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Abstract: Cement concrete pavements are crucial to urban infrastructure, significantly influencing
road safety and environmental sustainability with their anti-skid and noise reduction properties.
However, while texturing techniques like transverse grooving have been widely adopted to enhance
skid resistance, they may inadvertently increase road noise. This study addressed the critical need
to optimize pavement textures to balance improved skid resistance with noise reduction. Tests
were conducted to assess the influence of surface texture on skid resistance and noise, exploring
the relationship between texture attributes and their performance in these areas. The investigation
examined the effects of texture representation methods, mean profile depth, and the high-speed
sideway force coefficient (SFC) on noise intensity and pavement skid resistance. The findings
revealed that transverse grooves significantly improved the SFC, enhancing skid resistance. In
contrast, longitudinal burlap drag, through its micro- and macro-texture adjustments, effectively
reduced vibration frequencies between the tire and pavement, thus mitigating noise. Utilizing the
TOPSIS multi-objective optimization framework, an optimization model for pavement textures was
developed to augment skid resistance and noise reduction at varying speeds. The results indicated
that at 60 km/h, an optimal balance of groove width, depth, and spacing yielded superior skid
resistance with a minimal noise increase. At 80 km/h, increased groove spacing and depth were
shown to effectively decrease noise while maintaining efficient water evacuation. The optimal
pavement texture design must consider the specific context, including traffic volume, vehicle types,
and operating speeds. This study provides essential guidance for optimizing urban cement concrete
pavement textures, aiming to diminish traffic noise and bolster road safety.

Keywords: cement concrete pavement; texture; grooving; dragging; tire/pavement noise; skid resistance

1. Introduction

As urbanization intensifies, the functionality and growth of cities increasingly hinge
on road traffic efficiency. The surge in traffic volume, coupled with stringent environmental
standards, has accentuated the need for diligent urban road functional health monitor-
ing. This includes a thorough assessment and maintenance of road surface conditions,
with a keen focus on safety and environmental attributes. Cement concrete pavement,
a predominant choice for urban roads, plays a crucial role in this context, particularly
due to its anti-skid and noise dampening properties [1–4]. Optimal skid resistance is
vital for ensuring vehicular safety in adverse weather conditions like rain and snow [5,6].

Processes 2024, 12, 800. https://doi.org/10.3390/pr12040800 https://www.mdpi.com/journal/processes1
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Ensuring optimal skid resistance is paramount to vehicular safety, especially under ad-
verse weather conditions such as rain or snow. Concurrently, the mitigation of road traffic
noise, a significant source of urban pollution, is essential for enhancing the urban living
experience [7,8].

Grooving techniques, esteemed for their cost-efficiency and simplicity, are prevalently
employed to augment the performance of cement concrete pavements. Yet, the efficacy
of these techniques in enhancing skid resistance and reducing tire/pavement noise is
profoundly influenced by a multitude of factors including groove dimensions, spacing, and
orientation, and vehicular attributes like tire patterns, weight, and velocity.

The relationship between pavement performance and its texture characteristics—both
macro and micro—is well-established in the realm of skid resistance. Extensive studies
leveraging traditional and advanced methodologies have scrutinized the influence of
texture dimensions on skid resistance, utilizing tools ranging from the British Pendulum
Tester (BPT) and Surface Friction Tester (SFT) to high-speed sideway force coefficient testing
vehicles and high-resolution laser scanners. These investigations have elucidated that
nuanced adjustments to texture parameters can markedly affect key metrics like the high-
speed sideway force coefficient (SFC), mean profile depth (MPD), and British Pendulum
Number (BPN). For instance, a texture depth of 2 mm and adequate surface area are pivotal
for optimal pavement friction performance and longevity, with a texture wear rate beyond
40% significantly impairing braking skid resistance [9–14]. Innovative studies integrating
optical scanning, image analyses, and advanced modeling techniques have further refined
the precision in predicting skid resistance, offering novel insights into the intricate interplay
between texture characteristics and skid resistance [1,15–20]. These advancements provide
invaluable technical and theoretical underpinnings for the design of effective anti-skid
pavements. Globally, research institutions have rigorously evaluated a spectrum of surface
textures on experimental road sections, striving to pinpoint the ideal anti-skid texture
configuration. In the USA, the focus is on optimizing transverse grooves with parameters
like a groove width of 2.3–3.2 mm, depth of 3.2–4 mm, and spacing of 12–25 mm that
significantly boost friction coefficients and safety [8,21–23]. Denmark employs grooving
or embossing techniques coupled with seasonal treatments to elevate skid resistance [24].
Japan advocates for specific groove configurations on airport pavements to ensure safety,
while in China, specific groove patterns are recommended to bolster lateral anti-skid
performance [25–27]. These comprehensive studies offer substantial practical insights and
technical recommendations for the crafting of anti-skid pavement designs.

In noise reduction performance, the On-Board Sound Intensity (OBSI) method is
commonly used for noise level assessments. Cement pavement noise levels increase with
macro-texture depth, but under specific conditions, a shallower texture depth (e.g., 0.8 mm)
can effectively reduce noise. Additionally, increased pavement texture complexity and
International Roughness Index (IRI) also raise noise levels [28–30]. New three-dimensional
pavement texture metrics have proven superior in noise evaluation for unevenly textured
surfaces. Moreover, texture-based noise models, such as the Statistical Energy Analysis
(SEA) and Vibration Model (VM) algorithms, have enhanced our understanding of the
relationship between texture level and noise frequency, with digital image processing
revealing the critical role of micro-texture in noise reduction [31–33]. Material-wise, rubber-
ized pavements show significant potential in reducing high-frequency noise. Comparisons
indicate that small-particle exposed-aggregate concrete pavements outperform transverse
grooved surfaces in noise reduction, demonstrating that precise texture spacing and depth
adjustments can effectively lower noise in specific frequency bands [27,34–38]. Regarding
transverse grooves’ impact on noise, the spacing between grooves has the most significant
correlation with noise levels. Uniformly spaced transverse grooves create harsh tonal peaks,
whereas non-uniformly spaced grooves can effectively eliminate these peaks, although
the overall noise may be the same or increased. Combining angled and varied spacing
grooves can effectively eliminate tonal peaks and reduce overall noise, but angled grooves
introduce construction challenges [39–44].
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There remains a relatively narrow focus within the research community on the col-
lective impact of pavement texture on anti-skid efficiency and noise reduction. Recent
researches have utilized clustering analyses to classify pavement characteristics, advocating
for benchmarks such as a minimum high-speed sideway force coefficient (SFC) of 50 for
tunnel pavements to safeguard against skidding, and a noise threshold of 105 dB to pre-
serve a comfortable environment [45]. Investigations into assorted pavement designs have
highlighted the benefits of wider groove spacing—extending up to 25 cm—not only for its
efficacy in curtailing pumping noise but also in averting lateral vehicular slippage, thus
endorsing it as a sound methodological choice for cement concrete pavements in tunnel
sections of highways [46]. Although there has been a concerted effort to unravel the inter-
play between pavement textures and their skid-resistant and noise-dampening properties,
research that meticulously examines the balance between enhancing skid resistance and
suppressing noise is sparse. This observation points to an existing gap in research—an
oversight in the comprehensive optimization of pavement texture design, which is pivotal
for advancing the field.

Leveraging the existing research, this study conducted an in-depth analysis of how
textures affect pavement anti-skid properties and noise reduction capabilities. Section 2
outlines the field experiments that examined both the grooving and burlap drag texture
parameters, in addition to key pavement performance metrics such as mean profile depth,
high-speed sideway force coefficient, and tire/pavement noise levels. In Section 3, the focus
shifts to delineating texture characteristics, followed by an exploration of the relationship
between grooved and burlap drag textures and the pavement’s skid resistance. Section 4
ventures into the realm of tire–pavement noise characteristics, analyzing the impact of
various texture characteristics on noise levels associated with pavements. Utilizing the
TOPSIS multi-objective optimization approach in Section 5, the study assessed eight experi-
mental scenarios on the test sections, balancing considerations of skid resistance and noise
reduction, to identify optimal texture configurations for speeds of 60 km/h and 80 km/h.
This research aimed to pinpoint the ideal pavement texture design that maximizes overall
performance, thereby enhancing driving safety and minimizing noise pollution.

2. Tire/Pavement Noise and Skid Resistance Assessment

2.1. Experimental Setup

Field evaluations were conducted on a cement concrete pavement in Zhaotong City,
Yunnan Province, spanning a 28.7 km stretch of open road. The surface texture was
engineered using two distinct methods: transverse grooving and longitudinal burlap
dragging. The grooving involved the use of an electric machine to cut into the concrete,
creating grooves with predefined dimensions, thereby modifying the surface texture. The
dragging technique employed a steel frame to pull double-layered coarse burlap over the
fresh concrete, with the fabric’s friction against the soft surface generating a unique texture.
The processes are depicted in Figure 1.

  
(a) (b) 

Figure 1. Pavement texture creation at test sites: (a) burlap drag and (b) grooved textures.

3
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Research by the Federal Highway Administration in the United States indicates that the
depth, width, spacing, and orientation of transverse grooves are crucial factors influencing
tire/pavement noise. Among these, groove spacing exhibits the strongest correlation
with noise intensity levels [39,40]. To corroborate these findings, the experiment included
sections with three variations of transverse grooves at uniform spacings of 13/19/25 mm,
two variations with non-uniform spacings averaging 17 mm and 28.8 mm, and several
conditions for longitudinal burlap drag depths. Each design spanned a 200 m section.
Figure 2 presents the test site surface conditions.

 

Figure 2. Test site surface conditions.

2.2. Test Methodology
2.2.1. Pavement Texture

To assess and characterize the surface texture of cement concrete pavements, this study
employed the HC-CK103 crack measuring instrument from HICHANCE (Beijing, China),
which can capture intricate texture images, as illustrated in Figure 3a. It uses an optical lens
to magnify the crack, and combines built-in image processing technology to display the
crack width on the instrument’s scale dial. This device boasts a precision of 0.01 mm and
a measurement range from 0 to 10 mm, as shown in Figure 3b. For attributes exceeding
the HC-CK103’s measurement capabilities, particularly concerning macro-texture such as
groove spacing, a millimeter-scale ruler was utilized for the measurements.

  
(a) (b) 

Figure 3. Texture measurement systems. (a) Texture captured by a high-definition camera microprobe;
(b) measurement of the dragged texture.

2.2.2. Mean Profile Depth

An RTM-type vehicle-mounted intelligent road detection system, developed by Wuhan
University, was utilized to evaluate the road’s evenness and mean profile depth, as depicted
in Figure 4. Testing was conducted at a speed of 50 km/h, with each 100 m segment
considered as a separate detection unit for mean profile depth calculations.

4
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Figure 4. RTM-type vehicle-mounted intelligent road detection system.

2.2.3. Tire/Pavement Noise

To ascertain tire/pavement noise on cement concrete surfaces, the experiment har-
nessed the OBSI noise testing system developed by the AVEC Corporation in the USA. This
system comprises two arrays, each with two GRAS 26CA CCP Intensity Probes, strategi-
cally placed near the tire/pavement interface to precisely capture noise produced during
movement, while isolating other noise sources. These probes can accurately gather noise
data across a frequency spectrum of 2.5 Hz–200 kHz, featuring a noise level of 1.8 μV Gain
and a gain of −0.30 dB. The system’s configuration is portrayed in Figure 5, with the cap-
tured noise signals being recorded at 26,500 Hz by the NI cDAQ-9171 and instantaneously
relayed to the AVEC’s OBSI Software (https://www.avec-engineering.com/OBSI.html,
accessed on 9 March 2024).

 

Figure 5. Noise testing system schematic.

For this study, a Changan CS75 vehicle equipped with YOKOHAMA 225/65R17 tires
was chosen, conforming to ASTM F 2493 specifications. Testing encompassed various
pavement texture types, striving to maintain speeds as close to 60 km/h and 80 km/h as
possible over a 200 m travel distance. The procedures and conditions were aligned with
the AASHTO T 360-16 standard [47], ensuring data reliability through 2–3 repeated tests
on most pavement surfaces at consistent speeds.
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2.2.4. High-Speed Sideway Force Coefficient

The MCY-1-type pavement friction coefficient testing system was deployed to gauge
the lateral friction coefficient of the road sections under study, as displayed in Figure 6.
Throughout the testing, the test tire’s static vertical load was consistently held at 2000± 20 N,
with the standard tire pressure maintained at 3.5 ± 0.2 kg/cm2. The vehicle traversed the
pavement at a steady 50 km/h, performing continuous measurements over the pavement
where each 100 m segment was treated as an individual evaluation unit.

 
(a) (b) 

Figure 6. MCY-1-type pavement friction coefficient testing system and system operating interface.
(a) The vehicle-mounted MCY-1-type testing system; (b) testing system interface.

3. Pavement Texture Characteristics and Skid Resistance Analysis

3.1. Texture Characteristic Description

Different texture techniques generate distinct pavement surface profiles. Grooving
results in undulations perpendicular to the travel direction, creating longitudinal texture
contour curves. Conversely, burlap dragging yields textures parallel to the travel direction,
resulting in transverse contour curves, as illustrated in Figure 7. The interweaving of
textures from burlap dragging and grooving sketches a grid-like design on the pavement.
To conduct a comprehensive evaluation, this study identified three critical parameters,
groove width, groove depth/height, and groove spacing, which were measured for various
grooved texture types.

 

Figure 7. Description of texture characteristic parameters.

Construction process variability leads to fluctuations in actual groove width, depth,
and spacing. Groove textures, produced through mechanical cutting, exhibit minimal
variations. Therefore, after multiple point measurements, mean values were computed to
represent each condition’s texture characteristic values. Table 1 details the groove texture
parameters for the evaluated pavement sites.
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Table 1. Grooved texture parameters at various sites.

Site No. Method Width (mm) Depth (mm) Spacing (mm)

1

Transverse Grooves
with Equal Spacing

4.0 2 25
2 3.9 1 25
3 4.0 0.75 25
4 3.5 1 19
5 3.7 2.25 25
6 4.0 1.5 13

7 Transverse Grooves
with Unequal Spacing

4.0 0.5 28-30-22-31-27-32-28-30-27-33-24-34-29
(375/13 = 28.8)

8 4.0 1
13-17-19-17-13-16-18-20-17-13-24-17-13-17-19-

16-15-17-18-20-22-17-16 (390/23 =
17.0)

Due to the predominant formation of raised grooves in burlap dragging, this study
utilized the groove height, width, and spacing as evaluation metrics, akin to the system
used for grooved textures. Repeated measurements of the burlap drag texture in specific
zones gathered extensive data to capture the variability of burlap drag textures under
differing conditions. Figure 8 displays the burlap drag textures on eight pavement types,
with Table 2 listing the burlap drag texture parameters at these sites.

 

Figure 8. Burlap drag textures at various sites.

Table 2. Burlap dragged texture parameters at various sites.

Site No. Method Width (mm) Height (mm) Spacing (mm)

1

Longitudinal
burlap drag

1.5 1.0 12.5
2 1.6 0.5 3.2
3 1.0 0.9 6.5
4 3.1 1.5 8.4
5 3.1 1.8 9.1
6 2.2 1.1 4.9
7 1.7 0.8 8.8
8 2.0 1.0 7.4

3.2. Analysis of Mean Texture Depth

The Mean Texture Depth (MTD) serves as a critical measure of the pavement’s texture
depth, illustrating the surface’s roughness and its substantial impact on the tire–pavement
interactions and traction. Generally, a higher MTD signifies enhanced water drainage and
improved skid resistance. The MTD values for different pavement texture sites are listed in
Table 3.
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Table 3. Mean texture depth at 8 test sites.

Site No. 1 2 3 4 5 6 7 8

MTD (mm) 0.955 0.77 0.79 0.84 0.775 0.82 0.535 0.87

The observed variation in MTD values across test sites 1 to 8 (ranging from 0.535 mm
to 0.955 mm) underscores the influence of texture parameters on the pavement’s water
drainage and grip. Notably, broader and deeper grooves contributed to superior water
displacement, likely resulting in increased MTD values. For instance, site 1, characterized
by a deeper groove (2 mm) and wider width (4.0 mm), aligns with the highest MTD value
(0.955 mm), suggesting effective water drainage and potential for enhanced skid resistance.
Conversely, site 7 exhibited a lower MTD value (0.535 mm) due to its shallower groove
depth (0.5 mm), despite a comparable groove width (4.0 mm), indicating reduced drainage
efficiency. Additionally, the texturing technique, including equal and unequal transverse
spacing, plays a role in determining MTD values, with uneven spacing potentially affecting
water flow and, consequently, MTD values.

3.3. Analysis of High-Speed Sideway Force Coefficient

A greater SFC value denotes superior skid resistance, providing more effective lateral
grip, minimizing vehicle lateral movement, and thereby boosting driving stability and
safety. The SFC values were continuously assessed at each test site, where each segment
of 100 m was delineated as an individual unit. Two such units were established, and their
respective SFC values were computed as an average. The SFC values for the various sites
are presented in Table 4.

Table 4. High-speed sideway force coefficient at 8 test sites.

Site No. 1 2 3 4 5 6 7 8

SFC 64 62.9 60.2 65.9 61.3 57.1 59.8 63.3

The findings suggest that, in grooved textures, an increased groove width or depth
typically correlates with enhanced friction points and improved water removal capability,
contributing to higher SFC values. Sites 1 and 5, with their wider and deeper grooves,
exhibited higher SFC values, indicating strong lateral traction. Interestingly, site 4 showed
the highest SFC despite site 6 having the densest texture, indicating that optimal groove
spacing can enhance the contact area between the tires and pavement, thus boosting the
SFC. Comparatively, sites with uniform texture spacing, like sites 4 and 8 or 3 and 7,
demonstrated higher SFC values, presumably due to the consistent grip provided by even
spacing, which helps stabilize the SFC values. Variable spacing may result in inconsistent
lateral grip, potentially impacting SFC stability.

In the context of burlap drag textures, variations in texture parameters significantly
affected the contact nuances between the pavement and tires. While wider grooves might
reduce local contact areas, an optimal width can elevate friction edges, thus improving the
SFC. Sites 4 and 5, with their broader grooves, are likely to offer enhanced edge friction,
influencing their SFC values. Groove spacing impacts texture density and continuity;
tighter spacing in burlap drag textures could provide more continuous friction edges,
aiding in lateral grip. However, excessively close spacing might lead to friction saturation,
failing to provide additional lateral traction.

3.4. Correlation Analysis

To quantify the strength of the association between the parameters of grooved and
burlap drag textures and the skid resistance indicators of pavement, a correlation analysis
was performed, relating these textures to MTD and SFC values. Table 5 displays the
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correlation coefficients, and Figure 9 illustrates the relationships between the various
texture parameters and MTD and the SFC at 8 test sites.

The analysis indicated that groove textures significantly influenced MTD and the SFC,
underscoring the importance of texture dimensions on pavement performance. The depth
of the groove emerged as a critical factor affecting MTD, whereas the width predominantly
influenced the SFC. The burlap drag textures exhibited a subtler impact, likely affecting the
micro-texture characteristics rather than macro-texture attributes.

Table 5. Correlation coefficients between groove, burlap drag textures, and pavement MTD and SFC.

Performance
Index

Burlap Drag Texture Groove Texture
Width Depth Spacing Width Height Spacing

MTD 0.0717 0.2161 0.2128 −0.0912 0.5397 −0.4835
SFC 0.2516 0.1497 0.3669 −0.5453 0.0504 0.1210

  
(a) (b) 

Figure 9. Relationship between groove and burlap drag textures and MTD and SFC at test sites 1 to 8.
(a) Burlap drag with MTD and SFC; (b) groove textures with MTD and SFC.

A strong positive correlation was observed between groove depth and MTD (0.5397),
suggesting that deeper grooves result in greater texture depth, as depicted in Figure 9b.
Conversely, the relationship between groove depth and the SFC was minimal (0.0504), indi-
cating that depth alone does not directly impact surface friction. Groove width negatively
correlated with MTD (−0.0912), likely because wider grooves reduce the per-unit-area
texture, diminishing the texture depth. Moreover, wider grooves decreased the effective
contact area between pavement and tire, resulting in a notable negative correlation with
the SFC (−0.5453). Groove spacing influenced texture continuity and density, leading to
a negative correlation with MTD (−0.4835). As the spacing increased, the SFC first rose
and then declined, suggesting that optimal spacing can enhance tire–pavement contact but
after becoming excessively large, it causes uneven contact areas.

In burlap drag textures, the positive correlations of groove width, height, and spacing
with MTD (0.0717, 0.2161, 0.2128) were relatively weak, as illustrated in Table 5, reflecting
the limited contribution of these smaller characteristic sizes to the overall texture depth.
The positive correlations of groove width, height, and spacing with the SFC (0.2516, 0.1497,
0.3669) indicate that these parameters notably influence the SFC, possibly by affecting the
texture density and distribution, thereby enhancing the micro-contact points between the
tires and pavement.

9
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4. Pavement Texture Characteristics and Noise Reduction Performance Analysis

4.1. Tire–Pavement Noise Characterization

Tire–pavement noise was recorded at 60 km/h and 80 km/h using the On-Board
Sound Intensity (OBSI) noise testing system, which provided sound pressure amplitude–
time curves for the tire–pavement interface. Time-domain signals were subjected to Fast
Fourier Transform, as delineated in Equation (1) [48], to calculate the A-weighted sound
level (overall level OA) for the test duration. The OA value was determined following
the sound pressure level definition, yielding the aggregate sound pressure level for the
time-domain signal, as expressed in Equation (2) [48], indicative of the peak noise intensity
level for the roadway segment under study, as detailed in Table 6. For safety considerations,
data at the higher speed of 80 km/h were not collected.

Xk =
N−1

∑
n=0

xne−i2πk n
N k = 0, . . . , N − 1 (1)

LAeq = 10lg

[
1

t2 − t1

∫ t2

t1

(
P2

A(t)
P2

0

)
dt

]
(dBA) (2)

where PA(t)—instantaneous A-weighted sound pressure level of the noise model in pascals
(Pa); P0—reference sound pressure in micropascals (μPa), with a reference sound pressure
of 20 μPa; and t2–t1—interval of measurement time period T in seconds (s).

Table 6. A-weighted sound levels (dBA) of tire–pavement noise at 8 test sites.

Test Speed 1 2 3 4 5 6 7 8

60 km/h 91.0 92.1 91.1 92.5 91.7 92.4 92.7 93.3
80 km/h 98.1 97.4 97.7 97.0 96.9 96.8 - -

To dissect the influence of various frequency components on the overall noise, Fast
Fourier Transform (FFT) and 1/3 octave band analysis were performed on the gathered
time-domain signals. This analysis elucidated the distribution of tire–pavement noise
across the frequency spectrum under different conditions, as shown by curves 1 to 8 in
Figure 10a for 60 km/h and 1 to 6 in Figure 10b for 80 km/h.

The test findings revealed that at 60 km/h, sites 7 and 8 exhibited the highest tire–
pavement noise levels, while sites 1 and 3 had the lowest levels. An analysis of their
burlap drag and grooving parameters showed that sites 7 and 8 featured non-uniformly
spaced grooves, whereas sites 1 and 3 had uniformly spaced burlap textures, which were
more consistent overall, suggesting that such uniformity in texture can mitigate random
vibrations induced by irregular textures, thus diminishing noise levels. At 80 km/h, the
lowest noise levels were recorded at sites 4 and 5 (groove heights over 3 mm and widths
over 1.5 mm), where the groove textures were notably narrower, which might have lessened
air vibrations and compression during tire rolling. Moreover, the more pronounced groove
heights and widths at these sites suggest that rougher textures can reduce noise generated
by smoother surfaces, especially at increased speeds.

The 1/3 octave band analysis indicated an upward trend in noise levels with frequency,
with all eight test conditions exhibiting tonal peaks around 1000 Hz. At higher speeds,
the noise contribution from frequencies above 1000 Hz became more pronounced. Upon
comparing texture profile levels with tire–pavement noise trends across the conditions,
varying patterns were noted across different frequency ranges, implying that the interplay
between pavement texture and tire–pavement noise may shift across different frequency
bands, underscoring the need to assess the influence of texture parameters on noise across
the spectral range.
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(a) 

 
(b) 

Figure 10. The 1/3 octave frequency spectrum of tire–pavement noise at (a) 60 km/h; (b) 80 km/h.

4.2. Analysis of Pavement Texture’s Influence on Noise Intensity
4.2.1. Spacing

At a speed of 60 km/h, site 1 exhibited superior noise levels compared to sites 4 and 6.
However, at 80 km/h, site 6 demonstrated the best noise performance. Figure 11 provides
a noise spectrum analysis for the various evenly spaced grooves and burlap drag textures
at both 60 km/h and 80 km/h, aiming to assess the effect of groove spacing on noise at
differing velocities.

The data in Figure 12 indicate that noise intensities above 85 dBA are predominantly
located between 630 Hz and 2000 Hz, with all three sites showcasing tonal peaks at 1000 Hz.
At 60 km/h, site 1, featuring 25 mm evenly spaced grooves, displayed consistently lower
noise levels across the frequency spectrum compared to sites 4 (19 mm spacing) and 6
(13 mm spacing). However, at 80 km/h, site 6 presented reduced noise levels within the
25 to 1000 Hz range, while site 1 had elevated levels within the 1000 to 5000 Hz range.
This suggests that larger spacings can diminish air vibrations and compression as tires
traverse texture gaps at lower speeds, thereby reducing air pumping noise. Consequently,
the smallest spacing at site 6 (13 mm) may lead to increased air pumping noise, culminating
in the highest noise level among the sites.
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Figure 11. Noise spectrum analysis for sites 1, 4, and 6.

 

Figure 12. Noise spectrum analysis for sites 1, 2, and 3.

Upon acceleration from 60 km/h to 80 km/h, sites 1 and 4 showed amplified tonal
peaks, with the peak frequency transitioning from 1000 Hz to 1250 Hz, indicating an uptick
in high-frequency noise components. This frequency-specific noise could be attributed
to the air pumping effect, where rapid air compression and release occurred as the tires
engaged with the grooved textures. Smaller spacings could mitigate noise by intensifying
the frequency of this air pumping phenomenon, whereas larger spacings may not disperse
this effect as effectively. Therefore, site 1 with a 25 mm spacing exhibited a tonal peak at
an 800 Hz center frequency, whereas site 4 with 19 mm spacings demonstrated a peak at
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1000 Hz. Additionally, the increase in speed likely accentuated tire–pavement friction and
vibration, influencing the noise levels. Site 6, with the narrowest spacing in burlap drag
texture, could enhance tire–pavement interactions at elevated speeds, reducing the noise
generated by friction and vibrations.

4.2.2. Depth/Height

At 60 km/h, test sites 1 and 3 demonstrated superior noise levels compared to site 2,
but at 80 km/h, site 2 outperformed in terms of noise levels. To investigate the effect of
groove depth on noise at different velocities, Figure 12 provides a noise spectrum analysis
for various groove depths at 60 km/h and 80 km/h.

At 60 km/h within the 25 Hz to 250 Hz frequency band, site 2, with a 1 mm groove
depth, showed consistently lower noise intensities across all frequencies compared to
sites 1 (2 mm depth) and 3 (0.75 mm depth). Yet, within the 500 Hz to 1600 Hz range,
site 2 recorded the highest noise intensity, indicating a higher overall noise level. This
phenomenon suggests that a moderate groove depth at lower frequencies can disrupt the air
pressure vibrations occurring during tire–pavement compression, which is not as effectively
achieved by excessively deep or shallow grooves. At mid to high frequencies, the groove
depth may amplify resonances at specific frequencies, particularly those aligning with tire
vibration modes, thus increasing the noise. Site 2, exhibiting the smallest groove height
and narrower texture spacing, s more intimate tire–pavement interactions, minimizing the
voids created by texture. This enhanced contact contributed to the reduction of vibrations
stemming from the tire compression of air within the pavement textures, an effect that was
more noticeable at lower frequencies.

At 80 km/h, site 2 displayed lower noise levels in the 25–630 Hz range, whereas sites 1,
2, and 3 showed comparable noise levels in the 1000–5000 Hz range. This pattern suggests
that at higher speeds, the influence of groove depth on high-frequency noise is mitigated.
High-frequency noise appears to correlate more closely with tire vibration modes and
aerodynamic noise rather than groove depth, diminishing the latter’s relative significance.

5. Optimization of Skid Resistance and Noise Reduction Texture Using TOPSIS

5.1. Method Overview

This study’s evaluation of the high-speed sideway force coefficient and tire–pavement
noise levels provide insights into the performance of various pavement textures. To devise
an optimal strategy that boosts pavement skid resistance while mitigating tire/road noise,
a multi-objective optimization analysis was undertaken. Given the small sample size,
the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method was
employed for a comprehensive assessment of each texture design [48]. This technique,
which does not rely on the distribution pattern of the data, is appropriate for the limited
empirical data available. The core principle involves determining the performance of each
option across multiple criteria, and then identifying the optimal and least optimal solutions.
The TOPSIS approach selects the most suitable option by calculating the distance of each
alternative from the optimal and least optimal solutions, favoring the choice nearest to the
optimal while the farthest is identified as the least optimal.

TOPSIS Calculation Steps: (1) Construct the decision matrix: Assuming there are m
evaluation objects and n criteria, form decision matrix X:

X =

⎡⎢⎢⎢⎣
x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

⎤⎥⎥⎥⎦
where xij represents the performance value of the i-th option under the j-th criterion.
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(2) Normalize to eliminate the impact of different units and magnitudes, with the
normalized rij as shown in Equation (3):

rij =
xij√

∑m
i=1 xij

2
(3)

(3) Introduce weights wj for each criterion, forming the weighted normalized decision
matrix:

vij = wj × rij (4)

where wj is the weight of the j-th criterion.
(4) Determine the ideal best (A*) and worst (A−) solutions:

A∗ =
{

max vij
∣∣j ∈ J+, min vij

∣∣j ∈ J−
}

(5)

A− =
{

min vij
∣∣j ∈ J+, max vij

∣∣j ∈ J−
}

(6)

where J+ is the set of beneficial criteria, and J− is the set of non-beneficial criteria.
(5) Calculate the Euclidean distance of each option from A* and A−:

Di
∗ =

√√√√ n

∑
j=1

(
vij−vj

∗)2 (7)

Di
− =

√√√√ n

∑
j=1

(
vij−vj

−)2 (8)

(6) Compute the relative closeness to the ideal solution for each option, Ci:

Ci =
Di
−

Di
∗ + Di

− (9)

The closer Ci is to 1, the closer the option is to the ideal solution.

5.2. Data Preprocessing

The dataset comprises texture parameters from 8 test sites and the corresponding per-
formance metrics. The texture parameters were categorized into grooving and burlap drag,
measured by width, depth, and spacing, as detailed in Tables 1 and 2. The performance
metrics included the pavement’s high-speed sideway force coefficient and noise levels at
60 km/h and 80 km/h, as listed in Tables 4 and 6.

To mitigate the influence of diverse scales and magnitudes, all parameters and results
were normalized using Z-score normalization, resulting in a dataset with a mean of 0 and a
standard deviation of 1, as illustrated in Table 7.

Table 7. The normalized dataset.

Site No.
Burlap Drag Texture Groove Texture Noise

SFC
Width Depth Spacing Width Height Spacing 60 km/h 80 km/h

1 −0.6984 −0.1846 1.7287 0.5968 1.2247 0.5233 −1.3843 1.5313 0.7875
2 −0.5654 −1.4156 −1.5523 0.0063 −0.4082 0.5233 0 0.1629 0.3915
3 −1.3636 −0.4308 −0.3881 0.5968 −0.8165 0.5233 −1.2585 0.7494 −0.5805
4 1.4302 1.0463 0.2822 −2.0556 −0.4082 −0.6082 0.5034 −0.6191 1.4715
5 1.4302 1.7848 0.5292 −0.9946 1.633 0.5233 −0.5034 −0.8145 −0.1845
6 0.2328 0.0615 −0.9526 0.5968 0.4082 −1.7397 0.3775 −1.01 −1.6966
7 −0.4324 −0.677 0.4234 0.5968 −1.2247 1.2399 0.7551 - −0.7245
8 −0.0333 −0.1846 −0.0706 0.5968 −0.4082 −0.9853 1.5101 - 0.5355
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Given the potential variation in pavement texture’s impact on noise at different speeds,
the data for 60 km/h and 80 km/h were analyzed separately to gauge the speed’s influence
on the optimization outcomes. The absence of noise data for test sites 7 and 8 at 80 km/h
necessitated their exclusion from the dataset for this speed segment.

5.3. Determination of Weights
5.3.1. Top-Level Weight

To elucidate the causal relationship between performance objectives and texture
design, top-level weights were assigned to pavement performance indicators (anti-skid and
noise reduction capabilities). The parameters for burlap drag and grooving textures were
established as secondary weights, with their internal distribution reflecting the influence of
various texture parameters on performance metrics.

The objective of this study was to identify an optimal texture design that enhances
pavement skid resistance while minimizing tire/pavement noise. Consequently, equal
importance was attributed to skid resistance and noise reduction, assigning a weight of 0.5
to each at the top level.

5.3.2. Internal Weight Setting for Grooved and Burlap Drag Textures

The behavior of textures in noise reduction varies with speed, necessitating a distinct
discussion on internal weight assignment at 60 km/h and 80 km/h.

At 60 km/h, the grooved textures’ width negatively correlated with the SFC and has a
smaller impact on noise, warranting a 15% weight. Groove depth, which was positively
correlated with the SFC and significant in reducing low-frequency noise, was allocated a
30% weight, emphasizing its crucial role. Groove spacing received a 55% weight due to its
significant noise control contribution, highlighting its pivotal role in noise reduction. The
burlap drag textures’ width was assigned a 20% weight for its minor noise control role at
low speeds. Groove depth was given a 30% weight for its impact on texture roughness and
indirect effects on the SFC and noise, while spacing, crucial for noise control, was given a
50% weight to underline its central function.

At 80 km/h, the weight for groove depth decreased to 20% as its noise impact dimin-
ishes at higher speeds. Groove width was assigned a 15% weight, and spacing, still a key
noise and SFC influencer, especially for high-frequency noise, was given a 65% weight. For
burlap drag textures, the groove depth’s weight was reduced to 25%, width was given a
20% weight, and spacing, maintaining its significance for noise and the SFC, was allocated
a 55% weight. Table 8 presents the weight distribution across the different conditions
and speeds.

Table 8. Weight distribution of pavement performance and texture parameters at different speeds.

Speed
Burlap Drag Texture Groove Texture

Anti-Skid
Noise

ReductionWidth Depth Spacing Width Height Spacing

60 km/h 0.3 0.35 0.35 0.3 0.4 0.3 0.5 0.5
80 km/h 0.2 0.25 0.55 0.15 0.2 0.65 0.5 0.5

5.4. Results

Utilizing normalized texture parameters and performance data, the relative closeness
index was calculated for each test site, considering anti-skid and noise reduction. Table 9
displays these indices across the varying speeds.

Table 9. Relative closeness indices at different speeds.

Speed 1 2 3 4 5 6 7 8

60 km/h 0.5603 0.4297 0.3521 0.6130 0.6069 0.4024 0.4836 0.5846
80 km/h 0.8023 0.4635 0.5157 0.5720 0.5881 0.2025 - -
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The results indicate that at 60 km/h, test sites 4 and 5 showed superior overall perfor-
mance. Test site 4, with a groove width of 3.5 mm, depth of 1 mm, and spacing of 19 mm,
offers a balanced configuration that may facilitate adequate water drainage while minimiz-
ing noise induced by excessively deep or narrow textures. For the burlap drag texture, test
site 4’s larger groove width (3.1 mm) and relatively higher groove height (1.5 mm) may
improve the contact pressure distribution, reducing high-frequency vibrations and noise.

At 80 km/h, the texture design of test site 1 align most closely with the ideal solution.
Featuring a groove width of 4.0 mm, a depth of 2 mm, and a spacing of 25 mm, this
configuration is likely to enhance water drainage and provide adequate friction at high
speeds, while the greater spacing assists in mitigating noise generated by air vibration. The
burlap drag texture at test site 1, characterized by a groove width of 1.5 mm, a height of
1.0 mm, and a spacing of 12.5 mm, is expected to maintain effective contact stability and
contribute to noise reduction at elevated speeds.

In essence, improving pavement skid resistance typically necessitates an increase in
surface roughness or texture depth, facilitating enhanced friction between the tires and
pavement, thereby boosting vehicle stability and safety. Nevertheless, such modifications
can result in heightened noise levels due to the increased surface vibrations and air compres-
sion fluctuations associated with rougher textures. Consequently, the design of pavement
texture should be tailored to the specific conditions of road use and the requirements
of the intended users. For example, in urban or heavy traffic areas, skid resistance may
be a priority. Additionally, the design should take into account the diversity of vehicle
types, traffic volumes, speed ranges, and load categories, as the needs for skid resistance
and noise reduction can vary significantly between heavy-duty vehicles and light passen-
ger cars. Along this vein, the objective of optimal pavement texture design is to strike
an ideal balance between skid resistance and noise reduction, tailored to the particular
application context.

6. Conclusions

This research provided a detailed evaluation of the texture characteristics of cement
concrete pavements and their effects on pavement’s skid resistance and the levels of
tire/pavement noise. Utilizing the TOPSIS multi-objective optimization method, various
texture designs were appraised, culminating in a texture design scheme that optimally
balances skid resistance and noise reduction. The key findings are as follows:

(1) Grooved textures significantly enhance the high-speed sideway force coefficient (SFC),
thereby markedly improving the pavement’s skid resistance. The groove’s width and
depth are critical, particularly at lower speeds, where optimal dimensions support wa-
ter displacement and deliver adequate traction without markedly heightening noise;

(2) Dragged (burlap drag) textures directly influence noise levels, with their micro- and
macro-textures diminishing vibration frequencies between the tires and pavement,
thereby lowering noise. Within these textures, groove height and spacing are pivotal
in managing noise levels and ensuring adequate skid resistance;

(3) At 60 km/h, optimal skid resistance and noise reduction are achieved with a moder-
ate groove width and depth alongside suitable spacing, exemplified by test site 4’s
configuration of transverse grooves (3.5 mm width, 1 mm depth, 19 mm spacing)
and longitudinal dragged texture (3.1 mm width, 1.5 mm height, 8.4 mm spacing).
At 80 km/h, wider grooves, more considerable spacing, and deeper cuts enhance
drainage while reducing noise, as seen in test site 1’s design featuring transverse
grooves (4 mm width, 2 mm depth, 25 mm spacing) and longitudinal dragged texture
(1.5 mm width, 1.0 mm height, 12.5 mm spacing);

(4) Pavement texture design should be tailored to actual road use and user require-
ments. It is crucial to consider the diverse performance requirements of different
vehicles, such as heavy versus light vehicles, and the distinct needs of urban versus
intercity highways.
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Future research should expand the TOPSIS method by including additional envi-
ronmental and operational factors like tire types, weather conditions, and vehicle speed
distribution to refine the model’s precision and dependability. Moreover, establishing
ongoing pavement performance monitoring is recommended to evaluate the real-world
efficacy of texture designs, providing valuable empirical data to guide future texture
design decisions.
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Abstract: “Aging” is a practice that allows alcoholic beverages to mature and gives them particular
flavors and colors. In this context, oak or durmast wooden barrels are used in this process, thus
providing different types of aging. This conventional process produces a slow enrichment of organic
compounds in the spirit inside the barrels. Organic substances present in the internal part of the
barrels slowly undergo the phenomenon of extraction by the liquid phase (solid–liquid extraction).
In this work, a new procedure based on rapid solid–liquid dynamic extraction (RSLDE) was used to
evaluate the potential of obtaining the effects of aging in spirits in shorter times than conventional
methods. For this purpose, a comparison between two solid–liquid extraction techniques, RSLDE
and conventional maceration, was made. Four water/ethanol 60:40 (v/v) model solutions were
prepared and put in contact with medium-toasted chips using the two extraction procedures (conven-
tional and non-conventional) and determining dry residue and total polyphenol content. Reversed
phase high-performance liquid chromatography (RP-HPLC) analyses allowed the identification and
quantification of furfural, ellagic acid and phenolic aldehydes (vanillin, syringaldehyde, coniferalde-
hyde and sinapaldehyde). The aging procedure with medium-toasted chips was tested on a young
commercial grappa using maceration and RLSDE.

Keywords: bioactive compounds; chips; alcoholic beverages; maceration; RSLDE; grappa; distillates;
aged beverages

1. Introduction

Spirits and liqueurs define a category of alcoholic beverages produced by the dis-
tillation of grains, fruits or vegetables that have first been fermented through alcoholic
fermentation [1]. During the distillation process, the liquid is concentrated to increase its
alcohol grade by volume (vol/vol%). Distilled spirits and liqueurs contain much more ethyl
alcohol than other alcoholic beverages, such as wine, beer or mixed alcoholic beverages
with a grade of around 40% (v/v). The aromatic characteristics of distillates are obtained
mainly from agricultural raw materials, which are processed during various treatment
stages, including fermentation, distillation, and barrel aging [2,3].

Generally, a spirit drink is characterized by an alcoholic strength equal to or greater
than 15% (v/v), produced by distillation or maceration, followed by a flavoring step.
Freshly distilled spirits have a harsh taste, which can be attributed to the lack of various
chemical reactions. For this reason, liqueurs require time to mature after distillation [4,5].
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Aging is indeed a process used in the production of alcoholic beverages, such as wine,
whiskey, and some types of beer. During aging, the beverage interacts with the container
(such as wooden barrels), which can impart specific flavors, aromas, and colors to the drink,
thus contributing unique characteristics to the beverage. However, it is important to note
that the aging process and its effects can vary depending on the type of beverage and
the specific production methods used. Therefore, many high-quality alcoholic beverages
require aging in barrels for long periods of time [6]. Indeed, the objective of the aging
process is to impart the aromas of the barrel’s wood, such as oak, maple, acacia, chestnut
and cherry. During the aging period, numerous chemical reactions occur that significantly
change the taste and aroma of the alcoholic beverage [7–9]. However, the procedure for
aging alcoholic beverages is characterized by a slow process of solid–liquid extraction that
is based on the phenomena of diffusion and osmosis. Compounds contained in the wood
of barrels are more slowly extracted because the process occurs at room temperature. To
obtain faster aging, smaller barrels can be used, since in this case the amount of liquid in
contact with wood is greater than in larger barrels (larger contact surface). However, the
procedure is slow, and the overall process is particularly expensive.

In order to overcome the above-described drawbacks, novel and inexpensive tech-
niques have been developed to simplify the aging process while ensuring that wood-bound
volatiles are released into drinks and have similar sensory properties to those aged in
barrels. These alternatives typically include oak chips or larger oak pieces [10]. The use
of chips for the aging of wines is permitted in several countries, such as the United States,
Australia and Chile. In Italy, it is only permitted on table wines, but the statement “aged in
barrique” nowadays is forbidden on the label. Moreover, to enhance the final taste of aged
spirits, the effect of toasting oak chips on the sensory characteristics and chemical compo-
sition of the wine was recognized to be greater than the oak type used [11,12]. Toasting
oak increases the quantities of compounds deriving from the thermal degradation of lignin
(vanillin, eugenol, guaiacol and its derivatives) and from the pyrolysis of cellulose and
hemicellulose (furfural and 5-methylfurfural) and decreases the concentration of the two
isomers of whiskey lactone. Similarly, during the aging of a distillate in a barrel, a series
of chemical and physical interactions occur, involving the surrounding atmosphere and
the maturing distillate, transforming the composition and, therefore, the final taste [13].
Recently, a growing interest has emerged in methods of predicting, controlling, and simulat-
ing the effects of maturation, given that the aging of distillates is one of the most important
and expensive factors influencing their quality and their price. On the other hand, a new
winemaking practice to rationalize work and reduce production costs for wine aging in-
volves the use of wood chips that are 100 to 300 times cheaper than traditional barrels.
Due to these favorable production conditions, newly emerging wine-producing countries
such as New Zealand, California, Argentina, South Africa and Hungary are conquering
the mass market with wines produced with this technique that have a good quality/price
ratio and greater flexibility with respect to the tastes of the modern consumer. Among
cheaper and faster alternatives than the conventional barrel aging method, maceration
of oak pieces in wines and spirits is a well-known technique [14–20]. The use of chips,
slats or strips immersed in the spirits has the aim of increasing the ratio between wood
surface and volume liquid; this procedure promotes a faster solid–liquid extraction of the
compounds from the wood. In this way, a larger surface is exposed to the liquid than 40%,
as in the case of barrels. The products thus obtained are cheaper than those aged in barrels,
but they have similar chemical characteristics and sensory properties. Therefore, even
water, which is a highly polar solvent, can extract organic compounds in a heterogeneous
phase. In traditional maceration, the effects of diffusion and osmosis are predominant;
therefore, substances not chemically linked to the internal structure of the solid matrix
tend to dissolve in the liquid. For this reason, a necessary condition for the traditional
maceration process is that the substances to be extracted are soluble in the extractant liquid.
Furthermore, to increase the extraction efficiency, it is necessary to increase the temperature,
on which diffusion and osmosis depend, according to Fick’s Law. However, a possible
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drawback consists in the degradation of thermolabile compounds extracted or in favoring
undesirable reactions [21–25].

Starting from these premises, the aim of this work was to evaluate a new method for
obtaining the aging of spirits as an alternative method to the traditional one. This procedure
is based on rapid solid–liquid dynamic extraction (RSLDE). The RSLDE occurs through
the generation of a negative pressure gradient from the inside to the outside of the solid
matrix. Therefore, it can be conducted at room or even sub-room temperature, avoiding
the alteration of temperature-sensitive compounds, but also with other advantages. In fact,
extraction requires much shorter times than maceration (2 h vs. 20 days) and allows the
recovery and reuse of solvents with less environmental impact, according to the principle
of the circular economy [26].

On the other hand, as reported in the literature, the areas of application of RSLDE are
numerous and include the pharmaceutical, cosmetic, herbal, food and beverage sectors [27,28].
RSLDE can even be used for the extraction of bioactive compounds from agricultural and
food waste, guaranteeing their possible reuse and reintroduction in the market as industrial
by-products, according to the current eco-sustainable model of the circular economy [29].

To evaluate the efficiency of the alternative aging procedures, model water/ethanol
solutions (60:40, v/v), with the addition of medium-toasted chips, were subjected to macer-
ation and RLSDE techniques. Subsequently, the extracts obtained were subjected to various
determinations, such as the dry residue, total polyphenols and the content of phenolic
acids, furfuran derivatives and phenolic aldehydes deriving from wood, and identified as
influencing the aroma and taste of aged spirits and drinks. Finally, a comparison between
the two methods was carried out on a young commercial Italian spirit (named as grappa)
subjected to aging using toasted chips.

2. Materials and Methods

2.1. Chemicals, Reagents, and Instrumentation

All solvents and reagents were of analytical grade and were purchased from Merck
(Darmstadt, Germany), Carlo Erba (Milan, Italy), and Sigma-Aldrich Co. (Buchs, Switzer-
land); Folin Ciocalteau, anhydrous sodium carbonate, reagent and 2,4,6-tri(2-pyridyl-s-
triazine) (TPTZ) were purchased from Sigma (Milan, Italy); Furfural, ellagic acid, vanillin,
syringaldehyde, coniferaldehyde and sinapaldehyde standards used to identify the antioxi-
dant compounds of the extracts were obtained from Sigma (Milan, Italy). All the reactives
and reagents were used without previous alterations or pre-treatments.

2.2. Materials and Preparation of Samples

The chips used belonged to the Nobile® line, Laffort Italia S.R.L. (Tortona Alessandria,
Italy), a company specializing in oenological products. Both Nobile® Fresh and Nobile®

Sweet chips used in this work were qualified as suitable for the development of products
for direct human consumption according to Regulation (CE) 606/2009. Nobile® Fresh and
Nobile® Sweet are oak fragments of 7 to 20 mm in diameter that derive from the hardwood
of French oak Quercus Petraea dried in air at room temperature. The Nobile® Fresh were
unroasted, while the Nobile® Sweet underwent a medium roasting in the oven (Figure 1).

To determine the effectiveness of the extraction process and the stability of the ex-
tracted compounds, solid–liquid chip extraction was carried out in a water/ethanol solution
of 60:40 (v/v) with Millipore water and 96% (v/v) Ethyl alcohol from Carlo Erba.
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Figure 1. Nobile® Sweet chips (left) and Nobile® Fresh chips (right).

2.3. Maceration vs. RSLDE Techniques

Maceration was carried out for 15 days, as suggested in the technical data sheet of the
commercial chips (Laffort Italia S.R.L., Tortona Alessandria, Italy). Vice versa, the duration
of the extraction tests carried out with RSLDE was 3 h and 16 min (49 extraction cycles)
and 17 h and 52 min (268 extraction cycles), respectively. Each extractive cycle consisted
of a 2 min static phase and a dynamic phase of 2 min for a total cycle time of 4 min. The
duration determined with these RSLDE experiments was optimized in order to obtain a
comparable quality of maceration, which lasted for 15 days. The maximum cycle number
defined for RSLDE was 1000, corresponding to approximately 3 days of extraction.

The extraction tests were carried out on a young commercial grappa using 10 g of
Nobile® Sweet chips in 600 mL of grappa for 3 days. The same amount of chips and grappa
were used for maceration for 15 days.

Preliminarily, the solid–liquid extraction was carried out in model solutions of wa-
ter/ethanol (60:40, v/v), using unroasted and medium-toasted chips. In order to follow the
extraction, solutions were stored in bottles (under reducing conditions) and sampled over
time to reveal and compare only the extraction process from the wood and the stability of
the extracted compounds.

2.4. Analysis of the Extracted Samples
2.4.1. Determination of Dry Residue

For the determination of the dry residue, 10 mL of the extracted sample was dried in
the oven. The oven temperature was first set at 75 ◦C for the removal of the alcohol, and
when the volume of the liquid became negligible, the temperature was raised to 105 ◦C
to aid the evaporation of traces of water. The dry extract was recovered from the oven
and, having cooled to room temperature, was weighed with an analytical balance with a
sensibility of 0.1 mg. This operation was repeated until reaching a constant weight. Each
determination was repeated 3 times, and the mean result was reported.

2.4.2. Determination of Total Polyphenols Using the Folin–Ciocalteu Method

Total phenol concentrations in plant extracts were determined spectrophotometrically
by the Folin–Ciocalteu assay using gallic acid as a standard (mg GAE/g) [30]. A 125 μL
intake of the methanolic extract was mixed with 500 μL of distilled water and 125 μL of the
reagent of Folin–Ciocalteu were added. After vigorous stirring of the mixture followed by
standing for 3 min, an aliquot of 1250 μL of 7% Na2CO3 was added. The solution was placed
for 90 min at room temperature in a dark place. Lastly, absorbance was measured at 760 nm
using a spectrophotometer UV-Vis (SmartSpec 3000, Bio-Rad Laboratories, Inc., Hercules,
CA, USA). A calibration curve of gallic acid was prepared, and the results, determined from
the regression equation of the calibration curve, were expressed as the mass of equivalent
gallic acid over the mass of the sample. The same procedure was followed for the samples.
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From the sample absorbance values at 760 nm, the total polyphenols expressed as mg gallic
acid equivalent per gram were determined.

2.5. HPLC Analysis

The chromatographic measurements were carried out with a Waters 1525 binary HPLC
and a Waters 2996 photo diode array (PDA) detector; this analysis was used to support
the determination of the UV spectra (230–400 nm) of the samples. The analytical column
was a reverse phase C18 (250 mm × 4.6 mm; 5 μm) (Phoenomenex, Torrance, CA, USA);
The mobile phase was eluent A water/formic acid (98:2, v/v) and eluent B methanol-
water-formic acid (70:28:2, v/v/v). All the HPLC eluents used were purchased from Sigma
Aldrich, Milan, Italy. The flow rate was set at 1 mL/min, with an injected volume of 20 μL.
Before injections, the samples were filtered with nylon syringe filters of 0.45 μm with an
external diameter of 25 mm from Millipore, Merck (Milan, Italy). The Limit Of Detection
(LOD) determined for all compounds was in the range of 1 to 5 ppm. The elution program
is described in Table 1.

Table 1. High performance liquid chromatography method for analysis of phenolic acids.

Time, min
Reservoir of Water-Formic Acid

(98:2, v/v)

Reservoir of
Methanol-Water-Formic Acid

(70:28:2 v/v)

0 90% 10%
3 90% 10%

25 40% 60%
43 40% 60%
55 0% 100%
65 0% 100%

2.6. Analysis of a Young Commercial Grappa

A total of 10 g of Nobile® Sweet chips was put in contact with 600 mL of young
commercial grappa. The sample was subjected to two extraction methods: maceration for
15 days and RSLDE at a different number of cycles.

2.7. Statistical Analyses

Results are the mean values ± SD (standard deviation) of 3 replicates. The significance
level was set at p = 0.05.

3. Results and Discussion

In the present work, the potential of an alternative procedure to traditional aging in
alcoholic beverage barrels was evaluated. Initially, solid–liquid extraction was conducted
in water/ethanol 60:40 (v/v) model solutions using toasted and unroasted chips. Following
the extraction, the solutions were stored in bottles (reductive environment) and sampled
over time with the aim of revealing and comparing only the extraction process from the
wood and the stability of the extracted compounds. Dry residue, total polyphenol content
and RP-HPLC analysis were determined on the different solutions obtained, which al-
lowed the identification and quantification of furfural, ellagic acid and phenolic aldehydes
(vanillin, syringaldehyde, coniferaldehyde and sinapaldehyde). The RP-HPLC analysis
shows that unroasted chips (Nobile® Fresh) have a lower content of bioactive compounds
than medium-roasted chips (Nobile® Sweet). On the other hand, furfural and phenolic
aldehydes are essentially formed following roasting from the degradation of hemicellu-
loses and lignin, respectively. While ellagic acid is also present in the solutions in which
the unroasted chips have been extracted, it can derive both from the degradation of the
ellagitannins during the roasting treatment and from the hydrolysis of the ellagitannins
during the aging process. This is probably linked to the fact that ellagitannins, from which
ellagic acid can derive, are present in greater quantities in unroasted chips, as they degrade
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with roasting [31]. This greater quantity of ellagitannins is probably also responsible for the
higher values of total polyphenols and dry residue for the solutions obtained by extraction
of the unroasted chips. This may seem to contradict the lesser variation in color that
occurred during the extraction of the Nobile® Fresh chips compared to the Nobile® Sweet
ones, as the partially oxidized and polymerized ellagitannins are considered responsible
for a large part of the color of the heartwood [32].

On the other hand, a study by Canas et al., 2013 reported that other compounds, not
quantified by the total amount of polyphenols or the dry extract, can determine the color of
brandy [33]. During the roasting process, various substances are produced following the
interaction between sugars and amino acids, known as the Maillard reaction. Therefore,
the color is influenced by melanoidins and probably other colored compounds that form
during this reaction [34].

Based on this hypothesis, higher roasting intensities can favor the formation and
accumulation of these compounds; such concentrations do not significantly influence the
dry extract but contribute to the evolution of color [35]. Once the number of cycles necessary
to equalize the extraction yield of the maceration had been estimated, an unaged (young)
commercial grappa was subjected to extraction with Nobile® Sweet chips using the two
methods to verify the effects of the interaction of the compounds extracted with the drink
compounds. The data obtained show that the extraction yield is greater for maceration, as
reported in Table 2.

Table 2. Dry residue of model solutions with Nobile® Fresh chips extracted using the two methods.

Time, Days Maceration
RSLDE 49 Cycles

(196 min)
RSLDE 268 Cycles

(1072 min)
RSLDE 360 Cycles

(1440 min)

Dry residue
(g/L)

Non-volatile
amount

extracted (%)

Dry residue
(g/L)

Non-volatile
amount

extracted (%)

Dry residue
(g/L)

Non-volatile
amount

extracted (%)

Dry residue
(g/L)

Non-volatile
amount

extracted (%)
0.005 --- --- 0.62 ± 0.03 3.5 --- --- --- ---
0.734 --- --- --- --- 0.75 ± 0.02 4.5 --- ---

1 --- --- --- --- --- --- 1.51 ± 0.06 8.6
6 0.63 ± 0.07 --- --- --- 0.85 ± 0.03 5.5 1.75 ± 0.05 10.5
15 1.37 ± 0.02 8.2 0.61 ± 0.02 3.7 0.83 ± 0.02 5 1.77 ± 0.03 11.1
80 1.45 ± 0.02 8.7 0.56 ± 0.04 3.4 0.98 ± 0.03 5.9 1.81 ± 0.04 12.5
210 1.71 ± 0.03 10.3 0.68 ± 0.5 4.2 --- --- --- ---

3.1. Extraction of Model Solutions

Furthermore, the comparison with an aged commercial grappa of the same brand,
which was aged in barrels for 12 months, showed a significantly higher content of total
polyphenols and phenolic and furan compounds deriving from wood compared to the two
alternative aging techniques.

3.1.1. Extraction of Nobile® Fresh Chips

The dry residue and the total polyphenol content of the extractions obtained by
maceration and by RSLDE containing Nobile® Fresh chips are shown in Tables 2 and 3.
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Table 3. Total polyphenols (GAE/L) of the model solutions with Nobile® Fresh chips extracted with
the two methods (GAE: mg of gallic acid equivalent).

Time, Days Maceration
RSLDE 49 Cycles

(196 min)
RSLDE 268 Cycles

(1072 min)
RSLDE 360 Cycles

(1440 min)

0.005 --- 170 ± 5 --- ---
0.734 --- --- 368 ± 5 ---

1 --- --- --- 440 ± 6
6 257 ± 9 --- 380 ± 6 480 ± 2

15 510 ± 12 176 ± 7 402 ± 3 510 ± 9
80 426 ± 8 168 ± 6 446 ± 2 553 ± 4

210 593 ± 8 187 ± 2 --- ---

The maceration process has been performed for 210 days, during which the contact
between chips and solvent was constant under discontinuous stirring. Different was the
process of RLSDE. In RLSDE 50 cycles extraction, the total extraction time is 200 min,
corresponding to 0.005 days; instead, in RLSDE 286 cycles extraction, the extraction time
is 1072 min, corresponding to 0.744 days. After RLSD extraction, the liquid extract was
withdrawn, separated from chips and stocked at room temperature in the dark. Then,
measurements were performed on these samples at 6, 15, 80 and 210 days, respectively.

The solutions obtained through maceration yielded higher values for both dry residue
and total polyphenols, indicating an increased extraction yield after 6 and 15 days of
observation. Nevertheless, in the solutions resulting from RSDLE, the values of dry residue
and total polyphenols have the ability to increase by increasing the number of cycles. This
suggests that it might be sufficient to increase the number of extraction cycles to achieve
extraction yields comparable to those of a 15-day maceration. Furthermore, the greater
yield of maceration was confirmed by the evolution of the color of the solutions and the
decrease in pH. In fact, as can be seen in Figure 2, the solution obtained from the maceration
of the chips developed a more intense color than that resulting from 268 extraction cycles,
which is in turn more intense than that obtained from 49 extraction cycles.

 
Figure 2. Model solutions with Nobile® Fresh chips obtained from: A′: Maceration; B′: RSLDE
268 cycles; C′: RSLDE 49 cycles.

Data reported in Tables 2 and 3 show that, over time, the values of the dry residue and
polyphenols tend to increase, suggesting an evolution of the extracted compounds.

Additionally, the decrease in pH, characteristic of the aging process [36] and indicative
of the extraction of phenolic compounds and/or other acidic compounds, was larger in the
case of maceration (Table 4).

26



Processes 2024, 12, 829

Table 4. Measurement of the pH of the solutions extracted with the two methods using Nobile®

Fresh chips.

Solutions pH

Hydroalcoholic solution 6.39
Maceration after 210 days 3.66

RSLDE 49 cycles after 210 days 4.44
RSLDE 268 cycles after 80 days 4.22

3.1.2. Extraction of Nobile® Sweet Chips

Similarly, in Tables 5 and 6, the dry residue and total polyphenol content of the model
solutions containing Nobile® Sweet chips by maceration and RSLDE are reported.

Table 5. Dry residue of model solutions with Nobile® Sweet chips extracted using the two methods.

Time, Days Maceration
RSLDE 49 Cycles

(196 min)
RSLDE 268 Cycles

(1072 min)
RSLDE 360 Cycles

(1440 min)

Dry residue
(g/L)

Non-volatile
amount

extracted (%)

Dry residue
(g/L)

Non-volatile
amount

extracted (%)

Dry residue
(g/L)

Non-volatile
amount

extracted (%)

Dry residue
(g/L)

Non-volatile
amount

extracted (%)
0.005 --- --- 0.30 ± 0.03 1.6 --- --- --- ---
0.734 --- --- --- --- 0.34 ± 0.02 2 --- ---

1 --- --- --- --- --- --- 1.2 ± 0.05 6.5
6 --- --- --- --- 0.34 ± 0.03 2 1.3 ± 0.07 7.8
15 1.10 ± 0.02 6.6 0.29 ± 0.03 1.7 0.58 ± 0.03 1.7 1.45 ± 0.10 8.5
80 1.31 ± 0.02 7.9 0.40 ± 0.02 2.4 0.75 ± 0.05 4.5 1.51 ± 0.09 8.9
210 1.38 ± 0.02 8.1 1.11 ± 0.07 6.3 --- --- --- ---

Table 6. Total polyphenols (GAE/L) of the model solutions with Nobile® Sweet chips extracted with
the two methods (GAE: mg of gallic acid equivalent).

Time, Days Maceration
RSLDE 49 Cycles

(196 min)
RSLDE 268 Cycles

(1072 min)
RSLDE 360 Cycles

(1440 min)

0.005 --- 110 ± 5 --- ---
0.734 --- --- 198 ± 3 ---

1 --- --- 228 ± 4 403 ± 8
6 --- --- 220 ± 5 410 ± 5

15 330 ± 10 116 ± 6 212 ± 4 440 ± 4
80 304 ± 6 132 ± 8 ± 445 ± 7

210 379 ± 8 149 ± 3 --- ---

Also, in this case, the solutions resulting from the maceration of RSLDE gave higher
values of both dry residue and total polyphenols, suggesting a greater extraction yield with
values that approached those of the maceration with the increase in the number of cycles.
This was confirmed by the evolution of the color of the solutions and by the decrease in pH
(Table 7). More intense colors and a lower pH were obtained for the solution obtained by
macerating the chips, followed by that resulting from the extraction of RSLDE 268 cycles
(Figure 3).
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Table 7. Measurement of the pH of the solutions extracted with the two methods using Nobile®

Sweet chips.

Solutions pH

Hydroalcoholic solution 6.39
Maceration after 210 days 3.63

RSLDE 49 cycles after 210 days 4.58
RSLDE 268 cycles after 80 days 4.30

Even in the case of extractions with Nobile® Sweet chips, the same trend was respected
for the values of the dry residue and polyphenols reported previously for extractions with
Nobile® Fresh chips.

 
Figure 3. Solutions obtained from: A: Maceration; B: RSLDE 268 cycles; C: RSLDE 49 cycles.

3.2. HPLC Analysis

The available standards were analyzed by chromatographic analysis first individually
and then in mixture at wavelengths between 200 and 400 nm (see Table 8). Therefore,
each standard was injected into the HPLC-DAD (diode array detector) to define the re-
tention time and absorption peak of each compound. Table 8 shows the identification of
the standard compounds, their retention times and the respective absorption maxima of
each compound.

Table 8. Identification of chromatographic peaks, retention times and characteristic wavelengths of
each compound of standard mixture.

Compounds Retention Time Wavelengths Wavelengths

Furfural 13.40 ± 1.11 233 276
Vanillin 26.14 ± 0.49 238 280–309

Syringaldehyde 28.55 ± 0.45 238 309
Coniferaldehyde 33.69 ± 0.51 243 306–342
Sinapaldehyde 34.89 ± 0.33 246 347

Ellagic acid 42.40 ± 2.48 252 365

Figure 4 shows the HPLC analysis of the same standard mixture with the identification
of peaks corresponding to the standards at the two selected wavelengths.
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Figure 4. RP-HPLC analysis at 280 nm (red) and 320 nm (black) of the mixture of standard com-
pounds.

Subsequently, under the same chromatographic conditions, HPLC analyses were
carried out on the solutions extracted with both methods, which allowed the identification
of furfural, ellagic acid and phenolic aldehydes (vanillin, syringaldehyde, coniferaldehyde
and sinapaldehyde) based on the standards (Table 8). However, the chromatographic
analysis of the solutions obtained by maceration and RSLDE revealed the evident presence
of only ellagic acid, while the other compounds were present only in traces (see Figure 4).
Therefore, it could be hypothesized that the phenolic and furan compounds present in the
samples were not extracted under conditions more suitable for their production. In all cases,
the extractions of Nobile® Sweet chips were richer in compounds than those of Nobile®

Fresh chips. Furthermore, for all the solutions resulting from the extraction of Nobile®

Sweet chips, a higher percentage of cinnamic aldehydes compared to benzoic ones was
obtained. This may be due either to the degree of roasting, given that in the degradation
of lignin, cinnamic aldehydes are formed, which then evolve to phenolic aldehydes, to a
greater ease of extraction of cinnamic aldehydes [37], or to a different response factor of the
compounds detected by HPLC.

The comparison of average values of total areas also enabled us to estimate the
percentage decrease in extraction yield compared to maceration. This decrease was found
to be 64% for 49 cycles of extraction and 48% for 268 cycles of extraction.

From the comparison of the individual peak areas, the extracted quantities of each
individually identified analyte were also estimated in terms of percentages compared to
maceration (Table 9).

Table 9. Comparison of the percentages of bioactive compounds extracted by RSLDE versus maceration.

Compounds RSLDE 49 Cycles, % RSLDE 268 Cycles, %

Furfural 36 48
Vanillin 46 58

Syringaldehyde 36 54
Coniferaldehyde 30 47
Sinapaldehyde 48 81

Ellagic acid 30 36

3.3. Aging Tests on Commercial Grappa

Once the required number of cycles for RSLDE (1030 cycles) to equalize the extraction
yield with maceration had been determined, extractions were performed on a young
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commercial grappa using the toasted Nobile® Sweet chips. These chips were found to be
richer in compounds compared to the Nobile® Fresh chips. The goal was to examine the
effects of the interaction between the extracted compounds and those present in the drink
and to assess the proximity of the results to a commercially aged grappa in barrels.

Comparing the data in Table 10, it is evident that the dry residue is higher in the aged
commercial grappa, whereas the total polyphenol content is greater in the young commercial
grappa subjected to extraction with Nobile® Sweet chips. Additionally, consistent with
previous findings, maceration exhibits higher dry residue and polyphenol values than
RSLDE. This is further supported by the increased coloration of the grappa resulting from
maceration (Figure 5).

Table 10. Dry residue and total polyphenols in young commercial grappa, young commercial grappa
with Nobile® Sweet chips, aged commercial grappa extracted by maceration and RSLDE 1030 cycles.
GAE: mg of gallic acid equivalent.

Sample Dry Residue g/L Polyphenols GAE/L

Young commercial grappa 1.69 ± 0.02 16 ± 2
RSLDE 1030 cycles with Nobile® Sweet chips 2.84 ± 0.05 483 ± 7

Aged commercial grappa 6.99 ± 0.07 32 ± 3

 
Figure 5. Extracted solutions obtained using the two extraction methods: M: Maceration; NE: RSLDE
1030 cycles.

In the chromatographic conditions used, the HPLC analysis of young commercial
grappa and that of the same brand aged 12 months did not highlight the presence of peaks
of interest, such as phenolic aldehydes, but only the presence of a peak corresponding to
furfural (Figure 6a,b).
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(a) 

 

(b) 

Figure 6. Chromatographic analysis of young commercial grappa (a) and aged commercial grappa
(b) at 280 and 320 nm wavelengths.

Subsequently, the young commercial grappa was subjected to aging with Nobile®

Sweet chips and extraction by maceration (15 days) and RSLDE 1030 cycles.
The HPLC analysis of young commercial grappa aged with Nobile® Sweet chips and

extracted by maceration for 15 days showed a greater extraction yield compared to RSLDE.
However, analysis of the sample extracted using RSLDE revealed the presence of a peak that
was not present in the analysis of the sample extracted by maceration. The retention time is
18.60 min and could correspond to 4-hydroxybenzaldehyde, based on comparison with the
literature [38], but the lack of standards did not allow the compound to be identified with
certainty (Figure 7a,b).
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(a) 

 

(b) 

Figure 7. Chromatographic analysis of young commercial grappa aged with Nobile® Sweet chips
extracted by maceration for 15 days (a) and RSLDE 1030 cycles (b) at 280 and 320 nm wavelengths.
The arrow (b) indicates a peak at the retention time of 18.60 min, probably corresponding to
4-hydroxybenzaldehyde.

Also, in this case, a higher percentage of cinnamic aldehydes was observed compared
to benzoic ones. The comparison of total areas and individual peaks confirms the greater
extraction yield of maceration. Looking at results for grappa and for the water/ethanol
60:40% v/v solution (obtained by extraction with the two methods), results highlight that
with the same extraction technique, the total areas appear greater for grappa compared to
the water/ethanol 60:40% v/v model solution. This is probably due to the lower pH of
grappa, which favors the extraction of polyphenolic compounds from the wood [39,40].

Finally, tests were conducted to assess the stability of bioactive compounds over time
using the two methods. While these tests are preliminary and only cover the time interval
between 0 and 6 days, the compounds demonstrated stability over this period.

4. Conclusions

According to the data obtained by the shown experiments, it is possible to conclude
that in all the extracted solutions containing Nobile® Sweet chips, a higher percentage of
cinnamic aldehydes was detected compared to benzoic ones. This could be attributed either
to the degree of roasting, as the degradation of lignin results in the formation of cinnamic
aldehydes that subsequently evolve into phenolic aldehydes. Alternatively, it could be due

32



Processes 2024, 12, 829

to a higher ease of extraction of cinnamic aldehydes or a variation in the response factor of
the compounds identified during the HPLC analysis.

However, other extraction tests will be necessary to be able to study and reproduce
the aging of alcoholic beverages by verifying the effects of all possible process parameters.
Future studies will be directed to follow the temporal evolution of grappa samples to verify
the possibility of interactions between compounds deriving from wood and the drink in
a reducing environment. After this, further research will also aim to analyze the volatile
extract components. Furthermore, the aging process will be simulated, considering oxygen
concentration. In any case, the effectiveness demonstrated by RSLDE in reducing aging
times compared to conventional maceration stimulates research interest to encourage the
application of this method in the alcoholic beverages sector.

This work was focused on the chemistry of the extraction and on process optimization.
However, another issue to be addressed concerns the sensorial analysis, which plays a key
role and requires the involvement of a team of tasters (panels). Therefore, based on this, a
sensory evaluation requires significant planning and experimentation, which was not the
subject of this manuscript but will certainly be carried out in future work.
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1. Śliwińska, M.; Wiśniewska, P.; Dymerski, T.; Wardencki, W.; Namieśnik, J. The flavour of fruit spirits and fruit liqueurs: A review.
Flavour Fragr. J. 2015, 30, 197–207. [CrossRef]

2. Tonutti, I.; Liddle, P. Aromatic plants in alcoholic beverages. A review. Flavour Fragr. J. 2010, 25, 341–350. [CrossRef]
3. Wang, L.; Chen, S.; Xu, Y. Distilled beverage aging: A review on aroma characteristics, maturation mechanisms, and artificial

aging techniques. Compr. Rev. Food Sci. Food Saf. 2023, 22, 502–534. [CrossRef]
4. Christoph, N.; Bauer-Christoph, C. Flavour of spirit drinks: Raw materials, fermentation, distillation, and ageing. In Flavours and

Fragrances: Chemistry, Bioprocessing and Sustainability; Springer: Berlin/Heidelberg, Germany, 2007; pp. 219–239.
5. Marianski, S.; Marianski, A. Home Production of Vodkas, Infusions & Liqueurs; Bookmagic LLC: Seminole, FL, USA, 2012.
6. Conner, J. Maturation. In Whisky and Other Spirits; Academic Press: Cambridge, MA, USA; Elsevier Ltd.: Amsterdam, The

Netherlands, 2022; pp. 291–311.
7. Carpena, M.; Pereira, A.G.; Prieto, M.A.; Simal-Gandara, J. Wine aging technology: Fundamental role of wood barrels. Foods 2020,

9, 1160. [CrossRef] [PubMed]
8. Bortoletto, A.M.; Silvello, G.C.; Alcarde, A.R. Aromatic profiling of flavor active compounds in sugarcane spirits aged in tropical

wooden barrels. Braz. J. Food Technol. 2021, 24, e2019071. [CrossRef]
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Abstract: The goal of steel defect detection is to enhance the recognition accuracy and accelerate the
detection speed with fewer parameters. However, challenges arise in steel sample detection due to
issues such as feature ambiguity, low contrast, and similarity among inter-class features. Moreover,
limited computing capability makes it difficult for small and medium-sized enterprises to deploy
and utilize networks effectively. Therefore, we propose a novel lightweight steel detection network
(SCFNet), which is based on spatial channel reconstruction and deep feature fusion. The network
adopts a lightweight and efficient feature extraction module (LEM) for multi-scale feature extraction,
enhancing the capability to extract blurry features. Simultaneously, we adopt spatial and channel
reconstruction convolution (ScConv) to reconstruct the spatial and channel features of the feature
maps, enhancing the spatial localization and semantic representation of defects. Additionally, we
adopt the Weighted Bidirectional Feature Pyramid Network (BiFPN) for defect feature fusion, thereby
enhancing the capability of the model in detecting low-contrast defects. Finally, we discuss the impact
of different data augmentation methods on the model accuracy. Extensive experiments are conducted
on the NEU-DET dataset, resulting in a final model achieving an mAP of 81.2%. Remarkably, this
model only required 2.01 M parameters and 5.9 GFLOPs of computation. Compared to state-of-the-art
object detection algorithms, our approach achieves a higher detection accuracy while requiring fewer
computational resources, effectively balancing the model size and detection accuracy.

Keywords: surface defect detection; feature reconstruction; lightweight network; feature fusion

1. Introduction

Steel is one of the most commonly used metals in manufacturing and is used widely
in a variety of applications including construction, bridges, automobiles, and machinery.
Due to its excellent performance, steel plays a crucial role in large industries such as metal-
lurgy, geological drilling, and marine exploration. However, quality issues in steel often
precipitate safety incidents, significantly compromising engineering integrity and personal
safety [1]. As steel production increases, the possibility of defective steel entering the
market increases, resulting in increasingly strict quality standards. In industrial manufac-
turing, the production environment for steel is complex and susceptible to various factors
such as temperature and impact [2]. This results in surface defects such as cracks, patches,
scratches, and inclusions [3,4]. Steel surface defect detection algorithms are essential for
ensuring product quality, steel safety, and controlling production costs.
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Typically, different types of defects on steel surfaces exhibit significant differences in
terms of shape, size, and distribution. Examples include the following: (A) indistinctive fea-
tures of defects: defect textures and grayscale are similar to the background [see Figure 1A];
(B) similar defects of different categories: different defects have similar distributions in
shape and texture [see Figure 1B]; (C) low-contrast defects: defects have low color contrast
with the background [see Figure 1C]; and (D) varied defects within the same category:
defects within the same category exhibit significant differences in shape and texture [see
Figure 1D]. This presents a considerable challenge to the feature extraction capacity of
detectors. Early defect detection relied heavily on manual identification. However, manual
identification is often costly, slow, and highly dependent on the experience and working
conditions of the identification personnel. With advancements in the computer industry
driving the automation sector forward, there arises an urgent demand across various in-
dustries for lightweight defect detection algorithms that enable automation while ensuring
high-speed and high-precision performance [5–9].

Figure 1. Steel surface defect detection faces a number of challenges, including (from the NEU-
DET [10] dataset. The red box represents the defect location, and the yellow box shows the enlarged
result.): (A) Defects with indistinct features. (B) Similar defects from different categories. (C) Defects
with low contrast. (D) Defects within the same category exhibit significant variations.

The technique of detecting and classifying steel defects automatically is called com-
puter vision-based steel defects detection. Typically, this approach involves extracting the
shape, color, and texture information from images to describe and differentiate different
types of defects. Techniques such as edge detection, corner detection, and texture analysis
are utilized to extract features from images. In order to classify the features once they
have been extracted, methods such as Support Vector Machines (SVMs) [11], clustering,
Adaboost classifiers, or naive Bayes classifiers are used. However, since feature extractors
often rely on manually designed features, this leads to lower model robustness. This
makes it highly susceptible to factors such as lighting conditions, shooting angles, and the
proportion of the target area [12].

In recent years, deep learning has undergone rapid development, significantly advanc-
ing object detection [13–15]. Images are transformed into feature maps through convolu-
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tional neural networks. These feature maps typically contain higher-dimensional abstract
features that are more targeted than manually designed features. Presently, mainstream
object detection algorithms include two-stage algorithms such as R-CNN series [16–19], as
well as single-stage algorithms such as SSD [20], You Only Look Once (YOLO) series [21–25],
and Transformer-based algorithms such as DETR [26]. However, within the realm of steel
defect detection, these deep learning-based object detection models face constraints due
to the computational capabilities of terminal devices. Addressing how to optimize these
object detection models with large parameters and computational overhead, while meeting
task accuracy requirements, to enable deployment on devices with limited computing
resources, remains a focal point in the current research on steel defect detection.

For detecting and recognizing defects on industrial steel surfaces, traditional ma-
chine learning methods have played a vital role in the early stages, usually involving
image preprocessing, thresholding, and feature extraction. Traditional algorithms include
LBP [10], HOG [27], and GLCM [28]. A number of studies [29,30] have developed more
complex feature extractors by combining other methods in order to extract more accu-
rate features of steel surface defects. Zhao et al. [31] utilized vector regularized kernel
approximation and SVM for defect detection. Gong et al. [32] proposed developing a
new Multi-Hypersphere SVM (MHSVM+) algorithm to provide additional information for
detection tasks. Chu et al. [33] developed Multi-Information Siamese SVMs (MTSVMs),
which are based on binary Siamese SVMs. Zhang et al. [34] proposed a method for identi-
fying and diagnosing defects by merging Gaussian functions fitted to histograms of test
images with membership matrices. However, traditional machine learning methods have
significant limitations. The features used in these methods are manually designed, making
them susceptible to changes in imaging environments and exhibiting poor robustness.
Additionally, these methods often require extensive computational resources, resulting in
slow processing speeds and difficulty in real-time detection.

Neural networks possess the capability to automatically extract features, fit models,
and dynamically update parameters through learning processes, thereby allowing deep
learning methods to excel across a multitude of tasks [35–39]. Upon entering samples into
the network, it is capable of automatically classifying defect types and predicting defect
locations. In practical steel surface defect detection, defects vary in size and shape, and the
complex background makes them difficult to detect. Furthermore, smaller defects exhibit
relatively minor changes in texture and color, making it difficult to distinguish between
them. Using RDD-YOLO, Zhao et al. [40] integrated Res2Net blocks into the backbone
network in order to enhance neck feature extraction and reuse shallow feature maps.
Additionally, this method separates regression and classification with decoupled detection
heads, improving detection accuracy. According to Wang et al. [41], YOLOv7 can be
improved by integrating ConvNeXt modules into the backbone network and incorporating
attention mechanisms in the pooling layers. The Diagonal Feature Fusion Network (DFN)
strategy introduced by Yu et al. [42] matches multi-scale feature information without
sacrificing speed, thereby significantly reducing the model size. Liu et al. [43] proposed
DLF-YOLOF, using anchor-free detectors to reduce hyperparameters and expand contextual
information in feature maps using deformable convolution networks and local spatial
attention modules. Using a multi-scale lightweight network, Shao et al. [44] proposed a
steel defect detection model that reduces the parameter count while improving the model
accuracy. The aforementioned algorithms have made significant contributions in terms of
both accuracy and speed. Nonetheless, these methods do not take into account the loss of
information during the layer-by-layer feature extraction and spatial transformation of data,
which is crucial for the detection of steel defects.

In order to further improve the detection accuracy while ensuring the lightweight of
the model, we propose a lightweight and efficient steel defect detection algorithm called
SCFNet. Specifically, we adopt an efficient and lightweight feature extraction module, LEM,
to deeply excavate the defect information within the steel. And ScConv is applied in the
deep network to reconstruct the spatial and channel information of feature maps, enhanc-
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ing the representation of the defect features while reducing the generation of redundant
information. Additionally, this article utilizes BiFPN for feature fusion, integrating deep
semantic information and shallow spatial textures into one feature map, thereby preserving
more complete spatial details and richer semantic features of the defect targets. We outline
the contributions of this article as follows.

1. We propose a lightweight and efficient steel defect detection network, namely SCFNet.
This network utilizes an LEM to extract feature information. The LEM, based on Depth-
Wise convolution and channel-weighted fusion, can better extract ambiguous features.

2. Considering the low-contrast defects present in steel materials, we introduce the
ScConv module into the LEM. By reconstructing the spatial information and channel
features of the feature map, ScConv effectively reduces redundant features while en-
hancing key features in steel, thus making the defect area more clearly and accurately
represented in the feature map.

3. We introduce the BiFPN module for feature fusion, leveraging its unique skip connec-
tion structure to minimize feature information loss during the convolution process.
BiFPN ensures the preservation of crucial texture features, making it easier for the
network to identify low-contrast defects.

4. We apply data augmentation techniques on the steel defect dataset and discuss the
impact of different data augmentation methods on the detection accuracy. Ultimately,
the proposed SCFNet demonstrates strong detection performance, outperforming
state-of-the-art detectors in steel defect detection.

2. Materials and Methods

In practical steel defect detection, owing to complex backgrounds and the indistinct
features of certain defects, detectors are susceptible to false positives and false negatives.
We have noted that existing mainstream object detection networks lack sufficient capabil-
ity in extracting ambiguous and low-contrast features. To optimize the defect detection
performance in steel materials, we propose the SCFNet network model, as illustrated in
Figure 2, which consists of three main components: the feature extraction module, neck
fusion module, and detection head module. An image’s deep features are extracted using
the feature extraction module. Next, these features are forwarded to the neck fusion module.
The neck fusion module is capable of constructing a feature pyramid network from top to
bottom, transmitting the semantic information features of the fused feature maps, and then
propagating the fused texture features from bottom to top. The neck network generates
three feature maps with different spatial sizes, which are then fed into the detection heads
separately. This allows the model to better detect objects on large, medium, and small
scales, thereby alleviating the issue of inconsistent target scales. Specifically, when the
image is input into the LEM consisting of three convolutional layers, 16 Mobile Inverted
Bottleneck Convolution (MBConv) modules, 1 spatial channel recombination convolution
module (comprising spatial recombination module SRU and channel recombination mod-
ule CRU), and 3 feature maps with different spatial sizes and channel numbers, C3, C4,
and C5, are obtained. Among them, C3 represents the shallow feature map with more
texture information, C4 represents the middle feature map with certain texture information
and semantic information, and C5 represents the deep feature map with more semantic
information. A neck fusion network integrates the information from three different depths
to coordinate and enrich the semantic and texture information of the three feature maps.
Finally, the detection heads operate on the three feature maps separately to obtain the
output information.

In the SCFNet network architecture, the feature extraction module is the LEM, which
is extremely lightweight yet possesses strong feature extraction capabilities. As a result,
it is able to extract deeper features from steel materials and adapt to defects that are not
readily apparent. The neck module adopts a BiFPN for feature fusion. Compared to
mainstream fusion networks like PANet [45], this fusion network features a unique skip
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connection structure, minimizing the loss of spatial information and thereby enhancing the
detector’s performance.

 

Figure 2. Architecture of the proposed SCFNet. The yellow, blue, and green circles represent feature
maps of different scales.

2.1. Lightweight and Efficient Feature Extraction Module

Given the challenge of ambiguously extracting the target features of steel defects
and the computational constraints imposed by terminal devices, deploying and utiliz-
ing networks present significant challenges. To address this issue, inspired by previous
works [46,47], we propose a lightweight feature extraction network. In the past, convo-
lutional neural network models typically optimized the model by adjusting one of three
parameters: the input image resolution, network channel width, or depth. Tan’s [46] study
demonstrates that all three factors significantly impact the final accuracy and proposes a
composite scaling method to uniformly adjust the network width, depth, and input image
resolution, as shown in Equation (1) [46].⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

depth : d = αϕ

width : ω = βϕ

resolution : r = γϕ

s.t. β2γ2α ≈ 2
β ≥ 1, γ ≥ 1, α ≥ 1

(1)

where α, β, and γ are constants that can be determined by a small grid search. ϕ is an
intuitively defined coefficient used to determine how many extra resources are available to
scale the model.

Setting ϕ = 1 and based on the constraints in Equation (1), a grid search was performed.
This led to α = 1.2, β = 1.1, and γ = 1.15, resulting in the basic feature extraction module,
LEM. The LEM has a relatively small parameter count and operates at a faster speed,
making it highly suitable for lightweight detection tasks.

Figure 2 illustrates the LEM model structure composed of 3 convolutional layers,
16 MBConv modules, and 1 ScConv module. This model possesses strong feature extrac-
tion capabilities. Upon putting images into the network, the dimensions of the output
feature maps increase gradually while the image size decreases. The deep feature maps
harbor abundant semantic information, enabling the network to extract a broader range
of classification features. In contrast, shallow feature maps contain a high level of texture
information, which allows the network to retain certain texture characteristics and, as a
result, place bounding boxes around the target objects in a more accurate manner. Similar
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to other mainstream single-stage object detection models, SCFNet’s feature extraction
module outputs three layers of feature maps. These three layers of feature maps undergo
interaction in the neck network, complementing each other’s feature information, before
being separately input into the detection heads for detection.

Figure 3 shows the MBConv module structure. This module mainly consists of
two regular convolutions, one Depth-Wise convolution, one Squeeze-and-Excitation (SE)
module, and a Dropout layer. The first convolution aims to increase the dimensionality,
which helps in extracting features from deeper layers. In this context, MBConv1 signifies
that the first convolution does not augment the dimensionality, whereas MBConv6 denotes
a six-fold increase in the dimensionality. Depth-Wise convolution performs grouped
convolutions, where each channel of the input is convolved separately without altering
the number of channels in the feature map. A convolution following the SE module is
a pointwise convolution, which uses only 1 × 1 convolutional kernels, operates on all
channels, and can change the number of channels. By using Depth-Wise convolutions
and pointwise convolutions, it is possible to construct deeper networks with smaller
convolutional kernels and fewer parameters. This makes the model more lightweight
without sacrificing accuracy. As a learnable attention mechanism, the SE module determines
the importance of each channel by learning weights, thus guiding the model attention to
more significant features.

 
Figure 3. Structure diagram of the MBConv. The input and output feature maps are represented
using heatmaps, where warm colors indicate strong features and cool colors indicate weak features.

2.2. Spatial and Channel Reconstruction Convolution

Due to the existence of similar features between different defect categories and defects
with low contrast in steel defects, this poses a challenge to the feature expression capability
of detectors. The ability of the feature extraction module to obtain representative features
directly impacts the final results of the entire network. To enhance the representational
capacity of the network, we propagate deep feature maps through the spatial and channel
reconstruction convolution (ScConv) module. The ScConv module structure, as shown
in Figure 4, consists of two units: the Spatial Reconstruction Unit (SRU) and the Channel
Reconstruction Unit (CRU), which are sequentially placed in the module.
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Figure 4. The ScConv module structure diagram. Dark red indicates feature maps with rich informa-
tion, while light red indicates feature maps with less information.

The ScConv module can utilize spatial and channel redundancies between features to
enhance feature map feature representation. The output feature map of the last MBConv6
in the feature extraction module serves as the input to the ScConv module. Firstly, it passes
through the SRU to obtain spatial-refined features XW , then it utilizes the CRU to obtain
channel-refined features Y. The SRU separates parts of the feature map that contain rich
spatial information from those with relatively less spatial content. Specifically, it evaluates
the information content of different feature maps using the Group Batch Normalization
(GBN) module. Given an input feature map X ∈ RN×C×H×W , where N is the batch axis,
C is the channel axis, and H and W are the height and width axes of the feature map, the
operation of the Group Normalization (GN) module is as shown in Equation (2) [47]:

Xout = GN(X) = γ
X−μ√
σ2+ε

+ β (2)

where μ and σ are the mean and standard deviation of X, ε is a small natural number, and
X and β are trainable affine transformations. Subsequently, the normalized correlation
weights of wc are calculated, which represent the importance of spatial information at
different positions in the feature map. Then, the weight coefficients are multiplied by the
feature map, normalized using the Sigmoid function, and thresholded to separate them.
Those weights normalized above the threshold are set to 1 to obtain the information-rich
weight W1, while those below the threshold are set to 0 to obtain the weight W2 with less
information. Then, W1 and W2 are, respectively, multiplied with feature map X, resulting in
feature map XW

1 rich in information and feature map XW
2 with less information. To further
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compress the spatial redundancy, the two feature maps are cross-reconstructed by fully
combining their information through addition before being connected, resulting in the
spatially refined feature map XW . This approach, superior to directly adding the feature
maps, enables a tighter interaction of spatial information between the two feature maps.

The CRU plays a pivotal role in harnessing channel information redundancy to further
refine and enhance the channel features of the feature maps. The CRU primarily comprises
three modules: Split, Transform, and Fuse. The Split module first divides the given
spatially refined feature map into two feature maps with channel numbers denoted as
αC and (1− α)C, respectively. Then, both feature maps undergo 1 × 1 convolutions to
adjust the channel numbers to half of the original input feature map, resulting in outputs
Xup and Xlow. The Transform module takes Xup as the input and processes it through a
“strong feature extractor”. The “strong feature extractor” employs Group-wise Convolution
(GWC) and pointwise convolution (PWC) instead of regular convolutions. GWC has
fewer parameters and computations compared to conventional convolutions but lacks
inter-channel information flow, while PWC supplements the inter-channel information
flow. The outputs of both operations are summed to obtain Y1. Meanwhile, Xlow is passed
into the “weak feature extractor”, which only employs 1 × 1 PWC to extract some detailed
features. Afterwards, it undergoes residual connections to yield Y2. The Fuse module
combines the two feature maps by concatenating Y1 and Y2 along the channel dimension.
To extract the global spatial information, the concatenated feature map undergoes lobal
average pooling. This information is utilized to generate feature vectors β1 and β2 using
SoftMax. These vectors are then multiplied and added to Y1 and Y2, respectively, to obtain
the channel-refined feature map Y. The feature maps processed through the ScConv module
are enhanced in their representation of important features, significantly improving the
detection of steel defects with less prominent characteristics. The overall computation
formula for global spatial information Sm ∈ Rc×1×1 is described in Equation (3) [47].⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Sm = Pooling(Ym) =
1

H×W

H
∑

i=1

W
∑

j=1
Yc(i, j), m = 1, 2

β1 = eS1

eS1+eS2
, β2 = eS2

eS1+eS2
, β1 + β2 = 1

Y = β1Y1 + β2Y2

(3)

where S1 and S2 represent global channel descriptors, while β1 and β2 denote feature
vectors. After passing through the ScConv module, the feature representation is enhanced.
At this point, the LEM sends the last layer feature map C5 along with C4 and C3 to the neck
network for feature fusion. In summary, the proposed LEM is lightweight yet possesses
strong feature extraction capabilities. Additionally, the ScConv module utilizes spatial and
channel redundancies to enhance feature representation, thereby improving the model
learning capability and detection accuracy.

2.3. Feature Pyramid Fusion with a Weighted Bidirectional Approach

Considering the significant scale variations and indistinct features of defects in steel,
to enable the model to address the issue of large-scale variations in objects within images,
we separately input three feature maps into the detection heads to detect objects at large,
medium, and small scales. Generally, shallow feature maps possess higher spatial resolution
and carry abundant spatial and positional information but lack distinct semantic features.
Conversely, deep feature maps contain rich semantic information but lack sufficient spatial
details. Deep feature maps provide the model with abundant semantic information that is
used to categorize objects, while shallow feature maps provide the model with abundant
texture information that is used to locate objects. Both are crucial for object detection
tasks. To further compensate for the resulting accuracy loss, inspired by [48], we employ
a BiFPN based on weighted fusion to interactively fuse the three feature maps. Through
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weighted fusion, local details, spatial positions, and semantic information are amalgamated,
bolstering the representational capacity of semantic features.

As shown in Figure 5, the Bifpn module comprises a set of learnable weight parameters.
After receiving feature maps with the same spatial channel size, the module performs
weighted summation on each feature map, followed by activation processing using SiLu,
and finally convolutional output. BiFPN utilizes a feature propagation structure similar to
the Path Aggregation Network (PAN) [45], sequentially transmitting feature information
from deep feature maps to shallow ones, and then propagating the fused shallow feature
maps back to the deep feature maps. Specifically, BiFPN first processes the deep feature
map C5 through convolution and upsampling to match the shape of C4, then performs
weighted fusion. Taking the intermediate feature maps C4 and P4 as an example, the fusion
process is as described by Equation (4) [48].⎧⎪⎨⎪⎩

Ptd
4 = Conv

(
w1·C4+w2·Resize(C5)

w1+w2+ε

)
P4 = Conv

(
w′1·C4+w′2·Ptd

4 +w′3·Resize(P3)

w′1+w′2+w′3+ε

) (4)

where Ptd
4 is the intermediate feature from the fourth level of the top-down path, P4 is

the output feature from the fourth level of the bottom-up path, w represents the learnable
feature fusion coefficient, and ε is a very small constant (in this experiment, this coefficient
is 0.0001) to prevent division by zero errors. (·) denotes the SiLu activation function. This
fusion method allows feature fusion with minimal feature loss and fewer parameters,
enabling the network to fully integrate the feature map information while ensuring a
lightweight design, which is beneficial for detecting subtle defects in steel materials. The
fused three-layer feature maps are then summed through the Cross Stage Partial (CSP)
module. The CSP module divides the input into two parts, where one part undergoes
two convolution operations and is then concatenated with the other part. This structure
amplifies the CNN learning capability and diminishes computational bottlenecks, making
it suitable for industrial applications. After enhancing the features through the CSP, the
three feature maps are used as inputs to the detection head module. In summary, SCFNet
utilizes a weighted BiFPN for feature fusion, carefully controlling the parameter count
increases to maintain a lightweight model structure. Furthermore, the experimental results
validate the feasibility and efficacy of this approach.

 

Figure 5. Structure diagram of the BiFPN module.
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2.4. Loss Function

The network loss consists of two components [49]: object classification loss Lcls and
bounding box loss Lcls.

Ltotal = c1Lcls + c2Lbbox (5)

where c1 and c2 represent the weights of the loss functions. A Binary Cross-Entropy Loss
(BCE) is used to calculate the classification loss, while CIoU and distribution focal losses
(DFLs) are used to compute the bounding box loss. The formulas for calculation are as
follows [49]:

Lcls(y, p) = y log(1− p)− y log(p)− log(1− p) (6)

where y represents the actual class of the target, taking values of 0 or 1, and p represents
the predicted class of the target, ranging from 0 to 1.

Lbbox = λ1LCIoU + λ2LDFL (7)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
LCIOU = IoU −

(
ρ2(b,bgt)

c2 + αv
)

v = 4
π2 (arctan wgt

hgt − arctan w
h )

2

α = v
(1−IoU)+v

(8)

LDFL(yi, yi+1) = −(i + 1− y) log(yi)− (y− i) log(yi+1) (9)

where λ1 and λ2 represent the weighting coefficients of the loss. IoU stands for Intersection
over Union, ρ denotes the Euclidean distance between the centers of the predicted bounding
box and the ground truth bounding box, while c represents the distance between the
predicted bounding box and the closest point to the ground truth bounding box’s enclosing
rectangle. αv stands for the aspect ratio, which is the ratio of width to height, between the
predicted bounding box and the ground truth bounding box. (b, bgt) represent the center
coordinates of both the predicted and ground truth bounding boxes, while w, h, wgt, hgt

denote their respective widths and heights. y denotes the actual label.

3. Experiments

3.1. Datasets

Our proposed defect detection method is evaluated using the NEU-DET [10] dataset to
assess its accuracy, robustness, and generalizability. Developed by Northeastern University
researchers, the NEU-DET dataset includes six common surface defects in steel. During the
manufacturing process of steel plates, six different types of surface defects are commonly
encountered. These defects include Scratches (Sc), Inclusion (In), Crazing (Cr), Pitted
Surface (PS), Patches (Pa), and Rolled-in Scales (RS). There are 300 images of each defect
type, each with a resolution of 200 × 200 pixels, adding up to 1800 images in total.

3.2. Implementation Details

In this article, we conducted experiments using a 16 GB Nvidia RTX 4060 Ti GPU.
The deep learning framework utilized was PyTorch 2.0.1. The ratio of the training data,
validation data, and testing data was set to 8:1:1. We employed the SGD optimizer with
a momentum of 0.937 and a learning rate of 0.01. There was a BatchSize of 32, and
the training was conducted for 400 epochs. The code has been open-sourced at https:
//github.com/LazyShark2001/SCFNet (accessed on 25 April 2024).

3.3. Evaluation Metrics

Selecting appropriate evaluation metrics is crucial for assessing the algorithm perfor-
mance in defect detection. Evaluation metrics should be chosen in a way that objectively
measure the algorithm’s accuracy and robustness. In practical industrial production, both
the accuracy of defect detection and the size of the model are crucial. When the detection
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accuracy of defects is too low, machines may make incorrect judgments, failing to accu-
rately identify defective workpieces. Additionally, large model sizes can pose deployment
challenges on terminal devices. Precision (P), Recall (R), and Mean Average Precision
(mAP) are commonly used as metrics to evaluate algorithm performance [4]. Furthermore,
to evaluate the complexity and size of the model, we can consider the number of Floating-
point Operations (FLOPs) and the number of parameters (Params). FLOPs quantify the
computational workload required for inference, while Params represent the number of
trainable parameters in the model. These metrics offer insights into the computational
efficiency and model complexity, which are essential considerations for deployment on
terminal devices and real-world applications.

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

mAP =
∑c

i=1
∫ 1

0 P(R)dR
c

(12)

where TP represents the number of correctly classified as positive samples; FP represents
the number of incorrectly classified as positive samples; and FN represents the number of
incorrectly classified as negative samples. Precision and recall are, respectively, denoted as
P and R.

3.4. Comparison with State-of-the-Art Models

We conducted comparative experiments with several mainstream detection algorithms
to validate the superiority of our proposed model, including two-stage algorithms such as
Faster R-CNN, as well as one-stage algorithms such as YOLOv5s, YOLOv7-tiny, YOLOv8s,
CG-Net, and FCCv5s.

In Figure 6, we visually compare our SCFNet (right) with other models on the NEU-
DET [10] dataset. Specifically, in the “Crazing” category, our model accurately detects
defects. Due to the indistinct features of the targets, other models such as Faster R-CNN
and YOLOv5s often lose significant texture information during feature extraction and
transformation. This can result in unreliable feature learning and lead to false alarms.
SSD and CenterNet models have weak feature extraction capabilities, resulting in missed
detections. In the “Inclusion” category, our model accurately detects two defects with
high confidence. Our algorithm achieves good visual results in “Patches,” “Pitted Surface,”
“Rolled-in Scale,” and “Scratches” without missing detections or false alarms. Compared
to other networks, our model successfully identifies defects with ambiguous features
(Crazing) and detects low-contrast defects (Inclusion in the sixth row of Figure 6) better,
demonstrating its outstanding capability in defect detection.

Table 1 presents the results. In our experimental results, it has been demonstrated
that our proposed lightweight and highly efficient steel surface defect detection network,
SCFNet, performs better on the NEU-DET dataset when analyzing the P, mAP50, mAP50:95,
model parameter count, and model computation complexity for the NEU-DET dataset,
with values of 0.876, 0.812, 0.469, 5.9, and 2, respectively. Among them, metrics P, mAP50,
and mAP50:95 perform the best, while the model parameter count and model compu-
tational complexity rank second. Compared to the current mainstream detectors, our
proposed model achieves a balance between lightweight design and high accuracy in
steel defect detection, achieving optimal precision with minimal model parameters and
computational complexity.
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Figure 6. Results of different models compared to SCFNet on NEU-DET [10] dataset. In the picture,
the red box represents “Crazing”, the yellow box represents “Inclusion”, the green box represents
“Patches”, the blue box represents “Pitted Surface”, the purple box represents “Rolled-in Scales”, and
the pink box represents “Scratches”.

Table 1. SCFNet algorithm performance comparison with other object detection algorithms on
NEU-DET [10] dataset.

Methods P R mAP50 mAP50:95 GFLOPs Params/M

Faster R-CNN [18] 0.615 0.865 0.76 0.377 135 41.75
CenterNet [50] 0.712 0.749 0.764 0.412 123 32.12

YOLOv5n-7.0 [51] 0.694 0.694 0.746 0.422 4.2 1.77
YOLOv5s-7.0 [51] 0.745 0.719 0.761 0.429 15.8 7.03
YOLOv7-tiny [25] 0.645 0.775 0.753 0.399 13.1 6.02

YOLOv8s [49] 0.768 0.726 0.795 0.467 28.4 11.13
YOLOX-tiny [52] 0.746 0.768 0.76 0.357 7.58 5.03
MRF-YOLO [53] 0.761 0.707 0.768 - 29.7 14.9

YOLOv5s-FCC [54] - - 0.795 - - 13.35
WFRE-YOLOv8s [55] 0.759 0.736 0.794 0.425 32.6 13.78

CG-Net [56] 0.734 0.687 0.759 0.399 6.5 2.3
ACD-YOLO [57] - - 0.793 - 21.3 -
YOLOv5-ESS [58] - 0.764 0.788 - - 7.07
PMSA-DyTr [2] - - 0.812 - - -
MED-YOLO [4] - - 0.731 0.376 18 9.54

MAR-YOLO [15] - - 0.785 - 20.1 -
SCFNet 0.786 0.715 0.812 0.469 5.9 2

Red bold indicates the top-ranking performance, while blue bold indicates the second-ranking performance.
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Further validating our proposed SCFNet across different defect categories, we con-
ducted comparison experiments with mainstream detection algorithms on the GC10-DET
dataset [59]. The specific experimental results and performance are shown in Table 2.

Table 2. Performance comparison of SCFNet algorithm and other object detection algorithms on
GC10-DET dataset [59].

Methods P R mAP50 mAP50:95 GFLOPs Params/M

Faster R-CNN [18] 0.579 0.656 0.652 0.293 135 41.75
YOLOv5n-7.0 [51] 0.729 0.666 0.699 0.366 4.2 1.77
YOLOv7-tiny [25] 0.707 0.657 0.697 0.344 13.1 6.02

CenterNet [50] 0.726 0.619 0.665 0.308 78.66 32.12
YOLOv8n [49] 0.704 0.65 0.684 0.365 8.1 3.01

YOLOX-tiny [52] 0.659 0.546 0.611 0.259 7.58 5.03
MAR-YOLO [15] - - 0.673 - 20.1 -

SCFNet 0.713 0.68 0.704 0.366 5.9 2

Red bold indicates the top-ranking performance, while blue bold indicates the second-ranking performance.

GC10-DET is a dataset of steel surface defects obtained from real industrial environments.
This dataset contains 3570 grayscale images of defects in steel plates. The experimental setup
is consistent with Section 3.2. According to Table 2, our proposed SCFNet achieves high
performance on the GC10-DET dataset, with the model parameter count and computational
cost only second to YOLOv5n. The SCFNet upholds detection accuracy while possessing a
smaller model size and lower computational cost, rendering it well suited for deployment on
terminal detection devices with limited computing capability.

3.5. Data Augmentation Module Discussion

Considering the limited availability and scale of publicly available datasets on in-
dustrial steel surface defects, training networks with limited data may result in lower
robustness and difficulty in detecting blurry samples. In order to investigate the impact
of various augmentation techniques on the accuracy of the model, we conducted data
augmentation on the steel surface defect dataset. The data are augmented by six dif-
ferent techniques, as illustrated in Table 3, including flipping transformation, shifting
transformation, adding noise transformation, adjusting brightness transformation, rotat-
ing transformation, and combining the above techniques. Each augmentation technique
doubled the dataset, increasing the original training set of 1440 images to 2880 images.

Table 3. Data augmentation results.

Methods Augment mAP50 mAP50:95

SCFNet Original 0.778 0.448
SCFNet Shift 0.785 0.45
SCFNet Noise 0.781 0.441
SCFNet Brightness 0.785 0.45
SCFNet Rotation 0.767 0.454
SCFNet Flip 0.812 0.469
SCFNet All 0.797 0.458

Red bold indicates the top-ranking performance, while blue bold indicates the second-ranking performance.

In Table 3, most data augmentation techniques resulted in varying degrees of im-
provements in the model performance, whereas rotation augmentation reduced the model
accuracy. This discrepancy could arise from inconsistencies in size ratios between the
rotated images and the original ones, resulting in the distortion of targets when forcibly
resized to a consistent size during network preprocessing. However, other data augmen-
tation methods showed improvements in results. Among them, flipping augmentation
achieved the highest accuracy improvement, with an mAP50 reaching 0.812. This might be
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because in steel defect detection, where defect features may not be prominent, techniques
like adding noise, adjusting brightness, and others might make it challenging for the model
to propagate gradients correctly; shift could alter image sizes, potentially causing feature
loss around the targets. However, flipping augmentation does not cause these issues.
Therefore, flip augmentation appears to maximize the detection performance of models on
the NEU-DET [10] dataset.

3.6. Ablation Study

To confirm the roles of each module, we conducted ablation studies on the NEU-
DET [10] dataset. Using YOLOv8n as a baseline, we replaced the backbone network for
feature extraction with the LEM to reduce the model complexity. As a final layer in the
feature extraction module, we introduce the ScConv module to enhance the ability to extract
features. We also employed BiFPN as a feature fusion network, retaining more original
information. As this network is a lightweight detector, ablation studies on the BiFPN and
ScConv modules are conducted on the LEM. Table 4 shows the experimental results.

Table 4. Ablation experiment results on the NEU-DET [10] dataset.

Model LEM ScConv BiFPN mAP50 mAP50:95 GFLOPs Params/M

Baseline - - - 0.773 0.444 8.1 3.01
Baseline � - - 0.783 0.457 5.7 1.9
Baseline � � - 0.787 0.455 5.7 1.91
Baseline � - � 0.793 0.455 5.9 1.99
Baseline � � � 0.8 0.456 5.9 2

Red bold indicates the top-ranking performance, while blue bold indicates the second-ranking performance.

LEM: By replacing the feature extraction module of YOLOv8n with the LEM, the
number of model parameters decreased from 3.01 M to 1.9 M, while the gigaflops (GFLOPs)
decreased from 8.1 to 5.7. Additionally, mAP50 increased from 0.773 to 0.783, and mAP50:95
increased from 0.444 to 0.457. The LEM utilizes Depth-Wise convolution and SE modules
for feature extraction, with fewer connections between different blocks and the avoidance
of branching structures. A replacement of the backbone network of YOLOv8n with the
LEM improves the model detection accuracy while maintaining a lightweight design and
reducing the computational requirements.

ScConv Module: ScConv operates on the deepest layer of feature maps, removing
redundant spatial and channel information from feature maps and enhancing their repre-
sentational capacity. Steel surface defect features are not prominent, leading to potential
false positives or negatives. By strengthening the representational capacity of the feature
maps through the ScConv module, the model can more easily detect steel surface de-
fects. Figure 7 illustrates a comparison of heatmaps with and without the ScConv module.
Heatmaps depict the model prediction results for each pixel, typically using colors to
indicate the level of confidence associated with each pixel. Warmer tones, such as red, are
used to represent pixels with higher confidence, while cooler tones, such as blue, are used
to represent pixels with lower confidence. Additionally, heatmaps aid in analyzing model
detection results, highlighting areas that are easier to detect or overlook. Features of defects
such as crazing and patches are not prominent, making them difficult for the model to
recognize. With the addition of the ScConv module, however, the representational capacity
of the feature maps is enhanced, thereby improving the model detection ability. In the
ablation experiments, adding the ScConv module increased the model mAP50 from 0.783
to 0.787, with a minimal increase in the model parameters and computational load. As a
result, the ScConv module has a low number of model parameters and a low computational
load, but significantly enhances the network’s feature representation capability, resulting in
a more accurate model.
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Figure 7. Comparison of heatmaps under ablation of the ScConv module (from the NEU-DET [10]
dataset). In the picture, the red box represents “Crazing”, the yellow box represents “Inclusion”, the
green box represents “Patches”, the blue box represents “Pitted Surface”, the purple box represents
“Rolled-in Scales”, and the pink box represents “Scratches”.

BiFPN: In Table 4, the comparison between the second and fifth rows clearly demon-
strates the effectiveness of using BiFPN. The mAP50 increased from 0.783 to 0.793 (from
the second to the fourth row with BiFPN) and from 0.787 to 0.8 (from the third to the
fifth row with BiFPN), while the increase in the model parameters and computational
load is minimal. The BiFPN uses unique skip connections and weighted feature fusion
mechanisms, allowing the neck network to reuse feature maps and better combine semantic
and texture features. This improvement enhances the detection accuracy. Using fewer
parameters, BiFPN significantly improves the accuracy by slightly increasing the computa-
tional load and parameter count, resulting in a better balance between lightweight design
and accuracy.

4. Discussion

Some defective images restrict the detection performance, as depicted in Figure 8
showing cases of detection failure. Defects with low contrast and unclear features in steel
materials can lead to missed detections (see Case 1 and 2 of Figure 8). Additionally, there
exist defects in steel materials that are highly similar to the background, which can result in
false detections (see Case 3 and 4 of Figure 8). In our future work, we intend to incorporate
a learnable image enhancement module into the model to improve the detection accuracy
of defects with low contrast. Furthermore, we plan to continue researching more effective
feature extraction modules to enhance the effectiveness of our approach.
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Figure 8. Some failure cases of SCFNet (from the NEU-DET [10] dataset). In the picture, the red box
represents “Crazing”, the yellow box represents “Inclusion”, the purple box represents “Rolled-in
Scales”, and the pink box represents “Scratches”.

5. Conclusions

Addressing ambiguous defects and low-contrast defects in steel, while accurately
identifying defects with similar features but different categories, is crucial for modern
industrial production. This article proposes a lightweight steel defect detection algorithm
called SCFNet to tackle the aforementioned challenges. To achieve a lightweight defect
detection model, SCFNet utilizes the LEM as a feature extraction module. This module is
based on Depth-Wise convolution with channel weighting, resulting in stronger capabilities
in extracting ambiguous features. We use convolutional structures based on spatial and
channel recombination to process the deepest layer feature maps, reducing redundancy
and enhancing the model feature representation capability. This module facilitates effective
feature representation while disregarding noise information. To preserve more defect
texture information, a weighted bidirectional feature pyramid fusion structure is adopted
in the neck of the network for feature fusion. In addition, it retains more original content by
employing a more effective information propagation mechanism. The experimental results
show that on the NEU-DET dataset, compared with most deep learning detection methods,
the SCFNet algorithm achieves the highest mAP50 metric of 81.2%, the highest mAP50:95
metric of 46.9%, the smallest model parameters of 2 M, and the least model computation of
5.9 GFLOPs. SCFNet also achieves the highest accuracy and the smallest computation and
model parameters on the GC10-DET dataset. SCFNet demonstrates excellent performance,
making it more suitable for practical applications in industrial production.
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Abstract: Continuous monitoring of structural health is essential for the timely detection of damage
and avoidance of structural failure. Guided-wave ultrasonic testing (GWUT) assesses structural
damages by correlating its sensitive features with the damage parameter of interest. However, few or
no studies have been performed on the detection and influence of debris-filled damage on GWUT
under environmental conditions. This paper used the pitch–catch technique of GWUT, signal cross-
correlation, statistical root mean square (RMS) and root mean square deviation (RMSD) to study
the combined influence of varying debris-filled damage percentages and temperatures on damage
detection. Through experimental result analysis, a predictive model with an R2 of about 78% and
RMSE values of about 7.5× 10−5 was established. When validated, the model proved effective, with
a comparable relative error of less than 10%.

Keywords: ultrasonic; guided wave; RMS; damage detection

1. Introduction

High economic structural assets in aerospace, shipbuilding, oil, and gas are con-
structed using thin-wall metallic materials. The structural assets convey products prone
to environmental hazards that could happen through structural failure [1,2]. Failures in
structures are deeply traced to undetected damage. Cracks and corrosion are forms of
damage that are mainly studied individually using guided-wave ultrasonics [3]. Damage
is a state of structure that differs from its pristine state [4]. It is an indispensable factor
affecting the structure’s service lifecycle and its reliability for intended operational services.
Damage may be initiated in structural material during the manufacturing process at the
micro-level and progresses into the macro-level during the service time of the structure.
Formed damage, such as a crack in structures, could accumulate debris over time and
accelerate structure deterioration, paving the way for catastrophic failure. The accumulated
debris causes crack closure, affects crack propagation and enhances pitting corrosion activi-
ties, as explained in [5,6]. The prime effects of corrosion and crack on metallic structures are
thickness thinning, rigidity reduction, integrity and load-carrying-capacity degradation [7],
shortening the structure’s service lifecycle and making it unreliable. Hence, continuous
monitoring of the structural assets with cost-effective damage-sensitive NDT devices and
techniques is a priority to avert catastrophic failure, suggest timely maintenance, and save
the economy. Most of the previous studies have been on the monitoring and prediction
of empty cracks (cracks without debris or dry cracks) in structures using various struc-
tural health-monitoring techniques [8–14]. In recent decades, the guided-wave ultrasonic
technique has received more attention than other NDT techniques for SHM [15]. The high
interest in GWUT is due to its potential for long-range inspection, non-invasive inspection,
the lightweight and small size of the ceramic PZT, and cost-effectiveness. It has been suc-
cessfully used for the detection and localisation of various damages in structures [9,15–18].
The effect of environmental and operational conditions on the ultrasonic guided wave,
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especially temperature, has been well studied [19,20]. However, the influence of debris-
filled damage cum temperature variation on the guided wave has not been studied. The
influence of debris-filled damage of different percentages under temperature variation
is meticulously studied in this paper using statistical RMS and RMSD of the captured
response signals from the pitch–catch ultrasonic guided-wave configuration. The suitability
of RMS is because the guided-wave ultrasonic used in SHM is a continuous propagation of
energy from one point of the structure to another. And, the sensitivity of the signal’s energy
to damage is significantly higher than the amplitude, since it is the square of amplitude
by value.

2. Theory

2.1. Structural Health Monitoring (SHM)

Structural health monitoring (SHM) via an ultrasonic guided wave uses an embedded
ceramic piezoelectric (PZT) transducer to transform an oscillating excitation signal into an
actuating signal that would cause a stress wave to propagate in the host structure through
surface pinching. The propagating wave interacts with the structure and becomes captured
as a response signal by another ceramic PZT called a sensor [21]. The PZT operates through
a linear transduction mechanism as expressed in the linear constitutive equations in [9,15].

Actuation : Sij = sE
ijklTkl + dkijEk (1)

Sensing : Di = diklTkl + εT
ikEk (2)

where Sij and Tkl , are the strain and stress mechanical variables, respectively. Di and
Ek, are electrical displacement and electrical field variables, respectively. sE

ijkl , is the me-

chanical compliance at zero electric fields, εT
ik, is the dielectric constant at zero mechanical

stress, and dikl and dkij, denote a coupling between the electrical and mechanical variables.
Equations (1) and (2) are actuation and sensing equations. Hence, the sensor PZT captures
the strain effect of the propagating stress wave and transforms it into a signal voltage. The
sensor’s output voltage is proportional to the amount of the strain effect caused by the
propagating wave and the thickness of the sensor.

2.2. Wave Motion in Thin Plate

The ultrasonic wave propagates as a distributed stress on a thin plate. The stress
causes material particles to vibrate and transfer energy from one point to another as waves.
The waves are guided to propagate within the boundaries of the structure. The motion of
the vibrating particle in the plate is governed by Equation (3). The boundary condition of
surface traction force is in Equation (4).

μ.ui.jj + (λ + μ)uj.ji + ρ fi = ρ.
..
ui (i, j = 1, 2, 3) (3)

ti = σjinj (4)

where u is the displacement of the plate via the particle motion, λ and μ are Lame’s
constants, ρ is the density of the plate particles,

..
ui is the acceleration of the vibrating

particles, fi is the force body on the material, ti is surface tractions at the normal nj,
and σji, is the stress on the plate surface. It is considered zero for a traction-free body
condition. The solution to Equation (3) by the method of potential separation, as in [22],
results in characteristics frequency equations of lamb wave grouped into two modes as
in Equations (5) and (6). The terms of the equations are as expanded in Equations (7)
through (9).

