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Preface

This reprint represents a significant step forward in the application of cutting-edge

computational intelligence (CI) techniques to solve complex problems in geotechnical and geological

engineering. The twelve chapters in this reprint showcase the versatility and power of CI methods

across a wide range of geotechnical applications. From predicting slope stability to optimizing

blasting parameters, and from modeling soil compaction to analyzing rock microstructures, the

innovative approaches presented here demonstrate the immense potential of CI to advance our

understanding and capabilities in geotechnical engineering.

We begin with an exploration of slope stability prediction using a novel k-NN-based

Optimum-Path Forest approach, offering improved accuracy and efficiency in assessing landslide

risks. The reprint then delves into soil compaction modeling using an enhanced hybrid intelligence

paradigm that combines ANFIS with an improved Grey Wolf Optimizer, showcasing the power of

integrating multiple CI techniques.

Several chapters focus on the application of artificial neural networks and other machine

learning techniques in various contexts, including the prediction of flyrock induced by boulder

blasting, modeling of uniaxial compressive strength in rocks, and the optimization of underground

blasting parameters. These chapters highlight the adaptability of CI methods in addressing diverse

geotechnical challenges.

The reprint also explores more specialized topics, such as the analysis of microscopic pore

characteristics and macroscopic energy evolution in rock materials under freeze–thaw conditions,

and the classification of tailings ponds using satellite imagery and machine learning. These studies

demonstrate the broad applicability of CI techniques in geotechnical and geological engineering.

We further examine the use of neuro-based metaheuristic techniques for evaluating ground

vibration from tunnel blasting and the application of automated machine learning in predicting

maximum ground settlement induced by tunnel construction. The reprint also includes studies on

predicting the strength parameters of thermally treated granodiorite and analyzing rainfall-induced

landslides using stochastic analysis with machine learning. The final chapter investigates the

progressive fracture behavior and acoustic emission release of cemented joint blocks, providing

insights into the complex behavior of jointed rock masses.

This collection of chapters represents the forefront of research in applying CI to geotechnical

and geological engineering. It is our hope that this reprint will serve as a valuable resource for

researchers, practitioners, and students in the field, inspiring further innovations and advancements

in the application of CI to solve real-world geotechnical challenges.

Danial Jahed Armaghani, Hadi Khabbaz, Manoj Khandelwal, Niaz Muhammad Shahani, and

Ramesh Murlidhar Bhatawdekar

Editors

ix





Citation: Wang, Y.; Gong, B.; Zhang,

Y.; Yang, X.; Tang, C. Progressive

Fracture Behavior and Acoustic

Emission Release of CJBs Affected by

Joint Distance Ratio. Mathematics

2022, 10, 4149. https://doi.org/

10.3390/math10214149

Academic Editors: Danial Jahed

Armaghani, Hadi Khabbaz, Manoj

Khandelwal, Niaz Muhammad

Shahani and Ramesh Murlidhar

Bhatawdekar

Received: 19 October 2022

Accepted: 3 November 2022

Published: 6 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Progressive Fracture Behavior and Acoustic Emission Release of
CJBs Affected by Joint Distance Ratio

Yongyi Wang 1, Bin Gong 2,*, Yongjun Zhang 3, Xiaoyu Yang 4 and Chun’an Tang 1

1 State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology,
Dalian 116024, China
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3 School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China
4 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
* Correspondence: bin.gong@brunel.ac.uk

Abstract: The progressive collapse behavior and energy release of columnar jointed basalts (CJBs)
can be greatly influenced by different joint distance ratios. By adopting the digital image correlation,
a series of heterogeneous CJB models are established. The continuous fracture process and acoustic
emissions (AEs) are captured numerically under varying lateral pressures. The load curves under
different joint distance ratios and model boundaries are analyzed. Meanwhile, the strength, defor-
mation modulus and AE rule are discussed. The data indicate that under plane strain, the troughs
of compression strength appear at the column dip angle β = 30◦, 150◦, 210◦ or 330◦; the equivalent
deformation modulus changes in an elliptical way with β increasing; the compression strength and
equivalent deformation modulus are higher than the case between plane stress and plane strain
under different joint distance ratios. When β = 30◦, the accumulation of AE energy corresponding
to the stress peak under plane strain are higher than the case between plane stress and plane strain
but becomes lower when β increases to 60◦, which implies the critical transformation of the AE
energy-related failure precursor affected by column dip angle. These achievements will contribute to
the design, construction and support of slopes and tunnels encountering CJBs.

Keywords: columnar jointed basalt; failure mechanism; acoustic emission; joint distance ratio;
numerical simulation

MSC: 74-10

1. Introduction

The columnar jointed basalts (CJBS) generally form because of the condensation
and contraction of magma and contain obvious columnar joints. The CJBs are popularly
distributed in many sites on this planet, such as Scotland, Siberia, China, Mexico, Australia,
the United States, Brazil, India, etc. [1–4]. Columnar joints have even been found on
Mars [5]. In the past decades, the columnar jointed rock masses (CJRMs) were encountered
in several hydropower stations located in southwest China, such as the Baihetan, Jinanqiao,
Wudongde, Xiluodu, and Tongjiezi hydropower stations. Two photographs [5,6] of CJRMs
are shown in Figure 1.

Some researchers have investigated the anisotropy, size effect and confining pres-
sure effect of CJBs (or CJRMs). In terms of numerical simulation, insightful achievements
have been obtained. However, few studies have been conducted regarding the mechan-
ical responses of CJBs with different joint distance ratios and model boundaries. The
homogenization-based model was developed by Meng et al. [7] for studying the effect of
discontinuous structures and the elastic parameters. Zheng et al. [1] calculated the influ-
ences of size effect and anisotropy using the discrete element method (DEM). Yan et al. [8]
modelled the deformation and failure of CJRMs using the finite difference method (FDM).

Mathematics 2022, 10, 4149. https://doi.org/10.3390/math10214149 https://www.mdpi.com/journal/mathematics1
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Li et al. [3] discussed the transient-thermoelastic fractures affected by the highly time-
dependent thermal loads by applying the numerical manifold method (NMM). Niu et al. [9]
calculated the permeability property of CJRMs with various dip angles numerically, and a
case study was also carried out. However, the gradual failure process and energy evolution
of CJBs have not been understood in depth.

  
(a) (b) 

Figure 1. The columnar jointed rock masses observed in field: (a) Fingal’s Cave on Staffa in Scot-
land [6]; (b) the columnar joints discovered on Mars [5].

In terms of physical tests, some useful results have been achieved. With the aim of
understanding the hydraulic fracturing of CJRMs, the compression tests were performed
under triaxial stress state by Xiang et al. [10]. Through a series of compression experiments
under uniaxial stress state, Ke et al. [11] analyzed the anisotropy induced by transverse
joints. Shi et al. [12] presented an approach to obtain the strengths using the Mohr–Coulomb
and Hoek–Brown criteria under triaxial stresses. A group of laboratory tests were carried
out by Jin et al. [4] for understanding the anisotropic parameters of CJRMs. To analyze the
actual geological structures on site, the uniaxial testing was carried out by Ji et al. [13]. The
quadrangular, pentagonal and hexagonal prisms were also investigated by Que et al. [14]
in a laboratory. The anisotropic parameters were discussed by combining the structural
features of three kinds of models. In the field tests of CJBs (or CJRMs), many valuable
results have been obtained. However, the rock masses in nature are generally compli-
cated. The preparation of rock specimens would suffer unexpectable disturbance [2,15–19].
Meanwhile, the AE energy evolution during the fracture process for the CJBs are greatly
affected by joint distance ratio and model boundary and remains unclear. Moreover, when
there are many experimental scheme configurations and specimens, time-consuming and
uneconomical problems will be encountered.

On the one hand, the influence of column dip angles, joint distance ratios and model
boundaries on the mechanical properties of CJBs should be revealed systematically. On
the other hand, it will contribute to understand the collapse mechanism to reproduce the
progressive fracture process and AE energy evolution appropriately. In the engineering
projects, the CJBs could not only show significant discontinuity and anisotropy, but also
suffer lateral pressure. Hence, it has significant value to reveal the complex deforming and
bearing features, failure mechanisms and instability precursor of CJBs under lateral pressure.

In this study, to analyze the failure mechanism and AE release rule of CJBs containing
various joint distance ratios under different boundary conditions, the digital CJB figures
were used for creating the non-homogeneous models. Based on meso-mechanics and
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statistical damage mechanics, a series of numerical tests were conducted. The simulated
results were analyzed by comparing with the corresponding tests to verify the rationality
and reliability. Furthermore, the continuous failure process and damage failure pattern of
the CJB were reproduced. The influence of column dip angles, joint distance ratios and
model boundaries on the accumulation of AE energy were comprehensively analyzed to
provide the theoretical basis for the treatment measures.

2. Materials and Methods

2.1. The Combination of RFPA and DIC

In terms of the main advances of the rock failure process analysis (RFPA) approach, the
assumptions on where and how cracks will occur and propagate are not needed [20,21]. In
addition, its effectiveness in modelling the non-linear deforming and bearing of rocks has
been verified by many researchers [22,23]. Moreover, RFPA has been adopted in simulating
slope instability [24], size effect [25] and zonal disintegration characteristics [26] of rocks.
Thus, RFPA has been chosen in this study.

The digital image correlation (DIC) was adopted for building up the RFPA models.
Firstly, the vectorized coordinates of elements were obtained through importing and
processing the digital figures using the gray-threshold segmentation. Considering the
digital figures consist of many square pixels, each pixel corresponds to one finite element,
and the spatial coordinates of every pixel corresponds to the node coordinates of the related
element. Secondly, the joint or matrix of rocks can be determined by dividing the gray
value of pixels, and the related material properties will be assigned. According to the
above principle, the creation process of non-homogeneous numerical models is presented
in Figure 2a.

 
(a) 

  
(b) (c) 

Figure 2. (a) The creation process of non-homogeneous numerical models; (b) the element constitution
subject to uniaxial stress; (c) the stress-strain curve.

3
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The element constitution subject to uniaxial stress is depicted in Figure 2b. Through
the approach of extending uniaxial constitutive relation to triaxial stress states (Mazars and
Pijaudier-Cabot [27]), the constitutive relation shown in Figure 2a can be extended to the
triaxial stress states.

2.2. Damage and Failure of One Meso-Element

The rock nonuniformity can be taken into account if the parameter values of meso-
elements are assumed to obey the Weibull distribution:

f (u) =
m
u0

(
u
u0

)m−1
exp

(
− u

u0

)m
(1)

where u is a certain parameter of meso-elements, e.g., compressive strength; u0 represents
the related mean value of u. The notation m represents the heterogeneity index and reflects
the nonuniform degree. A higher m implies a higher non-uniformity.

If one element suffers tension along an axis, the elastic-brittle damage constitution
described by Equation (2) will be applied.

σ3 ≤ ft (2)

where ft represents the unique strength under uniaxial tensile. Note that the stress and
strain under compression are positive in this study.

Moreover, the Mohr-Coulomb strength criterion is used for judging the shear damage
of one meso-element as shown by Equation (3).

σ1 − 1 + sinϕ

1 − sinϕ
σ3 − fc ≥ 0 (3)

where σ1, σ3, ϕ and fc represents the major principal stress, minor principal stress, inter-
nal friction angle and uniaxial compressive strength, respectively. The damage-induced
degeneration of element parameter can be computed according to Wang et al. (2022) [28].

2.3. Modeling Effectiveness

The indoor experiment by Ke et al. [11] is adopted to verify the simulation-based
approach. Ke et al. [11] made the columns using cement, fine sand, water and water
reducer with the mass ratio of 1.0:0.5:0.35:0.002. A regular hexagonal prism containing
the section diameter = 10 mm and the length = 50 mm was selected for simulating the
actual column. The white cement slurry was used for bonding columns, which simulates
joint surface. The ratio of longitudinal to transverse of column was 5. The shift distance
of transverse joint was 25 mm. Seven kinds of column-dip angles (β) from 0◦ to 90◦
were considered. The rock mass specimens were regular 50 mm × 50 mm × 100 mm
quadrangular prisms. The compressive testing was carried out by applying the CSS-3940YJ
rock mechanics servo testing machine. The loading method with constant displacement
rate of 0.05 mm/min was used. A flat steel cushion block was placed at the rock ends.
Then, vertical pressure was applied until the failure of the specimen.

Note that the 50 mm × 100 mm models were used for verification under different
load directions subject to plane strain. The inner hexagonal prisms have a diameter of
10 mm. The digital figures were used for creating the numerical samples as displayed in
Table 1. The parameter values of the finite element models were determined according to
the literatures [8–13,16–19] and presented in Table 2. The displacement load with a ratio of
0.005 mm/step was used until the model failure.

4
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Table 1. The model geometry and load conditions used for verification.

Column Dip Angle (β) 15◦ 45◦ 60◦

Model

  

Table 2. The physical-mechanical parameter values for numerical simulation.

Material Type
Heterogeneity

Index
Elastic Modulus

(GPa)
Uniaxial Compressive

Strength (MPa)
Poisson’s Ratio Friction Angle (◦)

Basalt 5 60 120 0.2 56.15
Joint 5 15 30 0.25 36

Table 3 shows the related comparison of the specimen failure modes obtained by
simulations and experiments. We can see that the results when β = 15◦ and β = 45◦ in
numerical and laboratory physical tests show relatively good similarity. However, for the
condition of β = 60◦, there are certain differences between them. This is because of the end
effect of the specimen in laboratory test. Namely, there is a certain friction constraint at the
ends of both sides of the specimen in laboratory test.

Table 3. The failure modes obtained by simulation and experiment [11].

Column Dip Angle (β) 15◦ 45◦ 60◦

Experiment [11]

  

Simulation

  

2.4. Numerical Investigation

In this section, the column length and diameter are 0.5~3 m and 13~25 cm, respectively.
The specimens for numerical testing are square models and are 4 m in size, and the diameter
of columns inside specimens is 20 cm. The rock heterogeneity index is considered as 5. The
elastic modulus of joints is 15 GPa. The residual index of strengths after rock failure is taken
as 0.5. The dip angles of the column are 0◦, 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦, respectively. The

5
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spacing of the secondary joints is 1.5 m. Simultaneously, the distance ratio of the secondary
joints changes from 0% to 50%. The lateral pressure is considered as 4 MPa. In terms of the
boundary conditions, two cases are taken into account including the plane strain and the
case between plane stress and plane strain.

Moreover, the meso-element size of the models remains the same. For instance, the
element number of the 4 m specimen is 1,081,600. The applied configuration for established
CJB specimens along the direction parallel to the column axis are presented as Figure 3a–g.
For Figure 3e, the normal displacement constraints are applied on the two faces. For
Figure 3f, the normal displacement constraint is applied only on one face, and the other
normal direction of the plane is free. For Figure 3a–g, the pre-set loading is applied onto
the top surface along the vertical direction until the model failure.

   
(a) (b) (c) 

  
(d) (e) 

  
(f) (g) 

Figure 3. (a–d) The CJBs containing the joint distance ratios 0%, 20%, 40% and 50%, respectively;
(e) the model setup under plane strain; (f,g) the model setup for the case between plane stress and
plane strain.

Generally, the parameter values of joints will be lower than rock matrix [29]. The selec-
tion of parameters can affect the elastic moduli and compression strengths [30]. According
to the corresponding literatures [8–13,16–19], the mechanical parameter values of rock and
joint of CJBs are determined (see Table 2).
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3. Results

3.1. The Deforming and Bearing under Different Joint Distance Ratios
3.1.1. Under Plane Strain

According to Figure 4a, under the lateral pressure of 4 MPa, in terms of compressive
strength (CS), when the joint distance ratio is 0%, the compressive strength of specimen
shows a roughly U-shaped trend as β increases; when the joint distance ratio is 20%, 40%
and 50%, that changes roughly in a V-shaped trend as β increases. At β of 60◦ and 75◦,
compared with the specimen with a joint distance ratio of 0%, for the models with the joint
distance ratios of 20%, 40% and 50%, the CS is risen greatly, which is caused by the obvious
growth of the effective bearing area. Furthermore, combined with Figure 4c, it is clear that
for the CJBs with various joint distance ratios, the troughs of CS appear at β = 30◦, 150◦,
210◦ and 330◦; the peaks of CS appear at β = 0◦, 90◦, 180◦ and 270◦. Additionally, for the
CJBs with the joint distance ratios of 20%~50%, the CSs of specimens decrease sharply near
β = 0◦ and 180◦, which results from the rapid penetration failure of joints. However, they
change relatively gently near β = 90◦ and 270◦.

  
(a) (b) 

  
(c) (d) 

Figure 4. The CJBs with different joint distance ratios: (a,c) the compressive strength; (b,d) the
equivalent deformation modulus.

Figure 4b shows that under plane strain, in the aspect of equivalent deformation
modulus (EDM), when the joint distance ratio is 0%~50%, the EDM of specimen reduces in
the beginning, but changes/fluctuates with β increases later. The highest value of EDM
appears when β = 0◦; the lower values of EDM exist at the range of β = 45◦~90◦. Moreover,
combined with Figure 4d, it is clear that for the CJBs with various joint distance ratios, the
EDMs change in elliptical way with β increases. The EDM of the models is less sensitive to
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the variation in joint distance ratio, which is mainly because the compaction and elastic
deformation are not sensitive to joint distance ratio.

Figure 5a,b displays the loading curves of the CJBs owning various joint distance
ratios when the lateral pressure = 4 MPa under plane strain. As presented in Figure 5a,
when the joint distance ratio = 0%, the loading curve of the CJBs with β = 60◦ show ductile
failure characteristic, while the loading curves of other CJBs show basically brittle failure
characteristics. In addition, no residual strength stage exists on the loading curves for
β = 15◦, 30◦ and 75◦, indicating that the failure and overall instability of specimen occur.
As shown in Figure 5b,d, the loading curves for various column dip angles are almost
with some characteristics of brittle failure. When the joint distance ratio is 20%, 40% and
50%, there is no residual strength stage in the loading curve when β = 15◦, while regarding
the other column dip angles, the residual strength stages exist in the loading curves. If
β = 30◦ and 75◦, compared with the CJBs with joint distance ratio 0%, for the CJBs with
joint distance ratios 20%~50%, the residual strength stability is improved.

  
(a) (b) 

  
(c) (d) 

Figure 5. The loading curves of CJBs: (a) the joint distance ratio of 0%; (b) the joint distance ratio of
20%; (c) the joint distance ratio of 40%; (d) for the joint distance ratio of 50%.

3.1.2. The Cases of Two Kinds of Model Boundaries

Figure 6 shows the CSs and EDMs of CJBs with different joint distance ratios in the
cases of two kinds of model boundaries. As depicted in Figure 6a, in terms of CS, for the
CJBs with β = 30◦ under the lateral pressure = 4 MPa, from the perspective of joint distance
ratio, if the boundary condition is the case between plane stress and plane strain, the CS of
specimen displays a decreasing and increasing fluctuation trend with the growth of joint
distance ratio, in which the ratio of the highest CS to the lowest CS is 1.023, indicating
the very small fluctuation range. If the boundary condition is plane strain, the model CS
reduces in the beginning, but rises as the joint distance ratio increases later. The ratio of the
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highest value to the lowest value of CS is 1.012, which shows that the variation range is
also very small. From the perspective of model boundary condition, the CS under Case II
is higher than Case I. If the model boundaries are changed in Case II, the increasing rates of
CSs of specimens with joint distance ratios of 0%, 20%, 40% and 50% are 13.41%, 14.56%,
13.22% and 15.23%, respectively.

  
(a) (b) 

  
(c) (d) 

Figure 6. For the cases of two kinds of model boundaries and the CJBs with different joint distance
ratios: (a,c) the compressive strength for β = 30◦ and 60◦; (b,d) the equivalent deformation modulus
for β = 30◦ and 60◦ (Case I corresponding to the case between plane stress and plane strain and Case
II corresponding to the plane strain).

As presented in Figure 6b, for the CJBs with β = 30◦ when the lateral pressure = 4 MPa,
from the perspective of joint distance ratio, if the model boundaries are Case II, the EDM of
specimen displays a reducing and rising fluctuation trend with the increase in joint distance
ratio. If the model boundaries are Case I, the model EDM decreases in the beginning, but
increases with the growth of joint distance ratio. From the perspective of model boundary
condition, if the model boundaries vary from Case I to Case II, the increasing rates of EDMs
of specimens with joint distance ratios of 0%, 20%, 40% and 50% are 3.68%, 4.78%, 0.25%
and 5.35%, respectively, indicating that there is no obvious difference for the EDMs of
specimens under the two model boundaries.

Figure 6c shows that in terms of CS, for the CJBs with β = 60◦ when the lateral
pressure = 4 MPa, from the perspective of joint distance ratio, if the model boundaries
are Case between plane stress and plane strain, the model CS rises in the beginning, but
reduces as the joint distance ratio increases, in which the ratio of the highest value to the
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lowest value of CS is 1.233. If the model boundaries are in plane strain, as the joint distance
ratio rises, the model CS also increases firstly but decreases later. For this case, the ratio
of the highest value to the lowest value of CS is 1.320. From the perspective of model
boundary condition, the CS in Case II is higher than that in Case I. If the model boundaries
vary from Case I to Case II, the increasing rates of CSs of specimens with joint distance
ratios of 0%, 20%, 40% and 50% are 21.16%, 29.68%, 29.70% and 36.09%, respectively.

Figure 6d shows that for the CJBs with β = 60◦ when the lateral pressure = 4 MPa, if the
model boundaries are Case II, the EDM of specimen displays a decreasing and increasing
fluctuation trend with the growth of joint distance ratio. If the model boundaries are Case
I, the model EDM reduces with the increase in joint distance ratio. From the perspective
of model boundary condition, if the model boundaries vary from Case I to Case II, the
increasing rates of EDMs of specimens with joint distance ratios of 0%, 20%, 40% and 50%
are 9.32%, 13.46%, 11.17% and 11.78%, respectively.

Figure 7a,b displays the loading curves influenced by various joint distance ratios in
the cases of two kinds of model boundaries. Figure 7a shows that for the CJBs with β = 30◦
when the lateral pressure of 4 MPa, if the model boundaries are Case I, the loading curves
of specimens with various joint distance ratios will be closer. For Case II, the loading curves
of specimens with different joint distance ratio show relatively obvious difference in the
residual strength stage. Significantly, no residual strength stage exists on the loading curve
for the joint distance ratio 0%, indicating that the macro instability of the model occurs.
Regarding the perspective of model boundary condition, compared with Case I, the stress
peak and residual strength of the model boundary condition in the case II are higher. As
shown in Figure 7b, for the CJBs with β = 60◦ if the model boundaries are Case I, the loading
curves influenced by various joint distance ratios show certain ductile failure characteristics,
which is caused by the relatively strong confining pressure. For Case II, the loading curve
for joint distance ratio 0% is with ductile failure characteristic, while the stress-strain curves
for joint distance ratios 20%, 40% and 50% show brittle failure characteristics, which results
from the obvious influence of confining pressure on CJB anisotropy. From the perspective
of model boundary condition, compared with Case I, the stress peaks for Case II are higher.

  
(a) (b) 

Figure 7. For the two kinds of model boundaries and the loading curves affected by various joint
distance ratios: (a) for β = 30◦; (b) for β = 60◦ (Case I corresponding to the case between plane stress
and plane strain and Case II corresponding to the plane strain).

3.2. Fracture Processes and Energy Evolutions under Different Joint Distance Ratios
3.2.1. Failure Modes under Different Column Dip Angles

Figure 8 displays the z-direction displacement contours of the CJBs with the joint dis-
tance ratios 0%, 50% and various βs under plane strain when the lateral pressure = 4 MPa.
Figure 8a,h shows that for the CJBs with β = 0◦ and the joint distance ratio 0%, the columnar
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joints in the upper zone of the mode are damaged, and there is a fluctuating strip fracture
zone near the top of the model. Meanwhile, the sedimentation inside the model is dis-
tributed along the strip fracture zone. When the joint distance ratio is 50%, the fracturing
of the columnar joints in the middle of the upper area of the model develops deeper and
deeper. As presented in Figure 8b,i, for the CJBs with β = 15◦ and the joint distance ratio
0%, the columnar joints at the upper area of the model slide and become cracked due to the
compression shear. Simultaneously, the sedimentation inside the model mainly develops
along the dip angle of the cracked columns. For the condition of the joint distance ratio
50%, the joints within the upper area of the model slide and become damaged. As depicted
in Figure 8c,j, for the CJBs with β = 30◦ and the joint distance ratio 0%, the columnar
joints within the model slide under compression and shear, and the sedimentation at the
right side of the upper part of the specimen is transmitted to deeper part. When the joint
distance ratio is 50%, the joint slip characteristics and sedimentation inside the model are
also basically same as the case of the joint distance ratio 0%. As shown in Figure 8d,k, for
the CJBs with β = 45◦ and the joint distance ratio 0%, a relatively straight oblique shear
zone appears within the model, which connects the upper left area as well as the lower
right area of the specimen. For the condition of the joint distance ratio 50%, the oblique
fracture zone inside the specimen is relatively curved, while the sedimentation still mainly
developed following the oblique fractured area.

   

 

(a) (b) (c)  

    
(d) (e) (f) (g) 

   

 

(h) (i) (j)  

    
(k) (l) (m) (n) 

Figure 8. (a–g) The z-direction displacement diagrams of the CJBs with the joint distance ratio 0%
and different column dip angles; (h–n) the z-direction displacement diagrams of the CJBs with the
joint distance ratio 50% and different column dip angles.

As presented in Figure 8e,l, for the CJBs with β = 60◦ and the joint distance ratio 0%,
the shear sliding occurs at the secondary joint set within the model. Additionally, the

11



Mathematics 2022, 10, 4149

shear fracture zone exists between the secondary joints in the upper area of the model.
The sedimentation is basically distributed within the middle area and the right area of the
upper part of the model, along the secondary joint set and shear fracture zone. When the
joint distance ratio is 50%, the secondary joint sets at the upper middle part of the model
are cut through, and the oblique shear fracture zones appear close to the upper end of the
specimen. As depicted in Figure 8f,m, for the CJBs with β = 75◦ and the joint distance ratio
0%, the shear sliding at the secondary joint sets inside the specimen is relatively obvious.
Additionally, there are two oblique shear fracture zones between the secondary joints at the
upper zone of the model. The sedimentation is mainly distributed along the fracture zones
and secondary joint sets, and in the right zone of the model, the sedimentation develops
deeper and deeper. For the joint distance ratio = 50%, the shear sliding at the secondary
joint sets is less obvious, and there are the oblique shear fracture zones at the upper part of
the specimen. As shown in Figure 8g,n, for the CJBs with β = 90◦ and the joint distance ratio
0%, the secondary joint sets at the upper-middle area of the model are damaged, where
an M-shaped shear fracture zone appears. The sedimentation mainly develops along the
M-shaped shear fractured area. Namely, at the upper part of the model, the sedimentation
is transmitted to a deeper depth. When the joint distance ratio is 50%, the secondary joint
sets at the upper middle part of the model are also damaged. The M-shaped shear fracture
zone and sedimentation distribution characteristics at the upper middle part of the model
are also similar as the case of the joint distance ratio 0%.

3.2.2. Fracture Processes and Energy Evolutions under Different Column Dip Angles

(1) For the CJBs with β = 30◦ and the joint distance ratio 0%

Figure 9a displays the schematic diagram of the CJBs model with β = 30◦ and the
joint distance ratio 0%, under the lateral pressure = 4 MPa. The stress-strain curve and AE
energy are presented in Figure 9b,c. Meanwhile, the minor principal stress contours at the
Points A~F are depicted in Figure 9d–i, describing the phenomenon of compression shear,
sliding, and cracking of joints, crack initiation, propagation and rupture. The red zones on
the minor principal stress diagram reflects the high-stress concentrations.

Combined with Figure 9b,d–i, it can be indicated that at the Point, the corresponding
columnar joints and secondary joint sets inside the specimen show stress concentration. At
the Point B, the columnar joints at the upper area of the model slide and become cracked.
At the upper middle area of the model, high-stress concentration occurs along the edges of
some columns, initially forming strip-shaped stress concentrations. When the loading is
reduced to the Point C, the fractures generate and develop along the edges of some columns,
the stresses is concentrated at the crack tips, and a strip-shaped stress concentration is
formed inside the specimen. If the loading reaches the Point D, the fractures propagate
further, the concentration extent of the original strip stress decreases, and there are stress
concentrations along the edges of some columns at the right middle side of the specimen.
When the loading reaches the Point E, the cracks initiate at the secondary joint sets. If the
loading reaches the Point F, fractures intensify inside those strip fracture zones above the
secondary joint sets. Moreover, there are strip damage zones at the upper surface and
middle parts of the model. These columnar joints slide and become cracked in the middle
upper part of the specimen. The secondary joint sets in the upper zone and the lower part
of the model get damaged, and the secondary joint set at the middle of the model fails.
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 9. (a) For the case between plane stress and plane strain, the schematic diagram of the CJB
model with β = 30◦ and the joint distance ratio 0%; (b,c) the loading curve and AE energy; (d–i) the
minor principal stress contours at the Points A~F.

Figure 9c indicates that the AE energy release of the model shows roughly with the
double-peak distribution. The 1st peak may be mainly caused by the damage-slip cracking
at the upper middle area of the model. Meanwhile, the 2nd AE energy peak is mainly
caused by the damage sliding at columnar joints at the middle area of the model and the
crack creation and develop along the secondary joints.

(2) For the CJBs with β = 30◦ and the joint distance ratio 50%

Figure 10a shows the schematic diagram of the CJBs model with β = 30◦ and the joint
distance ratio 50% when the lateral pressure = 4 MPa. Figure 10b,c displays the loading
curve and AE energy. Figure 10d–i shows the minor principal stress contours at the Points
A~F. Combined with Figure 10b,d–i, at the Point A, these joint sets and secondary joint sets
inside the model show high-stress concentration. If the loading reaches Point B, the trend
of compressive shear sliding along the columnar joint sets near the top of the specimen.
If the loading reaches the Point C, the joint sets in the upper zone of the sample slide and
become cracked, and several columns at the top of the model show stress concentrations.
If the loading continues to decrease to the Point D, along the secondary joint set in the
upper part of that specimen, cracks initiate and the stresses concentrate, forming a strip
stress concentration zone. Near the upper end of the model, the columns also show stress
concentration, forming another strip stress concentration zone. If the loading is reduced to
the Point E, the stress concentrations are transferred to the vicinity below the position of
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the secondary joint set. When the stress reaches Point F, in the upper zone of the sample
and near the lower position of these secondary joint set, cracks are created and propagate,
and the stresses are concentrated at the crack tips. Simultaneously, within the right middle
part of the specimen, those joints slide under compression and shear, and the high-stress
concentrations appear at the edge of the nearby column. Moreover, there are strip damage
and fracture zones in the upper middle area of the model. In this area, the columnar joints
are damaged, slide and become cracked. At the position of secondary joint set in the upper
area of the model, the damage occurs. As shown in Figure 10c, the AE release of the model
shows a single-peak distribution. The peak is as a result of the damaging, sliding and
cracking of the columnar joints in the upper area of the sample.

