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Preface

This reprint presents a curated collection of research papers on the innovative use of

biodegradable polymers in biomedical and packaging applications. With the growing need for

sustainable and eco-friendly materials, this Special Issue highlights the critical role of biodegradable

polymers in areas such as healthcare and packaging industries. Their ability to degrade naturally

and reduce environmental impact makes them a vital focus of scientific research and industrial

development.

The motivation behind this publication stems from the increasing demand for materials

that meet the rigorous standards of modern industries while minimizing environmental harm.

Biodegradable polymers have emerged as key players in this space, offering solutions that align

with the global push toward more sustainable practices. The scope of this reprint covers a wide

range of topics, from polymer synthesis and physicochemical characterization to their application in

two- and three-dimensional forms. The research included demonstrates the latest advancements in

enhancing polymer properties to make them more effective in practical applications. These studies

reflect a multidisciplinary approach, combining chemistry, materials science, biotechnology, and

environmental science to address pressing challenges.

Our aim was to gather cutting-edge research that offers new insights into the development of

biodegradable materials for real-world applications. This reprint is intended for a broad audience,

including researchers, industry professionals, and students in the fields of biomaterials, polymers,

and environmental science. It serves as a valuable resource for those looking to expand their

knowledge of biodegradable polymers and their uses in key sectors such as healthcare and packaging.

The contributing authors are leading experts in their respective fields, bringing a wealth of

knowledge and experience to this volume. Their innovative research has been instrumental in

advancing the science and technology of biodegradable materials, and we are grateful for their

contributions. We would also like to extend our deepest grattitude to the reviewers for their insightful

comments, which have helped refine the research presented in this collection. Special recognition goes

to the editorial team at MDPI for their unwavering support and to the institutions and colleagues who

provided the necessary resources and encouragement throughout this project.

We hope that this reprint will inspire further research and innovation in the field of

biodegradable polymers and contribute to the ongoing quest for sustainable materials that benefit

both society and the environment.

Beata Kaczmarek-Szczepańska and Marcin Wekwejt

Editors
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Development of Sustainable and Active Food Packaging
Materials Composed by Chitosan, Polyvinyl Alcohol and
Quercetin Functionalized Layered Clay
Chengyu Wang 1, Long Mao 1,2,*, Bowen Zheng 2, Yujie Liu 2, Jin Yao 1 and Heping Zhu 1,*

1 Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of
Technology, Zhuzhou 412007, China; d21080500002@hut.edu.cn (C.W.); yaojin@hut.edu.cn (J.Y.)

2 Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology,
Xiamen 361024, China; 13959280885@163.com (B.Z.); lyj1055348378@163.com (Y.L.)

* Correspondence: maolong@xmut.edu.cn (L.M.); zhuheping@hut.edu.cn (H.Z.)

Abstract: In order to solve the problems of insufficient active functions (antibacterial and antioxi-
dant activities) and the poor degradability of traditional plastic packaging materials, biodegradable
chitosan (CS)/polyvinyl alcohol (PVA) nanocomposite active films reinforced with natural plant
polyphenol-quercetin functionalized layered clay nanosheets (QUE-LDHs) were prepared by a solu-
tion casting method. In this study, QUE-LDHs realizes a combination of the active functions of QUE
and the enhancement effect of LDHs nanosheets through the deposition and complexation of QUE
and copper ions on the LDHs. Infrared and thermal analysis results revealed that there was a strong
interface interaction between QUE-LDHs and CS/PVA matrix, resulting in the limited movement
of PVA molecules and the increase in glass transition temperature and melting temperature. With
the addition of QUE-LDHs, the active films showed excellent UV barrier, antibacterial, antioxidant
properties and tensile strength, and still had certain transparency in the range of visible light. As
QUE-LDHs content was 3 wt%, the active films exhibited a maximum tensile strength of 58.9 MPa,
representing a significant increase of 40.9% compared with CS/PVA matrix. Notably, the UV barrier
(280 nm), antibacterial (E. coli) and antioxidant activities (DPPH method) of the active films achieved
100.0%, 95.5% and 58.9%, respectively. Therefore, CS/PVA matrix reinforced with QUE-LDHs has
good potential to act as an environmentally and friendly active packaging film or coating.

Keywords: active packaging; chitosan; quercetin; layered clay; polyvinyl alcohol

1. Introduction

In order to maintain food quality and protect food from extraneous contamination,
food packaging plays a crucial role, as it ensures the food industry provides safe edible
products [1]. Packaging provides more than just basic physical protection and barrier
properties [2,3]; however, the packaging materials commonly applied in the food industry
are made from non-degradable polymers that lack active functions (such as antibacterial
and antioxidant activities), leading to environmental pollution or even food spoilage [4].
With the increasingly serious environmental problems, researchers have begun to pay
attention to biodegradable polymers that can extend the shelf life of food. Therefore,
various environmentally friendly active packaging materials have emerged and attracted
widespread attention [3].

As the only cationic polysaccharide in biomass resources, chitosan (CS) ranks as the
second-largest natural polymer in nature after cellulose [5]. CS exhibits excellent film-
forming abilities, broad-spectrum antibacterial activity, and easy availability [6]. However,
CS also demonstrates a moisture absorption ability and brittleness [7]. Blending CS with
other synthetic polymer materials can effectively improve its shortcomings [8–10]. Polyvinyl
alcohol (PVA) has found widespread use in packaging, biomedicine, and other fields due to

Polymers 2024, 16, 727. https://doi.org/10.3390/polym16060727 https://www.mdpi.com/journal/polymers1
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its good film-forming properties, water solubility, mechanical strength, transparency, and
degradability [7,9]. The development of biodegradable active food packaging materials
with excellent performance through the blending of PVA and CS has been extensively
studied [11–13], and this approach takes advantage of the broad spectrum of antibacterial
activity and availability of CS, as well as the excellent film forming properties and stability
of PVA [7,14].

Combined with literature reports [9,13], to further enhance the comprehensive per-
formance of CS/PVA matrix, it is generally necessary to modify them by introducing a
third-phase with active functions. Natural plant polyphenols, such as tannins, anthocyanin,
quercetin, tea polyphenols, etc., exhibit excellent biological activity as phenolic secondary
metabolites in plants [15,16]. These plant polyphenols demonstrate active functions, in-
cluding antibacterial, antioxidant, and UV barrier properties, and have been applied to the
modification of CS/PVA matrix [7,9]. Koosha et al. [9] studied CS/PVA composite active
films doped with black carrot anthocyanin and layered clay (bentonite). They explored the
application potential of anthocyanin as a natural pH indicator and bentonite as a nanofiller
in the field of active packaging. The results showed that the addition of bentonite alone
significantly reduces the mechanical properties of CS/PVA composite films. Although the
mechanical and antibacterial properties of CS/PVA composite films were improved by the
further addition of anthocyanins, the gas barrier properties of CS/PVA composite films
were significantly affected. Haghighi et al. [13] prepared CS/PVA composite films enriched
with ethyl lauroyl arginate (LAE) for food packaging applications. Although the addition
of LAE improved the antibacterial activity and UV barrier properties of CS/PVA composite
films, the mechanical and water vapor barrier properties were deteriorated to a certain
extent. Therefore, to improve the comprehensive performance of the CS/PVA matrix, it is
important to realize the multi-functionality of the third phase.

Inspired by the super-adhesion and versatility of marine adhesion proteins, the func-
tionalization of material surfaces (films, nanoparticles, etc.) can be achieved by using cate-
chol compounds similar in structure to adhesion proteins to form functional coatings (such
as polydopamine (PDA) and tannin-metalion (TA-metal) coordination compounds) [17,18].
In our previous work [19,20], a simple and green method has been reported to prepare
natural plant polyphenols containing active catechol functionalized layered clay nanosheets
(Layered double hydroxides, LDHs), such as LDHs@TA-Fe3+ and LDHs@anthocyanin-
Cu2+. This biomimetic modification method, based on mussels, can not only increase the
interfacial compatibility between the LDHs and polymer matrix, thereby better utilizing
the natural barrier properties and enhancing effects of LDHs nanosheets, but also achieve
effective loading of natural active substances, endowing LDHs with antibacterial and
antioxidant activities [20]. Quercetin (QUE) in natural plant polyphenols contains rich
catechol groups, and it is currently yields the highest content of dietary flavonoids and
polyphenols in fruits and vegetables, with good biological activity and medicinal value [21].
Therefore, the surface functionalization of LDHs using QUE can effectively combine the
functions of LDHs and QUE, improving the versatility of the third phase (antibacterial,
antioxidant activity, enhancement, etc.).

Based on the above analysis, this study attempted to use QUE to functionalize the
LDHs to realize a combination of the active functions of QUE and the enhancement effect of
LDHs nanosheets. QUE functionalized LDHs (QUE-LDHs) were synthesized by adsorption
and complexation of QUE and Cu2+ on the surface of LDHs. Further, CS/PVA matriices
reinforced with QUE-LDHs were prepared for the first time by the solution casting method.
The influence of QUE-LDHs on the chemical structure, thermal, crystallization, mechanical,
optical, antibacterial and antioxidant properties of CS/PVA matriices was evaluated to
determine their feasibility for food active packaging.
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2. Materials and Methods
2.1. Materials and Chemicals

QUE (purity ≥ 97%), copper chloride dihydrate (CuCl2·2H2O, purity ≥ 99.99%), CS
(MW = 30,000 Da, 85% deacetylation), 2,2-diphenyl-1-picrylhydrazyl (DPPH, purity≥ 96%),
ethanol (AR), methanol (AR) were provided by Shanghai Makclin Biochemical Technology
Co., Ltd. (Shanghai, China). Ethylene-modified PVA (EXCEVAL™ AQ-4104, alcoholization
degree 98–99 mol%) was purchased by Kuraray Co., Ltd. (Osaka, Japan). 2,2′-azinobis(3-
ethylbenzothiazoline-6-sulfonic acid ammonium salt) (ABTS, purity = 98%), potassium
persulfate (purity = 99.99%) were provided by Shanghai Aladdin Biochemical Technol-
ogy Co., Ltd. (Shanghai, China). Phosphate buffer solution (PBS, 0.1 M, pH = 7.4) was
purchased from Phygene Biotechnology Co., Ltd. (Fuzhou, China). LDHs was prepared
by the hydrothermal reaction of metal salts with urea (particle size: ~1500 nm, thick-
ness: ~40 nm) [20]. All chemical reagents are used directly without undergoing secondary
treatment or purification.

2.2. Synthesis of QUE-Functionalized LDHs (QUE-LDHs)

LDHs (50 mg) was evenly dispersed in ethanol (100 mL) by ultrasonic treatment.
Subsequently, QUE (50 mg) was added to the LDHs dispersion at room temperature and
the dissolution of QUE was accelerated by mechanical stirring. Next, CuCl2·2H2O (28 mg)
was dissolved in deionized water (50 mL). The prepared CuCl2 aqueous solution was
then slowly poured into the LDHs dispersion, and the reaction was carried out at room
temperature for 4 h. After the reaction, the reaction liquid was centrifuged with ethanol
once and with deionized water twice. Finally, dark brown QUE-LDHs was obtained by a
freeze-drying method. The characterization methods of QUE-LDHs have been given in the
Supporting Information.

2.3. Preparation of QUE-LDHs/CS/PVA Nanocomposite Active Films

To enhance the water solubility and interfacial binding of CS, this study employed
active catechol groups to further functionalize CS by carbodiimide coupling [22]. The
composition and abbreviation of QUE-LDHs/CS/PVA nanocomposite active films are
presented in Table 1. A certain amount of QUE-LDHs was dispersed in the deionized
water (14 mL) and sonicated to disperse evenly. Then, CS (70 mg) was dissolved in the
QUE-LDHs dispersion and the dissolution of CS was accelerated by mechanical stirring.
Subsequently, PVA powder (630 mg) was added to the QUE-LDHs dispersion and heated
to 95 ◦C under magnetic stirring until PVA powder was completely dissolved to obtain
the active film-forming solution. The active film-forming solution was then sonicated to
remove air bubbles. Finally, the above active film-forming solution was poured into a
horizontally placed PTFE mold and transferred to an oven at 45 ◦C for drying for 24 h
to obtain the homogeneous QUE-LDHs/CS/PVA nanocomposite active films. Before the
subsequent tests, all the films were stored at 24 ◦C and 50% humidity for 48 h. For further
information regarding the characterization of QUE-LDH/CS/PVA nanocomposite active
films, please refer to the Supporting Information.

Table 1. The composition and abbreviation of QUE-LDHs/CS/PVA nanocomposite active films.

Samples PVA/g CS/g QUE-LDHs/g QUE-LDHs/wt%

CS/PVA 0.63 0.07 0 0

LQCP-0.5% 0.63 0.07 0.0035 0.5%

LQCP-1% 0.63 0.07 0.0071 1%

LQCP-3% 0.63 0.07 0.0216 3%

LQCP-5% 0.63 0.07 0.0368 5%

LQCP-7% 0.63 0.07 0.0526 7%

3
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3. Results and Discussion
3.1. Chemical Structure of QUE-LDHs

Figure 1 shows the FT-IR and UV-Vis spectra of QUE-LDHs, QUE and LDHs. In
Figure 1a, the absorption peaks at 3384, 1578, and 1352 cm−1 in LDHs are due to the
stretching and bending vibration of O-H bonds and the stretching vibration of interlayer
carbonate ions, respectively [20]. Compared with LDHs, new absorption peaks of C=C
groups (marked in red) and C-O groups (marked in yellow) in the QUE-LDHs are attributed
to the characteristic absorption of QUE [21,23], suggesting the successful loading of QUE on
the LDHs. In Figure 1b, LDHs show no characteristic absorption peaks in the UV-Vis region,
whereas QUE-LDHs show obvious characteristic absorption peaks at 290 and 434 nm.
Compared with QUE, the UV-Vis characteristic absorption (at 290 and 434 nm) of QUE-
LDHs shows an obvious redshift, which is due to the formation of QUE-Cu coordination
compounds [24,25]. Moreover, Cu2+ is further confirmed to be involved in the formation
of coordination compounds using XPS, and the relevant analysis is supplemented in the
Supporting Information.
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3.2. Microscopic Morphology of QUE-LDHs

The microscopic morphology of QUE-LDHs was characterized using TEM and SEM, as
shown in Figure 2. In Figure 2a,b, the original LDHs exhibit a typical hexagonal morphology
with a smooth surface. After being functionalized with QUE-Cu coordination compounds,
LDHs becomes significantly rougher and the edges and corners become more rounded.
Furthermore, QUE-LDH nanosheets exhibit uniform dispersion without agglomeration. In
order to further confirm the existence of the functional layer, TEM was applied to study
the microscopic morphology of QUE-LDHs. In Figure 2e, QUE-LDHs still exhibit a typical
hexagonal structure and rough surface. In Figure 2f, a functional layer with a thickness of
~20 nm is formed on the surface of LDHs through adsorption and complexation to form
QUE-Cu2+ coordination compounds.
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3.3. Antibacterial Activity of QUE-LDHs

QUE, as a kind of plant secondary metabolite, affects the formation of microbial biofilm
via its polyphenol structure, hindering the synthesis of enzymes related to metabolism, thereby
increasing the permeability of biofilm, which ultimately leads to cell rupturing [21,23]. Figure 3
shows the antibacterial activity against Escherichia coli (E. coli) of QUE-LDHs, QUE and LDHs.
As shown in Figure 3, the antibacterial activity of LDHs is only 24.2%, and there is no obvious
antibacterial activity. After the functionalization of QUE-Cu coordination compounds, the
antibacterial activity of QUE-LDHs reaches 99.4%. QUE-LDHs exhibit excellent antibacterial
activity due to the natural broad-spectrum antibacterial activity of QUE and copper ions [26].
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3.4. Chemical Structure of QUE-LDHs/CS/PVA Nanocomposite Active Films

The FT-IR spectra of QUE-LDHs/CS/PVA nanocomposite active films are illustrated
in Figure 4. The absorption peak at 3273 cm−1 in the spectrum of the CS/PVA matrix is
attributed to the stretching vibration of -OH and -NH groups involved in hydrogen bonds
in the CS/PVA matrix [9]. The peaks at 2929, 2852, and 1415 cm−1 are due to the stretching
and deformation vibrations of C-H bonds [7]. Additionally, the absorption peaks at 1087 and
1019 cm−1 correspond to the stretching vibration of C-O bonds [5,13]. After the addition of
QUE-LDHs, compared with CS/PVA matrix, there is no significant change in the position
and intensity of the characteristic absorption peak for QUE-LDHs/CS/PVA nanocomposite
active films. However, subtle changes are observed in the infrared spectral fingerprint range
of 1200–950 cm−1 (marked in green). In particular, the relative intensity of the absorption
peaks at 1087 and 1019 cm−1 changes, which reveals that the formation of the hydrogen
bond between C-O groups (in the CS/PVA matrix) and phenol hydroxyl groups (in the
QUE) causes the change of the infrared peak for C-O groups [27,28]. These changes suggest
a strong interaction between QUE-LDHs and CS/PVA matrix, leading to the formation of
new hydrogen bonds in the QUE-LDHs/CS/PVA nanocomposite active films.
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3.5. Thermal Stability of QUE-LDHs/CS/PVA Nanocomposite Active Films

The thermogravimetric curves and thermal stability parameters of the QUE-LDHs/CS/
PVA nanocomposite active films are illustrated in Table 2 and Figure 5, respectively. It
is observed from Table 2 that, with the addition of QUE-LDHs, the initial decomposition
temperature (T−5%) of QUE-LDHs/CS/PVA nanocomposite active films initially increases
and then decreases. This phenomenon is attributed to the enhanced insulation provided by
the layered structure of QUE-LDHs [29]. When the addition of QUE-LDHs reaches 5 wt%,
T−5% reaches a maximum of 101.6 ◦C. Although T−5% starts to decrease with the further
addition of QUE-LDHs, it remains higher than that of CS/PVA matrix. In contrast to T−5%,
the temperature at 50% weight loss (T−50%) consistently decreases with the increase in
QUE-LDHs. When the addition of QUE-LDHs is only 0.5 wt%, T−50% decreases from
377.3 ◦C (CS/PVA matrix) to 356.5 ◦C, showing a decrease of 20.8 ◦C. As the addition of
QUE-LDHs increases from 0.5 wt% to 7 wt%, the decrease in T−50% is only 10.8 ◦C.

Table 2. Thermal analysis results of QUE-LDHs/CS/PVA nanocomposite active films.

Sample T−5%/◦C T−50%/◦C Tg/◦C Tm/◦C Tc/◦C ∆Hm/(J/g) χ/%

CS/PVA 86.6 377.3 78.1 186.7 156.6 23.56 16.1%

LQCP-0.5% 87.3 356.5 81.5 189.5 154.5 29.40 20.1%

LQCP-1% 92.9 355.2 81.8 191.4 157.6 29.69 20.4%

LQCP-3% 95.8 355.6 81.3 190.4 156.6 28.21 19.8%

LQCP-5% 101.6 351.4 79.7 199.1 166.9 30.11 21.6%

LQCP-7% 90.6 345.7 79.8 204.5 173.5 27.50 20.2%
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Figure 5 indicates that all the films exhibit similar thermal degradation behaviors with
two obvious weight loss steps. From room temperature to ~150 ◦C, QUE-LDHs/CS/PVA
nanocomposite active films lose free water and adsorbed water. When the temperature is be-
tween ~150 ◦C and ~230 ◦C, the weight of QUE-LDHs/CS/PVA nanocomposite active films
remains constant. When the temperature is between ~230 ◦C and 500 ◦C, the weight loss of
QUE-LDHs/CS/PVA nanocomposite active films increases rapidly, indicating the main
thermal degradation stage. It is worth noting that the weight loss of QUE-LDHs/CS/PVA
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nanocomposite active films is always lower than that of CS/PVA matrix before being heated
to ~325 ◦C, which is related to the barrier effect of QUE-LDHs [30]. However, between
~325 ◦C and ~435 ◦C, the weight loss of QUE-LDHs/CS/PVA nanocomposite active films
surpasses that of CS/PVA matrix, indicating a faster thermal degradation rate, which is due
to the co-thermal degradation of QUE and LDHs [21,31]. When the temperature exceeds
435 ◦C, the weight loss of QUE-LDHs/CS/PVA nanocomposite active films begins to be
lower than that of CS/PVA matrix, resulting in a final residual (at 800 ◦C) being higher than
that of CS/PVA matrix. This is because most of the thermal degradation of QUE-LDHs
has been completed [32]. Therefore, an appropriate amount (1–5 wt%) of QUE-LDHs can
enhance the initial thermal stability of CS/PVA matrix.

3.6. Thermal and Crystalline Properties of QUE-LDHs/CS/PVA Nanocomposite Active Films

The thermal and crystallization properties of QUE-LDHs/CS/PVA nanocomposite
active films are characterized by DSC and XRD, as illustrated in Figure 6 and Table 2. In
Figure 6a, the glass transition temperature (Tg) and melting temperature (Tm) of QUE-
LDHs/CS/PVA nanocomposite active films gradually increase with the addition of QUE-
LDHs. This indicates a strong interfacial interaction between QUE-LDHs and CS/PVA
matrix, which weakens the mobility of PVA molecules [33,34]. Additionally, combined
with a thermal stability analysis of the TG test, the barrier effect of QUE-LDHs prolongs
the melting time of CS/PVA matrix. Figure 6b and Table 2 illustrate that the crystallization
temperature (Tc) and melting enthalpy (∆Hm) of all the films show a gradual increase.
The addition of QUE-LDHs promotes the rearrangement and stacking of PVA molecules,
playing a certain degree of heterogeneous nucleation. However, with the increase in QUE-
LDHs, the crystallinity (χ) varies from 19.8% to 21.6%. This indicates that the overall
crystallinity remains relatively stable, which may be due to the comprehensive effect of
heterogeneous nucleation and interfacial interaction [35,36]. Combined with Figure 6a,b,
the advance of crystallization indicates that PVA molecules can form a large number of
crystallization nucleation sites on the surface of QUE-LDHs, resulting in an increase in Tc.
However, the strong interaction between QUE-LDHs and CS/PVA matrix limits the growth
of crystal nuclei, reducing heterogeneous nucleation efficiency [29]. In Figure 6c, character-
istic diffraction peaks of (003) and (006) for QUE-LDHs appear in QUE-LDHs/CS/PVA
nanocomposite active films around 2θ = 11.7◦ and 23.5◦ [37]. The intensity of these peaks
increases with the addition of QUE-LDHs, which indicates that the mass fraction of QUE-
LDHs increases. Additionally, all the films exhibit a characteristic diffraction peak of (101)
at θ = 19.6◦, which is attributed to X-ray diffraction of PVA [38]. However, the (101) crystal
plane of PVA does not change significantly with the addition of QUE-LDHs, which is
similar to the crystallinity change in the DCS analysis.
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3.7. Mechanical Properties of QUE-LDHs/CS/PVA Nanocomposite Active Films

Figure 7 illustrates the mechanical properties and stress–strain curves of QUE-LDHs/
CS/PVA nanocomposite active films. In Figure 7a, the tensile strength and elongation at
break of CS/PVA matrix are 41.8 MPa and 126.2%, respectively. When the addition of
QUE-LDHs reaches 3 wt%, the tensile strength achieves the maximum value of 58.9 MPa,
representing a significant 40.9% increase compared with CS/PVA matrix (41.8 MPa). Al-
though the tensile strength begins to decrease continuously with the addition of QUE-LDHs,
the tensile strength of LQCP-7% (42.1 MPa) does not change significantly compared with
CS/PVA matrix. In contrast to the changes in the tensile strength, the elongation at break
gradually decreases with the increase in QUE-LDHs. When the molecular chain slides un-
der stress, the chain mobility of CS/PVA matrix is decreased due to the limitation of strong
interface interactions caused by hydrogen bondings, ultimately leading to premature frac-
ture of the film [5,39]. Meanwhile, according to DSC test results, the existence of QUE-LDHs
increases χ of CS/PVA matrix, further decreases the mobility of molecular chains.
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As shown in Figure 7b, the stress–strain curve of CS/PVA matrix are similar to those
of pure PVA, with no obvious yield point and strain softening stage [40]. With the addition
of QUE-LDHs (no more than 3 wt%), the yield strength and breaking strength of QUE-
LDHs/CS/PVA nanocomposite active films show an increasing trend, which indicates
that QUE-LDHs play a significant enhancement effect. When the addition of QUE-LDHs
reaches 5 wt%, the strength of QUE-LDHs/CS/PVA nanocomposite active films begins
to decrease significantly, which is related to the decrease in enhancement efficiency and
agglomeration of QUE-LDHs. The strain decreases with the increase in QUE-LDHs, which
reveals that the existence of QUE-LDHs weakens the interactions between CS and PVA.

In order to further analyze the reasons for the changes of the mechanical properties,
the microscopic morphology of the fracture surface was investigated, as shown in Figure 8.
As shown in Figure 8a,b, QUE-LDHs is uniformly dispersed at nanometer size in CS/PVA
matrix without obvious agglomeration, and there are no visible defects or gaps between
QUE-LDHs and CS/PVA matrix. This reveals that QUE-LDHs and CS/PVA matrix have
good interface compatibility, which helps to enhance the strength of CS/PVA matrix. The
EDS element analysis of the marked region in Figure 8b, as presented in Figure 8c,d, further
confirms the presence of QUE-LDHs.
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3.8. Optical Properties of QUE-LDHs/CS/PVA Nanocomposite Active Films

Figure 9 displays the UV-Vis light transmittance and digital photographs of QUE-
LDHs/CS/PVA nanocomposite active films. Good UV barrier properties can effectively
delay the deterioration of food under UV radiation, ensuring the quality of food during
storage and transportation, and prolonging the shelf life of food [41,42]. As shown in
Figure 9a, the UV transmittance of CS/PVA matrix at 280 nm and 400 nm is only 25.3%
and 53.2%, demonstrating certain UV barrier properties. It indicates that CS/PVA matrix
already exhibits significant absorption in the UV light region (190–400 nm), which is
caused by the catechol structure and unsaturated bonds in CS [22]. With the addition
of QUE-LDHs, the UV absorption of QUE-LDHs/CS/PVA nanocomposite active films
significantly increases, which is attributed to the large amount of active catechol groups
in QUE-LDHs. When the addition of QUE-LDHs is only 1 wt%, the UV transmittance of
LQCP-1% at 280 nm and 400 nm reduces to 0.1% and 2.9%, which is a 99.6% and 94.5%
lower than that of CS/PVA matrix, indicating excellent UV barrier properties. In our
previous study [35], when the same amount (1 wt%) of curcumin-functionalized LDHs was
added to CS/PVA matrix, the UV transmittance at 280 nm and 400 nm was reduced by only
70.4% and 35.3%. This indicates that QUE-LDHs contains a large number of active catechol
groups, which show better UV barrier properties, while curcumin-functionalized LDHs
only contain a large number of active phenolic hydroxyl groups. With further addition of
QUE-LDHs (3–7 wt%), the UV barrier properties reach 100% at 280 nm. In the visible light
region (400–780 nm), the light transmittance at 600 nm of CS/PVA film is 70.5%. With the
addition of QUE-LDHs, the light transmittance decreases gradually. When the addition
of QUE-LDHs reaches 7 wt%, the reduction in light transmittance at 600 nm reaches
60.7% compared with CS/PVA matrix. When the same amount (7 wt%) of curcumin-
functionalized LDHs was added to CS/PVA matrix, the light transmittance at 600 nm is
reduced by only 29.8% [35]. This suggests that QUE-LDHs have a greater effect on visible
light transmittance. However, the absorption of UV light is much greater than that of visible
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light. Meanwhile, the addition of QUE-LDHs can significantly enhance the high-energy
blue light (400–500 nm) barrier properties of CS/PVA matrix. The barrier of high-energy
blue light is also crucial for food preservation, as it helps delay the photooxidation of
organic compounds and the degradation of vitamins and other pigments [43].
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Figure 9. (a) UV-Vis light transmittance and (b) digital photographs of QUE-LDHs/CS/PVA
nanocomposite active films.

Table 3 presents the optical properties of QUE-LDHs/CS/PVA nanocomposite active
films. As shown in Table 3, the opacity of QUE-LDHs/CS/PVA nanocomposite active films
gradually decreases with the addition of QUE-LDHs. When the addition of QUE-LDHs
does not exceed 5 wt%, the opacity is less than five, indicating that QUE-LDHs/CS/PVA
nanocomposite active films exhibit transparency. Providing a clear view of food and pack-
aging conditions while providing good UV and high-energy blue light barrier properties
are prerequisite for excellent food packaging film materials [13]. As shown in Figure 9b,
the color of QUE-LDHs/CS/PVA nanocomposite active films shows a trend from colorless
to brown. Despite the deepening color, the text behind QUE-LDHs/CS/PVA nanocom-
posite active films (the addition of QUE-LDHs does not exceed 5 wt%) remains clearly
visible, demonstrating a certain degree of transparency, which is consistent with the opacity
results. The colorimeter was used to further accurately analyze the color change of QUE-
LDHs/CS/PVA nanocomposite active films, as shown in Table 3. It is evident that with
the increase in QUE-LDHs, the L* (brightness) significantly decreases, which is correlating
with the decrease in visible light transmittance. Influenced by the color of QUE-LDHs, the
values of a* and b* continue to increase, indicating that QUE-LDHs/CS/PVA nanocom-
posite active films exhibit a trend of reddening and yellowing. Due to the growing color
difference between the films and standard whiteboard, ∆E* increases from 21.6 to 84.8.
In our previous study [35], the addition of curcumin-functionalized LDHs resulted in an
increase in ∆E* from 21.6% to 59.1%. The results indicate that the addition of QUE-LDHs
has a significant effect on the color of CS/PVA matrix.

Table 3. Optical properties of QUE-LDHs/CS/PVA nanocomposite active films.

Sample T280/% 1 T400/% 1 T600/% 1 Thickness/mm Abs600
2 Opacity L* a* b* ∆E

CS/PVA 25.3 53.2 70.5 0.091 0.152 1.670 81.9 ± 0.1 1.9 ± 0.2 15.7 ± 0.2 21.6 ± 0.4

LQCP-0.5% 0.6 11.3 60.8 0.073 0.216 2.959 76.8 ± 0.2 6.0 ± 0.1 40.4 ± 0.4 45.4 ± 0.3

LQCP-1% 0.1 2.9 50.1 0.071 0.300 4.225 73.4 ± 0.1 6.9 ± 0.3 42.2 ± 0.2 46.9 ± 0.3

LQCP-3% 0 2.0 47.3 0.075 0.325 4.333 56.5 ± 0.2 21.0 ± 0.4 48.5 ± 0.4 66.4 ± 0.5

LQCP-5% 0 1.7 44.0 0.072 0.357 4.958 55.8 ± 0.3 26.0 ± 0.5 52.2 ± 0.6 71.3 ± 0.5

LQCP-7% 0 0.20 27.7 0.075 0.558 7.440 41.0 ± 0.5 24.6 ± 0.3 59.3 ± 0.2 84.8 ± 0.4

1 Light transmittance at 280, 400, 600 nm. 2 Absorbance at 600 nm.
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3.9. Antibacterial Activity of QUE-LDHs/CS/PVA Nanocomposite Active Films

Figure 10 shows the antibacterial activity against E. coli of QUE-LDHs/CS/PVA
nanocomposite active films. The antibacterial activity of CS/PVA matrix reaches 91.1%,
showing good antibacterial ability, which is due to the excellent broad-spectrum antibacte-
rial activity of CS [6]. According to literature reports, the antibacterial mechanism for CS is
due to the strong interaction between positively charged amino groups of CS and negatively
charged membranes of bacterial, resulting in increased membrane permeability and the
leakage of intracellular components, and ultimately leading to bacterial death [6,44]. The
antibacterial activity of QUE-LDHs/CS/PVA nanocomposite active films exhibits a gradual
increase trend upon the increase in QUE-LDHs. When the addition of QUE-LDHs reaches
7 wt%, the antibacterial activity of LQCP-7% reaches the maximum of 97.3%, showing
excellent antibacterial ability. These results indicate that the presence of active QUE-LDHs
can enhance the antibacterial ability of CS/PVA matrix.
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3.10. Antioxidant Activity of QUE-LDHs/CS/PVA Nanocomposite Active Films

The antioxidant ability of food packaging materials can effectively prevent the ox-
idation of nutrients in food and reduce the loss of food quality [45]. DPPH and ABTS
radical scavenging activities were applied to evaluate the antioxidant ability of QUE-
LDHs/CS/PVA nanocomposite active films, as shown in Figure 11. In Figure 11a, DPPH
radical scavenging activity of QUE reaches 96.6%, showing excellent antioxidant activity,
which is due to the large number of active groups in QUE effectively trapping radicals
and preventing the oxidation reaction of nutrients [21,23]. CS/PVA matrix does not have
sufficient active groups, therefore it cannot effectively scavenge DPPH radicals, and its
antioxidant activity is only 14.2%. With the addition of QUE-LDHs, its antioxidant activity
gradually increases. When the amount of QUE-LDHs reaches 7 wt%, the antioxidant activ-
ity reaches the maximum value of 78.3%. ABTS radical scavenging activity experiment also
shows the same trend. However, it can be seen from radical scavenging experiments that
the scavenging activity of DPPH radical is significantly higher than that of ABST radical
under the same amount of QUE-LDHs. This is because the solvent used in DPPH radical
scavenging activity experiment is alcohol solution, while ABTS radical scavenging activity
experiment is aqueous solution. Additionally, QUE is almost insoluble in water, but soluble
in ethanol.
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4. Conclusions

In this study, QUE-LDHs realizes a combination of active functions and enhancement
effect through the deposition and complexation of QUE and copper ions on the LDHs’
surface. CS/PVA matrix, reinforced with active QUE-LDHs, was prepared by a solution
casting method. The results show that QUE-Cu2+ coordination compounds successfully to
functionalize the LDHs nanosheets with a functional layer thickness of ~20 nm. Infrared and
thermal analysis results revealed that there was a strong interface interaction between QUE-
LDHs and CS/PVA matrix, resulting in the limited movement of PVA molecular chains and
the increase in glass transition temperature and melting temperature. The thermal stability
analysis revealed that the addition of QUE-LDHs can increase the initial decomposition
temperature to a certain extent, but it still increased the thermal degradation rate of
CS/PVA matrix in the later stage. After the addition of QUE-LDHs, QUE-LDHs/CS/PVA
nanocomposite active films showed an excellent UV barrier, antibacterial, antioxidant
properties and tensile strength, and still had certain transparency in the range of visible
light. As the QUE-LDH content was 3 wt%, the active films exhibited the maximum
tensile strength of 58.9 MPa, representing a significant increase in 40.9% compared with
CS/PVA matrix. Notably, the UV barrier (280 nm) and antibacterial (E. coli) and antioxidant
activities (DPPH method) of the active films achieved 100.0%, 95.5% and 58.9%, respectively.
Therefore, LDHs@QUE-Cu/CS/PVA nanocomposite active films show excellent active
packaging functions and have good potential in extending the shelf life of food.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym16060727/s1. Figure S1: XPS spectra of LDHs and QUE-
LDHs. References [46–48] are cited in the supplementary materials.
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Abstract: In this work, dialdehyde chitosan (DAC) and collagen (Coll) scaffolds have been prepared
and their physico-chemical properties have been evaluated. Their structural properties were stud-
ied by Fourier Transform Infrared Spectroscopy with Attenuated Internal Reflection (FTIR–ATR)
accompanied by evaluation of thermal stability, porosity, density, moisture content and microstruc-
ture by Scanning Electron Microscopy—SEM. Additionally, cutaneous assessment using human
epidermal keratinocytes (NHEK), dermal fibroblasts (NHDF) and melanoma cells (A375 and G-361)
was performed. Based on thermal studies, two regions in DTG curves could be distinguished in
each type of scaffold, what can be assigned to the elimination of water and the polymeric structure
degradation of the materials components. The type of scaffold had no major effect on the porosity of
the materials, but the water content of the materials decreased with increasing dialdehyde chitosan
content in subjected matrices. Briefly, a drop in proliferation was noticed for scaffolds containing
20DAC/80Coll compared to matrices with collagen alone. Furthermore, increased content of DAC
(50DAC/50Coll) either significantly induced the proliferation rate or maintains its ratio compared
to the control matrix. This delivery is a promising technique for additional explorations targeting
therapies in regenerative dermatology. The using of dialdehyde chitosan as one of the main scaffolds
components is the novelty in terms of bioengineering.

Keywords: chitosan dialdehyde; collagen; bioengineering; cutaneous cells; scaffolds

1. Introduction

Collagen (Coll) is one of the most important biopolymers, belonging to the group of
proteins [1,2]. It is found in the skin, bone and cartilage tissue, tendons, endothelial vessels,
and in the extracellular matrix (ECM) [3–5]. The collagen family consists of 29 distinct
collagen types. They are divided into four classes based on existence of various α chains,
isoforms of particles, supermolecular structures of each collagen type, differences in the
expressions of genes involved in protein biosynthesis and post-translational modifications
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of collagens [2,3]. Thus, the class of collagen depends on its structural and composition
properties [2].

Collagen is widely used in many areas including biomaterials, tissue engineering,
drug delivery systems, cosmetology, pharmacy, and the food industry [4,6–8]. As a bioma-
terial, collagen exerts numerous advantages such as biodegradability and bioresorbability,
non-toxicity and biocompatibility, non-antigenicity, as well as synergy with bioactive com-
ponents. Moreover, the possibility of its formulation in a number of different forms, it
is easily modifiable to produce materials as desired by utilizing its functional groups,
compatibility with synthetic polymers [7]. Additionally, it also has some disadvantages, i.e.,
a high cost of pure type I collagen, variability of isolated collagen (e.g., crosslink density,
fiber size, trace impurities, etc.), hydrophilicity which leads to swelling and a more rapid
release of substances incorporated to material, and variability in enzymatic degradation
rate as compared with hydrolytic degradation. Furthermore, complex handling properties,
side effects such as bovine spongeform encephalopathy (BSF), mineralization, low stability
under high temperature or presence of enzymes [4,7]; therefore, the structure of pure
collagen requires stabilization and modification [4,7].

The most commonly used methods to modify collagen materials are mixing with
natural (chitosan [9], hyaluronic acid [10], silk fibroin [11], elastin [12], keratin [13]) or
synthetic polymers (poly(vinyl pyrrolidone) [14], poly(vinyl alcohol) [15], poly(ethylene
glycol) [16], poly(ethylene oxide) [16]), and cross-linking with chemical (EDC/NHS [17],
dialdehyde starch [18], glutaraldehyde [19], genipin [20]), physical (temperature [21], UV
light [22]) or enzymatic (microbial transglutaminase [4,23]) factors.

Dialdehyde chitosan is the compound obtained from chitosan by oxidation with
sodium or potassium periodate. The process of periodate oxidation endows chitosan
with multiple functional aldehyde groups. The dialdehydes, including dialdehyde chi-
tosan, are considered as a safe additives and green cross-linking agents for various bio-
materials and nanomaterials. They also can be used as a biological tissue fixation and
tanning agents [24–27]. The use of dialdehyde compounds for materials’ modification
is a good route since dialdehydes react readily with functional groups from other poly-
mers. Dialdehyde starch [18,28,29], dialdehyde carboxymethyl cellulose [30], dialdehyde
nanocellulose [31], dialdehyde cellulose [32], dialdehyde alginate [33,34] and dialdehyde
chitosan [24,27] have been used to cross-link collagen materials. Thus, Figure 1 shows the
mechanism of the reaction between collagen and a dialdehyde compound.
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Figure 1. The mechanism of collagen and dialdehyde compound reaction (based on collagen and
dialdehyde cellulose example from Pietrucha and Safandowska’s work [32]).

Pietrucha and Safandowska [32] have studied the physicochemical properties of silver
carp collagen modified by dialdehyde cellulose, and they reported a marked increase in
thermostability of collagen structure and the improvement of the mechanical strength
of the modified materials. Hu et al. [33] described the interaction between collagen and
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alginate dialdehyde (ADA) used as naturally derived cross-linker, and they indicated
that the ADA addition could improve the properties of collagen-based materials such as
thermal stability and hydrophilicity. Additionally, the dialdehyde compound resulted
in the aggregation of collagen molecules, not destroying the triple helix conformation of
collagen and it has a positive effect on cells proliferation at a certain content of ADA [33].
Yu et al. [34] also used dialdehyde alginate to modify collagen and proved that ADA
significantly improving swelling, rheological behaviors and capability to resist against type
I collagenase. Concerning dialdehyde chitosan as a cross-linking agent, Wanli et al. [35]
used it for collagen fibers cross-linking. They reported that the thermal denaturation
temperature of collagen fiber rose with increasing oxidation degree of chitosan dialdehyde,
and the porosity of collagen fiber was reduced accordingly [35]. Liu et al. [27] also worked
with dialdehyde chitosan as cross-linking agent for collagen materials and concluded
that introducing DAC into collagen may be favorable for cellular growth, adhesion and
proliferation. According to their report, chitosan dialdehyde might be an ideal cross-linking
agent for the chemical fixation of collagen [27]. On the other hand, Bam et al. [24] designed
biostable scaffolds based on collagen cross-linked with dialdehyde chitosan in the presence
of gallic acid (GA), and observed that the formed stable Schiff’s base between collagen and
DAC with GA had significant effects in improving microstructural integrity. Additionally,
the texture, thermal and structural properties, biostability, swelling and water uptake have
been improved after the introduction of DAC in the scaffolds [24].

In this work, we decided to use dialdehyde chitosan as one of the scaffolds components.
Usually, as we considered above, dialdehydes generally were used as additives to mixtures
of biopolymers or to pure biopolymers, that is as cross-linking agents [24–27], not as one
of the main components of scaffolds. The aim of this work was to obtain and characterize
materials based on collagen with chitosan dialdehyde (DAC) in various compositions
(DAC/Coll: 80/20, 50/50 and 20/80). The use of dialdehyde chitosan as a component of
collagen materials, not a cross-linking agent is a novelty. There is only one report, where
dialdehyde chitosan is mixed as component of scaffold. Mixtures with hyaluronic acid
and the results of their physico-chemical characterization were described in our previous
reports [36,37].

2. Materials and Methods
2.1. Materials

Collagen (Coll) and dialdehyde chitosan (DAC) were obtained in-house. Colla-
gen was prepared from tail tendons of young rats following our previously reported
method [38]. Dialdehyde chitosan was obtained by one-step synthesis following the
method described by Bam et al. [24] with slight modifications. The synthesis of dialde-
hyde chitosan was previously described by this research group [36]. Reagents purchased
form Sigma-Aldrich (St. Louis, MO, USA): chitosan (DD = 78%), acetic acid, HCl, acetone,
isopropanol, sodium periodate, Minimum Essential Medium Eagle (MEM) (1000 mg/L),
1% penicillin-streptomycin solution, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT), L-glutamine (200 mM), and 0.05% trypsin/0.53 mM EDTA solution. Fetal
bovine serum was purchased from Thermo Fisher Scientific (Waltham, MA, USA). Human
epidermal keratinocytes (NHEKs) and human dermal fibroblasts (NHDFs) were supplied
by PromoCell (Heidelberg, Germany) and American Type Culture Collection (ATCC) (Man-
assas, VA, USA), respectively. Human melanoma cell i.e., amelanotic A375 and G-361 cell
lines supplied by ATCC (Manassas, VA, USA).

2.2. Obtaining the Scaffolds

Chitosan dialdehyde was dissolved in water and collagen was dissolved in 0.1 M
acetic acid at 1% concentration separately. They were mixed in different weight ratios:
80/20, 50/50 and 20/80. The scaffolds based on pure collagen were treated as control
samples. Solutions were mixed with a magnetic stirrer for 1 h and the obtained mixtures
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were poured into 24-well polystyrene culture plates, frozen, and lyophilized (−20 ◦C,
100 Pa, 48 h, ALPHA 1–2 LDplus, CHRIST, Ostreode am Harz, Germany).

2.3. Structural Studies—Attenuated Total Reflectance–Fourier Transform Infrared
Spectroscopy (FTIR-ATR)

Nicolet iS10 spectrometer equipped with an attenuated total reflectance (FTIR–ATR)
device with a germanium crystal (Nicolet iS10, Thermo Fisher Scientific, Waltham, MA,
USA) was used to analyze the chemical structure of the obtained scaffolds. The spectra were
evaluated in the range of 600–4000 cm−1. All spectra were recorded with the resolution of
4 cm−1 with 64 scans.

2.4. Thermal Stability

Thermogravimetric analyses were performed at a heating rate of 10 ◦C/min
(20–600 ◦C) under nitrogen atmosphere, by using TA Instruments SDT 2960 Simultaneous
TG-DTG (TA Instruments Manufacturer, Eschborn, Germany). From thermogravimetric
curves, the characteristic temperature at a maximum decomposition rate of the investigated
composites was determined.

2.5. Determination of Density, Porosity and Water Content

The liquid displacement method with isopropanol was used to measure density and
porosity of the scaffolds. A fragment of the sample with a known weight was immersed
in a cylinder with a known volume of isopropanol for 3 min. The density was calculated
using the following Equation (1):

d
[ mg

cm3

]
=

W
V2 − V3

·100% (1)

where W—weight of sample (mg), V2—total volume of isopropanol with the isopropanol
impregnated sample (cm3), and V3—volume of isopropanol after scaffold removal (cm3).
The porosity was calculated using following Equation (2):

ε [%] =
V1 − V3

V2 − V3
× 100% (2)

where V1—initial volume of isopropanol (cm3), and V2, V3—as above.
Gravimetric analysis was used to determine the water content of the samples. The

water content of scaffolds was measured by drying samples at 105 ◦C until they reached a
constant weight. The results were expressed as grams of water per 100 g of dry sample.

2.6. Scanning Electron Microscopy Imaging

The morphology of the samples was studied using a Scanning Electron Microscope
(LEO Electron Microscopy Ltd., Cambridge, UK). Scaffolds were frozen in liquid nitrogen
for a few minutes, cut with a razor blade and gold coated prior to the observation.

2.7. Cell Culture and Proliferation Ratio Assessment

Human epidermal keratinocytes (NHEKs) and human dermal fibroblasts (NHDFs)
were supplied by PromoCell (Heidelberg, Germany); amelanotic A375 and G-361 cell lines
were supplied by the American Type Culture Collection (ATCC) (Manassas, VA, USA),
respectively. NHEKs were grown in Keratinocyte Growth Medium 2 supplemented with
1% penicillin-streptomycin solution while NHDFs were maintained in MEM medium
supplemented with 10% (v/v) heat-inactivated fetal bovine serum, 2 mM of L-glutamine,
and 1% (v/v) streptomycin-penicillin solution. Melanoma cells were maintained in MEM
medium supplemented with 10% (v/v) heat-inactivated fetal bovine serum, 2 mM of L-
glutamine, and 1% (v/v) streptomycin-penicillin solution. Cells were seeded in 24-wells
plates at the density of 0.5 × 105 cells/well and were allowed to attach to the surface of the
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scaffolds for 24 h. Afterwards, cells were cultured in supplemented culture medium in a
humidified 5% CO2 atmosphere at 37 ◦C for 96 h while the culture medium was exchanged
every 48 h. Differences in cell viability were assessed using the MTT assay. MTT (5 mg/mL
in 1 × PBS) was prepared in the respective culture medium (the final dilution, 1:10), 100 µL
of assay reagent was added to each well, and cells were subsequently incubated for 3 h in a
humidified atmosphere of 5% CO2 at 37 ◦C. The resultant formazan crystals were dissolved
using 100 µL isopropanol/0.04 N HCl, absorbance was measured at λ = 595 nm using the
BioTek ELx808™ microplate reader (BioTek Instruments, Inc., Winooski, VT, USA), and the
results were normalized to the control cells.

2.8. Statistics

Statistical analysis of the data was completed using commercial software (GraphPad
Prism 8.0.1.244, GraphPad Software, San Diego, CA, USA). The results were presented as a
mean ± standard deviation (S.D.) and were statistically analyzed using one-way analysis
of variance (one-way ANOVA). Multiple comparisons between the means were performed
with the statistical significance set at p ≤ 0.05. Results from mechanical tests, density,
porosity and water content measurements were subjected to statistical analysis.

For cell culture and proliferation ratio assessment, data were expressed as pooled
means + S.D. of six independent experiments (n = 6). Statistically significant differences
between results were determined by the univariate analysis of variance (ANOVA) or the
Student’s t-test and appropriate post hoc analysis (Tukey or Dunnett tests, accordingly). All
the analysis are presented as percentage of the control sample and a p < 0.05 was considered
as statistically significant.