Symmetric modes :
tan(qb )
tan pb

=
4k2 pq

(p2 − k2)
2 (5)
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Anti-symmetric modes :
tan(qb)
tan(pb )

= −
(

p2 − k2)2
4k2 pq

(6)

where
k =

2π

λw

p =

√√√√ ω2

c2
L −
(

ω
Cp

)2 (7)

q =

√√√√ ω2

c2
T −
(

ω
Cp

)2 (8)

Cg =
∂ω

∂k
=

Cp

1− ω∂Cp
k ∂ω

(9)

The velocity of the propagating wave is related to the lame’s constant and mechanical
properties of the material, as expressed in Equations (10) and (11).

CT =

√
μ

ρ
=

√
E

2ρ(1 + ν)
(10)

CL =

√
λ + 2μ

ρ
=

√
(1− ν)

(1 + ν)(1− 2ν)

E
ρ

(11)

where CT is the transverse velocity, and CL is the longitudinal or radial velocity of the wave
in a solid medium. Cp is the phase velocity of lamb wave, and ρ, E, and ν are the material
density, elastic modulus, and Poison ratio, respectively. It is pertinent to observe that the
velocity of the propagating wave depends on the mechanical properties of the waveguide.
Hence, any consequential effect on the material would affect sensitive parameters of the
propagating wave, especially its energy being transferred as the wave propagates.

2.3. Wave Dispersion Curve

In an active structural health-monitoring (SHM) mode, the actuator pinches the struc-
ture to create probing waves when excited with an oscillating electrical voltage. The
frequency of the probing signal is often selected from the dispersion curve. The dispersion
curves are a set of curves that represent the propagation of wave modes in each waveguide.
It describes the relationship between wave velocity (group or phase) and the excitation
frequency [18]. The dispersion curve is determined using Disperse software or a Dispersion
calculator versionV2.3 by providing the necessary properties of the plate material [23]. The
dispersion curves of the 3.00 mm mild carbon steel plate with properties listed in Table 1
are in Figure 1.

Table 1. Mechanical properties of mild carbon steel.

Material
Young

Modulus, E
(N/m2)

Poisson’s
Ratio, v

Density, ρ
(kg/m3)

Length, L
(mm)

Width, W
(mm)

Thickness, Th
(mm)

Mild
Carbon steel 2× 1011 0.289 7800 500 300 3

From the dispersion curves, only the fundamental modes exist when the frequency is
below 500 KHz, but beyond it, multi-modes exist. Also, the fundamental symmetric mode
possesses higher velocity, which is relatively more constant at the early frequency range
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than the fundamental asymmetric mode. The selection of probing frequency is critical for
damage detection. There are some criteria used to select an appropriate probing frequency.
One of the criteria is that the frequency must be sensitive to the targeted damage and
possess enough energy to propagate the needed distance. An excitation frequency with the
largest RMS is selected through experimental frequency sweep because it possesses more
energy than any other and could travel the longest distance. Recall the rule of thumb for
damage detection, which states that damage would stand a higher chance of detection if it
is larger than 1

2 λ of the probing wave [24]. Hence, it is necessary to compare the probing
wave’s wavelength with the targeted damage’s length. The wavelength of the excitation
frequency can be determined using Equation (13).

v = f × λ (12)

λ = υ/ f (13)

 
(a) 

 
(b) 

Figure 1. (a) Phase dispersion curve, (b) Group dispersion curve.
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2.4. Wave–Damage Interaction Effects and Inspection-Transducer Configuration

Guided-wave ultrasonic inspection could be performed using active or passive ul-
trasonic configuration techniques. The exciter is vital in guided-wave inspection, which
determines if a configuration is active or passive. When damage generates the propagat-
ing wave, a passive mode is configured [21], and all the embedded transducers would
function like human ears and listen to pick up the wave. The active mode is configured
when the propagating wave is due to the excitation of the actuator with an oscillating
electrical voltage of a given frequency [21,25–27]. The vibration of the actuator causes
atoms of the structure around its installation to start displacing their positions temporarily.
This mechanism transfers wave energy from one point of the structure to another. The
propagating stress wave is constrained by the boundaries of the structure (waveguide),
hence the guided wave. The wave interaction with the structure, especially with damage or
discontinuity, causes scattering, reflections, mode conversion, and some energy absorption
at the damaged spot [28]. Figure 2b depicts the effect of wave–damage interaction. Fig-
ure 2b shows that the through-transmitted wave is much smaller than the edge-scattered
wave. Hence, capturing the edge-scattered wave would be more valuable than the through-
transmitted wave. Also, depending on the nature of the damage, the through transmitted
is the resultant wave after absorption, back reflection, and diffraction of the incident wave,
which is usually small in value.

(a) 

 
(b) 

Figure 2. (a) Wave–damage interaction effects. (b) Typical wave–damage interaction effect.

All the effects mentioned above make it possible for damage to be detected and
localised using guided-wave techniques and a sensitive wave parameter called the signature
or feature. The extent of wave reflection or scattering depends on the encountered damage’s
nature, shape, size, and orientation. Pitch–catch and Pulse–Echo transducer configuration
topology are often used in the active-mode inspection technique, as shown in Figure 3. The
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choice of either topology depends on the nature of the damage. This study uses pitch–catch
configuration topology to acquire wave signals interacting with the damaged and scattered.

Figure 3. Active-mode transducers configuration topology.

2.5. Temperature Effect on Guided Wave

Damage and temperature affect mechanical structures differently but collectively
influence structural degradation [29,30]. The core influence of temperature on a mechan-
ical structure is thermal expansion and assisted degradation of the structure’s strength
and stiffness. In particular, an increase in temperature causes a decrease in the elastic
modulus of a metallic structure, and features of the propagating wave depend directly
on most of the structure’s mechanical properties, especially the elastic modulus, as in
Equations (10) and (11). Assuming a linear dependence of the wave characteristics on
temperature, the equation below would be suitable for the study.

S(T) = S(T0) +
∂S(T)

∂T
ΔT (14)

where

S = any characteristics parameter of the wave.
S(T0) = the value of the wave feature at a reference temperature.
T = current-state temperature of the structure.
T0 = reference temperature of the structure.

ΔT = (T − T0)

∂S(T)
∂T = the parameter sensitivity to temperature.

2.6. Signature/Wave Feature Extraction and Processing

Damage detection and identification largely depend on the approach and signal-
processing technique adopted. The captured response signal carries sufficient information
about the structure. Wave amplitude is one of the sensitive parameters of the wave and
could be easily extracted from the signal. The damage in the structure could modulate
the signal amplitude to either higher or lower values. However, the signal energy is more
sensitive to damage and is proportional to the square of its amplitude. Hence, we adopted
root mean square (RMS) and root mean square deviation (RMSD) to extract the energy
feature of the response wave and determine the damage index. A model for predicting the
debris-filled damage under temperature variation will be established through the extracted
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feature of the wave. The average RMS of the two sensors’ signals used in the design is
given in Equation (15), and the relative RMS is expressed in Equation (16).

XARMS =
1
2

((√
1
N ∑N

i=1 x2
i

)
PZT2

+

(√
1
N ∑N

j=1 x2
j

)
PZT4

)
(15)

RRMS =
XARMS
ERMS

(16)

where

Erms = the RMS of the excitation signal.
x2

i and x2
j are the captured response signals from PZT2 and PZT4, respectively.

N is the number of samples of the signal. Hence, the RRMS is computed for each study
case and used to establish the predictive regression model for each damage situation. The
damage index is computed by determining the RMSD between the healthy state of the
structure and its damaged state. Equation (17) expresses the damage index.

DISC = ∑M
i=1

√√√√√√∑
(

RRMS
D
i − RRMS

H
i

)2

∑
(

RRMS
H
i

)2 (17)

where
RRMS

D
i is the relative RMS of the sensors’ captured response signals in the damaged

state of the plate, while the RRMS
H
i is the healthy counterpart of the sensors’ response signals.

3. Materials and Methods

3.1. Material Preparation

The materials used in the study are mild carbon steel plates. Mild carbon steel has a
low carbon percentage. It is tough and ductile, making it a predominantly used material
to construct essential and critical structures of high economic value, such as oil and gas
pipelines, rail tracks, and bridges. The dimensions of the mild carbon steel plate used in
this study are 500.00 mm× 300.00 mm× 3.00 mm. Damage of 40.00 mm length, 5.00 mm
width, and varying depth of 1.00 mm to 2.50 mm at an interval of 0.50 mm, as depicted in
Figure 4, was carefully machined at the mid-distance between the actuator, PZT1 and sensor,
and PZT3. Circular PZT transducers were used due to their omnidirectional capability of
radiating and receiving response signals, unlike rectangular PZTs, which are orientation
dependent [31]. The variation in the damage depth was used to simulate the material-
thinning thickness that corrosion activities would cause. Table 1 reveals the mechanical
properties of the used plate material. Wave reflection from the edges of the plate is known
to contribute to the complexity of the response wave. In particular, the edge-reflected wave
would cause mutual interference with the response wave of the actuated signal. Hence,
DAS modelling air-dried clay [32] is installed around the edges of the plate to absorb any
wave reflection from it. Also, the transition of random vibration between the plate and the
working table was minimised by placing soft foams between the two.

61



Processes 2024, 12, 957

Figure 4. (a) The implemented damaged plate with bonded PZTs, (b) the calibrated empty damage,
and (c) the progressively filled damage.

3.2. Experimental Setup

Pitch–catch configuration topology was adopted and implemented using four ceramic
PZT transducers from Mouser Electronics, Wycombe, UK (PZT: 7.000 mm× 0.195 mm) as
shown in Figure 4. A circular type of PZT transducer was used due to its omnidirectional
capability in capturing response signals. Before transducers were installed, acetone was
used to clean the plate’s surfaces, and it was allowed to dry up for about 10 min. The
transducers were embedded on the top surface of the plate using epoxy adhesive. The
curing time of the epoxy adhesive is 150 min and has an operating temperature range of
−55 ◦C and 120 ◦C [33]. However, we allowed 180 min to ensure the proper curing of
the adhesive. One transducer, PZT1, was wired as the actuator to generate the probing
wave, while the remaining three transducers were used as sensors. The sensor PZTs were
arranged and named as left sensor (PZT2), middle sensor (PZT3), and right sensor (PZT4)
when viewed from the actuator’s position. The epoxy adhesive was lightly applied to
bond the PZTs on the top surface of the plate and to eliminate the high impedance that
air would have introduced. The properties of the ceramic PZTs are in Table 2. The PZTs
are installed 102.00 mm from the end edges of the plate and at least 100.00 mm from the
side edges. The PZT1 is 300.00 mm separated from the PZT3. The distance between the
middle sensor, PZT3, and either of the two sensors is 50.00 mm. The excitation signal
was generated using an arbitrary function generator (TG550 Function Generator), while
the response signals were visualised and registered using an Agilent Technologies Mixed
Signal Oscilloscope (MSO-X 3024A), with a sampling frequency of 1 MHz. The experiment
study was conducted in 3 phases.

Table 2. The properties of PZT used in the study are PZT-5A.

Parameter Unit Min. Value Typical Value Max. Value

Diameter of ceramics mm 6.80 7.00 7.20
Thickness of ceramics μm 175 195 215

Curie temperature Tc 340
Piezoelectric constant pC/N 420

Elastic compliance m2/N 19.6× 10−12

Serial resonance frequency fs kHz −5% 285 +5%

3.3. Study Phases

Phase I: To ensure that the testing rig works and proper excitation frequency is
selected and used for the study, PZT1 was excited with different centre frequencies of an
amplitude-modulated wave. The modulating frequency is internal 400 Hz of the arbitrary
function generator, and the different centre frequencies are 100 KHz, 180 KHz, 280 KHz,
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and 360 KHz. Each modulated wave was used to excite the PZT1 5 times and averaged to
ensure repeatability and minimise the random-noise effect. The signals captured by PZT2
and PZT4 were processed using Equations (15) and (16) to determine which excitation
frequency offered the maximum signal energy. The signal captured by PZT3 was processed
using the cross-correlation method to determine the time of flight (ToFE) of the wave
packets and compared it with the theoretically determined time of fight, (ToFT).

Phase II: The selected excitation frequency was used to acquire baseline signals by
PZT2 and PZT4 under the influence and no influence of temperature on the wave signal at
the healthy state of the plate. A silicone heat mat and K-type thermocouple temperature
sensor were integrated into the testing rig to generate heat and acquire the plate’s tempera-
ture, respectively. A control circuitry was designed using Arduino Mega and solid-state
relay (SSL) to regulate the heating rate of the silicone heat mat and ensure that the targeted
temperature value was achieved and maintained before baseline response signals were
acquired and recorded. The temperature was varied from 30 ◦C to 70 ◦C at an interval of
5 ◦C.

Phase III: After baseline signal acquisition, the healthy plate was replaced with an
unhealthy plate that had damage dimensions, as depicted in Table 3. The response signals
were captured by PZT2 and PZT4 after they had interacted with the following:

Empty damage at influence and no influence of temperature.
Damage filled with different percentages of corrosion debris at influence and no

influence of temperature. The testing rig used is as in Figures 4 and 5.

Table 3. The damage dimension.

S/N Damage Depth (mm) Damage Length (mm) Damage Width (mm)

1 1.00 40.00 5.00
2 1.50 40.00 5.00
3 2.00 40.00 5.00
4 2.50 40.00 5.00

Figure 5. The experimental setup for data acquisition.

4. Results

4.1. Excitation Frequency Selection

In structural health monitoring, SHM, inspection frequency is essential for detecting
damage. As stated in Phase I, two approaches were used to determine the excitation
frequency for the studies. In the first approach, PZT1 was excited with different centre
frequency signals, and the corresponding response signals for each frequency were captured
using the PZT2 and PZT4 sensors. The following four frequencies, 100 KHz, 180 KHz,
280 KHz, and 360 KHz, were used to excite the actuator. The response signals captured
by the sensors were processed for the relative average RMS value as in Equation (16). The
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response signals were sampled at 1 MHz to avoid signal aliasing due to under-sampling,
according to Nyquist’s theory in Equation (18).

fs ≥ 2× fmax (18)

where fmax and fs are the maximum frequency of the signal and the sampling frequency,
respectively. Figure 6 is the plot of the computed result. The response signal of excited
180 KHz exhibited the maximum relative RMS value compared to others. The RMS value
starts decreasing shortly after 180 kHz. The second approach computed the response-signal
time of flight (ToF) generated using 180 KHz and captured by PZT3. ToF is a crucial
feature of guided-wave ultrasonic for damage localisation. In a pitch–catch configuration,
ToF is the time taken for the excited wave to propagate from the actuator to the sensor.
Different methods are used to determine ToF, but cross-correlation ensures a better result
because it compares the similarity between two wave signals of the same length and
shape and eliminates spurious reflections caused by the structure boundaries [34,35]. Also,
velocity is a needful feature of the wave that depends on and changes with variations in
the structure parameters. The knowledge of the propagating wave velocity is essential,
especially for damage localisation. From the group-velocity dispersion curve generated
using the mechanical parameters of the plate material and a dispersion calculator [36], the
fundamental symmetric mode was observed to be the fastest and non-dispersive wave
up to 500 KHz, with relatively stable group velocity, as shown in Figure 1b. The group
velocity of the wave at 180 KHz is 5330.7 m/s. The signal’s theoretical time of flight (ToF) is
computed using the group velocity and the actuator–sensor distance. Experimentally, the
excitation signal is cross-correlated with the response signal captured by the PZT3 sensor
to obtain the ToF of the signal using Equation (19). Figure 7 shows the cross-correlation
between the excitation and captured response signals.

Ri−j =
∑(xi(t)− x)(yj(t)− y)√

∑(xi(t)− x)2 ∑(yj(t)− y)2
(19)

where

xi(t) = excitation signal of the i-sensor.
yi(t) = response signal of the j-sensor.
x= mean of the excitation signal.
y = mean of the captured response signal.

Figure 6. The relative average RMS of response signals captured by PZT2 and PZT4 against the
excitation centre frequency.
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The relationship between the propagating wave velocity, distance covered, and ToF is
expressed in Equation (20). The equation defines the theoretical time of flight, ToFT , as

ToFT =
da−s

V
(20)

where da−s is the distance between the actuator, PZT1, and the middle sensor, PZT3. The
distance is 300.00 mm. The group velocity of the propagating wave packet is V. From the
group-velocity dispersion curve of Figure 1b, the nearly stable group velocity at 180 KHz
frequency is 5330.7 m/s. Using Equation (20), the theoretical ToF of the signal is

ToFT =
0.3

5330.7
= 5.6278× 10−5s (21)

By cross-correlating the excitation signal with the response signals captured by the
PZT3 sensor, we observed that the excitation signal lags the response signal by 261 match-
ing index values, as shown in the resultant cross-correlated signal of Figure 7c. The
261 matching index value is the point at which the two signals indicate the maximum
peak of similarity. The matching index value is then converted into time of flight using
Equation (22).

ToFE =

∣∣∣∣ (Imax − Itotal)

Itotal

∣∣∣∣× t (22)

where

Imax = matching index value of the maximum peak of the correlated signals.
Itotal = total matching index value of the correlated signal.
t = sampling time in seconds.

ToFE =

∣∣∣∣ (261− 5000)
5000

∣∣∣∣× 0.001= 5.22× 10−5s. (23)

Relative Error, R.E =

∣∣∣∣ToFE − ToFT
ToFT

∣∣∣∣ = 0.072 or 7.2% (24)

Hence, the relative error percentage between the theoretical and experimental ToF is
7.2%. The result signifies that the system setup works well, and the stress wave propagates
as designed. Therefore, the S0 probing frequency of 180 KHz is selected to further the
studies. The choice of the S0 mode also encompasses its in-plane displacement that contains
energy for long coverage inspection, unlike the A0 mode, which would leak energy to
surroundings through out-of-plane displacement [36].

65



Processes 2024, 12, 957

 

Figure 7. (a) The excitation signal, (b) the response signal, and (c) the cross-correlation of the excitation
signal with the response signal captured by PZT3.

4.2. Baseline Signal Acquisition

Acquisition of the baseline signal is vital in structural health monitoring, as it helps to
quickly detect a deviant behaviour of the structure at an early stage. The PZT2 and PZT4
captured the response signals that were excited using PZT1. In the absence of temperature
variation, 10,000 samples were captured and processed for their RMS values. The relative
average RMS of the two sensors’ response signals is 2.236× 10−3. The experiment was
repeated when the heat source was activated. The plate temperature was raised from 30 ◦C
to 70 ◦C at an interval of 5 ◦C. At each temperature level, response signals were captured
by the sensors PZT2 and PZT4. The relative average RMS value of the captured response
signals was computed and plotted against temperature variation, as shown in Figure 8.
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Figure 8. The relative RMS response of the plate under varying temperatures.

Figure 8 shows that, as the temperature of the plate increases, the corresponding
computed relative average RMS of the sensors decreases. This could be attributed to an
expansion effect of heat on the material and variation of the mechanical properties of the
plate as its body temperature increases, especially the elastic modulus that is very sensitive
to temperature. The elastic modulus of steel decreases with an increase in temperature,
and lamb wave features depend on it for propagation [37]. The thermal differential effect
between two response intervals decreases as the temperature increases, leading to a general
polynomial response behaviour, as depicted in Figures 8 and 9. Figure 9 is the Power Spec-
trum of the PZT2 sensor, showing that the signal power decreases as the plate temperature
increases. It could be said that guided-wave amplitude is thermally sensitive and decreases
due to the superposition of the guided wave with the thermally induced stress wave in
the structure. An empirical predictive model for a thermally influenced guided wave is
deduced by fitting the measured values. The predictive model is Equation (25) with an
RMSE of 5.012× 10−6 and an R2 of 0.9814 when compared with the measured signal. The
empirical predictive model is good since it could explain about 98% of the variation in the
measured signal due to temperature increase.

f(T) = A1T2 − A2T + C (25)

where T is the body temperature of the plate,

A1= 7.687× 10−8, A2= 9.815× 10−8 and C = 0.001978

f(T) = 7.687× 10−8T2 − 9.815× 10−8T + 0.001978
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Figure 9. Power spectrum of the captured response signals at different temperatures by PZT2.

4.3. Depth Variation Response

The influence of damage with varying depths on the guided wave was studied. As in
Table 3, crack damage of varying depths was machined mid-distance between the PZT1
and PZT3 positions. The distance between the actuator and the sensors is 300.00 mm.
The selected inspection frequency is 180 KHz of 29.615 mm wavelength and propagates
with a group velocity of 5330.7 m/s2. The wavelength of the inspecting wave can detect
the damage sufficiently since the damage has the possibility of detection if its length is
at least greater than 1

2 λ of the inspecting wave [24]. The response signals captured by
PZT2 and PZT4 for each damage depth were analysed for relative average RMS values.
From Figure 10, we observed that the average relative RMS value of the response signals
increases as the depth of the damage increases. The increase in RMS values implies that
the scattering effect of the response signal increases with damage depth. The captured
scattered waves are probably from the tips of the damage, as seen in Figure 2b. And, the
two sensors were installed to capture scattered and diffracted wavefields from the tips of
the damaged. The result suggests that more incident waves are diffracted as the damage
depth increases. Although, it is observed that the response value is less than the healthy
state value when the damage depth is less than half the thickness of the plate, suggesting a
combined effect of attenuation and scattering being more pronounced than wave scattering
at the damage tip. It is noted that the scattering effect due to the shallowest depth is about
0.26% of the incident wave, while it is about 0.48% for the deepest depth.

The relationship between the damage depth and the response signal is linear, as in the
deduced empirical predictive model in Equation (26), with an R-squared value of 0.9381
and an error value of 1.574× 10−4 when compared with the measured data.

f(d) = B1 × d + B0 (26)

where d is the damage-depth value in mm, B1 = 7.747× 10−4, and B0 = 4.3× 10−4.
It was observed that, when the damage depth is about half the structure thickness or

less, the relative RMS of the responses is less than that of the healthy state of the structure.
But, in the case of the damage depth being greater than half the thickness of the structure,
the relative RMS response signal is greater than that for the healthy state of the structure.
Hence, the model could predict damage depth greater than half of the structure’s thickness
more accurately than damage depth less than half the structural thickness.
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Figure 10. The relative RMS response of the incident wave at varying crack depth.

Recall that the response value of the system in a healthy condition is 2.236× 10−3,
which is the baseline signal value. Unhealthy responses are noted as the responses captured
when damage exists in the plate. The root mean squared deviation (RMSD) between the
healthy and unhealthy state of the plate is computed and plotted in Figure 11. It was
observed that the percentage of the RMSD value decreases as the damage depth increases.
As the guided wave interacts with the damaged area, some of its energy is dissipated
through various mechanisms, such as scattering, reflection, and mode conversion. The
deeper the damage, the more energy is absorbed or redirected away from the sensor.
This is manifested in the decreased value of RMSD as the depth increases. An empirical
predictive model for detecting damage depth due to deviation from the baseline signal
value is deduced and expressed in Equation (27) with an R-squared value of 0.8866. From
Equation (27), it implies that, beyond the damage depth of 2.748 mm, the damage-response
deviation becomes negative. This change in value sign could serve as a great deal of alarm
for system stoppage to avoid abrupt failure of the system, as it signifies that the structure is
in the worst health state when compared with its pristine state of health.

f(
.
d) = C1 ×

.
d + C0 (27)

where
.
d = damage-depth value in mm. C1 = −24.44 and C0 = 67.16

Figure 11. The percentage change in the relative RMS as crack depth increases.
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4.4. Temperature Influence on Empty Damage Response of Guided Wave

Two damage depths, 1.50 mm and 2.00 mm were selected. The plate temperature
varied from 35 ◦C to 65 ◦C at an interval of 10 ◦C. At each targeted temperature stage,
the response signals were captured by PZT2 and PZT4 sensors, and RMS values were
processed. Comparing the results in Figures 12 and 13 showed a variation in the RMS
signal value as the temperature increased. The RMS value of the response signal decreases
as the temperature increases due to the dependence of the wave on the material parameter
for propagation, especially on the material elastic modulus. The percentage of RMSD
was computed and plotted against the temperature variation and depth, as shown in
Figure 14. A linear predictive model of Equation (28) was deduced through curve fitting
of the points. An R2 value of 0.8614 and an RMSE value of 1.377 were obtained when
the model result was compared with the actual RMSD. This implies that the model could
explain more than 86% variation in the response signal caused by temperature and damage
depth. Also, the decrease in the RMS value still complies with the trend of elastic material
modulus variation, when the temperature of the material is increased. This still suggests the
dependence of guided waves on material parameters and responsiveness to its variations.

f (T, d) = p1 ∗ T + p2 ∗ d + p0 (28)

where d is damage depth, T is the temperature of the material, and p1, p2 and p0 are
−0.2669, 12.69 and 21.96, respectively.

Figure 12. The effect of temperature on 1.5 mm damage depth.

Figure 13. Temperature effect on 2 mm damage depth.
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Figure 14. Surface plot of the combined influence of damage depth and temperature.

4.5. Effect of Debris-Filled Damage on the Response Signal

The testing rig remains the same, but the damage is gradually filled with corrosion
debris. The debris filled the damage lengthwise at an interval of 20%, starting from 20%
to 80% of the damage length. At each increased interval of the debris, the response wave
is captured and used to compute the relative RMS value and RMSD. Figure 15 shows
that debris-filled damage could cause the response signal to either increase or decrease.
When the damage depth is less than or equal to half of the plate thickness, the debris
damage index decreases with the increasing debris percentage. But, when the damage
depth is greater than half of the plate thickness, the debris damage index increases, as the
filled debris percentage increases. This suggests that response wave scattering increases
as the damage depth filled with debris increases. Table 4 and Figure 16 compares the DI
of a specified empty damage depth with its debris filled to obtain the debris-fill factor.
This factor depicts the intensity of debris accumulated by a given damage depth. Hence,
as the damage depth increases, the debris factor increases, which suggests more debris
accumulation in the damage. From the result, debris in the damage tends to amplify the
response wave signals, suggesting that incident wave scattering increases as the debris
percentage and the damage depth increase simultaneously.

Figure 15. The effect of debris-filled damage on the guided wave.
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Table 4. Comparing empty and debris-filled DI.

Crack Depth (mm) Empty Damage DI Debris-Filled Damage DI Debris Factor

1.00 0.408000000 0.7058892961 1.730120824
1.50 0.367800000 0.6449988693 1.753667399
2.00 0.114700000 0.6519333363 5.683812871
2.50 0.085000000 0.5202911002 6.121071767
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Figure 16. Debris-filled damage-depth factor.

4.6. Influence of Temperature and Debris-Filled Damage on Guided-Wave Response

The testing rig for 1.5 mm damage depth was maintained, but the temperature of
the plate was varied gradually from 25 ◦C to 65 ◦C to study the collective influence of
temperature and debris-filled damage on the response wave signal. From the early study, it
was observed that, in the healthy state of the structure, an increase in temperature decreases
the RMS of the captured response signals, while an increase in the damage depth increases
the response of the captured signal. The effect of temperature increase on the guided wave
that had interacted with empty damage is a decrease in the intensity of the measured
RMS, as shown in the cases of 1.5 mm and 2.00 mm in Figures 12 and 13, respectively. In
furtherance, 1.50 mm crack depth damage was used to understand the effect of temperature
on a guided wave that had interacted with debris-filled damage. The crack was filled
with different corrosion-debris percentages from 20% to 100% of the damage length. The
damage is filled with debris from 20% to 100% at each temperature stage, and PZT2 and
PZT4 capture the response signals. The relative average RMS is computed and used to
make a surface plot, as shown in Figure 17. An empirical predictive model was deduced
through curve fitting, as shown in Equation (29). The model result was compared with
the measured response signal, as shown in Figure 18. The goodness of fit, R2 value of
0.7879, and RMSE of 7.5× 10−5, derived from the predictive model, shows that it could
explain more than 78% of the variation in the measured responses of the structure caused
by temperature and debris filled. Also, the relative error in Table 5 shows that a high error
is recorded when the temperature is very high, and the ratio of unfilled damage length to
the probing wavelength is less than 0.5. This is because, as the debris fills the damage, its
length decreases through the closure, consequently decreasing the damage size ratio to
probing wavelength. As earlier said, damage stands a high probability of detection if the
ratio of its size is greater than or equal to one-half of the probing wavelength [24].

f (D, T) = A1 × D + A2 × T + A0 (29)
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where T = temperature, and D = percentage debris. A1, A2, and A0 are 4.77 × 10−6,
1.17× 10−6, and 1.252× 10−3.

Figure 17. Surface plot of the combined influence of debris-filled damage and temperature.

 

Figure 18. Predictive model response and measured test response.

Table 5. Comparing the predictive model response with the measured sensor response.

Debris Temp. Predicted Response
Measured
Response

Relative Percentage Error

20 45 0.001400 0.001442 3.01
40 55 0.001507 0.001495 0.78
80 65 0.001709 0.001868 9.31

100 25 0.001758 0.001692 3.75

5. Conclusions

As damage is an inevitable part of structures, continuous monitoring of structural
health status using cost-effective technology and processing algorithms of less computa-
tional power is needed to avert the catastrophic failure of high-valued structures. This has

73



Processes 2024, 12, 957

sparked a high interest in using guided-wave ultrasonic testing (GWUT) for SHM. GWUT
has been used to inspect many forms of damage in structures. However, not much work has
been done to account for debris-filled damage, especially under environmental conditions
such as temperature. Also, the choice of postprocessing technique for the response-signal
feature extraction captured is a crucial aspect of SHM. In this work, three transducers
were used to design a pitch–catch configuration topology to study the confluence effect
of temperature and debris-filled damage meticulously. By relying on the wave scattering
effect from the tip edges of the damage, as in Figure 2, only two sensors were used to
capture and process the damage’s impact on the propagating signals. Due to the high
sensitivity of the propagating wave energy to the damage when compared to other features
of the response wave signal, RMS and RMSD were used to analyse the captured response
signals. Monitoring the damage-depth increase suggests that more incident waves are
diffracted as the damage depth increases. Also, the influence of shallow depth differs
from that of the deepest depth as the latter causes more wave energy diffraction than the
former. The relationship between the damage depth and the response signal was linear,
establishing the empirical predictive model of Equation (25) with an R2 value of 0.9381.

The temperature significantly influenced the response signals, especially on the wave
that had interacted with the damage. The major influence is a decrease in the intensity of
the measured RMS in the cases of 1.5 mm and 2.00 mm damage depths in Figures 12 and 13,
respectively. Also, the combined influence of debris-filled damage and temperature was
studied, and a good predictive model was established. The validation of the model with
arbitrary values shows a relative error of less than 10% while its R2 value is about 78%
and has an RMSE value of about 7.5× 10−5. In summary, this study’s results are useful for
continuously monitoring structures for possible damage detection in an oil and gas facility
where debris-filled damage with the influence of temperature is highly possible.
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Abstract: Particle Swarm Optimization (PSO) algorithms within control structures are a realistic
approach; their task is often to predict the optimal control values working with a process model
(PM). Owing to numerous numerical integrations of the PM, there is a big computational effort
that leads to a large controller execution time. The main motivation of this work is to decrease
the computational effort and, consequently, the controller execution time. This paper proposes
to replace the PSO predictor with a machine learning model that has “learned” the quasi-optimal
behavior of the couple (PSO and PM); the training data are obtained through closed-loop simulations
over the control horizon. The new controller should preserve the process’s quasi-optimal control.
In identical conditions, the process evolutions must also be quasi-optimal. The multiple linear
regression and the regression neural networks were considered the predicting models. This paper
first proposes algorithms for collecting and aggregating data sets for the learning process. Algorithms
for constructing the machine learning models and implementing the controllers and closed-loop
simulations are also proposed. The simulations prove that the two machine learning predictors have
learned the PSO predictor’s behavior, such that the process evolves almost identically. The resulting
controllers’ execution time have decreased hundreds of times while keeping their optimality; the
performance index has even slightly increased.

Keywords: particle swarm optimization; machine learning; optimal control; simulation

1. Introduction

A common task in process engineering is to control processes whose quality is eval-
uated through a performance index. When the process model has certain mathematical
properties, theoretical control laws can be adopted for implementation; on the contrary,
when the process model is uncertain, incomplete, and imprecise or has profound nonlin-
earities, metaheuristic algorithms (MAs) like Evolutionary Algorithms, Particle Swarm
Optimization, etc., within a suitable control structure could be successfully used [1–3]. Con-
trol engineering has afforded numerous examples where metaheuristics were used [4–8]
owing to their robustness and capacity to deal with complex processes.

The role of an MA within a controller is usually to predict the optimal control values
within each sampling period, but first, it searches for the optimal value. For example, the
PSO algorithm follows its optimization mechanism using particles and the internal PM.

A control structure fitting this type of controller is Receding Horizon Control (RHC) [9–11].
This structure is suitable for implementing solutions to Optimal Control Problems (OCPs);
it includes an internal process model (PM) [8,12,13].

Another facet of the prediction process also used within a control problem is described,
for example, in [14]. The study proposes a physics-assisted transfer learning metamodeling
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framework to predict laser butt welding bead geometry and carbon emissions. This time,
the learning process updates the process model.

A predilect research topic for the authors was implementing the prediction module
within an RHC structure employing MAs. The results are partially reflected in previous
works [8,15,16]. The robustness, efficiency, and usability of MAs inside a controller have a
price to pay: the controller’s execution time. The optimization mechanism and the PM’s
numerous numerical integrations take a relatively long time to find the optimal value
after a convergence process. That is why this approach is mainly suitable for slow pro-
cesses when the predictions’ computation time is smaller than the sampling period [17,18].
Decreasing the predictor’s execution time is a challenge [15,16] because it could extend the
applicability of controllers using MAs. This work goes in the same direction but involves a
new technique: using machine learning (ML) to emulate predictors based on MAs. Recently,
we have proposed linear regression (LR) predictors that are “equivalent” in a certain sense
to predictors based on Evolutionary Algorithms (Eas) [19]. This paper deals with OCPs
having final costs and solutions involving PSO predictions.

For the reader, who is a newcomer equally in the fields of control systems, computa-
tional intelligence, and machine learning, we have to answer why our objective is to replace
the PSO predictor with an ML predictor (inside the RHC structure) when solving an OCP.

• The PSO predictor predicts an optimal control value, but first, it searches for the
optimal control sequence following its optimization mechanism using a swarm of
particles and the PM. That is why it takes a relatively long time to find this value after
a convergence process.

• The ML predictor (LR or RNN) predicts using an already-known regression function.
Being an ML model, it reproduces what it has learned, the PSO predictor’s behavior.
It does not search for anything. Moreover, it does not make numerical integrations of
the PM. That is why it takes a much shorter time to calculate the predicted value.

• The ML predictor replaces the PSO predictor only in execution when the controller
achieves the control action. Intrinsically, the solution is given by the PSO algorithm.
The solutions are “learned” by the ML predictor; that is, the ML model emulates the
PSO algorithm.

To continue the work presented in [19], we shall consider the equivalence mentioned
above and implement Regression Neural Network (RNN) predictors besides the LR ones.

Throughout this paper, we have recourse to a specific OCP to make the explanations
easy to follow for the reader. In [11], for the optimal control of a specific photobioreactor
(PBR) lighted for algal growth, we have presented a solution in the same context, RHC and
predictions based on PSO. We shall adopt the PSO predictor already constructed in [11];
by employing this one, we shall generate new ML predictors. The data generated by
simulation modules, already developed previously, are stored or recorded. These data will
be needed to train and test the ML models. Some results from [11] will be reported in this
paper for comparison (Section 7.1).

Section 2 recalls the general approach developed in previous work [8,20,21] to solve
such problems using PSO algorithms. Besides the recall of the PBR problem’s state-
ment, Section 2 also introduces the notations and formulas that keep the presentation
self-contained.

Section 3 answers the following two main questions:

• What data are needed to capture the optimal (quasi-optimal) behavior of the couple
(PSO and PM)?

• How are the data sets for the ML algorithms generated?

The PSO prediction module, included in the controller, is available from our previous
work, which has already solved the PBR problem. Section 3 presents an algorithm carrying
out the closed-loop simulation over the control horizon using the PSO predictor. A manda-
tory hypothesis is that the real process and the internal PM are considered identical because
the data recorded should capture only the behavior of the couple (PSO and PM).
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At the end of the simulation, the sequence of optimal control values (optimal control
profile) and the sequence of state variables (optimal trajectory) can be recorded. The optimal
CP and trajectory can be seen as the “signature” data of the optimal solution. Consider-
ing together the two sequences, we obtain a sequence of couples (state; control value),
one couple for each sampling period. The simulation program is executed M times (e.g.,
two hundred times); the two sequences are collected each time and aggregated into a data
structure. This data structure expresses the PSO predictor’s experience as a decision maker;
it will be used to obtain the ML models [22–26].

Section 4 presents the general approach to learning the optimal behavior of the couple
(PSO and MP). The learning process is split at the level of each sampling period, and conse-
quently, new data structures are derived for each of them. With each new data structure,
which is a collection of couples (state; control value), a generic regression function [22,27,28]
is associated. The latter is materialized through an ML regression model devoted to the
sampling period at hand, which must be capable of giving accurate predictions.

An ML controller’s systematic design procedure is also proposed. We have to em-
phasize that the entire design procedure of the ML controller needs only simulations and
offline program executions.

In this paper, we consider as regression models only two kinds of models: multiple
linear regression [29–31] and Regression Neural Network [22,32]. Other regression models
(trees, support vector machines, and Gaussian processes) were considered in our studies
as well. Still, only the models LR and RNN are relevant to this presentation. Implement-
ing an ML controller, in our context, involves determining a regression model for each
sampling period.

Section 5 deals with constructing a set of linear regression (LR) models [29,31] that are
trained with the data sets constructed in Section 4. A general construction algorithm using
the stepwise regression [30] strategy is proposed. A table with the regressions’ coefficients
is extracted from the models. The LR controller is implemented using the LR predictors; it
is also integrated into a proposed closed-loop simulation program, allowing us to evaluate
the entire approach. Some simulation results are given.

Section 6 proposes a general algorithm for constructing the models using Regression
Neural Networks [32]. The training and testing data sets are already determined in Section 4,
and they are saved in an external file. A specific closed-loop simulation program is also
proposed; it includes the RNN controller using the RNN predictors. The simulation results
are presented for further analysis.

The Discussion section first answers the following question: Did the two kinds of
predictors “learn” the behavior of the couple (PSO and PM), such that the new process’s
evolutions would also be quasi-optimal? To do this, we depict the new process’s evolutions
and display some numerical information using the closed-loop simulation programs pro-
posed in Sections 5 and 6. The simulation results are compared with those already available
concerning the PSO predictor. Owing to their generalization ability, both ML controllers
make accurate predictions of the control value sent to the process, and the state evolutions
are practically identical.

The second question that this section has to answer is as follows: Did the controller’s
execution time decrease significantly?

The positive answer to both questions proves that the ML controllers are an effective
way to avoid the large execution time of the controllers based on PSO while maintaining
the optimality of the control. This result is important because it extends the possibility of
using PSO (or other MA) controllers for processes with smaller time constants.

Special attention was paid to the implementation aspects such that the interested
reader could find support to understand and, eventually, reproduce parts of this work or
use it in their projects. With this aim in view, all algorithms used in this presentation are
implemented, the associated scripts are attached in the Supplementary Materials, and all of
the necessary details are given in the Appendices A–E.
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2. Controllers with Predictions Based on PSO: Connection with Machine
Learning Algorithms

Many controlled processes, such as biochemical processes, are repetitive, like those
organized in batches. For efficiency reasons, they generate Optimal Control Problems
involving three components:

• The process model can include nonlinearities, imprecise, incomplete, and uncertain
knowledge, correspond to a distributed-parameter system, etc.

• There are constraints, such as initial conditions, bound constraints, final constraints, etc.
• The cost function, which should be optimized, leads to a performance index.

To solve such a control problem, we need an adequate control structure which will
define the optimal controller. The latter includes a prediction module that calculates
the optimal control sequence and the optimal trajectory over the prediction horizon or
even until the end of the control horizon. For its work, the predictor uses the PM for a
huge number of numerical integrations. In this context, the predictor has a very complex
numerical task; that is why a metaheuristic algorithm is often a realistic solution to fulfil
this task.

The Receding Horizon Control (RHC) [8,10,11] is a very simple control strategy that
can easily integrate a metaheuristic algorithm as a predictor (Figure 1). The authors have
studied and simulated the RHC in solving different OCPs in conjunction with an EA or PSO.
The solutions are realistic, they can be used in real-time control, and several techniques
can be used to decrease the numerical complexity of the predictor. Nevertheless, the
inconvenience is that the control action takes up a big part of the sampling period.

 

Figure 1. Receding Horizon Control using adaptive PSO algorithm.

An interesting and practical approach, in this context, is to replace the predictor with
a machine learning algorithm inside the controller. The ML algorithm must emulate the
predictor of the RHC structure following its training offline. To emphasize its role, we
shall refer to this algorithm as the ML controller. In this work, we have to answer the
following questions:

• What does it mean that the ML algorithm must emulate the predictor?
• What data sets are used in training the ML, and how are they obtained?
• What kind of ML model can be used to achieve an appropriate controller?
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In [11], we have presented the optimal control of a continuously stirred flat-plate
photobioreactor (PBR) lighted on a single side for algal growth in the same context: the
RHC that uses predictions based on PSO.

In this presentation, all of the essential tasks concerning the ML do not need the PM;
only the final simulations, which allow us to validate the entire approach, employ the
PM. That is why the reader can find in Appendix A the equations modeling the PBR, the
constraints, and the cost function of the OCP. The PBR is a distributed parameter system,
but the PM is converted through discretization into a lumped parameter process. We
have solved this problem in [11], adding the discretization constraint, which refers to the
input variables:

U(t) = U(kT) Δ
= U(k), for k · T ≤ t < (k + 1) · T; k = 0, · · · , H − 1.

where T is the sampling period, and the final time of the batch equals H·T. In our example,
the input vector has a single component, i.e.,

U(k) = q(k), k = 0, · · · , H − 1. (1)

The variable q(k) is the intensity of incident light throughout the kth sampling period.
At every moment 0 ≤ k < H − 1, the predictor calculates the optimal control se-

quence (1) using the usual version of the APSOA (adaptive PSO algorithm) and the PM,
which is integrated a large number of times. The optimal control sequence minimizes
the cost function J(k, X(k)) over the current prediction horizon [k, H]; in our example, the
following holds:

J(k, X(k)) = min
predicted sequence

{
w1 · A · CH−1

∑
i=k

U(i) + w2 · [V · x1(H)−m0]

}
,

X(k) = [x1(k) x2(k)].

The vector X(k) is the current state of the process. A predicted sequence is a control
sequence with the following structure:

U(k) = 〈U(k), . . . , U(H − 1)〉, (2)

Using the PM and Equation (2), the APSOA calculates the corresponding state sequence.

X(k) = 〈X(k), . . . , X(H)〉.
The latter has H − k + 1 elements.
When the APSOA converges, it supplies the best sequence U(k) for the current predic-

tion horizon, denoted by V(k):

V(k) � arg min
U(k)

J(U(k), X(k)) = 〈V(k), . . . , V(H − 1)〉 (3)

The controller’s best output, denoted by U∗(k), is the first value of this sequence, i.e.,

U∗(k) � V(k). (4)

Applying Equations (3) and (4) is, in fact, the control strategy “Receding Horizon Control”.
A sequence of H control vectors, U(0), U(1), · · · , U(H − 1), will be referred to as a

“control profile” (CP). The latter will produce a state transition like in Figure 2.

Figure 2. The state trajectory and its CP.

Finally, the controller following the RHC strategy using predictions implemented
by a PSO algorithm achieves the optimal CP for the given initial state and control hori-
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zon. The optimal CP denoted by Ω(X0), which represents our problem’s solution, is the
concatenation of the optimal controls U∗(k), k = 0, · · · , H − 1:

Ω(X0) � 〈U∗(0), U∗(1), . . . , U∗(H − 1)〉 (5)

Forced by this CP, the process will follow an “optimal trajectory” Γ(X0):

Γ(X0) � 〈X0, X∗(1), . . . , X∗(H)〉. (6)

A closed-loop simulation is the simulation of the controller, which includes the APSOA
and PM, connected to the (real) process (see Figure 1). Our study requires only the situation
when the real process and the PM are identical.

Remark 1. The two sequences (5) and (6) can fully characterize the process’s optimal behavior
in the context of closed-loop simulation over the control horizon when the process and its model
are identical.

Supposing the convergence of the APSOA, the value J0 = J(0, X(0)) theoretically
equals the optimal cost function. Practically, at the end of a closed-loop simulation, the two
values will be very close to each other, so Ω(X0) would be a quasi-optimal solution for the
problem at hand.

The predictor’s behavior depends on two factors: the metaheuristic algorithm (AP-
SOA) and the PM. In this work, the main objective is to capture the predictor’s behavior
through an ML algorithm. Hence, the latter has to “learn” the optimal behavior of the
couple (APSOA and PM).

Remark 2. Our purpose is to capture the predictor’s behavior using an ML algorithm, that is, to
“learn” the optimal behavior of the couple (APSOA and PM). The final objective is to replace the
predictor with the new ML algorithm, such that the process’s state evolution and the performance
index would be maintained. In this situation, we can state that the ML algorithm emulates
the predictor.

The two sequences (Ω(X0) and Γ(X0)) are the data results of a closed-loop simulation
and can be considered the “signature” data of the couple (APSOA and PM); there is a
correspondence between the values X∗(k) and U∗(k) signifying that “when the process is
in the state X∗(k) at the moment k, the APSOA will predict the best control value U∗(k)”.

So, the source of the data used in a potential learning process can be a closed-loop
simulation, considering the (real) process and the PM identical. Of course, the data pro-
duced by a single simulation over the entire control horizon cannot be sufficient for the
learning process.

3. Data Generation Using Closed-Loop Simulation over Control Horizon

For any OCP like the PBR problem, the designed controller must be validated by
closed-loop simulation, considering the (real) process and the PM identical. This validation
must be carried out before using the implemented controller in real time, connected to
the (real) process. Hence, we must have a simulation program that fulfils this task of
closed-loop simulating over the control horizon, with a given initial state, and considering
the process and the PM identical.

A simulation can be carried out in more realistic situations, for example, when the
process takes into consideration, besides the PM, unmodeled dynamics and noises. But we
do not need such simulations.

Remark 3. The fact that the process and the PM are identical is not a simplification to render our
study’s conclusion more favorable but is a necessity. The ML algorithm has to learn the behavior of
the couple (APSOA and PM); otherwise, it will “learn”, besides the APSOA and PM, the influence
of other perturbating factors.

82



Processes 2024, 12, 991

Figure 3 shows the closed-loop simulation program’s flowchart in the conditions
mentioned above. This program is generically called “ContrlLoop_PSO”. The function
“Predictor_PSO” returns the predicted sequence V(k), whose first element will give the
optimal control value U∗(k). Sending the latter value to the PM and integrating the process
over a sampling time, the function “ProcessStep” will determine the process’s next state,
that is, at the next moment, k + 1.

 

Figure 3. Closed-loop simulation using predictions based on adaptive PSO algorithm.
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When the controller designer decides to use an ML algorithm to replace the couple
(APSOA and PM), the functions “Predictor_PSO” and “ProcessStep” are already written as
a part of the PSO controller’s construction. This is also the case with the PBR problem; we
have already accomplished the entire design procedure (for more details, see [11]).

The reader can understand and execute the “ContrlLoop_PSO” program using the
script ControlLoop_PSO_RHC.m. Details are also given in Appendix B, concerning the
generic functions “Predictor_PSO” and “ProcessStep”.

As we already mentioned, after the closed-loop simulation, the data generated are a
couple of sequences (Ω(X0) and Γ(X0)), which can be renamed (control profile—trajectory).
To prepare the data for the ML process, we shall repeat M times (e.g., M = 200) the closed-
loop simulation and produce M different quasi-optimal couples (CP—trajectory). There are
two reasons why data couples are different:

• The PSO has a stochastic character, and the convergence process is imperfect. So, the
optimal control values are different (and so are the state vector’s values), even if the
initial state is strictly the same.

• The initial state values are not the same. A standard initial state (of the standard
batch) could be perturbed to simulate different initial conditions (the standard ones
are imprecisely achieved).

The optimal control value and the optimal states are stored in the matrices uRHC
(H × m) and state (H + 1 × n), respectively, with their structure presented in Figure 4.

state ( H n+ × )  uRHC ( H m× ) 

( )TX   ( )TU  

( )TX   ( )TU  

   

( )TX H −   ( )TU H −  

( )TX H    

Figure 4. The matrices that store the quasi-op-timal trajectory and its CP.

Hence, the optimal CP and trajectory are described by the matrices uRHC and state,
respectively, which are the images of Ω(X0) and Γ(X0) sequences (see (5) and (6)). For each
of the M simulations, the two matrices are saved in the cell array STATE and the matrix
UstarRHC (M × H), as suggested in Figure A1 (Appendix B) for our case study.

The script LOOP_M_ControlLoop_PSO.m collects the data from M executions of the
closed-loop simulation. The data structures presented in Figure A1 are created and loaded.
A concrete example of the data collected in the first simulation is given in Appendix B.

4. The ML Controller: The Design Procedure and the General Algorithm

The M simulations can be collectively presented in Figure 5, where the state variables
and control output are regrouped by sampling periods.

At each step k, 0 ≤ k ≤ H − 1, of the control horizon, the controller predicts the
optimal control output relying on the couple (APSOA and PM). The state vectors considered
at the same step have some common characteristics:

• The same PSO algorithm generates the M state inside a group.
• The M simulations work with the same PM.
• Each state Xi

∗(k), 1 ≤ i ≤ M, is transferred as the initial state to the predictor.
• The prediction horizon has H − k sampling periods.
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Figure 5. The quasi-optimal trajectories produced by M executions of “ControlLoop_PSO.”.

The APSOA calculates the prediction V(k), and the controller extracts only the optimal
control values Ui

∗(k), 1 ≤ i ≤ M.
The simulation results for step k can be organized as a data set, and a table can be

constructed, as shown below.
We have considered, as usual, that the state and control vector are column vectors. In

our case study, the state vector (n = 2) is generated like a line vector to avoid transposition.
When M has a big enough value, the data set from Table 1 represents to some extent

the ability of the couple (APSOA and PM) to predict optimal control values at step k.
Our desideratum is to generalize this ability to predict the optimal control when the
process accesses states other than those from Table 1; this can be achieved using a machine
learning algorithm.

Table 1. Data set for step k.

XT UT

(X1
∗(k))T (U1

∗(k))T

. . . . . . . . . . . .
(XM

∗(k))T (UM
∗(k))T

Remark 4. The four characteristics enumerated before are the reasons making us adopt the hypoth-
esis that the examples (data points) of Table 1 belong to the same data-generating process; that is,
they are independently identically distributed.

With each group of states presented in Figure 5, equivalent to a table like Table 1, a
regression function fk(X) can be associated:

fk : Rn → Rm , k = 0, 1, . . . , H − 1.

When these functions exist, they can be used successively within the controller to
replace the predictor at each control step.

Remark 5. The regression function fk models how the APSOA determines the optimal prediction
at step k. The entire set of functions Φ = { fk|k = 0, 1, . . . , H − 1} is the couple (APSOA–PM)
machine learning model. The behavior of the PSO algorithm, which, in turn, depends on the PM, is
captured by the set of functions Φ.
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To be systematic, at this point of our presentation, we propose a design procedure for
the ML controller that the interested reader could use in their implementation.

Design Procedure

1. Write the “ControlLoop_PSO” program simulating the closed-loop functioning of the
controller based on the PSO algorithm over the control horizon. The output data are
the quasi-optimal trajectory and its associated control profile (Ω(X0) and Γ(X0)).

2. Repeat M times the “ControlLoop_PSO” program’s execution to produce the se-
quences (Ω(X0) and Γ(X0)) and save them in data structures similar to those in
Figure A1 (Appendix B).

3. For each sampling period k, derive data sets similar to those in Table 1 from the data
saved in step 2.

4. Determine the set of functions Φ using the data sets derived in step 3 and an ML
model; a function fk is associated with each sampling period k.

5. Implement the new controller based on the ML model, i.e., the set of functions Φ
determined in step 4.

6. Write the “CONTROL_loop” program to simulate the closed-loop functioning equipped
with the ML controller. The proposed method’s feasibility, performance index, solu-
tion quality, and execution time will be evaluated.

Remark 6. The entire design procedure of the ML controller needs only simulations and offline
program executions. The ML models for each sampling period are determined offline ahead of using
the ML controller in real time.

Steps 1–2 are already covered by the details given in the anterior section.
Step 3 Implementation
This step yields the data sets that the ML model would use for training and testing.

Remark 7. The controller’s optimal behavior is specific to each sampling period, whose predic-
tion horizon is specific to H − k. So, optimal behavioral learning will be performed for each
sampling period.

For each k, k = 0, · · · , H − 1, we construct a matrix SOCSK (M × (n + m)) (SOCSK
stands for “States and Optimal Control values concerning Step K”), which is Table 1’s
image. Line i, 1 ≤ i ≤ M, is devoted to experience i as follows:

SOCSKi ←
[
(Xi

∗(k))T(Ui
∗(k))T

]
.

Using the data structures proposed before, the following holds:

SOCSKi ← [STATEi(k, 1 : n) UstarRHC(i, k)].

STATEi is the ith element of the STATE cell array. In the PBR case (n = 2; m = 1), the
data set for the current step will be as follows:

SOCSK =

⎡⎢⎢⎢⎢⎢⎣
x1(k)

1 x2(k)
1 u(k)1

. . . . . . . . .
x1(k)

i x2(k)
i u(k)i

. . . . . . . . .
x1(k)

M x2(k)
M u(k)M

⎤⎥⎥⎥⎥⎥⎦.

A fragment of the SOCSK matrix produced by a MATLAB script is presented in
Appendix C for step k = 1. Only when k = 0 does the value of x2(0) equal 0 for any
observation.
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Owing to Remark 7, step 3 should establish for each k the data sets for training and
testing; these sets are stored in the cell arrays DATAKTest and DATAKTrain. Table 2 presents
the pseudocode of the script preparing all of the sets needed by the learning algorithm.

Table 2. The pseudocode preparing the data sets for the ML models’ training and testing.

/*This pseudocode describes the construction of the data sets needed by the ML models at the
level of each sampling period*/
Inputs: cell array STATE, matrix UstarRHC;
Outputs: matrix SOCSK, table datak, cell arrays DATAKTest, DATAKTrain

1. #Load the file containing the data structure STATE and UstarRHC (Figure A1)

2. k ← 0

3. while k≤H−1
4. for i = 1, ···, M

5. SOCSKi←[STATEi(k,1:n) UstarRHC(i,k)]

6. end

7. #Convert the matrix SOCSK into the table datak.

8. datakTest← lines #1—60 of datak

9. datakTrain← lines #61—120 of datak

10. DATAKTest{k }← datakTest

11. DATAKTrain{k }← datakTrain

12. k ← k + 1

13. end

14. #Save the cell array DATAKTrain and DATAKTest in a file.

Step 4’s implementation will determine the set of ML models Φ = { fk|k = 0, 1, . . . , H− 1}
and will be addressed in the next section.

Step 5 aims to implement the ML controller. Once the set of regression models is
determined in step 4, the controller can be written following the algorithm in Table 3.

Table 3. The structure of the ML controller’s algorithm.

The General Algorithm of the ML Controller

/*The controller program is called at each sampling period, k */

1 Get the current value of the state vector, X(k); /* Initialize k and X(k)*/

2 Predict the optimal control value U ∗ (k) using the regression model fk(X(k))
/* whatever is the regression model’s type */

3 Send the optimal control value U ∗ (k) towards the process.

4 Wait for the next sampling period.

Notice that the cumulative effect of calling the controller at each sampling period is to
achieve the following sequence of predictions using the regression models and the current
states that the process accesses:

U1
∗ = f0(X0); U2

∗ = f1(X1); . . . UH−1
∗ = (XH−1).

In the sequel, the controllers based on ML models will be called LR controller (from
linear regression) or RNN controller (from Regression Neural Network).
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5. Linear Regression Controller

5.1. General Algorithm

The first approach that the authors considered was to use multiple linear regression for
the function set Φ. Such a model contains an intercept, linear terms for each state variable,
squared terms, products of features (interactions), etc. Hence, as functions of state variables,
the regression functions could be nonlinear.

For our example, the stepwise regression strategy [30], which adds or removes terms
starting from a constant model, was also applied. We consider in this presentation only
models with an intercept, linear terms, and an interaction:

fk(X(k)) = Ck
0 + Ck

1 · x1(k) + Ck
2 · x2(k) + Ck

12 · x1(k) · x2(k). (7)

Remark 8. Our goal is not to find the best sequence of linear regression models but to validate
our approach, i.e., the ML model can successfully replace the couple (APSOA and PM) inside a
new controller.

As we shall see, the model (7) is largely sufficient for our goal.
Table 4 presents the construction of the H models representing linear regressions in a

general manner, that is, not only for our example. This pseudocode describes the linear
models’ training and testing using the sets generated in step 3.

Table 4. The pseudocode of the linear regressions’ construction.

Construction of the linear regression models

Input: cell arrays DATAKTrain, DATAKTest
Output: matrix KOEF (H × (n + 1)), /* the regression coefficients for each

sampling period */
cell array MODELSW {H × 1} /* cell array storing objects that are the

linear models fk */

1 for k = 0. . .H-1.

2 datakTrain← DATAKTrain{k};
/* Recover the data set for training */

3 datakTest← DATAKTest{k};
/* Recover the data set for testing */

4 mdlsw←fitting_to_data(datakTrain);
/* Training the linear regression */

5 #display mdlsw;
/* mdlsw is the linear regression model */

6 coef(:)←get_the_coefficients(mdl)

7 KOEF(k,:) ←coef(:);
/* The kth line of KOEF receives the coefficients */

8 MODELSWP{k,1}←mdlsw;

9 uPred←fpredict(mdlsw, datakTest)
/* The vector uPred stores the predicted control values */

10 # Make the comparison between uPred and the real control values;

11 end.

The script in Table 4 uses the generic functions fitting_to_data, get_the_coefficients, and
fpredict, which make actions suggested by the comments.

The implementation of this algorithm is included in the script GENERATE_ModelSW;
some details are given in Appendix D.
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5.2. Simulation Results

Although we have determined the usual linear regressions that contain the two linear
terms (for x1 and x2) and an intercept, we present hereafter the stepwise version as it
is implemented in the MATLAB system. Table 5 displays a listing’s fragment obtained
during the script GENERATE_ModelSW’s execution; this one presents the model for a single
sampling period.

Table 5. The actions and results of the stepwise linear regression for the 14th sampling period.

&&&&kp1 = 14

1. Adding x1, FStat = 12.7755, p Value = 0.000484491

Linear regression model:
u ~ 1 + x1

Estimated Coefficients:
Estimate SE tStat p Value

(Intercept) −985.91 437.95 −2.2512 0.025952
x1 2147.7 600.87 3.5743 0.00048449

Number of observations: 140; Error degrees of freedom: 138
Root mean square error: 117
R-squared: 0.0847; Adjusted R-squared: 0.0781
F-statistic vs. constant model: 12.8; p-value = 0.000484

The procedure begins with only an intercept, and after that, it tries and succeeds in
adding the term corresponding to x1. Statistical parameters do not allow us to add another
term. So, the prediction (control value) will be f13([x1, x2]) = −985.91 + 2147.7 · x1.

We notice that the training time for all 120 linear regressions is 6.166654 s.
Following the algorithm presented before, the resulting coefficients of the H regression

are given in Table 6.

Table 6. The coefficients of the H linear regressions determined with a stepwise strategy.

k C0 C1 C2

0 564.18 0
1 585.53 0 0
2 −20.368 1441.5 0
: : : :
9 591.85 0 0
10 119.74 0 620.84
11 591.48 0 0
12 590.95 0 0
13 −985.91 2147.7 0
14 −328.16 1205.6 0
: : : :

111 4055.1 −1476.6 0
112 5482.6 −2067.6 0
113 597.8 0 0
114 3300.2 0 −308.67
115 587.66 0 0
116 6446.3 −2451.2 0
117 7144 −2732.8 0
118 4410.7 0 −419.32
119 565.2 0 0
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There are sampling periods for which the regression model has only the intercept C0;
this situation will be discussed in Section 7. These coefficients will be used directly by the
controller as a control law.

The comparison achieved in lines #9-10 of the construction algorithm is summarized
in Figure 6.

Figure 6. Comparison: predicted versus real control values for specific sampling period.

We have to mention that the predicted values were calculated directly using the formu-
las, not using the generic function fpredict. The table datakTest supplied the 60 examples,
states—control value, for testing the linear regressions.

The quality of the predictions will be evaluated at the time of using the regression
models within the controller, that is, inside the closed-loop simulation. The ultimate
evaluation of predictions would be the optimality of the process evolution.

To prepare this evaluation, we need the simulation program for the control loop
working with the LR controller. The flowchart in Figure 7 describes this program, CON-
TROL_loopLINREG, which is step #6 of the design procedure.

Although there are similarities with Figure 3, there actually are big differences
in execution:

• The state variable has two elements.
• The coefficients’ matrix must be loaded from an existing file.
• The gray instructions make the predictions, avoiding any numerical integration.
• The green instruction updates the next state, which has two components. The amount

of light irradiated in the current sampling period is added to x2(k).

Only the orange column of the flowchart has big similarities because it is about the
simulation results needed to depict the process evolution and the performance index.

The script CONTROL_loopLINREG.m included in the attached folder implements the
presented algorithm.

The closed-loop simulation program produces a listing, a fragment of which is pre-
sented in Figure A3 (Appendix D), and two drawings reproduced in Section 7.

We notice the very short time period used to control the process over the entire
control horizon, 0.6401 s (the simulation processor is Intel(R) Core(TM) i7-6700HQ CPU
@ 2.60 GHz).
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Figure 7. The simulation program for the ML controller based on linear regression models.

6. Controller Based on Regression Neural Networks

6.1. General Approach

Because the linear regression could seem much too simple, we have studied other
types of models (trees, support vector machines, and Gaussian processes) trying to improve
capturing the optimality of the couple (APSOA and PM), the final target being that the
designed ML controller would better approach the optimal behavior. The obtained models
have performances weaker than those of the LR and RNN models.

Better predictions than those obtained with other types of ML models are produced
by Regression Neural Networks (RNNs), of course, with a possible penalty concerning the
model’s size. The decision to choose between these models and the linear regressions in
implementing the controller will be analyzed in Section 7.
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As in the case of linear regressions, the RNN models must be obtained offline, and
their construction must be organized in a loop because the number of sampling periods
could be large, like in our case. The pseudocode of the RNNs’ construction is presented in
Table 7.

Table 7. The pseudocode of the regression NNs’ construction.

Construction of the RNN models

Input: cell arrays DATAKTrain, DATAKTest
Output: cell array MODELNN {H × 1}
/* cell array storing objects that are RNN */

1 for k = 0. . .H-1.

2 datakTrain← DATAKTrain{k, 1};
/* Recover the data set for training */

3 datakTest← DATAKTest{k, 1};
/* Recover the data set for testing */

4 mdlNN←trainRegNN(datakTrain); /* Training the RNN */

5 MODELNN{k,1}←mdlNN
/* Store the object mdlNN into the cell array MODELNN */

6 predictionNN←mdlNN.predictFcn(datakTest)
/* Make predictions and store them into the table predictionNN */

7 # Comparison between predictionNN and datakTest

8 end

In our case study, for k = 0, i.e., the first sampling period, we have a special situation
because x2 ≡ 0 (the light amount equals 0 through initialization) for all examples. Hence,
this variable cannot be a prediction variable. For this situation, the tables datakTrain and
datakTest have different structures, and the RNN model has a single predictor variable x1.
To maintain the general structure of the algorithm in Table 7, we did not treat the first
sampling period distinctly.

Most data structures were presented before, except for the cell array MODELNN that
collects the model for each sampling period, called “mdlNN”. The function trainRegNN
trains the current RNN using its specific data set [32].

In line #6, the predictions made by the method “mdlNN.predictFcn” are stored in the lo-
cal table predictionNN, which can be compared to datakTest or saved for further utilization.

The implementation of this algorithm is achieved by the script GENERATE_ModelNN;
some details are given in Appendix E.

6.2. Simulation Results

The execution of the script GENERATE_ModelNN gives us an indication of the RNNs’
construction complexity (training and testing). A fragment of its listing is given in Table 8.

The RMSEValid is the root mean square error (RMSE) between the predictions and
datakTest vectors. The vrmse value is the RMSE calculated in the training process (the
phase of validation). The program displays the k value, the prediction uNNn, and the control
value (valreal) for the states included in record #10 of the data set (as an example).

We notice that all 120 RNNs are trained in 233 s (offline, as we mentioned before).
The comparison mentioned in line #7 of the algorithm can be achieved by calculating

the root mean square error (RMSE) between the predicted and observed values. For graphi-
cal analysis, Figure 8 plots the predicted values yielded by the RNN model versus the real
control values from the datakTest table.
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Table 8. The execution of RNN training (a fragment of the listing).

>> GENERATE_ModelNN

&&& vrmse = 108.4187 RMSEValid = 111.9601
kplus1 = 1 uNN = 564.1789 valreal = 487.0276

&&& vrmse = 104.5341 RMSEValid = 130.6362
kplus1 = 2 uNN = 574.4657 valreal = 672.5530

&&& vrmse = 106.0061 RMSEValid = 127.3596
kplus1 = 3 uNN = 559.1601 valreal = 676.6160
----------------------
&&& vrmse = 112.0696 RMSEValid = 91.4825
kplus1 = 119 uNN = 588.0487 valreal = 634.9497

&&& vrmse=130.1694 RMSEValid = 125.2698
kplus1 = 120 uNN = 576.2782 valreal = 714.3906

Elapsed time is 232.829571 s.

Figure 8. The predicted values yielded by the RNN model versus the real control values for a specific
sampling period.

As in Section 5.2, to evaluate the controller’s performances, we need the simulation
program for the closed-loop functioning with the RNN models. Its algorithm’s flowchart
would be very similar to that of Figure 7, except for two instructions. That is why we do
not redraw the flowchart, as we are content with indicating only the changes.

The gray instruction

 uML k X X  
will be replaced by this block 

mdlNN k
uML k mdlNN.predictFcn X
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This block means that the neural network model mdlNN is selected as the current RNN
from the cell array of objects MODELNN. Its method predictFcn will calculate the predicted
control value as a function of the current state.

The second change is inside the block “Initializations”. Instead of loading the coeffi-
cients’ table, C, it will load the cell array MODELNN; the latter is already saved in a file created
by the script constructing the RNN models (see GENERATE_ModelNN.m).

The script CONTROL_loopNN.m included in the attached folder implements the
above algorithm.

The simulation program CONTROL_loopNN produces a listing, a fragment of which is
presented in Figure A4 (Appendix E), and two drawings, presented in Section 7.

We notice, as in the case of the linear regression controller, the very short time period
used to control the process over the entire control horizon, 1.35 s.

7. Discussion

7.1. Comparison between PSO and ML Predictors

In this section, we have to answer the following questions:

• Did the ML predictors succeed in “learning” the behavior of the couple (APSOA and
PM), such that the process’s evolution would be quasi-optimal?

• Did the controller’s execution time decrease significantly?

As we mentioned, we have already solved the PBR problem using RHC and a pre-
dictor based on PSO. For the sake of simplicity, we shall refer to its controller as the PSO
Controller. Using the ControlLoop_PSO script, the closed-loop simulation produces the
typical evolution depicted in Figure 9. This simulation is one among the M = 200 evolutions
that contributed to our big data set with CPs and trajectories. The final lines of the simulation’s
listing summarize its performances, as given in Table 9.

  
(a) (b) 

Figure 9. Closed-loop evolution with the PSO controller. (a) The control output values over the
control horizon; (b) the process and the biomass evolution.

The simulation programs CONTROL_loopLINREG and CONTROL_loopNN produce, be-
sides the data in Figures A3 and A4, the evolutions depicted in Figures 10 and 11, respectively.
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Table 9. Execution of closed-loop simulation program (ControlLoop_PSO).

>>ControlLoop_PSO_RHC

x00 = 0.3660

Yield mass = 3.0000

Light = 9.2474

Perf index = 9.2474

Elapsed time is 447.281879 s.

  
(a) (b) 

Figure 10. Closed-loop evolution with the linear regression controller. (a) The control output values
over the control horizon; (b) the process and the biomass evolution. The mass m0 labels the dotted
line, the final value of the green curve.

  
(a) (b) 

Figure 11. Closed-loop evolution with the Regression Neural Network controller. (a) The control
output values over the control horizon; (b) the process and the biomass evolution. The mass m0

labels the dotted line, the final value of the green curve.
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Remark 9. The state evolutions (x1 and x2) and the evolution of the biomass, which can be
considered the output of the process, are practically identical. Hence, both ML controllers emulate
the PSO controller.

The LR controller and the RNN controller are facing situations when the current state
is totally new (states unobserved in the training or testing data sets). In this situation,
the generalization ability of the ML model is exploited but also verified. That is why the
simulation programs are adequate tests for the predictions’ testing.

Remark 10. Using the controller inside a closed-loop simulation program over the control horizon
will be a test in which the predictor experiences new process states unobserved in the training and
testing phase of the ML model’s construction.

The fact that Figures 9a, 10a and 11a, describing the control value’s evolution, are very
different has no relevance to the matter at hand; the following aspects uphold this:

• The similarity at this level would imply the same sequences of states, but we just
stated that the ML controllers could experience new unobserved states. So, the three
processes do not pass through the same set of states (the sets of accessible states
are different).

• The learning is made at the level of each sampling period and the model “learns”
couples (state; control value), not globally, but at the control profile level; our method
is not based on learning CPs. On the other hand, the PSO predictor is very “noisy”
due to its stochastic character and produces outliers among the 200 control values
from time to time.

To make a quantitative comparison among the three controllers, Table 10 displays
some pieces of information from Figures A3 and A4, and Table 9.

Table 10. Quantitative comparison among the three controllers.

PSO Controller LR Controller RNN Controller

x00 0.360 0.360 0.360

Yield mass 3.0000 3.0282 3.0249

Light 9.2474 9.3166 9.3115

Perf index 9.2474 9.5981 9.5604
Control time [s] 447.28 0.64 1.35
Training time [s] - 5.4 232.83

Model size - 3 kB 17 kB

Root mean square error
(RMSE for k = 10) - 113.73 116.63

The first four lines of Table 10 are evidence that the three controllers can be considered
equally performant, although the ML controllers have slightly better parameters. However,
the time devoted to controlling the process over the control horizon (all of the H sampling
period) has values much inferior to that of the PSO controller (hundreds of times smaller).
This analysis and Remark 9 allow us to state the following conclusions:

• The two ML controllers have predictors that have learned the behavior of the cou-
ple (APSOA and PM), such that in closed-loop functioning, the process evolves
almost identically.

• The resulting controllers have execution times hundreds of times smaller than that of the
PSO Controller.
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7.2. Comparison between the LR and RNN Controllers

In Table 10, all of the parameters in the second column are superior to those in the third
column. The differences are not relevant for some of them, but the control time, training
time, and model size make the LR controller preferable to the RNN controller. However,
we have trained all its RNNs using hyperparameter optimization.

The usual comparison between the predicted and real (observed) values is illustrated
in Figures 6 and 8 for the LR and RNN predictors, respectively. This comparison is made
for k = 10 (as an example) and its testing table datakTest. For the other values of k, the
situation is the same.

At first sight, both predictors seem to be similar, but the values of RMSE from Table 10
show that the LR predictor is slightly better than the RNN predictor. This remark goes in
the same direction as the superiority of the LR controller. However, because the tatakTest

has 60 data points, we can consider the difference between RMSEs irrelevant and that they
are similar from an accuracy point of view.

Considering Remark 6, the time to train offline 120 RNNs (for the RNN controller) of
4 min is absolutely acceptable. So, even this controller can be considered a good solution
for the PBR problem or another OCP.

For the reader, who is a newcomer equally in the fields of control systems, computa-
tional intelligence, and machine learning, we must compare the role of the PSO predictor
versus the role of the ML predictor when solving an OCP.

• The ML predictor replaces the PSO predictor only in execution when the controller achieves
the control action. So, the controller’s execution time is hundreds of times smaller
compared to initially. That was our desideratum.

• When we solve a new OCP, sometimes we need a metaheuristic (PSO, EA, etc.) that
searches for the optimal solution inside of a control structure. If the controller’s
execution time is not acceptable, we can use the approach presented in this paper
to create an ML controller. However, initially, we need the MA to search for the
optimal solution.

8. Conclusions

In this paper, we have proposed two ML controllers (LR controller and RNN controller),
including the linear regression and Regression Neural Network predictors, that can replace
the controller using a PSO algorithm; the optimal control structure works with an internal
process model.

The main conclusions are given as follows:

• The machine learning models succeed in “learning” the quasi-optimal behavior of
the couple (PSO and PM) using data capturing the PSO predictor’s behavior. The
training data are the optimal control profiles and trajectories recorded during M offline
simulations of the closed-loop over the control horizon.

• The current paper proposes algorithms for collecting data and aggregating data sets
for the learning process. The learning process is split according to the level of each
sampling period so that a predictor model is trained for each one. The multiple linear
regression and the Regression Neural Networks are considered the predicting models.

• For each case, we propose algorithms for constructing the set of ML models and the
controller (LR or RNN controller). Algorithms for the closed-loop simulations using
the two controllers are also proposed; they allow us to compare the process evolutions
involved by the three controllers, the PSO, LR, and RNN controllers.

• The final simulations show that the new controllers preserve the quasi-optimality of the
process evolution. In the same conditions, the process evolutions are almost identical.

• An advantage of our approach refers to data collection, data set preparation for the
training process, and the construction of ML models; all of these activities need only
simulations (using the PSO controller) and offline program executions (Remark 6).
The ML models for each sampling period are determined offline ahead of using the
ML controller in real time.

97



Processes 2024, 12, 991

• We emphasize that during the final closed-loop simulations, the ML controller encounters new
process states unobserved in the training and testing of its predictor (Remark 10). Owing to
its generalization ability, the controller makes accurate predictions of the control value
sent to the process.

The PSO predictor first searches for the optimal control value, following its optimiza-
tion mechanism using particles and the PM, before predicting it. This search sometimes
means a big computational effort and a large controller execution time. The ML controller
(LR or RNN) predicts using an already-known regression function, which can emulate the
PSO predictor. In other words, the ML predictor replaces the PSO predictor only in execution
when the controller achieves the control action. That is why the controller’s execution time
decreases drastically. However, the solution belongs intrinsically to the PSO predictor.

When we solve a new OCP, sometimes, for different reasons, we shall need a meta-
heuristic (PSO, EA, etc.) searching for the optimal solution inside of a control structure.
Finally, the implemented controller integrated into the control structure can be one of the
two ML controllers.

In our opinion, this work goes beyond the controller’s execution time decrease and
opens a perspective to emulate and replace in a general manner optimization structures.
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Appendix A

The controlled physical system is a flat-plate photobioreactor (PBR) lighted on a single
side for algal growth. The constructive and physical parameters are presented in Table A1.
Their definitions are irrelevant to this work.

The PBR is a distributed parameter system because the light is attenuated inside.
To convert it into a lumped-parameter system, its depth, L = 0.04 m, is discretized in
kL = 100 points equally spaced ( zi ∈ [0, L]. After discretization, the process model (PM) is
as follows:

.
x1(t) =

⎡⎣μmax · 1
100

·
100

∑
i=1

Gi(t)

kS + Gi(t) + 1
kI
· Gi(t)

2 − μd

⎤⎦ · x1(t)

.
x2(t) = A · C · q(t)

Gi(t) = q(t) · ki
x1(t), i = 1, . . . , kL

ki = e−
1+α
2α ·Ea ·zi ; i = 1, . . . , kL

98



Processes 2024, 12, 991

m(t) = V · x1(t)

The control input u(t) is considered the intensity of incident light:

u(t) = q(t).

The state variables are as follows:
x1(t): the biomass concentration (in g/L);
x2(t): the light amount which, up to moment t, has illuminated the PBR (in μmol/m2/s).

Table A1. The constants of the PBR model.

Ea = 172 m2·kg−1 absorption coefficient

Es = 870 m2·kg−1 scattering coefficient

b = 0.0008 backward scattering fraction

μmax = 0.16 h−1 specific growth rate

μd = 0.013 h−1 specific decay rate

KS = 120 μmol·m−2·s−1 saturation constant

KI = 2500 μmol·m−2·s−1 inhibition constant

V = 1.45·10−3 m3 volume of PBR

L = 0.04 m depth of PBR

A = 3.75·10−2 m2 lighted surface

x0= 0.36 g/L initial biomass concentration

C =3600·10−2 light-intensity conversion constant

kL = 100 number of discretization points

qm = 50 μmol/m2/s lower technological light intensity

qM = 2000 μmol/m2/s upper technological light intensity

m0 = 3 g. minimal final biomass

tfinal = 120 h control horizon

T = 1 h sampling period

The output variable, the biomass m(t) calculated by Equation (A1), is the PBR’s product.
As a productivity constraint, it must hold that

m(t f ) ≥ m0. (A1)

The cost function (A2) represents the amount of light used for the current batch
while constraint (A1) is fulfilled. The two weight factors (w1 and w2) are established
through simulation.

J(q(·), x0) = w1 ·
∫ t f

t0

q(t) · dt + w2

(
m(t f )−m0

)
. (A2)

Appendix B

Our implementations are based on the MATLAB system and language. The reader can
find inside the folder Processes_PSO_ML, supplied in the Supplementary Materials, the
guide “READ ME.txt”. The following scripts can be used to carry out the closed-loop simulation:

• ControlLoop_PSO_RHC.m that implements the “ControlLoop_PSO” program;
• INV_PSO_Predictor1.m that implements the “Predictor_PSO” function;
• INV_RealProcessStep.m that implements the “ProcessStep” function.

The functions called recursively are also present inside the folder.
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Figure A1. The data collected following M executions of the closed-loop simulation.

The script LOOP_M_ControlLoop_PSO.m, also included in the Supplementary Materials,
gathers data from all of the 200 simulations and saves them in the file WS_data200.mat.

A fragment of the matrices describing the closed-loop simulation’s data, that is, the
quasi-optimal evolution, is given in Figure A2. Notice that we have a single control variable
and the 121st state is the final one.

)   

k x1 x2   u*(k) 

0  0.3502 0   702.62

1  0.3783 0.0948   612.65

2  0.4060  0.1775   359.55

3  0.4281   0.2261   535.81

 

117 2.3947  9.0497   436.61

118 2.3988   9.1087   618.68

119 2.4083   9.1922   680.81

120 2.4192   9.2841

Figure A2. The matrices for the optimal trajectory and its CP (first simulation).

Appendix C

A fragment of the SOCSK matrix produced by a MATLAB script is presented hereafter.
The matrices like this one, presented in Table A2, are the data sets that allow for the

construction of the ML models for each sampling period.

100



Processes 2024, 12, 991

Table A2. The matrix SOCSK for the second sampling period (k = 1).

x1 x2 u

i = 1 0.37831 0.094853 612.65
i = 2 0.40708 0.077925 557.37
i = 3 0.40122 0.066811 802.69
i = 4 0.40359 0.079127 387.99
i = 5 0.37865 0.078882 560.77
i = 6 0.37801 0.079205 510.57
. . . . . . . . . . . .
. . . . . . . . . . . .

i = 197 0.40607 0.074351 547.26
i = 198 0.39419 0.069684 485.64
i = 199 0.38625 0.082921 558.9
i = 200 0.39531 0.071325 539.92

Appendix D

The Linear Regression Models’ Construction

This construction of the H = 120 linear regressions is achieved by using the script
GENERATE_ModelSW. The latter opens the file WS_Modelsv1.mat (see below) to load the
needed data sets.

The generic functions fitting_to_data and get_the_coefficients from Table 4 correspond to
MATLAB functions stepwiselm and mdlsw.Coefficients.Estimate. The fpredict function
is directly implemented using the regression formula and the coefficients.

The reader can also examine the script Model_ConstructionLINREG.m, which does
not use the stepwise regression strategy; the regression models contain only the two linear
terms and an intercept. The coefficients for all 120 regression functions are stored in the
file WS_3coeff.mat. The cell arrays, MODEL—which stores the 120 objects of type linear
regression—DATAKTest, and DATAKTrain, are saved in the file WS_Modelsv1.mat.

In every step, the current state, the predicted control value uML, and the process’s
next state are displayed. The final lines display the biomass produced, Δm = 3.0282 g, and
the performance index J = 9.5981.

>> CONTROL_loopLINREG 

k=   1  x1= 0.3600 x2= 0.0000 uML= 564.1787  

           next state X01= 0.3863 X02= 0.0762 

 

k=   2  x1= 0.3863 x2= 0.0762 uML= 585.5286  

           next state X01= 0.4138 X02= 0.1552 

                                   

k= 118  x1= 2.4269 x2= 9.0945 uML= 511.6694  

       2.4269       9.0945 

           next state X01= 2.4331 X02= 9.1636 

 

k= 119  x1= 2.4331 x2= 9.1636 uML= 568.2736  

Figure A3. Cont.
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       2.4331       9.1636 

           next state X01= 2.4408 X02= 9.2403 

 

k= 120  x1= 2.4408 x2= 9.2403 uML= 565.2016  

       2.4408       9.2403 

           next state X01= 2.4484 X02= 9.3166 

############################################# 

final state: 

       2.4484       9.3166 

&&&  x00= 0.3600 yield mass= 3.0282  Light= 9.3166  Perf Index= 9.5981 

Elapsed time is 0.640188 seconds. 

 

Figure A3. Execution of the closed-loop simulation program (CONTROL_loopLINREG).

Appendix E

The script GENERATE_ModelNN.m implements the algorithm presented in Table 7.
We recall that it is carried out offline in step 5 of the design procedure.

The function trainRegNN is implemented in two versions by the script trainRegNNK0.m
for the first sampling period and trainRegNN.m for the others; it trains the RNN and can be
generated automatically using the regression application (eventually with hyperparameter
optimization) or written ad hoc using another training function. As an orientation, we give
here a few RNN parameters:

RNN = fitrnet(predictors, response. . .,
‘LayerSizes’, [14 1 7], . . .
‘Activations’, ‘none’, . . .
‘Lambda’, 0.00015, . . .
‘IterationLimit’, 1000, . . .
‘Standardize’, true);

(see [32]).

>> CONTROL_loopNN 

kplus1=   1  x1= 0.3600 x2= 0.0000 uML= 564.1785  

  Next state:         X01= 0.3863 X02= 0.0762 

 

kplus1=   2  x1= 0.3863 x2= 0.0762 uML= 585.6589  

  Next state:         X01= 0.4138 X02= 0.1552 

                                   

kplus1= 118  x1= 2.4247 x2= 9.0902 uML= 533.8785  

  Next state:         X01= 2.4316 X02= 9.1622 

 

kplus1= 119  x1= 2.4316 x2= 9.1622 uML= 546.2667  

  Next state:         X01= 2.4387 X02= 9.2360 

 

Figure A4. Cont.
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kplus1= 120  x1= 2.4387 x2= 9.2360 uML= 559.4318  

  Next state:         X01= 2.4461 X02= 9.3115 

 

Elapsed time is 1.349449 seconds. 

####################################################### 

final state: 

       2.4461       9.3115 

&&&  x00= 0.3600 yield mass= 3.0249  Light= 9.3115  Perf Index= 9.5604 

 

Figure A4. Execution of the closed-loop simulation program (CONTROL_loopNN).

In every step, the current state, the predicted control value uML, and the process’s
next state are displayed. The final lines of Figure A4 display the biomass produced,
Δm = 3.0249 g, and the performance index J = 9.5604.
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Abstract: Forest fires have emerged as a significant global concern, exacerbated by both global
warming and the expanding human population. Several adverse outcomes can result from this,
including climatic shifts and greenhouse effects. The ramifications of fire incidents extend widely,
impacting human communities, financial resources, the natural environment, and global warming.
Therefore, timely fire detection is essential for quick and effective response and not to endanger
forest resources, animal life, and the human economy. This study introduces a forest fire detection
approach utilizing transfer learning with the YOLOv8 (You Only Look Once version 8) pretraining
model and the TranSDet model, which integrates an improved deep learning algorithm. Transfer
Learning based on pre-trained YoloV8 enhances a fast and accurate object detection aggregate with
the TranSDet structure to detect small fires. Furthermore, to train the model, we collected 5200 images
and performed augmentation techniques for data, such as rotation, scaling, and changing due and
saturation. Small fires can be detected from a distance by our suggested model both during the
day and at night. Objects with similarities can lead to false predictions. However, the dataset
augmentation technique reduces the feasibility. The experimental results prove that our proposed
model can successfully achieve 98% accuracy to minimize catastrophic incidents. In recent years, the
advancement of deep learning techniques has enhanced safety and secure environments. Lastly, we
conducted a comparative analysis of our method’s performance based on widely used evaluation
metrics to validate the achieved results.

Keywords: forest fire; fire detection; YOLOv8; deep learning; TranSDet; wildfire incidents;
brushfire spread

1. Introduction

Forest fires are catastrophic events that result in widespread economic, ecological,
and environmental damage all over the world. High temperatures can ignite dry fuels,
such as sawdust, leaves, and lightning, or they can be sparked by human activities, such
as unextinguished fires, arson, or improperly burned debris [1]. Between 2002 and 2016,
an estimated 4,225,000 km3 of forest burned by fire [2]. Forest fires can arise from both
natural phenomena and human activities. Natural causes include factors such as heat, dry
weather, lightning strikes, volcanic eruptions, coal-seam fires, and smoking. On the other
hand, human-induced causes encompass activities like cooking, accidental ignition, and
deliberate fire lighting. Either natural or human-created fires have a severe impact on wild
as well as human life. Human activity contributes 90%, and lightning provides the rest of
the 10% of forest fire sources [3]. Both people and wildlife are affected by wildfire toxic
gases in the troposphere [4].
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Forest fires were previously identified by watchtowers, which are ineffective, and
human surveillance is expensive [4,5]. Implementing automation offers a significantly
improved and more precise approach to forest fire detection. Additionally, weather condi-
tions, rainy days, and high temperatures constrain the fire detection process. Therefore, a
real-time fire detection technique is much better and has a low cost [6].

To prevent expanding fire, commonly there are two methods used, and are vision-
based fire detection (VFDs) and sensors that exhibit sensitivity to sound, flames, temper-
ature, gases, or solid materials [7]. Sensors trigger chemical characteristics of smoke and
the variance of the environment. Once smoke is in the range, the sensor alarm turns on. In
certain scenarios, sensor-based detection systems [8] may not be feasible, particularly in
expansive coverage areas, forested regions, and environments with elevated temperatures,
as they may generate numerous false alarms [9]. Moreover, the operational range of sensors
is constrained [10], leading to a reduced lifespan.

The inception of object detection leveraging AI (artificial intelligence) traces back to
1986 [11]. Nonetheless, the substantive contributions of AI and machine learning models
were hindered during that period due to technological constraints. Furthermore, the
introduction of Facebook and Google big data forced deep learning (DL) models to have
technical advantages. Parceptron was the first stepping stone towards deep learning. Time-
different deep learning techniques, such as Alexnet [12], VGG16 [13], Faster R-CNN [14],
Detectron2 [15], and YOLOv1 [16], were introduced by the need for scaling tasks, speed,
and so on. In this study, the following problems were identified in detecting forest fires.

1. Collection and labeling images of forest fires pose significant challenges, primar-
ily attributed to the absence of readily available open-access datasets containing
fire images.

2. Given the absence of standardized shapes or sizes of fires, detecting objects of varying
dimensions in real-time poses a considerable challenge, particularly in achieving high
levels of accuracy.

3. Fire and fire-like object detection as fire is a real problem in forest fire identification
and classification.

The integration of artificial intelligence (AI) with mathematical models for fire detec-
tion and prediction has been a burgeoning area of research. In [17–19], researchers provide
a comprehensive overview of various machine-learning techniques applied to fire detection
and prediction. It discusses the integration of AI algorithms with mathematical models
for more accurate predictions. These papers explore the application of deep learning tech-
niques, such as convolutional neural networks (CNNs) and recurrent neural networks
(RNNs), for wildfire detection and prediction. They discuss how these AI methods can be
integrated with mathematical models to improve prediction accuracy [20,21].

Some papers discuss wildfire probability modeling and resilience in wildland fire
management, exploring wildfire risk assessment methodologies and resilience planning
strategies [22]. The mentioned approaches introduced probabilistic risk modeling, scenario
analysis, and community-based resilience planning. It also provides case studies illustrating
the application of these methods in wildfire-prone regions. Scientists also present an
integrated modeling framework that combines wildfire probability modeling with resilience
assessment. It discusses how environmental factors, land use patterns, and social dynamics
influence both wildfire occurrence and community resilience [23,24].

This paper is organized into the following sections: Section 2 presents an overview
of the relevant literature. Section 3 details our dataset and explains our proposed fire
detection method. Section 4 provides a comprehensive examination of experimental results,
accompanied by a detailed analysis of performance, and Section 5 discusses limitations
and outlines future work. In the end, Section 6 provides the findings and final summaries
to overcome challenges.
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2. Literature Review

Forest flame recognition techniques generally fall into the following two main cate-
gories: artificial intelligence/computer vision approaches and sensor-based techniques.
There are some limitations to the sensor-based method. To overcome these limitations, we
upgraded the deep learning method based on transfer learning on pre-trained Yolov8 and
TranSDet. CNNs [25–29] (convolutional neural networks) and DNN (deep neural network)
are the most popular methods in the field of object detection. As sensor-based systems have
some limitations and object detection techniques cover these limitations, deep learning has
gained more popularity [30,31].

2.1. Detection of Forest Fires Utilizing Machine Learning and Deep Learning Methodologies

With AI advancing day by day, numerous research techniques have been innovated
in the field of deep learning on fire detection. Among all deep learning models, CNNs
commonly use techniques in computer vision. Toulouse et al. [32] proposed a system to
recognize geometrical observation of flame based on length and position. The model’s
foundation is the classification of pixels based on the non-refractory pictures’ average
intensity. Jian et al. [33] upgraded the model with a boundary detection operator with
multistep operation. However, the model only obtains better performance in simple and
stable fire and flame images. For the first time in the history of deep learning, using a
combination of foreground and background color frames, Turgay [34] generated a real-time
fire detector. Though the model produced better output for fire images only, for fire-like
images, and in the presence of smoke and shadow, the model was outperformed. With the
improvement in deep learning, LDS is capable of identifying dynamic smoke and flame
textures [35].

With technological improvement, researchers introduced the YOLOFM algorithm
based on YOLOv5n approach to classifying small objects, which makes forest fire detection
more accurate [36]. Furthermore, in [37–41], more improved fire detection techniques were
innovated. To improve fire detection precision accuracy, a DL-based approach named
DTA (Detection and Temporal Accusations) was proposed in [42]. It tries to identify a
person by imitating the identification process. This model increases the accuracy of flame
identification while accurately interpreting the temporal SRoF characteristics. The authors
of [43] designed an early flame recognition technique using a lightweight CNN.

2.2. Detection of Forest Fires Utilizing YOLO and Transformers Methodologies

In [44], the Yolov3 network was employed for small-scale object classification. This
model leverages the K-means clustering technique to distinguish flames. In [45], the authors
introduce a fire depth separable convolution to mitigate the computational costs of the
method and enhance the perceptual feature layer using the cavity convolution method.
Furthermore, in [46], the authors propose ELASTIC-YOLOv3 as an enhancement over
YOLOv2 to enhance performance without increasing the number of parameters. Initially,
fire detection algorithms encountered challenges, such as high light intensity, limited color
information, and variations in flame shapes and sizes, which prompted the development
of enhanced technologies for real-time flame classification and recognition, manifested in
modulated YOLO networks (v4, v5, v6, v7, v8) as introduced in [47–53].

Far object detection using a deep learning model did not perform well before introduc-
ing transformer learning. Transformer-based learning shows superior object prediction per-
formance in various advanced vision areas, including image/video analyzing [54], image
super-resolution [55], object recognition [56], segmentation [57], and ViT [58] (image classi-
fication). This advancement is facilitated through the utilization of Vision Transformer [59],
DeiT [60] (Data-Efficient Image Transformers), and MedT [61] (Medical Transformers).
Vision Transformer (ViT) is a deep learning model that applies the transformer architecture,
originally designed for sequence processing tasks like natural language processing, to
image data. Instead of using convolutional layers like traditional convolutional neural
networks (CNNs), ViT represents images as sequences of patches, which are then processed
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by a transformer encoder. ViT divides the input image into fixed-size, non-overlapping
patches and flattens them into sequences, which are then fed into the transformer en-
coder. By leveraging self-attention mechanisms, ViT captures long-range dependencies
within the image and learns representations that are effective for image classification tasks.
Data-Efficient Image Transformers (DeiT) is a variant of ViT designed to achieve better per-
formance with smaller amounts of labeled training data. DeiT introduces techniques such
as distillation, where a larger pre-trained model (teacher model) is used to distill knowl-
edge into a smaller student model. Medical Transformers (MedT) are transformer-based
models specifically tailored for medical imaging tasks. These models adapt the transformer
architecture to handle medical image data, which often differ from natural images due
to factors like different modalities (e.g., MRI, CT scans) and specialized structures (e.g.,
anatomical features). MedT models are trained in medical imaging datasets and learn to
perform tasks, such as image classification, segmentation, and detection, within the medical
domain. By leveraging the power of transformers, MedT models can capture complex
patterns and relationships in medical images, leading to improved performance in various
medical image analysis tasks [62–64].

3. Proposed Method and Model Architecture

3.1. Forest Fire Dataset

For the model to be trained, the first task begins with collecting a diverse range of
datasets. We collected fire images and videos from the internet. Due to a wide range of
datasets helping to generalize the model, our obtained images collected distinct angles,
focal lengths, and brightening conditions. Additionally, on the internet, there are some
popular platforms such as Roboflow, Bing, Flickr images, and Kaggle to arrange images. To
achieve more accurate results, we divided our dataset into two classes: fire and non-fire
images. To train our dataset, we standardized the dimensions of all images by resizing them
to the same height and width, thus minimizing potential errors. Our dataset comprised
7000 images captured during both the daytime and nighttime, which were subsequently
compressed, as shown in Table 1.

Table 1. Images of the forest fire scenes from the custom dataset.

Dataset
Google, Bing, Kaggle, Flickr

Images
Video Frames Total

Forest Fire Images 4136 2864 7000

After collecting the dataset, we applied custom image pre-processing, dropped 1000 im-
ages from the dataset and left 6000 images. Figure 1 shows how we increased our dataset by
rotating each image at 90◦ angles to 270◦ using a computer vision algorithm. After applying
the augmentation technique, our dataset increased four times, and the total number of
images extended to 24,000 images. Our dataset is divided as follows: 70% for training
images, 10% for test images, and 20% for validation images, as shown in Table 2.

    
(a) (b) (c) (d) 

Figure 1. Sample images of forest fires rotated from various perspectives. (a) 90◦ rotation, (b) 180◦

rotation, (c) 270◦ rotation, and (d) the original image.
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Table 2. Distribution of flame frames within the dataset.

Dataset Training Images Testing Images Validation Images Total

Fire 11,760 1680 3360 16,800

Non-Fire 5040 720 1440 7200

Scheme 1 shows the convergence of image sizes where x and y are the new image
dimensions. P is the input image matrix, and using the multiplication of the angle, the
expected image rotation takes place.

Scheme 1. Image processing (rotation).

After completing image augmentation, we labeled our images into two classes: fire
and non-fire. According to image annotation, a JSON file was created for each image.
Earlier in this section, we mentioned that we resized all the images to overcome unexpected
errors. In our dataset, we resized our images to 512 × 512 using OpenCV2, as shown in
Figure 2.

Figure 2. The overall process of resizing images.

3.2. Model Selection

YOLOv8 is the latest edition of the CNN dynamic object model with high accuracy in
real-time. The entire image region is processed by a single neural network, after which it
is divided into multiple components, and the potential bounding boxes and probability
estimates are estimated for each component. The YOLOv8 network is the continuous
improvement of YOLOv1 to YOLOv7. The YOLO model has a backbone that is a series
of convolution layers pulling the pixels down at the different resolution sizes, and these
features pass through a neck where they are pulled together and put into a head, which
leads to an object detection process base loss matrix. The YOLOv8 model architecture is
shown in Figure 3.
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(a) (b) 

Figure 3. (a,b) are the overall architecture of the YOLOv8 model.

As shown in Figure 3, YOLOv8 is an anchor-free model. Instead of predicting the offset
of an anchor box, it predicts the center of an object directly. With anchor-free detection,
fewer box predictions are made, which speeds up Non-Maximum Suppression (NMS),
which is a post-processing step used to sift through candidate detections. YOLOv8 uses
RasNet as its head. The final detection stage used C2F; here, f is the number of features.
CBS block consists of convolution, batch norm, and silu function. The final detection stage
uses anchor boxes to show the probability of object detection.

The YOLOv8 network contains five different models. YOLOv8n is a good solution for
mobile phone applications. YOLOv8s (small model) is compatible with the CPU. YOLOv8m
is a medium-sized model that has 25.9 million parameters, which are balanced between
speed and accuracy. YOLOv8l has 43.7 million parameters, and this model works best with
numerous databases and training. Out of the five models, YOLOv8x is the largest and has
the highest mean average precision; nevertheless, it performs slower than YOLOv8l. The
relation between YOLOv8n and YOLOv8x is shown in Table 3.

Table 3. Relation between the YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x model [65].

Network
Size

(Pixels)
aMPval

(50–95)

Speed
CPU (ms)

Speed T4
GPU (ms)

Params (M) Flops (B)

YOLOv8n 640 37.3 - - 3.2 8.7

YOLOv8s 640 44.9 - - 11.2 28.6

YOLOv8m 640 50.2 - - 25.9 78.9

YOLOv8l 640 52.9 - - 43.7 165.2

YOLOv8x 640 53.9 - - 68.2 257.8
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3.3. Proposed Forest Fire Model

In this subsection, we elaborate on the methodologies employed in computer vision
for forest detection, focusing on deep learning approaches, transfer learning techniques,
and the aggregation of models.

3.3.1. Transfer Learning

Deep learning algorithms learn features from data, which provide additional support
to a deep learning model to detect objects more accurately and fast. However, collecting
data is expensive, may not be available, and annotation is a tedious task with high costs.
Transfer learning allows one to learn from features and transfer model weight to another
model for further learning.

First, we review traditional methods of object detection for transfer learning [66]. This
paper proposes using the YOLO pre-trained weights and transfer learning features. As
we mentioned earlier, we used 24,000 forest fire images in our dataset, and for the train,
16,800 images were used. We used the default YOLOv8 in all five models to train our
dataset and show the result after 50,000 iterations in Table 4. In addition, image hue 0.1,
saturation 1.5, and exposure 1.5 were used.

Table 4. Pre-trained weights obtained using a limited dataset.

Models Input Size
Training
Accuracy

(AP50)

Testing
Accuracy

(AP50)

Weight
Size

Iteration
Number

Training
Time

YOLOv8n

512 × 512

83.8% 81.8%

186 MB 50,000

27 h

YOLOv8s 84.1% 82.9% 34 h

YOLOv8m 86.4% 84.8% 38 h

YOLOv8l 91.7% 90.7% 43 h

YOLOv8x 87.1% 85.5% 48 h

Table 4 shows the results obtained for the training and testing accuracies with different
indicators. YOLOv8l showed the highest training and test accuracy of 91.7% and 90.7%
in 43 h, respectively. The following results were obtained from YOLOv8x with 87.1% and
85.5% accuracy. YOLOv8m and YOLOv8s had 86.4% and 84.1% training accuracy and
84.8% and 82.9% testing accuracy, respectively. YOLOv8n showed the lowest training
accuracy at 83.8%; on the other hand, 81.8% was the testing accuracy with 27 h of training
time. Moreover, our fire detection approach using YOLOv8 showed better accuracy with
large-size forest fire detection but was not efficient with small-size forest fires. Images of
forest fires, small-scale fires, and no fires may all be distinguished with the human eye.
For deep learning, the method needs more information to improve prediction accuracy.
Figure 4 shows the overall fire detection using the YOLOv8 object detection model. Here,
the model shows insufficient accuracy in terms of small images but is compatible with
large-size forest fire detection.
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Figure 4. Big and small-size forest fire detection.

3.3.2. Detect Small-Size Image

From the previous section, detecting small fire images has some limitations in our
model. To solve the accuracy factor, we drove forward the concept of the TranSDet [67]
model. This model proposes a meta-learning-based dynamic resolution adaption transfer
learning (DRAT) schema to adapt the pre-trained general model to detect small objects. The
model includes an additional stage on the pre-trained model using DRAT and then transfers
the model modified for the intended database. The pre-trained model only generates
training on small objects, and to generalize for small objects, the data augmentation (resizing
the input images to small images) technique is used to train the model. Fine-tune follow-up
is used after the augmentation technique. Figure 5 shows the TranSDet architecture.

Figure 5. The overall architecture of the TranSDet model.
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TranSDet model directly transfers conventional stage 1 and stage 3 pre-trained models
using fine-tuning and implementing the dynamic resolution adaptation technique. Stage 2
adopts the pre-trained model to improve transfer learning to detect small objects.

θ = arg
min

θ
E
Ri

L(D, Ri, M) (1)

Here, R is a set of resolutions, and M is the model, and θ pre is the weight to generalize
the dataset. In the equation, D represents the database, and L stands for the loss function. To
address the meta-learning problem, we employed the widely used MAML (Model Agnostic
Meta-Learning) model [68].

θ′i = θ − α∇θ LRi (M(θ; Xi)) (2)

θnew = θ − β∇θ ∑
Ri

LRi (M
(
θ′i ; Xi

)
) (3)

Here, Equation (2) θ′i is updated by θ, Xi is the mini batch of images, Ri is the resolution
of set R and α is the step size. From Equation (2), DRAT performs an inner update. In
Equation (3), θ new is the next iteration. When the model is complete, the final epoch of the
model training is complete.

After understanding the mathematical equation, we started building the model and
obtained the final output, as shown in Figure 6. After implementing the TranSDet model,
we obtained a maximum accuracy of 95%.

   

Figure 6. Prediction after implementing the TranSDet model.

3.3.3. Model Aggregation

Model aggregation in deep learning refers back to the method of combining the
predictions or outputs of a couple of common neural networks to make a final prediction or
choice. This technique is regularly used to enhance the overall performance and robustness
of gadget learning. There are several techniques for model aggregation, such as boosting,
bagging, stacking, averaging, voting, and so on. Our proposed model used the boosting
technique (the amalgamation of multiple weak models, each exhibiting slightly superior
performance to random guessing, culminating in the formation of a robust learner).

Boosting is an ensemble learning technique that merges multiple weak learners, often
decision trees, to construct a formidable learner. Its fundamental concept revolves around
assigning greater weight to misclassified instances from the preceding iteration, which
helps the ensemble focus on the difficult instances. The equations involved in boosting
include the following:

The weighted error (ε_t) for the t-th weak learner is calculated as follows:

ε_t = Sum of weights of misclassified examples/Total weight of all examples.
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The weight (α_t) for the t-th weak learner is calculated as follows:

α_t = 0.5 * ln((1 − ε_t)/ε_t)

The weights are updated based on whether they are correctly or incorrectly classified
by the t-th weak learner:

If correctly classified: w_i_(t + 1) = w_i_t * eˆ(−α_t)

If misclassified: w_i_(t + 1) = w_i_t * eˆ(α_t)

The final prediction is a weighted combination of the weak learners’ outputs as follows:
Final Prediction = Sign(Σ(α_t * Output of Weak Learner_t)).

These equations are used iteratively in boosting algorithms like AdaBoost and Gradi-
ent Boosting to create a strong ensemble model from weak learners.

Figure 7 shows our proposed simple model diagram. As mentioned earlier, we
prepared our dataset and used YOLOv8l pre-train model transfer model learning and
TranSDet model learning transfer and aggregated both modes to detect small and large
forest fires using the boosting technique.

Figure 7. Our proposed model workflow.

After applying the boosting method to our dataset, the accuracy increased to 97% and
a small fire to 96%, respectively. Furthermore, the inclusion of fire-like images enhanced
our model’s accuracy, as shown in Figure 8. Finally, our proposed model was implemented
on Raspberry PI 3B+, as shown in Figure 9. The suggested approach employed two
different models and used the transfer learning technique, and the model achieved 97%
accuracy performance.

   

   

Figure 8. Cont.
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Figure 8. Prediction after implementing boosting technique on the YOLOv8l and TranSDet model.
The first row displays the result of detecting a small fire, the second row shows the fire-like image
level to represent no fire, and the third row shows the detection of a large fire.

 
 

Model: Raspberry Pi 3B+ 

Ram memory: 1GB 

Memory storage: 1GB 

Connectivity: Bluetooth, USB 

Operation system: Linux 

Figure 9. Characteristics of Raspberry Pi 3B+ [12].

To evaluate the performance of our suggested model, we juxtapose it with an estab-
lished model in Table 5. However, the Results and Discussion sections show an explanation
of these observations in detail.

Table 5. Comparison between different models.

Features YOLOv8l TranSDet
Our Method (Model

Aggregation)

Test speed/s 2 s 2.3 s 4.5 s

Real-time
implementation

Possible Possible Possible

Small object
detection

Possible (but not
sufficient)

possible(shows better
output)

Possible (highly
accurate)

Algorithm Selective search Selective search Selective search

4. Results and Discussions from the Experimentations

Test with Fire and Non-Fire Image

We evaluated our model implementing the Visual Studio code on our MSI GS66
laptop (MSI, Taipei, Taiwan), equipped with a CPU speed of 5.3 GHz, 64 GB of RAM, and
6 GPUs. In the previous section, we discussed and implemented our proposed model
and aggregated the YOLOv8l and TranSDet models. In this subsection, we review and
discuss our model’s advantages and drawbacks. Traditionally, the YOLO model is known
for real-time fire detection with high accuracy. However, when we applied the model to our
custom dataset, small fire images were provided with insufficient accuracy. To improve our
model, we applied another model called TranSDet, which provides a high accuracy of up
to 96%. In our proposed model, the boosting technique was used to aggregate both models,

115



Processes 2024, 12, 1039

and our model provided accuracy of up to 97% and 96% with large and small forest fires,
respectively, as shown in Figures 10 and 11.

   
(a) (b) (c) 

Figure 10. (a–c) Outcomes of daytime image detection accuracies of forest fires.

   
(a) (b) (c) 

Figure 11. (a–c) Outcomes of nighttime image detection accuracies of forest fires.

Figure 12 shows the training and testing accuracy with loss throughout passing the
epoch to train the model. At the beginning of training, our model loss was at its maximum
at 0.5. However, after completing the model training process, the loss was minimal at 0.11.
On the other hand, for initial testing, it was 0.9, and at the very end, it was 0.1. As we
mentioned earlier, for training accuracy, the model reached 96.7% training accuracy and a
testing accuracy of 97%.

Figure 12. Model training and testing loss and accuracy visualization with epoch.

In this section, the compression of our proposed approach is discussed utilizing
various parameters and models. Our model was developed in three stages. First, we used
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pre-train YOLOv8l and then the TranSDet model to detect small forest fires, and we reached
97% accuracy. F-measures (FM) were employed to compute the weighted average, which
balances precision and recall. The true-positive and false-negative rates were taken into
consideration when calculating this score. In order to detect an object, the FM parameter
was most commonly used since measuring the accuracy rate was difficult. True positives
and false negatives were more effective in a detection model with identical weights. If true
positives and false negatives differ, precision and recall need to be taken into account. True
positive observations are measured by precision.

Recall, on the other hand, is the ratio of false positives to true positives, as described
in previous studies [69,70]. Our developed system had a precision of 97% and a false
detection rate of 0.7%. As shown in Equations (4) and (5), our proposed model had an
average precision and recall rate of 97% and 3%, respectively. TP refers to the accurate
detection of a forest fire, while FP refers to a false negative detection (Figure 13).

Figure 13. ROC curve of our proposed model.

Equation (6) shows the relation between precision and recall.

Precision =
TP

TP + FP
, (4)

Recall =
TP

TP + FN
, (5)

FM =
2× precision× recall

precision + recall
(6)

Forest fire detection is a complex task in the field of deep learning to achieve high
accuracy. Table 6 shows recently published fire detection models with precision, recall,
and FM. Here, our model reached the highest precision, recall, and FM with 97%, 96.1%,
and 96.5, respectively. This was followed by VGG16 and RsNet with a precision of 92.5%
and 90.8%, recall of 82.9% and 98.6%, and finally 90.8% and 90.2%, respectively. However,
AlexNet was the poorest in terms of precision, recall, and FM at 73.3%, 61.3%, and 75.1%,
respectively (Figure 14).
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Table 6. Numerical outcomes for the detection of fire.

Algorithm P (%) R (%) FM (%) Average (%)

VGG16 92.5 82.9 90.8 90.6

VGG19 93.1 84.5 91.7 91.5

Faster R-CNN [55] 81.7 94.5 87.2 97.8

ResNet [56] 90.8 89.6 90.2 90.3

AlexNet 73.3 61.3 75.1 79.9

Our Method 97 96.1 96.3 96.5

Figure 14. Comparison of different models using ROC for the fire and non-fire images.

5. Discussion

As stated in Table 6, the categorization of a model as good or bad is contingent
upon specific criteria rather than its overall performance. Furthermore, a model shows
high accuracy in some specific tasks, but depending on the complexity model can have
some limitations. Our proposed model has a couple of limitations. First, our dataset
did not include smoke images. Therefore, if only smoke was visible at the initial stage
of the forest fire, the model did not detect this as fire. Next, occasionally, the model
considered sun and electric light as forest fires when testing the method in various scenes.
In the future, we intend to enhance the developed system by incorporating a database
encompassing additional classes from diverse environments pertinent to this challenge [71].
Our methodology involved utilizing extensive datasets, like JFT-300M [72], comprising
300 million annotated images.

Despite the aforementioned challenges, the main contributions of this study are
as follows:

1. The pre-trained YOLOv8 model and transferring the learning can detect large-size
forest fires. The YOLOv8 algorithm is known for its speed and ability to perform
object detection in real-time.

2. To detect small-size fires, the TranSDet model and transfer learning approaches can
be applied. Utilizing deep learning to acquire fire-specific features, the presented
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methodology has the potential to mitigate the prevalent issue of false alarms in
conventional fire detection methods. Such an advancement stands to not only prevent
unwarranted emergency responses but also to alleviate the financial burden attributed
to false alarms.

3. Both models can be aggregated with boosting techniques to detect forest fires. The
goal of this research was to apply deep learning models in the field of forest fire
prevention. Early detection with high accuracy is beneficial for environmental safety.

4. In contrast to alternative approaches that rely on limited datasets, our method lever-
ages a substantial dataset encompassing fire, fire-like, and standard scenes. This
dataset comprises authentic imagery and videos sourced from diverse origins, thereby
encapsulating a broad spectrum of fire scenarios. These scenarios encompass both day
and night fire incidents, spanning variations in fire scale and accounting for varying
lighting conditions, including low-light and high-light environments.

Future efforts will aim to overcome the model’s limitation of yielding a high number of
false positives, particularly in challenging scenarios like low-altitude cloud cover and haze.
Enhancements could involve integrating historical fire record data on fire location, date, and
weather conditions, as fires often occur in similar contexts during specific months, thereby
improving prediction accuracy. Additionally, the current approach’s incompatibility with
edge devices presents a drawback. Nonetheless, we plan to address this issue in upcoming
research by optimizing the model size while maintaining prediction accuracy. One potential
avenue is to employ distillation techniques to train a smaller deep network, such as
YOLOv9, which is capable of achieving comparable performance to our current model,
thus making it more suitable for edge computing environments.

6. Conclusions

Day-to-day life unicorn tech companies work with big data. Aligning AI to mimic
human operations can secure human life in such a way as preventing life-threatening tasks
and better service. For object detection, numerous models have been developed based
on deep-learning CNN models. Forest fire detection using YOLOv is nothing new and
provides high accuracy. In the first proposed model, we collected the dataset and conducted
some preprocessing tasks. Our model architecture is based on three stages. First, use the
transfer technique on the YOLOv8 pre-train model to detect large-size forest fires. Next, to
detect small-size forest fires in real-time, the TranSDet model technique was transferred to
the learning of our model. Lastly, both transfers were fed learning to the boosting algorithm
to train weak learners and show high accuracy.

Several investigations have focused on enhancing forest flame identification and
classification tasks through CNN-based AI networks. Nevertheless, the potential of the
Detectron2 network remains unexplored in forest fire detection. The acquisition of ample
image data for training forest fire detection models presents challenges, often resulting in
issues such as data imbalance or overfitting, which can hinder the efficacy of the model. In
this study, we introduce a method for forest fire detection utilizing the enhanced Detectron2
model and develop a dataset to address these challenges.

After achieving 97% tested accuracy, our model was implemented in Raspberry Pi 3B+
to run on GPU mode. Furthermore, after testing our model in the variant environment,
we detected some limitations in real-time frameworks, such as no data related to smoke
frames; therefore, fume detection was not included in our model. In the future, we aim to
develop a model that can concentrate on healthcare using 3D CNN/U-Net [73–75].
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Abstract: As enterprises look forward to new market share and supply chain opportunities, innova-
tive strategies and sustainable manufacturing play important roles for micro-, small, and mid-sized
enterprises worldwide. Sustainable manufacturing is one of the practices aimed towards deploying
green energy initiatives to ease climate change, presenting three main pillars—economic, social, and
environmental. The issue of how to reach sustainability goals within the sustainable manufacturing
of pillars is a less-researched area. This paper’s main purpose and novelty is two-fold. First, it aims
to provide a hierarchy of the green energy indicators and their measurements through a multi-criteria
decision-making point of view to implement them as an alliance strategy towards sustainable man-
ufacturing. Moreover, we aim to provide researchers and practitioners with a forecasting method
to re-prioritize green energy indicators through a linearity factor model. The CODAS–Hamming–
Mahalanobis method is used to obtain preference scores and rankings from a 50-item list. The
resulting top 10 list shows that enterprises defined nine items within the economic pillar as more
important and one item on the environmental pillar; items from the social pillar were less important.
The implication for MSMEs within the manufacturing sector represents an opportunity to work
with decision makers to deploy specific initiatives towards sustainable manufacturing, focused on
profit and welfare while taking care of natural resources. In addition, we propose a continuous
predictive analysis method, the linearity factor model, as a tool for new enterprises to seek a green
energy hierarchy according to their individual needs. The resulting hierarchy using the predictive
analysis model presented changes in the items’ order, but it remained within the same two sustainable
manufacturing pillars: economic and environmental.

Keywords: Mahalanobis distance; green energy supply chain; MCDM; sustainable manufacturing;
predictive analysis model; CODAS; Hamming distance

1. Introduction

Innovation is seen as an activity that encourages growth, development, and continuous
improvement in each department of an enterprise [1]. It is considered a business strategy
that enhances the organizational structure for the development of new ideas and the
creation or improvement of products, services, and processes for acquiring a competitive
advantage [2]. Enterprises must define, develop, and maintain their supply chain to
guarantee an innovative and disruptive product.

Disruption presents uncertainty and a ripple effect in the supply chain long after
the event has passed [3]. As Ref. [2] describes, innovation and disruption offer great
opportunities for enterprises to achieve competitive advantage and growth for the company
itself. Decision makers need to focus on strategies for innovative and disruptive events. As
described in [3], a disruptive supply chain involves a number of factors such as information
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sharing and interconnected physical and cyber infrastructure, or, as suggested in [4],
horizontal collaboration strategies to design and develop joint projects in different areas
such as logistics, R&D, and knowledge transfer, among others.

The industrial sector is one sector with a rapidly changing challenge and has been
identified as the main participant in green energy consumption [5]. For micro-, small, and
mid-sized enterprises (MSMEs), the new challenge lies in creating a motivated environment
where human capital can increase their abilities and knowledge [6] in order to use their
actual resources effectively and efficiently to obtain aggregated value in their offered prod-
ucts and services [7]. The academic literature has identified specific elements to increase the
use of innovation and disruption as an enterprise’s business strategy, from implementation
changes like costs, technology diffusion, intellectual property protection, finance perfor-
mance, investments, and commercialization through alliances and collaboration ventures
where R&D activities, human capital, and knowledge transfer and sources are taken into
account to deliver firms’ innovation and disruption [1,8–10].