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 10. (a) For the case between plane stress and plane strain, the schematic diagram of the CJBs
model with β = 30◦ and the joint distance ratio 50%; (b,c) the loading curve and AE energy; (d–i) the
minor principal stress contours at the Points A~F.

(3) For the CJBs with β = 75◦ and the joint distance ratio 50%

Figure 11a displays the schematic diagram of the CJBs model with β = 75◦ and the
joint distance ratio 50% under the lateral pressure = 4 MPa. The stress-strain curve and AE
release are presented (see Figure 11b,c). The minor principal stress contours at the Points
A~F are depicted in Figure 11d–i. Combined with Figure 11b,d–i, at the Point, the joints
within the model and the secondary joint set at the middle of the model shows high-stress
concentration. If the loading reaches the Point B, the secondary joints at the upper middle
area of the model are damaged. In the meantime, the columns near it display obvious
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stress concentration. If the loading drops to the Point C, crack initiation, propagation and
penetration occur near the secondary joint set at the upper middle part of the model. In
addition, there is an oblique shear fracture zone between the secondary joint sets. If the
loading continues to decrease to the Point D, near the middle of the model, crack initiation,
propagation and penetration at the secondary joints develop towards the lower area of the
model. Simultaneously, crack creation and stress concentration happen near the secondary
joints at the right side of the model. If the loading is reduced to the Point E, fractures along
the secondary joint set of the specimen are intensified. Moreover, in the right middle part
of the specimen, the shear fracture zones develop and the stresses at the tips of cracks
are concentrated. If the loading reaches the Point F, the crushing inside the specimen
will intensify.

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 11. (a) For the case between plane stress and plane strain, the schematic diagram of the CJBs
model with β = 75◦ and the joint distance ratio 50%; (b,c) the loading curve and AE energy; (d–i) the
minor principal stress contours at the Points A~F.

Meanwhile, the joints within the model are damaged. The secondary joints at the
upper area of the model are damaged and cracked, especially at the middle of the upper
area of the model, where the damage and fracture penetrate. Close to the upper end of the
model and at the right middle part of the model, the damaged zones are developed.

As displayed in Figure 11c, it is clear that the AE energy of the model displays the
double-peak distribution. The first energy peak might be induced by the primary joint
damage and the cracking of secondary joint set in the upper middle area of the model. The
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second peak might be as a result of the fracture of the primary joints near the upper left
area of the model and the development of the shear fracture zone in the right middle part
of the model.

3.2.3. Fracture Processes and Energy Evolutions under Various Joint Distance Ratios and
Column Dip Angle of 60◦

(1) When the joint distance ratio = 0%

Figure 12a shows the schematic diagram of the CJBs model with β = 60◦ and the joint
distance ratio 0% under the lateral pressure = 4 MPa. Figure 12b,c displays the loading
curve and AE energy. Figure 12d–I shows the minor principal stress contours at the Points
A~F. Combined with Figure 12b,d–i, at the Point A, the secondary joint set within the
specimen shows high-stress concentrations, with the trend of compression shear sliding.
If the loading goes to the Point B, the secondary joint sets inside the specimen gradually
slide, and the high stress concentrations appear near the upper end of the specimen. If
the loading reaches the Point C, the cracks are created near the upper end of the specimen.
If the loading continues to decrease to the Point D, near the upper end of the model, the
cracks propagate, and the stresses at the crack tips are concentrated. If the loading is
reduced to the Point E, the cracks further develop in the upper area of the specimen, but
the stress concentration reduces. If the loading reaches the Point F, fractures intensify from
the secondary joints and fracture zones. At the middle of the right side of the specimen, the
cracks initiate, and the stresses are concentrated. Meanwhile, the secondary joint sets slide,
are damaged, compressed, and sheared. The damage fracture zones are developed near the
top and at the upper area of the specimen.

Figure 12c shows that the AE energy of the specimen is roughly with four-peak
distribution (or multi-peak distribution). The first energy peak might be as a result of the
compression shear sliding at the secondary joint sets inside the specimen. The second peak
might be mainly caused by the damage development of fractured zone near the top of the
specimen. The third peak might be mainly as a result of the development of the fracture
zone near the upper end of the model, the fracture zone in the upper zone of the model
and the damage near the secondary joint sets. The fourth peak might be induced by the
fracturing aggravation at the secondary joint sets and the initiation and propagation of
cracks in the right middle area of the specimen.

(2) When the joint distance ratio = 20%

Figure 13a displays the schematic diagram of the CJBs model with β = 60◦ and the
joint distance ratio 20% under the lateral pressure = 4 MPa. The loading curve and AE
energy are shown in Figure 13b,c. The minor principal stress contours at the Points A~F
are displayed in Figure 13d–i. Combined with Figure 13b,d–i, at the Point A, the secondary
joint sets within the specimen show high-stress concentration. If the loading reaches the
Point B, near the upper end of the specimen, the high-stress concentrations appear around
the secondary joint sets. If the loading decreases to the Point C, the secondary joint sets get
fractured at the upper area of the model. The stress concentration is obvious near the upper
end of the model. When the loading continues to drop to the Point D, the creation and
propagation of cracks occur within the original stress concentration areas. If the loading
is reduced to the Point E, cracks further develop in the upper left and upper right parts
of the model. When the loading reaches the Point F, the crushing in the upper zone of the
model will intensify. Meanwhile, damage along columnar joint sets inside the specimen
develops. The compressive shear fractures appear along the secondary joint sets. The
damage fracture zones at the upper part of the model are formed. Figure 13c shows that
the elastic energy of the specimen shows the single-peak distribution. The peak is induced
by the compression-shear failure of the secondary joint sets, the damage of the primary
joints and the columns in the upper part of the model.
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Figure 12. (a) Under plane strain, the schematic diagram of the CJBs model with β = 60◦ and the joint
distance ratio 0%; (b,c) the loading curve and AE energy; (d–i) the minor principal stress contours at
the Points A~F.
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Figure 13. (a) Under plane strain, the schematic diagram of the CJBs model with β = 60◦ and the joint
distance ratio 20%; (b,c) the loading curve and AE energy; (d–i) the minor principal stress contours at
the Points A~F.

(3) When the joint distance ratio = 50%

Figure 14a shows the schematic diagram of the CJBs model with β = 60◦ and the joint
distance ratio 50% under the lateral pressure = 4 MPa. Figure 14b,c displays the loading
curve and AE energy. Figure 14d–i show the minor principal stress contours at the Points
A~F. Combined with Figure 14b,d–i, at the Point A, the secondary joint sets within the
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specimen are with a certain degree of stress concentration. If the loading reaches the Point B,
the high stress concentrations are gradually significant near the secondary joint sets. If the
loading is reduced to the Point C, the secondary joints slide, are compressed and sheared,
and the creation and propagation of cracks and the high-stress concentration appears. If
the loading decreases to the Point D, the compression shear and sliding at the secondary
joint sets further develop. If the loading further decreases to the Point E, the compression
shear and sliding fracture at the secondary joint sets develops towards the lower area of
the model, but the extent of high-stress concentration reduces. If the loading is reduced to
the Point F, the crushing intensifies near the top of the model and at the secondary joints.
Meanwhile, there are the damage fracture zones developing towards the upper end of the
model. The compression shear, damage and fracture appear at secondary joint sets. The
damage at columnar joints is developed.

As presented in Figure 14c, the elastic energy of the model has a single-peak distribu-
tion. The peak is mainly as a result of the compression-shear damage and fracture of the
secondary joint sets, as well as the failure of the columns near the upper end of the model.

(4) When the joint distance ratio = 50%

Figure 15a displays the schematic diagram of the CJBs model with β = 60◦ and the
joint distance ratio 50%, in the case between plane stress and plane strain, under the lateral
pressure = 4 MPa. The stress-strain curve and elastic energy are shown in Figure 15b,c. The
minor principal stress contours at the Points A~F are depicted in Figure 15d–i. Combined
with Figure 15b,d–i, at the Point A, the high-stress concentrations appear at the primary and
secondary joints inside the model. If the loading is reduced to the Point B, the secondary
joint sets get cracked in the upper zone of the model, and there will be obvious concentrated
stresses around the secondary joint sets at the upper middle area of the model. When the
loading decreases to the Point C, the cracks near the secondary joint sets initiate, propagate
and penetrate in the upper area of the model, and the concentrated stresses move to the
columns near the secondary joint sets. If the loading continues to decrease to the Point D,
at the right side of the upper part of the specimen, the creation and propagation of cracks
form along the columns around the secondary joints. If the loading reaches the Point F,
the damage of the columns will intensify in the top zone of the specimen. Meanwhile, the
damage of columnar joints inside the model develops. The secondary joints near the top
part of the model are damaged and broken. The damage fracture zones are formed at the
columns between the secondary joint sets. As displayed in Figure 15c, the AE energy of the
specimen shows roughly the double-peak distribution. The first peak might be caused by
the compression damage of primary joints, and the cracking of the secondary joint sets and
surrounding columns. The second peak is basically as a result of the crack initiation of the
columns at the upper left area of the model, and the crack propagation of the columns at
the right side of the model.
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Figure 14. (a) Under plane strain, the schematic diagram of the CJBs model with β = 60◦ and the joint
distance ratio 50%; (b,c) the loading curve and AE energy; (d–i) the minor principal stress contours at
the Points A~F.
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Figure 15. (a) For the case between plane stress and plane strain, the schematic diagram of the CJBs
model with β = 60◦ and the joint distance ratio 50%; (b,c) the loading curve and AE energy; (d–i) the
minor principal stress contours at the Points A~F.

3.3. The AE Counts and Energy Accumulations under Different Joint Distance Ratios
3.3.1. For the Case of Plane Strain

From Figure 16a–c, it is clear that for the CJBs with β = 30◦ and the joint distance ratio
0%, the AE count and energy accumulation change slightly in the beginning but increase
sharply later. When the joint distance ratio is 20% and 50%, the variation trend of the AE
count and energy accumulation is slow change, then shows a steep rise, and then slow
growth. In terms of the accumulation magnitude of AE energy, the order from small to
large is the joint distance ratios 0%, 20% and 50%, respectively. When the joint distance
ratio is 0%, no residual strength stage exists on the loading curve, indicating that the overall
instability of the model occurs. Before the instability failure, the AE count and energy
accumulation are lower than those for the joint distance ratios 20% and 50%.
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Figure 16. The AE counts and energy accumulations of the CJBs with different joint distance ratios:
(a–c) for β = 30◦ and the joint distance ratios 0%, 20% and 50%, respectively; (d–f) for β = 60◦ and the
joint distance ratios 0%, 20% and 50%, respectively.

As presented in Figure 16d–f, regarding the variation in the AE counts and energy
accumulations, for the CJBs with β = 60◦ and the joint distance ratio 0%, the AE count and
energy accumulation change gently at first and then grow. When the joint distance ratio is
20% and 50%, the variation trend of the AE count and energy accumulation is a slow change,
then it increases, and then shows gentle variation. In terms of the accumulation magnitude
of AE energy, the order from small to large is the joint distance ratios 0%, 50% and 20%,
respectively. When the joint distance ratio is 20%, there is a higher degree of damage and
fragmentation for the specimen under loading. Thus, the AE energy accumulations are
higher than those for the joint distance ratios 0% and 50%.

3.3.2. For the Case between Plane Stress and Plane Strain

Figure 17 displays the AE counts and energy accumulations of the CJBs with various
joint distance ratios. As depicted in Figure 17a–c, regarding the variation in the AE counts
and energy accumulations, for the CJBs with β = 30◦ and the joint distance ratios 0%, 20%
and 50%, the AE counts and energy accumulations firstly change slowly, then increase
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sharply, and then grow gently. When the joint distance ratio is 50%, the residual strength
stage of the loading curve is in short duration, the overall instability of the specimen occurs,
so the gentle growth stages of the AE counts and energy accumulations are also short. In
terms of the accumulation magnitude of AE energy, the order from small to large is the
joint distance ratios 50%, 20% and 0%, respectively. For the joint distance ratio 0%, the
model is seriously cracked and broken, so the AE counts and energy accumulations are
higher than those for the joint distance ratios 50% and 20%.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 17. For the case between plane stress and plane strain, the AE counts and energy accumulations
of the CJBs with different joint distance ratios: (a–c) for β = 30◦ and the joint distance ratios 0%, 20%
and 50%, respectively; (d–f) for β = 60◦ and the joint distance ratios 0%, 20% and 50%, respectively.

As shown in Figure 17d–f, regarding the variation in the AE counts and energy
accumulations, for the CJBs with β = 60◦ and the joint distance ratio 0%, they change slowly
in the beginning, but then rise steeply, and grow gently later. When the joint distance ratio
is 20% and 50%, the variation trend of the AE counts and energy accumulations is firstly
slow change, then steep increase and then gentle change. In terms of the accumulation
magnitude of AE energy, the order from small to large is the joint distance ratios 0%, 50%
and 20%, respectively. It can be inferred that for the CJBs with β = 60◦ and the joint distance
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ratio 20%, there is a higher degree of fragmentation of the model, so the AE counts and
energy accumulations are higher than those for the joint distance ratios 0% and 50%.

3.3.3. The AE Energy Accumulations under Compression

(1) For the case of plane strain

Figure 18 shows the accumulation of AE energy of the CJBs with various joint distance
ratios, in the case of plane strain. As presented in Figure 18a, the accumulated AE energy
corresponding to the stress peaks, occur in order of β = 30◦, 45◦ (60◦), 15◦, 75◦, 90◦ and
0◦, respectively. From the perspective of their magnitude from small to large, they are in
order of β = 75◦, 60◦, 15◦ (30◦), 0◦, 90◦ and 45◦, respectively. As depicted in Figure 18b, the
accumulated AE energy corresponding to the stress peaks occur in order of β = 30◦, 45◦, 15◦,
60◦, 75◦ and 0◦ (90◦), respectively. From the perspective of their magnitude from small to
large, they are in order of β = 15◦, 30◦, 45◦, 90◦, 75◦, 0◦ and 60◦, respectively. According to
Figure 18c, the accumulated AE energy corresponding to the stress peaks occur in order of
β = 30◦, 45◦, 15◦, 60◦, 75◦, 0◦ and 90◦, respectively. From the perspective of their magnitude
from small to large, they are in order of β = 15◦, 30◦, 90◦ (0◦), 75◦, 45◦ and 60◦, respectively.
As displayed in Figure 18d, the accumulated AE energy corresponding to the stress peaks
occur in order of β = 30◦, 45◦, 15◦, 60◦, 75◦, 90◦ and 0◦, respectively. From the perspective
of their magnitude from small to large, they are in order of β = 15◦, 90◦, 30◦, 75◦, 0◦, 45◦
and 60◦, respectively.

  
(a) (b) 

  
(c) (d) 

Figure 18. The AE energy accumulations for the peak stresses of the CJBs with different joint distance
ratios: (a–d) for the joint distance ratios 0%, 20%, 40% and 50%.
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(2) For the case of two kinds of model boundaries

Figure 19 displays the accumulated AE energy corresponding to the stress peaks of the
CJBs with various joint distance ratios, in the case of two kinds of model boundaries. Case
I is the case between plane stress and plane strain; Case II is the case of plane strain. As
depicted in Figure 19a, regarding the CJBs with β = 30◦ when the lateral pressure = 4 MPa
under Case I, the accumulated AE energy corresponding to the stress peaks fluctuates with
the increase in joint distance ratio, in which the ratio of the highest value to the lowest
is 1.284. However, for Case II, the accumulated AE energy corresponding to the stress
peaks firstly grows gently, and then changes slowly as the joint distance ratio increases, in
which the ratio of the highest value to the lowest is 1.034. Furthermore, the accumulated
AE energy corresponding to the stress peaks in Case II is higher than Case I. If the model
boundaries vary from Case I to Case II, for the joint distance ratios 0%, 20%, 40% and 50%,
the accumulated AE energy corresponding to the stress peaks grow by 53.18%, 46.53%,
89.92% and 48.35%, respectively.

  
(a) (b) 

Figure 19. For the case of two kinds of model boundaries, for the CJBs with different joint distance
ratios: (a) the accumulated AE energy corresponding to the stress peaks, for β = 30◦; (b) the AE
energy accumulations corresponding to the peak stresses, for β = 60◦.

Figure 19b shows that when β = 60◦ and the lateral pressure = 4 MPa under Case
I, the AE energy accumulation corresponding to the stress peaks increases sharply but
reduces with the growth of joint distance ratio later, in which the ratio of the highest value
to the lowest is 2.905, indicating the large variation range. For Case II, the accumulated
AE energy corresponding to the stress peaks rises steeply and then grows slowly as the
joint distance ratio rises, in which the ratio of the highest value to the lowest is 4.587,
implying the great variation range. In addition, the accumulated AE energy corresponding
to the stress peaks in Case II is lower than those in Case I. If the model boundaries vary
from Case I to Case II, for the joint distance ratios 0%, 20%, 40% and 50%, the AE energy
accumulations corresponding to the peak stresses increase by −47.15%, −19.23%, −15.53%
and −2.98%, respectively.

4. Discussion

4.1. Influence of Joint Characteristics on CS and EDM

In the case of plane strain, under various joint distance ratios, the troughs of CS appear
at β = 30◦, 150◦, 210◦ and 330◦; the peaks of CS appear at β = 0◦, 90◦, 180◦ and 270◦.
Additionally, for the CJBs with the joint distance ratios of 20%~50%, the CSs of specimens
decrease sharply near β = 0◦ and 180◦, but they change relatively gently near β = 90◦ and
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270◦. Under various joint distance ratios, the EDMs change in elliptical way as the column
dip angle increases. The EDM of model is less sensitive to the variation in joint distance
ratio. Moreover, the CS and EDM in Case II are higher than those in Case I.

Zheng et al. [31] performed shear tests on jointed granite samples. Their results showed
that the shear strength peak grew with the normal stress or sawtooth angle increasing,
but the shear stress-strain curves were not displayed to analyze further. Wang et al. [32]
adopted the particle flow code (PFC) for studying the deforming and bearing properties
of rock masses with varying joint density and argued that the specimen with a high joint
density shows low strength. However, the jointed rock masses were with discrete fracture
networks, and it was inconvenient for understanding anisotropy of joined rock masses.
Fan et al. [33] adopted the three-dimensional PFC to reproduce the physico-mechanical
properties of multiple non-persistent joints subject to uniaxial loading, and analyzed the
changing of CSs as the dip-angle and length of joints increase. Moreover, with the increase
in joint length, the rock CS will be more and more sensitive to the change of the dip angle.
Nevertheless, the influence of lateral pressures on the CS and EDM of rock mass specimens
was not taken into account. Wu et al. [34] applied the numerical simulation method to
calculate the anisotropy of strength and deformation of jointed rock masses. However, the
distribution of joint dip angles, joint trace lengths and joint spacings are different from the
specimens in this paper.

4.2. Influence of Joint Characteristics on Fracture Mechanism

Taking the following case in this paper for example: the CJBs models with β = 60◦ and
the joint distance ratios 0% and 50% under plane strain. When the joint distance ratio is
0%, with the increase in loading, the secondary joint sets inside the specimen gradually
slide under compression and shear, and the high-stress concentrations occur close to the
upper end of the specimen. After that, the cracks initiate. As the loading grows, the cracks
further develop in the upper zone of the model, but the stress concentration reduces. As the
loading further increases, the fracture intensifies along the secondary joints and fractured
zones. At the middle of the right side of the specimen, the cracks initiate and the stresses
are concentrated.

When the joint distance ratio is 50%, with the growing of loading, the high-stress
concentrations are gradually significant near the secondary joint sets. As the loading con-
tinues to rise, at the upper area of the model, the secondary joint sets slide, are compressed
and sheared, the fractures are created and develop, and the concentrated stresses appear.
With the increase in loading, the compression shear and sliding at the secondary joint sets
further develop, and the fractures also generate and propagate near the upper end of the
model. As the loading further increases, the compression shear and sliding fracture at the
secondary joint sets develops towards the lower end of the model, but the extent of high-
stress concentration reduces. With the loading further growing, the crushing intensifies
towards the upper surface of the model and at the secondary joint sets.

Zhou et al. [35] used the two-dimensional PFC method to compute the physicomechan-
ical parameter values of specimens with single and double joints. However, the influence of
lateral pressures on the failure mechanisms of specimens were not taken into account. Wu
et al. [34] analyzed the cracking modes of jointed rocky masses subject to lateral pressure
by using the numerical simulation method. Nevertheless, the dip angles, trace lengths and
spacings of joints obey to the normal, lognormal and negative exponential distributions,
respectively. As a result, the fracture features were different from the specimens in this
study. Chen et al. [36] suggested that affected by varying lateral pressure, the loading curve
of granite specimens containing pre-existing micro-cracks has the feature of stepped brittle
drops. Fan et al. [33] discussed the fracture mechanisms and failure patterns of multiple
non-persistent joints under uniaxial loading by using the PFC3D method, and analyzed the
influence of the dip angles and lengths of joints on the fracture mechanisms. However, the
lateral pressures were not taken into account.
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4.3. Influence of Joint Characteristics on Acoustic Emission

Taking the following case in this paper for example: the CJBs models with β = 60◦ and
the joint distance ratios 0% and 50% under plane strain. When the joint distance ratio is 0%,
the AE energy released of the model shows roughly the distribution of four peaks. The first
energy peak might result from the fracture and compression shear sliding at the secondary
joint sets inside the specimen. The second energy peak might be caused by the damage
development of the fracture zone at the upper part of the specimen. The third energy peak
might result from the development of the fracture zone close to the upper end of the model,
the development of the fracture zone in the top zone of the model and the damage near
the secondary joint sets. The fourth energy peak might be caused by the crack aggravation
at the secondary joint sets and the creation and propagation of cracks in the middle right
zone of the model.

When the joint distance ratio is 50%, the released AE energy of the model shows the
single peak distribution. The AE energy peak might mainly result from the compressive
shear, damage and fracture of the secondary joint sets, as well as the damage of columns
near the upper end of the model.

The tests conducted by Meng et al. [37] show that with the increase in normal stress,
the initial slope of shear-stress vs. shear-strain curve of cement mortars increases, while
the AE activity gradually lags on the strain axis. However, the stress or damage diagrams
corresponding to the AE activities were not displayed to further investigate mechanical
behaviors of the specimens. The tests obtained by Guo et al. [38] show that the smaller
the joint continuity rate, the more lagging the AE activity for the rock bridge failure point
on the time axis. This conclusion is similar with the order of AE energy accumulations in
certain cases of this paper. For example, for the CJBs with β=60◦ or 75◦, when the joint
distance ratio grows from 0% to 50%, the AE energy accumulation at the peak stresses lags
along the strain axis. By the combination of the laboratory physical test and numerical
test, Zhang et al. [39] summarized the influences of normal stiffnesses and joint dip angles
on the fracture mechanisms and AE energy accumulations of specimens with en-echelon
joints. Nevertheless, there are certain differences for the AE energy accumulations due
to geometric difference between the en-echelon joints and columnar joints. The tests by
Wang et al. [40] show that the AE energy accumulation increases with the growth of joint
roughness, which provides insights for future related work of CJBs in this study.

5. Conclusions

Based on the meso-damage mechanics and the statistical damage theory, a group of
numerical nonuniform CJB samples with various dip angles of columns and distance ratios
of secondary joints were established. The continuous fracture and AE release processes
of CJBs were captured, and the AE-induced energy release rules were discussed. The
conclusions can be drawn as follows:

Under plane strain, the troughs of CS appear at the column dip angles β = 30◦, 150◦,
210◦ and 330◦; the peaks of CS appear at β = 0◦, 90◦, 180◦ and 270◦ under different joint
distance ratios. Meanwhile, for the CJBs with the joint distance ratios of 20%~50%, the CSs
of specimens decrease sharply near β = 0◦ and 180◦, but they change relatively gently near
β = 90◦ and 270◦. In terms of EDM, it changes in elliptical way with increasing column
dip angle under different joint distance ratios. The EDM of specimen is less sensitive to
the variation in joint distance ratio. Under plane strain, the CSs and EDMs are higher
than the corresponding values in the case between plane stress and plane strain. These
rules can provide the theoretical basis for determining in situ parameters, tunnel axis in
transportation engineering, excavation direction in mining engineering and so on.

In the case between plane stress and plane strain, when β = 30◦ and the joint distance
ratio = 0%, the columnar joints slide and are compressed; cracks occur near the upper
end of the model as the loading grows. Especially, the high stresses will concentrate
along the edges of the columns and result in the creation and propagation of cracks at the
upper top part of the specimen. As the loading increases, the shear failure happens at the
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middle part of the model because of high shear stresses. Simultaneously, many fractures
develop at the secondary joint sets and the crushing intensifies within the strip fracture
zone above the secondary sets. Under plane strain, when β = 60◦ and the joint distance
ratio = 50%, the stress concentrations are gradually obvious near the secondary joint sets
with the loading increasing. Then, these joints slide, are compressed and sheared. The
high stress releases due to the newly formed cracks and rebuilds up at the tips of cracks,
which leads the fracture of the secondary joints to developing towards the lower end of the
model. However, the extent of stress concentration gradually reduces. With the gradual
processes of stress concentration, stress release and stress transfer, the crushing intensifies
near the top of the specimen and at the secondary joints. These results will contribute to
the maintenance, support design and reinforcement of slopes and tunnels located at CJBs.

Under plane strain, when the joint distance ratio = 50%, the AE energy accumulations
corresponding to the stress peaks occur along the strain axis in order of β = 30◦, 45◦, 15◦,
60◦, 75◦, 90◦ and 0◦. In terms of the magnitude, they occur in the order from small to large
when β = 15◦, 90◦, 30◦, 75◦, 0◦, 45◦ and 60◦, successively. Moreover, when β = 30◦ under
the lateral pressure, the accumulated AE energy corresponding to the stress peaks under
plane strain is higher than those in the case between plane stress and plane strain. However,
when β increases to 60◦, the former ones become lower than the later ones, which implies
the critical transformation of the influence of column dip angles on the AE energy-related
fracture precursor. These achievements can help to promote the disaster prevention and
mitigation for slope sliding, slope toppling and tunnel collapse which may cause severe
damage by revealing the failure precursors of rock masses.
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Symbol and Abbreviation

Symbol

σ Stress
fc0 Uniaxial compressive strength
ft0 Uniaxial tensile strength
fcr Residual compressive strength
ftr Residual tensile strength
ε Strain
εc0 Strain at fc0
εt0 Strain at ft0
εtu Ultimate tensile strain
Abbreviation

CJRM Columnar jointed rock mass
CJB Columnar jointed basalt
CS Compressive strength
EDM Equivalent deformation modulus
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Abstract: Rainfall-induced landslides represent a severe hazard around the world due to their
sudden occurrence, as well as their widespread influence and runout distance. Considering the
spatial variability of soil, stochastic analysis is often conducted to give a probability description of the
runout. However, rainfall-induced landslides are complex and time-consuming for brute-force Monte
Carlo analyses. Therefore, new methods are required to improve the efficiency of stochastic analysis.
This paper presents a framework to investigate the influence and runout distance of rainfall-induced
landslides with a two-step simulation approach. The complete process, from the initialization of
instability to the post-failure flow, is simulated. The rainfall infiltration process and initialization of
instability are first solved with a coupled hydro-mechanical finite element model. The post-failure
flow is simulated using the coupled Eulerian–Lagrangian method, wherein the soil can flow freely in
fixed Eulerian meshes. An equivalent-strength method is used to connect two steps by considering the
effective stress of unsaturated soil. A rigorous method has been developed to accurately quantify the
influence and runout distance via Eulerian analyses. Several simulations have been produced, using
three-dimensional analyses to study the shapes of slopes and using stochastic analysis to consider
uncertainty and the spatial variability of soils. It was found that a two-dimensional analysis assuming
plain strain is generally conservative and safe in design, but care must be taken to interpret 2D results
when the slope is convex in the longitudinal direction. The uncertainty and spatial variability of soils
can lead to the statistic of influence and runout distance. The framework of using machine-learning
models as surrogate models is effective in stochastic analysis of this problem and can greatly reduce
computational effort.

Keywords: landslides; runout; influence distance; rainfall; stochastic analysis

MSC: 60G60; 65-04

1. Introduction

Rainfall-induced landslides occur frequently around the world; they are a threat
to life and cause huge economic losses [1–6]. According to a previous study [7], of the
4862 investigated landslides from 2004 to 2016, 79% were triggered by rainfall and led to
the deaths of 55,997 people. Rainfall-induced landslides usually happen so rapidly that no
mitigation measures can be introduced after instability is initiated [8,9]. Therefore, active
measures (e.g., vegetations, retaining structures, piles, mesh, geocells, etc.) must be erected
beforehand and the influence and runout distance must be determined, taking into account
the probable soil-loss problems [10]. In addition, effective disaster management and slope
stability analysis must be performed [4,11,12].

Rainfall-induced shallow landslides happen in two stages, as pointed out by Cascini [13]:
first, the development of a complete shear band in the soil, which is termed the failure
stage, and second, rapid post-failure flow, i.e., the post-failure stage. The second stage is the
result of the failure stage. Therefore, the entire process of rainfall-induced landslides can be
simulated according to two interrelated steps, which are rainfall infiltration analysis and
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post-failure large deformation analysis. The same two-step calculation has been validated
with two case studies in China and Japan, respectively [14]. The fracture behavior that nor-
mally occurs in rocks is not considered in this study [15–17]. The finite element (FE) method,
using coupled hydro-mechanical models, is usually adopted for slope stability analysis un-
der rainfall infiltration [18–20] and is also employed in this study. Several numerical models
have been developed to simulate the large deformation of post-failure flows, including
but not limited to the particle finite element method [21], material point method [22], and
smoothed-particle hydrodynamics [23]. The coupled Eulerian–Lagrangian (CEL) method is
a technique used to model the flow of Eulerian materials through a fixed mesh by tracking
the Eulerian volume fraction (EVF); it is also suitable for simulating the post-failure large
deformation of landslides. An equivalent strength method is used to connect the two steps
(infiltration analysis and post-failure flow analysis), which considers the variations in soil
material properties caused by rainfall infiltration.

Most previous rainfall-induced landslide simulations employ deterministic analy-
sis [24–26]. However, due to the limited number of tests conducted for most projects,
soil properties cannot be precisely determined in practice, so stochastic analysis is often
conducted using Monte Carlo simulations. Additionally, soil properties often vary spatially,
due to the sediment history, and soil parameters are regarded as random fields [27–30].
Therefore, this study presents a framework for conducting stochastic analysis of runout
distance and the influence distance of landslides, considering the spatial variability of soils.
Additionally, three-dimensional simulations are conducted to study how the slope shape
can influence the stability and runout of landslides.