3. Results and Discussion
3.1. Structural Studies—FTIR-ATR

To evaluate the molecular structure of DAC/Coll scaffolds and confirm possible
interactions between dialdehyde chitosan and collagen, FTIR-ATR analysis was performed.
Additionally, FTIR analysis allows to observe the presence of functional groups, that
may be used to identify compounds and interactions between material components. The
spectra of the obtained materials are shown in Figure 2. The structure of collagen [37–41]
and dialdehyde chitosan [25–27,42,43] have often been analyzed and described in the
literature (Figure S1 in the Supplementary Materials). Herein, it was decided to record
only the spectra of mixtures based on dialdehyde chitosan and collagen, as presented via
the positions of their characteristic bands (Table 1). It may be observed that the position
of Amide II and Amide III does not depend on the DAC/Coll weight ratio. However,
the Amide A and Amide B band positions are shifted. This suggests that they participate
in the formation of hydrogen bonds between these materials. Additionally, the C–OH
peak was not observed in the spectra with the lowest DAC content. The –C=N peak was
noticed only for the material composition with the highest DAC content. In the other two
materials (20DAC/80Coll and 50DAC/50Coll), this peak of stretching vibration (around
1630–1640 cm−1) formed by Schiff base reaction overlapped with the C=O stretching in
Amide I [44]. Based on these observations, our results indicated that dialdehyde chitosan
was successfully introduced into the collagen matrix.

Table 1. The positions of characteristic bands of DAC/Coll based scaffolds.

Specimen Amide A Amide B CH3 C–OH Amide I C=N Amide II Amide III

20DAC/80Coll 3313 3077 2932 − 1656 − 1556 1241
50DAC/50Coll 3306 3078 2934 1730 1656 − 1556 1241
80DAC/20Coll 3322 3086 2938 1731 1658 1632 1556 1240
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3.2. Thermal Stability

The biopolymers are characterized by low denaturation temperature, and their thermal
properties should be considered (Table 2). TG-DTG curves of collagen, 20DAC/80Coll and
80DAC/20Coll scaffolds are shown in Figure S2 and S3 in the Supplementary Materials.

Table 2. Results of DTG analysis with temperatures of maximum peaks.

Specimen Tmax (1) (◦C) Tmax (2) (◦C)

100Coll 47.5 324.3
20DAC/80Coll 147.0 326.7
50DAC/50Coll 147.1 314.3
80DAC/20Coll 147.6 307.3

Two regions in DTG curves could be distinguished in each type of scaffolds. The
first one may be correlated with the elimination of water molecules present in the scaf-
folds [36]. For scaffolds made of pristine collagen, it was 47.5 ◦C. For materials based on
dialdehyde chitosan and collagen mixtures, the region responsible for water elimination,
were observed at much higher temperature, namely 147.0 ◦C for 20DAC/80Coll scaffolds
and approximately 147 ◦C for 50/50 and 80/20 DAC/Coll materials. Thus, no significant
differences between scaffolds with different DAC/Coll compositions were observed, but a
significant improvement in thermal stability was noticed for DAC/Coll based materials
over pristine collagen-based matrices. The second region in DTG curves may be assigned
to the degradation of the polymeric structure of the materials components [36] and the
fast volatilization of the polymer segment due to the thermal scission of the polymer back-
bone [44]. Tmax (2) for collagen materials was comparable with Tmax (2) for DAC/Coll
samples, and it was within the limits of 307.3 to 326.7 ◦C. Similar results were obtained by
Liu et al. [27] who showed that the addition of oxidized chitosan resulted in the increase
in maximum temperature of the first and second stages. Additionally, the addition of
chitosan dialdehyde to cellulose increased the thermal stability of the obtained films [44].
In summary, for materials made of dialdehyde chitosan and collagen-based mixtures, the
temperature below 146 ◦C is safe and does not cause material degradation. The Schiff base
reactions (what was reported in Sections 1 and 3.1. Structural studies—FTIR–ATR) that
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occurred between dialdehyde chitosan and collagen significantly improved the thermal
stability of the scaffolds (Figure 1) [44].

3.3. Density, Porosity and Water Content

Parameters such as density, porosity or moisture content are important from the point
of view of using the material in tissue engineering. They were determined and the results
are shown in Figure 3.
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Namely, the porosity (Figure 3B) of investigated materials ranged from 88.08 ± 0.64%
(Coll) to 92.27 ± 0.99% (20DAC/80Coll). No statistically significant differences between
control (Coll) and other materials were observed. Potential material targeting tissue en-
gineering should be characterized by porosity of about 90% [45–47]. Here, porosity of
our assessed matrices was higher or almost 90% and this means that they met the above
requirement. The content of dialdehyde chitosan in the scaffolds had no major influence on
the porosity of the materials but the addition of dialdehyde chitosan to collagen may affect
the density of the material, which is in agreement with Pietrucha and Safandowska [32].

Furthermore, the highest density was observed for 50DAC/50Coll scaffolds. No
statistically significant differences between pristine collagen scaffolds and 20DAC/80Coll
and 80DAC/20Coll have been noticed (Figure 3A). With increasing dialdehyde chitosan to
collagen, the material density increased until at the weight ratio 50DAC/50Coll.

Concerning moisture content (Figure 3C), it may be seen that it decreased with increas-
ing dialdehyde chitosan to collagen ratio, and it reached 14.22 ± 0.34 g/100 g for collagen
and 6.62 ± 1.27 g/100 g for 80DAC/20Coll scaffold. The moisture content of pure collagen
materials was the same as in our previous study, where collagen, collagen and silk fibroin
as well as collagen, silk fibroin and chitosan scaffolds were cross-linked with dialdehyde
starch [47]. In the above-mentioned study, it was concluded that in the case of materials
modified with a dialdehyde compound, the moisture content decreased in comparison
with the moisture content found in the unmodified material [47]. It suggests that collagen
has more polar character than chitosan as it has more hydrophilic groups for a given chain
length. Only with pristine collagen the moisture content for the modified and unmodified
material was 14.17 ± 1.36 g/100 g and 13.10 ± 0.79 g/100 g, respectively. Nevertheless,
such a small difference could be due to the fact that in that study only a 10% addition of
dialdehyde compound to the polymer was used [47].

3.4. Morphological Studies—SEM

SEM imaging was used to assess the morphological structure of scaffolds. The SEM
images show the inner region of the scaffold after cutting it with a scalpel, as shown in
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Figure 4. Namely, the heteroporous structure of collagen and dialdehyde chitosan/collagen
materials were well-ordered. After freeze-drying process where solvents (water and 0.1 M
acetic acid) act as pore-forming agents (porogens), the materials were characterized by pores
with variable size and geometry. The scaffold morphology was related to the feed ratio of
dialdehyde chitosan to collagen. As for 80DAC/20Coll and 20DAC/80Coll materials, the
sponges had structures very similar to that of native collagen. 80DAC/20Coll materials
presented the best microstructure. Pores were most regular and most similar to each
other in shape and size that diameter was approximately 140 µm for collagen, 133 µm for
20DAC/80Coll, 90 µm for 50DAC/50Coll, and 75 µm for 80DAC/20Coll.
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About 50DAC/50Coll, the material was characterized by a heterogenous structure, and
it could be a result of the excessively fast cross-linking between collagen and dialdehyde
chitosan. In this case, the pores were irregular, more closed and unequal. A similar
observation was reported by Ding et al. [48] where collagen materials were cross-linked
by dialdehyde cellulose. This is consistent with the results of density (Figure 3), e.g., the
highest density was visible, and it was 32.89 ± 4.50 mg/cm3.

Bam et al. [24] reported a little bit more flattened structure of DAC modified colla-
gen than pure collagen scaffold. Mu et al. [18] studied several physico-chemical proper-
ties of collagen materials modified with dialdehyde starch (DAS) with weight ratios of
DAS/Coll: 1:100, 1:70 and 1:10, and they observed that fibrous surface structures were
more pronounced at low DAS content, while integrally lamellar aggregates appeared as
DAS increased. One may say that this coincides with our results if we look at the materials
50DAC/50Coll (C) and 80DAC/20Coll (D). They also reported [18] that the thickness of the
pore wall increased with the content of DAS, and their cryogels became more solid with
higher DAS content.
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3.5. Cellular Assessments Using Cutaneous Models

We performed the proliferation rate assessment (Figure 5) using selected cutaneous
cell models, i.e., human epidermal keratinocytes and dermal fibroblasts providing the new
insight into a considerable improvement of wound dressing, re-epithelization or therapeutic
approaches for skin. Comparatively, we also tested melanoma cell lines used as reference
cellular models to confirm the responses of primary cell lines as it was presented in our
latest studies [36,49,50]. Within all investigated cell lines, we observed similar pattern of
regulation where 20DAC/80Coll scaffolds caused prominent drop in cell proliferation,
ranging from 29% to 46% versus scaffolds containing only collagen. Furthermore, increased
content of DAC (50DAC/50Coll) either significantly induced the proliferation rate or
maintained its ratio compared to the control matrix. A similar response was noticed
when comparing scaffolds loaded only with DAC and those with respective addition
of collagen. Namely, 50DAC/50Coll scaffolds enhanced proliferation rate versus DAC
alone by 40% (NHEKs, Figure 5A), 33% (NHDFs, Figure 5B), 30% (A375, Figure 5C), 37%
(G361, Figure 5D) while cells cultured on 80DAC/20Coll matrices revealed slight but not
statistically significant increase versus DAC. The composition of 50DAC/50Coll provides
the most suitable environment for cells as for them the cell viability is the highest for each
type of cell line. It may be assumed that both collagen and dialdehyde chitosan are valuable
as matrices.
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Figure 5. Assessment of proliferation rate in human cutaneous cell lines. Human cells from epidermal
keratinocytes (NHEKs, A), dermal fibroblasts (NHDFs, B) as well as human amelanotic melanoma mod-
els, i.e., A375 (C) and G-361 (D) were seeded on subjected scaffolds loaded with respective components,
cultured for 96 h, and viability was assessed using the MTT viability assay as described in Section 2.
Data are presented as mean S.E.M. (n = 6), expressed as a percentage of the control cells cultured on
matrices with collagen. Statistically significant differences versus collagen-contained scaffolds were
indicated as follows: * p < 0.05, ** p < 0.01, *** p < 0.001 while changes versus scaffolds with DAC alone
were indicated as ## p < 0.01 and ### p < 0.01 and selected with green color; n.s.—not significant.
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Obtained results are in line with other physico-chemical properties enclosed in this
study. Nevertheless, further assessments are utmost needed to understand the correlation
between cell proliferation and the composition of scaffolds targeted in wound healing.

4. Conclusions

In conclusion, we have successfully prepared dialdehyde chitosan/collagen scaffolds.
The dialdehyde chitosan have been prepared by a fast, not complicated, and cheap one step
process. The materials have been obtained by a freeze-drying method.

The obtained scaffolds have been characterized by two regions in DTG curves, which
were responsible for water molecules elimination and polymeric structure degradation in
polymeric materials. The scaffold had a porous structure with a porosity around 90%, which
is adequate for bioengineering applications. The highest material density was observed for
50DAC/50Coll scaffold, which is in agreement with SEM micrographs, where irregular
and more closed structure of scaffold have been shown. Human epidermal keratinocytes
(NHEK), dermal fibroblasts (NHDF) and reference melanoma cells (A375 and G-361) have
been used for biological assessment of the obtained materials and that test led to the
conclusion that increased content of dialdehyde chitosan either maintained or significantly
increased the proliferation rates when compared to collagen scaffold. Thereby, it may be
assumed that the most suitable material is in the composition 50DAC/50Coll.

Further tests to characterize dialdehyde compounds/collagen materials could be
performed as a next step of this area of research. However, it is believed that the addition of
chitosan dialdehyde to collagen may find potential use in the preparation of biopolymeric
scaffolds for biological applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14091818/s1, Figure S1. The FTIR spectra of (A) collagen
and (B) dialdehyde chitosan, Figure S2. The TGA-DTA curves of collagen, Figure S3. The STG curves
of 20DAC/80Coll and 80DAC/20Coll scaffolds.
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36. Grabska-Zielińska, S.; Sosik, A.; Małkowska, A.; Olewnik-Kruszkowska, E.; Steinbrink, K.; Kleszczyński, K.; Kaczmarek-
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Abstract: Different parts of bones possess different properties, such as the capacity for remodeling
cell content, porosity, and protein composition. For various traumatic or surgical tissue defects, the
application of tissue-engineered constructs seems to be a promising strategy. Despite significant
research efforts, such constructs are still rarely available in the clinic. One of the reasons is the lack
of resorbable materials, whose properties can be adjusted according to the intended tissue or tissue
contacts. Here, we present our first results on the development of a toolbox, by which the scaffolds
with easily tunable mechanical and biological properties could be prepared. Biodegradable poly(lactic
acid) and nanocrystalline cellulose methacrylated particles were obtained, characterized, and used
for preparation of three-dimensional scaffolds via cryogelation and 3D printing approaches. The
composition of particles-based ink for 3D printing was optimized in order to allow formation of
stable materials. Both the modified-particle cytotoxicity and the matrix-supported cell adhesion were
evaluated and visualized in order to confirm the perspectives of materials application.

Keywords: poly(lactic acid); nanocrystalline cellulose; methacrylation; particles; 3D printing;
scaffolds; tissue engineering

1. Introduction

Bone loss and fracture caused by disease or injury re considered major health prob-
lems [1]. Today, the most common method to address bone defects is bone grafting, but
unfortunately, it is still problematic for clinicians to choose between autografts, allografts or
engineered tissues [2]. Recently, bone tissue engineering (BTE) has gained more attention as
a potential treatment for bone defects. The strategy for bone tissue engineering involves the
following steps: (1) identification of a suitable cell source, isolation of cells and expansion
of cells to sufficient amounts; (2) obtaining of a biocompatible material that can be used as
a cell substrate and processed into the required shape (scaffold); (3) seeding of the scaffold
with cells, which can then be cultivated in bioreactors; (4) placement of the material-cell
construct into the target site in vivo [2]. In this regard, scaffolds are the key component of
BTE, as they regulate bone healing and mimic the extracellular matrix (ECM) function in the
bone tissue [2,3]. An ideal scaffold for bone tissue repair should have a three-dimensional
porous structure with a highly interconnected pore network, being biocompatible and
controllably bioresorbable [3,4]. The ideal strategy for regenerative bone therapies is to use
a tunable scaffolding material that can modulate the process of healing while providing
mechanical support [2,5].

Tuning of scaffolding material properties requires a certain level of versatility, which
could be provided by polymers—the intelligent choice of macromolecules—and their
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combinations allow the formation of materials with a wide variety of both mechanical and
biological properties [6]. The development of composites allows further upgrades the level
of the materials’ versatility [7]. However, despite the great progress in the preparation of
various materials for scaffold formation, there are still unsolved problems, such as control
over spatial and temporal distribution of bioactive molecules, as well as the formation of
gradients [8–10]. It is now obvious that successful scaffold application requires control over
its micro/nanotopology as well as providing the scaffold with the ability to promote and
guide cell-induced tissue regeneration through the regulation of local microenvironment
by exposing the appropriate signals at the desired site for the required time frame [11]. The
development of such complex scaffolds is essential, because the combination/distribution
of various materials could resemble the complexity of natural bone tissue. These issues
require higher levels of material versatility, which could be provided by the application of
combinations of polymeric particles of different origins with different properties as “ink”
for the 3D printing of scaffolds. Particles possessing different chemical natures and various
densities and surface properties can be aggregated into supermacroporous matrices using
different combinations of such particles, which should allow the tuning of the mechanical
properties and surface topology of the pores [12,13]. It could be supposed, for example, that
increasing the number of hard particles and the density of cross-linking should result in
greater mechanical strength, while the addition of soft particles should favor the formation
of gel-like materials. Particles with different properties could be combined into one material
to mimic the tissue contacts; for example, osteochondral scaffolds [14]. Moreover, the useful
peculiarities of the particles are their potential for surface modification and their ability to
entrap different substances into their inner volume, which allow the spatial distribution of
osteogenic or angiogenic factors and their temporally controlled release [15]. The release of
various drugs could also be very useful in the cases when bone regeneration is associated
with surgical interventions due to various diseases [16].

There are many methods that were developed in order to obtain porous materials
applicable for supporting 3D cell growth: melt-molding, fiber bonding, porogen leaching,
gas foaming and phase separation [17]. Pore diameter greater than 50 µm, pore unifor-
mity and interconnectivity are the main goals for these methods. However, not all these
approaches are suitable for preparation of particles-based scaffolds. One of the interesting
techniques that is useful for the preparation of supermacroporous matrices is cryogelation.
This method is based on solid–liquid phase separation, and includes freezing of the solu-
tion or preformed gel, cross-linking interactions between macromolecules or particles and
removal of the solvent [18]. As the solution is frozen, the solvent crystals grow until they
come into contact with other crystals. Thus, the solvent crystals form a common extended
structure. The phase containing the polymer or particles is concentrated around the crystals
and is called the unfrozen liquid microphase (ULMP). In fact, crystals of water push the
polymer molecules or particles together. This process is called ”cryo-concentration“ [18].
In such concentrated conditions, different chemical cross-linking reactions, such as cryo-
polymerization, could run very efficiently, even at temperatures below 0 ◦C [19]. The last
stage of cryogel formation is the removal of the solvent crystals via freeze-drying, leaving
the supermacroporous structure, which is useful for cell seeding and proliferation (see the
scheme and images in [19]).

Previously developed 3D printing techniques are also very good candidates for the
preparation of scaffolds by particle controllable aggregation. Modern 3D printers allow
precise control over the material composition as well as simultaneous combination of
different printing techniques: [20–23]. However, 3D organization of particles into scaffolds
via direct ink writing (DIW) and stereolithography (SLA) is still an unexplored area [24].
Wide application of such 3D printing techniques in clinics with utilization of particles
as versatile material for scaffold formation could help to solve the problems of auto-
and allograft applications, which comprise a shortage of bone, donor site morbidity and
additional operations on the patients [2].
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Poly(lactic acid) (PLA) is one of the most widely used polymers for biomedical appli-
cations [25]. This polyester is often a good selection in the case of scaffolds for BTE [23,26].
PLA is biocompatible and its application in medicine is approved by the Food and Drug
Administration (FDA) agency [25,27]. One of the most valuable features of PLA is its
controllable biodegradability [27]. PLA is a thermoplastic polymer that is non-soluble in
water and relatively hydrophobic [25]. On one hand, this allows the formation of stable bio-
materials with different geometries, but on the other hand, this could cause unpredictable
in vivo biointeractions between PLA-based materials and the surrounding tissues [28]. In
order to improve the mechanical properties and hydrophilicity of PLA-based scaffolds,
the PLA is commonly combined with various particles, such as hydroxyapatite [29], chi-
tosan [30,31], graphene oxide [32] etc., in order to form composite scaffolds. Recently it
was recognized that among the prospective additives for PLA are micro- or nanocrystalline
cellulose (MCC/NCC) particles, which are very biocompatible and can significantly in-
crease scaffold mechanical performance and hydrophilicity [33]. NCC particle surfaces
could be also chemically modified with special molecules in order to affect the biological
properties of the polyester-based composite scaffold; for example, inducing calcification
and bone tissue formation around the implanted material [34,35]. Such composite scaffolds
could be considered as “particle-incorporating scaffolds”, in which particles are dispersed
into a PLA-based continuous phase. This type of composite scaffold is often prepared via
3D printing, which uses fused deposition modelling (FDM) technology [24,34]. Despite
significant research in this area, the approach presents challenges with regard to control
over biomolecule delivery, cell infiltration and viability within the scaffold matrix and
clinical handling [36]. Moreover, it is difficult to use FDM technology only for spatial
control of component distribution.

Another possible type of particle organization in materials for tissue engineering is
the “particle-based scaffold”. In such a structure, PLA microspheres themselves or their
combinations with other particles represent the building blocks for scaffold framework
formation [37,38]. It is well-known that crude PLA can be easily converted into micro-
spheres via emulsion protocols [39]. In previous studies, microspheres based on PLA or
other polyesters were used as blocks for preparation of scaffolds via interfusion of particles,
which was provoked by thermal sintering [14,40] or solvent-induced sintering [41] protocol.
Additionally, the selective laser sintering (SLS) technique could be successfully applied to
produce nanocomposite PLA-hydroxyapatite scaffolds [42]. The mentioned techniques of
particle-based scaffolds preparation are very similar to the procedures of powder-based
technologies. In fact, none of these techniques allow reliable preservation of encapsulated
biomolecule stability, due to the application of elevated temperatures, laser, or organic
solvents. In this regard, the simultaneous application of soft DIW and SLA 3D printing
techniques is of interest because it allows the formation of a scaffold with spatial distribu-
tion of different particle types within the scaffold (Figure 1). These techniques also allow
the formation of so-called gradient scaffolds.

To the best of our knowledge, no studies on PLA and NCC particle controllable or-
ganization into scaffolds via covalent cross-linking has been previously published. Thus,
the purpose of this study was investigation of the unexplored possibility of PLA and NCC
nanoparticle (NPs) covalent interaction to allow the production of 3D matrices, which could
be used as scaffolds for tissue engineering. To provide the possibility of their chemical
cross-linking, both PLA and NCC NPs were methacrylated (PLA-methacrylate—PLA-MA
and NCC-methacrylate—NCC-MA). The effect of particle modification on the viability
of cells was tested. Then, we aimed to investigate the possibility of chemical interparti-
cle cross-linking without external cross-linkers, as well as in the presence of bifunctional
(poly(ethylene glycol) dimethacrylate) and multifunctional (gelatin methacrylate) macro-
molecular cross-linkers. The ability of methacrylated particles to form 3D structures was
firstly analyzed via rheological measurements, and then optimized mixtures were used
for porous matrix formation. Cryogelation and 3D-printing approaches were applied for
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this purpose, allowing comparison of materials obtained by these methods. The effect of
composition used for matrix preparation on cell attachment was finally tested.
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2. Materials and Methods
2.1. Materials

All monomers, initiators, and agents for modification, as well as nonionic poly(oxyethylene-
b-oxypropylene) (Pluronic F-68, MW = 138.16), sodium dodecyl sulfate (SDS), poly(vinyl
alcohol) (PVA, MW = 70,000), 2-hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone (Ir-
gacure 2959) and poly(ethylene glycol) dimethacrylate (PEGDA, MW = 700) were purchased
from Sigma-Aldrich (Munich, Germany). NCC was a product of Blue Goose Biorefineries
Inc. (Saskatoon, SK, Canada). Organic solvents (toluene, chloroform, methanol, etc.) used
for polymer synthesis and modification were from Vecton (St. Petersburg, Russia). All
organic solvents were distilled before application. Poly(L-lactic acid) (PLA, MW = 18,500;
Ð = 1.23) was synthesized by ring-opening polymerization of L-lactide (Sigma-Aldrich,
Munich, Germany) as previously described [43]. Methacrylated gelatin (GelMA) was
synthesized as described in [44].

Dulbecco’s Modified Eagle Medium (DMEM-F12) (Biolot, Saint Petersburg, Rus-
sia)/10% fetal bovine serum (FBS) (Biowest, Riverside, MO, USA)/50 IU/mL
penicillin/50 µg/mL streptomycin (Biolot, Saint Petersburg, Russia) was used for cell
culture experiments.

2.2. Cells

MSCs (bone marrow mesenchymal stem cells) and NIH 3T3 (mouse fibroblast cells)
cell lines were obtained from the German Collection of Microorganisms and Cell Culture
(DSMZ, Braunschweig, Germany).

2.3. Methods
2.3.1. PLA-Based Particle Formation

PLA-based particles were obtained by single emulsion method as previously de-
scribed [39,45]. Shortly, 2 mL solution of PLA in dichloromethane (50 mg/mL) was dis-
persed into 20 mL of ice-cold water phase, in which 0.2 g of SDS (1 wt%) and
0.6 g of Pluronic F-68 (3 wt%) were preliminarily dissolved. The emulsion was formed
via simultaneous application of ultrasound homogenizer (Sonopuls HD2070, Bandelin,
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Berlin, Germany) and magnetic stirrer (MR Hei-Mix S, Heidolph, Schwabach, Germany) at
700 rpm during 10 min. The resulting emulsion was diluted in 80 mL of ice-cold 1 wt% PVA
aqueous solution. Dichloromethane was removed by evaporation using rotary evaporator
(Hei-VAP Precision ML/G3B, Heidolph, Schwabach, Germany) at 100 mbar for 2–3 h.
The obtained particles were isolated by centrifugation (Sigma 2–16 KL, Sigma, Darmstadt,
Germany) at 10,000 g and washed three times with distilled water.

2.3.2. PLA Particle Modification with 2-Aminoethyl Methacrylate

First, the available reagent 2-aminoethyl methacrylate in hydrochloride form
(2-AEMA•HCI) was converted to a free base by treatment with diisopropylethylamine.
For that 0.3 g of 2-AEMA•HCI was placed in a 25 mL vial, 15 mL of diethyl ether was
added and 450 µL of diisopropylethylamine was added at stirring. The reaction proceeded
for 2 h under vigorous stirring at room temperature. Then the precipitate was separated
by centrifugation, and the supernatant containing 2-AEMA was concentrated on a rotary
evaporator. As a result, the free base 2-AEMA as an oil was isolated from the crystalline
hydrochloride form of 2-AEMA•HCI.

The PLA particle modification scheme is shown in Figure 2A. A quantity of 500 mg
of PLA particles were treated with 0.1 M NaOH solution (50 mL) to generate carboxyl
groups (Figure 2(A1)) on the particle surface [46]. The hydrolysis was conducted for 30 min
at room temperature, under stirring (350 rpm). Then, the particles were purified 5 times
by Vivaspin-column dialysis (filter MWCO 10,000; 25 mL; Merck, Darmstadt, Germany)
against 20 mL of ice-cold grade water (MQ water) and 3 times against 0.05 M buffer solution
of 2-(N-morpholino)ethanesulfonic acid, pH 5.6 (MES buffer).
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Figure 2. The schemes of methacrylated particles formation via reaction with 2-aminoethylmetha-
crylate: (A)—modification of PLA particles; (B)—modification of NCC particles.

The suspension of particles in 0.05 M MES with a pH of 5.6 was precooled down
to 5 ◦C, then the solution of 30 mg N-hydroxysuccinimide (NHS) and 20 mg of (N-3-
dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (EDC) in the same buffer were
added consecutively to activate the carboxyl groups (Figure 2(A2)) on the particle surface.
After that, the particles were purified 5 times by Vivaspin-column dialysis (MWCO 10,000)
against MQ water and 3 times against 0.1 M borate buffer solution (BBS, pH 8.4).

Next, 200 mg of AEMA in a 0.1 M borate buffer solution (pH 8.4) was added to
the particle suspension. The reaction was performed for 3 h at room temperature while
stirring at 500 rpm to obtain the final product—methacrylated PLA particles (PLA-MA,
Figure 2(A3)). Then, the particles were purified by Vivaspin-column dialysis (MWCO 1000)
against ultrapure water.
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2.3.3. Nanocrystalline Cellulose Modification with AEMA

The PLA particle modification scheme is shown on Figure 2B. A quantity of 1 g of 8%
stock nanocrystalline cellulose (NCC) suspension was diluted 10 times with MQ water and
cooled to 5 ◦C while stirring for 30 min. Then, 500 mg of sodium metaperiodate in 5 mL of
water was added into the reaction mixture. The periodate-containing mixture was wrapped
in aluminum foil to avoid light exposure. The reaction mixture was gently stirred at 5 ◦C in
the dark for 24 h. Thereafter, the obtained 2,3-dialdehyde NCC (DA-NCC, Figure 2(B1))
was purified by Vivaspin-column dialysis (MWCO 1000) against MQ water.

Then, 300 mg of AEMA in 6 mL of MQ water was added to 100 mL of DA-NCC (1.0 g)
suspension in 0.01 M BBS (pH 8.4). The reaction was carried out for 24 h at 20 ◦C under
vigorous stirring at 500 rpm. After that, 300 mg of sodium borohydride was added to the
reaction mixture to reduce the remaining aldehyde groups and imine bonds. The reaction
was carried out for 24 h at 20 ◦C under stirring at 500 rpm. The product (Figure 2(B2)) was
purified by Vivaspin-column dialysis (MWCO 1000) against MQ water.

2.3.4. Particle Characterization

The introduction of methacrylate (MA) groups onto the particle surfaces was proved
by: (1) 1H NMR spectra, which were recorded with equipment of Magnetic Resonance Re-
search Centre of St. Petersburg State University (Bruker Avance spectrometer,
400.13 MHz) in CDCl3; (2) FTIR spectra, which were recorded from 4000–400 cm−1

in KBr tablets with application of equipment of Chemical Analysis and Materials Re-
search Centre of St. Petersburg State University (IRAffinity-1, Shimadzu Corporation,
Kyoto, Japan).

Particle hydrodynamic diameter and ζ-potential were measured with Zetasizer Nano
ZS (Malvern, Enigma Business Park, UK) equipped with a He–Ne laser beam at λ = 633 nm.
Nanoparticle tracking analysis (NTA) was performed with a NanoSight NS300 particle
analyzer (Malvern, Enigma Business Park, UK).

The morphology of particles was detected by TEM with equipment from the Centre for
Molecular and Cell Technologies of St. Petersburg State University—Jeol JEM-1400 STEM
(Tokyo, Japan). SEM was used for the investigation of particles and matrix morphology and
this equipment was provided by Interdisciplinary Resource Centre for Nanotechnology
of St. Petersburg State University—Zeiss Supra 40VP (Carl Zeiss MicroImaging GmbH,
Oberkochen, Germany).

2.3.5. Rheological Measurements of Particle Cross-Linking

The UV photo-curing of methacrylated particle suspensions was investigated at
25 ◦C using a MCR 302 Modular Rheometer (Anton Paar, Graz, Austria) equipped with
a plate-plate geometry (20 mm diameter, 0.3 mm gap size) and by performing in situ UV
cross-linking by irradiation with a UV lamp (365 nm, 75 W/cm2, Delolux 80, Delo, Windach,
Germany) from below. The crosslinking kinetics was recorded with a time sweep oscillatory
test under constant strain amplitude of 1% and at a constant frequency of 1 Hz, which is
within the linear viscoelastic (LVE) region.

A series of samples of nanoparticle suspensions of different compositions (PLA-
MA/NCC-MA: 80:20, 60:40, 40:60, 20:80 wt/wt; PLA-MA/NCC-MA 80:20 wt/wt + 20 wt%
PEGDA or GelMA) were prepared. A quantity of 1 mg of photoinitiator (0.1 wt/vol %,
Irgacure 2959) was added to the 1 mL of prepared mixture. The concentration of particles in
the suspension was varied (10, 50 and 100 mg/mL). A 400 µL sample was placed between
the two rheometer plates using an automatic pipette. The sample was irradiated with UV
radiation in situ; the irradiation time was 10 min. Then, the rheological measurements were
continued for a further 10 min without irradiation.

2.3.6. Cryogelation

Matrices were formed in a 1 mL syringe. A quantity of 0.8 mL of particle aqueous
suspension containing 64 mg of PLA-MA and 16 mg of NCC-MA was prepared, and
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0.15 mL of solution containing 216 mg of cross-linking agent (20 wt% from the total
mass of reaction mixture, PEGDA or GelMA) was added to the particle suspension and
homogenized with a thermoshaker (TS-100, Biosan, Riga, Latvia) at 500 rpm during 5 min.
Then, solutions of 1.3 mg of initiator—ammonium peroxodisulfate (APS)—and 1.5 mg of
reaction activator N,N,N′,N′-tetramethylethylenediamine (TMEDA) in 250 µL of ultrapure
water were prepared. First APS and then TMEDA solutions were added under vigorous
stirring to the precooled to 5 ◦C suspensions of particles with cross-linker. After that, the
reaction mixture was immediately transferred into the syringe and placed in the freezer at
−13 ◦C for 24 h. After this period, the samples were allowed to thaw, and the matrices were
washed by passing a 100-fold of the volume of MQ water through them. Then, syringes
were gently cut open to release the resulting matrix, which was further washed with MQ
water over 48 h at 150 rpm stirring with thermoshaker.

2.3.7. 3D Printing

3D CAD models of the desired object for printing were designed and the necessary
settings were lined up using Autodesk Inventor Professional 2015 software (Autodesk Inc.,
San Rafael, CA, USA). 3D printer Allevi 1 (Allevi Inc., Philadelphia, PA, USA) and GeSim
Bioscaffolder 3D printer (Radeberg, Germany) were used for 3D printing. These printers
were equipped with extrusion-type print head and LED 365 nm (1.5 W/cm2) UV lamp for
photo-cross-linking of the material.

Matrices were printed in the wells of 24-well plates using a mixture of particle sus-
pension with added cross-linking in a composition similar to that described above (see
Section 2.3.6). Printing parameters were optimized: printing needle diameter, pressure,
and printing speed. In order to avoid gel formation, the optimal printing suspension
temperature of 37 ◦C was also selected when working with the sample containing GelMA
as an additional cross-linking agent. Uniform extrusion was observed at the printing needle
diameter 0.254 and length 6.35 mm, pressure (0.5 PSI or 3.45 kPa). The optimum printing
speed was 5 mm/s.

Before printing 10 µL (11 µg/µL) of photoinitiator (Irgacure 2959) solution in ethanol
was added to the mixture. The suspension was loaded into an extruder cartridge with
pre-screwed print heads of the required diameter. The cross-linking of the sample was
performed in layers: after the printing of the first level of the matrix, the UV lamp was
turned on, the sample was irradiated for 10 min, and then the printing process was resumed.
Finally, printed samples (length/width/height = 1/1/0.4 cm) were left for an hour in order
to allow the radical cross-linking reaction to proceed, as well as for drying of the samples.

2.3.8. Study of Mechanical Properties

The samples of cryogels and 3D printed materials were prepared in the form of
unified discs 5 mm in diameter and 5 mm thick. The mechanical analysis of the samples
was performed by uniaxial compression tests on a Shimadzu EZTest EZ-L (Shimadzu
Corporation, Kyoto, Japan) tensile testing machine. To ensure tight surface contact with the
sample, the initial force was 0.1 N; the rate of motion was 2 mm/min. The series of parallel
measurements (n = 3) were performed for all cryogel specimens.

2.3.9. Cell Culture Experiments

Cytotoxicity of particles. The cytotoxicity of the particles was studied using the
CellTiter-Blue test (CTB), which is based on the ability of living cells to reduce the blue
nonfluorescent reagent CTB-resazurin (7-hydroxy-3H-phenoxazine-3-one-10-oxide) to the
pink fluorescent resorufin.

A total of 8 × 103 cells (MSCs) in 100 µL of culture medium were seeded in each well
of a 96-well plate and cultured for 24 h (37 ◦C, 5% CO2, 80% humidity). Then, the culture
medium was removed using a sterile glass Pasteur pipette and 200 µL of culture medium
containing nanoparticles in the concentration range of 1–10 mg/mL was added.
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The cells were incubated in a CO2 incubator for 24/48/72 h at 37 ◦C, then the medium
was removed and 100 µL of CTB solution in basal medium (1:10 (vol/vol)) was added to
each well. The cells were incubated for another 2 h at 37 ◦C. The formation of a fluores-
cent product proportional to the number of viable cells was monitored fluorometrically
(λex = 544 nm and λemm = 590 nm). The data were normalized as a percentage of the control
(wells containing cells incubated without test substances). The analysis was repeated five
times for each concentration.

Cells adhesion. Before the cell culture experiments, the samples obtained by 3D-
printing and cryogelation were washed with ultrapure water while stirring to remove
unreacted components. Then they were sterilized with UV light (wavelength range:
200–295 nm) for 30 min on each side.

MSCs were used in the experiments. A total of 4× 104 cells were seeded on the surface
of matrices in 500 µL of nutrient medium in each well. The plate was then placed in a
CO2 incubator (37 ◦C, 5% CO2, 80% humidity) for a predetermined period of time. Then
cells attached to the cryogel surface were visualized. Staining was performed using DAPI
fluorescent dye. For this purpose, the matrices were washed twice with warm 0.01 M
phosphate-salt buffer solution (pH 7.4) for 30 min. Then, 200 µL of cold 4% paraformalde-
hyde in phosphate-salt buffer solution was added to the sample to fix the cells, and was
left for 20 min at room temperature. After fixation, the samples were washed again
with 0.01 M phosphate-salt buffer solution (pH 7.4), and the cell nuclei were stained for
15 min with DAPI working solution (1:1000 (vol/vol) in phosphate-salt buffer solution) at
room temperature (22 ◦C) in the dark. The samples were analyzed using a fluorescence
microscope (Olympus, BX-51 Olympus Corporation, Tokyo, Japan). The data from these
experiments are presented as average ± SD (n = 5).

3. Results and Discussion
3.1. Preparation of Particles Capable of Participation in Free-Radical Polymerization-Mediated
Cross-Linking

The idea of this study was to use PLA and NCC particles for the production of particle-
based 3D scaffolds. PLA NPs were obtained via single emulsion protocol, while NCC
particles were used as purchased. In order to provide the particles with the ability to
participate in the free-radical cross-linking process, the methacrylate groups were intro-
duced onto particle surfaces to obtain PLA-methacrylate (PLA-MA) and NCC-methacrylate
(NCC-MA).

In the case of PLA, we applied the previously developed protocol of PLA parti-
cle surface partial hydrolysis [46], which results in the formation of carboxylic groups
(Figure 2A). These groups were then transformed into the activated esters and put into
reaction with 2-aminoethylmethacrylate (AEMA) to obtain PLA-MA particles. In order to
introduce methacrylate groups on the surfaces of the NCC particles, they were partially
oxidized with sodium periodate. The formed aldehyde groups easily reacted with amino
groups of AEMA to give NCC-MA (Figure 2B).

The successful introduction of methacrylate moieties was proved by 1H NMR and
FTIR spectra for PLA-MA and NCC-MA, respectively (Figure 3). In the 1H NMR spectrum
of PLA-MA particles dissolved in CDCl3, the signals corresponding to the presence of
diastereotopic protons of methacrylate double bond (Figure 3, signals f and f’), protons of
methylene groups between ester and amino groups (Figure 3, signals d and c) and protons
of methacrylate methyl group (Figure 3, signal b) were found.

Because of the non-solubility of NCC, the presence of methacrylate groups in mod-
ified NCC was analyzed by FTIR. In the spectrum of raw NCC, the absorption bands at
3357 cm−1 and around 2908 cm−1 were attributed to the O-H and C-H stretching vibrations,
respectively. The absorption band at 1642 cm−1 could be attributed to the O-H vibration
of absorbed water [47–49]. The bands corresponding to the C-H and C-O vibrations, con-
tained in the polysaccharide rings of cellulose, were around 1374 cm−1. The vibration
of C-O-C in pyranose ring was indicated by the absorption band at 1060 cm−1. In the
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NCC-MA spectrum, it was possible to observe the appearance of new bands. The band at
1738 cm−1 corresponded to the C=O stretching vibrations. It was also possible to observe
an enhancement of intensity and sharpness of the band at 1617 cm−1, which could be due
to the C=CH2 out-of-plane bending vibrations.
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Figure 3. The evidence for successful introduction of methacrylate groups into particles under study:
(A) 1H NMR spectra of PLA and PLA-MA particles dissolved in CDCl3; (B) FTIR spectra of NCC and
NCC-MA.

The Raman spectra of PLA and PLA-MA were recorded in order to check the presence
of methacrylate bonds in modified PLA particles (see Supplementary Materials, Figure S1).
In the presented spectrum of the modified particles, there were valent vibrations of the
C=C bond at 1650 and 1626 cm−1, while in the spectrum of non-modified PLA, no signals
were observed in this region.

Initial and modified particles were characterized by dynamic and electrophoretic light
scattering (DLS and ELS), nanoparticle tracking analysis (NTA), and electron microscopy
(TEM/SEM) (Table 1). The obtained data are presented in Table 1, and the data obtained by
different methods are in good agreement with each other. One can observe that the initial
PLA particles possessed greater diameter than that of raw NCC. Both PLA and NCC had
negative ζ-potential. The value of this parameter was large enough to stabilize particle
suspensions. Modification of particles by MA groups led to some growth in particle size
and a slight decrease in surface charge. However, these changes were not drastic. It is
obvious that growth of particle size could not be caused by particle enlargement due to the
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attachment of MA groups, but most probably resulted from particle aggregation due to the
introduction of hydrophobic MA moieties. The increased width of particle size distribution
after modification favors this statement (see Supplementary Materials, Figure S2). It should
be noted that DH of NCC particles is averaged as if they were spherical particles, although
they were not.

Table 1. Effect of particle modification on particle diameter and surface charge.

Sample # DH (DLS), nm ζ-Potential, mV D (TEM), nm D (NTA), nm

PLA MPs 258 ± 74 −45 ± 7 210 ± 70 263 ± 85
PLA-MA MPs 347 ± 129 −33 ± 8 290 ± 120 443 ± 181

NCC 95 ± 18 −39 ± 11 not determined 121 ± 30
NCC-MA 110 ± 24 −36 ± 5 not determined 182 ± 51

The morphology of the modified particles was analyzed by TEM and SEM. One
can observe that both PLA and PLA-MA (Figure 4) possessed round-shaped particles.
Modification of PLA particles with MA groups did not seem to change their morphologi-
cal features. However, these particles seemed to be quite prone to aggregation, which
is also supported by the data obtained by nanoparticle tracking analysis (Figure S2,
Supplementary Materials).
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Figure 4. Morphology of PLA particles: (A) TEM microphotographs of initial PLA NPs; (B) TEM
microphotographs of PLA NPs modified with AEMA; (C,D) SEM microphotographs of PLA NPs
modified with AEMA.

NCC-MA particles appear on the TEM images in the form of needles (Figure 5). The
obtained sample of NCC-MA was observed by SEM, as presented in Figure 5. One can
see the anisotropic character of the sample, which seems to reflect the organization of
the NCC-MA particles into the fibrillary structures. The organization of NCC into such
structures is well-known as also being the case for non-modified NCC [50].

37



Polymers 2023, 15, 651

Polymers 2023, 15, x FOR PEER REVIEW 11 of 22 
 

 

  
(A) (B) 

 
(C) (D) 

Figure 4. Morphology of PLA particles: (A) TEM microphotographs of initial PLA NPs; (B) TEM 
microphotographs of PLA NPs modified with AEMA; (C,D) SEM microphotographs of PLA NPs 
modified with AEMA. 

NCC-MA particles appear on the TEM images in the form of needles (Figure 5). The 
obtained sample of NCC-MA was observed by SEM, as presented in Figure 5. One can see 
the anisotropic character of the sample, which seems to reflect the organization of the 
NCC-MA particles into the fibrillary structures. The organization of NCC into such struc-
tures is well-known as also being the case for non-modified NCC [50]. 

  

(A) (B) 

  

(C) (D) 

Figure 5. Morphology of NCC particles: (A) TEM images of non-modified NCC particles; (B) TEM
images of NCC-MA particles; (C) SEM microphotographs NCC modified with AEMA; (D) SEM
microphotographs NCC modified with AEMA.

The study of nanoparticle morphology can be summarized by the observation that
the modification of nanoparticles does not affect their morphological features, but possibly
could lead to their more intensive aggregation. Additionally, the size of the particles grew
a little after the attachment of MA groups.

3.2. Effect of Particle Modification on Cells Viability

It is well known that PLA and NCC particles are quite biocompatible materials [35,46].
Here we were aimed to evaluate the effect of methacrylic groups attachment to the surface
of such particles on their cytotoxicity. Two types of cells, which were used in this study,
namely bone marrow mesenchymal stem cells (MSCs) and mouse embryonic fibroblasts
(NIH/3T3), were widely used in tissue engineering related research. Different concentra-
tions of particles were added to the cultured cells, and cell viability was evaluated via MTT
assay after different periods of co-incubation (Figure 6).

The obtained results clearly show that both methacrylated types of particles (PLA-MA
and NCC-MA) did not greatly affect cells viability at concentrations 1 and 5 mg/mL. There
was a certain decrease in viability in the case of NIH/3T3 cells after 72 h of 10 mg/mL
for both types of particles co-incubated with cells. However, no such effect was observed
for MSCs.

In general, it might be concluded that modification of PLA and NCC NPs by methacry-
late groups does not result in a drastic increase in their toxicity. The obtained particles could
be considered as quite non-toxic and recommended for further studies on their possible
application for scaffolds formation.
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3.3. Rheological Studies of PLA and NCC Particle Cross-Linking

The study of the possibility of particle interaction under free-radical process conditions
was the key stage of this research. For that, the rheology experiments were applied to detect
the appropriate particle suspension concentration and PLA-MA/NCC-MA ratio at which
the storage modulus (G’) would increase, indicating the formation of a three-dimensional
network. Particle suspensions of different compositions together with photo-initiators
were placed between the two rheometer plates (Supplementary Materials, Figure S3). The
rheological measurements were started simultaneously with sample UV irradiation to
detect the growth of G’. The exposure to UV continued over 10 min and the measurement
process after that period was conducted without irradiation. Thus, we also detected the
effect of post-exposure cross-linking on the rheological properties of the system.

First, we studied the effect of particle concentrations on their ability to form cross-links
between each other (Figures 7A and 8A). Figure 7A shows the possible scheme of direct
cross-linking. One can observe that the concentrations of both PLA-MA and NCC-MA
played important roles in the growth of storage modulus. This is logical, because the
increase in concentration affects the probability of particle interaction, which could lead to
cross-linking. It was shown that for the formation of cross-links between particles, a particle
concentration of at least 100 mg/mL was required. It appears that at such concentrations,
particles could form a three-dimensional network; however, the mechanical properties
of such networks were not enough to form stable 3D matrices. Higher concentrations
of particles were not applied here, because particles could aggregate, and it was highly
probable 3D printer nozzle would be clogged. it is notable that investigation of the effects
of the PLA-MA and NCC-MA ratio on G’ growth showed that an 80:20 weight ratio of
corresponding particles resulted in the best growth of storage modulus (Supplementary
materials, Figure S4A). It should be also noted that significant after-exposure free-radical
cross-linking was not observed.
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cross-linking with application of GelMA as cross-linking agent.

Considering the abovementioned circumstances and previous experience on the ap-
plication of poly(ethylene glycol) diacrylate (PEGDA) and gelatin methacrylate (GelMA)
for preparation of matrices for 3D cell culturing [51,52] we made and attempted to use
such macromolecules as crosslinkers for intensification of the inter-particle interaction. The
schemes of cross-linking in these cases are shown on Figure 7B,C. The effect of cross-linker
concentration on G’ growth showed that concentration of 20 wt% GelMA was optimal,
because increasing GelMA concentration did not result in better rheological properties
(Supplementary Materials, Figure S4B).

One can observe an impressive difference in the growth of the storage modulus when
using PEGDA and GelMA as crosslinking agents (Figure 8B). The values of the G’ increased
by more than two orders of magnitude after 10 min of irradiation with UV lamp when
crosslinking macromolecules were added to the mixture. The materials formed under such
conditions seemed to be stable 3D networks. It is notable that the application of GelMA
yielded a greater increase in G’ than in the case of PEGDA. This might be explained by
the fact that GelMA is a multifunctional cross-linker agent, bearing several MA groups in
its structure, while PEGDA is only bifunctional. Such a benefit of GelMA provides better
steric accessibility of MA groups for participation in free-radical cross-linking. The greater
molecular mass of GelMA as compared to that of PEGDA could be also an important factor
in the observed effect.
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Figure 8. Results of rheological studies on crosslinking kinetics: (A) effect of particle concentration;
(B) effect of cross-linkers (PEGDA and GelMA) on particle cross-linkers. Shown is G’ (storage
modulus) evolution with time; G” (loss modulus) is not shown for the purpose of clarity. In all
samples G’ > G” after exposure to UV, indicating a well-developed and solid polymer network.
Samples were measured at 25 ◦C and were exposed to UV intensity of 1.2 J/cm2. The curves shown
are representative ones of three measurements.

The conducted rheological experiments led us to significant conclusions: the interpar-
ticle interaction provoked by free-radical cross-linking of methacrylate groups is generally
possible at concentrations above 100 mg/mL, but does not lead to the formation of mechan-
ically stable polymer networks. Thus, the formation of particle-based scaffolds requires
the application of macromolecular cross-linker. Multifunctional cross-linkers with greater
molecular mass result in better cross-linking than bifunctional ones.

3.4. Cryogelation and 3D-Printing: Methods for Preparation of Particle-Based Scaffolds

Rheological studies allowed us to identify the composition of the mixtures containing
PLA-MA and NCC-MA particles that could be turned into reasonably stable materials. In
the next stage of this study, we aimed to use such compositions for obtaining macroporous
matrices via cryogelation and 3D printing.

Both methods were successfully applied for the preparation of materials (Figure 9).
The composition of the particle/cross-linker mixture used for cryogelation and 3D printing
that was selected showed the best performance when subjected to rheological studies, and
comprised PLA-MA/NCC-MA 80:20 (wt/wt) and 20 wt% cross-linker (PEGDA or GelMA).

In the case of cryogelation, the free-radical process was initiated by ammonium
persulfate (APS) and 1,2-bis(dimethylamino)ethane (TEMED) RedOx initiation system. The
idea of cryogelation consists in the cryo-concentration of particles and cross-linker into
unfrozen liquid microphase due to the crystallization of the solvent (water), which pushes
particles and cross-linker out of the crystallizing front. The action of APS and TEMED
could initiate the free-radical process below 0 ◦C, which leads to interparticle cross-linking
with the involvement of macromolecular cross-linker (PEGDA or GelMA). The described
process was performed in the syringe, leading to the formation of matrices with cylindrical
geometrical forms (Figure 9A).