To enable sustainable manufacturing, enterprises must consider environmental and
economic implications within the supply chain. As explained by [11], enterprises focus on
strategies to increase the efficiency of manufacturing processes, the use of raw materials, or
the use of recovered or reused materials, as well as horizontal collaboration business models
to engage in innovative projects for sustainable value creation in manufacturing [12]. Key
factors include the involvement of decision makers in the considerable number of factors
that need to be taken into account, from production planning, manufacturing processes,
and innovation to supply chain design and products. Other factors include the selection
of raw materials from the perspective of recycling, reusing, or re-furbishing materials,
integrating or collaborating with processes that use energy effectively, and working with a
logistics strategy that uses low fossil fuel.

Deploying innovation and disruption goes hand-in-hand with green energy initiatives.
Faced with the challenge of changing climate damages, countries are working towards
several development goals, strategies, and agreements, from the Sustainable Development
Goals of the United Nations 2030 Agenda with 17 sustainable goals, to the Paris Agreement,
a treaty with the objective of economic and social transformation to be achieved through
collaboration in financial assistance, technology development and transfer, and capacity
building [13–16]. These strategies aim to incentivize countries towards a green energy
change, from production to consumption, and replace the use of fossil fuels [17–19].

To the best of our knowledge, there is no research on existing studies that outline the
main green initiatives used to enhance sustainable manufacturing pillars. Furthermore,
there is no literature review on the green indicators and measurements that could enhance
the sustainable manufacturing pillars—economic, social, and environmental.

Given the importance of achieving sustainable manufacturing considering climate
change, the current paper presents an in-depth literature review focused on the sustainable
manufacturing pillars, also known as the triple bottom line [13,20]. Overall, recent studies
do not provide a comprehensive review of how green energy indicators and their mea-
surements and items can be matched with the three pillars of sustainable manufacturing.
The investigation allows for companies in industrial activities to deploy specific actions
to enhance sustainable manufacturing, as well as adopt a predictive analytic model for
new hierarchization of the items for future research, promoting green energy indicators
in sustainable manufacturing. Thus, this review was conducted to fill the gaps in the
importance of these indicators and to answer the following questions:

• How can the green energy indicators be implemented within sustainable manufactur-
ing pillars?

• Which are the green energy indicators identified as of higher priority from a compara-
tive correlation from the MCDM methodology?

• How can new enterprises determine the hierarchy of green energy indicators?
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This paper’s main purpose is to provide a hierarchy of green energy indicators, their
measurements, and items aligned with the three pillars of sustainable manufacturing. This
is completed from the perspective of the MCDM to implement it as an alliance strategy
towards sustainable manufacturing. Moreover, it provides researchers and practitioners
with a forecasting method to reprioritize green energy indicators through a linearity factor
model. To answer the above research questions, the following objectives are set:

• Present the proposed CODAS–Hamming–Mahalanobis method developed by [12].
• Present the proposed green energy indicators, their measurements, and items identi-

fied by [21].
• Develop a green energy matrix with a Likert scale, including the green energy indica-

tors within the three sustainable manufacturing pillars.
• Provide a linearity factor model to forecast the hierarchy of green energy indicators

from an additional business’ opinion.

This paper is organized as follows: Section 2 presents the results of the literature
review of sustainable manufacturing pillars and green energy indicators. Section 3 con-
tains the methodology, followed by the discussion of the empirical findings in Section 4.
Section 5 concludes and outlines the theoretical contributions. Finally, Section 6 presents
and discusses the practical implications, limitations, and future research.

2. Literature Review

As a result of the above, this paper focuses on green energy indicators that firms can
use efficiently and effectively toward sustainable manufacturing. Green energy can have a
significant effect on the operational costs and performance achievements in manufacturing
processes, among others, but the initiative can fail due to several challenges and barriers [22].
To gain an understanding, the authors retrieved contributions from green energy indicators,
specifically those suggested by [21]. Then, a literature analysis of sustainable manufacturing
pillars is presented.

2.1. Green Energy Indicators, Measurements and Their Items

Manufacturing businesses are considered responsible for 36% of carbon dioxide emis-
sions and consume approximately a third of global energy production [17]. For this matter,
decision makers are aiming for sustainable development because stakeholders and end cus-
tomers are from developed, developing, and emerging economies. To make better decisions
in implementing sustainable factors, managers must pay attention to a more comprehensive
approach integrating economic, social, and environmental aspects [23,24]. Riosvelasco
et al. [21] present a literature review to identify green energy indicators, measurements, and
their items for manufacturing applications towards sustainability, as shown in Table 1. The
authors applied the PRISMA 2020 methodology to analyze previous research and identify
green energy indicators to ease Mexican companies in the industrial sector to deploy green
energy sustainable practices.

Table 1 shows six indicators: (1) technology and innovation, (2) geographical aspects,
(3) investment, (4) government regulations, (5) emissions, and (6) sustainable practices.
Within these six indicators, each encompasses a total of 18 measurements, and the latter
accumulate a total of 50 items. These indicators and their measurements and items are
identified to promote actions for Mexican companies to adapt and create a sustainable
manufacturing environment. As enterprises look forward to new market shares and
supply chain opportunities, innovation plays an important role for MSMEs worldwide. As
described by [25], innovative enterprises must create or find a business model that balances
everyday activities, innovative strategies, and sustainable manufacturing.
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Table 1. Green energy indicators, measurements and items [21].

Green Energy

Indicators Measurements Code Items

Technology and
Innovation

Technology Capacity

TI01 Improvements in production processes
TI02 Development of new production processes towards efficient energy usage
TI03 Preventive actions in production processes
TI04 Preventive actions in machinery, computer equipment, cooling systems

Collaboration Capacity

TI05 Have an R&D department

TI06 Joining a cluster to participate in trainings, collaborations, and programs for
fossil-fuel substitution

TI07 Support in the diffusion of green energy goods and services

TI08 Collaborate with research centers or universities in innovative projects
toward green energy usage

TI09 Participate in industrial symbiosis

TI10 Collaboration with enterprises of the same echelon to create new
production processes for green energy usage

TI11 Protect innovations with intellectual property

Geographical Aspects

Soil GA01 Knowing types of green energy that are generated in the area where the
enterprise is located

Water
GA02 Knowing the destination of residual loads
GA03 Have systems for the efficient treatment of water residuals
GA04 Using treated water in production processes

Electric Energy
GA05 Solar cells for generation and usage
GA06 Wind generator for generation and usage
GA07 Rely on fossil-fuel usage for machinery, production processes

Investment

Human Capital I01 Invest in human capital with knowledge and capabilities in green energy
I02 Invest in training for the enterprise’s human capital in green energy

Energy Efficiency I03 Identify opportunity areas in the efficient use of energy in machinery,
production processes, and transportation

I04 Invest in energy efficiency projects in production processes, machinery,
and transportation

Supply Chain I05 Integrate raw materials from suppliers that have production processes with
an energy efficient usage

I06 Buy machinery and equipment that have energy-efficient usage technology

Government Regulations

Policy
GR01 Generate environmental policy regarding green energy usage
GR02 Publish and disseminate about green energy

GR03 Facilitate linkage between enterprises and government entities for green
energy implementation

Incentive

GR04 Risk assessment in green energy investments
GR05 Submit tax offset plans by investing in green energy
GR06 Provide training for the usage of green energy in production processes
GR07 Offer funds and grants in R&D in production processes with green energy
GR08 Promote industrial symbiosis so enterprises implement green energy

Emissions Indicators
E01 Reporting of direct emissions from stationary sources
E02 Reporting of direct emissions from mobile sources
E03 Reporting of indirect emissions

Sustainable Processes

Residual
SP01 No use of hazardous materials or virgin materials for products in the

production process
SP02 Production processes designed to avoid waste

Reduce
SP03 Reduced material use per unit of production (increased dematerialization)

SP04 Develop products with better design, life cycle, durability, and quality in
raw materials

Reuse

SP05 Reuse material in production
SP06 Use of wastes as inputs

SP07 Resale of products with minimal defects, unsold products in inventory,
unused products

SP08 Use surplus components in inventory and adapt them for another function

Repair SP09 Repair and maintenance of products

SP10 Collect defective products at centers (branches or points of sale) through the
manufacturer or by a third-party company for repairs

Refurbish
SP11 Modular product design for ease of disassembly

SP12 Disassembly of the general structure of the product, checking, cleaning and
potentially replacing some components

Recycle SP13 Recovering the product at the end of its useful life
SP14 Ensure the use of recycled raw materials

Recover SP15 Capture energy embodied in waste
(incineration, use of biomass, among others)
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2.2. Sustainable Manufacturing

For enterprises, reaching sustainability goals is an everyday challenge because of the
fine decisions entrepreneurs have to make every day. Managers have difficulty selecting and
working on strategies for implementing sustainable manufacturing because sustainability
presents a variety of factors [17,24]. The path to stabilize the disruptive relationship
between industry and the negative impact on the 3Ps (people, planet, and profit) involves a
holistic approach relying on economic operational efficiency, environmental compliance,
communication, and legal regulations [24].

A literature review was conducted according to the following criteria: (a) year range
from 2020 to 2024; (b) article type as review articles; (c) keywords such as “sustainable
manufacturing pillars”, “triple bottom line” AND “sustainable manufacturing”, “sustain-
ability” AND “manufacturing”; and (d) access type as open access. For exclusion criteria,
the following were taken into account: keywords must be in title, abstract, and keywords.
The results obtained ranged from systematic reviews to identify drivers and motives for
sustainable manufacturing [26]; a framework for analyzing the product life cycle regarding
product design and manufacturing system selection [27] to the identification of several
enablers for the adoption of sustainable manufacturing [28].

For manufacturing businesses to work and implement a direct strategy towards
sustainable manufacturing, research has been focusing on sustainability measurement that
follows activities as the backbone within the supply chain [20], where decision makers
have to pay attention to the interaction between society, environment, and companies [29].
Sustainable manufacturing presents three pillars which are: (1) economic, which includes
criteria that take into account costs; (2) social, which takes into account the human elements
in terms of employees and community; and (3) environmental, criteria that involve reducing
emissions, waste, and spike energy, among others [20,24,27,28,30,31], as shown in Table 2.

Table 2. Sustainable manufacturing pillars [20,27,28,30].

Economic Factors Social Factors Environmental Factors

Hardware cost Stakeholder participation Energy consumption
Applied technology Employment issues Holding environmental standards

Software cost Personnel safety Environmental planning
Mean time between failure Personnel training Inside toxic emissions

Risk level of the system Acceptance by personnel Raw material consumption

Research and development cost Development of management and
engineering expertise Waste cleaning cost

Customer satisfaction Personnel health Waste type
Product variety Personnel wage Toxic emissions to air, soil, and water

Creativity Government regulations Resource availability
Product development stage Holding related to social standards Environmental management systems
Competitive enhancement Poverty Natural resources efficiency

Current reliability level Education Emissions quality
Reliability improvement plan Culture

Access difficulty Lifestyle
Quality of product/service Social harmony

Time efficiency
Mean time of repair

Manufacturing system type
Detailed production scheduling

System design
Reparability

Failures type severity
Technical feasibility

Flexibility
Return on investment

Demand urgency
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Table 2. Cont.

Economic Factors Social Factors Environmental Factors

Spare machine availability
Spare parts availability

Tear and wear rate
Lead time

Lost production cost
Personnel training cost

Wealth

From this point forward, the authors present a match between the green energy
indicators and the three sustainable manufacturing pillars. This decision-making matrix
has been designed by considering three sustainable manufacturing pillars, selected for
its approach of an innovation perspective from which enterprises can transition towards
green energy usage. For the matching process, the three pillars are taken into account.
(1) Economic: all firm’s costs, repairs, and enhancements, among other factors in different
departments; (2) social: factors contributing to personnel, stakeholders, and government;
and (3) environmental: factors regarding emissions, consumption and management systems.
Table 3 shows the items that involve criteria within each sustainable manufacturing pillar.

Table 3. Design of decision-making matrix.

Green Energy Sustainable Manufacturing Pillars

Indicators Measurements Items’ Code Economic Social Environmental

Technology and Innovation

Technology Capacity

TI01 X
TI02 X
TI03 X
TI04 X

Collaboration Capacity

TI05 X
TI06 X
TI07 X
TI08 X
TI09 X
TI10 X
TI11 X

Geographical Aspects

Soil GA01 X

Water
GA02 X
GA03 X
GA04 X

Electric Energy GA05 X
GA06 X
GA07 X

Investment

Human Capital I01 X
I02 X

Energy Efficiency I03 X
I04 X

Supply Chain I05 X
I06 X

Government Regulations

Policy
GR01 X
GR02 X
GR03 X

Incentive

GR04 X
GR05 X
GR06 X
GR07 X
GR08 X
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Table 3. Cont.

Green Energy Sustainable Manufacturing Pillars

Indicators Measurements Items’ Code Economic Social Environmental

Emissions Indicators
E01 X
E02 X
E03 X

Sustainable Practices

Residual
SP01 X
SP02 X

Reduce
SP03 X
SP04 X

Reuse

SP05 X
SP06 X
SP07 X
SP08 X

Repair SP09 X
SP10 X

Refurbish
SP11 X
SP12 X

Recycle SP13 X
SP14 X

Recover SP15 X

3. Methodology

3.1. Research Model

Contributing to the academic literature on sustainable manufacturing towards the use
of green energy indicators, measurements, and items, this paper presents a hybrid analysis
for hierarchizing green energy indicators using CODAS techniques with distinct distance
equations—Hamming and Mahalanobis distances. These center data from an enterprise’s
evaluation survey whose experience in different productive and service sectors enhances
green energy indicators in multi-criteria decision making. Additionally, we present a
linearity factor model for predicting green energy indicators from future enterprise panels.
Figure 1 conceptualizes the research model followed to reach this paper’s main objective,
taking into account the assigned Likert Scale, the CODAS–Hamming–Mahalanobis method,
and the predictive analysis model.

Figure 1. Research model.
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3.2. Instrument for Data Collection

The instrument for data collection was then designed from the decision-making
matrix, shown in Table 3, that served as a basis for the questionnaire. Table 4 presents the
questionnaire, which consisted of 17 questions, divided into 7 sections: (1) demographic
data, (2) technology and innovation, (3) geographic aspects, (4) investment, (5) government
regulations, (6) emissions, and (7) sustainable practices. The instrument was designed to
be answered by a businessperson, manager, supervisor, or person appointed from micro,
small, mid-size, or big enterprises.

Table 4. Instrument for data collection.

Green Energy Likert Scale 1

Indicators Measurements Items’ Code Question 1 2 3 4 5

Technology and
Innovation

Technology Capacity

TI01 Create improvements in the current production
processes for the efficient use of energy in the company.

TI02 Develop new production processes for the efficient use
of energy.

TI03 Maintain preventive actions in the production processes
for the efficient use of electric energy.

TI04
Maintain preventive actions in machinery, computer

equipment, refrigeration, among others, for the efficient
use of electrical energy.

Collaboration Capacity

TI05 To have a Research and Development department.

TI06
Join a cluster to participate in trainings,

collaborations and programs for the substitution
of fossil fuels for green energies.

TI07 Support in the dissemination of products or services for
the use of green energies.

TI08 Collaborate with Research Centers or Universities for
innovation projects with the use of green energies.

TI09 Participate in industrial symbiosis (e.g., waste of one
company is the raw material of the other company).

TI10
Collaborate with companies in the same line of business

to create new productive processes
for the use of green energies.

TI11 Protect innovations with Intellectual Property.

Geographical
Aspects

Soil GA01 To know the types of green energies generated in the
area (city, state) where the company is located.

Water
GA02 To know the destination of residual loads (drainage).

GA03 To have systems for the efficient use of water (e.g.,
treatment plant, recycling, reuse systems).

GA04 Use treated water in the company’s
production processes.

Electric Energy GA05 Use solar cells for the generation and use of
electrical energy.

GA06 Use wind generator for the generation and use of
electrical energy.

GA07 Dependence on the use of fossil fuels for production
processes, machinery, computer equipment, etc.

Investment

Human Capital I01 Investing in Human Capital with skills and knowledge
in green energies.

I02 Invest in Human Capital training to increase skills and
knowledge in green energy.

Energy Efficiency I03
Identify areas of opportunity in production processes,

machinery, computer equipment, transportation for the
efficient use of green energy.

I04 Invest in energy efficiency projects in production
processes, machinery, and transportation, among others.

Supply Chain I05 Integrate raw materials and other materials from
companies that use green energy in their processes.

I06 Purchase machinery and equipment
using green energies.
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Table 4. Cont.

Green Energy Likert Scale 1

Indicators Measurements Items’ Code Question 1 2 3 4 5

Government
Regulations

Policy
GR01 Create environmental regulation on the use

of green energies.
GR02 Publish and disseminate green energy.

GR03 Linking companies with government agencies to
implement green energies.

Incentive

GR04 Analyze the risks of green energy investment projects.
GR05 Submit tax offset plans when investing in green energies.

GR06 Provide training on the use of green energies in
production processes.

GR07 Offer funds and subsidies for research and development
of green energy production processes.

GR08
Promote industrial symbiosis so that companies

implement actions for the efficient use of green energy in
their production processes.

Emissions

Indicators
E01

Report direct emissions from stationary sources (heavy
machinery, boiler, industrial processes, basic furnaces,

wastewater treatment plant, emergency plant, etc.).

E02 Report direct emissions from mobile sources (goods or
personnel transport vehicles, forklifts).

E03 Report on indirect emissions (electricity and thermal
energy consumption).

Sustainable
Practices

Residual
SP01 No use of hazardous materials or virgin material for

products in the production process.
SP02 Production processes designed to avoid waste.

Reduce
SP03 Reduced material use per unit of production (increased

dematerialization).

SP04 Develop products with better design, life cycle,
durability, quality in raw materials.

Reuse

SP05 Reusing material in production.
SP06 Use of waste as input material.

SP07 Resale of products with minimal defects, unsold
products in inventory, unused products.

SP08 Use surplus components in inventory and adapt them
for another function.

Repair SP09 Product repair and maintenance.

SP10
Collect defective products at centers (branches or points

of sale) through the manufacturer or by a third-party
company for repairs.

Refurbish
SP11 Modular product design for easy disassembly.

SP12
Disassembly of the general structure of the product,

checking, cleaning and potentially replacing
some components.

Recycle SP13 Recovering the product at end of life.
SP14 Ensuring the use of recycled raw materials.

Recover SP15 Capture energy embodied in waste (incineration, use of
biomass, among others).

1 Likert Scale: 1—Strongly disagree; 2—Disagree; 3—Indifferent; 4—In agreement; 5—Totally agree.

To give certainty to the questionnaire for the fulfillment of the objectives outlined, a
validation process was carried out. Expert judgment was used—a process that requires an
accurate, efficient, methodological, and statistical interpretation of the results. The expert
panel selection was performed by taking into account the experience and knowledge of
sustainability practices, manufacturing processes, and energy efficiency strategies. The
expert panel was grouped by three experts, thus obtaining an average Cohen’s Kappa equal
to 0.95 with perfect agreement between the raters.

Afterward, the questionnaire was made on Limesurvey online software so it could be
in a more user-friendly form to be answered by the survey respondents. The questionnaire
can be filled out at the following URL: https://energiasverdes.limesurvey.net/686967
?lang=es (accessed on 21 May 2024) (it is available in Spanish, but will be made available in
English to obtain responses from a broader sample).
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3.3. Data Collection Process

The instrument for data collection was made available from August 2023 to March 2024,
through a digital platform known as Limesurvey. A Likert scale was used to measure the
level of interest of each enterprise’s decision maker towards each green energy indicator,
their measurements and items, with the meanings totally agree (5), in agreement (4),
indifferent (3), disagree (2), and strongly disagree (1), as shown in Table 4.

The survey was presented to a Mexican organization and a cluster, Cámara Nacional
de la Industria de la Transformación, North Zone (CANACINTRA, for its acronym in
Spanish) and Clúster de Energía Chihuahua (CECH, for its acronym in Spanish), to obtain
a higher response rate from manufacturing and service companies. Both organizations are
in Juarez city, Chihuahua, a city of great importance to the manufacturing sector in the
country. Additional responses were received from companies from Chihuahua city because
the link was shared to known businessmen. From the elapsed time, from August 2023 to
March 2024, a total of 116 survey responses were received. Figure 2 shows the diagram
flow for the data collected.

Figure 2. Data collection diagram flow.

As mentioned before, certain criteria were taken into account for excluding companies’
responses, such as: (1) only one decision maker from the company could respond to the
survey—more than one survey response from the same company were not taken into
account; (2) for responses received with 50% of survey responded to, the decision maker
was contacted asking them to finish the survey—if they did not respond within a period
of two weeks, the response was eliminated; (3) responses with zero items answered and
no contact data were discarded. From the demographic section, the following information
was obtained from the decision makers: 61.29% were companies located in Juarez city, and
38.70% in Chihuahua City. Table 5 presents demographic data regarding the 31 companies
that responded to the survey.

From the decision makers that responded to the survey, their job titles ranged from
Assistant Director (1), Quality Coordinator (1), Leader (1), Manager (2), General Manager
(6), Director (11), CEO (2), Owner (3), and Teacher (4). Moreover, their level of education
was Technician (1), Bachelor’s degree (16), Specialization (2), and Master (12).

The next step was to analyze the rest of the six sections through an integrated MCDM
method, named CODAS–Hamming–Mahalanobis, presented by [12].
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Table 5. Demographic data from companies.

Sector # of Respondents Firm Size

Commerce 4 Small = 4
Construction 3 Micro = 1; Small = 1; Big = 1
Government 2 Big = 2

Automotive industry 1 Small = 1
Beverages and Food industry 1 Big = 1

Wood industry 1 Micro = 1
Electric industry 3 Micro = 1; Mid-size = 2

Metal-mechanic industry 1 Micro = 1
Metallurgic industry 1 Big = 1

Residual, urban waste, and
special waste management

industry
3 Micro = 1; Small = 1; Big = 1

Education services 3 Micro = 1; Small = 1; Big = 1

Other 8 Micro = 2; Small = 1;
Mid-size = 3; Big = 2

3.4. Analytic Instruments

The authors of [12] proposed Mahalanobis distance to be used as the second distance
measure for the CODAS methodology. The resulting methodology presented better results
from the original primary and secondary distance measures (e.g., Euclidean and Taxicab
distances), gaining better numbers for Hamming and Mahalanobis distances. From this
point on, the present article uses this proposed methodology, named CODAS–Hamming–
Mahalanobis to obtain, analyze, and identify green energy items from a sample size defined
by the elapsed time. The main distance presented below is the Mahalanobis distance,
because Ref. [12] proposed three distance variants, and one of them, the robust variant,
showed better results.

Mahalanobis Distance Robust Variant

P.C. Mahalanobis proposed Mahalanobis distance in 1936, where it was defined as a
set of parameters of a particular cluster replacing the population via sample statistics [32].
Research presents Mahalanobis distance as a statistical tool that focuses on measurable
variables for data-driven decision-making [33,34], as well as a statistical technique measur-
ing a distance point from the center of a multivariate normal distribution [35]. Defined as a
distance that measures the distance between variables, different patterns can be analyzed
concerning the population parameters [33,36,37], as shown in Equation (1).

Mahalanobis distance:

D =
√(

Xi − X
)
S−1
(
Xi − X

)
, (1)

where:

1. Xi represents a row vector of a multivariate measurement being observed;
2. S−1 is the covariance matrix of the sample;
3. X is the mean of the sample.

As globalized manufacturing processes are integrated with cyber-physical features
and Industry 4.0, more data are received. Due to this situation, disruptions in statistical
themes present an opportunity for researchers to propose Mahalanobis distance measure-
ments with a series of functionalities. The reason for this usage is that Mahalanobis distance
can detect normal to abnormal data from a series of multivariate data [37–39]. Alterna-
tively, as described by [33], highlights and analysis outliers are observations that are left
out of the known sample and are not consistent with the first sample of data clouding
the primary analysis. This presents a wide range of applicability such as multivariate
analysis techniques, classification techniques, clustering analysis, discriminant analysis,
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and goodness of fit tests, among others [33,37]. In the health system, it is used to classify
Chronic Myeloid Leukemia neutrophils [40], studying circulating biomarkers like lipid
metabolism, inflammation, and microbiome [41], or for calculating a symmetry metric from
segmented NIR spectra [42]. It is also applied in environmental sciences by measuring data
and identifying differences to quantify species–environment relationships [35], detecting
damage effects on structural health monitoring [43], and detecting and measuring risk
levels in the international energy market system [44].

It is differentiated from Euclidean distance by showing correlations and data distri-
bution [33,37]. One of the functionalities presented in the literature is the Mahalanobis–
Taguchi System, which is a forecasting method for detecting outliers from the mechanical
state of a logistics system for potential failure prediction [45,46]. This can be used to
distinguish between criteria selection for strategies within educational institutions [47],
and as a forecasting method for consumer satisfaction for vehicle handling [33]. On the
other hand, FAST-MCD has been applied in order to achieve a more accurate result with
larger datasets [48], and a minimum covariance determinant is used as an approach for
multivariate outliers’ detection [49]. Alternatively, Ref. [50] evaluates the resilience system
through a TOPSIS model of weighted Mahalanobis distance or an ensemble method for
unsupervised learning by applying three options: (1) univariate Mahalanobis distance,
(2) Mahalanobis-square distance, and (3) local Mahalanobis-square distance.

As a multi-criteria decision-making (MCDM) tool, Mahalanobis distance facilitates
an analysis of a decision matrix of a MCDM problem, such as green energy indicators and
their measurements towards sustainable manufacturing in enterprises, as shown in Table 6.

Table 6. Multi-criteria decision matrix.

Criterion

V
ar

ia
bl

es

Gi/Cj C1 C2 C3 · · · Cn
G1 G11 G12 G13 · · · G1n
G2 G21 G22 G23 · · · G2n
G3 G31 G32 G33 · · · G3n
...

...
...

...
...

Gm Gm1 Gm2 Gm3 · · · Gmn

In [12], the authors proposed three variants of the Mahalanobis distance as the sec-
ondary measurement distance for hierarchizing horizontal collaboration factors within
the CODAS methodology. One of the variants, MDrv (Cov(_rij); ns), presented a higher
proportion in concordance compared to the Taxicab distance and the other two MD variants
proposed. From this point forward, this paper presents the Mahalanobis distance robust
variant, MDrv (Cov(_rij); ns), for green energy indicators to reach sustainable manufactur-
ing. As presented in [12], this paper follows a specific MCDM technique to determine green
energy indicators and their measurements through hierarchical analysis within the sample
to successfully carry out decision-making activity.

The Mahalanobis distance robust variant (Cov(_rij); ns) presented by [12] follows
the Mahalanobis distance original equation (Equation 1), modifying the original terms as
shown in Equation (2):

MDrv =
√(

Cov(_Maxcr)− Cov
(
_Minag

))
C−1
(
Cov(_Maxcr)− Cov

(
_Minag

))
, (2)

where:

4. Cov(_Maxcr) represents the average of the aggregated matrix maximum score of the
enterprises’ survey data;

5. C−1 is the transposed centered matrix;
6. Cov

(
_Minag

)
represents the average of the aggregated matrix maximum score of the

enterprises’ survey data.
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So, the CODAS–Hamming–Mahalanobis methodology follows 8 steps, presented
by [12], where Step 5 includes Hamming distance as the primary distance, as shown in
Equation (3), and Mahalanobis distance as the secondary distance, as shown in
Equation (2).

D4

(
H1

T(xi), H2
T(xi)

)
=

1
2

(
1
T

T

∑
l=1

∣∣δ1
l − δ2

l

∣∣
2τ + 1

+ max
l=1,2,...,T

(∣∣δ1
l − δ2

l

∣∣
2τ + 1

))
(3)

From the designed instrument to the data collection presented in Tables 4 and 5,
respectively, the decision makers from the participating companies responded using a
Likert scale. To analyze the resulting scales from the 31 enterprises, an aggregated and
normalized matrix was obtained from the enterprises’ evaluation, setting the maximum
value criteria as shown in Table 7.

Table 7. Aggregated decision matrix.

Code EC SO EN Code EC SO EN Code EC SO EN

TI01 4 0 0 GA07 0 0 2 E03 0 0 3
TI02 4 0 0 I01 0 3 0 SP01 0 0 3
TI03 0 4 0 I02 0 4 0 SP02 4 0 0
TI04 0 3 0 I03 4 0 0 SP03 0 0 4
TI05 4 0 0 I04 3 0 0 SP04 4 0 0
TI06 3 0 0 I05 3 0 0 SP05 0 0 3
TI07 0 3 0 I06 3 0 0 SP06 0 0 4
TI08 4 0 0 GR01 0 0 3 SP07 0 0 3
TI09 0 0 3 GR02 0 3 0 SP08 0 0 4
TI10 0 0 3 GR03 0 4 0 SP09 0 0 4
TI11 3 0 0 GR04 0 0 3 SP10 0 0 3

GA01 0 0 4 GR05 0 0 3 SP11 0 0 4
GA02 0 0 3 GR06 0 3 0 SP12 3 0 0
GA03 0 0 4 GR07 0 4 0 SP13 3 0 0
GA04 0 0 4 GR08 3 0 0 SP14 0 0 3
GA05 0 0 4 E01 0 0 3 SP15 0 0 4
GA06 0 0 4 E02 0 0 3

EC = economic, SO = social, EN = environmental.

For the criterion’s weight calculation, the ambiguity reduction method was utilized to
reduce the ambiguity of the values obtained from the enterprises through the AHP method-
ology, as presented by [12]. Using the formula wAR

j = γwLGE
j + γwES

j + (1− γ)wAHP
j ,

where γ represents the impact of the dimensional criterion weighting with respect to the
decision makers; wLGE

j is the obtained weighting from the literature review for the critical

dimension j; wES
j is the obtained weighting from the enterprises’ survey for the critical

dimension j; wAHP
j is the AHP weighting for the critical criterion j; and wAR

j is the ambigu-
ity reduction weighting for the critical criterion j. Table 8 displays the weighting values
obtained.

Table 8. Ambiguity reduction criteria assessment.

Criteria Economic Social Environmental

wLHC
j 0.2734 0.1453 0.5813

wES
j 0.3045 0.1864 0.5092

wAHP
j 0.6340 0.2600 0.1060

wAR
j 0.4039 0.1972 0.3988
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To obtain the wAHP
j , a pair-wise comparison matrix was developed, and then a stan-

dardized autovector was generated to obtain wj, the normalized average value. The
consistency index was calculated as CI = (λmax− nc)/ (n c − 1), and the consistency ratio
was given by CR = CI/RI, which is accepted when it is not greater than 10% of the ran-
dom index (RI). The resulting CI and RI were obtained as 0.0166 and 5.8%, respectively,
demonstrating the consistency index.

The process following each criterion evaluation value was taken from the CODAS–
Hamming–Mahalanobis methodology proposed by [12], calculating the normalized deci-
sion matrix (Step 2), the weighted normalized decision matrix (Step 3), the negative ideal
solution (Step 4), and the main (Hamming distance) and secondary (Mahalanobis distance
(Cov(rij), ns)) measure (Step 5). This set of distance combinations was used to construct
the relative evaluation matrix (Step 6), from which the preference score was obtained for
each evaluated alternative (Step 7), and finally, the hierarchy of green energy indicators
and their measurements was found (Step 8).

4. Results

Micro-, small, and mid-size enterprises (MSMEs) are well recognized worldwide as
each country’s economic contribution [51–53], leading local innovation, skill, and distribu-
tion of goods and services [54]. Employing around 60% of the labor force and with a 50%
average GDP share [55,56], MSMEs tend to become a workforce that complement large
enterprises’ supply chains.

Overall, MSMEs represent a social and local synergy that drives job creation [57].
Nevertheless, we are in the middle of a globalized, rapidly changing supply chain in which
there is an increase in the number of new enterprises, and customers have high expectations
of quality, delivery, service, and the uniqueness of each product [58,59]. In addition, there
are exceptions where major disruptions can affect and reduce demand from the market, such
as the coronavirus pandemic [60] or climate change and environmental emissions caused
by fossil-fuel usage [61]; MSMEs face challenging disruptions in enhancing sustainability
in manufacturing processes within a global value chain.

By 2019, MSMEs from the OECD countries accounted for one in three people in a
micro firm, and two out of three in an SME enterprise [57]. Figure 3 displays the OECD
average of persons employed in MSMEs and large enterprises.

Figure 3. Average of people employed in a MSMEs and large firms [21].

Through the 2008 economic crisis, MSMEs opened up through innovation and the
era of digitalization, transforming their business models and supply chain production,
facing challenges with technology adoption but gaining market share by adapting digital
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platforms as strategic resources and networks [57]. In 2020, facing the coronavirus outbreak,
the whole business platform experienced great difficulties. Even though the digital era has
aided certain business activities, the majority of economic activities have come to a halt.
MSMEs, as the OECD describes, have experienced an impact that has been demonstrated
in a few countries, as shown in Table 9, where some of these countries’ actual situations are
displayed [60].

Table 9. MSMEs situation through COVID-19 outbreak, across OECD countries [60].

Country SMEs Situation

China Approximately 60% of its MSMEs have returned to activities, a demand reduction
has become the number one challenge.

Germany
Initially, MSMEs did not feel an economic and production dropdown because of
their operation in regional markets; by March 9, one-third of firms are expecting a
10% decline in turnover in 2020.

Italy
Approximately 72% of small firms have been affected by the health epidemic;
specifically, transport (98.9%), tourism (89.9%), fashion (79.9%), and agro-food
(77.7%) due to the demand downfall.

South
Korea

SMEs have shown a time reduction in product delivery due to China’s factory
closure, where 71.8% of SMEs will be affected by the outbreak.

USA Between the SMEs presenting some kind of damage, 42% are seeing lower sales, and
39% reported supply chain disruption.

Now, in 2024, MSMEs have been subject to more disrupting processes along the value
chain, driven partly by climate change. As enterprises represent approximately 90% of
each country’s economic units, they tend to have a significant footprint.

Overall, in regular times, passing through a pandemic outbreak, or dealing with
threats of climate change such as natural disasters and extreme weather, MSMEs are still
recognized as a labor force weight for all countries’ economies. As described above, MSMEs
face everyday challenges from supply and demand sides to financial markets. The liter-
ature review displays strategies for enterprises to follow, such as effective supply chain
management, technology information for timely handling of data, logistics systems to
achieve product delivery, distribution and warehouse storage, and sustainable manufactur-
ing [62–64]. Further strategies include analyzing the working environment, working on
alliances, and cooperation among enterprises [10,51,65,66]; additionally, as the Organiza-
tion of Economic and Cooperation Development describes it, MSMEs should develop and
create joint strategies to achieve goals that individually are difficult to reach [67].

Of the 31 enterprises that responded to the survey, 70.96% represent MSMEs and
29.03% large enterprises. Seeing the importance for them to deploy sustainable manufac-
turing practices, to gain market shares and complement large enterprises’ supply chains,
the survey analytic instrument shows the preference scores. From these preference scores,
the authors obtained a hierarchy list of green energy indicators and their measurements
and items, as shown in Table 10.

Table 10. Top 10 green energy indicators and their measurements.

Rank Indicator Measurement Code

1 Technology and Innovation Collaboration Capacity TI05
2 Investment Supply Chain I05
3 Investment Energy efficiency I03
4 Technology and Innovation Technology Capacity TI01
5 Sustainable Processes Residual SP02
6 Technology and Innovation Collaboration Capacity TI08
7 Sustainable Processes Reduce SP04
8 Technology and Innovation Collaboration Capacity TI11
9 Technology and Innovation Technology Capacity TI02
10 Geographical Aspects Electric energy GA05
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The resulting hierarchy was obtained from an MCDM methodology that took into
account 31 decision-making entrepreneurs, within different goods and service sectors,
located in the cities Chihuahua and Juarez. It also gives top 10 indicators for enterprises
to focus on and start developing ideas and strategies for implementing changes towards
sustainable manufacturing. New companies can delve into green energy indicators and
their measurements and not know if the hierarchy applies to them; for these new cases, this
paper proposes a linearity factor model for predictive analysis. Calculating the sum of the
31 companies from the green energy survey gives a total for each of the 50 items. From this
point forward, an index score is obtained, as shown in Equation (4).

Is =
Ps
s

(4)

where Ps is equal to the preference score obtained from the CODAS–Hamming–Mahalanobis
method, and s is equal to the sum of the Likert scale evaluation for each of the 50 items
made by the panel. With this linearity factor model, each new company that desires to fill
in the green energy survey can obtain their green energy indicators, which are hierarchized
by this predictive model. This proposed linearity factor model is restricted by the following
aspect: if the new responses obtained from several companies are higher than the 10% of
the 31 businesses’ panel used for the primary evaluation, then the CODAS–Hamming–
Mahalanobis method will have to be calculated again to obtain the green energy hierarchy.
This restriction exists because if it is higher than 90%, the level of confidence will be af-
fected. Table 11 shows the 32nd business that responded to the green energy survey on 24
April 2024, where the linearity factor model was applied, predicting the new green energy
indicator hierarchy from the new enterprise’s perspective.

Table 11. Predicting new indicators hierarchy through linearity factor model.

Ps s Is EM-32 New Ps Code Items New Ranking

2.8509 125 0.0228 5 2.9650 I03 Energy Efficiency 1
2.8566 131 0.0218 5 2.9657 SP02 Residual 2
2.8566 130 0.0220 5 2.9665 TI01 Technology Capacity 3
2.8488 118 0.0241 5 2.9695 I05 Supply Chain 4
2.8612 129 0.0222 5 2.9721 SP04 Reduce 5
2.8646 129 0.0222 5 2.9757 TI11 Collaboration Capacity 6
2.8612 122 0.0235 5 2.9785 TI08 Collaboration Capacity 7
2.8453 103 0.0276 5 2.9835 TI05 Collaboration Capacity 8
2.8707 124 0.0232 5 2.9865 TI02 Technology Capacity 9
2.8828 130 0.0222 5 2.9937 GR01 Policy 10

Comparing both top 10 tables, the sustainable manufacturing pillars remained un-
changed, i.e., the economic pillar had nine indicators and the environmental pillar had
one indicator. On the other hand, the green energy indicators changed in ranking, as the
proposed predictive linearity factor model takes into account the enterprise’s evaluation
within the preference score obtained from the CODAS–Hamming–Mahalanobis method.

5. Discussion

In Mexico, green energy resources represent just 9.74% of enterprises’ energy con-
sumption. Policy makers are more focused on raising economic standards and maintaining
their global position, so the implications of green energy are given little attention. From a
managerial perspective, manufacturing businesses require a lot of change, but it is difficult
for decision makers to focus on one or two strategies towards a sustainable manufacturing
approach.

The literature presents research from a variety of perspectives regarding green energy
definition, usage, implementation, and infrastructure. Riosvelasco et al. [21] propose a
literature review using a PRISMA 2020 methodology, focused on identifying green energy
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indicators and their measurements. From the obtained final list, previously shown in Table 1,
the following are identified as the more frequent indicators and their measurements: six
green energy indicators were established, with a total of 18 measurements and 50 items.

From a previous research proposal using an MCDM method, the CODA–Hamming–
Mahalanobis methodology was applied to hierarchize the 50-item list from an enterprise’s
perspective according to the Likert Scale importance they gave to each green energy
indicator and their measurements. From the 50-item list, the top 10 green energy indicators
are focused on two of the sustainable manufacturing pillars: nine indicators from the
economic pillar and one indicator from the environmental pillar, as shown in Table 12.

Table 12. Green energy hierarchy using the CODAS–Hamming–Mahalanobis method.

Green Energy Indicators Sustainable Manufacturing Pillars

Code Indicator Measurement Economic Environmental

TI05 Technology and
Innovation Collaboration Capacity Have an R&D

department

I05 Investment Supply Chain

Integrate to SC
suppliers that use

green energy in their
production process

I03 Investment Energy Efficiency

Identify opportunity
areas in production
processes’ machines,

equipment, and
transport for efficient

use of energy

TI01 Technology and
Innovation Technology Capacity

Build improvements in
productive processes
for the efficient use of

energy

SP02 Sustainable Practices Residual Production processes
design to avoid waste

TI08 Technology and
Innovation Collaboration Capacity

Collaborate with
research centers or

universities to create
and develop innovative
green energy projects

SP04 Sustainable Practices Reduce

Develop products with
better cycle time,

design, durability and
raw material quality

TI11 Technology and
Innovation Collaboration Capacity Protect innovation

through IP

TI02 Technology and
Innovation Technology Capacity

Develop new product
processes for the

efficient use of energy

GA05 Geographical Aspects Electric Energy
Use of photovoltaic

solar cells to generate
and use energy

It can be observed that 90% of the top 10 items are categorized under the economic
pillar for sustainable manufacturing. As described by [68], sustainability takes into account
“. . .the transformation of resources into economically valuable goods. . .”; that is to say,
businesses can gain by rethinking specific actions that will boost economic behavior, such
as optimizing material and energy usage and creating production processes that can be
maintained by themselves, among other characteristics [69]. The green energy indicators
identified are focused on initiatives such as protecting innovation through IP, dynamic
collaboration between supply chain members to implement technology, engineering relying
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on information, and encouraging human and natural resources towards a sustainable man-
ufacturing environment, among others. Nevertheless, it gives a comprehensive approach to
decision makers to organize and manage small projects within actual procedures to create
a sustainable culture in the supply chain and in their business, allowing decision makers to
take a specific course of action.

Furthermore, the authors propose a predictive analysis model whereby the preference
score is taken into account to calculate the index score for new enterprises to evaluate
important green energy indicators, and to obtain their ranking of items to deploy specific
green energy practices toward sustainable manufacturing. The EM-32’s prediction on the
green energy hierarchy presented a new ranking in items, such as identifying areas of
opportunity to upgrade equipment for efficient use of energy and designing production
processes to avoid waste, among other practices. Both hierarchized lists are represented in
Figure 4. From the sustainable manufacturing pillars, it can be observed that enterprises
are more focused on the economic pillar, which takes into account actions such as product
cost, business model, and consumption of resources, among others.

Figure 4. Resulting top 10 hierarchy list from an MCDM methodology and a predictive analysis model.

6. Conclusions

Sustainable manufacturing is happening globally, and nowadays, it affects enterprises
in developing or emerging countries due to the lack of systemic procedures and finite
strategies for green energy implementation. As mentioned by [68], enterprises know about
sustainable manufacturing but do not necessarily know how to deploy specific practices.
Our research has contributed a literature review on green energy, in which a hierarchized
top 10 list was not found in research, especially from enterprises’ perspectives by grading
green energy indicators. The following research proposes two models to hierarchize and
predict a top 10 list of green energy indicators, measurements, and their items to incentivize
decision makers to deploy specific actions and initiatives in their supply chain towards
a sustainable manufacturing culture. From the results obtained from the green energy
indicators, measurements, and items survey, it is concluded that enterprises search for
initiatives from the economic pillar of sustainable manufacturing, giving priority to those
focused on deploying actions towards equipment, machinery, and production processes for
the efficient use of energy. In addition to this, they seek to collaborate with research centers
or universities for the development of practices and designs of new production processes
to avoid waste. Not least, they choose to use photovoltaic solar energy as a source of their
everyday processes. Besides these results, this article proposes a linearity factor model as
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a predictive analysis to allow new enterprises to respond to the survey and obtain their
hierarchy in green energy indicators, measurements, and items.

7. Implications and Future Research

Future research on the effects of green energy indicators, measurements, and items
is required. Research could extend to empirical studies or case studies, in addition to
introducing the development of standards or metrics of performance for each of the top
10 items. This field presents opportunities for future understanding and deployment of
specific initiatives for the industrial field. The survey presented in this paper could be
broadened to include Mexico’s north zone, including the United States, by translating
the questionnaire. Moreover, it could include a Gaussian process regression model as the
predictive analysis model.
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Abstract: In the present paper, we describe a series of laboratory experiments on the friction between
rigid indenters with different geometrical forms and an elastic sheet of elastomer as a function of the
normal load. We show that the law of friction can be controlled by the shape of the surface profile.
Since the formulation of the adhesive theory of friction by Bowden and Tabor, it is widely accepted
and confirmed by experimental evidence that the friction force is roughly proportional to the real
contact area. This means that producing surfaces with a desired dependence of the real contact area
on the normal force will allow to “design the law of friction”. However, the real contact area in
question is that during sliding and differs from that at the pure normal contact. Our experimental
studies show that for indenters having a power law profile f (r) = cnrn with an index n < 1, the system
exhibits a constant friction coefficient, which, however, is different for different values of n. This
opens possibilities for creating surfaces with a predefined coefficient of friction.

Keywords: adhesion; controlling friction; surface profile; real contact area

1. Introduction

Friction plays an important role in many industrial processes. Often one seeks to
reduce friction in order to lower the energy consumption [1,2]. In other technological
applications, the friction coefficient must be high to provide optimal performance, such
as in nanostructuring burnishing [3], car braking systems [4], contact of wheels with road
surfaces [5], movement transmission [6], etc. Knowledge of the friction behavior in many
engineering fields, such as the automotive industry [7], wind turbines [8] or medical
devices [9], is of crucial interest.

Adhesion is another important phenomenon that is interesting both as one of the
contributing factors to friction and in itself. Adhesion plays an important role in nature
and engineering both at the micro- [10,11] and macroscopic scale [12,13]. The pollination
process of plants is a biological example [14]. Certain amphibians (tree frogs) and reptiles
(geckos) use adhesive forces to climb up or even hang upside down on vertical surfaces. Un-
derstanding the underlining mechanisms lead to mimicking their function for engineering
purposes [15,16]. An artificial surface with gecko-like adhesive properties was developed
by Gorb et al. [17]. In engineering applications, adhesion plays an important role in paints
and coatings [18], orthodontics brackets [19] and aeronautical applications [20]. Adhesive
contacts have therefore been the subject of intensive research [21–23].

Despite decades of research, it is still impossible to deliberately design surfaces with
desired frictional or adhesive properties [24]. The most common way to influence the
frictional behavior in dry friction contacts is modifying the surface of the contacting bod-
ies [25,26] either by modifying the surface topography or by applying homogeneous or
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heterogeneous thin coatings [27–31]. This approach, however, is still based on trial and
error [24].

In macroscopic contacts, the friction force is often roughly proportional to the normal
force and, thus, Amontons’s law Fx = μFN is valid [32]. On the microscale, on the contrary,
many studies show the proportionality of the frictional force to the contact area A, i.e.,
Fx = τA [33–39], where τ is the (approximately constant) tangential stress in the contact area
necessary to shear the interface. The widely accepted solution of this controversy is that
the contact area in macroscopic contacts is roughly proportional to the normal load [40].

Even if Amontons’s law is not valid, one can formally define the coefficient of friction
by dividing the tangential force by the normal force, i.e., μ = τA/FN. The ratio A/FN
strongly depends on the contact geometry, which opens up possibilities for creating friction
surfaces with predefined friction laws, even with complex specific dependencies μ(FN).
In normal contacts, the ratio A/FN can be determined through numerical modeling, for
example, by using the boundary element method (BEM) [41] or finite element method
(FEM) [42]. However, tangential displacement causes the adhesive contact to lose symmetry.
In this case, the contact area usually decreases significantly [21,36,43,44], while the normal
force FN changes only slowly [44–46]. Therefore, the ratio A/FN also takes on different
values. Modeling tangential adhesive contact is a complex task, and to date, the most
studied case is that of a spherical indenter, for which there are analytical estimates that
allow for the contact area under shear to be evaluated [36,45]. For contact geometries
differing from the spherical, the situation becomes much more complicated, and therefore,
studying arbitrary contact geometries requires conducting real experiments, which we
propose in this work. The main goal of this work is to determine the indenter geometry
in which, regardless of the magnitude of the normal load, a constant coefficient of friction
μ = τA/FN is realized. We found such a geometry, which opens up the possibility of
manufacturing surfaces with a predetermined coefficient of friction.

A systematic design strategy for producing interfaces with preset frictional properties
was proposed by Aymard et al. [24]. In a contact between a rough and a smooth interface,
the controllable parameter is the topography of the rough surface. In [24], it was suggested
to produce a meta interface consisting of spherical asperities. To target a specific friction law,
the number of asperities and their shapes, sizes, height distributions and positions have
been varied. The authors illustrate three different friction law types that can be obtained by
optimizing the asperity heights.

Enhancing adhesive properties can be achieved by designing the shape of fibrillary
adhesive microstructures [17]. A similar approach for the design of a surface meeting preset
frictional properties by changing the geometric profile of the asperities is described in the
present study.

In our previous work [38], the effect of the indentation depth of spherical indenters on
the friction coefficient was studied experimentally. The present work extends this study to
the frictional properties of indenters with power law profiles f (r) = cnrn. The experiments
show that for 0 < n < 1, the friction coefficient μ remains constant over a wide range of
normal loads. However, the value of the coefficient of friction depends on the parameters n
and cn. Contrary to [24], where only spherical asperities were used, our design strategy
allows us to control the friction coefficient μ by changing the shape of the indenter. This
works even for the case of one single indenter. This approach opens opportunities to create
new types of surfaces with predefined coefficients of friction. The experimental setup as
well as the experimental techniques used in the present study are similar to those described
in [38].

2. Materials and Methods

With the knowledge of the tangential force Fx and contact area A, the averaged shear
stress <τ> in the contact is given by:

〈τ〉 = Fx

A
. (1)
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Often, it is assumed that the shear stress <τ> is equal to some constant value τ0,
independently of the normal load or contact area [33–37]. If this assumption is valid, the
friction force only depends on the real contact area A and is calculated as:

Fx = τ0 A. (2)

In particular, the friction law (2) is observed in contacts with strong adhesion, e.g.,
when a hard indenter is pressed into a soft elastomer. This also applies to friction in contacts
that are plastically deformed, where τ0 represents the yield stress [47].

The friction coefficient μ is defined as:

μ =
Fx

FN
, (3)

where FN is the normal force. For most non-adhesive contacts, the friction coefficient μ is
approximately constant over some range of normal forces FN, so that the friction force law
takes the classical Amontons form:

Fx = μFN . (4)

Equations (2) and (4) can be considered as two limiting cases that are valid for strongly
adhesive and non-adhesive contacts, respectively. In the classical works [48,49], it is
stated, that there exists a transition from the “adhesive” friction mode (Equation (2)) to the
“normal” friction mode (Equation (4)) with increasing normal load FN. But, in our previous
experimental work [38], we did not find such a transition in a wide range of external loads.
On the contrary, it was shown that the experimental results of [48] can be well described
with the “adhesive” friction law (Equation (2)) in the whole range of normal forces used
in [48].

The friction coefficient μ can be formally calculated using the standard definition
μ = Fx/FN (3) independently of whether it is really constant or not. If Equation (2) is valid
(adhesive contact case), for a circular contact with radius a, such a formally calculated
coefficient of friction is equal to

μ =
τ0 A
FN

=
τ0πa2

FN
. (5)

According to this equation, the coefficient of friction depends on the relationship
between the contact area A and the force FN. Consider an axially symmetric indenter with
the following power law shape:

f (r) = cnrn, (6)

where r is the radial coordinate. In our previous paper [38], the dependency of the friction
coefficient on the normal force FN was derived for axially symmetric contacts between a
hard indenter and an elastic half-space, provided that the friction force is proportional to
the contact area, as shown in Equation (2):

μ(FN) = πτ0

(
(n + 1)

(
1− ν2)

2nEcnκn

) 2
n+1

× 1

(FN)
n−1
n+1

, (7)

where κn are constants that can be found in [38], E is the elastic modulus of the half-space
and ν is its Poisson’s ratio. Based on this equation, we can conclude the following:

“1” For 0 < n < 1, the friction coefficient μ increases with an increase in the applied normal
force FN because the normal force FN increases slower than the contact area A.

“2” For n = 1 (conical form), the friction coefficient μ does not depend on the normal
force FN:

μcone =
2τ0
(
1− ν2)
Ecn

, (8)
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despite the fact that the friction force is still given by the equation Fx = τ0A (2).

“3” For n > 1 (for instance, for a parabolical indenter with n = 2), the friction coefficient μ
decreases with an increase in the normal force FN.

“4” For n >> 1, the indenter turns into a flat stamp, where the contact area A does not
change and is independent of the normal force FN. In the limiting case n → ∞,
Equation (7) shows an asymptotic behavior:

μ ∝
1

FN
. (9)

Note that if the chosen parameter cn = a1−n
0 is inserted into Equation (6), while n→ ∞,

the profile f (r) describes a cylindrical stamp with a flat base with radius a0.
In our previous work [38], hypothesis “3” was experimentally proven; it was also

shown that there was no transition between the “adhesive” friction and “normal” friction
modes in the wide range of normal forces. The present work is dedicated to the further
experimental verification of all the above formulated hypotheses for adhesive contacts.

3. Results

All the experiments described below were performed in the same way as in [38] but for
indenters with various geometrical shapes. Figure 1 shows the scheme of the experiment
(left panel) and a real photo of the contact region of the experimental setup (right panel).

 

Figure 1. (Left panel) Scheme of the contact between a rigid indenter (1) and an elastic layer
(2) located on a rigid glass substrate. Here, Fz and Fx are the normal and tangential contact forces, and
vx and vz are components of the velocity of the indenter. (Right panel) Photo of the contact region
between a hard indenter (1) and a much softer elastomer (2) with surrounding LED illumination (3)
and a three-axis force sensor (4). Depicted in the photo is the contact configuration of a 3D-printed
indenter with a spherical shape and radius R = 100 mm.

In the experiments, the indenters ((1) in Figure 1) were immersed in a CRG N3005
transparent elastomer sheet with a thickness of h = 5 mm ((2) in Figure 1). This material is a
soft thermoplastic polystyrene-type gel produced by TANAC Co. Ltd., Gifu, Japan [50]. The
elastomer sheet was placed on a glass substrate, which allowed for the direct observation
of the contact area. To analyze the contact area, it needed to be homogeneously illuminated
from all sides, which was provided by a surrounding LED light system ((3) in Figure 1).
The contact forces (normal, tangential and lateral, i.e., perpendicular to tangential) were
measured with a three-axis force sensor ((4) in Figure 1).
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In all the experiments, the indenter was moved simultaneously in the normal and
tangential directions with velocities of vn = 0.2 μm/s and vt = 5 μm/s, respectively. This
means that the indenter was immersed in an elastomer sheet under a small angle α = arctan
(0.2/5)≈ 2.29◦. In such conditions, the contact could be characterized as a tangential contact
(friction) but with a slowly increasing indentation depth and, consequently, normal force. In
each experiment, the indenter was immersed in the elastomer up to the maximum distance
dmax and was then lifted until the moment of complete detachment. Supplementary videos
show the complete experiments (indentation and pull-off phases), but in this article, only
indentation phase is shown. Note that there are also experimental works of other authors
with similar elastomers to those we used in this article, for example, [51,52].

3.1. Spherical Profiles

We started with a partial repetition of the results for the spherical indenters with
different radii of R = 50 mm and R = 100 mm from our previous work [38]. The spherical in-
denters corresponded to a value of n = 2 in the profile function f (r) (6). In both experiments,
the spheres were indented in the elastomeric sheet to the maximal depth dmax = 0.6 mm.
This means that both the indenters were shifted in the tangential direction up to a distance
of xmax = 15 mm. The results of these experiments can be seen in Figure 2.

Figure 2. Experimental dependencies of normal FN (a) and tangential Fx (b) forces, contact area
A (c), average contact pressure <p> (d), average tangential stress <τ> (e) and friction coefficient μ

(f) on time t. Dependencies of indenters with different power profiles f (r) = cn rn are presented as
follows: cylindrical (n→∞), spherical (n = 2), conical (n = 1) and indenters with values n < 1. There
were the following two dependencies for each type of indenter: cones with angles ϕ = 160◦ and
170◦, spheres with radii R = 50 mm and 100 mm, cylinders with dimeters D = 10 mm and 7 mm and
two indenters with n = 0.7 and n = 0.5. The dashed lines show the dependencies for a 3D-printed
indenter made from PLA material with radius R = 100 mm; in panels (c,e), these lines appear solid
due to fluctuations.
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The experimental results for both indenters confirmed hypothesis “3” of Section 2,
since the dependences μ(t) in Figure 2f showed a decrease in the friction coefficient with
time. This means that μ decreased with increasing the normal force. Moreover, for a
parabolic indenter n = 2, Equation (7) leads to the following formula [38,53,54]:

μ(FN) = πτ0

(
3R
4E*

) 2
3 1

(FN)
1/3 . (10)

Figure 3b shows the dependences of μ(FN) in a double-logarithmic scale for all the
cases considered in this paper. For convenience, in this figure, several dashed lines are
shown, where the upper one shows the dependence μ ~ 1/(FN)1/3, and it was close to the
trend of the experimental dependences for the spherical indenters (red and blue curves).

 

Figure 3. Experimental dependencies of the formally calculated friction coefficient μ = Fx/FN on the
normal load FN for indenters with different geometric profiles. (a) Dependences obtained from the
data shown in Figure 2a,f; (b) the same dependences in double-logarithmic coordinates.

As the normal force increased, the friction coefficient measured in the experiment
began to decrease faster. The reason may be that Equation (10) was derived for the idealized
case of the half-space, while the experiment was carried out with an elastomeric sheet with
a final thickness of h = 5 mm. It was previously shown in [38] that for thinner elastomers,
the coefficient of friction μ decreases faster with increasing the normal load. In general,
however, experiments with special indenters have shown that Equation (10) (or, in general,
Equation (7)) is satisfactorily applicable over a wide range of normal loads.

3.2. Cylindrical Profiles

In order to test the following hypothesis “4“ of Section 2, experiments were carried
out on indentation of cylindrical stamps with a flat base with diameters of D = 10 mm and
7 mm, as shown in Figure 2. A cylinder with a diameter of 10 mm was indented to a depth
of dmax = 0.6 mm, and at the same time, it was shifted tangentially by xmax = 15 mm. A
stamp with a smaller diameter of D = 7 mm was plunged to a depth of dmax = 1.0 mm and
shifted by xmax = 25 mm. Here and in the following experiments, different indentation
depths dmax were selected for the indenters with different geometries to demonstrate the
experimental dependencies over a wider range of normal forces, if possible. In the case of a
cylinder, for example, the smaller the base diameter, the greater the required indentation
depth to achieve a fixed level of normal force.
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Equation (2) predicts that in the case of an indenter with a flat base, the contact area
A, and hence, the friction force Fx, should not change during tangential motion. However,
Figure 2c shows that for both cylindrical indenters, the area A increased to some maximum
value at the beginning of the indentation. This was due to the fact that in the experiment,
the surfaces of the cylindrical stamp base and the elastomer were not perfectly parallel.
Therefore, at the beginning of the indentation, the contact was incomplete, and the contact
area built up to the maximal possible value Amax = πD2/4. In this regard, during the
initial shear phase, the increase in the friction force Fx (see Figure 2b) can be explained
by the increase in the contact area, aligning with Equation (2). However, as evident from
the experimental relationships, even after the area reached the maximum value of Amax,
the friction force Fx continued to increase, although the rate of its increase decreased
significantly. This was partly because the value of the tangential stresses <τ> increased
with increasing the normal force. However, it should be noted that we calculated the value
of <τ> indirectly, as per the ratio <τ> = Fx/A, while the directly variable data were just
the friction force (force sensor data) and the contact area (observed by the video camera).
It should be taken into account that not only can the increase in the tangential stresses
in the contact zone lead to an increase in the friction force but also the features observed
at the edges of the contact. In the case of a spherical indenter, these effects were not
significant because the contact zone grew continuously during the indentation. But, in
the case of an indenter with a flat base, the effects at the contact edges could make a
significant contribution to the friction force, since the elastomer sheet at the contact edges
was deformed in such a way that the indenter was kind of situated in a “pit”, from which it
must always “climb out” during tangential shear. This can serve as an additional channel
for energy dissipation. In Supplementary Videos S1 and S2, it is possible to trace the change
in the contact shape over time for both the experiments with cylindrical indenters. The
videos show that during the indentation, the contact area increased to a maximum value,
after which a light ring was visible at the edges of the contact, which increased in brightness
and size throughout the indentation of the indenter into the elastomer. This suggests that
the elastomer was highly deformed at the contact edges, which could resist the tangential
movement of the indenter and result in an increase in the frictional force. As a result, the
formally calculated tangential stresses <τ> = Fx/A increased, as shown in Figure 2e, where
in the case of the cylindrical indenters, the stresses <τ> increased faster than in all the other
cases.

It is more reasonable to represent the tangential stresses not as a function of the
experiment time (which sets the indentation depth d = vzt) but as a function of the average
contact pressure <p> = FN/A. Eliminating time t from the dependencies <τ>(t) in Figure 2e
and <p>(t) in Figure 2d, the tangential stress–pressure relationship shown in Figure 4 was
calculated for all the experiments.

It follows from Figure 4 that the dependence of τ(p) in many cases can be described by
a power function of the following form [55,56]:

τ = τ0 + αpγ (11)

with an exponent of γ ≈ 0.2. However, in the case of a cylindrical indenter with a smaller
diameter D = 7 mm, as the normal pressure increased, a point was reached where the
tangential stresses began to increase more rapidly. This aligns with the power law (11)
characterized with a larger exponent of γ ≈ 1.0.

Note that using τ (11) instead of τ0 in the friction law (5) results in a two-term friction
law of the following form:

μ = τ0

(
A
FN

)
+ α

(
A
FN

)1−γ

, (12)

where the expression for the average contact pressure <p> = FN/A is used. In our experi-
ments (see Figure 4), the exponent was γ ≤ 1. Note that two-term friction laws have been
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used for a long time. As examples, we can cite the classical Amontons–Coulomb friction
law [32,57], Derjaguin’s law [23], the law considering friction at the boundary of adhesive
contacts [46], the law describing the friction force in the boundary regime [58,59], and so on.

Figure 4. Experimental dependences of the mean shear stress <τ> = Fx/A on the mean contact
pressure <p> = FN/A for all experiments, the results of which are shown in Figure 2.

Returning to the experimental results, we can conclude that during the indentation
of the cylinder with a flat base, three phases can be distinguished: (1) an increase in the
friction force Fx = <τ>A, mainly due to the increase in the contact area; (2) a further increase
in Fx at the maximum contact area A = Amax = πD2/4 due to the growth of tangential
stresses according to Equation (11); and (3) an increase in the friction force growth rate due
to the even faster growth of the stresses at the subsequent indentation into the elastomer.
Note that for the cylinder with diameter D = 7 mm, all three phases were present, and
the transitions between them can be seen in the relationships shown in Figures 2b and 4.
However, for the indenter with a larger diameter D = 10 mm, only the first two phases were
realized since this experiment was performed in a smaller range of contact pressures <p>.

Thus, in a certain range of parameters, hypothesis “4“ of Section 2 for a cylindrical
indenter with a flat base is satisfactorily fulfilled. This follows from Figure 3b, according to
which both cylindrical indenters showed a range of forces (approximately at FN > 2 N) in
which μ ~ 1/FN. According to Figure 2, these were the forces at which the contact area was
maximized and then remained constant. But, according to the same figure (Figure 2), the
friction force Fx in this range of forces consistently increased, which contradicts assumption
(2) that was used to derive Equation (9). Therefore, the coefficient of friction shown in
Figure 3b decreased slightly slower than μ ~ 1/FN. However, in the case of the cylindrical
indenter, the friction coefficient μ decreased much faster than in the above-described case
of a spherical indenter, for which μ ~ 1/(FN)1/3.

Note that the dependence μ ~ 1/FN was violated for the cylindrical indenter with
diameter D = 7 mm immediately after the change in trend (in the above-mentioned phase
(3)), which can be seen in Figure 2b at t ≈ 50 min. In this phase, the growth rates of the
tangential and normal forces were the same, which led to validity of μ = const with a further
increase in the normal force, as shown in Figure 3a,b for a cylinder with a diameter of
D = 7 mm at a normal force of FN > 5.5 N. This change in behavior in the μ(FN) dependence
was not caused by a higher value of the normal force but by a higher contact pressure, since
for the second indenter with a diameter of D = 10 mm, the μ = const region was not observed
despite the similar range of normal forces. In Section 2, hypothesis “2“ was formulated,
stating that the constancy of the friction coefficient, μ = const, is expected for conical
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indenters, as the contact area should increase monotonically with normal indentation, but
not for a cylindrical indenter with a constant contact area. Therefore, the situation where
μ = const for a cylindrical indenter is unexpected and may indicate a transition between
the “adhesive” mode of friction, which is given by Equation (2), and “normal” friction (see
Equation (4)) with μ = const. Some classical works, e.g., [48,49], speak about the existence
of such a transition, although we did not find such a transition in our recent work [38].
Moreover, it was shown in [38] that the results of [48] can be interpreted by using the single
concept of “adhesion” friction over the entire range of experimental parameters. We now
find that, for some reason, the cylindrical indenter transitioned to the μ = const regime at
high contact pressures. This feature was demonstrated by only one of the indenters, as
the second indenter was operated in a smaller pressure range. Therefore, unambiguous
conclusions about the presence of the transition between friction modes cannot be made,
and the study of this issue requires additional experiments. However, this is beyond the
scope of the proposed work.

3.3. Conical Profiles

The next step was to test hypothesis ”2” of Section 2, stating that for conical indenters,
the coefficient of friction μ should be constant at all normal loads. The shape of the conical
indenter is given by Equation (6) when n = 1, i.e., f (r) = cnr. Therefore, the angle ϕ at the
base of the cone, expressed in radians, is defined by the following formula:

ϕ = π − 2arctan(cn). (13)

The case of conical indenters was investigated using two indenters made of steel with
angles of ϕ ≈ 160◦ and ϕ ≈ 170◦. The indenter profiles were measured with a 3D laser
scanning confocal microscope Keyence VK-X150 (KEYENCE DEUTSCHLAND GmbH,
Neu-Isenburg, Germany) using a 10×magnification objective. Figure 5a,b show the profiles
of both indenters.

Figure 5. Measured three-dimensional profiles of conical indenters (a,b) and their two-dimensional
profiles (c). Panels (d,e,f) show the same as panels (a–c) only for indenters with a profile given by
formula f (r) = cnrn with two different values of n < 1.
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Figure 5c shows the two-dimensional profiles of the indenters corresponding to the
three-dimensional images. The red and blue curves in Figure 5c show the cuts of the profiles
in two perpendicular vertical planes. Their overlapping confirms the axial symmetry of
the profiles. The tips of both indenters were slightly rounded; the tips of the regular cones
shown in Figure 5c are completed by the straight lines shown in black. The angles between
these straight lines represent the exact values of the angles ϕ (Equation (13)), which were
160.16◦ and 170.89◦. In our case, the rounded corners at the base of the indenters did not
interfere with the test of hypothesis “2” of Section 2, since the rounding only affected the
results obtained at the beginning of the indentation process. Moreover, the use of rounded
corners at the top of the conical punches avoided the occurrence of a region with a singular
stress concentration [60,61], which can lead to the destruction of the elastomer surface [62],
especially at a tangential indenter shift.

Figure 2 shows the experimental data for both conical indenters. Here, the maximum
indentation depth for the indenter with angle ϕ ≈ 160◦ was dmax = 1.2 mm at its tangential
displacement xmax = 30 mm. The indenter with an angle ϕ ≈ 170◦ was immersed into
the elastomer to a smaller depth of dmax = 0.6 mm, so it was also displaced by a smaller
distance xmax = 15 mm. As evident from Figure 3b, in both cases, the coefficient of friction
decreased with increasing the external load according to the trend μ ~ 1/(FN)0.15 (black and
magenta curves). Thus, the rate of the decrease in the friction coefficient here was lower
than in the cases of the cylindrical and spherical indenters, but the coefficient of friction still
decreased with the normal force and was not constant, as predicted by Equation (8). This
was primarily because the formula is derived on the assumption that the contact is axially
symmetric, as in the case of purely normal indentation, but due to tangential shear, the
contact quickly lost axial symmetry. At the same time, the main contact zone relative to the
indenter center was concentrated at the leading edge of motion, as can be seen in Videos S3
and S4. In the case of the conical indenters, the tangential stresses <τ> increased with the
pressure <p> according to the same trend as in the cases of the spherical and cylindrical
indenters considered before, which follows from Figure 4, namely, <τ> ~ <p>0.2. However,
this build-up came after a decrease in the <τ> value at the beginning of the indentation,
which can be seen better in Figure 2e.

Thus, the assumption that the friction coefficient μ = Fx/FN does not depend on the
applied external load in the case of a conical indenter (hypothesis “2” of Section 2) was
not confirmed.

3.4. Power Profiles with Exponent n < 1

The last cases considered in this paper were axially symmetric indenters, whose
profiles are described by the function f (r) = cnrn (6) with an exponent n < 1. Hypothesis
“1“ of Section 2 suggests that in this case, the coefficient of friction μ should increase with
increasing the external load rather than decrease as it does for values of the exponent n > 1.
Since we did not have equipment that would have allowed us to mill indenters from steel
with an arbitrary value of the exponent n, we decided to make such indenters from plastic.
We printed two indenters with values of n = 0.7 and n = 0.5 using a “QIDI TECH I Fast
FDM 3D Printer” (DI JIA TECHNOLOGY LIMITED, MONGKOK, Kowloon Hong Kong
SAR) from Basicfil PLA material in an orange color. In both cases, the coefficient cn in
Equation (6) was equal to 1.

Profiles of the 3D-printed indenters scanned by a 3D microscope are shown in
Figure 5d,e. Figure 5f shows the 2D profiles of these indenters, where lines of differ-
ent colors (red and blue) show profiles corresponding to cross-sections of the 3D surfaces
in two mutually perpendicular directions. Here, the black lines show the power functions
that approximate these profiles. In the case of n = 0.7, the real printed indenter was well
described by a power function with a similar exponent. However, in the case of n = 0.5,
it turned out that in reality, the printed indenter was close to a power function with an
exponent of n = 0.54, which seemed to be caused by printing inaccuracies. In Figure 5f,
the black curves show both profiles completed to the correct power functions of f (r) = rn,
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compared to which it can be seen that the indenter peaks were significantly rounded in the
center. This was due to the fact that the printer used is not generally capable of printing
such narrow areas with a high quality. This feature was similar to that described above with
conical indenters. However, as above, the discussed rounding only affected the relationship
between the contact forces at the beginning of the indentation, which did not interfere
with the objectives of this paper. Figure 5 shows some other features of 3D printing. For
example, in the case of n = 0.7 in Figure 5d,f we can clearly see the “stepping” of the profile
caused by the fact that the printer prints in layers. Moreover, the indenter insignificantly
deviated from the axially symmetric shape due to the printing quality.

In the experiment, both indenters were immersed to the same depth of dmax = 2 mm,
corresponding to their tangential displacement of xmax = 50 mm. The indenter with n = 0.5
exhibited much higher normal force values, which can be seen in Figure 2a. At the same
time, however, both indenters showed similar pressure values over the entire experimental
range, as can be seen in Figure 2d. This was due to the different rate of increase in the
contact area, which is shown in Figure 2c.

Hypothesis “1“ of Section 2 suggests that for an indenter with a power profile of
f (r) = cnrn with an exponent of n < 1, the friction coefficient μ should increase with increas-
ing the normal force. It was assumed that this should occur since the contact area, and
therefore the tangential force, will increase faster than the normal force. This, according
to Equation (5), should lead to an increase in the coefficient of friction with increasing the
normal force. However, Figure 2f shows that, after an initial decrease, the friction coefficient
remained constant. Moreover, the plateau μ = const was rather long, which was due to
the fact that the indenters in the experiments were displaced by the largest distance of
xmax = 50 mm used in our experiments.

Thus, for indenters with n < 1, the behavior assumed for the conical indenter and
formulated in hypothesis “2” in Section 2 was realized. As in the cases described above,
the deviation from the assumed behavior was caused by a strong violation of the contact
symmetry at the tangential shear of the indenter. The dependencies shown in Figure 2e, on
average, indicate an increase in the tangential stresses <τ> with increasing the indentation
depth (or pressure). However, they were non-monotonic due to the complex processes of
contact rearrangement during sliding, which can be clearly seen in Video S5 and Video S6.
Note that the value of the stresses <τ> lay in the same range as in all the other cases, despite
the fact that both indenters for the case n < 1 were made on a 3D printer from plastic (PLA).
In all the other experiments, steel indenters were used.

From Figure 3, which shows the dependencies of the friction coefficients on the normal
force, it can be seen that in the discussed case n < 1, after a rapid decrease, the friction
coefficient remained constant. This was especially clearly seen for the case n = 0.5, since
this experiment was carried out over a larger range of normal forces. Thus, in spite of the
fact that, here, the adhesive friction regime was realized, in which the tangential stresses
<τ> were close to constant regardless of the load, for this indenter shape, the formally
calculated friction coefficient μ = Fx/FN showed a constant value of μ = const in a wide
range of normal forces FN. Thus the effect of the indenter shape led to the fact that despite
the realization of the friction law in the form of Fx = τ0 A (2), the classical Amontons law
Fx = μFN (4) with a constant friction coefficient μ was also fulfilled.

In this specific case, the coefficient of friction in Equation (4) depended on the geo-
metrical shape of the indenter. For an indenter with an exponent n = 0.5, the coefficient of
friction is greater than for an indenter with n = 0.7.

Note that although we assumed constant stresses τ0 here, the tangential mean stresses
increased slightly with pressure, as in all the previous cases. And, as indicated by Figure 4,
for both indenters with exponent n < 1, at high pressures <p>, the stresses <τ> increased
according to the power law with an exponent of γ ≈ 1.0, as in the previously considered
case of a cylindrical indenter with a smaller diameter of D = 7 mm. For a cylinder with
a diameter of D = 7 mm, the range μ = const was also unexpectedly observed just when
γ ≈ 1.0, i.e., for higher pressures. Therefore, it remains possible that in the cases of indenters
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with exponent n < 1, as well as in the case of a cylindrical indenter with a diameter of
D = 7 mm, we are dealing with a transition between “adhesive” and “normal” friction,
the presence of which is indicated by [48,49] but was not detected by us in [38]. The
presence of such a transition may be due to the fact that in these three cases, the highest
values of the contact pressure <p> were realized, as can be seen in Figure 2d. To verify
the presence of such a transition between the friction modes, it is necessary to conduct
additional experiments in the range of high contact pressures, which is beyond the scope of
this paper.

4. Discussion

The effect described in Section 3.4 is that for indenters with power law profiles with
an exponent of n < 1, the regime of a constant friction coefficient μ = const was realized.
However, this effect may have also been due to the fact that these indenters were made
of plastic (PLA). After all, the properties of the adhesive contact (e.g., the specific work of
adhesion) strongly depend on the properties of both contacting surfaces, and all the cases
described in this paper for indenters with n ≥ 1 were carried out with indenters made of
steel. Therefore, the cases with indenters n ≥ 1 (steel) and n < 1 (PLA) cannot be compared
unambiguously, and in order to understand the differences, it is necessary to establish some
kind of “bridge” between them, which would help to make sure that it was the shape’s
effect and not the material’s effect. An additional experiment with a spherical indenter with
a radius of R = 100 mm acted as such a “bridge”. The experiment was completely similar
to the one described in Section 3.1 but with the difference that an indenter printed on a 3D
printer from the same PLA as the indenters with an exponent of n < 1 (see Section 3.4) was
used. The results of this additional experiment are shown in the figures above with dashed
lines. The detailed course of the experiment can be seen in Supplementary Video S7. Note
that the data corresponding to indenters with radii R = 100 mm made of steel and PLA
were different. This was due to the fact that the used 3D printer prints in layers, so the
indenter had a stepped shape, as with the indenters shown in Figure 5d,f. However as can
be clearly seen in Figure 3, the μ(FN) dependence of the PLA indenter showed exactly the
same trend as that of the steel indenter with the same radius R = 100 mm. Therefore, the
discovered effect, i.e., that for indenters with an exponent of n < 1, the friction coefficient
does not depend on the external load, was not related to the indenter material but was
caused by its specific geometrical shape, in which the contact area increased as fast as the
normal force. In this case, according to the expression μ = τ0A/FN (5), we have a situation
with μ = const.

In our previous work [38], where adhesive contact was investigated, it was hypothe-
sized that a contact-geometry-dependent and, at the same time, normal-force-independent
coefficient of friction should be realized in the case of a conical indenter. In this case,
μ = const is unique because in it the mutually exclusive laws of friction Fx = τ0 A (2) and
Fx = μFN (4), where both the tangential stress τ0 and the coefficient of friction μ are con-
stants, must be simultaneously valid. However, the hypothesis (put forward in [38]) would
only be valid if the contact remained axially symmetric during tangential motion. But, in
the adhesive contact, the breaking of the axial symmetry at tangential shear violates the
hypotheses formulated in [38], which are briefly described in Section 2 of the present paper.
However, the general tendency still remains, namely, that with decreasing the exponent n
in the profile function f (r) = cnrn, the friction coefficient μ decreases more and more slowly
with increasing the external normal force FN. Moreover, the form of an indenter for which
the laws of friction (2) and (4) are simultaneously valid was found, and it was with an
indenter whose profile is given by the power function f (r) = cnrn with exponent n < 1.

The cases of a constant coefficient of friction, μ = const, for indenters with n < 1, which
were studied experimentally in this paper, are of high application value [63]. Here, we
studied indenters with two different values of n = 0.5 and n = 0.7. According to Figure 3, in
the case of n = 0.7, the coefficient of friction was lower. Thus, there is an indenter shape for
which the coefficient of friction on the adhesive contact is constant and does not depend on
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the applied load. Moreover, by varying the shape of this indenter, the coefficient of friction
can be set. One potential application of the found effect is the creation of surfaces that
exhibit constant coefficients of friction in adhesive contacts. On these surfaces, at a certain
distance from each other, protrusions should be placed whose profiles would geometrically
represent the functions f (r) = cnrn with an exponent of n < 1. Moreover, these can be, among
others, microscopic surfaces with nanoscale protrusions. The protrusions under discussion
can be located on the surfaces periodically or randomly, which requires additional study.

Note that in this paper, we often talk about contact symmetry breaking in tangential
motion without giving pictures of the contact region. However, the detailed evolution of
the contact areas for all the experiments performed can be observed in the supplementary
videos to this paper, which are an important part of the paper. Moreover, these videos not
only show the phase of the indentation of the indenter at an angle into the elastomer but
also the pull-off phase the indenter in the normal direction, which was performed after the
indenter reached the maximum indentation depth dmax and tangential displacement xmax.

5. Conclusions

This paper experimentally investigated the influence of the geometric shape of an
axially symmetric indenter, which is given by the power law f (r) = cnrn, on the coefficient
of friction in an adhesive contact. Spherical (n = 2), conical (n = 1) and indenters with an
index of n < 1 (with n = 0.5 and n = 0.7) as well as flat-ended stamps were studied. It was
shown that the friction coefficient μ = Fx/FN decreased with increasing the external force
FN applied to the friction surfaces. This confirms the analytically determined tendency
showing that for indenters with smaller indices of n, the friction coefficient decreases
slower with increasing the force FN. It was experimentally shown that in the case when the
exponent n < 1, the friction coefficient took a constant value independent of the external
load. In this case, two laws of friction, which are normally thought of as mutually exclusive,
were simultaneously fulfilled. The first of them says that the friction force is proportional
to the contact area, since constant-contact tangential stresses independent of the external
load are realized. The second law of friction is the classical Amontons law, according
to which the coefficient of friction does not depend on the external load. However, this
does not mean that the true Amontons law is realized. In the case n < 1, the adhesive
tangential contact, as before, was characterized by a constant value of the tangential stress
τ0, which slightly increased with increasing the pressure in the contact interface. In this
case, the friction coefficient μ = Fx/FN, although constant, depends on the exponent n,
so it loses its original meaning as a material constant. The found mode can be used for
creating surfaces with a given coefficient of friction. These surfaces should have a large
number of protrusions with profiles f (r) = cnrn with the power n < 1. Thus, we proposed a
method of creating surfaces with a given friction coefficient, which can be varied by the
geometric shape of the indenters (protrusions or roughness on the surfaces). This work
is also of fundamental interest because it advances the understanding of the dependence
of the coefficient of friction between rough surfaces on the geometric characteristics of
their topography.

The question remains open as to what shape an indenter should have so that the
coefficient of friction increases with increasing load. To realize such a situation, the contact
area must increase faster than the normal force. In normal contact, this condition is realized
for n < 1. But, in the presence of tangential displacement, as this experiment has shown,
due to the symmetry breaking of the contact area, the relationship between the contact area
and the normal force is broken, so for indenters with n < 1, a constant friction coefficient
μ = const is observed.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pr12061209/s1, Video S1: An indenter with a cylindrical base
with diameter D = 7 mm, which was immersed to a depth of dmax = 1 mm with a velocity of
vn = 0.2 μm/s into a layer of TANAC CRG N3005 elastomer with a thickness of h = 5 mm. At the
same time, the indenter was tangentially displaced with a velocity of vt = 5 μm/s until the maximum
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distance of xmax = 25 mm. After reaching the maximum depth, the indenter was pulled off with the
same velocity vn out of the elastomer layer until the contact was completely broken. Separate panels
in the video show the time dependencies of the normal (FN) and tangential (Fx) forces, the average
tangential stress (<τ> = Fx/A), the average normal pressure (<p> = FN/A), the contact area (A) and
the friction coefficient (μ). In addition, the video shows the evolution of the contact zone; it also
shows the current values of the indentation depth (d), the tangential shift of the indenter (x) and the
time (t) that has passed since the beginning of the indentation. The video relates to the lime-green
lines in Figures 2–4 in the article. Video S2: This is similar to Video S1, with the difference being
that in this case, the indenter had a base diameter of D = 10 mm, and a different indentation depth
of dmax = 0.6 mm and tangential shift xmax = 15 mm were realized. The video relates to the violet
lines in Figures 2–4 in the article. Video S3: This is similar to Video S1, with the difference being
that in this case, a conical indenter with an angle of ϕ ≈ 160◦ and a different indentation depth of
dmax = 1.2 mm and tangential shift xmax = 30 mm were used. The video relates to the pink lines in
Figures 2–4 in the article. Video S4: This is similar to Video S3, with the difference being that in this
case, the indenter had an angle of ϕ ≈ 170◦, and a different indentation depth of dmax = 0.6 mm and
tangential shift xmax = 15 mm were realized. The video relates to the black lines in Figures 2–4 in the
article. Video S5: This is similar to Video S1, with the difference being that in this case, a 3D-printed
indenter of PLA material with a power profile ( f (r) = r0.5) and a different indentation depth of
dmax = 2 mm and tangential shift xmax = 50 mm were used. The video relates to the brown lines in
Figures 2–4 in the article. Video S6: This is similar to Video S5, with the difference being that in this
case, the indenter had a profile ( f (r) = r0.7). The video relates to the orange lines in Figures 2–4 in the
article. Video S7: This is similar to Video S1, with the difference being that in this case, a 3D-printed
spherical indenter of PLA material with radius R = 100 mm and a different indentation depth of
dmax = 0.6 mm and tangential shift xmax = 15 mm were used. The video relates to the dashed dark
blue lines in Figures 2–4 in the article.
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Abstract: Surface acoustic wave (SAW) sensors in tunable oscillator configuration, with a deposited
polymeric layer, were used to investigate the layer’s impact on the oscillator’s resonant frequency.
The SAW oscillators were tuned by means of variable loop amplification. Full-range amplification
variation led to a resonant frequency increase of ~1.7 MHz due to the layer’s nonlinear reaction. The
layer’s morphology and location resulted in a specific resonant frequency–amplitude dependence.
Five types of layers were used to test the causal linkage between the layers’ morphological parameters
or positioning and the SAW oscillator’s resonant frequency. The frequency variation trend is almost
linear, with a complex minute variation. Small amplitude sigmoids occur at certain attenuation
values, due to layer acoustic resonances. Multiple sigmoids were linked with layer resonances of
different orders. A good correlation between the layer’s thickness and resonance position was found.

Keywords: SAW sensor; tunable oscillator; uneven layer; polymer

1. Introduction

Surface acoustic wave (SAW) delay lines are finding new applications all across the
industry, e.g., wireless sensing [1,2], temperature measurement [3], harsh environment
monitoring [4–7], lab on chip [8], strain monitoring [9], etc. This interest is well justified,
given that SAWs are devices with great potential owing to the complex acousto-electrical
interactions governing their functionality. For many years, various techniques to bring this
potential to actual use were explored [10–13]. Both frequency variation and amplitude–
frequency correlation were evaluated. Furthermore, with a closed-loop oscillator being the
most common configuration in which they are deployed, SAW sensors in this configuration
inherit all oscillator-specific complexities. It is this specific configuration that enables one of
the most interesting applications, which is sensor-based analytics. Additionally, given the
extended areas of application outlined above, a technique for extracting complex informa-
tion from a SAW oscillator would expand its applicability far beyond chemical sensing. As
an oscillator at resonance is most sensitive to changes, the idea of a SAW sensor in a multi-
frequency oscillator configuration is being diligently pursued by the research community.
A recent development that may achieve this goal is the tunable SAW oscillator [14]. In this
approach, the oscillator’s resonant frequency changes due to amplitude variation. Due
to the chemoselective layer’s non-linear reaction, changing the signal’s amplitude leads
to a variation in the oscillator’s resonant frequency. The resulting frequency–amplitude
(F-A) characteristic is directly affected by the chemoselective layer’s non-linear acoustic
response [14], making it suitable for usage in a gas detection/identification protocol, as
well as complex material characterization. However, reliable data can be achieved only by
taking into account all elements impacting the detection process outcome. Among these ele-
ments, the chemoselective layer’s morphology is of utmost importance. Random thickness
variations across the layer’s surface that routinely plague the SAW sensors are immediately
revealed by F-A characteristics. This renders a detection-identification protocol inoperable,
since establishing a baseline is not possible. To circumvent this problem, it is necessary
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to identify the frequency–amplitude dependence features that are caused by the layer’s
unwanted morphological characteristics.

At this point, we can mention that, besides enabling analytical capabilities, given
their dependence on temperature [15,16], an added benefit of such a technique would
be eliminating environmental influences, such as temperature variations. Furthermore,
it can be applied to other acoustic-based devices with operating modes based on shear
oscillation. Quartz crystal micro-balance (QCM) was successfully tested in real-time DNA
detection [17] and humidity detection [18]. For applications in molecular biology, the
functionality of such a device could be improved by setting up a multi-layer structure
with different biochemical functionality in each component sub-layer. Using amplitude
variation, the loading degree of each sub-layer could be measured. While such a setup is
compatible with an SAW device, a QCM is preferable due to its ability to operate in a liquid
environment. Another attractive option is film bulk acoustic resonators (FBARs). This is
well justified by their ability to operate at very high frequencies (up to 20 GHz), as well as
the notable recent progress in their manufacture [19] and design optimization [20].

This study is intended as a step toward developing an acoustic wave sensor with
analytical capabilities, by investigating the effects of layer morphology on F-A dependence.

In our previous research, a large area layer with an average thickness of 0.5 μm was
used. While the proposed model in [14] was successfully used to fit the experimental data,
it failed to work for smaller area layers of the same material presented in this paper. The
aim of this study is to lay the groundwork for the development of this model by outlining
the interactions that characterize a layer of non-uniform thickness. In doing so, we will
establish in as much detail as possible the effects of the layer’s thickness variation on F-A
characteristics. We presumed that while layer thickness and thickness variation amplitude
are determinants in the interaction’s outcome, the location with regard to input/output
interdigital transducers (IDTs) also plays an important role. Thus, a two-part experiment
was envisioned, firstly, to test the location impact by placing identical layers at different
locations on the waves’ paths, and secondly, to test the layers of different morphologies.
The necessity to isolate the location’s impact required the use of small-diameter layers.
Additionally, a small diameter facilitated more accurate layer surface mapping. On the
other hand, measurable acoustic effects are the result of thick layers; thus, we opted for a
small area and thick layers of polyethyleneimine (PEI). It is expected that the magnitude of
unevenness effects is proportional to thickness gradients, so a high gradient of thickness
variation due to the small radius of layers is an added benefit.

2. Materials and Methods

Five types of PEI layers were used for investigating the layer morphology and position
impact on a tunable SAW closed loop oscillator. In the following description, the layer’s
type will be referred to by a capital letter from A to E.

Typically, the morphology of a PEI layer is characterized by thickness variation across
its surface. This is both due to random processes during deposition, and, in case of viscous
polymers, due to post-deposition fragmentation effects (the so-called “shark skin” effect).
To avoid the formation of a layer with complex random relief during deposition was
another reason why we opted for small-area layers. Additionally, a small area confers
morphological stability, preventing the post-deposition formation of random relief.

To acquire F-A data, we used a setup similar to that presented in [14]. Briefly, the
SAW oscillator loop amplification was reduced using a PC-controlled potentiometer. The
potentiometer was actuated by a high-precision rotary stage and, for each attenuation value,
the corresponding frequency was measured by a CNT-90 frequency counter. A computer
program was developed using LabView 2013 IDE (National Instruments, Austin, TX, USA)
for measurement process automation and data acquisition, integrating the functionality of
both the rotary stage controller and frequency counter. This way, we acquired A-F data at
a rigorously identical signal attenuation for each measurement. To identify the relevant
morphological parameters of the layers, their thicknesses were measured with an Xi-100
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non-contact interferential profilometer made by Ambios Technology Inc. (Santa Cruz, CA,
USA). To establish the positioning impact on F-A dependence, it was first necessary to
deposit layers with identical F-A characteristics. For this purpose, a FinnTip 10 (Thermo
Fisher Scientific Waltham, MA, USA) pipette tip was dipped into PEI solution, allowing
a small quantity of liquid to be retained by capillary forces. The retained solution was
transferred onto the SAW device by slightly touching the lower tip opening to the piezo-
active area. Previous to the deposition process, an extremely thin (<10 kHz) hydrophobic
layer was applied on the piezo-active surface. This prevented the uncontrolled expansion
of the PEI solution droplet on the surface, resulting in the formation of a reproducible
layer after solvent evaporation. To verify the reproducibility of the coating, the deposition
technique was tested multiple times. As a reproducibility criterion, the identity of F-A
characteristics corresponding to deposited layers was considered. Once the deposition
technique for the reproducible layer was established, it was used to deposit one type A
layer at distances from the input IDT of 1, 2.5, 5, and 7.5 mm. The type A layers were
deposited by the described technique using 5% by weight PEI ethanol solution.

To determine the layer’s morphology impact on F-A characteristics, one layer of each
type was deposited on the piezo-active area’s center, followed by F-A characteristics and
layer thickness measurements. The type B layer was deposited by the same technique as
type A, but using 1% by weight PEI solution. Type C, D, and E layers were deposited
following the same procedure except for the final step, which consisted of drop-casting 0.4,
0.6, and 0.8 μL 1% by weight PEI solution.

The shape of the A, C, D, and E layers was circular, with radii of 2.1, 1.5, 1.6, 2, 2.8 mm.
Type B developed a contiguous irregular shape circumscribed inside a circular area of
1.5 mm diameter.

The analysis of the F-A characteristics was based on the model developed in [21]. We
adopted the same method as in [21]: x and z in-plane with the piezo-active area, with z
along the acoustic wave propagation direction. A layer deposited on the piezo-active area
of a SAW device undergoes two shear x- and z-polarized oscillations and one y-polarized
compression oscillation. These waves are reflected back to the layer–substrate interface,
where they interfere with surface waves on the substrate. The outcome of the interference
is given by the phase difference Φj between the two oscillations. The oscillation amplitude
and velocity of a dissipating layer are given by a complex bulk K modulus and shear G
modulus. The wave velocity on a coated SAW sensor is determined by the layer’s mass
load and the layer–substrate oscillation interference, and is given by [21]:

Δv
v

= −I
(

∑
j=x,y,z

cjβjMj

ω
tanh

(
iβjh
))

(1)

where

βj = ω

⎡⎣ρ− Ej
v0

2

Mj

⎤⎦
1
2

(2)

and

Ex = G, Ey ≈ 0, Ez =
4G(3K + G)

3K + 4G
(3)

In Equations (1)–(3), Im represents the imaginary part of the expression; index j
gives the oscillation’s polarization; ‘i’ is the imaginary unit; cj is the SAW–film coupling
parameter [21]; ‘tanh’ is the hyperbolic tangent function, where ‘ω’ is the wave pulsation
2 × π × f with ‘f’ the oscillation frequency of the SAW; ‘h’ is the layer thickness; v0 is
surface acoustic wave velocity of un-coated SAW; ρ is the layer density; and Mx = Mz = G,
My = K. In this model, phase difference Φj = Re(iβjh), where Re represents the real part of
the expression in parenthesis.

While the equality Δf/f0 = Δv/v0 holds only if the layer covers the entire area between
the interdigital transducers [21], which is not our case, the resonant frequency variation
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tracks that of the SAW propagation velocity modeled by Equation (1), thus allowing
qualitative evaluation.

3. Results and Discussion

For statistically meaningful layer characterization, multiple interferential images were
taken, and thickness-related parameters were subsequently obtained by computer image
processing. Pixel statistics were made, in which the pixel color values were replaced by
their thickness values according to the image color scale.

As in the example in Figure 1, the layer’s profile is that of a convex meniscus, with
in-layer dips and peaks of various amplitude.

Figure 1. Type A layer interferential image. The image on the left represents the cross section profile
along the line in the right image.

Due to the profilometer’s viewing area being limited to 504 μm × 504 μm area, only
504 μm from the layer’s margin could be probed. However, interference profiling provided
crucial information for identifying the origin of the observed F-A features.

Histograms for layers thickness and thickness gradients are presented in Figure 2.
In the above-thickness histograms, an abrupt ending toward small values, common

to all layers, is visible. This is not surprising, given that the polymer solution droplet
assumed a lenticular shape before solvent evaporation. As a result, the layer ends abruptly
at the droplet’s limit. The thickness lower limit seems to be the result of both solution
concentration and droplet volume. In the case of the type B layer, the thickness lower
limit is situated at 0.3 μm, with a maximum around 0.65 μm. Apart from the type B layer,
all other layers present thicknesses no less than 1 μm. Owing to its different deposition
techniques, the type A layer is characterized by a thickness distribution with three local
maxima, at 2, 3, and 6 μm. The type C and D layers are virtually identical in thickness
distribution, both starting at 1 μm, with the most consistent values up to 3.5 μm, and
a smaller fraction that gradually diminishes up to ~5 μm. The type E layer presents a
close resemblance with type C and D, except a ~0.5 μm shift toward higher thicknesses.
Additionally, it has two maxima centered around 2.7 μm and 3.5 μm.

In the right column of Figure 2, histograms for layer thickness gradients are shown.
Consistent thickness differences are present in all five types of layers. The thickness
gradient distribution clearly splits the layers into two distinct groups: A and B with
thickness gradient histogram maxima at less than 0.03 μm; and C, D, and E with thickness
gradient distribution maxima at more than 0.03 μm. Additionally, types A and B present
insignificant thickness variations above 0.15 μm, while types C, D, and E exhibit important
areas with gradients higher than 0.2 μm. While most of it is due to the increasing thickness
toward the layer’s center, it is clear that in-layer thickness irregularities also account for a
significant proportion of gradients, as can be seen in Figure 1.
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Figure 2. Thickness (left) and thickness gradients (right) histograms A to E letters indicate corre-
sponding layer.

Figure 3 depicts an F-A characteristic corresponding to a B-type layer placed on the
piezo active area center. The oscillator’s resonant frequency shows a steady increase with
signal amplitude attenuation, with a shallow sigmoid occurrence. While common to all
layer types, sigmoid amplitude and position varies. The sigmoid positioning is the result
of layer resonances, which are dependent on thickness.

Figure 3. F-A characteristics of type B layer.
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Multiple mini plateaus occur, and they could indicate spontaneous signal amplitude
modulation. This is because zones of increased frequency stability were connected with
carrier envelope resonances of a delay line oscillator [22].

The overall profile of the F-A is that of an increase in resonant frequency with attenua-
tion, with full-range attenuation variation leading to an increase in the resonant frequency
of ~1.7 MHz. This can be explained by the non-Newtonian behavior of the polymers,
consisting of decreasing viscosity η and shear loss modulus G′′ with shear rate [23,24]:

η =
G′′

ω
∼ 1

.
γ(t)

(4)

where
.
γ(t) is the shear rate.

As the signal’s amplitude decreases due to attenuation, the shear rate
.
γ(t) decreases,

also leading to increased viscosity and shear loss module G′′. Considering the dependence
of βz on G′′, this leads to the observed increase in resonant frequency.

Additionally, the layer’s acoustic reaction contributes to shaping the F-A characteristic.
As the layer’s acoustic impedance changes due to the amplitude scan, so does the phase
shift Φz of the reflected oscillations. While Φz = Re(βzh) [21], the loss modulus variation
will cause a change in phase difference Φz due to relation (3), which mingles the pure
complex loss modulus G′′ in the real part of βz. Thus, loss modulus variation nevertheless
exerts a measurable influence on the Φz, consequently changing F-A characteristics.

Based on the above, the resonant frequency variation should be attributed to amplitude-
driven changes in PEI shear loss module. This can be direct, due to βz dependence on
G′′, or indirect, via non-gravimetrical effects, namely interference between the layer’s
shear oscillation and acoustic waves at the layer–SAW interface. The existence of acous-
tical effects is further confirmed by the presence of the sigmoid shapes at 110, 165, and
185 attenuations. Additionally, the orientation of the sigmoid is consistent with an increase
in phase difference [21] implied by relations (3) and (4).

Type A layer was used to determine the correlation between the layer’s position and
F-A characteristic features. Isolating the positioning influence from other factors imposed
the use of layers of identical F-A characteristics. As mentioned before, the deposition
process reproducibility was tested by comparing the F-A characteristics of four type A
layers. Figure 4 depicts the F-A characteristic of four type A layers placed in the center of
the piezo-active area. Multiple common elements can be noted, the most significant being
the sigmoidal region in the 100–120 a.u. attenuation range. The sigmoid consists of two
regions of similar inclination separated by a mini plateau. Mini plateaus are present at both
sigmoid ends. Many other plateaus occur with F-A characteristics, and most of them are
similar in size and, aside from a small vertical shift, position.

The F-A characteristics in Figure 4 can be divided into three regions. First, the 0–65 a.u.
attenuation is characterized by the A1 layer departure from the profile of the other three
layers. From 65 to 160 a.u. attenuation, the F-A is characterized by a high degree of
coincidence, both in features and position. In the last portion, the coincidence departure is
most notable, both in features and position. This could indicate higher system instability
at lower amplification, which exacerbated the differences in layer morphology. In the
0–100 a.u. attenuation range, the A2, A3, and A4 layers are virtually indistinguishable,
their superposition being almost perfect. The A1 layer presents a vertical shift of ~30 kHz
in the 0–25 and 45–65 a.u. attenuation ranges. Overall, Figure 1 proves that the deposition
technique produces layers with similar F-A characteristics, supporting the validity of
positioning impact investigation based on type A layers.
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Figure 4. A-F dependence reproducibility for type A layers.

Figure 5 depicts the F-A characteristics corresponding to the four distances from input
IDT at which a type A layer was placed. It is worth noting that, despite clear differences,
the F-A characteristics still retain significant common elements, confirming the layers’
quasi-identical morphology.

Figure 5. A-F for type A layer at different distances from input IDT.

While consistent efforts to preserve the experiment’s integrity were made, there
are some differences arising from occurrences out of our control, as is visible in both
Figures 4 and 5. The presence of these random features will render our evaluation more
difficult. To avoid drawing unfounded conclusions, we will limit ourselves to considering
only major elements and parameters such as frequency variation rate, sigmoids, etc.

Aside from a relatively small vertical shift, the first three characteristics are parallel.
Surprisingly, and in opposition to the resonant frequency increasing with attenuation, as the
signal amplitude presumably increases with proximity to the IDT input, the characteristics
are shifted vertically toward higher frequencies. At this point, the most certain information

167



Processes 2024, 12, 1217

we possess is the increase in frequency at lower signal amplitudes. This is supported by
the values in Table 1, which indicate a lower frequency variation range for the 1, 2.5, and
7.5 mm layers. Thus, we are compelled to assume that this vertical shift is also caused by
a decrease in the signal’s amplitude, which implies the existence of a wave energy loss
mechanism. In order to explain this behavior, the energy loss must be highly dependent on
the layer’s location. At this stage, it seems that the layer exerts a lens-like effect on SAW’s
wavefront, increasing its divergence. Also at this stage, it seems that the layer convex
contour exerts a lens-like effect on SAW’s wavefront, strongly increasing its convergence.
After passing the focus point, the wavefront expands, diminishing its energy in a distance-
dependent manner, thus lowering the signal’s amplitude at receiving IDT. In turn, this
causes a general decrease in signal amplitude all across the system, including a decrease in
the oscillation amplitude of layers. This hypothesis can also explain the anomalous 7.5 mm
F-A characteristics. The anomaly consists of the vertical shift toward lower frequencies
(equivalent to layer oscillation with higher amplitudes) while being placed further from the
emitting IDT (lower SAW amplitude due to attenuation). That means that the amplitude
attenuation with distance is outweighed by the reduction in divergence-induced energy
loss due to the shorter distance to the reception IDT, with the net result being an increase in
SAW amplitude. Nevertheless, this does not explain the lower frequency variation range
for the 7.5 mm layer and the diminished sigmoid amplitude.

Table 1. Relation between layer position and total frequency variation.

Distance from input IDT (mm) 1 2.5 5 7.5

Frequency variation (Hz) 1,705,990.5 1,743,723.5 1,750,369.5 1,590,019.1

In conclusion, displacement from the central position results in both a frequency shift
and decrease in the frequency variation range due to reduced oscillation amplitude. It
can be seen in Table 1 that the trend is well-defined, and it is the result of two distance-
dependent wave energy loss mechanisms: layer-induced wavefront divergence, and wave
attenuation with distance. Maximum frequency variation corresponds to the center position,
1.75 MHz, which corresponds to a minimum in wave energy loss.

F-A for all five layers can be seen in Figure 6. There are two elements that differentiate
the F-A dependence: frequency increase rates and layer resonance position.

Figure 6. F-A for different layer types.
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A good correlation between layer thicknesses and the position of layer resonances
can be observed in Figure 6. In the cases of type C, D, and E layers, the layer resonance is
situated virtually at the same frequency, which is consistent with their measured thickness.

Comparing the resonances of type B and any of the C, D, or E layers, the frequency
spacing is not large enough to accommodate two different harmonics. Thus, it is probable
that the lower resonance (in layers C, D, and E) is a second-order resonance. Given that the
phase difference between reflected and substrate acoustic waves marks is n × π/2 (n = 1, 3,
5, ...) at layer resonance for a second-order layer resonance, the corresponding thickness
ratio between the two layers should be 3. It should be noted that the sigmoids for the type
C, D, and E layers are well defined and virtually identical. This suggests that the associated
layer thickness causing this resonance is situated in an overlapping region of the type C, D,
and E thickness histograms. The most probable thickness value is ~2.4 μm, leading to a
very plausible (based on the thickness histogram in Figure 2 for the type B layer) thickness
resonance value of 0.8 μm for sigmoids on type B F-A characteristic at 59.9 and 60.2 MHz.
The 2.4 μm value for layer thickness is compatible with type A layer thickness distribution,
and its departure from the thickness distribution maximum at 2 μm could account for the
not-so-well-defined sigmoid shape.

Considering that the type B layer is the thinnest layer, the sigmoid around 59.3 MHz
can be regarded as anomalous. This could be explained by the fact that the inner areas of the
type B layer might be thick enough to accommodate the corresponding higher-order reso-
nance. This explanation is thus far consistent with the our experimental data interpretation.

Keeping in mind that the thickness distributions, as shown in Figure 2, are kept from
probing the layers outer areas, and thickness distribution could be shifted toward higher
values, this fits very well with type C, D, and E morphologies.

A striking quasi-total F-A similitude can be noted for the type C, D, and E layers,
in spite of their different area and masses. While this correlates well with their similar
morphology, as revealed by thickness-related parameters in Figure 2, it raises questions
about the impact of size and mass on F-A characteristics. In this case, the two parameters
have antagonistic effects on signal amplitude. On the one hand, a larger quantity of material
will dissipate proportionally more energy. On the other hand, a higher radius layer will
focus the wavefront less sharply, followed by a less pronounced divergence. Thus, the
size impact for type C, D, and E layers may have been diminished due to the two effects
canceling each other. As a result, the oscillation amplitude is almost identical for the C, D,
and E layers, which is manifested in their F-A quasi-identical shape.

Aside from layer resonance position, the F-A differ in frequency variation rate, which
is visibly smaller for C, D, and E-type layers. This signifies that the layers undergo overall
lower amplitude oscillations, i.e., the amplitude variation range is smaller. While the
amplitude attenuation caused by the added mass accounts for the different slopes, this
does not explain the lower sigmoidal amplitudes for C, D, and E characteristics. Since
the lower sigmoidal frequency excursion is the hallmark of higher loss parameter [21],
this could signify the presence of an additional wave energy loss mechanism. Such a
mechanism could be due to shear wave interference among adjacent areas of different
thicknesses. Thus, the shear oscillatory energy returned by a portion of a given thickness
will undergo attenuation by interference with neighboring portions of different thicknesses,
proportional to the border length and phase difference between the two shear oscillations.
This interpretation is very well supported by the thickness gradient histogram, as shown in
Figure 2, which is highest for the C, D, and E layers.

4. Conclusions

PEI layers were deposited on SAW devices and used to determine the causal linkage
between layer morphology and positioning, as well as F-A features. Identifying the mor-
phology features responsible for F-A parameters was enabled by the deposition of PEI
layers with reduced area. Thus, a causal connection between morphological features and
F-A parameters was possible. As the reproduction of F-A for distinct layers of the same
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type was possible, this enabled the effects of the layer’s positioning on F-A characteristics
to be isolated. The results strongly suggest the existence of a position-dependent energy
loss mechanism, presumably due to layer-induced wavefront divergence.

F-A features specific to each type of layer were explained by resonances of layer
areas of different thicknesses and by the presence of energy loss mechanisms via layer-
induced wave divergence, and inter-layer shear wave interference, due to differences in
layer thickness.

Notably, while a liability for gas detection, this method dependence on layer charac-
teristics could constitute the basis for an advanced material testing method. Additionally,
combined with the wireless capabilities of SAW devices, this could provide an accessible
early warning method for an advanced process monitoring method.

The future development of this method is conditioned by a process to circumvent
its dependence on layer morphology. Developing better layer deposition techniques
with higher morphology reproducibility might not be always possible, nor economically
viable. Thus, the development of computational methods could prove instrumental in
implementing a detection/identification protocol based on this method. In this respect,
the most important result is the dependence on the attenuation of the terms outside the
hyperbolic tangent in Equation 2, which is nonexistent in the model used in [14], this is a
very important consideration for future model development.
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Abstract: Due to the high abrasiveness and anisotropic nature of composites, along with the need to
machine different materials at the same time, drilling multi-materials is a difficult task, and usually
results in material damage, such as uncut fibres and delamination, hindering hole functionality and
reliability. Image processing and analysis algorithms can be developed to effectively assess such
damage, allowing for the calculation of delamination factors essential to the quality control of hole
inspection in composite materials. In this study, a digital image processing and analysis algorithm
was developed in Python to perform the delamination evaluation of drilled holes on a carbon fibre
reinforced polymer (CFRP) and aluminium (Al) multi-material. This algorithm was designed to
overcome several limitations often found in other algorithms developed with similar purposes, which
frequently lead to user mistakes and incorrect results. The new algorithm is easy to use and, without
requiring manual pre-editing of the input images, is fully automatic, provides more complete and
reliable results (such as the delamination factor), and is a free-of-charge software. For example, the
delamination factors of two drilled holes were calculated using the new algorithm and one previously
developed in Matlab. Using the previous Matlab algorithm, the delamination factors of the two holes
were 1.380 and 2.563, respectively, and using the new Python algorithm, the results were equal to
3.957 and 3.383, respectively. The Python results were more trustworthy, as the first hole had a higher
delamination area, so its factor should be higher than that of the second one.

Keywords: image processing; image analysis; Python; delamination evaluation; multi-material

1. Introduction

Image processing and analysis techniques are based on mathematical functions to
achieve the intended outcomes for the desired task [1]. Nowadays, many of the advanced
engineering developing software tools, such as Matlab (MathWorks, Natick, MA, USA),
version 2019 B, or Python (Python Software Foundation, Wilmington, DE, USA), version
5.1.5., already include many of these functions, and the algorithms developed almost
only depend on the correct combination of these available functions. Four primary focus
areas are usually considered in image processing and analysis: image improvement or
enhancement, image restoration, image compression, and image analysis. These focus
areas are typically associated with artificial intelligence and are usually designated as
computer vision [2]. The first and last areas are the most important in multi-material
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drilling processes. In the image improvement or enhancement process, the characteristics
of the input image are improved, for example, by accentuating the contrast and reducing
the noise. On the other hand, image analysis aims to interpret a given image by measuring
or classifying its properties. These techniques can be applied in various fields, such as
engineering, science, and healthcare [3].

Usually, the first step in image processing is to convert the input colour image into a
grayscale image to simplify the following steps. Afterward, a noise-smoothing technique
may be applied to remove unwanted elements in the image surrounding the object(s)
of interest, which can be achieved using, for example, a bilateral filter [4] or low-pass
filter [5]. Another helpful technique to improve the input image’s quality is contrast
stretching [6], which increases the contrast between the darkest and brightest regions in
the image while preserving the relative differences among the intermediate values. The
intensity of the pixels of the object of interest can also be enhanced using sharpening or
histogram equalization techniques [7] by modifying the image’s intensity distribution
based on its histogram or using a high-pass filter.

Another essential function in image processing is the erosion operation, commonly
used to erode the boundaries of the object of interest in an image. It can be used, for
example, to remove noise, to isolate individual elements, or to reduce the object’s size. In
the same area, the dilation operation is often used to expand the object’s boundaries in a
binary image. It can also be used to fill gaps, to connect broken objects, or to increase the
object’s size. Both have an “iterations” parameter, specifying how often the techniques are
applied to the image and how they can be increased to intensify their result [8].

In many applications, after image pre-processing, it becomes necessary to apply the
thresholding technique [9], which is the simplest method for performing image segmenta-
tion. This technique turns the image into a binary form so that a specific region of interest
(ROI) of the image can be emphasised and its subregions can be uniformised. Some other
important techniques usually used for this task include the Hough transform technique [10],
to detect geometric shapes in images, such as circles; the snake algorithm [11], to find the
contour that best approximates the border of an object; and the level set model for image
segmentation [12], which implements a geometric active segmentation contour model.
From a boundary detection perspective, the Canny, Prewitt, Roberts, and Sobel edge detec-
tors [13,14] are some of the most used operators that perform contour detection in the image
under study, using an approximation of its intensity gradient through finite differences.
For image analysis, the region-growing algorithm [15] is commonly used to segment image
regions by growing a region from a seed point, and then measurements can be obtained
from a particular region, allowing for further analyses.

Due to the many possibilities that the usual image processing and analysis techniques
offer in solving real-world problems, different applications exist to put them into practice.
These range from the automatic evaluation of metallographic microstructure phases [16]
and surface characterisations [17] to damage detection in parts resulting from mechanical
tests [18] or manufacturing processes in engineering. In the scope of drilling composites
and multi-materials, mainly by a combination of composite and metal, several damages
usually arise, such as burrs and fibre delamination. This happens mainly due to composite
materials’ anisotropic nature, making it harder to perform a clean cut. This property, along
with the high abrasiveness of the composite fibres and the drill’s need to cut through
different materials simultaneously, causes severe tool wear, leading to an imperfect surface
on the hole’s border [19]. This kind of damage may sometimes go unnoticed in high batch
production, which could have catastrophic consequences, especially for this process’ most
frequent applications, the aeronautical and automotive industries [20].

To quantify the hole delamination, some criteria have been proposed in the literature
relating the key properties of the damaged regions and those of the original hole. These
can comprise just the diameter (Fd), introduced by Chen et al. [21] in 1997, or just the
area (Fa), presented for the first time by Mohan et al. [22] in 2007. Later, in the same year,
Davim et al. [23] suggested an improved version of the delamination measurement, the
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adjusted delamination factor (Fda), which is considered a better approximation of reality by
combining the diameter and the area at the same time. This can be expressed as:

Fd =
Dmax

Dnom
, (1)

Fa =
Ad

Anom
, (2)

Fda = Fd +
Ad

(Amax − Anom)

(
F2

d − Fd

)
, (3)

where Dnom and Anom correspond to the nominal hole’s diameter and area (in mm and mm2,
respectively), Dmax and Amax to the maximum delamination diameter and area considering
the maximum diameter (in mm and mm2, respectively), and Ad to the actual delamination
area (in mm2) (Figure 1). If the damage around the hole is circular and has a low amplitude,
it is not completely considered in the Fd approach, and the same happens for the Fa if there
is just a thin crack or a damaged peak but without a great area. That is why the adjusted
delamination factor, Fda, provides a more complete and more reliable result.

Figure 1. Diameters and areas used to calculate the delamination factors Fd, Fa and Fda.

Several studies assess delamination damage in composite materials using image pro-
cessing and analysis techniques to identify if the non-conformities are within the acceptable
limits imposed by the industry quality patterns. Durão et al. [24] used damage assessment
image-based methods through computational processing of data extracted from radio-
graphic images and compared them with mechanical test results, bearing and delamination
assessment tests, and analytical models, obtaining valuable information regarding the
delamination extension and mechanical strength of the drilled parts. In more recent studies,
Durão et al. [25] and Devesa et al. [26] used similar methods to calculate the fractal dimen-
sion of the damaged region’s boundary. Geier et al. [27] predicted drilling-induced burr
occurrence in CFRP composites using image processing and analysis by studying the fibre
orientation in CFRP sections and their local properties, achieving an accuracy of 64–97%
compared to real drilling experiments. Alejandro et al. [28] also autonomously inspected
drilled holes in CFRP panels using image processing and analysis techniques to determine
the geometric errors and delamination factors for several holes and compared them with
experimental results. Despite most delamination assessment approaches through image
processing and analysis techniques being applied in just plain composites, machined multi-
material processing has been gaining relevance in recent years, even if only a few studies
exist on this topic. Isbilir and Ghassemieh [29] studied the hole’s quality and respective
delamination factors of drilled CFRP/titanium stacks using image processing and analysis
techniques, and Marques et al. [30] successfully determined the delamination factors of
holes in drilled composite and aluminium (CFRP/Al) multi-materials via computational
analysis of X-ray images. Several non-destructive tests could acquire images of the hole
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and surrounding areas for the damage extension analysis and evaluation, such as radiogra-
phy, ultrasound, acoustic emission, C-scan, and computer tomography (CT) [24]. Despite
this, the delamination damage was typically assessed using X-ray radiography, as it is the
cheapest and most easily accessible imaging modality.

The problem is that the common software used to assess drilled multi-material hole
damage had some gaps. For example, in many of them, the original hole images required
manual pre-editing to obtain consistent results, which were sometimes incorrect, nonethe-
less. They also required several user inputs of key functions that, if wrongly selected, led to
problems in their functioning. Additionally, the main limitation of solutions developed in
Matlab is that it is a paid software, whereas those developed in Python have no such limita-
tion and can be improved easily with new functions associated with the Python libraries
that appear every day. Therefore, the objective of this work consisted in the development of
an algorithm in Python with an intuitive interface, i.e., an enhanced graphical user interface
(GUI), which uses image processing and analysis techniques to obtain comprehensive
information about the quality of drilled holes in CFRP/Al multi-material, namely the
extent of delamination, from X-ray images. The algorithm was then compared to a previous
algorithm developed in Matlab to confirm its superior performance, mainly in terms of
image improvement and accuracy of delamination factors. For this, it was necessary to
perform the division of the problem under study into two main steps:

• Image processing, where the input image was firstly improved by enhancing its most
relevant features and via contrast refinement and noise smoothing to retain only the
regions of interest with enhanced quality.

• Image segmentation and analysis, where the region of interest was selected through
proper thresholding and finally assessed, resulting in the evaluation of the hole’s
damage based on delamination factors derived from its perimeter and area.