One challenge of Monte-Carlo-based stochastic analysis with spatial variability is
the high sampling demand, i.e., a large number of samples; therefore, simulations are
needed for a single analysis, which demand considerable computing resources and time.
Some efforts have been made to reduce the number of simulations [31,32]. Meanwhile,
surrogate models and regression models are also used to replace the time-consuming
numerical simulations [33,34]. The stochastic analysis framework was proposed as a result
of training machine-learning models as surrogate models, using the framework to study
slope stability [35].

The two-step calculations of rainfall-induced landslides are time-consuming in every
simulation. However, an accurate probability density function (PDF) requires large sample
sizes, which may require years to complete brute-force Monte Carlo analyses (directly
simulated from the two-step calculations). The aim of this paper is to build a framework
for a rainfall-induced landslide problem to significantly improve the efficiency of stochastic
analysis: for this purpose, a small number of simulations are conducted to obtain the
influence and runout distance. Then, the random fields of soil parameters and the calculated
influence and runout distance are treated as the input and output to train a machine-
learning (ML) model. This model will be used to predict the influence and runout distance
for many samples and, thus, to estimate the PDF.

The structure of this paper is as follows. Soil models, the hydro-mechanical model,
the CEL method, and, particularly, the method used to connect the infiltration analysis
and post-failure flows are explained in Section 2. A deterministic analysis and parametric
analysis are presented in Section 3, while three-dimensional analyses are conducted to
examine how three-dimensional shape effects the accuracy of predictions. A stochastic
analysis is presented in Section 4, including the generation of random fields, brute-force
stochastic analysis, a brief introduction to neural networks, and stochastic analysis with
machine learning.

2. Method

In this study, the rainfall infiltration process and the initialization of instability are
simulated with a coupled hydro-mechanical FE model. The coupled Eulerian–Lagrangian
method is used for post-failure flows.
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2.1. Soil Constitutive Model

The Mohr–Coulomb model has been widely used in geotechnical engineering because
(i) it has a small number of parameters that can be determined easily, and (ii) the concept
is simple and can reflect the characteristics of both frictional and cohesive materials, such
as soils. However, its yield surface does not employ continuous derivatives, which leads
to the difficulty of convergence in some simulations. The Drucker–Prager model can,
then, be used as an alternative way to avoid this problem, especially in large deformation
simulations [36,37]. In this study, an extended Drucker-Prager model with a non-associated
flow rule is used in both the first step (rainfall infiltration) and the second step (post-failure
flows), and the yield function is:

f = t + p tan β − d (1)

t =
q
2

[
1 +

1
kt

−
(

1 − 1
kt

)(
J3

q

)3
]

(2)

where t is the effective shear stress; J2 and J3 are the second and third invariants of deviatoric
stress; q is generalized shear stress; p is the mean stress; kt is the ratio of the yield stress
in triaxial tension to that in triaxial compression and it controls the shape of the yield
stress in the π plane. When kt = 1 (as used in this study), this reduces to the convectional
Drucker–Prager model where t = q =

√
3J2. The Drucker–Prager friction angle, β, is the

slope of the linear yield surface in the p–t plane and is related to the true friction angle of
the material; the Drucker–Prager intercept, d, is related to the true cohesion and friction
angle of the material. Figure 1a shows the linear Drucker–Prager model in the meridional
plane, while Figure 1b shows a comparison of the linear Drucker–Prager model (kt = 1)
with the Mohr–Coulomb model (ϕ = 20◦).

 

 
(a) (b) 

Figure 1. The illustration of linear Drucker–Prager model: (a) linear Drucker-Prager model on the
meridional plane; (b) comparison of linear Drucker–Prager model (k = 1) and the Mohr–Coulomb
model (ϕ = 20◦ ).

The flow potential, G, is:
G = t − p tan ψ (3)

where ψ is the dilation angle.

2.2. Coupled Hydro-Mechanical Analysis

The soil is a three-phase mixture with the soil skeleton, water, and air. The total stress
σt is related to the water pressure uw, air pressure, ua, and the effective stress, σ′. If the air
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inside and outside is connected, the air pressure can be ignored, and the effective stress
principle is:

σ′ = σt − χ uw I (4)

where χ is Bishop’s parameter, which is approximately the value of the saturation in
previous studies [38,39]. According to Arifin and Schanz [38], χ (ranging from 0 to 1) can
be measured in the laboratory and χ = 1 means full saturation; I is the second-order
identity tensor.

Darcy’s law is expressed as:

snvw = −kd
∂h
∂x

(5)

h = z +
uw

|g| ρw
(6)

kd = ks kd (7)

where s is the saturation; n is the porosity; vw is the seepage velocity of water; kd is the
permeability of the soil; h is the hydraulic head in the soil; x is the coordinate; z is the
elevation above the reference elevation; g is the acceleration of gravity; ρw is the density of
the water; ks is the relative permeability and its cubic power of saturation for the uniform
pore-size distribution [40]; kd is the permeability of fully saturated soil.

Porosity has a significant effect on slope stability. Soils with greater porosity have a
larger water-retention capacity; therefore, for a certain rainfall intensity, slopes take longer
to become saturated and, thus, unstable [41]. This phenomenon can be reproduced with
the present model. However, some effects are hard to implement in this kind of two-step
analysis, and are, therefore, ignored. For example, the soil–water characteristic curve
is greatly influenced by porosity [42], which is not considered in the FE model. Some
researchers [43,44] have considered the spatial variability of the porosity and proved that
this variability may lead to some unexpected effective stress distribution and may make the
failure process more complicated. Our stochastic analysis considers the spatial variability
of soil strength parameters and permeability, but not their porosity. In the post-failure
stage, the porosity of soils will also undergo dramatic change because of the rearrangement
of soil particles and segregation [45,46]. The variation of porosity is difficult to establish,
especially considering the effect of segregation [14]. In this study, porosity is assumed to be
constant in post-failure flows.

The Abaqus FE software [37] with a coupled hydro-mechanical model is used to
simulate rainfall infiltration. With the rainfall continuing, the deformation of the slope
may increase rapidly, leading to instability at some stage, and finally, to landslides. This
post-failure flow is large deformation, in which a traditional FE simulation may suffer
mesh distortion and, thus, non-convergence. The results of the coupled analysis after slope
failure would be mapped into the CEL model as the initial conditions.

2.3. Coupled Eulerian–Lagrangian (CEL) Method

In the CEL method, a mesh is fixed for the Eulerian domain, and materials such as
soils can move freely in the mesh, which can help to avoid the mesh distortion problem
near slip surfaces (where the shear behavior concentrates). Each iteration of the CEL model
is illustrated in Figure 2. The configuration of a specific material in the Eulerian domain is
tracked by its Eulerian volume fraction (EVF). A value of EVF = 1 for an element means
that this element is totally occupied by the materials. The sum of EVFs in each element
cannot exceed 1, and EVF = 0 means that this element is empty. The first step in the CEL
method is similar to an updated Lagrangian FE simulation (Figure 2a); in the second step
of the CEL method, as shown in Figure 2b (sometimes termed the Eulerian step), the mesh
is reset, and a transfer algorithm is used to update all the variables and EVFs (Figure 2c).
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(a) (b) (c) 

Figure 2. Illustration showing the updating of Eulerian materials in the coupled Eulerian–Lagrangian
method: (a) first step; (b) second step; (c) reshaping to the initial mesh.

In the CEL model, the contact between Eulerian domains and Lagrangian domains
is modeled using the general contact method, which is based on the penalty method. In
this study, the boundaries are modeled as Lagrangian rigid bodies. Seeds are created on
the Lagrangian element faces and edges, while anchor points are created on the Eulerian
material surface. The penalty method approximates spring deformation. The contact
force, Fp, which is enforced between seeds and anchor points, is related to the penetration
distance, dp, as:

Fp = kp dp (8)

where the factor kp is the penalty stiffness, which depends on the Lagrangian and Eulerian
material properties.

2.4. Transition between Finite Element Analysis and Coupled Eulerian–Lagrangian Analysis

The two steps should have the same physical conditions; the last increment of the first
step will be the initial conditions of the second step. Therefore, the results exported from
the coupled hydro-mechanical FE analysis will be imported into the CEL simulations. The
exported data should include the coordinates, saturation, void ratio, stresses, and strain of
each node or element, which is implemented by Python scripts. The nodal displacement
and velocity will be ignored because they are too small, compared with the geometry
of the slope.

In infiltration analysis, data are saved on the element nodes or integration points,
and the deformed mesh has irregular shapes so that the meshes between the two steps
are inconsistent. Therefore, the data from the first step cannot be used in the second step
directly. The biharmonic spline interpolation method [47] is adopted to remap the data and
is implemented using MATLAB scripts:

W(xi) =
N

∑
j=1

αj φm
(
xi − xj

)
(9)

where xi and xj are the target interpolation points and initial data points, respectively;
W(xi) is the data on each target interpolation point; αj is found by solving the linear system
with all the known element nodal data; φm is the biharmonic green function for each
dimension and can be checked against previous studies [47].

Next, we substitute the effective stress of unsaturated soil (Equation (4)) into the yield
strength (Equation (1)):

τf = d + σ′ tanβ = d − χ uw tan β + σt tan β. (10)

As reported in previous studies [48–50], landslides often occur rapidly, meaning that
excess pore water pressure does not have time to dissipate. This situation is similar to
undrained conditions in soil mechanics [51]. Therefore, after the infiltration analysis, the
pore water pressure is assumed to keep constant in post-failure flows, and an equivalent
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strength method is used [14]. For the soil in each FE element, the equivalent friction angle
βe and equivalent cohesion de used in CEL are:

de = d − χ uw tan β (11)

βe = β (12)

Here, the pore water pressure, uw, and χ (i.e., saturation) are from the last iteration
of the FE analysis. Due to the increase in water pressure and saturation, the equivalent
cohesion is reduced, compared with that before rainfall occurred.

The equivalent friction and cohesion are based on the total stress; this stress is related
to the equivalent density, ρe, which is increased due to the rainfall:

ρe = ρs + n s ρw. (13)

3. Rainfall-Induced Landslide and Post-Failure Flow

Figure 3a,b shows the geometry of two types of slopes, which have the same sizes
but are different in terms of layers. First, the uniform slope is studied. The rise and run
of the slope are 10 m and 14 m, respectively. The uniform rainfall boundary condition is
enforced on the top surface, while a completely fixed boundary condition is applied to the
bottom. The left and right boundaries are fixed in the normal direction. Table 1 shows the
parameters used in the simulation of the base model. The soil–water characteristic curve
(SWCC) is fitted using the van Genuchten model [52]. The relative permeability is modeled
using the Gardner model [22,53]. Further simulations may only vary one parameter at a
time and may fix the others. Figure 4 shows the SWCC and hydraulic conductivity that are
used in simulations.

The FE mesh contains 440 elements, and the element size is approximately 1 m × 1 m.
Each element contains four Gaussian integration points. First, a steady-state step is con-
ducted to obtain an initial stress distribution without rainfall. Then, transient analysis is
conducted to simulate the rainfall-induced hydro-mechanical response of the slope.

Table 1. Parameters used in the simulation of rainfall-induced landslides.

Parameters Values

Young’s modulus E 100 MPa

Poisson’s ratio v 0.3

Cohesion d in Drucker–Prager 10 kPa

Friction angle β in Drucker–Prager 35◦

Dilation angle ψ 0◦

Soil particle density ρs 2650 kg/m3

Water density ρw 1000 kg/m3

Initial porosity n 0.3

Rainfall intensity qr 0.018 m/h

Duration 20 h

Initial matric suction 20 kPa

Hydraulic conductivity k 0.036 m/h

SWCC parameter α′ 0.31 m−1

SWCC parameter n′ 1.19

Hydraulic conductivity parameter η 1.962 m−1
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(a)  (b)  

Figure 3. Illustrations of slope geometries: (a) uniform slope; (b) layered slope.

 
Figure 4. The SWCC and hydraulic conductivity.

The variations in saturation with time are presented in Figure 5. In total, 40 h are
simulated (20 h of rainfall and 20 h after rainfall) to check the distribution of saturation. The
initial saturation of the slope is uniformly 0.684. After the start of rainfall, the saturation
increases rapidly near the surface of the slope, forming a high saturation band (Figure 5a).
With time, the high saturation band widens (Figure 5a,b) due to the rainfall. After the
rainfall stops, this band will move downward and spread out with a decrease in saturation
(Figure 5c).

The predicted displacement from the first step is presented in Figure 6. Figure 6a
shows the rainfall of 10.6 h, the slopes have almost no deformation. Figure 6b shows the
initial deformation of the slope in 18 h and in Figure 6c the sliding surface can be clearly
observed. A scale factor is taken as 100 to amplify the displacement of the slope. Because
damping is used, the model can cope with a certain degree of deformation without a failure
of convergence. Figure 7a shows the displacement of the slope top and Figure 7b shows
that of the slope toe. Figures 6 and 7 illustrate that this failure happens at around 17 h. If
the rainfall duration is less than 17 h, the slope is expected to remain stable. In addition,
the displacement in the first step is quite small compared with the geometry of the slope;
therefore, ignoring this displacement in the second step is reasonable.

A finer mesh size of 0.5 m × 0.5 m is also employed in the first step and the results
are shown in Figure 8. Figure 8a,b shows the saturation distribution and displacement in
the FE infiltration analysis. The displacement is also amplified by 100 to clearly show the
deformation of the slope. According to Figure 8, there is no significant difference between
the fine and coarse mesh sizes. Taking into account the computational efficiency of the
simulations, a mesh size of 1 m × 1 m is sufficient to address this problem.
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(a)   

  
(b)  (c)  

Figure 5. Variations of saturation in the FE infiltration analysis: (a) t = 10.6 h; (b) t = 20.2 h; (c) t = 40 h.

 

 
(a)   

  
(b)  (c)  

Figure 6. Variations of displacement in the FE infiltration analysis (displacement amplified by 100):
(a) t = 10.6 h; (b) t = 18 h; (c) t = 20 h.

 
(a)  (b)  

Figure 7. Variations of displacement in tow positions: (a) slope top; (b) slope toe.
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(a)   

 

 
(b)   

Figure 8. The FE infiltration analysis with a finer mesh size: (a) saturation distribution; (b) displace-
ment (amplified by 100).

Each element in the CEL method contains only one Gaussian integration point. The
CEL simulation domain contains 2400 elements, and the mesh size is 0.5 m × 0.5 m, which
is consistent with the integration points in the first step. Initially, 1502 elements contain
materials. Additionally, because the pore water pressure and saturation are different at
different locations after infiltration, the equivalent cohesion de in the CEL method are
spatial variables, even if the initial slope has uniform strength parameters; 1502 different
materials are filled in the CEL, and each is tracked by its own EVF.

Figure 9 shows the deformation of the slope. The slope does not register the tiny
amount of velocity in the first step (Figure 9a). An initial sliding surface is clearly indicated
in Figure 9b. The soil slides downward along this sliding surface (Figure 9c). The sliding
mass gradually reduces (Figure 9d) and finally stops (Figure 9e).

The determination of runout and influence distance is illustrated in Figure 10. The
dots show the sum of all 1502 EVFs for all CEL materials. Elements that are fully occupied
by materials have values of EVF = 1, and empty elements have EVF = 0. Therefore, the
final slope profile exits at elements that have 0 < EVFs < 1. The Eulerian analysis cannot
track the material interface exactly. Instead, it can only be approximately recovered by
conducting curve fitting (Figure 10). In order to obtain an accurate influence and runout
distance, the top profile and bottom profile are fitted separately (Figure 10). Additionally,
because the landslide front is represented by only one or two layers of elements, it is even
harder to accurately obtain the runout distance; the different influence distance Di∗ and
runout distance Dr∗ are defined at different heights (Figure 10) to depict the final slope
profile. Here, the superscript i denotes the influence distance, and r denotes the runout
distance. Subscript numbers (0, 0.5, 1, 1.5) indicate the vertical distance between the defined
height and the initial top and toe of the slope (Figure 10). Figure 11 shows the variations in
influence distances (Figure 11a) and runout distances (Figure 11b) over time, which clearly
shows that the post-failure flow stops at around 5 s. After 5 s of deformation, the slope
head and slope toe stop moving and are finally stable. Additionally, the influence distance
is generally larger than the runout distance, which is to be expected because only part of
the upper soil eventually accumulates at the toe of the slope.
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(a)  

  
(b) (c) 

  
(d) (e) 

Figure 9. Slope deformation in the CEL simulation: (a) t = 0 s; (b) t = 1.5 s; (c) t = 2.5 s; (d) t = 4.5 s;
(e) t = 5.5 s.

Figure 10. Determination of the slope surface, runout, and influence distance.
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(a)  (b)  

Figure 11. Variation of runout and influence distance with time from CEL simulations: (a) distance of
the slope top with time (influence distance); (b) distance of the slope toe with time (runout distance).

3.1. Effect of Soil and Rainfall Parameters

Rainfall-induced landslides are affected by many factors, including soil parameters,
initial saturation, rainfall intensity, rainfall duration, and slope geometry. Therefore, it
is necessary to conduct a sensitivity analysis, which is achieved by simply varying one
parameter but fixing the other parameters in this study. In this section, seven parameters
are studied, including the Drucker–Prager cohesion, d, the Drucker–Prager friction angle,
β, soil particle density, ρs, hydraulic conductivity, k, initial saturation, Si, rainfall intensity,
qr and rainfall duration, Tr.

The variation in final influence and runout distance with each different Drucker–
Prager cohesion d (from 5 to 100 kPa) in the uniform slopes is presented in Figure 12a,b.
When the cohesion is less than 5 kPa, the slope is initially not stable and will fail at the
geostatic step. When the cohesion increases (higher strength), the influence distance and
runout decrease (i.e., the slope is more stable). When the cohesion is greater than 50 kPa,
this rainfall intensity and duration will not cause instability and landslides.

Soil properties usually vary greatly in the vertical direction due to sedimentation
history. In this section, layered slopes are also considered (three layers, as in Figure 3b; the
parameters for the different layers are listed in Table 2). For example, to study slopes with
different cohesion values, d, for different layers, four simulations are conducted. Due to the
sedimentation history, the bottom soils usually have greater strength and density, which
pattern is followed in the simulations, as in Table 2. Tests D2 and D3 have the same average
cohesion as the base model, while D3 has greater variation. Test D1 has smaller average
cohesion than the base model, and test D4 has greater average cohesion. Figure 12c,d
gives the influence and runout distance for these layered slopes; the horizontal axis is
the maximum cohesion for the tests and so, from left to right, tests D1 to D4 are shown.
The horizontal dash lines represent the results for the uniform slope (the base model). In
Figure 12c,d, the variation of cohesion between layers has limited influence (i.e., D2 and
D3 are the same), but the layered slopes (D2 and D3) demonstrate smaller runout distance
than the uniform slope (the base model) because of the greater cohesion at the slope toe in
D2 and D3. Additionally, in agreement with the trend of increasing cohesion in uniform
slopes, the increase in average cohesion in the layered slopes (from D1 to D4) also leads to
increased stability and reduced runout.
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(a) (b) 

  
(c) (d) 

Figure 12. Variation of influence distance and runout with different cohesion in uniform and lay-
ered slopes: (a) different influence distances in uniform slopes; (b) different runout distances in
uniform slopes; (c) different influence distances in layered slopes; (d) different runout distances in
layered slopes.

Table 2. Parameters used for the layered slopes.

Test Label Top Middle Bottom Mean Max

Cohesion d (kPa)

D1 5 7.5 10 7.5 10
D2 7.5 10 12.5 10 12.5
D3 5 10 15 10 15
D4 15 20 25 20 25

Friction angle β (◦)

F1 31 33 35 33 35
F2 34 35 36 35 36
F3 33 35 37 35 37
F4 35 37 39 37 39

Soil particle
density ρs
(kg/ m3)

R1 2250 2450 2650 2450 2650
R2 2550 2650 2750 2650 2750
R3 2450 2650 2850 2650 2850
R4 2650 2850 3050 2850 3050
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The results concerning the different Drucker–Prager friction angles, β (from 32 to 45◦),
in the uniform slopes are illustrated in Figure 13a,b. The slope will initially be unstable and
will fail in the geostatic step if the friction angle is less than 32◦. When the friction angle
increases (higher strength), the influence and runout distance decrease (i.e., more stable),
and a friction angle greater than 45◦ will not have landslides. Similarly, four-layered slopes
are studied with different friction angles, β, for the different layers (parameters are chosen
based on the same logic as the study of cohesion), and Figure 13c,d gives the results. Tests
F2 and F3 have smaller runout values than the base model (these three tests have the same
average friction angle) and F3 is smaller than F2, which is because the larger friction angle
at the slope toes is effective in reducing the runout. Additionally, a greater average friction
angle (from F1 to F4) will also reduce the runout.

  
(a) (b) 

 
(c) (d) 

Figure 13. Variations in influence distance and runout with different friction angles: (a) different
influence distances in uniform slopes; (b) different runout distances in uniform slopes; (c) different
influence distances in layered slopes; (d) different runout distances in layered slopes.

The results concerning particle density, ρs, in the uniform slopes are illustrated in
Figure 14a,b (with values from 1450 to 2950 kg/m3). When the density increases, the
influence and runout distance increase (i.e., they become unstable due to the higher grav-
ity load). Their impact on influence distance is very small (Figure 14a) but the density
has a great impact on the runout (Figure 14b). Table 2 lists four tests of layered slopes
with different particle densities; the values are not far from the typical values for sands
and clays (2650 kg/m3), the obtained runout and influence distance only vary slightly
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(Figure 14c,d), and this variation is possibly smaller than the error associated with the
determination of runout.

 
(a) (b) 

 
(c) (d) 

Figure 14. Variations in influence distance and runout with different densities: (a) different influence
distances in uniform slopes; (b) different runout distances in uniform slopes; (c) different influence
distances in layered slopes; (d) different runout distances in layered slopes.

The impact of hydraulic conductivity, k (from 0.018 to 0.7 m/h), is presented in
Figure 15. To ensure that no runoff happens on the slope surface, k cannot be less than
0.018 m/h (i.e., the rainfall intensity, qr). When the hydraulic conductivity increases near
the rainfall intensity (0.018 m/h), the runout distance will exhibit a violent drop (Figure 15b).
When the hydraulic conductivity continues to increase, the influence and runout distance
decrease (i.e., they become more stable), as shown in Figure 15a,b. This is because higher
conductivity will let water infiltrate quickly through the slope and reach the bottom, and
the growth of saturation in the slope will be reduced.

Initial saturation, Si, is also a factor that influences the runout. The results are presented
in Figure 16a,b (Si is from 0.512 to 0.83). When the Si is greater than 0.83, the slope is initially
not stable and fails in the geostatic step. When the Si increases, the influence and runout
distance increase slightly.
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(a) (b) 

Figure 15. Variations in influence distances and runout with different hydraulic conductivity values:
(a) different influence distances in uniform slopes; (b) different runout distances in uniform slopes.

(a) (b) 

Figure 16. Variations in influence distances and runout with different initial saturation values:
(a) different influence distances in uniform slopes; (b) different runout distances in uniform slopes.

The rainfall intensity (varying from 0.012 to 0.036 m/h) and duration (from 1 to 40 h)
were investigated, and the results are presented in Figures 17a,b and 18a,b. The intensity
value must be smaller than the hydraulic conductivity value (0.036 m/h), otherwise, surface
runoff will occur. Figure 17 shows that when the rainfall intensity increases, the influence
and runout distance also increase. In particular, when the rainfall intensity is very close to
the maximum possible intensity and is greater than 0.03 m/h, the runout distance will rise
dramatically (Figure 17b), which is similar to the drop seen in Figure 14b; in both cases,
the rainfall intensity is very close to the hydraulic conductivity. In terms of the impact of
rainfall duration, Tr, Figure 18a shows the different influence distances with changing Tr
and Figure 18b gives the results of the different runout distances. According to Figure 18,
the increase in Tr leads to an increase in influence and runout distance. However, the
influence distance is not very sensitive to this variable, while the runout distance increases
gradually with persistent rainfall.
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(a) (b) 

Figure 17. Variations in influence distances and runout with different rainfall intensities: (a) different
influence distances in uniform slopes; (b) different runout distances in uniform slopes.

(a) (b) 

Figure 18. Variations in influence distance and runout with different rainfall duration: (a) different
influence distances in uniform slopes; (b) different runout distances in uniform slopes.

3.2. Effect of Slope Shapes

The previous studies mostly employ two-dimensional (2D) analysis by assuming that
the longitudinal length, perpendicular to the slope cross-section, is long, and the problem
is simplified into a plane-strain problem. In this section, three-dimensional (3D) slopes are
studied, including two types of geometry: a concave slope and a convex slope (Figure 19a,c).
The side views of the two slopes are the same as those of the base model. In both tests, the
Eulerian domain is discretized into 24,000 elements. Of these, 19,039 elements are initially
occupied by materials for the concave slope, and 11,441 elements are occupied by materials
for the convex slope. Because tracking tens of thousands of materials and their EVFs
requires a large amount of RAM and CPU resources, each initially occupied element will be
not modeled as a separate material, as in the 2D simulations; however, every 12 elements
(concave) or 8 elements (convex) initially share the same material and are tracked by an EVF.
Therefore, 1749 (concave) and 1490 (convex) materials are defined in the CEL. The material
parameters are calculated via the same biharmonic spline interpolation method used in the
infiltration simulations. The top view of the final profiles is shown in Figure 19b,d. The
dash lines represent the contours at the same height as in the initial profile, with magenta

46



Mathematics 2022, 10, 4426

for the top contour, red for the mid-segment, and blue for the bottom. The solid lines
use the same contours for the final profile, while the dotted lines are drawn from the 2D
predictions (i.e., the base model). The black arrows indicate the sliding directions. In both
cases (concave and convex), the runout distances are smaller than in the 2D prediction; in
particular, the runout distances at the corner are almost negligible. Therefore, the runout
distance predicted by the 2D analysis is conservative and leads to safe design in practice.
In terms of the influence distance, for those sections away from the corner, the predictions
from 3D and 2D analyses are almost identical, with a 1.5% difference. For the concave slope,
the top corner does not move, so the conservative prediction from the 2D analysis is safe in
practice. However, in the case of the convex slope, the influence distance at the top corner
is larger than in the 2D analysis. Therefore, great care must be taken to interpret the 2D
analysis when the slope is convex in the longitudinal direction.

 

(a) (b) 

 
 

(c) (d) 

Figure 19. Runout and influence distances of the 3D slopes (dashed lines: initial contours; solid lines:
final contours; dotted lines: 2D predictions): (a) concave slope shape; (b) top view of the final profile
of the concave slope; (c) convex slope shape; (d) top view of the final profile of the convex slope.

4. Stochastic Analysis with Machine Learning

Soil parameters are often associated with uncertainty and spatial variability. The
proposed two-step framework is used to conduct stochastic analysis, wherein the ini-
tial parameters, including cohesion, d, friction angle, β, soil particle density, ρs, and hy-
draulic conductivity, k, are modeled with random fields. The material parameters are
assumed to follow log-normal distributions. The exponential autocorrelation function
(ρ(x, x′) = exp

(
−|x−x′ |

lH
− |x−x′ |

lv

)
) is used, where lH and lv are the horizontal and vertical

correlation lengths. These correlation lengths reflect the rate at which the correlation is
delayed between two points in space. In other words, soil particles will be more similar
with a shorter distance from each other. In the infiltration analysis, there are 440 elements;
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therefore, 440 materials are defined, which are spatial variables. The open-source software
GSTools [54] was used to generate random field samples. Figure 20 shows the random
fields of cohesion in the simulations. The parameters used in this stochastic analysis are
listed in Table 3. At this point, 1000 random fields are generated, and the corresponding
simulations are performed. Each two-step simulation in this study is conducted on a laptop
computer, with an Intel Core 7 CPU @ 2.80GHz and 16 GB of random-access memory
(RAM). Each simulation takes 20–30 min to complete, meaning that 1000 simulations cost
16 days of computation.

Figure 20. The generation of random fields of cohesion.

Table 3. The parameters for the stochastic analysis.

Parameter Mean μ COV lH lv

Cohesion d 10 kPa 0.1 16 m 8 m
Friction angle β 35◦ 0.05 16 m 8 m
Soil particle density ρs 2650 kg/m3 0.05 16 m 8 m
Hydraulic conductivity k 0.036 m/h 0.3 16 m 8 m

The numerically estimated PDF of the influence and runout distance are illustrated
in Figures 21 and 22, respectively. The mean values of influence distance are larger than
the runout distance, which is consistent with the results of the deterministic analysis. In
addition, the standard deviation of influence distance is smaller than that of runout distance,
which means that the uncertainty and spatial variable of soil parameters have a stronger
impact on the uncertainty of runout distance than the influence distance. These simulations
took over two weeks and the estimated PDFs are not very accurate, compared with the
solid lines shown in Figures 21 and 22, which were obtained from machine-learning-aided
stochastic analysis using 105 Monte Carlo samples.

Machine learning (ML) algorithms can build mathematical models, based on existing
sample input-output pairs [35]. For the rainfall-induced landslides presented in this study,
the inputs are the material parameters, which are spatially variable, and the outputs are
the influence and runout distance. In the framework of machine-learning-aided stochastic
analysis, the input data (spatially variable material parameters) and calculated influence
and runout distance from a small number of two-step simulations are fed into the ML
algorithms as training data. A general mathematical relationship will then be found and
can be used as a surrogate model to predict the influence and runout distance, which is
more effective than the two-step simulations.
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(a) (b) 

(c) (d) 

Figure 21. The estimated probability density function of influence distance (histogram: 1000 samples
with brute-force simulations; solid line: 105 samples, evaluated with the machine-learning model):
(a) PDF of Di

0; (b) PDF of Di
0.5; (c) PDF of Di

1; (d) PDF of Di
1.5.

An artificial neural network (ANN) is used in this study, which is inspired by the
biological neural networks that constitute animal brains [35]. It is similar to the human
brain’s neural network, from the perspective of information processing. A neural network is
an operation model, which is composed of a large number of nodes (or neurons) connected
with each other. These artificial neurons receive the signal, process it, and pass the signal
on to adjacent neurons. ANNs can have multiple input and output connections and the
connections between neurons are called “edges”. Signals are transferred from the input
layer to the output layer. The connection between every two nodes represents a weighted
value for the signal passing through the connection, which is called weight and is similar to
the memory of the artificial neural network. Each node has a specific output function called
the activation function. Before the output is produced, the weighted sum is combined with
this neuron’s internal state (or activation) by using this activation function. Non-linear
activation functions can help ANNs to learn more complex data and give exact predictions.
The loss function is used to define the accuracy and ANNs are trained to minimize the
loss function. The learning rate defines the size of the corrective steps that the model must
take to adjust for errors in each observation. A high learning rate shortens the training
time but may cause an unstable training process and may lead to a local minimum other
than a global minimum, while a lower learning rate results in a long training process. The
open-source library, TensorFlow, which implements the ANNs is used in the present study.
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(a) (b) 

(c) (d) 

Figure 22. The estimated probability density function of runout (histogram: 1000 samples with
brute-force simulations; solid line: 105 samples, evaluated with the machine-learning model): (a) PDF
of Dr

0; (b) PDF of Dr
0.5; (c) PDF of Dr

1; (d) PDF of Dr
1.5.