The CAD models of the materials were designed and the DIW 3D printing of scaffolds
was performed with an extrusion-type printhead and a UV lamp for photo-cross-linking of
the material. A photo-initiator (Irgacure 2959, 0.1 wt%) was added to the system to provide
the possibility of free-radical cross-linking reactions. Such printing parameters as printing
needle diameter, pressure, and printing speed were optimized. To avoid the formation
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of hard gel and printhead clogging, in the case of the sample containing thermosensitive
Gel-MA as an additional crosslinking agent, the optimal printing suspension temperature
was also determined to be 37 ◦C. Uniform extrusion was observed with a printing needle
diameter of 0.254 mm and length of 6.35 mm, and with pressure of 0.5 PSI or 3.45 kPa. The
optimal printing speed was 5 mm/s. Three-dimensional printing and cross-linking of the
sample was performed in layers (Supplementary Materials, Figure S5): after the printing
of the first level of the matrix, the UV lamp was turned on, the sample was irradiated for
10 min, and then the printing process was resumed. Fully printed samples were left for one
hour for the completion of free-radical reaction and drying (Figure 9B).
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Figure 9. Materials obtained based on the PLA-MA/NCC-MA/Gel-MA mixture by: (A) cryogelation
in 1 mL syringe; (B) 3D printing. The 80:20 weight ratio of PLA-MA and NCC-MA along with
20 wt% GelMA was applied for the preparation of these materials.

The morphology of samples obtained by cryogelation and 3D printing was studied by
SEM (Figures 10 and 11). Particle-based cryogel samples, obtained with the application
of both GelMA and PEGDA, demonstrated a macroporous nature with average pore
diameter of around 200 µm (according to SEM). Additionally, matrices showed good pore
interconnectivity, which is important for scaffolds. Interestingly, the examination of the
pore walls under a larger magnification demonstrated the fact that the particles were
incorporated into the pore walls (Figure 10B,D).
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Figure 10. SEM images of matrices obtained by cryogelation of PLA-MA NPs with NCC-MA
with different cross-linkers at different magnification: (A) Gel-MA (×100); (B) Gel-MA (×2000);
(C) PEGDA (×100); (D) PEGDA (×2000).
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Based on the results of the study of the rheology of particle crosslinking with different
cross-linkers in the presence of the photoinitiator (Figure 8B), only compositions containing
GelMA were used for 3D printing. The morphology of the obtained material at different
magnification was studied by SEM (Figure 11). It should be noted that in contrast to the
cryogelation process, the pore structure in the 3D printing was not provided by phase
separation, but was governed by the designed CAD model. However, the surface of the 3D
printed hydrogel scaffold was shown to be quite rough, having pores with 10 to 100 µm
in diameter (Figure 11A). As in the case of cryogelated materials, the magnification of the
material surface allowed the observation of the particles incorporated into the walls of the
3D printed matrices (Figure 11B,C).

Thus, both cryogelation and 3D printing approaches could be applied to form particle-
based materials with the application of PLA-MA, NCC-MA, and GelMA as cross-linkers.
The application of PEGDA as a cross-linker does not result in any beneficial structure. At
the same time, GelMA could be considered as a more promising material, because it bears a
specific arginine-glycine-aspartic acid (RGD) cell-adhesion moiety [53], which is important
for the induction of novel tissue formation [11].

3.5. Mechanical Testing

The mechanical strength of materials is an important characteristic for scaffolds, es-
pecially in the case of the tissue engineering of hard tissues [1]. Thus, we performed a
comparative study of matrices obtained by cryogelation and 3D printing based on PLA-
MA/NCC-MA and GelMA as cross-linkers. The strain–stress curves obtained during
sample compression are presented in Figure 12. The mechanical properties of both cryo-
gelated and 3D printed matrices were not extraordinary and more or less corresponded
to those of hydrogels. At the same time, it was obvious that the 3D printed material
possessed better mechanical properties than the cryogelated one. This can be explained by
the thicker walls and lower overall porosity, and hence the greater density of the printed
material as compared to cryogel. It also should be mentioned here that 3D printing allowed
control over the thickness of formed material walls, thus the mechanical properties could
be controlled to form gradients of mechanical strength. Such material formations will be
presented in our future papers. Thus, based on the above-mentioned arguments, we can
propose 3D printed scaffolds as better candidates for hard-tissue engineering.

3.6. Cell Adhesion on Cryogelated and 3D Printed Matrices

Aa a final step of the current study, we performed a comparative study of MSC
adhesion on the surface of the cryogelated matrices and the 3D printed ones. PLA-MA and
NCC-MA ratios were chosen as based on the previous results and were 80:20 (wt/wt). In
the case of cryogel, PEGDA was applied as cross-linking agent, while in the case of 3D
printed material it was GelMA. To test cell adhesion matrices were incubated with MSC
cells on a 24-well plate for one week in MEM. Then, the cells adhered to the matrices were
visualized by DAPI-staining. One can observe (Figure 13) that the number of cells on the
surface of 3D printed material seem to be greater than on the surface of cryogelated matrix.
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Figure 13. Fluorescent images of DAPI-stained mesenchymal stem cells (MSC) on the surface
of: (A–C)—cryogelated matrix PLA-MA/NCC-MA + 20% PEGDA; (D–F) 3D-printed matrix PLA-
MA/NCC-MA + 20% GelMA. Images were recorded at different magnification: A and D ×2; B and E
×4; C and F ×10.

In order to obtain quantitative results, we measured the intensity of the fluorescence
on the surface of cryogelated and 3D printed materials with equal geometry (round discs).
The obtained data (Figure 14) are in line with visual data on Figure 13 and clearly show
that the number of cells attached to the 3D printed material is significantly greater than
that in the case of cryogels. This observation is even more interesting given the apparently
higher surface area of the cryogel matrices. It is most likely that the surface area factor was
more than counterbalanced by the presence of GelMA in the printed matrices, which in
turn contained specific cell adhesion moiety, namely RGD. Such a specific moiety initiates
intensive cell adhesion due to signal transmission between cells [54].
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4. Conclusions

In the presented study we were aimed to study the possibility of particle-based scaffold
formation as based on PLA and NCC. In order to form covalent cross-links between these
particles, we introduced methacrylate groups on their surfaces. Such modification did not
greatly affect particle morphology, namely the spherical nature particles, in the case of PLA
and needles in the case of NCC. Furthermore, no increasing toxicity of modified particles
in relation to the MSCs and NIH/3T3 cells was observed.

The investigation of particle interaction and the ability to form three-dimensional
networks under free-radical polymerization conditions showed that particles can form
only very poor networks (storage modulus 30–40 Pa), when the reaction takes place only
between the particles themselves. The addition of macromolecular cross-links, such as
PEGDA and GelMA, in concentrations of 20 wt% significantly changed the situation, and
reasonably stable networks could be formed. Such networks were characterized by a storage
modulus as large as 2000–4000 Pa. The developed particles/cross-linker compositions were
successfully applied for the formation of materials via cryogelation/cryopolymerization
technique and DIW 3D printing with photo-curing. The study of the material morphology
showed that both types of materials, namely cryogels and 3D printed matrices, contained
particles in their structure. Mechanical tests showed that 3D printed materials possessed
greater strength than cryogelated ones. The study of MSCs adhesion clearly showed that
application of GelMA as a cross-linking agent is highly preferable if one wants to initiate
specific cell adhesion. The fluorescence of DAPI-stained cells was three times higher when
GelMA was used as the particle cross-linker.

The results of this study could be useful for the preparation of 3D scaffolds with the
application of particles. Further attempts should be made to generate gradient scaffolds
via printing with different printheads and extruders loaded with different particles. Thus,
we can say that particles are another prospective component in the toolbox for creating
scaffolds that will effectively support the formation of new tissue both in vitro and in vivo.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/polym15030651/s1, Figure S1. Raman spectrum of PLA
(green line) and PLA-MA (blue line). Raman spectra were recorded with T64000 Horiba Scientific
spectrometer (Kyoto, Japan). Figure S2. Non-methacrylated and methacrylated particles charac-
teristics: (A)—PLA and PLA-MA; (B)—NCC and NCC-MA. Figure S3. The scheme of rheological
experiment, which was applied for the testing of interparticle cross-linking. Figure S4: Results of
rheological experiment: effect of PLA-MA and NCC-MA weight ratios (A) and Gel-MA concentration
(B) on storage modulus increase during 10 min of exposure to UV-light and thereafter. Figure S5: The
scheme of 3D printing with the application of particles as photo-curable ink.
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Abstract: Polylactic acid (PLA) has become one of the most commonly used polymers in medical
devices given its biocompatible, biodegradable and bioabsorbable properties. In addition, due to
PLA’s thermoplastic behaviour, these medical devices are now obtained using 3D printing tech-
nologies. Once obtained, the 3D-printed PLA devices undergo different sterilisation procedures,
which are essential to prevent infections. This work was an in-depth study of the physicochemical
changes caused by novel and conventional sterilisation techniques on 3D-printed PLA and their
impact on the biological response in terms of toxicity. The 3D-printed PLA physicochemical (XPS,
FTIR, DSC, XRD) and mechanical properties as well as the hydrophilic degree were evaluated after
sterilisation using saturated steam (SS), low temperature steam with formaldehyde (LTSF), gamma
irradiation (GR), hydrogen peroxide gas plasma (HPGP) and CO2 under critical conditions (SCCO).
The biological response was tested in vitro (fibroblasts NCTC-929) and in vivo (embryos and larvae
wild-type zebrafish Danio rerio). The results indicated that after GR sterilisation, PLA preserved
the O:C ratio and the semi-crystalline structure. Significant changes in the polymer surface were
found after HPGP, LTSF and SS sterilisations, with a decrease in the O:C ratio. Moreover, the FTIR,
DSC and XRD analysis revealed PLA crystallisation after SS sterilisation, with a 52.9% increase
in the crystallinity index. This structural change was also reflected in the mechanical properties
and wettability. An increase in crystallinity was also observed after SCCO and LTSF sterilisations,
although to a lesser extent. Despite these changes, the biological evaluation revealed that none of
the techniques were shown to promote the release of toxic compounds or PLA modifications with
toxicity effects. GR sterilisation was concluded as the least reactive technique with good perspectives
in the biological response, not only at the level of toxicity but at all levels, since the 3D-printed PLA
remained almost unaltered.

Keywords: polylactic acid (PLA); 3D printing; medical devices; sterilisation; physicochemical
changes; biological response; zebrafish model

1. Introduction

Polylactic acid (PLA) is an aliphatic polyester produced as a racemic mixture of D
and L lactide from nontoxic renewable sources, such as corn and sugarcane, with valuable
properties for the biomedical field [1,2]. This polymer stands out for its behaviour in
contact with biological media, as it gradually degrades into innocuous lactic acid or carbon
dioxide and water and is metabolised intracellularly or excreted in urine and breath over
time [1,3]. In addition to this immunologically inert response, PLA does not produce toxic
or carcinogenic effects in local tissues, it is completely reabsorbed, and its production is
relatively cost-efficient as compared to other traditional biodegradable polymers [4]. Given
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its biocompatible, biodegradable and bioabsorbable properties, PLA has become one of the
most commonly used polymers in clinics with numerous applications including medical
implants, porous scaffolds, sutures, cell carriers, drug delivery systems and a myriad of
other fabrications [1,2,5].

Recently, with the emergence in the biomedical field of fused deposition modelling
(FDM), one of the most common 3D printing techniques, interest in PLA has risen dramati-
cally because of its favourable thermoplastic properties [6]. It can be heated to its melting
point, cooled and reheated again without significant degradation. Together with FDM tech-
nology, this enables the rapid manufacture of customised structures and the fabrication of
platforms for an extensive variety of applications both in research and in surgical practices,
such as patient-specific implants, surgical guides (cranial and maxillofacial surgery) and
surgical tools [5–8].

Once produced, the next critical step in the manufacturing process of these 3D-printed
PLA-based medical devices is sterilisation, which is essential to prevent possible complica-
tions such as infections or rejections once in contact with the human body [9]. In this regard,
despite the fact that PLA has been the focus of multiple pre-clinical and clinical trials,
to what extent the different sterilisation techniques accurately affect its properties, and
therefore its clinical functionality, continues to be the subject of debate, particularly now
with the development of 3D printing [6]. It is clearly stated in the literature that conven-
tional sterilisation techniques can cause physicochemical modifications in polymer-based
medical devices that could limit their use in clinical applications [10]. Saturated steam is
mostly not recommended for thermolabile and hydrolytically sensitive polymers—such
as PLA—because of the high-temperature water vapour, which affects the structure of the
sample prints. According to several authors [11,12], gamma radiation can induce chain
scission or crosslinking reactions in polymers. Sterilisation by gas plasma with hydrogen
peroxide is the recommended method for some authors, although it has an inferior pene-
trating capability compared to other methods [13]. On the other hand, low temperature
steam formaldehyde sterilisation is widely used in European countries for the sterilisation
of thermolabile medical equipment, but the residual levels of formaldehyde stipulated in
the regulations must always be respected as it is known to be toxic and carcinogenic [14].
The same occurs with residues from ethylene oxide sterilisation as they may cause toxicity
and induce a chemical reaction with the polymer matrix [10,11,13]. For these reasons,
this methodology has been progressively prohibited by several hospitals in the EU and
the USA [15]. The need to find new and effective sterilisation alternatives has brought
the supercritical carbon dioxide methodology to the fore. This has emerged as a green
and sustainable technology that requires moderate temperatures, avoiding physical and
chemical damage in thermolabile and hydrolytically sensitive materials such as PLA and
its derivatives [6,16]. It has already been proven to completely inactivate a wide variety
of organisms [17] and even pores [18], however it is still a developing technology not yet
optimised for every material, as is the case with PLA.

There is, therefore, a need to further study the extent to which sterilisation techniques
affect PLA-based materials, preventing significant changes in their physicochemical, me-
chanical and biocompatibility properties that might give rise to adverse responses in the
body or compromise bodily functions [12]. It must also be taken into account that the choice
of sterilisation technique will be highly conditioned by the ease and cost-effectiveness of
their implementation in the production routine. In fact, given the aforementioned evidence,
it is expected that printed PLA, as a thermolabile and hydrolytically sensitive polymer, will
be affected by conventional sterilization techniques such as saturated steam, which could
in turn have effects on its biological performance.

Thus, the purpose of this paper was to study in detail the effect of the main sterilisation
processes mentioned, both the current and emerging ones, on 3D-printed PLA samples in
terms of their physicochemical (XPS, FTIR, DSC, XRD) and mechanical properties as well
as their influence on the PLA wettability degree. Moreover, the biological response was
also evaluated to determine whether the potential changes brought about by the different
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techniques significantly affect PLA behaviour in terms of toxicity when tested in vitro and
in vivo. For the latter, the zebrafish model (Danio rerio) was used due to its advantages,
as compared to conventional animal models, due to its close homology with the human
genome including its immunogenic responses.

2. Materials and Methods
2.1. PLA Precursor Material

A 1.75 mm polylactic acid (PLA) filament 3D850, designed from the biodegradable
resin formulation Ingeo™ PLA 3D850 by NatureWorks, was purchased from Smart Ma-
terials 3D, Jaén, Spain. In comparison to standard PLA, this improved biodegradable
filament presents an elevated rate of crystallisation and very low thermal contraction,
which makes printing more rapid and accurate without the risk of sample deformation.
The main properties are summarised in Table 1.

Table 1. Technical data of PLA 3D850 filament taken from the Smart Materials 3D website: www.
smartmaterials3d.com/pla-3d850 (2 August 2022).

Polylactic Acid 3D850 Value

Material density 1.24 g/cm3

Tensile yield strength 65.5 MPa

Flexural strength 126 MPa

Flexural modulus 4357 MPa

Heat distortion temperature 144 ◦C

Extrusion temperature 190–230 ◦C

2.2. Obtaining 3D-Printed PLA

Two sets of PLA samples were first designed using the SolidWorks 2016 software
(Dassault Systemes SolidWorksCorp., Waltham, MA, USA), with one of discs measuring
1 mm in height and 5 mm in diameter, and the second consisting of well-shaped samples
replicating the wells of 6-well microplates, measuring 34 mm in height and 16 mm in
diameter. See Figure 1 for images from the software showing the two corresponding sets of
samples. The digital data were then saved as STL files to subsequently generate correspond-
ing sets of G-code for 3D printing using the Simplify3D software (Simplify3DSoftware,
Cincinnati, OH, USA).
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Figure 1. Software images showing the design of the PLA discs and the well-shaped samples.

A dual extruder 3D printer (BCN3D+, 3D RepRapBCN, Barcelona, Spain) based on
fused filament deposition modelling (FDM) technology was used to print both sets, and
the printing temperature was maintained at between 190–230 ◦C. A concentric infill pattern
was chosen in order to create a uniform structure and avoid gaps. The main 3D printing
parameters are summarised in Table 2.

51



Polymers 2022, 14, 4117

Table 2. Main 3D printer parameters used.

Dual Extruder BCN3D+ Printer Parameter Value

Nozzle 0.4 mm
Nozzle temperature 190–230 ◦C

Bed temperature 45 ◦C
Infill density 100%
Infill pattern Concentric

Speed 60 mm/s
Layer height 0.2 mm

2.3. Sterilisation Techniques

PLA samples printed as discs were subjected to five different sterilisation treatments.
Untreated 3D-printed material (PLAC) was also considered and analysed as control samples.
The specific sterilisation treatments evaluated are described below:

- Saturated steam (SS), carried out in an autoclave (Selecta Presoclave II 75, Cham,
Switzerland) at Grupo de Novos Materiais (Vigo, Spain) operating at 121 ◦C and 2 bar
for 20 min. The samples were sterilised in a surgical paper package.

- Low temperature steam with 2% formaldehyde (LTSF), carried out in a Matachana
steriliser (Matachana 130 LF, Matachana Group, Barcelona, Spain) at Povisa Hospital
(Vigo, Spain). This steriliser complied with EN 14180:2014 and used a mixture of steam
and 2% formaldehyde in thermodynamic equilibrium. Sterilisation was performed at
78 ◦C, with a standard duration of 153 min at full load and the samples were sterilised
in a surgical paper package.

- Gamma irradiation (GR), performed by Aragogamma S.L. (Barcelona, Spain) using a
60Co source irradiator at a dose level of between 25 and 35 kGy at room temperature,
as per ISO 13485:2018.

- Hydrogen peroxide gas plasma (HPGP), performed in a Sterrad NX steriliser (Ad-
vanced Sterilization Products, Irvine, CA, USA) at Hospital Universitario Lucus
Augusti (Lugo, Spain). This was based on 59% aqueous hydrogen peroxide, which
was concentrated to about 95% through removal of water from the peroxide solution
before its evaporation and transfer to the chamber. PLA discs were conditioned in
Tyvek packages compatible with the sterilisation process. The temperature during the
sterilisation cycle was kept at between 45 ◦C and 55 ◦C in a standard cycle.

- CO2 under critical conditions (SCCO) was carried out at the Biomaterials and Biomed-
ical Technology lab (CBQF, Porto, Portugal). PLA discs were packed in sealed per-
meable plastic cartridges and placed in the reactor, to which hydrogen peroxide was
added as an additive (300 ppm) to make sterilisation more effective. The optimised
operating parameters for sterilisation were 40 ◦C temperature and 240 bar pressure
with constant agitation of 600 rpm. Once pressurisation occurred, CO2 under critical
conditions acted for 4 h.

The PLA discs/well-shaped samples subjected to the five sterilisation processes were
named as follows: PLASS, PLALTSF, PLAGR, PLAHPGP and PLASCCO.

2.4. Physicochemical Characterisation

The elemental compositional analysis of PLAC, PLASS, PLALTSF, PLAGR, PLAHPGP
and PLASCCO discs was determined in detail by X-ray photoelectron spectroscopy (XPS)
using a Thermo Scientific K-Alpha ESCA instrument (Waltham, MA, USA) equipped with
an Al Kα monochromatised X-ray source radiation at 1486.6 eV (CACTI, UVigo, Vigo,
Spain). Photoelectrons were collected from a take-off angle of 90◦ relative to the sample
surface and the measurement was taken in a Constant Analyser Energy mode (CAE) with
a 100 eV pass energy for survey spectra and 20 eV pass energy for high resolution spectra.
Charge referencing was performed by setting the lower binding energy C1s photo peak at
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the 285.0 eV C1s hydrocarbon peak. The surface elemental composition was determined
using the standard Scofield photoemission cross sections.

Chemical modifications in the polymeric chains of the PLA discs induced by the dif-
ferent sterilisation treatments were identified by Fourier Transform Infrared Spectroscopy
(FTIR) using a Thermo Scientific Nicolet 6700 spectrometer (Waltham, MA, USA) with
a DTGS KBr detector (CACTI, UVigo). Spectra were collected in the 400 to 4000 cm−1

wavelength range by averaging 34 scans and with a resolution of 4 cm−1.
To complement this information regarding the PLA chemical modifications, a thermal

characterisation was also performed using a simultaneous TGA-DSC Setsys Evolution
1750 thermal analyser (Setaram, NJ, USA) in the CACTI, UVigo. The PLA discs were
first subjected to a heating–cooling ramp (from 20 to 250 ◦C/min at 5 ◦C/min) with a
constant supply of nitrogen. Secondly, a third ramp from 20 to 900 ◦C with a heating rate
of 10 ◦C/min was applied with a constant supply of air. The information from DSC curves
was used to determine the glass transition temperature (Tg) and melting point temperature
(Tm), as well as the exothermal response relating to cold crystallisation (Tcc), which was
obtained from the first heating cycle. The crystallinity index (Xc) was calculated according
to Savaris et al. [19] based on the cold crystallisation enthalpy (∆Hcc), melting enthalpy
(∆Hm) of the first heating calculated by peak fitting algorithms of the DSC curves and
melting enthalpy of theoretically 100% crystalline PLA (∆Hm◦ = 93.7 J/g), in accordance
with Equation (1):

Xc (%) =
AHm−AHcc

AHm◦
× 100 (1)

The PLA crystalline structure was evaluated by X-ray diffraction (XRD) in an X’Pert
Pro Panalytical diffractometer (Malvern Panalytical, Malvern, UK) with monochromatic
Cu-Kα radiation (λ = 1.5406 Å) and with a 2θ range of 4–100◦ (40 kV, 30 mA, 0.013◦ step
size) (CACTI, UVigo).

Contact angle measurements were performed in a Pocket goniometer (Fibro System
AB, Stockholm, Sweden) at the Grupo Novos Materiais (UVigo) to evaluate the hydrophilic
degree of the 3D-printed PLA discs. A sessile drop of ultrapure water was dispensed on
each sample at room temperature and analysed using the linked software. The reported
values corresponded to the average of ten measurements of each of the five replicates
per treatment ± standard deviation. Images were taken immediately after the drop was
deposited on the surface of the sample.

Finally, the mechanical properties were analysed using a nanoindenter XP (MTS
Inc., Huntsville, AL, USA), in CACTI, UVigo. Hardness and Young’s Modulus values
were measured using a 100 nm radius triangular pyramid indenter tip (Berkovich-type
indenter) with the CSM (Continuous Stiffness Measurement) mode to perform dynamic
measurements as a function of depth and XP head. A large number of indentations (30) were
programmed, and the average of the valid results was calculated ± standard deviation.

Untreated 3D-printed PLA discs (PLAC) were also subjected to the above-mentioned
physicochemical characterisation as control to be able to identify the changes caused by the
various sterilisation techniques.

2.5. Biological Response In Vitro: Cytotoxicity Assay

To evaluate the cytotoxicity of the potential release of (1) small particles from the
3D-printed PLA after the different sterilisations (as a thermosensitive polymer) and of (2)
potential traces of the toxic additives required in some of the sterilisation methods, a solvent
extraction test was performed. It was carried out following the indications of UNE-EN-ISO
10993-5:2009 with the cell line NCTC clone 929 (ECACC 88102702) from mouse fibroblasts.
The cells were incubated throughout the experiment at 37 ◦C in a humidified atmosphere
with 5% of CO2 and with the cell growth medium DMEM (Lonza, Basilea, Switzerland),
supplemented with 10% of foetal bovine serum (HyClone Laboratories LLC, Logan, UT,
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USA) and 1% of a combination of penicillin, streptomycin and amphotericin B (Lonza,
Basilea, Switzerland).

To prepare the extracts, PLASS, PLALTSF, PLAGR, PLAHPGP and PLASCCO discs were
first placed in individual falcon tubes with the culture medium DMEM and kept at 37 ◦C
for 24 h with 60 rpm agitation together with the controls. Then, different concentrations
(100%, 50%, 30%, 10% and 0%) were prepared by diluting the initial extracts with fresh
culture medium. A 6.4 g/L phenol solution was used as a positive control, while the
negative control was the culture medium itself. The ratio between the material (PLA) and
the volume of growth medium was 3 cm2 of material per ml of medium (ISO 10993-12).

A suspension of 1 × 105 cells/m, in the same growth medium described above, were
seeded in a 96-well microplate at a volume of 100 µL per well. After 72 h of incubation,
a sub-confluent layer was formed, and the cell medium was replaced by the previously
prepared extracts from 24 h before. Four replicates per concentration were incubated with
the cells for 24 h. After that time, the cellular viability was quantified using the MTS Cell
Proliferation Assay Kit (Abcam, Cambridge, UK). This colorimetric assay is based on the
MTS tetrazolium compound, exclusively reduced by viable cells to generate a coloured
formazan dye that is soluble in the culture medium. A volume of 10 µL of MTS reactive was
added to each well. After 45 min of incubation, the reagent was renewed by fresh medium
and the absorbance of the resulting solutions was read at a wavelength of 490 nm in a
microplate spectrophotometer (Bio-Rad, Hercules, CA, USA). This test was repeated 3 times
and the results were expressed as the percentage of viability compared to the negative
control ± standard error.

2.6. Biological Response In Vivo: Acute Toxicity Test in Zebrafish

To evaluate in direct contact the in vivo toxicity caused by the physicochemical changes
and/or toxic residues detected on the 3D-printed PLA after the sterilisation methods, a
zebrafish model in direct contact was carried out and the corresponding 3D-printed well-
shaped PLA samples were used. Embryos and larvae of wild-type zebrafish (Danio rerio,
AB strain) were obtained from the experimental facilities at the Institute of Marine Research
(IIM-CSIC, Vigo, Spain), where the animals were cultured and maintained following
established protocols [20,21]. Adult zebrafish were maintained in a recirculating water
system on a 12:12 h light–dark cycle and the water composition was maintained at pH
7.0 and 28–29 ◦C. The zebrafish were fed twice a day with commercial food (Nutrafin
Max Tropical Fish Flakes) and once a day with live Artemia. Breeding crosses were
conducted with a female/male ratio of 3:2. After the adult fish spawned, the embryos were
obtained according to the protocols outlined in The Zebrafish Book [21] and maintained
at 28 ◦C in an incubator (INE-500; Memmert, Schwabach, Germany) in zebrafish water
during the whole experiment. All of the procedures in the experiment were reviewed
and approved by the CSIC National Committee of Bioethics under approval number
ES360570202001/17/FUN.01/INM06/BNG.

To evaluate the developmental toxicity of the zebrafish embryos, well-shaped PLA
samples were placed on 6-well plates to prevent water loss. The wild type zebrafish fer-
tilised embryos were collected and deposited in direct contact within these PLA samples
(18 embryos per PLA well in triplicate for each condition) until the end of the experiment.
First, the percentage of viable embryos was calculated at 24 hpf (hours post-fertilisation).
Viable embryos were those that have live larvae inside and dead embryos became opaque,
and this was also confirmed by the absence of a heartbeat under a Nikon SMZ800 mi-
croscope (Nikon, Tokyo, Japan). Once the non-viable embryos were removed from the
well-shaped samples, the experiment continued to calculate the hatching rate at 24, 48 and
72 exposure hours by visual inspection and the survival larvae determined after 178 h
(7 days). Mortality was assessed every 24 h by visual inspection discarding dead larvae,
those that did not swim and those that did not have a heartbeat when viewed under a
Nikon SMZ800 microscope (Nikon, Japan). Ten zebrafish larvae were randomly selected for
each treatment at 3 dpf (days post-fertilisation), properly rinsed with zebrafish water and
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anesthetised with tricaine (0.05%) (Sigma-Aldrich, Merck Group, Darmstadt, Germany) to
detect the main deformations under a Nikon AZ100 microscope (Nikon, Japan). Different
measures, such as body length and yolk sac diameter, were also calculated with the aid of
the ImageJ programme. In addition, the heart rate of embryos was counted at 3 days. Their
heartbeat rates were measured from video recordings for 10 s at room temperature in set
conditions. The data were analysed using a design macro in the Image J programme, which
provided beats per minute. This allowed for the analysis of the heart rate of 3-dpf larvae.
For all experiments, a blank control treatment without PLA was added in addition to the
untreated PLA control material to validate the process. Each treatment was tested in tripli-
cate and repeated twice, and all the results compared the mean values of the measurements
after the treatments with respect to the control ± standard error.

2.7. Statistical Analysis

All biological data were analysed using GraphPad Prism 8 (GraphPad Software Inc.,
San Diego, CA, USA) and the results were represented graphically as the mean ± standard
error of means (mean ± SEM). The nonparametric Mann–Whitney U test was used to
determine the statistical differences between the control and the different sterilisation
treatments. Statistical significance was determined to be * (p ≤ 0.05) at the 95% confidence
level. In the zebrafish assay significant differences were obtained using the Mann–Whitney
U test and displayed as *** (0.0001 < p < 0.001), ** (0.001 < p < 0.01) or * (0.01 < p < 0.05).
Kaplan–Meier survival curves were analysed with a log–rank (Mantel–Cox) test.

3. Results and Discussion
3.1. Physicochemical Characterisation

The elemental composition of the surface of the PLA printed discs after sterilisation
by the different techniques, PLASS, PLALTSF, PLAGR, PLAHPGP and PLASCCO, was first
evaluated by XPS and presented as an atomic percentage (Table 3). The surface layer of
the PLA printed disc without any sterilisation treatment (PLAC) was also subjected to
the analysis and, as can be seen in Table 3, it was composed of a major contribution in C
followed by O, in a ratio O:C of 0.50, with a minor contribution of Na. The PLA-tested
discs where the elemental composition was more similar to the control were the PLASCCO
and PLAGR, with an O:C ratio of 0.48 and 0.46, respectively. Conversely, the discs of
PLALTSF, PLAHPGP and PLASS presented a relevant decrease in the O:C ratio to values
in the range 0.35–0.27, which meant a lower oxygen content. Moreover, with these latter
treatments, PLALTSF, PLAHPGP and PLASS, a higher contribution of minor elements such
as Si, Cl, S, I, Na and N was found compared to the two previous techniques. In relation to
this, it is well known that in autoclave sterilisation, due to the high humidity conditions
during the process, the transference of elements from the chamber to the sample surface is
common. With respect to the small amounts of unexpected components, detected in the
rest of the techniques, they can also be due to contaminations produced in the manufacture
of the material and its subsequent handling (S, Cl, Na, N, C and O) or even the use of
plastic gloves (Si, Na, S and Cl), with Si being the second most common contaminant
in this technique (https://xpslibrary.com/contamination-2/) (25 July 2022). Finally, it is
important to note that the differences found in the O:C ratios can be used as a guide to
determine the degree of functionalisation of the polymer surface. Thus, the most significant
change was detected in the autoclaved PLA discs (PLASS) with a sudden increase in C
at the expense of a decrease in the percentage of O, compared to the control (PLAC). On
the other hand, the HPGP treatment led to a greater “oxidation” of the surface than the
formaldehyde treatment (PLALTSF). However, sterilisation by supercritical CO2 (PLASCCO)
and gamma radiation (PLAGR) caused only very slight changes at this level.
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Table 3. Elemental composition of untreated PLA and after sterilisation treatments obtained from
XPS analysis (at. %).

Samples C O Si S N Na I Cl O/C

PLAC 66.24 33.42 - - - 0.34 - - 0.50
PLAGR 68.65 31.35 - - - - - - 0.46

PLASCCO 66.52 31.82 - - 1.24 0.42 - - 0.48
PLALTSF 73.78 21.20 3.34 - 1.07 0.61 - - 0.29
PLAHPGP 70.92 24.73 1.85 - 1.11 0.93 - 0.47 0.35

PLASS 74.94 20.00 1.23 0.18 2.53 0.92 0.19 - 0.27

XPS high resolution spectra for C1s were taken to make an in-depth evaluation of
the changes to the polymer by assigning energy binding peaks. Three binding energy
assignments were obtained for all the tested PLA discs: C-H, C-C bonds at 285 eV, C-OH, C-
O-C bonds around 287 eV and COOH, O=C-O bonds around 289 eV. However, differences
were clearly detected. By way of example, Figure 2 shows the high-resolution spectra of
the printed PLA control (PLAC) and PLA sterilised with saturated steam (PLASS) where a
significant change to the polymer surface after this latter treatment was clear. Thus, the
C1s binding assignments obtained for PLAC showed the three well-defined peaks with
the assignments of C-H, C-C bonds being detected at higher intensity (285 eV) and the
other two (at 287 and 289 eV) in slightly lower intensities attributed to C-OH, C-O-C and
COOH, O=C-O, respectively. When the assignments obtained for the PLASS disc were
observed, differences were clear with far less intense peaks at the binding energies at 287 eV
and 289 eV and increased intensity (counts/s) for the assignment C-H, C-C at the binding
energy 285 eV.

Polymers 2022, 14, x FOR PEER REVIEW  8  of  21 
 

 

Table 3. Elemental composition of untreated PLA and after sterilisation treatments obtained from 

XPS analysis (at. %). 

Samples  C  O  Si  S  N  Na  I  Cl  O/C 

PLAC  66.24  33.42  ‐  ‐  ‐  0.34  ‐  ‐  0.50 

PLAGR  68.65  31.35  ‐  ‐  ‐  ‐  ‐  ‐  0.46 

PLASCCO  66.52  31.82  ‐  ‐  1.24  0.42  ‐  ‐  0.48 

PLALTSF  73.78  21.20  3.34  ‐  1.07  0.61  ‐  ‐  0.29 

PLAHPGP  70.92  24.73  1.85  ‐  1.11  0.93  ‐  0.47  0.35 

PLASS  74.94  20.00  1.23  0.18  2.53  0.92  0.19  ‐  0.27 

XPS high resolution spectra for C1s were taken to make an in‐depth evaluation of the 

changes to the polymer by assigning energy binding peaks. Three binding energy assign‐

ments were obtained for all the tested PLA discs: C‐H, C‐C bonds at 285 eV, C‐OH, C‐O‐

C bonds around 287 eV and COOH, O=C‐O bonds around 289 eV. However, differences 

were clearly detected. By way of example, Figure 2 shows the high‐resolution spectra of 

the printed PLA control (PLAC) and PLA sterilised with saturated steam (PLASS) where a 

significant change to the polymer surface after this latter treatment was clear. Thus, the 

C1s binding assignments obtained for PLAC showed the three well‐defined peaks with the 

assignments of C‐H, C‐C bonds being detected at higher intensity (285 eV) and the other 

two (at 287 and 289 eV) in slightly lower intensities attributed to C‐OH, C‐O‐C and COOH, 

O=C‐O, respectively. When the assignments obtained for the PLASS disc were observed, 

differences were clear with far less intense peaks at the binding energies at 287 eV and 289 

eV and increased intensity (counts/s) for the assignment C‐H, C‐C at the binding energy 

285 eV. 

 

Figure 2. XPS high resolution spectra for C1s of printed PLA control (PLAC) and PLA sterilised with 

saturated steam (PLASS). 

The C1s binding energy assignments with  relative percentages  for all  the printed 

discs (shown in Table 4) indicated variations in the binding energy ranging from 287.10 

eV for PLAC to 287.20 eV for PLAHPGP and PLASS and from 289.18 eV (PLAC) to 289.41 eV 

for PLALTSF. The two sterilisation treatments that delivered more similar C1s binding as‐

signments with respect to the control PLAC, which presented C‐H, C‐C in 47.12 rel.%, C‐

OH, C‐O‐C  in 27.35 rel.% and COOH, O=C‐O  in 25.54 rel.%, were PLASCCO,  firstly,  fol‐

lowed by PLAGR. Meanwhile, PLASS and PLALTSF presented C‐H, C‐C in around 72 rel.%, 

C‐OH, C‐O‐C in 17–18 rel.% and COOH, O=C‐O in 9–10 rel.%. Both techniques, together 

with HPGP, caused a marked decrease in O and related bonds on the surface of the PLA. 

Table 4. Carbon binding energy (BE) assignments with relative percentage (rel.%) from high reso‐

lution XPS spectra of untreated PLA and PLA after sterilisation treatments. 

Figure 2. XPS high resolution spectra for C1s of printed PLA control (PLAC) and PLA sterilised with
saturated steam (PLASS).

The C1s binding energy assignments with relative percentages for all the printed
discs (shown in Table 4) indicated variations in the binding energy ranging from 287.10 eV
for PLAC to 287.20 eV for PLAHPGP and PLASS and from 289.18 eV (PLAC) to 289.41 eV
for PLALTSF. The two sterilisation treatments that delivered more similar C1s binding
assignments with respect to the control PLAC, which presented C-H, C-C in 47.12 rel.%, C-
OH, C-O-C in 27.35 rel.% and COOH, O=C-O in 25.54 rel.%, were PLASCCO, firstly, followed
by PLAGR. Meanwhile, PLASS and PLALTSF presented C-H, C-C in around 72 rel.%, C-OH,
C-O-C in 17–18 rel.% and COOH, O=C-O in 9–10 rel.%. Both techniques, together with
HPGP, caused a marked decrease in O and related bonds on the surface of the PLA.
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Table 4. Carbon binding energy (BE) assignments with relative percentage (rel.%) from high resolu-
tion XPS spectra of untreated PLA and PLA after sterilisation treatments.

C-H, C-C C-OH, C-O-C COOH, O=C-O

BE Rel.% BE Rel.% BE Rel.%
PLAC 285 47.12 287.10 27.35 289.18 25.54

PLAGR 285 54.45 287.12 23.95 289.20 21.61
PLASCCO 285 49.62 287.13 27.55 289.20 22.83
PLALTSF 285 72.64 287.18 17.32 289.41 10.04
PLAHPGP 285 67.36 287.20 18.75 289.35 13.89

PLASS 285 72.06 287.20 18.29 289.36 9.66

The chemical changes in terms of vibrational modes were evaluated by FTIR spec-
troscopy to identify potential modifications in the characteristic absorption bands of PLA
when subjected to the different sterilisation treatments. Figure 3 presents the FTIR spectra in
the 400–2000 cm−1 wavenumber range, and the main absorption bands are identified. First,
the absorption bands detected for the 3D-printed untreated disc, PLAC, were evaluated
and a correspondence with those of neat PLA fibres [22] was observed. This included a
strong peak at 1747 cm−1 attributed to the stretching mode of carbonyl group (υ C=O) and
a weaker one at 1266 cm−1 corresponding to the bending vibration of the same group (δ
C=O). Second, major bands were recorded in the 1050–1200 cm−1 range, with three peaks
at 1180, 1127 and 1080 cm−1 assigned to υ C-O vibrations. Bands in the 1300–1500 cm−1

range were also detected, and this was attributed to the deformational vibrations of C-H in
the CH3 groups, with the asymmetric bending mode at 1452 cm−1 and the symmetric defor-
mation at the doublet 1381–1360 cm−1 [23]. Other bands at 1043 and 868 cm−1, respectively,
corresponding to δ O-H and υ C-C vibrations, were also identified.
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Figure 3. FTIR spectra of the PLA discs subjected to the different sterilisation treatments with
absorption bands identified: PLAGR, PLASCCO, PLALTSF, PLASS and PLAHPGP together with the
untreated PLA disc as control, PLAC. Amplification of the 400–2000 cm−1 wavenumber range in the
inset with the two main peaks identified.

The comparison between the FTIR spectra before (PLAC) and after the different
sterilisation processes did not exhibit major differences, coinciding with the control PLA of
90–100% in the total wavenumber, 400–4000 cm−1. Indeed, the PLAGR sample was the most
similar to the control with a 99.7% fit, followed by PLASCCO at 97.3%, with the least similar
to the control being the one sterilised by steam heat, PLASS, 89.6%. Minor changes related
to small chemical alterations were observed as slight shifts in some characteristic peaks. On
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the general PLAC spectrum, the characteristic peaks of the υ C=O and δas CH3 bands were
observed at 1747 and 1452 cm−1. Thus, for the PLASCCO, PLALTSF and PLASS samples,
an inversion of the intensities of the components of doublet 1380 and 1365 cm−1 and an
increase in the signal at 1210 cm−1 were also observed and already reported [23]. These
minor chemical alterations were clearly confirmed when the 960 to 830 cm−1 range was
amplified and evaluated in depth (inset at Figure 3). According to the literature, this band
is sensitive to the degree of crystallinity [24], where the crystalline α-phase corresponds to
bands at 921 and 872 cm−1 and the amorphous phase with a band at 956 cm−1 [11,24]. The
PLAGR and PLAHPGP spectra at the inset clearly presented only two peaks: at 872 cm−1

(crystalline α-phase) and 956 cm−1 (amorphous phase), exactly the same as with PLAC. In
addition to these two peaks, in PLASCCO, PLALTSF and PLASS, the crystalline α-phase peak
at 921 cm−1 also appeared with higher intensity at the saturated steam samples, with PLASS,
overcoming its amorphous band at 956 cm−1. The absence of the crystallisation peak at
921 cm−1 for the untreated PLA was in accordance with other authors [11,25]. Its presence
for PLASCCO, PLALTSF and PLASS suggests the crystallisation of the polymer to a greater
or lesser extent for these latter three methods, as during crystallisation the 956 cm−1 band
area decreased in a synchronised way with the appearance of the new band at 921 cm−1,
characteristic of R crystals [26]. This tendency was confirmed by measuring the areas
of both bands (956 cm−1/921 cm−1) with Magicplot software and a ratio of 921:956 was
obtained for each PLA spectrum, with the obtained values for PLAC, PLAGR and PLAHPGP
being 0.19, 0.16 and 0.21, respectively (no contribution of the crystalline peak at 921 cm−1).
These values were slightly above 1 for PLALTSF and PLASCCO (1.13 and 1.14 respectively),
which means an increased contribution of the crystalline peak to reach the same level as the
amorphous one, and the highest value was for PLASS at 3.13 (clear higher contribution of
the crystalline band in relation to the amorphous one). When revising the literature, Zhao
and colleagues also describe the appearance of the band at 921 cm−1, characteristic of the
crystalline α-phase at the same time as the decrease in intensity in the band at 956 cm−1

in PLA for disposable medical devices [10]. It is established that during sterilisation the
presence of a high concentration of water, hydrogen peroxide or other small molecules can
plasticise a thin layer on the surface of the polymer, facilitating crystallisation [25].

Next, the effect of the sterilisation on the thermal stability of the polymer was studied
in detail using differential scanning calorimetry (DSC) in terms of how it influenced the
degree of crystallinity. The first heat DSC thermograms for the different PLA samples are
presented in Figure 4. The PLAC thermogram showed the three distinct transitions typical
of semi-crystalline thermoplastics: (1) heat flux at the glass transition temperature (Tg), (2)
an exotherm associated with cold crystallisation (Tcc) and (3) a melting endotherm (Tm). A
small exothermic band was observed immediately before melting occurred, associated with
a pre-melt recrystallisation. Despite finding small differences in the values of the peaks
of the three transitions, the thermograms obtained for the PLAGR, PLAHPGP and PLALTSF
samples presented the same semi-crystalline behaviour. This was not the case for the
samples that were sterilised using autoclave and supercritical CO2 (PLASCCO and PLASS),
which presented the greatest changes. For the PLASCCO sample, the glass transition and
cold crystallisation almost disappeared, which again suggests PLA crystallisation. In the
same way, for PLASS, these peaks were no longer observed, with only the melting peak
(Tm) appearing, which is characteristic of crystalline polymers. These results supported
the findings obtained from the FTIR analysis.

To confirm this, the corresponding crystallinity indices were calculated and are pre-
sented in percentage form (XC %) in Table 5, together with peaks for key transitions. The
first transition detected for PLAC was a change in the specific heat of the material at the
glass transition region at 63.2 ◦C immediately followed by another transition at 100.7 ◦C,
which corresponded to cold crystallisation. This process was associated with the self-
nucleation of the crystalline phases, where molecular chains that were preciously locked
into position in the amorphous regions now had enough molecular mobility to reorganise
into a more ordered and lower energy state crystalline phase. The final transition observed
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was a large endothermic peak at 175.5 ◦C associated with the heat of fusion for melting [25].
The index of crystallinity obtained was 18.5%. The peaks obtained in the key transitions
were in accordance with other authors [1], with low glass transition temperature (Tg) values
in the 60–65 ◦C range and a melting temperature (Tm) of 173–178 ◦C for PLA. When this
untreated PLAC was compared to the other samples, PLAGR and PLAHPGP were both
observed to present a lower glass transition (Tg) in comparison to the control, PLAC. This
could indicate some degradation of the amorphous regions of the polymer via hydrolysis
or chain scission in these two types of sterilisation [27]. The degree of crystallinity obtained
for these two samples was 15.1 and 17.4%, respectively, which was relatively close to the
untreated PLAC (18.5%). As expected after seeing the DSC thermograms in Figure 4, the
PLASS sample only presented a melting endotherm transition at 176.8 ◦C and the highest
degree of crystallinity with a value of 39.3%. During sterilisation with saturated steam,
the crystallisation temperature of PLA was exceeded, crystallising the amorphous sam-
ple [10,19]. The same occurred for the PLASCCO and PLALTSF samples, although to a lesser
extent than for autoclaving.
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Figure 4. DSC thermograms for PLA discs subjected to the different sterilisation treatments: PLAGR,
PLASCCO, PLALTSF, PLASS and PLAHPGP together with the untreated PLA disc as control, PLAC.

Table 5. Glass transition temperatures (Tg), cold crystallisation (Tcc), crystalline melting (Tm) and
crystallinity index of PLA subjected to the different sterilisation treatments: PLAGR, PLASCCO,
PLALTSF, PLASS and PLAHPGP together with the untreated control, PLAC.

Tg (◦C) Tcc (◦C) Tm (◦C) Xc (%)
PLAC 63.2 100.7 175.5 18.5

PLAGR 61.9 98.6 173.3 15.1
PLAHPGP 59.1 97.1 176.4 17.4
PLALTSF 66.6 92.9 176.9 29.0
PLASCCO 61.1 99.4 178.9 32.6

PLASS - - 176.8 39.3

In accordance with our results, other authors [19] stated that gamma radiation can
promote only slight changes in crystallinity by inducing ionisation reactions in the poly-
meric chains. At the same time, and again in line with our work, hydrogen peroxide
gas plasma was proven to not chemically or morphologically affect PLA microfibers in
electrospun scaffolds [23]. Moreover, the disappearance of a measurable glass transition
(Tg), a cold crystallisation (Tcc) temperature and an increase in crystallinity in the DSC
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thermograms after PLA autoclave sterilisation has also previously been published [19].
This behaviour for PLASS was also observed for the PLASCCO samples (Figure 4), however
previous works have established that supercritical CO2 sterilisation treatments did not
induce changes in the calorimetric properties of macroscopic poly(L-lactic acid) porous
scaffolds (on crystallinity and Tm) [18].

In order to supplement these results by identifying the PLA crystalline planes after
the sterilisation treatments, the 3D-printed PLA samples were evaluated by XRD. Figure 5
shows the XRD diffraction patterns obtained for the most representative samples PLAC,
PLAGR (both at the inset) and PLASS. The spectra obtained for PLAC was of a semi-
crystalline polymeric material. The same behaviour was observed after sterilisation of the
sample by gamma radiation. However, the XRD profile of the saturated steam sample,
PLASS, exhibited two sharp diffraction peaks, a very intense one at 2θ = 16.6◦ and another
at 19◦, respectively attributed to (200)/(110) and (203) lattice planes. Weaker peaks were
also detected at 12.4◦, 14.7◦ and 22.3◦, corresponding to the (004)/(103), (010) and (015)
crystal planes, respectively. These peaks were very similar to those obtained by Zhao
et al. [10] for PLA sterilised using saturated steam. In relation to the main crystalline form,
it has been shown that PLA exhibits two different crystalline phases termed as α and α′.
The latter is described as the disordered form of the stable α phase. According to Jalali
and coworkers [28], for crystallisation processes at temperatures below 100 ◦C the main
crystalline form present is the α′ phase, whereas above 120 ◦C it is the α phase, and within
the 100–120 ◦C range a mixture of both crystalline phases is present. The same authors
associated an exothermic peak at the DSC prior to the single melting temperature with the
α′–α solid-state transition (100–120 ◦C), and a single melting of the α phase for samples
crystallised above 120 ◦C. In our study, the crystallisation process referred to saturated
steam sterilisation at 121 ◦C for 20 min and the DSC thermogram for PLASS (Figure 4)
did not present any exothermic peak below the melting temperature. Taking all this into
account, the α phase may have been the main crystalline form present.
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Figure 5. XRD diffraction pattern of untreated PLASS with the identification of the characteristic
peaks and PLAC, and PLAGR diffraction pattern at the inset.