2. Materials and Methods

2.1. Image Acquisition

This work was based on a drilling campaign using a DMG Mori DMU 60 eVo (DMG
Mori, Bielefeld, Germany) CNC machine on a three-layered multi-material (CFRP/Al/CFRP)
with a 4.5 mm thickness, using a 6 mm diameter conventional twist drill with a point angle
of 120◦ and helix angle of 30◦. The multi-material was evenly distributed, with each layer
having a thickness of 1.5 mm. The metal used was Al2024-T3, and the composite was a
cross-ply (0/90◦) with a thermosetting matrix (epoxy) composed of 7 plies.

For the acquisition of the intended images from the drilled holes, a radiography system
associated with a Kodak RVG 5100 (Eastman Kodak Company, Rochester, NY, USA) digital
sensor was used, Figure 2a, since the X-ray could effectively pass through both the CFRP
and aluminium, revealing the damage present in them, as has been considered in several
studies in the literature. Two foam supports were used on both sides of the sensor for the
stacks’ stability and to ensure that all the images were obtained with the same distances
between the sensor and the plate and the sensor and the emissary. Firstly, the samples were
immersed in a contrasting liquid, Analar Normapur Diiodomethane, for 30 min. Thus,
when the X-ray system was employed, it revealed the zones where the liquid penetrated
the delamination areas, which were clearly distinguished from the unaffected material
because the liquid was opaque to radiography. As already mentioned, a Satelec X-mind
radiography system was used, Figure 2b, with a 0.16 s exposition time, alongside the image
acquisition software in Matlab and Python languages.
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(a) (b) 

Figure 2. (a) The Kodak RVG 5100 digital sensor and (b) a sample of the multi-material under
X-ray analysis.

2.2. Algorithm Pipeline

Python was used to develop the image processing and analysis algorithm, mainly to
identify the ROIs, i.e., the hole and damaged areas, and assess them. Its main steps consisted
of image processing to determine the damaged and hole regions, image segmentation to
determine the ROIs, and image analysis to calculate the delamination factors (Equations
(1)–(3)). Finally, the results were shown to the user. The scheme in Figure 3 depicts the tasks
performed in the novel algorithm. The development was based on the defined objectives
and a literature search for Python functions that could be used to address the tasks involved.
Combining different functions to obtain the desired outcome was possible with a trial-and-
error method. The libraries in Python used to develop the new algorithm are shown in
numpy v1.20.3, OpenCV v4.5.2, matplotlib v3.4.3 and scipy v1.7.3.

 
Figure 3. Pipeline of the novel image processing and analysis algorithm developed in Python.
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3. Algorithm Comparison

3.1. Previous Algorithm

With the previous image processing and analysis algorithm developed in Matlab,
when a new image is given as the algorithm’s input, the first step is to manually choose the
ROI’s borders using a two-step selection grid, Figure 4, so that the algorithm may restrict
the analysis to the specified region. From this selection and based on a conversion factor
from pixels to millimetres (mm) that the user needs to update in the algorithm code before
running it, the hole’s radius is calculated first in pixels and then in mm.

 

Figure 4. Grid selection of the ROI’s borders of the hole image under study in the previous
Matlab algorithm.

Afterward, the algorithm suggests a threshold that usually never corresponds to the
intended one. It is either too high, as in Figure 5a, meaning that almost no delamination
is detected and the hole circle is not entirely detected, or too low, as in Figure 5b, with
unwanted noise surrounding the hole’s region and disrupting the real delamination anal-
ysis. Therefore, the algorithm asks the user if the threshold is acceptable, and if the user
declines it, the algorithm then asks the user to choose another value in an iterative method
until a satisfying result is obtained, as in Figure 5c. Thus, an adequate threshold needs to
be selected by the user based on visual analysis, otherwise, the delamination factors are
miscalculated.

   
(a) (b) (c) 

Figure 5. The effect of the selected ROIs threshold value in the previous Matlab algorithm: (a) too
high, (b) too low, and (c) adequate threshold value.

Then, if the user accepts the threshold, it is necessary to zoom in on the image and
press a random keyboard key. The problem is that the user can only determine that a pixel
on the hole’s border needs to be selected after pressing the key, and the user cannot zoom
the image out at this step. Hence, an error occurs if a bad selection is made, and the process
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must be reinitiated to continue. A similar process starts for the user to select a pixel on
the delamination contour. Figure 6a and Figure 6b represent the hole and delamination
contour detection, respectively, on the top left corner region of the image in Figure 5c.

  
(a) (b) 

Figure 6. Results obtained by the previous Matlab algorithm: the (a) hole and (b) delamination
contour detection on the top left corner region of the image in Figure 5c.

At the final step of running the previous algorithm, it returns three images, one
highlighting the hole region, Figure 7a, another representing the hole and damaged regions
merged, Figure 7b, and finally, the binary image to be assessed, Figure 7c. Alongside these
visual representations, the delamination factor values are presented to quantify the damage
from the drill effect on the hole’s periphery.

   
(a) (b) (c) 

Figure 7. Results obtained by the previous Matlab algorithm: (a) the hole region, (b) the hole +
damaged regions, and (c) the final binary image to be assessed.

3.2. Novel Algorithm

Considering the operational concerns mentioned earlier, a new algorithm needed to
be developed, to enable easier operation and better result accuracy. Thus, a new set of steps
was designed as follows:

• Image processing to determine the damaged and hole regions, i.e., image segmentation
or determination of the ROIs.

• Calculating the delamination parameters: Fd, Fa, Fda.
• Showing the results to the user.

Figure 8 shows an example of a grayscale image imported to the new Python algorithm.
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Figure 8. An example of a hole image imported to the new Python algorithm.

3.2.1. Image Segmentation—Determination of the ROI

The best way to analyse an image is to look at its histogram, like the one in Figure 9a.
The histogram shows the number of pixels along each bright intensity. The original
image essentially contained three groups of pixels, black, grey, and white, which could be
analysed in the peaks of the respective histogram (Figure 9a) although the last one, with
nearly 250 bins, was not very pronounced. To automatically determine the threshold indi-
cated for each image, the value of each peak was calculated, Figure 9b, with only a small
range given to define the values of that peak. The purpose of these two graphics was to
show the approach used in the algorithm to identify the hole and damaged regions.

  
(a) (b) 

Figure 9. (a) The grayscale histogram of the image in Figure 8 and (b) the respective histogram peaks.

The images in Figure 10 were obtained from the histogram data. Figure 10a,b resulted
from the values of the peaks identified in Figure 9, showing the hole and damaged regions,
respectively, by simply applying a threshold to those values given the respective interval.
Figure 10c combines Figure 10a,b, showing the hole and damaged regions.
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(a) (b) (c) 

Figure 10. The output obtained by the new Python algorithm from the image in Figure 8: (a) the hole
region, (b) the damaged region, and (c) the hole + damaged regions.

In the case of Figure 11, two different filters were applied to the original image. The
Canny filter is commonly used to find objects’ edges in images. This filter was tested, and
examples of its results are shown in Figure 11a. Since this filter only shows the hole’s edges,
and there can be cases where the edges are not all closed, and there are gaps in the objects’
borders, basic morphological filters were tested to improve the results. The combination
of dilation and erosion operators after applying the Canny filter was the method that
improved the results the most, Figure 11b.

  
(a) (b) 

Figure 11. Images after applying the (a) Canny edges detector and (b) erosion filter to the image in
Figure 10c.

Figure 12a depicts the result of combining the previously applied filters with the
threshold technique. Figure 12b shows the damaged and hole regions merged together,
derived from Figure 12a by closing its borders, filling in the insides, and selecting only the
region with the biggest area. At this step, the unwanted surrounding noise disappeared
due to the combined action of the previously used filters. Figure 12c was obtained by
replacing the central area (white pixels) of Figure 12b with the value of the hole region
(black pixels), showing only the damaged region, so a proper comparison with the original
image could be possible.
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(a) (b) (c) 

Figure 12. The output obtained by the new Python algorithm from the image in Figure 8: after the
(a) filter combination, (b) filled damaged + hole region, and (c) damaged region.

3.2.2. Calculating the Delamination

This step calculates the delamination parameters by automatically counting the pixels
corresponding to each region. Then, by knowing the base radius of the drilled hole, the
conversion factor is calculated so that the delamination factors can be determined in mm.
The X-ray images processed by the Python algorithm permitted a specific delamination
evaluation to be quantified through delamination factor criteria (Equations (1)–(3)).

To determine the diameters for calculating the delamination factors, first, the contours
of the hole and the damaged regions were identified by thin internal lines. Secondly, the
smallest circle that included those contours was calculated on the thicker lines, correspond-
ing to the hole’s inner diameter, Dnom, Figure 13a, and the outer diameter of the circle better
adjusted to the complete delaminated region, Dmax, Figure 13b. In the first image, a slight
difference between the two lines in the top left-hand corner is seen, which means that the
hole was not perfectly circular, possibly caused by more loads being applied on that side
during the drilling process.

  
(a) (b) 

Figure 13. The identification process of the (a) inner diameter, Dnom, and (b) delaminated outer
diameter, Dmax, by the new algorithm.

4. Novel Algorithm’s Results

In order not to simply write the new algorithm’s results in the user console, as the user
may not be proficient in programming with Python or may use different code compilers,
the results were presented under the image form for clearer output. For comparison
purposes, the two algorithms were put side by side to highlight their differences, and
the improvements brought by the new one in the analysis of two holes performed with
different sets of parameters with distinct delamination levels.

Hole 1 was drilled with a feed of 0.3 mm/rev. and a cutting speed of 150 m/min.
Comparing its original image, Figure 14a, with the corresponding binary image obtained
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by the previously developed Matlab algorithm, Figure 14b, and the image obtained by the
new Phyton algorithm, Figure 14c, a clear difference was observed. Particularly noticeable
was the identification of the delaminated zones around the drilled hole, which in this new
solution was highlighted more, with the delamination regions fully filled, contrary to the
result obtained by the previous algorithm. Moreover, the presence of contrasting liquid
drops near the hole, which could not be completely removed despite thoroughly cleaning
the sample, leaving only the delaminated zones impregnated with it, can sometimes affect
the damage assessment. The new algorithm successfully considered these as image noise
and removed them so there was no interference with the delaminated region around the
hole. This ensured a higher accuracy of the results, making the evaluation more precise
and effective.

   

(a) (b) (c) 

Figure 14. (a) The original image of Hole 1, (b) the output from the Matlab algorithm of the Hole 1
image, and (c) the corresponding output from the Python algorithm.

An example of a less damaged hole, namely of the Hole 2 image, drilled with a lower
feed, 0.15 mm/rev., and the same cutting speed, 150 m/min., is depicted in Figure 15a. The
problem with the previous algorithm, Figure 15b, was that if the selected threshold was too
high, the hole’s boundaries were not properly identified, but if it was too low, as shown in
the image, there was too much noise around the hole. As clearly seen, the new algorithm,
Figure 15c, was designed to identify better the less prominent delamination zones around
the hole, i.e., the ones where the contrast liquid did not penetrate as effectively or were
simply less deep and not so easily distinguishable with the naked eye. In the new algorithm,
combining the Canny, dilation and erosion operators, and threshold filter removed the
noise from the input image without compromising the hole boundaries, thus overcoming
this problem.

   
(a) (b) (c) 

Figure 15. (a) The original image of Hole 2, (b) the output from the Matlab algorithm of the Hole 2
image, and (c) the corresponding output from the Python algorithm.

With the application of the new algorithm, obtaining more accurately adjusted delami-
nation factors from images of holes with great delamination was possible. It also resulted
in logical values regarding the tool used, and the chosen machining parameters, namely
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the feed and cutting speed. Table 1 indicates the delamination factors calculated using
Equations (1)–(3) with the data obtained from the images of Holes 1 and 2 by the previous
and the new algorithms, along with the respective drilling parameters. Noticeably, the
increase in the delamination factor obtained by the new algorithm was directly related to
the feed increment.

Table 1. The comparison of the values of the studied delamination damage factors obtained from the
images of Holes 1 and 2 using the two algorithms.

Hole
Image

Feed
(mm/rev)

Cutting Speed
(m/min)

Algorithm Fd Fa Fda

1 0.30 150
Previous 2.014 −0.239 1.380

New 1.496 4.106 3.957

2 0.15 150
Previous 2.332 0.121 2.563

New 1.366 3.492 3.383

The previous algorithm had problems with the image processing step and with calcu-
lating the delamination factors. Although the values of the adjusted delamination factor
(Fda) seemed more reliable in the previous algorithm, as they were lower, it quickly became
apparent that they were incorrect. The value in the Hole 2 image was almost twice as high
as that in the Hole 1 image, and it can be perceived visually that the Hole 1 image contained
more delamination than the second image. Using the new algorithm, the Hole 1 image
had a higher adjusted delamination factor (Fda), but the two values were closer to each
other, which is more realistic. Additionally, the delamination factor considering the area
(Fa) obtained by the previous algorithm was too low, which does not make sense. Since
it is calculated via the area, it should be higher than one, which only happens with the
new algorithm.

All the calculated delamination factors are considerably above the acceptable limit
in the aeronautical industry, which is 1.200 [31], which means that, as confirmed visu-
ally, the holes exhibit severe damage and would not be accepted in a quality inspection.
Nevertheless, with the aid of the new Python algorithm, a correct analysis can be per-
formed, ensuring better hole assessment and higher quality in obtaining good results in
future experiments.

5. Discussion

The literature contemplates some works in this field, although the most common ones
focus on drilling composites, such as CFRP. For example, Krishnaraj et al. [32] performed
drilling tests in a 4.2-mm-thick unidirectional CFRP, obtaining an Fd of 1.33 with a feed
of 0.2 mm/rev. and a cutting speed of 15 mm/min. In the work of Durão et al. [24], a
4-mm-thick unidirectional epoxy CFRP was drilled with feeds of 0.03, 0.1, and 0.2 mm/rev.
and a constant cutting speed of 52 m/min, which resulted in Fd, Fda values of 1.29, 1.47,
1.61, 1.81, 2.04, and 2.33, respectively. In both studies, the Fd values were close to the multi-
material ones, but in the second, the Fda values were relatively lower. Studies regarding the
delamination quantification and analysis of drilling multi-materials, specifically CFRP/Al,
are also being conducted, although not very prominently. Nevertheless, few articles can be
found with the delamination values clearly stated and, from the existing ones, the majority
only address the Fd factor, the simplest delamination factor. This is the case in Mahdi
et al. [33], where they drilled into a 7.6-mm-thick woven CFRP/Al stack with an uncoated
classical twist drill, obtaining Fd values of around 1.2 using a feed of 0.0023 mm/min.
and a cutting speed of 178 m/min. Furthermore, Ekici et al. [34] drilled a 5-mm-thick
woven CFRP/Al multi-material composed of seven alternate material layers with a twist
drill containing a TiN–TiAlN PVD coating, achieving Fda results of 1.8 using a feed of
0.2 mm/rev. and a cutting speed of 85 m/min. This value is lower than the one obtained
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in this present study, which means that the tool coating and stack configuration greatly
influence the final hole quality when drilling multi-materials.

6. Conclusions

The main objective of this work was to develop an algorithm in Python that could
solve the problems felt using an algorithm previously developed in Matlab in the correct
processing and analysis of X-ray images of drilled holes in a multi-material, specifically, a
CFRP/Al material. The established goals were reached with the new algorithm, in addition
to the fact that it is free, meaning that it is available for any user to benefit from, in contrast
to the previous one, which required paid software. With the implementation of the novel
algorithm, it is now possible to select an image with the hole delamination as an input, and
automatically identify the different zones without manual intervention. This avoids errors
usually made by inexperienced users, such as selecting the wrong image threshold, which
may lead to a failure and the need to start the procedure from the beginning, whereas
in the Python algorithm, the threshold is defined automatically and, thus, is always the
preferred option. Besides this, the developed algorithm correctly segments the input image
into the hole, delamination, remaining material, and noise, giving more reliable results
when calculating the delamination factors. To corroborate this, the quality of two drilled
holes was assessed using both algorithms. Using the Matlab algorithm, the delamination
factors obtained were equal to 1.380 and 2.563 for the two holes, respectively, while the
results obtained using the Python algorithm were equal to 3.957 and 3.383, respectively.
However, the first results were incorrect, as could easily be confirmed visually, the first hole
had a higher delamination area, which was not suggested by the results obtained by the
Matlab algorithm. In contrast, the results obtained by the Python algorithm were correct.
In addition, the user of the new Python algorithm did not need any previous experience
in image processing and analysis, and therefore, the analysis was quicker, and the results
were more accurate. This algorithm can be applied to drilling images and any procedure
involving delamination and fibre pull-out in composite materials. In the future, the new
algorithm can be tested in other hole-making processes to quantify the damage around
the hole, and possible improvements can be implemented to achieve results even more
accurately for those processes.
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Abstract: Examining boiler failure causes is crucial for thermal power plant safety and profitability.
However, traditional approaches are complex and expensive, lacking precise operational insights.
Although data-driven approaches hold substantial potential in addressing these challenges, there is a
gap in systematic approaches for investigating failure root causes with unlabeled data. Therefore,
we proffered a novel framework rooted in data mining methodologies to probe the accountable
operational variables for boiler failures. The primary objective was to furnish precise guidance
for future operations to proactively prevent similar failures. The framework was centered on two
data mining approaches, Principal Component Analysis (PCA) + K-means and Deep Embedded
Clustering (DEC), with PCA + K-means serving as the baseline against which the performance
of DEC was evaluated. To demonstrate the framework’s specifics, a case study was performed
using datasets obtained from a waste-to-energy plant in Sweden. The results showed the following:
(1) The clustering outcomes of DEC consistently surpass those of PCA + K-means across nearly
every dimension. (2) The operational temperature variables T-BSH3rm, T-BSH2l, T-BSH3r, T-BSH1l,
T-SbSH3, and T-BSH1r emerged as the most significant contributors to the failures. It is advisable
to maintain the operational levels of T-BSH3rm, T-BSH2l, T-BSH3r, T-BSH1l, T-SbSH3, and T-BSH1r
around 527 ◦C, 432 ◦C, 482 ◦C, 338 ◦C, 313 ◦C, and 343 ◦C respectively. Moreover, it is crucial
to prevent these values from reaching or exceeding 594 ◦C, 471 ◦C, 537 ◦C, 355 ◦C, 340 ◦C, and
359 ◦C for prolonged durations. The findings offer the opportunity to improve future operational
conditions, thereby extending the overall service life of the boiler. Consequently, operators can
address faulty tubes during scheduled annual maintenance without encountering failures and
disrupting production.

Keywords: power plants; failure analysis; data mining; deep embedded clustering

1. Introduction

A boiler is an essential component in thermal power plants that utilize various fuels,
including coal, oil, nuclear, or waste. Functioning as heat exchangers, boilers transform pu-
rified water into high-pressure steam through heat radiation from hot flue gas. This steam
subsequently drives turbine blades for electricity generation. Typically, a boiler comprises
economizers, evaporators, superheaters, and a steam drum, although the specific configu-
ration may vary depending on the design and function of the power plant [1–4]. Given the
harsh operating conditions of elevated temperature, pressure, corrosive substances, and
mechanical stress, boilers are prone to frequent failures. Boiler tube failures account for the
majority of unplanned shutdowns in power plants [5]. These failures commonly manifest
as tube ruptures, significantly compromising both the safety and revenue of a power plant.
In the event of tube rupture, the steam generation process can be halted, or worse, it

Processes 2024, 12, 1346. https://doi.org/10.3390/pr12071346 https://www.mdpi.com/journal/processes187



Processes 2024, 12, 1346

might lead to more serious accidents, compelling a complete plant shutdown for necessary
repairs [6–9]. Such unplanned downtime leads to substantial economic ramifications for
the plant. Research indicates that the average cost of a single day of unscheduled power
plant downtime in Europe is approximately EUR 100,000 [10].

Investigating the causes of boiler failures holds significant importance for the safety
and profitability of power plants. Extensive research has been dedicated to probing the
origins of boiler failures, with a predominant focus on chemical and physical mechanisms.
These culprits can be generally classified into several categories, including short-term
overheating, long-term overheating (high-temperature creep), caustic corrosion from the
water/steam side, hydrogen attack from the water/steam side, high-temperature corrosion
from the fireside, and dew point corrosion from the fireside [11–16]. These phenomena often
occur concurrently and can be intricately interconnected. For example, caustic corrosion
can set the stage for hydrogen attack. When substantial quantities of alkaline compounds
deposit on the inner surface of a tube, they initiate a reaction with the oxide layer, resulting
in the depletion of it. Consequently, the hydroxide ions continue to interact with the inner
material of the tube, leading to caustic corrosion. Simultaneously, atomic hydrogen is
generated. The atomic hydrogen diffuses into the tube wall, where it reacts with metal
carbide, forming methane. The accumulation of methane can result in the formation of
cracks in the tube wall, a phenomenon known as hydrogen attack [5]. However, if the oxide
layer remains intact and accumulates gradually over time, it can diminish heat exchange
between the water/steam and flue gas. This reduction in heat exchange fosters localized
overheating, which can significantly contribute to tube creep or fatigue [17,18].

Inspecting failed tubes typically demands complex chemical treatments and expensive
equipment, such as Scanning Electron Microscopes [12,19]. Furthermore, findings from
one part of the boiler may not be relevant to another due to variations in design and
operating conditions among different sections of the boiler. Even for the same boiler
component, conclusions may not apply consistently over time, given the dynamic nature
of the surrounding environment. For example, variations in fuel mixtures can introduce
fluctuations in the environment around the boiler, a common occurrence in waste-to-
energy (WtE) plants where the quality of municipal solid waste is uncontrollable [20,21].
Furthermore, some studies indicate that prior corrosion experiences can influence the
current rate of corrosion [22].

The ultimate objective of uncovering the root causes of failures is to leverage these
insights to inform future operations and proactively prevent similar incidents. Unfortu-
nately, conventional examination methods struggle to pinpoint the exact parameters and
their specific values that contributed to the failure. The conventional examination results
typically yield general recommendations on adjusting operating conditions, but these
fall short of offering precise guidance to operators. Regarding operational guidance, an
efficient approach to failure investigation should prioritize the connection between a failure
and precise operating parameters without delving extensively into the intricacies of the
failure mechanism, especially considering the intricate and variable nature of the aforemen-
tioned boiler failure mechanisms. Therefore, it is advisable to harness historical operational
monitoring data and apply suitable data science methodologies for failure analysis.

Only very few data science applications related to boilers in power plants have been
documented in the literature. For instance, one study demonstrated the high effectiveness
of a data-driven approach comprising Wavelet Packet Transform analysis and Deep Neural
Network in detecting boiler tube leakages [23]. Another developed two short-term fore-
casting models (Convolutional Neural Network (CNN) and Long Short-Term Memory
Network) for predicting three safety indicators of a supercharged boiler. Both models
yielded excellent results, but CNN was preferred due to its lower computational cost [24].
Additionally, an Extreme Gradient Boosting model, fine-tuned with a Particle Swarm Opti-
mization algorithm, accurately predicted the metal temperature time series, enabling the
early detection of metal temperature anomalies in a coal-fired boiler [25]. Furthermore, the
Extra-Tree classifier and Minimum Redundancy Maximum Relevance model were found to
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be highly effective in selecting the most relevant sensors for detecting faults in turbines and
boilers, respectively. The results indicated a substantial reduction in the number of sensors
needed for fault detection and a significant increase in detection accuracy [26]. Moreover,
three individual machine learning algorithms, Random Forest, Lasso, and Support Vector
Regression, along with the ensemble model based on them, were employed to forecast
boiler faults in a thermal power plant by predicting the key performance indicators of the
boiler. The findings indicated that the ensemble model outperformed all three individual
models, delivering a highly satisfactory outcome [27].

However, the literature presents two gaps. Firstly, there is a lack of data science
applications specifically focused on analyzing root causes of boiler failures. Secondly, all
the prior studies are based on supervised learning, which is not suitable for scenarios
where operational data lacks clear labels, a common occurrence in engineering settings,
including the case study addressed in this research. Motivated by these gaps, this study
introduces a novel and methodical framework that integrates engineering expertise with
data science methods to investigate the causes of boiler failures and improve future opera-
tional practices. Beginning with formulating the boiler failure investigation problem into
a data mining problem, the framework encompasses data preprocessing, model building
and selection, and result evaluation and analysis, culminating in the provision of precise
operational recommendations to prevent future boiler failures. The data science techniques
employed predominantly include Discrete Wavelet Transform (DWT), Principal Compo-
nent Analysis (PCA), K-means clustering, and Deep Embedded Clustering (DEC). This
framework is designed and leveraged to achieve the aforementioned objective, which is
pinpointing the exact operational parameters and their specific values that contributed to
boiler failures so that similar failures in the future can be proactively prevented by adjusting
process operations.

This paper is structured as follows. Following this introduction, the subsequent
section introduces the case study subject and the datasets used in this research. The case
study was conducted on a WtE facility situated in Umeå, Sweden. Its purpose was to
demonstrate the details of the framework and validate the framework’s applicability in a
real engineering context. The Section 3 that follows presents the framework, the chosen
data science techniques, and the rationale behind their adoption. The results derived from
the case study and the ensuing discussion are then presented in the subsequent section.
Finally, the Section 5 summarizes the key findings of this research.

2. Overview of Umeå Waste-to-Energy Plant and Data Origin

The subject of the case study is the WtE plant located in Umeå, Sweden, operated
by Umeå Energi. Umeå WtE plant is a 65 MW Combined Heat and Power (CHP) plant
fueled by approximately 50% municipal solid waste and 50% industrial waste. Boasting a
waste processing capacity of around 20 t/h, the plant operates roughly 8000 h per year and
undergoes an annual scheduled maintenance shutdown.

Illustrated in Figure 1 is the boiler-related layout of the Umeå WtE plant. Waste is
introduced through the hopper for incineration on the grate, and the resulting flue gas
traverses four flue gas passages until it reaches the flue gas treatment modules. The initial
three passages are vertically oriented, primarily relying on radiation for heat transfer, while
the fourth passage is horizontal and characterized by convective heat exchange. In the
initial three passages, numerous tubes containing water/steam are positioned along the
inner walls. These tubes serve dual purposes: functioning as evaporators within the boiler
system and acting as safeguards against overheating for the walls. In the fourth passage
lies the central segment of the boiler arrangement, consisting of one evaporator unit, three
superheater units, another evaporator unit, and three economizer units, arranged from
left to right. Within this segment, water/steam typically flows counter to the flue gas to
facilitate convective processes. Within the economizers, boiler feed water is raised to a
temperature below boiling point under certain water pressure. Concurrently, the flue gas
surrounding the economizers achieves the desired (lower) temperature for subsequent flue
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gas treatment. Following the economizers, the heated water ascends to the uppermost
steam drum situated atop the flue gas passages. Subsequently, the water in the steam
drum flows through the downcomers to reach the evaporators, where it undergoes a phase
transition into wet steam before ascending back to the steam drum. Within the steam
drum, a separator works to transform the wet steam into saturated steam. This saturated
steam is extracted from the upper section of the steam drum and subsequently undergoes
additional heating in the superheaters to attain the status of superheated steam. The
superheating process is crucial for optimizing turbine efficiency and ensuring its continued
optimal performance.

Figure 1. Boiler-related layout of Umeå WtE plant. P1, P2, P3, and P4 represent the first, second,
third, and fourth flue gas passages, respectively.

The entirety of the plant is monitored by numerous online sensors. With the assistance
of the engineers at the Umeå WtE plant, 66 of them (presented in Table S1 in Supplementary
Material) were identified to possess potential associations with boiler failure occurrences.
Consequently, there were 66 variables in the case study datasets. Throughout the case
study, a total of three boiler failures were examined, each corresponding to a specific repair
stoppage. The timeframes for these stoppages were derived from the log. Closely proximate
failures were analyzed collectively, resulting in the investigation of two datasets (as outlined
in Table 1). The time spans of the datasets were decided by setting the starting points
three to five months (depending on the availability of data) before the initial stoppage.
This approach ensured an adequate number of observations for evaluating distinctions
between normal and abnormal operational conditions (further elaborated on in Section 3.1).
The datasets were obtained at a 30 min resolution through averaging, despite the original
data being of a higher resolution. Averaging was employed for two main purposes: noise
reduction and, notably, mitigation of the time-lag impact caused by the movement of water,
steam, and flue gas.

Table 1. Summary information of datasets.

Dataset ID No. of Failures/Stoppages Data Resolution Dataset Size (Row × Column)

A 2 30 min 5808 × 66
B 1 30 min 7856 × 66
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3. Methodology

3.1. The Framework

The investigation into the causes of boiler failure in this study is primarily grounded
in the inference that there are certain abnormal conditions giving rise to the failure, and
these abnormal conditions persist until the operators detect the failures and halt the process
line. Hence, the primary phase of abnormal conditions ceases around the time of the
commencement of stoppage/repair. Preceding the occurrence of abnormal conditions there
exists a period characterized by normal operational conditions. Through a comparison of
variable values under normal and abnormal conditions, we can identify which variables
deviate from the expected behavior and consequently lead to failure.

However, identifying the normal and abnormal periods presents a two-fold challenge.
First, the monitored data lack labels, aside from the logging of boiler repair events. Second,
the criteria for classifying operational conditions as abnormal may differ from one tube to
another and across various time periods, owing to variations in the functions of different
tubes and the potential degradation of their properties over time. Thus, to the authors’ best
knowledge, case-based unsupervised clustering stands as the sole fitting approach for iden-
tifying normal and abnormal periods in this study. The specific method of unsupervised
clustering applied in this study is K-means [28].

Figure 2 shows the flowchart of the failure analysis framework in this study. Following
the initial data cleansing process, the application of Discrete Wavelet Transform (DWT)
served to effectively eliminate any noise stemming from the sensors. Next, embedding
techniques were implemented to mitigate noise that may exist among different variables.
Importantly, the utilization of embedding also aids in averting the curse of dimensional-
ity [29], as it effectively reduces the dimensionality of the data. This study employed two
distinct embedding techniques. The first approach was Principal Component Analysis
(PCA), whereas the second approach was a Deep Neural Network (DNN) integrated within
the structure of Deep Embedded Clustering (DEC). Following the embedding process, the
transformed data were input into K-means, producing the final clustering results. PCA
+ K-means served as the baseline against which the performance of DEC was evaluated.
For PCA + K-means, the developments of PCA and K-means are loosely combined as the
information flow is unidirectional from PCA to K-means. Conversely, in DEC, the DNN
and K-means are seamlessly connected and trained simultaneously and iteratively. The
information flow in DEC is bidirectional: from DNN to K-means, further extending to
KL divergence, and reciprocally from KL divergence back to K-means and DNN. Having
obtained the initial clustering results that categorized all observations into three distinct
clusters, the subsequent task was to determine the identity of each cluster. Initially, the
repair cluster (period of stoppage) can be discerned by referencing the operational log, as
the log indicates when the boiler underwent repair and subsequently resumed operation.
Following this, the contiguous timeframe directly preceding the repair event can be recog-
nized as the cluster indicative of abnormal operating conditions. Finally, the continuous
timeframe preceding the cluster of abnormal conditions can be designated as the cluster of
normal operating conditions. Once the clusters were identified, an assessment and compar-
ison of the clustering outcomes between PCA + K-means and DEC were conducted from an
operational perspective. This evaluation aimed to determine the optimal clustering result.
Based on this optimal clustering result, histograms were constructed for each individual
variable. The purpose was to scrutinize potential disparity in distribution patterns between
clusters under normal and abnormal conditions. To quantify this distribution disparity,
the Normalized Peak Shift (NPS) metric was employed. It assesses the normalized shift
in peak values (the most frequent values) within two distinct distributions. Variables that
displayed a noticeable shift, characterized by NPS values surpassing the threshold of 30%,
were identified as contributors to failure occurrences. These identified variables require
vigilant monitoring to proactively prevent the recurrence of similar failures. Furthermore,
recommendations concerning their values during production were formulated based on
observations of their distributions under both normal and abnormal conditions.
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Figure 2. Flowchart of the boiler failure investigation framework. Empirical engineering knowledge
refers to the knowledge engineers have gained from their operating or maintenance experience, and
it is grounded in physical or chemical mechanisms in the engineering context.

In addition to the utilization of data science techniques, the experiential insights
contributed by WtE plant engineers held a substantial influence within the framework.
The term ‘empirical engineering knowledge’ within the framework pertains to the experi-
ential knowledge garnered by the engineers through their operational and maintenance
experiences. This encompasses their specialized engineering expertise in the realms of
chemistry and physics. This form of knowledge served as an important complement within
this framework, ensuring the data science methodologies were effectively employed to
align seamlessly with the study’s objectives. For example, as described in Section 2, the
engineers helped to narrow down relevant variables significantly. Moreover, empirical
engineering knowledge was sought when setting the noise threshold in the DWT process.
More importantly, it was employed to evaluate and compare different clustering results,
and, finally, to select the optimal one.

3.2. Discrete Wavelet Transform

Discrete Wavelet Transform (DWT) is a powerful tool for denoising signal data [30].
DWT-based denoising typically comprises three steps: Decomposition, Thresholding,
and Reconstruction.

Decomposition: Solve the DWT coefficients from the decomposition expansion of the
signal with noise. Given a signal s(t), decompose it using DWT to obtain the approxima-
tion coefficients cj0(k) and detail coefficients dj(k). The decomposition expansion can be
expressed as Equation (1):

s(t) = ∑
k

cj0(k)ϕj0,k(t) + ∑
k

∞
∑

j=j0
dj(k)ψj,k(t) (1)

Here, ψj,k(t) = 2
j
2 ψ
(
2jt− k

)
is the wavelet function, and ϕj0,k(t) = 2

j0
2 ϕ
(
2j0 t− k

)
is

the scaling function associated with the wavelet function. j is the level parameter, and k is
the translation parameter.

Thresholding: Keep the detail coefficients associated with the signal as they are, and
replace the ones related to noise with zeros. Given the detail coefficients dj(k), apply a

192



Processes 2024, 12, 1346

threshold T to it to suppress the noise. This study adopted the hard thresholding approach
that is presented in Equation (2):

∼
dj(k) =

{
dj(k) i f

∣∣dj(k)
∣∣ ≥ T

0 i f
∣∣dj(k)

∣∣ < T
(2)

Reconstruction: Reconstruct the signal with the modified coefficients. Equation (3)
demonstrates the reconstructed and denoised signal

∼
s (t) using the original approximation

coefficients cj0(k) and the modified detail coefficients
∼
dj(k):

∼
s (t) = ∑

k
cj0(k)ϕj0,k(t) + ∑

k

∞
∑

j=j0

∼
dj(k)ψj,k(t) (3)

For the DWT work in this study, we used the Python package PyWavelets (version:
1.1.1) [31]. Specifically, we use the wavedec application programming interface (API) for
multilevel decomposition with the arguments ‘db6’ for wavelet and 5 for level.

3.3. Principal Component Analysis

Principal Component Analysis (PCA) yields several principal components (PCs),
which are the result of mapping the raw data’s variation space to a new space of lower
dimensionality. All the PCs are linear combinations of the original variables, but the
PCs are orthogonal to each other. The number of PCs is determined by maximizing the
total variation explained by the PCs, while minimizing the noise remaining. Typically,
PCA is conducted by calculating the covariance matrix of the original data, which is
followed by eigenvalue decomposition of the covariance matrix. The eigenvectors from
the decomposition define the directions of the PCs. The eigenvectors are sorted according
to their corresponding eigenvalues, and larger eigenvalues represent greater capability
of explaining variation by the corresponding PCs [32]. For the PCA work in this study,
we used the API sklearn.decomposition.PCA in the Python package sickit-learn (version:
0.24.0) [33].

3.4. K-Means

The idea of K-means clustering is quite straightforward: all the observations in the
dataset are grouped into k clusters based on their distances to each other, minimizing the
distances among observations within each cluster, while maximizing the distances among
different clusters [28]. To be specific, the objective of K-means is to minimize E, as presented
in Equation (4):

E =
k
∑

i=1
∑

x∈Ci

‖ x− μi ‖2 (4)

Here, k is the set number of clusters, Ci is the ith cluster, and μi is the mean vector (cen-
troid) of Ci. Since the total variance is constant, minimizing E is equivalent to maximizing
the variance among different clusters.

However, minimizing E is an NP-hard problem. Thus, the following heuristic algo-
rithm is used:

(1) Randomly generate k initial centroids within the dataset.
(2) Generate new clusters by assigning every observation to its nearest centroid.
(3) Calculate the centroids of the new clusters.
(4) Repeat Steps 2 and 3 until convergence is reached.

For the K-means work (for both PCA + K-means and DEC) in this study, we used the
Python API sklearn.cluster.KMeans in the Python package sickit-learn (version: 0.24.0) [33]
with the parameters n_clusters = 3, tol = 0.001, and random_state = 5. The number of clusters
for K-means was set to 3, because for every case, there are three categories of operating
conditions for the boiler–normal conditions, abnormal conditions, and repair/stoppage.
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3.5. Deep Embedded Clustering

Deep Embedded Clustering (DEC) is a method that learns variable embedding and ob-
servation clustering simultaneously using deep neural networks (DNN) and K-means [34].
Instead of clustering the original data X into k clusters, DEC first maps X nonlinearly onto a
new space Z with much lower dimensionality. The mapping is conducted through a DNN
with the parameters θ. Subsequently, DEC learns the centroids set {μi ∈ Z} k

i=1 and the
parameter θ simultaneously. DEC consists of two stages:

(1) Using a stacked autoencoder (SAE) to initialize the parameters θ.
(2) Iterating the process of generating an auxiliary target distribution and minimizing the

Kullback–Leibler (KL) divergence between the soft assignment qij and the auxiliary
target distribution pij. By doing this, the parameters θ are optimized.

SAE is applied because much research has demonstrated its capability of consistently
yielding good representations (results of mapping) for real-world datasets [35–37]. As
shown by Figure S1 in Supplementary Material, SAE consists of an encoder and a decoder,
and their structures are symmetric with respect to one another. The low-dimension layer
in the middle is the embedded space. The activation function applied for the SAE (except
for the embedded layer and the reconstruction layer) in this study is ReLU [38]. The
training is performed by minimizing the least-square loss between the input layer and
the reconstruction layer. Once initialization is carried out, the encoder part is selected to
concatenate with K-means in Stage (2) for further training.

In Stage (2), the loss function KL divergence is expressed in Equation (5):

KL(P ‖ Q) = ∑
i

∑
j

pijlog
pij

qij
(5)

The term qij mentioned above is defined in Equation (6):

qij =

(
1+

‖zi−μj‖2

α

)− α+1
2

∑j′

(
1+

‖zi−μj′ ‖
2

α

)− α+1
2

(6)

Here, zi ∈ Z corresponds to xi ∈ X, and α are the degrees of freedom of the Student’s
t distribution. qij indicates the probability of assigning sample i to cluster j.

The term pij mentioned above is defined in Equation (7):

pij =

q2
ij
f j

∑j′
q2
ij′
f j′

(7)

Here, f j = ∑i qij are soft cluster frequencies.
The DEC work in this study was carried out based on the Keras script written by

Xifeng Guo [39]. The original script was designed to perform image clustering, but we
customized it to fit this study.

3.6. Key Hyperparameters of Models

Since the primary focus of this study is the optimization of the WtE process, the
description and discussion of the data science methodology are presented concisely. There-
fore, only the core hyperparameters of the models are discussed in this paper, while any
API arguments not explicitly mentioned are retained at their default settings. We adopted
the Grad Student Descent approach [40] for tuning all the model hyperparameters. In
our analyses, two key hyperparameters took center stage: the number of PCs (npc) for
PCA + K-means, and the number of neurons in the embedded layer (nn_el) for DEC. They
both dictate the dimensionality of the embedded spaces. To facilitate optimization, we
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defined an identical range, specifically {2, 3, 4, 5, 6, 7, 8}, for both of these hyperparameters’
tuning. In cases where the optimal outcome for either approach emerged at 2 or 8, an
exploration of 1 or 9 would be initiated to assess the potential for yielding a new optimal
result. This iterative process would continue until the superior outcome was no longer
derived from the boundary values of the specified range. For DEC, additional significant
hyperparameters included the number of hidden layers within the encoder (nhl) and the
number of neurons within these layers (nn_hl). Given the datasets’ moderate scales, the
optimization range for nhl was designated as {1, 2, 3}, with 2 consistently identified as the
optimal selection across all datasets. To enhance tuning efficiency, we maintained unifor-
mity in nn_hl across all hidden layers for a specific dataset. Nevertheless, the optimization
ranges and optimal values for nn_hl differed among datasets.

3.7. Normalized Peak Shift

Normalized Peak Shift (NPS) was introduced as the metric to evaluate the state
difference of each variable between normal conditions and abnormal conditions. It is based
on the notion that the most frequently observed value (peak value of a distribution) under
certain conditions can effectively encapsulate the variable’s state under those conditions.
Thus, by estimating the peak values’ shift between two distributions, the state change of
the variable of interest can be quantified. To enhance the clarity and utility of this metric,
the range of variable values under normal conditions (excluding extreme values) is utilized
to normalize the shift, resulting in NPS values presented as percentages. NPS can be
calculated by Equation (8):

NPS = | f (xn)−h(xa) |
max

1≤i<j≤k
|xni−xnj| (8)

Here, f (xn) is the Probability Mass Function (PMF) of the variable values under
normal conditions (xn), while h(xa) is the PMF of the variable values under abnormal
conditions (xa). k is the number of observations under normal conditions after excluding
the observations with extreme variable values.

4. Results and Discussion

4.1. Results for Dataset A

There are two boiler failures in Dataset A. Within the DEC approach, we defined the
optimization range for nn_hl as {70, 80, 90, 100}, determining that 80 emerged as the optimal
value. By employing this optimal nn_hl, we obtained the DEC’s optimal clustering outcome
when nn_el was set to 2. Within the PCA+K-means approach, we observed that none of
the values within the set {1, 2, 3, 4, 5, 6, 7, 8} proved to be an effective npc value that was
capable of delineating a distinct separation between the normal conditions cluster and the
abnormal conditions cluster. Accordingly, as summarized in Table 2, the optimal clustering
result for Dataset A was achieved using DEC with nhl, nn_hl, and nn_el set to 2, 80, and 2,
respectively. The optimal clustering result is shown in Figure 3. The complete compilation
of results obtained from both DEC and PCA + K-means under various hyperparameter
settings can be accessed in Section S3 in the Supplementary Material.

Applying the method expounded in Section 3.1, the three clusters in Figure 3 can be
readily identified. Cluster 2 is the repair periods/stoppages caused by the failures since it
matches the timelines of repair according to the log information. Consequently, Cluster
1 can be identified as the abnormal conditions directly contributing to the failures, while
Cluster 0 is the normal conditions. Based on this clustering result, the NPS values of each
variable were calculated. The histograms of the variables displaying substantial disparities
between normal and abnormal conditions (NPS > 30%) are demonstrated in Figure 4.

As illustrated in Figure 4, 17 variables exhibit NPS values surpassing 30%. Notably,
T-FaG2 demonstrates the highest value at 94.0%, while T-BSH1r records the lowest at 33.8%.
The substantial number of involved variables coupled with elevated average NPS values
underscores an extensive and noteworthy shift in the state between these two operational
conditions. It is noteworthy that the variables T-FaG1 and T-FaG2 correspond to the
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two temperature sensors in closest proximity to the incineration area, thus their values are
expected to be significantly higher compared to others. However, as depicted in Figure 4, a
substantial portion of T-FaG2 values is remarkably low (nearing 0) under both normal and
abnormal conditions, in contrast to the regular patterns observed in other variables’ values.
This observation leads to the inference that the T-FaG2 sensor experienced prolonged
malfunction while the data were recorded. Consequently, despite having the highest NPS
value among all variables, T-FaG2 is excluded from further consideration and analysis.

Figure 3. Optimal clustering result of Dataset A. Cluster 2 represents repair periods/stoppages,
Cluster 1 abnormal conditions, and Cluster 0 normal conditions.

Among the variables displayed in Figure 4, all except T-BEM3rl pertain to flue gas
temperatures within the superheater area (red modules in Figure 1). This collective obser-
vation implies a significant overheating issue across the entirety of the superheater area,
which emerges as the most likely culprit behind the failures encountered in Dataset A.
The top three variables ranked by their NPS values are T-BSH3rm, T-BSH2l, and T-BSH3r,
exhibiting NPS values of 57.2%, 56.7%, and 53.4%, respectively. This signifies that the tem-
peratures of flue gas at “Superheater 3 roof middle”, “Superheater 2 left”, and “Superheater
3 right” deviated considerably from the normal operational temperatures. Therefore, these
variables stand out as the primary contributors to the failures observed in Dataset A. Given
the adjacency of all three superheaters, the temperatures within the superheater area are
naturally linked and interdependent. Thus, prioritizing the management of the top three
influential variables has the potential to effectively address the overarching overheating
concern throughout the entire superheater area. According to Figure 4, the peak operational
values of T-BSH3rm, T-BSH2l, and T-BSH3r during normal conditions were recorded as
527 ◦C, 432 ◦C, and 482 ◦C, respectively. Under abnormal conditions, these values esca-
lated to 594 ◦C, 471 ◦C, and 537 ◦C, correspondingly. To ensure future production safety, it
is advisable to maintain the operational levels of T-BSH3rm, T-BSH2l, and T-BSH3r around
527 ◦C, 432 ◦C, and 482 ◦C respectively. Additionally, it is crucial to prevent these values
from reaching or exceeding 594 ◦C, 471 ◦C, and 537 ◦C for prolonged durations. Please
refer to Section 4.3 for the discussion on the results and underlying mechanisms.
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Figure 4. Histograms of Dataset A variables with significant shifts between normal and abnormal
conditions. The histograms are independent of each other. For each of them, the x-axis indicates the
variable value, the y-axis indicates the count/frequency of values, and the title includes the variable’s
name, unit, and NPS value.

4.2. Results for Dataset B

There is one boiler failure in Dataset B. Within the DEC approach, we defined the
optimization range for nn_hl as {80, 100, 128, 156}, determining that 128 emerged as the
optimal value. By employing this optimal nn_hl, we obtained the DEC’s optimal clustering
outcome when nn_el was set to 8. Within the PCA+K-means approach, we observed
that none of the values within the set {2, 3, 4, 5, 6, 7, 8, 9} proved to be an effective npc
value that was capable of delineating a distinct separation between the normal conditions

197



Processes 2024, 12, 1346

cluster and the abnormal conditions cluster. Accordingly, as summarized in Table 2, the
optimal clustering result for Dataset A was achieved using DEC with nhl, nn_hl, and nn_el
set to 2, 128, and 8, respectively. The optimal clustering result is shown in Figure 5. The
complete compilation of results obtained from both DEC and PCA + K-means under various
hyperparameter settings can be accessed in Section S4 in the Supplementary Material.

Figure 5. Optimal clustering result of Dataset B. Cluster 2 represents repair periods/stoppages,
Cluster 1 abnormal conditions, and Cluster 0 normal conditions. The extremely brief appearance of
Cluster 2 at the beginning reflects a transient fault in the monitoring system.

Table 2. Optimal hyperparameter values for the DEC models on Datasets A and B.

Dataset ID nhl nn_hl nn_el

A 2 80 2
B 2 128 8

Applying the method expounded in Section 3.1, three distinct clusters can be dis-
cerned. Cluster 2 signifies stoppages, Cluster 1 denotes abnormal conditions, and Cluster
0 corresponds to normal conditions. Nevertheless, a brief segment of Cluster 2 is evident
within the initial phase of Cluster 0. Engineers at Dåva 1 believed that this occurrence
is likely unrelated to the boiler failure, suggesting it may reflect a transient glitch within
the monitoring system. Based on this clustering result, the NPS values of each variable
were calculated. The histograms of the variables displaying substantial disparities between
normal and abnormal conditions (NPS > 30%) are demonstrated in Figure 6.

As illustrated in Figure 6, 10 variables exhibit NPS values surpassing 30%. Notably, T-
BSH1l demonstrates the highest value at 89.5%, while T-BEM2rl records the lowest at 32.5%.
It is worth noticing that T-FaG2 holds the second-highest NPS value (74.0%) among all
the variables. However, the histogram pattern of T-FaG2 closely resembles its counterpart
in Dataset A. Consequently, based on the analysis of Dataset A, T-FaG2 is disregarded for
subsequent consideration and analysis, despite its elevated NPS value.
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Figure 6. Histograms of Dataset B variables with significant shifts between normal and abnormal
conditions. The histograms are independent of each other. For each of them, the x-axis indicates the
variable value, the y-axis indicates the count/frequency of values, and the title includes the variable’s
name, unit, and NPS value.

In contrast to Dataset A, the variables in Figure 6 comprise a more balanced combina-
tion of temperatures from both economizers (green modules in Figure 1) and superheaters.
Among them, T-BbEM1, T-BEM2rr, and T-BEM2rl are temperatures within the economizer
sector, while the remaining variables pertain to temperatures in the superheater sector. In
addition, this implies that the temperature of the evaporator situated between the first
superheater and the third economizer likely underwent a comparable shift pattern, despite
the absence of a designated sensor for the evaporator. The presence of these variables
in Figure 6 suggests an overall overheating of the entire fourth flue gas pass during the
abnormal conditions. What resembles Dataset A is the consistent prominence of variables
associated with the superheaters. The top three variables for Dataset B ranked by their
NPS values are T-BSH1l, T-SbSH3, and T-BSH1r, recording NPS values of 89.5%, 71.7%,
and 70.5% respectively. They are the temperatures of flue gas at “Superheater 1 left”, steam
prior to “Superheater 3”, and flue gas at “Superheater 1 right”. Additionally, T-SaSH2
and T-BSH2r exhibit noteworthy NPS values of 50.4% and 48.7%, respectively, ranking as
the fourth and fifth most influential variables. Importantly, all five variables correspond
to either flue gas or steam temperatures within the superheater area, signifying an inten-
sified overheating specifically concentrated in the superheater region within the already
overheated fourth flue gas pass. Thus, these variables emerge as the primary causative
factors behind the failure observed in Dataset B. Given the linkage and interdependence
between the temperatures in the fourth flue gas pass, prioritizing the management of the
top three influential variables has the potential to effectively address the overheating con-
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cern throughout the entire fourth flue gas pass. According to Figure 6, the peak operational
values of T-BSH1l, T-SbSH3, and T-BSH1r during normal conditions were recorded as
356 ◦C, 313 ◦C, and 368 ◦C, respectively. Under abnormal conditions, these values esca-
lated to 412 ◦C, 340 ◦C, and 408 ◦C, correspondingly. It is worth noting that T-BSH1l and
T-BSH1r were also recognized as significant contributors to the failures in Dataset A (see
Figure 4), despite not being part of the top three ranked variables. In Dataset A, their
respective peak values during normal conditions were 338 ◦C and 343 ◦C, while during
abnormal conditions, these values increased to 355 ◦C and 359 ◦C. Consequently, to uphold
the highest safety standards, it is advisable to maintain the operational levels of T-BSH1l,
T-SbSH3, and T-BSH1r around 338 ◦C, 313 ◦C, and 343 ◦C, respectively. Additionally, it
is crucial to prevent these values from reaching or exceeding 355 ◦C, 340 ◦C, and 359 ◦C
for prolonged durations. Please refer to Section 4.3 for the discussion on the results and
underlying mechanisms.

4.3. Discussion on the Results and Underlying Mechanisms

Four types of operational variables—temperature, pressure, chemical concentration,
and fluid flow rate—were investigated in this study. Among these, the results illustrated
that elevated temperatures, particularly those in close proximity to both inside and outside
of superheaters, emerge as the predominant cause for boiler failures. This observation
aligns with numerous prior investigations into boiler failure, which employed conventional
chemical and physical methodologies. Engineers and researchers widely acknowledge
that elevated temperatures can directly result in the rupture of boiler pipes or expedite the
occurrence of such ruptures.

For example, thermal fatigue is prevalent with boilers. Thermal fatigue arises when
metal components undergo substantial fluctuations in temperature, particularly during
repetitive cycles of heating and cooling. These fluctuations can lead to substantial variations
in thermal expansion among the structural elements. Depending on the magnitude of
the thermal shock experienced, failure may manifest within a few cycles. This process
induces multiaxial stresses on the affected surfaces, giving rise to microcracks along the
pipe’s surface. Once initiated, these cracks continue to propagate with each subsequent
cycle [41–43]. Hence, it is imperative to avert situations that introduce significant tempera-
ture fluctuations, such as frequent adjustments to burner settings, inconsistent fuel supply,
or excessive on/off cycles.

Overheating is another significant temperature-related cause of boiler failures, which
encompasses both short-term and long-term overheating. The short-term overheating
problem occurs when pipes experience elevated temperatures and insufficient cooling,
often causing the pipe temperature to exceed the eutectoid transformation temperature
of the pipe materials. Moreover, the rise in material temperature can induce a significant
escalation of stress within the pipe, potentially surpassing the pipe’s yield point. The
short-term overheating problem can be triggered by factors like water/steam deprivation,
flow stagnation due to blockages, uneven flame temperature, etc. [44–46].

Conversely, long-term overheating transpires over an extended duration, as the term
implies. Long-term overheating problems have been reported as the most common cause
of boiler failures [47–49]. The continuous exposure to elevated temperatures, often sur-
passing intended or recommended operational thresholds, can result in the deterioration
of the pipes’ microstructure, characterized by phenomena such as graphitization and
spheroidization. Along with the constant stress on the pipes, this gradually leads to a
slow, time-dependent deformation (creep) and eventually the rupture of the pipes [50–52].
Long-term overheating may manifest as a result of various underlying factors, including
inadequate circulation, scaling, and flame impingement [53,54]. For instance, the presence
of scales on the interior surface of pipes can contribute to the occurrence or exacerbation
of long-term overheating issues. The low thermal conductivity of scales results in the
potential evaporation of water beneath them when exposed to excessive heat. This process
of evaporation can progressively elevate the pH of the water to a critical point, thereby
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fostering conditions conducive to localized caustic corrosion or embrittlement. Ultimately,
this sequence of events culminates in the eventual failure of the boiler [55–57].

4.4. Factors Contributing to DEC’s Superior Performance over PCA + K-Means

As can be seen in Sections S3 and S4 of the Supplementary Material, the clustering out-
comes achieved by DEC consistently surpass those of PCA + K-means across nearly every
dimension. This discrepancy in performance can be attributed to the mechanisms inherent
in these two methods. PCA + K-means comprises transforming the original variable space
through linear PCA embedding, followed by K-means clustering in the transformed space.
Conversely, DEC utilizes an encoder module (DNN) extracted from a pre-trained SAE for
embedding, enabling simultaneous, iterative training of DNN and K-means bidirectionally.
The DNN forwards the embedded information to K-means clustering, further extending
to KL divergence. Reciprocally, DNN and K-means receive feedback from KL divergence
for optimization, creating a seamless and iterative process. To be more specific, the DEC
system involves iterative refinement of the non-linearly embedded space and cluster cen-
troids based on KL divergence feedback. In contrast, the PCA + K-means approach utilizes
linear embedding and lacks iterative feedback optimization. Furthermore, DEC benefits
from a wider array of tunable core hyperparameters (such as nhl and nn_hl), whereas
PCA + K-means is limited to npc alone.

4.5. Significance of Study and Limitations

As mentioned in the Section 1, this study focuses on an operational-parameter-oriented
investigation of failure causes, rather than an exhaustive examination of intricate physical
or chemical mechanisms. The objective is not to pinpoint precise physical or chemical
reactions leading to failures, but rather to optimize future operational conditions for the
purpose of prolonging the boiler’s overall service life. Through this approach, operators can
address faulty tubes during scheduled annual maintenance without encountering failures
and disrupting production. The notable benefit of this study is its accessibility to operators,
as the outcomes are straightforward, encompassing solely operational parameters and
their recommended values. Informed by the findings, operators can adjust the production
process as needed to ensure that the operating parameters remain within a secure range.
This failure investigation framework is applicable not only to WtE plants but also potentially
to any production line characterized by numerous operating parameters, even when lacking
operating-condition labels in the data.

As aforementioned in Section 4.3, elevated temperature-induced mechanisms are the
primary causes of failures studied in this case study. However, precisely identifying the
specific mechanisms responsible for the failures is beyond the scope of this research, as out-
lined in the Section 1. Various mechanisms can intertwine and interact, contributing to the
occurrence of failures. Given this complexity, extensive additional research and traditional
examination approaches are necessary, rather than relying solely on data-driven methods.

The variables identified as culprits in the investigation of failures—specifically, ele-
vated flue gas and steam temperatures—directly triggered cracking, bulging, or bursting.
However, various other factors might also have played a role in the eventual failures,
including long-term corrosion, physical stress or impact, and oxidation, which are beyond
the scope of this study’s findings. Monitoring some of these parameters might not be
feasible, resulting in unavailable data. Alternatively, for other parameters, relevant factors
were monitored, such as the concentration of acidic compounds (SO2, HCl, etc.) known to
contribute to corrosion. The impact of these acidic compounds is usually not immediately
significant but rather accumulates gradually over time, implying that data collected within
a specific period may not accurately capture their true influence. This deduction has been
substantiated by the fact that none of the variables relating to acidic compounds was
identified as influential for the failures.
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5. Conclusions

A novel and methodical data mining framework was introduced for conducting
operational-level (focused on operating parameters) investigations into the attribution of
boiler failures. The framework centered on two data mining approaches, PCA + K-means
and DEC, with PCA + K-means serving as the baseline against which the performance of
DEC was evaluated. To demonstrate the framework’s specifics, a case study was performed
using datasets obtained from a WtE plant in Sweden. Within the case study, different
operational conditions were clustered and identified, followed by the quantification of shifts
in variable states between normal and abnormal conditions. Based on this quantification, we
pinpointed the variables that played a substantial role in causing failures and recommended
their safe operational values to forestall similar incidents in the future. The major findings
of the case study are as follows:

(1) The clustering outcomes of DEC consistently surpass those of PCA + K-means across
nearly every dimension. This is attributed to DEC’s iterative refinement of the non-
linearly embedded space and cluster centroids based on KL divergence feedback.

(2) T-BSH3rm, T-BSH2l, T-BSH3r, T-BSH1l, T-SbSH3, and T-BSH1r emerged as the most
significant contributors to the three failures recorded in the two datasets. This under-
scores the critical importance of vigilant monitoring and precise temperature control
of the superheaters to ensure safe production.

(3) It is advisable to maintain the operational levels of T-BSH3rm, T-BSH2l, T-BSH3r,
T-BSH1l, T-SbSH3, and T-BSH1r around 527 ◦C, 432 ◦C, 482 ◦C, 338 ◦C, 313 ◦C, and
343◦C, respectively. Additionally, it is crucial to prevent these values from reaching or
exceeding 594 ◦C, 471 ◦C, 537 ◦C, 355 ◦C, 340 ◦C, and 359 ◦C for prolonged durations.

The findings offer the opportunity to improve future operational conditions, thereby
extending the overall service life of the boiler. Consequently, operators can address faulty
tubes during scheduled annual maintenance without encountering failures and disrupting
production. In future research, by examining a broader range of failures, we can develop
a repository of diverse influential variables and their recommended operational values.
This resource can facilitate more comprehensive, precise, and reliable production operation
and management.
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results for PCA+K-means for dataset A; Figure S3: Complete clustering results for DEC for dataset
A; Figure S4: Complete clustering results for PCA+K-means for dataset B; Figure S5: Complete
clustering results for DEC for dataset B.
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Nomenclature

API Application Programming Interface
DEC Deep Embedded Clustering
DM Data Mining
DNN Deep Neural Network
DWT Discrete Wavelet Transform
HF High-pass Filter
ID Induced Draft
KL Kullback–Leibler
LF Low-pass Filter
nhl number of hidden layers of the encoder
nn_el number of neurons in the embedded layer of DEC
nn_hl number of neurons in the hidden layer of DEC
npc number of PCs
PC Principal Component
PCA Principal Component Analysis
PMF Probability Mass Function
SAE Stacked Autoencoder
WtE Waste-to-Energy
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Abstract: This review article focuses on applying operation state detection and performance optimiza-
tion techniques in industrial electrical systems. A comprehensive literature review was conducted
using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) methodology
to ensure a rigorous and transparent selection of high-quality studies. The review examines in detail
how soft sensing technologies, such as state estimation and Kalman filtering, along with hybrid
intelligent modeling techniques, are being used to enhance efficiency and reliability in the electrical
industry. Specific case studies are analyzed in areas such as electrical network monitoring, fault
detection in high-voltage equipment, and energy consumption optimization in industrial plants. The
PRISMA methodology facilitated the identification and synthesis of the most relevant studies, provid-
ing a robust foundation for this review. Additionally, the article explores the challenges and research
opportunities in applying these techniques in specific industrial contexts, such as steel metallurgy
and chemical engineering. By incorporating findings from meticulously selected studies, this work
offers a detailed, engineering-oriented insight into how advanced technologies are transforming
industrial processes to achieve greater efficiency and operational safety.

Keywords: intelligent modeling; soft sensing; industrial electrical systems; state estimation; machine-learning

1. Introduction

The electrical industry is continuously evolving, driven by technological advance-
ments to enhance the efficiency and reliability of industrial electrical systems. In this
context, soft sensing and intelligent modeling have emerged as promising research areas.
Soft sensing involves using virtual sensors and advanced algorithms to estimate electrical
systems’ state and operating conditions [1–3]. Meanwhile, intelligent modeling entails
the development of mathematical models and optimization techniques to improve the
performance of these systems [2]. The motivation behind this work stems from the growing
demand for more efficient and reliable electrical systems in the industry. Soft sensing
and intelligent modeling offer an innovative approach to addressing these challenges by
enabling better equipment condition monitoring, early fault detection, and operational
performance optimization.

Moreover, with the rise of industry 4.0 and the digitization of industrial processes,
there is an urgent need to adopt advanced technologies that enhance the efficiency and
competitiveness of companies. By understanding the context and importance of soft sensing
and intelligent modeling in the electrical industry, this study aims to analyze how these
technologies can improve industrial electrical systems’ efficiency and reliability. Through a
comprehensive analysis of case studies and current trends, we seek to provide a detailed,
engineering-oriented perspective on how these innovations transform industrial processes
and pave the way for greater operational efficiency and safety.

The electrical industry is undergoing a revolution driven by soft sensing, incorporating
virtual sensors and advanced algorithms. For instance, in the biomedical field, algorithms

Processes 2024, 12, 1365. https://doi.org/10.3390/pr12071365 https://www.mdpi.com/journal/processes206



Processes 2024, 12, 1365

such as nonlinear weighted total variation image reconstruction enhance the accuracy
of electrical capacitance tomography [1,2]. Additionally, dynamic latent structures with
time-varying parameters are being used to predict hard-to-measure variables in virtual
sensing applications [3]. Soft tissue-based sensors are also being effectively employed in
practical applications, such as assisted gloves [3]. In state estimation, various approaches
are being applied to improve the efficiency and reliability of electrical systems. For example,
the combination of electromagnetic flow tomography and electrical tomography through
Bayesian estimation enables precise image reconstruction [4–6].

Furthermore, advanced models are being developed to estimate the state of charge of
energy storage systems like supercapacitors [7] and the state of health (SOH) of lithium-
ion batteries [8]. Operational state detection is crucial for the efficiency and safety of
electrical systems. Methods such as the real-time monitoring of current consumption in
industrial electrical equipment allow for proactive machine management and an early
detection of deviations and faults [9–11]. Other innovative approaches include impedance
measurement in superconducting circuits during the operation and remote detection of
defects in insulating materials using optical thermography [12–14].

In the realm of industrial electrical system efficiency, performance optimization tech-
niques play a crucial role. For example, electrical impedance tomography is used in medical
and industrial applications to estimate the internal electrical properties of biological tis-
sues through voltage and current measurements on their surface [15]. In the field of solar
energy, artificial neural networks (ANN) are applied for maximum power point tracking
and fault detection in partially shaded photovoltaic systems [16]. Electrical capacitance
tomography visualizes multiphase systems in industrial applications [17]. For the control
of brushless direct current motors, a system based on an adaptive neuro-fuzzy inference
system (ANFIS) optimized by the bacterial foraging optimization algorithm has been devel-
oped [18]. In rotary ultrasonic machining, a dual compensation approach for frequency and
impedance using a multi-objective genetic algorithm has significantly improved transmis-
sion efficiency and ultrasonic vibration stability [19]. In thermoelectric generation systems
with non-uniform temperature distribution, an optimal control technique based on an
equilibrium optimization algorithm has been proposed [20]. For frequency and voltage
stabilization in hybrid energy systems, a second-order active disturbance rejection control
strategy optimized with ANN has been developed [21]. In cogeneration plants integrated
with photovoltaic energy, a modified firefly algorithm combined with machine learning
techniques has been used to predict plant efficiency and optimize its operation [22].

In the field of industrial electrical systems, efficiency and reliability are critical for
optimizing performance and reducing operational costs. Intelligent techniques like state
estimation and Kalman filtering are pivotal in fault detection and condition monitoring [23].
Condition monitoring and fault detection and diagnosis are essential for preventing severe
damage to rotating machinery, such as induction motors [24]. Electrical machines, which
are widely used in industry, also require advanced techniques for condition monitoring and
predictive fault diagnosis [25]. In the context of industry 4.0, disruptive technologies like
the internet of things (IoT) and artificial intelligence (AI) are revolutionizing communication
and control in smart industries [26]. Battery management in energy storage and electric
propulsion applications is another area where efficiency and safety are paramount [27].
Battery management systems incorporate functional safety techniques to ensure battery
cells’ safe and efficient operation [28]. Estimating batteries’ SOH is crucial for ensuring
their safe operation and optimizing their lifecycle [29]. Despite significant advances in soft
sensing and intelligent modeling in industrial electrical systems, several research gaps still
need detailed attention. For instance, while condition monitoring and fault diagnosis have
been active areas of interest, there remains a need for more robust and accurate techniques
for early anomaly detection and real-time fault prediction.

Furthermore, although the application of disruptive technologies like IoT and AI has
shown promise, further research is necessary to fully understand their effective integration
into industrial environments and their impact on the efficiency and reliability of electrical
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systems. Another area requiring greater attention is battery management in energy storage
applications, where optimizing the SOH of batteries continues to be a significant challenge.
In summary, while considerable progress has been made, important research gaps must be
addressed to advance efficiency and operational safety in the electrical industry.

This paper proposes a comprehensive literature review on using soft sensing and
intelligent modeling in industrial electrical systems. The aim is to synthesize the latest
advancements in this field, critically analyze the selected studies, identify emerging trends,
and explore practical applications. The PRISMA method will be employed to ensure the
rigor and transparency of the review, facilitating the effective identification of relevant
studies and a coherent synthesis of their findings. This systematic and transparent approach
will allow us to evaluate the quality of the research, identify potential knowledge gaps,
and highlight areas needing further investigation. Consequently, this review will provide a
detailed, engineering-oriented perspective on how these technologies transform industrial
processes, leading to greater efficiency and operational safety.

The remainder of this paper is organized as follows: Section 2 presents a literature
review and methodology, outlining the theoretical framework and research methods used.
Section 3 provides a descriptive analysis of the literature, summarizing key findings from
the reviewed studies. Section 4 details the results of our analysis. Section 5 discusses the
implications of these findings, and finally, Section 6 concludes the paper, highlighting the
main contributions and suggesting avenues for future research.

2. Literature Review Methodology

2.1. Study Selection Criteria

The bibliographic resources for this literature review were sourced from three pres-
tigious databases relevant to the research area. Scopus, IEEE Xplore, and MDPI. These
databases were chosen due to their extensive coverage of high-quality research articles
in electrical and industrial systems, mainly focusing on innovative technologies such as
soft sensing and intelligent modeling. The search terms were carefully selected to capture
the most relevant literature. These terms include “soft sensing”, “intelligent modeling”,
“industrial”, and “electrical”, among others. Combining these terms ensures that the search
encompasses a broad yet targeted spectrum of research articles that align with the objectives
of this review.

The years 2019–2024 were selected as the most appropriate period for mapping knowl-
edge in this study’s thematic area. This period marks a significant phase of technological
advancements and increased research activity in soft sensing and intelligent modeling. This
timeframe captures the latest developments and emerging trends, providing a comprehen-
sive overview of the current state of research and its practical applications in industrial
electrical systems. Table 1 summarizes the search terms and queries defined for the litera-
ture review.

Table 1. Search terms and queries utilized for the literature review.

Database Search Terms Query String

Scopus

Journal articles published between 2019 and 2024, written in
English, that include either “Industrial” or “Electrical” along

with either “Soft Sensing” or “Intelligent Modeling” in the title,
abstract, or keywords.

TITLE-ABS-KEY ((“Industrial” OR “Electrical”) AND
(“Soft Sensing” OR “Intelligent Modeling”)) AND

PUBYEAR > 2018 AND PUBYEAR < 2025 AND (LIMIT-TO
(DOCTYPE, “ar”)) AND (LIMIT-TO (LANGUAGE,

“English”))

IEEE Xplore

Journal articles published between 2019 and 2024, written in
English, that include either “Industrial” or “Electrical” along

with both “Soft Sensing” and “Intelligent Modeling” in all
metadata.

((“All Metadata”:Industrial) OR (“All
Metadata”:Electrical)) AND ((“All Metadata”:Soft Sensing)

AND (“All Metadata”:Intelligent Modeling))

MDPI
Journal articles published between 2019 and 2024, written in
English, that include either “Industrial” or “Electrical” along

with both “Soft Sensing” and “Intelligent Modeling”.

Industrial OR Electrical AND Soft Sensing AND Intelligent
Modeling
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The search terms were derived from this study’s preliminary background and intro-
duction, highlighting the electrical industry’s continuous evolution and the emergence of
promising research areas such as soft sensing and intelligent modeling. These technologies
leverage virtual sensors and advanced algorithms to estimate electrical systems’ state
and operational conditions, thus enhancing monitoring, fault detection, and performance
optimization. The growing demand for more efficient and reliable electrical systems in the
industry, coupled with the advancement of industry 4.0 and digitalization, underscores the
necessity of adopting these advanced technologies.

2.2. Search Process and Selection of Studies

The PRISMA approach ensures a rigorous and transparent review process, enabling
the identification and synthesis of relevant studies while minimizing bias [30]. This method-
ology is well-suited for our research as it provides a structured framework for selecting
high-quality studies, which is critical for understanding the advancements in soft sens-
ing and intelligent modeling within industrial electrical systems. Figure 1 illustrates the
flowchart of the literature review process. As depicted in the figure, the review begins
by applying the search terms and queries in Table 1. This initial search yielded 279 items:
207 from Scopus, 62 from IEEE Xplore, and 10 from MDPI. With these raw results, the
authors have assigned a coding system to the items to facilitate subsequent bibliometric
processing. Articles from Scopus are coded as S-XX, those from IEEE Xplore as IEEE-XX,
and those from MDPI as MDPI-XX.

Figure 1. Flowchart of the literature review process.
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The first review stage (R1) involves the removal of duplicate items. During this stage,
20 duplicate documents were identified and withdrawn. Next, the second review stage (R2)
excludes items that are not journal articles, such as review papers, conference papers, book
chapters, and books. While these documents are undoubtedly valuable and contribute
significantly to the field, primary research articles published in peer-reviewed journals
provide more direct and less biased information, essential for constructing a robust and
unbiased literature review. This stage revealed that four items had bypassed the initial
database filters and were subsequently rejected. The critical mass comprises 255 articles,
which will undergo a preliminary bibliometric analysis.

Figure 2 illustrates the distribution of the preselected works across the different digital
databases, revealing a predominance in Scopus, which accounts for 80.39% of the total. IEEE
Xplore follows this with 15.69%, and MDPI with 3.92%. This distribution was expected, as
Scopus encompasses a broader range of scientific publishers and journals than the other
two databases under consideration. Scopus is known for its extensive indexing of diverse
and high-impact journals, naturally resulting in more relevant articles being retrieved from
this database.

Figure 2. Distribution of articles by digital database and year of publication.

The smaller proportion of MDPI’s works highlights the need to generate more scientific
material related to the topic within this publishing house. This represents a niche the present
work aims to address, contributing to expanding research in soft sensing and intelligent
modeling within the MDPI database. Figure 2 also depicts the publication trend over
the past five years, showing a clear and sustained increase in publications. The statistics
indicate a notably high number of publications in 2024 despite the year not being halfway
through. This trend suggests a continuous and growing scientific interest in the topic
addressed by this research. The upward trajectory in publication numbers over the past
five years indicates the increasing relevance and importance of research in soft sensing
and intelligent modeling in industrial electrical systems. This sustained growth trend
underscores the ongoing advancements and the expanding body of knowledge in this field,
reflecting a robust and dynamic area of scientific inquiry that this literature review aims to
cover comprehensively.

Moreover, Figure 3 shows the distribution of articles according to the journals hosted
in the consulted databases. This distribution provides insights into which journals are most
actively publishing research on soft sensing and intelligent modeling, helping to identify
key publications and potential outlets for future research in this area.
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Figure 3. Distribution of articles by journal.

Now, with the metadata of these 255 articles, the keywords from each article are
extracted to cluster them and generate a word cloud map. This action helps to identify the
frequency of terms used. Based on the most prevalent keywords in Figure 4, the following
combinations of terms can be defined: soft sensing, state estimation, Kalman filtering,
intelligent modeling, industrial electrical systems, fault detection, energy optimization,
condition monitoring, predictive maintenance, machine learning in electrical systems,
IoT in industry, electrical network monitoring, high-voltage equipment, battery health
estimation, and energy consumption optimization.

Figure 4. Word cloud map of the keywords in the preselected articles.

In the following review step (R3), each item’s abstract was thoroughly reviewed for its
relevance to the terms identified in the word cloud map. This exhaustive process resulted
in the withdrawal of 186 articles, leaving only 69 whose abstracts are closely aligned with
the identified terms to proceed to the next stage. Then, in the review step (R4), a full-text
review of each work was conducted to determine the relevance of the topics concerning the
identified terms and the main focus of this research. For this purpose, the research team
defined a series of criteria to evaluate each of the 69 items using a five-level Likert scale
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for the evaluation metrics. The evaluation criteria and metrics devised for the conducted
literature review are provided in Table 2.

Table 2. Evaluation criteria and metrics for full-text review.

Criterion Description Evaluation Metrics

Relevance to Research
How closely does the paper align with the
review’s focus on soft sensing, intelligent
modeling, etc.

1 = Not relevant, 2 = Slightly relevant, 3 =
Moderately relevant, 4 = Highly relevant, 5 =
Essential

Quality of Research The rigor and reliability of the research
methodology used.

1 = Poor, 2 = Fair, 3 = Good, 4 = Very Good, 5 =
Excellent

Innovation and Originality The originality and contribution of the paper to
the field.

1 = Not original, 2 = Slightly original, 3 =
Moderately original, 4 = Very original, 5 =
Groundbreaking

Clarity and Presentation The clarity of writing, structure, and
presentation of the paper.

1 = Poor, 2 = Fair, 3 = Good, 4 = Very Good, 5 =
Excellent

Depth of Analysis The depth and thoroughness of the analysis
provided in the paper.

1 = Superficial, 2 = Basic, 3 = Adequate, 4 =
In-depth, 5 = Comprehensive

Applicability The practical applicability of the research
findings to industrial electrical systems.

1 = Not applicable, 2 = Slightly applicable, 3 =
Moderately applicable, 4 = Very applicable, 5 =
Highly applicable

References and Citations The number and quality of references and
citations used in the paper.

1 = Poor, 2 = Fair, 3 = Good, 4 = Very Good, 5 =
Excellent

Impact and Influence The impact and influence of the paper within
the research community.

1 = Low, 2 = Fair, 3 = Good, 4 = Very Good, 5 =
High

Scope and Coverage The scope of the paper and the extent to which
it covers relevant topics.

1 = Narrow, 2 = Limited, 3 = Adequate, 4 =
Broad, 5 = Comprehensive

Case Studies and Examples The paper provides the inclusion and quality
of case studies or practical examples.

1 = None, 2 = Few/poor quality, 3 = Adequate, 4
= Several/good quality, 5 = Many/high quality

Technical Accuracy The accuracy and reliability of the technical
content presented.

1 = Poor, 2 = Fair, 3 = Good, 4 = Very Good, 5 =
Excellent

Future Research Directions The paper discusses future research directions
and potential advancements.

1 = None, 2 = Limited, 3 = Adequate, 4 =
Extensive, 5 = Comprehensive

A minimum threshold score of 36 out of 60 (60%) has been established to ensure
the inclusion of relevant and high-quality studies in this literature review. This threshold
ensures that selected articles closely align with the review’s focus on soft sensing, intelligent
modeling, and related topics in industrial electrical systems. Each article is evaluated on
criteria such as relevance, the quality of research, innovation, clarity, the depth of analysis,
applicability, references, author expertise, impact, scope, case studies, technical accuracy,
and future research directions. Setting the threshold at 60% guarantees that the included
studies meet a sufficient methodological rigor and practical relevance standard while
allowing for a comprehensive and inclusive review. This balanced approach ensures that
the literature review incorporates valuable contributions without being overly restrictive,
thus providing a robust and insightful analysis of the current state of research in the field.

Figure 5 shows the final scores achieved by each item at this stage. Based on the results,
29 articles meet the predefined minimum threshold; therefore, the remaining articles have
been discarded.
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Figure 5. Final scores achieved by each item at the final stage of the review process.

Appendix A, Table A1, provides a comprehensive summary of the articles that suc-
cessfully passed all stages of the literature review process and are the subject of analysis in
the following section.

3. Descriptive Analysis of the Literature

Following the systematic selection process in the literature review, 29 items were
identified as highly relevant to the research focus. These items were selected based on
a thorough full-text review, ensuring their alignment with this study’s core themes and
objectives. The comprehensive evaluation of these works is summarized in Table A1,
which provides detailed information about each selected article, including their titles and
core proposals.

To gain a deeper understanding of the current state of research and to facilitate a
structured analysis, the selected literature was subsequently clustered into four main topics:
intelligent modeling and optimization (IMO), soft sensing techniques, machine learning
and neural networks, and process monitoring and optimization. This categorization was
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derived from carefully examining the articles’ titles and abstracts, identifying each work’s
primary focus and contributions.

• Intelligent Modeling and Optimization encompasses articles focusing on advanced
modeling techniques and optimization strategies to enhance industrial processes’ effi-
ciency and effectiveness. This cluster includes works that utilize innovative approaches
such as Bayesian learning, just-in-time learning (JITL), and intelligent optimization
frameworks to address various challenges in industrial systems.

• Soft Sensing Techniques includes research that develops and applies soft sensing
methods for industrial processes. These techniques involve indirect measurements
and data-driven models to estimate process variables that are difficult or impossible
to measure directly. The articles in this cluster explore various statistical and machine-
learning methods to improve the accuracy and reliability of soft sensors.

• Machine Learning and Neural Networks covers studies that leverage machine learn-
ing algorithms and neural network models to solve complex problems in industrial
settings. This cluster includes works implementing deep learning, auto-encoders,
and other neural network-based methods to enhance predictive accuracy and process
control.

• Process Monitoring and Optimization focuses on articles that aim to monitor and
optimize industrial processes through data-driven and model-based approaches. This
cluster includes research on state estimation, process monitoring, and dynamic op-
timization, utilizing techniques such as variational Bayesian learning and dynamic
latent variable models.

The distribution of selected items across these four clusters is depicted in the Venn
diagram in Figure 6. This figure illustrates the categorization of the selected literature,
visually representing the research landscape and highlighting the areas of concentration
within the field. By organizing the literature into these distinct topics, we can better
understand the current trends and gaps in research, guiding future investigations and
innovations in soft sensing and intelligent modeling in industrial electrical systems.

Figure 6. Venn diagram showing the clustering of selected articles into four main topics.
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4. Results

After applying the PRISMA method, four main themes have been identified, repre-
senting significant research areas in IMO. These themes encompass a variety of approaches
and applications within the field, including advanced modeling techniques, soft sensing,
machine learning, and process optimization. In the following sections, we will detail
each of these themes, examining key contributions from the literature and discussing the
challenges and future trends in each area.

4.1. Intelligent Modeling and Optimization
4.1.1. Definition

IMO is an advanced approach that employs techniques in industrial electrical systems
to enhance processes’ efficiency, productivity, and reliability [31]. It utilizes intelligent
algorithms and machine learning methods to analyze complex data and make optimal
real-time decisions. This approach finds application across various industrial sectors,
including energy, manufacturing, chemistry, and automation, aiming to optimize the
operation of electrical networks, improve product quality, and design safer and more
efficient production processes [32,33]. Despite advancements, challenges persist regarding
model interpretation and integration into real-time systems. However, the evolution of
technologies such as cloud computing and the IoT is expected to continue driving the
development and application of IMO in the future [33,34].

4.1.2. Applications

IMO has experienced significant growth in recent decades, with a wide range of appli-
cations across various industrial sectors. For instance, in the metallurgical sector, the study
presented in article [31] proposes a semi-supervised online soft sensor model to predict
silicon content in industrial blast furnaces. This approach leverages semi-supervised learn-
ing to absorb valuable information from unlabeled data, resulting in improved predictive
performance compared to traditional soft sensors. Moreover, in the industrial process sector,
article [35] introduces a β-variational autoencoder regression model for observing and
measuring multimode industrial processes. This approach has been successfully applied in
predicting variable quality for multimode industrial processes, demonstrating its efficacy
and superiority in soft sensor modeling in complex industrial environments. In the field of
chemical engineering, the study presented in [34] proposes an efficient (JITL) framework
for soft sensing in industrial processes. This approach has been applied in ebullated bed
hydrogenation and physical separation units, demonstrating higher predictive accuracy
and operational efficiency compared to other methods. These current applications illus-
trate the versatility and effectiveness of IMO techniques in a variety of industrial contexts.
From metallurgy to chemical engineering, IMO has shown its ability to enhance processes,
optimize performance, and reduce operating costs across diverse industries.

4.1.3. Current Challenges

Despite significant advances achieved in the field of IMO, several important challenges
persist that require attention and innovative solutions. For example, in the study on the soft
sensing of liquefied petroleum gas (LPG) processes using deep learning [33], the challenge
of the interpretability of AI and deep learning-based models is highlighted. While these
models can offer high levels of predictive accuracy, their opacity regarding how they arrive
at those predictions can be a barrier to adoption in industrial environments where a clear
understanding of the model’s decision-making process is required. Additionally, in the
IMO for a smart energy hub [31] article, the need to address the computational complexity
associated with optimizing energy hub models is noted. As energy systems become more
interconnected and diversified, there is a need to develop more efficient optimization
methods to handle the vast data and complexity of modern energy systems.

Another significant challenge is highlighted in the study on Bayesian (JITL) [36],
where the efficient selection of relevant samples and accurate base model construction are
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addressed. While JITL techniques offer the advantage of updating localized models in
real-time, identifying relevant samples and constructing accurate base models remain areas
of active research and development.

4.1.4. Future Trends

Future trends in the field of IMO point towards greater integration of advanced tech-
nologies and innovative approaches to address emerging challenges and leverage new
opportunities in a variety of industrial applications. A significant trend is the increasing
use of machine learning techniques and real-time predictive modeling in industrial en-
vironments, as highlighted in the study on the soft sensing of LPG processes using deep
learning [33,37]. This trend is expected to continue, with more sophisticated AI models
enabling more precise and efficient real-time decision-making across a variety of industrial
processes.

Additionally, the optimization of energy systems, as discussed in the article on IMO for
a smart energy hub [31], is expected to become increasingly important as companies seek
to maximize the efficiency and profitability of their energy operations. This could involve
the development of more advanced optimization algorithms and the implementation
of more sophisticated automation technologies to manage and control complex energy
systems. Another significant future trend is using Bayesian approaches and JITL methods
in industrial applications, as mentioned in [36]. These approaches are expected to continue
evolving and improving, focusing more on an efficient selection of relevant samples,
accurate base model construction, and uncertainty management in industrial processes.

4.2. Soft Sensing Techniques
4.2.1. Definition

Soft sensing techniques use computational models to estimate difficult-to-measure
variables in industrial processes, leveraging statistical methods and machine learning algo-
rithms [38,39]. These methods predict quality parameters, enhancing process monitoring
without expensive direct measurement instruments. By utilizing labeled and unlabeled
data, they aim for accurate real-time predictions, which are crucial for operational efficiency
and product quality [1]. For instance, the principal component-based semi-supervised ex-
treme learning machine (PCSELM) model combines labeled and unlabeled data to enhance
model accuracy, while a neural network approach optimizes input layers in dynamic batch
processes, improving predictive performance [40,41].

4.2.2. Applications

Soft sensing techniques are crucial across various industries, enhancing process moni-
toring and product quality prediction. In metallurgy, they predict silicon content in blast
furnaces, a hard-to-measure variable. The PCSELM model in [38] showcases superior
predictive accuracy through semi-supervised learning, leveraging labeled and unlabeled
data. Dynamic batch processes like penicillin fermentation and injection molding benefit
from a neural network-based approach outlined in [40], optimizing information relevance
layer by layer and outperforming existing methods.

JITL combines mutual information and partial least squares to improve soft sensor
accuracy [42]. This method addresses non-linearity and collinearity, yielding more pre-
cise similarity measures and predictions. Additionally, a two-step statistical learning
approach for batch process soft sensing [43] reduces data dimensionality. It constructs
reliable soft sensors, enhancing accuracy in industrial applications such as personal care
product manufacturing.

4.2.3. Current Challenges

Despite advancements in soft sensing techniques, challenges persist. Interpreting
complex models, especially those based on deep learning, poses a significant hurdle due
to their opaque nature, hindering trust and acceptance in industrial settings [38]. Compu-
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tational complexity is another issue, as real-time data integration and processing, such as
in JITL, demand efficient measures and strain resources [42]. Integrating domain-specific
knowledge into data-driven models remains challenging despite promising results from
methods like neural network-based representation learning [40]. Handling variability
and complexity in industrial processes, such as non-linearity and multimodality, present
further difficulties, exemplified by the challenge of managing multiple modes without prior
information [44].

4.2.4. Future Trends

Future trends in soft sensing techniques involve integrating advanced machine learn-
ing and statistical methods to tackle current challenges and exploit new opportunities in
industrial applications. One key trend is the growing adoption of sophisticated machine
learning algorithms like deep learning and JITL to improve real-time predictive accuracy
and decision-making. For instance, models like PCSELM demonstrate the potential for
incorporating more advanced semi-supervised and unsupervised learning techniques to
enhance model robustness and flexibility [38]. These models also focus on enhancing
interpretability and transparency to facilitate industrial adoption. Techniques like the
weighted autoregressive dynamic latent variable model aim to make predictions more
understandable and trustworthy [45]. For most modern industrial processes with strong
nonlinear and multimodal characteristics, the traditional linear PLS-based soft sensor may
not work well. Meanwhile, the traditional global modeling approach has a high demand
for data representation capability in the face of complex data distribution, which poses a
challenge to soft sensing [46]. In addition, the unbalanced nature of data distribution exac-
erbates the model’s neglect of local information to some extent, which enhances the overall
prediction difficulty of the model. To this end, based on the PLS, a novel quality-relevant
feature clustering (QRFC) model is proposed for the first time in this article from the view
of the local modeling of probabilistic fusion. In the QRFC, the PLS can give reasonable and
explanatory guidance on the initial feature space for the modeling.

Another significant trend is optimizing energy systems using soft sensing techniques to
maximize efficiency and profitability. Advanced optimization algorithms and automation
technologies will improve the management and control of complex energy systems [38].
Bayesian approaches and JITL strategies will expand, providing more efficient real-time
data processing and decision-making methods. Integrating multimodal data and cluster-
based multiple models will further drive the evolution of soft sensing techniques [38,40].
Lastly, incorporating soft sensing models into real-time process control frameworks will
be crucial for the adaptive and automated control of industrial processes. Advancements
in model training, optimization, and classifier development will be necessary for optimal
application timing [43]. These advancements will refine soft sensing techniques, making
them more robust, interpretable, and capable of handling modern industrial complexities,
enhancing process efficiency, product quality, and operational decision-making across
various sectors.

4.3. Machine Learning and Neural Networks
4.3.1. Definition

Machine learning and neural networks represent significant advancements in AI,
enabling the creation of models that can learn from data, make predictions, and support
decision-making processes. Machine learning encompasses a broad range of algorithms
that allow computers to learn patterns from data, improving their performance over time
without being explicitly programmed. Neural networks, a specialized subset of machine
learning, mimic the human brain’s structure and function, using interconnected layers
of nodes (neurons) to process information and recognize patterns. These networks are
particularly adept at handling large and complex datasets, making them invaluable for
tasks that require high levels of pattern recognition, such as image and speech recognition,
natural language processing, and predictive analytics [47].
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4.3.2. Applications

Machine learning and neural networks find broad applications across industries,
including industrial automation. ANFISs integrated with computer-aided design (CAD)
data facilitate the precise control of robotic systems, enabling them to navigate obstacles and
achieve desired positions with high accuracy [47]. In soft sensing, machine learning models,
such as Echo State Networks (ESNs), estimate key variables in industrial processes. ESNs
handle high-dimensional, nonlinear data and improve prediction accuracy by integrating
auto-encoders to address dimension disaster problems [48]. The JITL strategy enhances the
adaptability and accuracy of real-time process control models [42].

Data augmentation techniques, like DAWI-VSG shown in [49], expand datasets with
virtual samples, which is crucial where real-world data is limited. Using methods like
singular value decomposition to generate and refine virtual samples significantly boosts the
predictive power of soft sensors [49]. Causal discovery algorithms, such as weight compar-
ison causal mining (WCCM), uncover underlying relationships between process variables,
enhancing feature selection for improved prediction accuracy and model interpretabil-
ity [50]. Neural networks with upper and lower bound constraints handle missing values,
ensuring prediction reliability even with incomplete or anomalous training data [51].

4.3.3. Current Challenges

Despite their widespread adoption, machine learning and neural networks encounter
significant challenges. Handling high-dimensional data, leading to the “curse of dimension-
ality,” poses a significant hurdle for developing accurate and efficient models. Solutions
like distributed ESNs with auto-encoders reduce input dimensionality and cluster input
attributes using algorithms [48]. Modeling multimode processes, common in industrial set-
tings, is another challenge. Traditional models struggle with their dynamic and multimode
characteristics. Gaussian mixture models integrated with variational autoencoders (GM-
GVAER) effectively capture dynamic features and handle multimode properties, improving
soft sensor model accuracy [52].

Dealing with missing data persists as a challenge. Incomplete or abnormal data can
lead to inaccurate predictions. Approaches like neural networks with upper and lower
bound constraints for estimated missing values ensure robust predictions, preventing
the overestimation of prediction errors and maintaining model reliability [51]. Utilizing
unlabeled data efficiently is a limitation of traditional soft sensors. Semi-supervised models
like the quality regularization-based semi-supervised adversarial transfer model (QR-
SATM) leverage adversarial transfer learning to incorporate unlabeled data effectively.
They enhance model performance by pretraining with unlabeled data and fine-tuning with
labeled data [53].

4.3.4. Future Trends

The future of machine learning and neural networks in industrial applications is
promising, with several key trends expected to drive advancements. Enhanced feature
extraction capabilities will be crucial, with more sophisticated neural network structures,
such as convolutional neural networks (CNNs) and recurrent neural networks, being
integrated to extract complex features from industrial processes. This will likely improve
model performance and prediction accuracy in various applications. Adaptive models that
can dynamically adjust to changing process conditions and varying data sequences are
also on the horizon. Such models will enhance the flexibility and applicability of neural
networks in real-time industrial environments, allowing for more responsive and efficient
process control [51].

Improving the interpretability of neural networks is another important trend. Mecha-
nisms like attention layers can be added to models to highlight the importance of different
variables and clarify causal relationships. This will improve the understanding of how
models make predictions and enhance their utility in anomaly detection and process opti-
mization. Combining domain-specific knowledge with data-driven approaches is expected
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to further enhance the robustness and reliability of machine learning models. Researchers
can create more comprehensive models that better understand complex industrial pro-
cesses by integrating limited prior knowledge into causal discovery algorithms and other
data-driven methods.

4.4. Process Monitoring and Optimization
4.4.1. Definition

Soft sensing, a pivotal aspect of contemporary industrial operations, deviates from
conventional sensor-based monitoring approaches. While traditional methods rely heavily
on physical sensors for data acquisition, soft sensing leverages computational models to
estimate crucial process variables, providing a cost-effective and scalable solution [54]. In
industrial processes, soft sensing involves developing and deploying algorithms to infer
process variables based on available data, often integrating machine learning and statistical
techniques [33]. By employing these algorithms, industries can reduce reliance on physical
sensors, which may be costly to install and maintain, while still obtaining accurate insights
into process behavior.

4.4.2. Applications

Soft sensing applications span various industries, reflecting their versatility and util-
ity in diverse operational contexts. For example, soft sensors integrated with advanced
deep learning techniques have revolutionized monitoring capabilities in the oil refining
sector, optimizing processes such as LPG purification with unprecedented accuracy and ef-
ficiency [33]. Similarly, in chemical manufacturing, data-driven modeling frameworks have
empowered engineers to predict product yields and process dynamics with remarkable
precision, driving improvements in operational efficiency and profitability [55].

Moreover, soft sensing is applicable in pharmaceutical sectors, where precise con-
trol over manufacturing processes is essential to ensure product quality and regulatory
compliance [36]. By harnessing soft sensing techniques, pharmaceutical companies can
monitor critical process parameters in real-time, facilitating timely interventions and quality
assurance measures.

4.4.3. Current Challenges

Despite its transformative potential, soft sensing confronts several challenges that
require ongoing research and innovation to address effectively. One significant challenge
revolves around the dynamic nature of industrial processes, which often exhibit non-
stationary behaviors and transient phenomena [56]. Adapting conventional modeling
approaches to accommodate such dynamic environments necessitates the development of
novel methodologies capable of capturing and responding to evolving process dynamics.

Additionally, data scarcity poses a significant obstacle, particularly in industries with
limited access to large volumes of high-quality data [49]. Overcoming this challenge
requires developing data augmentation and synthesis techniques, enabling the generation
of representative datasets for training soft sensing models. Furthermore, ensuring the
robustness and reliability of soft sensing algorithms in the face of noisy or incomplete data
remains a critical area of research and development.

4.4.4. Future Trends

Several emerging trends are poised to shape the future of soft sensing in industrial
applications. One such trend is the increasing integration of soft sensing with advanced
analytics and AI techniques, including deep learning and reinforcement learning [44]. By
leveraging these cutting-edge technologies, industries can unlock new capabilities in pro-
cess monitoring, optimization, and control, paving the way for autonomous and adaptive
manufacturing systems. Moreover, the advent of edge computing and IoT technologies
holds promise for decentralized soft sensing solutions, enabling real-time monitoring and
control at the device level [41]. This trend towards edge-based soft sensing architectures has
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the potential to enhance scalability, resilience, and responsiveness in industrial operations,
particularly in sectors characterized by distributed and interconnected production systems.

5. Discussions

Figure 7 illustrates the key findings and future directions identified in the review of
IMO techniques applied in industrial electrical systems. Four main themes emerge from
the analysis, each represented by a distinct set of blocks in the diagram. The first block
highlights the importance of IMO techniques, showcasing their growing applications across
various industrial sectors. These techniques leverage advanced algorithms and machine
learning methods to enhance efficiency, productivity, and process reliability. The second
set of blocks focuses on soft sensing techniques, emphasizing their role in estimating
difficult-to-measure variables in industrial processes. These techniques use statistical
methods and machine learning algorithms to predict key quality parameters, enabling
the improved monitoring and control of processes. Moving to the third set of blocks,
machine learning and neural networks take center stage, demonstrating their versatility
and utility in various industrial domains. These technologies enable the development of
intelligent models for process control, predictive analysis, and anomaly detection, driving
improvements in operational efficiency and product quality. Finally, the fourth set of blocks
highlights process monitoring and optimization strategies, underscoring the shift towards
autonomous and adaptive manufacturing systems. Integrating edge computing and IoT
technologies promises real-time device-level monitoring and control, enhancing industrial
operations’ scalability, resilience, and responsiveness.

Figure 7. Trends and innovations in industrial electrical systems optimization.

In the optimization of intelligent manufacturing, challenges such as the interpretability
of complex models and the management of incomplete data persist. Interpretability is
crucial since complex models, although accurate, often function as “black boxes.” To
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enhance transparency, explanatory models like decision trees, post-hoc techniques such as
local interpretable model-agnostic explanations (LIME) and shapley additive explanations
(SHAP), and advanced visualization tools can be used. On the other hand, the management
of incomplete data is a significant issue due to sensor failures and communication errors.
To address this, data imputation techniques, the development of robust models, and
semi-supervised learning algorithms can be employed. Additionally, error detection and
correction can improve data quality in real-time. These combined strategies can increase
the reliability and applicability of intelligent manufacturing technologies, allowing for
more effective advancements in the field.

The review underscores the critical necessity of integrating domain-specific knowl-
edge into learning models for industrial electrical systems. This integration is pivotal for
enhancing the effectiveness and applicability of advanced algorithms in practical industrial
environments. By infusing industry-specific insights into algorithmic frameworks, these
models can achieve heightened predictive accuracy and operational efficiency. Achiev-
ing effective integration involves embedding practical industrial insights directly into
algorithmic processes. For example, in fields like metallurgy and chemical engineering, un-
derstanding the intricacies of process dynamics and material behavior significantly bolsters
the precision of predictive models. This alignment ensures that algorithmic outputs res-
onate more closely with real-world industrial conditions, thereby enhancing interpretability
and fostering greater acceptance among industry stakeholders.

Furthermore, the integration of domain-specific knowledge facilitates the development
of resilient models capable of adapting to dynamic operational challenges. While challenges
such as model interpretability and adaptation to complex industrial environments persist,
hybrid models that blend data-driven approaches with expert knowledge frameworks
offer promising solutions. These methodologies not only optimize process efficiency and
reduce operational costs but also pave the way for adaptive and sustainable industrial
practices. Looking ahead, future research should focus on refining methodologies that
seamlessly integrate domain-specific knowledge into learning models. This includes
exploring advanced hybrid models and developing frameworks that effectively capture
and formalize industry-specific knowledge into algorithmic solutions. By addressing
these challenges, the potential of intelligent modeling and optimization in advancing
industrial electrical systems towards greater efficiency, reliability, and sustainability can be
fully realized.

6. Conclusions

This study used the PRISMA method to review literature using three prominent
databases: Scopus, IEEE Xplore, and MDPI. It focused on soft sensing and intelligent
modeling research in electrical and industrial systems. After applying selection criteria, 255
relevant articles were identified, with a significant predominance of publications obtained
from Scopus, followed by IEEE Xplore and MDPI. The publication trend during the study
period shows a sustained increase in scientific interest in these areas, reflecting the growing
importance of research in soft sensing and intelligent modeling in industrial electrical
systems. The method was filtered down to a total of 29 articles, which met the systematic
literature review criteria defined by the authors.

Based on this, a review of the main contributions of these articles was carried out. In
conclusion, this comprehensive review of IMO techniques in industrial electrical systems
has identified key areas of application, current challenges, and future trends. Four main
themes have been explored: IMO, soft sensing techniques, machine learning and neural
networks, and process monitoring and optimization strategies. The applications of these
techniques are diverse and encompass industrial sectors such as metallurgy, chemistry,
and manufacturing. Examples have been highlighted, such as quality prediction in indus-
trial furnaces, the monitoring of dynamic processes, and the control of industrial robots.
However, significant challenges persist, such as the interpretability of complex models,
managing incomplete data, and adapting to dynamic environments. Furthermore, greater
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integration of domain-specific knowledge into automatic learning models is required to
improve their robustness and reliability.

Looking to the future, the integration of advanced technologies like deep learning and
the IoT is poised to enhance real-time monitoring and control in industrial environments.
Deep learning can process large datasets to improve predictive maintenance, fault detection,
and quality control. For example, CNNs and RNNs can analyze sensor data to predict
equipment failures, reducing downtime and maintenance costs. The IoT enables the
interconnection of industrial devices for seamless data exchange and real-time monitoring.
IoT sensors can continuously collect data from industrial processes, which deep learning
algorithms can analyze to optimize operations and detect anomalies. This leads to smart
factories where automated systems make real-time decisions, improving efficiency, reducing
energy consumption, and enhancing safety. The continuous optimization of algorithms
and interdisciplinary collaboration will be crucial to fully leveraging these technologies.
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Appendix A

Table A1. Overall information on the selected studies for the literature review.

N◦ ID Ref. Complete Title Article’s Proposal Authors, Year

1 S-180 [57]
Soft sensing of silicon content via
bagging local semi-supervised
models

Bagging local semi-supervised models
(BLSM) improve the online prediction of
silicon content in industrial blast
furnaces, leveraging hidden information
in process variables.

He et al., 2019

2 S-65 [35]
Mode Information Separated
β-VAE Regression for Multimode
Industrial Process Soft Sensing

An advanced regression model,
SW-β-VAE and MA-SW-β-VAER,
analyzes and measures multimode
industrial processes using soft sensors.

Shen et al., 2023

3 S-41 [38]

Principal Component-Based
Semi-Supervised Extreme
Learning Machine for Soft
Sensing

The PCSELM model enhances soft sensor
performance by utilizing both labeled
and unlabeled data.

Shi et al., 2023

4 S-11 [40]

Data-Driven Soft Sensing for
Batch Processes Using Neural
Network-Based Deep
Quality-Relevant Representation
Learning

A neural network-based deep
quality-relevant representation learning
approach improves soft sensing in
dynamic batch processes by optimizing
quality-relevant information.

Jiang et al., 2023
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Table A1. Cont.

N◦ ID Ref. Complete Title Article’s Proposal Authors, Year

5 S-153 [42]

A novel (JITL) strategy for soft
sensing with improved similarity
measure based on mutual
information and PLS

A new similarity measure method
combining mutual information and
partial least squares improves JITL-based
soft sensor modeling for industrial
processes.

Song et al., 2020

6 S-82 [32]

Intelligent modeling and detailed
analysis of drying hydration
thermal and spectral
characteristics for convective
drying of chicken breast slices

Convective drying characteristics of
chicken breast slices at various
temperatures are analyzed using ANN
and semi-empirical models to optimize
drying processes.

Kumar et al., 2019

7 S-32 [56]

Probabilistic stationary subspace
regression model for soft sensing
of nonstationary industrial
processes

A probabilistic stationary subspace
regression (PSSR) model enhances soft
sensing for nonstationary industrial
processes by capturing mathematical
correlations between variables.

Zhao et al., 2024

8 S-112 [31] IMO for smart energy hub

An IMO method for a smart energy hub
model improves operation efficiency and
reduces computational burden for
multiple energy systems.

Liu et al., 2019

9 S-184 [36]
Bayesian (JITL) and its
Application to Industrial Soft
Sensing

Bayesian JITL (BJITL) improves soft
sensor performance in industrial
processes by enhancing relevant sample
selection and base learner construction.

Shao et al., 2020

10 S-185 [47]

Intelligent Modeling and
Simulation of the Inverse
Kinematics Redundant 3-DOD
Cooperative Using Solidworks
and MATLAB/Simmechanics

Intelligent modeling with an ANFIS
controller and CAD data enhances the
inverse kinematics of redundant
industrial manipulator robots.

Bahani et al., 2022

11 IEEE-
014 [54]

Intelligent State Estimation for
Continuous Fermenters Using
Variational Bayesian Learning

Variational Bayesian learning algorithms
accurately estimate states in continuous
fermenters, focusing on improving
estimation with a random transition
probability matrix.

S. Gao and S. Zhao
and X. Luan and F.
Liu et al., 2021

12 S-12 [37]

Robust Sparse Gaussian Process
Regression for Soft Sensing in
Industrial Big Data Under the
Outlier Condition

A robust sparse Gaussian process
regression method addresses outliers in
large datasets to improve model
construction for industrial processes.

Huang et al., 2024

13 S-116 [43]
A two-step multivariate statistical
learning approach for batch
process soft sensing

A two-step approach using partial least
squares and multiway partial least
squares designs soft sensors for product
quality prediction in industrial processes.

Hicks et al., 2021

14 S-170 [45]

Soft Sensing Applications for
Non-Stable Processes Based on a
Weighted High-Order Dynamic
Information Structure

A novel weighted autoregressive
dynamic latent variable (WARDLV)
model addresses challenges of
autocorrelation and non-stable features
in industrial processes.

Zhang et al., 2020

15 S-110 [36]

Powder composition monitoring
in continuous pharmaceutical
solid-dosage form manufacturing
using state estimation—Proof of
concept

A model-based approach using a
moving-horizon state estimator improves
the monitoring of powder composition in
continuous solid-dosage form
manufacturing.

Destro et al., 2021

223



Processes 2024, 12, 1365

Table A1. Cont.

N◦ ID Ref. Complete Title Article’s Proposal Authors, Year

16 S-149 [34]
Adaptive ensemble learning
strategy for semi-supervised soft
sensing

An adaptive ensemble learning
strategy for soft sensors enhances
regression performance with limited
labeled samples using semi-supervised
learning.

Shi et al., 2020

17 S-21 [34]

Efficient JITL framework for
nonlinear industrial chemical
engineering soft sensing based on
adaptive multi-branch variable
scale integrated CNNs.

An efficient JITL framework
(EJITL-AMVs-ICNN) enhances
real-time updating of local models in
chemical processes, improving
prediction accuracy and reducing
elapsed time.

Chen et al., 2023

18 S-02 [33] Soft Sensing of LPG Processes
Using Deep Learning

The integration of soft sensors and
deep learning in oil-refinery processes
enhances monitoring efficiency and
predictive accuracy for de-ethanization
and debutanization.

Sifakis et al., 2023

19 S-19 [46]
Probabilistic Fusion Model for
Industrial Soft Sensing Based on
QRFC.

A novel QRFC model based on PLS
improves soft sensor performance in
nonlinear and multimodal industrial
processes.

Yang et al., 2023

20 S-25 [49]

Novel virtual sample generation
method based on data
augmentation and weighted
interpolation for soft sensing with
small data

A virtual sample generation method
(DAWI-VSG) enhances soft sensing
datasets with high-quality samples to
improve prediction accuracy in
industrial processes.

Song et al., 2023

21 S-31 [53]

Quality Regularization-Based
Semisupervised Adversarial
Transfer Model With Unlabeled
Data for Industrial Soft Sensing

QR-SATM leverages unlabeled data for
more accurate soft sensor predictions. He et al., 2024

22 S-64 [50]

Neural Network Weight
Comparison for Industrial
Causality Discovering and Its Soft
Sensing Application

WCCM algorithm discovers variable
relationships to guide process
modeling and control optimization in
industrial processes.

He et al., 2023

23 S-10 [48]

A New Distributed Echo State
Network Integrated With an
Auto-Encoder for Dynamic Soft
Sensing

A distributed ESN model integrated
with an auto-encoder (AE-DESNm)
handles high-dimensional data and
improves dynamic soft sensor
performance.

He et al., 2023

24 S-95 [52]

Gaussian mixture deep dynamic
latent variable model with
application to soft sensing for
multimode industrial processes

A deep dynamic latent variable
regression model (GM-GVAER)
enhances soft sensing in multimode
industrial processes by capturing
dynamic features.

Xu et al., 2022

25 S-75 [51]

Neural networks with upper and
lower bound constraints and its
application on industrial soft
sensing modeling with missing
values

A neural network method with upper
and lower bound constraints handles
missing values in soft sensor data,
improving prediction reliability.

Lu et al., 2022

26 IEEE-040 [39]

A Data-Driven Soft Sensing
Approach Using Modified
Subspace Identification With
Limited Iterative
Expectation-Maximization

An EM-SID algorithm improves
predictive ability in data-driven soft
sensor modeling by addressing biased
system matrices estimation.

W. Guo and T. Pan
and Z. Li and S.
Chen et al., 2020
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27 S-37 [55]
Data-driven intelligent modeling
framework for the steam cracking
process

A data-driven intelligent modeling
framework (LARD-MARS) balances
prediction accuracy and computational
speed in the steam cracking process.

Zhao et al., 2023

28 S-178 [44]

Soft Sensing of a Nonlinear
Multimode Process Using a Self
Organizing Model and
Conditional Probability Density
Analysis

A self-organizing model and conditional
probability density analysis handle
nonlinear multimode processes for
improved soft sensor performance.

Wang et al., 2019

29 S-48 [41]
Weighted target feature
regression neural networks based
soft sensing for industrial process

A weighted target feature regression
neural network (WTFAER) was proposed
to address the difficulties in measuring
product quality online in industrial
processes, demonstrating superior
performance and generalization in
simulations compared to other methods.

Guo, X. and Wang,
Q. and Li, Y., 2024.
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Abstract: The combined effects of aqueous corrosion, stress factors, and seeded cracks on leakage in
cast iron pipes have not been thoroughly examined due to the complexity and difficulty in predicting
their interactions. This study seeks to address this gap by investigating the interdependencies
between corrosion, stress, and cracks in cast iron pipes to optimise the material selection and design
in corrosive environments. Leakage experiments were conducted under simulated localised corrosive
conditions and internal pressure, revealing that leakage increased from 0 to 25 mL with crack sizes
of 0.5 mm, 0.8 mm, 1 mm, and 1.2 mm, along with corrosion times of 0, 120, 160, and 200 h, and
varying stress levels. An empirical model was developed using a curve-fitting approach to map the
relationships among corrosion time, crack propagation, and leakage amount. The results demonstrate
that the interaction between corrosion, stress, and crack propagation was complex and nonlinear, and
the leakage amount increased from 0.7 to 0.10 mm every 15 min, as evidenced by SEM microstructure
images and empirical data.

Keywords: leakage; crack; degradation mechanism; crack propagation; pressure; stress; corrosion
time; pipe failure

1. Introduction

Cast iron pipes have been widely used in water distribution systems due to their
robustness and cost-effectiveness. However, despite these advantages, the long-term relia-
bility of cast iron pipes is frequently compromised by various factors, including corrosion
and mechanical stress. These issues often lead to significant maintenance challenges and
potential failures [1,2]. The complex interaction between corrosion and stress, particularly
in the presence of cracks, remains inadequately understood.

Corrosion in cast iron pipes, typically increased in aqueous environments, gradually
deteriorates the material, increasing the possibility of cracking and eventual failure [3].
Stress arising from either internal pressures or external loads can further deteriorate these
conditions by promoting the initiation and propagation of cracks [4–12]. The coupled
effects of corrosion and stress complicate the prediction and management of pipe leakage
due to their nonlinear interaction [12].

Existing research has explored the individual effects of corrosion and stress on cast iron
pipes [4,13–23]. Researchers have documented localised corrosion mechanisms and their
impact on material integrity [24]. Similarly, Dzioba et al. have investigated how mechanical
stress influences crack growth and pipe failure [25,26]. However, comprehensive studies
examining the combined effects of these factors on leakage rates are sparse. The com-
plex interdependencies between corrosion, stress, and cracks necessitate a comprehensive
understanding of their impact on pipe leakage.

This study aims to address this research gap by investigating the combined effects of
corrosion, stress, and cracks on the leakage behaviour of cast iron pipes. By simulating
localised corrosive conditions and applying varying stress levels, the aim is to demonstrate
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how these factors influence leakage rates. The experimental variables involve crack sizes
from 0.5 mm, 0.8 mm, 1 mm, and 1.2 mm and corrosion times from 0 to 160 h under
different stress levels. The empirical model developed through a curve-fitting approach
will map the relationships among these variables and leakage amount. They will provide
a deeper understanding of the mechanisms driving leakage in cast iron pipes, with the
optimal selection and design of materials in corrosive environments. Ultimately, this study
seeks to improve the maintenance and design of water distribution systems [26].

2. Methodology

The experimental methodology was designed to investigate the combined effects of
aqueous corrosion, stress, and cracks on cast iron pipes. The preparation of the samples for
the corrosion tests was conducted to ensure the reliability and relevance of the findings. In
this study, CI pipes were tested under controlled internal pressures while monitoring the
resulting stress. To simulate different levels of structural integrity, these pipes were pre-
damaged with cracks of various sizes. Additionally, the duration of exposure to corrosive
environments was altered to emulate long-term degradation effects.

2.1. Material

The major chemical constituents of cast iron, which are critical to its corrosion resis-
tance, were analysed and are presented in Table 1.

Table 1. Major chemical constituents of cast iron.

Material C S P Mn Si Fe

HT200
(EN-GJL200)

Cast iron
3.2 0.12 0.015 0.9 1.6 93–97%

2.2. Sample Preparation

The experiment used a solution containing 600 parts per million (ppm) of 3.5% NaCl
dissolved in redistilled water. This concentration was chosen based on the significant
influence of chloride ions on cast iron’s corrosion behaviour. The specimens, detailed
in Table 2, were prepared with varying crack sizes from 0.5 to 1.2 mm to simulate the
realistic damages with different severity. Crack length and depth were constant at 50
and 3 mm, respectively, for convenient machining. All specimens were subjected to
different reasonable corrosion durations. In this study, 120 h was determined as the time of
appearance of corrosion with a 40 h step to observe the different effects of corrosion over
time [26].

Table 2. The details of sample preparation.

Crack Size Pipe Length Crack Length Wall Thickness
Crack
Depth

Number of
Tubes Needed

Corrosion Time

0.5 mm 200 mm 50 mm 4 mm 3 mm 3 0, 120, 160 and 200 h

0.8 mm 200 mm 50 mm 4 mm 3 mm 3 0, 120, 160 and 200 h

1.0 mm 200 mm 50 mm 4 mm 3 mm 3 0, 120, 160 and 200 h

1.2 mm 200 mm 50 mm 4 mm 3 mm 3 0, 120, 160 and 200 h

The specimens were immersed in a NaCl solution for varying durations (0, 120, 160,
and 200 h) to allow sufficient interaction time for the NaCl to initiate the corrosion process.

2.3. Data Collection and Analysis

The physical effects of corrosion, such as changes in crack propagation and leakage
amount, were measured and analysed using a multi-linear regression approach. This
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empirical model mapped the relationships among corrosion time, stress, crack propagation,
and leakage amount.

By following this methodology, this study aimed to produce reliable and transferable
results that could enhance the understanding of corrosion behaviour in cast iron pipes and
inform the material selection and design in corrosive environments.

2.4. Experimental Setup

Figure 1 illustrates the experimental setup used in this study. The test arrangement
comprised two removable end sections attached to a corroded pipe section using couplings.
One end section was connected to the water supply network via a combination turbine
flow meter from GPI® (Enfield, UK), and the downstream section was equipped with a
calibrated pressure transducer from Baker Hughes (Houston, TX, USA). Threaded cast
iron rods and end supports were used to maintain the system intact. Data collection
was facilitated through a data logger, which recorded readings from the flow meter and
pressure transducer. Pressure readings were recorded every second, while the flow rate
was measured by the pulse generated by the flow meter for every minute of flow.

Figure 1. (a) Experimental setup; (b) conceptual diagram showing the whole equipment system connection.

The system was pressurised using a booster pump operating at 6 bars, regulated by
a pressure regulator set at 4 bars. Additionally, a booster pump was equipped with an
expansion vessel to reduce the frequency of pump starts. Any leakage from the system
was discharged into the atmosphere, and aside from the leakage flow rate, there was no
other flow present in the system. The pressure transducer and leakage observation point
were at the same horizontal level. The experimental procedure involved incrementally
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increasing and decreasing flow and pressure. By doing so, the stress factor of the pipeline
was calculated under varying durations of corrosion when subjected to internal pressure.
The stress factor, denoted as K, refers to the stress distribution around a crack. It represents
the measurement of stress and deformation at the crack tip [27]. Griffith’s strength and
energy theory postulates that the stress intensity factor, K, can be linked to the energy
released during crack growth, expressed by Equation (1) [28].

K = Yσ
√

πa (1)

where K = stress intensity factor for a particular mode of cracking;
a = initial crack length;
σ = remote stress;
Y = a geometric factor.
In the experiment, seeded cracks of specific sizes were introduced into each specimen

pipeline. These cracks, consistently sized at 0.5, 0.8, 1.0, and 1.2 mm, were placed at similar
positions within each pipe, after which the water source was connected, and the pump
was used to pressurise the pipes. The experiment continued with the gradual increase in
water pressure, which increased the stresses at the tips of the pre-existing cracks, leading to
their propagation. This development led to leakage, which was quantitatively measured by
collecting the escaped water in a container. This process was repeated at different pressure
intensities, enabling the analysis of the impact of varying pressures on crack growth and
associated leakage rates. Initially focusing on specific crack dimensions, the experiment was
methodically repeated with progressively larger cracks to amass extensive data on leakage
rates across diverse crack sizes and pressure magnitudes. These compiled data were then
carefully evaluated, and the insights are methodically organised and summarised in the
next section, with the objective of deriving significant conclusions from the experimental
observations.

