is
the construction method employing concrete 3D printing, a rapid and efficient method
during an emergency, and step (3) is scenario development, with six options based on the
insulation and HVAC system used. Then, step (4) is evaluating sustainability in the six
proposed scenarios by conducting LCA, LCEA, and energy justice assessment. Depending
on the results of the sustainability assessment, this step will provide an optimal decision
for the shelter design.

 

Figure 1. Research methodology.
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3.1. Step 1: Structural Design

The objective of step 1 is to provide a structural design of a permanent shelter by
considering key performance criteria: (1) disaster resistance, (2) multipurpose functionality
of the unit, and (3) unit modularization. To achieve this, we have conducted a comprehen-
sive literature review focusing on exemplary buildings that have withstood disasters and
analyzed their construction materials.

One such remarkable building is Alma Hall, which is made of concrete, brick, wood,
and metal structural beams and withstood the Johnstown Flood (1889). It was built in
1884 and is capable of housing 264 people [33]. Another notable example is the UST Main
Building, known as the first EQ resistance building in Asia, which was built in 1927 and
faced major earthquakes in 1937, 1968, 1970, and 1990. The construction materials of the
building are concrete, bricks, wood, metals, and aggregates [34]. Similarly, the Sand Palace
built in 2017 survived the powerful Hurricane Michael that occurred in the year 2018. The
construction materials for the building are concrete, rebar, and steel cables [35]. It can be
observed that concrete as the construction or structural element in the above buildings is
the major cause of disaster resistance. Furthermore, we can learn valuable insights from
the East Pagoda at Yakushiji Temple in Japan, which was built 1300 years ago and has
endured various earthquakes. It is believed that its central core pillar is the major reason
behind its resistance to earthquakes. During an earthquake, the central core pillar acts as
a vibration suppression element [36]. This vibration suppression absorbs and minimizes
ground vibrations. When the shelter shakes during an earthquake, the overall shaking is
countervailed and minimized by the core that shakes out of sync within the building [36].

3.2. Step 2: Construction Method

Three-dimensional printing has been a big buzz in the construction sector over the
past decade. Like every method, 3D printing has its own pros and cons. Its benefits are fast
construction, design flexibility, reduced human error, and waste reduction, whereas the
disadvantages are high cost and a lack of qualified labor [8]. Different types of 3D printers
are available for sale in the market [37]. Table 3 lists the 3D printers that are available for
sale in the market and their features.

Table 3. Specifications of 3D printers.

Authors System Name Print Speed (cm/s) Print Dimensions (L × W × H) (m) Type

[38] ICON Vulcan II 12.7–25.4 ∞ × 11.1 × 3.2 Gantry
[39] COBOD BOD2 Up to 100 ∞ × 14.6 × 14.6 Gantry
[40] Total Kustom StroyBot 6.2 A 1–24.9 10 × 15 × 5.8 Gantry

ICON Vulcan II can build within the dimensions ∞ × 11.1 m × 3.2 m and has a
printing speed range of 12–25 cm per second [38]. Similarly, COBOD BOD2 constructs
the structure in gantry style with a speed limit of 1 m per second. It can print dimensions
up to 14.62 m × 50.52 m × 8.14 m [39]. All of the 3D printing systems shown in the table
use gantry-style printing. A gantry in 3D printing is the frame structure that supports the
printer while moving along the X/Y-axis as the printer head moves around to print the part
on the build platform [41]. A gantry-type printer can print both large and small buildings.
The hopper in a gantry-type printer increases the possibility of controlling the material flow
for non-continuous printing. Gantry printers are mobile and can be used for onsite as well
as offsite printing [41]. A sulfur concrete mix is considered for this study. The component
materials of the mix are silica sand, gravel, sulfur, air, and polypropylene, and their content
by volume is 44%, 34%, 20%, 1%, and 1%, respectively. The mix yields a comprehensive
strength of 40 MPa without the addition of polypropylene fibers. The addition of fibers
to the mix is assumed to increase the comprehensive strength and create a self-reinforced
printable mix [16,42–44].
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3.3. Step 3: Scenario for Shelter Design

Insulation and HVAC systems play a significant role in the energy consumption of
the house [45]. Scenarios for the design of a shelter were developed considering insulation
types and HVAC systems. The insulation types are an air cavity and expanded polylactic
acid (E-PLA); the HVAC systems are Packaged Terminal Heat Pump (PTHP), Rooftop
Unit (RTU), and variable refrigerant flow (VRF) systems. Figure 2 shows that six different
scenarios are derived from the insulation types and HVAC systems. In scenario A-PTHP,
the exterior wall has air cavity insulation, and the HVAC system is a PTHP. Similarly, in
E-PTHP, the exterior wall uses E-PLA insulation, with the HVAC system being a PTHP.

 
Figure 2. Scenario tree.

In building techniques, the thermal transmittance value can be improved by incor-
porating air gaps or layers of insulation between the components of building elements.
The use of 3D printing technology offers designers the flexibility to create printing layouts
with air cavities that meet both thermal and structural requirements. The arrangement
of these cavities significantly affects the thermal transmittance value of hollow concrete
blocks, as it involves the simultaneous occurrence of conduction, convection, and radiation
heat transfer processes. By utilizing different cavity configurations, it is possible to reduce
thermal transmittance by approximately 20% [46]

In situations where the desired thermal transmittance values cannot be achieved
through the configuration of air cavities, it is recommended to utilize cavity-filling materials
instead of adding additional insulation layers. These cavities can be filled with insulation
materials possessing specific thermal properties, which aid in achieving the target U-value.
In the conducted study, hollow brick activities were tested with three different filling
materials: dry sand, polystyrene, and polyurethane. The introduction of these fillings
resulted in a significant reduction in thermal transmittance. In particular, the sand filling led
to a reduction of 54.3%, while polystyrene and polyurethane fillings achieved a reduction of
80.4% [47]. One promising alternative to expanded polystyrene is expanded polylactic acid
(E-PLA), which is characterized by a low density, sustainability, and an environmentally
friendly nature. E-PLA exhibits thermal properties like expanded polystyrene and can
be effectively used as a replacement in various applications [48]. Regarding the material
properties, E-PLA has a density of 30 kg/m3, a thermal conductivity of 0.03 W/m·K,
and a specific heat of 1.483 J/g·K. Meanwhile, the air cavity has an ideal gas density, a
thermal conductivity of 0.0242 W/m·K, a specific heat of 1.00643 J/g·K, and a viscosity of
1.7894 × 10−5 kg/m·s. The material properties of the air cavity and E-PLA are sourced
from [42].

HVAC System Options

The HVAC system plays a crucial role in maintaining a comfortable indoor environ-
ment for buildings. Selecting the appropriate HVAC system is important for achieving
optimal energy efficiency, occupant comfort, and indoor air quality [45]. Among the various
options available, the three suitable HVAC systems for this shelter design are the Packaged
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Terminal Heat Pump (PTHP), Rooftop Unit (RTU), and VRF systems. The choice of an
HVAC system depends on factors like the building size, occupancy level, geographical
location, and climate zone. Figure 3 provides an overview of the specifications, advantages,
and disadvantages of PTHP, RTU, and VRF systems. An appropriate HVAC system is
selected with the careful consideration of these factors to operate the building comfortably.

Types Packaged terminal heat 
Pump (PTHP)a Rooftop Unit (RTU)b Variable refrigerant 

flow (VRF)c 

Figure 3. Types of HVAC systems. a [49], b [50], c [51].

3.4. Step 4: Sustainability Assessment
3.4.1. Life Cycle Energy Analysis (LCEA)

Life cycle energy assessment (LCEA) is an approach to the identification and quantifi-
cation of all energy input to a building in its life cycle. Buildings consume energy directly
or indirectly in all phases of their life cycle from start to end (i.e., cradle to grave); hence,
they are analyzed from the life cycle point of view [18]. The system boundaries of LCEA
include the energy use in three phases of the building life cycle; these are the manufactur-
ing phase, operation phase, and demolition phase, which can be seen in Figure 4 [30,52].
The manufacturing phase encompasses the production and transportation of the building
materials to the site, the installation or construction of new buildings, and the renovation
of existing buildings. The operation phase includes all of the activities that occur during
the use of the buildings throughout their life span. The demolition phase consists of the
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destruction of existing buildings and the transportation of the demolished materials to the
landfill or recycling plants.

 

Figure 4. Framework of LCEA.

The corresponding energy required in these three phases is embodied energy, opera-
tional energy, and demolition energy. Embodied energy is related to the energy required
for the extraction of raw materials, the production of construction materials from raw
materials, the transportation of these materials to the construction site, and the construction
and renovation of the building. Operational energy is the energy required to operate the
building comfortably for the occupants over its life span and includes the energy consumed
by HVAC and appliances. Demolition energy is the energy required to demolish and
transport the dismantled materials.

3.4.2. Life Cycle Assessment (LCA)

A technique for assessing environmental aspects and potential environmental impacts
associated with the development of a product and its potential impact throughout its life
from the cradle to the grave, including raw material acquisition, processing, manufacturing,
use, and finally, disposal, is called life cycle assessment (LCA) [53]. The framework of
LCA consists of four phases, i.e., (1) goal and scope definition; (2) life cycle inventory
analysis; (3) life cycle impact assessment; and (4) life cycle interpretation. The goal and
scope define the objectives, system boundaries, and functional units for the study. Life
cycle inventory (LCI) analysis deals with the collection of the data, the selection of the data
source for the assessment, and the compilation of inputs and outputs of each stage of the
life cycle. Impact assessment aims to determine the contribution of each selected material
to the environment. The impact can be measured using different impact categories. The
last step is the interpretation of the observed results through an impact assessment and the
determination of better alternatives if the results are negative [53].

3.4.3. Energy Justice

Energy justice serves as a conceptual framework for promoting the fair distribution
of benefits and costs for energy services and facilitating impartial decision-making in the
energy sector [53]. Fetanat et al. [54] and Sovacool and Dworkin [55] evaluate energy justice
using four criteria: availability and affordability, rights, social aspects, and environmental
issues. Availability emphasizes the provision of sufficient energy services of high quality to
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all individuals. Affordability, on the other hand, advocates for equitable access to energy as
cheap as possible, especially to disadvantaged groups, so that there will be no issues with
energy needs. Rights include intragenerational equity, due process, and intergenerational
equity. Intragenerational equity focuses on the right of all people to fairly access energy
services, whereas intergenerational equity centers on the right of future generations to
enjoy a good life undisturbed by our energy activities. Due process relates to energy
activities performed with respect to due process and human rights. Social aspects have
three sub-criteria: resistance, transparency and accountability, and intersectionality. The
social aspects criterion evaluates the resistance of a scenario to challenges, the transparency
and accountability in providing information and making decisions, and the attention given
to the diverse social groups and vulnerable sections of society in the decision-making
process. Sustainability and Responsibility are two sub-criteria of environmental issues.
This criterion examines the effects on existing energy sources and addresses concerns
related to water and soil pollution, toxic emissions, climate change, and global warming. It
concerns understanding the impact of a scenario on the maintenance of alternative energy
sources and evaluates its potential consequences on environmental pollution, emissions,
and long-term climate patterns [54,55]. Much of this decision-making needs to ensure
balance, and to maintain the most objective balance of needs, the use of decision-making
methods can also be utilized in complex situations [56].

4. Outcomes

4.1. Structural Design
4.1.1. Disaster-Resistant

In support of our literature review, we have recognized the pivotal role of concrete as
a construction material and central core pillar for disaster-resistant structures. Therefore, in
our shelter design, we have chosen to incorporate concrete as a construction material and
concrete central core pillar to resist potential disasters. In designing the structure, particular
attention was paid to the literature review and what has shown the best performance in
various locations and conditions in search of the most universal design. The proposed
design was created by this team and based on a mixture of existing structures and current
shelter designs to offer the best design for optimal performance and constructability in
any location. Autodesk Revit 2023 was used for the comprehensive design of the shelter,
which is illustrated in Figure 5. Its dimensions include a height of 2.4 m and nearly equal
lengths and breadths of approximately 19.8 m. The 3D-printed exterior wall has a width
of 50.8 in, while partition walls measure 10 cm each. The depicted shelter is configured
to accommodate four suites, each comprising a kitchen space (KS), living space (LS),
two bedrooms (BDs), a restroom equipped with a washer and dryer, and a storage room (S).
The shelter’s shape resembles an octagon for a more stable configuration to resist disasters.

 

Figure 5. Proposed floor plan and elevation of designed shelter (Revit 2023).
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4.1.2. Multipurpose

The proposed designed shelter can be used for both commercial and residential
purposes. Figure 5 showcases its residential functionality. In a commercial context, the
shelter can be utilized as a medical facility, collaborative workspace, and storage area. This
adaptability to multiple purposes and the reusability of the proposed shelter design provide
an opportunity for the local community to improve their economic conditions once the
affected individuals return to their homes. The ability to repurpose also contributes to long-
term sustainability as shelters can continue to serve the evolving needs of the community,
ensuring their ongoing usefulness beyond the initial emergency phase. Multipurpose
disaster shelters offer a comprehensive solution that addresses immediate needs while
supporting long-term recovery and development in disaster-affected areas.

4.1.3. Unit Modularization

Figure 6 showcases the modular nature of the designed shelter, highlighting its expand-
ability, stackability, and accessibility. This modularity offers several significant advantages
in disaster scenarios. First, the ability of the shelter to expand and adjust its size allows
for efficient space utilization. In situations where space is limited, this feature ensures
that a large number of victims can be accommodated within a confined area and that
housing solutions are provided for a greater number of individuals. Second, the stackable
design of the shelter enables the vertical utilization of space, where multiple units can
be stacked on top of each other without compromising safety and stability. This vertical
expansion maximizes the use of available land and further increases the capacity of the
shelter to accommodate more victims. The shelter’s accessibility features play a crucial
role in ensuring the safety, security, and well-being of its occupants by considering easy
and equal access to occupants. Moreover, the convenient modularization of the shelter
facilitates its rapid multiplication and deployment. The standardized components and
assembly methods enable the quick replication of shelter units to meet the immediate needs
of the affected population. The modularity not only optimizes space utilization but also
promotes safety, security, and a homey atmosphere for individuals experiencing emotional
and mental distress due to a disaster.

 
Figure 6. Modularity of designed shelter.

4.2. Construction Method

The designed shelter is constructed utilizing the COBOD BOD2 3D printer. The printer
operates by adding layers of prepared mortar through a nozzle. The 3D printer is supported
by software COBOD Slice converts 3D models from any CAD/ BIM software for printing
preparation. The printer operates on 3 A, 400 V three-phase power. Each printed layer
has a width of 7.6 cm and a height of 3 cm [39]. Figure 7 provides details of the printer’s
configuration for the exterior walls, including the cavity walls and a side view of the
printed walls.

For printing the exterior walls of the shelter, the speed is set to 63 cm per second,
allowing the walls to be printed in approximately 7.34 h for 1 unit. Tables 4 and 5 present
the sulfur concrete mix quantities of each material and properties of the 3D-printed exte-
rior walls, respectively, which were determined based on the literature review for a unit.

189



Buildings 2024, 14, 2536

Furthermore, it is noted that the transportation of construction materials from suppliers to
the site covers a distance of 1000 km.

 

Figure 7. Configuration of 3D-printed exterior walls.