The FE model in infiltration analysis contains 440 elements and 4 random fields.
Therefore, the input size of ML algorithms is 1760 and the output size is 8, which are
the influence and runout distance defined at different heights. For this analysis, 1000
input-output pairs were obtained from two-step simulations, of which 500 samples were
first used as training samples and 500 were validation samples. It was shown that deep
learning neural networks can perform very complex tasks [55], but in the case of the
simple problem in the present study, ANNs with only one hidden layer were enough. The
activation function is the rectified linear unit (ReLU), while the mean absolute percentage
error (MAPE) was chosen as the loss function. The Adam learning-rate optimization
algorithm [56] was used and a learning rate of 0.001 was adopted in this study. An early-
stop technique (with a maximum of 5000 epochs of training) was also used to stop the
training after the loss function did not change.

The number of neurons is a tuneable hyperparameter in ANNs. Figure 23 shows the
variety of MAPEs possible when the neurons change from 20 to 100. The increase in neurons
will lead to more complex models and is expected to improve the accuracy. However, when
the neurons are more than 60, no significant improvement can be observed. Therefore,
an ANN with 60 hidden neurons is optimal. This size of ANN can handle very complex
problems because it has more than 105 trainable parameters. Figures 24 and 25 compare the
influence and runout distance calculated with two-step simulations with those predicted
from machine-learning surrogate models. It is clear that the mean absolute percentage
error (MAPEs) of runout distance (about 9%–10%) is greater than that of influence distance
(4%–8%). This is because in Eulerian simulations, the interface and the profile cannot
be exactly tracked but are instead recovered from the positions of elements where the
0 < EVFs < 1, using curve fitting. Therefore, there are errors when determining the runout
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or influence distance and this noise in the input data prevents the ML algorithms from
producing very accurate models. The errors here (of around 10% for the runout distance
and 6% for the influence distance) from machine-learning surrogate models are, thus,
considered acceptable.

Figure 23. Errors in artificial neural networks with various hyperparameters.

 
(a) (b) 

 
(c) (d) 

Figure 24. The predictions of influence distance from the numerical simulations and the machine-
learning model (black dots = training; red dots = validation): (a) MAPE = 4.85% with Di

0;
(b) MAPE = 5.28% with Di

0.5; (c) MAPE = 6.45% with Di
1; (d) MAPE = 7.81% with Di

1.5.
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(a) (b) 

 
(c) (d) 

Figure 25. Predictions of runout from the numerical simulations and the machine-learning model
(black dots = training; red dots = validation): (a) MAPE = 9.45% with Dr

0; (b) MAPE = 9.24% with
Dr

0.5; (c) MAPE = 10.03% with Dr
1; (d) MAPE = 10.04% with Dr

1.5.

With this ANN as a surrogate model, the influence and runout distance for the millions
of Monte Carlo samples can be easily evaluated. In Figures 21 and 22, the black solid lines
are the PDFs of influence and runout distances for the 105 Monte Carlo samples, which
are evaluated with the machine-learning surrogate model. The computation time for
500 simulations is about 7–10 days, while the time needed for the training and prediction
of 105 samples using ML is only about 10 min.

Table 4 shows the mean and standard deviations for the influence and runout distance.
The errors between the brute-force stochastic analysis and machine-learning-aided stochas-
tic analysis are smaller than 2%. However, machine-learning-aided analysis is able to obtain
an accurate PDF, due to the larger number of samples used. Therefore, this framework
greatly reduces the amount of computation necessary and ensures higher accuracy with a
large number of Monte Carlo samples.

After the PDFs of influence and runout distance are obtained, the probability that
an infrastructure (i.e., a house, railway, etc.) lies within the influence of landslides can be
estimated using the following function:

p f =
∫ ∞

a
fPDF(x) dx (14)

where a is the distance between the infrastructure and the slope top and toe, and fPDF(x)
is the probability density function of the influence and runout distance.
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Table 4. The statistics of influence distance and runout.

Random Variable
of Interest

Brute-Force Analysis Machine-Learning-Aided

Mean
Standard
Deviation

Mean
Standard
Deviation

Di
0 7.72 m 0.72 m 7.85 m 0.66 m

Di
0.5 5.40 m 0.60 m 5.32 m 0.55 m

Di
1.5 3.81 m 0.58 m 3.86 m 0.49 m

Dr
0 4.79 m 1.02 m 4.88 m 0.97 m

Dr
0.5 3.80 m 0.82 m 3.82 m 0.80 m

Dr
1 3.32 m 0.73 m 3.37 m 0.68 m

Dr
1.5 3.00 m 0.65 m 3.07 m 0.65 m

5. Conclusions

This paper presents a study of the influence and runout distance of rainfall-induced
landslides. In particular, the effect of the 3D slope shape was studied and stochastic analysis
was conducted.

A two-step approach was adopted for rainfall-induced landslides. This approach
can simulate the entire process, from initialization to post-failure flows. A coupled hydro-
mechanical FE model was used to simulate the infiltration of rainfall, which can evaluate
the pore pressure, displacement, and plastic strain of the slope. The coupled Eulerian–
Lagrangian (CEL) method was used as the second step to simulate the post-failure flows.
An equivalent strength method was used to build a connection between the infiltration
analysis and the post-failure flow. A method was also developed to more accurately
quantify the influence and runout distance using Eulerian analysis.

The sensitivity analysis showed that the influence and runout distance are affected
by many factors, including the soil strength parameters (cohesion and friction angle),
soil permeability and density, initial slope saturation, and rainfall intensity and duration.
Two 3D slopes were studied with different shapes in the direction perpendicular to the
cross-section (a concave slope and a convex one); it was found that the runout predicted
from the 3D analysis is smaller than in the predictions of the 2D analysis, assuming plain
strain; therefore, 2D analysis is conservative and is safe for design. In terms of the influence
distance, the 2D analysis agreed with the 3D analysis regarding sections away from the
intersecting corner, but the 2D analysis was conservative for the concave slope and was
optimistic for the convex slope. Therefore, great care must be taken when interpreting the
2D analysis results when the slope is convex in the longitudinal direction.

Stochastic reliability analysis was conducted to consider both the uncertainty and
spatial variability of soils. An example is given herein, where the four material parameters
(cohesion, friction angle, particle density, and permeability) are modeled as random fields.
Monte-Carlo simulations were conducted to investigate the statistics of the influence and
runout distance, associated with the uncertainty of the material properties. Brute-force
analysis and machine-learning-aided analysis were compared. For the brute-force analysis,
simulations of 1000 samples needed 16 days of computation. However, the estimated prob-
ability density function (PDF) of influence and runout distance were still not satisfactory,
due to the small sampling size. Therefore, a larger number of samples are required to
obtain an accurate PDF. However, traditional stochastic reliability analysis requires a great
deal of computing resources and time to achieve a higher accuracy—105 samples require
4–6 years to finish, whereas machine-learning-aided analysis is very efficient.

A neural network was used to establish the relationship between the material prop-
erties (which are spatially variable) and the influence and runout distance. With only
500 samples for use as training datasets, the ML algorithms could train a model that pre-
dicted the influence and runout distance with good accuracy. With this machine-learning
model as a surrogate model to predict the influence and runout distance of millions
of samples, a PDF with high accuracy was obtained. Once such a PDF is obtained, a
complete stochastic examination can then be conducted, including the mean values of
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influence and runout distance, identifying the probability that infrastructure lies within the
influence of landslides.
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Abstract: The mechanical properties of rocks, such as uniaxial compressive strength and elastic
modulus of intact rock, must be determined before any engineering project by employing lab or in
situ tests. However, there are some circumstances where it is impossible to prepare the necessary
specimens after exposure to high temperatures. Therefore, the propensity to estimate the destructive
parameters of thermally heated rocks based on non-destructive factors is a helpful research field.
Egyptian granodiorite samples were heated to temperatures of up to 800 ◦C before being treated to
two different cooling methods: via the oven (slow-cooling) and using water (rapid cooling). The
cooling condition, temperature, mass, porosity, absorption, dry density (D), and P-waves were
used as input parameters in the predictive models for the UCS and E of thermally treated Egyptian
granodiorite. Multi-linear regression (MLR), random forest (RF), k-nearest neighbor (KNN), and
artificial neural networks (ANNs) were used to create predictive models. The performance of each
prediction model was also evaluated using the (R2), (RMSE), (MAPE), and (VAF). The findings
revealed that cooling methods and mass as input parameters to predict UCS and E have a minor
impact on prediction models. In contrast, the other parameters had a good relationship with UCS
and E. Due to severe damage to granodiorite samples, many input and output parameters were
impossible to measure after 600 ◦C. The prediction models were thus developed up to this threshold
temperature. Furthermore, the comparative analysis of predictive models demonstrated that the
ANN pattern for predicting the UCS and E is the most accurate model, with R2 of 0.99, MAPE of
0.25%, VAF of 97.22%, and RMSE of 2.04.

Keywords: Egyptian granodiorite; thermal treatments; predictive models; multivariate statistics;
machine learning techniques

MSC: 62H10

1. Introduction

With the advancement of thermal engineering applications, such as geothermal energy
extraction, deep nuclear waste storage, and coal mining, a more in-depth understanding of
rocks’ strength and index properties are essential. High-temperature conditions distinguish
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these applications and may extend to 1000 ◦C, as in the coal gasification process [1]. Tem-
perature can cause damage to the rock’s surface and internal structure, which could induce
instability and rock failure [2,3]. Moreover, during the evaluation process of the strength
properties of rock, it is not always possible to extract drilled cores significantly to apply the
destructive tests if the rock is deteriorated due to high-temperature exposure. Hence, it
is crucial to develop alternative strategies to conduct a trial for recognizing the behavior
of rocks after exposure to high-temperature circumstances. On the other hand, the rock’s
uniaxial compressive strength (UCS) and elastic modulus (E) are the two most critical rock
properties in mining engineering applications. Hence, the strength parameters of rock
material are essential for geotechnical engineering designs such as mechanical excavation,
the design and construction of foundations, slope stability examinations, etc. [4–8]. Fur-
thermore, UCS is one of the fundamental parameters used in the designing and planning
stages [9] through rock mass classification systems, e.g., rock mass rating (RMR) [10,11],
geological strength index (GSI) [12], and rock mass index (RMI) [13]. The direct estimation
of UCS during the preliminary design step is too expensive, time-consuming, and compli-
cated, mainly when conducting this test following standard procedures such as ISRM and
ASTM [14–18]. The indirect evaluation of UCS supports mining engineers in overcoming
the challenge of using traditional laboratory tests to calculate UCS and E. Therefore, the
quick and inexpensive prediction of UCS and E from simple indirect tests that need limited
preparation of the specimen through alternative and indirect methods, such as simple
and multiple regression models and soft computing techniques, is an attractive trend for
scholars [19–23], etc.

Many efforts have been made to forecast the UCS and E of different types of rock
through various indices to individually reveal the correlation between the index and the
predicted parameter by traditional regression [14,24–30]. However, there are many com-
plexities in the application and generalization of the former statistical models, and it can
be recommended only for specific rock types [5,31–33]. Furthermore, for several rock
types, there is no agreement regarding the equations obtained from regression analysis.
In addition, one disadvantage related to the update of statistical model equations con-
cerning new data is that, when different from the original data, “site-specific data may
be inappropriate for users to evaluate UCS and E in another site” [34–37]. Many recent
studies have highlighted using soft computation techniques due to their feasible, fast, and
promising means for resolving complex geotechnical engineering problems to surmount the
challenges of these traditional techniques [38–40]. For instance, artificial neural networks
(ANNs), Adaptive Network-based Fuzzy Inference System (ANFIS), Genetic Program-
ming (GP), and Regression Tree methods in predicting UCS and E of rock in an objective
and practical approach [15,21,22,35,41–60]. These methods are receiving more attention
in resolving challenging rock engineering issues. As a result, numerous researchers use
statistical approaches to extrapolate rocks’ strength and informational qualities from their
physical properties. In comparison to multilinear regression and the adoptive neural-fuzzy
inference system, it has been suggested that an artificial neural network-based prediction
model is the most effective model for measuring granite thermal damage factors based on
porosity [61]. A prediction model for uniaxial compressive strength and the static Young’s
modulus utilizing multilinear regression, artificial neural networks, random forest, and
k-nearest neighbor is proposed by [62] after evaluating the heat effect on the physical,
chemical, and mechanical properties of marble rock. According to the results, MLR and
ANNs provided R2 values of 0.81 and 0.90 for MLR and 0.85 and 0.95 for ANNs for both ES
and UCS, while E and UCS prediction have an R2 of 0.94 and 0.97 for KNN and RF, respec-
tively. As input variables for these characteristics, density, porosity, and ultrasonic wave
velocities were used [63–65]. Such studies opine that the predictive abilities of artificial
intelligence techniques outperform statistical methods. According to the results of these
studies, soft computing techniques are more effective at predicting mechanical properties
than statistical methodologies.
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Rocks can be exposed to high temperatures and either slow or rapid cooling, such
as after fires. Accordingly, the physical and mechanical properties of these rocks will be
affected. In addition, Young’s modulus and uniaxial compressive strength are crucial
variables for the efficient design of engineering applications in rock mass environments.
These two factors require labor-intensive and expensive laboratory analysis, and if the
testing procedure is not carried out correctly, the results could be inaccurate. Furthermore,
drilled cores may not always be significantly recoverable if the rock has been damaged by
exposure to high temperatures. The tendency to estimate the destructive parameters of
thermally heated rocks based on non-destructive parameters is a hot research topic and
is very limited. Moreover, after performing an intensive literature review regarding the
prediction of uniaxial compressive strength and Young’s modulus of rocks under different
thermal conditions based on non-destructive parameters (as illustrated in Table 1), it was
seen that there are rare studies related to this research area. Thus, this paper uses different
prediction models to predict the UCS and E based on the physical parameters of Egyptian
granodiorite after thermal and cooling treatments. Predictive models were created using
multi-linear regression (MLR), random forest (RF), k-nearest neighbor (KNN), and artificial
neural networks (ANNs). The coefficient of determination (R2), root mean square error
(RMSE), mean absolute percentage error (MAPE), and variance accounted for (VAF) were
used to assess the effectiveness of each prediction model. The findings of this research will
make it simpler to efficiently deal with the rocks in engineering construction projects under
high-temperature rock mechanics conditions and help to predict UCS and E without the
need to estimate them in the laboratory.

Table 1. Summary of some recent related studies in various locations.

Rock Type (Region) Reference Conditions Input Parameters Output Parameters

Travertine (Haji a bad, Iran). Dehghan et al., 2010 [49] 25 ◦C Vp, n, Is, SH UCS, E
Carbonate rocks

(southwestern Turkey). Yagiz et al., 2012 [20] 25 ◦C n, SH, Id, Vp UCS, E

Granite (Peninsular Malaysia). Jahed et al., 2015 [22] 25 ◦C ρdry, Qtz, Plg, Vp UCS, E
“Gabbro, limestone, granite,

sandstone, quartzite, tuff,
diabase, etc. (Turkey)

Teymen, et al., 2020 [51] 25 ◦C BTS, SH, SSH, Is,
Vp, UW UCS

Basalt stones (Jordan) Barham, et al., 2020 [60] 25 ◦C ρdry, SH, BTS, Id, Is UCS
limestone, sandstone, marl, and

dolomite (Khewra Gorge) Umer et al., 2020 [66] 200 ◦C BTS, UCS Ed

Granite (Pakistan) Naseer et al., 2022 [61] 25–900 ◦C ρdry, n, Vp DT
Marble (Pakistan) Naseer et al., 2022 [62] 25–500 ◦C T, Vp, ρdry, n, Ed UCS, E

P-wave velocity (Vp), porosity (n), point load index (Is), Schmidt hammer (SH), slake
durability index (Id), dry density (ρdry), quartz content (Qtz), plagioclase content (Plg),
Shore hardness (SSH), Brazilian tensile strength (BTS), unit weight (UW), and dynamic
elastic modulus (Ed).

2. Rock Description and Experimental Data

2.1. Geological Setting

Granodiorite is an igneous rock that has recently been used in various projects such
as ladders, hydro-engineering constructions, road paving materials, construction, and
monuments. A silica-rich intrusion of magma that cools in batholiths beneath the surface
produces granodiorite, a plutonic igneous rock. Tonalite and granodiorite are two granitoid
rocks that make up Egypt’s Arabian-Nubian Shield. They make up more than 40% of the
subsurface system in the Sinai and Eastern Desert [67]. In terms of structure, granodiorite is
an intrusive igneous rock similar to granite. However, it contains more plagioclase-feldspar
than orthoclase-feldspar in appearance and varies in type from granitic to alkali granite and
old granite, which is dark gray [68]. In Egypt’s Eastern Desert, granodiorite samples were
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collected from old granite (near Gabel Abu Marwa). The study region is located between
23◦00′ and 23◦10′ north latitudes and 33◦17′ and 33◦28′ east longitudes (130 Km southeast
of Aswan, Egypt), as illustrated in Figure 1a.

Figure 1. (a) Geological map of the studied area, (b) granodiorite appearance, and (c) a thin section
micrograph of granodiorite.

2.2. Rock Description

The studied granodiorite samples were grey, as shown in Figure 1b, and had an
average porosity of 0.54%, absorption wt. of 0.34, a dry density of 2610 kg/m3, P-wave
velocities of 5120 m/s, uniaxial compressive strength of 64 MPa, and Young’s modulus
of 48.8 GPa at room temperature. Employing a Bruker D8 Advance X-ray Diffractometer,
X-ray diffraction (XRD) analysis revealed the rock’s content to be quartz (Q), plagioclase
feldspar (Pl), potassium feldspar (Kf), biotite (Bi), etc. (Figure 1c). Before testing, the
samples were dried for at least 24 h at 105 ◦C.

2.3. Experimental Data

Based on the results obtained by Gomah et al. [2,69], the input and output data
were used to build up the prediction models in this study. In these investigations, a
high-temperature furnace (Nabertherm electric furnace-B410) with a thermal precision of
±3 ◦C and a maximum temperature of 1300 ◦C was used for the heating process. Further,
granodiorite samples were separated into five groups to ensure measurement accuracy,
each with two subgroups of three samples for each target temperature. These groups were
all then subjected to the same heating process. Granodiorite specimens were heated to
the target temperatures of 200, 400, 600, and 800 ◦C, at a rate of 5 ◦C/min to prevent any
potential thermal shock caused by the furnace’s sharp thermal gradient. The temperature
was held constant for 2 h, and the heated samples were then cooled to room temperature
using slow cooling by natural air in the oven (hereinafter called slow-cooling samples or
S-C samples) and rapid cooling by water (hereinafter called rapid-cooling samples or R-C
samples), as illustrated in Table 2.
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Table 2. Input and output data of prediction models.

Input Data Output Data

Method
Temperature

(◦C)
Mass (g)

Density
(g/cm3)

P-Wave
Velocity (m/s)

Porosity %
Absorption

wt. %
UCS (MPa) E (GPa)

- 25 ◦C
779 2.69 5619.82 1.33 0.50 66.9 50.7
803 2.70 5645.16 0.00 0.00 65.9 47.8
800 2.69 5633.80 1.35 0.53 59.2 48.0

S-C 200 ◦C
789 2.67 4455.88 1.20 0.46 66.3 41.1

779.15 2.67 4450.37 1.29 0.50 67.1 44.1
784.25 2.67 4454.55 1.25 0.48 67.6 43.0

R-C 200 ◦C
796 2.67 4039.74 0.00 0.00 70.2 41.8
799 2.67 4070.00 1.27 0.51 71.6 50.2

799.3 2.68 4050.00 1.29 0.50 67.4 45.1

S-C 400 ◦C
791 2.65 3482.81 1.32 0.51 75.9 31.5
790 2.64 3495.68 1.43 0.56 67.9 28.9

790.9 2.64 3384.83 1.32 0.51 73.9 31.2

R-C 400 ◦C
788 2.63 2911.69 0.00 0.00 55.0 24.7
787 2.63 2606.52 2.48 0.98 56.1 25.1

786.7 2.60 2613.88 2.57 1.00 69.3 26.5

S-C 600 ◦C
793 2.54 855.17 5.49 2.09 31.6 9.1
793 2.54 1098.21 3.77 1.45 26.1 9.5

783.9 2.54 815.49 5.17 2.03 26.8 8.6

R-C 600 ◦C
784 2.56 909.63 3.82 1.48 20.8 4.3
783 2.42 754.55 3.80 1.45 19.4 3.9

801.8 2.57 725.43 5.13 1.97 20.0 3.2

S-C 800 ◦C
787 2.24 0.00 10.85 4.17 2.7 -
787 2.29 0.00 14.38 5.56 2.8 -

R-C 800 ◦C
786 2.22 0.00 16.88 5.64 1.5 -
775 2.19 0.00 16.47 6.50 1.1 -

According to the International Society for Rock Mechanics (ISRM)’s suggested meth-
ods, the physical parameters of the granodiorite samples were calculated, both before
and after the thermal treatments. Pundit PL-2 with two transducers (a transmitter and a
receiver) was used as the ultrasonic pulse generator and acquisition system to quantify
P-wave velocity along the specimen’s axis [70]. R-C and S-C granodiorite samples un-
derwent uniaxial compressive strength tests following the ASTM D7012-14 specifications.
The mechanical properties were tested using a compression testing machine with a 200 T
loading capacity. Two strain gauges were used, with a data-collection system linked to
the device, to identify the axial and lateral displacements of the specimen. Finally, the
mass, size, longitudinal wave velocity, absorption, porosity, UCS, and E of the granodiorite
specimens were recorded and compared to their initial values after being subjected to
different heating and cooling methods.

2.4. Prediction Models
2.4.1. Multiple-Linear Regression (MLR)

MLR is frequently employed to forecast relevant parameters. Simple linear regression,
utilized in the case of numerous predictive variables, is expanded by MLR. Hence, it can be
used to find the most pertinent and suitable equation when more than one independent
variable is available as input parameters. In this study, a set of MLR was run using many
independent variables to predict UCS and E. Equation (1) illustrates how it can describe
the input without variables while considering how they relate.

Y = c + B1X1 + B2X2 + . . . + BnXn (1)

where the partial regression coefficients are B1 to Bn, Y is the dependent variable, c is
constant, and X1 to Xn are the independent variables.
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2.4.2. Random Forest Regression (RFR)

One of the most accurate prediction techniques for classification and regression among
the numerous machine-learning algorithms is the emerging random forest (RF) algorithm,
which was first implemented by Leo Breiman and Cutler Adele in 2001 [71]. This is because
it can simulate complex interactions between input variables and thus is comparatively
robust to outliers. The RFR algorithm has many benefits, including the ability to handle
massive databases efficiently, the lack of sensitivity to noise or over-fitting [72], the ability
to deal with thousands of input variables without deleting any, and the fact that it has
lower complexity than other machine-learning algorithms (e.g., ANN). The RFR method
is frequently used in geotechnical engineering [73]. For example, RFR was applied to the
stability of rock pillars, and also in assessing landslide susceptibility and evaluating the
potential for soil liquefaction [73–76].

The decision tree (DT) method and the bagging technique are the two fundamental
parts of RF. The DT algorithm can be used for classification and regression issues depending
on the dataset. The feature space is divided into smaller sections before applying the DT
algorithm. Until the stop threshold is satisfied, the partitioning is carried out iteratively.
Three parts—internal, external, and branches—are built when a DT is constructed. The
internal nodes are constantly connected with decision-making functions to choose which
node to contact next. The output nodes, also known as terminals or leaf nodes, are DT nodes
that can no longer be split. The DT method is helpful in many civil engineering situations.
However, the RF algorithm is more potent and reliable in many data mining tasks than a
single tree [75]. RF is a technique for ensemble learning that builds on bagging to anticipate
outputs [77]. Using various data from the bagging approach, several connected DTs are
built in RF. The modeling accuracy is improving through the outcome averaging of all
DTs, and overfitting is controlled. The overall structure of RF is shown in Figure 2, where
n indicates the total number of trees built in RF and k1, k2, and kn are the outcomes of
each DT.

K1 K2 Kn 

Figure 2. Fundamental design of the RF algorithm.

2.4.3. The K-Nearest Neighbor (KNN)

The labels of the K-nearest patterns in the data space are the foundation of nearest
neighbor algorithms. In the context of large datasets and low dimensions, most relative
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neighbor techniques are known to be effective local procedures. An extensive range of
machine learning issues can be applied thanks to variations for multi-label classification,
regression, and semi-supervised learning cases. The k-nearest neighbor (KNN) approach is
easy to use, practical, and implementable [78]. This technique is utilized for classification
and regression, much like ANN and RF. The fundamental idea behind KNN is to identify a
set of “k” samples near unknown samples in the calibration dataset (for instance, by using
distance functions). Finding collections of models that are identical to one another can help
with this.

Furthermore, KNN establishes the category of unknown samples by averaging the
relevant variables and contrasting the outcomes with the “k” samples. Because of this,
the efficiency of the KNN depends significantly on the k value [79]. Employing the KNN
approach has certain advantages, such as it being simple to understand and put into
practice. Additionally, it can comprehend non-linear decision boundaries when used for
classification and regression, and by varying the value of K, it can provide a very flexible
choice limit. Additionally, there is not a phase in the KNN architecture solely for training;
hence, adjusting the other hyperparameters is relatively easy. The three-distance function,
which calculates the distance between nearby locations and is shown in the following
Formulas (2)–(4), is used for the regression problem.

F(e) =

√√√√ f

∑
i=0

(xi − yi)
2 (2)

F(ma) =
f

∑
i=0

|xi − yi| (3)

F(ma) =

(
f

∑
i=0

(|xi − yi|)q

) 1
q

(4)

where xi and yi represent the ith dimension, q indicates the order between the points x and
y, and F(e) stands for the Euclidean function. F(ma) and F(mi) are for the Manhattan and
Minkowski functions, respectively.

2.4.4. Artificial Neural Network (ANN)

The artificial neural network is a soft computing technique that has recently been
widely accepted as a predicting method in rock engineering applications such as tunnels,
slope stability, and underground openings. ANN proffers better aptitudes in dealing with
the nonlinear relationship between parameters than the traditional regression approaches.
ANN models possess capabilities in processing the information pertinent to high par-
allelism and their ability to learn. Furthermore, solving the complex or imprecise data
and grouping and filtration of noisy data to build the underlying correlation between
the datasets [80] provide the extraordinary prediction efficiency of ANN models. Any
artificial neural network is formed from several quite simple and highly interconnected
processors, also neurons, due to their similarity to the biological neurons in the human
brain [81,82]. A traditional ANN is usually represented by three principal components:
network architecture, transfer function, and learning code [83].

Multi-layered perception (MLP) is employed in this section. It is made up of the
following three layers: (1) an input layer for providing data; (2) a hidden layer using an
algorithm and a set of features, neurons, and the hidden layer chosen through trial-and-
error techniques [84]; and (3) an output layer for providing the input data’s output. The
number of neurons in each layer varies according to the application. Each link between
a layer neuron and the one below it is connected and has weight [85]. The ANN model
also employs several other algorithms. However, due to its straightforward training
function, backpropagation (BP) is the most effective and is frequently utilized in engineering
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challenges. Previous research has shown that the BP approach considers and presupposes
a random value. The NN process uses that random value to calculate the result after that.
Hence, the weight value will be changed to reduce the error margin. This process will
be performed as often as necessary until the minimal result is achieved [86]. Supervised
learning techniques must be employed throughout the training stage to guarantee the
precision and efficacy of each classification and operation in ANN. The BP algorithm’s
networking is trained using a set of instances to connect and link the nodes and identify the
parametric function, also known as weight inadequacies methods. The mean square error
(MSE) is repeatedly reduced to reduce the difference between the actual and the predicted
output. Training also helps in determining each iteration’s weight.

This study produced a self-generated ANN code with n numbers of networks while
maintaining the same training and activating function for a single loop, as illustrated in
Figure 3. This code has a loop function that can run for many networks. Even though the
data type may change, this code’s essential activation function was constant, and the code
was once run over 100 networks. The number of neurons for each network in a loop rose
for each successor; as a result, network (1) had one neuron, network (2) had two, and so
on. Several ANN algorithms are available; however, the recommendation [74] of using
BP with the Levenberg–Marquardt algorithm is the most practical. Compared to other
algorithms, Levenberg–Marquardt (LM) is more effective, requires a shorter time, and
produces superior results. As a result, LM was applied to both the hidden and the output
layers of the current model.

 

Figure 3. ANN flowchart for the UCS and E prediction model.

Figure 4 depicts an example of an ANN model’s flowchart. A set of input layers, a
predetermined number of hidden layers, and a bunch of output layers make up the usual
ANN structure. The primary neuron is processed to estimate the output by linking the
multiple layers of inputs with the proper weights (W) and biases (b). As shown, the basic
structure of this analysis consists of two outputs (uniaxial compressive strength (UCS) and
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elastic modulus (E)) and five inputs (temperature, absorption, porosity, dry density, and
P-wave velocity). There was a total of 42 data points in the dataset. The following three
categories of data were created: validation (15%), testing (15%), and training (70%).

Figure 4. The structure of ANN for UCS and E predictions.

3. Results

3.1. Data Analysis

Thermal treatment significantly impacts the rock porosity and, consequently, water
absorption of granodiorite. The porosity of the granodiorite specimens generally increased
steadily for the both rapid- and slow-cooling methods, with temperatures rising but at
different rates. Changes in linked mass and volume are the most significant influence on
rock density. After being heated, the granodiorite’s density gradually reduced compared to
room temperature. Furthermore, thermal treatments significantly affected the granodior-
ite’s ultrasonic wave velocities, and that behavior was noticed for both cooling methods
studied. Summary of findings: The P-wave velocity of rocks decreases concurrently with
temperature increases. Due to the severity of the thermal fissures, it was impossible to
quantify the longitudinal wave velocity at 800 ◦C (assumed 0 m/s). Consequently, the
degradation of the longitudinal wave velocity of granodiorite is caused by the physical and
chemical alterations that occur after 600 ◦C, as displayed in Figure 5.