2.5. Data Collection and Analysis

The physical effects of corrosion, such as changes in crack propagation and leakage
amount, were measured and analysed using a curve-fitting approach, namely multi-linear
regression (MLR). This method is used to analyse the relationships between a dependent
variable and multiple independent variables. It minimises the differences between the
observed and predicted outcomes based on the least-square principle.

In this study, an MLR model was applied to investigate how parameters like corrosion
time, crack size, and content affect the mechanical properties of cast iron pipes [29].

3. Results and Discussion

3.1. Calculation of the Stresses at the Tips of the Cracks

The results from stress calculations using Equation (2) are presented in Tables 3–6.
These tables display the stress intensity factors for various crack lengths under different
applied stresses.

Kc = Yσs
√

πa
σs = Kc/(Y√πa)

(2)

Table 3. Results of stress at the crack tip for corrosion time 0 h.

Corrosion Time 0 h

Initial Crack Size (a) (mm) Load (N) Stress σ (MPa)

0.5 10,200 510
0.8 9900 495
1.0 9800 490
1.2 6000 300
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Table 4. Results for stress at the crack tip for corrosion time 120 h.

Corrosion Time 120 h

Initial Crack Size (a)
(mm)

Load (N) Hoop Stress σ (MPa)

0.5 9100 455
0.8 9000 450
1.0 8000 400
1.2 7900 395

Table 5. Results of stress at the crack tip for corrosion time 160 h.

Corrosion Time 160 h

Initial Crack Size (a)
(mm)

Load (N) Stress σ (MPa)

0.5 7500 375
0.8 7300 365
1.0 7000 350
1.2 6800 340

Table 6. Results of stress at the crack tip for corrosion time 200 h.

Corrosion Time 200 h

Initial Crack Size (a) (mm) Load (N) Stress σ (MPa)

0.5 5000 250
0.8 4900 245
1.0 4500 225
1.2 3800 190

Figures 2–5 indicate the crack sizes and the corresponding pressures at which the pipes
were tested. Each data point on these graphs represents a stress measurement correlating
to a specific state of crack and corrosion severity against the applied internal pressure. It is
worth noting that we observed some drastically decreased stress due to the rapidly reduced
loading measurements for some experimental conditions.
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Figure 2. Relationship between initial crack and stress value at corrosion time 0 h.
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Figure 5. Relationship between initial crack and stress value for corrosion time of 200 h.

Contrary to initial assumptions, we found reduced hoop stress with increased crack
size and corrosion exposure, as shown in Tables 3–6. Typically, one would expect larger
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cracks and more significant corrosion to compromise the material’s strength, potentially
increasing stress. However, this anticipated increase in stress was not observed. The reason
for this anomaly is linked to the experimental methodology. In this study, the internal
pressure within the pipes was deliberately reduced from 6 to 4 bar for specimens with more
extensive crack growth. This approach is a standard safety protocol in testing, implemented
to prevent the risk of pipe failure. However, this decrease in internal pressure in more
damaged pipes influenced the observed stress outcomes.

The findings suggest that the experimental procedures, adjusted based on the severity
of pipe damage, produced corresponding modifications to the pressure levels. As a result,
the hoop stress, indicative of the circumferential stress within the pipe walls, decreased as
the internal pressure was intentionally lowered. This reduction served as a countermeasure
to the compromised structural integrity due to increased crack size and extent of corrosion.
From a research standpoint, these results are crucial for defining CI pipes’ operational
limits and failure thresholds. They can be used to develop predictive models to estimate
the service life of such pipes and determine the necessary operational pressure adjustments
for ongoing safety.

In summary, the experimental outcomes highlight the effects of damage progression
on hoop stress in CI pipes and demonstrate the efficacy of pressure modulation as a failure
prevention strategy. This information is invaluable for maintaining and safely operating
systems that depend on a CI piping infrastructure. By including the variable of crack propa-
gation, the experiment provides a comprehensive understanding of the failure mechanisms
in CI pipes. It also assesses how pressure modulation can act as a preventative measure
against risks associated with material degradation. The results indicate that adjusting the
internal pressure in response to crack propagation can extend pipe life and decrease the
leakage of sudden rupture.

3.2. Crack Propagation

In this study, the behaviour of cracks in brittle materials like cast iron was analysed
using principles such as the stress intensity factor (SIF), which was employed to quantify
the stress conditions near the tips of cracks and predict the onset of crack propagation. The
influence of crack propagation in CI pipes was multifaceted, affected by internal pressure
variations, exposure to corrosive elements, and different initial crack sizes. The corrosive
environmental influences are clearly illustrated in Figure 6.

   
(a) (b) (c) 

Figure 6. Corrosion conditions of the pipe surfaces after (a) 0 h, (b) 120 h, and (c) 200 h.

These images were captured through scanning electron microscopy (SEM) with ×100
magnification. They show the surface morphology near the cracks on the CI pipe surface.
The initial seeded cracks propagate throughout the captured area, as shown in the upper
part of the images. Compared with Figure 6a, the pipe surface in Figure 6b exhibits
more areas of pitting and roughness, with cracks irregular in shape and varying in depth,
indicating the corrosion processes after 120 h. The morphology in Figure 6c shows further
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degradation. The surface is covered with a heterogeneous layer of corrosion products.
Corrosives penetrate deeper into the substrate.

The incremental changes in crack length can be visualised and measured under various
conditions, as demonstrated in Figure 7. The analysis revealed that crack propagation
increased from 0.55 mm to 2.43 mm. It was observed that larger cracks tended to grow
more rapidly, as shown in Tables 7–10.

 

Figure 7. Visualised crack in the image processing software imageJ 1.54i.

Table 7. Crack propagation for the initial crack size of 0.5 mm and corrosion time.

Initial Crack Size 0.5 mm

Corrosion Time 0 h
Corrosion Time 120

h
Corrosion Time 160

h
Corrosion Time 200

h

Crack Propagation
mm/15 min

Crack Propagation
mm/15 min

Crack Propagation
mm/15 min

Crack Propagation
mm/15 min

0.55 0.80 1.20 1.65
0.60 0.95 1.25 1.70
0.63 1.02 1.26 1.78
0.70 1.1 1.30 1.80

Table 8. Crack propagation for the initial crack size of 0.8 mm and corrosion time.

Initial Crack Size 0.8 mm

Corrosion Time 0 h
Corrosion Time 120

h
Corrosion Time 160

h
Corrosion Time 200

h

Crack Propagation
mm/15 min

Crack Propagation
mm/15 min

Crack Propagation
mm/15 min

Crack Propagation
mm/15 min

0.58 1.20 1.35 1.83
0.62 1.23 1.38 1.88
0.64 1.30 1.40 1.93
0.74 1.33 1.44 1.97

Table 9. Crack propagation for the initial crack size of 1 mm and corrosion time.

Initial Crack Size 1 mm

Corrosion Time 0 h
Corrosion Time 120

h
Corrosion Time 160

h
Corrosion Time 200

h

Crack Propagation
mm/15 min

Crack Propagation
mm/15 min

Crack Propagation
mm/15 min

Crack Propagation
mm/15 min

0.75 1.35 1.47 2.10
0.77 1.39 1.50 2.12
0.80 1.42 1.55 2.15
0.84 1.44 1.59 2.25
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Table 10. Crack propagation for the initial crack size of 1.2 mm and corrosion time.

Initial Crack Size 1.2 mm

Corrosion Time 0 h
Corrosion Time 120

h
Corrosion Time 160

h
Corrosion Time 200

h

Crack Propagation
mm/15 min

Crack Propagation
mm/15 min

Crack Propagation
mm/15 min

Crack Propagation
mm/15 min

0.77 1.47 1.62 2.30
0.80 1.52 1.70 2.35
0.82 1.55 1.90 2.40
0.85 1.59 2.09 2.43

This study comprehensively details the dynamics of crack propagation in CI pipes,
presenting the results across various initial crack sizes (0.5, 0.8, 1.0, and 1.2 mm) as follows:

3.2.1. Initial Crack Size 0.5 mm

The data on corrosion time and crack propagation reveal a gradual increase in crack
growth over time, as shown in Table 7. Initially, at 0 h, the crack growth ranged between
0.55 mm and 0.70 mm within 15 min. After 120 h of corrosion, the crack size increased to
a range between 0.80 mm and 1.1 mm. This growth continued, reaching a range between
1.2 mm and 1.30 mm at 160 h. By 200 h, the crack size further increased, ranging between
1.65 mm and 1.80 mm. This significant increase in crack size due to prolonged corrosion
time notably impacts stress resistance and elevates the risk associated with material failure.

3.2.2. Initial Crack Size 0.8 mm

The pattern resembles that of the 0.5 mm scenario but with greater increases in crack
size over time, as shown in Table 8. Larger initial cracks show faster growth rates, empha-
sising the importance of monitoring and intervention, especially for larger cracks prone to
rapid deterioration.

3.2.3. Initial Crack Size 1 mm

The data on corrosion time and crack propagation reveal a consistent pattern of in-
creasing crack growth over time, consistent with previously observed trends but showing
even larger increases in crack size, as shown in Table 9. This substantial growth intensi-
fies durability and safety concerns, as the increasing crack size significantly impacts the
material’s stress resistance and elevates the risk of failure.

3.2.4. Initial Crack Size 1.2 mm

The data on corrosion time and crack propagation show a marked increase in crack
growth rate from 0.77 to 2.43 mm, indicating significant material weakening due to 200 h
of corrosion, as shown in Table 10. The rapid growth from the initial crack size underscores
the material’s high susceptibility to corrosion, intensifying durability and safety concerns.

This study reveals a consistent trend: As the duration of corrosion extended across
all specimens (0, 120, 160, and 200 h) with an initial crack size of 0.5 mm, crack propa-
gation increased from 0.55 to 1.80 mm per hour. Similarly, with an initial crack size of
0.8 mm, the crack extended from 0.58 to 1.97 mm, indicating a 4% increase. Likewise, with
an initial crack size of 1 mm, the crack size propagated from 0.75 to 2.25 mm, marking a 3%
increase. For an initial crack size of 1.2 mm, the crack propagated from 0.77 to 2.43 mm,
representing a 5% increase. These findings underscore the significance of factoring in both
the initial crack size and environmental conditions in material integrity assessments and
lifespan predictions.
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4. Empirical Modelling of Leakage, Crack Propagation, and Corrosion

4.1. The Use of Multi-Linear Regression to Identify the Relationships between Corrosion Time,
Crack Size, and Leakage Amount

The results in Table 2 are illustrated in a 3D scatter plot, as shown in Figure 8, with
a fitted polynomial surface to visualise the relationship between the variables. The inde-
pendent variables, namely the corrosion time (CT, hours) and crack size (CZ, mm), are
plotted along the x- and y-axes, respectively, while the dependent variable, leakage amount
(LA), is represented on the z-axis. Each blue dot on the plot signifies an observed data
point, correlating specific CT and CZ values to a measured LA value.

LA(x,y) = 8.069 + (−30.45)x + 0.01402y + 41.51x2 + (−0.176)xy + 0.0002779y2 +
(−17.33)x3 + 0.07944x2y + 0.0005892xy2 (3)

Figure 8. The relationship between crack size (CZ), corrosion time (CT), and leakage amount (LA).
Blue dots represent the raw test data.

At lower CT hours and CZ mm, both near zero, LA starts at a negative value, around
−0.5, as indicated by the blue colour at the corner of the surface. As CT hours and CZ mm
increase, LA increases, exemplified by a value around 8 mL at CT = 100 h and CZ = 0.6 mm.
When CT and CZ approach their maxima, near 200 h and 1.2 mm, respectively, LA be-
comes positive, potentially reaching 20 mL, showing above the zero plane on the surface.
A polynomial surface fitted through these data points visually represents the predicted LA
values, colour-coded from 0 to 20, reflecting a relationship between CT, CZ, and LA. This
model predicts LA values within the observed ranges, enhancing the understanding of the
dynamics between these variables. The analysis examines how crack size and corrosion
duration influence leakage amount. It demonstrates that larger cracks and longer corrosion
times significantly contribute to the enhancement of leakage.

4.2. Methods for Evaluating the Accuracy of the Prediction Model

In this study, the effectiveness of the empirical model was assessed by applying evalu-
ation metrics to gauge the model’s performance. Specifically, we used the mean-squared
error to quantify the accuracy of a model’s predictions, as demonstrated in Equation (4).
This parameter assesses the variance between the predicted and actual values [30].

MSE = (1/n) ×∑ (actual forecast)2 (4)

where ∑ is the sum, n is the sample size, actual is the actual data value, and forecast is the
data value forecast.
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4.3. Empirical Analysis and Results

The empirical analysis demonstrates significant degradation in cast iron pipes with
larger crack sizes and extended corrosion periods of 0, 120, 160, and 200 h. This degradation
is attributed to the increased SIF and the adverse effects of corrosion processes, such as
pitting and stress corrosion cracking, causing material degradation. The model’s findings
are visually represented through a polynomial surface, where transitions in colour hues
illustrate the detrimental impact of prolonged corrosion and increased crack dimensions
on the pipe, as well as increased leakage amount.

4.4. Validation of the Empirical Model

The validation of the empirical model is presented in this section. Equation (3) models
the relationship among crack characteristics, corrosion duration, and leakage quantity.
The model was validated using the same material types but with varying crack sizes and
corrosion durations. The crack sizes selected for this study were 0.9, 1.5, and 1.7 mm,
while the corrosion durations were set at 100, 130, and 180 h, respectively, as presented in
Table 11.

Table 11. Crack size and corrosion time values.

Crack Size (mm) Corrosion Time (h)

0.9 100, 130, and 180
1.5 100, 130, and 180
1.7 100, 130, and 180

The predicted values for corrosion time, crack size, and leakage amount obtained from
the model were compared to numerical estimations in the existing papers, as shown in
Table 12. This model, formulated from empirical data, is derived from Equation (4).

Table 12. Comparison of leakage amounts.

Corrosion Time 100 h

Crack Size (mm)
Leakage Quantity (mL/h)

Experimental Empirical Error %

0.9 3 2.8 0.4
1.5 5 4.7 0.6
1.7 6 6.2 0.2

Corrosion Time 130 h

Crack Size (mm)
Leakage Quantity (mL/h)

Experimental Empirical Error %

0.9 8 7.9 4.45
1.5 8.3 9 0.33
1.7 10 10.3 0.5

Corrosion Time 180 h

Crack Size (mm)
Leakage Quantity (mL/h)

Experimental Empirical Error %

0.9 17.5 18 0.28
1.5 20 20.24 0.4
1.7 26 25.4 0.21

Good agreement was observed between this model and the numerical models in [31–33].
Furthermore, as documented in Table 12, the MSE was employed to validate the results for
leakage amount. A comparison of the MSE results between the empirical and numerical
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models indicated an error range of 0.40% to 8% across all parameters. The error in estimating
the leakage amount was below 10%, demonstrating the accuracy of the proposed model’s
predictions. Despite increased error margins in cases of larger cracks or prolonged corrosion,
these results emphasise the necessity of establishing validation criteria that are tailored to the
application’s criticality.

The validation results confirm the empirical model’s efficacy in predicting leakage.
The low error percentages observed in most scenarios reinforce the model’s precision
and reliability. However, the noted variations in error rates, especially under conditions
of increased crack sizes and prolonged corrosion durations, highlight areas where the
model might require further improvement. These variations could be attributed to the
complexities inherent in the corrosion process and the behaviour of larger cracks under
prolonged exposure to corrosion.

5. Conclusions

Model development plays a crucial role in engineering, especially in assessing struc-
tural integrity under various conditions. This study focused on the impact of corrosion
and mechanical loads on structural dynamics and crack propagation. An empirical model
was formulated to include variables such as crack size, duration of corrosion exposure, and
leakage quantity. The validation of the model was achieved through both experimental and
numerical methods. The investigation revealed that crack propagation behaviour varied
with changes in corrosion duration and crack size, particularly in scenarios involving large
cracks and prolonged corrosion exposure.

This study also revealed the crack propagation characteristics in cast iron (CI) pipes
exposed to corrosive environments. Our findings indicated a linear progression of crack
growth regardless of the crack size and corrosion duration. Multiple cracks were observed
on surfaces with pre-existing rectangular-shaped cracks, suggesting the usefulness of
analysing crack propagation using pre-seeded cracks of specific geometries. However,
future research should consider using naturally occurring cracks for more representative
insights.

Experimental observations showed that corrosion progressively undermines material
integrity, leading to crack initiation and expansion. As exposure to corrosive conditions
extends, cracks tend to grow larger, which accelerates fluid leakage by providing more
efficient channels for flow. This results in a significant increase in water leakage. A key
finding was the correlation between model parameters and the reduction in material
integrity, which decreased with increasing corrosion time and crack size. These results
confirm that material strength reduction is an important factor to consider in such studies.
The experimental data support this, indicating that longer corrosion duration and larger
crack size lead to a decrease in material integrity.
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Abstract: A zone control algorithm is proposed that considers both economic performance indicators
and control performance indicators. Unlike classic set point control, zone control expands the control
target into a convex set. In this study, an ellipsoid is used as the control target, and the advantages of
the ellipsoid target are explained in terms of overall stability and computational load. After defining
the distance measurement function and appropriate terminal constraints, an objective function that
considers both control performance and optimization performance is constructed. A theoretical
analysis shows that the proposed control algorithm satisfies the Lyapunov stability criterion. The
superiority of the ellipsoid control target in handling complex multivariable control tasks is also
demonstrated. This method has significant potential value in practical industrial applications, helping
to unleash the potential control performance and economic benefits of zone control systems. Finally,
the feasibility and stability of the algorithm are verified through a typical chemical process simulation.

Keywords: zone control; model predictive control; ellipsoid control target; dual-stage control; stabil-
ity; time limited control

1. Introduction

In process control, the system usually has complex features such as multivariable,
strong coupling, large dead time and nonlinearity. These complex features bring difficulties
to the design of classic controllers. Therefore, many modern control theories have been
established to overcome the complex characteristics of the system. Model predictive control
(MPC), as a model-based multi-variable control algorithm, has been widely studied and
applied [1–4]. In the MPC algorithm, the physical constraints of the system are used
as the corresponding hard constraints of the controller, and the control objective of the
system is reflected by the objective function, which is the soft constraint. By continuously
solving the optimization problem at each time, the best control law at each sampling
time can be obtained. Due to the limitation of computers’ computing power, the early
MPC could only satisfy a simple paradigm. With the development of computer hardware
and software, great progress has been made in the field of linear programming and non-
linear programming, and corresponding solutions for complex optimization problems have
been provided. Therefore, MPC control algorithms suitable for various scenarios can be
developed. In industrial applications, MPC control strategies have been used to cope with
various complex multi-variable systems. At the same time, the MPC control strategy is also
developing towards high flexibility. In the theoretical part, researchers have proposed a
variety of design paradigms based on the Lyapunov stability criterion.

The realization of an MPC controller depends on solving optimization problems with
constraints. These optimization problems use the observations of the system state variables
at the current sampling time to predict the state trajectory in the future finite horizon, and
they output the first element of the optimal control sequence under a given optimization
goal. At the next sampling time, the above solution process is repeated to obtain a new
optimal control law. Rawlings and Muske [5] developed an infinite horizon predictive
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control that includes input and state constraints. Research shows that state constraints can
be removed under certain conditions, and the solution of the optimization problem can
be obtained by finite-dimensional quadratic programming. Grimm et al. [6] developed a
finite horizon MPC controller for unconstrained nonlinear systems and proved that the
closed-loop system is still stable without terminal constraints. Primbs and Nevistić [7]
discussed the relationship between the prediction horizon and the stability of the closed-
loop system. For compact initial conditions, there is a prediction horizon such that any
horizon greater than this value can satisfy stability. Lee et al. [8] developed a constrained
nonlinear predictive controller. The algorithm includes terminal constraints and relies on
an online linear programming problem. At the same time, it is pointed out that suitable
terminal constraints can ensure the asymptotic stability.

With the development of MPC technology, its application scenarios have become more
diverse. Since the MPC control strategy is based on a mathematical model, a model with a
complex mathematical form [9] or a model with a complex operating rule [10] can obtain
better simulation results under the MPC framework. There are many ways to obtain the
reference model in MPC. Wibowo and Saad [11] analyzed and compared multiple iden-
tification methods and designed an identification strategy. The identification model can
reproduce the main dynamic characteristics of the real system. Similarly, the data-driven
MPC strategy [12] and the MPC controller based on encrypted Lyapunov technology [13]
have been successfully applied. Dubay [14] developed a self-optimized MPC controller for
the highly nonlinear injection moulding process to ensure product quality. Oravec et al. [15]
developed a robust MPC control strategy with soft constraints for the nonlinear process
with asymmetric dynamic characteristics and improved the performance of the system in
the response process through soft constraints. In the building temperature control system,
Ławryńczuk and Ocłoń [16] used a double-layer structure of an optimizer and MPC con-
troller. The optimizer can calculate the optimal operating point online to minimize energy
consumption. The simulation results show the effectiveness of this strategy. In addition,
Zhao and Go [17] developed a two-layer MPC control strategy. The collision avoidance
reference trajectory is calculated by the upper MPC controller, and the trajectory tracking is
realized by the robust feedback controller. Similarly, the distributed MPC strategy devel-
oped by Dai et al. [18] also implements functions such as collision avoidance and obstacle
avoidance for multiple agents. Rahman et al. [19] achieved precise control of the blow-
line Kappa number by feedforwarding lignin content measurements using near-infrared
spectroscopy and MPC controller. Zhao et al. [20] used fractional order MPC technology to
achieve improved control performance of the steam/water loop. He et al. [21] employed
MPC technology to achieve optimized tool paths for forming parts with varying wall angles
in incremental sheet forming.

Based on MPC, researchers have developed economic model predictive control (EMPC)
that can directly use economic index functions as objective functions. This control strat-
egy has been fully developed in theory and application as MPC strategy [22]. In fact,
the implementation paradigm of EMPC is similar to that of MPC, but there are differences
between the two control strategies for the proof of stability. Adeodu et al. [23] developed
an infinite horizon EMPC controller, which represented the objective function of the infinite
horizon by an approximate term, and verified the effectiveness of the strategy through
simulation experiments. Liu and Liu [24] discussed the impact of the finite horizon in the
terminal loss function on the performance of the closed-loop system. Grüne [25] consid-
ered an EMPC control strategy without terminal constraints and gave an upper bound
for the loss of this strategy. Similarly, based on MPC, integrating economic optimization
factors in its solution process can still construct a control strategy with economic opti-
mization behavior [26,27]. In addition, there are control performances corresponding to
economic performance indicators, such as the form of control targets. When the control
target expands from a set point to a convex set, the problem can be summarized as zone
control. González and Odloak [28] developed a zone MPC control strategy, which can
ensure that the closed-loop stability is satisfied both inside and outside the zone control
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target. Graciano et al. [29], Capron and Odloak [30] used multi-layer MPC, where the top
layer is an optimizer, and the bottom layer is a zone MPC controller. The optimizer can
calculate the optimal operating point, and the MPC controller can move the system to the
preset operating point under constraint conditions. Ferramosca et al. [31] developed a zone
tracking MPC control strategy, using a distance metric to ensure recursive feasibility and
local optimality, and verified the performance of the proposed strategy through simulation
experiments. Guan et al. [32] developed a zone control algorithm based on soft constraints
to reduce the frequency of zone constraint violations and increase the stability of the closed-
loop system. It is worth mentioning that under the framework of zone control, the system
still has additional degrees of freedom after entering the zone target. According to this
degree of freedom, an optimization strategy can be designed to improve the economic
benefits of the zone control system [33].

The main contributions of this paper are as follows:

• Propose a zone predictive control algorithm for ellipsoid control targets.
• Analyze typical switching control strategies and geometric forms in multi-stage

control systems.
• Theoretically analyze the finite-time occurrence of switching in switching strategies.
• Verify the effectiveness of the control strategy through numerical simulations.

In this paper, a typical switching control strategy is introduced in a multi-stage control
system. The differences between the geometric forms of the zone control targets are then
explained. Subsequently, a control algorithm corresponding to the ellipsoid control target
is designed, and the stability of the closed-loop system is theoretically ensured. Common
problems in multi-stage control are discussed sequentially from Section 2, and reasonable
solutions are provided. The geometric form of the control target is analyzed, leading
to the selection of the ellipsoid control target as being more suitable for this strategy.
In Section 3, a zone predictive control algorithm is developed, and the stability of its closed-
loop system is analyzed. Section 4 presents numerical simulation experiments used to
verify the effectiveness of the proposed control strategy.

2. Motivation

2.1. The Two Stages Control Strategy

In zone control, the trajectory of the system state can be divided into two stages,
as shown in Figure 1. In the first stage, the system state is outside the control target. At this
stage, the controller should the take control performance as the main factor and weaken
optimization operations such as economic optimization or quality optimization. In the
second stage, the system state is inside the control target, and optimization operations such
as economic optimization should be considered at this time. In addition, the controller of the
second stage needs to ensure the asymptotic stability of the closed-loop system and prevent
the system state from deviating from the control target due to optimized operation. In other
words, the controller needs to ensure the convergence of the zone control targets during
the optimization stage. Therefore, zone control can be regarded as a multi-objective control
problem, and its control objective in the first stage is a set of points. The switching points
of these two stages are strictly defined in some scenarios. For example, in process control,
when the system state enters the zone control target, it can be considered that the first
stage of the control process has ended. The next step is to start the economic optimization
operation, which is to start the second stage to improve the economic performance of the
entire closed-loop system. From the perspective of actual production, when the product
has not yet reached the quality score that meets the customer’s requirements, there is no
need to consider improving economic efficiency during the production. It is meaningful
to consider the economic optimization in the production process only when the various
indicators of the product meet the requirements. Therefore, the two-stage control strategy
is more reasonable in process control.
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Figure 1. The schematic of two stages of zone control.

From the point of view of control theory, there are two possible reasons that explain
why the system does not need to perform economic optimization when the system state is
outside the control target.

Within the framework of EMPC or optimal control, the optimal trajectory depends
on the mathematical model of the system. Usually, the controller designer chooses the
local linearized model near the steady-state operating point as the reference model. This
model can show the characteristics of the system within a given accuracy error near the
steady-state point. Once the operating range is not within this neighborhood, accuracy
errors cannot be guaranteed. Therefore, there is a varying model accuracy error between
the current state of the system and the steady-state operating point, and the model error
becomes larger as the distance increases, as shown in Figure 2.

Figure 2. The schematic of optimization effect and model accuracy vs. distance to operating point.

Consider a discrete system as follows:

x(k + 1) = f (x(k), u(k)) (1)

Assume that the steady-state point (xs, us) satisfies xs = f (xs, us). Define
fe(x(k), u(k)) = f (x(k), u(k)) − Ax(k) − Bu(k) as the model error of the linear model;
then, the linearization model at the steady-state point (xs, us) is shown in Equation (2).

x(k + 1) = Ax(k) + Bu(k) + fe(x(k), u(k)) (2)

where A =
∂ f (x, u)

∂x
|x=xs,u=us , B =

∂ f (x, u)
∂u

|x=xs,u=us .

Assumption 1. Linearization model error ‖ fe(x(k), u(k))‖ ≤ α f (‖x(k)− xs‖), where the mono-
tonically increasing and zero-starting K-class function α f (·) : R→ R is strictly increasing and
satisfies α f (0) = 0.

245



Processes 2024, 12, 1611

Lemma 1. For any ε > 0, there exists an ellipsoid B(xs, ε), so that for ∀x ∈ B(xs, ε), the lin-
earized system x(k + 1) = Ax(k)+Bu(k)+ fe(x(k), u(k)) of x(k + 1) = f (x(k), u(k)) satisfies
‖ fe(x(k), u(k))‖ ≤ ε.

Proof. According to assumption 1, ‖ fe(x(k), u(k))‖ ≤ α f (‖x(k)− xs‖). Select δ ∈ (0, ε];
let α f (‖x(k)− xs‖) = δ; then, ‖x(k) − xs‖ = α−1

f (δ) is established. So, for ∀x(k) ∈{
y|‖y− xs‖ ≤ α−1

f (δ)
}

, both ‖ fe(x(k), u(k))‖ ≤ ε and B(xs, ε) =
{

y|‖y− xs‖ ≤ α−1
f (δ)

}
are established.

From Remark 1, the necessity of multi-stage control can be derived. That is, the model
error within the specified range can meet the given requirements.

Therefore, in practical applications, the control target or the cut-off optimization
point must be determined by the characteristics of the process and operating conditions,
including safety, availability, reliability, accuracy, weight, and size.

On the other hand, the control strategy of optimizing and controlling separation can
reduce the risk of failure in the optimization process. Conventional control may result
in the optimization operation not being as expected, as shown in the left half of Figure 3.
The controller drive system advances along the predicted optimal trajectory, and the
system’s feasible domain limiting factors prevent the system from advancing along the
set trajectory. Finally, the system is limited to the same contour as the best working point,
but it does not enter the setting zone. From the experimental phenomenon, the system is
locked at the boundary of the feasible domain, resulting in a boundary effect. Therefore,
the control strategy should be designed to avoid boundary effects.

Figure 3. The schematic of regular control vs. zone target model predictive control.

In the design of the control strategy, additional parts should be added to avoid bound-
ary effects, as shown in Figure 4. Feasible domain preprocessing is performed at the
beginning of the algorithm, while two asynchronous monitoring events are designed to an-
alyze the behavior of the system online. Within this framework, there are two independent
processing strategies that ensure that the system can optimally control the system during
the control process and optimization process. In a two-stage control strategy, boundary
effects can be effectively avoided. The trajectory of the system under this control strategy
can be referred to on the right half of Figure 3. The state of the system is driven to the set
zone first and then gradually stabilized to the optimal operating point.
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Figure 4. The framework of the zone control system.

2.2. The Ellipsoid Control Target

In this section, the spatial geometry of the zone control target is the focus. This
problem is analyzed from two different perspectives: algorithm complexity and control
performance. First, let us take the cube and ellipsoid in space as examples to find out the
computer resources that the algorithm needs to consume in these two cases. When the
controller needs to determine the distance between the current state and the set target,
a spatial search algorithm is initiated to obtain a more accurate distance. In the spatial
cube control target, the n-dimensional setting target divides the space into 3n − 1 sub-parts.
If it is possible to determine which sub-portion the current state belongs to, it is easier to
determine the desired distance, as shown on the left side of Figure 5. Once the sub-portion
can be determined, the distance can be determined by the projection of the point to the
surface. However, the judgment of the sub-parts needs to be compared with all the vertices
of the control target, and the number increases as the dimension increases. And the more
complicated spatial structure form will bring more difficulties to the calculation of the distance.

Figure 5. The schematic of the distance to the rectangle target vs. the distance to the ellipsoid target.

The situation changes when the control target is an ellipsoid in space. Construct
a sphere in the space with the current state as the center of the sphere and gradually
tangential to the space ellipsoid by gradually increasing the radius of the sphere. At this
time, the radius of the sphere is the distance from the current state to the spatial ellipsoid.
Since the tangent points are all on the two spherical surfaces, it can be solved by establishing
a parametric equation system. This method can be referred to on the right half of Figure 5.
In addition, from the perspective of asymptotic stability, the ellipsoid target can be more
reasonable. When the system enters the zone target through the first phase. In order
to ensure the progressive stability of the system, it is necessary to estimate a terminal
attraction domain. Within this terminal attraction domain, the system can use an explicit
controller to stabilize the closed-loop system along a trajectory at the optimal operating
point. In Figure 6, regions I and III are safety zones, and the trajectory of the system within
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these zones is still inside the control target. However, Area II cannot guarantee the above
requirements. The system’s trajectory may be driven out of the control target by the explicit
controller, at which point the controller will switch. In this case, the system may rebuild the
optimal trajectory, which represents the failure of this optimization operation. Sometimes,
a high-frequency switching of the controller is also triggered, which is what controller
designers do not want. To define the control target, an ellipsoid is used as shown on the
right side of Figure 6. Because an inscribed ball can always be found inside the ellipsoid,
and an explicit controller can be designed inside it, the running track of the system is
always bounded. Therefore, a spatial ellipsoid is used as a target to avoid optimization
failure. In summary, in the framework of zone control, the ellipsoid control target is more
suitable than the spatial cube control target.

Figure 6. The schematic of control performance of the rectangle target vs. the ellipsoid target.

In some application scenarios, a given control target is often not an ellipsoid. Therefore,
an approximation is proposed to ensure that the control target can be transformed into an
ellipsoid. In the above description, the general spatial cube has vertices, and the critical
region that cannot satisfy the local feedback control law overlaps with these vertices.
Therefore, these key areas should be replaced by smooth curves. In order to obtain a
smoother boundary, a space ellipsoid can be used for replacement. The replacement target
can guarantee the calculation performance and ensure the stability of the closed-loop
system. In addition, the ellipsoid control target has more research results than the spatial
cube. At the same time, it can also meet the needs of real industrial control, so research in
this area has certain significance.

The optimization algorithm inside the model predictive control will generate large
fluctuations at the boundary of the derivative discontinuity. In other words, analytic
expressions are not available at the cusp, which makes the design and performance tuning
of the controller difficult. From the perspective of algorithms, a quadratic programming
problem with smooth boundaries has a higher efficiency. Therefore, smooth boundaries
can improve the reliability of the algorithm. In a specific application, in order to make
the ellipsoid target directly applicable, some approximations need to be made. Take the
second-order system as an example, mainly to give a more specific description, as shown
in Figure 7.

In Figure 7, method (a) employs an intrinsic approximation to reduce the actual control
target. This method is suitable for control systems with stricter control targets because the
set target in the controller is a subset of the original target, and the steady state of the
system does not deviate from the original set target. At the same time, it can also reduce
the impact of overshoot to a certain extent.

Method (b) selects a control target that intersects with the original set target. Using
this method will expand or crop the original target, so one needs to weigh the advantages
and disadvantages of these two control objectives in order to obtain the best results.

Method (c) is an external approximation, in which case the original control target is
magnified. The resulting goal includes the original target and a portion of the additional
area. This approach is applicable to non-strict control objectives, and new targets need to
be accepted by process requirements.
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Figure 7. Typical cases on smoothing method.

2.3. Related Work

In zone control, a control strategy based on switching is designed. Compared with the
conventional control strategy, the switching strategy can achieve higher economic benefits.
Field theory is used to analyze the difference between the optimal trajectories of MPC
and EMPC, concluding that the two control strategies are searching in different gradient
fields. Based on these differences, a switching strategy for zone control is designed [34].
When the system state is outside the control target, MPC is employed to improve control
performance. When the system state is within the control target, EMPC is utilized to
enhance economic performance. Additionally, a boundary effect is present in zone control,
where the input variable is manipulated by the controller to the boundary of the input
constraint. To avoid boundary effects in real devices, a method is designed to project the
optimal operating point at the boundary of the control target to a suboptimal operating
point within the target. To improve control performance and avoid boundary effects of the
system in transient or steady states, the target function of the controller is also modified.
Zone control can also abstract a special class of application scenarios, such as a control
system that includes margins. Margins often exist in the original design of the control
system to extend the effective use of equipment. Therefore, margins are often ignored in
the design process of control strategies, which can prevent the maximization of equipment
performance. For example, in a heat exchange network, margins are used to optimize
the control strategy, leading to improved system performance [35]. Considering margins
as virtual state variables can transform conventional set point control into zone control,
allowing for both economic performance and control performance to be considered in
different zones to achieve overall optimal performance. Consequently, zone control, as a
design tool for multivariable system controllers, can coordinate economic performance and
control performance while avoiding negative effects such as boundary effects. Within the
framework of zone control, margins can also be defined as redundancy [33]. The specific
function of redundancy is to ensure that adjustments to a certain input variable within a
small range do not affect control performance. Thus, a non-switching control strategy is
developed to achieve coordination of control and optimization in the zone control system,
addressing the challenge of switching on the switching surface.
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3. Zone Model Predictive Control

The zone predictive control proposed in this paper is divided into two parts. When
the system state is outside the ellipsoid control target, the distance measurement function
is used as the performance index, which can indicate the distance between the current state
of the system and the ellipsoid target. When the system state is inside the ellipsoid, the dis-
tance measurement function can be removed. However, only this distance measurement
function cannot guarantee the stability of the system, so our objective function includes
a finite horizon terminal constraint similar to EMPC [24]. In the framework of this paper,
in order to ensure the validity of the constraints, appropriate assumptions are needed.

Assumption 2. The applicable range of the linear model is within the ellipsoid B(xs,ε) defined by
Remark 1, so the model error of the linearized model can be considered to meet the requirements.

Suppose the discrete equation of the system is shown in Equation (1) and satisfies
x(k) ∈ X ⊂ Rn, u(k) ∈ U ⊂ Rm, where U is the domain and X is the range. In addition,
l(x(k), u(k)) : X×U→ R is defined, and the steady-state operating point (xs, us) is defined
by the following optimization problem in Equation (3).

(xs, us) = arg min l(x, u)
s.t. x = f (x, u)
x ∈ X, u ∈ U

(3)

The optimal solution of the above optimization problem can be used as the closed-loop
steady-state operating point of EMPC, but the optimality cannot be guaranteed for some
process control with zone control targets. The optimization problem corresponding to the
classic EMPC [36] is shown in Equation (4):

min J(k) = ∑N−1
i=0 l(x(k + i|k), u(k + i|k))
+VN(x(k + N|k))

s.t. x(k + i + 1|k) = f (x(k + i|k), u(k + i|k))
x(k + i|k) ∈ X

u(k + i|k) ∈ U

x(k + N|k) ∈ XF

(4)

where VN(x(k + N|k)) belongs to the terminal loss function. Since x(k + N|k) ∈ XF, let
XF = B(xs, ε); then, in the open-loop predicted trajectory x(k + j|k), j ≥ N, the open-
loop trajectory can be calculated using the linearization equation. The above problems
can ensure that the closed-loop trajectory of the system can obtain the optimal value
under the condition of the economic loss function l(x(k), u(k)). However, in some process
control systems, there are zone control targets Xsp, and these targets can be written as
Xsp = {x ∈ Rn|xmin

i ≤ xi ≤ xmax
i , i ∈ I[1,··· ,n]}. EMPC cannot reflect the optimality of the

zone target, that is, the rapidity of the system state entering the control target. To this end,
a new metric is defined to indicate the distance d

(
x(k),Xsp

) ∈ R between the current state
and the set target, with the calculation method provided in Equation (5).

d
(
x(k),Xsp

)
= min d

s.t. xε ∈ Xsp
‖x(k)− xε‖ ≤ d

(5)

Therefore, the optimality or suboptimality of the distance d
(
x(k),Xsp

)
cannot be guaranteed

in a closed-loop system with an EMPC controller.

3.1. Approach to Zone Model Predictive Control

The optimization problem corresponding to the zone MPC controller can be obtained
by appropriately modifying the EMPC controller. According to the proposed distance
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measurement index, combined with the standardized definition, the mathematical form of
the zone MPC controller can be obtained.

Definition 1. Ellipsoid control target Xsp(γ, ρ) =
{

x ∈ Rn|(x− γ)Tρ(x− γ) ≤ 1
}

, where

γ ∈ Rn, ρ ∈ Rn×n, ρ > 0, ρT = ρ.

Definition 2. The distance d
(
x(k),Xsp(γ, ρ)

)
represents the distance between the current state

x(k) and the set target Xsp(γ, ρ).

d
(
x,Xsp

)
=

{
inf
{

r|r = ‖xffl − x‖, xffl ∈ Xsp
}

x /∈ Xsp
0 x ∈ Xsp

(6)

Definition 3. Terminal loss function l̄(x, u) = ‖x− xs‖+ ‖u− us‖.

Based on the above definition, the optimization problem corresponding to the ZMPC
controller is given as Equation (7).

min J(x(k)) = ∑N−1
i=0 d

(
x(k + i|k),Xsp

)
+Vh(x(k + N|k))

s.t. x(k + i|k) ∈ X

u(k + i|k) ∈ U

x(k + i + 1|k) = f (x(k + i|k), u(k + i|k))
x(k + N|k) ∈ XF

(7)

where XF = B(xs, ε), Vh(x(k + N|k)) = ∑h−1
i=0 l̄(x(k + N + i|k), u(k + N + i|k)).

3.2. Stability Analysis

In this section, the known optimal sequence is used to construct a new trajectory,
which is then made to serve as a Lyapunov candidate function. The construction method is
different from Grüne [25], and the method of expanding in the prediction time domain of
the terminal constraint conditions is adopted. First, the behavior of the system is limited
within the terminal constraints.

Lemma 2. If there is a local controller u = g(x) : X → U in B(xs, ε) such that ‖x − xs‖ ≥
‖ f (x, g(x))− xs‖ for any x ∈ B(xs, ε), then l̄(x, g(x))− l̄( f (x, g(x)), u′) ≥ 0 is satisfied, where
u′ ∈ U.

Proof.

l̄(x, g(x)) = ‖x− xs‖+ ‖g(x)− us‖
≥ ‖ f (x, g(x))− xs‖+ ‖g(x)− us‖
= l̄( f (x, g(x)), u′)− ‖u′ − us‖+ ‖g(x)− us‖

(8)

Therefore, u′ ∈ U can be selected so that ‖g(x) − us‖ − ‖u′ − us‖ ≥ 0 holds; then,
l̄(x, g(x))− l̄( f (x, g(x)), u′) ≥ 0.

Theorem 1. If there exists (x′, u′) such that l̄(x(k + N), u(k + N)) − l̄(x′, u′) ≥ 0, then
V(x(k)) ≥ ∑N−1

i=1 d
(
x(k + i),Xsp

)
+ ∑h−1

i=1 l̄(x(k + N + i), u(k + N + i)) + l̄(x′, u′) holds.
V(x(k)) = min J(x(k)) is the objective function value corresponding to the optimal solution
of the optimization problem in Equation (7).

Proof. If x(k + i), i = 0, · · · , N + h− 1 is the optimal solution, it must satisfy x(k + N) ∈
B(xs, ε) and B(xs, ε) ⊂ Xsp. So, d

(
x(k + N),Xsp

)
= 0; then, ∑N−1

i=0 d
(
x(k + i),Xsp

) −
∑N

i=1 d
(
x(k + i),Xsp

)
= d
(
x(k),Xsp

) − d
(
x(k + N),Xsp

) ≥ 0. Assuming that there is a
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local controller u = g(x), it can be seen from Remark 2 that l̄(x(k + N), u(k + N)) −
l̄(x(k + N + 1), u(k + N + 1)) ≥ 0. So, choose x′ = f (x(k + N + h− 1), u(k + N + h− 1))
and u′ = us; then, l̄(x(k + N + h− 1), u(k + N + h− 1))− l̄(x′, u′) ≥ 0. Therefore:

∑h−1
i=0 l̄(x(k + N + i), u(k + N + i))
−∑h−1

i=1 l̄(x(k + N + i), u(k + N + i))− l̄(x′, u′)
= l̄(x(k + N), u(k + N))− l̄(x′, u′)
= l̄(x(k + N), u(k + N))
−l̄(x(k + N + 1), u(k + N + 1))
+l̄(x(k + N + 1), u(k + N + 1))
−l̄(x(k + N + 2), u(k + N + 2))
...
+l̄(x(k + N + h− 1), u(k + N + h− 1))
−l̄(x′, u′)
≥ 0

(9)

It can be seen from Remark 1 that a new trajectory sequence x(k + 1 + i|k + 1),
i = 0, · · · , N + h − 1 can be constructed through the optimal trajectory x(k + i|k),
i = 0, · · · , N + h − 1 at time k and satisfy all constraints, where x(k + 1 + i|k + 1) =
x(k + 1 + i|k), i = 0, · · · , N + h− 2,x(k + 1 + N + h− 1|k + 1) = x′. Therefore, x(k + 1+
i|k + 1), i = 0, · · · , N + h − 1 can be used as a set of feasible solutions for the opti-
mization problem in Equation (7), that is, V(x(k)) ≥ J(x(k + 1|k + 1)). And because
V(x(k + 1|k + 1)) ≤ J(x(k + 1|k + 1)), then V(x(k)) ≥ V(x(k + 1)). Since V(x(k)) ≥ 0
and, according to definitions 2 and 3, it is bounded; V(x(k)) can be used as the Lyapunov
function of the closed-loop system [37].

The performance loss function mentioned above can only guarantee asymptotic sta-
bility. Therefore, the terminal loss function is considered to be changed to another form
to ensure that the system achieves strong convergence, meaning that it can enter the zone
control target within a limited time.

Definition 4. Terminal loss function VN(x) = (x− xs)
TP(x− xs)[1], where P is a symmetric

positive definite matrix, and xs belongs to the interior point of the stable feasible range, that is,
xs ∈ {x|x = f (x, u), u ∈ U} ∩X is satisfied.

Lemma 3. If the linearization system of x(k + 1) = f (x(k), u(k)) at a steady-state operating
point xs and its neighborhood B(xs, ε) is completely controllable, then for any x(0) ∈ B(xs, ε),
there must be a local controller that makes x(k) enter an area inside B(xs, ε) within a finite time.

Proof. Let x(k + 1) = f (x(k), u(k)) the linearized system at the operating point xs in

its neighborhood B(xs, ε) as x(k + 1) = Ax(k) + Bu(k), where A =
∂ f (x, u)

∂x
|x=xs,u=us ,

B =
∂ f (x, u)

∂u
|x=xs,u=us . If there is a steady-state feasible region Xs and B(xs, ε) ⊂ Xs is

satisfied, the linearized system (A,B) can be considered to be completely controllable [38,39]
in B(xs, ε). Let e(k) = x(k)− xs; then, e(k + 1) = x(k + 1)− xs. which is

e(k + 1) = Ax(k) + Bu(k)− xs
= A(e(k) + xs) + Bu(k)− xs
= Ae(k) + Axs + Bu(k)− xs
= Ae(k) + (A− I)xs + Bu(k)

(10)
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From xs = Axs + Bus, it follows that xs = (I−A)−1Bus, so:

e(k + 1) = Ae(k) + (A− I)(I−A)−1Bus + Bu(k)
= Ae(k) + B(u(k)− us)

(11)

Let u(k) = v(k) + us, and finally e(k + 1) = Ae(k) + Bv(k). The pole configuration can
make the closed-loop system e(k + 1) = AFe(k) under the action of the state feedback
control law v(k) = −Fe(k) satisfy all the poles of AF. It is inside the unit circle, where
AF = A− FB. According to the Lyapunov equation [39], if you choose a symmetric positive
definite matrix Q, there must be only one symmetric positive definite matrix P so that the
following equation holds.

AT
FPAF + P = −Q (12)

Then select V(e(k)) = eT(k)Pe(k); there is

V(e(k + 1))−V(e(k)) = eT(k + 1)Pe(k + 1)− eT(k)Pe(k)
= eT(k)AT

FPAFe(k)− eT(k)Pe(k)
= eT(k)

(
AT

FPAF + P
)

e(k)
= −eT(k)Qe(k)

(13)

Consider choosing Vα > 0 so that a closed ball satisfies
{

x|Vα ≥ eTQe
} ⊂ B

(
xsp, ε

)
;

then, when x(k) ∈ B
(
xsp, ε

)
, x(k) /∈ {x|Vα ≥ eTQe

}
, V(e(k + 1))−V(e(k)) ≤ −Vα. Then,

there is

V(e(k))−V(e(0)) ≤ −kVα

V(e(k)) ≤ V(e(0))− kVα

Vα ≤ V(e(k)) ≤ V(e(0))− kVα

k ≤ V(e(0))
Vα

− 1

(14)

So, x(k) enters the area
{

x|Vα ≥ eTQe
}

within a finite time, and the local controller is
u(k) = −Fx(k) + Fxs + us.

Lemma 4. If the terminal loss function in Equation (7) is replaced by VN(x(k + N|k)) =

(x(k + N|k)− xs)
TP(x(k + N|k)− xs), and it is assumed that the open-loop prediction trajectory

corresponding to the optimal solution u(k + i|k), i = 0, · · · , N − 1 of the optimization problem at
time k is x(k + i|k), i = 0, · · · , N, then another optimal solution sequence u(k + 1 + i|k + 1), i =
0, · · · , N − 1 can be constructed, and it is a feasible solution sequence of Equation (7) with
x(k + 1|k + 1) = x(k + 1|k) as the initial value and satisfies J(x(k + 1|k + 1))−V(x(k|k)) <
−σ, where σ > 0, V(x) represents the value of the objective function corresponding to the optimal
solution of the optimization problem in Equation (7) with x as the initial condition.

Proof. According to Lemma 3, construct a solution sequence to satisfy u(k + 1 + i|k + 1) =
u(k + 1 + i|k), i = 0, · · · , N − 2, u(k + N|k + 1) = −Fx(k) + Fxs + us. Then, there is
x(k + 1 + i|k + 1) = x(k + 1 + i|k), i = 0, 1, · · · , N − 1; so,

J(x(k + 1|k + 1))−V(x(k|k))
= dist(x(k + N|k + 1))− dist(x(k|k))
+VN(x(k + N + 1|k + 1))−VN(x(k + N|k))
≤ −dist(x(k|k))−Vα

≤ −Vα

(15)

In Equation (7), the terminal constraint set x(k + N|k) ∈ XF can be defined as the linearized
neighborhood B(xs, ε) in Lemma 3. Then, the above conclusion holds, where σ = Vα is
given by Lemma 3.
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Theorem 2. If the optimization problem after replacing the terminal loss function in Lemma 3 is
used as the controller, the state variables of the closed-loop system can enter the zone control target
in a limited time.

Proof. From Lemma 4, it is known that J(x(k + 1)) − V(x(k)) < −Vα, and from the
optimality of the optimization problem, it follows that V(x(k + 1)) ≤ J(x(k + 1)). Thus,
V(x(k + 1))−V(x(k)) < −Vα. Therefore, V(x(k))−V(x(0)) < −kVα, that is, V(x(k)) <
V(x(0))− kVα. And because V(x(k)) ≥ 0, there is V(x(0))− kVα ≥ 0, that is, k ≤ V(x(0))

Vα
.

Combining Lemma 3, it is known that when x(0) /∈ Xsp, the system state can enter an
area

{
x | Vα ≥ eTQe

}
inside B

(
xsp, ε

)
within a limited time. Since

{
x | Vα ≥ eTQe

} ⊂
B
(
xsp, ε

) ⊂ Xsp, the system state must enter the zone control target within a limited time.

Let T0 = V(x(0))
Vα

. Then, for any k ≥ T0, x(k) ∈ Xsp holds.

From the above conclusion of strong convergence, it can be seen that the state of the
system must enter the zone control target within a limited time. Therefore, the control
algorithm proposed in this paper can ensure the stability of the zone control system.

4. Case Study

In this section, a simulation example is used to demonstrate the application of the MPC
control strategy for the ellipsoid control target. To provide a more intuitive representation
of the ellipsoid control target and to verify the effectiveness and stability of the proposed
control algorithm, a continuous stirred tank reactor (CSTR) system is utilized to validate
the ideas. Consider a lumped parameter model in Equation (16).

V
dC
dt

= −k0e−
E

RT CV + Q0(C0 − C)

VρCp
dT
dt

= Dhk0e−
E

RT CV + Q0ρCp(T0 − T)− qc

qc =
UaQcwCpc

Ua + QcwCpc
(T − Tc)

(16)

where the k0 is the reaction rate constant, E is the reaction activation energy (J/mol), R
is the ideal gas constant (J/mol·K), V is the reactor volume (m3), C is the concentration
of A in reactor (mol/L), T is the temperature of reactor (K), Cp is the heat capacity of the
mixture (J/mol·K), ρ is the density of the mixture (kg/m3), Dh is the reaction heat (J/mol),
Q0 is the inlet flow rate (L/min), C0 is the inlet concentration of A (mol/L), T0 is the inlet
temperature (K), qcc is the heat transfer rate of cooling water (J/min), Qcw is the cooling
water flow rate (L/min), Tc is the temperature of the cooling water (K), Cpc is the heat
capacity of the cooling water (J/mol·K), Ua is the heat transfer coefficient (W/m2 ·K), Q0
is the inlet flow rate (L/min), and Qcw is the cooling water flow rate (L/min). The system’s
structure is as follows in Figure 8. In this model, the variables are defined in Table 1.

Table 1. The description of each variable.

Variable Name Description

u1 Feed concentration
u2 Coolant flow
x1 Reactor concentration
x2 Reactor temperature
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Figure 8. Model of continuous stirred tank reactor (CSTR) system.

According to the invariant set theory [40] and Remark 1, a feedback matrix H exists
that can ensure the satisfaction of Equation (17).

(A + BH)TP(A + BH) ≤ P (17)

To meet the constraint condition, the linear matrix inequality is given by Equation (18).[
u2

maxI Y
YT Q

]
� 0 (18)

where Q = P−1, H = YQ−1.

Proof. The input constraints of the system can be expressed.

‖u(k)‖2 � umax (19)

It can be rewritten as follows with state feedback matrix H.

‖u(k)‖2
2 = ‖Hx(k)‖2

2

=
∥∥∥YQ−1/2P1/2x(k)

∥∥∥2

2

= xT(k)P1/2(Q−1/2YTYQ−1/2)P1/2x(k)

� u2
max

(20)

The equivalent condition of the above inequality is as follows [41]:

Q−1/2YTYQ−1/2 � u2
maxI

Q− YT 1
u2

max
Y � 0

(21)

With the Schur complement lemma, the linear matrix inequality can be obtained.[
u2

maxI Y
YT Q

]
� 0 (22)

A centralized parameter model was constructed and discretized with a period of 1 min
near the operating point. Without loss of generality, an unmeasurable disturbance ud was
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considered in this model. The discrete state-space model with dimensionless transformation
and equalization can be described as follows:

x(k + 1) =
[

0.7415 −0.0015
1.1935 0.0657

]
x(k)

+

[
0.15 0

0 −0.91

]
u(k) + ud(k)

(23)

The system constraints are as follows in Table 2.

Table 2. The variables and constraints of the model.

Variable Name Constraint

u1 [−3, 3]
u2 [−3, 3]
x1 [−2.5, 2.5]
x2 [−5, 5]

Giving the initial state x(0) = [2.5 3.5]T, control target P = diag([2 2]). The re-
quirement drives the system state into the set zone primarily and then stabilizes the
system.Combined with Equation (17) and Equation (18), the appropriate state feedback
matrix H can be computed as

H =

[ −0.1667 0.0022
0.7170 0.0278

]
(24)

In scenario I, the predictive horizon was 10. The coefficient of zone target penalty was
10 and optimization penalty 50. The first target was an ellipsoid target whose center was
[−1− 3] and radius [0.5 0.5]. The optimization point was set to [−1.3− 3]. The second
target for the center was [0 0] and the radius [0.4 0.4]. The optimization point was set as
the center [0 0]. The system trajectory is shown in Figure 9a. The system states can be
steadied in or near the optimization point on disturbance. The system has two stages in
each target. First of all, the system should be governed into the target rapidly. Then, the
states should be steadied at the optimization point. As shown in Figure 9b,c, the states
can be attracted into the target and then stabilized at the economic optimization point.
In scenario II, the controller parameters were the same as in scenario I; however, the first
target was changed in the center to [−1.7− 3] and radius [0.5 0.5]. In addition, the system
had the same second target with scenario I. The first optimization was set as [−1.7− 3].
The system states can also be tracked by the optimization points and be governed in the set
target as shown in Figure 10.

In scenario III, each parameter and target were set to be the same as those of scenario
II. In addition, the first optimization point was [−1.7− 2]. This point was in the first target
but out of the steady feasible region as shown in Figure 11a. Therefore, the system should
be steady in the boundary of the first target as shown in Figure 11c, called boundary effect.
In this extreme situation, this control algorithm can also govern the system into the set
target and maintain the asymptotic stability. The algorithm’s stability and control effect
meet expected requirements in these three scenarios.
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Figure 9. Simulation results of scenario I.
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Figure 10. Simulation results of scenario II.
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Figure 11. Simulation results of scenario III.

5. Conclusions

In this paper, the selection of targets in the zone control task is first discussed. From the
perspective of computational complexity and closed-loop control performance, it is de-
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termined that the control target should be in the form of an ellipsoid. For the design of
ellipsoids, three typical methods of boundary smoothing are proposed, which can shape the
space cube into an ellipsoid. A predictive control algorithm based on the ellipsoid control
target is then constructed. The generalized Euclidean distance is used as the objective
function of the controller and is segmented from the prediction time domain. The algo-
rithm is subsequently deduced and analyzed, and the closed-loop asymptotic stability of
the algorithm is verified. Finally, the feasibility and effectiveness of the ellipsoid target
predictive control algorithm are verified using a typical CSTR model.

Future research should focus on the following three aspects: limitations of model
assumptions, computational complexity, and applicability. Complex models may affect
real-time computational performance, while overly simplified models could introduce
significant dynamic errors. Therefore, it is necessary to address these issues comprehen-
sively and design appropriate adjustment mechanisms to enable timely switching between
different linear operating points, thereby further enhancing the control performance of
the system.
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7. Primbs, J.A.; Nevistić, V. Feasibility and stability of constrained finite receding horizon control. Automatica 2000, 36, 965–971.

[CrossRef]
8. Lee, Y.I.; Kouvaritakis, B.; Cannon, M. Constrained receding horizon predictive control for nonlinear systems. Automatica 2002,

38, 2093–2102. [CrossRef]
9. Yu, Y.; Luo, X.; Liu, Q. Model predictive control of a dynamic nonlinear PDE system with application to continuous casting.

J. Process Control 2018, 65, 41–55. [CrossRef]
10. Pourdehi, S.; Karimaghaee, P. Stability analysis and design of model predictive reset control for nonlinear time-delay systems

with application to a two-stage chemical reactor system. J. Process Control 2018, 71, 103–115. [CrossRef]
11. Wibowo, T.C.S.; Saad, N. MIMO model of an interacting series process for Robust MPC via System Identification. ISA Trans.

2010, 49, 335–347. [CrossRef] [PubMed]
12. Thombre, M.; Mdoe, Z.; Jäschke, J. Data-driven robust optimal operation of thermal energy storage in industrial clusters. Processes

2020, 8, 194. [CrossRef]
13. Kadakia, Y.A.; Suryavanshi, A.; Alnajdi, A.; Abdullah, F.; Christofides, P.D. Encrypted model predictive control of a nonlinear

chemical process network. Processes 2023, 11, 2501. [CrossRef]
14. Dubay, R. Self-optimizing MPC of melt temperature in injection moulding. ISA Trans. 2002, 41, 81–94. [CrossRef] [PubMed]
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Abstract: In recent times, industrial robots have gained immense significance and popularity in
various industries. They not only enhance labor safety and reduce costs but also greatly improve
productivity and efficiency in the production process. However, selecting the most suitable robot
for a specific production process is a complex task. There are numerous criteria to consider, often
conflicting with each other, making decision-making challenging. In order to tackle this problem,
the multi-criteria decision-making (MCDM) method is employed, which aids in ranking decisions
based on criteria weights. However, traditional MCDM methods are now considered outdated, and
researchers are concentrating on hybrid models that include multiple MCDM techniques to tackle
decision-making problems effectively. This study presents an effective MCDM model that integrates
Fuzzy-AHP-TOPSIS to evaluate and choose the best robot. The Fuzzy-AHP is utilized to establish a
set of weights for the evaluation criteria. Subsequently, the proposed technique analyzes, prioritizes,
and chooses the best robot option from the ranking list for the factory. The experimental results
demonstrate that by employing the integrated fuzzy analytical hierarchy process, taking into account
parameter weights and expert judgment, the robots are identified in order of best to worst alternatives
to factories. The outcomes of this research possess significant implications for robot selection and can
be applied in various fields to cater to production requirements.

Keywords: industrial robots; MCDM; fuzzy-AHP; fuzzy-TOPSIS

1. Introduction

The advancement of technology in the 4.0 industrial revolution has unlocked remark-
able opportunities for heightened automation in production [1,2]. It is crucial to address
the imperative of researching and implementing industrial robots to substitute human
labor in production processes [3–5]. The utilization of robots in diverse industries such
as automobile manufacturing, electronics, food and beverages, healthcare, and services
has demonstrated notable impacts [6–8]. Especially in the manufacturing industry, the
introduction of various robot types has resulted in a wide range of attributes, including
functions, technical specifications, load capacity, speed, and price [9,10]. This diversity
has presented challenges in choosing the best robot for a factory. The decision-making
process for choosing the ideal robot aims not only to achieve cost effectiveness and efficient
production but also to optimize other aspects of the production process, such as labor safety,
productivity, product quality, space and resource optimization, flexibility, and reduced pro-
duction time [11,12]. Making errors in decision-making regarding the selection of industrial
robots can impact a factory’s ability to compete in the market for both productivity and
product quality [13]. Consequently, choosing the appropriate robot for a certain industry
application and production environment has become a complex challenge, particularly
given the multitude of robot types available in the market. Decision makers must take into
account subjective and objective factors, as well as the benefits and costs associated with
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each option [14,15]. In practice, the criteria for selecting industrial robots often conflict
with each other, have different units of measurement, and require trade-offs, making it
challenging to compare and make decisions [16–18]. To address this issue, researchers have
put forth various methods and models for robot selection [19,20]. These models encompass
computer-aided approaches, statistical methods, and optimization models for enhancing
production system performance [21–23]. In 1991, the authors proposed a regression model
to identify robots that outperformed others in terms of manufacturer specifications at a
given cost [24]. Diagram and matrix methods have been utilized since 2006 to effectively
compare and identify robots, as well as to store and retrieve robot data for various ap-
plications [25]. While these methods address the issue of robot selection, they may lack
flexibility when dealing with complex variables, and the models can become intricate
and confusing, particularly in large-scale factories. Conversely, determining the optimal
robot involves a decision-making process that takes into account a number of competing
subjective and objective factors, resembling an MCDM problem. MCDM techniques have
proven to be valuable in handling such complicated problems, and researchers have em-
ployed various MCDM methods to tackle robot selection challenges [26–29]. The authors
of one study employed the MCDM technique combined with the weighting technique for
decision-making in the powder-mixed electrical discharge machining process [30]. The
evaluation based on distance from average solution (EDAS) technique was effectively
used to handle the robot selection problem [31]. Another MCDM technique, known as
Analytic Hierarchy Process (AHP) secondary analysis, incorporates both subjective and
objective criteria to make robot selections [32]. However, the traditional MCDM methods
may not align with reality as decision-making for each option depends on the evaluator’s
subjective opinion and related assessments, which are often vague and imprecise [33,34].
In many cases, accurately determining ratings and weights for performance is challenging.
To address this issue, fuzzy set theory was created to represent uncertainties in predictions,
human perception, and other factors. This led to the creation of Fuzzy MCDM (FMCDM)
techniques [35]. Researchers have utilized FMCDM methods to tackle this problem [36–38].
The first people to introduce decision-making procedures in fuzzy contexts were Bellman
and Zadeh (1970) [39]. Generally, a fuzzy function defines a fuzzy number, where each
value in the set is assigned a membership degree ranging from 0 to 1 [40]. Octagonal fuzzy
numbers are often considered the optimal solution for addressing load transmission prob-
lems in fuzzy environments [41]. The triangular fuzzy number (TFN), which represents the
decision maker’s status in complex problems, can be an effective means of conveying infor-
mation [42]. In MCDM models, fuzzy numbers are employed to manage the evaluator’s
subjectivity and uncertainty. The novel hexagonal fuzzy approximation’s characteristics are
examined, and a group MCDM issue using index matrices is used to show the practicality
of the proposed method [43]. Multi-criteria selections are made using fuzzy numbers in
MCDM approaches as Fuzzy-TOPSIS (Fuzzy Technique for Order Preference by Similarity
to Ideal Solution), Fuzzy-AHP, Fuzzy-MOORA, etc. [44–47]. In order to prioritize the order
for multi-criteria assessment of industrial robot systems, Cengiz Kahraman developed a
fuzzy hierarchy approach based on the TOPSIS model [48]. In [49], the authors utilized the
Fuzzy-AHP technique to achieve optimal robot selection. The utilization of fuzzy numbers
in MCDM multi-criteria techniques offers a more objective, multi-perspective, and realistic
assessment when considering criteria for selecting the optimal solution.

Several new MCDM models have been developed by researchers, which improve
making choices, accuracy and strategy [50–53]. MCDM approaches are becoming more and
more popular because of their capacity to evaluate and contrast many options. Meanwhile,
traditional MCDM methods are progressively going out of style. For complicated decision-
making scenarios, a single MCDM tool is often insufficient [54,55]. In order to achieve more
effective decision-making, it is necessary to integrate two or more MCDM models together,
in addition to combining MCDM with other methods [56,57]. The primary objective
of merging these techniques is to leverage the advantages of each tool and overcome
the drawbacks of individual models. To predict the ideal replacement robot, Goswani
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et al. [58] used a unique hybrid MCDM model that incorporates COPRAS and ARAS. For
robot choosing, the authors integrated FAQT-2 and concluded that the suggested hybrid
MCDM approach is more dependable and consistent compared to the traditional MCDM
method [59]. Table 1 highlights a selection of notable research studies in the current body
of literature pertaining to the evaluation of robots.

Table 1. Reference list for MCDM studies for robotics evaluation.

MCDM Method Criteria for Evaluating Robots Results Reference

Entropy, TOPSIS
Mechanical Weight, Repeatability,
Payload, Maximum Reach,
Average Power Consumption.

The study determined that Robot-7 is the optimal
selection for arc welding tasks. This robot has a
mechanical weight of 501 kg, a repeatability of
0.15 mm, a load capacity of 6 kg, a maximum reach
of 4368 mm, and a power consumption of 2.5 kW.

[60]

BW, EDAS
Load Capacity, Repeatability,
Velocity Ratio, Degree of
Freedom.

The proposed method offers several advantages,
including increased consistency and reduced
computational requirements.

[61]

EDAS

Purchase Cost, Load Capacity,
Repeatability, Man–Machine
Interface, Man–Machine Interface,
Vendor’s Service Contract.

Compared with other MCDM methods (such as
AHP, TOPSIS, VIKOR, ELECTRE, PROMETHEE,
MOORA, WASPAS, GRA, ROV, and OCRA), the
EDAS method is simpler and easier to apply in
selecting industrial robots.

[62]

TOPSIS-ARAS,
COPRAS-ARAS

Load Capacity, Repeatability
Error, Handling Coefficient,
Velocity, Cost.

Based on the evaluation, Robot-12 achieved the
highest rating and was identified as the optimal
choice. This study validates the effectiveness of the
hybrid models TOPSIS-ARAS and COPRAS-ARAS
in enhancing the accuracy of rankings and
delivering consistent and dependable results in the
selection of industrial robots.

[63]

SAW, TOPSIS,
LINMAP, VIKOR,
ELECTRE-III and
NFM

Load Capacity, Repeatability
Error, Cost, Vendor’s Service
Quality, Programming Flexibility.

In case study 1, Robot 2 and Robot 3 emerged as the
top choices for pick-and-place tasks.
Case study 2 revealed that Robot 1 and Robot 3
received the highest ratings among the
considered robots.
In case study 3, Robot 2 was consistently identified
as the optimal selection among the four robots
considered by most MCDM methods.

[64]

CRITIC, MABAC
Load Capacity, Memory Capacity,
Manipulator Reach, Maximum
Tip Speed, Repeatability.

Robot R3 attained the highest ranking, signifying its
suitability for pick-and-place operations in flexible
manufacturing systems. Among the evaluated
robots, Robot R1 received the lowest ranking. The
study also conducted a comparison of the ranking
results with other MCDM methods to validate the
accuracy and reliability of the proposed method.

[65]

QFD, MPR

Payload Capacity, Workspace,
Accuracy, Repeatability, Life
Expectancy, Programmable
Flexibility, Safety and Security,
Purchase Cost, Maintenance Cost,
Operation Cost.

The key criterion in the selection of an industrial
robot is load capacity, and the most critical technical
requirement is the drive system.

[66]

COCOSO, TOPSIS,
VIKOR, MOORA

Load Capacity, Repeatability,
Maximum Tip Speed, Memory
Capacity, Manipulator Reach.

According to the COCOSO method, R3 emerges as
the best robot based on the MW, SD, and CRITIC
weight distribution methods. However, R1 is
considered the best robot according to the EM
method, and R3 is favored according to the
AHP method.

[67]
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Table 1. Cont.

MCDM Method Criteria for Evaluating Robots Results Reference

SWARA, CoCoSo
Payload, Mechanical weight,
Repeatability, Reach, Cost, Power
Consumption.

The Fanuc P-350iA/45 robot has been selected as the
most suitable robot for painting applications.
These results have also been compared and
cross-referenced with other popular MCDM
methods such as TOPSIS, VIKOR, COPRAS,
PROMETHEE, and MOORA, demonstrating a high
degree of similarity in the ranking patterns among
these methods, affirming the effectiveness of the
SWARA-CoCoSo method.

[68]

Rough-MABAC

Payload, Horizontal Reach,
Vertical Reach, Repeatability,
Weight, Power Rating, Cost,
Flexibility, Safety, Welding
Performance, Maintainability,
Ease of Programming.

The research findings indicate that Robot A6 is the
most suitable choice, ranking at the top of the list,
followed by Robots A3, A13, A10, A5, A9, A4, A11,
A1, A14, A7, A12, A8, and finally Robot A2. The
robots are categorized into two main groups,
efficient and inefficient, based on their positions in
the approximate boundary regions.

[69]

PIPRECIA-TOPSIS Payload, Weight of Robot,
Repeatability, Reach.

The PIPRECIA technique identifies payload as the
most crucial criterion based on a predefined priority
order, and the TOPSIS method recommends the
FANUC 100iD/10L model as the best arc
welding robot.

[70]

BWM, G-BWM
Velocity, Repeatability, Load
Capacity, Cost, Quality, Memory
Capacity, Manipulator Reach.

The results indicate that Robot 2 is the best robot.
The G-BWM (group best–worst method)
demonstrates greater effectiveness compared to the
G-AHP (Group Analytic Hierarchy Process) method
due to its lower overall violation and deviation, as
well as requiring fewer comparisons, resulting in
reduced computational requirements.

[71]

MCGDM-IP Cost, Handling Coefficient, Load
Capacity, Repeatability, Velocity.

Robot R11 achieved the highest ranking among the
evaluated robots, while Robot R4 received the lowest
ranking. The MCGDM-IP method improved the
satisfaction level of the group by 2.12% compared to
the simple additive weighting (SAW) method.

[72]

CODAS, COPRAS,
COCOSO, MABAC,
VIKOR

Payload, Speed, Reach,
Mechanical Weight, Repeatability,
Cost, Power Consumption.

The results indicate that the HY1010A-143 robot is
evaluated as the most suitable for painting
applications according to four out of the five
methods used. The KF121 robot is evaluated as the
least suitable for painting applications by all of the
MCDM methods.

[73]

AHP

General Criteria,
Structure/Architecture Criteria,
Reliability Criteria, Application
Criteria, Performance Criteria,
Safety Criteria.

The AHP method is applied to evaluate the cobots
based on the predefined criteria. The cobot with the
highest overall priority weight (A1) is considered
the most suitable based on the given criteria and
AHP evaluation.

[74]

WSM, WPM,
WASPAS, MOORA,
MULTIMOORA

Load Capacity, Maximum Tip
Speed, Repeatability, Memory
Capacity, Manipulator Reach.

The results indicate that among the applied MCDM
methods, the MULTIMOORA (MOORA with
Complete Multiplicative Form) method is the most
robust and less affected by changes in the criteria
weights. The robot ranking results show that the
Cybotech V15 Electric Robot (R3) is often the best
choice in most of the methods.

[75]

COPRAS

Repeatability Error, Load
Capacity, Maximum Tip Speed,
Memory Capacity,
Manipulator Reach.

The Cincinnati Milacrone T3-726 Robot (A2)
achieved the highest ranking with a Qi value of
0.1946 and a Ui value of 100.00, securing first
position. The COPRAS method has been
demonstrated to be effective in the evaluation and
selection of industrial robots, aligning well with the
results from previous studies.

[76]
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Table 1. Cont.

MCDM Method Criteria for Evaluating Robots Results Reference

AHP
Load Capacity, Reach, Weight,
Repeatability, Power
Consumption, Dexterity, Service

Based on the AHP method, the robot structure R2 is
selected as the most optimal choice. [77]

GRA
Load Capacity, Repeatability
Error, Velocity Ratio, Degrees
of Freedom.

Robot R3 achieved the highest score with a grey
relational grade of 0.9434 and was ranked first. [78]

AHP

Technical Criteria: Movement,
Shaft Speed, Reach, Repeatability,
Allowable Moment, Load: Robot
Mass, Robot Reach, Vertical
Reach, Horizontal reach
Other Criteria: Capacity, Cost,
Flexibility, Mounting Type,
Welding Type.

Among the analyzed 15 industrial robots, the robot
with code A4 achieved the highest weight of
approximately 16%, followed by A5 with
approximately 15%, and A2 and A9 both
scoring ≈ 10%.
Robot A4 excelled in criteria such as repeatability
(C1.2), robot weight (C2.2), and power (C3.1),
obtaining the highest score in these aspects.

[79]

We introduced the hybrid approach of Fuzzy TOPSIS and Fuzzy AHP, which has not
been previously explored in research on robot selection. Our results demonstrated the
effectiveness of this evaluation method and the article not only brings practical value to
robot selection in manufacturing but also contributes to the knowledge base of MCDM
methods, particularly the combination of fuzzy AHP and fuzzy TOPSIS in modern produc-
tion environments. In this study, the criterion weights are determined using the Fuzzy-AHP,
while the robot alternatives are evaluated and ranked using the Fuzzy-TOPSIS. Specifically,
we employ the Fuzzy-AHP-TOPSIS combination model to rank eight different robots based
on their attributes, as evaluated by experts. The alternatives are organized in order of
increasing closeness to both positive and negative ideal solutions. To address the uncer-
tainty and subjectivity of the evaluators, we incorporate fuzzy numbers into the model.
By integrating the Fuzzy-AHP-TOPSIS model, we successfully selected the optimal robot
for our factory with a high degree of reliability. Moving forward, we plan to enhance this
hybrid MCDM model by incorporating additional techniques and methods to ensure the
best possible decision-making outcomes.

2. Materials and Methods

2.1. Fuzzy Numbers

Fuzzy set theory is employed to address uncertainty stemming from imprecision or
ambiguous information. According to this theory, an ordered pair collection (X being a
subset of the real numbers R) is referred to as a fuzzy set (F = {(ψ, μF(ψ))|ψ ∈ X}). A
membership function called μF(ψ) and μF(ψ) gives each element a number between 0 and
1. The pairwise comparison matrices of the AHP integrate fuzzy set theory. The triangular
fuzzy number (TFN) is commonly utilized to represent the judgments of experts and is
denoted by F( f , f , f ). The parameters F( f , f , f ) represent the minimum, intermediate
(i.e., most favorable), and maximum values used to quantify uncertain judgments. The
following determines the TFN’s membership function:

μF(ψ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, ψ < f

(ψ− f )( f − f )
−1

, f ≤ ψ < f

( f − ψ)( f − f )
−1

, f ≤ ψ ≤ f
0, ψ > f

(1)

A collection of criteria, represented as C = {c1, c2, c3, . . . , ci}, and a set of alternatives,
represented as A =

{
A1, A2, A3, . . . , Aj

}
, are taken into consideration while making a multi-

criteria choice. Every alternative is analyzed using a specified set of criteria. The selection
of each criterion is followed by the analysis of its utilization level for each alternative
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Aj. Thus, the value range analysis for each criterion can be expressed as F1
Ai, F2

Ai, . . . , Fm
Ai

(i = 1, 2, 3, . . . , n), where Fj
Ai(j = 1, 2, 3, . . . , m) represents the TFNs.

Utilizing fuzzy numbers facilitates improved the management of ambiguity and
uncertainty within expert evaluations. By employing fuzzy numbers, experts can articulate
their judgments using qualitative terms like “low”, “medium”, and “high”, which can
then be translated into fuzzy numbers. This approach offers greater flexibility compared to
traditional methods that demand precise score values, particularly beneficial when experts
are uncertain about their assessments. Additionally, fuzzy numbers enable a more nuanced
aggregation of diverse judgments, capturing the breadth of expert opinions and evaluations,
a capability that conventional methods may lack. For instance, in a traditional scenario,
an expert might assign a score of 3 out of 10 for the importance of the criterion “Cost”.
In contrast, employing fuzzy numbers, the expert could rate this criterion as “Medium
High”, resulting in a conversion to a triangular fuzzy number (2, 3, or 4). This method
enhances the accuracy of representing the uncertainties and ambiguities inherent in the
expert’s evaluation.

2.2. Fuzzy AHP

The AHP is a MCDM technique used in order to establish priorities among various
criteria. It involves making pairwise comparisons between the criteria and alternatives,
which are utilized to calculate the weights used to rank the alternatives (Figure 1).

Figure 1. Hierarchical structure diagram.

However, in real-life decision-making scenarios, making clear and accurate compar-
isons can be challenging due to the presence of imprecision and subjectivity. Moreover,
traditional AHP may not fully capture human reasoning and accurately represent expert
opinions when comparing alternatives. The Fuzzy-AHP is an extension of the traditional
AHP method that incorporates fuzzy number theory into its framework. This approach
addresses the limitations of the conventional AHP by allowing decision makers to commu-
nicate their assessments utilizing linguistic variables or fuzzy numbers. By considering
uncertainty in decision criteria and alternatives, the Fuzzy-AHP method facilitates a more
flexible and diverse decision-making process. It is a widely employed method in the field
of MCDM [80–83]. The Fuzzy-AHP approach makes use of a fuzzy pairwise compari-
son matrix. The priority weights are obtained by solving a fuzzy linear equation system.
These resulting weights are then used to rank the alternatives based on their overall scores.
In the Fuzzy-AHP method, the weight vector is determined by following these steps.
F = ( f̃ )n×m = ( f

ij
, fij, f ij)n×m

is a fuzzy pairwise comparison matrix:

Step 1: Calculate the fuzzy aggregation range. For each object, the fuzzy synthetic
extent value is computed as follows:
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We calculate the fuzzy set value as follows:
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Thus, Equation (2) becomes
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Step 2: The degree of possibility of F2 = ( f
2
, a2, f 2) ≥ F1 = ( f

1
, a1, f 1) is defined

as follows:

V(F2 > F1) = height(A1 ∩ A2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 f2 ≥ f1

0 f
1
≤ f 2

f
1
− f 2

( f2− f 2)−( f1− f
1
)

otherwise

(5)

To compare two fuzzy numbers F1 and F2, regarding the values of V(F1 ≥ F2) or
V(F2 ≥ F1), we consider the highest intersection point G between their corresponding
membership functions μF1 and μF2 , with corresponding value g (Figure 2). The values of
V(F1 ≥ F2) and V(F2 ≥ F1) can be calculated to compare between two fuzzy numbers of
F1 and F2.

Figure 2. Value of fuzzy numbers F1 and F2.
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Step 3: We calculate the minimum level at which fuzzy number F is greater than fuzzy
number Fi(i = 1, 2, 3, . . . , k) as follows:

V(F ≥ F1, F2, . . . , Fk) = minV(F ≥ F1) (6)

The weight vector is given by

W = (minV(F ≥ F1), minV(F ≥ F2), . . . , minV(F ≥ Fn))
T (7)

Step 4: We calculate the normalized weight vectors as follows:

W = (W1, W2, . . . , W3)
T (8)

where W is a non-fuzzy number.

2.3. Fuzzy TOPSIS

The classic TOPSIS method operates under the assumption that if each local criterion
increases or decreases monotonically, determining the ideal solution becomes straightfor-
ward. The ideal solution includes the highest achievable values for each local criterion,
whereas the negative ideal solution includes the lowest obtainable values. To account for
uncertainty and imprecision, the traditional TOPSIS approach was expanded to include
a fuzzy variant [84–88]. The idea behind the Fuzzy-TOPSIS approach is that the chosen
option ought to be closest to the positive ideal solution (PIS), which reduces the cost crite-
ria and maximizes the benefit criterion, while being the furthest from the negative ideal
solution (NIS). The implementation procedure for Fuzzy-TOPSIS is as follows (Figure 3):

Step 1: Determine the evaluation of criteria and alternative options. Suppose we have
a decision group consisting of K individuals. The fuzzy evaluation of the Cj criterion for
the Ai alternative by the kth decision maker is represented by x̃k

ij = (a1
k
ij, a2

k
ij, a3

k
ij). The

weight of the Cj criterion is represented as w̃k
j = (wk

j1, wk
j2, wk

j3).
Step 2: Determine the combined fuzzy weight for the criterion as well as the overall

fuzzy ranking for the possibilities. The following approach may be used to obtain the
aggregate fuzzy evaluation (abbreviated as x̃k

ij = (a1
k
ij, a2

k
ij, a3

k
ij)) of the ith criteria that

replaces the jth criterion: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
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The aggregated fuzzy weight, w̃j = (wj1, wj2, wj3), for the Cj criterion is given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
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Step 3: Compute the normalized fuzzy decision matrix R̃ =
[
r̃ij
]
, in which

ψ̃ij =

(
aij

ĉij
,

bij
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aij
}
(forthecostcriteria) (12)
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Figure 3. Flowchart of the fuzzy TOPSIS process.

Step 4: Compute the matrix Ṽ using the equation below:

Ṽ = ṽij = ψ̃ij × wj (13)

Step 5: Determine the fuzzy positive ideal solution (FPIS) and fuzzy negative ideal
solution (FNIS) as described below:

T̂max = (v̂max1, v̂max2, v̂max3, . . . , v̂maxn), v̂maxj = max
i

{
ṽij
}

(14)
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T̂min = (v̂min1, v̂min2, v̂min3, . . . , v̂minn), v̂minj = min
i

{
ṽij
}

(15)

Step 6: Compute the distance from each alternative to the FPIS and to the FNIS.⎧⎪⎪⎨⎪⎪⎩
d+i =

n
∑

j=1
d(ṽij, v̂maxj)

d−i =
n
∑

j=1
d(ṽij, v̂minj)

(16)

Step 7: Calculate the closeness coefficient FTi using the following formula:

FTi =
d−i

d−i + d+i
(i = 1, 2, 3, . . . , n) (17)

Step 8: Rank the alternatives based on FTi. The best choice is shown by the alternative
with the highest FTi.

3. Results and Discussion

In order to enhance the reliability of the MCDM model, we have incorporated two tech-
niques, namely Fuzzy-AHP and Fuzzy-TOPSIS, to select the optimal robot for our factory
based on specific criteria. Firstly, we utilize the Fuzzy-AHP to establish a set of weights
for the evaluation criteria. Subsequently, we employ the Fuzzy-TOPSIS to assess and rank
the available robot options. By employing the Fuzzy-AHP method to establish the weights
for the evaluation criteria, we have achieved greater objectivity and accuracy compared to
the conventional weight set determined by experts in Fuzzy-TOPSIS. The research process
diagram is illustrated in Figure 4.

Figure 4. Components for calculating the optimal robots.

The Fuzzy-AHP-TOPSIS hybrid model is employed to assess and rank objects by
evaluating criteria through a pairwise comparison matrix and ranking objects based on
their proximity to positive and negative ideal solutions. Fuzzy numbers are utilized in the
model to mitigate uncertainty and subjectivity associated with the evaluator. The model
employs Fuzzy-AHP-TOPSIS to evaluate criteria, aiding in the selection of the optimal
robot. The process involves the following steps:

Step 1: Determine evaluation criteria.
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In order to make a decision in selecting the optimal robot, it is necessary to establish
criteria that align with the factory’s requirements. These criteria represent the specific
attributes that robot manufacturers have incorporated into their products. After careful
consideration of the factory’s operations, we identified and defined the criteria, which are
outlined in Table 2.

Table 2. List of criteria used in robot selection.

No. Criteria Units Symbol

1 Mechanical Weight Kg MW
2 Velocity m/s VL
3 Payload Kg PL
4 Maximum Reach Mm MR
5 Average Power Consumption Kw APC
6 Cost $ CO

The selection of criteria for evaluating and choosing the optimal robot in a manufactur-
ing environment is crucial for the effectiveness and accuracy of the decision-making process.
The six criteria chosen in this study are Mechanical Weight, Velocity, Payload, Maximum
Reach, Average Power Consumption, and Cost. These criteria were selected based on their
comprehensive relevance and critical importance in determining the suitability of a robot
for industrial applications. Descriptions of these criteria are as follows:

Mechanical weight pertains to the weight of the robot itself, impacting aspects such as
mobility, installation prerequisites, and the structural support essential in the production
setting. This weight factor influences the ease of integration into existing systems and the
overall adaptability for deployment across various sectors of the factory. Lighter robots may
offer easier installation and relocation, whereas their heavier counterparts might necessitate
sturdier infrastructure.

Velocity denotes the rate at which a robot can execute its assigned tasks, directly affect-
ing production efficiency and cycle durations. Enhanced speeds can enhance productivity,
diminishing the time needed for each operation and augmenting the factory’s output rate.
This aspect holds particular significance in high-speed manufacturing scenarios where time
optimization is paramount.

Payload signifies the maximum weight a robot can manage, a critical factor in ensur-
ing its capability to execute tasks without mechanical strain. This capacity significantly
influences the robot’s applicability for specific tasks, especially in handling hefty materials
or products during manufacturing processes. A higher load capacity empowers the robot
to handle larger or heavier components, thereby amplifying its versatility.

Maximum reach denotes the farthest distance a robot can extend to execute its tasks,
influencing its access to different parts of the work area. This metric determines the
robot’s operational range and its ability to function effectively in larger or more intricate
setups. A greater reach enables the robot to cover more ground without requiring frequent
repositioning, thereby enhancing its efficiency and adaptability across various applications.

Average power consumption quantifies the energy utilized by the robot during its
operation, impacting operational expenses. Lower power consumption leads to reduced
operational costs and contributes to a more sustainable production process. This criterion holds
significance for factories striving to minimize energy usage and lower overall expenditures.

Cost encompasses the initial purchase price, installation expenses, and ongoing main-
tenance costs, all pivotal factors in any investment evaluation. It ensures that the investment
aligns with the financial constraints of the factory and aids in comparing the economic
viability of different robot options. Effectively managing costs is crucial for sustaining
profitability and attaining a favorable return on investment.

Once the essential criteria were established, we conducted a thorough search to identify
robots that possess the desired attributes. The robots, along with their corresponding
attribute parameters, are listed in Table 3.
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Table 3. Numerical data for robot selection [60].

Alternative MW VL PL MR APC CO

Robot 1 145 1.33 12 1441 1.0 722
Robot 2 27 1.11 8 911 0.5 485
Robot 3 170 1.26 4 1500 0.6 965
Robot 4 272 0.65 20 1650 3.4 671
Robot 5 250 0.04 25 2409 2 690
Robot 6 230 0.25 10 1925 5.6 325
Robot 7 501 1.01 6 4368 2.5 400
Robot 8 215 1.21 8 1801 5.05 690

Step 2: Survey experts’ opinions.
Initially, the study constructs a fuzzy evaluation table for the weight vector. The values

corresponding to the semantic level, ranging from low to high, are presented in Table 4.

Table 4. Fuzzy evaluation scores for the weight vector.

Linguistic Terms Scale of Fuzzy Number Units

Absolutely strong (AS) (2, 2.5, 3) 9̃
Very strong (VS) (1.5, 2, 2.5) 8̃
Fairly strong (FS) (1, 1.5, 2) 7̃

Slightly strong (SS) (1, 1, 1.5) 6̃
Equal (E) (1, 1, 1) 5̃

Slightly weak (SW) (2/3, 1, 1) 4̃
Fairly weak (FW) (0.5, 2/3, 1) 3̃
Very weak (VW) (0.4, 0.5, 2/3) 2̃

Absolutely weak (AW) (1/3, 0.4, 0.5) 1̃

To ensure practical applicability, we sought expert opinions by consulting individuals
who are recognized as experts in the field of industrial robots. These experts possess
extensive knowledge and experience in the domain, as listed in Table 5.

Table 5. List of the experts.

Experts Age Education
Experience in the Field

(Years)

Decision maker 1
(DM 1) 58 Associate Professor of Mechanical Engineering >15

Decision maker 2
(DM 2) 62 Associate Professor of Robotics Engineering >20

Decision maker 3
(DM 3) 58 Associate Professor of Manufacturing Processes >25

Decision maker 4
(DM 4) 65 Professor of Management Science and

Engineering Management >20

Decision maker 5
(DM 5) 66 Professor of Mechatronics Engineering >30

The aforementioned experts assessed the criteria using a fuzzy evaluation table for the
weight vector, as outlined in Table 6.
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Table 6. Evaluation of criteria by experts.

Criteria DM 1 DM 2 DM 3 DM 4 DM 5

MW FS FS FS VS FS
VL AS VS VS AS VS
PL AS AS AS AS AS
MR VS VS VS VS AS
APC VW VW VW FW VW
CO FW FW FW FW FW

Step 3: Construct a pairwise comparison matrix for the criteria.
For each pair of criteria A and B, we establish their relationship using the value scale

determined by fuzzy numbers. Experts then assess the levels of superiority and inferiority
between the criteria. The semantic relationship between the evaluation criteria is depicted
in Table 7.

Table 7. Relationship between two criteria according to linguistic terms.

Criteria High Priority Equal Low Priority Criteria

A 9̃ 8̃ 7̃ 6̃ 5̃ 4̃ 3̃ 2̃ 1̃ B

Based on the established Fuzzy-AHP method, we have a pairwise comparison matrix
between the criteria, as shown in Table 8.

Table 8. Pairwise comparison matrix between criteria.

Criteria MW VL PL MR APC CO

MW (1, 1, 1) (1, 15/14, 30/19) (1, 15/13, 5/3) (15/14, 30/19, 25/12) (1, 8/5, 21/10) (1, 11/10, 8/5)
VL (19/30, 14/15, 1) (1, 1, 1) (1, 11/10, 8/5) (1, 6/5, 17/10) (8/5, 21/10, 13/5) (1, 8/5, 21/10)
PL (3/5, 13/15, 1) (5/8, 10/11, 1) (1, 1, 1) (1, 15/14, 30/19) (13/10, 9/5, 13/10) (13/10, 9/5, 23/10)
MR (12/25, 19/30, 14/15) (10/17, 5/6, 1) (19/30, 14/15, 1) (1, 1, 1) (1, 7/5, 19/10) (1, 13/10, 9/5)
APC (10/21, 5/8, 1) (5/13, 10/21, 5/8) (10/13, 5/9, 10/13) (10/19, 5/7, 1) (1, 1, 1) (1, 7/5, 19/10)
CO (5/8, 10/11, 1) (10/21, 5/8, 1) (10/23, 5/9, 10/13) (5/9, 10/13, 1) (10/19, 5/7, 1) (1, 1, 1)

Step 4: Determine the fuzzy weight of each criterion.
Based on the evaluation of the criteria, we have a table of fuzzy weight values of each

criterion, as seen in Table 9 below.

Table 9. Fuzzy weight value of each criterion.

Fuzzy Weight
~
wj Value

w̃1 (0.132, 0.2, 0.33)
w̃2 (0.131, 0.206, 0.3190)
w̃3 (0.121, 0.192, 0.263)
w̃4 (0.098, 0.16, 0.247)
w̃5 (0.085, 0.121, 0.2)
w̃6 (0.076, 0.121, 0.195)

Step 5: Expert evaluation of alternative options based on criteria.
Initially, we have a fuzzy evaluation score table for the alternatives, which captures

the expert assessments for each criterion listed in Table 10.
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Table 10. Fuzzy evaluation scores for alternatives.

Linguistic Terms Fuzzy Core

Very poor (VP) (0, 0, 1)
Poor (P) (0, 1, 3)

Medium poor (MP) (1, 3, 5)
Fair (F) (3, 5, 7)

Medium good (MG) (5, 7, 9)
Good (G) (7, 9, 10)

Very good (VG) (9, 10, 10)

We consulted experts to gather their perspectives on alternative options for each
criterion. Appendix A contains Tables A1–A6, which present the various issues discussed.

Step 6: Construct a decision matrix.
We establish a fuzzy decision matrix for the criteria, which summarizes the evaluations

and scores for each criterion. The decision matrix for all criteria is depicted in Table 11.

Table 11. Decision matrix.

Alternative MW VL PL MR APC CO

Robot 1 (0, 0.6, 2.2) (8.6, 9.8, 10) (5.4, 7.4, 9.2) (0, 0.8, 2.6) (5.8, 7.8, 9.4) (0, 0.6, 2.2)
Robot 2 (0, 0, 1) (2.2, 4.2, 6.2) (0, 0.8, 2.6) (0, 0, 1) (9, 10, 10) (5.8, 7.8, 9.4)
Robot 3 (0, 1, 3) (7.4, 9.2, 10) (0, 0.6, 2.2) (0, 1, 3) (7.4, 9.2, 10) (0, 0.2, 1.4)
Robot 4 (6.6, 8.6, 9.8) (0, 0.4, 1.8) (7.8, 9.4, 10) (1.4, 3.4, 5.4) (0, 1, 3) (2.2, 4.2, 6.2)
Robot 5 (5.4, 7.4, 9.2) (0, 0.8, 2.6) (8.6, 9.8, 10) (7.8, 9.4, 10) (2.6, 4.6, 6.6) (0.8, 2.6, 4.6)
Robot 6 (2.2, 4.2, 6.2) (0, 0, 1) (2.6, 4.6, 6.6) (5, 7, 9) (0, 0.2, 1.4) (9, 10, 10)
Robot 7 (8.6, 9.8, 10) (0.6, 2.2, 4.2) (0.2, 1.4, 3.4) (9, 10, 10) (1.4, 3.4, 5.4) (7.8, 9.4, 10)
Robot 8 (0.6, 2.2, 4.2) (5.4, 7.4, 9.2) (1, 3, 5) (3.4, 5.4, 7.4) (0, 0.4, 1.8) (3.8, 5.8, 7.8)

Step 7: Compute the distance from each alternative to the FPIS and FNIS.
The values of the FPIS and FNIS are determined using Equation (16). The distances

from the options to the FPIS and FNIS are presented in Table 12.

Table 12. Distance from alternatives to FPIS and FNIS.

Alternative Robot 1 Robot 2 Robot 3 Robot 4 Robot 5 Robot 6 Robot 7 Robot 8

d+i 0.2656 0.4608 0.3525 0.2307 0.1653 0.3168 0.2131 0.2673
d−i 0.2803 0.0819 0.1953 0.3183 0.3835 0.2319 0.3301 0.2843

Step 8: Utilize the Fuzzy-TOPSIS method to evaluate the robots.
For each option Ai, we calculate a closeness coefficient FTi, which is presented in

Table 13, indicating the relative closeness of each option to the ideal solution.

Table 13. Ranking of alternatives.

Alternative Robot 1 Robot 2 Robot 3 Robot 4 Robot 5 Robot 6 Robot 7 Robot 8

FTi 0.5134 0.1508 0.3565 0.5798 0.6987 0.4227 0.6077 0.5154
Rank 5 8 7 3 1 6 2 4

Within the proposed model, a higher coefficient value FTi signifies a greater preference
or optimality as per the decision maker’s inclinations. As per the closeness coefficients
FTi detailed in Table 13, Robot 5 emerges as the most optimal choice to meet the factory’s
needs, while Robot 2 is identified as the least favorable option. This ranking highlights
the model’s efficacy in accurately distinguishing among alternatives. The key innovation
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of this method lies in its fusion of the strengths of both methodologies within a fuzzy
logic framework, effectively addressing the inherent uncertainty and subjectivity in expert
evaluations. Traditional methods often falter in handling the ambiguity and imprecision
intrinsic to expert judgments, as they necessitate precise numerical inputs. In contrast,
the fuzzy logic framework empowers experts to convey their preferences using linguistic
terms that are subsequently transformed into triangular fuzzy numbers. This approach
diminishes the reliance on exact figures and better encapsulates the uncertainty in expert
evaluations. By employing this dual approach, the chosen robot optimizes benefits while
minimizing costs and other adverse factors.

4. Conclusions

The solution to the problem of selecting optimal robots in production brought signifi-
cant benefits to the factory. It not only alleviates the challenges associated with choosing
the most suitable robot from a multitude of conflicting criteria but also delivers numerous
advantages to the factory as a whole. Appropriately designed and selected robots can
operate with enhanced efficiency, thereby increasing production output and labor produc-
tivity. In this study, the integrated Fuzzy-AHP-TOPSIS model is employed, leveraging
the AHP technique to establish criteria weights and employing the TOPSIS method to
evaluate and rank robot options. The proposed fuzzy solution enhances objectivity in
evaluating criteria by utilizing nine fuzzy numbers for pairwise comparisons. Triangular
fuzzy numbers are employed to expand the evaluation possibilities. The expert system
is coordinated to construct a criteria comparison matrix, which is then used to determine
the weights for the set of objective criteria. Based on the established fuzzy weight set,
the TOPSIS fuzzification strategy is employed to select the option that is closest to the
positive ideal solution (PIS), optimizing the benefit criterion while minimizing the cost
criteria, and farthest from the negative ideal solution (NIS). The incorporation of fuzzy
numbers mitigates uncertainty and subjectivity in the evaluation process, resulting in a
more accurate ranking of alternatives compared to traditional MCDM methods. Based on
this ranking, the optimal robot option can be selected for the factory, facilitating effective
decision-making in manufacturing environments. However, it is important to note that
this study has certain limitations. The number of robots included in the evaluation is
relatively small. Nevertheless, this serves as a foundation for testing the Fuzzy-AHP-
TOPSIS-integrated model and paves the way for its application to broader problems with a
more diverse range of options. In the near future, we plan to implement this model with
a larger dataset and enhance it by integrating additional MCDM methods to achieve the
highest level of accuracy. Nevertheless, it is essential to acknowledge that this study has
certain constraints. The evaluation includes a relatively small number of robots, potentially
limiting the ability to comprehensively encompass the diversity and intricacies of available
market options. Additionally, the model’s current applicability is restricted to a specific set
of criteria and may necessitate adjustments for various industrial contexts or additional
criteria. Despite these limitations, this study establishes the groundwork for testing the
Fuzzy-AHP-TOPSIS-integrated model and sets the stage for its application to broader
issues with a wider array of options, such as expanding the dataset, integrating additional
MCDM methods, and incorporating real-time data.
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Appendix A

For the mechanical weight criterion, we have an expert evaluation table for the alter-
native options, as illustrated in Table A1.

Table A1. Expert’s assessment of alternatives according to the MW.

Criteria Alternative DM 1 DM 2 DM 3 DM 4 DM 5

MW

Robot 1 P P P VP VP
Robot 2 VP VP VP VP VP
Robot 3 P P P P P
Robot 4 G G G G MG
Robot 5 MG MG MG G MG
Robot 6 F F F MP MP
Robot 7 VG VG VG G VG
Robot 8 MP MP P MP P

For the velocity criterion (VL), we have an expert evaluation table for the alternative
options, as illustrated in Table A2.

Table A2. Expert’s assessment of alternatives according to the VL.

Criteria Alternative DM 1 DM 2 DM 3 DM 4 DM 5

VL

Robot 1 VG VG G VG VG
Robot 2 F F MP F MP
Robot 3 G G VG G G
Robot 4 P VP VP VP P
Robot 5 P P P P VP
Robot 6 VP VP VP VP VP
Robot 7 MP MP MP P P
Robot 8 MG MG MG G MG

For the payload criterion, we have an expert evaluation table for the alternative
options, as illustrated in Table A3.

Table A3. Expert’s assessment of alternatives according to the PL.

Criteria Alternative DM 1 DM 2 DM 3 DM 4 DM 5

PL

Robot 1 MG G MG MG MG
Robot 2 P P P P VP
Robot 3 VP VP P P P
Robot 4 G VG G VG G
Robot 5 VG VG VG VG G
Robot 6 F F F F MP
Robot 7 P P P MP P
Robot 8 MP MP MP MP MP

For the maximum reach criterion, we have an expert evaluation table for the alternative
options, as illustrated in Table A4.
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Table A4. Expert’s assessment of alternatives according to the MR.

Criteria Alternative DM 1 DM 2 DM 3 DM 4 DM 5

MR

Robot 1 P P P P VP
Robot 2 VP VP VP VP VP
Robot 3 P P P P P
Robot 4 MP MP MP MP F
Robot 5 G G G MG MG
Robot 6 MG MG MG MG MG
Robot 7 VG VG VG VG VG
Robot 8 F F F MG F

For the average power consumption criterion, we have an expert evaluation table for
the alternative options, as illustrated in Table A5.

Table A5. Expert’s assessment of alternatives according to the APC.

Criteria Alternative DM 1 DM 2 DM 3 DM 4 DM 5

APC

Robot 1 MG G G MG MG
Robot 2 VG VG VG VG VG
Robot 3 G VG G G G
Robot 4 P P P P P
Robot 5 F F F F MP
Robot 6 VP VP VP VP P
Robot 7 MP MP MP MP F
Robot 8 VP VP VP P P

For the cost criterion, we have an expert evaluation table for the alternative options,
as illustrated in Table A6.

Table A6. Expert’s assessment of alternatives according to the CO.

Criteria Alternative DM 1 DM 2 DM 3 DM 4 DM 5

CO

Robot 1 P P P MP MP
Robot 2 MG G G MG MG
Robot 3 VP VP VP VP P
Robot 4 F F MP F MP
Robot 5 MP MP MP MP P
Robot 6 VG VG VG VG VG
Robot 7 G VG G G VG
Robot 8 F F MG MG F
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36. Petrović, G.; Mihajlović, J.; Ćojbašić, Ž.; Madić, M.; Marinković, D. Comparison of three fuzzy mcdm methods for solving the
supplier selection problem. Facta Univ. Ser. Mech. Eng. 2019, 17, 455–469. [CrossRef]

37. Kahar, N. Comparative study of smart and fmcdm methods in smartphone selection decision support system. Int. J. Image Graph.
Signal Process. 2021, 13, 1. [CrossRef]

38. Chen, L.; Pan, W. Review fuzzy multi-criteria decision-making in construction management using a network approach. Appl. Soft
Comput. 2021, 102, 107103. [CrossRef]

39. Bellman, R.E.; Zadeh, L.A. Decision-making in a fuzzy environment. Manag. Sci. 1970, 17, B-141–B-164. [CrossRef]
40. Kumar, R.; Khepar, J.; Yadav, K.; Kareri, E.; Alotaibi, S.D.; Viriyasitavat, W.; Gulati, K.; Kotecha, K.; Dhiman, G. A systematic review

on generalized fuzzy numbers and its applications: Past, present and future. Arch. Comput. Methods Eng. 2022, 29, 5213–5236.
[CrossRef]

41. Gurukumaresan, D.; Duraisamy, C.; Srinivasan, R. Optimal solution of fuzzy transportation problem using octagonal fuzzy
numbers. Comput. Syst. Sci. Eng. 2021, 37, 415–421. [CrossRef]

42. Wang, F. Preference degree of triangular fuzzy numbers and its application to multi-attribute group decision making. Expert Syst.
Appl. 2021, 178, 114982. [CrossRef]

43. Nayagam, V.L.G.; Murugan, J. Hexagonal fuzzy approximation of fuzzy numbers and its applications in mcdm. Complex Intell.
Syst. 2021, 7, 1459–1487. [CrossRef]

44. Liu, Y.; Eckert, C.M.; Earl, C. A review of fuzzy ahp methods for decision-making with subjective judgements. Expert Syst. Appl.
2020, 161, 113738. [CrossRef]
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64. Shanmugasundar, G.; Kalita, K.; Čep, R.; Chohan, J.S. Decision models for selection of industrial Robots—A comprehensive
comparison of multi-criteria decision making. Processes 2023, 11, 1681. [CrossRef]
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Abstract: In industry, reliable process supervision is essential to ensure efficient, safe, and high-quality
production. The droplet size distribution represents a critical quality attribute for emulsification
processes and should be monitored. For emulsion characterization, image-based analysis methods
are well-known but are often performed offline, leading to a time-delayed and error-prone process
evaluation. The use of an integrated smart process sensor to characterize the emulsification process
over time enables the real-time evaluation of the entire system. The presented integrated smart
process sensor consists of an optical measurement flow cell built into a camera system. The overall
system is placed in a bypass system of a production plant for emulsification processes. AI-based
image evaluation is used in combination with a feature extraction method (You Only Look Once
version 4 (YOLOv4) and Hough circle (HC)) to characterize the process over time. The sensor system
is installed in the plant and tested with different cosmetic products. Various iteration, prototyping,
and test steps for the final sensor design are performed prior to this in a laboratory test setup. The
results indicate robust and accurate detection and determination of the droplet size in real time to
improve product control and save time. For benchmarking the integrated smart process sensor, the
results are compared with common analysis methods using offline samples.

Keywords: emulsification process; camera system; flow measurement cell; AI-based image analysis;
process monitoring; integrated process sensor

1. Introduction

In industrial production, process monitoring is crucial to ensure efficient, safe, and
high-quality processes. Continuous monitoring ensures early detection and correction of
deviations, thus securing high product quality as well as high efficiency and economic pro-
duction [1,2]. In the food, chemical, and cosmetic industries, emulsions are often involved,
and the accurate estimation of the droplet concentration and size distribution is crucial
for the stability of the emulsion. The morphology and droplet size distribution signifi-
cantly affect this stability. Consequently, a thorough understanding of the emulsification
conditions and the resulting droplet characteristics is crucial for product assessment and
process control. In particular, for the emulsification process, the droplet size distribution
emerges as a critical quality attribute that requires continuous monitoring [2–4]. Established
methods for determining the droplet size distribution, such as manual image analysis or
light diffraction, are often time-consuming or labor-intensive, which is not practical for
many applications. Specifically, the quality evaluation of highly dispersed products can
be challenging and the implementation of real-time analysis is difficult [5–9]. Neverthe-
less, optical image analysis has proven to be a cost-effective and easy-to-use method that
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can extract features with high spatial and temporal resolution. The detection of such
features enables the determination of droplet sizes and droplet size distributions [4,10,12?

–14]. Image characteristics such as contrast, edges, and color (grey-scale) are used for this
detection, resulting in distinctive features. Offline analysis of process images has some
limitations in particular. These include the lack of representativeness due to sampling,
resulting in a temporal offset, as well as a location dependence of the measurement due to
the sampling point. In the worst-case scenario, this leads to a poor representation of the
overall system and possibly reduced product quality and lower process control due to a
delay in time [5,6,15]. Another challenge in the optical image analysis of emulsification
processes is the segmentation of overlapping droplets [6,9,16,17]. Real-time online analysis
offers many advantages over sampling, including reduced risk of contamination and the
ability to integrate into the production process by using real-time data to adjust production
parameters [5–7]. In addition, automation and standardization of optical analysis reduce
the number of sources of error, resulting in a more robust and representative analysis while
reducing costs. Since sampling and analysis are performed simultaneously, time-dependent
effects such as coalescence and droplet agglomeration do not occur [8,18–20].

Automated online analysis methods are increasingly popular in the process indus-
try, and their potential can also be used to determine characteristic emulsion parame-
ters [4,8,15,21]. New potentials arise due to more efficient methods and progress in artificial
intelligence (AI) research and development [4,22]. The combination of traditional mea-
surement instruments with AI algorithms that feature increasingly powerful network
architectures enables the processing of large amounts of data with high precision in a short
time [14,15,23? –29]. New network architectures offer opportunities for real-time analysis
and, consequently, process analysis, especially in the field of image-based process evalua-
tion [22]. The use of smart camera systems enables advanced, precise, and fast evaluation
and characterization of processes. These integrated sensors enable users to influence pro-
cess control and result in potentially more efficient process management. These so-called
intelligent or smart sensors are attracting growing attention in pharmaceutical and chem-
ical process engineering [18,30]. The development of an innovative, noninvasive optical
smart sensor is inspired by the design thinking method [31], wherein a final classification
of the sensor system is completed based on the Technology Readiness Level (TRL) [32].
Design thinking is a creative approach to problem solving that aims to develop innovative
solutions that meet user needs. This approach is user-centered and iterative, involving
interdisciplinary teams to understand and solve complex problems [31]. These are defined
in advance and are focused on in this publication as the real-time characterization of indus-
trial emulsification processes. To evaluate the sensor design and development level, the
Technology Readiness Level is used. This framework ensures systematic advancement and
validation and helps to refine the sensor design at each stage, ensuring it meets industry
standards and user requirements. The TRL is a scale (1–9) to assess the level of development
of new technologies based on a systematic analysis. It was developed in 1988 by NASA
for the evaluation of space technologies and has become an evaluation standard for other
areas of technology [32].

Abidin et al. [8] presents a comprehensive overview of the existing measurement tech-
niques for emulsion characterization. These are divided into in situ and external methods,
making a distinction between indirect and direct methods. Since the focus of this work is on
real-time monitoring and process control, the in situ image analysis methods such as particle
vision microscope (PVM), stereo-microscope, and endoscope are of special interest [5,8]. A
PVM is an invasive measurement technique that is used to characterize particulate systems.
The PVM probe uses six near-IR lasers focused through a hexagonal lens array to illuminate
particles, with back-scattered light collected and relayed to a charge-coupled device (CCD)
array, capturing digital images. This illumination enhances the grey-scale structure, aiding
with fully automatic image recognition [8]. In stereo-microscopy, the process images are
captured with an external camera. This is in sync with the flashing in the vessel. Measure-
ments are limited to droplets near the wall of the vessel and can be affected by the curvature
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of the wall. Depending on the camera used, blurring and low contrast may occur, so the
image evaluation may be subject to errors [8]. For in situ image analysis, an endoscope with
a camera is inserted into the dispersion. The camera captures images of droplets near the
glass window of the endoscope, allowing real-time measurement of droplet sizes, especially
in areas with high breakage rates, such as the impeller zone. Sharp images are ensured by
integrating a light source into the endoscope with a fiber-optic-guided stroboscopic flash.
A cover tube at the tip of the endoscope prevents droplet interference and allows precise
analysis of droplet size [8]. SOPAT, for example, designs and develops photo-optical image-
based measurement systems to characterize multi-phase systems. Depending on the probe
system, which is based on the endoscope technique, particles with size ranges of 1.5 to
7700 μm can be analyzed [33]. In addition to the usage of probe systems, measurement flow
cells provide the opportunity for the characterization of multi-phase systems [16,34–36].
Schmalenberg et al. [36] presented a temperature-controlled minichannel flow-cell for
non-invasive particle measurements in solid–liquid flow. Burke et al. [16] designed
a 3D-printed modular optical flow cell for image-based droplet size measurements in
emulsification processes.

In order to combine the advantages of image-based methods and automated evaluation
methods based on AI, in this contribution, the measurement cell presented in [16] is
further developed and integrated into a smart camera system. In general, the optical
sensor system should provide optical accessibility to the industrial emulsification process
and combine it with a direct evaluation system that allows real-time process monitoring.
Therefore, AI-based image analysis is combined with a new methodology for non-invasive
droplet size measurement and integrated into an emulsification process. In addition to
that, the developed camera setup, including its processor board, image sensor board,
and optics, is presented and combined with the optical measurement flow cell. To enable
process evaluation, integration of the final system into the process plant is necessary.
Together, these steps enable the evaluation of emulsions in a bypass system and provide a
measurement system for droplet size characterization within an industrial process plant.
For the integration of a sensor system as well as for its development, different key aspects
are considered and discussed in this work. In particular, this work aims to develop,
validate, and integrate an optical smart sensor to automate the analysis and control of
an industrial emulsification process and enable real-time analysis of industrial emulsions.
For this, an AI-based object detection approach is transferred to an edge device and its
usage in industrial processes is evaluated. Embedding the smart sensor in the system
and evaluating the process on an edge device constitutes an innovative approach that
guarantees straightforward installation and replacement.

2. Materials and Methods

The development of a smart optical sensor involves several design steps, including
optical accessibility to the emulsion, the development of a camera system that provides suit-
able resolution, an automated online method for the determination of the emulsion droplet
size, and the integration of the measurement system into an industrial production plant.
This section deals with the sensor development strategy and the industrial plant in which
the smart optical sensor is integrated. The working principle and the evaluation strategy of
AI-based optical detection are explained here, and the development and application of an
analytical strategy is described.

2.1. Sensor Development Strategy

The development of an applicable smart measurement system in the form of an optical
sensor to monitor emulsification processes is based on several requirements. These include:

• Optical access to the product, allowing a large number of different formulations to be
optically resolved and evaluated;

• No influence on process performance due to the integrated intelligent sensor;
• Simple integration into the industrial plant and user-friendliness;
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• Robust design.

The sensor development strategy requires an iterative approach based on the design
thinking process. Parts of this process use a rapid prototyping method using additive
manufacturing to enable rapid adaptation. This iterative workflow is visualized in Figure 1.

Figure 1. Schematic overview of the iterative sensor development strategy, including the optimization
steps for sensor development and plant integration. The strategy includes the progress from the idea
and requirements definition over the design of a test setup to the integration of the sensor system into
the production plant. This requires continuous validation and evaluation of the state of the system.
In particular, the measurement flow cell design, the components and composition of the camera parts,
the integration of the measurement flow cell into the camera, the evaluation option of the resulting
droplets, and the integration of the system were decisive [37,38] .

Firstly, critical process conditions and quality attributes were identified, and specifica-
tions for the smart optical sensor were defined. Based on the available process information,
a laboratory-scale test setup was constructed to represent the industrial process. A de-
scription of the test setup is given in [16]. The design of an optical flow measurement
cell was iteratively developed and evaluated in the test setup to allow optical accessibility
to the emulsion [16]. The focus is on optical accessibility and the use of optical methods
to evaluate the images of the resulting emulsion. Here, a general proof of the concept is
shown, and it builds the foundation for the next step of the camera integration. Based on
these results and the sensor requirements, the key aspects were defined:

• Optical sensor and flow cell design;
• Automated droplet size analysis;
• Integration into the production plant.

For the transition of the optical evaluation of the emulsification process from the
laboratory to the production scale, optimization of the individual key aspects is performed.
For this purpose, we adapt the measurement flow cell presented in [16], and the develop-
ment and integration into the camera system are iteratively advanced. In this optimization
framework, the periphery and the requirements are defined, and the design of the pro-
totype is adapted, tested, and integrated. The optimization of the other main aspects is
done simultaneously.

The automated analysis method for process characterization includes AI-based droplet
detection. The first optimization steps are presented in [17]. The implementation of AI-
based evaluation requires some adaptations to execute this method on the embedded sensor
board of the camera system. The integration of the complete measurement system into the
production plant is the last step to transfer the measurement principle from the laboratory
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to the production plant. The prototype solution is evaluated by comparing its performance
with the originally used evaluation method.

2.2. Industrial Emulsification Process

The smart optical process sensor is integrated into an existing industrial production
plant for emulsions that focus on cosmetic and medical products, as illustrated in Figure 2.
This plant has a total volume of 4 tons and is equipped with a temperature control system
in the form of a double jacket. A bypass pipe is integrated at the lowest point of the stirred
vessel. The bypass consists of an DN 80 pipe section, to which the disperser (Unimix S-Jet,
EKATO HOLDING GmbH, Freiburg, Germany) is connected. At this point, a toothed-
ring disperser performs both the conveying through the bypass and the dispersion of the
emulsion ingredients. After the disperser, a steel recirculation pipe is transferred to a
hose section then reverts to a steel pipe and is fed back into the vessel. This reduces the
vibrations caused by the emulsification process.

Figure 2. Image of the industrial plant for emulsification processes, including a closer view of the
disperser unit and the flow direction of the emulsion, at SystemKosmetik Produktionsgesellschaft für
kosmetische Erzeugnisse mbH, Münster, Bavaria, Germany.

Depending on the different formulations, the emulsion process proceeds as follows.
First, the water and oil phases are heated externally and fed to the heated vessel after
reaching the process temperature. Then, the emulsification process starts by starting
the disperser. Once a pre-emulsion has been achieved, additional components such as
emulsifiers, additives, etc., are added, and the emulsification process continues. As soon as
the emulsion has the desired properties, the process temperature is decreased, the emulsion
is cooled down, and the filling process is initiated. The entire system is then cleaned.