Table 4. Properties of 3D-printed wall [2].

Wall Type Density (kg/m3)
Thermal Conductivity

(W/m.K)
U-Value

(W/m2.K)
Specific Heat

(J/g.K)

Air Cavity 1254.24 0.4114 1.87 0.803
E-PLA 1254.24 0.121 0.55 0.803

Table 5. Inventory for construction of 3D-printed exterior wall of one unit.

Dimension Variable

3D-printed external wall a 17.197 m3

Silica sand 9235.4 kg
Gravel 9237.15 kg
Sulfur 3784 kg

Polypropylene 160.82 kg
Insulation E-PLA a,b 509.037 kg

Energy c 94.011 kWh
Transportation 1000

a [42], b [57], c [39].

4.3. Sustainability Assessment
4.3.1. LCEA for Shelter Design

The embodied energy of construction materials, from production to the site, was
calculated using the available embodied energy coefficients from various studies. These co-
efficients, measured in megajoules per kilogram (MJ/kg), were multiplied by the respective
material quantities of the sulfur concrete mix to determine the embodied energy of each
material in megajoules (MJ). The specific values can be found in Table 6. Upon analysis,
it is observed that the embodied energy for material production required for the exterior
air cavity wall is approximately 16,368.68 MJ. In contrast, the exterior wall with E-PLA
insulation has a higher total embodied energy of approximately 75,926.36 MJ because it
also includes the energy required for the production of E-PLA. The energy required for
the construction of the designed shelter was specifically calculated for the printing of the
exterior wall. The total energy consumption for this process was found to be 338 MJ. These
calculations were performed considering the power required to operate the COBOD BOD2
for a duration of 7.34 h.
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Table 6. Embodied energy coefficients of materials used for construction of shelter.

Material
Embodied Energy

Coefficient (MJ/kg)
Thermal Conductivity

(W/m.K)
Specific Heat

(J/g.K)

Silica sand 0.039 a 9235.4 360.18

Gravel 0.16 b 9237.15 1477.94

Sulfur 1.12 c 3784 4238.08

Polypropylene fiber 64 a 160.82 10,292.48

Insulation (EPLA) 117 a 509.04 59,557.68
a [58], b [11], c [31].

Figure 8 illustrates the embodied energy required for printing the exterior walls of
one unit of the shelter. The x-axis and y-axis represent the types of walls and the energy
required in megajoules (MJ), respectively. The embodied energy for the production of air
cavity wall materials is 16,707.12 MJ, whereas the embodied energy for the E-PLA-insulated
wall is 76,264.8 MJ. The figure reveals a significant difference in the energy required for the
production, transportation, and construction of insulated walls; it is almost seven times
higher for E-PLA walls than for air cavity walls, and the major reason behind this difference
is the energy required for the production of the E-PLA material.

Figure 8. Embodied energy for air-cavity- and E-PLA-filled 3D-printed walls.

Openstudio®, along with Sketchup Pro 2021, was used to determine the operational
energy of the shelter. Lighting, building occupancy, the HVAC system, and relevant
equipment are considered for the operation state of the shelter. A few considerations are
made for the energy analysis in Openstudio®. The building type of the single-unit shelter
is considered a large hotel, the 90.1-2010 template is used, and ASHRAE 169-2006-3A
(Stillwater, OK, USA) is the climate zone [59]. The surface type, different space types
(highlighted by like colors in Figure 9b), and thermal zones (highlighted by different colors
to show separation but share no relation to Figure 9c) considered for a single unit can be
seen in Figure 9. Similarly, in accordance with Bae et al. [60], occupancy schedules, along
with lighting and equipment schedules, are set up for operational energy use analysis.

Table 7 represents the annual energy consumption for the operation of the 3D-printed
shelter, considering various HVAC systems and wall insulation types. Six different sce-
narios have been created, and the operational energy is predicted in gigajoules (GJ). The
source energy is then compared to ensure a fair assessment across different energy sources.
All of the scenarios use electricity as the energy source, but A-RTU and E-RTU use natural
gas for heating along with electricity for cooling. A-RTU has a source energy of 368.52 GJ
(electricity) and 92.65 MJ (natural gas); similarly, E-RTU’s source energy is 344.25 GJ (elec-
tricity) and 74.66 GJ (natural gas). From the table, it can be concluded that the source
energy required for insulated walls with E-PLA and the PTHP system is less than in other
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scenarios, whereas air cavity walls with a VRF system require the most energy. The best
alternative to E-PTHP seems to be either air cavity walls with a PTHP system or insulated
walls with a VRF system.

 

Figure 9. Rendered images (a) by surface type, (b) by space type, and (c) by thermal zone.

Table 7. Operational energy for different scenarios.

Scenario Operational Energy (GJ)

A-PTHP 409.85
E-PTHP 372.52
A-RTU 461.17
E-RTU 418.91
A-VRF 454.38
E-VRF 413.99

Figure 10 illustrates the total energy required in all three phases of the 3D-printed shel-
ter, i.e., production and transportation, construction, and operation, for different scenarios.
The x-axis in the figure shows the different scenarios formed depending on the types of
walls and HVAC system, whereas the y-axis represents the total energy required in giga-
joules. From the figure, it is clear that E-RTU requires the most energy when considering
all three phases. Although the operational energy required for E-PTHP is low during the
operation state, the total energy required for A-PTHP is the lowest among all scenarios.
Considering the total energy, the air cavity wall is better than the insulated wall with every
HVAC system due to the energy required for the production of insulated walls.

 

Figure 10. Total energy for different scenarios.
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4.3.2. LCA for Shelter Design

The goal of this study is to determine the environmental impacts of designed shelters.
Figure 11 shows the system boundaries of the examined systems, including material
production, the transportation of materials and equipment, construction, operation, and
maintenance. The end-of-life phase is excluded from the study due to the lack of available
data. The input data related to the shelter were gathered from the literature review and
Ecoinvent database.

 
Figure 11. System boundaries of LCA.

The technical data include the quantities of materials, transportation, and energy
consumption for construction and operation. The environmental impacts of the designed
shelter were estimated using TRACI 2.0. The method represents the impacts of a global
representative and addresses nine impact categories: ozone depletion (kgCFC-11eq), global
warming potential (kgCO2eq), smog (kgO3eq), acidification (kgSO2eq), eutrophication
(kgNeq), fossil fuel depletion (MJ Surplus), carcinogenic effects (CTUh), non-carcinogenic
effects (CTUh), respiratory effects (kgPM2.5eq), and ecotoxicity (CTUe) [61]. The software
SimaPro (SimaPro PhD) was used to evaluate the environmental impacts associated with the
3D-printed shelter. Figure 12 shows the environmental impacts caused by the production
and transportation of construction materials and the construction of 3D-printed exterior
walls onsite. Ten different categories of environmental impacts were measured based on
the quantities provided, and these categories can be found on the x-axis of the figure. The
y-axis represents the normalized value in percentage for the two different types of walls.
The figure shows that insulated walls have higher environmental impacts compared to air
cavity walls. Insulated walls seem to have 50% higher environmental impacts compared to
air cavity walls, except for acidification, respiratory effects, and fossil fuel depletion. This
suggests that E-PLA has less impact on these categories compared to others.

The environmental impacts of the operation phase of different scenarios can be seen
in Table 8. From the table, it can be concluded that the source energy required for insulated
walls with E-PLA and a PTHP system is less than in other scenarios, whereas air cavity
walls with a VRF system require the most energy. The best alternative to E-PTHP, which
has the lowest operational energy, is an air cavity wall with a PTHP system (37.33 greater
GJ) or an insulated wall with a VRF system (41.47 greater GJ) to improve operational
energy consumption.
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Figure 12. Environmental impacts of production, transportation, and construction of 3D-printed
exterior wall.

Table 8. Environmental impacts of operation of 3D-printed shelter for different scenarios.

Impact Categories A-PTHP E-PTHP A-RTU E-RTU A-VRF E-VRF

Ozone depletion (kgCFC-11eq) 0.003934 0.003576 0.004143 0.003792 0.004362 0.003974

Carcinogenic effects (CTUh) 0.004201 0.003819 0.003829 0.003571 0.004658 0.004244

Non-carcinogenic effects (CTUh) 0.013913 0.012646 0.012622 0.011776 0.015425 0.014054

Respiratory effects (kgPM2.5eq) 118.7023 107.8907 107.3047 100.1644 131.5993 119.9014

Eutrophication (kgNeq) 332.9282 302.6044 299.9802 280.1439 369.1007 336.2912

Acidification (kgSO2eq) 155.8035 141.6126 146.0823 135.693 172.7314 157.3773

Smog (kgO3eq) 1570.31 1427.283 1496.777 1387.319 1740.924 1586.172

Fossil fuel depletion (MJ surplus) 59,960.3 54,498.99 69,752.93 63,126.77 66,474.95 60,565.97

Global warming (kgCO2eq) 56,700.18 51,535.81 56,964.53 52,445.37 62,860.62 57,272.92

Ecotoxicity (CTUe) 567,314.1 515,641.9 514,214.1 479,821.7 628,952.5 573,044.7

To calculate the overall environmental impacts of each scenario, the environmental
impacts of each phase were identified and then aggregated. Figure 13 presents the total
environmental impacts of each scenario for three different phases of the considered shelter
unit. The figure clearly illustrates that the E-RTU scenario exhibits lower environmental
impacts compared to the others, except for ozone depletion, global warming, and fossil fuel
depletion. And, this suggests that the operational energy is more significant than that used
for production and construction. Notably, the E-RTU and A-RTU scenarios have similar
impacts in terms of eutrophication, but E-RTU outperforms the other scenarios in all other
impact categories, demonstrating its superior environmental performance.
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Figure 13. Environmental impacts of production, transportation, construction, and operation of
3D-printed exterior walls.

4.3.3. Energy Justice

In order to identify more favorable options in light of energy justice, the scenarios were
carefully analyzed. The analysis employed the linguistic energy justice theory and utilized
the Analytical Network Process (ANP) methodology. Figure 14 visually presents the ANP
layout, which serves as a framework for evaluating and determining the best scenario in
terms of energy justice. Within this framework, the energy justice decision-making theory
classifies the criteria, sub-criteria, and scenarios into different levels. Specifically, the criteria
are categorized as level 2, the sub-criteria as level 3, and the scenarios as level 4. LCEA and
LCA are also taken into consideration as independent variables in decision-making. These
variables play a significant role in the analysis, providing valuable insights into the energy
justice implications associated with each alternative.

Table 9 shows the supermatrix derived from the eigenvector of criteria and indepen-
dent variable. The initial eigenvector was constructed by comparing criteria with each other
based on the goal. Subsequently, a comparison was made between criteria and independent
variables, and vice versa. The supermatrix was column-stochastic and was raised to a
sufficiently large power until convergence occurred [55]. Given the irreducible supermatrix,
it is raised to the power 2K + 1 and converges if k tends to infinity [62]. In the current study,
convergence was stable at W12. Table 10 shows the final weights of the criteria.

Table 9. Supermatrix.

Type Scope 2A RIG SCLA EI LCEA LCA

Scope 0 0 0 0 0 0 0
2A 0.512 0 0 0 0 0.845 0.155
RIG 0.081 0 0 0 0 0.167 0.833

SCLA 0.072 0 0 0 0 0.760 0.240
EI 0.335 0 0 0 0 0.111 0.889

LCEA 0 0.530 0.105 0.050 0.315 0 0
LCA 0 0.046 0.105 0.159 0.602 0 0
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Table 10 illustrates the process of determining the final weights of sub-criteria by
evaluating each sub-criterion in relation to its respective criterion. This involves multiplying
the eigenvectors obtained from the comparison with the final weights of the criteria. The
table also displays the limiting values, which represent the final weights of the criteria.
Additionally, it presents the relative weights of the sub-criteria derived from the comparison
and the resulting final weights of the sub-criteria.

Table 10. Final weights of sub-criteria.

Sub-Criterion
Final Weight of

Criterion
Relative Weight of

Sub-Criterion
Final Weight of
Sub-Criterion

AVA
0.22

0.500 0.110
AFF 0.500 0.110

INTERE
0.161

0.106 0.017
DP 0.634 0.102

INTRAE 0.260 0.042
RES

0.12
1.357 0.163

T&A 0.251 0.030
INTERS 0.743 0.089

SUS
0.499

0.500 0.250
RES 0.500 0.250

 

Figure 14. ANP Layout for energy justice assessment.

Table 11 presents the eigenvector, which is obtained by comparing each alternative or
scenario according to sub-criteria and the final outcome. The final outcome is determined
by multiplying the scenario’s eigenvector with the final weights of the sub-criteria. The
results indicate that the value for the E-RTU scenario is significantly higher (0.3690) than
the others, suggesting that it is the most favorable scenario in terms of energy justice.
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Table 11. Comparison of alternatives and findings of ANP.

Type AVA AFF INTERE DP INTRAE RES T&A INTRES SUS RES Result

A-PTHP 0.0923 0.2700 0.2023 0.2752 0.0932 0.1667 0.1667 0.0943 0.0943 0.1015 0.1639
E-PTHP 0.1348 0.4216 0.4444 0.3431 0.1554 0.1667 0.1667 0.1753 0.1753 0.1656 0.2383
A-RTU 0.2494 0.0825 0.1044 0.1291 0.2846 0.1667 0.1667 0.2587 0.2400 0.2512 0.2412
E-RTU 0.4435 0.1460 0.1537 0.1646 0.3926 0.1667 0.1667 0.3864 0.4284 0.3798 0.3690
A-VRF 0.0282 0.0267 0.0357 0.0301 0.0285 0.1667 0.1667 0.0324 0.0310 0.0344 0.0623
E-VRF 0.0517 0.0534 0.0595 0.0580 0.0457 0.1667 0.1667 0.0537 0.0537 0.0674 0.0875

4.4. Decision-Making for Shelter Design

From the findings of the three analyses, a decision-making table, Table 12, has been
created. Table 12 incorporates the results of LCEA, including various environmental
impacts, such as carcinogenic effects, global warming, and smog from LCA, as well as
the outcomes of the energy justice assessment. The second column is for LCEA, which is
obtained based on the embodied energy required for insulation and operational energy.
For instance, LCEA (426.144) for A-PTHP shows a total operational energy of 409.85 GJ
and an embodied energy of 16,707 MJ for air cavity insulation. The third–fifth columns
are generated based on the environmental impact required for the production of materials,
transportation, and the construction of the 3D-printed exterior walls from Figure 12 and
the operation of the shelter from Table 8.

Table 12. Decision-making based on sustainability assessment for scenarios.

Scenario

Sustainability Assessment

LCEA
LCA

Energy Justice

Carcinogenic
Global

Warming
Smog

A-PTHP 426.144 0.004285 58,110.5 1681.977 0.1639
E-PTHP 448.372 0.004024 54,492.45 1633.418 0.2383
A-RTU 477.464 0.003913 58,374.85 1608.444 0.2412
E-RTU 494.762 0.003776 55,402.02 1593.453 0.3690
A-VRF 470.674 0.004741 638,410.5 1852.591 0.0623
E-VRF 489.842 0.004449 611,222.3 1792.307 0.0875

As can be seen in Table 12, the LCA result of A-PTHP for carcinogenic impacts is
0.004285. This value is the sum of 0.004201 from the environmental impacts of operation
and 0.000081 from the environmental impacts of production, transportation, and the con-
struction of the 3D-printed exterior wall shelter. According to the LCEA results, scenario
A-PTHP requires 426.144 GJ less total energy than other scenarios across all three phases.
On the other hand, when considering LCA, scenario E-RTU is preferred due to its lower
impact values in all categories, except for smog. Furthermore, in terms of energy justice,
scenario E-RTU outperforms the other scenarios with a higher value of 0.3690, indicating
greater fairness and equity in energy distribution. Therefore, there is no single ideal sce-
nario, but if we prioritize LCA and energy justice, scenario E-RTU is the preferred choice
for constructing the shelter. However, if the focus is solely on LCEA, scenario A-PTHP
would be the recommended option.