On the other hand, the mechanical properties of Egyptian granodiorite deteriorate pri-
marily under the influence of temperature as the thermal expansion of its minerals change
through their microstructure. Because of the mismatched growth during heating, thermal
stresses are produced inside the granodiorite. When thermal stresses within or between
minerals exceed the maximum strength of the minerals, microcracks and microfractures
initiate and expand because thermal treatments induce mineral growth and chemical reac-
tions [87]. As opposed to slow-cooled samples, rapid-cooled samples generally had lower
uniaxial strength and elastic modulus, proving that the created microstructural alteration
resulted from the thermal treatments and cooling methods, as shown in Figure 5. At 800 ◦C,
the effects of high temperatures grew increasingly noticeable for both cooling techniques,
and inter- and trans-granular cracks quickly developed, creating a network of microcracks.
Furthermore, the granodiorite specimens’ internal structures were destroyed, making them
impossible to measure E (Table 1).
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Figure 5. Input and output distributions as a pairwise correlation matrix.

For machine learning and statistical techniques, the parameters used in this work
include the cooling method, temperature, mass, P-wave velocity, density, porosity, absorp-
tion, UCS, and E. The prediction of UCS and E is meant to employ the other parameters
as inputs. Using a correlation matrix, a descriptive statistical technique, users may learn
more about the variance and covariance of the regressions, which are part of the prediction
model. Alongside other statistical matrices, it is frequently utilized. The correlation matrix
typically explains each variable’s fluctuation. Figures 5 and 6 can demonstrate this using
correlation and paired correlation. The relationships between the input variables and the
output include negative, positive, or no connections. For instance, variables that exhibit a
negative correlation include temperature, absorption, and porosity. In contrast, the P-wave
velocity and density had positive relations, while the mass and cooling method revealed
poor relations with UCS and E. As they have a poor impact on both USC and E, as shown
in Figure 6, the cooling method and mass of specimens were excluded from the following
machine learning prediction as input parameters. Furthermore, after 600 ◦C, the model
efficiency was minimized due to many input and output parameters being corrupted, such
as Pv and E. Figures 5 and 6 make it simple for a researcher to grasp the impact of inputs
on the expected model’s output findings. The larger the negative or positive link, the more
critical the model efficiency.
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Figure 6. Inputs and outputs correlation matrix.

3.2. Model Performance

This study used statistical (MLR) and intelligent models (RFR, KNN, and ANNs) to
create predictive models for the UCS and E of Egyptian granodiorite. The performance of
predicted models is then investigated by comparing the correlation efficiencies of various
generated models. The efficiency indices (R2), (MAPE), (VAF), and (RMSE) were used to
perform the evaluations for this comparison. The accuracy of model fitting is evaluated
by the coefficient of determination (R2). The linear fit equation represents this, and is
defined as the ratio of actual data variation to estimated value variance. Less than 30% is
regarded as suspicious, above 75% is regarded as remarkable, and a model with an R2 of
at least 55% is accepted. In addition, the efficiency of a prediction system is measured by
the mean absolute percentage error (MAPE), also known as the mean absolute percentage
deviation (MAPD). It can be expressed as the average absolute percent inaccuracy for
every period, minus the actual values divided by the true values, and it describes this
accuracy as a percentage. The standard deviation of the residuals is represented by the
root mean square error (RMSE) (prediction errors). In a perfect scenario, the RMSE would
be zero, a common indicator of the discrepancies between predicted or expected values
and actual values. The variance accounted for (VAF) is typically used to verify that the
predictive model is accurate. This is accomplished by comparing the outputs as anticipated
and measured [88]. A VAF rating of 100 indicates that the predictive model accurately
predicts the outcome. Consequently, the more accurately the forecast is made, the closer the
predictive model’s VAF is to 100 (i.e., lower variance). Hence, R2 = 1, MAPE = RMSE = 0,
and VAF = 100% are performance indicators that can be used to describe an outstanding
model. Equations (5)–(8) were used to compute the performance indices, as shown below:

R2 =
∑n

i=1 (yi)
2 − ∑n

i=1 (yi − k′i)
2

∑n
i=1 (yi)

2 (5)

MAPE =
1
2

n

∑
i=1

∣∣∣∣yi − k′i
yi

∣∣∣∣× 100 (6)
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RMSE =

√
∑n

i=1
(
yi − k′i

)
n

(7)

VAF =

[
1 − var(y − k′)

var(y)

]
× 100 (8)

where (y) is the actual value and (k′) is the predicted value.

3.3. Prediction Models of UCS and E
3.3.1. Multilinear Regression Prediction Models

Two distinct multilinear regression equations were created for the prediction of UCS
and E. Equations (9) and (10) can be used to express these mathematically, as follows:

UCS = −259.79 + 12.93Temp + 0.20density + 35.21velocity + 0.04porosity + 7.69Absorption (9)

E = −62.51 + 5.02Temp − 0.003density + 16.12velocity + 0.01porosity + 4.50Absorption (10)

A coefficient of determination (R2) of 0.86 for the relationship between actual and
predicted UCS (Figure 7a) and 0.96 for the relationship between actual and predicted E
(Figure 7b) indicate the relation between actual and predicted UCS and E.

Figure 7. MLR model for actual and predicted UCS (a) and E (b).

3.3.2. Random Forest Technique

The random forest (RF) and k-nearest neighbor’s regressions (KNN) models were built
using Python’s Scikit-Learn module. The python package includes many machine-learning
techniques readily usable in various applications. The data were normalized to convert
the values collected on diverse scales to a standard scale at the beginning of this analysis.
Following that, 70% of the data were used to train the models, and the remaining 30%
were divided into the testing set (15%) and the validation group (15%). With the aid of
the testing set, the hyper-parameters were adjusted. The RF model’s (n estimators) and
(max depth) hyperparameters were varied throughout a range of possible values. The
number of estimators, which is directly linked to the number of decision trees built by the
random forest regression model, is determined before computing the maximum averages
of forecasts. As the number of trees rises, the model becomes more computationally
expensive while offering better performance. The max depth hyperparameters indicate the
depth of every decision tree in a random forest. Because the max depth hyperparameter
was allocated a very high value, the model is overfitted. Table 3 lists the ideal values
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for n estimators, max depth, and random state. Additionally, as seen in Figure 8, the
predicted values for USC and E have a strong correlation coefficient (R2 = 0.98) for the
actual parameter value.

Table 3. Optimized RFR hyperparameters.

Parameters Values Details

n-estimators 100 Number of trees in RFR
Max-depth 12 Maximum depth of tree

Random state 10 Random state

Figure 8. Relationship between the predicted and actual UCS (a) and E (b) of Egyptian granodiorite
using random forest technique.

3.3.3. K-Nearest Neighbor Technique

The variable “n neighbors” in the KNN model represented the number of neighbors,
which might vary. The “number of neighbors” hyperparameter determines the number
of neighbors that should be considered while averaging data for a forecast. The approach
becomes more accurate and computationally costly when the value of the n neighbors
hyperparameter is raised to a large amount. A grid search strategy was applied to find
the ideal values for the hyperparameters. The grid search strategy tests a wide range of
potential values for each hyperparameter being adjusted before choosing one to represent
the perfect combination. The value was experimented with on various levels, while other
hyperparameters stayed the same to establish a workable limit for each hyperparameter.
The optimum pairing of n neighbors and metric values is described in Table 4. Additionally,
as can be observed in Figure 9 that the predicted value at this parameter-optimal value has
a good correlation coefficient (R2 = 0.95) for both USC and E.

Table 4. Optimized KNN hyperparameters.

Parameters Values Descriptions

n-neighbors 11 Number neighbors
Metric Minkowski The distance metric to use

3.3.4. Neural Network Model

Figure 10 displays the regression values for the UCS and E models of granodiorite
during each phase of the ANN, including training, validation, testing, and regression results.
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Excellent regression was obtained during training, validation, and testing combinations
between the predicted and measured measurements of UCS and E.

Figure 9. Relationship between expected and real UCS (a) and E (b) based on the KNN approach.

Figure 10. ANN training, validation, and testing stages with the related regression coefficient for
UCS and E.
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Consequently, as shown in Figure 11, an exceptional R2 value (0.99) between the
expected and actual (UCS and E) data is observed (Table 5).

Figure 11. Relationship between the predicted and actual UCS (a) and E (b) using ANN approach.

Table 5. Relation between the actual and the predicted values of UCS and E for used intelligent methods.

Temperature
(◦C)

Actual
UCS

(MPa)

Actual E
(GPa)

Predicted
UCS

(KNN)

Predicted
E (KNN)

Predicted
UCS

(RFR)

Predicted
E (RFR)

Predicted
UCS

(ANN)

Predicted
E (ANN)

25 ◦C
66.85 50.73 66.95 47.68 66.43 49.38 66.79 50.68
65.89 47.75 66.95 47.68 64.85 43.90 65.82 47.70
59.2 48 66.95 47.68 61.84 47.59 59.14 47.95

200 ◦C

66.34 41.1 68.16 44.60 67.02 42.44 66.27 41.06
67.08 44.1 68.16 44.60 68.04 45.64 67.01 44.06
67.64 43 68.16 44.60 67.61 43.53 67.57 42.96
70.15 41.8 68.78 44.30 69.13 42.91 70.08 41.76
71.56 50.2 68.78 44.30 70.28 47.62 71.49 50.15
67.41 45.1 68.78 44.30 67.75 46.05 67.34 45.05

400 ◦C

75.92 31.5 67.02 27.90 72.93 31.17 75.84 31.47
67.91 28.9 67.02 27.90 69.17 29.72 67.84 28.87
73.93 31.2 67.02 27.90 70.95 30.65 73.86 31.17
54.95 24.7 54.89 22.35 57.02 25.47 54.89 24.67
56.11 25.1 67.03 27.90 63.40 26.75 56.05 25.07
69.32 26.5 70.20 32.48 66.10 26.21 69.25 26.47

600 ◦C

31.61 9.1 24.66 6.48 30.51 9.11 31.58 9.09
26.11 9.5 24.49 6.70 25.10 8.16 26.08 9.49
26.8 8.6 24.66 6.48 30.89 10.04 26.77 8.59
20.79 4.3 24.49 6.70 23.17 6.02 20.77 4.30
19.44 3.9 24.49 6.70 21.70 5.41 19.42 3.90
20.01 3.2 24.49 6.70 25.01 7.11 19.99 3.20

The MSE (mean squared error) metric was used to assess network accuracy and
efficiency. Increasing the neuron count in the hidden layer reduced the MSE value as the
number of iterations rose. The MSE for each UCS and E model was assessed. A lower MSE
number at 11 epochs for UCS and E resulted in the best regression model, as illustrated in
Figure 12.
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Figure 12. ANN Performance based on the mean squared error metric.

According to the neuron convergence investigation, as seen in Figure 13, the UCS and
E best regression and least MSE were achieved on 17 neurons. This demonstrates that the
number of iterations and the number of neurons critically influence the model’s accuracy.

Figure 13. Impact of neuron convergence in the hidden layer.

4. Discussion

Thermal treatment causes mineral expansions and chemical reactions, which results
in the formation and propagation of microcracks and microfractures. Mineral grains grow,
and the thermal expansion characteristics of distinct minerals vary. Anisotropic thermal
expansion along separate crystallographic axes of the same mineral under heating further
contributes to uneven growth. Furthermore, the evaporation of free and constitutional
water raises the micro-pores in granodiorite, which could affect the texture, such as in
damage to the mineral silicate frame. As a result, microcracks occur between or inside the
mineral grains. Hence, this can cause mineralogical, physical, and mechanical changes in
rocks significantly different from those at room temperature.
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Testing the UCS and E to gain more knowledge about the mechanical behavior of rock
is more difficult in high-temperature deep geotechnical applications. Therefore, a more
critical research aspect is the propensity to evaluate the destructive parameters of thermally
treated rocks based on non-destructive factors. The UCS and E are thus predicted in this
paper using various prediction models derived from the physical characteristics of Egyptian
granodiorite following thermal and cooling treatments. The cooling technique, temperature,
mass, P-wave velocity, density, porosity, and absorption to forecast the UCS and E were
the input parameters used in this study. Prediction model effectiveness was reduced after
600 ◦C because many input and output variables, such as Pv and E, were hard to measure
due to severe degradation to granodiorite specimens. As a result, the prediction models
were built up to this critical temperature, which can be considered a threshold temperature
point. The relationships between the input and the output variables indicated negative,
positive, or no relations. In the prediction models, temperature, absorption, and porosity are
factors that have a negative connotation. On the other hand, the density and P-wave velocity
were positive. However, the mass and cooling technique demonstrated weak relationships
with UCS and E; hence, they were eliminated from the soft computing prediction models.
Moreover, as illustrated in Figure 6, temperature and P-wave velocity actively contributed
to the elastic modulus prediction model. On the contrary, porosity, absorption, and density
showed a less significant predictive impact. In contrast, porosity and density were the most
efficient characteristics for predicting uniaxial compressive strength.

The greater the magnitude of the negative or positive relationship, the more crucial the
model performance. As demonstrated in the results in Table 6, the MLR prediction models’
performance coefficients for UCS and E are 0.86% and 0.96%, respectively. In contrast,
intelligent models for UCS and E, such as RFR, KNN, and ANN, have higher performance
coefficients of 0.98%, 0.95%, and 0.99%, demonstrating that their models for UCS and E
prediction are more rational than the statistical model. Hence, the obtained results from
this study are better than those concluded by [62]. Furthermore, after comparing the results
obtained from the statistical (MLR) and soft computed models, it is concluded that the
intelligent models perform better at predicting UCS and E than the MLR, whereas ANN
provides a high coefficient of determination for UCS and ES, and the MLR provides a lower
coefficient for both predicted parameters. Hence, based on these performance indexes, the
ANN performed excellently.

Table 6. Performance indices of the developed models.

Predicted Parameter Models R2 RMSE MAPE (%) VAF (%)

UCS
MLR

0.86 27.15 34.53 81.02
E 0.96 0.90 23.15 31.53

UCS, E
RFR 0.98 0.14 1.18 94.23
KNN 0.95 3.02 0.94 94.01
ANN 0.99 2.04 0.25 97.22

5. Conclusions

This article suggests a new predictive model quantifying the preheated Egyptian
granodiorite’s uniaxial compressive strength and its elastic modulus. Four prediction
models were created: multi-linear regression (MLR), random forest (RF), k-nearest neighbor
(KNN), and artificial neural networks (ANNs). These models were developed using five
input parameters as a base (temperature, porosity, absorption, density, and p-wave). Each
prediction model’s efficiency was evaluated using the coefficient of determination (R2),
root mean square error (RMSE), mean absolute percentage error (MAPE), and variance
accounted for (VAF). The principal conclusions are listed as follows:

(1) Due to the close results of the slow cooling by the oven and rapid cooling by the water
of thermally treated granodiorite, the cooling method and mass as input parameters
to predict UCS and E have a minor effect on the prediction models of UCS and E. In
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contrast, the temperature, porosity, absorption, dry density, and P-wave velocity had
good relations with UCS and E.

(2) After 600 ◦C, the performance of the prediction models was diminished because many
input and output parameters, such as Pv and E, were impossible to measure due to
the severe damage to granodiorite samples. The prediction models were therefore
developed up to this threshold temperature, which can be regarded as a threshold
temperature point.

(3) The inconsistent performance for the MLR model demonstrates that the temperature
and P-wave velocity actively contributed to the prediction models of elastic modulus.
In contrast, the porosity, absorption, and density had a less significant predictive
impact. In comparison, porosity and density were the best effective parameters to
predict the uniaxial compressive strength.

(4) The performance coefficients for the MLR prediction models for UCS and E are 0.86%
and 0.96%, respectively. In contrast, the intelligent models for UCS and E, including
RFR, KNN, and ANN, provide a better performance coefficient (9–13%), indicating
that their models for UCS and E prediction are more reasonable than the statistical
model (MRL).

(5) The comparative analysis of predictive models revealed that the ANN model used for
predicting the UCS and E is the most accurate model, with R2 of 0.99, MAPE of 0.25%,
VAF of 97.22%, and RMSE of 2.04.

Recommendation: This study mainly discusses three artificial intelligence techniques (RFR, KNN,
and ANNs) and a conventional linear regression model (MLR). Other methods, such as the adoptive
neural-fuzzy inference system (ANFIS model), may be employed to predict the mechanical parameters
based on the non-destructive parameters. Moreover, as well known, rocks’ chemical, physical, and
mechanical behavior vary by region. This study examined Egyptian granodiorite. Hence, the
study could be more general by considering different rocks in other locations. Moreover, future
research may incorporate the sparse principal component analysis (PCA), one of the most commonly
operated unsupervised machine learning algorithms for dimensionality reduction and visualize
multidimensional data.
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Abstract: Predicting the maximum ground subsidence (Smax) in the construction of soil pressure
balanced shield tunnel, particularly on soft foundation soils, is essential for safe operation and to
minimize the possible risk of damage in urban areas. Although some research has been done, this
issue has not been solved because of its complexity and many other influencing factors. Due to the
increasing accuracy of machine learning (ML) in predicting surface deformation of shield tunneling
and the development of automated machine learning (AutoML) technology. In the study, different
ML prediction models were constructed using an open source AutoML framework. The prediction
model was trained by the dataset, which contains 14 input parameters and an output (i.e., Smax).
Different AutoML frameworks were employed to compare their validities and efficiencies. The
performance of the model is estimated by contrasting the prediction accuracy parameters, including
root mean square error (RMSE), mean absolute error (MAE) and determinant coefficient (R2).With a
coefficient of determination (R2) of 0.808, MAE of 3.7, and RMSE of 5.2 on the testing dataset, the best
prediction model i.e., extra tree regressor showed better performance, proving that our model has
advantages in predicting Smax. Furthermore, the SHAP analysis reveal that the soil type (ST), torque
(To), cover depth (H), groundwater level (GW), and tunneling deviation have a significant effect on
Smax compared to other model inputs.

Keywords: maximum surface settlement; tunneling; auto machine learning; feature selection; shapley
additive explanations (SHAP) analysis

MSC: 65Z05

1. Introduction

With the acceleration of urban construction, the construction of subway networks
has become one of the most practical methods to alleviate traffic jam and shortages of
land resources [1–5]. These excavation systems are generally built as twin tunnels and the
excavation is carried out through soft soils or weak rocks at shallow depths. For urban
subway tunnels, the shield tunneling method (especially the earth pressure balance (EPB)
shield tunneling) is one of the most widely used construction methods due to its little
impact on the surrounding environment. The advantages of less influence and a high
degree of mechanization are widely applied to the actual engineering projects. However, in
weak strata, the shield tunneling method can still cause a lot of land subsidence [6,7]. The
surface subsidence mechanism [8,9] and development process caused by shield tunneling is
complex, which can be seen in Figure 1, including (1) preemptive settlement; (2) settlement
in front of excavation; (3) settling during propulsion; (4) shield tail gap settlement; and
(5) subsequent settlement. Each stage’s surface subsidence involves geological conditions,
shield parameters, on-site construction, and other factors. Predicting surface deforma-
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tion during the shield construction process reasonably and accurately has always been a
problematic issue in research.

Figure 1. Schematic diagram of longitudinal settlement caused by shield tunneling.

The ground settlement caused by shield tunneling, apart from empirical, traditional
theoretical calculations, numerical simulations, and other research methods, has been
analyzed [10,11]. The empirical formula [12,13] describes the general ground subsidence
caused by shield tunneling because the geological conditions in different regions are quite
different, and the numerical value of the parameters varies widely. However, the empirical
models adopted in engineering often ignore the influence of parameters used to adjust
the settlement during shield tunneling. Therefore, the accuracy of surface subsidence
prediction based on the empirical formula method is unacceptable. Due to the limitations
of empirical methods, many studies have proposed analytical methods to estimate the
settlement induced by shield excavation [14,15].

In the analytical method, it is difficult for simplified computational models to ac-
curately account for the complex interactions between shield and soil, which affects the
application of the analytical method in practical engineering problems [16]. Compared
with empirical and analytical methods, numerical simulation methods can simulate the
dynamic construction process of shield tunnels and comprehensively consider the interac-
tion between tunnel construction and soil layers [17]. However, calculating the numerical
model is time-consuming, and the constitutive model is difficult to accurately simulate the
response of the soil layer on the macroscopic scale [2,18,19].

In shield tunneling, which is a dynamic process, the tunneling parameters and geolog-
ical parameters change in real-time, and the surface subsidence due to shield excavation
can be predicted in real-time. The parameter adjustment plan can be given to guide the
shield tunneling in an absolute sense. In the construction process, traditional methods are
difficult to achieve in this regard. Machine learning algorithms have developed rapidly
in recent years and are gradually being applied in geotechnical engineering due to their
nonlinear solid fitting capabilities and the simultaneous consideration of the influence of
multiple parameters [20]. Because machine algorithms can obtain accurate results quickly,
machine learning algorithms provide new ideas for intelligently controlling the shield tun-
neling process. Regarding the prediction of surface subsidence caused by shield tunneling,
the widely used machine learning algorithms include artificial neural networks (ANN)
and support vector machines (SVM). Recent research shows that ML methods have great
application prospects in analyzing complex geotechnical problems, such as deformation
caused by landslide [21,22] and underground soil structure interaction caused by tunnel
excavation [23]. In early investigations, Shi et al. [24] used the artificial neural network
method (ANNs) to calculate the maximum ground settlement due to shield tunneling accu-
rately. In addition, the same method is also used to calculate the width of the settlement
tank induced by shield excavation. Suwansawat et al. [25] systematically expounded the
application of artificial neural network method in earth pressure balance shield tunnel
based on a substantial amount of measured engineering data. Santos et al. [26] obtained
the correlation between the excavation parameters and the ground subsidence based on
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the artificial neural network model, which fits the actual theoretical results. Many studies
have combined a variety of optimization methods, for instance, genetic algorithms, particle
swarm algorithms, with ANNs to optimize the accuracy of the prediction model [27,28].

However, a significant challenge in using ANN is to determine the optimal network
framework [29]. In addition, due to its complex nature, the output from an ANN model is
usually inexplicable; therefore, complicated ML models such as ANN are often referred
to as a “black box” model. Zhang et al. [30] accurately predicted the development law of
the ground subsidence due to shield excavation by integrating the wavelet function and
the support vector machine algorithm. The study of machine learning methods to predict
ground subsidence caused by shield tunneling is shown in Table 1.

Table 1. Development and Application of Machine Learning Algorithms in Shield Tunnels.

Related Literature Method Output Parameters Data Points

Shi (1998) [24] BP Sc, Si, Sf 356
Suwansawat (2006) [31] BP G 49

Santos (2008) [26] BP G 81
Darabi (2012) [32] BP G 53

Pourtaghi (2012) [33] Wavelet, BP G 49
Ahangari (2015) [28] ANFIS, GEP G 53

Zhou (2016) [34] RF G 66
Bouayad (2017) [27] ANFIS G 95

Zhang (2017) [30] LSSVM G 55
Note: G = surface subsidence; Sc = Surface subsidence when passing through the monitoring section; Si = Surface
subsidence after the completion of the monitoring section segment assembly; Sf = Surface subsidence after stabilization.

Random Forest (RF) is another integrated ML algorithm that can process a large
amount of data in a short time. The final prediction result integrates multiple embedded
calculation results with high accuracy and is used to calculate the settlement caused by
shield tunnel construction [34]. Shao et al. [35] optimized the ANN model through the
particle swarm optimization (PSO) method and founded the optimum transfer speed of
the screw conveyor to ensure the safety of the tunnel face. In order to guarantee the
tunneling efficiency of the shield tunneling machine, Armaghani et al. [36] proposed the
use of PSO-ANN and the Imperial Competitive Algorithm (ICA)-ANN method to estimate
the tunnel speed of the shield tunneling facility. At the same time, the method of PSO-SVM
is also applied to calculate and improve the tunnel parameters of the shield machine during
the tunnel construction. At the same time, the method of PSO-SVM is also applied to
calculate and improve the tunnel parameters of the shield machine during the tunnel
construction [37]. However, there are many new machine learning algorithms at this stage,
and the prediction performance of different algorithms is different.

Although abundant highly effective studies have been introduced above, there is still
a lack of research on performance differences of different machine learning algorithms in
predicting the maximum ground subsidence due to shield tunneling; secondly, the current
research mainly focuses on the final output results, and there is a lack of research on the
correlation between input and output parameters. Therefore, constructing an interpretable
ML model can reveal the connection between input and output parameters, thereby helping
engineering designers to make the best decisions to ensure that soil settlement is limited
within the expected range throughout the construction process. At present, a feature
selection method, that is, the Pearson correlation method, has been used to detect and
control the influencing parameters of the surface settlement caused by the tunnel excavation
process. But the defect of this method is that it can only consider the linear relationship
between two parameters, while ignoring the influence of feature interaction between
parameters [6]. So academia began to use explainable artificial intelligence (XAI) to study
this problem. It allows humans to understand the output of complex ML models [38].
The Shapley Additive Interpretation (SHAP) proposed by [39], is one such XAI-based
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algorithm. The SHAP method can measure how each input feature affects the dependent
variable (output).

Owing to the importance of predicting settlements due to shield tunneling in geotech-
nical engineering, more and more people are trying to use machine learning algorithms to
build predictive models that can accurately estimate influencing variables. Currently, select-
ing a suitable model requires the process of sample characterization, parameter fine-tuning,
and configuration comparison. These steps are complicated and difficult for non-experts in
machine learning to follow. For this reason, the research of automatic machine learning
(AutoML) has attracted more and more attention. The advantage of AutoML is that it
can automatically match the most suitable model and hyperparameters on the basis of
complex datasets, thus simplifying the process of selecting the best model and optimize
the performance of the model. On the whole, the structure of our study is organized as
follows. Firstly, the database and data pre-processing methods we utilize are explained.
Secondly, this study compares the differences of two feature selection methods (Pearson
correlation and SHAP algorithm) in analyzing the same project datasets collected from
two EPB tunnel projects completed in Hangzhou, China. The SHAP algorithm is applied
to analyze the impact of the input feature parameters on the overall prediction results.
In the end, considering the advantages of AutoML, based on the AutoML method, this
research uses the PyCaret [40], a low-code machine learning library to construct a shield
tunnel prediction model based on monitored data. Subsequently, a comparative analysis of
various types of developed ML methods was accomplished to evaluate their performance
and select the best-performing model in this problem, and remarkable conclusions are
ultimately summarized.

2. Establishment of Surface Deformation Database for Shield Tunneling

2.1. Project Overview

The dataset used in this research was collected from two metro line tunneling projects
in Hangzhou, China [41]. As shown in Figure 2, metro line two (project-1) was excavated
from Gucui station to Xueyuan station, while metro line six (project-2) was excavated
from Shangpu station to Heshan Road station. Figure 3 outlines the construction plan
implemented during the excavation of Projects 1 and 2. The twin tunnels excavated for
Project 1 (de-noted as downlink and uplink in Figure 3a) were initiated in January 2016 and
completed in June 2016. The twin tunnels considered in Project 2 (namely, the left and right
tunnels in Figure 3b) commenced on 15 April 2017, and were completed on 15 October
2017. The downlink of Project 1 and both tunnels in Project 2 were excavated using two
“Shichuandao” type EPB shield machines. In contrast, the “Kawasaki” EPB shield was
used to excavate the uplink of Project 1. The inner diameter of each twin tunnel in both
projects was 5.5 m, while the outer diameter was 6.2 m. The total excavation length of the
twin tunnels for Project 1 was 1950 m, and that for Project 2 was 2486 m. Note to avoid any
effect of secondary disturbance due to the second excavation; this analysis only considered
the data from the first excavation of each project (i.e., downlink in Project 1 and left tunnel
in Project 2).

2.2. Engineering Geology

To determine the geological conditions at the proposed site, the construction unit
conducted comprehensive field and laboratory testing. The cross-sectional geological
profile of the tunnel section observed in Projects 1 and 2 is shown in Figure 4, which shows
the main soil layers of the site, including soil fill (mixed soil and pure soil), sandy silt, silty
sandy silt, sandy silt, silt, boulders1, silty silt, silty clay, and boulders 2 observed at a depth
of around 30 m. From Figure 4a, it can be seen that Project 1 started excavation from the
downlink route, covering a depth of 10.6 m to 18.7 m. The soil layer of this route is mainly
muddy silty clay and muddy clay. Project 2 is excavated from the left line and covers a
depth of 9 m to 16.6 m, passing through sandy silt and silt layers, as shown in Figure 4b.
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Figure 2. Hangzhou metro system map [41].

Figure 3. Construction plan of twin tunnels for (a) Project 1 and (b) Project 2 [41].

82



Mathematics 2022, 10, 4637

  

Figure 4. Cross-sectional geological profiles for (a) Project 1 and (b) Project 2 (unit: m) (Kannan-
gara et al., 2022) [41].

Based on the Chinese National Standard (CNS) GB/T50123-1999 (standard for soil test
methods) [42], the laboratory tests was carried out to measure the physical and mechanical
properties of the soil layers of the project 1 and project 2, as shown in Table 2. The shear
strength parameters (i.e., c and ϕ) of the soil can be measured through a series of direct shear
tests. The direct shear tests require the soil samples to be pre-consolidated for 24 hours and
sheared rapidly (0.8–1.2 mm/min) under undrained conditions. The average groundwater
levels of Project 1 and Project 2 were −2.14 m and −1.8 m, respectively. It is worth noting
that the groundwater levels remained stable during excavation.

Table 2. Soil physical properties of projects (1 and 2) [41].

Project Soil Type γ (kN/m3) ϕ◦ c (kPa) Gs e

1 Miscellaneous fill (18)
Pure fill (18.5)
Clay 1 18.2 10 12 2.74 1.095

Muddy clay 17.6 13 10 2.73 1.247
Muddy silty clay 17.6 14 10 2.72 1.218

Muddy clay with silt 17.5 14 11 2.72 1.22
Muddy silty clay with silt 18.1 18 12 2.71 1.067

Silty clay 17.6 14 12 2.73 1.204
Clay 2 17.4 12 15 2.74 1.243

Sandy silty clay 20.2 22 14 2.69 0.608
Completely weathered rock

2 Miscellaneous fill (18)
Pure fill (17.5)

Silt with sand 19.4 26 8 2.69 0.768
Sandy silt with silt 19.5 28 5.5 2.69 0.742

Sandy silt 19.7 29 4.5 2.68 0.706
Silty sand 19.7 31.5 4 2.68 0.687
Boulder 1 36 5

Silty clay with silt 17.1 13 14 2.71 1.283
Silty clay 20.1 21 28 2.71 0.66
Boulder 2 40 6

Note: γ is the unit weight of soil, ϕ is the soil internal frictional angle, c is the cohesion of the soil, Gs is the specific
gravity, and e is the void ratio. Data within round brackets are the empirical values.
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2.3. Preliminary Selection of Input Parameters

Previous studies discovered that in the shield tunneling process, the main factors affect-
ing the surface deformation could be roughly divided into three categories [31,43]: (1) tun-
nel geometric parameters (such as tunnel burial depth, shield diameter, section form,
etc. [44,45]; (2) stratum parameters (such as cover soil type, face soil type, soil compres-
sive modulus, elastic modulus, cohesion, internal friction angle, groundwater level, etc.);
(3) shield construction parameters (shield thrust, advanced rate, shield attitude, cutter
head torque, thrust, jack pressure, horizontal deviation (front), vertical deviation (front),
horizontal deviation (back), vertical deviation (back) [46], grouting pressure, grouting
volume, etc.). The 14 input features by their respective categories and the target variable
(i.e., Smax) as shown in Table 3 are considered for the analysis.