The structural changes to the 3D-printed PLA samples caused by certain sterilisa-
tion methods may affect the mechanical properties of the biomaterial. The hardness
and Young Modulus values were measured in a nanoindenter and are both presented in
Figure 6. The results obtained for hardness of the control sample PLAC presented a value of
0.27 ± 0.01 GPa, which was in agreement with other authors [29] with 0.23 ± 0.03 GPa. The
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sterilisation of PLA by gamma radiation did not affect the hardness of the polymer, which
remained practically constant, which also occurred for PLASCCO, PLAHPGP and PLALTSF.
An intense increment was clearly detected when PLA was sterilised by autoclaving, PLASS
(0.34 ± 0.03 GPa). This increase in hardness was in concordance with the increment in the
crystallinity degree of the PLA [30]. In relation to the Young Modulus, the result obtained
was 4.7 ± 0.1 GPa for PLAC, again in accordance with the literature [29] with 4.6 ± 0.4 GPa.
A slight decrease was detected, and therefore in the PLA stiffness, after sterilisation by
gamma radiation, supercritical CO2 and hydrogen peroxide gas plasma, and there was
a steeper decrease with formaldehyde (PLALTSF). Conversely, sterilisation by saturated
steam promoted an increase in the value of the stiffness in PLASS. It was, therefore, in this
sample (PLASS) where the physicochemical and structural changes seemed to be relevant
enough to promote certain modifications at the mechanical behavioural level.
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Figure 6. Modulus and hardness of PLA discs subjected to the different sterilisation treatments:
PLAGR, PLASCCO, PLALTSF, PLASS and PLAHPGP together with the untreated PLA disc as control,
PLAC. Results are presented as mean ± standard deviation.

Finally, once the changes at the compositional, structural and mechanical level were
evaluated, the wettability was also analysed, which is relevant to predicting how a bio-
material will behave within a biological environment. The contact angle measurements
presented in Figure 7 confirmed the expected hydrophilic behaviour (<90◦) of the untreated
PLAC with a mean value of 72.1◦. The PLAC contact angle obtained was in agreement with
that measured by Savaris and colleagues (75.1◦) [19]. When subjected to the sterilisation
processes, slight modifications in the contact angle were evidenced, with the highest value
being 79.3◦ for PLASS, which was therefore the least hydrophilic sample in terms of the
mean value. This latter sterilisation caused a decrease in the amount of oxygen at the
printed PLA surface (Table 3). Hydrophilicity is generally related to oxygen concentration
and the presence of polar species such as carbonyl, carboxyl and hydroxyl groups [31]. A
slight decrease in wettability was then expected for PLASS sterilisation. Significant vari-
ability was detected for the other samples, PLASCCO, PLAHPGP, PLAGR and PLALTSF, with
the lowest angle measured being in the latter (61.9◦). According to the amount of oxygen
in the surface of the PLALTSF, the expected decrease in wettability did not occur, and the
sterilisation even favoured it. More exhaustive studies on this specific technique could
be performed, as the wettability is influenced by several factors, not only oxygen. When
performing our experiment, the contact angle was measured at the smooth part of the
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3D-printed PLA disc (the one in contact with the hot bed), as the side with the semi-circular
pattern gave very unstable values.
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Figure 7. Water contact angle for PLA discs subjected to the different sterilisation treatments: PLAGR,
PLASCCO, PLALTSF, PLASS and PLAHPGP together with the untreated PLA disc as control, PLAC.
Results are represented as mean ± standard deviation.

In summary, the analyses carried out showed that the physicochemical properties of
PLA can be affected to a greater or lesser extent depending on the sterilisation technique
used. Compositionally, gamma radiation did not contribute with external minor elements,
providing a similar O:C ratio with respect to the control sample PLAC. Conversely, auto-
clave sterilisation presented a relevant decrease in the O:C ratio and the highest contribution
of minor elements (Si, S, N, Na and I). Moreover, due to the high temperatures and pressure
in the PLASS process, some degree of crystallisation took place, demonstrated by the results
of the analyses carried out using FTIR, XRD and DSC techniques, as indicated by other
authors [13,32]. This change in crystallinity was also observed in the PLAscco and PLALTSF
samples, although to a lesser extent. Other techniques, such as gamma radiation, main-
tained the original semi-crystalline structure of the unsterilised material (PLAC). In terms of
hardness and Young Modulus, PLAGR, PLASCCO, PLAHPGP and PLALTSF presented minor
changes when compared to the PLAC. However, saturated steam sterilisation promoted
an increment in the hardness properties of the PLASS, in concordance with the increment
in its crystallinity degree. Changes to the wettability revealed the expected hydrophilic
behaviour for all the tested samples with, again, the highest mean value of the contact angle
being that for PLASS, which implies the lowest hydrophilic degree. Saturated steam sterili-
sation applied to 3D-printed PLA samples was then clearly proven to promote changes
to the physicochemical properties of the polymer by increasing its crystallisation and, to
a lesser extent, the super critical CO2 technique, which is still experimental and surely
needs the parameters to be optimised for these types of polymers. On the contrary, gamma
radiation was clearly the least reactive with the biomaterial causing barely any alterations
to it. To transfer these results into clinical practice, it is important to take into account that
some methods are easier or more viable to implement than others. Furthermore, it is of
great relevance to assess the extent to which the changes promoted in the biomaterial by
the different sterilisation methods significantly affect its biological response. This aspect
was tested first in vitro and later in vivo using the zebrafish model.

62



Polymers 2022, 14, 4117

3.2. Biological Response: Cytotoxicity In Vitro and Acute Toxicity in Zebrafish Model

The in vitro evaluation of the potential cytotoxicity caused by the physicochemical
changes detected in the 3D-printed PLA discs after the different sterilisation methods is
presented in Figure 8. Given the absence of sterilisation in the control PLA, this sample
could not be tested, and the sample extracts tested were from PLAGR, PLASCCO, PLALTSF,
PLAHPGP and PLASS in a wide concentration percentage from 0 to 100%. All the experi-
ments were compared with a negative control, which was the same culture medium without
a sample extract, and a positive control, represented by phenol. A total of 100% of the
extract (black) for all the PLA samples tested presented a lower mean value of cell viability
than the negative control, however these differences were not found to be statistically
significant for any of them, even for 100% of PLASS. The only PLA sample where the mean
cell viability values for the different extracts were higher than the negative control were
50%, 30% and 10% of PLAGR extract. However, when considering the standard deviation,
the values were again not found to be statistically significant. Under all the test conditions,
all values were above 80% of cell viability and therefore non-cytotoxic, being above the
cytotoxicity limit of 70% established by the standard (UNE-EN-ISO 10993-5:2009). The cyto-
toxicity found at the 100%, 50% and 30% extracts of the positive control (phenol) validated
the experiment. An absence of cytotoxicity in the PLAGR, PLASCCO, PLALTSF, PLAHPGP
and PLASS extracts towards fibroblasts NCTC clone 929 was demonstrated.

Once the absence of cytotoxicity in vitro had been proven, the 3D-printed PLA well-
shaped samples of the sterilisation processes that triggered the most significant physico-
chemical changes (PLASS) and the least significant (PLAGR), together with untreated PLA
(PLAC), were evaluated in direct contact with the zebrafish model for the in vivo evalu-
ation of potential acute toxicity. Figure 9 shows an optical image of the 3D-printed PLA
well-shaped samples sterilised by the five techniques and the control, where a clear change
in the colour of the PLA was observed. The material turned from transparent to white in
the PLASS samples, and to a lesser extent with PLASCCO. According to the literature and
in agreement with our results, Weir et al. [32] clearly stated that when PLA crystallises it
becomes opaque. Moreover, a certain deformation was clearly observed for PLASS, with
such a deformation after the autoclaving process in 3D-printed parts having previously
been reported by several authors [13].
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Figure 8. Cell viability detected in mouse fibroblast cells (NCTC clone 929) in the presence of different
extracts of PLAGR, PLASCCO, PLALTSF, PLAHPGP and PLASS discs, compared to the positive control
(phenol) and negative control (DMEM). Results are expressed as percentage compared to the negative
control ± standard error. Statistical significance was determined to * (p ≤ 0.05).
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Figure 9. Image of 3D-printed PLA well samples before (untreated control C) and after five ster-
ilisation processes: (GR) gamma radiation, (HPGP) hydrogen peroxide gas plasma, (LTSF) low
temperature steam formaldehyde, (SCCO) supercritical CO2 and (SS) saturated steam.

Figure 10 displays the development and growth of zebrafish embryos on the 3D-
printed PLA samples PLASS, PLAGR and PLAC. The figures show viable embryos (%) after
24 h (A); hatching rate (%) at 24, 48 and 72 hpf (B); survival rate of larvae after 7 dpf (C)
and larvae at 3 dpf on the PLAC and PLASS well samples (D). As already discussed, for
the acute toxicity experiments in the zebrafish model, a blank control treatment without
PLA was added in addition to the untreated PLA control material to validate them. Given
that similar results with non-significant differences were observed for the two controls, the
results presented in Figure 10, and at the evaluation of the main morphological structures
of 72 hpf larvae at Figure 11, are represented only against the untreated PLAC. These
similar results in both controls proved, in the first place, that PLAC itself had no effect
on the hatching or survival rates. Secondly, viable embryos were counted after 24 hpf
(Figure 10A) and the embryos exposed to both PLAGR and PLASS showed a percentage of
viability similar to the control. The hatching rates of embryos exposed to the materials at
24, 48 and 72 h were also compared (Figure 10B). Following their normal development, the
embryos began to hatch on the second day (48 h), with no significant differences between
the two treatments compared to the control. At 72 h, all viable embryos had fully hatched.
The rate was not delayed for the embryos exposed to PLA samples sterilised by gamma
radiation or saturated steam. In the case of the larvae, the mortality rate was estimated in a
continuing observation period every 24 h to acquire the survival percentage (Figure 10C).
For the two sterilisation processes tested, the mortality rate did not present significant
differences from the control.

An assessment of the toxic effects on embryonic developmental stages was also carried
out, and the main morphological structures of the 72 hpf larvae zebrafish models were
inspected under a microscope. Figure 11 represents the images of the normal body shape
morphology of 72 hpf larvae after exposure to PLAC (A), PLAGR (B) and PLASS (C) together
with body length (D), yolk sac diameter (E) and heart rate of 72 hpf larvae (F). Images
B and C show that the body shape of the larvae at 3 dpf was completely normal after
direct exposure to the PLAGR and PLASS samples, respectively, and compared to the
control group. None of the most common morphological defects, which would imply
some degree of cytotoxicity, were observed, such as pericardial oedema, yolk sac oedema,
ocular oedema, spine curvature, head malformation, shortened body stature, lowered yolk
consumption and underdeveloped brain and eye [33]. To verify these visual inspection
results, measurements of the body length (Figure 11 bottom left) of the larvae were taken,
presenting a mean of 3.8 mm in the control sample PLAC. This value was very close to that
described by Nüsslein et al. of 3.5 mm at 3 dpf, validating our PLAC control [20]. For the
PLAGR and PLASS samples, the values were very close to the control with no significant
differences, indicating that there was no delay in larval growth. The same was repeated
for the yolk sac diameter, with no significant differences compared to the control. The
yolk sac was completely normal in all three conditions, since no oedema or increase in
size was observed that would indicate a lowered yolk consumption. Finally, the heart rate
(Figure 11 bottom right) can be used as an indicator of the state of cardiac function of the
embryo, which is an important parameter for studying toxicity. Due to the transparency of
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the embryos, the heart development, heart rate and deformations can be seen at a simple
resolution [33]. The heartbeat ratios of the embryos exposed to PLA sterilised by gamma
radiation and autoclaving were counted and presented no significant differences between
them or as compared to the control (130 beats/minute). Moreover, the results were in
agreement with the values of other studies at 133.08 beats/minute [34]. These results
revealed that direct exposure to the PLA sterilised using these techniques did not bring
about any changes in heart rate such as brachycardia or tachycardia. There was no toxic
influence on the zebrafish hearts.

In summary, the in vivo evaluation proved that direct contact exposure to both the
3D-printed PLAGR and the PLASS well-shaped samples did not induce embryonic develop-
mental abnormalities and was not toxic to developing zebrafish embryos or early larvae
stages. Other authors have used the zebrafish model to study the toxicity of different
printing methods on zebrafish embryos, but with other materials (ABS) [35] and only
cleaning the parts according to the manufacturing specifications [36]. As indicated by Zhu
and colleagues, a limited number of research works have been completed on the toxicity
of 3D materials to cells, tissues and model organisms. For this reason, they evaluate the
toxicity of different polymers used in the 3D printing processes, with rapid methods to
test for toxicity, including zebrafish assays. Their results for PLAC, sample extracts and
direct contact of PLA with embryos were also non-toxic, however they did not indicate any
sterilisation method [37,38].
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Figure 10. Viable embryos (%) after 24 h after exposure to PLAGR, PLASS and PLAC (A); hatching
rate (%) at 24, 48 and 72 hpf (B); survival rate of larvae after 7 dpf (days post-fecundation) (C); larvae
at 3 dpf on the PLAC (above) and PLASS (below) well samples (D). Results are represented as the
mean ± standard error.
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Figure 11. (A–C): Images of normal body shape morphology of 72 hpf larvae after exposure to PLAC,
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4. Conclusions

The present work demonstrated that 3D-printed PLA remained practically unaltered
when sterilised using gamma irradiation in terms of physicochemical and elemental com-
position, O:C ratio and distribution of binding assignments, maintaining also the original
semi-crystalline structure of the unsterilised material. Conversely, saturated steam sterilisa-
tion was proven to generate significant physicochemical changes to the 3D-printed PLA,
beginning with a 54% reduction in the O:C ratio caused by an intense decrease in O and
related bonds. Moreover, an increase in the crystallinity degree of the 3D-printed PLA was
demonstrated in the form of α-phase R crystals, confirmed by thermogravimetry, with an
FTIR band ratio of 921:955 cm−1 of 3.13, which implied a clear contribution of the band sen-
sitive to the degree of crystallinity (921 cm−1), a 52.9% increase in the index of crystallinity
and the diffraction pattern. These changes, promoted by saturated steam sterilisation,
slightly affected the mechanical properties and hydrophilic degree of the 3D-printed PLA.
The three remaining sterilisation techniques evaluated (hydrogen peroxide gas plasma,
low temperature steam with formaldehyde and CO2 under supercritical conditions) were
situated at the intermediate point in terms of physicochemical changes. In fact, a decrease
in the O:C ratio was also found after sterilisation using hydrogen peroxide gas plasma
and low temperature steam together with a change in crystallinity after sterilisation using
CO2 under critical conditions and low temperature steam with formaldehyde. Finally, the
present work also demonstrated that despite all these changes the biological response of
the 3D-printed PLA was not affected in terms of toxicity for any of the tested sterilisations,
either in vitro or in the zebrafish animal model. However, GR sterilisation was clearly
concluded as the least reactive technique with good perspectives in terms of the biological
response, not only at the level of toxicity but also in terms of biofunctionality.
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Abstract: Banana ripeness is generally determined based on physical attributes, such as skin color;
however, it is considered subjective because it depends on individual factors and lighting conditions.
In addition, improper handling can cause mechanical damage to the fruit. Intelligent packaging
in the form of indicator film incorporated with anthocyanins from red dragon fruit peel has been
applied for shrimp freshness detection; however, this film has low color stability during storage,
necessitating the addition of gambier catechins as a co-pigment to increase anthocyanin stability.
Nevertheless, the characteristics of films that contain gambier catechins and their applications to
bananas have not been studied yet; therefore, this study aims to develop and characterize indicator
films that were incorporated with red dragon fruit peel anthocyanins and gambier catechins to detect
banana ripeness. In this study, the indicator films were made via solvent casting. The films were
characterized for their structural, mechanical, and physicochemical properties, and then applied to
banana packaging. The results show that the film incorporated with anthocyanins and catechins in
a ratio of 1:40 (w/w) resulted in better color stability, mechanical properties, light and water vapor
barrier ability, and antioxidant activity. The application of the indicator films to banana packaging
resulted in a change in color on the third day of storage. It can be concluded that these films could
potentially be used as an indicator to monitor banana ripeness.

Keywords: red dragon fruit peel anthocyanins; gambier catechins; indicator film; co-pigmentation;
banana ripeness

1. Introduction

Bananas are Indonesia’s leading horticultural product. In 2022, Indonesia produced
9,245,427 tons of bananas, which were then marketed both globally and domestically [1].
The distribution of bananas for retail marketing is carried out when the banana reaches a
certain level of maturity according to a reference color chart, with a score of 3 indicating
a banana that is green–yellow, a score of 4 indicating a banana that is green and more
yellow, and a score of 5 indicating a banana that is yellow [2]. The maturity level of a
banana is generally determined by comparing the color of the fruit skin with a reference
color chart, but this method is considered to be very subjective and inconsistent because
it depends on operator skill and lighting [3]. In addition, improper handling of the fruit
when determining ripeness can cause mechanical damage [4].

Intelligent packaging is a type of food packaging that can detect and provide infor-
mation about the quality of food ingredients in such aspects as freshness, ripeness, gas
production, and the presence of microbial contamination in the ingredient [5]. Intelligent
packaging is generally equipped with sensor technology, enabling the collection of infor-
mation without damaging or opening the package. Sensors that are commonly used in
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intelligent packaging are color indicators, which are incorporated into polymer-based films
and are sensitive to pH, allowing for a color change when there is a change in the pH of the
product [6].

Anthocyanins are water-soluble natural pigments that originate from red-, blue-,
purple-, and black-colored materials, such as red dragon fruit [7], butterfly pea flower [8],
purple sweet potato [9], and black rice [10]. These pigments can change color based on
changes in the pH of their environment. This characteristic has led to the widespread de-
velopment of anthocyanins as color indicators incorporated into films made from materials
such as whey protein isolate nanofibers [11], chitosan [12], alginate [13], gelatin [14], and
pectin–chitosan [10], primarily to monitor the freshness of meat and seafood. Additionally,
anthocyanins incorporated into films can also be utilized to determine the maturity levels of
fruits, including bananas. Bananas are climacteric fruits, where the respiration process will
continue even beyond the harvest process. The fruit ripening process causes an increase in
the pH, which can be used as an indicator of the level of fruit maturity [5].

Research on indicator films based on cassava–chitosan starch with anthocyanins from
red dragon fruit peel has been carried out to detect freshness in shrimp; however, it
produces less stable colors during storage [15]. Anthocyanin-based indicator films are
susceptible to light and temperature. Light and temperature cause discoloration on the
films even when they are not used for food monitoring [16]. One method that can be
applied to increase the color stability of anthocyanins is co-pigmentation. Co-pigmentation
of anthocyanins using gambier catechins (Uncaria gambier) has been carried out and proven
to minimize the degradation of black rice anthocyanins in isotonic drinks [17]; however,
improvements in the color stability of anthocyanin-based indicator films with gambier
catechin co-pigmentation have never been carried out.

In order to fill this research gap, this study aimed to develop and characterize indicator
films based on a cassava starch–chitosan complex and anthocyanins of red dragon fruit
(Hylocereus polyrhizus) peel co-pigmented with gambier catechins as indicators to monitor
banana ripeness. The success of the film’s development can be understood based on the
film’s ability to detect the maturity level of bananas as climacteric fruits that produce
volatile compounds that increase the pH in the environment inside the package.

2. Materials and Methods
2.1. Materials

Red dragon fruit, cavendish banana (Musa acuminata L.), and tapioca flour (Rose
Brand) were obtained from AEON Mall BSD City, Tangerang, Indonesia. Chitosan with a
deacetylation degree of 83.3% and molecular weight of 70 kDa was obtained from Xi’an
Gawen, China. Ethanol, glacial acetic acid, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) were
obtained from Smart-Lab, Tangerang, Indonesia. Glycerol was obtained from Merck KGaA,
Darmstadt Germany. The other ingredients included gambier catechins and distilled water.
All chemicals used in this research were analytical grade.

2.2. Methods
2.2.1. Anthocyanin Extraction from Red Dragon Fruit Peel

The red dragon fruit was washed, and the flesh was removed. Then, the red dragon
fruit peel was mashed using a food processor (Philips 2061, Shanghai, China) until it
became mushy. Once smooth, 100 g of red dragon fruit peel pulp were weighed and placed
into 500 mL of a 70% ethanol solution. Then, the mixture was stirred using a stir bar until
the mixture became evenly distributed. The mixture was then macerated in a chiller at
5 ◦C for 24 h. After maceration, the extract was filtered using Whatman No. 1 paper. The
filtrate obtained was then concentrated using a rotary evaporator (R-300 Buchi, Flawil,
Switzerland) at 55 ◦C, 60 rpm speed, and 130 mbar pressure [18].
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2.2.2. Analysis of the Anthocyanin Levels of Red Dragon Fruit Peel

Every 100 µL of the concentrated anthocyanin extract was mixed into 1.9 mL of a
potassium chloride buffer solution (pH 1) and a sodium acetate buffer solution (pH 4.5) in
a test tube. Next, the solution was homogenized using a vortex (Thermo Fisher, Waltham,
MA, USA) and incubated for 15 min. After that, the absorbance of the solution was
measured at wavelengths of 536 and 700 nm using a UV-Vis spectrophotometer (Thermo
Scientific, Waltham, MA, USA). The blank used in this measurement was distilled water.
The total anthocyanin level was calculated using the following equation [19]:

Anthocyanin level (mg/L) =
A × MW × DF × 1000

ε × L
(1)

where A is the absorbance value, with A = (A536 − A700) pH 1 − (A536 − A700) pH 4.5; MW
is the molecular weight of anthocyanin (449.2 g/mol); DF is the dilution factor; ε is the
molar attenuation coefficient of anthocyanin (26,900 L/mol·cm); and L is the width of the
cuvette (1 cm).

2.2.3. Addition of Gambier Catechins

Gambier catechins were added to the anthocyanin extract of the red dragon fruit peel
following four discrete formulations, as seen in Table 1 [20].

Table 1. Color extract formulation.

Sample Anthocyanins:Gambier Catechins (w/w)

SCh–A 1:0
SCh–AC20 1:20
SCh–AC28 1:28
SCh–AC40 1:40

The color extract was prepared by dissolving gambier catechin powder in concen-
trated anthocyanin extract, which was then homogenized using a magnetic hotplate stirrer
(Heidolph MR Hei-Standard, Schwabach, Germany) for 30 min. The solution was then
filtered using Whatman No. 1 paper to obtain the filtrate.

2.2.4. Color Change Analysis of the Color Extracts

A total of 13 cuvettes were prepared. Then, 1 mL of color extract was placed into each
cuvette and 1 mL of pH 1–13 buffer was added to each cuvette, so that a final volume of
2 mL was obtained. The solution was then incubated for 30 min, and then the color change
was observed and photographed [21].

2.2.5. Indicator Film Preparation

The indicator films were prepared by first preparing a 1% (w/v) chitosan solution
involving the mixing of 1 g of chitosan into 100 mL of 1% (v/v) acetic acid solution. The
solution was homogenized using a magnetic hotplate stirrer (Thermo Scientific, Waltham,
MA, USA), with stirring at 300 rpm for 24 h. Next, a 2% (w/v) cassava starch solution
was prepared by mixing 2 g of cassava starch powder into 100 mL of distilled water. The
mixture was then gelatinized using a magnetic hotplate stirrer (Thermo Scientific, Waltham,
MA, USA) until it reached a temperature of 80 ◦C.

The chitosan solution was then mixed with the gelatinized cassava starch solution
in a ratio of 1:1. After mixing, the solution was then homogenized using a homogenizer
(Heidolph, Schwabach, Germany) at 530 rpm for 10 min. Then, 85% glycerol was added
to the solution, and homogenization was performed using a homogenizer (IKA T10 ultra-
turrax, Potsdam, Germany) at 14,500 rpm for 5 min (Table 2). The color extract was then
added to the film solution and stirred using a stir bar until it became smooth [22].
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Table 2. Composition of indicator film solution per print unit (20 mL).

Composition Amount (mL)

1% (w/v) chitosan solution 7.46
2% (w/v) cassava starch solution 7.46

85% glycerol 0.08
Color extract 5

2.2.6. Indicator Film Casting

Each variation of the film solution was poured into a plastic Petri dish 6 cm in diameter
at 20 mL. Next, the solution was dried in a fume cupboard for 72 h. After the solution dried
and formed a film, the film was removed from the Petri dish using a spatula and stored in
a closed, dark container at a chiller temperature of 5 ◦C [23].

2.2.7. Characterization of Indicator Films’ Surface Color

The surface colors of the four indicator film samples were analyzed using a colorimeter
(Nh3, China) on the 1st and 14th day of storage at a temperature of 5 ◦C. After obtaining
the L, a, and b values from the film samples, the total color difference (∆E) was calculated
using the following formula [21]:

∆E =

√
(Ls − L)2 + (as − a)2 + (bs − b)2 (2)

where L is lightness, a is red (+) and green (−), and b is yellow (+) and blue (−).

2.2.8. Analysis of Indicator Film Sensitivity to Various pH Conditions

The films’ sensitivity to pH and their color-changing ability were analyzed. The
indicator film was cut to a size of 1 × 1 cm and then dipped in each buffer solution with a
pH value of 1–13 for 2 min, respectively [21].

2.2.9. Characterization of Indicator Film Structure

The surface morphology of the films was observed using scanning electron microscopy
(SEM) (Hitachi SU3500, Tokyo, Japan) with an electric voltage of 10 kV and high vacuum
conditions (10−3). An FTIR analysis in the range of 500–4000 cm−1 (Bruker-Tensor II,
Borken, Germany) was performed to observe the functional groups on the films [24].

2.2.10. Characterization of Mechanical Properties of the Films

The film thickness was measured using a micrometer with an accuracy of 0.01 mm. The
mechanical properties were then analyzed using a texture analyzer (Agrosta Texturometer,
Serqueux, France). The film samples were cut to a size of 4 × 1 cm and affixed to the towing
lever. A tensile test was then carried out with an initial grip of 1 cm and a cross-head speed
of 0.8 mm/s. The tensile strength and elongation at break, as measurements of film strength
and flexibility, were determined using the following formula [21]:

Tensile strength (MPa) =
F

A0
(3)

Elongation at break (%) =
δ

L0
× 100 (4)

where F is the force applied to the film sample, A0 is the area of the film sample, δ is the
increase in length, and L0 is the initial length of the film sample.
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2.2.11. Physical Characterization of Films
Analysis of Transparency and Transmittance of the Indicator Films

The films were cut to a size of 4 × 1 cm and affixed to the clear side of the cuvette.
The light transmittance of the films could be measured using a UV-Vis spectrophotometer
(Shimadzu UV-2450, Tokyo, Japan) by measuring the transmittance at a wavelength of
200–800 nm. After determining the percentage of light transmittance, the transparency of
the film was calculated using the following formula [21]:

Transparency =
logT600

D
(5)

where T600 is the percent transmittance of light at a wavelength of 600 nm and D is the
thickness of the film sample (mm).

Analysis of Moisture Content and Solubility of the Indicator Films

Analyses of the film water content and solubility were carried out based on the method
of Alizadeh-Sani et al. [21]. The films were cut to a size of 2 × 2 cm. The moisture content
of the film samples was then measured by weighing the film samples before drying (W1)
and after drying (W2) using an oven (Memmert UN110, Greifensee, Switzerland) at 105 ◦C
for 24 h using the following formula [21]:

Moisture content (%) =
W1 − W2

W1
× 100 (6)

For the film solubility analysis, 2 × 2 cm films were dried in an oven (Memmert
UN110, Greifensee, Switzerland) at 105 ◦C for 24 h and then weighed as W1. The dried
film samples were immersed in 25 mL of distilled water involving shaking using an orbital
shaker (GFL 3017, Greifensee, Germany) at 100 rpm for 24 h. The film samples were then
dried again using an oven (Memmert UN110, Greifensee, Switzerland) at 105 ◦C for 24 h
and then weighed as W2. After weighing, the solubility of the film samples was calculated
using the following formula [21]:

Water solubility (%) =
W1 − W2

W1
× 100 (7)

Analysis of Water Vapor Transmission Rate (WVTR)

The WVTR value was calculated by cutting a circular film sample 4 cm in diameter.
The cut film was then used as a lid for a container containing 5 g of silica gel (0% RT), which
was placed in a desiccator filled with distilled water (99% RH). The silica gel was weighed
and replaced periodically every 24 h for 3 days. From the results, a graph of the mass of
the container against time was obtained and a linear equation was developed using the
formula y = mx + c. Then, the WVTR value was calculated using the following formula [21]:

WVTR =
m

A × t
(8)

The WVTR value obtained is in units of gm−2·24 h−1. The value of m is obtained from
the linear equation, A is the film area (m2), and t is the time (hours).

2.2.12. Analysis of Antioxidant Activity

As much as 50 mg of each film sample was weighed and dissolved in 5 mL of distilled
water and homogenized using a vortex (Thermo Fisher, Waltham, MA, USA). The solution
was then shaken using an orbital shaker (GFL 3017, Burgwedel, Germany) at 200 rpm
for 24 h. The extract from the film was then taken and used for testing using the radical
scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. The test solution was prepared
by dissolving 2.5 mg of DPPH in 100 mL of 99.7% methanol, with distilled water as a blank.
A total of 4 µL of extract from the film was mixed with 196 µL of DPPH solution, then
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the mixture was homogenized using a vortex (Thermo Fisher, Waltham, MA, USA). The
absorbance was measured at a wavelength of 490 nm using a microplate reader (NanoQuant
TECAN, Hombrechtikon, Switzerland). The DPPH activity was then calculated using the
following formula [25]:

Antioxidant activity (%) =
ADPPH − A f ilm

ADPPH
× 100 (9)

ADPPH is the absorbance of the blank DPPH in the form of a mixture of DPPH solution
and distilled water, while Afilm is the absorbance of the DPPH film sample.

Monitoring the Ripeness of Bananas

Each indicator film sample was cut to a size of 1.5 × 1.5 cm and then affixed to PVC
cling wrap, which was part of the lid of the container. The film was not allowed to come
into direct contact with the banana sample. The prepared samples were stored at room
temperature for 7 days. The color changes of the films were observed and photographed
every day [26].

Statistical Analysis

The experiments in film-making and film characterization were repeated three times.
The data obtained were then statistically processed using the IBM SPSS Statistics 25 (IBM
Corp., Armonk, NY, USA) application. First of all, a normality test was performed on the
data using the Shapiro-Wilk test. If the data were normally distributed, then the data were
tested for homogeneity. If the data were normally distributed and homogeneous, then
the test was followed by a one-way analysis of variance (ANOVA). The real differences
obtained were analyzed using Duncan’s test at α = 0.05. If the data were otherwise not
normally distributed and/or not homogeneous, then the data were processed using the
Kruskal–Wallis test, followed by the stepwise step-down test [27].

3. Results
3.1. Anthocyanin Level of Red Dragon Fruit Peel Extract

The anthocyanin extract of red dragon fruit peel obtained was purplish-red in color
(Figure 1). The extraction of anthocyanin by the maceration method using 70% ethanol
resulted in an anthocyanin level of 0.122 ± 0.01 mg/g.
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3.2. Changes in Extract Color under Various pH Conditions

The color extract was divided into two categories, namely, anthocyanin extract from
red dragon fruit peel without the addition of gambier catechin and anthocyanin extract
from red dragon fruit peel with the addition of gambier catechin. In the color extract
without the addition of gambier catechin, the color changed to purple–yellow at a pH of
12 and to yellow at a pH of 13. In the color extract with the addition of gambier catechin,
color changes appeared at pH 1 to purple and at pH 13 to yellowish-brown (Figure 2).
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Figure 2. Color change test of the color extract (A) before the addition of gambier catechin and
(B) after the addition of gambier catechin.

3.3. Indicator Films

The final results of the film-making and the condition of each film after 14 days of
storage can be seen in Figure 3. During the 14 days of storage, it was clear that the SCh–A
and SCh–AC20 films had changed in color from pink to red–yellow, whereas the SCh–
A, SCh–AC28, and SCh–AC40 films had only a slightly yellowish tint to the outside of
the films.
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Figure 3. The color changes of the indicator films (SCh–A (cassava starch–chitosan, glycerol, antho-
cyanin), SCh–AC20 (cassava starch–chitosan, glycerol, anthocyanin–catechin 1:20), SCh–AC28 (cas-
sava starch–chitosan, glycerol, anthocyanin–catechin 1:28), and SCh–AC40 (cassava starch–chitosan,
glycerol, anthocyanin–catechin 1:40) after 14 days of storage.

3.4. Surface Colors of the Indicator Films

After 14 days of storage, the SCh–A film showed increased L*, a*, and b* values.
The SCh–AC20 film showed increased L* and b* values, but the a* value decreased. The
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SCh–AC28 film showed decreased L*, a*, and b* values. Meanwhile, the SCh–AC40 film
showed decreased L* and a* values, but the b* value increased. This indicates that the color
of the film grew darker and yellower, and the redness decreased toward green. Based on
the L*, a*, and b* values, the SCh–AC40 film had the lowest color change. This is indicated
by the smaller ∆E value of the SCh–AC40 film compared to the other film samples (Table 3).

Table 3. The results of the surface color analysis of the indicator films using a colorimeter.

Sample
1st Day 14th Day

L* a* b* L* a* b* ∆E

SCh–A 32.50 ± 1.10 a 35.62 ± 3.51 a 14.45 ± 3.25 a 34.87 ± 1.65 bc 38.59 ± 1.10 b 19.36 ± 2.14 b 8.09 ± 5.29 a

SCh–AC20 34.13 ± 2.16 a 41.16 ± 6.73 a 12.25 ± 3.02 a 36.51 ± 0.86 c 39.51 ± 0.90 b 19.25 ± 0.92 b 7.83 ± 1.90 a

SCh–AC28 34.99 ± 0.65 a 39.92 ± 4.14 a 15.1 ± 1.65 a 32.83 ± 0.20 ab 37.29 ± 0.12 b 14.72 ± 0.09 a 4.43 ± 3.34 a

SCh–AC40 31.67 ± 0.16 a 33.32 ± 0.28 a 11.07 ± 0.21 a 31.41 ± 0.22 a 31.09 ± 0.63 a 11.46 ± 0.42 a 2.33 ± 0.57 a

All data are presented as means ± standard deviations. Different letters in each column indicate a real difference;
α ≤ 0.05.

3.5. Indicator Film Sensitivity to Various pH Conditions

The sensitivity of an indicator film to various pH conditions was tested only in SCh–
A40 because of the film’s smallest ∆E value. The results of the evaluation of the SCh–AC40
indicator film that was dipped in pH 1–13 buffer can be seen in Figure 4. It was discovered
that the indicator film had the ability to change color according to the pH conditions from
red at pH 1–12 to yellow at pH 13.
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3.6. Structural Properties of the Indicator Films

The morphology of the indicator films observed using SEM can be seen in Figure 5.
The SCh–AC40 film showed very clear gray and white aggregates. As the amount of
gambier catechins added increased, the number of aggregates captured by SEM increased
as well.

The results of the FTIR curve analysis can be seen in Figure 6. The spectrum produced
by each film was similar, with differences found only in the absorption at 500–1000 cm−1,
which was caused by differences in the stretching of C–O due to the addition of the
gambier catechins.
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3.7. Thickness and Mechanical Properties of the Indicator Films

The SCh–AC20 and SCh–AC28 films showed the highest thickness values. Based on
the mechanical properties results, the SCh–AC40 film had the highest tensile strength and
elongation at break values, while the SCh–AC20 film had the lowest tensile strength and
elongation at break values (Table 4).
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3.8. Physical Properties of the Indicator Films
3.8.1. Transmittance and Transparency of the Indicator Films

The light transmittance value of each film increased at wavelengths of 380 nm and 570
nm; however, it experienced a decrease at a wavelength of 450 nm (Figure 7a).
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Figure 7. Physicochemical properties of SCh-A, SCh-A20, SCh-A28, and SCh-A40 indicator films
through (a) transmittance; (b) transparency; (c) moisture content; (d) solubility; (e) water vapor
transmission rate (WVTR); and (f) antioxidant activity. Bars represent means ± standard deviations.
Different letters indicate a real difference; α ≤ 0.05.
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The results for the transparency of the indicator films can be seen in Figure 7b. The
transparency values obtained for the SCh–A, SCh–AC20, SCh–AC28, and SCh–AC40 films
were not significantly different.

Table 4. Thickness and mechanical properties of the indicator film.

Films Thickness (mm) Tensile Strength
(MPa)

Elongation at Break
(%)

SCh–A 0.13 ± 0.00 a 0.19 ± 0.02 b 2.22 ± 0.35 b

SCh–AC20 0.15 ± 0.01 b 0.12 ± 0.03 a 1.29 ± 0.01 a

SCh–AC28 0.15 ± 0.00 b 0.12 ± 0.01 a 1.42 ± 0.24 a

SCh–AC40 0.14 ± 0.00 ab 0.23 ± 0.02 b 4.88 ± 0.27 c

All data are presented as means ± standard deviations. Different letters in each column indicate a real difference;
α ≤ 0.05.

3.8.2. Moisture Content and Solubility of the Indicator Films

The SCh–AC40 film had the highest water content, while the SCh–AC20 film had
the lowest. As for film solubility, the SCh–A film had the highest value, followed by the
SCh–AC20, SCh–AC28, and SCh–AC40 values (Figure 7c,d).

3.8.3. Water Vapor Transmission Rate (WVTR)

The SCh–AC40 film had the lowest WVTR value, while the SCh–AC20 film had the
highest (Figure 7e).

3.9. Antioxidant Activity of the Indicator Films

The SCh–AC40 film had the highest antioxidant activity value, followed by the SCh–
AC28, SCh–AC20, and SCh–A films (Figure 7f).

4. Banana Ripening Monitoring

The results of the application of the SCh–A indicator film in monitoring banana
ripeness during room temperature storage (25 ◦C) can be seen in Figure 8. The SCh–A
indicator film showed a color change from red to pink–yellow beginning on the 3rd day of
storage and another color change to almost entirely yellow on the 6th day of storage.

The results of the application of the SCh–AC20 indicator film in monitoring the
ripeness of a banana during room temperature storage (25 ◦C) can be seen in Figure 9. The
SCh–AC20 indicator film showed a change in film color from red to pink beginning on the
3rd day of storage and another change into red–yellow on day 5; however, until day 7 of
storage, the color of the film did not change completely to yellow.

The results of the application of the SCh–AC28 indicator film in monitoring the
ripeness of a banana during room temperature storage (25 ◦C) can be seen in Figure 10.
The SCh–AC28 indicator film showed a color change from red to faded red on the 3rd day
of storage and another change into red-yellowish on the 4th day, but until the 7th day of
storage, the film discoloration only occurred on a portion of the film surface.

The results of the application of the SCh–AC40 indicator film in monitoring the
ripeness of a banana during room temperature storage (25 ◦C) can be seen in Figure 11. The
SCh–AC40 indicator film showed a color change from red to red–yellow on the 3rd day of
storage, and on the 7th day of storage, the film color changed almost completely to yellow.

79



Polymers 2023, 15, 3609
Polymers 2023, 15, x FOR PEER REVIEW 12 of 18 
 

 

 

Figure 8. Changes in color of the SCh–A indicator film on banana packaging. 

The results of the application of the SCh–AC20 indicator film in monitoring the ripe-

ness of a banana during room temperature storage (25 °C) can be seen in Figure 9. The 

SCh–AC20 indicator film showed a change in film color from red to pink beginning on 

the 3rd day of storage and another change into red–yellow on day 5; however, until day 

7 of storage, the color of the film did not change completely to yellow. 

 

Figure 9. Changes in color of the SCh–AC20 indicator film on banana packaging. 

The results of the application of the SCh–AC28 indicator film in monitoring the ripe-

ness of a banana during room temperature storage (25 °C) can be seen in Figure 10. The 

SCh–AC28 indicator film showed a color change from red to faded red on the 3rd day of 

storage and another change into red-yellowish on the 4th day, but until the 7th day of 

storage, the film discoloration only occurred on a portion of the film surface. 

Figure 8. Changes in color of the SCh–A indicator film on banana packaging.

Polymers 2023, 15, x FOR PEER REVIEW 12 of 18 
 

 

 

Figure 8. Changes in color of the SCh–A indicator film on banana packaging. 

The results of the application of the SCh–AC20 indicator film in monitoring the ripe-

ness of a banana during room temperature storage (25 °C) can be seen in Figure 9. The 

SCh–AC20 indicator film showed a change in film color from red to pink beginning on 

the 3rd day of storage and another change into red–yellow on day 5; however, until day 

7 of storage, the color of the film did not change completely to yellow. 

 

Figure 9. Changes in color of the SCh–AC20 indicator film on banana packaging. 

The results of the application of the SCh–AC28 indicator film in monitoring the ripe-

ness of a banana during room temperature storage (25 °C) can be seen in Figure 10. The 

SCh–AC28 indicator film showed a color change from red to faded red on the 3rd day of 

storage and another change into red-yellowish on the 4th day, but until the 7th day of 

storage, the film discoloration only occurred on a portion of the film surface. 

Figure 9. Changes in color of the SCh–AC20 indicator film on banana packaging.

80



Polymers 2023, 15, 3609
Polymers 2023, 15, x FOR PEER REVIEW 13 of 18 
 

 

 

Figure 10. Changes in color of the SCh–AC28 indicator film on banana packaging. 

The results of the application of the SCh–AC40 indicator film in monitoring the ripe-

ness of a banana during room temperature storage (25 °C) can be seen in Figure 11. The 

SCh–AC40 indicator film showed a color change from red to red–yellow on the 3rd day 

of storage, and on the 7th day of storage, the film color changed almost completely to 

yellow. 

 

Figure 11. Changes in color of the SCh–AC40 indicator film for banana packaging. 

5. Discussion 

In this study, anthocyanin was contained in red dragon fruit peel at 0.122 ± 0.01 mg/g. 

Other research similarly discovered anthocyanin in red dragon fruit peel at a level of 0.105 

mg/g [15]. The concentration method was applied using a rotary evaporator at 55 °C for 

the extraction of anthocyanins because anthocyanins are thermolabile compounds. This 

method was selected in order to prevent anthocyanin damage due to high temperatures, 

in which case the temperature at which this method was implemented is considered to be 

the optimal condition for anthocyanin extraction [15]. 

The anthocyanin extracts obtained were then used as color extracts, and it was deter-

mined that two of the color extracts used had the ability to change color depending on the 

Figure 10. Changes in color of the SCh–AC28 indicator film on banana packaging.

Polymers 2023, 15, x FOR PEER REVIEW 13 of 18 
 

 

 

Figure 10. Changes in color of the SCh–AC28 indicator film on banana packaging. 

The results of the application of the SCh–AC40 indicator film in monitoring the ripe-

ness of a banana during room temperature storage (25 °C) can be seen in Figure 11. The 

SCh–AC40 indicator film showed a color change from red to red–yellow on the 3rd day 

of storage, and on the 7th day of storage, the film color changed almost completely to 

yellow. 

 

Figure 11. Changes in color of the SCh–AC40 indicator film for banana packaging. 

5. Discussion 

In this study, anthocyanin was contained in red dragon fruit peel at 0.122 ± 0.01 mg/g. 

Other research similarly discovered anthocyanin in red dragon fruit peel at a level of 0.105 

mg/g [15]. The concentration method was applied using a rotary evaporator at 55 °C for 

the extraction of anthocyanins because anthocyanins are thermolabile compounds. This 

method was selected in order to prevent anthocyanin damage due to high temperatures, 

in which case the temperature at which this method was implemented is considered to be 

the optimal condition for anthocyanin extraction [15]. 

The anthocyanin extracts obtained were then used as color extracts, and it was deter-

mined that two of the color extracts used had the ability to change color depending on the 

Figure 11. Changes in color of the SCh–AC40 indicator film for banana packaging.

5. Discussion

In this study, anthocyanin was contained in red dragon fruit peel at 0.122 ± 0.01 mg/g.
Other research similarly discovered anthocyanin in red dragon fruit peel at a level of
0.105 mg/g [15]. The concentration method was applied using a rotary evaporator at 55 ◦C
for the extraction of anthocyanins because anthocyanins are thermolabile compounds. This
method was selected in order to prevent anthocyanin damage due to high temperatures, in
which case the temperature at which this method was implemented is considered to be the
optimal condition for anthocyanin extraction [15].

The anthocyanin extracts obtained were then used as color extracts, and it was deter-
mined that two of the color extracts used had the ability to change color depending on the
pH conditions. When the color extract without the addition of gambier catechins was used,
a significant color change was seen at pH 12 into purple and at pH 13 into yellow. This
is in accordance with the research conducted by Apriliyanti et al. [28], which found that
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at pH 2–10, red dragon fruit peel extract has a reddish-purplish color, which changes into
yellow at pH 12–13. In general, anthocyanins will form a pink color at pH 4–5, purple at
pH 6–7, and yellow at pH values above 10 [16]. In the color extract added with gambier
catechins, a significant color change was obtained at pH 1 to purple. Then, another color
change occurred at pH 13 to purple–yellow. The difference in the color series produced
by the two types of color extracts was due to the anthocyanin co-pigmentation process
rendered by the addition of gambier catechins. Co-pigmentation is a phenomenon of the
formation of molecular or complex associations by anthocyanins and co-pigment com-
pounds. The effect of co-pigmentation is manifested as an increase in the color intensity
and a change in the color tone of the anthocyanin solution [29]. This phenomenon is
known as the hyperchromatic effect (∆A), which refers to an increase in the intensity of the
anthocyanin color, which results in an increase in absorbance and a bathochromic effect
(∆λmax), i.e., a shift in the maximum absorbance wavelength (λmax) towards a higher
value [30].

Analyses of the surface colors of the indicator films using a colorimeter were performed
on the 1st and 14th days after casting. Throughout the storage period, the SCh–A film
showed increased L*, a*, and b* values. This indicates a change in the color of the film into
brighter red-yellowish. The SCh–AC20 film showed increased L* and b* values, but the
a* value decreased. This indicates that the color of the film turned lighter and yellower,
but the redness was reduced. The SCh–AC28 film showed decreased L*, a*, and b* values,
indicating that the color of the film grew darker, and that the reddish and yellowish
colors of the film had decreased toward green and blue. The SCh–AC40 film showed
decreased L* and a* values, but the b* value increased. This indicates that the color of
the film became darker and yellower, while the redness decreased toward green. Based
on the L*, a*, and b* values, the SCh–A film obtained the highest total color difference
(∆E), followed by SCh–AC20, SCh–AC28, and SCh–AC40. These results indicate that the
most visible discoloration occurred on the SCh–A film, with decreases proportionate to the
amount of gambier catechins added. The addition of gambier catechins as a co-pigment
can form intramolecular bonds with anthocyanins, which increases the stability [31,32].
Anthocyanin molecules in the form of electron-poor flavylium cations can associate with
catechin compounds as electron-rich co-pigments, so that the hydration reaction that
changes the anthocyanin structure from colored flavylium cations to colorless chalcones
can be prevented [33].

The results of the sensitivity analysis of the SCh–AC40 indicator film after dipping
in pH 1–13 buffer showed a color change that was similar to the change that occurred to
the color extract. The color change varied slightly, but it was clearly visible at pH 13 as
a yellow color. Pramitasari et al. [15] previously found that an indicator film made from
the anthocyanin extract of red dragon fruit peel experienced a color change to red–yellow
at pH 12 and turned completely yellow at pH 13. This finding bears a similarity with the
color change experienced by the SCh–AC40 film, which was analyzed for its sensitivity;
therefore, it was concluded that dye based on the anthocyanin of red dragon fruit peel has
the ability to change color and has the potential to be used as an indicator film [14].

The results of the SEM morphological analysis showed that the SCh–AC40 film had
a heterogeneous structure, as indicated by the presence of highly visible gray and white
aggregates. The higher concentration of gambier catechins added increased the amount of
sedimentation of insoluble components in the film matrix captured by SEM. This is because
gambier catechins are insoluble in cold water and form crystals in dry conditions [34].
The crystalline form of this catechin compound is an aggregate in the film matrix, which
induces the formation of a heterogeneous film structure [35]. The results of the FTIR
analysis show a similarity with the results of the research by González et al. [24], where
the curve shows peaks at wavelengths of 3268 cm−1 (O–H stretching), 2926 cm−1 (C–H
stretching), and 1633 cm−1 (O–H bending from water bonds). The band at 1411 cm−1

corresponds to CH2 bending, the band at 1148 cm−1 corresponds to CO deformation, and
the band at 1074 cm−1 corresponds to COH bending. In addition, the 924 cm−1 band is
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associated with the skeletal mode vibration of α-1,4-glycosidic, namely, the COC bond. The
addition of gambier catechins did not cause any new bands, but it caused changes in the
absorption area between 1000 and 500 cm−1. This may be due to changes in the matrix
vibration in CO caused by the addition of gambier catechins [24].