5. Conclusions

To address the issues related to existing disaster shelters, this study proposes a per-
manent shelter design that incorporates rapid construction technology and focuses on
reducing environmental impacts and energy consumption and offering multipurpose func-
tionality. The designed shelter features an octagonal shape, utilizes concrete as the primary
construction material, and incorporates a central core pillar. Its multipurpose nature allows
for variable uses, such as housing, a medical center, a collaborative space, or a storage
area during and after a disaster. Onsite 3D printing technology is adopted for the exterior
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walls, enabling a quick response to resilience demands. Various scenarios were created
considering different combinations of cavity filling for the exterior walls and HVAC sys-
tems. Six scenarios were formed considering insulation options (air cavity or E-PLA) and
HVAC systems (PTHP, RTU, or VRF). Sustainability assessments were conducted using life
cycle analysis (LCA), life cycle energy assessment (LCEA), and energy justice assessment.
According to the results of these assessments, scenario E-RTU (exterior wall with E-PLA
insulation and RTU HVAC system) emerges as the best choice in terms of LCA and energy
justice. However, if the decision is based solely on LCEA, scenario A-PTHP (air cavity with
PTHP system) is the most favorable. It is important to note that these results may vary
depending on different building types, sizes, and climate zones.

This study’s outcomes have provided a shelter design considering sustainability that
will allow decision-makers and stakeholders to perform a systematic decision-making
process, which will ensure maximum utilization of limited resources to reach out to a larger
number of people post-disaster. The proposed methodology will help local communities to
uplift the economic conditions through business continuity after people move back to their
own homes. In addition, the developed sustainability assessments can be applied in public
buildings, including public libraries, universities, government buildings, etc.

For further studies, analysis can also include 3D-printed roofs or floors for sustainabil-
ity assessments. Having focused on the southern region of the United States, this study
is meant to act as a guide through the process of determining the optimal shelter design
for a needed area. Adding life cycle cost analysis as one of the sustainability measurement
techniques would be beneficial for some stakeholders, as cost plays a major role in decision-
making. Sensitivity analysis can be performed based on different transportation distances
of construction materials and equipment, construction materials, and construction methods
(onsite/offsite), which would give a more concise scenario.

6. Limitations and Future Work

This study focuses on the sustainable design of shelters post-disaster in the southern
region of the United States. However, its applicability to other parts of the United States
is limited due to differences in weather, building materials, and LCA and energy justice
criteria. Therefore, it is noted that a generalized approach is needed in future work.
Additionally, sensitivity analysis will be conducted in future work to understand the
impacts of different assumptions made in the calculations.

Furthermore, it is necessary to consider a power supply and energy management
system in the sustainability assessment. A building may be well designed, but if it requires
excessive amounts of energy for its use, it can become problematic. In many emergency
situations, it is not possible to have enough energy to power air conditioning. Therefore,
the system should be versatile and capable of accommodating less energy-intensive air-
conditioning systems or, in some cases, functioning without them. Future research will
integrate plant engineering to ensure that the design is truly reliable and applicable in
various contexts.
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Abstract: The building sector is figuring out how to lower its embodied CO2 in a sustainable way.
The technology, known as Carbon Capture, Utilization, and Storage (CCUS), offers a possible remedy
for this issue. Accelerated carbonation is one method of sequestering CO2 in concrete. In this study,
an M25 grade of concrete is made using Ordinary Portland Cement with 0–30% replacements of Class
F fly ash. The specimens were exposed to accelerated carbonation curing for 6 h, 24 h, and 72 h, and
then the specimens were tested for their compressive strength, carbonation depth, and pH. The CO2

uptake was measured by Thermogravimetric analysis (TGA), and the occurrence of carbonation was
confirmed using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The results of
the study indicate a significant improvement in the compressive strength with a percentage increase
of 70.46%, 111.28%, 30.36%, and 36.69%, respectively, for 0%, 10%, 20%, and 30% fly ash contents in
concrete samples subjected to 72 h of accelerated carbonation curing without affecting its alkalinity.
The study reiterated that accelerated carbon curing is an advisable method for countries like India
that are undergoing rapid economic developments.

Keywords: global warming; accelerated carbonation; compressive strength; CO2 uptake;
carbonation depth

1. Introduction

The current environmental landscape is marked by a series of unprecedented chal-
lenges, and global warming has emerged as a critical issue threatening the planet’s future,
especially its biological richness and diversity. The scientific consensus is unequivocal:
human activities, particularly the emission of greenhouse gases, are driving an alarming
rise in global temperatures [1,2]. While several industries contribute to this environmental
crisis, the construction industry stands out as a prime sector that demands heightened
scrutiny [3]. The construction industry is widely considered as a vital contributor to social
and economic development, playing an important role in shaping the environment. As
buildings rise and infrastructure expands, the construction industry’s reliance on resource-
intensive processes and materials becomes increasingly evident and more pressing than
even before. From energy-intensive construction methods to the production of emissions,
this sector’s carbon footprint extends far beyond the completed structures it leaves in its
wake [4].

Cement is an indispensable component of the construction industry, with widespread
use around the globe. However, the production of cement is also known to be one of the
most carbon-intensive processes in the lifecycle of concrete [5,6]. Current estimates indicate
that global cement plants are accountable for about 8% of annual CO2 emissions. The
emission of about 1 tonne of carbon dioxide (CO2) into the environment is a consequence of
producing 1 tonne of Ordinary Portland Cement (OPC), and kiln operation is responsible
for 50% of CO2 emissions, which result from the combustion of fossil fuel [7–9]. This
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underscores the urgent need for the industry to explore more sustainable production
methods and to reduce its environmental impact. Carbon Capture, Utilization, and Storage
(CCUS) has become an excellent means to address the problems of rising temperatures and
carbon dioxide emissions related to the construction industry. The technique has become
well-known recently as a way to lessen greenhouse gas emissions and the effects of climate
change [10]. Accelerated Carbonation Curing (ACC) presents a viable method for the
construction industry to implement CCUS. By leveraging the inherent properties of CO2,
ACC offers the potential to reduce carbon emissions and promote sustainable practices
within the sector [11].

Accelerated Carbonation Curing stands out as a highly efficient curing method for
precast concrete, offering the dual benefit of sequestering CO2 and aligning with global
sustainability goals. Its application not only aids in reducing carbon footprints but also
enhances the mechanical and durability properties of concrete, establishing it as a superior
option [10,12]. Initially investigated in the early 1970s, ACC did not gain traction due to the
high costs associated with CO2 capture [13,14]. However, recent decades have witnessed
significant technological advancements in CO2 capture, making it more economical and
feasible. This has reignited interest worldwide, prompting researchers to explore ACC
as a viable alternative to steam curing in the concrete precast industry. The newfound
availability of captured CO2 on a large scale has further propelled investigations into
construction materials’ potential to sequester CO2 in a stable form [11].

Accelerated Carbonation Curing during concrete production has the ability to capture
CO2 within a short span of time, ranging from a few hours to a few days. Studies have
indicated that this method can enhance the strength and durability of concrete products by
modifying their chemical composition and microstructure [15,16]. The literature indicates
that adding a high concentration of CO2 to cement-based materials during their initial
hydration process can improve those materials’ mechanical qualities, hardening rate, and
resistance to a variety of environmental conditions, including sulphate attack, acid erosion,
wetting and drying, and freeze-thaw cycles. As such, adopting ACC technology is a
viable means of reducing carbon emissions and enhancing the overall performance of these
materials [17,18]. Equations (1)–(4) depict the reaction taking place during ACC [19].

3(3CaO · SiO2) + (3 − x)CO2 + yH2O → xCaO · SiO3 · yH2O + (3 − x)CaCO3 (1)

2(2CaO · SiO2) + (2 − x) CO2 + yH2O → xCaO · SiO2 · yH2O + (2 − x)CaCO3 (2)

Ca(OH)2 + CO2 → CaCO3 + H2O (3)

3CaO · 2SiO2 · 3H2O + 3CO2 → 2SiO2 + 3CaCO3 + 3H2O (4)

It is axiomatic that the level of relative humidity in concrete-based products has a
significant impact on the degree of carbonation. Reduced levels of relative humidity can
expedite the carbonation process, as a dry environment allows greater CO2 diffusion in the
concrete. Both experimental and modelling data suggest that, to attain carbonation, the
referred relative humidity range of 50% to 70% is required [20]. At this level, the concrete
is neither too dry to restrict carbonation reactions, nor too damp for capillary pores to be
fully saturated, which limits CO2 diffusion [21]. Another prime variable that affects the
amount of carbon absorbed during carbonation curing is the length of time exposed to CO2.
According to earlier research, most carbonation reactions seem to happen in the first 6 h
of curing. However, this result may vary depending on the concrete mixture design and
curing settings [22].

Although many studies related to ACC have been carried out in the world, studies
using cementitious products in Indian conditions are meagre. Therefore, the present study
has been undertaken to understand the efficiency of ACC over other conventional methods.
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Thus, the study delves into the efficacy of ACC as a curing method and its influence on the
strength development of concrete, considering varied cementitious contents with fly ash
replacements. The parameters scrutinized incorporate compressive strength, carbonation
depth, pH analysis, and carbonation uptake.

2. Materials and Methods

2.1. Material

Grade 43 OPC conforming to IS:8112-2013 [23] and Class F fly ash in accordance with
IS:3812-2003 [24] were utilized. The cement has a fineness of 327 m2/kg and a specific
gravity of 3.15, while the fly ash has a fineness of 290 m2/kg and a specific gravity of 2.20.
Chemical properties of both binders are detailed in Table 1.

Table 1. Chemical composition of cement and fly ash.

Oxide CaO SiO2 Al2O3 Fe2O3 MgO

Cement 63.50 21.70 6.60 4.60 2.40
Fly ash 3.13 62.57 27.40 5.92 0.98

River sand from zone II, as specified by IS:383-2016 [25], served as the fine aggregates.
Coarse aggregates were composed of crushed granite gravels with nominal sizes of 20 mm
and 12.5 mm, blended in a ratio of 3:2. The specific gravities of the fine and coarse
aggregates were 2.70 and 2.65, respectively. Figure 1 depicts the grading curve of coarse
aggregate and fine aggregate used for the present study.

Figure 1. Particle-size distribution curve of aggregates.

2.2. Concrete Mixtures

The study considered four different concrete mixtures with different cementitious
materials. The first mixture, abbreviated as M1, was prepared using Ordinary Portland
Cement (OPC) as the cementitious material. In the second, third, and fourth mixtures, a
blend of fly ash and OPC was used, and these concrete mixtures were represented as M2,
M3, and M4, respectively. To prepare one cubic meter of concrete mixtures, the constituent
materials’ weights are shown in Table 2. A water-to-cementitious material ratio of 0.45 was
used to maintain a zero slump for each of these mixtures.

204



Buildings 2024, 14, 2573

Table 2. Mix proportioning for 1 m3 of concrete mixture.

Materials M1 M2 M3 M4

OPC 375 337.5 300 262.5
Fly ash - 37.5 75 112.5

Fine Aggregate 672.06 672.06 672.06 672.06
Coarse Aggregate 1157.57 1157.57 1157.57 1157.57

Water 168.75 168.75 168.75 168.75

2.3. Experimental Setup for Carbonation

The arrangement depicted in Figure 2a,b illustrates the configuration for Accelerated
Carbonation Curing of concrete samples. The valve and pressure regulator assembly
located on the CO2 gas cylinder are connected to the inlet pipe of the chamber. To regulate
relative humidity and temperature within the system, a water tank and heating mechanism
are included. Additionally, a computerized system facilitates data collection and adjustment
of humidity, temperature, and CO2 levels within the chamber.

(a) 

 

(b) 

Figure 2. (a) Basic setup for Accelerated Carbonation Curing. (b) Accelerated Carbonation Chamber.

2.4. Preparation and Curing of Sample

All the ingredients were mixed, and then water was added to make a consistent
mixture. Three layers of concrete were poured into moulds, and the voids were eliminated
by vibrating the material. After 24 h of casting, the samples of all four concrete samples
were taken out of the moulds, and each set of the four concrete mixtures was divided into
two groups. One group of samples was treated with ACC for 6, 24, and 72 h at 10% CO2
concentration, at 35 ◦C temperature, and at 70% relative humidity, while the other group
was water-cured for the same amount of time as the ACC. For the concrete sample ACC,
99.9% pure CO2 was used from a gas cylinder with pressure regulation. Figure 3a,b shows
the preparation and curing of samples.
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(a) (b) 

Figure 3. (a) Preparation of samples and (b) curing.

2.5. Testing of Specimens

To examine the alteration in the concrete matrix with ACC, assessments were carried
out after 6, 24, and 72 h of ACC. Additionally, a batch of water-curing specimens was tested
for comparison at the same intervals. Compressive strength analysis was utilized to gauge
the mechanical robustness of the concrete. To investigate any significant pH variations
resulting from the consumption of Ca(OH)2 during the ACC process, the pH of the concrete
was measured. This was done to assess any potential impact on the formation of the
passivation layer on the rebar. To conduct this measurement near the surface, a sample
was collected. Three grams of powdered sample were taken from the desired location and
dissolved in 10 mL of distilled water. The mixture was stirred automatically for 15 min,
followed by filtration using Whatman filter paper. The pH of the resulting solution was
then measured using a digital pH meter following previous studies [10,19]. In order to
find the carbonation depth, phenolphthalein solution was applied to the specimen’s cross-
section. To understand changes in mineralogical compositions, XRD, TGA, and SEM were
performed on samples collected from the near surface of concrete. Before testing, samples
were immersed in acetone to stop further hydration. XRD was recorded on a RIGAKU
D-Max 2000 X-ray diffractometer (Make: Rigaku Corporation, Osaka, Japan) equipped
with a Gobel mirror for Cu-Kα radiation. The measurements were carried out in a 2θ
range from 5–70◦ with a step of 0.02◦ and counting time of 5 s/step. The Xpert High
Score Plus programme was used to match the obtained peaks with the ICDD reference
database. Measurements were also made of the mass loss within a specific temperature
range and the CO2 uptake by carbonated specimens using TGA data. The mass loss in
a specific temperature range was measured and correlated to Ca(OH)2 and CaCO3 that
formed during the curing process. A TGA test was conducted using an INSEIS STA PT 1600
analyzer. A part of the powder sample was heated in a nitrogen atmosphere between 50
and 900 ◦C at a heating rate of 10 ◦C per minute. Morphological analysis of the specimens
utilising SEM images taken using a TESCAN MIRA3 microscope was performed. The
specimens underwent an ion sputter procedure to cover them in gold before imaging.