Table 3. List of input features and target variable considered for analysis [41].

Category Parameters Symbol Unit

Tunnel geometry Cover depth H m
Geological conditions Soil type a ST -

Groundwater level GW m
Shield operational parameters Face pressure (top) FPt kPa

Face pressure (center) b FPc kPa
Advance rate AR mm/min
Pitching angle PA ◦

Thrust Th kN
Torque To kN m

Jack pressure JP kPa
Horizontal deviation (front) HDf mm

Vertical deviation (front) VDf mm
Horizontal deviation (back) HDb mm

Vertical deviation (back) VDb mm
Target variable Maximum surface settlement Smax mm

a Categorical feature. b Computed by taking the average of face pressures recorded at left and right positions.

In order to observe the ground subsidence, an optical level (Suguang DS05, China,
accuracy 0.5 mm/km) and an electronic level (Trimble DINI 03, USA, 0.3 mm/km) were
used to measure the site subsidence. Surface settlements were measured twice daily, once
at 8:00 a.m. and again at 4:00 p.m. The allowable values for the surface settlement and
uplift were set at 35 mm and 10 mm, respectively.

Since the specifications of the entire tunnel are the same, the burial depth and diameter
of the tunnel (D) are constantly changing. Considering that the buried depth and diameter
of the tunnel will affect the development model of the stratum subsidence and the size
of the final settlement during the shield tunnel process [31,47], these two parameters are
selected as the only geometric parameters. Since the tunnels in this study were constructed
by shield tunneling, their outer diameters are the same, both are 6.2 m, the influence of
parameter D can be ignored.

Geological parameters include the depth of groundwater (GW) level, and physical
and mechanical properties of rock and soil. In machine learning algorithms, the geological
parameters need to be quantified. The physical and mechanical properties of the rock
and soil layer, along with the thickness and location of the soil layer, will influence the
subsidence induced by shield tunnel. Commonly used is the direct input of the soil layer c,
ϕ value [28,30], or directly using numbers to indicate the type of soil layer (ST) [35]. The
soil types mainly traversed during the EPB shield excavation for the two projects in this
study were “silty clay” and “silt sand”. For the convenience of description, they are coded
as 0 and 1 respectively.

In this study, a total of 11 shield operating parameters were considered as the input
features of the model. The four operational parameters, i.e., thrust, torque, tunneling
rate, and jack pressure, affect the degree of disturbance to the stratum during the shield

84



Mathematics 2022, 10, 4637

tunneling process [48]. The soil pressure will affect the stability of the tunnel face [49,50].
Project 2 uses the “Ishikawa” EPB shield. In order to measure the surface pressure during
its working process, three earth pressure gauges were installed on the top, left and right
sides of the shield machine [51]. The “face pressure (top)” and “face pressure (center)” are
used as input parameters to analyze the effect of face pressure on the settlement caused by
excavation. The shield machine must advance strictly along the design route (DTA) during
the working process. The attitude and position of the shield machine are described by
vertical deviation (front), horizontal deviation (front), vertical deviation (back), horizontal
deviation (back), rolling angle, and pitch angle [52]. The pitch and rolling angles describe
the attitude of the shield machine relative to the horizontal and vertical axes, respectively.
For each parameter taken into account in the dataset, the corresponding symbol and its
unit are displayed in Table 3. It is to be noted that the data preparation process were carried
out as recommended by kannangara et. al. [41] and the data is further refined as explained
in Section 2.4 below.

2.4. Data Pre-Processing

A major problem of machine learning prediction models is that the learning curve is
difficult to converge. In order to improve the probability of curve convergence, the data
set must be preprocessed to reduce data inconsistency [53]. In the cause of probe critical
information from the shield-soil interplay for surface subsidence prediction, a total of
264 data samples were collected, which were further divided into two subsets to evaluate a
model’s generalization ability. Randomly select 80% of the samples in the constructed data
sample library as the training and testing set of the model (211 observations per feature).
It should be noted that the test set must be referred to evaluate the model’s behavior.
The remaining 20% (53 data samples) have been retained from the basic dataset to be
adopted for predictions, the data should not be confused with a training/test segmentation.
According to the 264 surface subsidence measurement data chosen in this study, the input
and output data of first 25 points are shown in Table 4. The limits of mentioned parameters
to construct the predictive models for all 264 data samples, including average, standard
deviation (Std.), maximum (Max.), minimum (Min.) and three percentiles (75%, 50%, and
25%) are summarized in Table 5.

Table 4. Dataset samples used for creating intelligent model.

No. Ring
H

(m)
ST

GW
(m)

FPt
(kPa)

FPc
(kPa)

AR
(mm/min)

PA
(◦)

Th
(kN)

To
(kN/m)

JP
(kPa)

HD
(mm)

VDF
(mm)

HD
(mm)

VDB
(mm)

Smax
(mm)

1 5 9.03 1 1.46 40 95 0 −0.1 9345 1937 8700 −34 53 27 −53 4.65
2 9 9.05 1 1.57 0 70 7 −0.22 27,124 1305 24,600 −63 −67 5 −55 5.52
3 14 9.07 1 1.68 80 140 31 0 19,986 2310 17,700 −80 −43 −23 −62 40.11
4 18 9.09 1 1.79 110 180 59 −0.1 16,804 1965 4700 −78 −43 −46 −48 8.8
5 22 9.1 1 1.9 110 180 45 −0.2 20,275 1937 18,500 −49 −31 −62 −44 8.76
6 26 9.13 1 2.01 120 190 32 −0.2 17,478 2529 16,075 −37 −17 −54 42 18.67
7 30 9.25 1 2.12 110 180 34 −0.6 18,907 2289 null −31 −45 −37 −15 16.16
8 34 9.36 1 2.22 110 195 30 −0.77 17,459 2567 16,200 −32 −46 −29 −21 6.45
9 39 null 1 2.33 120 190 42 −0.7 19,564 2036 18,050 −15 −65 −20 −51 2.41
10 43 9.6 1 2.44 110 170 29 −0.7 null 2874 18,250 −8 −53 −13 −57 3.18
11 51 9.83 1 2.66 130 205 36 −1 19,344 2853 17,800 −1 −55 5 −46 1.58
12 55 9.94 1 2.49 130 205 48 −1 19,726 2153 18,000 1 −58 17 −55 7.61
13 59 10.04 1 2.33 130 205 41 −1 17,758 2250 16,300 14 −47 16 −49 10.12
14 64 10.14 1 2.16 130 200 38 −1 18,297 2778 16,900 −18 −45 −8 −44 11.77
15 68 10.24 1 2 130 205 38 −1.1 18,597 2657 16,975 4 −35 7 −31 12.97
16 72 10.34 1 1.84 120 190 35 −1.2 18,693 2278 17,225 −18 −39 16 −13 15.45
17 76 10.43 1 1.67 130 205 46 −1.2 17,618 2095 15,750 −42 −44 −5 −14 21.3
18 80 10.53 1 1.51 130 200 45 null 17,885 1953 15,775 −31 −47 −29 −19 16.11
19 84 null 1 1.34 130 200 43 −1.1 18,490 2567 16,900 −15 −47 −30 −33 11.6
20 89 10.73 1 1.21 140 205 44 −1.1 18,923 2049 17,400 −18 −39 −16 −32 14.35
21 50 10.91 0 112.0 60 160 51 −1.33 10,655 481 9500 13 −55 10 −4 12.1
22 55 11.05 0 240.0 50 170 50 −1.42 11,270 506 10,100 29 −48 42 2 16.7
23 85 11.89 0 12.2 50 190 62 −1.49 10,307 518 9100 4 −87 17 −31 26.9
24 90 12.03 0 11.9 60 215 63 −1.17 10,703 522 9525 21 −69 35 −60 28.5
25 100 12.31 0 32.4 40 170 57 −1.31 12,307 569 10,875 −22 −66 47 −40 40.2
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Table 5. Descriptive statistical description of the dataset used.

Parameter
Count

Count Mean Count Std. Count Min. Count 25% Count 50% Count 75% Count Max. Count

H 264 14.5 2.7 9.03 11.98 15.07 16.71 18.70
ST 264 0.52 0.5 0 0 1 1 1
GW 264 1.96 0.6 0.36 1.63 1.93 2.40 3.18
FPt 264 122.6 62.12 0 70 110 182.5 230
FPc 264 232.3 37 70 205 240 260 310
AR 264 58.40 11.76 0 53 60 66 80
PA 264 −0.09 0.78 −1.49 −0.77 −0.20 0.38 1.37
Th 264 19,592.6 4404.27 0 17,194.0 19,331.0 23,280.0 27433.0
To 264 1537.85 956.04 0 569.75 19,210.0 2481.5 3180
JP 264 17,862.2 3992.54 25 15,750.0 17,850.0 21,131.25 24950.0
HDf 264 −8.74 23.70 −80 −22.25 −12 2.25 69
VDf 264 −47.14 39.57 −125 −76 −48 −14 36
HDb 264 22.97 25.57 −62 8 23 39.25 107
VDb 264 −25.07 35.80 −126 −51 −26 −4 54
Smax 264 20.87 12.48 1.58 11.225 16.95 28082 55.30

For data cleansing, the shield parameters obtained from the shield site often contain
many invalid data and cannot be used directly, so the data must be cleaned. PyCaret by
default utilizes the drop_duplicates () function for the cleaning process, which includes the
removal of nulls and outlier rejection. Table 6 lists the data samples obtained after cleansing.
We performed all analyses using the default settings; for example, the test/hold-out set was
80/20, with 10-fold cross-validation for model comparison. The preprocessing methods
that were employed are discussed next.

Table 6. Cleaned dataset samples used for creating intelligent model.

No. Ring
H

(m)
ST

GW
(m)

FPt
(kPa)

FPc
(kPa)

AR
(mm/min)

PA
(◦)

Th
(kN)

To
(kN/m)

JP
(kPa)

HD
(mm)

VDF
(mm)

HD
(mm)

VDB
(mm)

Smax
(mm)

1 5 9.03 1 1.46 40 95 0 −0.1 9345 1937 8700 −34 53 27 −53 4.65
2 9 9.05 1 1.57 0 70 7 −0.2 27,124 1305 24,600 −63 −67 5 −55 5.52
3 14 9.07 1 1.68 80 140 31 0 19,986 2310 17,700 −80 −43 −23 −62 40.11
4 18 9.09 1 1.79 110 180 59 −0.1 16,804 1965 4700 −78 −43 −46 −48 8.8
5 22 9.1 1 1.9 110 180 45 −0.2 20,275 1937 18,500 −49 −31 −62 −44 8.76
6 26 9.13 1 2.01 120 190 32 −0.2 17,478 2529 16,075 −37 −17 −54 −42 18.67
7 30 9.25 1 2.12 110 180 34 −0.6 18,907 2289 17,950 −31 −45 −37 −15 16.16
8 34 9.36 1 2.22 110 195 30 −0.77 17,459 2567 16,200 −32 −46 −29 −21 6.45
9 39 9.48 1 2.33 120 190 42 −0.7 19,564 2036 18,050 −15 −65 −20 −51 2.41

10 43 9.6 1 2.44 110 170 29 −0.7 19,778 2874 18,250 −8 −53 −13 −57 3.18
11 51 9.83 1 2.66 130 205 36 −1 19,344 2853 17,800 −1 −55 5 −46 1.58
12 55 9.94 1 2.49 130 205 48 −1 19,726 2153 18,000 1 −58 17 −55 7.61
13 59 10.04 1 2.33 130 205 41 −1 17,758 2250 16,300 14 −47 16 −49 10.12
14 64 10.14 1 2.16 130 200 38 −1 18,297 2778 16,900 −18 −45 −8 −44 11.77
15 68 10.24 1 2 130 205 38 −1.1 18,597 2657 16,975 4 −35 7 −31 12.97
16 72 10.34 1 1.84 120 190 35 −1.2 18,693 2278 17,225 −18 −39 16 −13 15.45
17 76 10.43 1 1.67 130 205 46 −1.2 17,618 2095 15,750 −42 −44 −5 −14 21.3
18 80 10.53 1 1.51 130 200 45 −1.2 17,885 1953 15,775 −31 −47 −29 −19 16.11
19 84 10.63 1 1.34 130 200 43 −1.1 18,490 2567 16,900 −15 −47 −30 −33 11.6
20 89 10.73 1 1.21 140 205 44 −1.1 18,923 2049 17,400 −18 −39 −16 −32 14.35
21 50 10.91 0 112.0 60 160 51 −1.33 10,655 481 9500 13 −55 10 −4 12.1
22 55 11.05 0 240.0 50 170 50 −1.42 11,270 506 10,100 29 −48 42 2 16.7
23 85 11.89 0 12.2 50 190 62 −1.49 10,307 518 9100 4 −87 17 −31 26.9
24 90 12.03 0 11.9 60 215 63 −1.17 10,703 522 9525 21 −69 35 −60 28.5
25 100 12.31 0 32.4 40 170 57 −1.31 12,307 569 10,875 −22 −66 47 −40 40.2

2.4.1. Data Normalization

Cleaned data is often different and affects the result of machine learning. In order
to eliminate this influence and improve the convergence speed to a certain extent, it is
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necessary to normalize the data. In statistics, the more commonly used normalization
methods include dispersion standardization and Z-score standardization. Dispersion
standardization is widely used in deformation prediction, and its data normalization
interval may be different but mainly normalized to [−1, 1] or [0, 1]. For any parameter x,
the normalized value is given as:

Xnorm =
X − Xmin

Xmax − Xmin

(
Xmax − Xmin

)
+ Xmin (1)

In the formula, Xmax, Xmin is the maximum and minimum values of variable x, where
Xmax, Xmin is the maximum and minimum values of normalized variables X. For the
normalization process of measured data, we employed PyCaret, which uses the “Zscore”
function by default to normalize the data in the range of [0, 1].

2.4.2. Cross-Validation Method

Building a machine learning model is mainly composed of 3 phases: training, testing,
and validation. The validation process mainly solves the problems of overfitting and
under fitting in machine learning. Machine learning validation methods primarily include
simple cross-validation (hold-out cross-validation), k-fold cross-validation, and leave-one-
out cross-validation [54]. In order to improve the generalization performance of the ML
model and overcome the deficiencies of data, k-fold cross-validation is the most popular
cross-validation method used in the model training phase [55,56]. In order to test the
performance of the entire prediction model more accurately, the original training data
set constructed is stochastically divided into k parts. For each calculation, k-1 subsets are
provided for training, and the remaining subset is used for verification. This procedure
is used to test the ability of the sub-models. Repeat the calculation k times so that each
sub-dataset can be used as a validation. Summarize and calculate the average ability of
k sub-models to measure the performance of the entire prediction model. The formula is
shown as follows:

T =
1
k ∑k

i=1 MSEi (2)

where, T = fitness function, MSEi = prediction error for the ith validation set. The perfor-
mance of the k-fold cross-validation method depends on the number of subsets. However,
fewer subsets cannot eliminate the problem of overfitting or underfitting, which will affect
the model’s accuracy. Too many subsets will significantly increase the model’s performance
computation time. Considering the limited amount of data in this study, in order to obtain
reliable results, we finally adopted the 10-fold cross-validation method.

3. Feature Selection

Feature selection plays a significant role in machine learning because it manually or
automatically chooses the input features that contribute significantly to the target variable.
It is a desirable step to consider when building an ML model [34]. After the primary
selection of input parameters in the surface deformation prediction of shield tunneling,
the model may still face the problem of having too many input parameters. In order
to avoid the dimensionality and the occurrence of overfitting and improve the model’s
accuracy, it is necessary to rely on feature selection for input parameter further filtering.
Tan et al. [57] used grey relational analysis and sorted them by the degree of relevance to
determine the main factor influencing the amount of deformation. Moreover, the commonly
used feature selection methods include Filter, Wrapper, the principal component analysis
method, Sobol sensitivity analysis [58], recursive feature elimination, the tree model-based
feature selection method, etc.

3.1. Analysis 1: Pearson Correlation Method

Feature selection methods are numerous and complex in predicting the surface de-
formation of shield tunnels. The linear correlation between the x and y variables can
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be measured by the Pearson correlation coefficient, whose formula is given in Equation
(3) [59].

r =
∑
(
Xi − X

)(
Yi − Y

)
√(

Xi − X
)2(Yi − Y

)2
(3)

In the formula, r represents the Pearson correlation coefficient; Xi and Yi represent the
values of the X and Y variables in the sample respectively; X and Y are the average values
of the variable values.

The closer the absolute value of the correlation coefficient r is to 1, the stronger the
linear correlation between the variables. When r = 0, it means that there is no linear
correlation between the two variables. The correlation coefficient was calculated using the
corr(.) function provided in the Pandas library, and the results are listed in Figure 5. In this
study, the guidelines recommended by Zhang et al. [6], were used to select the characteristic
variables. From the calculation results of the correlation coefficient, it can be seen that
among the listed features, only ST is strongly linearly correlated with Smax (|r| = 0.63),
while FPt, Th, To, JP, and VDf are moderately correlated with Smax (|r| = 0.42~0.56).
In addition, the parameters H, AR, HDb, and VDb are weakly correlated with Smax
(|r| = 0.23~0.36), and the remaining characteristic variables GW, FPc, PA, and HDf show
very weak correlations with Smax (|r| < 0.19). In this analysis, the feature variables with
a medium correlation with the output variable Smax (|r| ≥ 0.4) are selected as effective
features for predicting Smax, and the rest of the input features are not used as effective
variables for prediction analysis due to small correlation coefficient and weak correlation.
There is some difficulty in using the Pearson correlation coefficient feature selection method
when a large number of analyzed features are poorly correlated with the predictor variables,
as shown in this study.

Figure 5. Inter-correlations of Pearson correlation coefficients among input data.
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3.2. Analysis 2: Shapley Additive Explanations (SHAP)

Although the machine learning model based on the ensemble algorithm has relatively
good performance, with the increase in model complexity, the interpretability of the model
is reduced, which makes the regression model a black-box model. To solve the challenge
of poor interpretability of the model, the SHAP framework is introduced to explain the
model results and to provide support for the reliability of the model results. SHAP (Shapley
additive explanations) is an interpretive framework proposed by Lundberg and Lee [39]
for interpreting black-box models. The SHAP method is widely used in coalition game
theory, which evaluates the degree of influence of input features on output parameters
through Shapley values [60]. The basic method is to calculate the contribution value of
each input feature and add the influence value of each feature to obtain the final prediction
of the model [61].

For an ensemble tree model, when doing a regression task, the model outputs a
probability value. SHAP can calculate the Shapley value to measure the influence value
of each input variables to the final prediction. Assume that g represents the explanatory
model, M represents the number of features, and z indicates whether the feature exists
(value 0 or 1); φ is the original value when all the inputs are absent, for each feature Shapley
value, the formula can be given as follows:

g(z)= ϕ0 + ∑M
i ϕizi (4)

For each feature, the SHAP value describes the expected change in model predictions
when conditioned on this feature. For each function, the SHAP value describes the feature’s
contribution to the overall prediction outcome to account for the distinction between the
average model calculation and the actual calculation. When i > 0; it shows that this feature
has an improving effect on the predicted value, and conversely when i < 0, it shows that
this feature reduces the contribution. The model importance given by the regressor model
only shows which input variable is essential but does not show how the variable influences
the calculation results. The most significant superiority of the SHAP model is that it can
show the influence of input variables in each data, as well as the positive or negative effect
of this influence on the final prediction result.

Figure 6 is a summary graph of SHAP features, which analyzes factors affecting
surface deformation according to feature importance.

Figure 6. Summary plot obtained from SHAP analysis.
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As shown in Figure 6 the soil type (ST), Torque (To) cover depth (H), ground water
level (GW), and other characteristics have a significant effect on the model. The most
important feature of SHAP that affects settlement prediction is the soil type (ST). Therefore,
silty clay with a higher positive SHAP value has a greater influence on the mod-el output
result than silty sand. Torque (To) and Cover depth (H) in the current model (ET) also
have a significant impact on predicting Smax. Positive SHAP values are observed when
Torque values are low, while negative SHAP values are observed when Torque values are
high, which means that a smaller torque will induce greater surface settlement. In the same
way, it can be seen that when H is larger, the corresponding SHAP value is positive, which
means that the output value of the prediction model will increase.

The SHAP values for PA, VDB, AR, JP, HDB, and HDF mainly converge near zero.
The zero SHAP value stands that there is no effect on the model’s calculation. To better
understand the dependency of each feature in the model’s output a simplified version of
the above plot is shown in Figure 7. It can be found that in the current model, ST, To, H,
GW, and VDF are the most important features in predicting Smax, while the importance of
other features is less in comparison to ST.

Figure 7. Feature Importance by SHAP Values of designed ET model.

Figure 8 shows the SHAP dependency graph between features ST, H, and GW, which
have a high impact on the model and are selected to draw the SHAP feature dependency
graph, where the third axis of the dependency graph is the categorical variable. Figure 8a,
shows the correlation data of silty clay (labeled 0, represented by blue dots) and silty sand
(labeled 1, represented by red dots). It can be found that the EPB operates at low VDf values
while traversing the silty clay formation in Project 1, and calculates a large negative SHAP
value. Conversely, when the TBM was operating at high VDf values while traversing the
silty sand formation in Project 2, a large positive SHAP value was calculated.
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(a) 

 
(b) (c) 

Figure 8. Dependency plots for (a) ST_0, (b) GW, and (c) H.

Figure 8b shows how the SHAP value increases and then decreases as the GW value
increases. Similarly, Figure 8c shows that SHAP values for H are primarily close to 0,
corresponding to FPt, which means that the cover depth (H) has zero impact on the model’s
output Smax when sufficient face pressure is present. Also, as the FPt values decrease at
greater depths (>12 m), the Smax increases, indicating a larger positive SHAP value for H.

Therefore, as with analysis 1 and analysis 2, five variables (i.e. ST, To, H, GW, and
VDF) were considered important for predicting tunnelling-induced settlements and are
selected as final input parameters for building a ML models.

4. Research Methodology

Despite the numerous research conducted in the past, it is essential to carry on with
the ongoing efforts of developing newer and faster machine learning techniques that are
more effective and can also be developed and deployed with ease. In this analysis, three
commonly used statistical evaluation parameters, i.e., coefficient of determination (R2),
mean absolute error (MAE), and root mean square error (RMSE), were used to evalu-
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ate the accuracy of the calculation results generated by the intelligent method, as given
by equations.

R2 = 1 −
∑N

i=1

(
yact

i − ypred
i

)2

∑N
i=1

(
yact

i − yact
i

) (5)

MAE =

(
1
n

)
∑N

i=1

∣∣∣yact
i − ypred

i

∣∣∣ (6)

RMSE =

√(
1
N

)
∑N

i=1

(
yact

i − ypred
i

)
2 (7)

where yi
act signifies the measured value of the ith output feature, yi

pred is the predicted value
of the ith output feature, and N is the number of data in the dataset. MAE, RMSE, and R2

represent the average value, standard deviation, and correlation degree of the difference
between the measured value and the predicted value, respectively.

4.1. Machine Learning Techniques

A new Python library (PyCaret) [40], offers a majority of machine learning techniques
to construct a new prediction model. 21 ML algorithms were optimized through a com-
prehensive search of multiple ML methods, bypassing the whole dataset to the regression
module of PyCaret (2.3.10), which divides the dataset into train and testing sets of 80%
(211) and 20% (53) records, respectively, by calling the ‘setup’ function. 20% of the samples
(53 data) are reserved from the original data set to demonstrate the predictive effect of
the predict_model() function. This process is independent of the train/test phase, since
this particular split is done to simulate a real engineering environment. Another reason
for this approach is that these 53 samples are not available when doing machine learning
model building. In order to analyze and calculate the relationship between multiple input
variables and output variable when using machine learning methods to build prediction
models, regression analysis algorithms are often adopted [62,63]. Regression analysis
statistics method determines the distribution relationship of data through known datasets,
measures the contribution of input features to output features, and has been widely verified
in ML methods [64,65]. Regression method can be used for making predictions on continu-
ous data (time-series) in ML, especially when the regression relationship line of variables
does not pass through the origin, regression analysis is more accurate. In addition, with
the development of mathematical statistics theory, ML algorithm is often used in nonlinear
regression estimation. Table 7 lists the regression estimators and other algorithms that were
used in this study [40].

After performing the feature selection methods using analysis 1 and 2 as discussed in
Section 3, all the models from the available machine learning libraries and frameworks were
trained on datasets containing the selected features from Pearson correlation method and
SHAP algorithm. Based on their R2 values, the top five models were selected for further
optimization. The hyperparameter adjustment method is used to improve the R2 value of
the selected model. Furthermore, tuned models were trained using 10-fold cross-validation
to use all of the samples as training and testing, as the number of samples in the database is
not enough. All of the tuned models were ensembled. Ensemble modeling is a technique in
which various models are built to predict an output variable. This is accomplished through
the use of various modeling methods or samples of training databases. The aggregated
model then summarizes the predictions for each submodel, resulting in a single eventual
prediction for the unknown data. The method of ensemble model can effectively reduce
the generalization error of calculation, provided that the sub models built in the process
of ensemble model are independent and diversified. The two most common methods
in ensemble learning are bagging and boosting [66,67]. Stacking [68] is also a type of
ensemble learning where predictions from multiple models are used as input features for
a meta-model that predicts the final outcome. After the ensemble technique, the best of
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all the models were calculated and selected using the AutoML function, improving the R2

value before determining the model for saving.

Table 7. Introduction to various ML algorithms (regression estimators).

No. Estimator Description

1 Extra tree Regressor A regressor with multiple decision trees, which is highly randomized, is only used
in the ensemble methods.

2 Random Forest Regressor The algorithm establishes multiple decision trees by randomly sampling, and
obtains the overall regression prediction results by averaging the results of all trees.

3 Gradient Boosting Regressor An algorithm for combining multiple simple models into a composite model.

4 Light Gradient Boosting Machine The algorithm adopts a distributed gradient lifting framework based on decision
tree algorithm, which can solve the problems encountered by GBDT in massive data.

5 AdaBoost Regressor This algorithm trains different weak regressors for the same training set and
combines them to form a stronger final regressor.

6 Extreme gradient boosting The algorithm is optimized on the framework of GBDT, which is efficient, flexible
and portable.

7 K neighbors Regressor A simple algorithm for predicting the target value on all available cases based on a
similarity measure.

8 Decision Tree Regressor
A method of approximating the value of a discrete function. The induction
algorithm is used to generate readable rules and decision trees, and the decision is
used to analyze new data.

9 Support vector machine A generalized linear classifier for binary classification of data according to
supervised learning.

10 Bayesian Ridge A probability model for estimating regression problems.

11 Ridge Regression A biased estimation regression method dedicated to the analysis of collinearity data
is essentially an improved least squares estimation method.

12 CatBoost Regressor An algorithm based on symmetric decision tree, which can efficiently and
reasonably handle categorical features.

13 Linear Regression A linear approach that shows the relationship between a dependent variable and
one or more independent variables.

14 Least Angle Regression A statistical analysis method that uses regression analysis to determine the
quantitative relationship between multiple variables.

15 Huber Regressor A linear regression that replaces the loss function of MSE with huber loss.

16 Orthogonal Matching Pursuit A nonlinear adaptive algorithm using a super complete dictionary for
signal decomposition.

17 Elastic Net A linear regression model applied to multiple correlated features.

18 Lasso Regression A compressed estimate. It constructs a penalty function to obtain a more refined
model, which is a biased estimate for processing data with complex collinearity.

19 Passive aggressive Regressor Online learning algorithms for both classification and regression.

20 Random sample consensus An iterative method that estimates the parameters of a mathematical model from a
set of observed data containing outliers that do not affect the estimates.

21 Theil-Sen regressor A robust model for fitting straight lines in nonparametric statistics.

5. Results and Discussion

The experimental work was performed by employing a Python library (PyCaret). The
regression module of PyCaret is a supervised ML module that forecasts continuous values.
It has over 21 ML algorithms and various plots to analyze the model’s performance.

5.1. Experimental Design

Figure 9 depicts an experimental design flow diagram with seven major components:
data collection, data pre-processing (data cleaning, normalization, and cross-validation),
feature selection, hyper-parameter tuning, data partitioning, model development, model
selection, and future prediction.
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Figure 9. Flow chart of developed prediction model.

As described in Section 2.1, data from metro line tunneling projects in Hangzhou
for predicting tunnel-induced settlements were collected. Data were cleaned first, which
included the removal of nulls and outlier rejection. All the data are of integer datatype
and were normalized to [−1, 1] as discussed in Section 2.4.2 and then divided into training
and testing samples. As discussed in Section 3, feature selection methods using Pearson
correlation and SHAP were applied to find relevant features. Five features (i.e. ST, To,
H, GW, and VDF) were considered important for predicting Smax, and were selected as
final input parameters for building ML models. ML models were then developed with
21 ML estimators, as explained in Section 4.1, and performance was recorded based on
the MAE, RMSE, and R2 values the results that were obtained are presented in Table 8.
Among the 21 developed ML models, the best five models were selected: the extra tree
regressor, Random Forest Regressor, AdaBoost Regressor, Light Gradient Boosting Machine,
and Gradient Boosting Regressor. All the best five selected models were then subjected
to hyper-parameter tuning to maximize the model’s performance without overfitting by
using the tune_model function, which will automatically tune the hyper-parameters of
a model using a random grid search on a pre-defined search space. Furthermore, the
10-fold cross-validation technique is utilized for a dynamic partitioning of data and for

94



Mathematics 2022, 10, 4637

improving the tuned model’s performance. The tuned models were then ensemble which
is well known in improving the stability and accuracy of regression models (primarily tree-
based) using various ensemble techniques; these include Bagging, Boosting, and Stacking.
Table 8 presents the results obtained after adopting the corresponding techniques. Finally,
forecasting was performed through the best-selected model (i.e., the extra trees regressor
model). The model was also validated with unseen data for predictions to check the
robustness of the model and it was found to be satisfactory.

Table 8. Statistical values of the 21 developed ML prediction models on Training and Test set.