The indicator film thickness analysis results show that the SCh–A film was the thinnest
of all the films. This finding is in line with the research by Santoso et al. [34], who reported
that the addition of gambier catechins increases the thickness of the film as an added
material is used. Gambier catechins, which can form crystals in dry conditions, cause
the total solids in the film suspension to increase, so that the thickness of the cast film
increases [34]. Based on the results of the analysis of the mechanical properties, the SCh–A
film obtained higher TS and EAB values than SCh–AC20 and SCh–AC28. This indicates
that the SCh–AC20 and SCh–AC28 films tended to be more brittle and stiffer. As explained
by Santoso et al., the addition of gambier catechins can increase the thickness of the film,
thereby reducing its tensile strength [34]. In addition, the conformation of the binding
between the starch molecular chains and the formation of the double helix structure can
hinder the relative displacement between the chains, which results in a decrease in the
elongation at break value [36]. The SCh–AC40 film obtained the highest tensile strength
and elongation at break values, indicating that it possessed the strongest and most elastic
film properties. Chen et al. [36] reported that polyphenols in tea in a certain concentration
can increase the film’s tensile and resistance-to-stress properties without reducing its
elongation ability. As catechins are natural resins suitable for use as reinforcing agents, they
can improve the mechanical properties of the film [37]. In addition, gambier catechins have
active hydroxyl groups (-OH); therefore, the higher the concentration of gambier catechins
added, the higher the number of OH groups in the film matrix. The OH group can bind
to starch molecules and interfere with the rolling and binding between starch molecules,
giving it a significant role in increasing the mobility of the film matrix polymer chains, as
well as the elasticity and elongation at break value of the film [34,36].

The results of the analysis of film transparency are supported by the results of light
transmittance. It was found that the transmittance value of the SCh–AC40 film formed
the gentlest curve of all the films, indicating that the SCh–AC40 film had the best ability
to inhibit visible light at a wavelength of 380–700 nm. As for transparency, no significant
difference was found between the treatments; however, it was found that the transparency
value decreased as the concentration of gambier catechins increased, which is in line with
the transmittance curve that is formed [29]. In addition, a higher number of solids in the
film matrix, as well as greater thickness of the film could prevent light from penetrating the
film surface better [28].

Based on the analysis of water content and film solubility, it was found that the SCh–A
film had higher water content and solubility than the SCh–AC20, SCh–AC28, and SCh–
AC40 films. The addition of gambier catechins could reduce the value of the water content
and solubility of the film, which is similar to the findings of Gao et al. [38] that the water
content of a film decreases as polyphenols from tea are added to the film. This is because
the addition of gambier catechins increases the amount of polymer and the viscosity that
forms the film matrix. As the polymer making up the film matrix increases, the total solids
also increase, resulting in lower film water content [28]. It should be noted, however, that
to a certain extent, the addition of catechins in large quantities can cause a resurgence in the
water content of the film. When catechins interact with anthocyanins or other polymers,
there will be free catechins, which causes an increase in the availability of OH groups. Based
on the results of the analysis of film solubility, the higher the concentration of catechins, the
lower the solubility value of the film [34]. This is because gambier catechins are difficult to
dissolve in cold water.

According to the WVTR analysis results, the SCh–AC40 film had the lowest WVTR
value of all the films, indicating that the SCh–AC40 film had the best ability as a water
vapor barrier. This is in accordance with Ku et al.’s finding that the addition of catechins in
the film matrix can reduce the WVTR value of the film. This could be because the addition
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of catechins causes changes in matrix interactions and modifications in the structure of the
film formed [39].

From the antioxidant activity test results, it was found that the SCh–A film had the
lowest antioxidant activity of all the films. In the SCh–A film, the antioxidant activity
comes from chitosan and anthocyanin compounds. Anthocyanins, which are polyphenolic
compounds, can act as antioxidants, while chitosan can prevent the initial stage of oxidation
through the interaction between the free NH2 group in the C2 position of chitosan, which
binds to the H+ group from the film solution to form NH3

+. This compound will then
interact with the DPPH free radical to form a stable molecule [40]. Chen et al. previously
reported that the addition of tea polyphenols, which is comparable to the gambier catechins
in the case of this research, increased the antioxidant activity of the film [36]. Accord-
ing to research by Anggraini et al. [41], gambier catechins contain many polyphenolic
compounds belonging to the flavonoid group, which act as good antioxidant compounds.
Catechins can donate hydrogen atoms or their single electrons to radical compounds, which
causes oxidation–reduction reactions to occur, so that radical compounds that initially had
unpaired electrons now have their electrons paired and thus become non-radical [42].

The SCh–A, SCh–AC20, SCh–AC28, and SCh–AC40 films all showed color changes
from red to dull red or red–yellow on the 3rd day of storage. This is in line with the
research of Ardiyansyah et al., which reported an increase in pH on the 4th day of storage,
indicating that the bananas were starting to ripen. The ripening process of bananas is
marked by increases in the texture value, pH, and CO2 gas produced and by a decrease in
the vitamin C level in the fruit. The color change occurring on the indicator films is due
to respiration or metabolism that takes place during the fruit ripening process, as well as
the activity of enzymes and microorganisms during the fruit decomposition process. This
process causes an increase in the pH of the environment to become alkaline, resulting in
a change in the color of the indicator film to yellow [43]. In addition, this can be caused
by the presence of other compounds, namely, betalain color pigments, which consist of
betacyanin, a red–purple pigment, and betaxanthin, a yellow–orange pigment. Betalain
pigments are stable under acidic pH conditions. As the pH increases, the structure of
betalain can be degraded into colorless cyclo-DOPA 5-O-(malonyl)-β-glucoside and yellow
betaxanthin [44].

6. Conclusions

The addition of gambier catechins to the anthocyanin color extract of red dragon fruit
peel could successfully increase the color stability of the film without reducing the film’s
ability to change under certain pH conditions. The SCh–AC40 indicator film produced
the best color stability, mechanical properties, light and water vapor barrier ability, and
antioxidant activity. When applied to banana packaging, the SCh–AC40 indicator film
showed a color change that was easily observable during storage, supported by changes
in the environmental pH toward an alkaline condition. Based on the results obtained, the
SCh–AC40 indicator film has the most potential to be developed as smart packaging for
banana ripeness detection.
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Abstract: Extensive use of petrochemical plastic packaging leads to the greenhouse gas emission
and contamination to soil and oceans, posing major threats to the ecosystem. The packaging needs,
hence, are shifting to bioplastics with natural degradability. Lignocellulose, the biomass from forest
and agriculture, can produce cellulose nanofibrils (CNF), a biodegradable material with acceptable
functional properties, that can make packaging among other products. Compared to primary
sources, CNF extracted from lignocellulosic wastes reduces the feedstock cost without causing an
extension to agriculture and associated emissions. Most of these low value feedstocks go to alternative
applications, making their use in CNF packaging competitive. To transfer the waste materials
from current practices to the packaging production, it is imperative to assess their sustainability,
encompassing environmental and economic impacts along with the feedstock physical and chemical
properties. A combined overview of these criteria is absent in the literature. This study consolidates
thirteen attributes, delineating sustainability of lignocellulosic wastes for commercial CNF packaging
production. These criteria data are gathered for the UK waste streams, and transformed into a
quantitative matrix, evaluating the waste feedstock sustainability for CNF packaging production.
The presented approach can be adopted to decision scenarios in bioplastics packaging conversion
and waste management.

Keywords: biodegradable packaging; lignocellulose; cellulose nanofibrils; feedstock selection; sus-
tainability assessment; waste management

1. Introduction

Plastics, the fossil-derived polymers, with strength, flexibility and durability, have
wide range of applications, including packaging [1]. Packaging holds the largest global
plastic market, presenting 36% of the overall demand in 2021 [2]. Most of the plastic
packaging are single use and often end up in incineration or landfilling, causing major
global greenhouse gas (GHG) emissions [1,3]. According to OECD [4], plastic life cycle
globally accounts for 1.8 Gt CO2-equivalent emissions in 2019, which is projected to grow to
4.3 Gt by 2060. When proper disposal does not take place, plastics often enter the terrestrial
and marine environments, negatively impacting the ecosystems for thousands of years,
due to being non-biodegradable [5,6].

These prevalent environmental impacts have led to the shift of packaging consumption
towards bioplastics, derived from biological precursors (e.g., starch, cellulose, alginate,
gelatin, collagen, proteins, chitosan, pectin) with natural biodegradability [3,7,8]. The
global bioplastics production capacity standing at 2.42 mtonnes in 2021 is projected to
grow to 7.59 mtonnes in 2026 [9]. Starch-blends derived from food crops (e.g., maize,
sugarcane) dominate the commercial market of bioplastic feedstocks [10,11] but present
a number of problems. Consumption of food crop feedstocks threatens food security,
increasing both the market demand and price [12]. This also increases the use of land
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and fertiliser with associated GHG emissions, negating the sought environmental bene-
fits of bioplastics [13,14]. Moreover, material characteristics, e.g., poor mechanical and
barrier properties of starch-based bioplastics make them an inferior alternative to their
petrochemical counterparts [15,16].

Whereas, lignocellulose (LC), the biomass composites of cellulose, hemicellulose
and lignin, deriving from forestry and agriculture, does not compete with food and are
abundant in nature [17]. Some potential LC sources include: wood (softwood, hardwood),
seed (cotton), bast (flax, hemp), leaf (sisal, brassica), stalk (wheat, barley) and grass/weed
(miscanthus, Arabidopsis, bamboo) [18]. The cellulose fibres in LC are composed of
microfibrils of 10–50 nm diameter, that in turn is comprised of elementary fibrils with a
diameter of 3–5 nm, each of which consist of around 30–100 cellulose polymer chains (see
Figure 1) [19]. Biosynthesis of LC can produce native nanocellulose materials: weblike
cellulose nano fibrils (CNFs) and rodlike cellulose nanocrystals (CNCs) [17]. CNF gels, with
larger surface areas, possess better film formation capability than CNC, and are therefore
recommended for packaging applications [8,20].
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Numerous studies discuss the use of CNF packaging films for: food, health care
and various consumer goods [8,16,21]. These films are not only biodegradable and recy-
clable, but also demonstrate functionalities better or comparable to that of petrochemical
polymers and other LC derivatives, e.g., regular paper [22,23]. CNF films demonstrate
high mechanical strength, optical transmittance, thermal stability and gas (e.g., oxygen,
air) barrier properties [24,25]. They also show better water vapor barrier properties than
paper, though that remains somewhat lower compared to petrochemical plastics (e.g., poly-
olefins) [23]. This limits their application for packaging products with high moisture content
(e.g., horticulture, fish, meat) and/or being stored at high relative humidity. However, this
shortcoming could be overcome by various processes: incorporation of inorganic fillers
(i.e., silver), chemical modification (i.e., plasma polymerization) and adsorption of other
film matrix materials (e.g., chitosan) [26,27].

CNF packaging films are produced mainly in four generic steps (See Figure 2): (1) size
reduction, e.g., chopping or grinding of LCs; (2) chemical/biological pre-treatment for
removal of non-cellulosic compounds (e.g., lignin, hemicellulose) or modifying properties;
(3) mechanical disintegration of cellulose; and (4) film preparation [17,28]. The CNF
films can be either recycled or converted into compost, returning organic matter to the
soil [29,30]. Ease of preparation, competitive properties and circular end-of-life treatments
spur commercial interests in CNF packaging production [26,29]. Large-scale production
ought to fulfil a major proportion of the global demand for flexible packaging that stood at
33.5 million metric tons in 2022 [31,32].
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Economic and environmental consequences are major obstacles for large-scale biodegrad-
able packaging production [33,34]. Production of dedicated LC feedstock (i.e., purposefully
cultivated for bioplastics) can lead to the land use changes as well as enhanced agricultural
activities and fertilizer uses, causing a massive environmental burden [12,35,36]. Moreover,
feedstock price, a major contributor to the LC processing cost, is higher for the dedicated
biomass [34]. These present a need to identify more sustainable feedstock options for com-
mercial CNF packaging production, providing environmental neutrality while maintaining
the economic benefits [23].

Compared to dedicated LC, the use of lignocellulosic wastes, i.e., the leftover and
eliminated substances of primary processes and applications, lowers the feedstock price
and removes the need for land use changes, while producing CNFs with similar proper-
ties [37,38]. These wastes— comprising primary residues from forestry (e.g., bark, branches,
stump) and agriculture (straw) as well as secondary wastes from municipality, businesses
and industries (e.g., waste paper, saw dust, and waste food)— are collectively known as lig-
nocellulosic waste and residue (LCW&R) (See Figure 3) [22,39]. CNFs can also be extracted
from algae, bacteria and some animals (e.g., tunicates); however, this study focuses on the
readily available, carbon neutral and low-cost feedstock alternative LCW&R [7,23,26].
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Many of the LCW&R options either have alternative uses, e.g., straw use in power
generation, compost media, and animal bedding, or they go through different end-of-
life treatments, e.g., incineration and landfilling of paper wastes [40,41]. Diversion of
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these materials from current uses and treatments to CNF packaging production requires
an evaluation of their economic viability and emission mitigation efficacy [33,34,40]. In
addition, it is also imperative to assess the feedstock technical characteristics, i.e., physical
and chemical attributes that largely influence the properties and processing requirements
for CNF-based packaging [42–44].

Existing studies in the literature discuss the impact of various feedstock criteria on CNF
film properties, processing requirements and overall LC-based supply chains [20,24,42,45–47].
Shanmugam et al. [23] and Ang et al. [29] investigated how the mechanical properties,
barrier and recycling performance of CNFs differ for the processed (i.e., dried) and vir-
gin (i.e., never dried) LC. The impact of cell wall structure and composition (e.g., lignin,
hemicellulose) of the LC on the CNF properties and process energy consumption were
also examined by many authors [19,46,48–50]. Existing studies also relate the CNF pro-
duction yield to the raw material carbohydrate composition [49,51], whereas for industrial
LC processing, several studies [20,34,52,53] indicate the influence of feedstock physical
properties (e.g., bulk density, durability) and price on the overall production cost. The
impact of biomass supply chains on environment, soil and biodiversity were also widely
analysed [35,40,54,55]. However, a study consolidating all the above criteria, defining the
sustainability of LC wastes for large-scale CNF production, is still absent in the literature.

This study aims to coalesce the sustainability criteria, incorporating technical, eco-
nomic, and environmental aspects of LCW&R for large-scale CNF packaging production.
To this end, we adopted an iterative literature review and expert interviews, and identify
thirteen relevant attributes. To demonstrate the use of this criteria pool, we collected the
data on LCW&R streams in the UK and analysed how they perform across the given criteria.
This helps in better understanding of their sustainability potential in their use for CNF
packaging. The approach could be applied to various scenarios to support sustainable
feedstock selection for bioplastic packaging and waste management decisions.

2. Materials and Methods

An iterative review of relevant academic and grey literature (e.g., reports, briefs and
websites) followed by experts’ interviews were conducted to identify the technical, eco-
nomic and environmental criteria, defining the sustainability of LCW&R for the CNF
packaging production. A total of thirteen criteria were identified, categorised as: posi-
tive/beneficial, whose higher values are desired; and negative/non-beneficial which were
to be as low as possible. Availability (C1), physical composition (C2), cellulose content (C3),
hemicellulose content (C4) and bulk density (C5) form the positive criteria, whereas the
negative criteria are comprised of lignin content (C6), ash content (C7), cell wall thickness
(C8), price of feedstock (C9), seasonal variability (C10), particle size (C11), environmental
emission (C12), and soil and biodiversity impact (C13). These criteria are discussed in
Section 3.

To demonstrate the waste feedstock sustainability evaluation based on these criteria,
data for the current LCW&R streams (See Tables 1–3) were collated for the UK. While
most of these criteria are objective and measurable that include C1, C3, C4, C5, C6, C7,
C8, C9 and C11, others, i.e., C2, C10, C12, C13, are subjective. The quantitative values
of the objective attributes are gathered from the existing sources while subjective criteria
values are approximated using categorial scales shown in Table 4. The criteria values
are then transformed into a coherent quantitative matrix, assessing the sustainability of
different waste streams for CNF film production. The criteria values and the sustainability
measuring matrix are shown in Section 3. Results. The criteria analysis for the UK waste
streams are discussed below.
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Table 1. LCW&R streams for primary agriculture residues.

Wheat Straw Barley Straw Oat Straw Oilseed Rape Straw

Animal bedding Wheat straw→ Animal
bedding (F1)

Barley straw→ Animal
bedding (F6)

Oat straw→
Animal bedding (F9) —

Animal feed Wheat straw→ Animal
feed (F2)

Barley straw→ Animal
feed (F7)

Oat straw→
Animal feed (F10) —

Heat & power Wheat straw→ Heat &
power (F3) — — Oilseed rape straw→

Heat & power (F12)

Mushroom and carrot
production

Wheat straw→
Mushroom and carrot

production (F4)
— — —

Soil incorporation Wheat straw→ Soil
incorporation (F5)

Barley straw→ Soil
incorporation (F8)

Oat straw→ Soil
incorporation (F11)

Oilseed rape straw→ Soil
incorporation (F13)

Table 2. LCW&R streams for primary forest residues.

Conifer Leftover Broadleaf Leftover

Uncollected Conifer leftover→ Uncollected (F14) Broadleaf leftover→ Uncollected (F16)

Heat & power Conifer leftover→ Heat & power (F15) Broadleaf leftover→ Heat & power (F17)

Table 3. LCW&R streams for secondary municipal and industrial wastes.

Paper and Cardboard Waste Wood Waste Organic Waste

Incineration with/out recovery
Paper and cardboard waste→
Incineration with/out recovery

(F18)

Wood waste→
Incineration with/out recovery

(F21)

Organic waste→
Incineration with/out recovery

(F25)

Recycling & reuse Paper and cardboard waste→
Recycling & reuse (F19)

Wood waste→ Recycling & reuse
(F22) —

Backfilling — Wood waste→ Backfilling (F23) Organic waste→ Backfilling (F26)

Landfilling Paper and cardboard waste→
Landfilling (F20) Wood waste→ Landfilling (F24) Organic waste→ Landfilling (F27)

Composting and anaerobic
digestion — — Organic waste→ Composting and

anaerobic digestion (F28)

Table 4. Scales used for quantitative estimation of subjective criteria.

Subjective Rating Quantitative Rating

Physical composition

Raw & homogenous 4
Raw & mixed 3

Raw & mixed to processed & mixed 2
Processed & mixed 1

Seasonal variability

High 3
Medium 2

Low 1

Environmental emission

Increase 1
Decrease or unchanged 0

Soil and biodiversity impact

Yes 1
No 0
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2.1. LCW&R Streams in the UK

In this paper the LCW&R streams refer to the flows of specific LC wastes to various
end applications or treatments [56]. To indicate an LCW&R stream, we use the name of the
waste material and their existing end use/treatment with a graphical rightward arrow (→)
in between, demonstrating the conversion direction (See Tables 1–3). Including end uses
and treatments within the feedstock options helps to consider their differing environmental
impacts as a criterion for feedstock selection. For example, diversion to CNF packaging
from two waste streams—‘Wheat straw→ Animal bedding’ and ‘Wheat straw→ Heat
& power’—ought to result in different emission mitigations due to different end uses at
present, though both comprise the same material (i.e., wheat straw). A total of 28 LCW&R
streams were considered in this study and are denoted with alphanumeric code F1–F28
for the ease of the readers. The LCW&R streams in the UK under primary and secondary
categories are discussed below.

2.1.1. Primary Agriculture Residues

The primary agriculture residues are comprised of crop stem, leaves, dead shoots
and chaff; for simplification we use the term “straw” to generically denote the residues
remaining after extracting grains. Straw is the second largest food supply chain waste and
the cost of collection is relatively high [54]. In the UK, the major produced crops are: wheat,
barley, oat and oilseed rape [40]. Residues from these crops have many alternative uses that
compete and influence the uncertainty of their availability and price [57]. Even when they
are not collected for specific applications, they house small insects and return nutrients to
the soil [41].

Wheat straw, being less palatable, contributes a small fraction to ‘animal feed’ while
the main uses are: ‘animal bedding’, ‘heat and power’, and ‘mushroom and carrot produc-
tion’ [40,54,57]. Barley and oat straws, being highly nutritious, are mostly used in ‘animal
feed’ with a small portion going to ‘animal bedding’, owing to higher price [54]. Oilseed
rape straws are brittle and not ideal for ‘animal bedding’ but are increasingly being used for
bioenergy, i.e., ‘heat and power’. A proportion of all crop residues are left or chopped and
ploughed back into the land, broadly considered here as ‘soil incorporation’. Combining
the four crop types with alternative uses, a total of 13 LCW&R streams were identified for
the UK primary agriculture residues as shown in Table 1.

2.1.2. Primary Forest Residues

Forest residues are the mix of tree remains, i.e., bark, tops, branches, distorted wood,
and in some cases stumps that are left after harvesting [40]. This biomass is expensive to
collect and transport [41]. Moreover, extensive collection can cause soil erosion and risks to
biodiversity [58].

Forest residues derive from two types of wood: hardwood that comes from broadleaved
trees, such as oak, ash and beech; and softwood produced by coniferous trees, e.g., pine,
fir, spruce and larch. Considering two material types (conifers, broadleaves) with two end
applications (uncollected, heat and power), a total of four LCW&R streams were identified
for the UK primary forest residues as shown in Table 2.

2.1.3. Secondary Municipal and Industrial Waste

The secondary LCW&R derive from the lignocellulosic municipal and industrial
wastes. The three material groups presenting this waste category are: paper and cardboard,
wood and organic. Unlike the primary residues of homogenous materials, secondary LC
wastes are mostly comprised of processed and mixed material. Paper and cardboard waste
includes paper and card packaging from businesses and households as well as sludges and
rejects from the pulp and paper industries [59], whereas wooden packaging, saw dust, bark,
chips and cuttings from these industries make up the wood waste. The key components of
organic waste come from green and food wastes [59].
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The waste treatment routes were identified from the 2018 UK national statistics [60].
The major paper and cardboard wastes go to ‘recycling and reuse’ which is followed
by ‘incineration with/out recovery’ and ‘landfilling’. Wood wastes also follow the same
treatment routes although ‘backfilling’ is performed to some extent. A major portion of
the organic wastes go to organic recycling, i.e., ‘composting and anaerobic digestion’. The
LCW&R streams for secondary municipal and industrial wastes are presented in Table 3.

2.2. LCW&R Streams Criteria Data Compilation

The positive and negative criteria data for the current LCW&R streams in the UK are
gathered in Section 3. The data collection approach used for objective and subjective data
are discussed below.

2.2.1. Objective Criteria Data

The quantitative values of objective criteria are gathered from the existing literature
except for availability (C1) that is estimated based on both the literature and recent statistics
as follows:

Availability of primary agriculture residues: The data on the UK straw availability are
not reported, though the crop production data is publicly available [61]. To estimate the
current amounts of dry crop residue in the UK, 2021 data on crop areas, yields, moisture
content and harvest indices (i.e., the proportion of total dry crop biomass harvested as grain)
were used [61–64]. The proportions of various straws’ applications were then determined
based on public datasets and the existing literature [40,54,65,66].

Availability of primary forest residues: Forest residues are not part of the UK national
statistics. This study estimated the current dry wood residue biomass for the year 2021
from known forestry statistics [67,68] with the assumptions of harvest site area, wood
density, moisture content and the ratio of harvest residues [40,41]. About 50% of the
forest residues were considered “uncollected” to comply with the sustainable and good
management practices, e.g., ensuring soil cover or adding organic fertilizers [41]. The only
application identified for rest of the biomass (collected) was the production of “heat and
power” through domestic and industrial combustion [41].

Availability of secondary municipal and industrial waste: To devise the secondary
LCW&R streams, generation and treatments of non-hazardous municipal and industrial
LC-based wastes in the UK 3454 considered. The latest dataset reporting this information
derives from 2018 UK waste statistics [60]. No moisture content was assumed for paper and
wood waste, though 82.5% moisture was considered for organic waste [69]. Waste statistics
for later years were not used due to being incomplete, and not reflecting the standard waste
management practices due to COVID-19.

2.2.2. Subjective Criteria Data

The subjective criteria values shown in Section 3 are defined by various terms based
upon the literature and authors’ perception. The four subjective criteria considered in this
study are discussed below.

Physical composition: Four subjective ratings were used to define physical compo-
sition (C2) (See Section 3). The term ‘raw and homogenous’ is used for all the primary
residues from forestry and agriculture. The other three ratings are used for the secondary
waste streams: ‘raw and mixed’ for organic; ‘processed and mixed’ for paper; and an
intermediate category between these two ‘raw & mixed to processed & mixed’ for wood
wastes which were comprised of both processed and unprocessed materials.

Seasonal variability: Seasonal variability (C10), comprising three ratings (high, medium
and low) defines three levels of uncertainty associated with the potential availability of the
biomass (See Section 3).

Environmental emission: To gauge the change in environmental emission (C12) for
feedstock diversion from current practices to CNF packaging, we used the EU Waste Hi-
erarchy, i.e., an order of preference for waste management based on their environmental
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impact [70]. In this hierarchy, bioplastic production falls in the third step, i.e., reuse, recy-
cling and composting [70]. The waste currently flowing to the treatments below the third
step, i.e., energy recovery (i.e., combustion, incineration) and disposal (incineration, landfill-
ing) are considered ‘decrease’ emission when diverted to bioplastic (i.e., CNF) production.
The current practices that are likely to involve less processing and chemical use (e.g., feed
and bedding material production) are considered ‘increase’ emissions when moved to CNF
production [71]. All types of soil incorporation and composting are considered ‘unchanged’
emissions as the CNF end-of-life treatment can take the same route (See Section 3).

Soil and biodiversity impact: Soil and biodiversity impact (C13) only applies to the
primary biomass extracted from nature. The primary residue, going to the soil, were
considered ‘yes’ (i.e., having an impact on soil and biodiversity) for C13 when moved to
CNF films production. The rest of the material streams were considered ‘no’ for C13 (See
Section 3).

2.3. LCW&R Performance Matrix

Simple calculations are performed to devise the LCW&R performance matrix (See
Section 3). All quantitative criteria values were converted to discrete numbers by taking the
average if they are expressed as a range. The subjective attributes presented via qualitative
data were approximated in discrete quantitative values using the categorial scales shown in
Table 4. The data were then normalised to dimensionless indicators in a coherent scale of 0
to 1, using a technique described in the literature [72,73]. The values are presented via data
bars in green and red colours for positive and negative criteria, respectively (See Section 3).

3. Results

This section presents the thirteen criteria of LCW&R comprising technical, economic
and environmental aspects that collectively determine the feedstock sustainability for CNF
packaging production. The criteria values were collated for the 28 LC-waste streams in the
UK, as shown with the units of measurements in Tables 5 and 6. This was converted into a
quantitative matrix in Figure 4, mapping sustainability performance of the waste streams
along the criteria between 0 to 1.

3.1. Sustainability Criteria

The criteria, evaluating the sustainability of using LCW&R from their current practices
to the CNF packaging production, are discussed below.

3.1.1. Availability (C1)

Feedstock availability refers to the maximum amount of LCW&R at hand for the CNF
packaging production [34,40,74,75]. Knowing the material quantity flowing to various
applications/processes at a given time helps to identify which LCW&R stream diversion
can achieve economies of scale in the packaging production. Lack of consideration of the
availability criteria may cause overstretch or underutilization of the waste material [76]. In
the UK (Table 5), F19, i.e., paper and cardboard waste flowing to the recycling operations,
presents the overall highest availability, although wheat straws from livestock bedding (F1)
enables the maximum feedstock accessibility if primary residues are concerned.

3.1.2. Physical Composition (C2)

This criterion indicates whether an LC stream is comprised of raw, processed, ho-
mogenous or mixed materials, determining its requirements for handling or processing
operations and the resulting bioplastic quality [77]. Refined biomass is different by chemi-
cal composition and processing history than its raw counterpart, and therefore results in
CNF films differing in properties, processability or performance [28,29,46]. For example,
recycled pulp (i.e., dried once), contrasting to virgin pulp (i.e., never-dried), produces
CNF films with reduced tensile strength and swelling capacity, thereby reducing recycla-
bility [28,48,78]. Whereas mixed wastes, e.g., food and garden waste in MSW, possessing
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heterogenous compositions may cause high costs, requiring more flexible and complex
processing in the biorefineries, compared to their homogeneous fractions deriving from
forestry and agriculture [79–81]. In the UK (Table 5), the primary waste streams (F1–F15)
are likely to produce packaging films with better strength and recyclability, albeit using
less processing compared to the processed and mixed wastes from flows F16–F28. The
use of processed or refined biomass might be restricted in specific cases—such as for food
packaging—since regulatory requirements do not allow the use of processed material due
to containing harmful chemicals [82].

3.1.3. Cellulose (C3)

Cellulose is the main structural polysaccharide of LC cell walls, that consists of a linear
chain of β (1→4)-linked d-glucose units. CNF is partially degraded cellulose with diameters
in nanometre scales [17,83,84]. Therefore, the higher the cellulose content in a waste material,
the greater the biomass-to-CNF yield. Cellulose has a high degree of polymerisation (DP), and
high DP results in better tensile strength for the CNF sheets [85–87]. As is seen from Table 5
for the UK, wood residue streams (F14–F17), possessing more cellulose than non-wood
residues (F1–F13), which ought to result in better yield and film strength.

3.1.4. Hemicellulose (C4)

Hemicellulose, the second major component of the cell wall, surrounds the cellulose
microfibril bundles [83]. Hemicelluloses are branched polysaccharides, containing β-(1→4)-
linked backbones of glucose, mannose or xylose in an equatorial configuration [88]. The
carboxyl groups in hemicellulose, by the means of electrostatic repulsion, facilitate fibre
delamination, reducing fibrillation energy and increasing biomass-to-CNF yields [49].
Additionally, entrenched around cellulose microfibrils with hydrogen bonds, hemicellulose
seals the fibril gap and hinders fibril aggregation upon drying, resulting in enhanced film
recyclability and cost-effective transportation [19,29,49,50]. The presence of hemicellulose
also enhances film properties, e.g., strength and transparency [24,50,89]. Therefore, wood
residue and waste from LC streams (F14–F17 and F21–24) in Table 5 (UK scenario), due
to higher hemicellulose, should provide better CNF strength and higher production yield
than their derivatives, i.e., paper and cardboard in F18–F20.

3.1.5. Bulk Density (C5)

Feedstock delivery cost accounts for 30–35% of the overall costs of an LC supply
chain [90]. For cost-effective supply chain, bulk density, i.e., the amount of biomass fitting
inside a cubic foot of space, plays a major role [91]. In essence, the greater the bulk density
of a biomass, the less space it requires for transportation, handling and storage. Higher
density materials require fewer vehicles, as more weight can be placed on each vehicle,
reducing the cost of transportation. As is seen from Table 5 for the UK, supply chain
costs for agricultural residues derived from F1–F13 is expected to be high, owing to their
relatively lower bulk density.

3.1.6. Lignin (C6)

Lignin, a heterogeneous and irregular cross-linked polymer of phenyl propane, binds to
cellulose microfibrils in the biomass cell wall [83,92]. With the complex structure, lignin causes
biomass recalcitrance to chemical degradation, and restricts CNF extraction [22,83]. Therefore,
biomass pre-treatment is performed to remove lignin. The success of the pre-treatment relies
on maximum delignification with minimum cellulose loss. Hence, lower lignin composition
indicates faster biomass delignification, lesser cellulose loss and lower temperature and
chemical use, thereby providing reduced processing costs and energy [20,34]. Therefore, to
reduce cost and energy of delignification, paper and organic waste in F18–F20 and F25–F28
(Table 6), with lower lignin contents, are preferred for the UK.
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3.1.7. Ash (C7)

Ash refers to the biomass inorganic constituents, e.g., salts of nitrogen, potassium,
magnesium, phosphorus, calcium, sulphur, zinc and silicon. Ash rises as the biomass
storage period increases, and hence higher ash indicates less durable biomass [93]. In-
creased ash reduces biomass delignification efficacy, and leads to the wear of mechanical
components, e.g., centrifugal pump heads and homogenisation valves [86,94]. During
large-scale CNF production, major costs and environmental impacts derive from handling,
transportation and disposal of residual ash [85,95]. To illustrate, the lower ash fraction of
wood residue and waste (F14–F17 and F21–24) shown in Table 6, is an indication of reduced
cost and environmental impact for the wood-based packaging supply chain in the UK.

3.1.8. Particle Size (C8)

Biomass particle size affects its processability and input consumption during the CNF
production process [87]. A smaller biomass particle size provides increased specific surface
area (surface area of per unit mass) that reduces processing time, and chemical and energy
consumption [96]. Decrease in particle size also increases biomass bulk density, reducing
the cost of handling and transportation [81,97]. Therefore, size reduction is recommended
before transporting the LC to the processing sites [98,99]. In Table 6 for the UK context, we
consider biomass as a bulk solid except for paper and cardboard waste, and particle size
data were collected from the literature. All agricultural residues (F1–F13) regarded as the
finest particles (chopped in 2.42–4.22 mm) ought to consume the least processing time and
inputs for CNF packaging production.

3.1.9. Cell Wall Thickness (C9)

High cell wall thickness increases biomass recalcitrance and delays mechanical disinte-
gration, increasing energy consumption [28,49]. Studies [28,46] report that softwood, with
a relatively lower cell wall thickness, requires less mechanical treatment than hardwood to
produce the equivalent fibrillation level. This observation also applies to non-wood plants;
for example, sunflower plants with thinner cell walls takes less fibrillation time compared
to alfa, i.e., Stipa tenacissima [49]. As is seen from Table 6, waste paper and cardboard
(F18–F20) are considered to have no rigid cell wall, thereby consuming less mechanical
energy in CNF packaging production compared to their precursor, i.e., wood (F14–F17 and
F21–24) with stiff cell walls.

3.1.10. Price (C10)

Feedstock price is an important and sensitive cost component in the biomass produc-
tion [34]. High feedstock price acts as a barrier against large-scale development [55]. The
price of biomass consists of the costs of labour, energy and machineries that can vary based
on location, season and demand [54,66,90]. In the UK, the price of municipal and industrial
wastes (F18–F28) is almost zero, making them more cost effective compared to primary
forestry and agricultural residues, i.e., F1–F17 (Table 6).

3.1.11. Seasonal Variability (C11)

A major fraction of biomass supply chain costs originates from storage operation,
characterized by seasonal variability of the biomass supply [100]. For example, in the UK,
the year-round supply of primary forestry residue is possible with small storage opera-
tions [40]. However, supply of agricultural residues is highly prone to seasonal uncertainty
as straw is collected in a narrow window [40]. The LC composition of municipal food and
garden waste is also influenced by the seasonal variation, leading to the requirements for
specific storage conditions [101]. Aligning with these notions, the seasonal variability of
wood residues and wastes (F14–F17 and F21–24) is regarded as ‘low’, while high seasonal
variability is considered for agricultural residues (F1–F13) and so forth (Table 6).
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3.1.12. Environmental Emission (C12)

This criterion indicates whether the relocation of LCW&R use to the CNF packaging
production would increase, decrease or have no impact on emissions. To understand the
emission change, the EU Waste Hierarchy was used as described in Section 2.2 [70]. Thus,
in Table 6, diversion of wastes from F3, F15, F17, F18, F20–21, F24–25 and F27 to bioplastic
production will ‘decrease’ emissions, whereas, F1–2, F4, F6, F7, F9, and F10 ought to result
in emission increase. The rest of the material that are left or used in soil, are considered
to result in no emissions change. For enhanced understanding of the relative emissions, a
consequential life cycle assessment (LCA) can be adopted [35].

3.1.13. Soil and Biodiversity Impact (C13)

Harvesting primary residues can have significant impacts on soil and biodiversity.
These residues are considered as important habitats for microorganisms, fungi, insects,
and birds [58,102]. Excessive extraction of forest and agricultural biomass can reduce soil
productivity, moisture retention and aeration [102,103]. To comply with the sustainable
harvesting guidelines, limited extraction is performed in many countries; however, these
rules do not constrain secondary waste use [40,58]. The residue portions that are left or
intended for land incorporation (F5, F8, F11, F13, F14, F16 in Table 6 for the UK) will have
an impact on soil and biodiversity if collected to produce CNF packaging. However, the
waste streams already collected for various applications do not cause these impacts.

3.2. LCW&R Performance Matrix

Tables 5 and 6 is combined and converted into a performance matrix in Figure 4,
evaluating how each LCW&R stream performs across the proposed criteria for the UK
context. The normalised scores are shown via green and red data bars for the beneficial
and nonbeneficial criteria, respectively.

Paper and cardboard wastes for recycling (F19) provide the highest feedstock availabil-
ity (C1), with no increased emissions (C12) or soil and biodiversity impact (C13), although
they may result in lack of film properties due to low hemicellulose (C4) and lacking in
physical composition (C2). Among the waste streams with a higher C2 level, i.e., raw and
homogenous, wheat straw from livestock bedding (F1) tops in availability (C1), although it
will increase emissions (C12) when moved to CNF packaging production. The yield and
mechanical properties are expected to be the highest for wood residues and wastes (F14–17
and F21–24) owing to their maximum cellulose (C3) and hemicellulose (C4) compositions,
yet they will consume more energy in CNF processing due to the highest lignin content
(C6) and cell wall thickness (C8). Among these wood streams, extraction of the uncollected
residues (F14, F16) may increase the soil and biodiversity impact (C13). The secondary
waste streams treated in incineration and landfilling (F18, F21, F25, F27), come at an almost
negligible feedstock price (C9) and do not increase emissions (C12) or soil and biodiversity
impacts (C13); nevertheless, they may increase the processing cost, being characterised
with processed and mixed materials (C2).
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4. Discussion

Sustainability assessment of LCW&R for CNF packaging production is a complex
problem, requiring combinatorial consideration of technical, economic and environmental
aspects [33,34,43]. These characteristics are mentioned disjointly across the literature [20,24,46,47],
and a consolidated overview is absent. This study used an iterative literature review and
experts’ interviews, and identified 13 criteria pertaining to LC waste sustainability for CNF
packaging production. The criteria list includes: availability, physical composition, cellulose
content, hemicellulose content, bulk density, lignin content, ash content, cell wall thickness,
price of feedstock, seasonal variability, particle size, environmental emission, and soil and
biodiversity impact. These criteria data were collected for the LCW&R streams in the UK
(Tables 5 and 6), and were combined into a coherent matrix to assess their performance
(Figure 4). This study helps to uncover the sustainability potential of LCW&R for CNF
packaging production, encompassing technical properties as well as environmental and
economic criteria.

Feedstock attributes, influencing the properties and performance of the CNF packaging
films, make up the technical criteria. They include physical composition, cellulose and
hemicellulose contents that determine the strength, transparency, and recyclability of the
packaging films. Most of the feedstock characteristics including availability, physical
composition, bulk density, lignin and price, were found to have influence on the economic
aspects of CNF packaging production, e.g., production yield, processing and supply chain
costs, wear of machineries and raw material storage. Whereas environmental dimensions
such as energy consumption, waste management, emission and soil or biodiversity impacts
are correlated to certain feedstock criteria, e.g., bulk density, lignin, ash, particle size,
emission, soil and biodiversity impact, and so on. Most of the sustainability assessment
criteria were found to influence more than one aspect (technical, economic, environmental)
of CNF packaging production (see Figure 5).
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Consideration of technical, economic and environmental factors under the sustain-
ability umbrella presents a more comprehensive approach to feedstock sustainability
assessment compared to the existing literature [24,35,53]. Although existing studies present
a combined synopsis of feedstock criteria for other LC derivatives, e.g., biofuel and pa-
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per, a review of bioplastic feedstock criteria is a new contribution [40,85,86]. Moreover,
the criteria list presented in this paper can be used to assess the existing waste material
streams/flows instead of just the material itself, taking into account the environmental
impact for replacing the current practices [33].

The LCW&R streams in the UK have been analysed based on the identified criteria
and presented through a performance matrix (Tables 5 and 6 and Figure 4). Paper and
cardboard wastes intended for recycling (F19) provides the highest feedstock availability,
although they may result in lack of film mechanical properties. The highest mechanical
properties can derive from wood residues and wastes (F14–17 and F21–24), but high process
energy consumption will be a barrier. Moreover, the extraction of uncollected residues (F14,
F16) may cause soil and biodiversity impact, although more fractions could be obtained
from designated locations [58]. Diversion of secondary waste streams from incineration
and landfilling (F18, F21, F25, F27) will reduce feedstock cost, environmental emissions and
soil and biodiversity impacts; however, processing costs may increase due to the presence
of heterogenous materials. The analysis technique used in this paper can be adopted in
wide range of scenarios, requiring LC waste material diversion from existing uses to the
production of CNF products including packaging.

This study explored the basic criteria for assessing sustainability of LC wastes in CNF
packaging production. The results of this study will be considered in our forthcoming
research on bioplastic feedstock decision analytics. Future research opportunity exists for
consolidating empirical results to examine or enhance the proposed criteria. Further criteria
distinctions can be considered based on: location, climatic conditions, plant species, crop
cultivation, fibre location in plant, fibre age and presence of non-structural components
(i.e., extractives). Moreover, the chemical pre-treatments and mechanical fibrillations used
can influence the properties of the resulting CNF films, and thus can be integrated with
feedstock criteria analysis to identify the overall sustainable routes for commercial CNF
packaging production [42].

5. Conclusions

This study presents criteria for assessing the sustainability of LCW&R, incorporating
technical, economic, and environmental aspects, for large-scale CNF packaging production.
Thirteen relevant attributes were identified through an iterative literature review and expert
interviews. Further, we gathered the criteria data for the UK waste streams and converted
them into a performance matrix to measure the feedstock sustainability. This research
will help to identify low-cost feedstocks and design biorefineries and supply chains for
CNF packaging, replacing the petrochemical plastics. This study can also help in waste
management decisions by identifying the waste material streams for which bioplastic
packaging production and environmental emission reduction is complimentary rather than
conflicting. This will support the inclusion of bioplastic processing in the national waste
management plan, facilitating a circular bioeconomy.
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Abstract: Ulva rigida green seaweed is an abundant biomass consisting of polysaccharides and protein
mixtures and a potential bioresource for bioplastic food packaging. This research prepared and
characterized novel biodegradable films from Ulva rigida extracts. The water-soluble fraction of Ulva
rigida was extracted and prepared into bioplastic films. 1H nuclear magnetic resonance indicated the
presence of rhamnose, glucuronic and sulfate polysaccharides, while major amino acid components
determined via high-performance liquid chromatography (HPLC) were aspartic acid, glutamic acid,
alanine and glycine. Seaweed extracts were formulated with glycerol and triethyl citrate (20% and
30%) and prepared into films. Ulva rigida films showed non-homogeneous microstructures, as
determined via scanning electron microscopy, due to immiscible crystalline component mixtures.
X-ray diffraction also indicated modified crystalline morphology due to different plasticizers, while
infrared spectra suggested interaction between plasticizers and Ulva rigida polymers via hydrogen
bonding. The addition of glycerol decreased the glass transition temperature of the films from
−36 ◦C for control films to −62 ◦C for films with 30% glycerol, indicating better plasticization.
Water vapor and oxygen permeability were retained at up to 20% plasticizer content, and further
addition of plasticizers increased the water permeability up to 6.5 g·mm/m2·day·KPa, while oxygen
permeability decreased below 20 mL·mm/m2·day·atm when blending plasticizers at 30%. Adding
glycerol efficiently improved tensile stress and strain by up to 4- and 3-fold, respectively. Glycerol-
plasticized Ulva rigida extract films were produced as novel bio-based materials that supported
sustainable food packaging.

Keywords: algae; biomaterial; biopolymer; bioplastic; food packaging; edible film

1. Introduction

Green seaweeds, widely distributed in coastal areas, are rich sources of polysaccharides
and amino acids. Chlorophyceae seaweeds from the Ulva genus are world renowned because
of the bloom phenomenon ‘green tides’ that negatively impacts tourism areas and marine
life [1,2]. Currently, Ulva biomass is harvested to produce compost, fertilizers and biofuels.
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The biomass has good nutritional qualities and contains proteins, dietary fiber and complex
polysaccharide components. Previous investigations indicated that Ulva seaweeds contain
cellulose and hemicellulose as major components, with the potential to form networks
and utilization as sustainable packaging [1–7]. However, these cellulosic materials are
rarely soluble in water, suggesting the formation of film networks from a non-water-soluble
fraction. Conversely, the present study demonstrated the film formation from the water-
soluble fraction of Ulva rigida. The development of Ulva materials into biodegradable films
and packaging would support sustainable development goals while increasing the value of
this abundant biomaterial.

Biopolymers are attractive alternative materials to replace conventional petroleum-
based packaging films which cause severe environmental problems. The accumulation
of non-biodegradable plastic waste leads to pollution in landfills. Developments using
biopolymer films including chitosan, alginate and cellulose derivatives have recently
attracted attention [6,8–11]. However, biopolymers have limited mechanical and barrier
properties. Plasticizers can be incorporated into film components to improve mechanical
properties and flexibility [12,13].

New sources of biomaterials are now increasingly investigated to seek alternative
renewable resources for packaging materials. Novel polymeric packaging from seaweeds
has been investigated and developed, e.g., Laminaria japonica and Sargassum natans [8],
Alaria esculenta and Saccharina latissimi [10] and Furcellaria lumbricalis and Gigartina skotts-
bergii seaweeds [9]. Seaweeds contain mixtures of organic (e.g., carbohydrates, proteins
and fibers) and inorganic substances (e.g., sodium, potassium and calcium) with polysac-
charide composition of cellulose, alginate (anionic polysaccharides) and several sulfated
polysaccharides as the main cell wall components. Sulfated polysaccharides are commonly
characterized by the presence of sulfate (SO2−

4 ) functional groups, named ‘ulvans’ in green
seaweeds. These component mixtures are soluble and insoluble in different solvents [3].
Insoluble substances form phase separation due to their immiscibility, which causes non-
homogeneous film materials and results in poor mechanical strength and high permeability
of volatile compounds [12,14]. Water and solvent extraction of seaweed components leads
to similar properties of the extracts that are suitable for conversion into polymeric films
to achieve more homogeneous structures. Ulva rigida contains high amounts of cell wall
polysaccharides including cellulose and water-soluble polysaccharides containing mainly
ulvan sulfate groups. The major component is a disaccharide formed by β-D-glucuronic
acid (1,4)-L-rhamnose-3-sulfate [3]. Mixed hydrocolloid components make Ulva rigida
a potential resource for film and packaging materials, but detailed studies are lacking.
The formation of Ulva biopolymer films requires the addition of plasticizers to improve
deformability and stretchability.

This research prepared and characterized biopolymer films from Ulva rigida crude
extracts. Films were formulated with different plasticizers (glycerol and triethyl citrate).
The morphology, chemical structures, mechanical and barrier properties of the films were
determined. Findings support the utilization of Ulva rigida as a novel renewable resource
for biodegradable packaging to enhance the value of sustainable materials.

2. Materials and Methods
2.1. Preparation and Extraction of Ulva rigida

Ulva rigida (donated from the Phetchaburi Coastal Aquaculture Research and De-
velopment Center, Department of Fisheries, Phetchaburi, Thailand) was collected after
21 days of cultivation in seawater at salinity 30–32 ppm (Figure 1A). Fresh Ulva rigida was
harvested and washed before drying in a hot air oven at 60 ◦C for 3–6 h. Dried biomass was
milled, giving particle size of 0.5 mm. Water-soluble substances were extracted according
to Hamouda et al. [7] with minor modifications. The oven-dried biomass was added with
distilled water at a biomass/solvent ratio of 1:20 (%w/v) under controlled temperature
of 90 ◦C and extraction time of 120 min. The supernatant was separated by high-speed
refrigerated centrifugation (Model 6000, Kubota, Tokyo, Japan) at 10,000× g for 10 min at
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25 ◦C. An amount of 3 mL of ethanol was added to the supernatant before storing at 4 ◦C
for 24 h. The precipitate was recovered and dried overnight at 50 ◦C.
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2.2. Analysis of the Biochemical Composition of Ulva rigida Extracts

Oven-dried Ulva rigida biomass was analyzed to determine the biochemical composi-
tion following AOAC methods [15]. Moisture content was determined via oven-drying at
105 ◦C to constant weight. Ash content was determined via ignition of the dried samples
in an electric furnace at 550 ◦C. Protein content was determined via the Kjeldahl method
using a nitrogen conversion factor of 6.25. Total lipid content was determined using a
modified Bligh and Dyer method [16]. Briefly, the samples were suspended in distilled
water, methanol and chloroform at a ratio of 0.8:2.0:1.0 and mixed well. The mixture was
ultrasonically homogenized for 15 min and then separated via centrifuging at 6000× g rpm
for 15 min. The lipid phase was collected, and the cell debris was extracted until the cells
had no color. The lipid extract was then filtered to remove contaminated cell debris and
dried to constant weight at 80 ◦C.

Amino acids in the Ulva rigida biomass were extracted and quantified according to
the method of Al-Dhabi and Valan Arasu [17] with slight modifications. Briefly, 100 mg
of biomass was mixed with 5 mL of 6 N HCl. The slurry sample mixture was incubated
at 110 ◦C for 24 h and then cooled. The sample was then diluted to pH 2.2 with 10 M
NaOH and filtered through a 0.45 PTFE syringe filter. The filtrate was determined via high-
performance liquid chromatography (HPLC) with a fluorescent detector (HP 1260, Agilent
Technologies, Waldbronn, Germany) using superficially porous particles (SPP) technology
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4.6 × 100 mm AdvanceBio AAA (2.7 µm) column (Agilent). The oven temperature of
the column was set at 30 ◦C. The sample was derivatized with o-phthalaldehyde (OPA)
and 3-mercaptopropionic acid and injected into the column. The gradient mobile phase
consisted of a mixture of solvent A (40 mM NaH2PO4) and solvent B (methanol, acetonitrile
and water). Flow rate was set at 0.7 mL min−1, and peaks were measured as Ex/Em at
340/450 nm. Amino acid standard solution (AA-S-18, Sigma-Aldrich, Singapore) was used
as the external standard to calculate the amino acid composition.