3. Results and Discussion

3.1. Compressive Strength

The mechanical performance of concrete at 6, 24, and 72 h after ACC was examined in
the study in relation to water curing. 100-mm cube specimens were examined to assess the
compressive strength of the concrete. Figure 4a–d shows the results of compressive strength
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at different hours of carbonation curing and compared with water-cured specimens. The
data suggest that the compressive strength of the ACC specimens was higher than that
of the water-cured specimens with a percentage increase of 70.46%, 111.28%, 30.36%, and
36.69% for the M1, M2, M3 and M4 sample, respectively, after 72 h. Furthermore, mixes M1
and M2 during 72 h of carbonation cure reached the desired strength. Previous researchers
reported that enhanced strength development is due to the higher rate of carbonation
reaction, which turns C2S and C3S into CaCO3 and C-S-H gel; thus, ACC specimens have
better strength development [19]. Furthermore, the hydration event that yields Ca(OH)2 is
transformed into thermodynamically stable CaCO3 by the carbonation reaction that occurs
during ACC.

 
(a) (b) 

 
(c) (d) 

Figure 4. Compressive strength of (a) M1, (b) M2, (c) M3, and (d) M4 mixes.

3.2. Carbonation Depth and pH Analysis

Figure 5 shows the image of a typical phenolphthalein-stained concrete specimen
after ACC. During the phenolphthalein test for the calculation of carbonation depth, it is
observed that the carbonation depth of all the samples is below 5 mm. Carbonation depth
was calculated using Equation (5) [26]. So, the chance of carbonation-induced corrosion is
negligible. This statement is verified using pH analysis. pH results are depicted in Figure 6.
In the pH analysis, even though there is a drop in the pH of ACC samples compared to
water-cured samples, it is well above 10, which is in the tolerable limit to avoid deterioration
of passivating film over the rebar [10,11,27].

Carbonation Depth =
D1 + D2 + D3 + D4

4
(5)
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Carbonated Surface 

Non-carbonated Concrete 

Figure 5. Phenolphthalein-stained concrete specimen after ACC.

 
(a) (b) 

 
(c) (d) 

Figure 6. pH Analysis results of (a) M1, (b) M2, (c) M3, and (d) M4 mixes.

3.3. Microstructural Study

Curing of the concrete undergoes various physical and chemical reactions. Therefore,
microstructural study of the concrete is necessary for understanding the physiochemical
changes taking place in different curing regimes. Three different methods were employed
to analyze the microstructure of the concrete in this research, namely XRD, TGA, and SEM.

3.3.1. XRD Analysis

XRD is a crucial technique for analyzing hydrated cement concrete samples in both
quantitative and qualitative ways. This analysis can detect the mineralogical changes,
if any, that can occur due to carbonation. By studying XRD patterns of carbonated and
non-carbonated concrete samples, it is possible to determine the extent of carbonation.
Bragg’s law is the foundation of XRD. By analyzing the results of the XRD test, the angle at
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which the wave was diffracted and the intensity of the X-ray can be determined [28]. In
Figure 7, the XRD patterns of the M1 and M2 samples subjected to accelerated carbonation
curing and water curing are depicted. The graphs reveal a notable increase in the peaks
corresponding to CaCO3 and a decrease in those related to Ca(OH)2 following carbonation
curing. This phenomenon can be attributed to the reaction between cement hydration
products and CO2.

Figure 7. XRD of M1 and M2 accelerated carbonation-cured and water-cured mixes.

3.3.2. TGA and CO2 Uptake

Understanding the environmental impact of concrete structures and evaluating their
potential as carbon sinks requires the measuring of carbonation, which can be quantified
through the CO2 uptake in concrete. The decomposition of Ca(OH)2 can be inferred from
the mass loss between the temperature range of 400–460 ◦C, while the decomposition of
CaCO3 occurs between 600–800 ◦C. Thus, the CO2 content of the samples after ACC was
investigated using TGA. The analysis of CO2 uptake in concrete can be elucidated through
the assessment of mass loss during TGA, as outlined in Equation (6), where the cement
mass in the original sample could be calculated by multiplying the original mass of the
concrete powder sample by the cement ratio derived from the mix design [29]. Figure 8
shows the TGA-DTG curve for mixes of M1 and M2 carbonation cured for 6 h and 72 h,
and the mass loss obtained are 3.94%, 5.83%, 2.67%, and 5.48%, respectively. Figure 9
illustrates the CO2 uptake trends for the four concrete mixtures, namely M1, M2, M3, and
M4. Notably, the observed CO2 uptake exhibits a direct correlation with the duration of
curing, indicating that longer curing periods result in increased CO2 uptake. Conversely,
a negative correlation is observed between CO2 uptake and the proportion of fly ash
replacement in the concrete mixture. This implies that higher levels of fly ash substitution
led to decreased CO2 uptake; this may be due to the fact that the fly ash is unreactive
with CO2.

CO2 Uptake (%) =
Sample mass at 600 ◦C − Sample mass at 800 ◦C

Cement mass in orginal sample
× 100 (6)
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(a) 

(b) 

Figure 8. (a) TGA (b) DTG analysis of carbonation cured M1 and M2 sample for 6 h and 72 h.
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Figure 9. CO2 uptake of the samples at different time durations.

3.4. SEM

In the SEM image of water-cured concrete (Figure 10a,c), the microstructure shows
the well-hydrated cement particles surrounded by a dense matrix of hydrated cement
paste. The images display a uniform distribution of voids. The calcium hydroxide and
calcium silicate hydrate gel formed as a result of hydration appear under the higher-
magnification SEM images [30]. In contrast, Figure 10b,d concrete subjected to carbonation
curing exhibit alterations in its microstructure due to the ingress of CO2. Carbonation leads
to the dissolution of Ca(OH)2 and the formation of CaCO3, resulting in a decrease in voids
due to CaCO3 precipitation within the pores, leading to a reduction in porosity and an
increase in concrete density [31]. This outcome is consistent with the previous research
findings. The CaCO3 crystals that formed occupy the voids and the small fractures within
the interfacial transition zone (ITZ), which in turn can help to minimize the imperfections
of the ITZ [28,29].

  
(a) (b) 

Figure 10. Cont.
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(c) (d) 

Figure 10. SEM images of concrete samples cured at different curing regimes: (a) M1 water cured
(200 μm), (b) M1 CO2 cured (200 μm), (c) M1 water cured (2 μm), and (d) M1 CO2 cured (2 μm).

3.5. Statistical Analysis

The compressive strength of concrete depends on the presence of Flyash Content
(FAC) and Carbonation Duration (CD). This study uses the statistical technique Analysis
of variance (ANOVA) to evaluate the effect of Carbonation Duration (CD) and Flyash
Content (FAC) on compressive strength, pH, and CO2 uptake of concrete. To determine
the significance factor of experimental parameters of carbonated concrete, the ANOVA
and F-test were performed. The F-test, originally introduced by Dr. Fisher, serves as a
supplementary method to evaluate the primary factors at play [32]. ANOVA helps to
quantify the dominance of the control factor and justify the effects of input changes on
experimental responses.

The characteristics of compressive strength, pH, and CO2 uptake are always positive,
and the higher the value, the better the performance of concrete. To achieve optimal con-
ditions, the “larger is better (LB)” loss function was chosen, as it takes into account the
importance of having larger values for compressive strength, pH, and CO2 uptake in con-
crete performance. The loss function Lij of LB performance characteristics is expressed as:

Lij =
1
n

n

∑
k=1

1
y2

ijk
(7)

where, “Lij” is the loss function of the ith performance characteristics in the jth experiment,
“n” is the number of tests, and “yijk” is the experimental value of the i-th performance
characteristics in the j-th experiment at the k-th test. The loss function is further transformed
into a signal-to-noise (S/N) ratio for determining the performance characteristics deviating
from the desired value. The S/N ratio nij for the i-th performance characteristics in the j-th
experiment is expressed as:

nij = −10log(Lij) (8)

Table 3 displays the outcomes of ANOVA, which is employed for statistical analysis
using Minitab 15 software.
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Table 3. Results of ANOVA.

Response Factor Control Factor DF SS MS F-Level
Contribution

(%)
p-Level

Compressive
Strength

FAC 3 53.6 17.87 11.95 12.4 0.006
CD 2 369.37 184.69 123.47 85.5 0

Error 6 8.98 22.55 2.1

pH
FAC 3 0.43 0.14 10.7 59.72 0.008
CD 2 0.21 0.1 7.72 29.16 0.022

Error 6 0.08 0.01

CO2 uptake
FAC 3 4.47 1.49 12.5 21.3 0.005
CD 2 15.29 7.89 66.23 75.26 0

Error 6 0.72 0.012 3.44

From Table 3 it is observed that Carbonation Duration has great importance on com-
pressive strength (85.50%) and CO2 uptake (75.26%) than Flyash Content, whereas the pH
of concrete was highly dependent on Flyash Content (59.72%) than Carbonation Duration.
The analysis indicates that the experimental error was very low-level. The larger F value
indicates that the variation of the control parameters makes a big change in the performance
characteristics. The p-Level value is less than 0.05, which indicates that both the Flyash
Content and Carbonation Duration and retention period are significant. Figure 11 shows
the variation of means of the S/N ratio with levels of input parameters.

  
Compressive strength pH concrete 

  
CO2 Uptake Combined 

Figure 11. S/N graphs of experimental parameters.

Minitab software was utilized to develop models for the response surface. Response
surface methodology consists of a series of mathematical and statistical techniques that are
valuable for modeling and analyzing situations where a response of interest is influenced
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by various variables. Experimental data was employed to propose predictions for the com-
pressive strength and CO2 uptake of concrete exposed to carbonation. Table 4 displays the
individual coefficients for compressive strength and CO2 uptake response surface models.

Table 4. Interferences about the individual coefficient of the response surface models.

Input Term

Output Parameters

Compressive Strength CO2 Uptake
Coefficient T p Coefficient T p

Constant 10.5182 8.373 0.000 2.91796 7.725 0.000
FAC 0.1227 1.045 0.336 −0.11938 −3.382 0.015
CD 0.3916 5.121 0.002 0.18037 7.845 0.000

FAC × FAC −0.0094 −2.656 0.038 0.00185 1.738 0.133
CD × CD −0.0023 −2.600 0.041 −0.0019 −7.029 0.000
FAC × CD −0.0003 −0.248 0.813 0.00040 1.183 0.282

Standard Deviation 1.22673 0.36883
R Sq. (%) 97.9 96.11

Note: FAC-Flyash Content, CD-Carbonation Duration.

4. Conclusions

Based on the ACC procedure utilized for the concrete mixture examined in this
research, the following conclusions can be made:

(1) Carbonation curing leads to accelerated strength development and densification of
the concrete surface, resulting in improved durability over conventional water-curing
methods.

(2) The process of carbonation curing allows concrete to absorb CO2, offering potential
benefits for reducing greenhouse gas emissions and mitigating global warming.

(3) There is a significant improvement in the compressive strength with a percentage
increase of 70.46%, 111.28%, 30.36%, and 36.69%, respectively, for 0%, 10%, 20%, and
30% fly ash contents in concrete samples subjected to 72 h of accelerated carbonation
curing.

(4) Longer durations of carbonation result in higher compressive strength gains, with 72-h
durations showing the most significant improvement. Additionally, substituting fly
ash with 10% in the mix can achieve comparable strength to conventional water-cured
concrete.

(5) While the pH of carbonated concrete is lower than water-cured concrete, it remains
within safe limits to prevent reinforcement corrosion. Additionally, the average
carbonation depth is minimal, reducing the risk of CO2-induced corrosion.

(6) The use of carbonation curing with industrial waste fly ash not only creates eco-
friendly concrete but also contributes to CO2 sequestration efforts, promoting sustain-
ability in construction practices.
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Abstract: Improving the energy efficiency of buildings is an important element of the effort to address
global warming. The thermal performance of building envelopes is the most important thermal and
physical property affecting energy performance. Therefore, identifying the thermal performance
of a building envelope is essential to applying effective energy-saving measures. The U-value is a
quantitative indicator of the thermal performance of the building envelope quantitatively. Methods for
determining the U-value are largely classified into passive methods, which use building information
without measurement campaigns, and active methods, which conduct in situ measurements. This
paper reviews and evaluates the most commonly used methods and experimental results of previous
studies to determine the actual U-value of a building envelope. Accordingly, this paper focuses solely
on field measurement studies, excluding laboratory measurements. Comparing the existing methods
used to determine the U-value can help researchers choose appropriate field measurement methods
and future research directions.

Keywords: thermal transmittance; U-value; building envelope; passive measurement; active measurement

1. Introduction

Due to global warming and other manifestations of climate shifts, reducing greenhouse
gas emissions has become a critical responsibility. According to the International Energy
Agency (IEA) [1], buildings are responsible for a significant share of global greenhouse
gas (GHG) emissions [2] and consume 37% of global energy. The energy consumption of
buildings and the activities within them is expected to rise by an average of 1.5% annually
from 2012 to 2040, potentially doubling or even tripling by 2050 compared to 2010 levels [3–5].
As new construction activity surges and current building inventories continue to show
inefficiencies globally, GHG emissions from buildings are projected to rise in the future [6].
Nevertheless, when compared to the transportation and industry sectors, buildings offer
the greatest potential for contributing to sustainability strategies [6]. Many countries and
municipalities have proposed goals to reduce GHGs in the construction sector and have
prepared appropriate measures [7–10].

To reduce GHGs in the building sector, it is crucial to minimize energy consumption
in buildings by improving overall energy efficiency. Improving the insulation quality of
the building envelope is one method to reduce heat absorption or loss, thereby enhancing
overall energy efficiency [11–13]. Enhancing the insulation performance of the building
envelope is a crucial aspect of this approach because walls have the greatest exposure to
the external environment, leading to higher energy losses through them compared to other
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parts of the outer shell. The IEA anticipates substantial energy savings (around 6 EJ in total)
to be achieved through improved building envelope technologies by 2050 [14].

To enhance a building’s energy efficiency, it is essential to assess the performance of the
insulation in its outer shell. Among the quantitative indicators of insulation effectiveness
for a building envelope, the representative indicator is the U-value [15–18]. As shown in
Figure 1, the U-value of the building envelope can be calculated according to the presence
or absence of measurements. Passive methods use data sheets or information from compa-
rable buildings without field measurements. On the other hand, active methods measure
environmental variables such as wall temperature, indoor and outdoor temperature, and
wind speed.

 
Figure 1. U-value assessment methodologies for building envelopes.

Applying a U-value, which can be derived by the methods shown in Figure 1, requires
an understanding of the theory, strengths, and limitations of each method. Previous reviews
have covered the determination of thermal transmittance to some extent. Kirimtat and
Ondrej [19], Lucchi [20], and Tardy [21] published reviews involving U-values based on
infrared cameras. However, methods that do not use infrared cameras were not discussed.
Teni et al. [22] and Bienvenido-Huertas et al. [23] published reviews of field measurements
of U-values. However, a method that does not rely on field measurements has not been
discussed. In practical situations, collecting field measurements may not always be feasible,
creating a demand for a method to assess the U-value without physical measurements. In
this paper, basic information regarding the thermal characteristics of the building envelope
and various methods of diagnosing its thermal performance are reviewed.