No. Model
MAE R2 RMSE MAE R2 RMSE

Training Training Training Test Test Test

1 Extra tree Regressor 3.7 0.891 4.5 3.8 0.791 5.5
2 Random Forest Regressor 4.2 0.857 5.0 4.3 0.753 6.1
3 Gradient Boosting Regressor 4.3 0.846 5.1 3.8 0.788 5.6
4 Light Gradient Boosting Machine 4.5 0.826 5.5 3.97 0.762 6.0
5 AdaBoost Regressor 4.4 0.834 5.2 5 0.736 6.4
6 Extreme gradient boosting 4.3 0.845 5.2 5.1 0.742 6.41
7 K neighbors Regressor 4.28 0.831 5.5 4.76 0.732 6.48
8 Decision Tree Regressor 4.7 0.691 5.5 5.67 0.599 8.0
9 Support vector machine 4.7 0.655 5.6 5.82 0.582 8.0
10 Bayesian Ridge 7.54 0.603 8.46 7.1 0.47 9.02
11 Ridge Regression 7.59 0.602 8.48 6.80 0.51 8.74
12 CatBoost Regressor 7.62 0.592 8.52 6.72 0.55 8.77
13 Linear Regression 7.70 0.57 8.76 6.76 0.50 8.82
14 Least Angle Regression 7.70 0.57 8.76 6.76 0.51 8.82
15 Huber Regressor 7.57 0.57 8.73 6.61 0.51 8.73
16 Orthogonal Matching Pursuit 7.9 0.55 9.23 7.6 0.36 10.1
17 Elastic Net 8.1 0.52 9.31 7.62 0.40 9.6
18 Lasso Regression 7.70 0.57 8.76 7.77 0.40 9.63
19 Passive aggressive Regressor 8.1 0.42 10.44 8.56 0.19 11.20
20 Random sample consensus 7.43 -0.33 8.43 10.10 -0.10 12.49
21 Theil-Sen regressor 7.43 -0.33 8.43 10.10 -0.10 12.49

5.2. Performance Analysis

The model’s performance was analyzed across different aspects, as discussed below.

5.2.1. Performance of Regression Models

The regression models for the given dataset were developed using PyCaret; for a
diverse dataset, the coefficient of determination (R2), mean absolute error (MAE), and root
mean square error (RMSE) are considered reliable statistics for evaluating the prediction
model. Among the 21 different generated continuous models on the training set and the
test set, the statistical significance of the best five selected models after being subjected to
hyperparameter tuning, 10-fold cross-validation, and various ensemble techniques, giving
their coefficient of determination (R2), the mean absolute error (MAE), and the root mean
square error (RMSE), is given in Table 9 below. Based on the statistical values, it appears
that the extra tree regressor (ET) outperformed in all cases at the training and testing stages,
with an R2 of 0.808, MAE of 3.7, and an RMSE of 5.2 on the test set. The extra tree regressor,
which outperformed in all the cases, was finalized as the best model.

5.2.2. Performance of the Extra Tree Regressor

The extra tree regressor model was also analyzed graphically using residual graphs,
prediction error plots, and validation curve plots. Plotting uses the trained model object
and generates a plot based on the testing dataset. Figure 10 depicts the plots between
the experimental and predicted Smax as predicted by the generated models. The x-axis
and y-axis represent the experimental and predicted values, respectively, and the blue and
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green colors represent the training and testing sets, respectively. The black diagonal line
represents the identity line.

Table 9. Statistical values of the best five selected prediction Models on Training and Test set.

No. Model
MAE R2 RMSE MAE R2 RMSE

Training Training Training Test Test Test

1 Extra tree Regressor 3.4 0.913 4.04 3.7 0.808 5.2
2 Random Forest Regressor 4.2 0.861 5.0 4.3 0.786 5.4
3 Gradient Boosting Regressor 4.3 0.854 5.1 3.8 0.792 5.5
4 AdaBoost Regressor 4.4 0.849 5.1 5.0 0.763 5.9
5 Light Gradient Boosting Machine 4.5 0.842 5.5 3.9 0.778 6.0

A prediction error plot compares actual targets to the values predicted by our model.
This demonstrates the model’s variance. We can identify regression models using this plot
by comparing them to the 45-degree slanting line and determining whether the prediction
exactly matches the model.

A residual plot is a graphical representation of the relationship between an indepen-
dent variable and its corresponding response variable. A residual value is a measure of
how well a regression line fits the dataset, with a few data points fitting and others missing.
The x-axis in the residual plot represents the residual values, and the y-axis represents the
independent variable.

The validation curve is the learning curve calculated from a holdout validation dataset
that gives an idea of how well the model is generalizing dataset. The validation curve
plots the score over a varying hypermeter. It is more convenient to plot the influence of a
single hypermeter on the training score and the validation score to determine whether the
estimator is overfitting or underfitting for some hypermeter values. From Figure 10c, both
the validation curves are becoming narrower with the increased value of max_depth.

  
(a) (b) 

Figure 10. Cont.
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(c) 

Figure 10. (a) Residuals for extra tree regressor; (b); Prediction error for extra tree regressor (c) Vali-
dation curve for extra tree regressor.

5.2.3. Prediction of Unseen Data

To finalize the model and predict based on unseen data (the 20% of data) that we
detached at the start and never revealed to PyCaret. The finalize_model () function fits
the model to the full dataset containing the test/holdout samples. The predict_model ()
function is employed to make predictions on the unseen data, this time we will pass the
data_unseen parameter. Data_unseen is the variable created at the beginning and contains
20% (53 samples) of the original dataset that was never exposed to PyCaret. Although the
model is same, we can see that R2 increased from 0.913 to 0.96 in the final ET model. This is
because the final ET variable is trained on the entire dataset including the test/hold-out set.
The plot of prediction error is shown in Figure 11. After testing the models on the unseen
data subset, the results we obtained are summarized in Table 10 below. At the unseen_data
stage, the model performed well with MAPE of 2.10, R2 of 0.961, and RMSE of 3.94.

 
(a) (b) 

Figure 11. (a) Residuals for extra tree regressor; (b) Prediction error for extra tree regressor.
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Table 10. Statistical values of the Generated prediction Models on unseen data.

MAE MSE RMSE R2 RMSLE MAPE

Extra tree regressor 2.1023 15.5794 3.9471 0.961 0.1664 0.1053

According to Table 10 and Figure 11, the mean absolute error (MAE) between predicted
and measured maximum surface subsidence is less than 3%, indicating that the predictive
performance of the model is acceptable and satisfactory for the given project. Given the
statistical results and graphical plots, the models generated by PyCaret can be used to
predict ground subsidence’s caused by shield tunneling.

5.3. Analysis of Model on Entire Dataset

As it is known that PyCaret wraps a number of machine learning frameworks and
libraries, the model built by PyCaret is evaluated to learn about the details of the best
algorithm selected by the AutoML function. The extra tree regressor is identified to be
the best-selected model based on the statistical R2 value of 0.961. Furthermore, our best
model was finalized for deployment and saved for making new predictions over the whole
dataset, including (training, test, and unseen_data sets). An actual vs. predicted value plot
is plotted for visualization as a histogram, as shown in Figure 12a, where the brown bars
represent the actual values, the blue bars represent the predicted values, and the purple
bars represent the error. A regression plot is plotted over the entire dataset to show the
linear relationship between the Actual Value and the Predicted Value of Smax, and the dots
are not far in the hyperplane of the linear line, which indicates that the regression model is
good as shown in Figure 12b. Further, we can compare the predicted values and residuals
in an error plot over the entire dataset, shown in Figure 12c. The statistical R2 value of
1 and the actual vs. predicted value plot on our entire dataset indicate that the selected
model i.e. extra tree regressor (ET) is highly significant in predicting the surface settlements
induced by tunneling when compared to our other models.

 
(a) 

  
(b) (c) 

Figure 12. (a) Distribution between Actual value and Predicted value; (b) Regression plot;
(c) Residual plot.
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6. Conclusions

This study systematically illustrates the process of application of Auto machine learn-
ing (AutoML)-based method to precisely predict tunneling-induced settlement using EPB
shield machines. The 10-fold cross-validation method is utilized to overcome the scarcity
of data and promote the robustness of the model. The coefficient of determination (R2),
mean absolute error (MAE), and root mean square error (RMSE), are selected as three
quantificational evaluation indices. Feature selection methods (i.e., Pearson correlation,
and the SHAP framework) were employed to select features from a dataset with 14 input
features (i.e., H, ST, GW, FPt, FPc, AR, PA, Th, To, JP, HDf, VDf, HDb, and VDb). Subse-
quently, AutoML-based models were built and trained on the selected features from the
corresponding feature selection method. Then, the five best models were selected among
21 developed ML prediction models, and performances were compared by computing the
R2, RMSE, and MAE. According to the analysis, the extra tree regressor outperformed the
other four models. Finally, the extra tree regressor model was used to make predictions
on unseen data to simulate a real-life scenario and highlight the strengths of the model’s
predicted performance.

The following conclusions are provided based on the results of the model comparison
and analysis:

• Feature selection is essential to address when predicting Smax due to shield tunneling.
It is recommended to compare at least two feature selection methods, especially when
there needs to be more information about the relationship between input and output
parameters. Herein, H, ST, GW, FPt, PA, To, JP, VDF, and VDb significantly impact the
maximum surface settlement caused by tunneling based on the features selected from
the Pearson correlation method. However, deciding which feature to select may be
challenging when there is a weak correlation with the desired output.

• SHAP-based feature selection algorithms comprehend the output of a complex ML
model and facilitate model validation by allowing the user to investigate how various
features contribute to the model’s prediction. The SHAP analysis performed in this
study revealed that the most critical parameters affecting tunneling-induced ground
settlements were soil type (ST), torque (To), cover depth (H), groundwater level
(GW), and tunneling deviation. These prudent factors identified by the model enable
engineers and shield operators to reasonably manage shield operations.

• It is feasible and most reliable to calculate the maximum ground settlement (Smax)
during the construction of earth pressure balanced (EPB) shield tunneling by the pro-
posed AutoML models. According to the statistical and graphical results, the extra-tree
regressor’s predictive ability is the best among all 21 AutoML models. Furthermore,
the prediction results on unseen data indicate that the model’s predicted performance
is acceptable and within the project’s tolerances. As a result, the prediction results
generated from the AutoML-based extra tree regressor model are the most reliable,
indicating that the model can be employed in real projects when completely-new deep
excavation data are imported.

Limitations

Because of the lack of a professional public database and the irregular quality of
engineering data, this study excludes the meta-learning submodule in AutoML. More work
should be done to collect similar data and create a database that can provide prior experience.

This study does not investigate the impact of tunneling operations with parameters
related to grouting quality (e.g., large grout filling percentage and grouting pressure),
which can significantly reduce settlements developed after the shield passing, as they were
unavailable for Project 1. In order to enhance the effectiveness of the ML models, it is
recommended to consider the effects of these parameters in future research.
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Abstract: Peak particle velocity (PPV) caused by blasting is an unfavorable environmental issue that
can damage neighboring structures or equipment. Hence, a reliable prediction and minimization of
PPV are essential for a blasting site. To estimate PPV caused by tunnel blasting, this paper proposes
two neuro-based metaheuristic models: neuro-imperialism and neuro-swarm. The prediction was
made based on extensive observation and data collecting from a tunnelling project that was concerned
about the presence of a temple near the blasting operations and tunnel site. A detailed modeling
procedure was conducted to estimate PPV values using both empirical methods and intelligence
techniques. As a fair comparison, a base model considered a benchmark in intelligent modeling,
artificial neural network (ANN), was also built to predict the same output. The developed models
were evaluated using several calculated statistical indices, such as variance account for (VAF) and
a-20 index. The empirical equation findings revealed that there is still room for improvement by
implementing other techniques. This paper demonstrated this improvement by proposing the neuro-
swarm, neuro-imperialism, and ANN models. The neuro-swarm model outperforms the others in
terms of accuracy. VAF values of 90.318% and 90.606% and a-20 index values of 0.374 and 0.355
for training and testing sets, respectively, were obtained for the neuro-swarm model to predict PPV
induced by blasting. The proposed neuro-based metaheuristic models in this investigation can be
utilized to predict PPV values with an acceptable level of accuracy within the site conditions and
input ranges used in this study.

Keywords: tunnel blasting; Peak particle velocity; metaheuristic algorithms; neuro-swarm; neuro-
imperialism

MSC: 68Uxx

1. Introduction

Blasting operations are frequently used in mines, quarries, and tunnels to excavate rock
mass, due to their economy and efficiency. An important control object during blasting is the
magnitude of ground vibration, as this is related to the safety of the surrounding buildings
and equipment [1]. During blasting operations, the blast-induced ground vibration can
propagate in three directions: transverse, longitudinal, and vertical direction [2]. When
the vibration starts to propagate, each particle has its velocity. The peak particle velocity
(PPV) is defined as the highest velocity of the particles, which is the base factor to assess the
magnitude of ground vibration produced by blasting events [3–6]. Dozens of investigations
were carried out to determine the PPV magnitude [7], and they included three types:
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empirical/experimental methods, statistical-based methods, and artificial intelligence
(AI) techniques.

In the case of empirical/experimental methods, many researchers [8,9] suggested
a uniform style, which works based on only two parameters, namely, the distance of the
measuring transducer from the blasting face and the explosive weight (charge amount).
This uniform style was introduced by Duvall and Petkof [10], and it is known as the USBM
equation form. The scaled distance (SD) is the main term of the USBM equation, which
can relate the two mentioned parameters to predict PPV values. However, average perfor-
mance accuracy was reported by the researchers for different proposed empirical equations,
whereas a high prediction capacity is required for such techniques to minimize the risk
associated with ground vibration produced by blasting. In addition, typically, these empiri-
cal/experimental equations were proposed for the conditions of the specific site, which has
a unique geological structure and setting [11]. It seems that these empirical/experimental
formulas cannot predict PPV with a satisfactory level of accuracy in the other blasting
locations, and there is a need to try other available techniques to get more reliable results
with higher accuracy.

Statistical regression methods have also been used to predict blast-induced PPV. For ex-
ample, Hasanipanah et al. [12] developed a multiple linear regression (MLR) model/equation
to forecast blast-induced PPV in the Miduk copper mine, in Iran. In their research, 69 data
samples were allocated to the training (development) data sets for constructing the MLR
model, while 17 data sets were apportioned to the testing (assessment) data sets to evaluate
the MLR model. The results showed that the constructed MLR model had favorable accuracy
(coefficient of determination, R2 = 0.883) by comparing the measured PPV values with the
predicted PPV values. Similarly, Ram Chandar et al. [13] proposed another MLR model to
forecast PPV values in three mines. Their applied input variables included the maximum
charge per delay, distance, burden, spacing, amplitude, and frequency. The results indicated
that MLR was a reliable tool that can produce good accuracy and can be applied at any mine
site. However, PPV is a sensitive indicator that can significantly characterize the influence
of the ground vibration resulting from blasting on the safety of a building or equipment.

Some researchers [14] mentioned that the accuracy level of statistical models and
MLR techniques in predicting PPV was inadequate compared to AI techniques, which can
yield more reliable results. For example, Khandelwal and Singh [15] compared the PPV
prediction results of both artificial neural networks (ANN) and MLR and found that the
corresponding coefficients of correlation for predicting PPV are 0.994 by ANN and 0.4971
by MLR. It showed that the ANN model had a greater accuracy, whereas the proposed
MLR equation had a higher error. Similar results were seen by Xue and Yang [16], Parida
and Mishra [17], and Lawal and Idris [18].

In recent years, many models and studies have been developed using AI techniques for
solving civil and mining problems [19–37] and specifically for predicting PPV produced by
blasting. These models mainly include ANN, gene expression programming (GEP), neuro-
fuzzy, decision tree, support vector machine (SVM), fuzzy logic, genetic algorithm (GA),
and genetic programming [38–40]. The studies highlighted the feasibility and applicability
of AI models in solving PPV produced by mine or quarry blasting. However, the AI studies
for predicting PPV induced by tunnel blasting are limited to a few investigations only, as
presented in Table 1. For instance, Monjezi et al. [41] attempted to use ANN to predict PPV
values produced by tunnel blasting in a project carried out in Iran. They reported that the
ANN technique was a powerful and easy-to-use method for solving such problems. Lawal
et al. [42] conducted research to predict tunnel blast-induced PPV in the Daejeon tunnel,
in South Korea. They proposed different techniques, i.e., ANN, moth-flame optimization
(MFO)-ANN, and GEP, and used the controllable (e.g., hole depth) and uncontrollable
(e.g., rock mass rating) factors. The results showed that the MFO-ANN model performed
better in predicting PPV compared with ANN and GEP. In another work, Jelušič et al. [43]
used a neuro-fuzzy model to predict PPV values in two tunnels located in Slovenia. In
their study, the charge and the distance from the blast face to the monitoring positions
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were allocated as model predictors. It was found that the neuro-fuzzy model can well
predict PPV. Rana et al. [39] compared two AI techniques (ANN and decision tree) for
forecasting the PPV values in six tunnels in India. They used a database comprising
137 data samples. The results showed that the decision tree model outperformed the ANN
model. Hasanipanah et al. [44] developed two forms of the GA model (linear and power)
to estimate PPV in a tunneling project at the Bakhtiari dam region in Iran. The results
indicated that the performance of the GA power form outperformed the GA linear form.
More information regarding the available studies for estimating blast-induced PPV in
tunnels can be found in Table 1.

Table 1. Some relevant investigations for predicting tunnel blast-induced PPV.

Reference Technique Input Parameter Database No. Site Location/Country

Monjezi et al. [41] ANN MC, DI, ST, HD 182 Located in Iran
Li et al. [45] SVM MC, DI 32 Located in Guiyang, China
Mohamadnejad et al. [46] GRNN, SVM MC, DI 37 Located in Iran
Hasanipanah et al. [47] SVM DI, MC 80 Located in Iran
Yin et al. [48] BP-NN DI, HD, MC, TC 40 Located in Beijing, China
Hasanipanah et al. [44] GA MC, DI 85 Located in Iran
Abbaszadeh Shahri and
Asheghi [49] ANN TC, CPD, DI 37 Located in Iran

Rajabi and Vafaee [50] ANN MC, DI 64 Located in Lorestan Province, Iran
Jelušič et al. [43] Neuro-fuzzy TC, DI 48 Located in Slovenia

Lawal et al. [42] MFO-ANN, GEP HL, CPD, ND, TC,
DI, RMR 56 Located in KAERI, Daejeon,

South Korea

CPD: charge per delay, CPH: charge per hole, TC: total charge, DI: distance from blast face, MC: maximum charge
per delay, RMR: rock mass rating, H: hole diameter, HD: hole depth, HL: hole length, NH: number of holes, TCS:
tunnel cross-section, ST: stemming, BP: back-propagation, NN: neural network, GRNN: generalized regression
neural network.

It is obvious that ANN is the main model developed by many researchers to estimate
PPVs. However, this technique includes some drawbacks that influence its results con-
siderably [51–53]. Combining some optimization techniques can yield more sustainable
results from ANNs and higher-performing predictions. In the present study, we aimed to
develop more accurate PPV prediction models based on several advanced neural network
models, including the neuro-swarm and neural-imperialism models. To achieve this goal,
we prepared a comprehensive PPV dataset of tunnel blasting to establish these two neural-
based models. These two models are based on particle swarm optimization (PSO) and
the imperialism competitive algorithm (ICA) as two powerful metaheuristic techniques.
Additionally, we developed an empirical equation based on the collected database and
compared its performance with the neural-based models, to verify which model is best for
predicting blast-induced PPV in tunnel blasting operations.

2. Methods and Materials

2.1. ANN

An artificial neural network, or ANN, is a type of artificial intelligence (AI) system
that can imitate a specific organizational notion of how the nervous system works. Unlike
the traditional AI model that came before it, the ANN is able to learn the pattern from
the training that it is given and estimate the underlying relationship that exists between
the input variables and the output variables. This characteristic gives these approaches
a big advantage over the other intelligence models that exist in this field. The ANN
models use the artificial neurons as basic units to process the available data (i.e., input and
output variables) in a way similar to a human being’s brain. For the first time, McCulloch
and Walter [54] modeled the behaviors of artificial neurons by gathering and applying
a binary decision unit for input/output variables. The network they developed is capable
of obtaining outputs with the minimum error (i.e., the difference between the target of the
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data and system output). This can be done through the employment of an artificial node
or neuron.

The signal can be received at each artificial node in the network, and then the signal
can be processed by an activation function, such that an estimate of the output can be
generated [55]. Every output of a neuron will be taken as the input for the subsequent
neuron. Ch and Mathur [56] successfully showed that the most significant factor in ANN
performance and capability is the neuron/node connection patterns and their process of
design. The ANN model can be iteratively trained multiple times to reduce the imperfection
of the outputs. This process will continue until the preferred error of the network or the
number of iterations (i.e., repetition) is obtained. Amarghani et al. [57] recommended
applying the sigmoid transfer function to predict non-linear relationships. An artificial
neuron j with inputs (Xi), weights (Wij), bias (bj), and system output (Oj) is presented
in Figure 1.

 
Figure 1. An artificial node used in the ANN system.

2.2. PSO

Kennedy and Eberhart [58] pioneered particle swarm optimization (PSO) as an ef-
fective, applicable, and powerful metaheuristic algorithm (i.e., optimization technique).
Swarms or particles in PSO search for optimal values/targets in a repetitive manner.
Throughout the search operation, the particles change their positions depending on the
experiences they have obtained up to that moment. Each particle learns to obtain its best

position, which is divided into two locations. The first one is named −−→pbest (or the best

personal position) and the second one is named −−→gbest (or the best global position). During
the learning stage, the particles are trained to enhance the speed of their movement to get

better positions of −−→gbest and −−→pbest . In this way, in each iteration, their locations (distance
between each swarm) and velocities can be computed. Therefore, their new locations can
be obtained using their previous locations and their velocities. The updated velocity and

location of the particles in PSO can be easily calculated using Equations (1) and (2). −−→vnew in
Equation (1) is the updated velocity in each swarm, which can be calculated using velocity
confidence (C1 and C2), present velocity and location of the swarm (

→
v and

→
p, respectively),

and the discussed −−→gbest and −−→pbest . Then, −−→pnew needs to be calculated as the updated
position or location of each swarm. The literature consists of numerous studies that have
explained PSO and its structure in more detailed ways [59].

−−→vnew =
→
v + C1 ×

(−−→pbest −→
p
)
+ C2 ×

(−−→gbest −→
p
)

(1)

−−→pnew =
→
p +

−−→vnew (2)
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2.3. ICA

Atashpaz-Gargari and Lucas [60] designed the first imperialist competitive algorithm
(ICA) as another metaheuristic algorithm to behave/solve various minimization or maxi-
mization issues. Like other metaheuristic algorithms, ICA works based on population (i.e.,
the number of countries), where each country is considered as a possible solution. The
algorithm implementation starts using a random number of countries as initial solutions.
The individuals of the population in ICA are countries, among which the best ones (i.e.,
those of the highest power) are selected and assigned as imperialists. The rest of the coun-
tries play the role of colonies of the imperialists. The most powerful countries in ICA are
those with minimum cost; these countries can take ownership/control of more colonies.
In general, ICA comprises three main machinists/operators: assimilation, revolution, and
competition. The assimilation operator directs the colonies through the path of growing
into imperialists to achieve more control and power, a better cultural level, and an enhanced
economy. During the first two operators, the colonies will have a high chance of reaching
a better position (i.e., solution) compared to that of their imperialists; in this condition,
a colony will take the control of the empire. Finally, during the competition process, the
imperialists will also have a high chance of adopting more colonies. During the competi-
tion process, the weakest empire collapses, and, at the same time, the strongest ones can
take possession of more colonies, which leads to the increase of their control/power. The
mentioned procedure is repeated until the strongest empire or the only one can control
all countries. In this condition, the rest of the empires, which are weak, will collapse and
their role will change as a colony. The literature contains more details and explanations
regarding different applications of ICA in solving optimization problems [61].

2.4. Neuro-Based Models

The ANN models could be more powerful when being integrated with some other
optimization algorithms, such as PSO and ICA [62]. The ANN models might attain a wrong
or unacceptably inaccurate prediction because of the weakness of back-propagation models
in the exploration of the global minimum [63]. It is highly probable for the ANN models
to give strong local minima during training; however, the metaheuristic techniques have
the capacity of managing this situation by determining the ANN’s biases and weights.
Therefore, the search space in this case encounters global minima owing to the implemen-
tation of PSO/ICA (i.e., optimization algorithms). In the current paper, two neuro-based
approaches, PSO-ANN and ICA-ANN, are used to predict the PPV values induced by
tunnel blasting. Then, the results attained by both hybrid models are compared in a way
that selects the one with higher accuracy. In the rest of this paper, the terms neuro-swarm
and neuro-imperialism will be utilized instead of PSO-ANN and ICA-ANN models, respec-
tively. More information regarding the mixing of PSO and ICA with the ANN model for
prediction-based problems can be found elsewhere [64,65].

2.5. Statistical Indices

In general, the performance quality of hybrid neuro-based or other predictive tech-
niques is assessed using some statistical indices. Two of the most famous indices are the
root mean square error (RMSE) and the coefficient of determination (R2). Lower RMSE
values show higher accuracy of the predictions made; on the other hand, higher values of
R2 show a good covenant between the actual and estimated values. These two statistical
parameters are calculated using Equations (3) and (4). In these equations, S is the total no.
of samples, estimated PPV and measured PPV are presented by z′ and z, respectively, and
z presents the mean values of measured PPV.

RMSE =

√
1
n ∑S

i=1(z
′ − z)2 (3)
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R2 = 1 − ∑i(z − z′)2

∑i(z − z)2 (4)

The other widely used statistical index is the variance account for (VAF), which is
based on percentage. The formula of VAF is expressed as follows:

VAF =

[
1 − var(z − z′)

var (z)

]
× 100% (5)

The perfect value for VAF is 100% for a model with R2 = 1 and RMSE = 0. Apart
from these indices, the authors decided to use an a-20 index as a new and powerful index.
This is defined in the following equation, where m20 signifies the rate of experimental
value/predicted value that lies between the range of 0.80 to 1.20 and S is the total no. of
samples.

a20 − index =
m20

S
(6)

2.6. Case Study and Database

In this study, the data was collected from Shi Ban Gou Tunnel, which is located in
Qinghai Province, China. The Shi Ban Gou Tunnel is a highway tunnel constructed on G6
National Highway to connect region 1 (Zamalong) to region 2 (Daotang river). The route
of the tunnel crosses the ridge from east to west. The basic information of the tunnel is as
follows: the total length is 525 m; the design elevation of the starting point is 2478.64 m; the
design elevation of the ending point is 2490.8 m; and the maximum overburden distance of
the tunnel is 204 m. The route map of the tunnel is shown in Figure 2.

 

Figure 2. Route map of the tunnel (via Google Earth Pro).

According to the information from a geological survey, the tunnel exit is located
on the Huangshui River valley slope. The natural slope angle of the mountain is about
34–70 degrees, with scattered piles of broken boulders on the right-hand slope and exposed
bedrock on the left-hand slope, which indicates the poor stability of the natural slope at
the tunnel entrance. In the exit section of the tunnel, the surrounding rock is composed of
a mixed-medium weathered and slightly weathered gneiss with complex lithology, broken
rock mass, developed joints and fissures, and a blocky or laminated structure. The rock
and soil mass wave velocity of this section is 1–2.9 km·s−1.
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The tunnel entrance is located around 20 m up from the cliff face, next to the Temple
of the Holy Ancestors of Buddha (the temple is 8 m in height and covers a total area of
52 m2). Because the mountain is steep and the rock above the tunnel entrance is broken,
the tunnel excavation by blasting increases the disturbance to the mountain. This may
cause landslides, rock falls, and other hazards, seriously threatening the safety of the
thousand-year-old temple. The relative positions of the tunnel and the temple are shown in
Figure 3. Owing to the blasting operation, vibrations propagate not only along the tunnel
axis but also far upward to the ground around the temple. The PPV values produced by
blasting in the tunnel may have an undesired influence on the safety of the temple, thereby
raising administrators’ complaints. Since the safety of the described temple is a primary
concern in this project, the values of PPV should be controlled and minimized when the
tunnel is being excavated. For the safety of the temple, the field measurement of PPV
was carried out using a seismograph, as shown in Figure 4. This type of seismograph
is a measuring instrument for ultra-low or low-frequency vibrations. It is mainly used
for the measurement of pulsations generated from the ground and structures, and it has
three measurement levels of velocity: small, medium, and large velocity.

Figure 3. Positions of the tunnel and temple.

Figure 4. A measurement and monitoring point of PPV values induced by blasting.

109



Mathematics 2023, 11, 106

To establish a database to forecast PPV values, the results of the Shi Ban Gou Tunnel
during blasting operations were considered and used. Three hundred and one blasting
operations in the mentioned tunnel with the relevant blasting parameters were observed.
The blasting design factors include charge (C), rock mass rating, number of holes, and the
distance from the measuring station (DI) to the blasting point, together with their relevant
PPV values. It is important to mention that the distance from the measuring station is the
horizontal distance between the blasting face and the monitoring point inside the temple.
In the available data, a maximum distance of 745 m was recorded for DI, and, since there
is an inverse relationship between PPV and DI, the authors decided to use a DI range of
49–397 m. In this way, the total number of blasting events was reduced to 154. It is worth
noting that the safety of the temple presented in Figure 3, because of the close distance
to the tunnel, was the main concern for the tunnel construction team. Therefore, blasting
pattern parameters, as well as geological conditions of the tunnel face, were carefully
designed and monitored.

Although there are several parameters measured in the tunnel site, many researchers
in their empirical and computational PPV models suggested using only two predictors: DI
and C [66,67]. Therefore, these two variables were used in this study, as well, to forecast
PPV results produced by blasting. The statistical information of the adopted data used in
this study and its modeling part are shown in Table 2. In the following section, different
models will be applied to estimate PPV values and select the most accurate model for
PPV prediction.

Table 2. Input and output variables and their relevant statistical information.

Parameters Unit Group Max Min Mean SD

Total charge (C) kg Input 150 45 121 39.05
Distance from the measuring

station (DI) m Input 397 49 227 91.97

Peak particle velocity (PPV) mm/s Output 23.06 10 13 2.88
Max: maximum; Min: minimum; SD: standard deviation.

3. Analysis and Prediction of PPV Values

This section presents the procedures of PPV estimation using two different approaches,
empirical and intelligent. The empirical approach, which is still a commonly utilized
technique, will be described first. Then, intelligence systems comprising two neuro-based
models—neuro-swarm and neuro-imperialism—will be constructed with their influential
parameters to predict PPV values.