2.3. AI-Based Droplet Size Determination

The AI-based droplet size determination uses the object detection algorithm You Only
Look Once (YOLO) version v4 (v4). This is a real-time single-stage detector that localizes
and classifies objects in a single step. Based on previous contributions, this method ensures
a precise and reliable determination of droplet sizes [17,37]. This approach is examined
for its application in industrial emulsions. The used model is converted to enable its
application to the used embedded smart sensor. The detection accuracy and detection
time of the configuration for the present smart sensor is performed based on statistical
evaluation of the detected droplet sizes (see Section 3.1). For detection, a confidence score
(CS) of 0.6 and image input sizes of (640 × 540 pixels) are investigated to evaluate their
influence on detection performance.
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2.4. Validation of Droplet Size Determination

A comparative independent image analysis methodology is used to validate the AI-
based droplet size determination. For this, manual image evaluation is performed using
ImageJ (version 1.53k; Java 1.8.0_172) [39]. The results of this statistical evaluation are
compared with the results of the AI-based image analysis to confirm its trustworthiness
and accuracy. Further, a comparison of the different observed process states during an
emulsification process is performed. Here, the resulting DSD captured within the optical
measurement flow cell and the DSD from analyzing a corresponding sample under a
microscope are compared. This analytical strategy offers the possibility of evaluating the
process at different points in time and determining the progress of the process over time.
The accuracy and applicability of the sensor are evaluated.

3. Results

The next section deals with the results of the design process of the integrated smart
process sensor and its characterization in terms of the first test runs.

3.1. Optical Smart Process Sensor

The integrated optical smart process sensor is briefly discussed. The resulting indi-
vidual components along with the design-thinking process and the final integration of the
entire measurement system into the plant are evaluated. The resulting total measurement
system is illustrated in Figure 3.

Figure 3. Explosion view of the optical sensor design, including the measurement flow cell as well as
the camera setup in (a) and an image of the assembled sensor in (b).

The measurement system is organized into three key functional units:

• Camera unit, including the processor board, optical sensor, and focusable lens;
• Optical measurement flow cell;
• LED illumination unit.

The individual components of the measurement system are independent and inter-
changeable. This enables rapid adaptation to changes in processes such as color, turbidity,
and formulation of emulsions containing different additives. The individual components
and their development are described in more detail in the following.
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3.1.1. Optical Measurement Flow Cell

The design of an optical flow cell for droplet size measurement in laboratory emulsifi-
cation processes is described in [16]. Transferring this measurement system from laboratory
to production scale and integrating the measurement cell into a camera system requires
further adaptation and iteration steps, which are illustrated in Figure 4.

Figure 4. Schematic overview of the iterative measurement flow cell design, including the optimiza-
tion steps for camera integration. The strategy includes the progress from the idea [16] and the
defining of the requirements for the design of a test setup to the integration of the measurement flow
cell into the production plant. This requires continuous validation and evaluation of the design and
possible system integration strategies.

For this adaptation and optimization of the measurement system, the following re-
quirements were formulated:

• Reduction of complexity;
• Reduction of components to simplify handling and minimize leakages;
• Minimization of the distance between the emulsion and the camera lens;
• Applicability for the evaluation of industrial emulsions;
• Integration into industrial system—focus on fluid connections.

The test system measurement flow cell is designed with a modular structure, allowing
the adjustment of channel depth within the observation window. The developed optical
flow cell showed a first feasibility in optical process accessibility and provides the oppor-
tunity for optical process evaluation. The modular structure of the flow cell results in
different channel depths, as well as high complexity. The new design intends to solve
these challenges by the flow cell frame being manufactured as a single part, thus reducing
the complexity and the number of components. The integration of the flow cell into the
developed camera setup requires a minimum distance between the measurement flow cell
channel and the objective lens for focusing. The front part of the camera housing seals the
measurement flow cell against the view glass with a flat gasket when fitted. The detailed
housing concept of the camera is described in Section 3.1.2.

The iterative development process requires the application and evaluation of the
adapted measurement cell design for industrial emulsions, which was examined in the
laboratory test setup. This led to modifications to the channel width and exposure strategy.
In addition, the fluidic connections for integrating the sensor system into the production
plant were defined and adapted. In particular, the position and nominal width of the fluidic
connections are crucial for achieving a tight, pressure-resistant system and simple handling
during operation. For a deeper understanding, the key iterations of the measurement flow
cell are summarized in Table A1.

The final measurement flow cell design has the following specifications. The dimen-
sion of the measurement flow cell is 85 × 40 × 10 mm (length × width × height) with a
minimal channel diameter of d = 1.6 mm. The fluid connections are set to 1/8′′ threads
at both sides, providing the connection of the bypass hose. An expansion of the cross
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section is slowly performed within the measurement cell frame. The circular cross sec-
tion broadens and is changed to a rectangular cross section to allow the emulsion to flow
optimally in relation to the observation window. Here, the channel depth slowly tapers
from 0.25 mm to 0.025 mm, resulting in a channel depth of 0.025 mm, while the width
and length of the channel are 5 mm and 3 mm, respectively, at the observation window.
The optical measurement flow cell features a symmetric design, allowing the emulsion
to flow in either direction. To ensure a watertight seal, a fitting gasket is printed with
a dimension of 40 × 12 × 1.5 mm. This gasket is designed to perfectly fit into the mea-
surement flow cell frame. The flow cell design boasts a cutout at the bottom of the flow
cell that improves translucency and provides a defined place for the LED. A sketch of
the optical measurement flow cell and the gasket is shown in Figure 5. CAD sketches are
provided here: https://github.com/TUDoAD/AI-based-integrated-smart-process-sensor-
for-emulsion-control-in-industrial-application (accessed on 30 July 2024).

Figure 5. Technical drawing of the final design of the measurement cell frame and gasket, including
important dimensions.

3.1.2. Camera System and Illumination Strategy

The camera system was developed on the basis of the results of the laboratory tests.
During development, special focus was paid to the image sensor, the optics, the exposure,
and the processor board. The following requirements for the integration and application of
the optical measurement system for industrial emulsification processes were defined:

• Adequate magnification and visualization of the emulsion droplets;
• Definable and reproducible focusing;
• Exposure time, exposure mode, and light temperature;
• Hardware of the embedded processor for real-time evaluation;
• Housing concept and gasket.

The final setup consists of a Sony IMX327 (FRAMOS GmbH, Taufkirchen, Germany)
image sensor, which is combined with a TB4M-220-4 (Lensation GmbH, Karlsruhe, Ger-
many) lens. This combination demonstrates the basic visualization capabilities of an
emulsion. The choice of lens produces a distortion-free and perspective-correct image.
The selected lens has an optical magnification factor of 2.22 and focuses at a working
distance of 1 to 4 mm. The image sensor was selected on the basis of resolution, light
sensitivity, availability, and sensor size and is from the machine vision and automotive
sectors. The specifications of the image sensor can be found in Table 1 below.

Table 1. Properties of the used image sensor for the camera system.

Properties Sony IMX327

Resolution/pixel 1920 × 1080 (2 MP)
Sensor size/′′ 1/2.8
Pixel size/μm 2.9

Max. image diagonal/mm 6.46
Shutter/- Rolling
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Initial lighting tests with a ring-shaped arrangement of eight LEDs were followed by
the use of a single high-power LED with a color temperature of 5000 Kelvin (daylight) and
a Color Rendering Index (CRI) CRI = 70 for the demonstrator. This was confirmed as a
result of the test setup. Thus, a light capacity of a maximum of 135 lm is achieved. The LED
is mounted centrally in the channel in front of the measurement flow cell for transmitted
light illumination and can also be placed outside the image center for testing purposes. This
also allows comparative measurements between direct and indirect illumination. A piezo-
electrically adjustable focus module is used for precise electronic focusing of the lens to
the desired image plane. The hardware concept of the camera is based on an NXP iMX8M
Plus processor core, which is particularly suitable for an intelligent camera platform due
to its MIPI/CSI2 interface to a high-resolution image sensor and its hardware blocks for
graphics processing and machine learning. The selected embedded processor i.MX8M
Plus already contains blocks for machine learning hardware acceleration (NPU with
2.3 TOPS) and a graphics processing unit (GPU).

The newly developed Ark Vision hardware consists of a base board, system-on-module
(SOM) board, and sensor board. The baseboard contains the following components:

• Power supply unit for input voltage of 9–60 V DC;
• Interfaces to sensor board and electronic focus module;
• Ethernet PHY;
• USB interface;
• Digital inputs and outputs for triggering and signaling;
• LED driver for controlling the lighting.

The SOM board is equipped with the NXP embedded processor iMX8M Plus, while
the sensor board has the image sensor and a mounting option for lens mounts or electronic
focus modules.

The components of the demonstrator board are installed in a housing. The housing
components are manufactured using a 3D-printing rapid prototyping process for verifi-
cation purposes, allowing quick changes and adjustments after construction or testing.
The housing concept is adapted constructively to ensure that the components used fit the
modular concept of the demonstrator. The back part (see Figure 3), which serves as a
base for the main board, including the SOM board and the sensor board, is used for this
purpose. The focus module is placed on the sensor board. The middle section is placed
on top, which closes off the electronics with a sealed glass pane. The front part with the
integrated measurement flow cell and LED lighting forms the final part. The measurement
flow cell presented in Section 3.1.1 is inserted into the demonstrator case. The challenge is
to seal all components, which is achieved with two circumferential tongue-and-groove seals
between the three housing parts, and to seal the measurement flow cell against the camera
electronics. For this purpose, the middle and back sections form a self-contained unit with
a sight glass. The front part with the measurement flow cell seals against the window
with a flat gasket and can be removed as a separate block for cleaning. Finally, the sealed
electrical connection between the LED assembly (front part) and the main assembly (back
part) through the housing walls must be considered.

3.1.3. AI-Based Evaluation for Edge Device

Based on the YOLOv4 model presented in [17], the AI-based image evaluation is
examined with respect to its use on the selected i.MX8M embedded processor mentioned
in Section 3.1.2. The YOLOv4 architecture is divided into a backbone, neck, and head.
The backbone is in charge of feature extraction, the neck collects feature maps from the
previous stage, and the head predicts different object classes and bounding boxes. Here,
for the backbone, CSPDarknet53 is chosen, the neck comprises a spatial pyramid pooling
(SPP) block and a path aggregation network (PAN) block, and the head uses three YOLO
blocks. This is based on the originally presented YOLO model [40]. The customized and
optimized model for droplet detection is presented in [17]. For this contribution, this
model is transferred for use on an edge device to build a smart sensor system. The cam-
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era system (see Section 3.1.2), including its processor, is used for this since the process
monitoring and characterization are implemented on it. A conversion of the openCV-
based model into the TensorFlow framework is necessary for the use of the hardware
acceleration blocks for ML (NPU with 2.3 TOPS) and the graphics processing unit (GPU)
installed on the processor [41]. The script described in [42] is used for this purpose. Be-
sides the framework conversion—and, thus, the transfer from an openCV-based model
to a TensorFlow lite (tflite) model—no further changes to the AI-model were performed.
In order to ensure simple and good handling for the operator, it is necessary to create
application software (App), which simply starts the camera to enable the evaluation of the
droplet images.

An environment containing libraries for Python 3.10 and the Linux system must first
be set up on the camera to run the image analysis on the edge device. Due to a limited
main memory (2 GB RAM), the dependencies for numpy, pandas, openCV, and especially
tflite libraries were reduced in order to save main memory when creating the app version
for the AI-based image analysis.

Image evaluation using a tflite model also requires an image input size of around
640 × 640 pixels. Larger input images are scaled down to this size and vice versa, which
results in a reduction in resolution and consequently a degradation in droplet detection
and size determination. However, in order not to lose any image information, the input
images (1920 × 1080 pixels) are cut into smaller image sections, resulting in a total of
six sub-images for the AI-based image evaluation. The app version of the image analysis
enables for simple operation. The image analysis process is started by the operator by
starting the app. The required memory to load the model is around 10 MB, while the buffer
memory (250 MB) for the image data in the tensor format occupies the most memory and
depends on the amount of data. Also, the memory for prediction requires 10 MB. These
values refer to the evaluation of five emulsion images. The location of the processing videos
is defined so that the ML pipeline uses these videos for processing. The following steps are
performed in a loop:

1. Reading the video and extracting one frame per second;
2. Cutting the individual images into six sub-images;
3. Optional: adjustment of contrast;
4. Starting AI-based droplet detection using YOLO and size determination using HC;
5. Saving the determined droplet diameters and statistical parameters in a .csv file;
6. Requesting if a new video is available in the folder to restart at Step 1.

In addition to the detection images, the output of the detection is the statistical evalua-
tion of the resulting droplet sizes. This statistical evaluation enables process characterization
and process control for different process time steps.

3.2. Sensor Integration

The integration of the optical sensor (see Figure 3) into the system requires several
requirements that have been taken into account. These are defined below:

• Installation of a bypass system with flow control;
• Representative sampling;
• GMP-based hygiene requirements with regard to cleaning/maintenance;
• Connection to the system control unit;
• Reduction of vibrations on the measurement system as well as simple maintenance

and servicing.

Based on the knowledge of the laboratory test setup, a bypass system is installed to
integrate the optical sensor in the production plant. This involves a pipe system for the flow
and reflux of the optical sensor system connected to the circulation pipe of the test system.
The design ensures a high flow rate in the cleaning phase and has little impact on the flow of
the emulsion. An influence on the resulting droplet size was not measured. The flow to the
measurement system is integrated into the bypass after the flexible hose pipe to ensure that
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the vibrations caused by the disperser are removed from the system and not transferred
by the bypass to the optical smart process sensor. The reflux is located just before the
stirred vessel. A ball valve is installed on the flow pipe to enable maintenance and intensive
cleaning work and to regulate the flow during the test phase. A flexible hose system is
used to connect the bypass to the smart process sensor to reduce additional vibrations.

A diaphragm pump (Midgetbox, Debem Deutschland GmbH, Holzkirchen, Germany)
is installed in the feed to ensure a constant and controllable flow rate. To regulate the flows
of different formulations with different viscosities through the optical sensor, a multiple
bypass system was developed in which several hose connections that are closable by valves
are installed in series. This multiple bypass system is shown in Figure 6. The bypass signif-
icantly reduces the flow velocity, which is necessary to enable the optical analysis of the
emulsion using the optical sensor. The general setup is located close to the processing plant.

Figure 6. (a) Schematic sketch of the multiple bypass system and the integrated optical sensor and
(b) an image of the bypass setup, including the optical sensor, at SystemKosmetik Produktionsge-
sellschaft für kosmetische Erzeugnisse mbH, Münster, Bavaria, Germany. (c) Image of the indus-
trial plant for emulsification processes, including the position of the bypass with the integrated
optical sensor.

The control unit of the system is used to supply the measurement system with power
and to ensure an Ethernet connection. This is required for data transmission. In addition,
the camera is connected to the bypass diaphragm pump, provides the signal to the bypass,
and initiates pumping through the bypass. This signal is triggered electrically via a General
Purpose Output (GPO) of the camera system. In the future, the data on the quality of the
processed emulsion will be utilized to manage the entire process. This will be achieved
through direct communication between the camera system and the control unit using an
Ethernet connection.

3.3. Validation of Measurement System

Diverse industrial emulsions, Probio body lotion (batch number: 2329005), and colla-
gen cream (batch number: 2335213) were measured at different process times to validate the
smart process sensor described in Section 3.1. For benchmarking, the results are compared
with common analysis methods using offline samples or reference values. In addition
to a qualitative evaluation of the resulting emulsion images, the reproducibility of the
AI-based measurement method is assessed. Droplet sizes are determined for an example
emulsion at three different time steps. These time steps represent the same state during
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the emulsification process, as they are recorded with a Δt of 1 s, with no direct flow in the
measurement cell at the time of recording.

Figure 7a illustrates the ML-pipeline used for emulsion image processing and analysis.
Here, the first step is the cutting of the 1920 × 1080 pixel input image into six sub-images.
An additional contrast adjustment can also be performed here. Next, the system performs
AI-based droplet detection using YOLOv4, size determination using HC, as well as gen-
eration of the .csv file, which contains the droplet diameters and statistical parameters.
In Figure 7b, the detection of the three example images is shown, while Figure 7c illus-
trates the corresponding statistical evaluation. The results are presented in boxplots with
additional information about the number of droplets. The images show a high-contrast rep-
resentation of the emulsion, which enables an automated method for droplet size analysis.
In addition, the total image is in focus, and the used telecentric objective ensures that no
perspective distortion is present.

Figure 7. (a) The ML-pipeline for an example emulsion image. (b) Three examples of images,
including their detection at different time steps t during an industrial emulsification process. The time
steps presented show the same state during the emulsification step since they are recorded with a Δt
of 1 s with no flow in the measurement cell at the time of recording. (c) The corresponding boxplots
for the three different time steps. The droplet size is on the primary y-axis, while the total number of
detected droplets is illustrated as bars that correspond to the secondary y-axis.

The detection results (Figure 7c) were evaluated with a confidence score of CS = 0.6,
which was identified in previous studies [16]. Given that the three selected images show a
very similar state of the emulsification process, it is expected that the number of droplets
detected and the statistical evaluation will be consistent. This evaluates and validates
the reproducibility of the analysis method. The number of droplets detected fluctuates
between 427, 403, and 430 droplets per input image for the states t1, t2, and t3, respectively.
Statistical analysis demonstrates an approximation of the results with a CS of 0.6. Both
the median and the mean deviate by a maximum of Δd50 = 1.95 μm and Δd̄ = 1.09 μm,
respectively. These deviations are observed between the states t1 and t2. When considering
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the interquartile range (IQR), a maximum deviation of 3.3 μm is again observed between
the first two states. These minor fluctuations are not solely attributable to detection and size
determination errors. Due to the very low flow rate and movement within the measurement
cell, the three recorded states (see Figure A1) are very similar but not identical.

Additional time steps and industrial emulsions were measured in order to validate the
measurement system and to evaluate the application possibilities for process monitoring
and control. In addition to the validation of the resulting droplet size, the evaluation
time was assessed. Figure 8 presents three distinct emulsion images captured within the
measurement system and analyzed using the AI-based evaluation method implemented
in the camera’s processor. The resulting droplet sizes are compared with reference values
from the produced batches from SystemKosmetik Produktionsgesellschaft für kosmetis-
che Erzeugnisse mbH, Münster, Bavaria, Germany. For this comparison, samples from
the same time states examined for this analysis were observed under a microscope and
evaluated. In addition, a comparative analysis using ImageJ was performed, assessing at
least 100 droplets per image.

(a) (b)

100 

100 

(c)

100 

100 100 

100 

Figure 8. The statistical evaluation of various industrial emulsions. Here, the input image and an
example of the sub-image after the detection are illustrated. The statistical evaluation is presented
as a histogram, which shows the results of the AI-based evaluation using YOLOv4 and HC as well
as the comparison results of a manual evaluation method. (a–c) Three different examples. (a,b) The
same formulation (collagen cream) for different time steps and (c) a different formulation (Probio
bodylotion) for final products. Dark grey: evaluation using YOLOv4 and HC with a CS of 0.6, and
light blue: manual evaluation using ImageJ.

Figure 8a shows the comparison of the manual and AI-based statistical evaluation in
the form of a histogram for Figure 7 time step t3 to evaluate the trustworthiness of the AI-
based droplet size evaluation. Comparative analysis of the distributions reveals a consistent
trend in the DSDs. In total, 400 droplets were labeled for this comparison. The median of
the distribution as determined using the AI-based method is d50 = 43.55 μm, whereas the
median from manual evaluation is d50 = 42.41 μm, resulting in a deviation of Δd50 = 1.14 μm.
Furthermore, the mean values of both distributions were analyzed, with YOLOv4 + HC
producing d̄YOLOv4 = 46.31 μm and ImageJ d̄ImageJ = 45.01 μm. The IQR shows a difference
of Δd = 0.52 μm. Overall, the measured droplet sizes are credible, with minor deviations
attributed to the droplet labeling process. Given the camera resolution, where one pixel
corresponds to 1.2 μm, the assigned label length for each droplet significantly impacts the
measurement, especially for smaller droplets.

Figure 8b presents again the validation of the AI-based method for a later time step
than that presented in Figure 8a. This leads to smaller droplet sizes and probably to a
narrower distribution. The median of the distribution, which was determined using the
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AI method, is d50 = 28.71 μm. The median of the manual evaluation is d50 = 24.07 μm.
The deviation is therefore Δd50 = 4.74 μm. In addition, the mean values of both distributions
were calculated (d̄YOLOv4 = 29.65 μm and d̄ImageJ = 25.69 μm), as were the IQRs, which differ
by a delta of Δd = 7.74 μm. The number of evaluated droplets using YOLOv4 + HC was
134, while 100 droplets were labeled manually. At this point, the gap between manual and
AI-based evaluation is more pronounced than before, mainly due to the influence of image
resolution. Motion blur further complicates the AI-based evaluation, as the edges of the
droplets are less prominent. In addition, the AI-based method shows lower sensitivity for
smaller droplets than the manual method, as can be seen from histograms and IQRs. This
lower sensitivity is particularly noticeable if the droplet classes are widely scattered in one
image. Nevertheless, this lower sensitivity is a consequence of the pixel-to-micrometer ratio
as a result of the small magnification and sensor resolution. The last comparison focuses
on the final product of an emulsion that has already been cooled. Thus, a very narrow and
small droplet size distribution is expected. The number of droplets detected was 427, while
100 droplets were labeled for the ImageJ evaluation. The median between the distributions
differs by Δd50 = 1.59 μm, the mean differs by Δd̄ = 1.75 μm, and the IQR differs by
Δd = 0.06 μm. The histogram shown in Figure 8c has a class width of 0.54 μm, indicating
the importance of accurate labeling. Consequently, small differences in the defined pixel
length of a droplet have a large influence on the resulting droplet size. Therefore, only
those droplets whose edges were 100% recognized were evaluated manually. The reference
value, which was evaluated for this end product in the laboratory of SystemKosmetik
Prduktionsgesellschaft, is a value of d50 = 9.02 μm, indicating a deviation in the AI-based
results (Δd50 = 2.11 μm). However, the overall deviations in the median and mean values
are again explained by the pixel-to-micrometer ratio, which has a large influence on the
resulting droplet size. If the flow speed is too high for the chosen shutter speed, motion blur
occurs, amplifying the effect of the pixel-to-micrometer ratio as the droplet edges become
noticeably blurred. The measurement system itself shows no influence on the droplet size
and does not affect droplet measurement. Increasing the image resolution and the use of a
greater magnification are recommended for further studies.

Considering the processing time of the individual images, the single droplet detection
and evaluation of a single image using the ML pipeline, which is running on the camera’s
processor, is completed within approximately four seconds, plus approximately 30 s to
initialize the detection’s interpreter. However, this processing time depends on the number
of droplets detected per image and may therefore differ. In comparison, the manual
evaluation of approximately 100 droplets takes at least 10 min. The acceleration of the
process evaluation in this way enables real-time evaluation and characterization of an
emulsification process and provides the possibility of process control. For this, further
optimization of AI-based image evaluation can be performed on the edge device. Here,
the accuracy of the model and the detection time can be considered. In general, performance
optimization can be achieved by hardware and software changes. Improvement in detection
performance, particularly for small droplets, can be achieved with further training, higher
image resolution, and greater magnification. The conversion of YOLOv4 weights for
implementation in a TensorFlow framework may have resulted in a reduction in accuracy.
Direct training based on a TensorFlow model is a conceivable approach. Additionally,
adapting the methodology to a YOLOv7 model is planned, which is expected to not only
enhance accuracy but also reduce detection time. This finding has been supported by initial
studies and is well-documented in the literature [43,44]. The current investigations utilize
only the camera’s CPU for the evaluation methodology, indicating that leveraging the GPU
or the processor’s NPU would accelerate the evaluation process.

Overall, the integrated smart process sensor is suitable for process monitoring and
potential process control. However, optimizing detection performance is desirable, as it
can substantially expand the sensor’s range of applications further. Based on the TRL level,
a level-7 sensor is presented since it is a system prototype demonstration in an operational
environment showing first validated results.
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4. Conclusions and Outlook

This contribution presents the development, testing, and validation of an integrated
smart process sensor. The design strategy represents an iterative approach that considers
a measurement flow cell for optical accessibility to the emulsion, a camera system as the
optical sensor, the coupling of these two components, and the integration of the total
measurement system into an industrial emulsion production plant. In addition to the
development of the sensor, AI-based droplet size determination for application on the
camera processor was modified and validated with respect to the accuracy and applicability
for the characterization of the emulsification process. The integration of the sensor system
into a production plant for emulsions—more precisely cosmetic products—shows the
possibility of evaluation of the product and process during operation without delay in
time. The validation of the measurement system shows that the system produces consistent
and reproducible results. In addition, the applicability of the measurement system was
validated using a benchmark method. The developed bypass system and the sensor
system do not influence the droplet size. The resulting DSDs differed only slightly, and the
system is sufficiently accurate to be used on an industrial scale. The first application of the
measurement system shows its usability for different types of industrial emulsions focusing
on cosmetic products. Here, its use to determine different droplet size ranges is shown.
In particular, the detection of smaller droplet sizes and the investigation in flow, resulting
in motion blur, show an increasing deviation from the manual method and require critical
consideration. However, future steps are intended to optimize this deviation and include
both hardware and software adaptations. These optimization steps increase the accuracy of
the detection itself and the image resolution. The general measurement concept as well as
the combination of the optical measurement cell and the camera system, shows a reliable
evaluation of the emulsification process, allows faster process evaluation, and provides
a basis for process control. Furthermore, the optical measurement cell must be tested for
long-term use. Consequently, the durability and pressure resistance of fluidic connections
in particular should be investigated. However, the measurement system is sealed against
dust and water by the camera housing, ensuring that the measurement is not affected. The
camera housing is usable for total operating temperatures up to 85 °C and a humidity up
to + 95 % r.h.

For future investigations, the focus will be on adapting AI-based evaluation methods
for explicit use on an edge device. A later version of the YOLO evaluation algorithm will
be considered for this purpose. In addition, the camera system is to be equipped with
a larger sensor (5 MP instead of 2 MP) to achieve a higher resolution of the emulsion
images. The evaluation using the TRL level includes a further qualification of the method-
ology, which is achieved by comparing a variety of emulsions. Further, a material and
production study needs to be performed to test and possibly increase the lifetime of the
optical measurement cell. Further validation of the presented approach considering the
longevity allows for a higher classification of the measurement system based on the TRL
level. Finally, the real-time data obtained by the sensor can be used for process control.
The evaluation of intermediate and end products is relevant here. Current knowledge indi-
cates that an increase in efficiency is expected for process execution, allowing an increase in
plant availability.
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The following abbreviations are used in this manuscript:

AI Artificial Intelligence
App Application Software
CCD Charge-Coupled Device
CPU Central Processing Unit
CS Confidence Score
CRI Color Rendering Index
DC Direct Current
DSD Droplet Size Distribution
GMP Good Manufacturing Practice
GPO General Purpose Output
GPU Graphics Processing Unit
H Height
HC Hough Circle
IQR Interquartile Range
L Length
LED Light-Emitting Diode
ML Machine Learning
NPU Neural Processing Unit
PAN Path Aggregation Network
PDF Probability Density Function
PHY Physical Layer
PVM Particle Vision Microscope
RAM Random-Access Memory
SOM System-on-Module
SPP Spatial Pyramid Pooling
TFLITE TensorFlow Lite
TOPS Trillions or Tera Operations per Second
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TRL Technical Readiness Level
USB Universal Serial Bus
W Width
v4 Version 4
YOLO You Only Look Once

Appendix A

Table A1. History of the measurement flow cell designs that were iteratively generated. Changes
compared to the preceding prototype are marked in blue in the images. The first prototype is related
to [16], while the last is used for the presented work. For the experimental setup, consider the test
setup [16].

CAD Sketch
No. of Components

(Total)
Channel Dimension/
mm ×mm ×mm *1 Fluid Connection Change *2

7 3 × 3 × 0.025–0.250 1/8′′ -

4 3 × 3 × 0.025 hose nozzle

Reduction in complexity;
Changes fluid connection

for faster testing in
test setup

3 3 × 5 × 0.025 5 mm/M5
inside camera housing

Wider channel;
Changes fluid

connection + screwing for
camera/plant integration

3 3 × 5 × 0.025 8 mm/M8
outside camera housing

Fluid connection outside
camera housing;

Multiple threads for
longer lifetime

*1 At the observation window (W × L × H); *2 Changes to previous prototype.

Figure A1. Input images for reproducibility test of the AI-based measurement using the smart process
sensor. From left to right, the different time steps t1, t2, and t3 are presented.
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Abstract: Nitrobenzene (NB) is one of the nitro-aromatic compounds that is extensively used in
various chemical industries. Despite its potential applications, NB is considered to be a toxic com-
pound that has significant hazardous effects on human health and the environment. Thus, it can be
said that the NB level should be monitored to avoid its negative impacts on human health. In this
vein, the electrochemical method has emerged as one of the most efficient sensing techniques for the
determination of NB. The sensing performance of the electrochemical techniques depends on the
electro-catalytic properties and conductivity of the electrode materials. In the past few years, various
electrode materials, such as conductive metal ions, semiconducting metal oxides, metal–organic
frameworks, and two-dimensional (2D) materials, have been used as the electrode material for the
construction of the NB sensor. Thus, it is worth summarizing previous studies on the design and
synthesis of electrode materials for the construction of the NB sensor. In this mini-review article, we
summarize the previous reports on the synthesis of various advanced electrode materials, such as
platinum (Pt) nanoparticles (NPs), silver (Ag) NPs, carbon dots (CDs), graphene, graphitic carbon
nitride (g-C3N4), zinc stannate (ZnSnO3), cerium oxide (CeO2), zinc oxide (ZnO), and so on. Fur-
thermore, the impacts of different electrode materials are systematically discussed for the sensing
of NB. The advantages of, limitations of, and future perspectives on the construction of NB sensors
are discussed. The aim of the present mini-review article is to enhance the knowledge and overall
literature, working towards the construction of NB sensors.

Keywords: nitrobenzene; metal oxides; electrochemical sensor; MOF

1. Introduction

In the present scenario, environmental pollution is considered to be one of the major
challenges globally [1,2]. Various organic and inorganic compounds, such as the nitro
(-NO2) group containing aromatic compounds (nitrobenzene (NB; C6H5NO2), nitrophenol
(NP), and nitrotoluene (NT)), hydrazine, catechol, hydrogen peroxide, etc., are widely
used in the chemical and dye industries [3–8]. In particular, NB is widely used in various
applications, such as rubber, chemicals, dyes, explosives, pesticides, urethane polymers,
the pharmaceutical industry, and analgesic drugs [9–12]. Despite its various advantages
and uses, NB has a significant negative impact on human health and the environment due
to its hazardous nature. The United States Environmental Protection Agency classifies it
as a group 2B carcinogen [13]. NB presents severe health risks as it can be easily inhaled,
ingested, and absorbed through the skin [14,15]. In addition, NB may enter the environment
through various routes, such as industrial discharge, land leaching, accidental spills, and
chemical waste. Thus, it can be understood that NB has serious negative effects on human
health and the environment. Therefore, it is of great significance to monitor the level
of NB to avoid its hazardous effects. In this regard, conventional methods, such as gas
chromatography (GC), surface plasmonic resonance (SPR), Raman spectroscopy (RS), and
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high-performance liquid chromatography (HPLC), are widely used for the determination
of NB [13–20]. Unfortunately, these conventional methods are complex, expensive, and
challenging to use for the determination of NB [20]. Thus, it is necessary to find an
alternative sensing approach for the sensing of NB with high sensitivity and selectivity.

Recently, the electrochemical method has received a tremendous amount of attention
because of its excellent sensitivity, simplicity, fast response, selectivity, storage stability,
and repeatability [21]. These types of electrochemical sensors have a low environmental
impact due to their excellent reusability and stability and the high stability of the cata-
lyst. Thus, researchers are highly motivated towards the design and fabrication of highly
efficient electrochemical sensors [22]. Electrochemical methods involve the use of electro-
catalysts, which may significantly influence the performance of the fabricated sensors
towards the detection of NB. In the past few years, various electro-catalytic materials,
such as transition metal oxides, polymers, metal–organic frameworks (MOFs), carbon dots,
metal carbides/nitrides, and composites, have been explored for electrochemical sensing
applications [23–26].

In this mini-review article, we compiled previously published reports on the fabrica-
tion of the NB sensor using various nanostructured metal oxides, polymers, carbon-based
materials, MOFs, and hybrid composites as electrode materials. To the best of our knowl-
edge, in our literature survey, no review report is available which summarizes the different
electrode materials towards the determination of NB. This is the first mini-review article to
compile the advancements in the electrochemical fabrication of NB sensors. This review
provides insights into the electrode materials for the construction of the NB sensor. It
is believed that the present mini-review article will be useful to researchers working to
improve the selectivity and sensitivity of NB sensors.

2. Progress in the Fabrication of NB Sensors

Previously, various advanced electrode materials based on transition metal oxides,
polymers, carbon-based materials, MOFs, and hybrid composite materials were extensively
used in the construction of NB sensors. In this section, we summarize previously reported
articles on the fabrication of the NB sensor using metal oxides, carbon-based materials
(carbon nanotubes, graphene, etc.), metal dichalcogenides, and other materials.

2.1. Metal-Oxide-Based Electrode Materials

In previous years, metal oxides and their composites were extensively used for vari-
ous electrochemical sensing applications due to their decent electro-catalytic properties,
conductivity, eco-friendliness, and cost-effective properties. Cerium dioxide (CeO2) has
good electro-catalytic properties and can be used in the fabrication of electrochemical
sensors. It is worth exploring such materials for the fabrication of the NB sensor. In
this context, Sangili et al. [27] synthesized CeO2 nanoparticles (NPs) by employing the
hydrothermal method, and the morphological properties of the synthesized CeO2 NPs
were characterized by transmission electron microscopy (TEM); the presence of Ce and
O elements was confirmed via energy-dispersive X-ray spectroscopy (EDX). The authors
reported that CeO2 NPs have a uniform spherical structure, and the size of the prepared
particles lies in a range of 2–5 nm. The prepared CeO2 NPs were further proposed as
an NB-sensing material, and the sensing capability of the CeO2-NP-modified electrode
was studied by using the cyclic voltammetry (CV) and differential pulse voltammetry
(DPV) techniques. The authors found that the fabricated electrode demonstrated an excel-
lent LOD of 0.092 μM with a decent sensitivity of 1.1166 μA μM−1 cm−1. The proposed
sensor also demonstrated a good linear dynamic range of 0.1 to 50 μM. This work also
reported the real sample investigations of the fabricated electrode in tap water and river
water with acceptable recoveries. Arul et al. [28] synthesized iron oxide (α-Fe2O3) by
using the co-precipitation method at room temperature (RT). SEM studies demonstrated
that α-Fe2O3 consists of micro/nanorods that may be beneficial for better electron trans-
port. α-Fe2O3 micro/nanorods have a high specific surface area of 67 m2/g, and this may
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enhance electron transportation during redox reactions. The α-Fe2O3 micro/nanorods
were deposited onto the surface of a GC electrode, and its electrochemical performance
was checked by using the CV method. The α-Fe2O3/GC electrode exhibited an LOD of
30.4 ppb with a sensitivity of 446 nA/μM for the detection of NB. The reported articles
showed that manganese ferrite (MnFe2O4; spinel ferrite) has excellent properties and can
be used in various applications such as sensing and energy storage devices. In this vein,
Sang et al. [29] reported the hydrothermal preparation of MnFe2O4 for the fabrication of an
NB sensor. The synthesized MnFe2O4 colloid nanocrystals exhibited good physicochemical
properties, and the authors used the synthesized material as an electro-catalyst towards the
fabrication of an NB sensor. The MnFe2O4 colloid nanocrystal-modified electrode shows
improved performance towards the sensing of NB, and an LOD of 4 mM was achieved.
Zinc stannate (ZnSnO3) is a perovskite material, which has robust stability and decent
electrical properties, suggesting its potential for electrochemical sensing applications. In
this regard, Vinoth et al. [30] studied the role of ZnSnO3-incorporated graphitic carbon
nitride (g-C3N4) as a sensing material for the detection of NB. The authors prepared a
ZnSnO3/g-C3N4 composite by employing novel strategies, as shown in Figure 1a. The
authors authenticated the formation of ZnSnO3/g-C3N4 via the XRD technique (Figure 1b).
The high and sharp peak intensity suggest the good crystalline nature of the prepared
ZnSnO3/g-C3N4. The GC electrode was modified with ZnSnO3/g-C3N4 for the sensing of
NB. The ZnSnO3/g-C3N4-modified GC electrode exhibited a good LOD of 2.2 μM with a
sensitivity of 0.05857 μA μM−1 cm−2. The ZnSnO3/g-C3N4-modified GC electrode also
demonstrated a linear range of 30–100 μM towards the determination of NB using the LSV
technique. The ZnSnO3/g-C3N4-modified GC electrode also exhibited excellent selectivity
in the presence of various interfering substances.

Figure 1. (a) Schematic picture for the synthesis of ZnSnO3/g-C3N4 composite. (b) XRD pattern of
the ZnSnO3, g-C3N4, and ZnSnO3/g-C3N4 composite. (c) Selectivity test (DPV curves) of the NB
sensor in presence of various interfering substances. (d) Selectivity results for NB sensing. Reprinted
with permission [30].
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The DPV graphs are shown in Figure 1c, which indicate that the presence of interfer-
ing substances does not influence the performance of the ZnSnO3/g-C3N4-modified GC
electrode. The ZnSnO3/g-C3N4-modified GC electrode demonstrated excellent selectivity
for the detection of NB in the presence of interfering materials (K+, Ca2+, 4-nitrophenol,
1-bromo,2-nitrobenzene, 1-chloro,2,4-dinitrobenzene, 1-iodo, and 2-nitrobenzene), as shown
in Figure 1d. The ZnSnO3/g-C3N4-modified GC electrode also exhibited good recovery in
real samples, which suggested its application for practical purposes.

Magnesium oxide (MgO) is a fascinating alkaline metal oxide, which possesses ex-
cellent catalytic, adoption, chemical, and mechanical properties, which makes MgO an
efficient electrode material for the construction of cost-effective electrochemical sensors.
The catalytic properties of MgO can be further improved by combing it with carbon-based
materials. Kokulnathan et al. [31] proposed the synthesis of a GO/MgO composite using a
benign approach, as shown in Figure 2a. The authors modified the GC electrodes with GO,
MgO, and GO/MgO as catalysts and evaluated their performance towards a reduction in
NB using the CV and DPV methods (Figure 2b).

Figure 2. (a) Schematic representation of the synthesis of GO/MgO composite, fabrication of
GO/MgO/GC electrode and its working for NB sensing. (b) CV graphs of the different electrodes for
NB sensing. (c) Current value versus pH graph for the sensing of NB using GO/MgO/GC electrode.
(d) DPV graphs of the GO/MgO/GC electrode in presence of various concentrations of NB. Reprinted
with permission [31].

It was clearly seen that GO/MgO-modified GC electrode has higher catalytic activity
for the improved NB reduction, as shown in Figure 2b. The pH of the solution was also
optimized, and higher activity was observed at a pH of 7.0 (Figure 2c). The authors also
adopted the DPV technique for further electrochemical investigations and found that DPV
is more sensitive compared to the CV method. The effect of various concentrations was
studied using a GO/MgO-modified GC electrode, as shown in Figure 2d. It is clear that
synergistic interactions between GO and MgO enhanced the charge transfer properties of
the modified electrode and improved the reduction in NB using the DPV method. The
GO/MgO-modified GC electrode demonstrated a low LOD of 0.01 μM with two linear
dynamic ranges of 0.1 to 38.9 μM and 58.5 to 2333.5 μM. The reported NB sensor exhibited
excellent repeatability, stability, and selectivity. Acceptable recoveries of 99.35% to 99.80%
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were also observed for real sample investigations for the GO/MgO-modified GC electrode
towards the detection of NB in real water samples. Manganese dioxide (MnO2) has good
electro-catalytic properties and may be a good electrode for the fabrication of NB sensors. In
this regard, Chellappa et al. [32] reported a simple hydrothermal method for the synthesis
of MnO2 nanorods (NRs), as depicted in Figure 3a. The MnO2 NRs were coated onto
the bare surface of the GC electrode, and its sensing activity for the sensing of NB was
evaluated by using the CV and DPV methods.

Figure 3. (a) Schematic diagram presents the synthetic procedure for MnO2 NRs. (b) CV of the
MnO2 NRs/GCE In presence of NB at different scan rates. (c) Calibration plot between current
response and square root of scan rate. (d) DPV curves of the MnO2 NRs/GCE in presence of
different concentrations of NB. (e) Calibration plot between current response and concentration of
NB. Reprinted with permission [32].
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CV graphs of the MnO2 NRs/GCE in the presence of NB at different applied scan
rates are shown in Figure 3b. It is seen that the current response increases with respect
to the applied scan rate. The calibration plot shows a regression coefficient (R2) value of
0.98 (Figure 3c). Thus, this suggests that the current response for redox reactions linearly
increases. It is considered that DPV may be a more sensitive technique for the determination
of NB. Thus, the authors studied the electro-catalytic activities of MnO2 NRs/GCE in the
presence of different concentrations of NB. The DPV results for MnO2 NRs/GCE indicated
that current response for the redox reactions also increases with increasing concentrations
of NB (Figure 3d), and this response was found to be linear (Figure 3e), as suggested
by the R2 value of 0.99. The authors proposed that DPV is relatively more sensitive for
the detection for NB in comparison to CV. The MnO2 NRs/GCE demonstrated excellent
recovery in real sample studies, with a reasonably good LOD of 0.025 μM and a linear
range of 0.03 to 2 μM for the detection of NB, with high stability. Kokulnathan et al. [33]
demonstrated that zinc oxide NRss/copper tin sulfide nanoflowers (ZnO-NRs@CTS-NFs)
can be synthesized by using the hydrothermal route and used it as an NB sensing material.
The proposed ZnO-NRs@CTS-NF-based NB sensor exhibited an LOD of 0.002 μM and
sensitivity of 1.30 μA/μM cm2, with two linear ranges of 0.01–17.2 and 17.2–203 μM using
the DPV method. The ZnO-NRs@CTS-NF-based NB sensor also exhibited acceptable
recovery in real samples, such as rivers, ponds, and industrial water.

2.2. Carbon-Family-Based Electrode Materials

Carbon-based materials, such as graphene, carbon nanotubes, and graphitic carbon
nitride, have decent catalytic properties and surface areas. Sang et al. [34] modified the
surface area of the bare GCE using multi-walled carbon nanotubes (MWCNTs) as an
electrode material for the determination of NB. The performance of the MWCNTs/GCE
was evaluated in acid electrolytes using the CV and DPV methods. The authors found
that hydroxyl-containing MWCNT-modified GCE (MWCNTs-OH/GCE) has excellent
performance for the determination of NB compared to the pristine MWCNTs/GCE. This
showed that the functionalization of MWCNTs with an OH group significantly improved
the sensing properties of the pristine MWCNTs. Thus, it would be worth using the OH-
functionalized MWCNT-modified electrodes as working electrodes for the detection of
NB. The functionalized (f)-MWCNTs have an excellent conductive nature and improved
catalytic properties due to the presence of functional groups on the surface of MWCNTs.
Therefore, it is of great significance to utilize the f-MWCNTs as sensing materials for the
construction of an NB sensor. Govindasamy et al. [35] proposed the use of f-MWCNTs as
electrode materials for NB sensing applications.

The authors also used nafion as a binder to improve the adhesiveness/stability of the
f-MWCNTs on the surface of a screen-printed carbon electrode (SPCE). The electrochemical
performance of the f-MWCNT-modified SPCE (f-MWCNTs/SPCE) was determined in the
presence of NB, and the obtained results suggested that f-MWCNTs/SPCE has good electro-
catalytic properties. The f-MWCNTs/SPCE exhibited a wide dynamic linear range of 50 nm
to 1170 μM. A sensitivity of 0.6685 μA/μM cm2 was obtained using f-MWCNTs/SPCE
for the determination of NB. A decent LOD value of 45 nM was also reported for the
sensing of NB using f-MWCNTs/SPCE. Furthermore, f-MWCNTs/SPCE also demonstrates
satisfactory stability, repeatability, and reproducibility. The authors successfully recovered
the NB from a human urine sample.

Thirumalraj et al. [36] demonstrated the role of electrochemically activated graphite
(EAG) as catalysts for the sensing of NB. The authors prepared an EAG-modified screen-
printed electrode (EAG-SPE) and explored this as the working electrode for the determi-
nation of NB. The sensing performance of EAG-SPE was determined by employing the
CV method under different pH conditions of phosphate-buffered saline (PBS) solutions.
The EAG-SPE exhibited higher catalytic properties under a pH of 7.0, and the authors
reported a pH of 7.0 as the optimal condition. Furthermore, the authors checked the effects
of different applied scan rates and found that current responses for the determination
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of NB increase with increasing applied scan rates. Chronoamperometry (CA) is one of
the most sensitive methods for the sensing of toxic compounds and biomolecules. Thus,
the authors also adopted the CA method for further sensing experiments. The effect of
various concentrations of NB on the current response of EAG-SPE has been investigated
using the CA method. The authors found that current responses/signals rapidly increase
with the addition/spike of NB at different concentrations. EAG-SPE demonstrated an
excellent LOD of 0.06 μM and sensitivity of 1.445 μA μM−1 cm−2 [36]. The EAG-SPE also
demonstrated its excellent selective nature for the determination of NB in the presence of
various interfering compounds. Ma et al. [37] also reported the fabrication of an NB sensor
by employing macro-/meso-porous carbon material (MMPCM) catalysts. The MMPCMs
were prepared via a sonication-assisted pyrolysis method using a silica template. The
synthesized MMPCMs were characterized by the SEM method, which suggested the pres-
ence of a honeycomb-like surface morphology with lots of macro-pores (diameter range =
∼330 nm). These morphological features improve the electron transport and improve the
sensing activity of modified GC electrodes. Thus, the authors modified the surface of the
GC electrode using the MMPCM catalyst and employed linear sweep voltammetry (LSV)
for the determination of NB. The authors studied the effects of various concentrations of
NB (0.2, 0.4, 1, 2, 4, 6, 10, 15, 20, 30, 40 μM) on the performance of the MMPCM catalyst-
modified GC electrode. They found that the current response increases with respect to the
concentration of the NB. An LOD of 8 nM was obtained with a sensitivity of 2.36 μA μM−1.
They also reported that the MMPCM catalyst-modified GC electrode has good selectivity
for the detection of NB in the presence of various interfering molecules, such as NO3

−,
Mn2+, CO3

2−, SO4
2−, PO4

3−, CH3COO−, and Mg2+. The MMPCM catalyst-modified GC
electrode also demonstrated good stability and reproducibility.

It is well known that nitrogen (N)-doped materials may have significantly improved
catalytic properties due to the generation of active sites on N-doped materials. It is of
great significance to prepare a N-doped catalyst for electrochemical sensing applications.
In this context, Liu et al. [38] synthesized N-doped hollow carbon nanospheres (NHCPs)
by employing novel strategies. The mono-dispersed SiO2 microspheres were used as a
template with dopamine as the N source. The synthetic process for the preparation of
NHCPs is described in Figure 4a.

The authors authenticated the formation of NHCPs through XRD and Fourier-transform
infrared (FT-IR) spectroscopy. The NHCPs were treated at a temperature of 750 ºC and
denoted as NHCPs-750. The NHCPs-750 was coated on the GC surface, and the per-
formance of the NHCPs-750–GC electrode was determined by the CV, electrochemical
impedance spectroscopy (EIS), and DPV methods. The NHCPs-750–GC has a higher
current response for the sensing of NB compared to the GC electrode. The DPV curves
of the NHCPs-750–GC for different concentrations of NB are shown in Figure 4b. It is
clear that the current linearly increases with increasing concentrations of NB (inset of
Figure 4b). The NHCPs-750–GC demonstrated an LOD of 2.29 μM with high sensitivity of
436 μA mM−1. The NHCPs-750–GC also has an excellent linear range of 5–2610 μM for the
sensing of NB. The presence of pyrindinic N in the NHCPs-750–GC electrode improved
the catalytic behavior for the sensing of NB. The authors also evaluated the selectivity of
the NHCPs-750–GC electrode for the sensing of NB in the presence of various interfer-
ences. Figure 4c shows the excellent selectivity of NHCPs-750–GC for the determination
of NB in the presence of various interferences. In other work, Sakthivel et al. [39] pre-
pared a novel catalyst material for the sensing of NB. The authors synthesized a chitin
hydrogel-stabilized graphite (GR-CHI) composite using simple strategies and fabricated
the surface of the GC electrode with the prepared GR-CHI as a catalyst material. The phys-
iochemical investigations showed that synthesized GR-CHI is formed by strong interaction
between GR and CHI. GR-CHI/GCE was further employed as a working electrode, and
CV was adopted as the voltammetric sensing approach for the detection of NB. The CV
results showed that the current response for the redox peaks increases with increasing
scan rates, and sensing of NB is an adsorption-controlled process. The performance of the
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GR-CHI/GCE was further studied by employing the CA method. The current response
increases with increasing concentrations of NB, and this increment was found to be linear.
The GR-CHI/GCE exhibited an LOD of 37 nM and linear range of 0.1 to 594.6 μM using
the amperometric (i–t) method. The sensor (GR-CHI/GCE) demonstrates good selectivity,
excellent practicality, and consistent repeatability in detecting NB in laboratory water sam-
ples. β-cyclodextrin (β-CD) possesses notable physicochemical properties, which make
it valuable in various applications, such as sensing, drug delivery, and environmental
remediation. β-CD is a chemically stable molecular structure with biocompatibility and less
toxicity, which make it a suitable candidate for the fabrication of electrochemical sensors to
monitor toxic substances. In this vein, Velmurugan et al. [40] designed and prepared β-CD
on the graphene oxide (GO) surface using a benign synthetic procedure (ultra-sonication
method). The authors optimized the loading level of β-CD on the GC surface to improve
the performance of the NB sensor. The β-CD/GO/SPCE was used as the NB sensor, and its
performance was checked using the CV and LSV techniques. The authors reported that the
presence of synergistic interactions between β-CD and GO improved the performance of
β-CD/GO/SPCE towards the determination of NB. The β-CD1.2 mg/GO/SPCE was found
to be an optimized electrode for the sensing of NB. The β-CD1.2 mg/GO/SPCE exhibited a
linear range of 0.5 to 1000 μM, with an LOD of 0.184 μM. β-CD1.2 mg/GO/SPCE also has
acceptable reproducibility, good sensitivity, and decent stability for the sensing of NB. The
authors also proposed the potential of β-CD1.2 mg/GO/SPCE for practical purposes due to
good recoveries in real samples.

Figure 4. (a) Schematic picture for the preparation of NHSPs-x. (b) DPV graphs of the NHCPs-750–GC
electrode in different concentration of NB. (c) Selectivity nature of NHCPs-750–GC electrode for NB
sensing. Reprinted with permission [38].
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Kubendhiran et al. [41] explored the potential of a reduced graphene oxide/nickel
tetraphenyl porphyrin (GRGO/Ni-TPP) nanocomposite as a sensing material for the fab-
rication of an NB sensor. The authors synthesized GRGO via an eco-friendly method,
utilizing caffeic acid as the reducing agent. Furthermore, the authors reported that the
GRGO/Ni-TPP composite material was formed by π-π stacking interactions between RGO
and Ni-TPP. The interaction and vibrational band in the prepared GRGO/Ni-TPP were
confirmed by FTIR analysis. The synthesized GRGO/Ni-TPP was drop casted on the active
surface of the bare GC electrode. The GRGO/Ni-TPP-modified GC electrode was further
used for the sensing of NB. EIS studies also revealed that the GRGO/Ni-TPP/GC electrode
has higher conductivity with a low charge transfer resistance value compared to the GC
electrode. The CV graph of the GRGO/Ni-TPP/GC electrode was recorded in the absence
and presence of NB.

Figure 5a reveals that no redox peaks appeared for GRGO/Ni-TPP/GCE in the ab-
sence of NB. However, sharp redox peaks were observed in the presence of NB. The
GRGO/Ni-TPP/GCE demonstrated a higher current response compared to the bare
GCE (b), GRGO/GCE (c), NiTPP/GCE (d), and GO/NiTPP/GCE (e), as shown in Figure 5a.
The CV of the GRGO/Ni-TPP/GC was also obtained under different pH conditions, and
the authors found that GRGO/Ni-TPP/GCE is highly active under pH conditions of 7.0
(Figure 5b). The GRGO/Ni-TPP/GCE exhibited an LOD of 0.14 μM and sensitivity of
1.277 μA μM−1 cm−2. A wide linear dynamic range of 0.5 to 878 μM was also observed
for GRGO/Ni-TPP/GCE towards the sensing of NB. Figure 5c shows the DPV results for
GRGO/Ni-TPP/GCE in the presence of different concentrations of NB. It is seen that the
current response linearly increases with increasing concentrations of NB (Figure 5d). The
DPV results demonstrated better performance compared to the CV results. The GRGO/Ni-
TPP/GCE also demonstrated excellent selectivity towards NB detection. The real sample
investigations in water samples suggested that the GRGO/Ni-TPP/GCE can be used for
practical applications. The improved performance of GRGO/Ni-TPP/GCE may be ascribed
to the presence of the synergism between the GRGO and Ni-TPP.

In recent years, a new form of carbon material such as carbon dots (CDs) has received
extensive attention from the scientific community because of its extraordinary optoelec-
tronic properties, biocompatibility, ease of surface modification, and low toxicity. The CDs
can be synthesized by hydrothermal methods using various C-sources. The utilization of
waste materials to form CDs is of great significance. Thus, Bressi et al. [42] synthesized
CDs using orange peel waste as a C source via a eco-friendly hydrothermal carboniza-
tion/electrochemical bottom-up synthetic process. The transformation of orange peel
waste to CDs was confirmed by employing various sophisticated techniques. The authors
reported that synthesized CDs have excellent electrochemical properties and deposited
it onto the surface of an SPC electrode. The CD-modified SPC electrode was used as an
NB sensor using DPV technology. The CD-modified SPC electrode exhibited an LOD,
sensitivity, and linear range of 13 nM, 9.36 μA/μM cm2, and 0.1–200 μM, respectively. The
excellent long-term stability, selectivity, and repeatability of the CD-modified SPC electrode
suggested its potential for commercialization. Pandiyarajan et al. [43] also proposed the fab-
rication of a novel NB sensor using innovative strategies. In this vein, the authors proposed
the synthesis of a Ag NP-decorated N-[3-(trimethoxysilyl) propyl]ethylenediamine (EDAS)-
modified g-C3N4 composite for the construction of an NB sensor. The authors optimized
the concentration of Ag NPs to improve the catalytic properties of the EDAS/(g-C3N4-Ag).
The EDAS/(g-C3N4-Ag)-modified GC electrode demonstrated an LOD of 2 μM, sensitivity
of 0.594 A M−1 cm−2, and linear range of 5 to 50 μM for the sensing of NB. Zhang et al. [44]
reported the synthesis of 2D mesoporous carbon nitride (OMCN) using SBA-15 mesoporous
silica as the template and melamine as the precursor. The synthesized OMCN was used as
an electrode material for the modification of the GC electrode. The OMCN-modified GC
electrode demonstrated an LOD of 1.52 μM for the sensing of NB.
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Figure 5. (a) CV curve of the (a) GRGO/Ni-TPP/GCE in the absence of NB. CV of (b) bare GCE,
(c) GRGO/GCE, (d) NiTPP/GCE, (e) GO/NiTPP/GCE and (f) GRGO/Ni-TPP/GCE in the presence
of NB. (b) CV responses of the GRGO/Ni-TPP/GCE electrode in the presence of NB under different
pH conditions. (c) DPV curves of the GRGO/Ni-TPP/GCE in the presence of different concentration
of NB. (d) Corresponding calibration curve between current response and concentration of NB.
Reprinted with permission [41].

2.3. Bimetallic Materials and Metal Nanoparticle-Based Electrode Materials

Bimetallic materials with nanostructures have received great interest because of their
excellent and unique chemical and physical properties and have been explored in vari-
ous applications including sensors. Nickel–copper (Ni-Cu) is an environmental-friendly
bimetallic material and has various advantages, such as low cost, high catalytic activity,
and less-toxic nature. Previously, Yan et al. [45] adopted the Ni-Cu alloy electrode for
the determination of NB using simple strategies. The authors used the electro-deposition
method for the preparation of a Ni-Cu alloy electrode. The prepared Ni-Cu alloy electrode
was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM)-
based analysis. The XRD results demonstrated the presence of (111) and (220) diffraction
planes for the presence of the Ni-Cu alloy. The decent intensity of the diffraction peaks
suggested a moderate crystalline nature of the prepared Ni-Cu alloy electrode. The SEM
results also indicated the presence of small particles, which agglomerated with a rough
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surface. The authors stated that these surface properties may be useful for obtaining better
electro-catalytic behavior of the Ni-Cu alloy electrode for the sensing of NB. A polariza-
tion method was used for the determination of NB, and the authors reported a limit of
detection (LOD) of 4 × 10−5 M with a sensitivity of 298 μA/mM. The linear dynamic range
of 0.1–20 mM has been reported for the sensing of NB with a correlation coefficient (R2)
of 0.995 using the Ni-Cu alloy electrode. Platinum (Pt) NPs are a significant and highly
active catalyst due to their excellent conductivity and catalytic properties. Zhang et al. [46]
assembled Pt NPs on macroporous carbon (MPC) by using a simple and benign one-step
microwave-assisted heating method. The synthesized Pt NPs/MPC was characterized
by TEM, which revealed that the synthesized material has a uniform surface morphology.
Further, the authors modified the GC electrode with Pt NPs/MPC (nafion was used as a
binder) and investigated its performance for the determination of NB using the LSV method.
The Pt NPs/MPC-modified GC electrode exhibited an LOD of 50 nM with a wide linear
dynamic range of 1–200 μM. The Pt NPs/MPC-modified GC electrode also exhibited decent
recovery in real samples. Rameshkumar et al. [47] prepared silver nanoparticles (Ag NPs)
on an amine-functionalized SiO2 sphere-modified electrode. The Ag NPs/SiO2-modified
electrode was then used as an NB sensor, and the electrochemical properties of this Ag
NPs/SiO2-modified electrode was determined by CV and square wave voltammetry (SWV).
The CV results indicated that the Ag NPs/SiO2-modified electrode has higher catalytic
activity compared to the GC electrode. The effect of various concentrations of NB was
studied by employing SWV, and the authors found that the increase in the current response
of the Ag NPs/SiO2-modified electrode is directly proportional to the concentration of NB.
The improved performance of the Ag NPs/SiO2-modified electrode may be ascribed to the
presence of a large number of Ag NPs on the SiO2 surface. The Ag NPs/SiO2-modified elec-
trode exhibited an LOD of 500 nm for the sensing of NB derivatives. Thirumalraj et al. [48]
explored the potential of an alumina-polished GC electrode for the sensing of NB. The CV
curves of the alumina/GC electrode are shown in Figure 6a.

The authors optimized the pH of the solution to obtain higher electro-catalytic activity
in the alumina/GC electrode. According to Figure 6a, it is clear that the alumina/GC
electrode has higher catalytic properties under a pH of 5. The authors also used the DPV
method for further investigations and found that DPV is a more efficient method for the
sensing of NB. The current responses increase with increasing an concentration of NB
(Figure 6b). Furthermore, the authors also investigated the selectivity of the alumina/GC
electrode for the sensing of NB in the presence of various interfering materials. The selectiv-
ity studies are summarized in Figure 6c. It is suggested that alumina/GC electrodes have
good selective nature for the sensing of NB in the presence of different interfering molecules.
The alumina/GC electrode demonstrated an LOD of 0.15 μM. The alumina/GC electrode
also showed good real sample studies in lake, tap, waste water, and drinking samples.

It is also reported that gold nanoparticles (Au NPs) may further improve the electro-
chemical performance of NB sensors. In this vein, Gupta et al. [49] reported the fabrication of
an electrochemical sensing scaffold (ESS) for the determination of NB. The authors grew Au
NPs on mesoporous SiO2 microspheres and used them as a catalyst for the determination of
NB. The Au NPs/SiO2/GCE was employed as an NB sensor, and its electrochemical activities
were checked by using the CV, DPV, and CA methods. The EIS also suggested the presence of
a relatively high conductive nature and catalytic properties of the Au NPs/SiO2-modified GC
electrode. The DPV technique suggested that the current response increases with increasing
concentrations of NB. A wide linear dynamic range of 0.1 μM to 2.5 mM has been observed.
An excellent LOD of 15 nM was achieved for the sensing of NB using Au NPs/SiO2/GCE.
The authors also reported excellent selectivity of the Au NPs/SiO2/GCE towards the deter-
mination of NB in various interfering compounds. Rameshkumar et al. [50] proposed the
fabrication of an NB sensor by employing simple protocols. The authors prepared silicate
sol–gel-stabilized (SSG) Ag NPs using a benign one-pot synthetic process, and a mixture of
hydrazine, nitric acid, and ammonium chloride was used as the reduction solution system.
Initially, the authors used colorimetric methods for the determination of Hg (II) ions and
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reported an LOD of 5 μM. Furthermore, the authors explored the synthesized Ag NPs for the
sensing of NB. The authors modified the active area of the bare GC electrode using Ag NPs
as the catalyst and SWV as the sensing technique. The lowest LOD of 1 μM was reported by
the authors for the sensing of NB using the square wave voltammetry (SWV) method. The
enhanced performance of the NB sensor may be attributed to the presence of highly catalytic
Ag NPs on the surface of the GC electrode.

Figure 6. (a) CV patterns of the alumina/GCE for the presence of 50 μM NB at different pHs. (b) DPV
curves of the alumina/GCE in the presence of different concentrations of NB. (c) Selectivity of
alumina/GCE for NB sensing. Reprinted with permission [48].

2.4. Metal Dichalcogenides, Polymers, MOF, Metal Sulfides, and Other Electrode Materials

It is considered that nanoscale electrode materials play a crucial role in the design and
fabrication of N2BHJU7 highly sensitive electrochemical sensors. Molybdenum disulfide
(MoS2) is a widely used dichalcogenide in the construction of electrochemical sensors and
energy storage applications. The catalytic properties of MoS2 can be further improved by
incorporating MoS2 with rGO for electrochemical reactions. Nehru et al. [51] designed and
prepared flower-like MoS2 nanosheet arrays (MoS2 NSA)/rGO hybrid composite material
using the hydrothermal method. Furthermore, a GC electrode was modified with the
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prepared MoS2 NSAs/rGO as the sensing catalyst material, and CV/DPV techniques were
adopted for the determination of NB. Figure 7a presents the EIS results for the differently
modified electrodes under similar conditions. It is seen that MoS2 NSAs/rGO/GCE has
low charge transfer resistance (Rct) and high conductivity. The obtained CV results for the
different modified GCEs are shown in Figure 7b. The MoS2 NSAs/rGO/GCE exhibited a
higher current response, which may be ascribed to the improved conductivity and better
electro-catalytic properties. Figure 7c shows the CVs of the MoS2 NSAs/rGO/GCE at
different scan rates, indicating that the current response linearly increases with increasing
scan rates, and it is a diffusion-controlled process (Figure 7d). In terms of the effect of mass
loading, as also studied, the authors reported 6 μL catalysts as the optimum amount for
the sensing of NB (Figure 7e,f). The authors also recorded the CVs of the bare GCE, MoS2
NSAs/GCE, and MoS2 NSAs/rGO/GCE in the presence of NB. MoS2 NSAs/rGO/GCE
exhibited a higher current response for the detection of NB compared to bare GCE and
MoS2 NSAs/GCE (Figure 7g,h). Figure 7i shows DPV curves of the MoS2 NSAs/rGO/GCE
at various concentrations of NB, and calibration curves between the current response
and concentration of NB are depicted in Figure 7j. The authors found that the current
value of the MoS2 NSAs/rGO/GCE increases linearly with increasing concentrations of
NB. This proposed sensor demonstrated a linear range of 0.005 to 849.505 μM with a
sensitivity of 1.8985 μA/μM cm2 for the determination of NB. The MoS2 NSAs/rGO/GCE
also demonstrated an LOD of 0.0072 μM, with excellent cyclic stability, reproducibility,
and repeatability. The authors investigated the selectivity test for the constructed MoS2
NSAs/rGO/GCE towards the determination of NB and found that MoS2 NSAs/rGO/GCE
has excellent selectivity (Figure 7k,l). The MoS2 NSAs/rGO/GCE exhibits acceptable
recoveries in real sample investigations, which suggests that MoS2 NSAs/rGO/GCE is a
promising candidate for the sensing of NB in real life applications.

Figure 7. (a) Nyquist curves and (b) CV graphs of bare GCE, MoS2 NSAs/GCE, and MoS2 NSAs/rGO/GCE
in [Fe(CN)6]3−/4− redox probe (0.1 M KCl). (c) CV curves of MoS2 NSAs/rGO/GCE at different scan rates
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in the redox system and (d) corresponding calibration plot between peak current response and square root
of scan rate. (e) CV curves and (f) cathodic current response of different volume of MoS2 NSAs/rGO/GCE
in the presence of 200 μM NB in 0.05 M PBS. (g) CV curves and (h) cathodic current response of bare
GCE, MoS2 NSAs/GCE, and MoS2 NSAs/rGO/GCE in the presence of 200 μM NB. (i) DPV curves of the
MoS2/NSA/rGO/GCE in different concentrations of NB. (j) Calibration curve between current responses
and concentration of NB. (k) DPV curves and (l) corresponding relative peak of the MoS2/NSA/rGO/GCE
for selectivity test towards the sensing of NB in the presence of interfering substances. Reprinted with
permission [51].

Recently, Papavasileiou et al. [52] reported the synthesis of 2D vanadium diselenide
nanoflakes (VSe2 NFs) for the construction of an NB sensor. The VSe2 was coated on a
GC electrode, and CV/DPV was used for the determination of NB. An LOD of 0.03 μM
was reported with a linear range of 0.1 to 4 μM. The proposed sensor also showed ac-
ceptable recovery of 96% in real sample investigations. Karthik et al. [53] also reported
strontium molybdate (SrMoO4) microflower/three-dimensional (3D) nitrogen-doped re-
duced graphene oxide aerogels (N-rGO) for the sensitive detection of NB in water samples.
The SrMoO4/N-rGO-modified GC electrode demonstrated a remarkable LOD of 2.1 nM
and linear range of 7.1 nM to 1.0 mM for the detection of NB. The performance of the
SrMoO4/N-rGO-modified GC electrode also suggested that it can be used for real sample
investigations with acceptable recoveries in a range of 96.1–99.6%. Polymers are well known
for their excellent conductive nature, and their composite may be a promising electrode
material for various electrochemical applications. In this context, Ramirez et al. [54] pre-
pared a polymer nanocomposite (PNC) on flowers like the hierarchical rutile phase of the
titanium dioxide (TiO2) nanorod microsphere. The authors optimized various conditions
and reported the synthesis of unique surface morphologies (flower-like/cauliflower). The
surface morphology of the synthesized PNC on TiO2/GO was characterized by employing
SEM and TEM analysis. The authors modified the graphite electrode with the synthesized
TiO2/GO and adopted this modified electrode as an NB sensor. The authors found that the
sensing performance of the TiO2/GO-modified graphite electrode increases with increasing
concentrations of NB. An improved LOD of 2.64 ppb was reported for the detection of NB
using a TiO2/GO-modified graphite electrode. The TiO2/GO-modified graphite electrode
also demonstrated acceptable repeatability, stability, and reproducibility towards the sens-
ing of NB. The TiO2/GO-modified graphite electrode also exhibited excellent recovery in
real sample applications. Yadav et al. [55] reported the synthesis of a Au NP-incorporated
zinc-based metal–organic framework (MOF-5) and characterized by various sophisticated
physicochemical techniques. The synthesized Au-MOF-5 was deposited onto the surface
of a GC electrode and used as an electrochemical sensor towards the sensing of NB. The
Au-MOF-5-modified GC electrode demonstrated improved electro-catalytic properties
compared to the bare GC electrode, and this improved performance may be ascribed to the
presence of the electrode material on the surface of the GC electrode. An interesting LOD
of 1 μM with a sensitivity of 0.23 μA/μM cm2 was observed for the sensing of NB by using
a Au-MOF-5-modified GC electrode. The excellent selectivity of the Au-MOF-5-modified
GC electrode may be attributed to synergistic interactions. Zeolitic imidazole framework
(ZIF) materials are well-known highly porous materials with a high surface area. The ZIF
materials may be a promising material for various electrochemical applications. It would
be of great significance to propose and fabricate ZIF-based hybrid or metal-doped materials
for the construction of electrochemical sensors. An et al. [56] synthesized ZIF-67 material
using simple protocols, and a synthetic process is shown in Figure 8a. The Co-NC was
prepared by using ZIF-67 and PS nanospheres as the template and carbonizing process.
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Figure 8. (a) Schematic representation for the preparation of ZIF67@PS-derived Co-NC. (b) CV curves
and (c) corresponding current values of the Co-NC-800-GCE (different mass loadings) in the presence
of NB. (d) DPV curves of Co-NC-800-GCE in different concentrations of NB and (e) corresponding
calibration plot between peak current and concentration of NB. Reprinted with permission [56].

The authors also optimized the temperature of Co-NC synthesis and found that 800 ◦C
is the suitable temperature for the preparation of a porous structure. The presence of
N-atoms in the carbon framework improves the catalytic properties of the prepared materi-
als. The Co-NC was coated on a GC electrode and used as a working electrode towards
the sensing of NB. The loading mass of the catalyst was also optimized as 5 mg/mL
using CV (Figure 8b,c). The effects of different concentrations were also studied using
Co-NC-800-GCE. The DPV graphs demonstrated that the current linearly increases with
increasing concentrations of NB (Figure 8d,e). The Co-NC-800-GCE demonstrated good se-
lectivity for the determination of NB in various interfering substances. The Co-NC-800-GCE
showed an LOD of 0.086 μM and linear range of 0.1 μM to 0.863 mM. The stability and bet-
ter selectivity of the Co-NC-800-GCE was attributed to the presence of the robust electrode
material on the GC surface. This work proposed the construction of a simple and highly se-
lective NB sensor using robust electrode material. Li et al. [57] reported an MOF-conductive
polymer composite film-modified electrode as an NB sensor, which demonstrated an LOD
of 0.047 μM and linear range of 0.05 to 1 μM and 1 to 100 μM. Copper sulfide (CuS) is a
semiconducting metal sulfide and has an optical band gap in the range of 1.23 to 2.0 eV.
CuS has been widely used in various catalytic applications and energy-related applications
such as lithium sulfur batteries and energy storage devices. It is also well reported that com-
bining CuS may improve the properties of the hybrid composite materials. Carbon-based
materials are desirable materials to form the composite materials. It is also known that
doping with heteroatoms may further create defects and improve the catalytic properties
of carbon-based materials. In this vein, Yuan et al. [58] designed and reported the facile
synthesis of a CuS-loaded boron, nitrogen co-doped carbon composite (CuS-BCN) material
using a simple synthetic method (Figure 9a). The XRD results suggested the formation
of CuS-BCN, whereas SEM analysis revealed the presence of the surface structural mor-
phology of the prepared CuS-BCN composite. The bare GC electrode was modified using
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CuS-BCN as a catalyst material, and its electrochemical performance was checked using
the CV, EIS, and SWV methods. The EIS results showed that the CuS-BCN-coated GC
electrode has a low resistance value compared to the bare GC electrode and revealed that
the CuS-BCN-coated GC electrode has high conductivity. The CV results also demonstrated
the presence of the relatively higher electro-catalytic behavior of the CuS-BCN-coated
GC electrode (Figure 9b). The SWV demonstrated an excellent LOD of 0.12 μM using a
CuS-BCN-coated GC electrode as an NB sensor. Two linear ranges of 0.5 to 150 μM and
150 to 1000 μM were reported for the sensing of NB using a CuS-BCN-coated GC electrode
(Figure 9c,d). It was observed that SWV is more sensitive compared to the CV. Improved
selectivity was observed for the detection of NB in the presence of various interfering sub-
stances by using a CuS-BCN coated GC electrode. The authors also reported excellent NB
recovery in real water samples using a CuS-BCN-coated GC electrode. Thus, the authors
proposed that the CuS-BCN-coated GC electrode is a promising sensing candidate for the
determination of NB.

Figure 9. (a) Schematic representation for the synthesis of CuS-BCN and surface modification of
GC electrode for the sensing of NB. (b) CV curves of the GCE, BCN/GCE, and CuS/BCN/GCE in
the presence of NB. (c) SWV curves of the CuS/BCN/GCE at different concentrations of NB and
(d) corresponding calibration plot between peak current and concentration of NB. Reprinted with
permission [58].

Recent years have witnessed a rapid surge in the synthesis and use of layered dou-
ble hydroxides (LDHs) due to their excellent intrinsic properties for catalytic activity
and interesting adsorption properties. LDH materials can be prepared via a hydrother-
mal method, and their properties can be tuned by incorporating with other materials.
Li et al. [59] prepared a novel electrode material (Ni/Fe LDH) functionalized with sodium
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dodecyl sulfate (Ni/Fe(SDS)-LDH) for electrochemical sensing applications. This proposed
2D Ni/Fe(SDS)-LDH material was deposited on a GC electrode for electrochemical sensing
studies. The electro-catalytic activities of the Ni/Fe(SDS)-LDH-modified GC electrode
was evaluated by employing CV and DPV methods. The authors clearly found that the
Ni/Fe(SDS)-LDH-modified GC electrode has higher catalytic properties compared to the
bare GC electrode, suggesting that the presence of Ni/Fe(SDS)-LDH on the active surface
of the GC electrode enhanced its catalytic behavior for the detection of NB. A low LOD of
0.093 μM was achieved using a Ni/Fe(SDS)-LDH-modified GC electrode for the determi-
nation of NB. The DPV results revealed that the Ni/Fe(SDS)-LDH-modified GC electrode
has excellent selectivity for the sensing of NB, and this may be ascribed to the interac-
tions/bonding between the NB and Ni/Fe(SDS)-LDH-modified GC electrode (Figure 10a).
The CV curves of the different electrodes in the absence and presence of NB are shown in
Figure 10b. It is seen that Ni/Fe(150 mg SDS)-LDH/GCE has high catalytic properties for
the sensing of NB. The DPV graphs for Ni/Fe(0–200 mg SDS)-LDH/GCE are shown in
Figure 10c. It is observed that Ni/Fe(150 mg SDS)-LDH/GCE has high electro-catalytic
activities towards NB. The Ni/Fe(0–200 mg SDS)-LDH/GCE also demonstrated good
recoveries for real sample investigations in tap water and underground water samples.

Figure 10. (a) Schematic representation for the working mechanism of Ni/Fe(SDS)-LDH-modified GC
electrode towards the determination of NB. (b) CV curves of the different electrodes in absence and presence
of NB. (c) DPV curves of the different electrodes in the presence of NB. Reprinted with permission [59].

Perovskite materials have received extensive attention because of their excellent opto-
electronic properties. Zhang et al. [60] synthesized an inorganic perovskite-based composite
with high hydrophilicity. The synthesized CsPbBr3/TDPA exhibited high water stability
due to the presence of oleylamine molecules. The ECL technique was used for the sens-
ing of NB using CsPbBr3/TDPA as a sensing material. The authors reported an LOD of
0.05 μM with a linear range 1 mm to 0.1 μM towards the determination of NB. Rastogi
et al. [61] reported a novel sensing system consisting of palladium nanoparticle-decorated
polymer-silica (Pd-GG-g-PAM-silica). The authors modified the GC electrode using Pd-GG-
g-PAM-silica as a sensing catalyst, and its performance was checked by employing the LSV,
DPV, and CA techniques. The Pd-GG-g-PAM-silica-modified GC electrode demonstrated
good reproducibility, acceptable repeatability, and high stability for the reduction/sensing
of NB. An LOD of 0.06 mM with two linear ranges of 1 to 1900 mM and 1900 to 3900 mM
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were reported for the sensing of NB using a Pd-GG-g-PAM-silica-modified electrode. The
authors reported that real sample recoveries are acceptable using the spike method. In
the above sections, we described numerous electrode materials and their applications in
the fabrication of NB sensors. The performance of the above-discussed NB sensors is
summarized in Table 1 [27–61].

Table 1. Electrochemical parameters of the published NB sensors [27–61].

Catalyst LOD (μM) Sensitivity (μA/μM cm2) Linear Range Technique References

CeO2 NPs 0.092 1.1166 0.1–50 DPV [27]

α-Fe2O3 micro/nanorods 30.4 ppb 446 nA/μM - CV [28]

MnFe-Na/GCE 4 mM - - CV [29]

ZnSnO3-gC3N4/GCE 2.2 0.05857 - LSV [30]

GO/MgO-NC/GCE 0.01 - 58.5–2333.5 DPV [31]

MnO2/GCE 0.025 - 0.03–2 DPV [32]

ZnO-NRs@CTS-NFs 0.002 3.13 0.01–17.2; 17.2–203 DPV [33]

MWNT-OH/GCE 0.08 - - DPV [34]

f-MWCNTs/SPCE 45 nM 0.6685 50 nm to 1170 μM Amperometry [35]

EAG-SPE 0.06 1.445 - CA [36]

MMPCMs 8 nM 2.36 0.2–40 LSV [37]

NHCPs-750–GCE 2.296 436 μA mM−1 2–2610 DPV [38]

GR-CHI 37 nM - 0.1–594.6 Amperometry [39]

β-CD1.2 mg/GO 0.184 - 0.5–1000 LSV [40]

GRGO/Ni-TPP 0.14 1.277 0.5–878 DPV [41]

CDs/SPCE 13 nM 9.36 0.1–200 DPV [42]

EDAS/(g-C3N4-Ag)NC 2 0.594 A M−1 cm−2 5–50 SWV [43]

OMCN 1.52 - - Amperometry [44]

Ni-Cu 40 298 μA/mM 0.1–20 mM Polarization [45]

Pt NPs/MPC 50 nM - 1–200 LSV [46]

Ag NPs/SiO2 0.5 - - SWV [47]

Alumina/GC 0.15 - 0.5–145.5 DPV [48]

GC/Au-MSM 15 nM - 0.1 μM to 2.5 mM DPV [49]

GC/TPDT-Ag NPs 1 - - SWV [50]

MoS2 NSAs/rGO 0.0072 1.8985 - DPV [51]

VSe2/GCE 0.03 - 0.1–4 DPV [52]

SMO/N-rGO 2.1 - 1.1 mM to 2.5 mM CV [53]

TiO2/GO 2.64 ppb 40.6 μA/ppb 2–8 ppb CV [54]

GC/Au-MOF-5 15.3 0.43 - CV [55]

Co-NC 0.086 - 0.1 μM–0.863 mM DPV [56]

PCN-222(Fe)/p3HT-p3TPA/GCE 0.05 - - DPV [57]

CuS-BCN/GCE 0.120 0.5–150, 150–1000 SWV [58]

Ni/Fe(SDS)-LDH 0.093 15.79 10–100 DPV [59]

CsPbBr3/TDPA 0.05 - 1 mM to 0.1 μM CV/ECL [60]

Pd-GG-g-PAM-silica 0.06 - 1–1900, 1900–3900 DPV [61]

3. Conclusions and Future Perspectives

We conclude that various electrode materials based on metal oxides (e.g., magnesium
oxide, zinc oxide), graphene, carbon nitride, metal nanoparticles (e.g., silver or gold), metal–
organic frameworks, or their composites have been reviewed for the determination of NB. The
published articles demonstrated that the sensitivity and detection limit of NB sensors are the
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two major key parameters, which should be improved. In addition, electrochemical sensors
should have excellent anti-interfering properties. Each material has its own advantages and
disadvantages. From the published reports, it has been observed that metal oxide such as
the cerium oxide-modified electrode demonstrated an excellent detection limit using the DPV
method. On the other hand, the Ni-Cu-modified electrode exhibits a poor detection limit using
the polarization method. Thus, the polarization method is not a highly efficient approach for
the electrochemical sensing of NB. The CV-method-based sensing results demonstrated lower
performance compared to the amperometry. This showed that CV is also a less sensitive method
for the detection of NB compared to DPV or amperometry. It is clear that the DPV method
is a more efficient and sensitive technique for the determination of NB. In addition, metal
nanoparticles (gold, silver, platinum, etc.) have a highly conductive nature, but they are not
suitable materials for NB sensing applications due to their high cost and poor performance. It
is seen that metal oxides with hybrid composite materials are more efficient materials for the
construction of NB sensors. However, some challenges still exist, such as poor adhesiveness of
metal oxide particles on the surface of electrodes, the use of binders which reduce the catalytic
activity and conductivity of the modified electrodes, and the low conductive nature of the metal
oxides. It is required to combine metal oxides with highly conducting MXenes to form efficient
electrode materials for the construction of NB sensors. Thus, it is believed that the performance
of NB sensors can be further enhanced by incorporating metal oxides with MXenes.
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Abstract: In this study, the effect of ultrasound-assisted freezing with frequencies of 21.5 and 40 kHz,
and a power of 2.4 kW in the chopped mode of milk ice cream in comparison to a standard freezer
on the freezing course and formed crystal structure was examined. The first part of the research
included the preparation of an ice cream mixture on the basis of skimmed milk with the addition
of an emulsifier, locust bean gum, xanthan gum, ι-carrageenan and a reference mixture without
stabilizer addition. Ultrasound-assisted freezing shortened the processing time of both stabilized
and non-stabilized ice cream. Stabilized samples of milk ice cream exposed to ultrasound (US) at a
frequency of 21.5 kHz were characterized by the most homogeneous structure, consisting of crystals
with the smallest diameters among all of the tested samples, the size of which, after 3 months of
storage at −18 ◦C, was 7.8 μm (for the reference sample, it was 14.9 μm). The ice recrystallization
inhibition (IRI effect) in the samples after US treatment with a frequency of 40 kHz was also observed,
regardless of the addition of stabilizers, which may suggest that sonication with these parameters
could replace or limit the addition of these substances.

Keywords: ultrasound-assisted freezing; milk ice cream; stabilizers; crystal structure

1. Introduction

The most popular types of ice cream include milk ice cream, obtained by freezing a
liquid pasteurized ice cream mixture, consisting of whole or skimmed milk (in liquid, con-
centrated or powdered form), cream, sugar and various flavor additives. The consistency
and melting of ice cream are strongly related to the coalescence of destabilized fat globules
that occurs during freezing, and the ratio of free and bound water content [1]. When
freezing an ice cream mixture, a three-dimensional network of partially aggregated fat
globules is formed, which surrounds air bubbles, stabilizing the air phase and, as a result,
improving the ice cream’s resistance to melting [2]. Emulsifiers and stabilizers are usually
added to improve consistency and limit the unfavorable phenomenon of ice recrystalliza-
tion. It occurs due to temperature fluctuations during storage and transportation, causing
unfavorable ice crystals to grow. This is the main problem in the production of frozen food,
especially ice cream, but with the appropriate use and combination of stabilizers, which
are water-binding polysaccharides, as well as the relevant selection of other ingredients, it
is possible to obtain a product that is more resistant to temperature changes [3].

By improving the conditions of the heat transfer process during ultrasound-assisted
freezing in the production of milk ice cream, the rate of ice crystal nucleation is increased
and freezing is faster, while controlling the size of ice crystals. Acoustic cavitation initiated
by ultrasonic waves causes micro-streaming, which promotes the formation of ice nuclei,
accelerates heat and mass transfer, and regulates the shape and size distribution of ice
crystals during freezing. Moreover, the formation of high pressure by the breakdown of
cavitation bubbles contributes to an increase in the equilibrium freezing temperature of
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the liquid and, as a result, to the nucleation of crystals, which are smaller in size in the
finished product. This may also shorten the freezing process time. As a result of these
micro turbulences, secondary nucleation occurs, which involves cracking and breaking the
structure of crystals that have stopped forming [4].

Sonication is a promising method in ice cream production that can shorten processing
time, improve quality and efficiency, and ensure safety while extending the shelf life. It
was discovered that the use of ultrasound activates phase changes in biological cells thanks
to cavitation. As a result of the emission of acoustic waves, gas bubbles are formed, which
increase in volume and disappear rapidly. The second effect is the alternating dynamic
compression and expansion of the material sample by an acoustic wave acting in the
material, with additional solid–liquid cavitation [5,6]. During the crystallization process, it
controls the growth of ice crystals and limits sensory and nutrient changes as a result of
the non-thermal process. When used during the homogenization of the mixture, a more
effectively dispersed emulsion is created, and the resulting ice cream has a smoother and
softer texture due to limited crystal growth [7]. It was already observed that ultrasound
homogenization contributed to smaller ice crystals and had a positive influence on the
ice crystal structure in milk ice cream. Ice crystal diameters lower than even 10 μm were
observed for the sample after US homogenization and without any stabilizer addition [8].

Currently, the majority of research on ultrasonic-assisted freezing focuses on plant
and meat materials, while few publications concern food ice cream. Their example mainly
examined the influence of ultrasound in the pasteurization or homogenization process, not
the freezing process itself.

The ultrasonic pasteurization and homogenization of an ice cream mixture with the
addition of tomato seed oleo-gel were tested [9]. These treatments allowed for reducing
the size of the ice crystals formed during freezing and accelerated the formation of a three-
dimensional structure. Moreover, during pasteurization, ultrasonic waves reduced the
fat and carbohydrate content, lowering the overall energy value of the ice cream. In turn,
using the example of mango sorbet showed the effect of ultrasonic-assisted freezing on the
crystal structure, obtaining a product with smaller crystals, and a more even distribution
and regular shape. This way, the quality of the sorbet was improved, while the freezing
time was reduced, which is important from an economic point of view [10]; however, it is
also pivotal to check this effect on the classic milk ice cream as a product with a higher fat
and protein content. It is important to answer the question about the role of US not during
the homogenization part, but during the freezing of the emulsion.

2. Materials and Methods

2.1. Materials

For milk ice cream production, the following ingredients were used: 45.5% addition
of 0.5% fat UHT milk (Mlekpol, Grajewo, Poland), 7% milk powder, low-fat content,
40% or 30% fat cream (Piątnica, Poland), 7% sucrose (Diamant, Miejska Górka, Poland),
0.4% emulsifier (Fooding, Shanghai, China) and 0.1% stabilizers (for the control sample,
0.1% more of powdered milk instead). The mixture recipe was modified by the addition of
stabilizers: 0.01% ι-carrageenan (Sigma for Merck, St. Louis, MO, USA), 0.02% xanthan gum
(Fooding, Shanghai, China) and 0.07% LBG (Locust Bean Gum) (Fooding, Shanghai, China).

2.2. Preparation of Ice Cream Mixes

First, the dry and liquid ingredients were weighed and mixed separately, then com-
bined and homogenized using a BOSH MaxoMixx blender (Gerlingen, Germany) with a
power of 750 W for about 2 min to obtain a uniform mixture.

Then, the ice cream mixes were pasteurized at a temperature of 75 ◦C for 1.5 min in
Thermomix TM31-1 and poured into a glass beaker, which was placed in ice water and left
to lower the temperature to 25 ◦C. After that, 100 mL was isolated from the cooled mixture
and prepared for the other analysis. The remaining volume was stored at 4 ◦C for 24 h for
the maturation step of the ice cream mixture.
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2.3. Physicochemical Property Evaluation
2.3.1. Density

The density of the prepared ice mixture was determined using the pycnometric method
using a 25 cm3 vacuum pycnometer; the method has already been shown [1,11]. The density
value of the mixture was obtained as the ratio of mass to the known volume of the sample.
The measurement was performed in triplicate.

2.3.2. Overrun

To determine the overrun (O) of the finished ice cream, a glass cylinder with a volume
of 25 cm3 was weighed, then filled with the sample and weighed again. This way, the ice
mixture was treated before and after freezing, obtaining the masses of samples w1 and w2,
respectively, to the formula [11,12]:

O [%] =
w1 − w2

w2
× 100%

2.3.3. pH

The pH value was measured with the Electrode Elmetron EPP3t (Zabrze, Poland)
with the temperature sensor Pt-1000B. The measurement was always taken under the
same conditions of the temperature and humidity in the same laboratory. The electrode
was immersed in the sample of the tested ice cream, and the result was displayed on a
small screen of the device. The test was performed in triplicate, according to the device
producer’s recommendation.

2.3.4. Freezing Point Analysis

The freezing point of the stabilized and non-stabilized ice cream mixtures was deter-
mined using a Marcel OS 3000 osmometer (Marcel, Zielonka, Poland), as also shown in the
previous study [10]. The device measures the freezing temperature for 10 μL of the sample
with an accuracy of 0.002 ◦C. Measurements were performed in triplicate.

2.4. Freezer Ice Cream Production

The milk ice cream mixture preparation samples were then frozen in two small freezers,
G3 Ferrari G20035 Cremosa (Modena, Italy). The freezing conditions for stabilized and
non-stabilized samples were exactly 40 min of the process. The change of temperature was
recorded in 60 s intervals by the thermocouples connected to the MPI-LAB temperature
recorder (Metronic Instruments, North Shields, UK) connected to the PC. After freezing
time, the temperature of both samples was at the level of −6 ◦C. Frozen samples of milk
ice cream were packed into 2 boxes for 300 mL (for each variant) and stored for further
microscopy analysis after 24 h, 1 week, 1 and 3 months.

2.5. Ultrasound-Assisted Freezing

The cubic plastic boxes containing 300 mL of ice creams were placed in a bath of a
two-chamber cryostat-type freezer made of stainless steel, with an aggregate for freezing
closed and open samples, filled with the cooling liquid (standard coolant—propylene glycol,
Borygo, Boryszew ERG, Poland). The cryostat allows for the study of ultrasound-assisted
freezing processes on the principle of immersion, i.e., by immersion in a non-boiling liquid.
The ultrasound frequency of the right chamber was at the level of 21.5 kHz ± 10% and
the left chamber at 40 kHz ± 10%, power 2.4 kW (chopped operation), and it has already
been shown in the previous study [10]. The process was carried out in two chambers at the
temperature of the bath −12 ◦C for the proper time to adjust −6 ◦C in the center of each
sample. The following variants were carried out:

• Cryostat without the US for samples with (CS) and without stabilizers (CNS);
• Cryostat 21.5 kHz for samples with (CS21) and without stabilizers (CNS21), 10 min of

US treatment, chopped operation;
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• Cryostat 40 kHz for samples with (CS40) and without stabilizers (CNS40), 10 min of
US treatment, chopped operation.

The temperature changes were monitored using two thermocouples placed in the
thermal centers of the samples in both chambers (records were taken every 120 s by the
MPI-LAB temperature recorder connected to the PC). The freezing process was carried out
to achieve −6 ◦C in the thermal center of the tested samples (the temperature was chosen
according to the temperature of the samples frozen in a conventional freezer).

In order to analyze the course of freezing for both methods (US cryostat and conven-
tional freezer), the recorded data were used to prepare freezing curves for each method
and each sample (Figure 1). The method has already been described by the authors [13].
Freezing processes and measurements were performed in triplicate.

Figure 1. Characteristics of averaged freezing curves for stabilized and non-stabilized ice cream frozen
used conventional and immersion methods without and with ultrasound support at frequencies of
21.5 and 40 kHz.

2.6. Microscopy Structure Analysis

To prepare the sample for image analysis (after the production cycle), a small piece of
ice cream was taken from the center of the plastic box from at least 2 different locations, a
minimum of 3 cm away from the ice cream surface, and placed on an object slide by using
a spatula and then covered by the cover slip placed on the top of the sample (which gives
at least two slides for each sample). The samples were prepared in a freezing chamber and
transferred into a microscope occupied with the cooling system (Linkam LTS420). This
system eliminated the influence of the ambient temperature.

The recrystallization process was then analyzed based on the images of ice crystals
taken after 24 h, 1 week, 1 and 3 months at a temperature of −18 ◦C. A microscope
(Olympus BX53) with the cooling system Linkam LTS420, with 10× and 50× lenses and
a camera (Olympus SC50), was used. The microscope was occupied with an LED light
source with a power equivalent to 30 W for a halogen lamp. Camera settings: exposure
time 31 μs–2.74 s, pixel size 2.2 × 2.2 μm, refresh 15 frames per second.

The obtained images were then analyzed using NIS Elements D software. From 300 to
500 crystals were manually marked for a particular sample, and then the area, equivalent
diameter and standard deviation were calculated using the NIS Elements D Imaging
software (version 5.30.00, Nikon), based on the method used before [10].

2.7. Statistical Analysis

For the statistical analysis of the obtained results (in order to determine the effect
of the addition of stabilizers), a one-way analysis of variance was used in a completely
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random design, and homogeneous groups were determined using the Tukey test at the
significance level of α = 0.05. The R programming language was used in the R Commander
environment (version 4.3.0).

The freezing curves were prepared based on the temperature changes, using Microsoft
Excel 365 Office (version 2208, 2022). Then, regression curves were plotted on their basis,
obtaining the corresponding equations, and regression coefficients were compared using a
one-way analysis of variance and the Tukey test.

The frequency distribution of the crystal size was computed using Microsoft Excel
(version 2208, 2022) macro data analysis. The relative frequency of any class interval was
calculated as the number of crystals in that class divided by the total number of crystals
and expressed as a percentage. The parameter X50 was analyzed as an average diameter
(DA) for 50% of crystals in the sample. The average diameter (DA) and standard deviations
(SD) of each class were also calculated. The method has already been shown [10,13].

3. Results and Discussion

3.1. Physicochemical Properties of Ice Cream

The density of the ice cream mixture affects the overrun value of the finished ice
cream and depends mainly on the composition of the mixture, i.e., the content of fat-
free dry matter, sugars and stabilizers. Generally, its value is estimated in the range of
1.0544–1.1232 g/cm3 and the addition of stabilizers could significantly increase the density
of ice cream mixtures [14]. Statistical analysis for the obtained ice cream mixes did not show
a significant difference (Table 1); therefore, it was concluded that the stabilizing additives
did not affect the density of the examined samples.

Table 1. Density, pH, overrun and freezing point.

Sample Density pH Overrun Freezing Point

NS 1.161 ± 0.030 a 6.35 ± 0.01 a 16.4 ± 1.6 b −1.8 ± 0.1 a

S 1.157 ± 0.221 a 6.31 ± 0.00 a 25.2 ± 0.7 a −2.4 ± 0.2 b

Explanatory notes: NS—reference sample (without any stabilizers), S—LBG, xanthan with the addition of
ι-carrageenan, (x± sd ); a,b mean values denoted by different superscripts differ statistically at α = 0.05.

It was proved that a stabilizing mix of LBG and ι-carrageenan with the combination of
guar gum significantly increased the density of ice cream based on whey [1]; however, this
effect could be related to the whey protein properties. Therefore, the negative effect of the
high density of the ice cream mix on the overrun might have been observed [8].

During mixing and freezing, reactions of proteins and surfactants occur, resulting in
the formation and stabilization of the ice cream mixture as a foam [15]. In this particular
research, ice cream with added stabilizers contained in its structure 25.2% air, thus having
a higher overrun value compared to ice cream without the addition of stabilizers (overrun
at the level of 16.4%) (Table 1). Hydrocolloids affect the degree of aeration of the ice cream
with varying effectiveness, and depend on the type, presence and concentration of other
ingredients, including another hydrocolloid and its synergistic effect [3,16]. It was also
proved [17] that the overrun of milk ice cream ranged from 65.04% to 72.54%; nonetheless,
it is strictly dependent on the ice cream recipes [3]. According to research by Kot et al.
(2023) and Romulo et al. (2021) [8,15], the use of locust bean gum increases the aeration
level of ice cream more effectively than the addition of guar gum or a combination of
these hydrocolloids. In turn, other studies observed that the addition of xanthan gum to
rice ice cream resulted in better aeration than the addition of guar gum [18]. Moreover, it
has already been observed that ι-carrageenan addition improves milky ice cream aeration
(overrun higher than 30%) and elongated the melting time of the tested samples [8].

The pH of the tested samples did not show a significant difference (Table 1), which has
already been presented for stabilized and non-stabilized whey and milky ice cream [1,8].
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An important ingredient of any type of ice cream is carbohydrates, which lower the
freezing point of the ice cream mixture [8,19,20]. Ice cream without stabilizers had a lower
freezing point than the reference sample without any addition (Table 1). Góral et al. (2018)
examined the freezing point of ice cream based on a coconut drink with different levels
of LBG addition, and they discovered that the higher concentration of LBG lowered the
freezing point of the examined samples [12]. On the other hand, it was also proved that
the addition of ι-carrageenan did not significantly influence the freezing point of milky ice
cream in comparison to the addition of its hydrolysates with a lower molecular mass [8].

3.2. Freezing Course Analysis

The time and course of freezing are related to the arrangement and size of ice crystals.
By shortening the process time, it is possible to create smaller and more evenly distributed
crystals in the sample, while improving the quality of frozen food [3,13].

Based on the graph of freezing curves (Figure 1) and the values of regression coeffi-
cients (statistical analysis—Supplementary Materials, Figure S1), it can be concluded that
the course of freezing in the freezer of both examined samples was similar. The lack of
significant statistical differences indicates the lack of influence of stabilizers on the course
of freezing and the linearity of temperature changes during it. Therefore, the use of a
combination of locust bean gum, xanthan gum and ι-carrageenan did not affect the nature
of freezing. In research on the freezing process of strawberry sorbet, it was found that the
addition of a combination of κ- and ι-carrageenan slowed down the freezing rate.

In the immersion method under the influence of sonication, the freezing time was
effectively shortened, regardless of the set frequency compared with the freezing time of
the reference sample (Figure 1, Table 2).

Table 2. Freezing time.

Sample Time [min] Sample Time [min]

FNS 19 ± 4 c FS 14 ± 0 c

CNS 84 ± 0 a CS 87 ± 4 c

CNS21 65 ± 1 b CS21 70 ± 3 b

CNS40 63 ± 4 b CS40 69 ± 4 b

Explanatory notes: NS—reference sample (without any stabilizers), S—LBG, xanthan with the addition of ι-
carrageenan, F—samples from the freezer, C—samples from cryostat, C21—samples from cryostat US 21.5 kHz,
C40—samples from cryostat US 40 kHz. (x ± sd ); a–c mean values denoted by different superscripts differ
statistically at α = 0.05.

The regression coefficient curves obtained from the equations (statistical analysis—
Supplementary Materials, Figures S2 and S3) show that the freezing curves are parallel
to each other, and the course of freezing for each of the cryostat samples did not differ
significantly. Therefore, ultrasound did not relevantly affect temperature changes during
the process, which is surprising because it shortened its time. It is possible that during the
emission of waves with a frequency of 40 kHz, simultaneous cavitation and heat generation
were more intense, and therefore, more temperature fluctuations were observed than
during freezing at a frequency of 21.5 kHz (Figure 1). This would also explain the lack of
influence of the frequency of the given waves on the freezing time (Table 2), because during
sonication at a higher frequency, more heat was released, which required a longer cooling
time for the product. In theory, freezing should be accelerated as a result of intensified
cavitation [6].

The reason for this result could be the even distribution of heat throughout the product,
caused by microturbulence in the coolant that create a mixing effect. Moreover, cavitation
effects contribute to the disintegration of air bubbles, which hinder heat conduction and
effective freezing [21]. Their removal by ultrasonic waves allows for this process to be
accelerated. The factors explaining this effect may be the same as in the case of ice cream
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without stabilizers, i.e., more uniform cooling of the product and reduced air insulation. As
in the case of ice cream without stabilizers, the statistical analysis excluded the influence
of stabilizers on the effect of ultrasound; therefore, in the production of dairy ice cream
with the recipe given in this study, sonication can be considered as a treatment beneficial in
terms of freezing time, regardless of the presence of added stabilizers. The same effect was
also noticed for sorbet frozen in similar conditions [10]. In this sorbet study, despite similar
conditions, the total time for sample freezing was much shorter (not longer than 16 min
in cryostat) than for milky ice cream in this particular study (Table 2). This effect can be
explained by the different water content of the ice cream mixes and totally different basal
ingredients with a higher fat content. The presence of fat globules in milky ice cream and
air bubbles pressed into the mixture during preparation could influence the heat transfer of
the freezing process that is US-assisted, which was also already confirmed in the previous
study [21–23].

In previous research [24], the ultrasound effect was used in the process of freezing
chicken breast samples in a cooling tunnel with forced air flow, which shortened the total
freezing time by approximately 11%. A similar conclusion was reached by [6], who found
that thanks to the use of ultrasonic waves, the process of freezing potato samples was
significantly shortened. In turn, in carp and pork samples, a reduction in the size and
more uniform distribution of ice crystals was observed after ultrasonic-assisted immersion
freezing during 180 days of storage compared to the samples air-frozen and immersion-
frozen without sonication.

3.3. Ice Crystal Structure Analysis

The sizes and shapes of ice crystals in the ice cream structure are the main factors
determining the fine texture of this product. Ice cream is considered a good-quality product
only when the ice crystals’ diameters are smaller than the detection threshold, which means,
for some of the researchers, lower than 25 μm, and the rest, even more than 50 μm [3,25].

Comparing the ice crystal diameters from the classic freezer and cryostat without the
US (Tables 3 and 4), we can conclude that stabilizers effectively stopped the growth of ice
crystals after all analyzed periods of storage.

Table 3. Comparison of ice crystal size distribution in ice cream samples frozen in a conventional
freezer and cryostat with and without US.

Variant Minimal Diameter [μm] Maximal Diameter [μm]
DA in Class with the Highest

Frequency [μm]

FNS

24 h 2.38 14.72 7.39 ± 2.23 d,e,f

1 week 3.03 16.10 7.53 ± 2.84 d

1 month 4.57 24.49 7.45 ± 2.21 d,e

3 months 8.02 29.75 17.99 ± 4.05 a

CNS

24 h 1.98 18.38 6.60 ± 2.59 e,f

1 week 3.51 21.58 6.41 ± 2.20 f

1 month 3.00 20.55 8.91 ± 3.39 c

3 months 4.05 27.08 16.90 ± 4.27 a

CNS21

24 h 2.74 16.87 6.54 ± 3.28 e,f

1 week 2.03 15.25 6.78 ± 4.45 d,e,f

1 month 4.12 22.32 6.86 ± 1.95 d,e,f

3 months 3.77 24.42 11.84 ± 4.44 b

CNS40

24 h 1.93 8.34 4.44 ± 1.54 g

1 week 1.96 10.96 4.32 ± 1.68 g

1 month 1.80 19.35 9.31 ± 4.40 b

3 months 3.29 29.85 11.07 ± 4.64 b

Explanatory notes: NS—reference sample (without any stabilizers), F—samples from the freezer, C—samples
from cryostat, C21—samples from cryostat US 21.5 kHz, C40—samples from cryostat US 40 kHz. a–g means in the
same row indicated by different letters were significantly different (α = 0.05).
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Table 4. Comparison of ice crystal size distribution in ice cream samples frozen in a conventional
freezer and cryostat, with and without US.

Variant Minimal Diameter [μm] Maximal Diameter [μm]
DA in Class with the Highest

Frequency [μm]

FS

24 h 1.43 17.08 5.45 ± 3.08 h,i

1 week 2.21 17.27 5.82 ± 2.43 g,h

1 month 3.17 12.65 6.03 ± 1.83 f,g,h

3 months 2.70 28.58 12.90 ± 4.51 b

CS

24 h 3.71 8.56 6.72 ± 1.07 e,f,g

1 week 2.35 14.54 6.49 ± 2.85 e,f,g

1 month 3.98 10.70 6.77 ± 1.38 e,f

3 months 3.73 27.32 14.89 ± 4.55 a

CS21

24 h 2.06 7.98 5.29 ± 1.45 h,i,j

1 week 2.81 10.26 5.11 ± 1.96 h,i,j

1 month 4.12 15.25 6.86 ± 3.08 e

3 months 3.77 24.42 7.84 ± 3.35 d

CS40

24 h 1.91 7.12 4.36 ± 1.26 i,j

1 week 1.81 12.51 4.58 ± 1.80 j

1 month 1.96 20.63 9.33 ± 2.92 c

3 months 2.15 20.75 9.90 ± 2.47 c

Explanatory notes: S—LBG, xanthan with the addition of ι-carrageenan, F—samples from the freezer, C—samples
from cryostat, C21—samples from cryostat US 21.5 kHz, C40—samples from cryostat US 40 kHz. a–j means in the
same row indicated by different letters were significantly different (α = 0.05).

After 3 months of storage, the biggest ice crystals were noticed for a stabilized sample
of ice cream prepared with cryostat use, at the level of 15 μm. The crystals in the stabilized
sample from a cryostat were larger, which may be the result of the fact that the freezer,
thanks to the stirrer, injects air, limiting the growth of the crystals and breaking them into
smaller ones. Kamińska-Dwórznicka et al. (2020) found that in a conventional freezer, due
to aeration and mixing during freezing, the heat transfer conditions are different than in a
cryostat, and therefore smaller ice crystals are formed [13].

The formation of smaller crystals was observed in the ice cream frozen with ultrasound
assistance, and the smallest and more evenly distributed crystals were achieved at a wave
frequency of 21.5 kHz and for the stabilized samples (Figures 2 and 3). The average crystal
diameter after 3 months of storage was at the level of 8 μm, and at a frequency of 40 kHz,
it was nearly 10 μm (Table 4). A similar result was obtained for mango sorbet, where it
was noticed that the crystals reached the lowest size of 12.11 μm after the application of
ultrasound at a frequency of 21.5 kHz [10]. Sonication with a wave frequency of 20 kHz
resulted in a reduction in the X50 parameter (average diameter for 50% of crystals in the
sample) and also in gelatin gel samples from 28 to 47 μm [26].

It is possible that waves with the lower of the two given frequencies (21.5 kHz) may be
more effective in inhibiting recrystallization in milk ice cream and sorbets (Figure 3); this
was already proved for liquid water or a solution containing more air [27]. Ice mixtures
are a multiphase system which, due to the content of air bubbles, is also indeed a solution
containing more air and in a sense a foam system.

It can be assumed that the ultrasonic waves caused more uniform cooling throughout
the entire volume of the product and, as a result, the nucleation of crystals occurred in
different parts of the product at a similar time, thanks to which more crystal nuclei were
formed and they mutually limited their growth.
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Figure 2. Ice crystal size distribution in stabilized and non-stabilized ice cream frozen used immersion
methods, without and with ultrasound support at frequencies of 21.5 kHz.
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Figure 3. Recrystallization curves for each variant of freezing for stabilized ice cream samples.

Consequently, the application of ultrasonic-assisted freezing at a frequency of 40 kHz,
a change in the size of ice crystals occurred in the non-stabilized ice cream sample after
1 month. Then, their growth was inhibited, because the values of the X50 parameters after
one month and three months were similar (Figure 4). The same tendency was observed in
the data regarding the stabilized samples. This might be the result of ultrasonic treatment,
which slowed down the recrystallization rate, regardless of the influence of stabilizers. In
ice mixtures with the addition of stabilizers, during ripening, a coalescence process may
occur for fat globules that increase in size. This destabilization process may be beneficial in
the traditional freezing method, but when using ultrasound, it may adversely affect the
formation of larger ice crystals [28].

Using waves of this frequency, it was possible to reduce the size of the crystals of
frozen grass carp fish (Ctenopharyngodon idella) and preserve the original structure of muscle
fibers to a greater extent [29]. It was also examined [26] that the differences in structure
depend on the intensity of emitting ultrasonic waves. That is why it is so important to
select the best parameters, because too little or too much ultrasound action may result in
the formation of crystals with larger diameters.
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Microscopic analysis gives information not only about ice crystals’ sizes, but also about
their shapes [3]. After 3 months of storage, for the stabilized and non-stabilized samples
from the freezer, the differences in the crystal structure were clearly visible. For the non-
stabilized samples, more round crystals with free space between were observed. For the
stabilized sample, a more angular and spatial arrangement was noticed. We can assumed
that a lack of free spaces was observed as a result of the recrystallization mechanisms
(Figure 5b).
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Figure 4. Ice crystal size distribution in stabilized and non-stabilized ice cream frozen using immer-
sion methods, without and with ultrasound support at frequencies of 40 kHz.

(a) (b)

Figure 5. Comparison of the images of ice cream frozen in the freezer, not stabilized (a) and stabilized
(b), after 3 months of storage at the temperature of −18 ◦C (magnification 50×).

Kiran-Yildirim et al. (2020) examined the influence of various carrageenan fractions
(κ-, ι-, λ-) on the recrystallization in model sucrose solutions. They concluded that in the
sample with the addition of ι-carrageenan, crystals were more angular and more closely
packed just after 50 h of storage [30].

Looking at the crystal morphology of an ice cream sample with and without stabiliza-
tion, frozen using the immersion method without ultrasound (Figure 6), one can notice
a large number of oval crystals, situated close to each other. It is difficult to observe any
differences between stabilized and non-stabilized samples. As it was already written [10,13]
with a lack of mixing and aerating during freezing in a cryostat gave a more dense structure
with larger ice crystals.
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(a) (b)

Figure 6. Comparison of the images of ice cream frozen with a cryostat (without the US), not
stabilized (a) and stabilized (b), after 3 months of storage at the temperature of −18 ◦C (magnifica-
tion 50×).

After 3 months of storage, in samples without stabilizers and after US treatment
(21.5 kHz), the spaces in the crystal lattice increased (Figure 7a). Presumably, as a result of
coalescence, the crystals grew together, leaving behind free spaces filled with ice masses.

(a) (b)

Figure 7. Comparison of the images of ice cream frozen with a cryostat with US at frequencies of
21.5 kHz, not stabilized (a) and stabilized (b), after 3 months of storage at the temperature of −18 ◦C
(magnification 50×).

They were characterized by an irregular shape. Some were fused together, while the
single ones were oval, but also elongated. In the samples with stabilizers, the crystals
were small and significantly separated from each other (Figure 7b). This may be due to the
influence of stabilizers and also cavitation activities, scattering the crystal nuclei, because
compared to the photo of the sample using the method without ultrasound (Figure 6), these
distances are larger and the crystals are significantly smaller, more evenly distributed and
oval. What was surprising is that after the longest storage time, the ice crystals, apart from
their size, did not change significantly in shape and retained their distinct form for the
most part.

Kamińska-Dwórznicka et al. (2023) also determined the crystal structure of mango
sorbet after treatment with ultrasound at a frequency of 21.5 kHz as more uniform, made
of smaller and similar crystals in terms of shape and size [10]. Taking into account the
amount of fat in milk ice cream, which is much higher than in ice cream based on fruits or
a plant-based drink, it can be said that in this case, milk ice cream will have a much better
crystalline structure and a smooth texture [31]. Moreover, it was already proved that a
lower frequency (around 21 kHz) was better in application to the solutions containing more
air and the cavitation effect could strengthen the formation of ice nuclei, thus reducing the
rate of ice crystals growth [27].

Additionally, this was confirmed by the research of Zhang et al. (2019). After 180 days
of storage after immersion-freezing using ultrasonic waves, ice crystals in pork samples
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retained their regular shape and uniform distribution in the material. The authors found
that sonication with a power of 180 W can effectively keep ice crystals smaller in meat fibers
and cause their smaller deformations during freezing and storage (frequency of sonication
was not provided) [32]. Hu et al. (2013) observed a similar nature of crystals in samples
of wheat dough frozen with the assistance of ultrasonic waves at a frequency of 25 kHz.
This method has been found to promote the formation of fine ice crystals in large numbers
inside the frozen cake and improve heat transfer [33].

It could be assumed that ultrasonic waves with a frequency of 40 kHz can enable the
production of non-stabilized ice cream with evenly distributed crystals and a similar shape,
just after production, as already concluded. Unfortunately, it was not possible to limit the
merging of the crystals after about 90 days as it was after treatment with 21.5 kHz waves,
and connected oval and larger crystals are visible in the photo (Figure 8).

(a) (b)

Figure 8. Comparison of the images of ice cream frozen with a cryostat with US at frequencies of
40 kHz, not stabilized (a) and stabilized (b), after 3 months of storage at the temperature of −18 ◦C
(magnification 50×).

However, it should be taken into account that compared to the reference samples, these
are small particles and barely perceptible during consumption, because the average diameter
of the crystals did not reach 25 μm, and this ultimately positive effect on the recrystallization
inhibition was found regardless of the presence of the selected hydrocolloids.

4. Conclusions

The present study showed how to use US-assisted freezing in milky ice cream produc-
tion in order to obtain fine-quality products with more beneficial crystal structures.

The addition of the chosen stabilizers (LBG, xanthan gum and ι-carrageenan) did not
significantly influence the density and pH of ice cream; however, the freezing point for the
stabilized samples was lower and the overrun was higher.

The US-assisted freezing method with a frequency of 21.5 and 40 kHz allowed for
reducing the freezing time by 21 and 23%, respectively, in the case of non-stabilized ice
cream compared to the reference sample, while the freezing of stabilized ice cream was
shortened by 20 and 21%.

The use of sonication resulted in the limited growth of ice crystals, and the smallest
size was achieved at a wave frequency of 21.5 kHz and the addition of stabilizers, which
was 7.8 μm. Therefore, the proper selection of stabilizers combined with sonication leads to
the formation of a more desirable crystal structure. Recrystallization was inhibited more
effectively by ultrasonic waves with a frequency of 21.5 kHz than waves with a frequency
of 40 kHz. Under the influence of the application of waves with a frequency of 21.5 kHz,
the crystal structure consisted of a large number of smaller and more uniform ice crystals.

In conclusion, it has been shown that sonication allows for shortening the freezing time
and obtaining a product of better quality, and thanks to its use, the addition of stabilizers can
be reduced. This effect could show the manufacturers a new path for ice cream production
based only on natural ingredients and with a decreased number of additives. However, it
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could also create some problems with process organization and be a big challenge for new
freezer constructors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pr12091957/s1: Figure S1. Plot of the freezing curves and cor-
responding linear regression curves with their equations. This applies to the conventional method
and stabilized and non-stabilized samples. The designation “a” or “b” corresponds to two different
repetitions. Figure S2. Plot of the linear regression curves with corresponding equations based on the
temperature and freezing time dependence. This applies to the immersion method and non-stabilized
samples. The designation “a” or “b” corresponds to two different repetitions. Figure S3. Plot of the
linear regression curves with corresponding equations based on the temperature and freezing time
dependence. This applies to the immersion method and stabilized samples. The designation “a” or
“b” corresponds to two different repetitions.
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16. Kamińska-Dwórznicka, A. Wpływ stabilizatorów na ograniczenie rekrystalizacji w lodach typu sorbet. PrzemysŁ SpoŻywczy 2016,
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Abstract: Renewable energy is the best choice for clean and sustainable energy development. A
single renewable energy system reveals an intermittent disadvantage during the energy production
process due to the effects of weather, season, day/night, and working environment. A generally
hybrid renewable energy system (HRES) is an energy production scheme that is built based on a
combination of two or more single renewable energy sources (such as solar energy, wind power,
hydropower, thermal energy, and ocean energy) to produce electrical energy for energy consumption,
energy storage, or a power transmission line. HRESs feature the outstanding characteristics of
enhancing energy conversion efficiency and reducing fluctuations during the energy production
process. Triboelectric nanogenerator (TENG) technology transduces wasted mechanical energies into
electrical energy. The TENG can harvest renewable energy sources (such as wind, water flow, and
ocean energy) into electricity with a sustainable working ability that can be integrated into an HRES
for high power efficiency in sustainable renewable energy production. This article reviews the recent
techniques and methods using HRESs and triboelectric nanogenerators (TENGs) in advanced hybrid
renewable energy systems for improvements in the efficiency of harvesting energy, sustainable energy
production, and practical applications. The paper mentions the benefits, challenges, and specific
solutions related to the development and utilization of HRESs. The results show that the TENG is
a highly potential power source for harvesting energy, renewable energy integration, application,
and sustainable energy development. The results are a useful reference source for developing HRES
models for practical applications and robust development in the near future.