The methods reviewed in this study are the most widely used of several published
options. In the passive method of diagnosing without measurements, a method involving
analogous coeval buildings, and a theoretical method are reviewed. Active methods
involving measurements and diagnoses in the field, including the standardized heat flow
meter (HFM) method, the simple hot box (SHB-HFM) method, the so-called thermometer
(THM) method, and the quantitative infrared thermography (QIRT) approach, are reviewed.
This paper provides a summary of the significance of assessing the thermal performance
of buildings and the techniques employed to calculate U-values. The purpose of this
paper is to evaluate each U-value diagnostic method using findings from existing studies,
summarize their limitations, and propose areas for further research.

2. Methodology

We first conducted a comprehensive literature review of approaches to calculating
U-values for assessing the thermal performance of building envelopes, focusing on the mea-
surement methodology. The objectives of this study were to (1) present essential concepts
and definitions related to the thermal performance of building envelopes; (2) summarize
the existing methods of evaluating the U-value and experimental results; (3) investigate the
limitations of each conventional method; and (4) propose future research directions and
highlight the potential significance of new methods for U-value assessment in building en-
velopes. The literature review was conducted utilizing the academic search engines Google
Scholar, Scopus, and Mendeley, with “Building U-value”, “Building R-value”, “Estimation
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U-value”, “Building envelope thermal performance”, “U-value measurement”, “U-value
assessment”, “In-situ U-value”, and “Building envelope assessment” as the primary key-
words. Additionally, research articles, textbooks, and standards covering U-values, as well
as the relevant definitions, methodologies, and applications, were reviewed.

This review is structured into seven sections. Section 1 offers an overview and back-
ground on the significance of the U-value in evaluating the thermal performance of building
envelopes. Section 2 explains the comprehensive methodology employed in conducting
this study. Section 3 covers the basic concepts and background of the thermal performance
of a building envelope. Section 4 summarizes a literature review on methods of evaluating
U-values without field measurements, and Section 5 includes a literature review of com-
monly used U-value field evaluation methods. Section 6 presents the review results and a
discussion of the limitations of existing methods. Conclusions are presented in Section 7.

3. Building Envelope Thermal Transmittance

The thermal transmittance of the building envelope is a critical thermal and physical
property that affects energy performance [15–18] and has a significant impact on annual
energy requirements. The efficiency of heating and cooling systems, along with occupant
comfort, is largely influenced by the thermal resistance of the building envelope [15]. Two
parameters describe the thermal performance of a building envelope: the U-value, which
describes thermal transmittance, and the R-value, which describes thermal resistance.

The U-value [24] is obtained by dividing the heat flow rate, or flux (Φ), under steady-
state conditions by the area (A) and the temperature difference between the interior and
exterior of a system (Ti − Te). In Equation (1), Φ represents the value obtained by dividing
the amount of heat (dQ) transferred to or from the system by the time (dt). The reciprocal
of the U-value is the sum (Rtot) of the thermal resistance (R) and the internal (Rs,in) and
external (Rs,out) air film resistance of each material comprising the envelope. The R-value of
the building envelope is defined [24] as the temperature difference (Ti − Te) under steady-
state conditions divided by the density (q) of the heat flow rate. In Equation (2), the heat
flux density (q) is calculated by dividing the amount of heat (dΦ) transferred to or from the
system by the area (dA). Equation (1) calculates the U-value, and Equation (2) the R-value.

U − value =
Φ

(Ti − Te)A
=

dQ
dt

(Ti − Te)A
=

1
Rtot

=
1

Rs,out + R + Rs,in
[W/m2K] (1)

R − value =
(Tsi − Tse)

q
=

(Tsi − Tse)
dΦ
dA

=
(Tsi − Tse)dA

dΦ
[m2K/W] (2)

The ISO 7345 [24] defines the U-value, or thermal transmittance of a building envelope,
as the product of the heat flow rate under steady-state conditions to the product of the
area and the temperature difference between the internal and external sides of the system.
ISO 6946 [25] calculates the thermal transmittance as the inverse of the total thermal
resistance of the material comprising the envelope.

As per the ASHRAE Terminology [26], thermal transmittance refers to the amount of
heat transmitted in a unit of time through the unit area of a material or construction and
the boundary air layers due to the temperature differential between the inside and outside
of the material. Also known as the U-factor or total coefficient of heat transport, thermal
transmittance is measured in Btu/h·ft2·◦F (W/m2 K).

The Plant Engineer’s Reference Book [27] defines thermal transmittance (U-value) as
the ability of an element of structure to transmit heat under steady-state conditions. It
measures the quantity of heat transfers through a unit area per unit time for each unit of
temperature difference between the inside and outside of a structure. It is calculated by
taking the inverse of the sum of the resistances of each component part of the structure,
including the resistance of any air space or cavity, as well as the inside and outside surfaces.
It is expressed as W/m2K.
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In summary, the thermal transmittance, commonly referred to as the U-value, repre-
sents the rate of heat transfer through the building envelope divided by the temperature
difference across the entire structure. It is inversely proportional to the R-value, which
indicates the material’s effectiveness at resisting heat transfer. The unit of the U-value
is W/m2K, and a lower U-value indicates better thermal performance of the envelope.
This means that the U-value has a fairly high value when the insulation material of the
envelope is deteriorated or not properly installed. Therefore, in order to renovate the
energy performance of an aging building, it is necessary to understand the U-value of the
existing building. In the next section, various methods currently used to determine the
U-value are described and evaluated.

4. Passive Measurement (In-Office)

This section describes passive methods, which can diagnose the thermal performance
of the building envelope without measurement. These methods can save costs and time
because they diagnose the thermal performance of the building envelope without measure-
ments. In addition, this method can be used when actual measurements of the building
are not feasible. However, using this method requires a reliable technical document (e.g.,
a detail drawing) or database for the building. The methods in this category include the
following:

• Analogies with coeval buildings;
• Theoretical method (calculation).

4.1. Analogies with Coeval Buildings

This approach generally applies to existing and historical buildings and is commonly
used when specific details about building’s structures or materials are lacking [28,29]. The
U-value of a building is derived by referring to data from other buildings of a similar
age, function, shape, thermal characteristics, and texture [30–32] (Figure 2). In addition
to U-values, the database used in this approach includes building types, building years,
structural information, and energy use. Field measurements and data collection are es-
sential for building a database containing such information [33,34]. The following section
summarizes the research results regarding the evaluation of building thermal performance
through the collection of actual field data.

Figure 2. Schematic of analogies with coeval buildings.

Cesaratto and De Carli [35] conducted an analysis of different methods of estimating
thermal transmittance (C) values using data from a measurement campaign of the walls
of buildings in northeastern Italy between 2006 and 2010. The estimated C value was
compared with the measurement results. The field measurement value was 20% higher
than the estimated value, C. The authors confirmed that the actual thermal transmittance
leads to an increase in the net energy demand for heating of approximately 12%. Their
study suggests that the thermal properties of buildings are not only characteristics of the
outer shell but also of the construction and maintenance. To verify this, measurement
investigations in different locations and periods for the same factors will be needed in the
future.
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Aksoezen et al. [36] analyzed approximately 20,000 buildings using chi-square auto-
matic interaction detection by integrating data from various administrative agencies in
Basel City. They discovered a significant relationship between energy consumption and
the construction period and confirmed that the energy-saving potential varied greatly by
building age. They used various building data (e.g., building type, building year, area,
heating system type, and hot water supply type), but the heat perfusion rate (U-value) was
not evaluated.

Ballarini et al. [37] presented a method for identifying reference buildings in accor-
dance with the IEE-TABULA Project (2009–12) [38] for “European building types”. In the
TABULA project [38], which was carried out between 2009 and 2012, building types in
13 European countries (i.e., Germany, Greece, Slovenia, Italy, France, Ireland, Belgium,
Poland, Austria, Bulgaria, Sweden, Czech Republic, and Denmark) were characterized
and classified according to location related to climate, construction period, and size and
shape of buildings. The authors show that basic energy measures through the analysis of
identified scenarios can achieve an average energy saving of more than 40% in residential
buildings. However, no studies that quantitatively derive the thermal performance of the
buildings have been conducted.

Basaglia et al. [39] presented a new procedure for defining building subtypes in
the CARTIS database. CARTIS is a data collection form used to gather information on
residential buildings in Italian municipalities since 2014. The authors also shared the
MATLAB code for deriving building subtypes, which is expected to help derive the U-
value of buildings at the local level. However, studies to determine the U-value using the
database have not yet been conducted.

In this section, several studies evaluating the approach through regional and national
databases of building information are reviewed. This approach is used primarily when im-
plementing national and local energy planning measures or policies, as it is the fastest way
to thermally characterize large numbers of buildings. This method is fast and inexpensive,
but various factors may influence the reliability of the results: (1) misinformation about the
building year [35,40]; (2) texture and thickness of the wall [35,41–44]; (3) the degree of aging
of the building envelope material affecting thermal performance [41,42,45,46]; (4) state of
building repair [46–48]; and (5) moisture content affecting energy performance [35,41,42].
If a database that considers these factors is used, it will be easy to evaluate the U-value
when on-site measurements are impossible or when a large number of buildings must be
thermally characterized. Several studies have been performed to evaluate energy perfor-
mance using the database, but relatively few quantitatively evaluated the U-value of a
building. Therefore, it is necessary to quantitatively evaluate the U-value of a building
envelope using the database.

4.2. Theoretical Method (Calculation)

This approach is widely used in the design stage. Thermal transmittance is deter-
mined from the dimension and thermal conductivity of each wall material and the thermal
resistance of the inside and outside surfaces of the wall, as defined by ISO 6946 [25]. It
assumes that each component of the assembly obstructs heat transfer in the same way a
resistor impedes current flow in an electrical circuit [49]. Thermal transmittance can be
calculated using Equation (3),

U =
1

Rtot
=

1
Rs,out + ∑n

i=1
si
λi
+ Rs,in

[W/m2K] (3)

where si and λi are the thickness and thermal conductivity, respectively, of each wall layer,
and Rs,in and Rs,out are the internal and external thermal resistances of the surface. The
resistances are determined from values provided by ISO 6946 [25] and are based on specific
boundary conditions related to convective and radiative heat transfer. Equation (3) is
typically used to estimate the U-value during the design stage, whereas it can be applied to
existing buildings only when the resistances of both the internal and external surfaces, as
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well as the thickness and the thermal conductivity of each layer, are known [16]. In this sec-
tion, the relevant studies on theoretical method are described, including Asdrubali et al. [50],
Ficco et al. [16], Pérez-Bella et al. [51], and Lucchi [42].

Asdrubali et al. [50] reported the results of a field measurement campaign on thermal
transmittance conducted in various buildings located in Umbria, Italy. Field measurements
of the thermal permeability of six walls were conducted, and the results were compared
with the values provided by the manufacturer for the materials’ thermal properties to
evaluate actual wall performance. Field measurements consistently showed higher values
compared to the calculated values. The authors presented various reasons for the discrep-
ancy between the measured and calculated values. First, manufacturers often exaggerate
the performance data of building materials for marketing purposes. Second, the thermal
performance of building components and materials is typically assessed under controlled
laboratory conditions. Third, the materials cannot be fully installed in the actual building.
Last, external conditions can affect the measurements. However, the verification of the
above factors affecting the accuracy has not been conducted.

Ficco et al. [16] proposed a method of estimating the uncertainty (λi) related to the
ISO 6946 method due to the possible significant difference in the design U-value from the
actual U-value. Given the rectangular probability distribution of thermal conductivity,
ranging from the minimum (λi,min) to the maximum (λi,max) values of thermal conductivity,
the uncertainty can be expressed as Equation (4). When characterizing the composition of
the wall, the relative uncertainty of thermal conductivity was estimated to be 3%. However,
theoretical methods may face challenges if technical details about the wall’s composition
are unavailable or if an endoscope cannot be used.

λi =
λi,max − λi,min

2
√

3
(4)

Pérez-Bella et al. [51] presented the conductivity correction factor (CCF) tailored to
external environmental conditions for each provincial capital in Spain. The CCF can be
employed to calculate the designed thermal conductivity of building materials at different
locations, using standard conductivity values specified in building regulations under
controlled environmental conditions. A comparison of the thermal results of various façade
configurations with those calculated using the method described by ISO 10456:2007 [52]
for each material showed a discrepancy of less than 1%. Because that study was only
conducted in major cities in Spain, further studies under different climatic conditions are
necessary.

Lucchi [42] presented the results of a field campaign conducted on several historical
stone buildings, each distinguished by their heritage values, historical dates, and vary-
ing uses. The results of their study are as follows: First, the U-value calculated using
ISO 6946 [25] method was higher than the U-value determined using the measurement
method. Second, problems arose when setting the range of thermal performance due to
the diversity of the stones. Third, the thickness and ratio of air gaps or voids significantly
influenced the assessment of the thermal performance of building structures. Lucchi re-
ported in a follow-up study [41] that the U-value of historical stone walls can be accurately
determined through HFM measurements. This shows that there is a limit to the utility of the
theoretical method because the actual and theoretical U-values differ for older buildings.

In this section, several studies that employed a theoretical approach to evaluate the
thermal performance of buildings were reviewed. The theoretical method was compared
primarily with the field-measurement method, but most field measurements were higher
than the theoretical values. Previous studies explain this difference as follows: First, man-
ufacturers often overestimate performance data for building materials due to marketing
purposes. Second, the thermal performance of building components and materials is typi-
cally assessed under controlled laboratory conditions. Third, the materials cannot be fully
installed in actual buildings. Fourth, external conditions such as rain and wind can affect
the measurements. Fifth, the performance of the insulation can change over time. Therefore,
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appropriate information about the composition and thermal properties of the materials is
required to obtain reliable results. Despite these limitations, this approach is used in several
countries as evidence of meeting the national energy efficiency standard [53]. Although
field measurements may not be possible, estimating the thermal performance of a building
through calculations before conducting field measurement is relatively straightforward.

5. Active Measurement (In Situ)

This section describes the active method, in which the thermal performance of the
building envelope is diagnosed by conducting a measurement campaign. As these methods
measure the current thermal performance of the building envelope, uncertainties related to
building aging or deterioration of the outer shell insulation performance may be avoided.
However, this approach requires information on the cost of equipment, long-term measure-
ment due to measurement errors, and data analysis. The methods involved in this category
are as follows:

• Heat flow meter (HFM) method;
• Simple hot box–HFM (SHB-HFM) method;
• Thermometric (THM) method;
• Quantitative infrared thermography (QIRT) method.

5.1. Heat Flow Meter (HFM) Method

The HFM method, which involves a non-destructive test to determine the building
envelope’s U-value in situ, has been the most commonly used method of studying U-values
in recent years. It requires an adequate heat flow, which is achieved by maintaining a
minimal temperature difference between the indoor and outdoor environments [22]. This
method is appropriate for building components that have opaque layers perpendicular to
the direction of heat flow and that exhibit minimal lateral heat transfer [54].

This is a standardized experimental method, first introduced as an ISO 9869 standard
in 1994 [54], and then technically modified as ISO 9869-1:2014 in 2014 [55]. According to
the standard, the U-value is derived directly from the heat flow rate and temperatures on
the sides of the element under steady-state conditions. To perform the measurement, an
HFM plate, two ambient temperature sensors (Te and Ti), and a data logger are required
(Figure 3). To measure the heat flow rate as recommended by the standard, measuring
the heat flow rate requires positioning at least one HFM on the surface of the element
closest to the more stable temperature and employing a data logger along with two ambient
temperature sensors for data analysis.