2.3. 1H Nuclear Magnetic Resonance (NMR) of Ulva rigida Extracts

The 1H NMR spectra were carried out on AscendTM 600/Avance III HD (Bruker,
Billerica, MA, USA). Sample powder (16 mg) was dissolved in D2O. The solution was
operated at 600 MHz running TopSpin 3.6.4 software (Bruker).

2.4. Preparation of Ulva rigida Films

Ulva films were prepared by dissolving 1.5% (w/w) of crude polysaccharides into
distilled water. The formulations of the suspensions were prepared using different plasti-
cizers, namely glycerol (Asian Scientific Co., Ltd., Samutprakarn, Thailand), triethyl citrate
(pure Ph. Eur., NF, PanReac AppliChem ITW Reagents, Darmstadt, Germany), or a com-
bination of glycerol and triethyl citrate in a 1:1 ratio. Concentrations of plasticizer at 0%,
20% and 30% (w/w of crude polysaccharide weight) were investigated. The suspensions
were prepared into films via solution casting with continuous stirring at room temperature
(25 ± 3 ◦C) for 3 h using a magnetic stirrer (IKA Magnetic Stirrers C-MAG HS 7, IKA®

Works (Thailand) Co., Ltd., Bangkok, Thailand). Air bubbles were removed via an ultra-
sonic bath (Sonorex Digitec DT 255 H-RC, Bandelin Electronic GmbH & Co. KG, Berlin,
Germany) for 30 min. Blend suspensions (50 ± 5 g) were poured onto polystyrene Petri
dishes (diameter 140 mm) and dried at 50 ◦C for 15 h in a hot air oven. The dried films
were removed from the plate and stored in a temperature–humidity-controlled chamber
(Climate Chamber Binder KBF 720, Binder GmbH, Tuttlingen, Germany) at 50% relative
humidity before analyses for at least 48 h. Thickness of films was determined using a
micrometer (model ID-C112BS, Mitutoyo, Kanagawa, Japan).

2.5. Morphology of Ulva rigida Films
2.5.1. Microstructure

The surface and cross-section morphology of the films was observed by a FEI Quanta
450 Scanning Electron Microscope (SEM) (Thermo Fisher Scientific, Waltham, MA, USA) at
15 kV and magnification of 500× and 3000×, respectively. Film samples were immersed
and cracked in liquid nitrogen, and specimens were covered with gold using a sputter
coater (Quorum Technology Polaron Range SC7620, East Sussex, UK) to facilitate electrical
conductivity.

2.5.2. X-ray Diffraction Analysis

Crystallinity was determined using X-ray diffraction (Diffractometer D8, Bruker AXS,
Karlsruhe, Germany) at a scanning rate of 0.8/s and a 0.02◦ step size. The scanned region
ranged from 4◦ to 40◦ using voltage and current of 40 kV voltage and 40 mA, respectively.

2.6. Fourier Transform Infrared Spectroscopy (FTIR) of Ulva rigida Films

FTIR spectra of the film samples were recorded using a Model 400 Fourier transform
infrared spectrometer (Perkin Elmer, Beaconsfield, UK) with attenuated total reflectance
(ATR) mode. Absorbance spectra were obtained at 500–4000 cm−1 wavelength with anvil
geometry of 45◦ at 4 cm−1 resolution and 64 scanning times. The spectra were standardized
with the spectrum of air. Test was carried out in eight replications.
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2.7. Thermal Stability and Properties of Ulva rigida Films
2.7.1. Thermogravimetric Analysis (TGA)

Thermal stability of the films was determined via thermogravimetric analysis (TGA
2 STARe System, Mettler Toledo, Greifensee, Switzerland). Film pieces (10–15 mg) were
placed in aluminum pans, sealed and scanned over the range 25–900 ◦C under a nitrogen
atmosphere at flow rate of 20 mL/min with heating rate of 10 ◦C/min. First derivative
graphs were derived from the weight loss values of the samples.

2.7.2. Differential Scanning Calorimetry (DSC)

Thermal properties of the films were determined using a differential scanning calorime-
ter (DSC 1, STARe System, Mettler Toledo, Greifensee, Switzerland). Films (1–2 mg) were
placed in aluminum pans under nitrogen flux with a flow rate of 50 mL/min. The films
were heated from 25 to 80 ◦C with a heating rate of 10 ◦C/min to remove moisture in the
sample, followed by cooling from 80 to −80 ◦C at a cooling rate of 10 ◦C/min. Finally, the
films were heated to 300 ◦C at a rate of 10 ◦C/min.

2.8. Surface and Barrier Properties of Ulva rigida Films
2.8.1. Water Contact Angle

Hydrophobicity of the film surface was determined via contact angle measurement
(Dataphysics OCA 15EC, Dataphysics Instruments GmbH, Filderstadt, Germany). A 3 µL
droplet of distilled water was dropped on the film surface using a microsyringe connected
to a computer system. Images were immediately taken, and contact angle values were
averaged from nine samples using the SCA 20 software version 2 (Dataphysics). Data were
averaged from at least 5 samples.

2.8.2. Water Vapor Permeability (WVP)

Water vapor transmission rate (WVTR) was tested using the standard cup method
following ASTM E96-80. The samples were kept at 25 ± 2 ◦C and 50 ± 2% RH in a
humidity chamber (Binder KBF 720, Binder GmbH, Tuttlingen, Germany). Triplicate film
samples were cut into a circle (7 cm diameter), placed on a metal cup containing silica gel
and sealed with an O-ring using paraffin wax. The cups were weighed periodically until
constant weight. Water vapor permeability was calculated from triplicate samples using
Equation (1).

WVP = (WVTR × thickness)/∆P (1)

where WVTR is derived from the slope of the linear regression line obtained from plotting
the weight gain against time, and ∆P is the vapor pressure difference.

2.8.3. Oxygen Permeability (OP)

Oxygen permeability was calculated from the oxygen transmission rate (OTR) deter-
mined using an oxygen permeation analyzer (Model 8500, Illinois Instruments, Johnsburg,
IL, USA) according to ASTM D3985-81. The OP was calculated from duplicate samples
using Equation (2).

OP = (OTR × thickness)/∆P (2)

where ∆P is the oxygen partial pressure across the film.

2.9. Mechanical Properties of Ulva rigida Films

Mechanical properties were determined using an Instron Universal Testing Machine
(Model 5965, Instron, Norwood, MA, USA) according to ASTM D882-88. The samples
were cut into rectangular pieces (150 mm × 25 mm) and tested in duplicate at a speed of
500 mm/min. Distance between the gap was 5 cm. Results were plotted between tensile
stress (MPa) and tensile strain (%).
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2.10. Statistical Analysis

Statistical analyses were conducted to determine significant differences among film
sample data via analysis of variance (ANOVA) using IBM SPSS Statistics version 22.0
(IBM Corp., Armonk, NY, USA) and Duncan’s multiple range test, with significance set at
p < 0.05.

3. Results and Discussion
3.1. Characterization of Ulva rigida Seaweed Extracts
3.1.1. Proximate Analysis and Amino Acid Composition

Proximate analysis results showed that Ulva rigida seaweed extracts consisted of
22.42 ± 0.72% carbohydrate, 19.01 ± 0.92% protein, 5.67 ± 0.44% lipid, 5.53 ± 0.20% crude
fiber and 40.21 ± 0.90% ash. The amino acid profile of Ulva rigida extract is shown in
Table 1. Major amino acid components consisted of aspartic acid, glutamic acid, alanine
and glycine. Seaweed is a source of polysaccharides with protein (10 to 27%) and minor
contents of lipid (0.2–3%) [2,10]. Shuuluka et al. [5] indicated major amino acid components
of Ulva rigida as aspartic acid, alanine and glutamic acid (13.0 ± 1.1, 12.3 ± 0.7 and
9.4 ± 1.0 g/100 g protein, respectively). Similarly, Brain-Isasi et al. [2] reported levels
of glutamic acid, aspartic acid and alanine as 16.31 ± 0.82, 14.56 ± 0.73 and
9.89 ± 0.51 g/100 g protein, respectively, as the major amino acid components. Differ-
ences in amino acid components depend on several factors including season and environ-
ment [2,5]. These amino acids are small molecular weight substances that plasticize the
film matrix and improve deformability and flexibility.

Table 1. Amino acid composition of Ulva rigida seaweed extract as determined via HPLC.

Amino Acid Composition (mg/100 g)

Aspartic acid 2055.87 ± 47.90
Glutamic acid 1433.68 ± 28.79

Serine 823.04 ± 19.28
Histidine 252.36 ± 5.08
Glycine 1034.79 ± 18.34

Threonine 531.57 ± 15.39
Arginine 769.26 ± 16.84
Alanine 1097.61 ± 25.23
Tyrosine 517.68 ± 6.31
Cystine 745.40 ± 16.80
Valine 345.38 ± 5.88

Methionine 290.81 ± 2.44
Phenylalanine 629.89 ± 16.22

Isoleucine 214.56 ± 2.47
Leucine 749.68 ± 19.07
Lysine 561.83 ± 13.86

Tryptophan 181.37 ± 3.51
Proline 670.66 ± 34.40

3.1.2. Nuclear Magnetic Resonance (NMR)

The 1H NMR spectrum of Ulva rigida extract in D2O is shown in Figure 1B. A strong
1H resonance at 1.22 ppm, corresponding to the methyl groups of rhamnose-3-sulfate [4].
Kidgell et al. [1] also reported similar proton resonance peaks in ulvans at 3.3 ppm and
3.7 ppm attributed to H-2 and H-3/H-4 of glucuronic acid, respectively, while peaks at
3.8–3.9 ppm were due to combination of the H-4 peak from rhamnose and H-5 peak of
glucuronic acid. The major 1H NMR peak at 4.2 ppm was from H-2 of rhamnose.

3.2. Film Microstructure

Surface microstructures of the films are shown in Figure 2A. All films showed numer-
ous finely dispersed particles spreading on the surface. Triethyl citrate at both concentra-
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tions showed greatly increased amounts of fine particles. Adding glycerol reduced the
number of fine particles. Some larger clumps embedded beneath the film surface with
size ranging from 15 to 40 µm. The control film showed higher numbers of large clumps.
Figure 2B shows cross-section images of the matrices as fine particles less than 10 µm.
Triethyl citrate-plasticized films contained the highest numbers of fine particles. The non-
homogeneity of the film matrices reflected the immiscibility of film components. No cracks
were found in all films including the control (Figure 2A,B) suggesting strong bonding of
the polymeric networks [8]. The presence of protein in Ulva rigida enhanced the bonding
and strength of the polymer networks via several interactions including electrostatic inter-
actions, hydrophobic interactions and hydrogen bonds [10,18]. Some of these components
formed aggregates due to favorable thermodynamics, while the recrystallization of polymer
components caused fine crystallites. Accordingly, the phase separation of aggregates and
crystallites occurred, causing non-homogeneous matrices.
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Figure 2. Microstructures as (A) surface and (B) cross-section of Ulva rigida films containing glycerol,
triethyl citrate and their blends (glycerol/triethyl citrate) at 20% and 30%.

3.3. Fourier Transform Infrared Spectroscopy

Infrared (IR) absorption spectra of the films are shown in Figure 3. The absorption
peaks and corresponding functional groups are shown in Supplementary Table S1. The
control film had maximum absorption peaks at 1026 cm−1 and 1055 cm−1, ascribed to C-O
stretching vibrations in C-O-C that were sensitive to the amounts of disorder amorphous
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and order crystalline structures of the polymers, respectively [19,20]. The addition of both
plasticizers (both glycerol and triethyl citrate) increased the intensity of the absorption peak
at 1026 cm−1 and merged the peak at 1055 cm−1, reflecting the amorphous structures of
the plasticizers. The absorption peaks at 980 and 848 cm−1 were assigned to asymmetrical
and symmetrical stretching vibration of the C-O-S bond due to the presence of sulfate
polysaccharides, respectively [21].
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Figure 3. FTIR spectra of Ulva rigida films containing glycerol, triethyl citrate and their blends
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Glycerol had similar IR absorption spectra to the control film in the fingerprint region
(500–1500 cm−1) due to similar vibration of C-H bending (1500–1200 cm−1) in CH2 and C-O
stretching (980–1250 cm−1). Higher concentrations of triethyl citrate increased absorption
at 1735 cm−1 attributed to C = O stretching vibration of ester bonds in the triethyl citrate
structure [12]. The band at 1425 cm−1 was associated with vibration of C-OH deformation in
O–C–O symmetric stretching vibration of the carboxylate group in seaweed polymers [10].
The IR wide absorption band at 1629 cm−1 was due to carboxyl groups in Ulva spp. which
overlapped with C = C stretching vibration of the methacrylic group [4]. The IR spectra
showed peaks around 1200–1250 cm−1 and 840–845 cm−1, ascribed to S = O stretching and
C–O–S stretching characteristics of polysaccharides in Ulva spp. [6]. The wide absorption
peak between 3000 and 3700 cm−1 was ascribed to O-H stretching vibration, and attributed
to intra- and inter-molecular hydrogen bonding. Small absorption peaks between 2850 and
3050 cm−1 were attributed to C-H stretching vibration [10,20,22] and were stronger in films
containing plasticizers. Adding glycerol intensified the spectrum at 3240 cm−1, suggesting
hydrogen bonding between the polymer and glycerol, while adding triethyl citrate gave a
wider peak with stronger absorption at 3495 cm−1, due to hydrogen bonding with polymer
components. The results indicated interactions between plasticizers and polymers, which
contributed to plasticization effects of the films.

3.4. Thermogravimetric Analysis

Figure 4A shows weight loss, reflecting thermal degradation and volatilization of
film components. The onset temperature, weight loss in each stage of degradation and
char residue is shown in Supplementary Table S2. The first sharp weight loss started at
60 ◦C and was due to evaporation of absorbed water, corresponding with mass loss of
20–28% depending on plasticizer types and concentrations. Glycerol-plasticized films had
the highest mass loss, reflecting the highest levels of absorbed water attributed to high
hydrophilicity from large numbers of hydroxyl groups. The second weight loss of the
control film started at 215 ◦C, corresponding with an approximately 10% weight reduction
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followed by a sharp weight loss due to volatilization of polymer components [3,6,8,12].
Triethyl citrate-plasticized films had a similar weight reduction to the control, while films
with glycerol showed a higher weight reduction, corresponding with the amounts of
plasticizers and due to volatilization of glycerol [12,23]. The final residue left after the
thermal decomposition process decreased with the addition of plasticizer, indicating the
breaking of polymer–polymer interactions with the addition of glycerol and triethyl citrate.

The first derivative weight loss of the films is shown in Figure 4B. The control film
showed a peak with a shoulder, suggesting evaporation of multi-components as free and
bound water below 100 ◦C [12]. Films containing plasticizers showed sharper peaks at
100 ◦C due to water evaporation, suggesting higher levels of water absorption. Mixtures
of plasticizers showed two extra volatilization peaks between 135 and 200 ◦C that did not
occur in glycerol- and triethyl citrate-plasticized films. Mixtures of the plasticizers stabilized
the film components, giving higher degradation temperatures. The sharpest degradation
started at 200 ◦C in all films. The control and triethyl citrate-plasticized films had a
major degradation peak at 222 ◦C, while glycerol-plasticized films showed a sharp peak at
235 ◦C. Shifting of the degradation peak at around 230 ◦C in the blend plasticizers reflected
the major role of glycerol on the degradation temperature in protein and polysaccharide
components [6,10,23]. A small shoulder was found at 265 ◦C for the control and triethyl
citrate films, and at 285 ◦C for the films with glycerol and the mixtures. Degradation at
around 300 ◦C was due to polymer components. These findings reflected the interactions
between glycerol and the polymers, which had a major effect on thermal stability.

3.5. Differential Scanning Calorimetry (DSC)

The DSC thermograms showed an endothermic shift in heat flow, suggesting the
glass transition temperature (Tg) of the films (Figure 5A). The control film had onset Tg at
−36 ◦C. Ulva rigida extract consisted of small molecular weight solids, particularly amino
acids (Table 1). These small molecules plasticized the polysaccharide film matrices resulting
in low Tg values. The addition of both plasticizers (glycerol and triethyl citrate) and their
mixtures reduced the Tg of the films. Glycerol decreased Tg values more than triethyl
citrate, corresponding with Tg values of −53 ◦C and −62 ◦C for films containing 20%
and 30% glycerol, respectively. Increasing plasticizer contents gave a lower Tg due to
higher plasticization effects, with a larger magnitude of endothermic shift found in glycerol-
plasticized films. These results reflected stronger plasticization effects of glycerol in seaweed
extract films. Glycerol has an extremely low Tg value of −86 ◦C [24], while the molecular
weight of triethyl citrate is higher than glycerol, corresponding with a lower mole number at
the same weight. A smaller plasticizer size, namely glycerol, also enhanced the dispersion
and interactions with the polymer in the matrices [13,25]. Glycerol molecules consist
of three hydroxyl groups (-OH) per mole, which readily form hydrogen bonding with
polysaccharides. Mixtures of glycerol and triethyl citrate gave intermediate Tg between
their blends. The plasticizers decreased the Tg by disrupting the intermolecular chain
movement of the polymers, thereby improving the segmental mobility of the polymers.
A hydrophilic plasticizer such as glycerol facilitates more interactions between itself and
the polymer, resulting in an increase in the free volume of matrix, thereby reducing the Tg.
Hence, the results clearly indicated interaction between glycerol and triethyl citrate with
the polymer matrices causing Tg reduction.

Figure 5B shows endothermic peaks, reflecting phase transitions of film components
starting above 70 ◦C due to water evaporation. The sharp endothermic peaks between
150 and 220 ◦C reflected the melting of the crystallites, as discussed in the X-ray diffrac-
tions results. The control film showed a sharp peak at 160 ◦C followed by smaller peaks
at 183 ◦C and 212 ◦C. Glycerol-plasticized films showed a single but wider peak than
the control at higher temperature. Triethyl citrate showed a wide peak between 75 and
175 ◦C, followed by a sharp peak around 200 ◦C and a smaller peak at higher temperatures
(similarly to the control). The results suggested that triethyl citrate enhanced the non-
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homogeneous crystallization of film components, corresponding with wide and multiple
melting temperatures.
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3.6. X-ray Diffraction

X-ray diffractograms of films with different plasticizers are shown in Figure 6. The
films had diffraction angles at 2θ = 11.7, 14.6, 20.8, 22.5, 25.5, 29.2, 29.6, 31.1 and 31.7◦.
Glycerol clearly caused a broad peak between diffraction angles in the range of 16–25◦,
reflecting amorphous components. Conversely, triethyl citrate gave a lower intensity of
the diffraction curve, suggesting reduced amorphous components. The DSC analysis
(Figure 5B) also indicated that triethyl citrate-plasticized films showed large and wide
melting peaks, reflecting the higher levels of crystalline components. The sharp peak at
14.6◦ (corresponding to the (110) crystalline plane) was much more intense, suggesting a
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preferential orientation of the (110) crystal plane parallel to the film surface [9]. The intensity
of the peaks at 2θ = 11.7, 20.8, 29.2, 31.3 and 33.7◦ decreased when adding 20% plasticizers
(glycerol and triethyl citrate and their mixtures), while a further increase in plasticizers to
30% increased peak intensity of these aforementioned peaks. Adding plasticizers increased
peak intensity at 2θ = 14.6, 25.5, 29.6 and 31.7◦. The reduction in crystallinity was attributed
to amorphous complexes formed through intermolecular interactions between film-forming
substrates and plasticizers [11]. The results suggested that glycerol and triethyl citrate
impacted the morphology of the crystalline structures in seaweed films.
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Figure 6. X-ray diffractograms of Ulva rigida films containing glycerol, triethyl citrate and their blends
(glycerol/triethyl citrate) at 20% and 30%.

3.7. Surface Hydrophobicity and Barrier Properties

Surface hydrophobicity was determined according to water contact angle (CA), as
shown in Figure 7A. CA of the control film was 96◦, which is considered a hydrophobic
surface (CA > 90◦) [11]. Adding plasticizers clearly decreased CA, indicating the decreasing
hydrophobicity of the film surface. Plasticization with glycerol greatly enhanced the
hydrophilicity of the matrices, as reflected by higher degree of water absorption; however,
CA was higher than CA of films containing triethyl citrate. Lower CA values of triethyl
citrate-plasticized films reflected higher surface energy. The wettability of films depends
on surface energy and surface roughness. A lower surface roughness reduced hydrophobic
surface wettability [14,26,27]. The results suggested that adding triethyl citrate reduced
the surface roughness of the films, corresponding with lower CA values. Plasticizer
mixtures gave intermediate CA values between glycerol and triethyl citrate. Accordingly,
the wettability of seaweed films mainly depended on surface roughness.

Water vapor permeability (WVP) and oxygen permeability (OP) are important pa-
rameters in food packaging that affect the quality and stability of packaged products. The
WVP changed insignificantly when adding 20% plasticizers, while further increasing the
plasticizer content increased WVP (Figure 7B). The hydroxyl groups and oxygen atoms
in ester structures of citrate readily absorbed water, increasing diffusion of water vapor
through the matrices [28]. However, plasticizers also decreased Tg, which increased the
molecular mobility of the matrices and crystallization. The formation of ordered and tightly
packed crystalline structures inhibited the diffusion of volatile molecules including water
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vapor and gas [25,29]. Accordingly, the WVP values of the films insignificantly increased
with the addition of 20% plasticizers. However, increasing the plasticizer content to 30%
enhanced mobility and diffusion, which increased WVP. Similarly, adding 20% plasticizers
led to insignificant changes in OP (Figure 7C). Increasing plasticizers also increased diffu-
sion rates through the polymers due to increasing molecular mobility. However, blending
plasticizers at 30% reduced OP due to high crystallinity which inhibited oxygen diffusion.
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3.8. Tensile Properties

Mechanical properties were determined as tensile stress and tensile strain curves
(Figure 8). The control film was weak and least flexible due to low plasticization effects.
Polysaccharides consist of numerous hydroxyl groups that form strong inter- and intra-
molecular hydrogen bonding. Consequently, the networks were rigid and required plasti-
cization to improve deformability [13,25]. The extract consisted of small-molecular-weight
amino acids, particularly aspartic, glutamic, alanine and glycine, which plasticized the
matrices (Table 1). However, the results clearly demonstrated that plasticization efficiency
was not sufficient to form flexible networks, and higher plasticizer contents were required.

Figure 8 shows that adding glycerol and triethyl citrate significantly improved tensile
stress. Glycerol clearly increased tensile strain, reflecting the enhanced elongation of
the films by up to 3-fold, while tensile stress was enhanced by up to 4-fold. Adding
triethyl citrate at 20% greatly enhanced tensile stress but reduced strain values, indicating
lower deformability and higher rigidity. Triethyl citrate induced crystallization of film
components. The formation of immiscible rigid particles in the matrices caused non-
homogeneous polymer networks, as also shown by SEM (Figure 2). These rigid particles
acted as reinforcement, improving tensile stress by up to 8.5-fold (films with 20% triethyl
citrate). However, the non-homogeneity decreased the area for distribution of applied
external stress, leading to a lower extension ability [30]. Increasing triethyl citrate to
30% reduced strength because the large rigid particles increased non-homogeneity and
decreased adhesion between the polymer networks [8,14]. Blending of plasticizers showed
no synergistic improvement in mechanical strength. Glycerol (20–30%) greatly improved
tensile properties and produced flexible seaweed films.
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4. Conclusions

The water-soluble fraction of Ulva rigida consisted of polysaccharides and amino acid
mixtures. Major amino acids were aspartic acid, glutamic acid, alanine and glycine, while
polysaccharide structures consisted of rhamnose and sulfate derivatives. Native Ulva rigida
extracts can form film networks; however, mechanical properties were poor, with very
limited extensivity. Adding plasticizers such as glycerol and triethyl citrate improved
the mechanical properties. These plasticizers interacted with Ulva rigida components
via hydrogen bonding and modified the crystal morphology. Glycerol showed greater
plasticization effects, resulting in a higher reduction in glass transition temperature and
higher tensile strain, indicated by improved film elongation by up to 3-fold. Triethyl
citrate greatly improved tensile stress but limited elongation. Film barrier properties
were unaltered at up to 20% plasticizers, while increasing plasticizers to 30% generally
increased water vapor and oxygen permeability due to increasing molecular mobility.
The plasticization of Ulva rigida polymers produced efficient bioplastic films as a novel
bioresource for sustainable food packaging.
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Abstract: This study evaluates the performance of Polyethylene Terephthalate (PET)-modified hot
mix asphalt. Aggregate, bitumen of grade 60/70 and crushed plastic bottle waste were utilized in
this study. Polymer Modified Bitumen (PMB) was prepared using a high shear laboratory type mixer
rotating at a speed of 1100 rpm with varying PET content of 2%, 4%, 6%, 8% and 10%, respectively.
Overall, the results of preliminary tests suggested that bitumen hardened with the addition of PET.
Following optimum bitumen content determination, various modified and controlled HMA samples
were prepared as per wet and dry mixing techniques. This research presents an innovative technique
to compare the performance of HMA prepared via dry and wet mixing techniques. Performance
evaluation tests, which include the Moisture Susceptibility Test (ALDOT-361-88), Indirect Tensile
Fatigue Test (ITFT-EN12697-24) and Marshall Stability and Flow Tests (AASHTO T245-90), were
conducted on controlled and modified HMA samples. The dry mixing technique yielded better
results in terms of resistance against fatigue cracking, stability and flow; however, the wet mixing
technique yielded better results in terms of resistance against moisture damage. The addition of
PET at more than 4% resulted in a decreased trend for fatigue, stability and flow due to the stiffer
nature of PET. However, for the moisture susceptibility test optimum PET content was noted to be 6%.
Polyethylene Terephthalate-modified HMA is found to be the economical solution for high volume
road construction and maintenance, besides having other significant advantages such as increased
sustainability and waste reduction.

Keywords: eco-friendly; recycle; plastic bottles; polyethylene terephthalate (PET); hot mix asphalt
(HMA); polymer-modified bitumen (PMB); fatigue life; moisture susceptibility; stability; flow

1. Introduction

Plastic is a material that is consumed at an increasing rate every year. Its use is so
common because of its good electrical and mechanical insulating properties, good chemical
resistance, low density and easy processing along with its main advantage of less initial cost
but the main problem lies in the disposal of this commonly used material. The improper
disposal of plastic thus results in plastic pollution. Due to the non-biodegradable nature
of plastic, it poses a serious threat to land and various waterbodies, because of which
a considerable percentage of marine and land creatures are exposed to life-threatening
situations [1]. Of all the various plastic types, plastic bottles exist untreated in large
quantities at garbage dump sites, which threatens environmental safety. Plastic bottles, due
to their chief chemical component Polyethylene Terephthalate (PET), are often regarded as
PET bottles. The non-biodegradable nature of plastic bottles makes them lethal to animals
when ingested. This is because the intermolecular bonding structure of PET is of the
kind that does not allow it to decompose, digest or corrode. If improperly disposed of,

Polymers 2023, 15, 1211. https://doi.org/10.3390/polym15051211 https://www.mdpi.com/journal/polymers127



Polymers 2023, 15, 1211

these plastic materials pollute water bodies and become a cause of water-borne diseases.
Consequently, water bodies are hindered by plastics in terms of their flow, which creates
problems of pollution and suspension. These adverse environmental impacts of plastics
necessitate their recycling or their use for some other purpose that can be beneficial as well
as environmentally friendly.

Besides environmental concerns, economic development and sustainability are of
crucial importance to countries’ growth and overall national security. An important factor
in improving a country’s economic status is that of the road infrastructure system and
more importantly the length of existing paved roads, often used as an index to assess
the extent of a country’s development. The presence of a proper road transport network
not only minimizes the transportation cost, both in terms of time and financial aspects,
but also aids in the interlinking of several regions within the country and in a better
understanding of neighboring countries at a global level [2]. Transportation links (roads)
are the prerequisite of a transport system. They carry traffic and continuously face load
repetitions and, moreover, the damaging effect of climate results in various road defects.

One of the major deteriorations caused by the environment is the exposure of pave-
ments to water, hence causing moisture damage. Moisture damage is defined as the loss in
strength and durability of asphalt mixtures caused by the presence of water. The damage
gains momentum as more moisture permeates and gradually causes the mastic to weaken,
making it even more susceptible to damage during cyclic loading [3]. Poor drainage condi-
tions or excessive rain can be the reasons for this uncontrolled exposure. Thus, pavements
become more prone to cracking and other pavement distresses such as stripping, rutting,
bleeding, corrugation and shoving, cracking, raveling and other localized failures [3].

Fatigue cracking in the bound layer is a major indication of structural failure in a
pavement. The magnitude, frequency and duration of load application were identified to
have major effect on pavement performance in terms of surface cracking [4]. Repeated traffic
loads on pavements cause fatigue failure and because of that a series of interconnected
cracks are formed on the road surface termed as fatigue cracking. For thin pavements, the
initiation of cracking is from the bottom of the pavement as the tensile stress is greatest
at that portion of the pavement. This cracking then propagates to the surface, which
is commonly known as bottom-up fatigue cracking. For thick pavements, the cracking
initiates from the top of the surface and from the surface areas of high localized tensile
stresses, which exist because of the pavement–tire interaction. Moreover, the aging of the
asphalt binder also plays an important role in top-down fatigue cracking in the case of
thick Hot Mix Asphalt (HMA) pavements [5], see Figure 1.
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Fatigue cracking reduces the overall life of pavements and results in major ride dis-
comfort. These surface distresses also result in an increase in maintenance costs. Therefore,
remedial measures that can address the issue of surface distresses because of increased
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traffic, vehicular loading and environmental deterioration can save the economy in terms
of low initial project and rehabilitation costs. The utilization of plastics in road construction
can serve the purpose to a substantial extent. The use of plastics in pavements has exhibited
some very desirable results as far as pavement response to load repetitions and resistance
to moisture damage is concerned. With the use of plastics in roads, the durability of the
pavement structure can be increased, and waste plastic material can also be utilized that
reduces the environmental threat. It is, therefore, the most suitable option to utilize waste
plastic material in a way that contributes significantly in the field of road construction and
plays a significant part in reducing environmental pollution.

Besides the eco-friendly disposal of plastic waste by incorporating it in road construc-
tion to mitigate the early deterioration of roads, the use of recycled plastic waste is also
a cost-effective approach [6]. Waste polymers can be incorporated in HMA pavements
through three techniques, wet mixing, dry mixing and aggregate replacement. In the
wet mixing technique, PET is thoroughly mixed with hot liquid asphalt binder to form a
mixture prior its mixing with aggregate. In the dry mixing process, to uniformly disperse
the polymers, substantial mixing and shearing are required. For this method, polymers as
solid granular particles or in the form of chips are mixed with the aggregates followed by
the addition of bitumen [7]. As per Mishra and Gupta, the dry process is simple, economi-
cal and environmentally friendly, while the wet process requires more effort in terms of
investment and machinery, and hence is not commonly used [8]. However, in this research
for both mentioned techniques PET is used as a substitute material for a portion of the
bitumen in Job Mix Formula (JMF) calculations [9,10].

In all the mixes not containing any plastic content, fatigue life was found to be mini-
mum. In contrast, as per Casey et al., the addition of a plastic particle ingredient drastically
increases the fatigue life of asphalt mixes. It is illustrated by lower stress levels ranging
from 250 kPa to 350 kPa that the fatigue life of mixes with 1% plastic is increased twofold.
Since PET particles do not melt due to their higher melting point, this results in the PET
particles existing as partially rigid materials in the mixture, thus improving the flexibility
of the mixture [11]. With an improved mixture, the crack creation and propagation in
asphalt mixtures is postponed, which eventually leads to an increased higher fatigue life.
Baghaee et al., in his research conducted in 2013, evaluated the indirect tensile fatigue
strength of PET-modified HMA mixtures according to EN 12697, and compared them to
results of controlled mix. It was concluded that, due to the modified mixture’s improved
flexibility, crack initiation and propagation was delayed, which eventually indicated the
higher fatigue life of flexible pavements [12].

As per Yilmaz et al., water damages the pavement in such a way that it decreases
the strength and quality of asphalt concrete. Asphalt pavement is susceptible to moisture
damage by the loss of the bond between binder and fine and coarse aggregate. This
loss in bond results in the propagation of cracks along the pavement length. Moisture
damage further aggravates as water penetrates through cracks and debilitates the mastic,
making it more vulnerable to moisture amid the cyclic loading of vehicles [3]. Ferreira et al.
conducted research in Brazil in 2022 and concluded PET produced positive effects on the
moisture resistance of HMA; this led to the greater tensile strength of conditioned samples
resulting in a higher Tensile Strength Ratio (TSR). Ferreira et al. further suggested that an
improvement in TSR is indicative of increased asphalt binder–aggregate adhesion under
moist conditions [13], see Figure 2.

For regions associated with extensive rainfall pavement deterioration, Ferreira et al.
also proposed that resistance to moisture damage can be enhanced by the replacement
of natural sand with recycled micro polyethylene terephthalate, thus demonstrating the
feasibility of the practical application of blending PET in concrete asphalt paving [13].

Silva et al. suggested improved resistance against moisture damage when micronized
PET was incorporated as a binder modifier in varying contents of 0, 4, 5 and 6% (by
bitumen weight) [14]. Ghabchi et al. concluded that the micro nature of PET improves
the viscosity and binder–aggregate adhesion; this is reflected as an increase in resistance
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to rutting, cracking and damage induced by moisture [15]. Studies by Likitlersuang et al.
also suggested that resistance against moisture damage is improved due to an increase in
adhesion between the binder and aggregate in asphalt under moisture exposition [16].

Polymers 2023, 15, 1211 4 of 22 
 

 

 
Figure 2. Moisture-induced pavement distresses. 

For regions associated with extensive rainfall pavement deterioration, Ferreira et al. 
also proposed that resistance to moisture damage can be enhanced by the replacement of 
natural sand with recycled micro polyethylene terephthalate, thus demonstrating the fea-
sibility of the practical application of blending PET in concrete asphalt paving [13].  

Silva et al. suggested improved resistance against moisture damage when mi-
cronized PET was incorporated as a binder modifier in varying contents of 0, 4, 5 and 6% 
(by bitumen weight) [14]. Ghabchi et al. concluded that the micro nature of PET improves 
the viscosity and binder–aggregate adhesion; this is reflected as an increase in resistance 
to rutting, cracking and damage induced by moisture [15]. Studies by Likitlersuang et al. 
also suggested that resistance against moisture damage is improved due to an increase in 
adhesion between the binder and aggregate in asphalt under moisture exposition [16]. 

Successful past studies by Bamigboye et al. and Tayyab et al. on HMA modification 
by crumb tires, glass waste, biofuel, slag, fiber, lime, fly ash and sasobit also suggest PET 
as a potential modifier [17,18]. 

Burak Sengoz and Giray Isikyakar in 2008 showed that, based on the type of polymer 
and its content, the morphology and properties of the modified bitumen and the mechan-
ical properties of HMA modified by polymer change. Samples with low polymer content 
exhibited the continuous dispersion of polymer in bitumen; however, the continuous dis-
persion of polymer has not been observed in samples containing high polymer content. 
Improvement in the conventional properties, by polymer modification, includes penetra-
tion, susceptibility to temperature, softening point, etc. [19]. Ali et al. stated when grinded 
plastic is used as a modifier in bitumen in a replacement ratio of increments of 0.5% up to 
2%, the results of index properties such as the flash point, softening point, fire point and 
penetration varied as compared to those of virgin bitumen. Moreover, regardless of the 
replacement ratio, modified bitumen yielded satisfactory performance [20]. The penetra-
tion values of Polymer Modified Bitumen (PMB) decreased as the PET content increased 
in the test conducted by Sojobi et al., which is an indication of increased stiffness and 
softening point; also, the tests indicated that because of the more stable asphalt, ductility 
values also increased with increasing PET content [21]. 

The engineering properties of Stone Mastic Asphalt (SMA) mixture incorporating 
waste PET were studied by Ahmad et al. in 2017. The study evaluated the mechanical 
properties of the asphalt mixture blended with PET in proportions of 0%, 2%, 4%, 6%, 8% 
and 10%. Based on the research by Ahmad et al., bituminous mixtures incorporating PET 
showed improved properties such as increases in stiffness, stability and viscosity. In other 
words, pavement can better withstand fatigue damage, thermal cracking, rutting and 
stripping. Asphalt modification by polyethylene yielded better resistance against fatigue 

Figure 2. Moisture-induced pavement distresses.

Successful past studies by Bamigboye et al. and Tayyab et al. on HMA modification
by crumb tires, glass waste, biofuel, slag, fiber, lime, fly ash and sasobit also suggest PET as
a potential modifier [17,18].

Burak Sengoz and Giray Isikyakar in 2008 showed that, based on the type of poly-
mer and its content, the morphology and properties of the modified bitumen and the
mechanical properties of HMA modified by polymer change. Samples with low polymer
content exhibited the continuous dispersion of polymer in bitumen; however, the contin-
uous dispersion of polymer has not been observed in samples containing high polymer
content. Improvement in the conventional properties, by polymer modification, includes
penetration, susceptibility to temperature, softening point, etc [19]. Ali et al. stated when
grinded plastic is used as a modifier in bitumen in a replacement ratio of increments of 0.5%
up to 2%, the results of index properties such as the flash point, softening point, fire point
and penetration varied as compared to those of virgin bitumen. Moreover, regardless of the
replacement ratio, modified bitumen yielded satisfactory performance [20]. The penetration
values of Polymer Modified Bitumen (PMB) decreased as the PET content increased in the
test conducted by Sojobi et al., which is an indication of increased stiffness and softening
point; also, the tests indicated that because of the more stable asphalt, ductility values also
increased with increasing PET content [21].

The engineering properties of Stone Mastic Asphalt (SMA) mixture incorporating
waste PET were studied by Ahmad et al. in 2017. The study evaluated the mechanical
properties of the asphalt mixture blended with PET in proportions of 0%, 2%, 4%, 6%,
8% and 10%. Based on the research by Ahmad et al., bituminous mixtures incorporating
PET showed improved properties such as increases in stiffness, stability and viscosity. In
other words, pavement can better withstand fatigue damage, thermal cracking, rutting
and stripping. Asphalt modification by polyethylene yielded better resistance against
fatigue and deformation [22]. In a previous study by Al-Hadidy et al. in 2009, the effect
of polyethylene on the low temperature performance and moisture sensitivity of SMA
mixtures was studied. It was concluded that such modified mixtures produced satisfactory
performance in areas with extreme variance of temperature and heavy rain zones [23].
Studies conducted by Nishanthini et al. in 2020 suggested that resistance to water damage
and fatigue cracking decreased when HMA was modified by 5–10% PET (by weight of
binder) and less than 18% (by weight of fine aggregate). Marshall stability also improved
upon such HMA modification. [24]
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Jegatheesa et al. in 2018 stated that, for both Polymer Coated Aggregate (PCA) and
Polymer Modified Bitumen (PMB), Marshall stability values showed an increase with
increasing PET content. However, Air Voids (AV), which showed an increase in PCA with
the increasing PET content, were seen to decrease in the case of PMB [25]. In a related
study, Baghaee et al. found increased Marshall stability values for the addition of PET up
to 0.6% (aggregate replacement). Furthermore, results obtained by Baghaee et al. showed
that by the addition of plastic into the mixture the internal friction was reduced, eventually
resulting in higher flow [12]. A study by Ahmadinia et al. in 2011 showed that stiffer
mixtures were obtained with the addition of PET greater than 6 percent, which resulted in
increased Marshall stability and decreased flow values, although increasing PET content
beyond 6% resulted in a decline in the stability of the asphaltic mix, which consequently
resulted in increased flow [26].

Another study by Kalantar et al. in 2012 also suggests that with the addition of polymer
the flow of the mixture increases [7]. Ahmadinia et al. in 2012 suggested that adding waste
PET between 2–10% by weight of bitumen content in SMA mixtures results in the improved
adhesion of PET granules between the asphalt HMA and PET-modified HMA prepared by
wet and dry mixing techniques based on various performance characteristics, which include
moisture susceptibility, indirect tensile fatigue strength, stability and flow. The use of plastic
waste encourages reduced plastic waste and promotes reduced initial costs; therefore, cost
analysis was also carried out. Table 1 summarizes all the past studies conducted specifically
for the PET modification of bitumen using different modification strategies.

Table 1. Past studies incorporating PET in asphalt mixes.

S. No. Authors Year/Country
PET

Replacement
Technique

Particle Nature
PET

Modification
Percentage

Conclusion

1. Baghaee et al. 2013-Malaysia Aggregate
replacement PET chips

0, 0.2, 0.4, 0.6, 0.8
and 1%

(by aggregate
weight)

Improved fatigue life of
pavement upon addition

of PET

2. Ferreira et al. 2022-Brazil Sand replacement Crushed PET

2, 4, 8% (by sand
weight)

8% (by sand
volume)

Improved ITS and TSR of
HMA improved when

modified with PET;
however, Resilient

Modulus (RM) decreased

3. Silva et al. 2018-Brazil Binder additive Micronized PET 0, 4, 5 and 6% (by
bitumen weight)

Addition of PET
improved results for
Resilient Modulus,

Indirect tensile strength,
Lottman, Fatigue and

Flow Number

4. Ghabchi et al. 2021-United
States Binder additive Micronized PET

0, 5, 10, 15 and
20% (by bitumen

weight)

higher resistance to
moisture-

induced damage upon
addition of PET

5. Ali et al. 2014-Pakistan Binder additive Ground PET 0, 0.5, 1.0, 1.5, 2.0

Inclusion of PET
improved test results for

flash point, fire point,
softening point and

penetration test

6. Sojobi et al. 2015-Nigeria

Binder
modification
Aggregate

replacement

Molten plastic
waste

0,5, 10, 20
(Polymer

modified mix)
10, 20, 30

(polymer- coated)

Plastic content
for PMB is likely to

decrease penetration
while increases softening

point, ductility and
viscosity.

Stability and AV increased
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Table 1. Cont.

S. No. Authors Year/Country
PET

Replacement
Technique

Particle Nature
PET

Modification
Percentage

Conclusion

7. Ahmad et al. 2017-Malaysia Binder additive
0, 2, 4, 6, 8 and

10% (by bitumen
weight)

Improved stiffness,
viscosity and rutting on

addition of PET

8. Jegatheesa et al. 2018-Sri Lanka Binder additive

PET fibers with a
nominal diameter
of 0.5 mm and a
length of 4.0 to

6.0 mm

5, 10, 15, 20,
25, 30, 35 and 40%

(by bitumen
weight)

Inclusion of PET improves
Marshall stability and

bulk properties

9. Baghaee et al. 2013- Malaysia Aggregate
replacement Crushed PET

0, 0.2, 0.4, 0.6, 0.8
and 1%

(by aggregate
weight)

On addition of PET,
stability, flow and fracture

resistance increased.
Stiffness and specific

gravity

10. Ahmadinia et al. 2011-Malaysia Binder additive
Sieve 1.18 mm
passing; #40

retained

0, 2, 4, 6, 8, 10%
(by bitumen

weight)

Increased stiffness, Air
voids and stability (up to

6% PET).
Decreased bulk specific

gravity

11. Ahmadinia et al.
in 2012 2012-Malaysia Binder additive

Sieve 1.18 mm
passing; #40

retained

0, 2, 4, 6, 8, 10%
(by bitumen

weight)

Addition of PET increased
stiffness, resistance
against rutting and

provided lower binder
drain-down

2. Materials and Methods

Under the effect of vehicular loading and climatic changes, asphaltic pavements are
prone to deteriorations. With increases in population and economic growth, demand
for high quality roads has also increased. This demand is a big challenge to a country’s
economy. This research aims at addressing the challenge faced by the construction industry
and countries’ economies by suggesting a means to utilize plastic waste in road construction.
The main objective of this research is to suggest the best mixing technique of PET in HMA
mixtures by studying and comparing trends in the properties of virgin HMA mixtures with
those of PET-modified HMA mixtures. The ITF strength and resistance to moisture damage
are two key properties that are covered in this research besides assessing flow and stability.
Figure 3 represents research methodology adopted for testing and analysis for this research.

A testing matrix of the research was made for six different types of mixes that included
one control mix and the remaining five were modified for varying PET content as shown
in Table 2. Table 2 includes a series of various numbers of samples; the first mention of
samples indicates the number of samples prepared for Type-x, the second mention indicates
the number of samples prepared for Type-y and the third mention indicates the number of
samples prepared for Type-z.

2.1. Binder

The base bitumen with a 60/70 penetration grade was selected in the current research
due to adequate performance in cold to moderate climate conditions and was procured
from Attock Refinery Limited (ARL), Rawalpindi, Pakistan. Conventional tests conforming
to ASTM standards were performed to characterize the properties of base bitumen. The
results obtained have been tabulated in Table 3.

2.2. Aggregate

Limestone aggregate procured from the Taxila (District Rawalpindi) quarry site was
used in the current research. In order to find out the index properties of the aggregate, tests
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were conducted in conformity with the relevant test standards and are presented along
with the results in Table 4.
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Table 2. Performance testing matrix.

S. No.
PET

(% Bitumen)

Number of Samples Required

ITFT Moisture
Susceptibility

Stability and
Flow

1 0 3+0+0 6+0+0 3+0+0
2 2 0+3+3 0+6+6 0+3+3
3 4 0+3+3 0+6+6 0+3+3
4 6 0+3+3 0+6+6 0+3+3
5 8 0+3+3 0+6+6 0+3+3
6 10 0+3+3 0+6+6 0+3+3

TOTAL 3+15+15 6+30+30 3+15+15
Type-x = controlled HMA samples. Type-y = modified HMA samples prepared using wet mixing technique.
Type-z = modified samples prepared using dry mixing technique.

Table 3. Properties of base bitumen.

S. No. Test Description Specification Results Limits

1 Penetration test @ 25 ◦C ASTM D 5-06 67 60–70
2 Flash Point (◦C) ASTM D 92 273 ◦C ~280 ◦C
3 Fire Point (◦C) ASTM D 92 375 ◦C ~320 ◦C
4 Softening Point (◦C) ASTM D 36–95 44.7 ◦C 35–45 ◦C
5 Ductility Test (cm) ASTM 113-99 118 cm >100 cm
6 Viscosity Test (Pa-sec) ASTM D 88–94 2.98 ≤3
7 Specific Gravity ASTM D 70 1.02 0.97–1.02
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Table 4. Properties of aggregate.

S. No. Test Description Specification Results Limits

1 Elongation Index (EI) ASTM D 4791 11.20% ≤15%
2 Flakiness Index (FI) ASTM D 4791 1.1% ≤15%

3 Aggregate Absorption Fine: ASTM C 128 1.6% ≤3%
Coarse: ASTM C 127 0.7% ≤3%

4 Impact Value BS 812 15.23% ≤30%
5 Los Angles Abrasion ASTM C 131 23.13% ≤45%

6 Specific Gravity Fine: ASTM C 128 2.12 -
Coarse: ASTM C 127 2.71 -

The gradation of the aggregate was chosen to conform with Pakistan National High-
way Authority (NHA) standard Gradation-B for Asphaltic Concrete for Wearing Course
(ACWC) as presented in Figure 4.
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In addition to the gradation of aggregate, Table 5 shows blend ratios of 1200 g modified
and controlled HMA samples. All quantities are measured in grams.

Table 5. The HMA blend ratios.

Controlled HMA Mix

Aggregate
Bitumen Content

3.0% 3.5% 4.0% 4.5% 5.0% 5.5%

1/2 204 203 202 201 200 198
3/8 146 145 144 143 143 142
#4 233 232 230 229 228 227
#8 233 232 230 229 228 227
#16 233 232 230 229 228 227

#200 52 52 52 52 51 51
pan 64 64 63 63 63 62

Bitumen 36 42 48 54 60 66
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Table 5. Cont.

Modified HMA Mix

Aggregate
PET w/w of OBC

0% 2% 4% 6% 8% 10%

1/2 201 201 201 201 201 201
3/8 144 144 144 144 144 144
#4 230 230 230 230 230 230
#8 230 230 230 230 230 230
#16 230 230 230 230 230 230

#200 52 52 52 52 52 52
pan 63 63 63 63 63 63

Bitumen 51.6 50.6 49.5 48.5 47.5 46.4
PET 1.03 2.06 3.10 4.13 5.16

2.3. Polyethylene Terephthalate (PET)–Modifier

Locally, waste plastic bottles, which were handpicked from streets, roads and public
areas and sold by weight to local mechanical recyclers, were procured in the form of
crushed pellets of size < 2.36 mm (see Figure 5). Typical properties of PET are tabulated in
Table 6.
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Table 6. Typical properties of PET.