Keywords: triboelectric nanogenerator; renewable energy; sustainable energy development; hybrid
energy system; energy applications

1. Introduction

Energy is an indispensable element of our social development, from cooking to in-
dustrial consumption. Traditional energy is increasingly exhausted because fossil energy
resources are limited, and their exploitation causes harmful effects to our environment.
Renewable energy (RE) has a crucial mission in facing the problems of a lack of energy and
protecting the natural environment all over the world [1–7]. Renewable energy contributes
to technology, solutions, and national policies leading toward the sustainability of energy
utilization, economic–social development, environmental protection, and industrialization
strategies [8–20]. Traditional renewable energy resources include solar energy, hydropower,
ocean energy, wind power, bioenergy, geothermal energy, and hydrogen energy, as shown
in Figure 1. Renewable energy (RE) is the best solution for exploiting, developing, and
consuming energy to repel carbon dioxide (CO2) emissions to the index of zero carbon for
sustainable development [21–25]. The global carbon dioxide emission shows a worrying
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number with the high data of 37 × 109 tonnes (t) recorded in 2022. With the rapid develop-
ment of renewable energy, the Net-Zero Roadmap (NZR) was planned by the International
Energy Agency (IEA) with the strategy of maintaining the global warming temperature of
1.5 ◦C until 2030 and attaining net-zero carbon dioxide emissions by 2050. With the net-zero
emissions (NZEs) scenario, emissions will be reduced by about 80% by 2030 with the speed-
ing up of renewable energy development, energy efficiency, methane emission reductions,
and energy conversion technologies. Carbon dioxide emissions will decrease by about 35%
by 2030 in comparison to the value in 2022 in the NZEs scenario, with the appearance of
clean energy and renewable energy. The share of the global implementation of clean energy
technologies from China and other advanced economies was recorded during the period of
2010 to 2022, with a contribution of over 95% from global electric vehicles and heat pumps,
as well as about 85% from the contribution of wind and solar energy capacity from 2015 to
2022 [26]. Table 1 shows the rapid increase in renewable generation (RG) around the world,
with 4209 terawatt hours (TWh) in 2010, 7964 TWh in 2021, and 8599 TWh in 2022, as well
as estimations of 19295 TWh in 2030 and about 55057 TWh in 2050 with the NZEs scenario,
respectively. The table shows increases in renewable generation of about 89.21%, 104.3%,
358.42%, and 1208.08% in comparison to the value of renewable energy generation in 2010,
respectively. The table also shows renewable generation in critical areas of North America,
Central and South America, Europe, Africa, Eurasia, and the Asia Pacific with outstanding
aggregations. North America shows impressive numbers with 856 TWh in 2010, 1374 TWh
in 2021, and 1497 TWh in 2022, as well as estimations of 3538 TWh in 2030 and about 9261
TWh in 2050 with the NZEs scenario, respectively. The increases in renewable generation in
this area are statistical values of about 60.51%, 74.88%, 313.32%, and 981.89% in comparison
with the value of renewable energy generation in 2010, respectively. Central and South
America shows recorded values of about 752 TWh in 2010, 896 TWh in 2021, and 1018 TWh
in 2022, as well as estimations of 1428 TWh in 2030 and about 3768 TWh in 2050 with the
NZEs scenario, respectively. In the area, renewable generation increases are counted at
about 19.15%, 35.37%, and 89.89% and then rapidly increased to 401.06% in comparison
with the value of renewable energy generation in 2010, respectively. Europe has recorded
positive values with 954 TWh in 2010, 1601 TWh in 2021, and 1620 TWh in 2022, as well
as estimations of 3438 TWh in 2030 and about 6834 TWh in 2050 with the NZEs scenario,
respectively. The RG increases in Europe were evaluated with numbers of about 67.82%,
69.81%, and 260.38%, and a remarkable number of 616.35% in comparison with the value
of renewable energy generation in 2010, respectively. Africa has the effective development
of renewable generation with 116 TWh in 2010, 201 TWh in 2021, and 210 TWh in 2022, as
well as estimations of 711 TWh in 2030 and about 3453 TWh in 2050 with the NZEs scenario,
respectively. The area receives growth values of about 73.28%, 81.03%, and 512.93%, and an
intense increase of 2876.72% in comparison with the value of renewable energy generation
in 2010, respectively. Eurasia shows good RG values with 226 TWh in 2010, 287 TWh in
2021, and 277 TWh in 2022, as well as estimations of about 380 TWh in 2030 and 844 TWh
in 2050 with the NZEs scenario, respectively. The area achieved growth numbers of about
26.99%, 22.56%, 68.14%, and 273.45% in comparison with the value of renewable energy
generation in 2010, respectively. The Asia Pacific contributes to the outstanding RG num-
bers with 1287 TWh in 2010, 3568 TWh in 2021, and 3932 TWh in 2022, as well as estimations
of 9568 TWh in 2030 and about 28321 TWh in 2050 with the NZEs scenario, respectively.
This area records excellent increases of about 177.23%, 205.52%, 643.43%, and 2100.54% in
comparison with the value of renewable energy generation in 2010, respectively. The table
also shows remarkable results of renewable energy generation from different countries and
combines those which have positive strategies in the development of renewable energy
generation such as China, the European Union, the United States, and Brazil [27].
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Figure 1. Traditional renewable energy resources include solar energy, wind power, bioenergy,
hydropower, geothermal energy, ocean energy, and hydrogen energy.

Table 1. Renewable energy generation (TWh) in the world and some critical areas.

2010 2021 2022
2030 with the

NZEs Scenario
2050 with the

NZEs Scenario

In the world
RG (TWh) 4209 7964 8599 19,295 55,057

Comparison with 2010 - 89.21% 104.3% 358.42% 1208.08%

North America
RG (TWh) 856 1374 1497 3538 9261

Comparison with 2010 - 60.51% 74.88% 313.32% 981.89%
Central and

South America
RG (TWh) 752 896 1018 1428 3768

Comparison with 2010 - 19.15% 35.37% 89.89% 401.06%

Europe RG (TWh) 954 1601 1620 3438 6834
Comparison with 2010 - 67.82% 69.81% 260.38% 616.35%

Africa
RG (TWh) 116 201 210 711 3453

Comparison with 2010 - 73.28% 81.03% 512.93% 2876.72%

Eurasia
RG (TWh) 226 287 277 380 844

Comparison with 2010 - 26.99% 22.56% 68.14% 273.45%

Asia Pacific
RG (TWh) 1287 3568 3932 9568 28,321

Comparison with 2010 - 177.23% 205.52% 643.43% 2100.54%
China RG (TWh) 782 2448 2681 6419 14836

Comparison with 2010 - 213.04% 242.84% 720.84% 1797.19%
European Union RG (TWh) 653 1081 1085 2407 4720

Comparison with 2010 - 65.54% 66.16% 268.61% 622.82%
United States RG (TWh) 441 867 973 2087 7683

Comparison with 2010 - 96.60% 120.63% 373.24% 1642.18%
Brazil RG (TWh) 437 508 594 732 1378

Comparison with 2010 - 16.25% 35.93% 67.51% 215.33%

Renewable energy utilization contributes to the protection of our living environment
and fossil energy resources [28]. The Renewables 2024 Global Status Report (GSR 2024) was
conducted by the Renewable Energy Policy Network for the 21st Century (REN21) with the
impressive number of renewable power capacity of 473 gigawatts (GW) corresponding to
the increase of 36% in power capacity added in 2023 and the contribution of 151 countries
to the development strategy of net-zero targets [29]. The global energy demand increased
by about 1.3% in 2022 according to the International Energy Agency (IEA). The Stated
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Policies Scenario (STEPS) also gives an overview of the latest policies regarding areas such
as energy, industry, and climate for countries over the world. The STEPS suggests that the
contribution of renewable energy to power capacity should be increased of about eighty
per cent by 2030 in the effort of reducing carbon dioxide emissions [27].

The renewable energy (RE) has been received many attentions for excavation, de-
velopment, and application such as planning environmental protection strategies using
renewable energy [30], constructing pathways of deep decarbonization with the benefits
of environment protection and economic control [31], developing energy legislation for
countries to promote the replacement of traditional energy with renewable energy to help
solve the problem of global warming and the lack of energy [32], investigating the evidence
of a positive influence on economic growth with the use of renewable energy [33], and
using renewable energy sources to achieve net-zero energy for buildings [34].

A triboelectric nanogenerator (TENG) is an emerging technology for transforming
wasted mechanical energy into electricity for many practical applications [35]. The TENG
shows many advantages of modern renewable energy technology with outstanding charac-
teristics of green energy, lightweight, simple structure, and sustainable energy source [36].
TENG technology can convert wasted mechanical energies by, for example, transducing
water wave energy, motions, oscillations, and vibrations [37–43], kinetic energy from the
ocean [44–47], and biomechanical energy from bio-object movement [48], into electrical
energy. TENG technology is a strong candidate for renewable and sustainable energy
generation as it converts renewable energy sources into electricity such as wind energy,
water wave energy, and ocean energy. The TENG has outstanding features, including
that it produces no gas emissions, is eco-friendly, and is a form of clean energy [49–51].
The TENG meets the following criteria of sustainable development goal 7 (SDG-7): pro-
viding everyone access to energy services using modern, affordable, and reliable energy
resources by 2030 (Target 7.1), increasing the share of global renewable energy (Target
7.2), doubling the energy efficiency improvement (Target 7.3), promoting access to clean
energy via research actions, technology applications, and capital investment (Target 7a),
and expanding sustainable energy access for developing countries via services, technology,
and infrastructure development (Target 7b) [52].

A single renewable energy system (SRES) is generally represented as a renewable
energy conversion technology that utilizes a single renewable energy source such as solar
energy, hydropower, ocean energy, wind power, bioenergy, geothermal energy, or hydrogen
energy. Intermittent energy generation is the biggest disadvantage of SRESs which rely
on natural environment conditions such as weather, season, day/night, and working
environment [53]. This directly influences the energy conversion performance of renewable
energy systems such as their efficiency, power, and continuity features. A hybrid renewable
energy system (HRES) is an energy production model that is built by a combination of two
or more single renewable energy systems. HRESs convert renewable energy sources into
electrical energy for electrical consumption devices, energy storage systems, and power
transmission lines. HRESs are the best solution to the intermittent energy supply problem;
because they consist of different single renewable energy systems, they can harvest many
types of renewable energy sources at difference times [54]. HRESs show outstanding
characteristics of high power efficiency and sustainable renewable energy production [55].
HRESs are one of the best methods to enhance output performance and reduce fluctuation
during the energy generation process. HRESs are an effective supporting method for energy
generation in remote communities with wonderful characteristics such as low energy cost
and environmental protection. HRESs have been studied by many research groups who
have applied techniques and methods such as artificial intelligence, hybrid algorithms, and
computer tools to develop HRES models for practical applications [56–59].

Hybrid renewable energy systems can be integrated into a hybrid energy storage
system to improve the benefits of a power system by, for example, decreasing the capital
cost, enhancing the efficiency, extending the system life, or balancing the output power [60].
Figure 2 shows the structure of a hybrid energy system integrated with energy storage
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modules to improve the performance of a power system [61]. The model consists of
basic components including nonrenewable energy resources, renewable energy resources,
converters, energy storage modules, an energy management hub, alternative current (AC)–
direct current (DC), AC–AC, DC–DC, and DC–AC converters, a bidirectional converter, AC–
DC buses, AC–DC loads, and an electrical grid. The energy resources include nonrenewable
and renewable energy types that supply the input power to the system. The energy storage
module has the role of storing electrical energy for long-term use and balancing the input
signal of electricity with the electrical equipment. The AC–DC, AC–AC, DC–DC, and DC–
AC converters are used to change an alternative current (AC) to a direct current (DC), an
AC to an AC, a DC to an AC, and a DC to an AC, respectively. The bidirectional converter is
used to make an interface between a low-voltage storage unit and a high-voltage bus. The
AC and DC buses are used to couple the power sources integrated into the hybrid energy
system. The electrical load uses the AC or DC power to drive the actions of the electrical
equipment. The power grid is used to transmit electricity to areas that lack electrical energy.

Figure 2. A hybrid energy model with some basic parts including nonrenewable energy sources,
renewable energy sources, energy storage, electrical converters, electrical loads, and an electricity grid.

HRESs have contributed to a reduction in net present costs and carbon dioxide emis-
sions [62,63]. HRESs have led to the development of technologies and methods to expand
the practical applications of renewable energy; these include the development of algorithms
to optimize the autonomous service of powering residential buildings [64], the introduction
of thermochemical conversion technology to turn waste into electricity [65], the use of
algorithm-based fuzzy logic tools to select a suitable location for HRES facilities [66], and
the creation of charging stations for electric vehicles [67]. TENG technology is emerging as
an effective solution which can be integrated into HRESs to boost the efficiency, power out-
put, and integrity of the power system [68,69]. This paper reviews the recent techniques and
methods of developing hybrid renewable energy systems to improve the energy conversion
efficiency, output performance, and continuity of renewable energy conversion systems.
The integration of a triboelectric nanogenerator (TENG) in an advanced hybrid renewable
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energy system (HRES) is proposed for harvesting renewable energy with the ability to
improve efficiency and produce sustainable energy, among other practical applications.
This paper addresses the benefits, challenges, and solutions for strengthening the efficiency,
utilization, and development of HRESs. The results reveal that triboelectric nanogenerators
have great potential as a harvesting technology for energy generation, renewable energy in-
tegration, application, and sustainable energy development, eliminating the disadvantages
of intermittency and variability that single renewable energy systems have stumbled upon.
The results hope to support the development of HRES models for practical applications
and robust energy development in the near future.

2. Single Renewable Energy Systems

A single renewable energy system (SRES) is an energy conversion system that is used
to convert a renewable energy resource into useful energy, such as photovoltaic systems
converting solar energy into electricity, wind energy systems changing wind power into
electricity, triboelectric nanogenerator systems turning wasted mechanical energy into
electrical energy, and hydropower systems transforming hydropower into electricity. Single
renewable energy systems are developed using mathematical models to address the output
performance of the system.

2.1. Photovoltaic System

A photovoltaic system (PVS) is a solar energy system that converts solar energy into
electricity. The total solar radiation is the input energy for PVSs. The total solar radiation
can be estimated using Equation (1) [70]:

IT = IbRb + IdRd + (I b + Id)Rr (1)

where
IT is the total solar radiation (kW h/m2);
Ib is the direct normal solar radiation;
Id is the diffuse solar radiation;
Rd is the tilt factor of the diffuse of the solar radiation;
Rr is the tilt factor of the reflection of the solar radiation.
The power output of PVSs can be calculated using Equation (2):

Psi = ITiηAPVS (2)

where
Psi is the power output of the PVS;
APVS is the area of the PVS (m2);
η is the system efficiency.
η can be calculated using Equation (3):

η = ηmηpcPf (3)

where
ηpc is the power condition efficiency;
Pf is a packing factor;
ηm is module efficiency.
This value can be calculated by Equation (4):

ηm = ηr(1− β(Tc − Tr)) (4)

where
ηr is the module reference efficiency;
β is the temperature coefficient;
Tc is the monthly average temperature;
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Tr is the reference temperature.
The monthly average temperature can be calculated using Equation (5):

Tc = Ta +
ατ

UL
IT (5)

where
Ta is the instantaneous ambient temperature.

UL

ατ
=

IT,NT

(NT− T a,NT

) (6)

NT is the normal operation cell temperature. In normal conditions, Ta,NT is 20 degrees
centigrade, IT,NT is 800 watts (W), and the wind speed is 1 m per second (m/s).

2.2. The Wind Energy System (WES)

Wind energy systems produce electricity by using a wind turbine generator to change
wind energy into electric energy with a power output P calculated by Equation (7) [71,72]:

Pw =
1
2
ρAwV3 (7)

where
Pw is the power output of the WES;
Aw is the swept area of the wind turbine;
V is the velocity of the air.

2.3. Triboelectric Nanogenerator (TENG)

The triboelectric nanogenerator (TENG) has recently emerged as a new renewable and
clean energy source. The TENG can convert wasted mechanical energy into electrical en-
ergy. The TENG’s working mechanism is based on the triboelectrification effect of coupled
tribomaterials during contact-separate cycles [73]. TENGs have more outstanding charac-
teristics, including being lightweight and low cost, using easy-to-find materials, having a
simple structure [74], and generating sustainable power [75,76]. Due to these outstanding
characteristics, TENGs have received much attention and have been used for numerous
practical applications such as transforming blue energy into electricity [77–80], devel-
oping biomedical sensors, healthcare devices, therapeutic applications, and implantable
biomedical applications [81–85], constructing micro-electro-mechanical systems (MEMSs)
equipment [86], self-powered sensing in temperature sensors, healthcare sensors, pressure
sensors, humidity sensors, force sensors, accelerating sensors, self-powered active sensors
for hydrogen detection, multifunctional sensors, human–machine interface sensing, and
self-powered sensing devices [87–95], harvesting biomechanical energy to sustainably
power wearable bioelectronics systems and self-powered wearable electronics [96–98],
monitoring the marine pipeline, the ocean wave, and the environmental potential of
hydrogen [99,100], introducing cellulose materials to drive self-powered sensors [101],
converting mechanical energy for self-powered electronics, smart devices, Internet of
Things (IoT), and lighting LEDs [102–104], constructing electrocatalytic systems with a
self-powered source [105], developing multifunctional self-powered electronics, sensors,
portable electronics devices, functional devices, and biomedical devices [106–109], devel-
oping sustainable power [110,111], creating human–machine interface applications [112],
combining with wood to create self-powered sensors [113], and developing a self-powered
device for lighting purposes [114]. Many other methods have been researched to develop
advanced triboelectric nanogenerators (ATENGs) such as introducing carbon material
with low-dimensional features to improve output performance [115], developing chemical
modification methods to enhance output performance [116], and constructing ATENGs
using technologies from electrochemical systems [117].
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Figure 3 shows the working mechanism of the TENG with five basic stages (initial,
contacting, separating, released, and contacting again states) to produce electric energy.
Figure 3a shows noncharges in the initial state. Figure 3b shows the adverse charges that
were generated as the two triboelectric surfaces made contact with each other. Figure 3c
shows the potential unbalance as the two tribomaterials are released from each other. An
electric current moves via the external load. Figure 3d shows the neutral state as the two
tribomaterials are released from each other. Figure 3e shows the potential unbalance as
the two tribomaterials are pressed together again. An electrical current flows through the
external load. The TENG produces an electric current with the open-circuit voltage (VOC)
expressed by Equation (8) [118]:

VOC = −σd
ε0

(8)

where
VOC is the open-circuit voltage;
σ is the triboelectric charge density;
d is the distance between the two contact surfaces;
ε0 is the vacuum permittivity.

 

Figure 3. The working mechanism of the TENGs. (a) The initial state. (b) The contacting state. (c) The
releasing state, in which a current (I) flows via an external load. (d) The released state. (e) The
pressing state, in which a current (I) runs through an external load.

343



Processes 2024, 12, 1964

The TENG shows good serving ability in hybrid energy systems, improving the
efficiency of the hybrid energy system with a TENG and a piezoelectric nanogenerator [119],
providing a self-powering feature for a smart system based on hybrid energy using an
ATENG and an electromagnetic generator [120] and a self-powering source for an Internet
of Things (IoT) system using a hybrid energy system comprising a TENG and a pyroelectric
nanogenerator [121], and integrating a TENG, solar cells, and an electromagnetic generator
into an HRES to harvest the ocean’s energy for practical applications [122].

3. Hybrid Renewable Energy System (HRES)

A hybrid renewable energy system (HRES) is constructed from two or more types of
single renewable energy systems. Advanced hybrid renewable energy systems support
the production of energy, especially in remote areas, with many advantages such as their
use of cheap and sustainable energy sources. HRESs can penetrate into the power grid
or act alone to supply energy to a specific area. New methods and technologies have
been focused on using HRESs to convert renewable energy sources into electricity such as
investigating an HRES model to transduce hydropower and thermal energy into electricity
in Ukraine [123] and developing an HRES based on triboelectric nanogenerators, thermo-
electric nanogenerators, piezoelectric nanogenerators, electromagnetic nanogenerators, and
solar cells to improve the efficiency of energy conversion [124]. Figure 4 shows the proposal
of a hybrid renewable energy system with the contribution of a photovoltaic energy system,
a wind energy system, and a triboelectric nanogenerator to produce electric energy for
electrical lines, electric consumption equipment, and energy storage systems [125–127].
Figure 4a shows a solar photovoltaic energy system with photovoltaic energy conversion
technology that is used to change solar energy into electricity. Figure 4b shows a wind
power system that uses wind power technology to convert wind energy to electrical energy
for energy consumption, storage, and integration. Figure 4c shows a triboelectric nanogen-
erator system that uses triboelectric generator technology to convert mechanical energy
into electricity for the purposes of electricity integration, energy storage, and providing
power to electric consumption equipment. Figure 4d shows an electrical line that has
the duty of transmitting electric energy to distant areas. Figure 4e shows how energy
from HRESs is used in electrical consumption devices. Figure 4f shows the energy storage
system that is used to store energy for long-time use, transport energy to remote areas, and
power portable devices. The model consists of three different kinds of energy transduction
systems to improve renewable energy conversion efficiency. Specifically, solar photovoltaic
energy systems produce electricity via the photovoltaic effect principle. Photovoltaic cells
are generally semiconductor devices that convert solar energy into electricity [128,129].
Figure 5 shows an equivalent circuit representing a solar photovoltaic cell. Iph is the current
source of the photocurrent of the PV cell. The current source is linear dependency relation
on the solar irradiance. Id represents the reverse saturating current of the diode. Rsh is the
PV intrinsic shunt resistance. Rs is the PV series resistance related to energy losses via the
assembly technique of solder bonds, junctions, and wires. Single PV cells can be connected
to form an array of PVs for more generation efficiency. The output current of the PV array
can be expressed by Equation (9):

I = Np Ipn − Np Id

[
exp
(

qV
kTANs

− 1
)]

(9)

where I is the output current of the PV array. Np represents the module numbers connected
in parallel. Ipn is the photocurrent. Id represents the reverse saturation current of the
PV cell. q represents the electron charge. V represents the output voltage of the PV
array. k, T, A, and Ns are the Boltzmann constant, the temperature of the PV cell, the
deviation of the pn junction feature of the PV cell, and the number of PV cells connected
in series, respectively. The wind power system produces electricity from wind energy
via wind turbines, as mentioned in Section 2.2. The triboelectric nanogenerator produces
electricity from mechanical energy via triboelectric effect, as mentioned in Section 2.3. By
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using different energy sources of solar, wind, and mechanical energy, HRESs can produce
electricity at all times for practical applications. This ensures a high efficiency of energy
transduction in HRESs. In the case of a lack of input triggers of solar, wind, or mechanical
energy, the energy storage unit will become an electrical generator to supply electricity to
the consumption equipment.

 

Figure 4. A proposal for a hybrid renewable energy system; (a) a photovoltaic energy system;
(b) a wind power system; (c) a TENG power system; (d) an electric line; (e) electrical consumption
equipment; and (f) an energy storage system.

Figure 5. The equivalent circuit for a solar photovoltaic cell with arrows representing the electric
signals of the output current (I) of the PV array, the photocurrent (Ipn), the reverse saturation current
(Id) of the PV cell, and the output voltage (V) of the PV array.
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The TENG can be assembled with other harvesting energy systems to form an HRES
by, for example, integrating the TENG with the photovoltaic effect to form a hybrid energy
harvester for sustainable power generation [130], developing a hybrid harvesting energy
system-based TENG and a piezoelectric nanogenerator to improve the energy harvesting
efficiency [131], or designing a hybrid energy system using a TENG and glucose biofuel
energy to convert energy from multiple sources of biomechanical and biochemical energies
into electricity [132]. TENGs can effectively harvest many wasted energies from our
environment when it is used in hybrid energy systems such as harvesting vibration energy
by a HES of TENG and an electromagnetic generator [133], collecting vibration energy by a
HRES of TENGs and EMGs [134].

Many research groups have been developed the advanced hybrid renewable energy
systems for different purposes such as producing energy by a HRES for remote areas and
small communities [135], improving efficiency, and conductivity by introducing thermal
energy storage techniques [136], promoting sustainable development by implementing
optimization and control methods to improve the energy efficiency conversion [137], and
improving the power quality for isolated areas using an optimization technique for hy-
dropower and photovoltaic energy systems [138].

4. High Energy Conversion Efficiency, Renewable Energy Integration, Application,
and Sustainable Energy Production

4.1. High Energy Conversion Efficiency (HECE)

Energy conversion efficiency (ECE) is the most important index of RESs [139–141].
Many solutions are applied to enhance the ECE of single renewable energy systems, such as
applying new materials to improve the ECE of photovoltaic systems [142], building theoreti-
cal efficiency relationships to improve the ECE [143], investigating the effect of the structure
of energy harvesting systems to improve the ECE of the output performance [144,145], and
optimizing parameters to improve the ECE of the energy conversion [146,147]. However,
single renewable energy systems have faced many problems that constrain the melioration
of the energy conversion efficiency such as seasons, day/night time, rain time, economy,
and the degree of input triggers [148,149]. The hybrid renewable energy system (HRES)
is a good solution to these issues, with outstanding characteristics that improve the en-
ergy conversion efficiency of the system [150,151]. HRESs have high energy conversion
efficiency performance as they avoid the limitations of single renewable energy systems by,
for example, reducing the effects of temperature and solar radiation to improve the energy
conversion efficiency of HRESs [152], enabling cost-effectiveness by optimizing the size of
HRESs [153], and achieving high energy conversion efficiency in HRESs by incorporating
an energy storage unit [154].

The high energy conversion efficiency (HECE) is really important throughout all steps
of the process, including the ideas of HRESs, the designing procedure, the construction
stage, the operating procedure, and during other estimations such as economic and environ-
mental impacts [155,156]. The economy is a crucial factor for obtaining capital investment
during the development of the HRESs. Net present value (NPV) has generally been used to
assess capital investment into HRESs. NPV can be determined using Equation (10) [157]:

∧
E = ∑

t
(Rt − Zt)(1 + d)−t (10)

where
Rt is the outcome of the hybrid project;
Zt is the cost of the hybrid system in a year;
d is the discount rate.
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The energy cost is crucial when evaluating the capital investment efficiency factor.
A hybrid renewable energy system has the highest cost efficiency if it has the minimum
energy cost. The energy cost can be estimated using Equation (11):

p =
∑
t

Zt(1 + d)

∑
t

Qt(1 + d)−t

−t

(11)

where
Qt = Rt/pt;
Qt is the sale volume in one year;
pt is the energy price.
Many research groups have been focused on improving the efficiency of energy

harvesting by applying technologies, techniques, and methods. Ensuring high efficiency
and sustainable energy production in hybrid renewable energy systems has been the
source of much concern for certain research groups, who have developed a THRES using
a TENG and an EMG to achieve high energy conversion efficiency [158], developed a
THRES using a TENG and photoelectric conversion to boost the efficiency of the energy
conversion [159], constructed a THRES using a TENG and solar cells to achieve high
energy conversion efficiency for sustainable agricultural development [160], composed
THRESs using triboelectric nanogenerators and piezoelectric nanogenerators to enhance the
power conversion efficiency for sensing applications [161], and improved power conversion
efficiency by introducing a THRES composed of TENG and EMG technologies for a marine
monitoring sensor [162].

The energy conversion efficiency (ECE) of a single renewable energy system is gener-
ally governed by Equation (12) [163]:

ηsl =
EOUT(total)

EIN(sl)
(12)

where
ηsl is the energy conversion efficiency of a single renewable energy system;
Ein is the input energy of the SRES;
Eout is the output energy of the SRES.
The efficiency of the SRES is strongly dependent on the input trigger. For example,

the efficiency of a solar photovoltaic system increases as the sun rises and decreases as
the sun goes down. The energy conversion is intermittent as the night time comes. The
energy conversion efficiency of a single renewable energy system can also be disadvantaged
by dust accumulation [164]. To improve the energy conversion efficiency of renewable
energy systems, many research groups have focused on developing new technologies,
methods, materials, and conversion models, such as using Culn1-xGaxSe2 material to
enhance the efficiency of a solar cell system [165], and integrating some renewable energy
conversion technologies utilizing wind power, solar cells, and rainwater to enhance the
energy conversion efficiency of an HRES [166]. However, single renewable energy systems
still undergo prominent issues due to input trigger conditions such as weather conditions,
day/night time, and sunny/raining conditions that negatively influence the efficiency
of the system. Hybrid renewable energy is the best solution to the challenge of weather
conditions as it absorbs all of the input triggers to achieve high energy conversion efficiency.
High energy conversion efficiency refers to the ability of a system to convert as much input
energy as possible into output energy. Almost all hybrid renewable energy systems have the
feature of high energy conversion efficiency because HRESs consist of more than one single
renewable energy system, so they can harvest more renewable energy resources in different
weather conditions. To demonstrate this more clearly, a mathematical model is proposed to
describe the total energy conversion efficiency of hybrid renewable energy systems:
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ηHRES =
EOUT(total)

EIN(total)
(13)

where
ηHRES is the energy conversion efficiency of a hybrid renewable energy system;
EOUT(total) is the total output energy that is produced by the HRES;
EIN(total) is the total input energy that will be processed by the HRES.
EIN(total) can be expressed by Equation (14):

EIN(total) =
n

∑
1

Ei (14)

where
n is the number of single renewable energy systems that are assembled into the HRES;
Ei is the energy of the ith single renewable energy system.
The total input renewable energy (EIN(total)) includes n single renewable energy sources

that are available in the survey environment for the proposed Equation (14). The total input
renewable energy can be expressed by Equation (15):

EIN(total) = E1(IN) + E2(IN) + E3(IN) + Eothers(IN) (15)

where it is estimated that
E1(IN) is solar energy (J);
E2(IN) is wind energy (J);
E3(IN) is the wasted mechanical energy (J) that is used by the TENG to produce electricity;
Eothers(IN) is other energy (J) gathered from Eothers(IN)i energies when ith = 1 to n.
The total output energy can be expressed by Equation (16):

EOUT(total) = E1(OUT) + E2(OUT) + E3(OUT) + Eothers(OUT) (16)

where it is estimated that
E1(OUT) is solar photovoltaics energy (J);
E2(OUT) is wind energy (J);
E3(OUT) is the wasted mechanical energy (J) that is used by the TENG to produce electricity;
Eothers(OUT) is other output energy (J) that is produced by Eothers(OUT)i energies when

ith = 1 to n.
Therefore, Equation (10) can be expressed by Equation (17):

ηHRES =
n

∑
1

ηi = η1 + η2 + η3 + ηothers (17)

where
ηi is the energy conversion efficiency of the ith single renewable energy system;
η1 is the energy conversion efficiency of the solar photovoltaic energy system;
η2 is the energy conversion efficiency of the wind power system;
η3 is the energy conversion efficiency of the triboelectric nanogenerators;
ηothers is the energy conversion efficiency of the other single renewable energy systems.
This reveals that a single renewable energy system is used to convert a part of the total

input renewable energy; the single energy conversion efficiency is smaller than that of the
HRES. The equations prove that HRESs have high energy conversion efficiency (HECE).

4.2. Renewable Energy Integration (REI)

Renewable energy integration (REI) is a process of energy processing used to incorpo-
rate renewable energy into the power grid and other industrial applications [167]. REI is the
best solution to reducing carbon dioxide emissions that are produced by the transformation
of fossil sources into other energies [168]. REI has been developed for multigeneration
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purposes such as electricity, cooling, drying, and heating products [169–171]. REI shows
good service ability in energy grids for smart sites [172]. Many research groups have been
focused on developing technologies and methods to integrate hybrid renewable energy
systems into the power grid, smart grid, and multigeneration systems by, for example,
optimizing a sustainable HRES model (from wind, biomass, and solar energies) to integrate
into the power grid to improve the sustainability indexes of economy and environment
in a petroleum refinery plant [173], developing HRESs that integrate hydrogen energy to
meet the objectives of economy, technology, environmental, and social development [174],
integrating HRESs into the microgrid for applications in industrial manufacturing and
residential consumption with the contribution of photovoltaic power [175], improving the
energy sustainability of the power grid by integrating HRESs into the electrical grid with
the contribution of hydrogen energy storage units [176], using a hybrid model of the genetic
algorithm particle and swarm optimization algorithm (GA-PSO) to optimize the design
and management of an HRES for energy cost reduction and energy loss avoidance [177],
applying artificial intelligence (AI) to integrate hybrid renewable energy systems into the
microgrid to enhance the performance of the power grid [178], penetrating the HRES
into the microgrid system in a high electrical consumption area with the aim of having
positive impacts on the economy, environment, and technology [179], analyzing strategies
to improve REI for developing countries [148], developing compensation technologies
to decrease the influence of transmission line compensation on REI in the power grid to
improve stability, power balance, and voltage regulation of the system [180], building an
REI system for a small area of a university campus to achieve sustainable development
with collective self-consumption ability [181], and incorporating a neural network (NN)
to manage the power of REI in a direct current microgrid for effective operation of the
system [182].

4.3. Applications

The TENG is a clean and renewable energy harvester that converts wasted mechan-
ical energy into electrical energy. TENGs can stand alone when generating electricity or
integrate into a hybrid renewable energy system. The TENG-based HRES (THRES) shows
many crucial applications. Figure 6 shows applications of TENG-based HRESs such as
self-charging power systems, self-powered biomedical complexes, self-powered wearable
electronics, self-powered monitoring systems, smart electronics, human healthcare moni-
toring, and self-powered sensors. Table 2 shows some successful hybrid renewable energy
systems constructed to harvest energy that have real-life daily applications. Some suc-
cessful applications include energy harvesting, self-charging power systems, self-powered
biomedical systems, self-powered monitor systems, self-powered wearable electronics,
smart electronics, and self-powered sensors.

Energy harvesting (EH) is the biggest duty of THRESs; they convert renewable energy
sources into useful energy for many further applications. Researchers have developed a
THRES by combining a TENG and a piezoelectric nanogenerator (PENG) to harvest energy
from rotational and axial motion types [183], constructed a THRES using a TENG and a
PENG to harvest energy for a walking sensor [184], fabricated a THRES using a TENG and
an EMG to harvest biomechanical energy [185], developed a THRES using a TENG and
an electromagnetic generator (EMG) to harvest biomechanical energy [186], developed a
THRES to harvest biomechanical energy [187], and established a THRES using a TENG and
an EMG to garner energy [188].

Self-charging power systems (SCPSs) are an outstanding structure in THRESs that
integrate a TENG and other pyroelectric, photovoltaic, thermoelectric, and piezoelectric
harvesters for many practical applications; these include sustainably driving electronic
devices [189], building TENGs and THRESs for self-charging electronic devices [38], sup-
plying sustainable power sources for essential applications of portable electronics and the
Internet of Things (IoT) [190], developing THRES-based textiles to provide self-charging
power for artificial intelligence applications [191], constructing green THRESs for self-
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powering portable electronic devices [192,193], composing a THRES using a TENG and an
electromagnetic generator to support the high performance efficiency of a self-charging
power system for Internet of Things (IoT) applications [194], and developing a THRES
using a TENG and photovoltaic panels to set up an SCPS for charging and driving the
electrolysis of seawater by converting hybrid energies from the ocean and solar power [195].

Figure 6. The applications of TENG-based HRESs such as self-charging power systems, self-powered
biomedical complexes, self-powered wearable electronics, self-powered monitoring systems, smart
electronics, human healthcare monitoring, and self-powered sensors.

Self-powered biomedical systems (SPBSs) are an important application of THRESs that
use renewable energy to monitor human healthcare and help treat diseases by powering
the medical electronic devices; for example, researchers have built a THRES using a TENG
and an electromagnetic generator (EMG) to monitor healthcare systems [196], constructed a
THRES using a TENG and a nonlinear electromagnetic generator to harvest biomechanical
energy to power portable healthcare monitor machines and portable electronics [197],
developed THRESs using a TENG and a piezoelectric generator (PEG) for implantable
biomedical applications [198], and composed a THRES by combining a TENG and a PEG
for a flexible biosensor device [199,200].

Self-powered monitor systems (SPMSs) have many meaningful practical applications
as they have the outstanding features of automation and sustainability; for example,
researchers have developed a THRES using a TENG and a PENG for sport monitoring
operations [201], constructed a THRES by combining a TENG-EMG and a solar cell to create
a self-powered compact sensor network to monitor natural disasters [202], and controlled
air quality using a THRES constructed using a TENG and an EMG [203].

Self-powered wearable electronics (SPWEs) are also effective applications of the
THRESs which are mobile, lightweight, and sustainable; for example, researchers have
developed a THRES using a TENG and an EMG to power sustainable wearable electron-
ics [204], and structured a THRES by combining a TENG and solar cells for wearable
electronics [205]. Smart electronics (SEs) also receive a lot of attention from research groups,
who have developed a THRES using a TENG and an EMG to scavenge biomechanical
energy for smartphones, smartwatches, and Bluetooth devices [206].

Self-powered sensors (SPSs) use TENGs and THRESs in sensing applications and
they are lightweight, have tiny dimensions, and are simple structures. Researchers have
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developed a THRES using a PEG and a TENG for self-powered sensors [207], built THRESs
for biosensors [208], used a THRES comprising a TENG and an EMG to drive a self-powered
speed sensor [209], developed a THRES using a TENG and a piezoelectric nanogenerator
(PENG) for a healthcare monitoring sensor [210], used a THRES comprising a TENG and a
PENG for a self-powered sensing network [211], and composed a THRES by combining a
TENG and a piezoelectric nanogenerator for a self-powered human behavior sensor [212].

Table 2. Some successful hybrid renewable energy systems and their applications.

THRES Hybrid Type Performance Application Ref.

TCO-HG PENG–TENG Driving 60 LEDs Harvesting energy, charging, and lighting. [183]

PTNG TENG–PENG 70 μW Harvesting energy, and walking sensor. [184]

THRES TENG–EMG 630 mA Harvesting energy, charging, and wireless
power transmission. [188]

UHO-TEHG TENG and EMG 1.02 W Human healthcare monitoring and self-powering
portable electronics. [196]

EINR-HG TENG and EMG 131.4 mW Portable healthcare monitoring machines and
portable electronics. [197]

PEDOT TENG and PENG 1.71 mW Sport monitoring operations, healthcare applications,
and smart home devices. [201]

THRES TENG–EMG 6 W Harvesting biomechanical energy and
sustainable development. [186]

HMI-HBNG TENG–EMG 185 W/m2 Harvesting biomechanical energy, self-powered
systems, and smart electronics. [206]

RSHG TENG–EMG 48 V, 1 mA Harvesting energy, lighting LEDs, and driving
electric watch. [158]

FHNG TENG–PENG - Healthcare monitoring sensor and
self-powered devices. [210]

HTEPENG TENG–PENG 3.7 W/m2 Self-powered sensing network and
portable electronics. [211]

PSC/TENG TENG–Solar cells 2.62 Wm−2 Renewable power generation and
agricultural application. [160]

4.4. Sustainable Energy Production (SEP)

Sustainable energy production (SEP) plays a large role in achieving net-zero goals
and sustainable development in our society. Figure 7 shows a basic diagram of sustainable
energy development accompanied by environmental and economic development. The
figure demonstrates the relationship between energy, economy, and social development for
the purpose of sustainable energy production [213]. There have been a lot of studies con-
cerned with developing technologies, methods, and national policies that focus on building
sustainable energy production strategies; these studies have synthesized nanomaterials for
sustainable energy production [214], developed national energy policies to enable SEP in
Turkey [215], developed green SEP in China by tracing garden waste biomass sources [216],
constructed a theoretical framework for hybrid renewable energy using photovoltaic energy
and hydro-energy for SEP [217], projected long-term SEP in Saudi Arabia until 2030 [218],
developed an SEP strategy by pursuing sustainable development goal 7 (SDG 7) criteria
including access to affordable modern energy services, sustainable energy consumption,
sustainable energy supply, and one more criterion of energy security [219], applied an
energy optimization form to accomplish SEP with reduction strategies to alleviate the
environmental impact of pollution and emissions in Pakistan [220], provided national poli-
cies to help decrease emissions and planned strategies to accomplish SEP in Turkey [221],
developed solar energy and biomass energy for SEP in Nigeria [222], outlined a plan to
achieve sustainable energy development by using renewable energy sources and making
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national policies for SEP in Azerbaijan [213], and determined the impact of globalization
on sustainable energy production by developing and using strategies of renewable energy.

Figure 7. The diagram of sustainable energy development with the roles of energy production,
environment development, and economic development.

5. Benefits, Challenges, and Solutions

5.1. Benefits

Hybrid renewable energy system have many benefits such as providing clean energy
for everyone with high availability and low cost [223], increasing power penetration
approaches, decreasing the intermittency of renewable energy sources, enhancing the
reliability of research and development into renewable energy resources, promoting the
electrification of remote and rural areas, encouraging the exploitation of new energy
harvesting techniques [224,225], bringing the circular economy benefit to rural areas [226],
achieving the rural health benefits of cost-effectiveness and greenhouse gas emissions
reduction [227], contributing to the net-zero energy area by using solar power, thermal
energy storage, and heat pump units [228], enhancing the efficiency and stability of energy
systems [229], accomplishing cost reduction and efficiency improvement [230], improving
the reliability of power systems [231], decreasing carbon dioxide emissions [232], improving
socioeconomic development issues regarding healthcare, education, and economy in local
areas [233], combining single renewable energy systems into one HRES to increase the
electrification of countries and territories [234], driving a multigeneration system [235],
contributing to sustainable development all over the world [236], effectively using waste for
net-zero purposes [237], having outstanding characteristics of reliable, clean, and affordable
energy for sustainable development [238], avoiding the intermittence resulting from a
single renewable energy [239], and providing an affordable energy source for low-income
households [240].

There are tremendous benefits to introducing triboelectric nanogenerators into hybrid
renewable energy systems because of the outstanding characteristics of TENGs such as their
flexible structure [241], self-powered source [242], lightweight nature, use of easy-to-find
materials, simple structure, renewable energy resource [243], and use as a sustainable
energy source [244]. A triboelectric nanogenerator can easily integrate into the power
grid. In summary, renewable energy is the answer for reducing carbon dioxide emis-
sions, protecting the environment, and pushing sustainable development. HRESs bring
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about many benefits, for example, decreasing fluctuations in RE, improving the output
performance of energy systems, enhancing energy conversion efficiency, and optimizing
energy transduction.

5.2. Challenges

There are lots of challenges that HRESs face during all the procedures of designing,
building, and operating the system, such as technology and technique problems. Renewable
energy systems need a large area. RES sources are often affected by the environment.
Climate conditions, such as the day/night period, sun/raining time, and windy conditions,
have directly affected RES performance [245]. By integrating HRESs into the power grid,
there are many challenges that research groups have had to overcome, such as enhancing
economic effectiveness, improving energy storage technologies [246], finding methods and
techniques to solve problems of reliability in the systems [247], seeking technologies to
solve the problems of optimization and effectiveness of the system [248], finding a way to
improve the reliability of the power system in an HRES [249], researching methods and
technologies to achieve multi-objective optimization of HRESs [250], facing the problems
of computation, finance, and environment in rural areas when deploying HRESs [251],
facing prominent problems from policies, regulations, and institutions when implementing
HRESs [252], controlling excess electricity from HRESs [253], facing technology differences
during the integration of HRESs with SRESs [254], determining the parameters required
to penetrate an single renewable energy into an HRES [255], problem of high costs when
constructing, exploiting, and operating HRESs [256], building mathematical models to
optimize the size of HRESs [257], and facing many problems with the stability, quality,
reliability, and operation of HRESs [258]. To briefly summarize, there still remain challenges
that TENGs will encounter before they can be used in HRESs because the input sources are
exposed to natural fluctuation and weather conditions. The output performance of TENGs
and HRESs are small in comparison with the energy needed for human development. The
limitations of technologies, materials, and working mechanisms are big problems during
the integration of TENGs into HRESs and the power grid. The different distribution of
renewable energy sources, which can cause disadvantage problems for establishing the
infrastructure of the HRESs.

5.3. Solutions

To overcome these challenges and gain even more benefits from HRESs, there are
many solutions that have been developed by research groups, such as applying an op-
timization method in the management and modeling of HRESs to control the output
performance of HRESs [259], using a distributed energy resource customer adoption tool to
optimize the size of HRESs for a microgrid [260], promoting the benefit sharing strategy
to obtain maximal benefits of HRESs with minimal electrical cost and minimal carbon
dioxide emissions [261], using a hybrid optimization tool to optimize HRESs for the criteria
of efficiency, electrical cost, environmental protection, emission problems, and lifetime
of the hybrid system [262], using innovative technologies of machine learning and the
advanced inverter to solve challenges of sustainability, intermittency, optimization, power
storage, and management of the system [263], building frameworks for integrating RESs
into the power grid with the benefits of effective energy management, real-time power
management, and power forecasting ability [264], using the HOMER Pro tool to optimize
HRESs and enhance their advantages, such as decreased gas emissions, reduced electrical
costs, utilization of RES resources, and effective combination of renewable energy units
of biogas, photovoltaic energy, and energy storage systems [265], focusing on designing
and optimizing HRESs to achieve sustainable development, green transportation, clean
hydrogen energy, cost-effectiveness, and rural electrification [266], supporting frameworks
to help with the selection of an HRES for sustainable development [267], using a hybrid
optimization model for electric renewable software to achieve investment reduction and
size optimization for HRESs [268], using a receding horizon optimization method with pre-

353



Processes 2024, 12, 1964

dictive control algorithms to optimize the operation of HRESs [269], using battery storage
systems to enhance the reliability of HRESs [270,271], using a multiobjective optimization
model to deal with the problems of economy, environmental impact, and carbon dioxide
emission reductions [272], introducing a particle swarm optimization (PSO) to optimize
HRESs with the objectives of social–political improvements [273], applying a mixed-integer
linear programming tool to determine the high energy demand area [274], using artificial
intelligence technology (AI) to solve problems with efficiency, complexity, and reliability in
HRESs [275], using a hybrid meta-heuristic optimization technology to ensure reliability
and accomplish the multiobjective goals of HRESs [276], using artificial neural networks
(ANNs) to predict the energy generation needed for sustainable energy production [277],
and using simulation tools to optimize HRESs with reliability indicators of financial cost
optimization, excess energy minimization, and load protection [278]. In brief, there are
solutions to fight the challenges of HRESs that include using energy storage units to store
energy, reusing energy during periods where there is a lack of input trigger or bad weather
conditions, and using more and more renewable energy transduction systems to optimize
the energy conversion efficiency. The development of new technologies, methods, and
materials to improve the output performance of HRESs are still needed. The utilization
of optimization methods when identifying the distribution of renewable energy sources
for siting infrastructure of HRESs is encouraged to achieve the highest possible energy
conversion efficiency.

6. Conclusions

Renewable energy is crucial for sustainable energy development given the rapidly
increasing energy demand in the world. A single renewable energy system has limitations
to its stable generation due to the influences of weather conditions, seasons, day/night time,
and working conditions. Triboelectric nanogenerators produce electricity by converting
mechanical energies that exist prominently in the surrounding environment such as motion,
walking, vibrations, water flow, sounds, and ocean energy. Triboelectric nanogenerators
are potential for renewable energy transduction systems because they can convert many
renewable energy sources (such as wind and ocean energy) into electricity. Hybrid renew-
able energy systems can improve output performance, enhance efficiency, and decrease
fluctuation during energy generation procedures. This paper reviews recent methods
and techniques of developing HRESs to enhance energy transduction efficiency, output
performance, and sustainability of HRESs. Introducing triboelectric nanogenerators into
HRESs brings many benefits such as energy conversion efficiency improvement, sustainable
energy generation, and other practical applications. This paper mentions the advantages,
challenges, and solutions offered by HRESs to improve its efficiency, development, and
applications. The results show that TENGs are a prospective technology that can be inte-
grated into HRESs to solve the problems of intermittency and variability in RE systems.
The results hope to motivate the development of hybrid renewable energy systems for
practical applications and sustainable energy development in the near future.
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Symbol and Acronym:

CO2 Carbon dioxide
t Tonne
NZR Net-Zero Roadmap
NZEs Net-zero emissions
IEA International Energy Agency
◦C Degrees Celsius
RG Renewable generation
TWh Terawatt-hours
WEO World Energy Outlook
GSR2024 2024 Global Status Report
STEPS Stated Policies Scenario
GW Gigawatts
TENG Triboelectric nanogenerator
SDG-7 Sustainable development goal 7
SRES Single renewable energy system
PVS Photovoltaic system
HRES Hybrid renewable energy system
AC Alternative current
DC Direct current
MEMS Micro-electro-mechanical system
Voc Open-circuit voltage
SEP Sustainable energy production
ECE Energy conversion efficiency
REI Renewable energy integration
PSO Particle swarm optimization
ANN Artificial neural network
AI Artificial intelligence
EH Energy harvesting
SCPS Self-charging power system
SPBS Self-powered biomedical system
SPMS Self-powered monitor system
SPWE Self-powered wearable electronic
SE Smart electronic
SPS Self-powered sensor
LED Light-emitting diode
mA Milliampere
μW Microwatt
W Watt
Wm−2 Watt per square meter
W/m2 Watt per square meter
V Voltage
J Joule
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Abstract: The energy transition relies on an increasingly massive and pervasive use of renewable
energy sources, mainly photovoltaic and wind, characterized by an intrinsic degree of production
uncertainty, mostly due to meteorological conditions variability that, even if accurately estimated,
can hardly be kept under control. Because of this limit, continuously monitoring the operative status
of each renewable energy-based power plant becomes relevant in order to timely face any other
uncertainty source such as those related to the plant operation and maintenance (O&M), whose effect
may become relevant in terms of the levelized cost of energy. In this frame, the use of robots, which
incorporate fully automatic platforms capable of monitoring each plant and also allow effective and
efficient process operation, can be considered a feasible solution. This paper carries out a review on
the use of robots for the O&M of photovoltaic, wind, hydroelectric, and concentrated solar power,
including robot applications for controlling power lines, whose role can in fact be considered a key
complementary issue within the energy transition. It is shown that various robotic solutions have so
far been proposed both by the academy and by industries and that implementing their use should be
considered mandatory for the energy transition scenario.

Keywords: robot; renewable energy; operation and maintenance; OPEX; photovoltaic; wind; CSP;
hydroelectric; power lines

1. Introduction

In 2022, the global electricity demand has reached approximately 30,000 TWh, repre-
senting almost one-fifth of overall world energy consumption [1]. Even considering the
best efficiency improvement in energy use, the expected energy transition evolution will
lead to a more than double increase in current electric energy demand between 2025 and
2050 [2]. And, while at present about 2/3 of the electricity consumed is still produced by
means of fossil sources (mainly gas and oil), the 2050 target will have to be achieved entirely
using renewable energy (REN) sources and therefore, by introducing into the power grid
huge amounts of photovoltaic, wind, and hydroelectric energies [1].

In this respect, it is of value to underline that in some countries where the use of
renewables is more advanced, problems of the electricity grid not adapting to new scenarios
have been reported [2]. From this point of view, the increasing use of photovoltaic and
wind energies poses a very demanding challenge. Both are, in fact, definitely volatile
energy sources (1) because of their production capacity being strongly dependent on
meteorological conditions and, therefore, due to the uncertainty of these, increasing as the
desired time horizon for the required production forecast moves away [3,4], and (2) because
their low power density per unit of surface area compared to fossil fuels imposes ordinary
and extraordinary operation and maintenance schemes, which can become very critical
and economically costly if we consider the intervention times required and the fact that
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these plants can be distributed over very large areas or, as in the case of wind farms, they
can also be installed offshore [5,6].

Both of these problems translate into Capital expenditures, CAPEX and operative
expenses, and OPEX costs increase. In the first case, the need to limit the effect of forecast
errors or system malfunctions is coped with via the massive use of electricity storage
systems and probably, for very high levels of renewable penetration, the adoption of
conversion power-to-gas systems, which are today still in the development phase and
impose the limitation of “labour-intensive” costs, presently making up around one-third
of the CAPEX costs, by means of the use of automatic systems for the construction of the
production plants themselves [7,8]. As regards to plants operation and maintenance costs
(O&M), the most demanding effort is to make such phases increasingly automated, limiting
as much as possible the “labour-intensive” costs, which today constitute the dominant part
for this category of costs [9].

In both cases, robotics now plays an essential role. In the first case, standardization in
industrial processes involving wind and photovoltaic energy has led to the possibility of
designing and implementing automated systems for the construction of large plants for the
production of renewable energy [10]. In the second case, studies on the development and
field testing of robotic systems for the inspection and maintenance of these same systems
are increasingly frequent [11].

In this work, we will essentially deal with this latter issue by reviewing the use of
robots for the O&M of photovoltaic, wind, hydroelectric, and concentrated solar system
plants, also including the robotic systems necessary for the control of power lines which
are essential parts of the energy transition. This work is divided into seven sections.
In addition to the Introduction, Section 2 contextualizes the issue under consideration
within the broader theme of the necessary digitalisation of the energy sector in terms of
renewable sources; Section 3 is structured into various sub-paragraphs each dedicated to
robot applications for a particular REN (3.1 CSP, 3.2 photovoltaic, 3.3 wind, 3.4 hydroelectric,
and 3.5 electricity lines); Section 4 discusses the robot machines from the point of view of
their operational SW; Section 5 is dedicated to the database required for ML approaches
to be implemented; Sections 6 and 7 are, respectively, devoted to the discussion of the
reported data and the conclusions.

2. The Energy Sector Digitalisation

The increasing use of information and communication technology (ICT) in various
social, economic, industrial, and cultural sectors is at the origin of the so-called phenomenon
of digital disruption, which currently also involves more and more behaviour of individuals
in every part of the world and that, according to Skog and co-authors’ analysis, has to be
interpreted in terms of a creative and, at the same time, destructive process that crosses
every socio-economic sector [12]. Even if in a more gradual manner, according to Lea
Myllykallio in [13], this is now occurring, with visible effects, in the energy sector, where
the effective strong support of the pervasive and relevant use of digital technologies can
be said to have actually been accelerated by the recent increasing and large adoption of
renewable energies in the energy mix of most Western countries.

According to the IEA world outlook 2022, renewable energy use worldwide increased
from about 15% in 2010 to 20% in 2020 and is now expected to overcome 60% in the
2050 mix [14]. Beyond the well-known environmental benefits, the most important change
related to the massive use of renewable energies for electricity production is connected to
the unavoidable changes in the energy trading methods as a result of their production vari-
ability due to intrinsic and site-specific weather condition forecast uncertainty. Although
this issue has greatly advanced in terms of accuracy over time, it still has an intrinsic level
of volatility increasing as the time horizon increases [15,16]. This has led to the introduction
of a growing level of complexity in the management of energy markets, which has, in turn,
forced and increasingly obliged the involved stakeholders (TSOs, producers, distributors,
etc.) to move financial transactions related to this type of energy to closer and closer time

367



Processes 2024, 12, 1982

horizons, such as the day-after market and, increasingly too, even the intraday market,
with negotiations that tend to be increasingly characterized by correspondingly short time
horizons of even just a few minutes [17]. It is clear that this type of financial market can
only operate digitally, and it is also clear that as the penetration of renewable energy in a
country’s energy mix increases, this type of operational methodology will become increas-
ingly relevant. It is important to underline that the development of blockchain technologies
has been and is functional within this context, and that without which, in fact, the certified
volumes of energy that transactions handle would not be able to be exchanged, especially
in a market increasingly made up of prosumers [18,19].

The digitalisation of energy trading has simultaneously led to an equally rapid evo-
lution in the application of advanced machine learning techniques both to improve the
precision in renewable energy production estimates, thus allowing the strict time financial
contracting constraints to be relaxed, and to improve the reliability of energy production
systems in terms of preventive maintenance [20]. Both such issues significantly affect the
energy trading process’ reliability. In the case of ML techniques applied to forecasting, the
aim is to improve precision not only by means of the use of data from satellite providers,
but also taking into account data obtained from ground systems which, using appropriate
training procedures, allow for significant improvements in the individual site production
forecast [21]. As reported by Benti and coauthors, these techniques are characterized by a
series of problems, with one of the main ones being the lack of high-quality data for the
training and validation steps. Data for renewable energy forecasting are often sparse, noisy,
and incomplete, which makes it difficult to build accurate models. Another challenge is
the lack of transparency and interpretability in ML and DL models or the unavoidable
lack of training data for new systems which poses the problem of the so-called transfer-
ring of calibration among different systems, with obvious reliability effects [22]. The ML
techniques related to the optimization of the plant maintenance phase are in some ways
similar and are based on very detailed knowledge of the individual renewable production
plants [23,24]. These are increasingly heavily equipped with sensors that, with appropriate
IoT architectures and by means of SCADA systems, allow for precise knowledge of the
system state and of its evolution over time [25]. In fact, since the O&M costs of renewable
plants today constitute a significant and increasing percentage of the total cost of the plants,
the boost towards the use of digital technologies in the O&M field is as relevant as the
trading requests in terms of supporting the diffusion of renewable digitalization [26]. From
this point of view, the energy systems of countries that are implementing the transition
towards non-climate-changing productions are archetypes of IoT pyramid systems, in
which the lower part is made up of highly pervasive sensor arrays and the upper part is the
development of automatic tools for the operation and maintenance of the systems which
are the subject of this review [27].

Finally, it should be recalled that the exponential increase in information produced
and exchanged in real time during the operative lifetime of a plant requires the imple-
mentation of security management techniques (cybersecurity), which are also part of the
range of methodologies that are under development in terms of the digitalisation of energy
systems. For example, A. Rekerahoet and coauthors have recently summarized the various
cyber-attack systems on the renewable energy production plants security, some of which
are extremely complex to cope with because of the high granularity of REN production
systems [28].

3. Robot Applications

In the following, the use of robotics in the field of renewable energies has been divided
into five different sections, namely concentrated solar power (CSP), photovoltaic (PV)
energy production, wind farms, hydroelectrical plants, and finally power lines, that match
five different areas of the production and dispatching of energy.
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3.1. Robotics in Concentrating Solar Power (CSP)

A concentrating solar power (CSP) plant is usually composed of an array of mirror
surfaces directing and concentrating the sun radiation towards a collecting device with
the aim to heat a given substance to a high temperature (at least in the range of hundreds
of ◦C) to then be subsequently used to produce electricity, usually through a steam turbine
connected to an electrical power generator. Currently, the cumulative CSP capacity around
the world is of about 6.5 GW, with most of the installations being in Spain and the US [29].

There are mainly four different designs:

1. the parabolic trough, where a linear parabolic reflector concentrates sunlight onto a
receiver positioned along the reflector’s focal line;

2. the Fresnel reflectors, where the reflector is composed of many flat mirror strips
arranged to reflect sunlight onto an overhanging tube;

3. the solar tower, where an array of heliostats, which are dual-axis tracking reflectors,
concentrate the radiation on a central receiver on top of a tower;

4. the Dish Stirling, composed of a parabolic reflector concentrating light onto a receiver
in the focal point of the parabola, similarly to a radio telescope.

From the robotics point of view, it is possible to hypothesize several tasks that may be
operated by service robots in these plants:

1. system deployment, i.e., the physical placing of the mirrors;
2. mirror cleaning, in order to maximize energy production;
3. plant patrolling, for security purposes;
4. plant predictive monitoring, for the O&M of plant functionality;
5. plant monitoring and maintenance, for issues not directly linked to the plant function-

ality (e.g., grass mowing or bird shooing away).

The research covered by the materials in this section spans from approximately 2011 to
2024. This range reflects the growing interest in integrating robotics into CSP plants, driven
by advances in automation and the need for more efficient and sustainable energy solutions.
The keywords that were used in identifying the materials are as follows: “Concentrating
Solar Power Robotics” provided a comprehensive research scope to encompass all aspects
of robotics in CSP plants; “Cleaning Robots” was selected because cleaning is a critical
task for maintaining CSP plant efficiency; “CSP Plant Maintenance Automation” captured
studies on the automation of maintenance tasks, which is vital for reducing operational
costs and enhancing plant reliability; “UAV Inspection in Solar Power Plants” was included
to address the increasing use of drones for inspection tasks, as highlighted by recent
research; and “Robotic Systems in Solar Tower Plants” ensured that studies focused on
solar towers, a prevalent CSP project, were considered. These keywords were essential for
exploring how robotics and automation are applied to improve the efficiency and reliability
of CSP plants.

Search fields included academic databases such as IEEE Xplore, ScienceDirect, and
Google Scholar, where topics on renewable energy, automation, and robotics are frequently
published. Additionally, industry reports and conference proceedings on renewable energy
technologies were explored to capture the latest developments in this industry niche. An
analysis of patents and research project deliverables was also conducted to fully under-
stand the technological evolution and innovation in this field. Inclusion criteria for articles
focused on studies that explicitly discuss the application of robotics in CSP plants, with
a preference for empirical research and case studies that provide concrete results or pro-
totypes. Articles were included if they addressed specific robotic tasks such as cleaning,
inspection, or maintenance in CSP plants. Exclusion criteria filtered out materials that
only tangentially mentioned CSP or robotics without providing significant insights into
their integration, as well as those that focused on other forms of solar power generation,
such as PV or robotic applications unrelated to CSP, and simple laboratory prototypes.
Additionally, studies published before 2011 or those without peer review were excluded to
ensure the relevance and quality of research.
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In Table 1, the relation between the type of CSP plant and conceivable robotic tasks
is presented. References are shown per task in the last column and per plant type in last
row. As it happens, in the photovoltaic realm, the largest number of applications is in
the field of mirror cleaning, which is more directly linked to its specific Levelized Cost of
Electricity (LCOE).

In [30], HECTOR is described (Heliostat Cleaning Team-Oriented Robot), one of the
first robotic solutions for the cleaning of heliostats in solar tower CSP plants. Its efficiency
with respect to water and power permits it to be fully autonomous during the cleaning of
one heliostat. The transport of the robot from one heliostat to the next is not autonomous,
relying on human intervention. For a truly efficient cleaning, a team of robots should
work in parallel. The motion of the robot is wheeled; thus, it is concocted for heliostats
with almost horizontal poses, the guidance is performed exploiting the boundaries of the
mirrors, and it is capable of avoiding broken parts of mirrors. Tested at the Gemasolar
plant in Spain, it is presently commercialized by the Sener company.

An inspection climbing robot is described in [31]. This can perform inspections and
maintenance on the vertical surfaces of the receiver in a solar tower CSP plant. The
non-destructive testing (NDT) inspections are performed by means of eddy current mea-
surements for corrosion, erosion, and cracking, as well as a visual one. The robot carries
the sensors and is kept in contact with the tower via suction. The vertical movement is
performed with the help of a crane atop the tower. Servos ensure the proper positioning of
the sensors, and the load capacity is only limited by the crane. The robot weights around
300kg. The robot moves on the panels of the receiver in the tower and aligns the sensors
correctly for inspection.

In a review [32] dedicated to the overall cleaning solutions for CSP plants, cleaning
methods and cleaning systems are extensively covered, and three robotic solutions are cited.
Besides the quoted robot [30], the PARIS robot for trough reflectors is presented [33,34], as
developed by the Sener company, and a UAV-based system is reviewed [35].

The cleaning robot for Fresnel mirrors, Soltibot, developed by Soltigua, is presented
in [36], a result of the EU project MinWaterCSP (2016–20) [37]. The operation of the robot is
illustrated in Figure 1.

 

Figure 1. Cleaning event; left: the selected collector on dirty state, right: operating cleaning robot on
the day of cleaning [36].

It is worth noting that in [36], the authors measure the advantages, in terms of time
and cost, of the use of the robot in a working environment.

Reference [38] is a comprehensive review of integrating UAV-based systems for the
planning, operation, and maintenance of CSP plants. The main fields of application of
UAV-based technologies are the characterization, aimpoint control, and calibration of the
light concentrating system both for heliostats and parabolic troughs. The UAV flight path
is optimized within the CSP field to collect the needed images for the planned task and to
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mitigate the time-of-flight problem due to limited power. It is important to note that the
reviewed approaches make use of RTK GPS for the UAV positioning. Even with such RTK
technology, which drops the accuracy to a few centimetres, the reconstruction of the mirrors
can be insufficient since actual deviations on mirrors are usually below the millimetre level.

An interesting approach to the field inspections of heliostats is presented in [39], where
the authors developed a polarimetric imaging drone, carrying out field tests at Sandia’s
National Solar Thermal Test Facility and showing that Degree of Linear Polarization and
Angle of Polarization images greatly enhance the edge detection results compared with the
conventional visible images, supporting the fast and accurate detection of heliostat mirror
edges and cracks. It also foresees possible future UAV applications in CSP plants such as
the use of UAV swarms to save time, inspections for faults, land surveys for plant designs,
mirror cleaning with water or air jets or with ultrasound methods, wildlife protection, and
security and surveillance.

A detailed study focusing on the maintenance of the mirrors of a CSP plant is presented
in [40]. This employs images taken by drones flying over the plant and shows that mirror
inspection from a drone using high resolution images can yield data about soiling and
mirror defects.

A cleaning robot for Fresnel mirrors and collectors, named Frenell, by the Frenell
company is presented in [41]. In the same paper, another robot for Fresnel mirrors, produced
and commercialized by SUNCNIM, is also presented. It is interesting to note that the
SUNCNIM company designs, builds, and operates solar plants with energy storage for the
production of electricity and thermal energy; in this sense, the robotic aspect is a part of a
whole, even if the company is currently in judicial liquidation [42].

Table 1. Possible intersection of robotic tasks with type of CSP plant.

Robotic task
Parabolic
Trough

Fresnel Solar Tower Dish Stirling References

System deployment X X [42]

Mirror cleaning X X X [30,33,34,38,39,41,42]

Security patrolling X X X X

Monitoring O&M X X X X [31,35–37]

Non energy monitoring X X X X

References [33] [34,38,39] [30,31,35–37,41,42]

The EU’s ongoing project Durable [43] will apply disruptive aerospace, robotic, non-
destructive inspection and additive manufacturing technologies to evolve towards better
development in the operation and maintenance of wind and solar energy parks. In WP5,
approaches for control and surveillance, such as non-destructive testing by robots (UAVs
or UGVs), contact inspection (ultrasonic, thermographic), and autonomous and intelligent
navigation, will be investigated and applied.

The Heliogen company (Pasadena, CA, USA) has developed ChariotAV, which com-
bines sensors, robotics, and autonomous control software to service an entire field of
heliostats independently for cleaning [44]. The follow-up has been the ICARUS robot
(Installation & Cleaning Autonomous Robot & Utility Solution) [45], an autonomous ve-
hicle with mounted LIDAR and high precision RTK GPS, able to perform the cleaning of
heliostats by towing an equipped trailer and to deploy small dimension octagonal heliostats
with high precision.

An innovative non-intrusive optical (NIO) approach is proposed in [46] to measure
mirror surface slope error, mirror facet canting error, and heliostat tracking error based
on reflection images using the natural target, the tower, in a heliostat field. The approach
adopts various techniques in photogrammetry, reflectometry, and geometrical optics to
determine the relative positions of the camera, tower, and heliostat. Snell’s law is applied
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to derive the mirror surface slope error, mirror facet canting error, and heliostat tracking
error. All the images are collected with unmanned UAVs.

Briefly summarizing the above, it is possible to state that the selected papers present
mainly cleaning or drone-based aerial mirror inspection systems. In addition, several
robotic systems have been realized and are advertised on the world wide web, but often
with outdated pages, hinting to working prototypes that are still not ready for the market.
This may be due to an overly limited market. Figure 2 highlights the distribution of the re-
search focus across different robotic tasks, showing that most of the studies are concentrated
on monitoring for operation and maintenance and mirror cleaning applications, making
up about 31% and 36% of the published papers; the remaining published papers focus on
system deployment—9%, non energy monitoring—16%, and security patrolling—8%.

Figure 2. Distribution of CSP research focus across different robotic tasks.

3.2. Robotics in Photovoltaic

At present, most of the applications of robotics for photovoltaic solar power plants is
related to the cleaning of the panels, and various papers report a range of related innovative
technologies. The exploration of the papers begins with an in-depth look at cutting-edge
cleaning methods, including dry-cleaning systems, water-free solutions, and specialized
robots for desert environments. Robots for inspection and maintenance, exploiting visual
servoing, real-time object detection, and predictive maintenance via unmanned aerial
vehicles (UAVs) and machine learning algorithms, are also receiving increasing interest.
Sophisticated and intelligent robotic systems have been employed, from quadruped robotic
platforms facilitating non-destructive evaluation of modular constructs, which are adept
at accommodating various panel configurations. The implementation of robot details
such as multi-suspension units, expertly crafted to dampen vibrations and minimize their
impact, are presented. Also, cutting-edge control strategies aimed at boosting autonomy
and overall effectiveness, infrared-based dust mitigation systems, and advanced navigation
and control features are addressed. The aim here is to offer readers a broad overview of the
diverse robotic solutions proposed to transform solar panel maintenance.

The research covered by the articles reviewed in this section was conducted between
the years 2014 and 2024. This period marks significant advancements in robotics and
renewable energy, especially in the application of autonomous systems in PV plants, and
reflects the rapid technological progress and increasing focus on photovoltaic energy world-
wide. The choice of search keywords was guided by the need to explore the intersection
of robotics and PV systems, covering a range of relevant applications and functions. The
keywords that were instrumental in identifying the articles selected in this review include
the following: “Robotics in Photovoltaic Systems”—directly targeting the integration of
robotic technology within PV systems, capturing papers that discuss the use of robots
for various tasks such as cleaning, inspection, and maintenance; “Solar Panel Cleaning
Robots”—cleaning panels is a key issue, so this keyword ensured the inclusion of research
focused on developing robotic systems for the efficient cleaning of solar panels; “UAV
Inspection for Solar Panels”—this was essential for identifying articles that investigate the
use of UAVs for inspecting solar panels, reflecting a growing interest in this area of photo-
voltaic system maintenance; “Predictive Maintenance in PV Plants”—this was aimed at
the discovery of studies exploring advanced maintenance strategies, particularly those em-
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ploying predictive algorithms and robotics to improve the efficiency of photovoltaic plants;
“Autonomous Robots in Renewable Energy”—this broader keyword captured innovations
in autonomous robotic systems across various renewable energy sectors, with a particular
emphasis on their applications within photovoltaic systems. The search focused on titles,
abstracts, and keywords within databases like IEEE Xplore, ScienceDirect, and Google
Scholar. The inclusion of these fields was crucial for capturing the core focus of papers,
ensuring relevance to the overarching theme of robotics in PV systems. The searches were
conducted with filters for peer-reviewed journal articles and conference papers to maintain
the quality of the selected research. Inclusion criteria were papers published in the last
five years that specifically addressed the application of robotics in PV systems, including
cleaning, inspection, and maintenance. Articles had to be peer reviewed and accessible
in full text to be included in the review. Exclusion criteria were papers that focused on
unrelated aspects of robotics or PV systems, such as purely theoretical models without
practical application, studies not involving robotic systems, research focused on non-solar
renewable energy technologies, or simple laboratory prototypes. Papers not available in
English or lacking full-text access were also excluded to maintain consistency and depth in
the review. This methodical approach ensured a focused and comprehensive selection of
articles that provide valuable insights into the current state and future potential of robotics
in PV systems. Table 2 organizes the materials according to the robotic tasks they address
and to the application environment in PV systems they focus on.

In [47], the design and creation of a robot engineered for dry-cleaning PV solar panels
to cope with efficiency losses due to dust accumulation is described. The robot includes
an image processing system for colour analysis to monitor dust density, optimizing the
cleaning process. Featuring a cleaning head with two cylindrical brushes powered by a
12 V DC motor, the robot’s frame is made of lightweight aluminium. The robot performs
vertical and horizontal cleaning cycles, with each cycle lasting approximately 10 s, and
operates on a 12 V battery recharged by a small PV panel. Controlled by an Arduino Uno
microcontroller and a Bluetooth module, the robot’s effectiveness is validated by significant
increases in panel efficiency post-cleaning across different dust densities.

Ref. [48] reports on the development of an autonomous and smart mobile robot system
designed to enhance the maintenance efficiency of solar PV arrays by automating the
cleaning process. The mobile robot is equipped with gyroscope and proximity sensors
to efficiently navigate and follow the sweep path over the PV array surfaces. Utilizing a
proportional integral derivative (PID) control system, the robot stabilizes its movement
and maintains its path with an average stabilization time of 5.72 s. Operating in both
autonomous and manual modes, it cleans a 56-square-metre PV array in approximately
13 min autonomously and in 20–24 min manually. The robot’s structure features an alu-
minium frame and an acrylic body and weighs 4.8 kg. It is powered by a four-cell LiPo
battery, providing around 40 min of operational time. The drive system includes wheels
driven by PG28-type motors, allowing for six degrees of freedom in movement. Each
sweeper roller, equipped with GW4632-370 motors and nylon tassels, rotates at 150 RPM to
efficiently clean the panels, with proximity sensors preventing falls. This innovative design
significantly reduces the effort, cost, and risk associated with the manual cleaning of solar
arrays, improving the overall efficiency of PV power plants.

Ref. [49] describes the development and implementation of an autonomous robot
designed to clean PV panels in desert environments, addressing the issue of dust and sand
accumulation that can reduce efficiency by up to 80%. Using a waterless cleaning method,
the robot operates without the need for rails or guides and features two independently
motorized helical brushes that rotate to remove dust and sand from the panels. Moving
horizontally along the PV array, the robot activates only the brush facing the direction of
movement to prevent the re-deposition of cleaned sand. Key components include ultrasonic
sensors for real-time speed and position regulation, high-friction rubber belts for smooth
movement on uneven surfaces, and an Arduine DUE platform for managing movement
and brush activation. The robot’s design innovations, such as the elimination of guide rails
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and a controlled brush system, ensure effective dust removal and low power consumption.
Experimental tests validate its effectiveness.

Ref. [50] discusses a robotic system optimized for cleaning solar panels, focusing on
dust accumulation. This autonomous robot uses a combination of brushes and vacuum
mechanisms to remove dust, navigating PV arrays with sensors to detect panel edges
and avoid obstacles. It follows a predefined path for systematic coverage and docks at a
charging station when necessary. Through multiple testing sessions, parameters such as
brush speed, vacuum suction, and movement speed are optimized, resulting in significant
improvements in cleaning performance. The optimized robot enhances PV efficiency by
maintaining cleanliness, increasing power output and longevity.

Ref. [51] describes an automated robotic system for dry-cleaning solar panels in Thuwal,
Saudi Arabia, using a silicone rubber brush, shown in Figure 3. The robot, weighing 36 kg,
operates daily at dawn to minimize sunlight obstruction and efficiently removes overnight
dust accumulation. Field tests using a 10 kW PV system showed that the robot’s daily clean-
ing outperformed weekly manual cleaning, demonstrating its low-cost, reliable solution
for maintaining solar panel cleanliness in arid regions.

 

Figure 3. The robotic cleaning system as installed in the test field [51].

Figure 4 shows the comparison of electroluminescence images of a solar panel before
and after driving across and brushing the panel surface for 1000 cleaning cycles; the image
recorded after the cycles does not reveal any micro-cracks or broken cells, indicating that
the quality of the solar cells was preserved.

Ref. [52] presents a novel water-free cleaning robot for distributed PV systems in water-
scarce areas. The lightweight robot, equipped with a negative pressure adsorption system
and independent wheels, can clean inclined surfaces up to 30 degrees. It uses a rolling brush
and negative pressure dust removal system, achieving high cleaning efficiency without
secondary pollution. The robot’s design includes PWM-controlled motors to prevent
vibrations, ensuring effective dust collection and enhancing PV panel performance.

Ref. [53] details the development of the robot “UTU”, a compact, mobile device
designed to clean solar panels by removing dirt and dust. The UTU robot features a water
suction mechanism, roller brushes, tank track wheels, and a 3D-printed cover. It uses IR
sensors and a 9-DOF sensor for edge detection and navigation. The robot can be controlled
via a mobile application, allowing for remote monitoring and operation. The UTU robot’s
advanced technology and operating algorithm ensure thorough and efficient cleaning,
making it suitable for solar panels in hard-to-reach areas.
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Figure 4. Comparison of electroluminescence of solar panel after cleaning solar module for 1000 cycles
(from [51]).

Ref. [54] discusses an autonomous solar panel cleaning robot equipped with rubber
wheels for non-slip omnidirectional rotation. It features an air vacuum system to remove
dust from panel surfaces and operates without cable or water pipe connections. The robot
harnesses its energy through a flexible solar panel and can be controlled manually or
operate autonomously. Its efficient dust removal system and autonomous capabilities make
it a practical solution for maintaining solar panel efficiency, especially in water-scarce areas.

Ref. [55] focuses on the use of UAVs equipped with a visual serving control system
integrated with nonlinear model predictive control (NMPC) for inspecting PV arrays. Using
a DJI Matrice 100, the UAV accurately tracks the middle of PV arrays at various velocities
and heights, ensuring detailed image acquisition during low-altitude flights. The system
extracts features from RGB-D images and uses a Kalman filter to estimate PV array edges,
allowing for precise positioning which is critical for high-quality image capturing and
necessary for expert analysis or AI-based fault detection. Validated in both simulated and
real-world conditions, the system reduces useless data and improves image resolution,
enhancing the efficiency of PV array inspections through real-time feature extraction and
control execution.

Ref. [56] explores using UAVs equipped with a keypoint-based object detection frame-
work for the real-time inspection of solar farms. Utilizing the NVIDIA AGX Jetson Orin
platform, the UAVs achieve up to 60 frames per second at a 1024 × 1376 resolution, ideal
for quick and accurate industrial inspections. The UAVs detect the vertices of solar panels,
estimating their six degrees of freedom (6-DOF) pose, and autonomously detect defects
and anomalies, facilitating efficient inspections. By integrating UAVs with advanced object
detection frameworks, the system enhances accessibility, reduces costs, improves safety,
and enables real-time data processing for proactive maintenance, thereby improving solar
farm inspections.

Ref. [57] discusses a system for the automatic detection, classification, and localization
of defects in large PV plants using UAVs equipped with IR and RGB imaging. The Mavic 2
Enterprise Advanced UAV captures thermal images with a 640 × 512 resolution and RGB
images with an 8000 × 6000 resolution. The system captures IR images to detect thermal
defects and RGB images for surface defects on PV modules. Tasks include image capturing,
defect detection, image stitching and processing, defect classification using a convolutional
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neural network (CNN), defect localization, and data cross-validation between IR and
RGB images. The UAV-based system enhances image features through techniques like
Max Pooling and local response normalization, achieving high classification accuracy and
facilitating maintenance by accurately identifying and recording defect locations. This
system proves to be a valuable tool for efficiently maintaining large-scale PV plants.

Ref. [58] discusses the development of a UAV inspection system for the preventive
maintenance of solar farms using a DJI Tello quadrotor. Equipped with various sensors
and camera vision technologies, this cost-effective platform enables several machine vision
capabilities. Tasks performed by the UAV include autonomous navigation using image
filtering, edge detection through OpenCV, and visual odometry for trajectory detection.
It employs TensorFlow’s object detection API with MobileNets and Single Shot Detector
architecture to detect and classify solar panel defects in real-time, such as glass breakage,
dust shading, bird droppings, snow, and leaves. The system also classifies solar panel
types and performs precision landing on a wireless charging pad using augmented reality
markers. Additionally, the system provides real-time monitoring, logs detected defects,
and maps the inspection route, displaying crucial parameters through a GUI interface. This
UAV inspection system offers enhanced mobility, reduced time and costs, and improved
coverage and efficiency in solar farm maintenance.

Ref. [59] discusses a water-free cleaning robot designed for dust removal from PV
panels in water-scarce areas. The robot uses a wheeled mechanism and negative pressure
adsorption system to adhere to and clean panels with a tilt angle of up to 30 degrees.
It employs a rolling brush and high-speed centrifugal fan for efficient dust collection.
Weighing no more than 8 kg, the robot can traverse obstacles and cover a cruising distance
of up to 200 m. Field tests demonstrated a significant improvement in PV system efficiency,
making it a practical solution for maintaining optimal power generation.

Ref. [60] examines the deployment of the Boston Dynamics Spot robot for the non-
destructive evaluation (NDE) of renewable energy infrastructures. Equipped with tools
such as thermographic cameras, LIDAR, ultrasonic transducers, and acoustic cameras,
the quadruped robot is capable of inspecting not only PV installations but also other
infrastructures, such as hydroelectric plants and wind turbines. The robot performs the
periodic monitoring and inspection of critical components in hazardous or hard-to-reach
areas, enhancing safety and efficiency. It autonomously inspects hydro plant components
and performs detailed analysis using thermographic and LIDAR measurements. The
integration of IoT and machine learning technologies enables predictive maintenance
and fault prevention, and it has been conceived to incorporate, in the future, drones
and humanoid robots to further enhance capabilities and eliminate human presence in
hazardous zones.

Ref. [61] addresses the challenge of vibrations caused by solar panel cleaning robots
(SPCRs), which can lead to microcracks in silicon cells and deform PV panels, reducing their
lifespan and efficiency. The study proposes a multi-suspension unit designed to dampen
vibrations and shocks, including dampers and shock absorbers to minimize dynamic
loads. Inspired by tank track suspensions, the unit features adjustable spring mechanisms
ensuring proper contact between the robot’s track wheels and the PV panels. Experimental
setups show a significant decrease in panel deflections and improved PV system durability.
This development enhances SPCR design, addressing vibration and pressure impacts,
thereby extending the longevity and operational efficiency of PV panels.

Ref. [62] discusses the development of a modular robot designed to clean various
lengths of solar panels, addressing the need for an efficient and adaptable cleaning solu-
tion. The robot uses a universal module for transmission and manipulation, adapting to
different solar panel configurations and sizes, ranging from 1 to 4 m. The primary cleaning
mechanism involves water, a spiral brush, and a rubber sweeper to remove dust and dirt,
enhancing power generation efficiency. The modular design provides flexibility for differ-
ent types of solar panel installations, including solar farms, rooftops, and floating solar
panels. In Thailand, where air pollution and agricultural activities contribute to significant
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dust build-up, the robot’s cleaning method improves efficiency by up to 10%. Operating
autonomously, it reduces the need for manual labour and the associated costs, offering a
cost-effective and efficient alternative to traditional cleaning methods such as using tele-
scopic poles and mops. The robot’s adaptability and thorough cleaning capabilities make it
particularly beneficial in environments with prevalent dust and bird droppings.

Ref. [63] discusses the design and application of an SPCR to enhance PV system
efficiency by removing dust and debris. The SPCR features a dual-motor and crawler
system for horizontal movement across panels and a vertical cleaning brush for thorough
cleaning. An Arduino board controls the robot, utilizing limit and distance sensors to
maintain designated operation areas. The SPCR includes a charging station for automatic
recharging and a pulley pallet system for smooth panel transitions without additional
rails, reducing material and labour costs. Constructed from lightweight aluminium sigma
profiles, the SPCR is portable and easy to install, providing a cost-effective and efficient
solution for maintaining solar panel cleanliness and optimizing energy output.

Ref. [64] focuses on a robotic vacuum cleaner designed for solar panels, addressing
environmental challenges like panel inclination and dust removal. The robot features a two-
stage cleaning mechanism, consisting of the following: a rolling brush for dust agitation and
a vacuum motor for dust collection. Equipped with accelerometers and ultrasonic sensors,
the robot controls orientation, detects edges, and prevents falls. It follows a reciprocating
motion path for maximum coverage and docks for recharging when battery levels are
low. Gripper wheels allow for the traversal of inclined surfaces, and obstacle handling
capabilities enable smooth movement over panel junctions. The robot’s efficient cleaning
and minimal power consumption make it a viable solution for solar panel maintenance.

Ref. [65] details IR sensor-based dust mitigation system for solar panels, operated by a
robotic arm. This system addresses dust accumulation by initiating early morning cleaning,
monitoring panel temperatures, and moving autonomously across panels. The robotic
arm uses a silicone rubber wiper and water sprinkler for effective cleaning, achieving high
efficiency with minimal water consumption. Field tests showed an average increase of
11.88% in energy output and 13.02% in module efficiency, making it a cost-effective and
scalable solution for solar panel maintenance.

Ref. [66] discusses the design of an intelligent cleaning robot for solar panels, iden-
tifying two main types as follows: small-scale trackless walking robots and large-scale
crossing track walking robots. The robot features two strip brushes and one rolling brush
for enhanced cleaning, capable of climbing slopes and handling height differences between
panels. It includes replaceable soft and hard brushes for different types of dirt. The robot’s
design addresses limitations such as battery power, transportation convenience, and wind
resistance, making it a versatile and effective solution for maintaining solar panel cleanli-
ness and efficiency. Figure 5 highlights the distribution of the research focus across different
robotic tasks within the articles, showing that most of the studies are concentrated on
robotic cleaning solutions for PV systems. In detail, about 33% were related to cleaning
issues, followed by inspection—18%, general maintenance—13%, control strategies—9%,
predictive maintenance—9%, vibration mitigation—9%, and modular adaption—9%.

Figure 5. Distribution of PV research focus across different robotic tasks.
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Table 2. Relationship between robotic tasks and application environments in PV systems, with
references to the papers.

Robotic Task Desert Env.
Water-Scarce

Areas
Large PV

Plants
Distributed
PV Systems

Hard-to-
Reach
Areas

General/
Multiple Env.

References

Cleaning X X X X X X [47–55,57,59,62,64,66]

Inspection X X X [53–58,60]

Maintenance X X X [51,57,58,60,63,66]

Vibration
Mitigation X [50,61]

Modular
Adaptation X [56,62]

Control
Strategies X [58,61,65]

Predictive
Maintenance X [60,63]

References [49,55,62] [52,54,59] [48,53,57,58,60,
63,64] [51,52,63,66] [53,66] [47,50,55–

58,60–63,65]

3.3. Robotics for the Wind Farms

The present global wind power capacity is 743 GW (2021) [67], relying on wind farms
that can be installed either onshore or in shallow water. Therefore, different robotic tasks
may be considered as follows:

(a) the system monitoring and maintenance: made with aerial unmanned vehicles,
crawlers/climbers, or underwater robots;

(b) the system manufacturing or assembly: made with the help of robots for rotor blade
inspection or to assist the assembly of parts into a wind tower;

(c) system security and surveillance.

The research across the articles of this section was conducted within a specific time-
frame, predominantly between 2020 and 2023. This period reflects recent advancements in
robotics, particularly in response to the growing demand for efficient and reliable wind
farm operations.

The keywords that were instrumental in identifying the articles include the following:
“Robotic Inspection”, a key task that enhances efficiency and accuracy in detecting defects,
corrosion, or other issues, crucial for maintaining the safety and performance of wind farms;
“Wind Turbine Maintenance”, which helped narrow down research focused on maintaining
turbines, especially in challenging environments such as offshore locations; “Autonomous
Systems”, the use of autonomous robots is a growing trend in wind farm operations, with
these systems able to perform inspections, maintenance, and even some manufacturing
tasks independently; “Offshore Wind Farms”, which facilitated the identification of studies
related to the operation and maintenance of offshore turbines; “Blade Inspection”, which
captured studies discussing techniques and robots specifically designed to inspect large
and often hard-to-reach surfaces, where accurate inspection is essential for extending the
lifespan of turbines and preventing costly failures; “Non-Destructive Testing (NDT)”, which
is crucial for inspecting wind turbine components without causing damage, allowing robots
using NDT to provide detailed assessments of turbine components while they remain
in operation, making this keyword highly relevant for capturing articles on advanced
inspection technologies.

Searches were conducted in scientific databases such as IEEE Xplore, ScienceDirect,
SpringerLink, and Google Scholar to ensure the inclusion of both academic and applied
research. The inclusion criteria focused on papers published within the last five years to
ensure relevance to current technology trends. Only peer-reviewed articles were considered
to maintain a high standard of quality. The focus was on research explicitly addressing
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robotic applications in wind farms, excluding papers that discussed wind energy in general
without a robotics focus. Additionally, articles were excluded if they present simple
laboratory prototypes or if they did not provide the experimental validation or practical
application of the discussed technologies, ensuring that the selected papers contributed
tangible insights to the field. Table 3 presents a categorization of robotic tasks in wind
farms across different applications and technological approaches.

In [68], an imaginative view in which heterogeneous robotic assets, underpinned by
AI agent technology, coordinate their behaviour to autonomously inspect, maintain, and
repair offshore wind farms over long periods of time and unstable weather conditions
is discussed. They cooperate with onshore human operators, who supervise the mission
at a distance via the use of shared deliberation techniques. Several challenging research
directions in this context are highlighted, and ambitious ideas to tackle them as well as
initial solutions are offered. The foreseen robotic solutions are autonomous surface vessels,
unmanned aerial systems, and crawling robots.

The development and experimental validation of a complex maintenance system
consisting of multiple robotic platforms for a variety of tasks, such as a wind turbine tower
and rotor blade service, is described in [69]. As sketched in Figure 6, drones equipped with
vision and LIDARs are used for global inspection and to guide slower climbing robots.
Localization was enabled by adapting odometry for conical-shaped surfaces considering
additional navigation sensors. A prototype of a magnetic robot for NDT and manipulation
is also presented. All the robotic platforms run the Robot Operating System (ROS), and a
neural network AI approach has been implemented for the detection of the corrosion of
welding lines in images.

 

Figure 6. Wind farm maintenance vision, flying and climbing robots [69].

In [70], a novel framework for acquiring visual data around 3D infrastructures by
establishing a team of fully autonomous Micro Aerial Vehicles (MAVs) with robust local-
ization, planning, and perception capabilities is presented. The proposed aerial system
reaches a high level of autonomy on a large scale while nearing the real-life deployment of
aerial robotics. It mainly employs cameras to take visual data for a structure from a motion
pipeline for the 3D reconstruction of the wind turbines. The problem of accurate position
measurements of MAVs has been tackled with the use of Ultra-Wide Band (UWB) distance
measurements and IMU sensor fusion.

The research work on a new shearography design for integration with a robotic climber
for on-site wind turbine blade inspection is presented in [71]. Shearography is an optical
technique in the field of non-destructive testing (NDT) of various materials. Its main
advantages are that it is noncontact and can cover a large area in a single inspection. It has
been widely acknowledged as an effective technique, particularly for the NDT of composite
materials to detect subsurface defects such as delamination, disbond, cracks, and impact
damages. The sensor is mounted on board a climbing robot that is available on the market
and is tested on site.

A robotic platform used for the inspection of rotor blades during manufacturing is
presented in [72]. The autonomous robot is equipped with a robotic arm carrying the
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following sensors needed for blade inspection: an RGB-D camera and a radar module that
works at 80 GHz with a 24 GHz bandwidth. The focus of the paper is on the control of the
autonomous mobile manipulator. It provides insights into related research fields, including
autonomous navigation and surface orthogonal motion planning. The presented methods
are applicable to various tasks related to large-scale inspection.

The design and development of a scaled down prototype of a climbing robot for
wind turbine maintenance to perform critical tower operations is presented in [73]. This
maintenance robot’s interesting feature is a winding mechanism, which uses a tension
force to grip onto the tower surface either in static or dynamic situations. The robot is
composed of two parenthesis-like halves connected with two wires at the tips, with the
above winding mechanism whose tension allows the necessary grip to perform a straight
up–down locomotion.

In [74], an autonomous multirobot system which can transport, deploy, and retrieve a
wind turbine blade inspection robot using an unmanned aerial vehicle (UAV) is presented.
The proposed solution is a fully autonomous system including a robot deployment interface
for deployment, a mechatronic link-hook module (LHM) for retrieval, both installed on
the underside of a UAV, a mechatronic on-load attaching module installed on the robotic
payload, and an intelligent global mission planner. The mentioned robotic payload is the
BladeBug MKII, an inspection, maintenance, and repair (IMR) blade crawler robot. Field
tests are provided for the different aspects of deployment, retrieval, and operation.

In [75], a crawler-type climbing robot system for measuring the paint film thickness
of offshore wind turbine towers is presented. The robot is magnetically linked to the
tower and moving on tracks. An interesting feature is its being waterproof, allowing for
the monitoring of the submerged parts of the towers. Besides the theoretical model and
dynamic simulation, tests and experiments with a working prototype are also provided.

In [76], the use of mobile robotic assistants for the partial automation of wind turbines
manufacturing is proposed. The robotic assistant can result in reduced production costs
and better working conditions. The article presents the development of a robot assistant
for human operators to effectively perform the assembly of wind turbines. The case is from
a world’s leading wind turbine manufacturer. The developed system is also applicable to
other cases of large component manufacturing involving intensive manual effort.

In [77], several methods for robot-based damage detection and evaluation are reviewed.
The pinpointed robot technologies are the UAVs and crawling and underwater vehicles.
Depending on the payload of the robot, different NDT techniques can be used to assess
the different types of damage, including surface damages (e.g., cracks, corrosion, erosion)
and hidden damages (e.g., delamination). In general, UAVs have the least payload but the
highest efficiency and flexibility, whereas climbing and underwater robots have a higher
payload and can support larger and heavier devices but are less flexible. On the side of
data analysis, the use of intelligent algorithms reduces the dependence on human experts
to perform labour-intensive tasks and improves the quality of inspection by standardizing
analysis algorithms and procedures, with very high accuracies.

In [78], the design, test, and in-service operation of a hexapod robot, along with
options for its deployment, is described (see Figure 7). The robot can deploy a wide range
of measuring equipment and maintenance tools. The hexapod gait employed enables the
chassis to be an end-effector, avoiding the use of traditional robot arms, and the multiple
degrees of freedom associated with the robot legs enable the robot to walk on both convex
and concave surfaces, as well as to straddle a leading-edge profile on a wind turbine aerofoil.
It has been tested through multiple blade walks and tasks such as lightning protection
system verification, inspections, and blade surface treatments.

Figure 8 highlights the distribution of the research focus across different robotic tasks
within the articles, showing that most of the studies are concentrated on robotic solutions
for system monitoring and maintenance. Here, system monitoring and maintenance
accounts for most of the published research papers, reaching about 56%, followed by
system manufacturing and assembly, at 27%, and system security and surveillance, at 17%.
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Figure 7. On-blade deployment of a crawling inspection robot [78].

Table 3. Categorization of the considered robotic tasks in wind farms across different applications
and technological approaches.

Robotic Task
Onshore Wind

Farms
Offshore Wind

Farms
Autonomous

Operation

Robotic
Integration with

Human
Operators

Advanced
Inspection
Techniques

References

System
Monitoring and

Maintenance
X X X X X [68–72,74,75,78]

System
Manufacturing or

Assembly
X X X X X [69,72,76]

System Security
and Surveillance X X X X X [68,77]

References [69,72,75–78] [68,69,74,75] [68,70,72,74,76–78] [68,72,74,76,77] [70–72,77,78]

Figure 8. Distribution of wind farm research focus across different robotic tasks.

3.4. Robotics for the Hydroelectric Generation

Dams play an important role today, contributing to the production of a significant
portion of electricity from renewable sources. Additionally, they allow for the control of
water flows, serve as water reservoirs, and contribute to the reduction in disasters.

In this paragraph, we will focus mainly on dams for hydroelectric power genera-
tion. The articles reviewed range mainly from 2016 to 2024, ensuring a comprehensive
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overview of the most recent developments in the field. The literature search was conducted
using a set of carefully selected keywords, including “robot dam inspection”, “robot dam
maintenance”, and “underwater dams concrete monitoring”, which were applied across
various search fields, such as titles, abstracts, and keywords, to find relevant studies. To
refine the selection, the inclusion criteria focused on peer-reviewed journal articles and
conference papers that presented original research or significant reviews within this period.
Studies were included if they provided empirical data, detailed methodologies, or in-depth
analyses of the technologies under consideration. Exclusion criteria were used to omit
non-peer-reviewed sources, studies not available in English, and those lacking sufficient
methodological detail or empirical evidence.

Dams are generally made of concrete, and their structure can present problems over
time, such as deformations, cracks, spalling, erosion, and wear. Besides the structure, other
aspects to monitor include debris that can obstruct the water outlet channels, the penstocks,
the turbines, and the general evolution of sediments. Once the damage is identified and
maintenance is performed, monitoring is important. But, according to [79], the monitoring
and evaluation of crack repair is an important task rarely reported.

The use of robotics in the operation and maintenance of hydroelectric dams enhances
safety, efficiency, and data collection capabilities. Robotics technologies are pivotal in
performing inspections and maintenance tasks that are otherwise dangerous or challenging
for human operators. This type of plant requires the intervention of diverse types of robots
depending on the component to be monitored. For underwater monitoring, underwater
robots are needed, while for those above water, aerial drones or climbing robots are
usually used.

The operations can be divided into those to be carried out above the water level and
those below.

3.4.1. Above-Surface Monitoring

The analysis of structural integrity is of fundamental importance to prevent disasters
and must be carried out regularly. Automating this process introduces advantages such as
cost and risk reduction and the reliability of the results. An advantageous strategy is to
use photogrammetry because of its reduced duration of field work, the capacity to record
simultaneous three-dimensional coordinates, and, in principle, the ability to monitor an
unlimited number of points [80].

Regarding operations above the water, plenty of work has been carried out on the
use of drones and climbing robots for the analysis of the dam surface. In [81], a climbing
robot is used to detect automatically, count defect instance numbers, and reconstruct the
surface of dam spillways by incorporating the deep learning method with a visual 3D
reconstruction method. The ORB-SLAM method is used to extract keyframes from the
acquired colour and depth images and to obtain the pose transform matrices of all images.
Then, a dense environment point cloud model is generated by bundle adjustment.

In [82], the methods and results from a robotic crawler-based ground-penetrating
radar (GPR) inspection of rehabilitated concrete from a hydroelectric dam spillway are
presented. Standard practise would have left these repairs uninspected or put people at
risk when deploying them on the spillway for manual inspections. The paper shows that
high-quality data can be recorded from repairs without the need for manual inspection. A
remotely controlled robotic crawler system assures repair quality efficiently and effectively
(see Figure 9).

A different more holistic approach is described in [83], where an organized, scalable,
and decentralized architecture is described, to support decision-making, such as interpreta-
tion and goal-oriented reasoning from the cooperation between high-level autonomous
cognition systems and expert knowledge. The aim is the inspection of dams through a
cognitive-based architecture that creates a high-level decision-making process through
decentralized multi-objective reasoning. For instance, it may analyze the current 3D point
cloud and, in order to enhance quality, change the originally planned path.
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Figure 9. (a) Crawler with GPR being lowered onto spillway; (b) Crawler with GPR collecting data
across repaired concrete surface; (c) Data collection with handheld device [82].

3.4.2. Below-Surface Level Monitoring

The presence of currents and poor visibility pose a danger for a human diver. Therefore,
the use of robotic systems is a safer and cheaper alternative, avoiding the need to dewater
the plant. Underwater robotic vehicles can pinpoint and measure the exact locations of
cracks, spalling, erosion, voids, and wear, providing critical data for immediate and long-
term maintenance planning. These robots are equipped with advanced imaging and sensor
technologies that allow them to operate in zero-visibility conditions and turbulent waters,
ensuring detailed and accurate inspections of dam structures and tunnels.

In [84], the use of remotely operated underwater vehicles (ROVs) to carry sensors for
the conventional ultrasonic pulse velocity (UPV) technique is discussed for underwater
applications. The paper shows that UPV can identify zones of inhomogeneity within the
concrete structure and discusses the influence of water saturation, marine growth, and the
inspection surface, presenting experimental studies both in the laboratory and in the field.

The development of a dam inspection robot is described in [85]. The robot employs
visual data for the inspection of dams. The paper is focused on the solution of adhering
to the concrete walls by a negative pressure effect plate due to thrusters, a solution that
opposes the common approach with ROVs, which are prone to external disturbances
on the stability of the robot and positioning performance and difficulties on the side of
untrained operators.

A hybrid robot composed of a crawler robot and an ROV is proposed in [86] to perform
reservoir visual inspection. The tracked crawler carries the ROV and inspects the bottom
with a 3D sonar; the ROV performs visual inspection on the tank walls and above the water.
The focus of the paper is on the control of the distance and orientation to the reservoir
surfaces to recognize and register defects (mainly cracks).

Regarding visual techniques for the inspection of concrete in underwater environ-
ments, recent methods are heavily based on an artificial intelligence approach centred
on neural networks [87,88]. Since the algorithms are usually trained by examples, the
availability of datasets plays a crucial role [87]. Another important issue is represented
by the fact that low light, due to depth and turbidity, and biofouling may make video
processing difficult. In [89], several techniques for the detection of underwater cracks on
concrete dam surfaces are reviewed.

In [90], a method is proposed that can overcome issues, such as uneven illumination,
colour distortion, and detail blurring, and can effectively detect and localize cracks in
underwater optical images with low illumination, a low signal-to-noise ratio, and low
contrast. In [91], a method able to handle images which are full of uneven illumination,
even when the crack is tiny and interfered with by other factors, is described.
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In hydropower, typical situations that involve in situ maintenance include cavitation
damage, fatigue-induced cracking, and corrosion. The SCOMPI robot [92] is a robot dedi-
cated for in situ fixing. It is a six-axis manipulator which can deposit weld metal on complex
shapes or reconstruct profiles through grinding. It is mainly applied to turbine repair.

In [93], a three-linear axis grinding robot and a test bench designed for the study
of underwater grinding processes for the rectification of underwater hydroelectric steel
structures are presented.

The review of recent works has shown an ever-increasing interest in the automated
monitoring of the concrete structure of the dam. Refs. [84,86] have also integrated solutions
for cleaning marine growth. Most of the works have used ROVs for underwater operations,
while climbing robots are used both for above- and below-water operations. Drones are
obviously used for external analysis, typically image acquisition.

The use of deep learning techniques for the analysis of captured images in order to
classify and localize defects is of increasing interest both above [81,83,87] and below the
water surface [88]. Transfer learning is a technique to reuse training in other contexts, given
the difficulty of finding specific datasets [87].

For the analysis of the inside of the structure, only techniques such as GPR or UPV, for
which it is required that the sensor has a stable contact with the structure, are used.

Table 4 categorizes tasks based on the sensors used and the type of monitoring per-
formed. In particular, for the pinpointing of the defect, the localisation of the robot on the
dam is of fundamental importance. Ref. [82] noted difficulties in using a GPS to accurately
measure a vertical displacement so close to a concrete wall and suggests the use of a robotic
total station.

Table 4. Tasks based on the sensors used and on the type of monitoring performed.

Sensors

Robotic Task Concrete Surface Inspection Concrete Interior Inspection

Above Water
Surface

Below Water
Surface

Above Water
Surface

Below Water
Surface

GPR [82]

UPV [84]

Optical camera [81,83,87] [85,86,88,89]

The underwater environment has always been a challenging environment to operate in.
The water, often turbid, makes video analysis difficult; the currents complicate the robot’s
control actions, and radio communications with the ground station are not feasible. In fact,
all the papers describe the use of remotely controlled ROVs with direct human intervention.

3.5. Robotics for Power Lines

The search for robotics applications in power line O&M was conducted simply using
Google with no specific parameters. This approach aimed to discover not only academic
papers but also content from electric companies, providing insight into the working en-
vironment for these robots, particularly the inspection and maintenance tasks currently
performed by humans that could be taken over by robots.

In addition to understanding the work environment, as described in the following
lines, another result from this first phase was the emergence of two main application
branches: robots operating suspended from power lines and drones. For these, two
separate bibliographic searches were conducted, resulting in two comprehensive reviews
recently published (in December 2023 [94] and March 2024 [95], respectively). As new
bibliographic searches since those dates have not yielded further results, the contents of
these two reviews are detailed further below.

Power lines transport electrical energy from production centres to end users by uti-
lizing wires of various types and sections, operating at different voltage levels depending
on the amount of energy to be transported and the distance between production centres
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and users. To ensure stable operation and prevent downtime, damage, and malfunctions,
periodic monitoring and maintenance programmes have to be implemented.

Power lines span long distances, often crossing thousands of kilometres through
suburban areas and inaccessible regions such as mountains, deserts, bodies of water, forests,
and other challenging environments. These environments are frequently subject to adverse
climatic conditions that expose the power lines to demanding working conditions, such as
thermal fluctuations, rain, ice, wind-induced vibrations, and extreme temperatures, all of
which can induce significant losses, corrosion, and fatigue ruptures. Additionally, lightning
strikes can cause severe damage, including strand ruptures and wire melting. Insulators
may develop cracks due to environmental changes and electrical arcs, directly impacting
the safety of transmission lines since they provide electrical isolation and mechanical
support to the system. In coastal regions, salt accumulation on insulators can lead to a
loss of dielectric strength and electrical current leakage between the lines and the ground.
Conductors may experience thinning and punctures caused by leakage currents and corona
discharge events [96,97].

Power lines frequently encounter aerodynamic instability caused by wind and rain.
Like other oscillations, this type of vibration increases the fatigue of conductors, particularly
at line supports or clamps. On rainy days, raindrops strike the power line, adhere to the
high-voltage conductor, and, under adverse wind conditions, can lead to the collapse of
the supporting towers [98–100].

To minimize maintenance costs and to prevent power outages, regular inspections are
conducted to identify components requiring maintenance and to detect faults in transmis-
sion equipment. Inspection operations focus on components such as insulators, vibration
dampers, conductors, spacers, and clamps [101,102]. Over time, two primary methods
have been used for inspecting power transmission lines: the first method involves man-
ual inspection by workers on the ground, using telescopes, on gondolas suspended from
overhead ground wires, or even climbing the metal towers. This method has significant
drawbacks, including high labour intensity, lengthy inspection cycles, high costs, and risks
to personal safety. Additionally, ensuring inspection quality in challenging environments
such as highlands, meadows, and forests is particularly difficult.

The second method involves using helicopters equipped with various cameras: a
visual (daylight) camera, an infrared camera to detect hot spots (as damage to cables and
insulators usually increases electrical resistance and local temperature), and an ultraviolet
camera to detect corona discharge (defective components cause a local increase in the
electrical field, leading to the ionization of air and the emission of UV radiation). Helicopters
offer greater efficiency for inspections in high-altitude, cold, and non-dedicated landing
areas. However, this method is costly, and the inspection quality decreases under adverse
weather conditions [103,104]. Furthermore, some critical defects, such as the internal
corrosion of steel-reinforced aluminium conductors, require precise inspection that should
preferably be performed from close distances.

Cost, time efficiency, and human safety are critical during the inspection process.
To replace human workers, power companies and scientific institutions have developed
specialized robots. These robots, which move suspended from the wires, can perform
inspection tasks at close distances from the power lines. Various reviews of these types
of robots are available in the literature [104–113], but the most recent and comprehensive
review of existing and developing robots for power line inspection is presented in [94]. This
work details forty-nine robot designs, distinguishing between those that move on ground
wires (ten designs) and those that move on live wires, further differentiating between those
moving on single wires (thirty-three designs) and multiple wires (six designs).

Table 5 shows, for each type of movement, the number of robots considered in [94]
that have reached a certain stage of development. At the first stage, the examinate papers
illustrate only 3D CAD drawings; at the second, the functionality of the proposed robots
has been validated trough computer simulations; at the third stage, the robots’ functionality
has been tested in laboratory experiments (using real parts of power lines or a mock-up);
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and at the final stage, the robots have been tested on real power lines (de-energized in
some cases).

Table 5. Summary of different stages of development for the robot considered in [94].

Type of
Movement

3D CAD
Drawings

Computer
Simulations

Laboratory
Experiments

Field
Testing

Multiple wires 3 3
Single wires 5 3 19 6

Ground wires 1 5 4

Robots operating on power lines must overcome various obstacles encountered along
their path. These obstacles include dampers, insulators, clamps (such as tension and
suspension clamps), spacers, splicing sleeves, towers, aircraft warning lights, and other
electrical equipment (see Figure 10).

 

Figure 10. A sketch of a typical power line system showing the obstacles that should be bypassed by
any inspecting robot [105].

While some obstacles are small and relatively easy to overcome, others are larger and
present significant challenges. As well as overcoming obstacles, the robots should be able
to move quickly along the line, halt when it encounters an obstacle, and maintain stability
throughout the obstacle-crossing process [105,114,115]. Various approaches to obstacle
crossing have been documented, ranging from multi-arm structures to gibbon-inspired
crawling structures. Some assistance comes from the fact that the positions of many of
these obstacles are known in advance from the line construction plans.

Figure 11a shows Expliner, the robot proposed in [116] and field-tested. Its mobility is
based on two pulley units placed on the cables of a bunch line and driven by the electric
motors M1 and M2; each of the two pulley units is connected to a horizontal base by another
two motors, M3 and M5, and a vertical base is rigidly connected to the horizontal one, with
a 2-DOF manipulator connected to its lower end and actuated by the motors M4 and M6;
on the tip of this manipulator, there is a counterweight with batteries and electronics.

Therefore, through an automated sequence of coordinated movements, shown in
Figure 11b, it is possible to change the position of the center of mass of the device to lift one
of the two pulley units and to overcome large obstacles.

As inspection robots are attached to power lines, they add to the overall weight of the
lines. One challenge in minimizing the robots’ weight is the size of the motors and the need
for appropriate electromagnetic shielding for the motors and other electronic components
to ensure they function correctly near the fields generated by live lines [117,118].

The inspection process can also be affected by wind, which may cause oscillations in
transmission lines. This not only complicates obstacle avoidance but also blurs inspection
imaging. Reference [99] introduces a robot designed to withstand oscillations and conduct
inspections under windy conditions.
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(a) (b) 

Figure 11. (a) Concept of Expliner with main components; (b) Sequence of motions for overcoming
clamp suspender (first half of motion) [116].

In 1991, Sawada et al. from Japan were among the first researchers to develop and
design a practical mobile power line inspection robot [119]. This robot navigated a ground
wire located above the live lines, maneuvering over obstructions created by subsidiary
equipment. When the robot encountered a tower, it unfolded an arc-shaped arm that
acted as a guide rail attached to the ground wire on the opposite side of the tower. It then
travelled along the arm to pass around to the other side of the tower, and once firmly affixed
to the wire on the other side, it detached the arm and folded it up until needed again.

Robots using ground wires were the first to be proposed, as ground wires are always
located a few metres above the live lines to ensure lightning protection and are supported
at the tops of the towers. Generally, the only obstacles to the robot’s travel are the signalling
spheres, as ground wires have no insulators. Another advantage of travelling on ground
wires is that they do not cause electromagnetic interference with the robot’s motors and
cameras; thus, electromagnetic shielding is not necessary, reducing the robot’s weight.

Conversely, the detailed inspection of live lines requires powerful cameras and special-
ized control methods. Consequently, researchers began exploring the possibility of robots
moving directly on live lines to gather more detailed data [120]. Since these robots pass
over or very close to the components that need inspection, the cameras and sensors do not
require high-quality sensing. To prevent the motors, cameras, or sensors on the robots from
being affected by the magnetic field generated by the live lines, the outer surface of the
robot must be designed as an electromagnetic shield.

The utilization of live lines has also prompted the development of new sensors for
inspections. For instance, a new laser sensor introduced in study [121] directly measures
the diameter of the cable on which the robot’s pulleys travel.

Although the robots that move along power lines have the considerable advantage of
being able to inspect conductors and other components closely, their inspection processes
are considered slow due to the time required to navigate obstacles and the time needed
for their installation on the wires [95]. For the latter, special cranes mounted on mobile
platforms are necessary, and for some robots, the installation can take about an hour.

For this reason, aerial inspections are often utilized by power companies and research
institutions; the widespread commercial availability of drones and other unmanned aerial
vehicles (UAVs) makes the development of new flying devices unnecessary, shifting the
research focus to image processing instead. A very recent and comprehensive review of the
use of unmanned aerial systems for power line inspection is presented in [95].

Hybrid robot designs [122,123] have been introduced to combine the advantages of an
inspection process conducted by moving along power lines, with the flying capabilities
used to position the platform on the line and bypass obstacles. The stability of landing on
power lines, especially under windy conditions, necessitates a complex control strategy
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for these robots [124]. To compute their pose relative to the power lines, these robots use
cameras and LIDAR together.

4. Machine Learning

Effective operations and maintenance (O&M) practises, including automated robotic
approaches, are essential to manage energy production plants, to minimize downtime, and
to optimize their performance [125].

Robotic systems, equipped with advanced machine learning (ML) and computer vision
(CV) techniques, are currently deeply changing the way O&M tasks are implemented since,
once integrated into the plant, they can autonomously navigate and inspect any kind of
energy infrastructure, such as wind turbine blades, solar panel arrays, hydroelectric dams,
and detecting faults with high accuracy and precision. The integration of efficient ML
and CV allows these robotic systems to process vast amounts of data in real-time both
in place (edge AI) or remotely exploiting the cloud infrastructure, identifying patterns
and anomalies that may indicate potential issues [126,127]. Moreover, autonomous robotic
systems can already carry aboard embedded high computing power systems for in-field
AI-driven decision-making. A recent example is given in [128], where a drone is shown to
autonomously locate faulty PV modules, deciding when to trigger O&M field teams.

Advanced deep learning (DL) vision-based techniques and UAV technologies present
a multitude of opportunities for automating the following four primary tasks in power line
inspection: mapping and inspecting power line components, detecting and measuring icing,
monitoring vegetation encroachment, and disaster monitoring. For example, cutting-edge
object detectors powered by deep convolutional neural networks (e.g., Faster R-CNN [129],
SSD [130], YOLO [131], and R-FCN [132]) combined with deep neural networks for image
classification, such as ResNet [133], Inception-v4, and Inception-ResNet [134], are capable
of detecting, classifying, and mapping any power line component.

Moreover, deep learning-based semantic segmentation methods (e.g., DPN [135] and
Mask R-CNN [136]), along with traditional background removal techniques like colour-
based suppression [137] and pulse-coupled neural filters [138], can effectively eliminate
backgrounds from detected components. Subsequently, inspections on the segmented
images can be performed using techniques such as texture analysis and vision-based
anomaly detection to identify faults. These methods are also advantageous for disaster
monitoring. For instance, a tree detection model can be integrated with a power line
detection model to identify trees fallen across or against power lines following natural
disasters like storms, hurricanes, and earthquakes.

In the field of wind and solar renewable energies, drones and ground robots equipped
with high-resolution cameras and infrared sensors can capture detailed images and thermal
data from PV panels, CSP collectors, and wind turbine blades [39]. Using CV algorithms,
these robots can analyze the images to detect cracks, corrosion, soling/dirt, and thermal
anomalies that are indicative of faults. ML models can then classify these anomalies and
predict the likelihood of component failures, enabling proactive maintenance and reducing
both OPEX and the risk of unexpected downtime [32,139].

In hydroelectric production infrastructures, ML algorithms have been successfully
used for the identification of cracks and spallation in dams. Modern deep learning architec-
tures like YOLO and Faster R-NN have made automatic inspection easier to implement [91]
and have substantially improved performance using a limited number of training samples
which are particularly difficult to acquire in this specific field [140,141].

Taking advantage of that, robotic systems can now be trained to perform complex
tasks that would be challenging or dangerous for human workers. For example, they can
conduct inspections in hard-to-reach areas, such as the tops of wind turbine towers or the
submerged sections of hydroelectric dams. By automating these tasks, robots not only
enhance the safety and efficiency of O&M operations, but also ensure more consistent and
reliable fault detection [142,143].
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Knowledge extraction relies on a number of machine learning tools, as listed below,
that have to be carefully tuned onto the specific energy plant:

Image segmentation: to extract the relevant parts to be monitored, e.g., solar panels
in aerial drone imagery, blades and turbine components, dam structural components and
water pathways to monitor integrity and leaks, power line components and surround-
ing vegetation.

Object detection: to identify defects such as cracks hotspots and dirt or foreign ob-
jects affecting solar panel performance, detect blade damage, corrosion, or misalignment,
identify components and detect faults such as broken insulators or damaged conductors or
encroaching vegetation, and identify any dam structural damage (crack, spalling, etc.).

Simultaneous Localisation and Mapping (SLAM): to create detailed maps of solar or
wind power plants for precise inspection and maintenance and to map internal structures
for maintenance and inspection in hydroelectric plants.

Signal processing for anomaly detection: to analyze thermal and electrical signals to
detect anomalies and predict failures in solar panels or power lines and to process vibration
and acoustic signals to identify potential equipment failures in wind turbines.

Environmental monitoring: to monitor shading on solar panels from nearby objects or
vegetation, track environmental conditions that may affect turbine performance, monitor
surrounding areas for vegetation growth and potential fire hazards to power lines, as
well as monitoring their impacts in terms of gas pollutants (e.g., ozone) and particulate
emissions [144].

Predictive maintenance: to use historical operational data by online anomaly detection
systems to forecast infrastructure maintenance requirements.

3D reconstruction: to generate 3D models for comprehensive monitoring and mainte-
nance planning.