Figure 3. Schematic of the HFM method. Figures were resketched from Teni et al. [22].
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According to established standards [54], measurement data must be recorded con-
tinuously or at fixed intervals throughout a monitoring period of complete days (n). The
test period must be maintained for at least 72 h, and the error rate between the heat flow
rate at the end of the measurement and that 24 h before the end of the period must not
differ by more than 5%. Finally, the error rate between the heat flow rate calculated during
the first two-thirds of the entire measurement period and that calculated at the end of the
measurement period must be less than 5%.

Because it is difficult to satisfy the steady-state conditions during in situ measurements,
the standard [54] proposes the calculation of the U-value through the average method
and the dynamic method. The average method involves a prolonged monitoring period,
utilizing the average instantaneous heat flow value and the average temperature difference
between the external and internal air, as detailed in Equation (4) [23]. In Equation (5), qj is
the heat flux passing through the unit area of the sample W/m2, and Tin,j and Tout,j are the
indoor and outdoor ambient temperatures [K], respectively, at time j.

U =
∑n

j=1 qj

∑n
j=1

(
Tin,j − Tout,j

) (5)

The dynamic method, as outlined in Equation (6), is more advanced and intricate
compared to the average method because it incorporates the heat equation and several
parameters to account for fluctuations in temperature and heat flow rate [42]. However,
several studies [56–64] have shown that, when using the dynamic method, the analysis can
be more time-consuming and complex but is less sensitive to the measurement period and
provides more accurate results. In Equation (5), Λ is thermal conductance (W/m2k), and
Ts,in,i and Ts,out,i are the indoor and outdoor surface temperatures at time ti (i ranges from 1
to N) [K].

.
Ts,in,i and

.
Ts,out,i are the respective time derivatives of the indoor and outdoor

surface temperatures. The variable βn is an exponential function of the time constant τn,
while K1, K2, Pn, and Qn are dynamic characteristics of the wall that depend on the time
constant τn.

qi

[
W
m2

]
= Λ(Ts,in,i − Ts,out,i) + K1

.
Ts,in,i − K2

.
Ts,out,i

+∑
n

Pn

i−1

∑
j=i−p

Ts,in,j(1 − βn)βn(i − j)

+∑
n

Qn

i−1

∑
j=i−p

Ts,out,j(1 − βn)βn(i − j)

(6)

In this section, the relevant studies on the heat flow meter (HFM) method are described,
including Asdrubali et al. [50], Walker and Pavía [65], Bros Williamson [66], Ficco et al. [16],
Gori and Elwell [67], Ahmad et al. [68], Evangelisti et al. [69,70], Gaspar et al. [71], Richard
O’Hegarty et al. [72], Choi et al. [73], and Suh et al. [74].

Asdrubali et al. [50] conducted thermal transmittance field measurements at some
buildings in Umbria, Italy, not under laboratory conditions. By conducting field measure-
ments of the thermal transmittance of walls, the values obtained from the manufacturers’
data on material properties were compared with the real-world performance of the walls.
The results indicate that the calculated values typically overestimate the actual thermal
transmittance. However, the verification of the cause of the difference in the U-value was
not conducted.

Walker and Pavía [65] investigated the field thermal performance of seven insulation
alternatives applied to historical brick walls, employing both field and laboratory methods.
The experiment confirmed that the field measurement U-value of walls with insulation
was higher than the calculated value. The thermal conductivity value provided by the
manufacturer led to an error of 13–25% in the wall U-value estimation compared to the field
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measurement value. However, no research has been conducted on a method for accurate
measurement of the U-value.

Bros Williamson et al. [66] analyzed building performance and annual energy demand
in two adjacent houses (a control house [CH] and a passive house [PH]) over a three-year
occupancy period. Monitoring and field measurements showed that the actual performance
of the house differed from the calculated performance: the CH (13–65%) and PH (10–20%)
values were larger than the theoretical values. However, studies on the analysis of U-value
measurement results have not been conducted.

Ficco et al. [16] focused on field measurement U-values with commercial thermometers
in various measurement conditions and envelope components. In their paper, the authors
presented the results of an experimental campaign designed to evaluate both the metrolog-
ical performance of HFMs and the impact of ambient conditions. The field U-value was
compared with the value estimated based on design data and field analysis. The test results
had error margins of 2% to 55% (average 13%) in winter and 62% to 264% (average 152%)
in summer compared with the heat flux values analyzed through endoscopy. This shows
good behavior of the HFM when performing the test according to ISO 9869. However,
studies on measuring the HFM with high accuracy according to the season have not been
conducted.

Gori and Elwell [67] emphasized the significance of error analysis for gaining strong
insight into the actual thermal behavior of buildings based on field measurements. Their
paper investigates the impact of systematic measurement uncertainties on the thermophys-
ical properties of building elements (e.g., R-values and U-value) through two long-term
case studies: a solid wall and a cavity wall. The analysis indicated that, as anticipated, the
relative error grows when the gap between the average internal and external temperatures
narrows. In their paper, error derivation considering the use of dynamic and optimization
methods was applied to provide an appropriate error estimate even when the mean temper-
ature difference between the indoor and outdoor was significantly below 10 ◦C. This helps
to narrow the performance gap, as reducing the temperature difference between the indoor
and outdoor during field measurements results in a U-value estimation with moderate
errors. However, the method proposed in this study has not yet been evaluated in the field.

Ahmad et al. [68] performed field measurements to evaluate the thermal performance
of building’s two outer walls, constructed from reinforced precast concrete panels. The
measurements were conducted in accordance with the standard procedures specified in
international standards. As a result of the measurements, it was found that south-, east-,
and west-facing walls had a higher heat flux compared with north-facing walls, and that
the orientation of the wall may affect the heat flux by more than 37.3%. The thermal
performance of the wall shows that its thermal transmittance is influenced by both the
wall’s orientation and the local weather conditions. However, the method for determining
a reliable U-value based on the wall’s orientation and external climatic conditions has not
been discussed.

In a study by Evangelisti et al. [69], the HFM method was applied to determine the
U-value of the north–south walls of buildings. The authors reported an error rate of
18% to 60% compared with the theoretical U-value (60% in southern winter and 18% in
northern winter). In that study, the error rate was reduced to between 1% and 15% in the
absence of insolation using only data from the same time zone (15% in southern winter
and 1% in northern winter). This indicates that the error rate is high when measuring
U-values in unstable environmental conditions. An accurate estimate of the contribution of
field-measurement uncertainty (e.g., from measurement season or insolation) is needed.

Gaspar et al. [71] calculated and compared the discrepancy between the theoretical
heat flow rate and values obtained using both the average and dynamic methods. When the
environmental conditions for field measurements were optimal, the error rate was 5% for
the average method and 1% for the dynamic method. If the measurement environment was
not optimal, the error rate was 20% for the average method; when the dynamic method was
used, the fit with the theoretical value improved significantly, with an error rate less than
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10%. In addition, multiple studies [60,63,75–78] of dynamic methods have been conducted
in recent years, but more are needed to confirm the limitations of the proposed method.

Richard O’Hegarty et al. [72] conducted an on-site monitoring study of the U-value
of highly insulated building envelopes. The study revealed that the design U-value for
these highly insulated envelopes was not being achieved in practice. Over 90% of the
tested buildings performed below the expected standard. Among the 10 on-site tests of
building envelopes designed with a U-value below 0.3, only one site exhibited better-than-
expected performance. Additionally, the discrepancies between the measured and design
U-values ranged from 10% to 297%. Therefore, further research is required to identify
the key factors contributing to the gap between the on-site and design U-values of highly
insulated building envelopes.

Evangelisti et al. [70] evaluated the thermal performance of a building by installing
heat flux meters (HFMs) on the northern and northwestern walls. HFMs are generally
placed on the northern side to avoid solar radiation, but the study was conducted because
not all walls have the optimal orientation for on-site measurements. The experiments were
carried out on a building constructed in the 1960s. The results showed a difference of 10.45%
on the northern side, 92.14% on the northwestern side, and 56.12% when nighttime data
from the northwestern side was used, compared to the design values. These results indicate
the effects of prolonged exposure to solar radiation over approximately 60 years, as well
as the degradation of the physical properties of the walls due to climatic variability. Thus,
further research comparing the performance of new and aged wall materials is needed to
investigate the variability in values.

Choi et al. [73] investigated the causes of discrepancies between the design and on-site
R-values of highly insulated building walls. Winter measurements showed that using
the average method, which incorporates additional internal wall temperature and heat
flux data, resulted in a 9.12% difference from the design values. The study identified
inconsistencies between the surface heat flux and the heat passing through the walls as
the main source of error. The authors proposed a new method, the extended averaging
method, which yielded highly accurate results with an error rate of just 0.6%. However,
this method is not non-destructive, and further research on its applicability is required.

Suh et al. [74] aimed to improve the energy performance of historical buildings for
sustainable use. Since the target building was registered as national cultural heritage,
the scope of construction was limited, and simulation programs were used to implement
various scenarios. As part of the process to verify the reliability of the simulation program,
the thermal performance of the building envelope was measured on site. The difference
between the simulated and measured values for the building’s exterior walls was found
to be 1.52%, indicating close agreement. However, due to structural and safety concerns,
there were limitations in directly measuring the U-values of the roof and internal walls.

In this section, several studies evaluating the U-value of a building using an HFM are
reviewed. In optimal conditions, a high-accuracy value can be obtained when measuring
the U-value in the field with an HFM, but the measurement time is relatively long and the
error rate is high under non-optimal conditions. Studies conducted to date indicate that
the accuracy of HFM measurements is influenced by several factors: measurement season
(temperature gradient) [50,68,71,79,80], measurement wall position (solar radiation) [81,82],
experimental period [79], and data post-processing [61,67,71,79,83]. Further studies are
needed for high-accuracy U-value determination under non-optimal conditions.

To evaluate the field applicability of the HFM method, the results of previous studies
of its accuracy and measurement period are summarized in Table 1. The deviation between
the results obtained using the HFM method and the comparison method value (UC)) can
be calculated as an absolute value using Equation (7):

Deviation (%) =

∣∣∣∣UHFM − UC
UC

∣∣∣∣× 100 (7)
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Table 1. Summary of studies on U-value assessment of building walls using the HFM method.

Author
(Year)

Measurement
Method

Comparison
Method

Deviation [%] Test Period
Building
Information

Asdrubali et al.
(2014) [50]

HFM, average
method

Theoretical method:
ISO 6946

14–43%,
average 23%

Heating season
2010 and 2013
At least 7 days

Six buildings
constructed using
green architecture
techniques

Ficco et al.
(2015) [16]

HFM, average
method

Theoretical method:
ISO 6946

winter 1–70%,
average 24%
summer 45–142%,
average 90% Winter and Summer

3–168 h

Six different
buildings in Italy
completed between
1965 and 2015HFM, average

method
Endoscopic analysis
and core samplings

winter 2–55%,
average 13%
summer 62–264%,
average 152%

Walker and
Pavia (2015) [65]

HFM, average
method

Theoretical method:
provider values 13–25% June 2014 to April

2015

Brick building in
Dublin completed in
1805

Gaspar et al.
(2016) [71]

HFM, average
method

Theoretical method:
ISO 6946

2–20%,
average 9% December 2015 to

April 2016
72 h

Three buildings in
Catalonia, Spain,
completed in 1960,
1992, and 2007

HFM, dynamic
method

Theoretical method:
ISO 6946

1–10%,
average 3%

Bros Williamson
et al. (2016) [66] HFM method Theoretical method:

ISO 6946
10–65%,
average 27%

First winter in 2012
and 2014
14–21 days

A residential
building in the UK
completed in 2012

Lucchi
(2017) [42]

HFM, average
method

Tabulated design
method: Standard
UNI TS
11300-1:2014

7.7–46.5% Two winter seasons
7–14 days

Fourteen old brick
buildings in Italy

Lucchi
(2017) [41]

HFM, average
method

Theoretical method:
ISO 6946 3–54% Two winter seasons

7–14 days

Ten brick buildings
in the Lombardy
region, representing
northern Italy

Evangelisti et al.
(2020) [69]

HFM, average
method

Theoretical method:
ISO 6946

2–60%,
average 1–11%

February 2019
7–18 days

Buildings in Italy
characterized by
high-insulation walls
and solar-shading
systems

Gaspar et al.
(2021) [84]

HFM, dynamic
method

Theoretical method:
ISO 6946 1–6%

June and October
2016
144–168 h

Buildings in Spain
completed in 1960
and 2005

Richard
O’Hegarty et al.
(2021) [72]

HFM, average
method

Theoretical method:
ISO 6946 10~297%

August
2019~February 2021
more than 72 h

A total of 13 tests at
7 different sites in
Ireland

Evangelisti et al.
(2022) [70]

HFM, average
method

Theoretical method:
ISO 6946

10.45% (north),
92.14% (north-west)

January 2019,
4 days (north)
April 2019, 7 days
(north-west)

Educational
buildings in Italy
from the 1960s

Choi et al.
(2023) [73]

HFM, average
method

Theoretical method:
ISO 6946 9.12%

November to
December 2021
13 days

Specially designed
and constructed for
this research in May
2021
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Table 1. Cont.

Author
(Year)

Measurement
Method

Comparison
Method

Deviation [%] Test Period
Building
Information

Lee et al. (2024)
[85]

HFM, average
method

Theoretical method:
ISO 6946

5.63~9.97%
average 7.01%

June 2022~May
2023
7 days, 86 sets

Specially designed
and constructed for
this research in May
2021

HFM, dynamic
method

Theoretical method:
ISO 6946

5.85~37.83%
average 12.81%

HFM method,
extended
average

Theoretical method:
ISO 6946

2.57~6.86%
average 4.02%

Suh et al. (2024)
[74]

HFM, average
method

Theoretical method:
DesignBuilder 1.52% 72 h

Campus buildings in
Seoul, South Korea,
constructed in 1924

5.2. Simple Hot Box–HFM (SHB-HFM) Method

Field-based U-value measurement should be conducted under a thermal gradient
greater than 10 ◦C between indoor and outdoor temperatures (conditions that can cause
heat exchange) [16,67]. The TCB-HFM method [86–89], an approach that can more easily
determine and control the thermal gradient between indoor and outdoor environments,
was proposed by Chinese studies. This method, which combines the advantages of the
HBM and HFM, controls the internal air temperature by installing a hot box on the inner
surface of the wall (appropriate for the season). The box heats the indoor air in winter
and cools it during summer. Recently, a research team in China developed the SHB-HFM
method, which is a simpler than TCB-HFM method [90].

The SHB-HFM method combines the HFM principle and the advantages of the TCB-
HFM method. A temperature gradient is created by heating without cooling, and the hot
box is placed on a warm surface [91]. The SHB is placed on the interior side of the wall
during winter and on the exterior side during summer. Because the TCB-HFM method
requires an air conditioner, which is not required for the SHB-HFM method, the latter is
less expensive and simpler to use. The components needed to use the SHB-HFM method
include an SHB, HFM plate, ambient temperature sensor, surface temperature sensor, and
data loggers (Figure 4).

Figure 4. Schematic of the SHB-HFM method. Figures were resketched from Teni et al. [22].