S. No. Property Specification

1 Chemical Formula (C10H8O4) n
2 Melting Point 260 ◦C
3 Typical Injection Mold Temperature 74–91 ◦C
4 Heat Deflection Temperature 70 ◦C at 0.46 MPa
5 Tensile Strength 152 MPa
6 Flexural Strength 221 MPa
7 Specific Gravity 1.56
8 Shrink Rate 0.1–0.3%

3. Sample Preparation
3.1. Preparation of PMB

Through the means of high shear laboratory type mixer revolving at around a speed of
1100 rpm, PET-modified bitumen samples were prepared. The base bitumen was brought
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to a fluid condition by heating it up to 155–160 ◦C. Later, PET was added gradually to the
heated bitumen and mixing was continued for 2 h. Later, PMB samples of 2%, 4%, 6%, 8%
and 10% PET content were stored in small containers and covered with aluminum foil for
later testing.

3.2. Marshal Mix Design-OBC Determination

The ASTM D-6927 standard for Marshall Mix Design was used to prepare controlled
HMA samples. To determine the Optimum Bitumen Content (OBC), National Asphalt
Pavement Association procedure was adopted. As per the procedure, HMA samples were
prepared with varying bitumen content of 3.0%, 3.5%, 4.0%, 4.5%, 5.0% and 5.5%. A total
of 1200 g of cylindrical HMA sample of 4” diameter and 2.5” height was prepared at a
mixing temperature of 160 ◦C and compacted at 135 ◦C by giving 75 blows on each side of
sample. Volumetric properties, which include Flow (mm), Stability (kN), Voids in Mineral
Aggregate (VMA) (%), Voids Filled with Asphalt (VFA) (%) and Air Voids (AV) (%) of
Marshall samples, were calculated and are plotted on graphs as shown in Figure 6. The
HMA samples with higher bitumen content tend to have higher flow, VMA, VFA and lower
stability and AV.
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As per the National Asphalt Pavement Association, OBC was determined against 4%
AV, which turned out to be 4.341%. All the other volumetric properties were then noted
against 4% AV. Table 7 summarizes the volumetric properties of HMA at OBC.

Table 7. Volumetric properties of HMA at OBC.

S. No. Property Value

1 Stability 11.7 kN
2 Flow 3.4 mm
3 VFA 70%
4 VMA 18.4%

3.2.1. Controlled HMA Sample Preparation

As per ASTM D-6927, 1200 g of HMA samples were prepared by first heating aggregate
and virgin bitumen up to 110 ◦C in an oven prior to mixing at 160 ◦C; the mix was later
compacted to cylindrical samples at 135 ◦C by giving 75 blows on each side. Controlled
HMA samples (Type-x) were prepared to assess properties at a later stage keeping in view
Table 2.

3.2.2. Modified HMA Sample Preparation–Wet Mixing Technique

A total of 1200 g of HMA samples were prepared by first heating aggregate and PMB
(in% replacement of OBC) up to 110 ◦C in an oven prior to mixing at 160 ◦C; the mix was
later compacted to cylindrical samples at 135 ◦C by giving 75 blows on each side. Modified
HMA samples using the wet mixing technique (Type-y) were prepared keeping in view
Table 2.

3.2.3. Modified HMA Sample Preparation–Dry Mixing Technique

Keeping in view the high melting point of PET, the dry mixing technique was also
considered. Aggregate was initially heated to a high temperature of 260 ◦C; later, crushed
pellets of PET of a size < 2.36 mm were added and mixed thoroughly such that the aggregate
was well coated with polymer; the mix was then cooled to 160 ◦C. Bitumen was separately
heated up to 110 ◦C in an oven and then added to the heated aggregate-polymer mix at
160 ◦C. After the proper mixing of bitumen with aggregate-polymer, the mix was compacted
to cylindrical samples at 135 ◦C by giving 75 blows on each side. Modified HMA samples
using the dry mixing technique (Type-z) were prepared keeping in view Table 2.

4. Laboratory Testing–Results and Discussion
4.1. PMB Testing

Various preliminary tests were conducted on the prepared modified bitumen samples
as per the mentioned standards. The results of the virgin bitumen were also plotted for each
index property to obtain a comparison between the controlled and modified samples of
bitumen. Figure 7 represents trends in respective properties against each PET (%) content.

It is observed that an increase in PET content in PMB results in a gradual decline in
ductility and penetration; however, softening point and viscosity increase. The increase
in softening point suggests that bitumen resistance against the deformation of modified
asphalt is improved. Preliminary testing conducted on PMB concluded that the properties
of virgin bitumen altered noticeably when modified via PET.

4.2. Indirect Tensile Fatigue Test

The Indirect Tensile Fatigue Test (ITFT) was adopted to evaluate fatigue life in terms
of cyclic loading in the Universal Testing Machine (UTM) following standard EN12697-24.
The test was conducted in a stress-controlled condition such that the load was applied in a
vertical direction resulting in horizontal tensile stress. The sample failed by splitting in the
vertical plane due to increased strain within the sample [27]. Type-x, Type-y and Type-z of
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the HMA samples were tested for fatigue. As per EN12697-24, the thickness of the sample
was 51 mm ± 1 mm and the diameter was 100 ± 3 mm (for a maximum aggregate size of
25 mm). Samples were conditioned for 4 h at 25 ◦C in a temperature-controlled chamber,
prior to testing under a load of 3500 N, with a loading time of 0.1 s and rest time of 0.4 s.
Figure 8 shows the device diagram and load symmetry of the ITFT. Testing was carried
out at 25 ◦C. The test finished once the sample fractured, and the machine stopped itself.
Figure 9 shows a fractured sample on completion of the loading cycles. For the sake of
conclusion, the number of cycles leading to failure was noted.
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According to Baghaee et al., with the addition of plastic the fatigue life of asphalt
mixes increases appreciably [12]. To get a traditional fatigue plot, loading cycles are plotted
against varying PET content as shown Figure 10. This also represents a comparison of ITF
loading cycles against each type of HMA sample (see Table 2) for varying PET content
(%). The hypothesis is validated by the obtained results; fatigue life in terms of loading
cycles increases dramatically with the increase in PET content from 0% to 2%; the increase
is gradual as the PET content is further increased to 4% and 6% in the cases of wet mixing
and dry mixing, respectively. However, fatigue life decreases as the PET content is further
increased to 6% and 8% in Type-y and Type-z samples, respectively. It is to be noted that
the dry mixing technique yielded better results in terms of fatigue life as compared to the
wet mixing technique for each PET content.

As per regression analysis, the wet mixing technique produced a stronger relationship
between average loading cycles, which signified fatigue life and variation in PET content.
The R2 value for the wet mixing technique was 0.829 while for the dry mixing technique it
was 0.613.

4.3. Moisture Susceptibility Test

In the past, various tests have been conducted to assess pavement susceptibility to
moisture damage. As per Yilmaz et al., no test to date has accomplished any world-wide
standardized acceptance to assess the extent of moisture-induced impairment. As a matter
of fact, any test that can compare the test results of damp and dry HMA samples or establish
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a relation between the two can be utilized to assess the impact of moisture on HMA [3].
The Alabama Department of Transportation (ALDOT) provides a procedure to assess the
resistance of HMA samples to moisture-induced damage as per standard ALDOT-361-88.
This strategy assesses the change in diametral tensile strength caused by the saturation
impact and conditioning of HMA samples on exposure to water [28].

A sample diameter of 4” (100 mm) and thickness of 2.5” (63 mm) were used for
moisture susceptibility testing in this research. For the controlled mix type (Type-x) two
sets of samples were tested, conditioned and unconditioned samples. Similar types of
samples were prepared to assess the moisture susceptibility of PET-modified HMA samples
(Type-y and Type-z) with varying PET content of 2%, 4%, 6%, 8% and 10%, respectively
(see Figure 11a). The samples were conditioned by placing them in a water bath at 60 ◦C
for 24 h. (see Figure 11b). The samples were later placed at 25 ◦C for 4 h in a temperature-
controlled chamber (see Figure 11c) and finally tested in UTM where the load was applied
at 50 mm/min (see Figure 11d) Finally, maximum load leading to failure was noted in kN.
Figure 11e shows fractured sample.
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ifications [29], was observed for all three sample types. As per the research findings of 
Ferreira et al., Silva et al. and Ghabchi et al., the resistance against the moisture damage 
of PET-modified asphalt mixtures was noticeably higher as compared to controlled HMA 
mixtures [13–15]. Figure 12 shows a graphical representation of average tensile strength 

Figure 11. Moisture susceptibility testing: (a) Unconditioned samples ‘s-1’ and conditioned samples
‘s-2’; (b) Conditioning of samples in water bath for 24 h at 60 ◦C; (c) Unconditioned and conditioned
samples kept at 25 ◦C for 4 h in a temperature-controlled chamber prior to testing; (d) Samples tested
in UTM where the load was applied at 50 mm/min; (e) Fractured sample.
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As per standard ALDOT-361-88, indirect tensile strength is measured for both condi-
tioned and unconditioned specimens using Equation (1).

St =
2000∗P
Π∗D∗T

(1)

Here:

St = tensile strength (kPa);
D = sample diameter (mm);
T = sample thickness (mm);
P = maximum load (N).

The indirect tensile strength of conditioned and unconditioned samples was compared
and presented in the form of TSR using Equation (2).

TSR =
S2

S1
(2)

Here:

S2 = average tensile strength of conditioned sample;
S1 = average tensile strength of un-conditioned sample.

A minimum TSR value greater than 80%, adopted by many roadway agencies’ spec-
ifications [29], was observed for all three sample types. As per the research findings of
Ferreira et al., Silva et al. and Ghabchi et al., the resistance against the moisture damage
of PET-modified asphalt mixtures was noticeably higher as compared to controlled HMA
mixtures [13–15]. Figure 12 shows a graphical representation of average tensile strength
ratios for all three types of HMA samples containing varying PET content (%). The results
as shown in Figure 12 also validate the hypothesis, which states that pavement tends to
be less susceptible to moisture damage considering improved TSR (%), which increases
considerably with the increase in PET content. The improvement in TSR (%) is gradual as
PET content is increased from 0% to 2%. Furthermore, the increase in TSR (%) was noted to
be gradual as the PET content was further increased to 4% in both mixing techniques. How-
ever, pavement resistance to moisture damage showed a declining trend as PET content
was further increased beyond 4%. It is to be noted that the wet mixing technique yielded
better results in terms of moisture susceptibility as compared to the dry mixing technique
for each PET content.

As per regression analysis, the wet mixing technique produced a stronger relationship
between the tensile strength ratio and variation in PET content. The R2 value for the wet
mixing technique was 0.734 while for the dry mixing technique it was 0.201.

4.4. Stability and Flow Test

As per AASHTO T245-90, the standard flow test and Marshall stability test were
performed on a cylindrical sample. The specimen was placed in a water bath with a
temperature of 60 ◦C for a period of 30 min, followed by samples being damp-dried and
placed in the Marshall apparatus. Marshall stability is the maximum load applied for a
given strain rate of 2 in. per minute, which brings about failure. During the stability test,
the Marshall flow that occurs at a failure point is determined by a gauge that observes the
vertical deformations, in mm, occurring in a specimen. The following Figure 13 shows a
graphical representation of Stability (kN) and Flow (mm) with varying content of PET.

As per regression analysis, satisfactory results were obtained to establish the validity
of both the wet and dry mixing techniques. The R2 value for the wet mixing technique in
establishing the relationship between stability and variation in PET content was 0.922 while
for the dry mixing technique it was 0.816; however, the R2 value for the dry mixing
technique in establishing the relationship between flow and variation in PET content was
0.884 while for the wet mixing technique it was 0.865.
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Figure 13. Stability and flow test.

As per the research findings of Baghaee et al. and Ahmadinia et al., the stability of the
asphalt mix increases with the addition of PET. The stability of PET-modified HMA is better
as compared to controlled HMA samples due to improvement in adhesion among aggregate-
binder-plastic pellets, [12,30]; however, in contrast to the findings of Ahmadinia et al.
conducted in 2012, stability only increases to a maximum value corresponding to PET
content of 4% [30] for both types of HMA mixes, i.e., Type-y and Type-z, and decreases
gradually for higher PET contents. It is to be noted that Type-z HMA samples prepared by
the dry mixing technique gave higher stability values at each PET concentration. At PET
content ≥ 6%, the stability value falls to a value even less than Type-x stability.
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High flow value is generally an indicator for a mix that is susceptible to permanent
deformation under traffic; correspondingly, mixes with low flow values are indicative
of the presence of higher air voids than normal values and pavement is likely to face
premature cracking owing to the brittleness of the mix during the pavement’s service life.
The research findings of Kalantar et al. conducted in 2012 and Baghaee et al. conducted in
2013 suggested that flow increases as PET content is increased, [7,12]; however, test results
of Type-y and Type-z indicated a decrease in flow values up to the PET content of 4%,
which later increased when PET content was increased beyond 4%. A similar trend was
noted by Ali et al. in his research conducted in 2013 [20]; however, in the current research,
the point of inflection for PET was noted to be 6%.

5. Environmental and Economic Sustainability

The usage of plastic in general and plastic bottles especially is on a surge throughout
the world. Despite reducing-reusing-recycling efforts, plastic bottle waste is increasing
day by day. As per the WWF study, total waste in Pakistan is estimated to be around
250 million tons of which a majority portion consists of food scraps, plastic bags and PET
bottles. Plastic bottles produce 15.5% of total waste in Pakistan [31]. Pollution caused by
PET is serious and growth in its consumption is alarming considering the long degradation
period of around 300 years [32]. Furthermore, ever rising petroleum rates on a biannual
basis [33], the depletion of natural resources [34] and the ban of limestone quarrying in
the Margallah Hills [35], adverse environmental pollution, flooding, the lowering of water
aquifers, high construction costs and lesser funds, the damage caused to pavements on
exposure to moisture [3] and excessive and frequent vehicular loading [12] are a few of the
many challenges faced by the road construction industry. Keeping his research findings in
view, Baghaee et al. concluded that utilizing waste plastic as pavement-quality enhancer is
rewarding, improving pavement life and serviceability while also preventing plastic waste
from polluting the environment [12]. Ferreira et al. also concluded that the utilization
of alternative pavement construction materials should be encouraged; this reduces the
excessive utilization of raw materials and concurrently contributes to sustainable practices
in engineering works [13].

To assess cost reduction by using PET in HMA mixtures, cost comparison was carried
out for virgin HMA and PET-modified HMA mix. A standard road width of 3.6 m for high-
speed, high-volume highways [36] was assumed with an Asphaltic Concrete for Wearing
Course (ACWC) thickness of 50 mm [37]. It was assumed for the lower layers of the two
types of HMA mixtures, inclusive of Asphalt Concrete Base Course (ACBC), Granular Base
Course (GBC), Granular Sub-Base Course (GSBC) that the preparation and compaction costs
of the subgrade were completely similar and hence their cost was completely ignored. From
the Marshall Mix design, the density of asphalt was found to be 2327 kg/m3 for the HMA
mix. To estimate cost, the NHA’s section on the Composite Schedule of Rates (CSR)–2014 of
the District of Rawalpindi was used [38]. Figure 14 indicates slight decreases of 1.30% and
1.95% in the cost for PET-modified HMA Type-y containing 4% and 6% PET, respectively,
when compared with the job mix formula of virgin HMA for a one-kilometer road section.
However, due to increased fuel consumption owing to high heating temperatures for
the Type-z-modified HMA mix, the cost is 6.57% and 5.67% higher with 4% and 6% PET
content. Kristjánsdóttir et al. in 2007 suggested the use of WMA technology, which can be
incorporated successfully to lower the temperature at which asphalt mixtures are produced
and paved [39]. It is to be noted that the cost analysis is only carried out for material costs
involved at initial stages of road construction. When life-cycle cost assessment involving
monetary and non-monetary costs is carried out, savings (%) will increase noticeably.
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Table 8 illustrates various factors that have been considered for the cost analysis of the
modified and unmodified mix.

Table 8. Cost analysis data.

Basic Parameters

Segment length 1000 m
Segment width 3.65 m
Segment thickness 0.05 m
Material volume 180 m3

Material density 2327 kg/m3

Material mass 418,860 kg~418.86 ton
USD 1 PKR 226.52 (December 2022)
Fuel price (Diesel) PKR 235.30/liter (December 2022)

Material Type-x Type-y Type-z
4% PET 6% PET 4% PET 6% PET

Required binder (ton) 18.2 17.5 17.1 17.5 17.5
Cost of binder (PKR) 2,000,325 1,920,312 1,880,305 1,920,312 1,920,312

Required aggregate (ton) 400.7 400.7 400.7 400.7 400.7
Cost of aggregate (PKR) 1,541,081 1,541,081 1,541,081 1,541,081 1,541,081

Fuel required (liter) 3972.3 3972.3 3972.3 5561.2 5561.2
Cost of Fuel (PKR) 934,672 934,672 934,672 1,308,541 1,308,541

PET required - 0.73 1.09 0.73 1.09
PET cost - 21,814 32,721 21,814 32,721

6. Conclusions

This research evaluates the fatigue, moisture susceptibility, stability and flow prop-
erties of HMA modified by the addition of different percentages of PET to improve poor
pavement serviceability due to high traffic volumes and weather conditions and to also
assuage the growing pollution caused by plastic bottle waste. Therefore, the main objective
of this research was developing environmentally friendly pavements by encouraging the
reuse of waste material in the industry.

1. The PET modification of bitumen resulted in a higher softening point, penetration
and viscosity of bitumen, which suggests that PET-modified pavement is less likely to
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be deformed. However, the ductility of PET-modified bitumen decreases gradually
with increasing PET%.

2. With the addition and increase in PET content up to optimum level, the results
for resistance against fatigue loading and moisture damage, as well as the results
for stability and flow testing, improved. However, the performance testing results
worsened once PET content increased further; this may be due to the decreased
aggregate-binder bonding and increased stiffness of the modified HMA mix.

3. The dry mixing technique yielded better results for ITFT, stability and flow; however,
the wet mixing technique produced better results for moisture susceptibility testing.

4. The optimum PET content that produced the best results for ITFT was 6% (dry
mixing); however, for moisture susceptibility testing (wet mixing), flow and stability,
the optimum PET turned out to be 4%.

5. Cost comparison suggests a 1.40% and 2.10% decrease in cost for the 4% and 6%
PET-modified HMA mix prepared by the wet mixing technique, respectively. For the
dry mixing technique cost increases by 5.55% and 4.60% for 4% and 6% PET content,
respectively. The PET modification of pavement can be used to cut down life cycle
costs. This will not only help to reduce road construction costs in the long run but can
also help to mitigate environmental problems such as solid waste disposal and the
depletion of natural resources.

This research can further be tested for dual wheel track laboratory equipment to assess
the performance of PET-modified pavements under the rutting action of vehicles. The
use of WMA technology might be helpful to reduce additional costs associated with the
dry mixing of PET into HMA. Therefore, further testing is required to demonstrate the
effectiveness of chemicals related to WMA technology and the interaction of such chemicals
with the PET-HMA matrix. The current study can also be tested further by incorporating
RAP in PET-modified HMA by following the homogenization treatment method for in-
plant hot-mix recycled asphalt mixtures as conducted by Jie et al. in 2022 [40]. Furthermore,
the current study could also be developed further by studying the change in properties of
PET-modified HMA by partially replacing aggregate with slag as per the study conducted
by Ahmad Goli in 2022 [41].
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Abstract: The structure and physicochemical properties of polyvinyl alcohol (PVA) and PVA/glycerol
films have been investigated by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction
(XRD), thermogravimetry/differential thermal analysis (TG/DTA), and advanced scanning probe
microscopy (SPM). In the pure PVA films, SPM allowed us to observe ribbon-shaped domains with
a different frictional and elastic contrast, which apparently originated from a correlated growth or
assembly of PVA crystalline nuclei located within individual PVA clusters. The incorporation of 22%
w/w glycerol led to modification in shape of those domains from ribbon-like in pure PVA to rounded
in PVA/glycerol 22% w/w films; changes in the relative intensities of the XRD peaks and a decrease in
the amorphous halo in the XRD pattern were also detected, while the DTA peak corresponding to the
melting point remained at almost the same temperature. For higher glycerol content, FT-IR revealed
additional glycerol-characteristic peaks presumably related to the formation of glycerol aggregates,
and XRD, FT-IR, and DTA all indicated a reduction in crystallinity. For more than 36% w/w glycerol,
the plasticization of the films complicated the acquisition of SPM images without tip-induced surface
modification. Our study contributes to the understanding of crystallinity in PVA and how it is altered
by a plasticizer such as glycerol.

Keywords: polyvinyl alcohol films; PVA/glycerol blends; crystallinity; infrared spectroscopy; X-ray
diffraction; thermogravimetry; differential thermal analysis; atomic force microscopy; lateral force
microscopy; ultrasonic force microscopy

1. Introduction

Nowadays, the development of materials with film-forming capacity is of growing
interest. Polyvinyl alcohol (PVA) is one of the most popular synthetic polymers due to its
biodegradability, biocompatibility, high elasticity, tribological response, hydrophilicity, and
acceptable thermal properties. PVA has excellent film-forming properties and is widely
used in the development of sensor materials, drug delivery systems, wound dressings,
artificial cartilages, implants, for packaging applications, recovery of organic and inorganic
pollutants, etc. [1–6].

However, due to its poor ductility, in practical applications PVA is often used with the
addition of plasticizers, which influence its mechanical and thermodynamic properties [7–9].
Plasticizers such as glycerol, sorbitol, sucrose, and some organic acids are well-known
as low-molecular-weight compounds that reduce polymer–polymer chain bonding [10].
The breaking of hydrogen bonds increases the molecular mobility of the polymer, which
results in increased flexibility of the polymer films. Being nontoxic to humans at low
concentrations, glycerol is a widespread plasticizer incorporated in PVA films [11–19], as
well as in its nanocomposites and blends.

PVA is a semicrystalline polymer composed of both amorphous and crystalline phases,
with the percentage of crystallinity playing a crucial role in determining its performance.
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Understanding and controlling the crystallinity of PVA is essential for applications such as
drug delivery and wound dressings, as the amount of the crystalline phase will affect the
release of active compounds and the material’s mechanical properties. Higher crystallinity
may enhance the durability and structural integrity of films for biomedical applications.
Additionally, in films used as membranes for water treatment and the recovery of organic
and inorganic pollutants, crystalline regions can improve mechanical strength and chem-
ical resistance, leading to better performance and longer service life. For adhesives and
coatings, the crystallinity of PVA affects adhesion properties, flexibility, and resistance to
solvents and environmental factors. In packaging, it influences the film’s strength, barrier
properties, and stability. Controlling crystallinity can help optimize these films for specific
industrial purposes.

In this work, we have conducted a comprehensive analysis of the crystallinity in pure
PVA and PVA/glycerol films through a correlative study of data from fast Fourier transform
infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetry (TG)/differential
thermal analysis (DTA), and advanced scanning probe microscopy (SPM).

The use of atomic force microscopy (AFM), friction force microscopy (FFM), and
ultrasonic force microscopy (UFM) enables us to map the topographical features of these
films, as well as their frictional and mechanical responses, at the nanoscale. UFM is a
relatively new AFM-based technique that provides contrast based on nanoscale differences
in surface or near-subsurface sample stiffness and adhesive properties [20]. To the best of
our knowledge, this is the first time an extensive scanning probe microscopy (SPM) study of
this nature has been conducted on these films. SPM offers a unique platform for analyzing
the surface properties of polymer films at the nanoscale. It not only allows for detailed
examination of surface morphology but also facilitates the investigation of frictional and
mechanical characteristics through direct interaction with surface atoms. Unlike scanning
electron microscopy, which typically requires ultra-high vacuum conditions and involves
the interaction of an electron beam with the polymer surface, SPM studies can be conducted
in ambient conditions. This makes SPM a versatile and practical tool for these investigations.
By additionally integrating data for structural, mechanical, physicochemical, and thermal
characterization from the aforementioned experimental techniques, we seek to achieve a
detailed understanding of how glycerol influences the crystallinity and overall behavior of
PVA film.

Our study discloses valuable insights into how plasticizers, such as glycerol, impact
the PVA nanostructure, thereby offering avenues for tailoring PVA properties to achieve
optimal performance for specific applications.

2. Materials and Methods
2.1. Materials and Sample Preparation

PVA (Mw 31,000–50,000 g/mol, 98–99% hydrolyzed) and glycerol (≥99.0%) were
supplied by Merck, Darmstadt, Germany. The PVA was dissolved in distilled water with
stirring at 90 ◦C, 400 rpm, when heated in a water bath for 2 h, to prepare a 7.0 wt.% stock
solution. Solutions of PVA with 3.5 wt.% concentration and mixed PVA/glycerol solutions
containing 3.5 wt.% PVA and 1.0 wt.%, 2.0 wt.%, and 4.4 wt.% glycerol were prepared from
the 7.0 wt.% PVA stock solution, glycerol, and distilled water, stirred at 25 ◦C, 400 rpm,
20 min, poured on polystyrene Petri dishes, and evaporated at room temperature (20–25 ◦C)
and ambient humidity ~50% R.H. The glycerol content in the prepared films in relation to
the amount of dry PVA was 22% w/w, 36% w/w, and 55% w/w. Films ~200 µm thick were
obtained by this method (solution casting). The film preparation procedure is illustrated in
Figure 1.
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2.2. Fourier-Transformed Infrared Spectroscopy (FT-IR)

FTIR spectra (4 cm−1 resolution, wavenumber range 500–4000 cm−1) were recorded
with a Shimadzu IRPrestige-21 spectrometer (Tokio, Japan), using the ATR method. Small
pieces of the PVA and PVA/glycerol films were cut and placed in the instrument sample
holder. The data were acquired using the software Shimadzu IR Solution 1.21 (Tokio, Japan)
and analyzed using Originpro 2024 (Northampton, MA, USA) software.

2.3. X-ray Diffraction (XRD)

XRD measurements were performed in an equipment Philips X’Pert MPD (Eindhoven,
Holland) using CuK α radiation (1.54056 Å) with 40 KV and 40 mA. It incorporates 0.04 rad
soller slits for both incident and diffracted beams, an automatic 12.5 mm programmable
divergence slit, and a Xe gas-sealed proportional detector. Data were collected in an angular
range between 1◦ and 50◦ (2θ) with a step size of 0.02◦ and a counting time of 0.70 s per
step, and analyzed using Originpro 2024 (Northampton, MA, USA) software.

2.4. Thermogravimetric Analysis (TGA) and Differential Thermal Analysis (DTA)

The thermal behavior of the samples was examined with a Setaram model TG/DTA92
equipment (Caluire-et-Cuire, France) using a Pt crucible. Typically, thermograms were
recorded in air atmosphere, within a temperature range from 20 ◦C to 500 ◦C, with a
heating rate of 25 ◦C/min. The data were analyzed using Originpro 2024 (Northampton,
MA, USA) software.

2.5. Scanning Probe Microscopy

Contact-mode atomic force microscopy (AFM), lateral force microscopy (LFM), and
ultrasonic force microscopy (UFM) were performed using a NANOTEC (Madrid, Spain)
instrument. The modification of the AFM equipment for the incorporation of UFM facil-
ities is described in [20]. For UFM, ultrasonic frequencies of ~3.8 MHz and modulation
frequencies of 2.4 KHz were applied from a piezoelectric element placed under the sample.
Typically, Olympus silicon nitride cantilevers with a nominal spring constant of 0.06 N/m
and a nominal tip radius of 20 nm were used. The measurements were performed in air
at ambient conditions (20–25 ◦C, ~50% R.H.). Data were analyzed using the WSxM 5.0
software (Madrid, Spain) [21].
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3. Results and Discussion

FTIR spectra for the pure PVA and PVA/glycerol blended films with different glycerol
contents (22, 36, and 55% w/w) are displayed in Figure 2a.
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facilitate comparison. (d) Absorbance spectra (inverse from the transmittance) in the selected region
to illustrate the procedure for constructing the baseline to determine A1141 and A1088 in Equation (1)
(see text).

For the pure PVA film, the band at 3273 cm−1 corresponds to (O-H) stretching vibration
from the intermolecular and intramolecular hydrogen bonds [18]. The two bands at 2939
and 2907 cm−1 correspond to the asymmetric and symmetric stretching vibrations of
methylene (–CH2–), respectively [22]. The peaks at 1709 cm−1, 1655 cm−1, and 1560 cm−1

have been related to the stretching vibrations of the (C=O) and (C–O) bonds present in the
remaining acetate units [23], which in our case must be very few, as we are using highly
hydrolyzed PVA. The 1655 cm−1 band has also been assigned to absorbed water [24,25].
The peaks at 1417 cm−1 and 1327 cm−1 have been attributed to bending vibrations of
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hydroxyl (–OH) and wagging of (C–H), respectively [26]. The peak at 1141 cm−1 has
been assigned to (C–O) stretching vibrations in C–OH groups of the crystalline polymer
phase [27] and also to (C–C) stretching vibrations of the carbon framework of the polymer
chain in the crystalline phase [28]. The peak at 1088 cm−1 corresponds to the (C–O)
stretching vibrations [25], the band at 916 cm−1 to CH2 rocking vibration, and this at
836 cm−1 to (C–C) stretching and (C–H) out-of-plane vibrations.

For the PVA-glycerol films, (Figure 2a) a shift of the (O–H) stretching vibration band
from 3273 cm−1 to higher wavenumbers is observed when increasing the glycerol content
(up to 3283 cm−1 for 55% w/w of glycerol). A possible reason for this effect is the disso-
ciation of hydrogen bonds between the PVA chains and the formation of new hydrogen
bonds between the PVA and glycerol molecules [18,29]. Similar results were obtained for
films of PVA/chitosan with the addition of glycerol [29] and films of wheat starch with
glycerol [30].

For the PVA/glycerol 55% w/w film, the band at 2939 cm−1 experiences a slight
increase compared to the 2907 cm−1 band. For pure glycerol, the aliphatic (C–H) group
bands appear at 2931 cm−1 and 2879 cm−1. Hence, the aggregation of glycerol molecules
within the PVA matrix might possibly account for this effect [31,32].

The peak at 1655 cm−1 increases with increasing glycerol concentration (see Figure 2b).
A similar effect is noticeable from the FT-IR spectra for PVA/glycerol films in [13], although
the origin of this effect was not discussed in this reference. According to [31] an FT-IR band
at ~1653 cm−1 appears for commercial glycerol. This band may be assigned to (H–O–H)
bending vibrations of water. Hence, the observed increase in the peak at ~1653 cm−1 with
increasing glycerol content (see Figure 2b) may be indicative of an increase in the amount
of water in the film.

The most noticeable change in the glycerol-modified PVA films is the appearance of a
new peak at 1039 cm−1 (see Figure 2a,c).

In the FT-IR spectrum of pure glycerol, five characteristic bands have been observed,
located at 800 up to 1150 cm−1 corresponding to vibrations of (C–C) and (C–O) linkages:
three broad bands at 850, 925, and 995 cm−1 that have been attributed to the vibration of
the skeleton (C–C); a peak at 1045 cm−1 associated to the stretching of the (C–O) linkage in
the primary alcohol groups and a band at 1117 cm−1 that corresponds to the stretching of
(C–O) in the secondary alcohol group [32–34].

In Figure 2c, a peak at 1045 cm−1 appears for the film with 22% w/w glycerol content
(red curve) and increases in intensity while slightly displacing to lower wavelengths, up
to 1039 cm−1, as the amount of glycerol incorporated into PVA is increased (blue and
green curves). Such peak corresponds to (C–O) stretching of the primary alcohol groups
of glycerol, and its shifting to lower wavelengths is indicative of increased glycerol/PVA
interactions—presumably of the hydrogen bonding type—for higher glycerol contents. For
PVA films with 36 and 55% w/w glycerol (blue and green curves in Figure 2c,d), the PVA
band at 1088 cm−1 shows a clear modification of its shape due to an increase in intensity
at ~1117 cm−1 (corresponding to stretching of (C–O) in the secondary alcohol group of
glycerol), and slightly displaces to higher wavelengths (1091 and 1093 cm−1 for 36 and 55%
w/w glycerol, respectively).

The fact that for 22% w/w glycerol the characteristic peak of glycerol for the primary
alcohol group appears at 1045 cm−1, as in pure glycerol, suggests that for that film (22%
w/w glycerol), it is the secondary alcohol group that preferentially forms hydrogen bonds
with the PVA molecules. As the amount of glycerol is increased, additional types of glycerol
interactions within the PVA matrix may take place, and the peak corresponding to the
primary alcohol group displaces to lower wavelengths, up to 1039 cm−1.

For the 36% w/w glycerol films, the emergence of a band at ~995 cm−1 is also apparent,
indicative of the excitation of vibrations of the glycerol (C–C) skeleton. For the film with
55% w/w glycerol, four glycerol bands are apparent in the covered wavelength range in
Figure 2c. In addition to bands at 1039 and 995 cm−1, the intensity of the band at 921 cm−1
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increases, and a clear peak at 850 cm−1 appears, while for pure PVA a relatively broad band
at 836 cm−1 is observed (Figure 2c).

According to the literature [25,35], the crystallinity of various PVA films can be calcu-
lated from the FT-IR data by quantitative correlation between the intensities of the bands
corresponding to the crystalline and amorphous phases. The positions of the PVA crys-
tallinity absorption maximum given in the literature vary in the range 1141–1145 cm−1. We
have used the value 1141 cm−1 that corresponds to the absorption maximum obtained in
our experiments to calculate the crystallinity α of our PVA and PVA/glycerol films and
considered the peak at 1088 cm−1 attributed to (C–O) stretching vibration as representative
of the amorphous phase, according to the equation [25]:

∝ = −13.1 + 89.5 ×
(

A1141

A1088

)
(1)

where A1141 and A1088 are the intensities of the absorption peaks in the crystalline and
amorphous phases, respectively. According to [25], this equation is applicable for the
calculation of α values in the range 18–60% with a correlation coefficient of 0.999 and an
absolute error of determining α ± 0.3%.

The detailed procedure for constructing the baseline relative to which the intensities
of the peaks A1141 and A1088 are to be measured is described in [25], and it is illustrated in
Figure 2d. The baseline must pass through the minima in the absorption spectrum located
at the edges of the examined spectral range, as depicted in Figure 2d. The position of the
(C–O) band maximum at 1088 cm−1 varied slightly with increasing glycerol concentration,
1091 and 1093 cm−1 for PVA/glycerol 36 and 55% w/w, respectively (for sake of clarity, we
refer to it as the band at 1088 cm−1 in all cases). The crystallinity band maximum is almost
at the same position for the different films: 1141 cm−1 for the pure PVA film and 1142 cm−1

for PVA/glycerol 55% w/w.
The crystallinity of the PVA films with different glycerol content calculated by FT-IR

is shown in Table 1. It is apparent that the crystallinity first increases with the addition of
glycerol and then decreases to a level below that of the pure PVA film. Possibly, a small
amount of glycerol, with their secondary alcohol groups linked by hydrogen bonding
to the PVA chains, may even locally enhance their regular arrangements, resulting in an
increase in PVA crystallinity. As the glycerol content increases, more glycerol molecules are
available to interact with the PVA or with each other, destabilizing the interactions between
the PVA chains and thus reducing the crystallinity.

Table 1. Crystallinity percentage (a) of PVA films with different glycerol content calculated by FT-IR
(Figure 2) and XRD (Figure 3, Debye–Scherrer formula applied to peak at 19.7◦); melting points (TM)
determined from DTA (Figure 4c).

Glycerol (% w/w) α(FT-IR) α(XRD) Crystal Size (nm) TM (◦C)

0 27.1 27 4.25 255
22 30.4 30 5.08 253
36 27.3 25 4.90 231
55 19.5 - -

The influence of glycerol on the crystalline structure of PVA films prepared via solution
casting was also investigated by means of XRD. According to [36,37], the XRD diffractogram
of pure PVA presents characteristic peaks at 2θ ~11.2◦ (100), 16.1◦ (001), 19.4◦ and 20.1◦(
101

)
/(101), and 22.5◦ (200). A crystalline peak at ~40–42◦ related to diffraction from(

111
)
/(210) planes has also been reported [37–39].
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Figure 3. (a) XRD patterns of pure PVA (black curve) and PVA/glycerol films with different glycerol
content: 22 (red curve), 36 (blue curve), 55 (green curve) % w/w. The inset displays an enlarged
region of the peak at approximately 20◦ for pure PVA (black curve) and PVA/glycerol films with
different glycerol content: 22 (red curve), 36 (blue curve) % w/w. (b–e) Fitting of XRD curve for
PVA (b), PVA/glycerol 22% w/w (c), PVA/glycerol 36% w/w (d), PVA/glycerol 55% w/w (e).

Figure 3 shows the XRD diffractograms of the pure PVA and PVA/glycerol films
with different glycerol content. The expected positions for the (100), (001),

(
101

)
/(101),

and (200) diffraction peaks are indicated by dashed lines. For the films of pure PVA, and
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those with 22 and 36% w/w glycerol content, a diffraction peak about 2θ = 19.7◦ is clearly
distinguished, as well as a small hump at ~40.7◦. The obtained XRD patterns are typical
for a semicrystalline polymer, with a broad amorphous halo originating from disordered
(noncrystalline) regions. We understand that broad amorphous peaks (halos) in the XRD
diffractogram reflect preferential interatomic distances, corresponding to the maximum
of the amorphous halo, within the disordered regions of the polymer. From Figure 3, it
can be seen that, as a result of the addition of 22% w/w glycerol (red curve in the figure),
the diffuse scattering associated with the amorphous phase is reduced, which may be
due to a structural rearrangement of the polymer chains. In [17], it was suggested that
the introduction of glycerol in PVA films could significantly influence the structure of the
amorphous domains. According to the FT-IR data, the crystallinity of this film experiences
a slight increase (see Table 1). For a glycerol concentration of 36% w/w (blue curve), the
XRD diffractogram shows now a larger contribution of the amorphous phase, similar to
that of the pure PVA film, although the intensity of the peak at 2θ = 19.7◦ is lower. For films
with 55% w/w glycerol (red curve), this peak does not appear in the diffractogram. The
small peak at 22.5◦ decreases for films with glycerol compared to pure PVA. Interestingly,
the peak at 2θ = 40.7◦ does not change substantially for the different samples studied.

It is worth noticing that for the diffraction peak at 2θ = 19.7◦ in the Figure 3, apparently,
the ratio between the intensities corresponding to the diffraction of

(
101

)
/(101) planes

changes with the addition of glycerol (see the inset in Figure 3). For the film with 22% w/w
glycerol, the diffraction from

(
101

)
planes slightly increases compared to that of the pure

PVA films. A similar effect was reported in [36,39] for pure PVA films with different water
content. The incorporation of water molecules in the PVA matrix induced an increase in
the diffraction signal of the

(
101

)
planes compared to that of the (101) planes. As this could

be an effect of water plasticization, it is understandable that the incorporation of a small
amount of glycerol also induces a similar effect. In addition, the incorporation of glycerol
is expected to increase the water content in the PVA film. As more glycerol is incorporated
into the film (36% w/w), the effect is reversed. The ratio of the

(
101

)
/(101) signals and

the shape of the amorphous halo in the diffractogram of the PVA/glycerol 36% w/w film
become similar to those of the pure PVA film.

For the quantitative description and understanding of glycerol impact on crystallinity
of PVA, the diffraction scattering peaks in Figure 3 were deconvoluted into fundamental
Gaussian curves with R2 = 0.99; 0.95; 0.98; 0.95 for 0, 22, 36, and 55% w/w glycerol, respec-
tively [40] (Figure 3b–e), and the degree of crystallinity of the PVA films was calculated
from the XRD data using the following formula [38]:

α =
Ac

Ac + Aa
× 100% (2)

where Ac and Aa are the areas of the crystalline and amorphous phases, respectively.
The crystallinity for PVA/glycerol 55% w/w was not calculated, as the main PVA

crystalline peak at 19.7◦ did not appear in the diffractogram, and the most prominent
feature was the broad amorphous halo.

The results obtained for the different films are indicated in Table 1. As it is noticeable
from Table 1, the results derived from analysis of the XRD data support those obtained
from the FT-IR spectra.

Interestingly, the deconvolutions in Figure 3b–d show that the characteristic broad
amorphous halo in the films of pure PVA and 22% w/w glycerol is centered at 2θ = 27◦

(Figure 3b,c). As discussed above, for the film with 22% w/w glycerol, the amorphous
halo decreases compared to that of the pure PVA film. According to the FT-IR results, the
glycerol molecules in this film are expected to be preferentially attached to the PVA chains
through H bonding of their secondary alcohol. These molecules may cause the PVA chains
to restructure, altering the organization of the amorphous phase and resulting in a slight
increase in crystallinity. For the film with 33% w/w glycerol, the amorphous halo in the XRD
is now centered at 2θ = 28◦, and its intensity increases (Figure 3d). FT-IR indicates that as
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the amount of glycerol in the films increases, additional types of glycerol/PVA interactions
occur. This may again lead to a restructuring of the amorphous phase and possibly the
emergence of a new amorphous phase formed by aggregates of glycerol or PVA-glycerol
complexes. Eventually, for the film with 55% w/w glycerol, the amorphous halo appears
centered at 2θ = 33◦ and is prominent in the diffractogram (Figure 3e). The displacement
of the amorphous halo to higher scattering angles, indicative of preferentially smaller
interatomic distances in the amorphous phase, strongly supports the hypothesis that a
different amorphous phase than this in pure PVA is responsible for the X-ray scattering
in this case. The FT-IR data discussed above are consistent with the presence of a new
glycerol-related phase in the films with 55% w/w glycerol.

In order to further study the relation between the XRD pattern and the crystallite size,
the well-known Debye–Scherrer formula was used:

D = Kλ/βcosθ (3)

where D is the mean crystallite size in the direction perpendicular to the lattice planes of
the selected diffraction peak, λ is the X-ray wavelength, β is the full width at half maximum
(FWHM) of the peak, K is the Scherrer constant with a value of about 0.9, and θ is the
diffraction angle corresponding to the selected peak in the XRD pattern. The values for D
estimated from the peak at 2θ = 19.7◦ are displayed in Table 1.

From Table 1, it is also observed that both the degree of crystallinity and the crystallite
size are slightly higher for the film of PVA with 22% w/w glycerol than for this of pure PVA.
For 36% w/w glycerol, the degree of crystallinity is smaller, even though the size of the
existing crystals does not experience significant modifications.

A decrease in crystallinity as a result of the addition of glycerol in PVA and PVA/starch
films has been previously reported [17,41]. Also, an increase in crystallinity in PVA for low
glycerol concentrations was observed by XRD [42].

The effect of glycerol on PVA crystallinity may be explained in terms of its influence
on the interactions between the PVA chains. A small amount of plasticizer may increase
the ability of the molecular chains to adopt different conformations and promote their
ordering [43]. In order to prepare the PVA/glycerol films, we first prepare a 7.0 wt.% PVA
stock solution by dissolving the purchased PVA granules in distilled water at 90 ◦C and
then cooling to room temperature (see Section 2.1). Crystalline PVA nuclei are expected
to form at this stage. Subsequently, distilled water and glycerol are added in different
concentrations to prepare the final solutions, which are poured into Petry dishes and
dried at room temperature. Increasing the amount of water may facilitate the ordering
and assembly of existing PVA nuclei, and the presence of a small amount of glycerol
in the solution may play a similar role. If glycerol is incorporated in higher quantities,
glycerol aggregates may form; the glycerol molecules may selectively interact with the PVA
molecular chains at the crystalline interface and even penetrate into the crystals, disrupting
the molecular order [9,18].

TGA/DTA was performed to determine the temperature-dependent water/glycerol
mass loss, the thermal stability, the glass transition temperature, and the melting point and
enthalpy of fusion of the pure PVA and PVA/glycerol films.

Figure 4 shows the thermogravimetric curves (mass loss versus temperature) (TG)
(Figure 4a) and DTA curves (Figure 4b,c) for the PVA and PVA/glycerol films. Thermal
analysis was carried out in a static air atmosphere at a 25 ◦C/min heating rate. The inset in
Figure 4a represents the determination of the onset of mass loss for the studied samples
(the curves at the inset have been arbitrarily shifted on the y-axis for ease of observation).
The temperature at the onset decreases with an increase in glycerol content from 140.5 ◦C
for PVA to 112.2 ◦C for 36% w/w glycerol.
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The thermal transformations of pure PVA films typically occur in 4 main stages of
mass loss [44,45]. The first stage corresponds to the loss of physically absorbed water, which
is related to an endothermic peak in the DTA curve labeled as TI in Figure 4b. The second
corresponds to the partial dehydration of PVA, accompanied by polyene formation, and is
related to the endothermic peak in the DTA curve labeled as TII in Figure 4c. The third and
fourth degradation stages are related to polyene decomposition and thermo-oxidation of
carbonized residues. The degradation mechanism of PVA is explained in [46].

Table 2 lists the weight loss percentage and temperatures of the DTA peaks (TI and
TII) for the first two stages, as derived from Figure 4a–c for each sample.

Table 2. Weight loss and temperatures corresponding to maximum rate of weight loss at first two
stages (determined in Figure 4a–c).

Sample Degradation Step Weight Loss, % TDTA peak, ◦C

PVA
I 3.6 186
II 72.9 342

PVA-GLY 22%
I 8.6 161
II 71.4 332/322

PVA-GLY 36%
I 10.9 150
II 72.4 328/298

The first degradation stage (Figure 4) is characterized by a weight loss of about
3.6–10.9% (Table 2), presumably related to the removal of water. According to FT-IR results,
the water amount increases with an increase in glycerol content (see Figure 2b, the intensity
of the peak at 1655 cm−1 increases). In our case, the weight loss on the first stage for
PVA/glycerol films is higher than for pure PVA. However, the weight loss in this case
cannot be straightforwardly attributed solely to water loss. According to [47], the thermal
degradation of pure glycerol in air is characterized by a single event that takes place at
194–246 ◦C for a heating rate of 10 ◦C/min. As the first stage for PVA/glycerol 22 and 36%
w/w finishes at about 270–250 ◦C, respectively, already above the degradation temperature
of glycerol, we understand that the observed weight loss in the first stage should be due
not only to water loss but also due to degradation (or initial degradation) of glycerol. As
per the studies in [48–50], the weight loss observed in the temperature range of 125–290 ◦C
for glycerol plasticized polymer films can be attributed to the degradation of glycerol and
the loss of chemisorbed water.

The second degradation stage for the pure PVA and PVA/glycerol films is character-
ized by the highest weight loss. It is noticeable from Figure 4c that for the PVA/glycerol
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films, TII shifts to lower temperatures as the glycerol content is increased. For glycerol-
containing films, this peak splits into two peaks, which become more distinct for 36%
w/w glycerol (298 ◦C and 328 ◦C, Figure 4c). This may be related to the degradation of a
glycerol-based phase in the PVA matrix, possibly consisting of glycerol/PVA complexes,
which degrade at a different temperature than pure PVA in this degradation stage.

Considering the trend for the various PVA/glycerol samples in Figure 4 and Table 2,
the temperatures corresponding to the onset of mass loss and the endothermic minima
of the DTA peaks TI and TII shift to lower values as the glycerol concentration increases.
This indicates that the increase in glycerol content decreases the thermal stability of the
PVA/glycerol films.

Focusing on Figure 4b, an endothermic minimum at 90 ◦C can be observed on the DTA
curve for pure PVA. This peak, labeled Tg, is attributed to the glass transition temperature
of PVA [51,52]. This peak was not observed in the DTA curves of the PVA/glycerol films.

The endothermic peak labeled Tm in Figure 4b can be related to the melting points of
pure PVA and PVA/glycerol films [13,53,54]. Interestingly, the incorporation of 22% w/w
glycerol did not lead to a significant reduction in the PVA melting point. This peak shifts
to lower temperatures as the glycerol content in the film is increased to 36% w/w [13,54],
indicating that the ordered association of the PVA molecules decreases with higher amounts
of glycerol. The enthalpy of melting, represented by the area under the curve corresponding
to the melting peak (Figure 4b), increases slightly (by ~1.6 times) for the film with 22% w/w
glycerol content compared to that of the pure PVA films and decreases (by ~3.5 times) for
36% w/w. This provides further evidence of the increase and decrease in crystallinity in
those samples, consistent with the FT-IR and XRD studies.

SPM images of the pure PVA films are displayed in Figures 5 and 6. They were
obtained from different pieces cut from the same sample cast on a 90 mm Petri dish, and,
as will be explained in detail below, we understand that they illustrate different stages—
possibly determined by the rate of water evaporation—of the development of crystalline
domains in the semicrystalline PVA film.

In Figure 5a, the topography is characterized by clusters of aggregates, some of which
appear aligned along a well-defined direction, like those enclosed within the white dashed
lines. In the UFM image, recorded over the same surface area (Figure 5b), the shape of the
clusters that form the topographic aggregates is much better resolved. A close look into
the area outlined by the white dashed ellipse in Figure 5b reveals the presence of clusters
~45 nm in diameter, which yield a higher (stiffer) UFM contrast, forming a zig-zag chain. In
the topographic image (Figure 5a), the cluster size appears to be ~80–100 nm, which may be
due to UFM detecting the stiffer zones within the individual clusters. Most of the clusters
within the white dashed lines in Figure 5b exhibit a stiffer contrast. In LFM (Figure 5c,d),
aggregates within those dashed lines are imaged with a lower frictional contrast. Notice
that in Figure 5c,d, other areas, like, for instance, that indicated by the white slanted arrows,
give rise to a similar lower frictional contrast, which now does not directly correlate with
any particular features of the topographic and/or UFM contrast.