4.1. Localization, Segmentation, and Detection

Image localization refers to the task of identifying the specific location of objects
within an image. This is a critical step in more complex tasks such as object detection and
image segmentation. Key models and techniques for image localization include region-
based CNNs (R-CNNs), You Only Look Once (YOLO), and Single Shot MultiBox Detector
(SSD). The R-CNN family [145], including Fast R-CNN and Faster R-CNN, represents a
significant leap in object detection and localization. These models first generate region
proposals and then classify each region to detect objects. Faster R-CNN integrates region
proposal generation into the network, significantly speeding up the process and improving
accuracy. YOLO is known for its speed and real-time object detection capabilities. Unlike
R-CNNs, which process region proposals separately, YOLO frames object detection as
a single regression problem, predicting both the bounding boxes and class probabilities
directly from full images in one evaluation. This results in much faster detection speeds,
making YOLO suitable for real-time applications [131]. SSD also aims at real-time object
detection, but takes a different approach by combining predictions from multiple feature
maps of different resolutions. This allows SSD to handle objects of various sizes more
effectively and efficiently compared to other models.

4.2. Classification

Image classification involves assigning a label to an image based on its content. This
task forms the backbone of many CV applications and has been revolutionized by the
advent of deep learning. The key models used for image classification include convolutional
neural networks (CNNs), vision transformers (ViTs), and, more recently, hybrid models.
CNNs: CNNs have been the cornerstone of image classification for nearly a decade. They
are designed to automatically and adaptively learn spatial hierarchies of features from
input images. Architectures such as AlexNet, VGGNet, Inception, and ResNet have set
benchmarks for image classification tasks. ResNet introduced the concept of residual
learning, enabling the training of very deep networks by addressing the vanishing gradient
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problem. ViTs [146]: Inspired by the success of transformers in natural language processing,
vision transformers have recently emerged as a powerful tool for image classification. ViTs
treat an image as a sequence of patches and employ self-attention mechanisms to model
long-range dependencies. This approach has shown promising results, particularly in
scenarios where large-scale pre-training data are available. Hybrid models: Combining
the strengths of CNNs and ViTs, hybrid models aim to leverage the local feature extraction
capabilities of CNNs with the global context understanding of transformers. These models
often outperform their pure counterparts in various benchmarks, offering a balanced
trade-off between computational efficiency and accuracy.

4.3. Three-Dimensional Reconstruction

Three-dimensional reconstruction involves creating three-dimensional models from
two-dimensional images. This task is essential in applications such as virtual reality, medi-
cal imaging, and autonomous navigation. Techniques and models for 3D reconstruction
include structure from motion (SfM), multi-view stereo (MVS), and deep learning-based
approaches. SfM [147]: SfM is a photogrammetric technique that estimates 3D structures
from 2D image sequences. By analyzing the motion of feature points across multiple
images, SfM constructs a sparse 3D point cloud of the scene. MVS [148]: MVS takes the
sparse point clouds generated by SfM and densifies them, producing detailed 3D models. It
uses multiple images from different viewpoints to infer depth information and reconstruct
the scene with higher precision. Deep learning-based approaches: Recent advances in
deep learning have introduced novel methods for 3D reconstruction, such as volumetric
CNNs and differentiable rendering. These models can learn to generate 3D shapes directly
from images, leveraging large datasets and powerful computational resources to produce
high-fidelity reconstructions.

5. Datasets

The development and training of computer vision models for tasks such as image
classification, localization, 3D reconstruction, and predictive maintenance require extensive
and diverse datasets for training CV models. Several public datasets have been realized
to support research and advancements in these areas. For image classification, popular
datasets include ImageNet [149], with millions of labelled images across thousands of
categories, and CIFAR-10/100 [150], which provides smaller, more manageable datasets for
quick experimentation. For object detection and localization, the COCO (Common Objects
in Context) [151] dataset offers a vast array of annotated images with object segmentations
and labels, while Pascal VOC [152] provides a comprehensive collection of images with
annotated objects for benchmarking detection algorithms. In the realm of 3D reconstruction,
datasets such as Middlebury [153] and DTU [154] provide multi-view stereo images and
ground truth 3D models, facilitating the evaluation of reconstruction algorithms. Addi-
tionally, there are predictive maintenance benefits from datasets like NASA’s Turbofan
Engine Degradation Simulation Data [155], which includes time-series data and failure
records from simulated engines, and the MIMII dataset [156], which contains audio and
image data from industrial machines under normal and anomalous conditions. These
datasets collectively support the continuous improvement and validation of computer
vision models across various applications.

Hong et al. [81] created a multi-class semantic segmentation dataset of 1711 images
(with resolutions of 848 × 480 and 1280 × 720 pixels) acquired by a wall climbing robot,
including cracks, erosion, spots, patched areas, and power safety cable relative to a concrete
surface of a dam.

The specific training or fine tuning of pre-trained models for the specific context of
the fault detection of renewable energy plants requires vertical datasets on the domain of
interest. Below is a list of available public datasets:

The CPLID dataset is the Chinese Power Line Insulator Dataset [157]. (https://github.
com/InsulatorData/InsulatorDataSet (accessed on 10 September 2024)) It consists of aerial
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images, providing 600 images representing normal insulators and of 248 synthetic images
of defective insulator (e.g., missing cap). In all the images, insulators are labelled.

Tomaszewski et al. [158] provided the Insulator dataset to the public (https://github.
com/heitorcfelix/public-insulator-datasets/tree/master, accessed on 10 September 2024).
It includes outdoor images taken from the ground, providing 2630 images representing
a long rod electrical insulator under varying lighting conditions and against different
backgrounds. In all the images, insulators are labelled.

Bian et al. [159] provided the Tower dataset in their research paper (https://drive.
google.com/drive/folders/1UyP0fBNUqFeoW5nmPVGzyFG5IQZcqlc5, accessed on 10
September 2024). It consists of images collected from inspection videos and the internet,
offering 1300 images representing towers in different backgrounds. In all the images,
towers are labelled.

Yetgin et al. [160] made the Conductor dataset publicly available in their research
paper with the cooperation of the Turkish Electricity Transmission Company (TEIAS)
(https://data.mendeley.com/datasets/n6wrv4ry6v/8, accessed on 10 September 2024)
and https://data.mendeley.com/datasets/twxp8xccsw/9, accessed on 10 September 2024).
It contains images collected from inspection videos using infrared and visible cameras,
providing 4400 images representing power lines and 4400 images without power lines. In
each category, infrared images and visible ones are equal in number. To achieve multiscale
recognition, images were acquired at different distances from the target. Also, to allow
weakly supervised learning, the dataset is separated in two subsets according to different
annotations. Subset 1, made of 8000 images, is labelled with image-level annotations, while
the remaining images are labelled with pixel-level annotations.

The Duke California Solar Array Dataset [161] is composed of over 400 km2 of imagery
and 16,000 hand-labelled solar arrays.

The Desert Knowledge Australia Center Dataset [162] contains multiple real-life data
of PV technologies ranging many types, ages, models, and configurations.

The ESOLMET-IER Dataset [163] is made available by The Institute of Renewable
Energies UNAM and contains solar metric and meteorological data taken from the station
“ESOLMET-IER”.

The National Solar Radiation Data Base (NSRDB) [164] is a publicly available dataset
that consists of solar radiation and meteorological data from the US and surrounding
countries over the last 23 years.

Finally, the Photovoltaic Thermal Images Dataset [165,166] is composed of aerial
thermal images of PV arrays with the presence of one or more anomaly cells.

6. Discussion

Deterioration and faults in renewable energy plants can arise from mechanical fail-
ures, electrical issues, environmental factors, and human errors. Some common faults for
wind turbines include blade damage or erosion, gearbox failures, generator malfunctions,
and yaw system errors. Concerning the photovoltaic plants, faults may include panel
degradation or cracking, inverter failures, hotspots and shading issues, and connection and
wiring faults, including line-to-line and line-to-ground issues. Concentrated solar plants
are mainly affected by several issues at the collector level, including, for example, soiling.
In hydroelectric plants, common faults include turbine wear and tear, generator problems,
dam and spillway structural issues, and control system errors. Finally, for the power lines,
problems may arise from vegetation growth and associated fire hazards, broken insulators,
damaged conductors, and missing components. This work has focused on reviewing the
papers focused on the investigation, development, and field testing of robotic systems for
the inspection and maintenance of such power plants. It has been observed that the number
of robotic solutions reported in the scientific literature is proportional to the pervasiveness
of the specific type of renewable energy. The largest number of applications is therefore
found in the photovoltaic sector, with numerous systems for cleaning panels in different
weather and environmental conditions. The applications to CSP or hydroelectric plants is
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much more limited. Another evident aspect is that of the ubiquity of the use of unmanned
aerial vehicles in photovoltaic plants, CSPs, wind farms, and power lines. The flying
systems can carry only lightweight sensors, but since most of the inspection is performed
by cameras, either visual or infrared, this does not appear to be a major limitation.

Another important aspect is the development of several hybrid solutions in which the
capabilities of different robots are coordinated to tackle the O&M of plants from different
points of view at the same time. As an example, flying drones and crawling robots used
to inspect wind turbines or even flying drones to deploy and retrieve crawling robots
on the blades of a wind generator are increasingly investigated. Automated inspections
with drone-based CV systems can detect panel defects, dust accumulation, and shading
problems in the case of solar power plants. ML algorithms can now predict turbine failures
by analyzing sensor data, while CV can also identify blade damage or misalignment
through aerial imagery in the case of wind power. But CV systems can also monitor
structural integrity and detect blockages or leaks in real time for the hydropower plants.
Finally, monitoring power lines with CV and ML can enhance the detection of faults, icing,
and vegetation encroachment, as well as improve disaster response by identifying and
assessing damage from natural events.

Besides more traditional NDT such as laser metrology, eddy current measurement,
and shearography, the use of visual or infrared information is of paramount importance.
This information is processed through machine learning and computer vision techniques
typically based on AI and deep learning approaches. Several vision-based methods for
anomaly detection have been reviewed and many different training datasets have been
presented. Moreover, it is worth noting that some solutions can be found on the market in
terms of services for power plants, especially in the field of panel cleaning, but, at the same
time, the solutions proposed seem to still be in a very early stage.

Finally, two limitations that characterize this work need to be underlined. First, the
contribution of machine learning techniques may be considered, in general, an integral
part of the technological transformation, enhancing the capabilities of O&M processes and
reducing human intervention by automating selected processes that are integrated with
robotic operations. However, the literature investigated in this article has shown that the
role of robotics in the operation and maintenance of renewable energy technologies remains
somewhat fragmented. While there has been a notable proliferation of such techniques in
the inspection sectors of photovoltaic power, wind power, and power lines, their application
in other renewable energy sectors, such as management or actuation, remains relatively
limited, an issue that will deserve more careful attention from the scientific community.

A second relevant gap in the examined scientific literature and, therefore, a significant
cultural deficiency highlighted by this work is the absence of specific technical analyses
relating the economic impact of the use of robotics on the renewable energy sector. As a
matter of fact, a positive correlation between the increasing use of robotic systems and the
increase in the incidence of the unemployment rate has been already highlighted [167].
This general trend should also be reflected in the energy sector, which actually employs
around 3% of the total worldwide workforce [168]. On the other hand, the use of robotic
systems is expected to increase the standardization level of production processes, leading,
in turn, to a decrease in energy production costs, with effects that should overall be positive
on worldwide economic growth. Unfortunately, this type of study is currently completely
neglected in scientific research.

7. Conclusions

In the renewable energy sector, the use of autonomous machines to carry out the plants
operation and maintenance tasks must no longer be considered only as one of the possible
feasible operational options. Indeed, it must now be considered an unavoidable choice
if the energy transition process, which is designed to drastically reduce the use of fossil
fuels by 2050, has to avoid being slowed down or even being interrupted. The underlying
reason lies in the fact that as renewable energies spread, their OPEX and CAPEX costs
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decrease significantly, and since there is not a fuel cost to take into account, they tend to be
mainly limited by “labour-intensive” components. The way to get around this bottleneck
is therefore the use of robots that must replace humans both in the installation phase of
the systems and, even more so, in the operation and maintenance phase. For example,
just to clarify these ideas, in the case of photovoltaic or wind energy, the labour-intensive
components now account, respectively, for over 60% and over 40% of the maintenance
yearly cost. The range of robots that can be used for these monitoring functions, as this
review has shown, is already wide; these include drones, ground robots, and aquatic robots
which, however, must be specialized for the particular energy domain in which they are
required to operate. The human–machine connection is therefore still central to this area of
research and development, especially in relation to areas such as that of renewable energy,
characterized by a high granularity of systems with power densities generally 10–1000
times lower than those using fossil fuels and in which local environmental conditions make
each system particular and different from any other. A joint and rapid effort is therefore
desirable to meet the demands of the industrial sector, which will become increasingly
pressing, driven by an increasingly highly competitive energy market.

Author Contributions: Conceptualization, G.D.F.; methodology, S.T., S.C., S.D.V., M.P., G.P. and A.Z.;
investigation, S.T., S.C., S.D.V., M.P., G.P. and A.Z.; writing—original draft preparation, S.T., S.C.,
S.D.V., M.P., G.P. and A.Z.; writing—review and editing, S.T., M.P., G.D.F., A.Z. and S.C.; funding
acquisition, G.D.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in the text:
CAPEX Capital expenditure
CNN Convolutional neural network
CSP Concentrated solar power
CV Computer vision
DL Deep learning
GPR Ground-penetrating radar
LIDAR Light detection and ranging
MAV Micro aerial vehicle
ML Machine learning
MVS Multi-view stereo
NDT Non-destructive testing
O&M Operations and maintenance
OPEX Operative expense
PV Photovoltaic
R-CNN Region-based CNN
REN Renewable energies
ROV Remotely operated vehicle
SfM Structure from motion
SPCR Solar panel cleaning robot
SSD Single shot detector
UAV Unmanned aerial vehicle
UPV Ultrasonic pulse velocity
ViT Vision transformers
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Abstract: This article proposes a novel nonsingular fast terminal sliding mode control (N-NFTSMC)
with a sliding mode disturbance observer (SDOB) for permanent magnet synchronous motor (PMSM)
servo control. Firstly, to reduce the chattering issue, a new sliding mode reaching law (NSRL) is pro-
posed for the N-NFTSMC. Secondly, to further improve the dynamic tracking accuracy, we introduce
a sliding disturbance observer to estimate unknown disturbances for feedforward compensation.
Comparative simulations via Matlab/Simulink 2018 are conducted using the traditional NFTSMC
and N-NFTSMC; the step simulation results show that the chattering phenomenon was suppressed
well via the N-NFTSMC scheme. The sine wave tracking simulation proves that the N-NFTSMC
has better dynamic tracking performance when compared with traditional NFTSMC. Finally, we
carry out experiments to validate that the N-NFTSMC adequately suppresses the chattering issue
and possesses better anti-disturbance performance.

Keywords: PMSM; nonsingular terminal sliding mode control; sliding mode reaching law; sliding
mode disturbance observer

1. Introduction

Permanent magnet synchronous motors (PMSMs) have been applied in many AC
servo systems due to their simple structure and fast response time [1–3]. Therefore, PMSMs
are widely used in modern industrial fields like robot manipulators, pneumatic servo
systems [4], electric vehicles (EVs) and spacecraft. The traditional proportional–integral–
derivative (PID) controller is usually used in PMSMs because its parameters are easily
adjustable [5]. However, the PMSM system contains many unknown dynamics that will
worsen the control performance of the PMSM. The PID controller has difficulties meeting
the requirements needed for the high-precision control performance of PMSMs. Therefore,
it is important to develop advanced control methods to deal with these problems. To tackle
these issues, plenty of novel control methods have been proposed, for example, active
disturbance control (ADRC) [6], sliding mode control (SMC) [7] and model predictive
control [8].

Among these approaches, SMC has a performance advantage due to its robustness [9–13].
However, there are still some problems that need to be solved. The system error for the typical
linear SMC is not capable of finite-time convergence, and the chattering phenomenon must
be suppressed. Y. Sun’s novel nonsingular terminal sliding mode control (NTSMC) is an
approach that guarantees system stabilization within a bounded time interval [14]. A full-
order nonsingular terminal sliding mode control method is proposed in [15] for dynamic
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systems subject to both matched and mismatched disturbances. The chattering problem may
cause negative effects and destabilizes the system in real applications [16]. Different strategies
have been developed to reduce the chattering phenomenon, such as high-order SMC [17,18]
and advanced sliding mode reaching law in [19–23]. Among these methods, the advanced
sliding mode reaching law can decrease the chattering issue effectively. It is contradictory to
overcome heavy chattering and obtain a fast response at same time. Therefore, an adaptive
neural network nonsingular fast terminal sliding mode control (ANNNFTSMC), which has
advantages that include a fast response speed and a small static error, is investigated in [24].

To enhance the anti-disturbance performance, the disturbance observer has been
widely studied [25–27]. A time-varying nonlinear disturbance observer (TVNDO), as speci-
fied in [28], was designed to evaluate unknown disturbances. There are many nonlinear
disturbances in practical engineering applications; however, PI control cannot meet the
demands of dynamic performance. Based on this problem, an improved model-free contin-
uous super-twisting NFTSM is applied for IPMSM in [29]. Considering that disturbances
are usually changing in engineering environments, a DOB, which deals with time-varying
disturbances effectively, is designed and analyzed in [30,31].

Although NFTSMC has a high convergent speed, it still has chattering issues. Based on
the analysis above, an effective way to decrease the chattering issue is to modify the sliding
mode reaching law. We have devised an NSMRL to reduce chattering. When applied to the
motion control of PMSMs, the tracking accuracy under complicated working conditions
can be improved. In this paper, we propose a novel NFTSMC with a sliding mode observer
(SDOB); the control structure can be seen in Figure 1. The contribution of this study can be
summarized as follows:

(1) To reduce the chattering problem in the traditional NFTSMC, an NSMRL is designed
for the N-NFTSMC. The NSMRL with a smooth switch function eliminates chattering
behavior effectively.

(2) An SDOB is proposed to estimate the unknown disturbances of the PMSM system. The
N-NFTSMC with the SDOB is designed to improve the anti-disturbance performance
of the system.

(3) Simulation and experimental verification are conducted to prove the effectiveness of
the N-NFTSMC and to compare it with the classic NFTSMC.
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Figure 1. Control structure of the PMSM.

The remainder of this paper is organized as follows: Section 2 states the traditional
NFTSMC design and problem formulation. Section 3 states the proposed N-NFTSMC.
Section 4 details the design of the SDOB and its convergence analysis. Section 5 verifies
the effectiveness of the proposed control method using a Simulink simulation. Section 6
describes experiments to validate the proposed N-NFTSMC.
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2. NFTSMC Design

2.1. Modelling of PMSM

Based on the theoretical speculations regarding the control of permanent magnet
synchronous motors (PMSMs), with the d-axis current set at 0, the d–q axis mathematical
model is presented as follows:{ .

iq = − R
L iq − nωid − nψ f

L +
uq
L.

ω = 1
J
(
Keiq − TL − Bω

) (1)

where uq is the stator voltage; id and iq denote the currents within the stator; L is the stator
inductance; ψ f stands for the magnetic flux; R signifies the stator resistance; n denotes the
pole-pair counts of the PMSM; ω is rotational speed; J indicates the rotor’s inertial moment;
Ke represents the motor’s torque coefficient (Te =

3
2 nψ f iq = Keiq); TL represents the torque

applied by the load; and B denotes the friction coefficient.

2.2. Definition of State Variables

If the reference speed is defined as ω∗ and the real speed is defined as ω, then the
error between ω∗ and ω can be obtained by{

e = ω∗ −ω
.
e = − .

ω
(2)

In the experimental verification, TL is also set at a constant value, which can be
obtained by

.
TL = 0. Then, the derivative of Equation (2) is given as[ .

e
..
e

]
=

[
0 1
0 − bm

J

][ .
e
..
e

]
+

[
0

− 1.5pnψ
J

]
.
iq (3)

The state variables can be summarized as⎡⎣ e
.
e
..
e

⎤⎦ =

⎡⎢⎣ ω∗ −ω

− 1.5pnψ
J iq +

bm
J ω + TL

J

− 1.5pnψ
J

.
iq +

bm
J

.
ω

⎤⎥⎦ (4)

2.3. Classic Nonsingular Fast Terminal Sliding Mode Control

The classic nonsingular fast terminal sliding mode surface is set forth as

s = e + k1|e|σ1 sign(e) + k2
∣∣ .e∣∣σ2 sign

( .
e
)

(5)

The appropriate sliding mode reaching law ensures that the system variable states
convergence to the designed sliding surface in a finite time. The exponential sliding mode
control law is similarly formulated as follows:

.
s = −εsign(s)− ks, ε > 0, k > 0. (6)

The derivation of the sliding mode surface of (5) can be written as:

.
s =

.
e + σ1k1|e|σ1−1sign(e)

.
e + k2σ2

∣∣ .e∣∣σ2−1sign
( .
e
)

=
(

1 + σ1k1|e|σ1−1sign(e)
) .

e + k2σ2
∣∣ .e∣∣σ2−1sign

( .
e
) (7)

Combined with (4), (5) and (7), the output of the classic NFTSMC is generated accord-
ing to the subsequent formula:

iq =
J

1.5pnψ
· 1

k2σ2
∣∣ .e∣∣σ2−1sign

( .
e
) ∫ t

0

[(
1 + σ1k1|e|σ1−1sign(e)− bm

J
σ2k2
∣∣ .e∣∣σ2−1sign

( .
e
)) .

e+εsign(s) + ks
]

dt (8)
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3. N-NFTSMC Design

The overall block diagram of the N-NFTSMC controller is shown in Figure 2. It depicts
the connections between the mathematical models.
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+
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Figure 2. The block diagram of N-NFTSMC.

3.1. Controller Design

Equation (6) indicates that an increase in the coefficients leads to an improved system
convergence speed. On the other hand, the process of convergence will also cause chattering.
Therefore, it is difficult to maintain the balance between the convergence speed and the
amount of chattering using the traditional NFTSMC. The main reason is that the reaching
law includes a switching function sign(·). To cope with this issue, we replace sign(·) with
tan h(·), which can provide a smooth transition. A comparison of the two functions is
shown in Figure 3.

 
Figure 3. Function tanh(s) and sign(s).

To reduce the chattering, a new sliding mode reaching law (NSMRL) based on the
previously mentioned sliding mode reaching law in Equation (6) is designed as follows:{ .

s = −ε1
s

1+|s| − ε2|s|α1 tan h(s)− ε3|s|α2 tan h(s)
ε1 > 0, ε2 > 0, ε3 > 0, 0 < α1 < 1, α2 > 1.

(9)

It can be learned from Equation (9) that when the system state is far away from
the sliding mode surface s, the terms ε1

s
1+|s| and ε3|s|α2 tan h(s) will accelerate the state

convergence to the sliding mode. When the state is close to the sliding mode surface,
the term ε2|s|α1 tan h(s) works and makes the states reach the sliding mode surface. In
Figure 4, there are three sets of reaching laws. As depicted in Figure 4, the red line, which
denotes the NSMRL, achieves convergence with the greatest speed despite being distant
from equilibrium.
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Figure 4. Comparison of the variants of the different sliding mode reaching laws.

The NSMRL in (9) is equal to the derivation of (5), combined with (7). The control law
of the N-NFTSMC is presented below:

iq =
J

1.5pnψ
· 1

k2σ2
∣∣ .e∣∣σ2−1sign

( .
e
) ∫ t

0

[(
1 + σ1k1|e|σ1−1sign(e)− bm

J
σ2k2
∣∣ .e∣∣σ2−1sign

( .
e
)) .

e +ε1
s

1 + |s| + ε2|s|α1 tan h(s) + ε3|s|α2 tan h(s)
]

dt (10)

3.2. Stability Analysis for Novel NFTSMC

The Lyapunov function Equation (11) is used to analyze the stability of the N-NFTSMC:

V1 =
1
2

s2 (11)

Combining (5), (9) and (10), the derivation of (11) can be obtained as
.

V1 = s
( .

e + σ1k1|e|σ1−1sign(e)
.
e + k2σ2

∣∣ .e∣∣σ2−1sign
( .
e
)..
e
)

= s
{

.
e + σ1k1|e|σ1−1sign(e)

.
e + k2σ2

∣∣ .e∣∣σ2−1sign
( .
e
)[− 1

k2σ2| .e|σ2−1
sign(

.
e)

(
1 + σ1k1|e|σ1−1sign(e)

.
e− bm

J k2σ2
∣∣ .e∣∣σ2−1sign

( .
e
)− .

s
)
+ bm

J
.

ω

]}
= s
(
−ε1

s
1+|s| − ε2|s|α1 tan h(s)− ε3|s|α2 tan h(s)

)
= −ε1

s2

1+|s| − ε2|s|α1 s · tan h(s)− ε3|s|α2 s · tan h(s) < 0

(12)

4. Sliding Mode Disturbance Observer

To overcome the chattering problem with sliding mode control, this section proposes
a new sliding mode disturbance observer. The convergence of the SDOB is proved in
Section 4.2.

4.1. SDOB Design

By defining d(t) = 1
J (−TL − Bω), the mathematical model of PMSM (Equation (1))

can be simplified as { .
ω = Ke

J iq + d(t)
.
d(t) = w(t)

(13)

According to the motion equation of the PMSM, we can model the sliding mode
observer (SDOB) as follows: { .

ω̂ = Ke
J iq + d̂(t) + uNS

d̂(t) = κ1uNS
(14)

Equation (14) minus (13) results in the error equation of the SDOB:{ .
ω̃ = d̃(t) + uNS.

d̃(t) = κ2uNS

(15)
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where κ2 = κ1 −w(t). The sliding mode of the SDOB is designed as follows:

s2 = ω̃ + c
∫

ω̃dt (16)

where ω̃ = ω̂ − ω and d̃(t) =
>
d(t)− d(t) represent the errors in the estimation of speed

and disturbance, respectively. The course of the hyperbolic tangent over time is shown in
Figure 2. The reaching law is thus designed as

.
s2 = −λtanh(s2) (17)

Combined with Equation (15), (16) and (17), uNS can be obtained:

uNS = −λtanh(s2)− d̃(t) (18)

4.2. Stability Analysis for SDOB

The Lyapunov function is used to prove the stability of the designed SDOB:

V2 =
1
2

s2
2 (19)

After differentiating V2, we can obtain

.
V2 = s2

.
s2 = s2(−λtanh(s2)) ≤ 0 (20)

where λ > 0.

5. Simulation Verification

To verify the control performance of the proposed N-NFTSMC, simulation experiments
are conducted in this section. Firstly, step response simulation experiments are conducted
to verify whether the response time of the system is improved using the novel method.
Secondly, sine wave tracking simulation is used to verify the proposed method.

5.1. Step Response Experiment

To verify the improved response time of the N-NFTSMC method, it is compared with
the SMC method through a step response simulation. The simulation results can be seen
in Figure 5. The SMC method converges to the reference signal at 0.016 s, while the novel
NFTSMC method converges to the reference signal at 0.013 s. These results show that the
N-NFTSMC method converges faster to the equilibrium state.

 

Figure 5. Comparison of the step responses for SMC and N-NFTSMC.

A step response simulation is conducted to verify the suppression of chattering using
the N-NFTSMC proposed in this paper. The sliding mode surface parameters are set as
k1 = 2 and k2 = 0.8 for the NFTSMC and N-NFTSMC. For the NFTSMC, the reaching law
parameters are listed in Table 1. The NFTSMC uses the traditional reaching law (6), and the
N-NFTSMC uses the NSMRL (9). The simulation results are shown in Figures 6 and 7.
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Table 1. The sliding mode reaching law parameters.

Parameter Value

ε1 400

ε2 0

α1 1/2

α2 3/2

 

Figure 6. Step response by traditional NFTSMC.

 
Figure 7. Step response by N-NFTSMC.

Chattering can be seen in Figure 6. Compared with the traditional NFTSMC, the
chattering problem is solved by the N-NFTSMC, as shown in Figure 7. This proves the
effectiveness of the NSMRL to suppress chattering.

5.2. Sinusoidal Tracking Simulation

To further verify the effectiveness of the N-NFTSMC approach, firstly, a sine wave
tracking simulation is conducted in this section using the NFTSMC. A sine wave with an
amplitude of 300 is set as the reference signal. The simulation results can be seen in Figure 8.
The chattering phenomenon is more significant near the two poles of the sine curve.

Figure 8. Sine wave tracking by traditional NFTSMC.
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Secondly, the same simulation experiment is repeated using the N-NFTSMC approach.
The tracking curve using the N-NFTSMC is shown in Figure 9. The tracking curve of
N-NFTSMC is smoother and closer to the sine wave compared with the NFTSMC curve.

Figure 9. Sine wave tracking by N−NFTSMC.

To compare the simulation results of the two sets of experiments more intuitively, the
tracking error curves are shown in Figure 10. The maximum error using the N-NFTSMC
method is about 0.61 rpm, while the maximum error using the traditional NFTSMC method
is about 0.98 rpm. The sine wave tracking simulation results show that the N-NFTSMC
method can track the reference signal more accurately than the NFTSMC method.

 

Figure 10. Sine wave tracking error.

The electromagnetic torque curve is also given in Figure 11. It is obvious that the
blue line representing the N-NFTSMC is smoother. The sinusoidal tracking simulation
result shows that the N-NFTSMC proposed in this paper has a better dynamic tracking
performance than the traditional NFTSMC method.

 
Figure 11. Electromagnetic torque curve.

6. Experimental Verification

To prove the competence of the N-NFTSMC method, semi-physical experiments are
implemented on a PMSM servo platform, as portrayed in Figure 12.
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Figure 12. Experimental setup of PMSM servo system.

The PMSM in this servo system is a four-phase surface-mounted PMSM. The special-
ized parameters of the PMSM are detailed in Table 2.

Table 2. Parameters of the PMSM.

Parameter Value

Rated power 200 W

Line resistance 0.33 Ω

Line inductance 9 × 10−4 H

Number of pole pairs 4

Torque coefficient 0.087 Nm/A

Rated voltage 36 V

Rated current 7.5 A

For experimental comparisons, the comparative transient response tests for the NFTSMC
and N-NFTSMC control strategies are carried out at 500 rpm and 1000 rpm, respectively. The
experimental results of the reference speed, 500 rpm, are shown in Figure 13a. It can be seen
that when the motor runs at 500 rpm, after reaching the steady state, the maximum speed
fluctuations based on the NFTSMC and N-NFTSMC are about 10 rpm and 6 rpm, respectively.
Changing the reference speed to 1000 rpm increases the maximum speed fluctuations based
on the NFTSMC and N-NFTSMC to 20 rpm and 12 rpm, as shown in Figure 13b. These results
demonstrate that the N-NFTSMC reduces the chattering problem.

In the PMSM servo control, the d-axis is set at 0, and the q-axis is used for output torque
control. The chattering of the q-axis voltage directly influences the velocity chattering.
Figure 14 shows a comparison of the q-axis voltage using the NFTSMC and N-NFTSMC.
With no load torque, the PMSM starts to speed up from 0 to 500 rpm and from 0 to 1000 rpm.
It can be learned from the two sets of experiments that the q-axis voltage chattering range
is smaller using the N-NFTSMC.
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(a) 500 rpm 

 
(b) 1000 rpm 

Figure 13. Startup responses of PMSM with NFTSMC and N-NFTSMC: (a) 500 rpm and (b) 1000
rpm.

(a) 500 rpm 

(b) 1000 rpm 

Figure 14. Q-axis voltage for step response: (a) 500 rpm and (b) 1000 rpm.

To demonstrate that the N-NFTSMC possesses better robustness than the NFTSMC,
loading experiments are conducted under a speed command of 500 rpm. When the PMSM
stably rotates at 500 rpm, we add a sudden load at 10 s using the magnetic powder brake
and observe its influence on the PMSM velocities. As can be seen in Figure 15, the N-
NFTSMC showed a better anti-disturbance performance than the NFTSMC.
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Figure 15. Experimental results at 500 rpm using a sudden load.

In order to further verify the robustness of N-NFTSMC, a loading experiment is
conducted at a reference speed of 1000 rpm. From the experimental results in Figure 16, the
chattering range of the N-NFTSMC is smaller than that of the NFTSMC. The N-NFTSMC
also exhibits an anti-disturbance performance that is stronger than that of the NFTSMC.

 

Figure 16. Experimental results at 1000 rpm using a sudden load.

The experimental results using different control methods are listed in Table 3 for clearer
comparisons. We can see that, compared with the NFTSMC, the proposed N-NFTSMC
shows smaller speed chattering. Moreover, when a sudden load is applied, the N-NFTSMC
has a smaller maximum chattering value. These results verify that the N-NFTSMC can
effectively suppress chattering and improve the anti-disturbance of the PMSM motion
control system.

Table 3. Comparisons of experimental results using different control methods.

Control Method
Maximum Chattering Value

(without Sudden Load)
Maximum Chattering Value

(with Sudden Load)

NFTSMC (500 rpm) 10 rpm 70 rpm

N-NFTSMC (500 rpm) 6 rpm 66 rpm

NFTSMC (1000 rpm) 20 rpm 60 rpm

N-NFTSMC (1000 rpm) 12 rpm 52 rpm

7. Conclusions

In this work, we combined the nonsingular fast terminal sliding mode control with
a sliding mode disturbance observer to enhance the chattering suppression and anti-
disturbance capacity of the PMSM servo system. We conducted step response simulations
that showed that our approach improves the response time and adequately suppresses
chattering compared with the traditional FTSMC. Furthermore, we conducted sine tracking
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simulations that showed that our approach has a lower maximum error compared with the
traditional FTSMC.

In addition, we conducted the experiments using different speeds. The experimental
results show that the N-NFTSMC improves the anti-disturbance performance and alleviates
chattering. The results from the simulations and experiments indicate that the N-NFTSMC
strengthens the servo system’s dynamic performance and its disturbance mitigation. In
the future, second-order sliding-mode algorithms will be considered for high-performance
PMSM servo control.
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Nomenclature

Abbreviation Full Name

PMSM Permanent magnet synchronous motor
NFTSMC Nonsingular fast terminal sliding mode control
N-NFTSMC Novel nonsingular fast terminal sliding mode control
NSRL New sliding mode reaching law
SDOB Sliding mode disturbance observer
PID Proportional–integral–derivative
ADRC Active disturbance control
TVNDO Time-varying nonlinear disturbance observer
ANNNFTSMC Adaptive neural network nonsingular fast terminal sliding mode control
IPMSM Interior permanent magnet synchronous motor
SMC Sliding mode control
NTSMC Nonsingular terminal sliding mode control
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Abstract: Modern industrial control systems (ICSs), which consist of sensor nodes, actuators, and
buses, contribute significantly to the enhancement of production efficiency. Massive node arrange-
ments, security vulnerabilities, and complex operating status characterize ICSs, which lead to a
threat to the industrial processes’ stability. In this work, a condition-monitoring method for ICSs
based on canonical variate analysis with probabilistic principal component analysis is proposed. This
method considers the essential information of the operating data. Firstly, the one-way analysis of
variance method is utilized to select the major variables that affect the operating performance. Then,
a concurrent monitoring model based on probabilistic principal component analysis is established
on both the serially correlated canonical subspace and its residual subspace, which is divided by
canonical variate analysis. After that, monitoring statistics and control limits are constructed. Finally,
the effectiveness and superiority of the proposed method are validated through comparisons with
actual drilling operations. The method has better sensitivity than traditional monitoring methods.
The experimental result reveals that the proposed method can effectively monitor the operating
performance in a drilling process with its highest accuracy of 92.31% and a minimum monitoring
delay of 11 s. The proposed method achieves much better effectiveness through real-world process
scenarios due to its distributed structural division and the characteristic canonical analysis conducted
in this paper.

Keywords: industrial control systems; performance monitoring; canonical variate analysis; principal
component analysis

1. Introduction

Industrial control systems (ICSs) are increasingly critical in modern infrastructure
and significant projects such as the hydraulic facility, transport, energy, and chemical
industries. In this sense, ICS security is also directly linked to the smooth operation of
critical infrastructures [1]. When the ICSs are attacked, it will directly harm the physical
world by causing environmental pollution, power outages, oil leaks, and explosions. With
the acceleration of the digitalization process of ICSs, the integration of industrialization
and informatization has been gradually strengthened. Due to the increasing openness
of industrial control systems, there are a increasing number of threats to the systems.
Hence, timely and accurate anomaly detection in ICSs is essential in reflecting the security
status of the production process and determining the vulnerability of the industrial control
systems. Maintaining secure operation of industrial control networks is increasingly critical
in improving production efficiency and safety [2,3].

ICSs are a series of control systems, which include supervisory control and data
acquisition systems, distributed control systems and programmable logic controllers (PLCs),
and other control systems and control units. An ICS ensures the safe, reliable, and secure
operation of industrial processes. In ICSs, malicious attacks are possible due to the inherent
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loopholes in communication protocols. Recently, industrial control networks have faced
constant threats, such as the Stuxnet virus attacking PLC codes to achieve such an attack,
thereby destroying the centrifuge’s regular operation. Thus, numerous researchers have
devoted themselves to constructing state models for ICSs to enable anomaly detection for
different attacks.

The ICSs’ layers interact and communicate with one another via the network while
carrying out their specific assigned tasks. The ICS is vulnerable in both the network along
physical layers due to its close coupling between cyberspace and physical space. An
attacker may launch a cyberattack, which could result in malicious software and data asset
theft or tampering with the equipment, leading to the loss of crucial control information
and failure of crucial control commands.

The threat of attack has caused worldwide concern about the cyber security of ICSs.
Given the numerous attack threats faced by ICSs, Teixeira et al. proposed an ICS pass-
through attack model based on three-dimensional information and physical space to
characterize the various attack means in different spaces and to illustrate the characteristics
of multiple types of attacks [4]. Accordingly, Adepu et al. proposed a framework for
describing physical attacks, cyberattacks, and other types of attacks by dividing them
into domain, attacker, and attack models [5]. In light of the wide variety of attack types,
complex attack paths, and variable attack strategies facing ICSs, it is challenging to construct
a mathematical model covering all scenarios.

Currently, data-driven methods of extracting information from process data and mod-
eling monitoring have become a hotspot in anomaly detection research. The advancement
of sensor technology has allowed almost all industrial objects to be equipped with various
types of sensors, which has resulted in a great deal of data being collected in industrial pro-
cesses. By merging the data from various sources and examining the correlation between
the information, data-driven anomaly detection methods can detect whether a system is
under attack. A relational model that captures the intruder’s identity, velocity, level of
threat, and target of intrusion was developed, which serves as a foundation for continuous
cyberspace state monitoring [6]. Lu et al. proposed a security monitoring method for indus-
trial control networks based on an improved C-SVC (C-Support Vector Classifier), which
can effectively identify multiple types of abnormal states and form situational awareness
results [7]. A hidden Markov model-based attack detection for Stuxnet has been proposed
in the industrial control system subject to random packet dropouts [6]. Despite being based
on mechanistic models of attack-induced abnormal states, the methods above have inherent
limitations when applied to large-scale complex industrial processes.

Considering the large scale and complexity of the system in question, as opposed to
complex processes mechanisms, researchers have monitored network security status by
analyzing the process data in industrial control networks. Multivariate statistical process
monitoring (MSPM) methods have been widely studied and applied over the past few
decades [8]. Rather than modeling a particular attack model, MSPM depicts the operational
state of the system. Attack detection on ICSs is achieved by comparing the deviations from
the operational state. Among the most well-known representative branches of statistical
process monitoring is principal component analysis (PCA), which is regarded as an effective
means of dimension reduction. PCA identifies the major changes in data by decomposing
multiple related variables into several orthogonal principal components [9,10]. The PCA-
based MSPM approach enables monitoring by modeling the variable space of the system
where two different monitoring statistics, Hotelling T2 and Squared prediction error Q, are
viewed as the monitoring statistics [11,12].

Although PCAs are widely used to detect anomalies, they do not perform as well
when their assumptions are incorrect. The underlying Gaussian assumption in the calcu-
lation of control limits of monitoring statistics in PCA makes it a poor monitoring tool
for non-Gaussian processes. A variety of PCA variants have been proposed for nonlinear
processes, including probability PCA (PPCA) [13] and kernel PCA (KPCA) [14], in which
the data are projected into a high-dimensional space. In essence, KPCA remains a linear
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dimensionality reduction method, and its effectiveness is heavily influenced by the choice
of kernel function, which is not appropriate for systems with nonlinear or stochastic per-
turbations. Within the maximum likelihood framework, PPCA measures the similarity
between new data points according to their probability density functions [15,16]. Canonical
variate analysis (CVA), which provides a more accurate description of the process by maxi-
mizing the correlation between mainly dependent and quality variables [17,18], is another
valid method for incorporating both static and dynamic process characteristics. Zhang
et al. developed a CVA-based modeling and monitoring method for simultaneous static
and dynamic analysis in three-phase flow processes [19,20]. A fault information-aided
canonical variate analysis and a structured monitoring strategy has been proposed to
improve anomaly detection rate [17]. However, the process is usually assumed to operate
under one condition, whereas industrial processes always operate in multiple modes.

For plant-wide processes, multimodal methods were introduced as a solution to
these problems. Generally, block division is the key step in sub-block modeling. These
methods can be classified into two main categories: data-driven and knowledge-based.
Based on field experience and prior process knowledge, knowledge-based methods usually
divide process variables into blocks. A hierarchical multiblock total projection to latent
structures (T-PLS) based on an operating performance assessment scheme was proposed to
identify the anomalies in operating statuses [21]. Using prior process knowledge, Zhu et al.
proposed the distributed parallel PCA process monitoring framework to decompose the
high-dimensional process variables [22]. When there is a lack of accurate prior knowledge,
monitoring and anomaly detection performance may be less than optimal if the process
variables are not correctly divided.

Data-driven methods have also been extensively used to divide variable blocks in
distributed process monitoring using the process measurements from industrial historians.
The data-driven approach clusters variables into sub-blocks by evaluating the correlations
between variables. For instance, Hu et al. used mutual information (MI) analysis to
extract the complex relationships between each possible process variable and the burn-
through point in the sintering process [23]. Zhang et al. investigated an improved mixture
probability principal component analysis with clustering for nonlinear process monitoring
where the k-means is subsequently utilized as a clustering algorithm to divide the variables
into optimal sub-blocks [24]. Minimal redundancy maximal relevance was used to divide
the most related variables into the same block and form a dynamic multiblock monitoring
framework [25]. With mutual information-spectral clustering, the measured variables were
automatically divided into sub-blocks on which a Bayesian inference-based multiblock
KPCA monitoring model was established [26]. Combining knowledge-based and data-
driven approaches, Cao et al. developed a hierarchical hybrid, distributed PCA for the
plant-wide monitoring of chemical processes with two-layer manner sub-block division.

Although the aforementioned monitoring strategies have been demonstrated as ef-
fective, the monitoring performance may not be optimal when faced with sophisticated
cyberattacks. On the one hand, network layer attacks such as data injection present more
randomness and uncertainty than faults in the system. The above characteristics lead to
traditional monitoring methods failing to identify the dynamic characteristics caused by
attacks when modeling with normal samples. Specifically, PCA-based monitoring methods
cannot fully extract the state-by-state characteristics of the system in the principal metric
space, leading to omissions and false alarms in the monitoring results. Similarly, when con-
fronted with large-scale complex systems, the traditional centralized modeling approach
cannot adequately reconstruct the system’s state characteristics.

Motivated by the above research status, a concurrent distributed monitoring method
was proposed to tackle the ICS attack detection tasks. redUsing a two-stage distributed
modeling approach, we can extract all the state characteristics of the system. By using the
MI method, the decision variables are selected and the distributed structure is realized.
Then, the PPCA models compute both the serially correlated subspace and its residual
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subspace based on canonical variate analysis, which makes a complete interpretation of
process dynamics under ICSs possible.

In the proposed framework, all detection variables were selected into the first layer
by one-way variance analysis, and the detection variables were further divided into sub-
blocks using a combination of general knowledge-based strategies with mutual information.
Then, CVA–PPCA monitoring models were established for each sub-block, in which CVA
was used to explore the serial correlations, and PPCA-based monitoring models were
constructed for the variables of subspace. Finally, Bayesian inference was used to obtain
comprehensive statistical indicators of the ICSs, which can realize plant-wide anomaly
detection. Thus, the dynamic characteristics of the ICSs were restored, allowing for a
deeper understanding of its security status. The main contributions of the present work are
as follows.

1. An adaptive process variable selection and blocking method for distributed moni-
toring was implemented with combined knowledge-based strategies with mutual
information.

2. Both linear and non-linear behaviors were analyzed and monitored, which can provide
a meaningful interpretation for fine-scale identifying ICS attacks.

The rest of this paper is organized as follows. The problem description and monitoring
framework are given in Section 2. Section 3 outlines the proposed concurrent distributed
CVA-PPCA-based monitoring method in detail. Section 4 details a validation of the effec-
tiveness of the proposed method on actual drilling processes. Finally, conclusions are made
in Section 5.

2. Problem Description and Modeling Framework

In this section, the problems of ICS security monitoring are summarized. Based on
these, a framework of monitoring model was designed.

2.1. Problem Description

ICS is an umbrella term for various network-connected control systems in the indus-
trial field. Over the past few decades, ICSs have greatly enhanced the degree of industrial
process automation and brought certain security risks. Figure 1 shows a typical industrial
control network architecture for the geological drilling processes. A controller employs a
communication network to regulate the operation of the controlled process by measure-
ments from geographically dispersed sensors.

Figure 1. A typical industrial control system structure for the drilling process.
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During the drilling process, the PLC is responsible for controlling the industrial
control system in order to read the data from the field sensors. Additionally, the Profibus
communication protocol was utilized in order to facilitate communication between the
PLC and the industrial control machine. For the purpose of reading the data from the PLC
over the OLE for Process Control (OPC) protocol, the WinCC configuration software was
utilized. MVC (Model–View–Controller) architecture was utilized by the system, which
enables intelligent optimization control, as well as complicated logic operations.

A system failure results from an attacker’s deliberate destruction or manipulation of
actuators, control units, etc., which is another manifestation of the ICS vulnerability in the
physical layer. Network attacks and instrument malfunction both appear as anomalies in
the data sampled by the sensors. The difference is that network attacks cause equipment
failure, so the data usually show a causal relationship between them. Additionally, net-
work attacks tend to maintain the statistical characteristics of the data sparingly, whereas
equipment failures often result in outliers, missing values, and other easily observable
changes. Due to the complexity of physical layer attacks, the attack detection algorithms in
this paper only address attacks suffered at the network layer.

False data injection is a common network layer attack. In the event that sensors
transmit sensing data to the PLC, the data may be tampered with, leading to the instability
of the control system. In this attack, the original correct measurement value zi(t) of moment
t will be tampered with, resulting in the measurement value z̃i(t) deviating from the normal
value zi(t), which causes the feedback control system to perform incorrect responses. The
attack process can be expressed as [7]

zi(t) =
{

0, t /∈ Tatc,
zi(t− 1) + τϕt, t ∈ Tatc,

(1)

where τ and ϕ are the impact index, which is usually a constant; and Tatc is the attack
period. This paper assumed that the anomalous state of the system was caused by fake
data that were imposed by the attacker.

In general, false data injection attacks include the manipulation of system measures
while the attacker is aware of the setup of the system. These attacks are difficult to monitor
directly since they are difficult to detect. The three primary types of attacks that fall under
the category of fake data injection assaults are known as surge attacks, deviation attacks,
and geometry attacks. To varied degrees and at varying rates, the normal operation of
the system is disrupted in each of these instances, and, when it is severe, it is likely to
result in serious accidents. Figure 2 presents histogram plots of the partial variables in the
geological drilling process, such as the rate of permeation (ROP) as an example. Clearly,
the distribution of data that is not ideal (shown by the red area) is mostly contained within
the distribution of data that is optimal (represented by the blue area). Since this is the case,
one of the most important concerns in ICS security monitoring is how to further parse data
features. Monitoring the current status of network security can assist decision makers in
determining whether or not an attacker intends to launch an attack. The operation of the
system will be guaranteed to be stable and secure as a result of this.

In a data tampering attack, the attacker tampers with measured values of a system
since he knows the system configuration and cannot be detected intuitively. Therefore,
the following challenges need to be faced when investigating ICS-oriented attack detec-
tion methods.

1. Complexity: The number of current cyberattacks on ICSs is increasing, with attackers
exploiting ICS vulnerabilities to deliver different types of attacks and threats.

2. Crypticity: There are insufficient means of identifying attack behavior, and the attack
detection false alarm rate is high due to attackers deliberately confusing the attack
with the normal operation of the control system.
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Therefore, an essential component of achieving ICS attack detection involves develop-
ing a monitoring model that accurately captures the dynamic aspects of the attack behavior.

Figure 2. Histograms of the drilling data under optimal and non-optimal modes.

2.2. Modeling Framework

The objective of this study was to detect the abnormalities of ICSs by constructing a
process monitoring model based on the sufficient normal data of related detection variables.
A novel CVA-PPCA-based monitoring method was presented to overcome the shortcom-
ings and improve the performance of network anomaly identification. The framework of
the proposed network condition monitoring scheme is shown in Figure 3.

Figure 3. The framework of the proposed CVA–PPCA-based monitoring method.
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The monitoring model consists of two parts: offline modeling and online monitoring.
According to one-way analysis, the ICS performance quality-related detection variables
were chosen; these were then further divided into reasonable sub-blocks by the MI analysis,
which were added with prior knowledge. Within each sub-block, the CVA method was
used to classify the variables according to their correlation into their correlated canonical
subspace and residual subspace. Then, the PPCA-based monitoring model was established
in canonical subspace. Finally, Bayesian inference was used to obtain comprehensive
statistical indicators of the whole process, which can realize anomaly detection.

For online monitoring, real-time monitoring statistics can be compared with historical
data to determine the overall performance of the integrated monitoring system and to
define the detection thresholds according to attack type. Anomalies can then be detected
by comparing the monitoring statistics to see if the limits have been exceeded.

3. Implementation of the Monitoring Model

In this section, the ICS security monitoring model is established. Firstly, sub-block
division was carried out using one-way analysis and mutual information analysis. Using
the CVA method, the original variable space was divided, and the PPCA monitoring model
with preset control limits was constructed. To achieve online monitoring, the online data
are used to calculate the monitoring statistics and compare them to the detection threshold.

3.1. Sub-Block Division Based on One-Way Analysis and Mutual Information Analysis

There are usually multiple industrial controls and multiple systems within ICSs.
The whole process contains a number of detection variables. The multi-block modeling
approach is an effective way to deal with the anomaly detection problem of large-scale
processes. To fully extract the correlations between variables, sub-block division is necessary
before offline modeling.

A two-stage delineation method was used in this study to create a multi-sub-block
structure, with one-way analysis of variance being selected in the first stage to determine
the operational state-related decision variables, which was followed by mutual information
analysis and process knowledge for sub-block delineation.

In the first phase, one-way analysis of variance (ANOVA) can be used to determine the
effect of the different operating modes on the distribution of variable data. By measuring
the difference in the variance fluctuations caused by different operating conditions and
random errors, ANOVA determines if changes in the operating conditions are a major
factor in system operation.

There are five normal geological drilling conditions: drill up and down, rotary drilling,
back reaming, hole sweeping, and sliding drilling. Assuming that the number of samples
for each operating condition is selected as n1, n2, n3, n4, and n5, then the drilling data for
each condition is recorded as x1, j, x2 j, . . . , xnj ,j(j = 1, 2, . . . 5). The degree of variation VT

between the drilling data can be calculated as follows:

VT =
5
∑

j=1

nj

∑
i=1

(
xij − x̄

)2,

x̄ = 1
N

h
∑

j=1

nj

∑
i=1

xij =
1
n

5
∑

j=1
njx̄j,

x̄j =
1
nj

nj

∑
i=1

xij,

(2)

where x̄ is the mean value of data collected for the variable, and x̄j is the mean value of the
variable in a data set for a mode. Furthermore, VT can be decomposed into the sum of its
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error sum of squares and effect sum of squares, which is denoted as VT = VE + VF, and VE
and VF are relative-independent, the details of which can be defined as

VE =
h
∑

j=1

nj

∑
i=1

(
xij − x̄j

)2,

VF =
h
∑

j=1

nj

∑
i=1

(
x̄j − x̄

)2.
(3)

According to the above definition, it is clear that VT measures the distributional
differences within different drilling conditions and also globally. Thus, it is possible to select
the operating status-related variables related to the ICSs effectively. The degree of influence
of a variable is measured by constructing a test statistic FT and its test probability ρ:

FT =
(VF)/(h− 1)
(SE)/(N − h)

∼F(h− 1, N − h), (4)

where FT obeys F-distribution, h = 5, and the test probability is ρ(F(h− 1, N − h) ≥ FT).
The smaller the test probability, the greater the effect of the parameter on the operating
conditions.

Table 1 presents the test probability of each parameter based on 1800 samples of data
collected from the industrial control network in the drilling process. Clearly, the probability
of testing parameters d11 and d12 is significantly higher than those of the other variables,
which is also consistent with the process knowledge. A total of 10 variables can be selected
for ρ ≤ 0.001, i.e., X1, X2, . . . , X10.

Table 1. Results of the one-way analysis of variance.

Parameter Description ρ

d1 Rate of penetration (km/h) 6.27× 10−8

d2 Weight on bit (kN) 0.43× 10−10

d3 Rotation speed (r/min) 1.84× 10−8

d4 Mud flow in (out) (L/s) 3.27× 10−6

d5 Tank volume (m3) 4.17× 10−15

d6 Standpipe pressure (Mpa) 9.38× 10−12

d7 Hookload (kN) 2.86× 10−14

d8 Hook height (m) 1.22× 10−18

d9 Rotary torque (kN·m) 8.86× 10−18

d10 Depth (m) 1.09× 10−9

d11 Bit dept h (m) 5.36× 10−2

d12 Bit diameter (mm) 6.25× 10−3

In the second stage, the detection variable blocking is based on MI combined with prior
knowledge. MI involves determining whether a detection parameter’s data distribution and
a performance indicator’s distribution are interdependent. When several variables interact,
MI is the entropy that was initially contained as it decays. It suggests that information
entropy is not constant but rather varies with the number of events that occur. MI is
commonly interpreted as a metric that quantifies the degree of dependence and strength
between two variables. Specifically, given two random variables x1 and x2, the mutual
information between them is defined as

I(X, Y) = ∑
X

∑
Y

p(X, Y) log
p(X, Y)

p(X)p(Y)
, (5)

where p(x) and p(X) are the marginal probability density functions of X and Y, and p(X, Y)
is the joint probability of X and Y.
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As this equation represents the uncertainty in x2 after removing x1, it confirms the
intuitive meaning of MI as the amount of information one variable provides about another.
By analyzing the physical mechanism of the drilling production, it can be seen that d4,
d5, and d6 are part of the mud system, and d2 and d3 are also one of the d1-influencing
parameters. Then, according to the blocking criterion [13], these variables were divided
into three sub-blocks: [X1, X2, X3, X9], [X4, X5, X6], and [X7, X8, X10].

Hence, the detection variables were blocked according to their interrelationships using
the MI combined with prior knowledge, and the CVA-PPCA anomaly detection model is
then applied on a distributed sub-block structure.

3.2. Canonical Subspace Identification Based on CVA

The drilling detection variables d1 ∼ d10 are categorized into distinct sub-blocks based
on current correlations. Then, state monitoring models would be constructed within each
sub-block by parsing the data characteristics to accomplish anomaly detection for various
attack methods.

Canonical variate analysis (CVA) is a dimension reduction algorithm that maximizes
the alignment between two sets of variables. By maximizing the correlation between the
“past” values and the “future” values of the system, the CVA-based approach generates
state-space models from time-related data. Thus, CVA can be used to establish the relation-
ships between process variables and quality variables, and the trained CVA model can be
used for process monitoring related to quality.

In CVA, linear dimension reduction is used to reduce the size of variables so that it
can be used to determine the most significant correlation between qualitative and primary
dependent variables, as well as dynamic processes [20]. This study addresses the auto-
correlation challenge of modeling the operational state of industrial control networks.

The past and future drilling data matrix is constructed using drilling data
xk = [X1, X2, . . . , Xn]T(k = 1, 2, . . . N; n = 12). Assume that, at moment k, the past vector
xp,k, comprising the past data, and the future vector x f ,k, containing the present and future
observations, are defined as

xp,k =
[

xT
(k−1), xT

(k−2), . . . , xT
(t−l)

]T
,

x f ,k =
[

xT
(k), xT

(k+1), . . . , xT
(k+l)

]T
,

(6)

where the two vectors, i.e., xp,k and x f ,k, should first be normalized to a zero mean and
with unit variance. To define the past and future matrices, vectors were arranged in the
following Hankel matrix:

Xp =
[

xp(l+1), xp(l+2), . . . , xp(l+N1)

]
,

X f =
[

x f (l+1), x f (l+2), . . . , x f (l+N1)

]
,

(7)

where N1 = N − 2l + 1 for a dataset with N samples.
The aim of CVA is to reveal the remarkable features of the ICS operating conditions by

identifying the projection matrix L and J in order to identify a linear combination of the
future and past observations that have the optimal linear performance. The problem of
solving the projection matrix is defined as follows:

max
J,L

JTΣp f L,

s.t.JTΣpp J = I,

LT ∑
f f

L = I.
(8)
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The projection matrix J and L can be calculated by singular-value decomposition
(SVD) on the Hankel matrix H as follows:

H = Σ−1/2
f f Σ f pΣ−1/2

pp = UΛVT, (9)

where the sample covariances Σ−1/2
f f and Σ−1/2

pp and the cross-covariance of Σ f p of the past
vector xp,k and the future vector x f ,k are defined as follows:

[
Σpp Σp f
Σ f p Σ f f

]
=

1
N1 − 1

[
XpXT

p XpXT
f

X f XT
p X f XT

f

]
, (10)

where U and V consist of singular vectors that are orthogonal and only pairwise-correlated,
and Λ is a diagonal matrix containing the canonical correlation coefficients. Thus, the
projection matrices J and L can be calculated by taking the first r columns of U and
V, respectively.

For the k moments of the ICS operation, the transformation matrices J and L are
as follows:

Jr = VT
r Σ−1/2

pp ,
Lr = UT

r Σ−1/2
pp .

(11)

The canonical state subspace Z and its residual subspace E of the drilling data matrix
x can be defined as

Z = JrXp ∈ Rr×N1 ,
E = FrXp ∈ Rn1l×N1 ,

(12)

where the residual projection matrix Fr = (I −VrVT
r )Σ−1/2

pp .
Therefore, the space of the primary and dependent variables Z, which are canonically

correlated with the ICSs’ operational performance, is extracted within each sub-block. Then,
a PPCA-based monitoring model is built on it to detect cyberattacks.

3.3. Overall Monitoring Model

According to CVA, the ICS variable space for drilling processes consists of a correlated
canonical and residual subspace. It is necessary to establish a model for monitoring
subspace in order to implement the proposed scheme.

PPCA-based monitoring model: The PPCA method is a representation of PCA in
probability space, where probability density functions measure the degree of the novelty
of new data points. While PCA is a linear down-scaling method, PPCA can take into
account the nonlinear and dynamic characteristics of the system fully. When dealing with
non-linear characteristics, PCA is vastly improved by the incorporation of probability. Data
x is believed to be generated by the latent variable z when viewed from the perspective of
probability. In order to produce the standard PPCA, the following pattern is utilized [15]:

x = f (z, w) + ξ, (13)

where x ∈ Rd is the process observation variable, z ∈ Rp is the vector of latent variables,
w ∈ Rn×q is the associated model parameter vector like loading matrix, ξ is an independent
noise vector, and f (·) describes the unknown function, which can be interpreted by a linear
model in general.

X = WZ + μ + ξ, (14)

where X ∈ Rd×n, Z ∈ Rq×n, and μ is the monitoring delay. The model parameters are then
determined using a maximum-likelihood technique given a set of observational data.

According to the canonical subspace Z ∈ Rn×m acquired in the previous section. The
PPCA algorithm seeks the projection matrix W ∈ Rm to further reveal both the static and
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dynamic process variations in which the linear transformation Zc = ZW has the maximal
variance. Like PCA, the problem of matrix projection can be expressed mathematically as

arg max
W

1
n− 1

Zc
TZc = arg max

W

1
n− 1

WTZTZW. (15)

The transformed goal of the PPCA is to map the original m-dimensional data into a
d-dimensional space, whose principal element model T can be expressed as

Z =
p

∑
i=1

zc,iw
T
i +

m

∑
i=p+1

zc,iw
T
i = ZcWT + Ec, (16)

where W is the load matrix; Zc is the scoring matrix; P is the number of principal com-
ponents retained, which is commonly determined by a rule known as the cumulative
percentage variance (CPV) [27]; and Ec = Z− Zc is the residual matrix, which represents
process noise interference.

In general, the principal element is associated with a multivariate standard–normal
distribution, while the noise residual is associated with a multivariate normal distribution,
where Zc ∼ N (0, I), Ec ∼ N

(
0, σ2 I

)
and σ2 is the noise variance. Then, the distribution

of sample Z with respect to principal element Zc is Z|Zc ∼ G(ZcWT, σ2 I). According to
Bayes’ theorem, the distribution of the sample data X is X ∼ G(0, C), and C = WWT + σ2 I.

Thus, the problem solved by the PPCA algorithm can be seen as forming observations
Z from the distribution G(0, C) by the hidden variable Zc. The problem to be addressed
translates into the estimation of the distribution parameters W and σ from the measurement
samples [24]. This paper solves the probability distribution using the maximum-likelihood
estimation problem. Expectation maximization (EM) is a powerful method for estimat-
ing the parameters of hidden variable models, which uses an expectation maximization
algorithm that iterates repeatedly to find the parameters.

Online attack detection: To monitor the state of the ICSs online, the monitoring
threshold must first be determined. Traditionally, PCA-based monitoring methods calculate
two types of statistics, T2 and Q, as well as the corresponding control charts. Specifically,
the T2 statistic is designed to monitor the data variations in the principal component
space (PCS), while the Q statistic is used to monitor the data changes in the residual space.
Observations of large deviations in the monitoring statistics may indicate an abnormal
state of the industrial control network.

On the basis of the PPCA algorithm, the principal component space Zc, contains
systematic variation information and will be used to construct the T2 statistic, while the
residual Ec will form the Q statistic. The monitoring statistics are defined as

T2 = zT
c Λ−1zc,

Q = ‖z− zc‖2 = (z− wzc)
T(z− wzc).

(17)

In the case of a multivariate normal distribution for the process variables, the detection
threshold for T2 can be obtained using the F-distribution with α as the significance factor:

T2 ∼ r
(
n2 − 1

)
n(n− p)

Fr,n−p,α, (18)

where p is the number of PCSs. As with the residual subspace, a weighted Chi-squared
distribution can approximate the confidence limit of Q, such as

Q ∼ dχ2
g,a, (19)

where d = vc/2mq and g = 2mq
2/vc, in which mq is the mean value of Q, and vc is the

corresponding variance.
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As the PPCA exclusively employs the Martensian paradigm for the detection of
principal elements and noise [28], the comprehensive monitoring statistics, which consist
of T2 and Q, can be directly generated from the whitened values of the statistics. The
following formats were used to calculate the comprehensive monitoring statistic S:

S =

∥∥∥∥(WWT + σ2 I
)−0.5

z
∥∥∥∥2

= zT
c

(
σ2

i I + WWT
)−1

zc. (20)

As a result of the proposed monitoring model, which effectively detects the data
injection attacks on the ICSs, Slim is the threshold determined by kernel density estimation
(KDE) [29], which is the measurement of the degree of deviation from the normal operating
conditions. Additionally, S is the monitoring statistic based on the PPCA, and Slim is
the threshold determined by the kernel density estimation (KDE). The threshold Slim is
given by

P(S ≤ Slim) =
∫ Slim

φ̂(s|W, σ)ds = 1− α, (21)

where φ̂(s|W, σ) is the probability density function of S estimated by KDE. If the corre-
sponding detection logic satisfies, for example, S ≤ Slim, the operating performance is
optimal; otherwise, it is non-optimal.

According to the previous discussion, there are several sub-blocks formed here. There
is a need to integrate local statistics to construct comprehensive surveillance indicators for
the whole process. This study used Bayesian inference to integrate the monitoring results
of multiple sub-blocks into the overall monitoring results due to its excellent performance
in sub-block decision fusion. Conceptually, the probability of each sub-model being under
attack can be expressed as

PS(F|xi ) =
PS(xi|F )PS(F)

PQ(xi)
, (22)

where the prior probability of xi is calculated as

PS(xi) = PS(xi|N )PS(N) + PS(xi|F )PS(F), (23)

and the conditional probabilities PS(xi|N ) and PS(xi | F) are defined as

PS(xi|N ) = e−Si/Si,lim , (24)

PS(xi | F) = e−Si,lim/Si , (25)

where Si represents the statistic in the i-th sub-block and Si,lim represents the control
limits in the i-th mode blocks; N and F denote the optimal and non-optimal operating
performance, respectively; PS(N) and PS(F) represent the prior probabilities under the
confidence level α and 1-α; and PS(N) + PS(F) = 1. The intuitive interpretation is that
the operating status expressed by sampling data is either normal or non-optimal in the
drilling process.

After that, in the modeling phase, it is possible to obtain comprehensive monitoring
indicators by integrating the PPCA sub-models for various operating modes based on
Bayesian inference.

BICS =
m

∑
i=1

⎧⎪⎪⎨⎪⎪⎩
PS(xi | F)PS(F | xi)

m
∑

i=1
PS(xi | F)

⎫⎪⎪⎬⎪⎪⎭. (26)

During the actual monitoring process, it can be determined that the ICSs have received
an attack when the monitoring indicator exceeds the preset threshold.
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4. Experimental Results and Analysis

This section verifies the validity of the methodology through practical examples, which
are derived from the geological drilling process, and is divided into processes.

4.1. Geological Drilling Process

Geological exploration and resource extraction are contingent upon the successful
completion of a geological drilling project. The drilling process is primarily conducted by
drill rigs that are equipped with alternative current frequency conversion electric motors.
Figure 4 illustrates the schematic of a typical geological drilling process. A few of the
components that were used in the drilling process included the crown blocks, moving
blocks, derrick, driller’s residence, rotary table, drilling control system, mud pump, mud
pit, sedimentation pit, drill string, bottom hole assembly, and drill bit. Figure 5 shows a
geothermal well construction site with an on-site industrial control system.

Figure 4. Schematic of a geological drilling process.

Figure 5. The drilling system of a real geological exploration well.
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4.2. Overall Results of the ICS Attack Detection

In this paper, real-life case studies with drilling data from a geothermal well demon-
strated the effectiveness and superiority of the proposed operating performance monitoring
method. The selected running data contains the 12 process variables mentioned in Table 1
from 1052 m to 1058 m, with an interval of 1 s, totaling 2826 data samples. Figure 6 demon-
strates time-series data of the actual running process of the ICSs during drilling. Despite the
fact that the data injection attack on the network began at 160 s, no significant change was
observed in the data curves of the detected variables. Therefore, more in-depth analyses of
the data generated in the ICSs are needed to obtain a more accurate portrayal of the ICS
operating state.

Figure 6. Time series plots of the drilling process under production.

Before constructing the ICS monitoring model, the data set under normal operations
was obtained. A standard data matrix was created by selecting 10 decision variables
based on a one-way analysis (ANOVA), i.e., X1, X2, . . . , X10. According to the blocking
MI-based criterion, these variables were divided into three sub-blocks, [X1, X2, X3, X9],
[X4, X5, X6], and [X7, X8, X10]. For each sub-block, the CVA-PPCA offline monitoring
model is established on their canonical subspace, and the calculation of the composite
discriminatory indicators and discriminatory thresholds are performed.

During the online monitoring phase, online data are collected according to a window
of 20 min, and the monitoring statistic Snew is calculated to identify the attack conditions in
comparison with the detection threshold. The length of the monitoring window has some
effect on the quality of the monitoring. A long window may not detect the fluctuations
caused by dual-use attacks, such as, for instance, when there is too short of a window,
which may cause frequent alarms and may interfere with the driller’s normal operation.
Using the industrial control system at the drilling site and manual experience, this study
specified a 20-min monitoring window, leading to better results.

Specifically, the principal components of the variables with CPV = 98.2% were selected
to construct the monitoring model. In all of the monitoring charts, the KDE algorithm was
adopted to preset the control limits at a confidence level of α = 0.05 and monitoring statics
Slim = 1.2961.
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In this paper, the anomalous state of the ICSs was the result of two categories of data
tampering: surge attacks and biased attacks [30,31]. During a surge attack, a single piece
of data is manipulated in order to provide the greatest amount of damage in the shortest
amount of time, and it exhibits a step change. Contrary to this, a biased attacker adds
non-zero constants to numerous parts of data in a sequence and shows a slow process of
change. The monitoring model in this paper was intended to detect the assaults that the
system has received by analyzing the monitoring statistics that had been generated by the
attacks relevant to the change. Figure 7 illustrates the ICS attack detection results obtained
through the proposed method.

Figure 7. Condition monitoring results based on the proposed method: (a) surge attacks; (b) biased
attacks; and (c) the normal conditions.

As shown in Figure 7, the red dashed line indicates the preset control limits, whereas
the blue line represents the monitoring statistics calculated from the online data. The
surge attack and deviation attack were performed at the 110th seconds of each experiment,
as shown in Figure 7a and Figure 7b, respectively. In addition, Figure 7c shows the
monitoring results under normal operating conditions. Based on the attacking records, the
model successfully identified the impact of the step-wise and slowly varying deviations
from the normal operating state. The experimental results revealed that the proposed
method can effectively identify anomalies due to attacks with 92.31% accuracy and 12 s
monitoring delay.

For greater clarity, the PCA-based process monitoring method was chosen to perform
the comparative experiments as a monitoring strategy [32]. To realize the comparison, the
integrated monitoring statistics of St, achieved by combining T2 and Q, ere adopted in the
attack detection task [33]. The control limit was set as St = 7.9127. It can be seen from
Figure 8 that the PCA failed to detect the attacks because there was no significant change
in the monitoring statistics. In both cases, the PCA method was less susceptible to the
operational instability caused by assaults. As a result of the initial data structure being
altered, the anomalies caused by data injection-type attacks did not rapidly accumulate
and did not significantly affect the detection data. Consequently, the original PCA method
was unable to extract the features that were related to operating conditions, resulting in
unsatisfactory monitoring results. The monitoring process also suffered from more misses,
false alarms, and longer anomaly detection delays than the method proposed in this study.
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To effectively showcase the effectiveness of the proposed method in the monitoring
processes, there were some sophisticated process monitoring methods that were selected
for comparison such as the original PPCA [15] and mRMR-PCA [32]. The monitoring delay
(μ) refers to the period between the incidence of attack performance and the detection of its
reasons. Evaluating the performance monitoring involves assessing the non-detection rate
(η) and false alarm rate (γ) according to specific criteria. The following matrix proves the
definitions of the above indicators

η=
nFP

nTN+nFP
× 100%, (27)

γ=
nFN

nTP+nFN
× 100%. (28)

The variable nFN represents the count of samples that are incorrectly classified into
non-optimal modes when they should have been classified into optimal modes. The
variable nTP represents the count of samples that were correctly classified into optimal
modes. The variable nFP represents the count of samples that are incorrectly classified into
optimal modes when they should have been classified into non-optimal modes. Lastly, the
variable nTN represents the count of samples that are correctly classified into non-optimal
modes. Lower values for η and γ suggest a superior monitoring performance.

Figure 8. Condition monitoring results based on the PCA method: (a) surge attacks; (b) biased
attacks; (c) the normal conditions.

The detection results of the different methods for monitoring data injection attacks
are shown in Tables 2 and 3. It is essential to clarify that the typical PCA approach failed
to detect both attacks because of its γ for the two statistics, which went up to 74.31%
and 83.34%. The PPCA method is inadequate due to its failure to include the non-linear
attributes of the data, rendering it unsuccessful in detecting abnormalities. The η of the Q-
statistic calculated by mRMR-PCA was 6.05%, but it was 90.64% for the T2-statistic in Case
1, which did not meet the needs of field applications. The mRNR-PCA based-monitoring
method utilizes a distributed architecture, and, while it did not successfully identify the
local attacks, its efficacy was attributed to the singular PCA model. The results show that
our method has a comparatively better monitoring performance than the other methods.
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In terms of statistical metrics, the maximum enhancement of η and γ reached 69.17 % and
9.67%, respectively, and the shortest detection delays of 11 s and 20 s were achieved in
both cases.

Table 2. Attack detection for the different methods.

Type Indexes
PCA [32] PPCA [15] mRMR-PCA [32] Proposed Method

T2 Q T2
s T2 Q S

η (%) 74.31 21.43 15.2 90.64 6.05 5.14
Case 1 γ (%) 3.02 8.21 9.67 14.74 1.93 5.07

μ (s) 64 42 35 - 40 11

η (%) 72.16 83.34 5.14 75.13 5.84 7.76
Case 2 γ (%) 2.76 11.13 8.22 3.66 6.16 5.77

μ (s) - 48 20 - 104 21

Table 3. Attack detection results obtained with PCA, the original PPCA, mRMR-PCA, and the
proposed method.

Type Indexes
PCA [32] PPCA [15] mRMR-PCA [32] Proposed Method

T2 Q T2
s T2 Q S

False Alarms 252 71 51 306 20 18
Case 1 Missed Alarms 10 27 31 48 7 17

Accuracy(s) 5.33 10.08 77.65 4.41 80.33 90.35

False Alarms 245 282 17 255 17 26
Case 2 Missed Alarms 7 37 27 10 21 20

Accuracy(s) 5.21 4.87 83.55 5.67 85.86 94.3

In intuitive terms, the distributed structure ensures that the monitoring model can
effectively extract the local and global features with finer-grained precision. In contrast, the
typical correlation space combined with the data feature approach captures the latent data
features of the ICSs and more accurately portrays the operational state of the process as
a whole.

In summary, the proposed approach takes into account the relationship between
variable spaces and residual spaces for online monitoring, whereas PCA just evaluates the
interaction between variables. The findings suggest that an enhancement in performance
monitoring can be achieved by partitioning the initial dataset using PPCA and CVA-based
variable reconstruction.

5. Conclusions

This paper proposed a concurrent distributed ICS monitoring method for network
attack detection using prior knowledge-based mutual information (MI) and canonical
variate analysis with probabilistic principal component analysis (CVA-PPCA). While other
centralized process monitoring methods treat all variables as a uniform modeling space, MI-
based variable division is capable of probing the underlying local and global characteristics
of ICSs comprehensively. Additionally, the CVA-PPCA method established in each sub-
block can then more closely reflect and detect the external attack from different aspects.

Due to the complexity and variability of the stratum during geological drilling, as well
as the randomness of the network attacks, it was necessary to improve the method’s adapt-
ability further by, for example, setting control limits and selecting monitoring windows.
Aspects of anomaly tracing and small sample modeling are also important to consider for
ICS security when dealing with unknown attack backgrounds. As the study progresses, it
will be applied to a variety of industrial processes and recommendations will be provided
in the decision-making phase. Further research will also focus on developing a monitoring
scheme that takes into account the dynamic nature of variables.
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Abstract: The combustion chamber structure of a rotary engine involves a combination of interacting
parameters that are simultaneously constrained by engine size, compression ratio, machining, and
strength. It is more difficult to study the weight of the effect of the combustion chamber structure on
the engine performance using traditional linear methods, and it is not possible to find the combination
of structural parameters that has the greatest effect on the engine performance under the constraints.
This makes it impossible to optimize the combustion chamber structure of a rotary engine by focusing
on important structural parameters; it can only be optimized based on all structural parameters. In
order to solve the above problems, this paper proposes a method of dimensionality reduction for the
structural parameters of a combustion chamber based on active subspace and combining a probability
box and the EDF (Empirical Distribution Function). This method uses engine performance indexes
such as explosion pressure, maximum cylinder temperature, and indicated average effective pressure
as the influence proportion analysis targets and quantitatively analyzes the influence proportion of
combustion chamber structure parameters on engine performance. Eight main structural parameters
with an influence of more than 85% on the engine performance indexes were obtained, on the basis
of which three important structural parameters with an influence of more than 45% on the engine
performance indexes and three adjustable structural parameters with an influence of less than 15%
on the engine performance indexes were determined. This quantitative analysis work provides an
optimization direction for the further optimization of the combustion chamber structure in the future.

Keywords: rotary engine; combustion chamber structure; active subspace; probability box; EDF;
parameter dimension reduction

1. Introduction

As a reliable power system, the internal combustion engine is widely used in many
fields. Nowadays, inexpensive and reliable small engines are widely used as propulsion
or auxiliary systems in motorcycles, all-terrain vehicles, boats, and small airplanes [1,2].
Although small piston engines are heavily used, they are less efficient compared to large
piston engines [3–5]. And unlike a four-stroke reciprocating engine, where the piston stops
briefly four times per cycle as the direction of motion changes, the moving parts of a rotary
engine maintain a continuous, unidirectional rotary motion, which results in smoother
work and less vibration [6–8]. At the same time, the rotary engine also has the advantages
of higher power density, simple design, compact structure, and light weight [9–11]. These
advantages make rotary engines strong competitors to reciprocating piston engines in areas
such as supercharged vehicles and small unmanned aerial vehicles [12–14].
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However, due to the narrow and flat combustion chamber shape, high surface area,
and low compression ratio, it is difficult for rotary engines to achieve the fuel economy
of reciprocating engines [15–18], which restricts the application of rotary engines in var-
ious fields [19,20]. In order to improve fuel economy and optimize rotary engine perfor-
mance, scholars in various countries have conducted a series of investigations on engine
structure [21–24]. For example, Kuo et al. investigated the effect of rotor profile on the
compression flow of an engine by numerical analysis and found that increasing the shape
factor K can benefit the compression efficiency and mixture formation [25]. Tartakovsky
et al. started with the in-cylinder flow field and improved the engine performance by
optimizing the rotor combustion chamber structure [26]. Jeng et al. further took the degree
of mixing between fuel and air as the entry point and improved the engine performance by
optimizing the rotor combustion chamber structure [27]. Wei et al. noticed that the position
of the rotor combustion chamber has an effect on flame propagation and improved the
engine performance by optimizing the rotor combustion chamber position [28–30]. Shi
Cheng et al. investigated the role of turbulent blade position in the combustion process of a
rotary engine and found that the closer the turbulent blade is to the spark plug chamber, the
higher the turbulence velocity and turbulence dissipation rate are in the spark region. It was
shown that the combustion rate of the mixture in the combustion chamber with a turbulent
blade was accelerated, and it was able to exhibit better combustion characteristics and
emission performance [31–34]. Zeng et al. [35] studied the influence of a turbulent blade on
flow and combustion performance in the combustion chamber by numerically analyzing
the total pressure loss, combustion efficiency, in-cylinder flow, and cylinder temperature
changes of the combustion chamber under different spoiler structure parameters. It was
found that adding a turbulent blade to the combustion chamber is beneficial to stabilize the
combustion and gas mixing, which can further improve the combustion efficiency, improve
the outlet temperature distribution, and reduce the pollutant emissions.

However, the above study only focuses on the influence of a certain structural pa-
rameter on engine performance and does not quantitatively analyze the proportions of
the influence of all combustion chamber structural parameters on engine performance.
This leads to the problem of dimensional catastrophe due to too many parameters to be
optimized and the problem of not being able to determine the direction of optimization
due to unclear parameter optimization priorities when optimizing the combustion chamber
structure. Aiming at the combustion chamber structure, which is a complex physical system
involving multiple disciplines and multidimensional uncertainties, domestic and foreign
scholars have proposed a number of methods for dimensionality reduction. Among them,
the gradient solver represented by Sensitivity Analysis (SA) [36] achieves dimensionality
reduction by determining the magnitude of the influence of design and state variables on
the objective or constraint functions and then filtering out the inputs with less influence.
Linear projection methods represented by Classical Multidimensional Scaling (MDS) [37],
Principal Component Analysis (PCA) [38], Linear Discriminant Analysis (LDA) [39], and
Random Projection (RP) [40] complete the dimensionality reduction and sensitivity analysis
processing by mapping the high-latitude problem to the low-latitude space. However,
the above methods are not ideal for the dimensionality reduction and quantification of
complex nonlinear problems. In this case, a nonlinear method is needed for dimensionality
reduction. Common nonlinear methods include Kernel Principal Component Analysis
(KPCA) [41], Local Linear Embedding (LLE) [42], Hessian Locally Linear Embedding
(HLLE) [43], Laplacian Eigenmaps (LE) [44], and so on. However, the above methods are
less computationally efficient in the face of complex, high-dimensional problems, especially
in the face of mixed uncertainty problems, and are more sensitive to the selection of samples
required for dimensionality reduction, which leads to the limited application of the above
methods. In order to solve the problem of mixed uncertainty dimensionality reduction for
complex systems, Paul et al. proposed a special dimensionality reduction structure, the
Active Subspace (AS), in 2013 [45]. An AS is a low-dimensional action subspace defined
by the sensitive directions of the input space, along which input perturbations maximize
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the effect on the output. By identifying and utilizing the AS, the dimensionality reduction
process can be accelerated while ensuring the analysis accuracy.

In this paper, on the basis of previous research, based on the AS, by combining the
probability box with the interval variable Empirical Distribution Function (EDF) [46,47],
a method of dimensionality reduction of the structural parameters of the combustion
chamber of a rotary engine is proposed. A total of 14 combustion chamber structural
parameters, including the turbulent blade, were subjected to eigenvalue estimation and
dimensionality reduction, and the weights of the effects of different structural parameters
on the maximum cylinder pressure, the maximum cylinder temperature, and the average
effective pressure were obtained. Eight main structural parameters, including the angle
θ1 between the bottom edge of the middle part of the combustion chamber and the Y-Z
plane were further obtained, and the influence of these structural parameters on the engine
performance indexes accounted for more than 85%. Three important structural parameters,
including the angle θ2 between the bottom edge of the rear part of the combustion cham-
ber and the Y-Z plane, were obtained on this basis, and the influence of these structural
parameters on the engine performance indexes accounted for more than 45%. Three ad-
justable structural parameters, including the length l of the bottom edge of the front of the
combustion chamber, were obtained. The influence of these three structural parameters on
the engine performance index accounts for a relatively small percentage, below 15%, but
their influence on the compression ratio and other structural requirements is larger and
can be adjusted according to the compression ratio, process, and strength requirements
after determining the main structural parameters. This quantitative analysis work provides
an optimization direction and theoretical support for the further optimization of the com-
bustion chamber structure in the future. At the same time, this study provides a reference
basis for eigenvalue estimation and dimension reduction methods for multidimensional
complex engineering problems.

2. Uncertainty Analysis of Combustion Chamber Structure Parameters

In practical engineering, the probability distribution is divided into random uncer-
tainty and cognitive uncertainty [48,49]. The former has a known distribution function,
and the latter lacks such a function.

This study investigates how structural parameter uncertainty in the combustion cham-
ber impacts single-cylinder gasoline Wankel engine performance. Table 1 lists the engine’s
structural parameters.

Table 1. Rotor engine structure parameters.

Parameter Value

Creation radius (mm) 60
Eccentricity (mm) 10
Rotor width (mm) 42

Translational distance (mm) 1.45
Speed (r/min) 8000

Single cylinder volume (cc) 133
Compression ratio 10

Ignition advance angle 30◦ BTDC
Ignition source Single spark plug

Fuel type Gasoline
Jet strategy Pre-mixed intake duct

Air–fuel ratio 1
Ignition diameter (mm) 8

Ignition energy (J) 0.08
Engine power (kw) 12.3

Torque (N.m) 15.66
Oil consumption (g/kw·h) 402.3
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The rotor engine combustion is categorized into four parts: leading, middle, trailing,
and spoiler. Rounded corners smooth the bottom surfaces. The cross sections of the leading,
middle, and trailing parts of the combustion chamber are ovals formed by two semicircles
and a rectangle, while the spoiler plate is a cuboid with a height below the rotor profile
(Figure 1).

Figure 1. Wankel engine combustion chamber structure.

The Wankel engine’s combustion chamber consists of three elliptical cross sections
and an oblong spoiler plate. The middle and trailing parts share the same cross-sectional
dimensions but differ in inclination angles. Figures 2 and 3 depict the size schematics, and
Table 2 compares the variables and structural parameters.

 
Figure 2. Variable comparison table.

To maintain the same compression ratio, the rotor combustion chamber must meet
eight structural, process, and performance requirements:

(1) The distance from the deepest part of the rotor combustion chamber to its center of
gravity on the x-z plane must not exceed hα, considering structural strength, heat
dissipation structure arrangement, and spindle assembly.

(2) The maximum width of the chamber must not exceed lα, addressing seal arrangement
and structural strength.

(3) The distance between the chamber ends and the rotor tip on the y-z plane must not
exceed kα, addressing radial seal arrangement and structural strength.
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(4) The width of the rotor spoiler plate must not exceed cα, ensuring spoiler plate strength.
(5) According to research, the spoiler plate height should be at least 4bα

5 [26–30], where
bα signifies the vertical distance from the chamber bottom to the rotor profile at the
spoiler plate position.

(6) To simplify processing, the rotor spoiler should be positioned centrally or toward the
rear of the combustion chamber, avoiding overlap between chamber sections.

(7) The leading and middle parts of the combustion chamber must be connected, with a
single recess on the rotor surface.

(8) The arc radius of the transition section must not exceed qα.

(a) (b) 

c  d  

Figure 3. Combustion chamber dimensions. (a) A-A section size. (b) B-B section size. (c) C-C section
angle. (d) C-C section size.

Table 2. Variable comparison.

Variable Structure Name

r Combustion chamber leading arc radius
l Length of the leading bottom edge of the combustion chamber

h The distance from the bottom of the combustion chamber’s leading section to the rotor’s center of
gravity at the x-z plane

θ3 The angle between the combustion chamber’s leading bottom edge and the y-z plane
R Trailing arc radius in the combustion chamber
L Trailing bottom edge length of the combustion chamber

H The distance from the bottom of the trailing section of the combustion chamber to the rotor’s center
of gravity at the x-z plane

θ1 The angle between the middle bottom edge of the combustion chamber and the y-z plane
θ2 The angle between the trailing bottom edge of the combustion chamber and the y-z plane
a The vertical distance between the spoiler plate and the rotor x-z section
b The distance from the spoiler’s top center to the combustion chamber’s bottom edge
c The spoiler plate’s width

q1 The excessive arc radius from the leading part to the middle of the combustion chamber
q2 The excessive arc radius from the middle to the trailing part of the combustion chamber

To ensure that the generated structural parameter combination meets the above re-
quirements, the entire combustion chamber structure is parameterized first, so that a series
of formulas can be used to calculate whether a certain structural combination meets the
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requirements of compression ratio, size, processing, and strength. When generating struc-
tural combinations, the values of several structural parameters are randomly generated
within the required range of size, processing, and strength. Based on this, the compression
ratio is used as the optimization objective; the size, processing, and strength requirements
are used as the range; and the remaining structural parameters are used as the solving
parameters for optimization iteration using optimization algorithms.

Using the parameters in Table 3, 100 sets of structural parameter combinations were
generated, including the 14 parameters listed. Figures 4–17 depict their distribution and
probabilities. From these figures, c, q1, and q2 follow a uniform distribution, while a
follows a normal distribution. The distributions of r, l, h, θ3, R, L, H, θ1, θ2, and b
are unclear, representing cognitive uncertainty. Consequently, the dimension reduction
problem involves 14 dimensions with 4 random and 10 cognitive uncertainty variables.

Table 3. Constraints.

Constraint Name Variable Name Value

The minimum distance from the bottom of the combustion
chamber to the center of gravity of the rotor hα 42 mm

Maximum width of the combustion chamber lα 40 mm
The projection distance between the two ends of the rotor
combustion chamber and the rotor tip on the y-z section kα 10 mm

Maximum width of the spoiler plate cα 3 mm
The maximum radius of the excessive arc qα 2 mm
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Figure 4. Distribution of the arc radius (r) at the leading edge of the combustion chamber. (a) Distri-
bution conditions. (b) Distribution probability.
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Figure 5. Distribution of the length (l) at the leading bottom edge of the combustion chamber.
(a) Distribution conditions. (b) Distribution probability.
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Figure 6. Distribution of the distance (h) from the front section bottom of the combustion chamber to
the rotor’s center of gravity in the x-z plane. (a) Distribution conditions. (b) Distribution probability.
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Figure 7. Distribution of the angle (θ3) between the leading bottom edge of the combustion chamber
and the y-z plane. (a) Distribution conditions. (b) Distribution probability.
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Figure 8. Distribution of the length (R) at the trailing bottom of the combustion chamber. (a) Distri-
bution conditions. (b) Distribution probability.
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Figure 9. Distribution of the length (L) at the trailing bottom of the combustion chamber. (a) Distribu-
tion conditions. (b) Distribution probability.
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Figure 10. Distribution of the distance (H) from the trailing chamber bottom to the rotor’s center of
gravity in the x-z plane. (a) Distribution conditions. (b) Distribution probability.
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Figure 11. Distribution of the angle (θ1) between the combustion chamber’s middle bottom edge and
the y-z plane. (a) Distribution conditions. (b) Distribution probability.
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Figure 12. Distribution of the angle (θ2) between the trailing bottom of the combustion chamber and
the y-z plane. (a) Distribution conditions. (b) Distribution probability.
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Figure 13. Distribution of the vertical distance (a) between the spoiler plate and the rotor x-z section.
(a) Distribution conditions. (b) Distribution probability.
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Figure 14. Distribution of the distance (b) from the spoiler top center to the chamber bottom edge. (a)
Distribution conditions. (b) Distribution probability.
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Figure 15. The distribution of the spoiler plate width (c). (a) Distribution conditions. (b) Distribution
probability.
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Figure 16. Distribution of the excessive arc radius (q1) between the leading and middle chamber
sections. (a) Distribution conditions. (b) Distribution probability.
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Figure 17. Distribution of the excessive arc radius (q2) between the middle and trailing chamber
sections. (a) Distribution conditions. (b) Distribution probability.

3. Estimation Method of Active Subspace Eigenvalues Based on Probability Box–EDF

Recent advancements in dimensionality reduction techniques such as principal com-
ponent analysis, factor analysis, topological mapping regression, and random projection
have been significant [50–52]. Building on principal component analysis, the active sub-
space method evaluates input parameters through the output covariance matrix. This
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technique has been used in transonic wing design optimization, hydrological model con-
struction, and satellite optimization, demonstrating benefits for complex system problems
at high latitudes.

Unlike principal component analysis, which focuses on eigenvalue size impact on the
covariance, the active subspace method constructs a new subspace by adjusting eigenvec-
tors to significantly alter the system output direction [53,54]. For a system f with initial
dimension n, its input x, output f, output function gradient f∇, and reduced dimension
input v can be expressed as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x = [x1, x2, x3, . . . , xn]
T

f = f (x)
f∇ = f∇(x)

v′ =
[
v′1, v′2, v′3, . . . , v′m

]T
n > m

(1)

Normalizing each boundary of the standard parameter space to [0, 1] allows the non-
standard parameter space to be transformed through regularization. The input parameter
x with N samples can be expressed as follows:

X =
{

xi,j; 1 ≤ i ≤ n, 1 ≤ j ≤ N
}

(2)

Any member of matrix X can be regularized as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x′i,j =
xi,j − μ̂i

σ̂i

μ̂i =
1
N

N
∑

j=1
xi,j

σ̂i = 2

√
1
N

N
∑

j=1

(
xi,j − xi

)2
(3)

The gradient covariance matrix of f is as follows:{
C =

∫
f∇(x) f∇(x)Tρ(x)dx = WΛWT

Λ = diag(λ1, λ2, λ3, . . . , λn)
(4)

where W signifies an orthogonal matrix, Λ represents a non-negative eigenvalue matrix,
and the eigenvalue’s relative size indicates the variables’ contribution to the objective
function. In practical engineering, obtaining the transfer function f (x) for the gradient
covariance matrix is challenging, so the limited difference computation method is often
used to calculate the sample outputs to derive f∇ and C [55,56]. The gradient covariance
matrix can be expressed as follows:

C =
1
N

N

∑
i=1

f∇i(x) f∇i(x)T (5)

The eigenvalues in matrix Λ are arranged in descending order, yielding
Λ′ = diag(λ1, λ2, λ3, . . . , λn). The first m eigenvalues are chosen as the new active subspace
dimensions, with the selection criteria shown in Equation (6).⎧⎨⎩

λm
∑n

i=1 λi
≥ k

λm+1
∑n

i=1 λi
≤ k

(6)
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where k denotes the proportional coefficient. The eigenvalue matrix Λ′ is divided into the
first m order Λ′1 and the last n-m order Λ′2.

Λ′ =
[

Λ′1
Λ′2

]
(7)

Equation (4) can be expressed as

C = WΛWT = [U V]

[
Λ′1

Λ′2

]
[U V]T (8)

where U denotes the basis vector for the active eigenvalue. After dimension reduction, the
input v can be expressed as follows:

v = UTx (9)

The objective function can be approximated as follows:

f (x) ≈ g
(

UTx
)

(10)

The error between the original and the dimension-reduced objective functions can be
expressed as shown below: ∫

f (x)− g(UTx)ρdx (11)

The active subspace method, widely used across various fields, faces limitations due
to input variable uncertainty. From Equation (4), the gradient covariance matrix of f can
only be calculated if the probability distribution ρ(x) of all input variables is known. Once
this distribution is clear, the gradient covariance matrix can be calculated using the transfer
function or samples, leading to the eigenvalue matrix Λ. Consequently, the subspace
method for dimension reduction is applicable only if all input independent variables are
random with a clear probability distribution. This limitation restricts the active subspace
method’s use in engineering. Further research is needed on dimensionality reduction for
cognitive and mixed uncertainty problems in engineering [57].

An objective function f with p random uncertainty variables, q cognitive uncertainty
input independent variables, and n mixed uncertainty input independent variables can be
expressed as follows: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f = f (xa, xe)
xa ∼ ρ(xa)

xe ∈
[
xL

e , xU
e
]

xa =
{

xa1, xa2, xa3, . . . , xap
}

xe =
{

xe1, xe2, xe3, . . . , xeq
} (12)

The gradient of each independent variable can be expressed as

∇x f I =

[
∂ f

∂xa1
. . .

∂ f
∂xap

∂ f
∂xe1

. . .
∂ f

∂xeq

]T
(13)

where the real interval vector∇x f I , its upper limit ci, and its lower limit ci can be expressed
as follows: ⎧⎨⎩ci = max

{
∂ f
∂xi

, xa ∼ ρ(xa), xe ∈
[
xL

e , xU
e
]}

ci = min
{

∂ f
∂xi

, xa ∼ ρ(xa), xe ∈
[
xL

e , xU
e
]} (14)
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Combining Equations (13) and (14) indicates that when q = 0, ∇x f I = ∇x f . When q
�= 0, the gradient covariance matrix C in Equation (4) can be expressed as

C = ĈI =
1
M

M

∑
k=1

(
∇x f I

k

)
·
(
∇x f I

k

)T
(15)

where ĈI is a real symmetric interval matrix with M samples. Each element in ĈI can be
expressed as

ĈI
ij =

1
M

M
∑

k=1

(
∂ f I

k
∂xi

)
·
(

∂ f I
k

∂xj

)
=
[
Ĉij, Ĉij

]
=

[
1
M

M
∑

k=1
ck

ij,
1
M

M
∑

i=1
ck

ij

]
i, j = 1, . . . , n

(16)

where
[
ck

ij, ck
ij

]
can be expressed as follows:[

ck
ij, ck

ij

]
=
[
ck

i , ck
i

]
×
[
ck

j , ck
j

]
=
[
min
(

ck
i .ck

j , ck
i .ck

j , ck
i .ck

j , ck
i .ck

j

)
, max

(
ck

i .ck
j , ck

i .ck
j , ck

i .ck
j , ck

i .ck
j

)] (17)

Each feature pair in ĈI can be expressed as shown below:(
λI

i , wI
i
)

i = 1, . . . , n
(18)

Based on the analysis, the mixed uncertainty dimension reduction problem is trans-
formed into the eigenvalue interval problem of ĈI expressed as follows:

λI =
[
λ, λ
]

=
[
λi, λi

]
i = 1, . . . , n

(19)

According to the Deif theorem, if a matrix retains the eigenvector component’s sign
within the interval, the upper and lower bounds of the eigenvalues can be determined. The
sign matrix that remains unchanged on ĈI is expressed as follows [58].

Si = diag(sgn(wi))
i = 1, . . . , n

(20)

⎧⎨⎩
(
Ĉc − SiΔĈSi)wi = λiwi(
Ĉc + SiΔĈSi)wi = λiwi

i = 1, . . . , n
(21)

where Ĉc signifies the median matrix of ĈI , and ΔĈ represents the radius matrix of ĈI ,
expressed as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ĉc =
(

Ĉc
ij

)
= Ĉ+Ĉ

2

Ĉc
ij =

Ĉij+Ĉij
2

i = 1, . . . , n

ΔĈ =
(

ΔĈc
ij

)
= Ĉ−Ĉ

2

ΔĈc
ij =

Ĉij−Ĉij
2

i = 1, . . . , n

(22)
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where sgn(wi) denotes the vector of the symbol function for each element of wi. If all
elements in wi have the same sign, then the following is true:⎧⎪⎨⎪⎩

Ĉ wi = λiwi

Ĉ wi = λiwi
i = 1, . . . , n

(23)

The maximum and minimum values of |wi| can be computed as follows, where I is
the unit matrix. ⎧⎪⎪⎨⎪⎪⎩

λi − ΔĈ|wi| ≤
(
λi I − SiĈcSi)|wi| ≤ ΔĈ|wi|[

λi I − SiĈcSi − ΔĈ
ĈcSi − λi I − ΔĈ

]
|wi| ≤ 0

i = 1, . . . , n

(24)

A positive semi-definite real symmetric matrix C has an orthogonal matrix W, such
that

WTĈW = diag(λ1, λ2, . . . , λn) (25)

For ∧ = diag(λ1, λ2, . . . , λn), we have⎧⎪⎪⎨⎪⎪⎩
(Wwi)

TĈWwi = wT
i ∧ wi = λ1w2

1 + λ2w2
2 + . . . + λnw2

n ≥ 0
wi = [w1, w2, . . . , wn]

T

λi ≥ 0
i = 1, . . . , n

(26)

where
λi = wT

i Ĉwi

= wT
i

[
1
M

M
∑

k=1

(∇x f I
k
)·(∇x f I

k
)T
]

wi

=
1
M

M
∑

k=1

[
(∇x fk)

Twi

]2 ≥ 0

i = 1, . . . , n

(27)

where wi denotes the effect of the i-th input variable on the objective function. Combined
with Equations (4)–(11), it yields dimensionality reduction of mixed uncertainty.

In deriving a mixed uncertainty dimension reduction problem from Equations (20)–(27), a
key requirement is that the gradient covariance matrix ĈI must satisfy the Deif theorem,
maintaining the sign of eigenvector components within the interval. In practice, it is
challenging to verify without the objective function (f) or sufficient data. To tackle large
computational load, dimensionality, and prior condition challenges in mixed uncertainty
reduction, eigenvalue estimation techniques and gradient response estimation approaches
have been proposed. The former include the disc method, perturbation method, and
spectral radius method. The latter represent direct optimization, eigenvalue analysis, and
modal decomposition. Eigenvalue methods only approximate ranges and cannot obtain
upper and lower bounds, while gradient response methods lose accuracy with high system
uncertainty [50].

This study proposes a mixed uncertainty eigenvalue estimation method using the EDF
and probability boxes [59–61] for dimension reduction, as illustrated in Figure 18.

The EDF describes variable distributions by approximating sample frequencies to the
probability distribution of random variables as a step function, resulting in the Cumulative
Distribution Function (CDF). This method converts the mixed uncertainty dimension
reduction into a random uncertainty problem. Figure 19 shows a CDF with an EDF
distribution, where the black line shows the EDF fit and the histogram indicates variable
probabilities [62,63].
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Independent variable 
to be reduced

Generate analysis samples

The corresponding EDF is generated by the 
probability distribution of the cognitive 

uncertain independent variables in the sample to 
be analyzed.

Distinguish random/Cognitive uncertain 
independent variables

Calculate the probability density function of 
random uncertain independent variables.

Calculate the eigenvalue 
vector

According to the set threshold, the 
independent variables of the active subspace 

output after dimension reduction are 

Figure 18. Eigenvalue estimation of the mixed uncertainty active subspace using the EDF and
probability box.
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Figure 19. EDF distribution.

In practice, due to randomness in input variables, the empirical density is fitted using
an equal distribution model. The empirical density function for mixed uncertainty is

F̂n(x) =
∑n

i=1 I(Xi ≤ xi)

n
(28)

where the EDF is fitted by F̂n(x); Xi represents an independent and identically distributed
random variable; xi denotes the function value of the empirical distribution function at
x; and n signifies the number of samples. The accuracy of the empirical density function
increases with more samples.
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All cognitive uncertainty variables can be expressed as random uncertainty variables.

y = ŴT
1 (xa, xe)

xa ∼ ρxa , xe ∼ ρxe
(29)

where ρ _ (x _ a) and ρ _ (x _ e) denote the sampling weights of random and cognitive
uncertainties based on the distribution function and fitted differential EDF, respectively.
Integrating these variables into the equation yields the following:

C =
1
N

N

∑
i=1

y∇i(x)y∇i(x)T (30)

Eigenvalues for the mixed uncertainty active subspace are determined using Equation
(27), enabling mixed uncertainty dimensionality reduction. Probability boxes representing
variable distributions are used to obtain EDF curves. These boxes incorporate interval
concepts for both random and cognitive uncertainties. Figure 20 illustrates a probability
box variable x with cumulative distribution function F̂n(x), upper bound F̂n(x), and lower
bound F̂n(x). The probability box requires only upper and lower distribution bounds
to split the boundary around the variable distribution function, eliminating the need for
specific distribution forms and ensuring that the cumulative distribution function lies
within the defined boundaries.

 

Figure 20. Probability box.

To obtain the probability box of variables, we use the D-S theory composed of multiple
focal elements. For a sample in space R, any D-S structure can be expressed as{

m : 2R → [0, 1]
m(∅) �= 0, ∑A⊆R m(A) = 1

(31)

where each interval A is a focal element; m(A) denotes the reliability value corresponding
to this focal element; and 2R signifies the power set of R. The trust function Bel and the
likelihood function Pl can be expressed as follows:{

Bel(A) = ∑{m(B)|B ⊆ A, B �= ∅}
Pl(A) = ∑{m(B)|A ∩ B, B �= ∅} (32)

Probability boxes consist of multiple D-S structures, the upper and lower bounds
of which are accumulated to attain the left boundary of the upper and lower bounds of
the probability box. The D-S structure represents a discretized probability box. Figure 21
illustrates the relationship between the probability box and the structure. EDF fitting using
probability boxes is conducted as follows:

Step 1: Resample N samples into N groups, and divide each group into M segments from
largest to smallest.
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Step 2: Use each segment’s maximum and minimum values as upper and lower bounds,
respectively. If the distribution aligns with a certain distribution model, the upper
and lower bounds of each group’s probability are obtained based on the distri-
bution model; otherwise, the bounds are obtained based on the EDF probability
distribution in Equation (28).

Step 3: Average the maximum upper bounds and minimum lower bounds across N groups
to obtain the fitted cumulative probability curve.

 

Figure 21. Probability box and structure.

To verify the accuracy of the above methods, this study evaluates an objective function
with random and cognitive uncertainties, as shown in Equation (33), where x1 denotes a
random variable uniformly distributed in [0, 1], and x2 represents a cognitive variable in
[0, 3]. Figure 22 shows the distribution and probabilities from 100 samples, which do not fit
any standard distribution model.

f (x1, x2) = ex1 + x2 + x1x2 (33)
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Figure 22. Distribution of the independent variable x2. (a) Distribution conditions. (b) Distribution
probability.

Equation (4) shows that with M samples, the gradient covariance matrix C of f (x1, x2)
can be expressed as follows:

C = ĈI =
1
M

M
∑

k=1

(∇x f I
k
)·(∇x f I

k
)T

=
1
M

M
∑

k=1

[ [
e2x1 , e2x1 + 6ex1 + 9

]
[(x1 + 1)ex1 , (x1 + 1)ex1 + 3(x1 + 1)ex1 + 3]

[(x1 + 1)ex1 , (x1 + 1)ex1 + 3(x1 + 1)ex1 + 3] x2
1 + 2x1 + 1

] (34)

The EDF obtained by probability box fitting is shown in Figure 23.
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Figure 23. Fit EDF depicting the EDF fitted using the probability box.

With M = 100 samples, eigenvalues λ1, λ2, and their proportions, obtained using
computation Equations 33 and 34 probability box–EDF estimation, are shown in Table 4.
The proposed method achieves high accuracy, with a deviation of only 1.2931%, mak-
ing it effective for eigenvalue calculation and dimensionality reduction in rotor engine
combustion chambers.

Table 4. Eigenvalue calculation results.

Eigenvalue Calculation Method λ1 λ1 Proportion λ2 λ2 Proportion

Formula calculation 12.3058 62.1078% 7.5078 37.8922%

Probability box–EDF estimation 12.8423 60.8148% 8.2748 39.1852%

4. Dimensionality Reduction Analysis of Combustion Chamber Structure Parameters

This paper uses peak cylinder pressure and temperature as performance indicators.
With Table 5 showing the boundary conditions, the RNG K-ε model calculates cylinder air-
flow [64–66]. The PRF skeleton mechanism with 41 components and 124 chemical reactions
is combined with the SAGE chemical kinetic model for combustion calculations [67,68].
Figure 24 depicts solid model parameters [58].

Table 5. Rotor engine boundary conditions.

Boundary Type Temperature (K) Pressure (MPa)

Inlet Inflow 300 0.101325
Intake port Fixed wall 300 /

Outlet Outflow 570 0.101325
Exhaust port Fixed wall 550 /

Rotor Moving wall 400 /
Rotor flank 1 Fixed wall 624 0.117210
Rotor flank 2 Fixed wall 600 /

Grid number affects calculation results. To eliminate this influence, ensure accuracy,
and select the optimal grid number to reduce computation time, grid independence analysis
of the simulation model is necessary. This study compares in-cylinder pressure changes
under four different grid sizes with constant boundary conditions set as shown in Table 5.
Figure 25 shows pressure change curves for different grid sizes. Adaptive mesh refinement
(AMR) [69–71] is applied to a 2 mm mesh, producing results consistent with a 1 mm mesh
size and achieving stable calculations. Considering efficiency, accuracy, and calculation
time, a 2 mm mesh is selected, resulting in approximately 200,000 hexahedral element grids,
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as shown in Figure 26. The 100 parameter combinations obtained in Section 2 are calculated
with performance indices (Figure 27).

 

  
(a) (b) 

Figure 24. Three-dimensional model. (a) Cylinder fluid domain. (b) Rotor entity.
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Figure 25. The cylinder pressure change curve under different grid numbers. (a) Ignition state. (b)
Non-ignition state.

Figure 26. Rotor engine computational grid.

The eigenvalue estimation method from the earlier section is applied to the generated
100-size combinations. Figures 28–37 present the EDFs obtained by fitting all 10 cognitive
uncertainty variables using a probability box.
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Figure 27. Performance index. (a) Maximum cylinder pressure. (b) Maximum cylinder temperature.
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Figure 28. EDF fitting of the arc radius r in the combustion chamber.
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Figure 29. EDF fitting for the combustion chamber leading bottom length l.
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Figure 30. EDF fitting for the distance (h) between the combustion chamber bottom and the rotor’s
center of gravity in the x-z plane.
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Figure 31. EDF fitting for the angle (θ3) between the bottom edge of the combustion chamber’s
leading section and the y-z plane.
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Figure 32. EDF fitting of the arc radius (R) in the combustion chamber’s trailing section.
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Figure 33. EDF fitting of the trailing bottom edge length (L) of the combustion chamber.
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Figure 34. EDF fitting of the distance (H) from the combustion chamber’s trailing bottom to the
rotor’s center of gravity in the x-z plane.

454



Processes 2024, 12, 2238

0 3 6 9 12 15 18
0

20

40

60

80

100

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty
/%

Values

Figure 35. EDF fitting of the angle (θ1) between the bottom edge of the combustion chamber’s middle
section and the y-z plane.
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Figure 36. EDF fitting of the angle (θ2) between the rear bottom edge of the combustion chamber and
the y-z plane.
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Figure 37. EDF fitting of the distance (b) between the center of the spoiler plate top and the bottom of
the combustion chamber.

Taking the maximum cylinder pressure, the maximum cylinder temperature, and
the indicated average effective pressure as the performance indexes, the EDF and eigen-
value estimation methods of each parameter obtained above are used to calculate the
eigenvalue matrix of the function composed of 14 structural parameters, including the
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radius r of the front arc of the combustion chamber. The calculation results are shown in
Table 6. The larger the eigenvalues in the table, the greater the impact on the corresponding
performance indicators.

Table 6. The calculated eigenvalues.

Structural Parameter

Performance Index

Maximum Cylinder Pressure
Maximum Cylinder

Temperature
Indicated Average
Effective Pressure

r 2.1339 3.3178 2.5761

l 3.1528 4.7906 1.6218

h 4.6812 6.3345 3.7114

θ3 2.3218 8.2688 8.0427

R 2.8055 6.7792 4.1701

L 2.2952 4.3389 4.0759

H 14.2391 16.9644 14.4644

θ1 18.1673 18.1360 13.5508

θ2 16.6057 17.0970 14.9315

a 8.5642 9.3406 7.9712

b 16.8614 17.7883 8.6039

c 1.3363 1.2064 0.8551

q1 0.5012 0.7131 0.5182

q2 0.3877 0.9580 0.0224

Figure 38 illustrates the radar plot of each structural parameter’s impact on the perfor-
mance index using the eigenvalue ratio. The coordinate axis indicates the influence percentage,
and the larger structural parameters have a greater effect on the performance index.

From the figure, it can be seen that the effect of each structural parameter on the same
performance index and that of the same structural parameter on different performance
indexes is slightly different. However, whether the performance index is based on the
maximum cylinder pressure, the maximum cylinder temperature, or the indicated average
effective pressure, the three structural parameters that have the greatest influence on it
are the angle θ2 between the rear bottom of the combustion chamber and the Y-Z plane,
the distance b between the center of the top of the turbulent blade and the bottom of the
combustion chamber, and the angle θ1 between the bottom of the middle of the combustion
chamber and the Y-Z plane. The three structural parameters that have the least influence
on the performance index are the spoiler width c, the radius of the excessive arc between
the front of the combustion chamber and the middle of the combustion chamber q1, and
the radius of the excessive arc between the middle of the combustion chamber and the rear
of the combustion chamber q2. The vertical distance a between the spoiler and the rotor
X-Z section and the distance b between the top center of the spoiler and the bottom edge of
the combustion chamber have a greater influence on the maximum cylinder pressure and
the maximum cylinder temperature but have a smaller influence on the indicated average
effective pressure.
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Figure 38. Impact of structural parameters on various performance metrics. (a) Impact of numerous
structural parameters on maximum cylinder pressure. (b) Effect of different structural parame-
ters on peak cylinder temperature. (c) Effect of each structural parameter on the indicated mean
effective pressure.

Through the above chart, the main structural parameter combination can be obtained,
which is composed of the angle θ1 between the bottom edge of the middle part of the
combustion chamber and the Y-Z plane, the distance b between the center of the spoiler
top and the bottom edge of the combustion chamber, the angle θ2 between the bottom
edge of the rear part of the combustion chamber and the Y-Z plane, the distance H between
the bottom of the middle and rear part of the combustion chamber at the X-Z section of
the rotor and the center of gravity of the rotor, the vertical distance a between the spoiler
and the X-Z section of the rotor, the angle θ3 between the bottom edge of the front part
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of the combustion chamber and the Y-Z plane, the radius R of the middle and rear part
of the combustion chamber, and the distance h between the bottom of the front part of
the combustion chamber at the X-Z section of the rotor. The influence of this parameter
combination on the maximum cylinder pressure, the maximum cylinder temperature, and
the indicated average effective pressure is 89.5728%, 86.7924%, and 89.0677%, respectively.
The influence of structural parameters such as the bottom edge length l of the front part
of the combustion chamber, the bottom edge length L of the middle and rear part of
the combustion chamber, the arc radius r of the front part of the combustion chamber,
the width c of the spoiler, the excessive arc radius q2 between the middle part of the
combustion chamber and the rear part of the combustion chamber, and the excessive arc
radius q1 between the front part of the combustion chamber and the middle part of the
combustion chamber is small and can be ignored in the study of combustion chamber
structure optimization. This is consistent with the current research trend regarding the
structural parameters of the combustion chamber of the rotary engine. On this basis, three
structural parameters can be obtained, which are the angle θ2 between the bottom edge
of the combustion chamber and the Y-Z plane, the distance H between the bottom of
the middle and rear section of the combustion chamber at the X-Z section of the rotor
and the center of gravity of the rotor, and the angle θ1 between the bottom edge of the
middle of the combustion chamber and the Y-Z plane. These three structural parameters
should be used as important structural parameters for the study of the combustion chamber
structure of the rotary engine. These three parameters have a great influence on each
performance index, and the influence on the maximum cylinder pressure, the maximum
cylinder temperature, and the indicated average effective pressure are 52.1109%, 45.9847%,
and 50.4569%, respectively.

Since the design of the combustion chamber structure demands a variety of require-
ments, including compression ratio, process, and structure, after optimizing the above
structural parameters that have the greatest impact on performance, it is necessary to
change some structural parameters at the same time to make them meet many require-
ments, including compression ratio. It can be seen from the above charts that the three
structural parameters, such as the length l of the front bottom of the combustion chamber,
the length L of the rear bottom of the combustion chamber, and the radius r of the front
arc of the combustion chamber, have a small proportion of influence on each performance
index. The influence of these three parameters on the maximum cylinder pressure, the
maximum cylinder temperature, and the indicated mean effective pressure is 8.7753%,
13.7104%, and 11.5934%, respectively, and the range of parameters is large. Because the
change in parameters has a great influence on the compression ratio, process, and strength
requirements, the above three structural parameters can be used as adjustable structural
parameters in the study of combustion chamber structure optimization. When the main
structural parameters are determined, the adjustable structural parameters are adjusted
to make the combustion chamber meet many requirements, including compression ratio,
process, and structure.

5. Conclusions

In order to reduce the dimension in the optimization process of the combustion
chamber structure of the rotary engine and clarify the optimization priority and direction,
this paper proposes a dimension reduction method for the structural parameters of the
combustion chamber of the rotary engine based on the AS, referring to the probability box
and EDF. The main research contents of this paper are as follows:

1. By analyzing the generation process of the active subspace and the composition of
rotor structure parameters, based on active subspace, combined with the probability
box and EDF, a dimension reduction method for rotary engine combustion chamber
structure parameters is proposed, and the accuracy of the method is verified. The
results show that the deviation between the calculated eigenvalues and the actual
eigenvalues is only 1.2931%, and the estimation accuracy is high, which can be used
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for eigenvalue calculation and parameter dimension reduction of high-dimensional
mixed uncertainty problems.

2. Using the dimension reduction method proposed above, the dimension combination
composed of 14 structural parameters is reduced to an important structural parameter
composed of 8 structural parameters, including θ1, b, θ2, H, a, θ3, R, and h. The
effects of the above eight structural parameters on the maximum cylinder pressure,
the maximum cylinder temperature, and the indicated mean effective pressure are
89.5728%, 86.7924%, and 89.0677%, respectively.

3. On this basis, three main structural parameters, with the influence of θ2 account-
ing for more than 45%, are obtained. And three adjustable structural parameters,
including l, are obtained. The influence of the latter on the total proportion of each
performance index is small, and the influence on the maximum cylinder pressure,
the maximum cylinder temperature, and the indicated average effective pressure is
8.7753%, 13.7104%, and 11.5934%, respectively. Moreover, the change in parameters
has a great influence on the compression ratio, process, and strength requirements.
Therefore, the above three structural parameters can be used as adjustable struc-
tural parameters in the optimization of combustion chamber structure. When the
main structural parameters are determined, the adjustable structural parameters
are adjusted to make the combustion chamber meet many requirements, including
compression ratio, process, and structure.

In the future, based on the research in this paper, the research group will deeply
study the influencing law of combustion chamber structure parameters on engine perfor-
mance and quantitatively analyze it, hoping to obtain the influence proportions of different
combustion chamber structure parameters and different levels of the same structure pa-
rameters on engine performance. Furthermore, the dimension reduction method based
on AS proposed in this paper will be applied to the research of other structure or control
parameters of rotary engines, which provides a reference and basis for further improving
the performance of rotary engines and broadening the application field of rotary engines.
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