According to Atsonios et al. [81], SHB measurement equipment should be installed
on the surface of a wall without heat bridges, and a thermocouple measuring the indoor
air temperature should be placed in the center of the SHB. The surface temperature sensor
should be placed evenly on either side of the HFM plate. The optimum temperature
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difference during measurement is 20 ◦C or greater. This represents a main advantage of
the SHB-HFM method, as it achieves a condition that is challenging to attain with the
traditional HFM method. The measurement uses data after 24 h of heating the inside of the
box.

The data analysis method of SHB-HFM is similar to the average method used in the
HFM method, as expressed in Equation (5). Equation (8) is used for the SHB-HFM method.
The measurement should continue for at least 72 h but can be shorter if stable conditions
can be guaranteed. In Equation (8), hout is the outdoor heat transfer coefficient, and hin is
the indoor heat transfer coefficient, both measured in W/m2K. Ts,in,j and Ts,out,j are the
respective inner and outer surface temperatures [K] at time j, and qj is the conductive heat
flux [W/m2] at time j.

U = (
1

hout
+

∑n
j=1

(
Ts,in,j − Ts,out,j

)
∑n

j=1 qj
+

1
hin

)

−1

(8)

Meng et al. [90] proposed a new method called SHB-HFM because a simple and
accurate field measurement method was needed to test the wall U-value when determining
the energy efficiency of Chinese buildings. To evaluate the reliability and adaptability of
the SHB-HFM method, the experiment was conducted under very unfavorable climatic
conditions. Throughout the measurement period, the weather varied with rainy days,
cloudy days, and clear days, and the ambient temperature fluctuated. Despite the harsh
testing conditions, the SHB-HFM method measured the wall heat transmittance rate with
an error of only 4% to 7% of the design value, demonstrating that the method offers
adequate testing accuracy. The authors confirmed that box size has a significant effect on
the test accuracy, and that properly enlarging the box size improves the field test accuracy.
Meng et al. [91] conducted a numerical study on wall temperature distribution for U-value
field measurements using SHB-HFM and proposed the optimal dimensions for the hot
box. They confirmed that increasing the temperature difference in the wall from 10 ◦C
to 30 ◦C reduced the average error by up to 4.4% to 7.5%. In addition, the multi-factor
coupled regression formula for determining the minimum box dimension enables quick
identification of the optimal dimensions, ensuring measurement accuracy while being
portable and minimizing selection uncertainty. The optimal hot box dimensions were
0.75 m for 120 mm walls, 0.90 m for 180 mm walls, 1.05 m for 240 mm walls, and 1.45 m for
360 mm walls. However, since this proposed formula is relatively new, further studies are
expected to be needed to verify the accuracy.

Roque et al. [92], who considered the need for further academic research on the SHB-
HFM method, conducted field measurements on historical buildings in Viseu in northern
Portugal. The authors obtained results with an error rate of 1.4% to 4.3% compared with the
U-value calculated through the analysis of the field wall. Due to the heterogeneity of the
analyzed “tabique” wall, variations in temperature and heat flux measurements were ob-
served depending on the placement of the measuring device on the wall. These differences
can affect the final result. Therefore, if the heterogeneous factors or shapes are not known,
the measured values should be interpreted carefully by overlapping thermocouples and
heat flux meters. It seems that further studies are needed on the interpretation of the field
measurement values according to the components of the wall.

Francesco Nicoletti et al. [93] conducted a study on various methods for measuring the
thermal performance of building envelopes on-site. Among these, the SHB-HFM method
was used, showing relatively high accuracy with results ranging from 0.3% to 7.5% in
winter and 1.9% to 13% in summer. This method also offered the advantages of a shorter
testing period and the ability to obtain measurements during the summer. However, its
reliability decreased when the insulation was located on the side opposite to the sensor.
Since the location of the insulation cannot be known in advance, further research on this
issue is required.
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This section reviewed studies evaluating the thermal performance of buildings using
the SHB-HFM method. Teni et al. [22] note that the SHB-HFM method is relatively new
and has been studied for a limited range of wall types. Despite reports of high accuracy in
existing studies, there are still concerns regarding the method’s reliability and applicability,
indicating a need for more case studies.

To evaluate the field applicability of the SHB-HFM method, the results of previous
studies of the accuracy and measurement period are summarized in Table 2. The deviation
between the results obtained using the SHB-HFM method and the comparison method
value (UC) can be calculated as an absolute value using Equation (9):

USHB−HFM − UC =

∣∣∣∣USHB−HFM − UC
UC

∣∣∣∣× 100 (9)

Table 2. Summary of studies on U-value assessment of building walls using the SHB-HFM method.

Author
(Year)

Measurement
Method

Comparison
Method

Deviation [%] Test Period Building Information

Meng et al.
(2015) [90]

SHB–HFM
method

Theoretical
method

4–7%,
average 5.97%

August 2013
192 h

A newly built two-story rural
building located in China

Meng et al.
(2017) [91]

SHB–HFM
method

Theoretical
method 4.4–7.5% August 2013

192 h
A newly built two-story rural
building located in China

Roque et al.
(2020) [92]

SHB–HFM
method

Endoscopic
analysis and
core
samplings

1.4–4.3% Winter
120 h

Tabique buildings located in
the northern region of Portugal,
constructed in late 19th century
or early 20th century

Francesco
Nicoletti et al.
(2023) [93]

SHB–HFM
method

Theoretical
method

0.3~7.5% (winter)
1.9~13% (summer)

January 2019, 5~7 days
(winter)
July 2019, 4~9 days
(summer)

A total of eight masonry walls,
which are differentiated by
various thermal characteristics

5.3. Thermometric (THM) Method

The THM method is a relatively new and straightforward approach to collecting field
measurements of U-values. It is also called the temperature measurement method [94] or
air–surface temperature ratio (ASTR) method [95]. The methodology, based on Newton’s
law of cooling, posits that heat transfer rate is directly proportional to both the temperature
difference between an object and its environment and the surface area [96].

The THM method is a non-standard method, but it is widely used by experts and has
been verified in recently published studies [94,95,97,98]. To perform the measurement, two
ambient temperature sensors, a surface temperature sensor, and a data logger are required
(Figure 5). Like other methods, the THM method also requires a temperature difference
of 15 ◦C or greater when performing the measurement [50,68,71,79,80]. The measurement
period must meet the same criteria as in the HFM method [99]. Regarding the data
measurement interval, further research is needed to determine the optimal test period. In
previous studies [94,95,97,98], acquisition intervals of 5, 15, and 30 min were used.

Equation (10) is used in the THM method. A key distinction between the THM and
HFM methods is that the THM method does not involve measuring the heat flux through
the wall. In Equation (10), hin is the internal heat transfer coefficient.

U =
hin(Tin − Ts,in)

Tin − Tout
(10)
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Figure 5. Schematic of the THM method. Figures were resketched from Teni et al. [22].

Buzatu et al. [98] compared the U-values obtained using THM measurement proce-
dures and theoretical calculation methods according to MC 001/2009. The authors reported
that the TBM method results in discrepancies of 44.19% and 40.18% between the theoretical
and measured U-values. This difference could be due to unknown layers within the wall
or inaccuracies in the thermal conductivity values of the component materials. The THM
method was used primarily to obtain U-value measurements, but no in-depth analysis of
the reliability and applicability of this method was performed. Therefore, further studies
are needed for field application.

Andújar Márquez et al. [97] developed a measuring instrument that calculates the
U-value for many measurements of the U-value in a short time. This is the most necessary
condition in the actual field. The developed device calculates the U-value using three
temperature measurements: the outside of the wall, the inside of the wall, and the surface
of the inside of the wall. This device is modular, expandable, and wireless, allowing it
to take multiple measurements simultaneously according to the user’s needs. In order to
evaluate the accuracy of the developed system, it was compared with the U-value of the
HFM method measured by reflecting ISO 9869. A reliable result with an error rate of less
than 2% was obtained. However, since this method is applied to the building where the
energy retrofitting has been completed, it is considered that additional accuracy verification
of the developed method in the unrenovated building is necessary.

Bienvenido-Huertas et al. [94] studied the applicability of the THM method through
eight case studies conducted in areas of the Mediterranean climate (Csa). The results indi-
cate that the THM method performs more efficiently in winter compared to summer, with
relative uncertainties varying from 6% to 13%. They found that obtaining reliable results
during warm seasons was challenging. Due to the typical nature of the Mediterranean
climate, achieving records with a temperature difference of 10 ◦C or higher between the
internal and external environments is particularly challenging. Therefore, they found that
the thermal gradient of 5 ◦C can be considered in tests conducted in warm climate regions,
but the larger the difference, the less the uncertainty and more representative values can
be obtained. However, further studies are needed on methods for evaluating U-values in
warm climate types, since no studies have been conducted.

Kim et al. [95] propose the air–surface temperature ratio (ASTR) method as an in
situ approach for measuring the U-value of existing buildings. The wall U-values were
measured in situ using both the heat flow meter (HFM) method, as per ISO 9869-1, and the
air–surface temperature ratio (ASTR) method. A comparison was made between the results
obtained from the HFM and ASTR methods, and the relative error rates and measurement
accuracy were analyzed. The mean relative measurement errors for the HFM and ASTR
methods were found to be ±3.21%. Measurements taken over both short durations of
one day and extended periods of seven days or more showed average error rates of about
±2.63%. These results are within the acceptable tolerance range. However, in this study,
only winter measurement campaigns were conducted, and experimental campaigns in
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summer were not conducted. Therefore, it is considered that further research on summer
measurement is necessary.

Evangelisti et al. [100] studied the heat flux meter (HFM) and air–surface temperature
ratio (ASTR) methods. The results obtained by testing the HFM method during the summer
were compared with theoretical values and those from a previous measurement campaign
conducted on the same building during the winter. The deviation from the winter measure-
ments was found to be between 0.51% and 4%, indicating reliable results. When the ASTR
method was compared based on these measurements, the deviation ranged from 37.2% to
143.7%. This outcome reflects differences in internal heat transfer coefficients under various
conditions. Therefore, further research is needed to investigate heat transfer coefficients
across different scenarios.

Evangelisti et al. [70] evaluated the thermal performance of the aged exterior walls
of a building envelope through on-site measurements. Simultaneous measurements were
conducted using both the heat flux meter (HFM) and temperature-based (TB) methods.
The results obtained from the HFM method during winter were compared with the mea-
surements from the TB method conducted in April. When using data from the entire
measurement period, the error rate ranged from 0.52% to 32.6%, while using only nighttime
data resulted in error rates of 76.26% to 127.43%. This demonstrated that the TB method
does not require a 10 ◦C temperature difference. However, further research is needed on
the effects of wind speed on heat transfer.

In this section, the research results evaluating the thermal performance of buildings
through the THM method are reviewed. The THM method is fast, simple, and inexpensive
compared with the HFM method, and it produces a similar degree of accuracy to the
HFM method (Table 3). However, because few studies have evaluated the THM method in
real-world environments, an evaluation of its accuracy is necessary. In addition, because the
data used are different for each study, additional studies are needed to establish common
criteria for the THM method.

To evaluate the field applicability of the THM method, the results of previous studies of
its accuracy and measurement period are summarized in Table 3. The presented deviation
between the results obtained using the THM method and the comparison method value
(UC) can be calculated as an absolute value using Equation (11):

UTHM − UC =

∣∣∣∣UTHM − UC
UC

∣∣∣∣× 100 (11)

Table 3. Summary of studies on U-value assessment of building walls using the THM method.

Author
(Year)

Measurement
Method

Comparison
Method

Deviation [%] Test Period Building Information

Andújar
Márquez et al.
(2017) [97]

THM
method HFM method 2% Summer and

winter, 4 days -

Bienvenido-
Huertas et al.
(2018) [94]

THM
method

Theoretical
method: ISO
6946

Winter: 4–37%
Summer:7–62%
Autumn: 19–83%

Summer, winter,
and autumn

Eight buildings from different
architectural periods located in
Seville and Cadiz, Spain

Kim et al.
(2018) [95]

ASTR
method HFM method 0.3–5%

November to
December 2015
7–14 days

Four buildings located in
South Korea, constructed in the
late 20th century

Evangelisti et al.
(2019) [100]

ASTR
method HFM method 37.2~143.7% Summer Educational buildings in Italy

from the 1960s

Evangelisti et al.
(2022) [70]

THM
method

Theoretical
method: ISO
6946

North: 0.5~32.4%
North-west:
76.3~127.4%

January 2019,
4 days (north)
April 2019, 7 days
(north-west)

Educational buildings in Italy

232



Buildings 2024, 14, 3304

5.4. Quantitative Infrared Thermography (QIRT) Method

Infrared thermography has conventionally been employed for the qualitative anal-
ysis of building envelopes [101–104]. This method is used for various purposes, includ-
ing detecting thermal anomalies (e.g., variations in thermal conductivities and mois-
ture presence) [105–109], locating thermal bridges [110–112], and identifying air infil-
tration [105,110,113,114]. However, due to the challenges associated with the HFM method,
techniques for measuring U-values using infrared thermography have been developed [23].
Due to the simplicity of thermal imaging, numerous studies over the past decade have fo-
cused on assessing heat flow rates, leading to the establishment of the ISO 9869-2:2018 [99]
standard for measuring the heat flow rate of building frames. However, the method re-
mains under investigation, and a universal equation for determining U-values has yet to
be established [49].

Recent research is focused on developing and analyzing a method for calculating
U-values using thermal imaging, which can be categorized into two types based on the
measurement location: internal and external.

To perform the measurement, a calibrated infrared camera, a hot-wire anemometer,
and two ambient temperature sensors are required (Figure 6). Infrared cameras should
be placed 1.5 m from the wall of measurement, and the hot-wire anemometer should be
placed 0.1 m from the wall [115,116].

Figure 6. Schematic of the QIRT method.

This method requires specific conditions. An indoor and outdoor temperature differ-
ence of 15 ◦C or greater should be maintained for 3 to 4 h before conducting the test [117].
Measurements should be conducted in winter because it is difficult to achieve a strong
temperature gradient in summer [116,117]. During measurements, the wind speed should
be less than 1 m/s [118]. Measurements should be carried out during the early-morning
hours when solar radiation is not a factor [119].

Since instantaneous measurements can yield non-representative results [120], test
should be conducted over a period of 2 to 3 h [116]. Extending the test duration can reduce
uncertainty in the results, although there is ongoing debate regarding the optimal interval
between thermogram acquisition. Previous studies (Table 4) used collection intervals of
1 [116], 15 [104], 20 [117], and 30 [121] min. At least 10 instantaneous measurements should
be performed to achieve useful estimates of the uncertainty [103].

In 2008, Madding [104] conducted a study of R-value measurement in the wall of a
building using infrared imaging. Equation (12), which can calculate the U-value using
internal convection and radiation as expressed by the linear Stefan–Boltzmann law, was
proposed:

U =
4εσ(

Ts,in+Tre f
2 )

3
(Ts,in − Tre f ) + hin(Ts,in − Tin)

Tin − Tout
(12)
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where ε (without dimension) is the wall emissivity, σ is the Stefan–Boltzmann constant
of 5.67·10−8 W/(m2 K4), and Tre f (K) is the apparent reflected temperature. When the
temperature difference between the indoor and outdoor environments was kept around
15 ◦C, an R-value within 12% of the calculated value was achieved. This emphasizes
the importance of time and temperature changes during data collection and R-value
measurement and implies that statistical accuracy can be improved by selecting the correct
time zone and performing the measurement.