We conjecture that the alignment of PVA clusters along well-defined orientations
observed in Figure 5 originates from a correlated growth or assembly of PVA crystallites
within the amorphous PVA matrix. Semicrystalline polymers typically crystallize into
lamellar structures where molecular chains fold into layers. Spherulitic crystal growth
begins with a primary nucleus at the center, from which radial fibrils consisting of indi-
vidual lamellar structures separated by amorphous material radiate outwards [55]. The
stiffer contrast observed in UFM for the aligned clusters is consistent with crystalline
order, leading to a locally higher density in those regions. Previous studies of crystallite
nucleation in PVA films with sodium montmorillonite fillers by AFM techniques support
this interpretation [56]. The crystalline areas of polymer films are expected to yield a lower
friction contrast, as in the case of the aligned clusters in Figure 5c,d [56]. A higher amount of
water is actually expected at the PVA amorphous/crystalline interface regions [57], which
may act as a lubricant, reducing friction. The areas with a similar lower frictional contrast
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in Figure 5c,d not correlated to specific features in the topographic or UFM image (e.g., area
pointed by the white slanted arrow) may be due to an inhomogeneous distribution of water
at the surface or near-surface area of the polymer films.
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(c). (e) Contact-mode
topographic image. Color-scale range: 16 nm. (f) Region enclosed by the dashed white circle in (e).
(g) Height-contour profile over the continuous white line in (e).

Figure 5e shows a larger topographic image of the PVA surface. Intersecting rows of
PVA cluster aggregates are noticeable in this image. In the area within the white dashed
circle in the image, some of the rows appear to stem from a primary nucleus at the center.
In Figure 5f, white dotted straight lines have been drawn following the paths of some of the
intersecting aligned-aggregate rows in this region to facilitate their visualization. Figure 5g
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corresponds to a height contour profile along the white continuous line, showing that the
surface features are maintained at about 8 nm in height. The observed radial structures in
the surface morphology strongly suggest incipient dendritic or spherulitic crystal growth.

Images in Figure 6 were obtained on a different piece cut from the same PVA sample
cast on a 90 mm Petri dish. Here, the surface topography (Figure 6a,e) exhibits higher
terraces consisting of straight ribbons ~40 nm wide, similar to the “ribbons” enclosed
within the white dashed lines in Figure 5a, presumably also formed by aligned clusters as
in Figure 5b, even though in Figure 6a,e the clusters cannot be distinguished. Figure 6a,e
strongly resembles the images reported in [56,58,59], from which we confidently infer that
the ribbon-like regions correspond to PVA crystallites. According to [58,59], the longer
sides of the parallelogrammic platelets in Figure 6a should correspond to (101) planes and
the shorter sides to (100) planes, being the acute angle measured from Figure 6a indeed
consistent with the reported value of 55◦.

The LFM images (Figure 6c,d) indicate that the ribbon-like areas yield lower frictional
contrast, as expected for crystalline regions [56].
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(e) Contact-mode AFM topographic image. Color-scale range: 17 nm. (f) UFM image recorded
simultaneously with (e) over the same surface region.

Figure 6e,f was recorded over a region similar to that of Figure 6a–c. The topography
in Figure 6e shows higher ribbon-like features similar to those in Figure 6a. Nevertheless,
in contrast with the results in Figure 5a,b, UFM now yields a lower (softer) contrast at the
ribbon areas, and individual PVA clusters cannot be resolved.
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The topographical differences between the PVA surfaces in Figures 5 and 6 might
be explained by a slightly different water content in the two regions. According to the
XRD data, the size of the PVA crystallites is expected to be ~5 nm. Hence, several small
crystalline nuclei may coexist within the clusters observed in Figure 5a,b. In Figure 5, we
observed that PVA clusters align, forming rows and ribbon-like structures. In Figure 6, the
ribbon-like structures appear much better defined. In view of our results, we attribute the
differences between Figures 5 and 6 to the fact that the sample areas on which the images
were taken are at different stages of the evolution of the surface PVA crystalline structures
that result from the assembly of the crystalline nuclei. The presence of water is expected
to facilitate the reorganization and assembly of the PVA clusters. Hence, the formation of
better-defined ribbon-like structures—presumably related to PVA crystalline domains—in
the regions where Figure 6 was recorded can be explained if the local content of water in
this region is slightly higher. In PVA solutions, water may be bonded to the PVA molecular
chains through hydrogen bonds at hydroxyl sites (bound water) or remain as free water
within the polymer matrix [60]. As PVA crystallization evolves, it is expected that bound
water remains at the amorphous/crystalline interface. This may exert a plasticizing effect
and lead to a softer (lower) UFM contrast at the PVA crystalline ribbons, as well as hinder
the identification of individual PVA clusters at those sites.

Figure 6b depicts a height-contour profile along the line in Figure 6a, which is consis-
tent with a multilayer structure of the surface topography with steps of ~2 nm defining the
different height levels. In both Figure 5a,d and Figure 6a,e, pores are apparent. These pores,
with a diameter similar to the width of the ribbons, might result from the reorganization of
surface clusters during the assembly of the ribbon-like structures.

Figure 7 shows SPM images of the PVA/glycerol 22% w/w film. The size of the AFM
topographic image in Figure 7a is the same size as this in Figure 5e. In Figure 7a, the
topography is also characterized by cluster aggregates with a size similar to those on the
pure PVA film surface (~100 nm as measured in the contact-mode AFM topographic image).
Also, in this image some of the clusters are aligned (e.g., those beside the dashed line on
the image), even though the length of the clusters row is considerably shorter.

The LFM images (Figure 7b,c) indicate here the presence of areas with a lower frictional
contrast, similar to those in Figures 5c,d and 6c,d, although now those are not ribbon-like or
parellogrammic in shape but rather rounded. Such areas do not appear straightforwardly
correlated to specific topographic features.

Figure 7d corresponds to an enlargement of the topographic area enclosed by the
rectangle in Figure 7a. Figure 7e displays a height-contour profile along the straight line
in Figure 7d. Figure 7f,g shows enlargements of the LFM images of the same surface area,
also enclosed by rectangles in Figure 7b,c, respectively. The rounded areas with a lower
frictional contrast have been enclosed by circles in Figure 7f,g, and circles over the same
area have also been drawn in Figure 7d to facilitate the analysis of the topography on those
areas. In both the topography and the LFM images, clusters may be clearly distinguished in
the regions enclosed by the circles. However, clusters that appear topographically identical
do not produce the same frictional contrast. In Figure 7d, we observe clusters located
at different layers. A detailed examination of Figure 7a–c allows us to infer that at the
topographic regions around those that yield a lower frictional contrast, the clusters tend to
be located at higher sites. It is also interesting to remark that in Figure 7f,g, the boundary
regions of the lower friction domains appear defined by individual clusters, as is also the
case in Figure 5c,d. This supports the interpretation that the assembly of the PVA crystalline
domains proceeds through the assembly of the PVA clusters themselves.
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We hypothesize that the areas with distinct frictional contrast in Figure 7b,c,f,g corre-
spond to crystalline PVA domains, whose shape has been modified by the incorporation
of 22% w/w glycerol in the PVA matrix. According to our preparation method, we first
prepare a 7.0 wt.% PVA stock solution, which we then dilute to 3.5 wt.% PVA by adding
a glycerol/water solution at the appropriate concentration. The addition of the glyc-
erol/water solution is carried out at room temperature (25 ◦C). We presume that the initial
PVA crystalline nuclei are already present in the 7.0 wt.% PVA stock solution. These nuclei
would have formed as the solution was slowly cooled from 90 ◦C to room temperature.
The growth or assembly of these nuclei is expected to take place as the resulting solution is
eventually dried. Glycerol will incorporate into the PVA chains through hydrogen bonds,
but if only in a small quantity, it will most likely not penetrate inside the PVA crystal-
lites. Instead, it will preferentially accumulate at the amorphous/crystalline interface,
as it happens with water. The incorporation of a small amount of glycerol into the PVA
molecules may help the assembly of the crystalline domains, fostering the reorganization of
the amorphous PVA regions. This would explain the fact that the amorphous halo observed
in the XRD diffractogram (Figure 3) diminishes for the PVA/glycerol 22% w/w films and
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the fact that the crystallinity slightly increases as inferred from the XRD, FT-IR, and DTA
data. In addition, the modification of the shape of the PVA crystalline domains allows us to
explain the changes in the relative intensities of the XRD peaks.

The presence of numerous pores is also noticeable in Figure 7a. As in Figure 6a,
many of those pores appear to be originated by a missing PVA cluster. Pores with a larger
diameter, which might correspond to the displacement of various neighboring clusters,
may also be seen in the topographic image. For instance, those within the white dotted
circles in Figure 7a have a diameter of ~300 nm. Notice that those pores produce a higher
frictional contrast in the LFM images, in which the same locations have also been marked
with white dotted circles to facilitate their localization. The origin of this contrast will be
discussed in detail below.

In Figure 8, also referred to as the PVA/glycerol 22% w/w film, the topography
(Figure 8a) and the simultaneous UFM image (Figure 8b) were recorded over the same
surface region as Figure 7a–c. The three pores are enclosed by the white dotted circles
in the upper right corner in both Figures 7a and 8a and allow the identification of the
regions slightly displaced from each other due to drift. Figure 8a,b was recorded with
the tip scanning forwards (from the left to right), and Figure 8c was recorded together
with Figure 8b with the tip scanning backwards (from right to left). As it is apparent
from Figure 8b,c, while scanning from left to right in the presence of ultrasonic vibration,
some of the PVA surface clusters from the right-hand side were dragged to the left by
the tip and remained there as the tip scanned back to produce Figure 8c. A close look at
Figure 8a shows straight features resulting from the dragging of the clusters, even though
the topography does not seem to be severely affected by the tip-induced modifications. In
Figure 8c, we find areas with a lower (softer) UFM contrast in similar locations as those
that in Figure 7b,c yielded lower frictional contrast. As it is apparent, the shape of domain
located at the center in Figure 8c is markedly different from this in Figure 7b,c, presumably
as a result of the tip action. At the lower right-hand border of Figure 8c, the image shows a
heap with darker (softer) contrast. Figure 8d corresponds to a larger UFM image recorded
over a region that included the area of Figure 8a–c in its central part, recorded following
the latter. The heap with lower UFM contrast induced by the tip while producing Figure 8b
can be clearly distinguished here. Such heap presumably consists of clusters drugged by
the tip while scanning forwards and piled up at the end of the scan. Interestingly, some of
the other domains in Figure 8a–c, like those with a rounded shape at the lower right-hand
corner of the image, remained unaffected.

When discussing Figure 7a–c we identified the lower friction domains as PVA crys-
talline regions. The fact that those domains yield a lower (softer) UFM contrast may
be explained because of the presence of glycerol (and possibly also water) at the amor-
phous/crystalline interface areas. UFM images in Figure 6f also yielded a lower UFM
contrast in the crystalline domains of the pure PVA films. However, we cannot rule out
that in PVA/glycerol films, clusters incorporating glycerol molecules produce a softer and
lower frictional contrast even if they do not contain crystalline nuclei.

Glycerol molecules located at PVA cluster surfaces may facilitate the displacement of
those clusters relative to each other, and this effect may certainly be enhanced by the pres-
ence of surface ultrasonic vibration, promoting tip-induced modifications while scanning.

In addition, the glycerol molecules might favor the detachment of surface clusters and
induce surface pores. The simultaneous topographic and UFM images in Figure 8e,f show
an area in which various surface pores of different sizes up to ~300 nm are apparent. As
can be seen in the images, the UFM contrast is stiffer (brighter) within the pores. Moreover,
as it was mentioned above, a higher frictional contrast is also found within pores (see
Figure 8a–c, pores located within the white dashed circles). The size of the pores rules out
that this contrast is an artifact. In fact, such contrast is not observed in the pores found in
the pure PVA films (see Figure 5). The presence of pores on the PVA/glycerol 22% w/w
films and the UFM and LFM contrast at the pores’ location may indicate that PVA clusters
located at the bottom of the pores have incorporated glycerol molecules on their surfaces.
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On the one hand, this may facilitate the detachment of the clusters at the top, explaining the
formation of the pore itself. On the other hand, glycerol molecules in a cluster bonded with
their primary alcohol groups to a PVA molecular chain and with their secondary alcohol
groups to a neighboring PVA molecular chain could exert a hydrogen bond-mediated
crosslinking effect on PVA, increasing the stiffness of the confined cluster [11].
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(d) UFM image over a larger area than (c), centered at the same position. (e) Contact-mode AFM
topography at nearby region. Color-scale range: 24 nm. (f) UFM image recorded simultaneously
with (e).

Figure 9 shows SPM images of the PVA/glycerol 36% w/w film. Figure 9a corresponds
to a contact-mode AFM topographic image, recorded over an area of the same size as
Figures 5e and 7a. As in the case of the pure PVA and the PVA/glycerol 22% w/w film, the
topography is characterized by cluster aggregates, some of which are aligned into rows.
Figure 9b displays a contour-line profile along the straight line in Figure 9a.
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Figure 9c,d corresponds to lateral force microscopy images scanning from left to right
(Figure 9c) and from right to left (Figure 9d) recorded over the same surface region as
(Figure 9a). As it is clearly seen in Figure 9c,d, we find areas with a lower frictional contrast,
similar to those in Figure 5c,d, Figures 6c,d, and 7b,c. While some of those areas exhibit
rounded interfaces similar to those in Figure 6c,d, others rather resemble the ribbon-like
shape domains found in the pure PVA film surface (Figures 5c,d and 6c,d). Nevertheless,
here, the extension of the lower contrast domains is apparently larger, as if some of the areas
linking the domains in Figure 6 that for the pure PVA produced a higher friction contrast,
were now also yielding a low frictional response. Interestingly, some of the ribbon-like low
friction domains in Figure 9c,d (like, for instance, those within the white dashed rectangles)
seem to be correlated to higher topographic regions, but at other areas of the low friction
domains, no correlation with the topographic image could be appreciated.

According to the FT-IR and XRD data, the crystallinity of the PVA/glycerol 36% w/w
films is reduced compared to this for the pure PVA and 22% w/w glycerol films. This may
be explained by the formation of glycerol aggregates for the higher glycerol concentrations,
which may penetrate within the crystalline PVA domains and partially destroy them. For
these films, in the DTA curves, the endothermic peak corresponding to the maximum
rate of degradation for PVA appears split into two well-resolved peaks, which might be
indicative of the formation of a new phase formed by glycerol aggregates or glycerol/PVA
complexes. The lower friction contrast in Figure 9b,c might originate either because of
the presence of crystalline PVA domains, or of the presence of a distinct phase formed
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by glycerol/PVA complexes, even though the LFM image provides no clue to justify the
presence of lower frictional domains of a different nature.

It should be pointed out that on the PVA/glycerol 36% w/w films, we did not succeed
in recording good quality UFM images, as the film was severely affected by tip actuation in
the presence of ultrasound. And for the case of PVA/glycerol (55% w/w), nor even contact
AFM and LFM images could be recorded without surface modification.

According to FT-IR, XRD, and DTA data, the incorporation of 55% w/w glycerol leads
to a significant reduction in the PVA crystallinity. The effect may be similar to this observed
with water, which in a small amount enhances the PVA crystallinity, but excess water leads
to destruction of the PVA crystallites.

4. Conclusions

The study presents a thorough investigation of the structural properties, crystallinity,
and thermal response of pure PVA and PVA/glycerol films using FT-IR, XRD, TG/DTA,
and advanced SPM. The combination of different types of SPM techniques (contact mode
AFM, LFM, and UFM) allowed us to obtain information on the nanoscale topography and
frictional and mechanical response of the films’ surface.

In the pure PVA films, SPM allowed us to observe ribbon-shaped domains and clus-
ters aligning along a well-defined direction and forming intersecting rows with a different
frictional and elastic contrast, which apparently originated from a correlated growth or
assembly of PVA crystalline nuclei (~5 nm in diameter according to XRD) located within
individual PVA clusters (~80–100 nm in diameter). The incorporation of 22% w/w glyc-
erol leads to a modification in shape of those domains from ribbon-like in pure PVA to
rounded in the 22% w/w PVA/glycerol films. In correlation with this, the XRD patterns
show changes in the relative intensities of the XRD crystalline peaks and a decrease in the
amorphous halo, while the melting point remained almost the same. In addition, pores of
various sizes up to 300 nm in diameter were observed, which produced a characteristically
higher frictional and higher (stiffer) UFM contrast. At the film with 36% w/w glycerol
content, domains with lower frictional contrast were also observed, some with rounded
interfaces like those seen in PVA/glycerol 22% w/w films, and others that rather resembled
the ribbon-like domains found in the pure PVA film surface but were wider and joined to-
gether. For these films, the amorphous halo in the XRD diffractogram increases and slightly
displaces to higher 2θ angles. The observation of larger lower friction domains in this
case may also originate from a new phase formed by glycerol aggregates or glycerol/PVA
complexes, even though LFM does not provide any clue to justify a different nature of
coexisting lower friction domains. The aforementioned changes are accompanied by a
decrease in crystallinity to values of pure PVA according to FT-IR and XRD and a decrease
in melting point. For glycerol contents higher than 36% w/w, tip-induced modifications
severely complicated the acquisition and analysis of SPM images. FT-IR revealed additional
glycerol-characteristic peaks presumably related to the formation of glycerol aggregates; the
amorphous halo was prominent in the XRD diffraction pattern and was clearly displaced
to a higher 2θ, and both XRD and FT-IR confirmed a drastic reduction in crystallinity.

According to the obtained results, glycerol molecules in a small quantity do not
penetrate inside the PVA crystallites but foster the reorganization of the amorphous PVA
regions, alter the shape of the PVA crystalline domains, and preferentially accumulate at
the amorphous/crystalline interface. In the PVA/glycerol films, the domains could only
be clearly identified from LFM and UFM; no topographical correlation was apparent. As
the glycerol content increases, glycerol begins to interact with PVA within the crystalline
structures, being those nearly completely disrupted for high glycerol contents. The mobility
of PVA chains increases substantially, and tip-induced surface modification effects were
observed, which were more significant in the presence of ultrasonic vibration.

The presented research contributes to the understanding of PVA crystallinity and its
modification by plasticizers such as glycerol. Our findings deliver crucial insights into
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how glycerol impacts that nanostructure of PVA, thereby paving the way for tailoring PVA
properties to achieve optimal performance.
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Abstract: Despite the unique features of poly-L-lactic acid (PLLA), its mechanical properties, such
as the elongation at break, need improvement to broaden its application scope. Herein, poly(1,3-
propylene glycol citrate) (PO3GCA) was synthesized via a one-step reaction and evaluated as a
plasticizer for PLLA films. Thin-film characterization of PLLA/PO3GCA films prepared via solution
casting revealed that PO3GCA shows good compatibility with PLLA. The addition of PO3GCA
slightly improves the thermal stability and enhances the toughness of PLLA films. In particular, the
elongation at break of the PLLA/PO3GCA films with PO3GCA mass contents of 5%, 10%, 15%, and
20% increases to 172%, 209%, 230%, and 218%, respectively. Therefore, PO3GCA is promising as a
plasticizer for PLLA.

Keywords: polylactic acid; citric acid; poly(1,3-propylene glycol); toughening agent

1. Introduction

Polylactic acid (PLA) is a biodegradable and eco-friendly polymer that has garnered
significant attention in recent years due to its numerous advantages. PLA is derived from
renewable plant resources, such as corn, potato, and jackfruit, through a fermentation
process that produces high-purity lactic acid. The lactic acid is then used to synthesize PLA
of the desired molecular weight through chemical processes [1–3].

PLA is biocompatible and is widely used in the medical field, including as implant
materials, drug delivery systems, and tissue engineering scaffolds [4]. It is also used in
commodity packaging, where its biodegradability and low environmental impact make it
an attractive alternative to traditional plastics [5]. Additionally, PLA has been explored for
use in textiles due to its biodegradability and potential to reduce the environmental impact
of textile production [6].

Despite its numerous advantages, PLA has limitations that have hindered its widespread
application. One of the major drawbacks of PLA is its high glass transition temperature
(Tg) which ranges from 55 ◦C to 65 ◦C, making it brittle and fragile at room temperature.
Additionally, the elongation at the break of PLA is limited to only ~5%, which further limits
its practical use [7]. Efforts have been made to improve the mechanical properties of PLA
through various methods, including blending it with other polymers, copolymerization, and
the addition of nanoparticles [7–9].

To improve the properties and performance of Polylactic acid (PLA), two commonly
used methods include the copolymerization of lactic acid with other polymer monomers,
such as trimethylene carbonate and caprolactone [8,9], and the preparation of physical
blends of PLA with different polymers, small molecular compounds, or even inorganic
materials. These approaches have shown great potential in enhancing the thermal stability,
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mechanical strength, and elongation at the break of PLA. Furthermore, they have opened up
new avenues for the diversified application of PLA in various fields, including automotive,
construction, and electronics.

However, there are some challenges associated with these methods that need to be
addressed. For instance, the compatibility of the blended systems needs to be optimized to
achieve the desired properties of PLA-based materials. The processing conditions, such as
temperature, pressure, and blending time, also need to be carefully controlled to obtain the
desired properties of PLA-based materials [10–12].

Despite these challenges, research efforts have been ongoing to overcome these lim-
itations and optimize the properties of PLA-based materials. A better understanding of
the fundamental properties of PLA and the mechanisms underlying the modification of its
properties will enable researchers to design new strategies for enhancing the performance
of PLA-based materials. Moreover, the development of sustainable and cost-effective
methods for the production of PLA will further promote the widespread application of this
eco-friendly polymer.

In the process of blending modification, a plasticizer is commonly used to enhance
the properties of Polylactic acid (PLA). The ideal plasticizer should exhibit non-toxicity,
excellent compatibility with PLA, and high thermal stability [11–13]. Citrate is a plasticizer
that meets these requirements, and various citrate derivatives, such as triethyl citrate (TEC),
acetyl tributyl citrate (ATBC), tributyl citrate (TBC), and polyethylene glycol citrate, have
been utilized as plasticizers for PLA [14]. For example, Ljungberg N et al. toughened
PLA by incorporating TBC and ethyl triacetate (TAC). Although the addition of TBC did
not significantly affect the crystallinity of PLA, it increased the elongation at the break of
PLA/TBC blends up to 350%, considerably improving the toughness of PLA [13]. Mounira
Maiza prepared and characterized PLA/TEC and PLA/ATBC blends using TEC and
ATBC as plasticizers for PLA, respectively. TEC and ATBC effectively reduced the Tg
and enhanced the crystallinity of the blends, while having no substantial effect on their
transparency [14]. Gui Zongyan demonstrated that the incorporation of polyethylene glycol
(PEG) and carboxylic acid copolymers could effectively enhance the toughness of PLA [12].
Further research is required to optimize the processing conditions and to investigate the
compatibility of the blended systems, to achieve the desired properties of PLA-based
materials. Poly(1,3-propylene glycol) (PO3G) is a hydrophilic polymer synthesized using
1,3-propylene glycol via an acid-catalyzed dehydration process. Although its structure
is highly similar to that of PEG, PO3G has better compliance, mechanical properties,
and thermal stability, which stem from its longer molecular chain [15,16]. Therefore, we
envisioned that PO3G or its combination with other carboxylic acids could serve as a
plasticizer for PLA.

This study utilized a novel approach to improve the properties of Polylactic-L-acid
(PLLA) by physically blending it with poly(1,3-propylene glycol citrate) (PO3GCA), a
copolymer obtained from biologically derived citric acid (CA) and PO3G. The aim of this
study was to investigate the plasticizing effect of PO3GCA on PLLA. This approach is
unique, as it involves the use of a copolymer obtained from natural sources to enhance the
properties of PLLA.

The results of this study have significant implications for the development of biodegrad-
able and eco-friendly plasticizers for PLLA, as well as for the sustainable utilization of
renewable resources. By utilizing natural sources to synthesize copolymers, it is possible
to reduce the environmental impact of plasticizers and promote the use of biodegradable
materials. Moreover, the use of PO3GCA as a plasticizer for PLLA may offer enhanced
mechanical properties, thermal stability, and elongation at break, making it a promising
alternative to traditional plasticizers.

Overall, this study highlights the importance of developing sustainable and eco-
friendly materials for the plastic industry. The use of renewable resources and biodegrad-
able materials can significantly reduce the environmental impact of plastic production and
promote the development of a more sustainable future.
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2. Materials and Methods
2.1. Raw Materials

PLLA (4032D, Nature Works, Minnetonka, MN, USA) [17], PO3G (Mn = 2300, DuPont
Company, Wilmington, DE, USA), Citric acid monohydrate (McLean Biochemical Technol-
ogy Co., Ltd., Shanghai, China, 99.5%), 1,4-dioxane (Adamas Reagent Company, Shanghai,
China), molybdenum trioxide (Adamas Reagent Company, Shanghai, China, 99.9%), and
methylene chloride (DCM, Damao Chemical Reagent Factory, Tianjin, China) were used
as received.

2.2. Experimental Equipment

The following instruments were used for the experiments: a heat-collection constant
temperature heating magnetic agitator (DF-101S, Yuhua Instrument Co., Ltd., Gongyi,
China), an electric blast drying oven (GZX-9240MBE, Medical Equipment Factory of Boxun
Industrial Co., Ltd., Shanghai, China), an electronic balance (FA2004, Yueping Scientific
Instrument Co., Ltd., Shanghai, China), a nuclear magnetic resonance (NMR) spectrometer
(400 MHz, BrukerAvance-II, Bruker, Bremen, Germany), a Fourier transform infrared (FTIR)
spectrometer (Nicolet IS10, Thermo Fischer Scientific, Waltham, MA, USA), a scanning
electron microscope(EvoMA10, ZEISS, Oerkochen, Germany),a microcomputer-controlled
universal tensile testing machine (CMT4104, Chuangcheng Zhijia Technology Co., Ltd.,
Beijing, China), a thermogravimetric analyzer (STA449F3, NETZSCH, Selb, Germany), a
differential scanning calorimeter (2414Polyma, NETZSCH, Selb, Germany).

2.3. Raw Materials
2.3.1. Synthesis of PO3GCA

In this study, the PO3GCA copolymer was synthesized using a direct synthesis
method [12,18–22]. Specifically, PO3G (300 g) and CA (21 g) were added to a 500 mL
three-necked flask in a 1.3:1 molar ratio, with 0.5% (1.6 g) molybdenum trioxide used as
the catalyst. After purging the reaction system with nitrogen gas three times, the system
was evacuated to a pressure of 100 Pa using an oil pump. The system was gradually heated
to 150 ◦C and held for 30 min, followed by heating at 170 ◦C for 8 h. Mechanical stirring
was employed throughout the entire reaction process. After natural cooling to room tem-
perature, the product was dissolved in dichloromethane (DCM) and stirred magnetically
for 1 h. The solution was then left to stand for 10 h until most of the molybdenum trioxide
precipitated at the bottom of the flask. The liquid above the precipitate was filtered and
collected, and the filtrate was filtered 2–3 times to remove all molybdenum trioxide. The
resulting filtrate was placed in the flask and distilled at 50 ◦C until no more vapor was
produced. The second distillation was carried out at 110 ◦C until no more vapor was
produced, yielding approximately 290 g of a light yellow to yellow, viscous liquid, with a
yield of approximately 90.3%. This light yellow to yellow, viscous liquid is PO3GCA.

Figure 1 shows the reaction equation of PO3GCA synthesized from poly (1, 3-propylene
glycol) and citric acid.
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Figure 1. Reaction equation for the synthesis of PO3GCA from poly1,3-propylene glycol, and
citric acid.

2.3.2. Preparation of PLLA/PO3GCA Films

The study involved the preparation of PLLA/PO3GCA composite films with a total
mass concentration of 20%. The proportion of PO3GCA to solute ranged from 0% to 20%,
with increments of 5% (The solvent used for the solution was 1,4-dioxane). The solution
was stirred until it reached a temperature of 80 ◦C, followed by ultrasonic defoaming. The
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solution was then scraped onto a clean glass plate using a film scraper (750 µm) and allowed
to dry after solvent volatilization. The resulting composite film samples had a uniform
thickness of 0.07–0.08 mm and were naturally dried at room temperature for 48 h before
being collected and stored for further use. The samples were labeled PLLA, PO3GCA5,
PO3GCA10, PO3GCA15, and PO3GCA20, according to the concentration of PO3GCA.

2.4. Characterization of PO3GCA and the PLLA/PO3GCA Films

2.4.1. 1H NMR Spectroscopy Characterization of PO3GCA

The samples for 1H NMR spectroscopy analysis were prepared by placing 15 mg
of PO3GCA in an NMR tube and dissolving it using 480 µL of Deuterium chloroform.
Tetramethylsilane was used as the internal standard.

2.4.2. FTIR Spectroscopy Characterization of PO3GCA

KBr pellets were prepared by mixing and grinding dried PO3GCA powder and KBr
in a mass ratio of 2:100, followed by pressing with a tablet press. The FTIR spectra were
recorded over a range of 400–4000 cm−1.

2.4.3. Tensile Test of the PLLA/PO3GCA Films

The PLLA/PO3GCA films were cut into smooth and nonwound samples with a size
of 20 mm × 60 mm. At ambient temperature (25 ◦C), the initial length of the sample was
50 mm, the tensile rate was 10 mm/min, and the relative humidity was 60%. The sample
was fixed on the fixture of the testing machine. The clamping length of the sample film
was 50 mm, the force measurement accuracy was 0.01 cN, and the elongation accuracy was
0.01 mm. Stress–strain curves were obtained by testing each sample on a microcomputer-
controlled electronic universal testing machine five times. The elongation at the break of
each PLLA/PO3GCA film was determined using Equation (1).

Elongation at break =
Fracture displacement value(mm)

The initial length of the membrane(mm)
× 100% (1)

2.4.4. Differential Scanning Calorimetry (DSC) Characterization of the
PLLA/PO3GCA Films

The thermal properties of PLLA/PO3GCA thin films were analyzed using differential
scanning calorimetry (DSC). Film samples weighing approximately 5–8 mg were placed in
an aluminum crucible and heated from −40 ◦C to 200◦ C at a rate of 10 ◦C/min to obtain
the DSC curve of the film samples [23].

The crystallinity of the composite films was calculated using Equation (2) [24,25],
where Xc denotes crystallinity, ∆Hm denotes the enthalpy of melting, ∆Hcc denotes the
enthalpy of cold crystallization, ∆HmPLLA denotes the standard enthalpy of melting of
PLLA (93.6 J·g), and ωPLLA represents the mass fraction of PLLA in the composite film.

Xc =
∆Hm − ∆Hcc

∆HmPLLA × ωPLLA
× 100% (2)

2.4.5. Field-Emission Scanning Electron Microscopy (SEM) Characterization of the
PLLA/PO3GCA Films

The morphology and fracture surface of the PLLA/PO3GCA films were examined
using field-emission scanning electron microscopy (SEM). For surface morphology analysis,
fully dried films were affixed to the sample table using conductive carbon glue and coated
with a thin layer of gold for 30 s under vacuum conditions to enhance their conductivity.
The samples were then observed at various magnifications at an accelerating voltage of
2 kV following vacuum extraction, and the corresponding images were captured for further
analysis. For fracture surface analysis, the cross-sections of sample bars pulled at a rate
of 10 mm/min on a universal tensile testing machine were used for SEM testing. Prior
to testing, the surface of the samples was coated with a layer of conductive metal to
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enhance their conductivity, and then the samples were fractured to expose their internal
structure. The SEM imaging process involved several steps, including surface treatment of
the samples, vacuum extraction to remove air and moisture, and observation and capture of
images at various magnifications in the SEM. This rigorous sample preparation and imaging
protocol ensured the high-resolution imaging of the PLLA/PO3GCA films, allowing for a
detailed examination of their microstructure, surface characteristics, and fracture behavior.

2.4.6. Thermogravimetric Analysis (TGA) of the PLLA/PO3GCA Films

The thermal stability of the PLLA/PO3GCA films was evaluated via TGA from room
temperature (23 ◦C) to 600 ◦C at a heating rate of 10 ◦C/min under flowing nitrogen.
The differential thermogravimetric (DTG) curves were obtained by differentiating the
TGA curves.

3. Results and Discussion
3.1. Characterization of PO3GCA

Figure 2 shows the FTIR spectra of PO3G, PO3GCA, and CA. In the graph of PO3G,
the peaks at 3500 and 1108 cm are the stretching vibrations of the terminal OH and ether
bond C-O. The ester absorption peak at 1737 cm in the graph of PO3GCA shifted to the right
compared to the carboxyl absorption peak at 1728 cm in the graph of CA, indicating that
an esterification reaction occurred. The OH absorption peak near 3500 cm is significantly
weaker than the OH absorption peak in the PO3G spectrum, which also indicates that OH
participates in the esterification reaction.
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Figure 3 shows the 1H NMR spectra of CA, PO3G, and PO3GCA. In the spectrum
of CA, the two peaks at 2.7–2.7 ppm correspond to –CH2–(C=O)OH. In the spectrum of
PO3G, the peaks at 3.55, 3.5, and 1.8 ppm can be attributed to the –CH2–OH–CH2–CH2–O,
and –CH2–CH2– groups, respectively; the integral areas of these peaks were determined
to be 1, 19.57, and 39.12, respectively. For PO3G, the average degree of polymerization
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was ~3 and Mn was 2260, which is close to the molecular weight of the raw material.
The peak at 3.55 ppm in the spectrum of PO3G moves to 4.2 ppm in the spectrum of
PO3GCA, indicating the formation of a–CH2–O(C=O)– group as a result of the reaction of
the hydroxyl group of PO3G with CA.
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3.2. Characterization of the PLLA/PO3GCA Films
3.2.1. Structure and Thermal Properties
TGA

Thermal properties of PLLA/PO3GCA composite films and PO3GCA were analyzed
using thermogravimetric (TG) and derivative thermogravimetric (DTG) curves, as shown
in Figures 4 and 5, respectively. The weight loss of PLLA and PLLA/PO3GCA composite
membranes occurred in the temperature range of 75–140 ◦C, which was attributed to the
evaporation of bonded water and residual solvents in the membranes. In contrast, the
weight loss of PO3GCA was not evident in this temperature range. The PLLA thin film expe-
rienced a second weight loss at 295–390 ◦C, while the PLLA/PO3GCA composite thin film
experienced a second weight loss at 300–430 ◦C. PO3GCA showed slight weight loss in the
temperature range of 270–310 ◦C, which was partly due to the thermal degradation of low
molecular weight PO3GCA. PO3GCA also showed a secondary weight loss at 310–450 ◦C.
Both types of films exhibited 50% weight loss at 360 ◦C, while PO3GCA exhibited 50%
weight loss at 380 ◦C. The maximum thermal decomposition rate of the film during the
second weight loss was negatively correlated with the content of PO3GCA, as shown in
Figure 5. With the increase of PO3GCA content, the maximum thermal decomposition rate
decreased. These results indicate that the addition of PO3GCA can effectively improve the
thermal stability of PLLA thin film. Overall, the TG and DTG analyses provided valuable
insights into the thermal behavior of PLLA/PO3GCA composite films and highlighted the
potential of PO3GCA as a thermal stabilizer for PLLA.
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Figure 4. Thermogravimetric (TG) curves of polylactic-L-acid/poly(1,3-propylene glycol citrate)
(PLLA/PO3GCA) films with different PO3GCA contents.
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Figure 5. Differential thermogravimetric (DTG) curves of polylactic-L-acid/poly(1,3-propylene glycol
citrate) (PLLA/PO3GCA) films with different PO3GCA contents.

DSC Analysis

The PLLA/PO3GCA composite films with varying PO3GCA content and DSC curves
of PO3GCA are shown in Figure 6. The glass transition temperature (Tg) of PO3GCA is
8.2 ◦C. The Tg, cold crystallization temperature (Tcc), and melting temperature (Tm) of the
polylactic acid (PLLA) film are 62.3 ◦C, 123.3 ◦C, and 165.4 ◦C, respectively. As can be seen
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from Figure 6 and Table 1, with increasing PO3GCA content, the Tg of the PLLA/PO3GCA
composite films gradually decreases compared to that of the pure PLLA film. This indicates
that the addition of PO3GCA improves the mobility of the PLLA segments, possibly due to
the good compatibility between PLLA and PO3GCA. Moreover, when the PO3GCA content
increases from 10% to 15%, a second glass transition temperature appears at 8.7 ◦C, which is
close to the Tg of PO3GCA, indicating that slight phase separation occurs between PO3GCA
and PLLA. Additionally, the second Tg at 43.7 ◦C is higher than that of PO3GCA10 at
37.7 ◦C. When the PO3GCA content increases to 20%, the phase separation becomes more
severe, and the Tg increases to 45.3 ◦C.
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Figure 6. Differential scanning calorimetry (DSC) curves of polylactic-L-acid/poly(1,3-propylene
glycol citrate) (PLLA/PO3GCA) films with different PO3GCA contents.

Table 1. Differential scanning calorimetry (DSC) data of PLLA thin film, PLLA/PO3GCA composite
thin film, and PO3GCA.

Sample Tg1 (◦C) Tg2 (◦C) Tcc (◦C) Tm (◦C) ∆Hcc (J/g) ∆Hm (J/g) Xc (%)

PLLA/PO3GCA5 - 41.6 78.0 155.2 5.76 27.98 24.99
PLLA/PO3GCA10 - 37.7 - 154.7 - 30.79 36.55
PLLA/PO3GCA15 8.7 43.7 78.6 155.4 3.74 28.53 31.15
PLLA/PO3GCA20 8.5 45.3 82.3 159.0 5.04 22.78 23.69

PLLA - 62.3 123.3 165.4 35.6 39.7 4.4
PO3GCA 8.2 - - - - - -

Furthermore, it is worth noting that when the PO3GCA content is less than 10%, the
peak cold crystallization temperature of the composite film decreases with the increasing
PO3GCA content. This indicates that the addition of PO3GCA effectively promotes the cold
crystallization of PLLA, which is likely due to the nucleation effect of PO3GCA. Specifically,
PO3GCA provides more nucleation sites for the formation of PLLA crystals, thereby
enhancing the crystallization process. Additionally, as the PO3GCA content increases, the
melting peak of the composite film slightly broadens and shifts to a lower temperature,
indicating that the addition of PO3GCA affects the melting behavior of PLLA. Overall, the
DSC analysis provides valuable insights into the thermal properties and compatibility of
the PLLA/PO3GCA composite films.

As depicted in Table 1, it is evident that when the PO3GCA content is lower than 10%,
the crystallinity of the composite film is positively correlated with the PO3GCA content,
and the crystallinity of the film is significantly improved. This suggests that the addition
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of PO3GCA can effectively enhance the crystallization property of PLLA under suitable
conditions. However, when the PO3GCA content exceeds 15%, the crystallinity of the
composite film begins to decline. This is because the excessive addition of PO3GCA results
in the separation of PO3GCA from PLLA, which is not conducive to the crystallization
of PLLA. Therefore, it is crucial to maintain an appropriate PO3GCA content to achieve
the desired crystallization improvement effect. In addition, it should be noted that the
improvement in crystallinity is also closely related to the compatibility between PO3GCA
and PLLA. When the compatibility is good, the nucleation effect of PO3GCA on PLLA
crystallization is enhanced, resulting in higher crystallinity. Overall, the crystallinity
analysis provides valuable insights into the crystallization behavior of the PLLA/PO3GCA
composite films and highlights the importance of maintaining an appropriate PO3GCA
content and good compatibility with PLLA.

Field-Emission SEM

Figures 6 and 7 present the surface micromorphology and micromorphology of
stretched sections of PLLA/PO3GCA films with varying PO3GCA contents. The im-
ages in Figure 7 demonstrate that as the PO3GCA content increased, the surface of the
films changed from a uniform phase to a dispersed phase with a sea-island structure.
Additionally, the distribution of PO3GCA in PLLA shifted from the interior to the surface,
particularly when the PO3GCA content increased from 10% to 15%. These observations
suggest that the incorporation of PO3GCA into PLLA can significantly alter the mor-
phology of the composite films, which could have implications for their mechanical and
functional properties.

Polymers 2023, 15, x FOR PEER REVIEW 10 of 14 
 

 

the composite films, which could have implications for their mechanical and functional 
properties. 

The tensile fracture sections shown in Figure 8 revealed that stratification occurred 
in the PLLA/PO3GCA15 and PLLA/PO3GCA20 films, whereas this phenomenon was not 
observed in the PLLA/PO3GCA5 and PLLA/PO3GCA10 films. This finding indicates that 
PO3GCA may be included in the cracks of the PLLA chains, filling the gaps between PLLA 
layers. However, excess PO3GCA cannot be accommodated in these gaps, resulting in the 
stratification of the film and the formation of a sea-island structure of dispersed phases on 
the surface. Furthermore, scattered fine particles were observed on the surface of the 
PLLA/PO3GCA5 and PLLA/PO3GCA10 films, which are most likely PO3GCA macromol-
ecules that cannot be accommodated into the gaps between the PLLA layers. Another pos-
sibility is that the PO3GCA plasticizer crystallizes in advance during the solvent volati-
lization process owing to its high molecular weight, promoting the aggregation of the sur-
rounding plasticizer and resulting in scattered particles on the film surface. 

The fracture surface of the PLLA/PO3GCA blend films was rough, with a distinct 
fibrous surface visible at a PO3GCA content of 15%, indicating a ductile fracture corre-
sponding to a high elongation at break and high toughness of PLLA/PO3GCA15. As the 
PO3GCA content increased from 5% to 20%, burrs on the fracture surface became increas-
ingly thin, indicating that PO3GCA may enhance the toughness of the PLLA film. How-
ever, the plasticizer overflowed between layers and accumulated on the surface as the 
PO3GCA content increased, thereby decreasing the tensile properties and toughness. 
These findings suggest that the optimal PO3GCA content for improving the mechanical 
properties of PLLA/PO3GCA films should be carefully considered. 

 
Figure 7. Scanning electron microscopy (SEM) images of polylactic-L-acid/poly(1,3-propylene gly-
col citrate) (PLLA/PO3GCA) films: (a) PO3GCA content, 5%; (b) PO3GCA content, 10%; (c) 
PO3GCA content, 15%; (d) PO3GCA content, 20%. 

Figure 7. Scanning electron microscopy (SEM) images of polylactic-L-acid/poly(1,3-propylene glycol
citrate) (PLLA/PO3GCA) films: (a) PO3GCA content, 5%; (b) PO3GCA content, 10%; (c) PO3GCA
content, 15%; (d) PO3GCA content, 20%.

The tensile fracture sections shown in Figure 8 revealed that stratification occurred
in the PLLA/PO3GCA15 and PLLA/PO3GCA20 films, whereas this phenomenon was
not observed in the PLLA/PO3GCA5 and PLLA/PO3GCA10 films. This finding indicates
that PO3GCA may be included in the cracks of the PLLA chains, filling the gaps between
PLLA layers. However, excess PO3GCA cannot be accommodated in these gaps, resulting
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in the stratification of the film and the formation of a sea-island structure of dispersed
phases on the surface. Furthermore, scattered fine particles were observed on the surface
of the PLLA/PO3GCA5 and PLLA/PO3GCA10 films, which are most likely PO3GCA
macromolecules that cannot be accommodated into the gaps between the PLLA layers.
Another possibility is that the PO3GCA plasticizer crystallizes in advance during the solvent
volatilization process owing to its high molecular weight, promoting the aggregation of the
surrounding plasticizer and resulting in scattered particles on the film surface.
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Figure 8. Scanning electron microscopy (SEM) images of the tensile fracture surface of poly-
lactic acid/poly(1,3-propylene glycol citrate) (PLLA/PO3GCA) films: (a) PO3GCA content, 5%;
(b) PO3GCA content, 10%; (c) PO3GCA content, 15%; (d) PO3GCA content, 20%.

The fracture surface of the PLLA/PO3GCA blend films was rough, with a distinct
fibrous surface visible at a PO3GCA content of 15%, indicating a ductile fracture corre-
sponding to a high elongation at break and high toughness of PLLA/PO3GCA15. As
the PO3GCA content increased from 5% to 20%, burrs on the fracture surface became
increasingly thin, indicating that PO3GCA may enhance the toughness of the PLLA film.
However, the plasticizer overflowed between layers and accumulated on the surface as
the PO3GCA content increased, thereby decreasing the tensile properties and toughness.
These findings suggest that the optimal PO3GCA content for improving the mechanical
properties of PLLA/PO3GCA films should be carefully considered.

3.2.2. Mechanical Properties of the PLLA/PO3GCA Films

Figure 9 illustrates the stress-strain curves obtained from the mechanical testing of
PLLA/PO3GCA films with varying compositions. PLLA films are inherently rigid and
brittle, with an elastic modulus of 1528 MPa and an elongation at a break of less than
10%. As shown in Table 2, the addition of PO3GCA plasticizer had a significant impact on
the elongation at the break of the films. Among the different hybrid systems tested, the
PLLA/PO3GCA15 film exhibited the highest elongation at break, which increased by 220%
compared to pure PLLA.
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Figure 9. Stress–strain curves of polylactic-L-acid/poly(1,3-propylene glycol citrate) (PLLA/PO3GCA)
films with different PO3GCA contents.

Table 2. Mechanical properties of PO3GCA/PLLA films.

PO3GCA
Content

(%)

Elongation
AT Break

(%)

Modulus of
Elasticity

(MPA)

Tensile Yield
Stress
(MPA)

Tensile
Strength
(MPA)

Tensile
Toughness

(MPA)

0 4.42 1528.00 38.12 27.28 1.47
5 172.40 1434.41 20.34 38.69 38.13
10 209.45 1339.90 19.30 35.64 44.89
15 230.03 1192.41 16.73 28.77 44.69
20 218.92 918.19 19.17 22.76 34.33

The stress-strain curves (Figure 9) indicate that the addition of PO3GCA resulted
in plastic deformation of the PLLA/PO3GCA films due to changes in the interaction at
the PLLA interface. The interfacial interaction between PO3GCA and the PLLA matrix
facilitated the sliding of the interface of the hybrid matrix film, leading to a reduction in the
tensile yield stress relative to the maximum force of the pure PLLA film. However, when
the PO3GCA content reached 20%, the mechanical properties of the corresponding film
decreased to varying degrees. This was attributed to excessive PO3GCA filling the gaps
between the PLLA layers and aggregating on the surface of the film, causing the PLLA
layer of the mixed films to slip easily and affecting the intralaminar structure of PLLA,
ultimately leading to film fracture. As the elongation decreased, the elastic modulus, tensile
yield stress, and maximum force also decreased.

In summary, the addition of PO3GCA significantly improved the mechanical properties
of PLLA films, particularly in terms of elongation at break and toughness. However, exces-
sive PO3GCA content can negatively impact the mechanical properties of PLLA/PO3GCA
films. These findings have important implications for the use of PO3GCA as a plasticizer
for PLLA in various applications, such as food packaging and medical devices.

The tensile toughness of the films was determined by integrating the stress-strain
curves [26], and the results are presented in Table 2. The pure PLLA film exhibited a
toughness of 1.47 MPa. However, upon the incorporation of PO3GCA, a substantial
improvement in the toughness of the films was observed. Specifically, the toughness values
for PLLA/PO3GCA5, PLLA/PO3GCA10, PLLA/PO3GCA15, and PLLA/PO3GCA20 were
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found to be 38.14, 44.89, 44.69, and 34.33 MPa, respectively. These values represent a
remarkable increase of 2495%, 2953%, 2940%, and 2235% compared to that of pure PLLA.
These findings indicate that PO3GCA is an excellent plasticizer for PLLA, and has the
potential to significantly enhance the mechanical properties of PLLA-based materials.

4. Conclusions

In this study, poly(1,3-propylene glycol citrate) (PO3GCA) was synthesized from
biologically derived citric acid (CA) and PO3G and was used as a toughening agent
for Polylactic-L-acid (PLLA). The solution casting method was employed to prepare
PLLA/PO3GCA films with varying PO3GCA contents while ensuring satisfactory compat-
ibility between PO3GCA and PLLA.

The addition of PO3GCA to PLLA resulted in a slight increase in the thermal stability
of the PLLA film and a significant improvement in its toughness. The elongation at the
break of the composite film reached 230% when the PO3GCA content was 15%, compared to
the pure PLLA film. These results suggest that PO3GCA may be a promising plasticizer for
PLLA films, as it enhances the toughness of the film while maintaining its biodegradability
and environmental-friendliness.

Overall, this study contributes to the development of sustainable and eco-friendly
materials for the plastic industry. The use of biologically derived citric acid and poly(1,3-
propylene glycol citrate) as toughening agents for PLLA can significantly enhance the
properties of PLLA-based materials, while also reducing the environmental impact of
plastic production. Further research is needed to investigate the long-term stability and
biodegradability of PLLA/PO3GCA composite films, as well as to optimize the processing
conditions and compatibility of the blended systems to achieve the desired properties of
PLLA-based materials.
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