U =
4εσTs,in

3
(

Ts,in − Tre f

)
+ hin(Ts,in − Tin)

Tin − Tout
(13)

A similar method was proposed by Fokides and Kalogiro (2011) [117]. The formula
presented in their research employed Equation (13) but with the third power applied solely
to the surface temperature, rather than to the mean inner surface temperature and the
reflected temperature. The measurements were conducted in five dwellings in Cyprus
during August 2009 and February 2010. The study found that the percentages of absolute
deviations between the theoretical and measured U-values between 10% and 20% were
acceptable. However, the two results were measured in the laboratory, and verification
under real-world conditions is necessary.

In 2010, Albatici et al. [122] developed a testing method using external measurements
by thermal imaging cameras and the thermal balance relationship for the outside of the
wall. An external convection coefficient was determined from the Jurges correlation as
published by Watanabe. In Equation (14), ν (m/s) is the local wind speed. In the study,
the ratio of deviation between the theoretical equation and the proposed equation was
relatively high, ranging from 27% to 31%.

U =
εσ
(

Ts,out
4 − Tout

4
)
+ 3.8054ν(Ts,out − Tout)

Tin − Tout
(14)

Dall’O’ et al. (2013) [123] adopted an alternative thermal balance equation that fac-
tored in the equivalence between the heat flux from convection exchanged with the ex-
ternal surroundings and the heat flux through the wall. They used hout from the convec-
tive correlation published by Watanabe but did not simplify the equation, resulting in
Equation (15). An error of 1.5% to 154% (36% on average) was obtained. The results were
highly influenced by the measurement time zone and weather.

U =
(5.8 + 3.8054ν)(Ts,out − Tout)

Tin − Tout
(15)

In the two aforementioned studies, the authors proposed the following conditions
for obtaining accurate field measurements: no solar radiation (3 to 4 a.m.); wind speed of
less than 1 m/s to avoid convection; indoor temperature remains the same for 48 h before
measurement; and the indoor and outdoor temperature difference is maintained at 15 ◦C
for heat exchange. The authors indicate that the proposed method is applicable only during
winter due to the specific conditions mentioned later.

Albatici et al. [124] conducted a study of the U-values of opaque building elements
in the field using Equation (14). Infrared thermal imaging technology was previously
proposed by those authors. The resulting error rate was between 8% and 20% compared
with values measured by the HFM method. It turned out that conducting the survey while
focusing solely on walls facing north and east yielded more accurate outcomes. However,
although the method produces reliable results for heavy constructions, further research
is required for light and super-insulated walls. In addition, it is thought that analysis of
environmental variables is necessary to perform reliable measurements.

Tejedor et al. [116,125] present a method for determining the field U-value using
the QIRT method. As a result of comparing and analyzing the measured and theoretical
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U-values calculated using the proposed method, the deviation was 1.24% to 3.97%. In
addition, this proposed method can provide measurements at a temperature difference of
7 ◦C, unlike the recently developed QIRT method. However, as this study was also based
on indoor measurements, further research in external conditions is warranted.

In Choi and Ko [126], the U-values obtained through theoretical equations and Equa-
tions (12)–(15) using QIRT suggested in previous studies were compared with field mea-
surements. The following error rates were obtained: 10–27% for Equation (12), 11–29%
for Equation (13), 10–44% for Equation (14), and 7–19% for Equation (15). These relatively
large deviations are thought to result from the use of different parameters in the equations
and the omission of the thermal storage effect. Therefore, a study is needed to completely
characterize the influence of the number of various mediators on the results obtained
through long-term measurements in the actual environment. In addition, since this study
was conducted in winter, it seems that summer research is also necessary.

Bienvenido-Huertas et al. [127] conducted a comparative study on the expression of
heat transfer rates through various external convective heat transfer coefficients (ECHTCs)
for quantitative analysis using infrared thermography (IRT). A total of 46 wind-speed-
related correlations were analyzed, with accuracy ranging from 0% to 150%. The study
indicates that there is a lack of research analyzing the vast number of correlations for
ECHTCs based on wind speed and dimensionless numbers. Further research is needed to
analyze the internal convective heat transfer coefficient in relation to heat transfer methods.

Milad Mahmoodzadeh et al. [128] studied the application of external IRT for the quan-
titative analysis of the thermal performance of building envelopes. On-site measurements
of a test building on a university campus in Canada showed differences between the design
values and measurements ranging from 5.88% to 12.5%. The study demonstrated that the
surface and outdoor temperature measurements taken using an IR camera had the greatest
impact on the uncertainty of the results. Further research is required to enhance the accu-
racy of environmental data measured by thermal cameras. Additionally, this could enable
large-scale quantitative assessments of building envelopes in much shorter timeframes
using unmanned aerial vehicles (UAVs) rather than handheld thermal cameras.

Rodríguez et al. [129] conducted a study to overcome the typical physical limitations
of conventional building inspection methods by using UAVs equipped with infrared
thermography (IR) cameras. The study used the IRT method simultaneously with the
THM method, and the results showed differences ranging from 4.3% to 29.1%. The authors
concluded that for accurate evaluations, U-value measurements need to be stable and
consistent over an extended period. The framework proposed in the study overcomes the
limitations of inspecting difficult-to-access areas, such as high roofs or exterior walls, which
are challenging to assess with traditional methods. However, the limitation of not being
able to evaluate certain areas with a single measurement highlights the need for further
research.

Zhang et al. [130] proposed a field testing protocol for evaluating heat transfer through
building exterior walls using UAV-IRT. The effectiveness of the protocol was validated
through field tests on two buildings. When compared to the U-values measured using
the HFM method, the error rates ranged from 18% to 45% for case 1 and from 3% to 24%
for case 2. The study found that the error rates increased as the drone’s testing distance
increased, which led to a decrease in wall temperature and heat transfer rates compared to
the HFM values. Additionally, the decline in image quality due to the drone’s flight speed
and outdoor wind speed also contributed to the error rates. Therefore, further research is
needed to improve the accuracy of U-value assessments in on-site evaluations using UAVs.

In this section, several studies assessing the thermal performance of buildings using
QIRT were reviewed. The QIRT method was compared with the theoretical value or the
HFM measurement value, and the error range was relatively wide, at 0–286%. In the overall
error range, the accuracy in winter was relatively stable, at 2–68%, compared to 10–286% in
summer. The data measurement and analysis of the QIRT method are simpler than those of
other field measurement methods but require specific environmental conditions: a constant

235



Buildings 2024, 14, 3304

indoor and outdoor temperature difference, winter measurement period, wind speed less
than 1 m/s, and a time frame without solar radiation. However, these conditions have
limitations when applied to field measurements. A thermal image calculation formula
that can be used without limitation of measurement conditions is necessary to analyze the
environmental variables that affect accuracy.

To evaluate the field applicability of the QIRT method, the results of previous studies
of its accuracy and measurement period are summarized (Table 4). The deviation between
the results obtained with the QIRT method and the comparison method value (UC) was
calculated as an absolute value using Equation (16):

UQIRT − UC =

∣∣∣∣UQIRT − UC

UC

∣∣∣∣× 100 (16)

Table 4. Summary of studies on U-value assessment of building walls using the QIRT method.

Author
(Year)

Measurement
Method

Comparison
Method

Deviation [%] Test Period Building Information

Dall’O et al.
(2013) [123] QIRT method Theoretical

method
1.5–154%,
average 36% January 2013

Fourteen buildings located
in Milan, completed
between 18,800 and 2009

Tzifa et al.
(2014) [103] QIRT method

Theoretical
method: ISO
6946

Winter 2–68%,
average 29%
Summer
10–286%,
average 97%

January to February
2011

An educational building
located in Athens, Greece

Albatici et al.
(2015) [124]

QIRT method
Theoretical
method: ISO
6946

0–43%, average
22%

November 2010 to
March 2011
November 2011 to
March 2012
November 2012 to
March 2013

Buildings in Italy
specifically designed for
research, featuring five
types of wallsQIRT method HFM method

5–29%, average
19%

Nardi et al.
(2015) [17]

QIRT method
Theoretical
method: ISO
6946

4–46%, average
20%

72–144 h
Buildings in Italy designed
for three different purposes

QIRT method HFM method 1–48%, average
17%

Nardi et al.
(2016) [121]

QIRT method:
in a guarded hot
box

Theoretical
method: ISO
6946

0–96%, average
22% February 2013

7–18 days
Walls reproducing typical
1970s Italian building stockQIRT method:

in a guarded hot
box

HFM method 0–77%, average
18%

Tejedor et al.
(2017) [116]

QIRT method
Theoretical
method: ISO
6946

4–20%, average
12% January and

February 2016

Two typical types of
Spanish walls from
different periods

QIRT method HFM method 13–27%, average
20%

Tejedor et al.
(2018) [125] QIRT method

Theoretical
method: ISO
6946

0.2–9%, average
4%

January to February
2017

An educational building
located in Spain

Choi and Ko
(2017) [126] QIRT method

Theoretical
method: ISO
6946

7~44%
January to February
2016
27 days

Residential building in
South Korea
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Table 4. Cont.

Author
(Year)

Measurement
Method

Comparison
Method

Deviation [%] Test Period Building Information

Bienvenido-
Huertas et al.
(2019) [127]

QIRT method
Theoretical
method: ISO
6946

0~150%
Scheduled date for
the lowest external
temperature

Most representative
building in Spain

Milad Mah-
moodzadeh
et al. (2022)
[128]

QIRT method
Theoretical
method: ISO
6946

5.88~12.5%
Different days with
varying exterior and
interior conditions

Representative of low-rise
Canadian west coast
construction

Rodríguez et al.
(2024) [129] QIRT method THM method 4.3~29.1% Summer and winter

3 days
Educational buildings in
Spain built in 2001

Zhang et al.
(2024) [130]

QIRT method HFM method-
Average

20~46% (case 1)
3~24% (case 2)

December 2020
Residential buildings in
Harbin built in 1985 (case 1)
and 2014 (case 2)QIRT method HFM method-

Dynamic
18~45% (case 1)
3~24% (case 2)

6. Discussion

This section explores the limitations of existing active measurements methods. A
comparison of accuracy, test period, measurement parameters, and methods related to the
measurement equipment is presented in Table 5. The characteristics of each method can be
derived based on the comparisons. The factors of comparison are described in detail below.

Table 5. Comparison of active measurement methods presented in this paper.

Method Accuracy Test Period Measurement Parameter
Equipment Required for
Measurement

HFM

Winter
1–70%
Summer
45–264%

Min. 3 days
Max. 21 days

Heat flux
Air temperature (internal and external)

Heat flow meter
Air temperature probe
Data logger

SHB-HFM 0.3–13% Min. 3 days
Heat flux
Surface temperature (internal and external)
Air temperature (external)

Simple hot box
Heat flow meter
Surface temperature probe
Air temperature probe
Data logger

THM

Winter
0.3–37%
Summer
7–143.7%

Less than 1 day Air temperature (internal and external)
Surface temperature (internal)

Air temperature probe
Data logger

QIRT

Winter
0–154%
Summer
10–286%

Min. 3 nights

Air temperature (internal and external)
Surface temperature (internal or external)
Emissivity
Wind speed

Infrared camera
Hot wire anemometer
Air temperature probe
Data logger

The accuracy of each method is evaluated based on the minimum and maximum
deviations. The accuracy of all methods can be influenced by measurement conditions
and the properties of the envelope components, which can strongly influence the field
thermal perfusion. Several studies have been conducted on some methods, but only a
limited number are available for others. Therefore, the presented results represent the
accuracy obtained in the conducted studies. It was more difficult to achieve the minimum
temperature difference for performance measurements during the summer, and there was
a difference in accuracy according to the wall position.
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Finally, the measurement parameters required to determine the U-value in each
method were established and included indoor temperature, outdoor temperature, wall
temperature, wall heat flow, wind speed, and emissivity.

Additional details are provided in Table 5 so that researchers can choose the ap-
propriate measurement method according to parameters such as measurement season,
measurement time, and data post-processing method. In addition, further research is
needed on how to overcome the limitations of the existing methods analyzed.

7. Conclusions

Improving the energy efficiency of existing buildings is a crucial aspect of any effort to
achieve sustainability goals in the building sector in response to the threats posed by global
warming [131]. One approach to enhancing building efficiency is to reduce heat acquisition
or loss by increasing the insulation performance of the building envelope [11–13]. To
achieve this, it is necessary to gauge the current insulation performance of the building.
Therefore, this review was conducted to evaluate the methods suitable for assessing the
U-value of building envelopes.

More than 100 publications of various types published in the last 20 years were
reviewed. They present an overview of the importance of determining the U-value of the
building envelope and the methods used. Building envelope thermal performance is the
most important thermal and physical property affecting energy performance [15–18], and
the best-developed method was evaluated. These methods are analogous with coeval
building assessments, theoretical calculations, and the HFM, SHB-HFM, THM, and QIRT
methods. The theoretical formulations for each method, necessary equipment and materials,
equipment installation, data collection, and the results of previous studies were then
discussed.

The measurement methods described above (Table 5) determine how they should
be applied to specific situations. A passive method evaluates the building envelope’s
performance using a technical document or database for the envelope or an estimate based
on a similar configuration. It is used to approximate the thermal performance of a building
through calculation before field measurements, even though field measurement may not
be possible or may not be required. Active methods can provide more representative
values; however, they are influenced by numerous factors, with environmental conditions
being the most important. In situ measurements should maintain a stable measurement
environment, such as zero rainfall, low wind speed, no solar radiation or other radiation
sources that can affect the wall of interest, and a minimum temperature gradient.

This review found that, despite extensive research efforts, there remain problems to be
solved regarding the limitations of field measurements. The main problems are as follows:

1. In situ measurements under summer conditions are limited, and existing seasonal
constraints remain to be addressed.

2. It is a necessity to provide a shorter test duration to enable more measurements to be
performed in a given time.

3. The limitations of the measurement time and orientation of the measurement wall
were not overcome because field measurements were not performed under conditions
affected by solar radiation.

4. Most of the studies were conducted in indoor spaces, but further studies are needed
on how to determine U-values through outdoor measurements.

To solve this problem, an integrated approach using artificial intelligence (AI) and
field measurements has recently been proposed [132,133]. However, AI tools are not
yet mature, and additional robust datasets and tests for model design are needed. In
addition, an approach that combines thermal imaging and drones has been proposed to
measure large spaces outside the building. However, the limited accuracy of thermal
imaging measurement has yet to be overcome, and research is needed to solve this problem.
Additional research is needed to shorten the measurement time by combining thermal
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imaging and drones with in-depth analysis of the potential to apply AI to field measurement
methods of U-values. Future studies should involve the following elements:

1. Analysis of factors affecting accuracy in U-value determination by the QIRT method
outdoors.

2. Development of field application of the QIRT method regardless of an unstable
environment through in-depth AI analysis (e.g., seasonal impact, measurement time
zone, or solar radiation effect by measurement orientation).

3. Development of a rapid and accurate method of determining U-values by photograph-
ing the exterior wall using a drone equipped with a thermal imaging camera.

4. Verification of field application accuracy of a combination of thermal imaging and
drone-mounted cameras.
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