3.1. Empirical Approach

It is a common practice of mining engineers or designers to use an empirical equation
for PPV prediction in mines, quarries, tunnels, etc. This is an essential task to be imple-
mented before blasting operations and after the design of blasting pattern parameters. The
process of estimation of PPV based on an empirical approach is not difficult, and, according
to many well-known references [4,6,68], it can be computed using only two predictors (i.e.,
variables): distance (DI) from the blast-face and charge (C) weight. Therefore, in this study,
as the empirical approach, an established equation formed by USBM [10], PPV = zSDx,
was used. In the mentioned equation form, z and x are site constants that can be obtained
from the power structure of the equation, and SD is defined as the scaled distance, which
should be calculated using DI (m) and C (kg) in a form of thfe following equation:

SD =

(
DI√

C

)
(7)

Therefore, if the results of DI and C are available, it is possible to propose an empirical
equation for forecasting PPV values. The proposed equations for predicting PPV values

110



Mathematics 2023, 11, 106

with z = 30.584 and x = −0.293 is expressed as PPV = 30.584SD−0.293. The SD values,
together with their PPV values, are displayed in Figure 5. In this figure, the evaluation is
only based on R2, which is sufficient for a single equation. As a result, R2 = 0.615 can be
considered a suitable prediction level for estimating PPV induced by tunnel blasting. This
level of accuracy may be applicable for predicting PPV values by designers before blasting
events; however, a forecasting model with a higher accuracy/performance level would be
of interest and importance for a better determination of the safety region of blasting. This
can be done through the applications of neuro-based approaches, i.e., neuro-swarm and
neuro-imperialism, using the same input variables (including DI and C). The modeling
process of these techniques in forecasting PPV results will be described in detail, later.

Figure 5. PPV values as a function of scaled distance based on 154 data samples.

3.2. Neuro-Based Approach

From our findings and discussion in the previous section, it was observed that
a prediction technique that can provide a higher accuracy degree is needed to estimate
blast-induced PPV. Hence, two neuro-based models, neuro-swarm and neuro-imperialism,
were selected to do this task. The same models were highlighted in previous studies as
powerful and applicable techniques in solving other geotechnical and mining engineering
problems [69]. The process of modeling begins with determining the most effective parame-
ters of the ANN approach, which is the base model in neuro-based structures. Nevertheless,
before that procedure, the data need to be subjected to a normalization process to help
make the modeling faster and easier. The proposed equation to normalize the datasets can
make the following processes simplified [70,71]:

Onorm =
O − Omin

Omax − Omin
(8)

where Omin and Omax stand for the minimum and maximum values of O, respectively; O
denotes the measured value, and Onorm represents the normalized one. Many studies in the
literature have suggested the use of only a single hidden layer in ANN [72], and some others
have suggested multiple hidden layers to solve their problems [73]. As a result, the PPV
data in the current study were exposed to one, two, and three hidden layers for prediction
purposes. The obtained results confirmed that the use of only one hidden layer can result in
predicting more accurately in comparison with two or three layers. Therefore, only a single
hidden layer was considered in solving the PPV issue using neuro-based models.

In ANN design, another significant factor is the number of neurons that needs to
be well determined with the help of a parametric study (a common way of designing
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the number of neurons). Considering the previously conducted studies and using only
two input variables (DI and C), values ranging from 1 to 5 were applied to the modeling of
this part, and the RMSE and R2 values in each case were calculated. The results confirmed
that the use of 4 hidden neurons provided closer PPV values to the measured ones; for
that reason, regarding this parameter, the best number of neurons in the ANN model was
set to 4. After designing the ANN structure (2-4-1 as input variables-number of hidden
neurons-output variable, respectively), the rest of the modeling processes in the present
study were carried out by referring to this structure as the base model. Note that the
total number of data samples for modeling was 154; 80% of the total data samples were
considered as the training data samples, and the rest (another 20%) were considered as the
testing set.

The first step in neuro-swarm and neuro-imperialism modeling is selecting their
most effective factors. In the case of neuro-swarm, iteration number, size of particle or
swarm (SS), velocity coefficients, and inertia weight can influence the model performance
(capability), as highlighted by various scholars [64,74]. However, several investigations
suggested default values or fixed values for velocity coefficients and inertia weight to
solve the problems [75]. Therefore, in this research, the velocity coefficient of 2 and the
inertia weight of 0.25 were applied for all neuro-swarm models. Two other effective
factors in the neuro-swarm model were designed later. In the case of neuro-imperialism,
three factors—the number of countries (NOC), the number of decades (NOD), and the
number of imperialists (NOI)—can have a great affect on the modeling results. Similar to
the neuro-swarm model, NOI = 10 was utilized for all neuro-imperialism models, based on
previous investigations [74], and NOD and NOC parameters were determined later.

As mentioned in the previous paragraph, the SS and the number of iterations should
be designed for the neuro-swarm model, while these parameters are NOD and NOC
for the neuro-imperialism model. In conducting two parametric studies, SS and NOC
values in the range of 50 and 500, with the incremental step of 50, were used for modeling.
In these parametric studies, a maximum value of 500 was assigned to the number of
iterations/decades. Therefore, ten neuro-swarm and ten neuro-imperialism predictive
models were created to estimate PPV values, and their RMSEs were recorded as shown in
Figure 6a,b, respectively for neuro-swarm and neuro-imperialism methods. From Figure 6,
two parameters, the number of population and the number of model repetitions, can be
determined for each neuro-based model. It is obvious that for all models, the RMSE values
were significantly reduced in the beginning iterations/decades until reaching a constant
RMSE, and, after that, there is no change in the results of the RMSE. However, the constant
point is different for each neuro-based model. For example, for SS = 50 (Figure 6a), the
results of the RMSE were not changed after iteration number = 100. This is the way of
selecting the best iteration/decade number. On the other hand, the best SS and NOC values
are related to those with the lowest RMSE values. In this way, the neuro-swarm model
and the neuro-imperialism model received the lowest RMSE values when SS = 450 and
NOC = 400, respectively. Therefore, they were selected as the best populations in these
two models. Regarding iteration and decade number: conservatively, iteration number
= 400 and NOD = 300 were selected for neuro-swarm and neuro-imperialism methods,
respectively, in estimating PPV. By determining these parameters, there is no more effective
parameter that needs to be designed. The results obtained by these two neuro-based models
in forecasting PPV induced by tunnel blasting will be discussed in the following section.
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(a) 

(b) 

Figure 6. Results of hybrid neuro-based models to predict PPV values. (a) 10 models of neuro-swarm;
(b) 10 models of neuro-imperialism.

4. Results and Discussion

This section discusses the results obtained from both the empirical and computational
models in terms of estimating the PPV values produced by tunnel blasting. To show
that the databases used in the modeling are suitable and to understand more about the
effective parameters of PPV, an empirical equation was also proposed to predict PPV values.
However, it was highlighted in past studies that these empirical equations are not strong
enough for solving ground vibration problems in blasting sites. With this in mind, the
evaluation process of the proposed empirical equation was performed, and, based on the
obtained R2 (0.615), it was found that the empirical equation includes a wide range of
errors. This may be because the nature of rock mass, which is site-specific or based on
geological conditions of the blast face, is not considered in the empirical equation.

Therefore, to increase the performance prediction and to have a fair comparison, the
same model inputs (DI and C) were utilized in two neuro-based techniques. The idea
behind that is to propose a computational model which can increase the accuracy level and
at the same time be applicable and easy to implement. Needless to mention, an exact or
near-to-exact determination of blast safety zone is always a challenge for civil and mining
engineers. It means that the designers are looking for a reliable and applicable methodology
with the lowest error level. Both neuro-based techniques were designed with the mentioned
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aim to predict PPV induced by tunnel blasting. As discussed earlier, four statistical indices
were used for assessing intelligent models, and their results are tabulated in Table 3. Note
that an ANN as the base model was also designed in this investigation to better realize
the roles of PSO and ICA in optimizing ANN weights and biases. In fact, by selecting
the optimum weight and bias for ANN, an increase in the accuracy level of the proposed
models can be seen.

Table 3. Results of the developed models in forecasting PPV values.

Set Statistical Index ANN Neuro-Swarm Neuro-Imperialism

Train

R2 0.615 0.904 0.896
RMSE 0.138 0.072 0.079

VAF (%) 61.368 90.318 89.515
a-20 index 0.195 0.374 0.374

Test

R2 0.687 0.913 0.822
RMSE 0.126 0.075 0.077

VAF (%) 68.073 90.606 80.77
a-20 index 0.161 0.355 0.258

Table 3 presents statistical indices results for the model training and model testing
parts. In addition, Figures 7–9 display the results of the measured and predicted PPV values
with the use of the neuro-swarm, neuro-imperialism, and ANN techniques, respectively.
In addition, the statistical indices (i.e., R2, VAF, RMSE, and a-20 index) results for the
introduced models are depicted in these figures. In terms of the prediction capacity, the
neuro-swarm model was found to have a higher capability to present a better relationship
(higher performance) between the predicted and measured PPV values. Regarding the
model training part, the R2 values of 0.615, 0.896, and 0.904 for ANN, neuro-imperialism,
and neuro-swarm models, respectively, were obtained, which showed that the neuro-swarm
was superior to the other ones in this part. Similarly, the same trend in R2 results can be
found for the model testing part (Table 3), which confirmed the high-reliability level of
the model during development. In addition, the same neuro-swarm model received the
lowest RMSE and highest VAF results for both the training and testing stages. As a new
and powerful indicator for assessing model accuracy, the a-20 index was calculated for
all proposed models. The ideal value for an a-20 index is 1.0, and it is related to a model
with equal measured and predicted values. Therefore, values closer to 1.0 are set as more
accurate models. Based on this discussion, the neuro-swarm model with a-20 index values
of 0.374 and 0.355 is the best among all applied models.

Figure 7. Predicted PPV values by the neuro-swam model VS measured ones.
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Figure 8. Predicted PPV values by the neuro-imperialism model VS measured ones.

Figure 9. Predicted PPV values by the ANN model VS measured ones.

From the results, it is clear that both neuro-based models are strong enough to increase
performance prediction of the base model (i.e., ANN) in predicting PPV values obtained by
tunnel blasting. The estimated PPV values and their close agreement with the measured
ones reveal that PSO and ICA are highly capable of optimizing the biases and weights of
ANN. However, in cases where new data was accessible, the neuro-swarm with PSO as
an optimization algorithm outperformed the other one. The techniques in this study, with
their detailed design process, can be utilized in tunnel blasting for determining PPV values
with a low level of error. In this way, the safety zone of blasting related to only ground
vibration can be determined to check the locations of important structures, equipment,
and products.

In terms of model accuracy and the ability for prediction purposes, note that the
findings achieved in this paper are better than some other techniques published in the
literature. For instance, Jelušič et al. [43] received an R2 = 0.87 for their neuro-fuzzy model
in estimating PPV. Li et al. [45] proposed a SVM model with R2 = 0.910 for the same problem.
Moreover, our study used only two variables as inputs to solve the PPV problem, which
means that our study is simpler compared with other studies, such as Yin et al. [48], with
four inputs, and Lawal et al. [42], with six inputs. It is concluded that our study is superior
to the available studies and techniques in the literature, and it can be utilized by engineers
and researchers.

5. Limitations and Future Studies

The proposed model in this work is based on an analysis of a database of 154 data
samples gathered from a single tunnel in China. As a result, the proposed model is
applicable to the same or similar geological and blasting pattern conditions. If other
researchers want to adopt the proposed model, the range of input parameters is sensitive
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to the PPV results. The similar approach described in this study can be expanded upon
using a larger number of data samples compiled from other tunnel sites (obviously with
various geological conditions) to develop a more generalized model. In addition, some
other optimized hybrid models, such as neuro-fuzzy-based, fuzzy-based, SVM-based,
and random forest-based, can also be applied to examine their capabilities and power
in increasing the performance of PPV prediction compared with the models proposed in
this study.

6. Summary and Conclusions

The idea of proposing an intelligence model that can enjoy the advantages of at least
two models was performed in this study to predict PPV values induced by blasting events
in a tunnel. To do this, a total of 154 data samples were used in the modeling. According to
previous studies, an equation was proposed empirically for the prediction of PPV using
two model predictors (DI and C). Then, two neuro-based models were modeled in detail for
the same aim (using DI and C values). The following concluding remarks can be derived
from this study:

(1) The prediction level of the proposed empirical model in predicting PPV values is
not strong enough (R2 = 0.615). However, the same can be used by mining and civil
engineers to temporarily predict PPV values or to have an approximate determination
of the blast safety zone.

(2) Using the same input variables, neuro-based metaheuristic models received a higher
performance degree to predict PPV induced by tunnel blasting. The neuro-swarm
model was able to increase the performance capacity of the empirical equation from
R2 =0.615 to R2 = 0.904 and R2 = 0.913 for training and testing, respectively. Similarly,
R2 = 0.896 and 0.822 were obtained for training and testing parts of the developed
neuro-imperialism model, respectively.

(3) It was observed that both PSO and ICA algorithms are strong enough to optimize
the weights and biases of the ANN model (the base model). However, the highest
capacity for predicting PPV values can be obtained using the PSO algorithm in a form
of the neuro-swarm model.
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Abstract: Mine pollution from mining activities is often widely recognised as a serious threat to
public health, with mine solid waste causing problems such as tailings pond accumulation, which
is considered the biggest hidden danger. The construction of tailings ponds not only causes land
occupation and vegetation damage but also brings about potential environmental pollution, such
as water and dust pollution, posing a health risk to nearby residents. If remote sensing images and
machine learning techniques could be used to determine whether a tailings pond might have potential
pollution and safety hazards, mainly monitoring tailings ponds that may have potential hazards, it
would save a lot of effort in tailings ponds monitoring. Therefore, based on this background, this
paper proposes to classify tailings ponds into two categories according to whether they are potentially
risky or generally safe and to classify tailings ponds with remote sensing satellite images of tailings
ponds using the DDN + ResNet-50 machine learning model based on ML.Net developed by Microsoft.
In the discussion section, the paper introduces the environmental hazards of mine pollution and
proposes the concept of “Healthy Mine” to provide development directions for mining companies
and solutions to mine pollution and public health crises. Finally, we claim this paper serves as a
guide to begin a conversation and to encourage experts, researchers and scholars to engage in the
research field of mine solid waste pollution monitoring, assessment and treatment.

Keywords: mine geology; computational intelligence; remote sensing; environment management

MSC: 68T20

1. Introduction

1.1. Research Background

With the increasing frequency of mining activities worldwide, mine discharge brings
plenty of environmental problems. Among these, mine solid waste discharge is considered
one of the most serious environmental problems, and as mine solid waste has a low reuse
rate compared to other solid waste, tailings ponds generally need to be built to stockpile
mine solid waste [1,2].

There is no doubt that the construction of tailings ponds, while allowing for the
storage of mine solid waste, is not a good thing for the environment and human beings: the
construction of tailings ponds takes up a lot of land and causes damage to vegetation cover,
while the leachate from the ponds can have a serious negative impact on the environment
and public health. There are many cases (as shown in Table 1) which confirm this.

In 2003, Agrawal, A. et al. [3] introduced the world to the environmental impact and
damage caused by solid waste discharge from the non-ferrous metal industry in India, such
as leachate pollution; their research showed that metal recycling of solid waste from the
non-ferrous metals industry would be effective in mitigating environmental pollution, and
Shengo’s [4] review endorsed this practice of recovering metal resources from solid waste.
In 2016, Liu, Y. et al. [5] suggested that solid waste discharges can lead to damage to the
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surface landscape, for example, tailings pond stockpiles, which not only occupy surface
space but also bring a major safety hazard that would result in serious human casualties at
the mine site in the event of a tailings pond failure; in the same year, 2016, Asif, Z. and Chen,
Z. [6] argued that the land occupation of tailings pond stockpiles is indeed a nuisance, and
therefore they advocated the use of mine solid waste for land reclamation.

Table 1. Research cases on the mine solid waste pollution.

Pollution Issue Research Cases Research Area Research Purpose Research Findings

Mine Solid Waste
Pollution (Tailings

Ponds)

Agrawal, A.
et al., 2004 [3]

India: Non-ferrous
metals Industry

To study solid waste pollution
and management in the

non-ferrous metals industry in
India.

The results showed that solid
waste polluted surface water

as well as groundwater,
primarily through leachate,

thus affecting farmland, rivers
and public health.

Additionally, the authors
advocated that mines should
commit to metal recycling of

non-ferrous solid waste, which
would mitigate solid waste

pollution.

Liu, Y. et al.,
2016 [5]

China: Mining
Industry

To study the pollution of
industrial solid waste in

general (mining solid waste in
particular) and to make

recommendations related to
solid waste management based

on the current state of the
resource and environmental

development in China.

The authors suggested that the
problem of land occupation by

solid waste (tailings pond
stockpiling) from mines is very
serious, especially in China; at
the same time, tailings ponds
are a major safety hazard that

would result in serious human
casualties at the mine site in
the event of a tailings pond

failure.

Asif, Z. et al.,
2016 [6]

North America:
Mining Industry

To discuss the challenges of
environmental management,

particularly solid waste
management, in the North
American mining industry.

The author highlighted the
hazards of land occupation

from tailings pond
accumulation, and the author

recommended the use of
non-hazardous mine solid
waste for land reclamation.

Shengo, L. M.
2021 [4]

Democratic
Republic of the
Congo: Mining

Industry

In order to explore the
environmental issues related to

the management of mineral
waste in the mining industry
in the Democratic Republic of

the Congo.

The recycling and reuse of
non-ferrous solid waste were
very important, not only to

mitigate the problem of solid
waste pollution but also to

bring potential resource value.

In addition to the potential environmental pollution and health risks associated with
tailings ponds, they are also a potential source of danger and can lead to potential safety
incidents. If a tailings pond were to fail, it would be a huge disaster for the environment
and the people living in the vicinity of the mine. In Brazil, serious tailings pond failures
occurred in 2015 and 2019 [7], causing massive damage to homes and vehicles. In China, a
tailings pond failure accident occurred in 2008 in Xiangfen Country, Shanxi, resulting in a
large number of casualties and environmental damage [8,9].

Since 2010, the safety and environmental pollution hazards of tailings ponds have re-
ceived increasing attention from researchers [10,11]. Based on the Google Scholar database
(https://scholar.google.com; accessed on 14 November 2022), using “tailings ponds and
safety” and “tailings ponds and environment” as the keywords, the number of studies
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related to both keywords for each three-year period from 2010 to 2020 was found, as shown
in Figure 1. The number of related literature results in the last 10 years clearly has an
upward trend, showing that the safety and environmental pollution hazards of tailings
ponds are receiving the public’s increasing attention.

Figure 1. Literature results change of keywords “tailings ponds and safety” and “tailings ponds and
environment”.

1.2. Research Purpose and Significance

Monitoring and management of tailings ponds are particularly important in order
to avoid environmental pollution and safety accidents in tailings ponds [12]. However,
monitoring tailings ponds is often very time-consuming and labour-intensive [13]; if remote
sensing images and machine learning could be used to determine whether a tailings pond
might have potential pollution and safety hazards and then mainly monitoring tailings
ponds that may have potential hazards, it would save a lot of effort in tailings ponds
monitoring [14,15].

As a result, this paper divides tailings ponds into two categories according to whether
they are potentially risky: 1# Tailings Pond, which has potential environmental and safety
hazards, and 2# Tailings Pond which has no obvious potential environmental and safety
hazards. Combining the remote sensing images (satellite maps) with the results of the
field surveys (as shown in Figure 2): it defines that 1# Tailings Pond is an unclosed tailings
pond that has significant surface water leaching, thus posing a potential contamination
and safety hazard (as shown in Figure 2A); it defines that 2# Tailings Pond is generally a
closed (almost closed) tailings pond or a dry stockpile pond with no significant surface
water leaching, which may show signs of land reclamation and can generally be considered
to have no obvious potential environmental and safety hazards (as shown in Figure 2B).

Based on the features of the two categories of tailings ponds, this paper planned to
implement the image identification and classification function of tailings ponds by building
a machine learning model via ML.Net developed by Microsoft [16]. At the same time, this
paper planned to explore the accuracy of the ML.Net machine learning framework and its
machine learning model in classifying and identifying the two types of tailings ponds with
different characteristics, providing a starting point for future remote sensing techniques to
monitor tailings pond risk and pollution.
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Figure 2. Examples: (A) 1# Tailings Pond; (B) 2# Tailings Pond. Satellite images from tianditu.gov.cn
(accessed on 10 November 2022).

2. Materials and Methods

2.1. Machine Learning Model

The training environment used was local training on a computer using a CPU (Intel
Core i7-9750H; Memory: 16 GB). Additionally, the study was carried out on Visual Studio
2022 Professional, based on ML.Net developed by Microsoft [17]:

ML.Net is a machine learning framework developed by Microsoft for the new “.Net”
platform and provides a low-code development tool called “Model Builder”, an intuitive
graphical Visual Studio extension for generating, training and deploying custom machine
learning models [18]. Therefore, for “.Net” platform developers, using the ML.Net machine
learning framework is an excellent choice in terms of ease of use, performance and accu-
racy [19]. The ML.Net machine learning framework uses a DNN (Deep Neural Network)
and Resnet-50 model (DNN + Resnet-50) to implement image classification functions so
the study was based on DNN and the ResNet-50 model to categorise two types of tailings
ponds with different features:

ResNet-50 is a residual network that uses a shortcut connection to connect the inputs
directly to the outputs (as shown in Figure 3A), which effectively solves the problem of
performance degradation due to the deepening of the network as the shortcut connection
does not increase the amount of computation [20].

In essence, the idea of residual network learning can be understood as a block, which
can be defined by Equation (1) [21], where y represents the output, F(x, {Wi}) represents
the residual component and x represents the sample:

y = F(x, {Wi}) + x. (1)

As a result, the ResNet-50 residual network is well suited for feature extraction of the
data sets [22]. Additionally, regarding structure, the ResNet-50 network is divided into six
parts, of which Stage 1 is the input module, consisting of Conv and Max Pool, Stage 2 to
Stage 5 are the residual modules, containing both Conv Block and Identity Block, and Stage
6 is the output module [22,23]. The structure of ResNet-50 is shown in Figure 3B.
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Figure 3. (A) The structure of the shortcut connection; (B) the structure of the ResNet-50 network.

2.2. Training Set and Test Set

The data chosen for the study were satellite images of tailings ponds within China
from Geovis (http://www.geovis.com.cn/ (accessed on 10 November 2022) and Tianditu
(https://www.tianditu.gov.cn/ (accessed on 10 November 2022), with a total of 30 sets
of both the 1# tailings pond (15 sets) and the 2# tailings pond (15 sets). The two different
categories of data in the training set have their own distinctive features: the data in the
category 1# Tailings Pond are all unclosed tailings ponds, with significant surface water
leaching on the satellite images; the data in the category 2# Tailings Pond are generally
closed (or almost closed) tailings ponds or dry storage tailings ponds, with no significant
surface water leaching on the satellite images and signs of land reclamation. For data set
details, please refer to http://dx.doi.org/10.13140/RG.2.2.26494.87367 (accessed on 10
November 2022).

2.3. Validation Methods

To further validate the accuracy of the image recognition and classification function of
the ML.NET machine learning framework [24,25], the cross-validation method was chosen
to randomly disrupt the data from training sets and the test sets, re-train the new training
sets with DDN + ResNet-50 machine learning framework, test with the new test sets and
repeat another 19 times (total 20 times) to find the mean value of the accuracy as an estimate
of the accuracy [26]. The entire study process is shown in Figure 4.

After training, the accuracy was tested with the test sets in the intuitive graphical
Visual Studio extension module of ML.Net. If the model determines that a satellite image
of a tailings pond has a greater than 50% probability of belonging to its original category,
then the model is considered to have correctly identified and categorised the tailings pond
for this time (as shown in Figure 5).

124



Mathematics 2023, 11, 517

Figure 4. The cross-validation of the machine learning model.

Figure 5. The intuitive graphical Visual Studio extension module of ML.Net. Satellite images from
tianditu.gov.cn (accessed on 10 November 2022).
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3. Results and Discussion

3.1. Test Accuracy

According to Figure 4, each dataset of the 1# Tailings Pond and 2# Tailings Pond
was randomly divided into a training set (10 sets of data) and a test set (5 sets of data),
respectively, and each training set was trained by the built DDN + ResNet-50 machine
learning model. The model was then tested through the intuitive graphical Visual Studio
extension module of ML.Net using the test set according to Figure 5. The whole process
was repeated a total of 20 times.

After 20 times cross-validation, the DDN + ResNet-50 network model was found to
perform well for the identification and classification of satellite images of tailings ponds,
with an average test accuracy of 83.5%: 84% for the 1# Tailings Pond and 83% for the
2# Tailings Pond. The test accuracy data for the 20 times cross-validation are shown in
Figure 6.

Figure 6. The results of the cross-validation.

3.2. Analysis

The results show that the test accuracy of identification and classification of satellite
images of tailings ponds based on the DDN + ResNet-50 machine learning model can reach
83.5%; however, in the cross-validation, the identification accuracy of test sets under differ-
ent training sets has a relatively large difference. For example, as shown in Figure 6: in the
1st, 2nd, 7th, 10th, 13th, 14th, 16th and 17th time of the cross-validation, the identification
accuracy of both categories reached 100%; however, in the 4th, 8th, 11th and 20th time of
the cross-validation, the identification accuracy for both categories was lower, with a low
identification rate of 40% for the 1# Tailings Pond and a low identification rate of 60% for
the 2# Tailings Pond.

This may occur because of the presence of data with insignificant features in the
dataset, resulting in insufficient generalisation of the model [27]. For example, in Figure 7,
Tailings Pond A below has no significant surface water leaching compared to Tailings
Pond B, although it belongs to the category of the 1# Tailings Pond. However, cross-
validation solved this problem well; as the number of cross-validation times increased, the
test accuracy reached closer to the true value.
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Figure 7. Tailings ponds in the datset. (A): Source from tianditu.gov.cn; (B) source from geovis.com.cn
(accessed on 10 November 2022).

Therefore, if further validation and improvement of the accuracy of machine learning
models are required, the following measures are worth considering.

• Using the cross-validation method, the total data set is split and combined into differ-
ent training and testing sets, with the training set being used to train the model and the
testing set being used to evaluate how well the model identifies and categorises, which
further reflects the accuracy of the model [28]. S-fold cross-validation is a common
form of cross-validation in which the total data set is randomly divided into S mutually
exclusive subsets of equal size, and each time S-1 copies are randomly selected as the
training set and the remaining 1 copy as the test set [29]. When the round is completed,
S-1 copies are randomly selected again to train the data [30].

• Expanding the dataset to allow the model to be more aware of the features of the data
in the training set can improve the accuracy of the model. Among the ways to expand
the dataset may be finding more relevant data, as well as data augmentation [31,32].

3.3. Optimisation

In order to further validate the accuracy of the image recognition and classification
functions of the ML.NET machine learning framework and to optimise the original method
of cross-validation, in this part, the three-fold cross-validation method was chosen to
be used by randomly dividing the total data set into three equally sized sets, randomly
selecting two each time as the training set and the remaining one as the test set, and
the cycle was repeated three times to determine the accuracy mean value as the accuracy
estimate. The three-fold cross-validation method was also repeated three times by randomly
disrupting the data inside the A/B/C/D/E/F sets three times, as shown in Figure 8.

After three times three-fold cross-validation, the DDN + ResNet-50 network model
was still found to perform well for the identification and classification of satellite images
of tailings ponds, with an average test accuracy of 87.8%: 88.9% for the 1# Tailings Pond
and 86.7% for the 2# Tailings Pond. The test accuracy data for the three times three-fold
cross-validation are shown in Figure 9.

We then explored further and improved the accuracy of the ML.NET machine learning
framework and its DNN + Resnet-50 model for the identification and classification of
tailings ponds by expanding the dataset (training set and test set). The data for the new
dataset were satellite images of tailings ponds within China, Australia and Malaysia
from Geovis (http://www.geovis.com.cn/ (accessed on 10 November 2022), Tianditu
(https://www.tianditu.gov.cn/ (accessed on 10 November 2022) and Google Earth (https:
//earth.google.com/ (accessed on 10 November 2022), with a total of 42 sets of both the 1#
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tailings pond (21 sets) and 2# tailings pond (21 sets). For data set details, please refer to
http://dx.doi.org/10.13140/RG.2.2.27124.01928 (accessed on 10 November 2022).

Figure 8. The 3-fold cross-validation schematic diagram.

Figure 9. The results of the 3-fold cross-validation.

The new dataset likewise underwent three times three-fold cross-validation (as shown
in Figure 8). The DDN + ResNet-50 network model was still found to perform well for the
identification and classification of satellite images of tailings ponds, with an average test
accuracy of 87.3%: 90.5% for the 1# Tailings Pond and 84.1% for the 2# Tailings Pond. The
test accuracy data for the three times three-fold cross-validation are shown in Figure 10.
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Figure 10. The results of the 3-fold cross-validation for the expanded dataset.

The results showed that the ML.Net machine learning framework and its DDN +
ResNet-50 machine learning model performed very well in the recognition and classifica-
tion of satellite images of tailings ponds, with accuracies above 80% for all three validations
(including the validation after expanding the database). However, the identification ac-
curacy for the 2# Tailings Ponds was slightly lower than that for the 1# Tailings Ponds
in all three validations. This may be due to the fact that the 2# Tailings Pond is not well
characterised, which is exactly the case: some 2# Tailings Ponds, which are about to be
closed or have just been closed, are not very different from 1# Tailings Ponds; while some
2# Tailings Ponds, which has been closed for some time, generally already show signs of
extensive land reclamation, which are all different. This problem may need to be solved in
the future by other methods, but there is no doubt that ML.Net has done an excellent job of
identifying and classifying tailings ponds.

4. Discussion: Research Implications and Other Types of Mine Pollution

The monitoring and management of tailings ponds are particularly important in order
to avoid environmental pollution and safety accidents in tailings ponds. However, monitor-
ing tailings ponds is often very time-consuming and labour-intensive. This paper explored
the accuracy of the ML.Net machine learning framework and its machine learning model
in classifying and identifying the two types of tailings ponds with different characteristics,
providing a starting point for future remote sensing techniques to monitor tailings pond
risk and pollution [33,34].

It is also important to introduce the public to the severity of the current worldwide
mine pollution and its hazards to the environment and public health because, in addition
to mine solid waste pollution, mine wastewater and mine dust are also serious threats to
the environment and the health of residents [35,36]: Mine wastewater pollution causes
serious environmental problems (e.g., heavy metal pollution) to rivers, agricultural soils,
the surrounding environment and drinking water for people living nearby; mine dust
pollution can affect the safety of mining production and can also have a negative impact
on the health of miners, for example by causing them to suffer from occupational diseases
such as pneumoconiosis [37].

With the introduction of “Sustainable Development” [38] and “One Health” [39],
issues related to mine pollution, environmental damage and public health are receiving
increasingly widespread attention worldwide that more and more people are becoming
aware of the negative health effects of mine pollution and they are trying to take precautions,
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while researchers are noticing the ecological and public health risks posed by mine pollution,
so more and more research related to mine pollution, environmental damage and public
health is being carried out. Additionally, many experts in the field of environmental
engineering and public health have proposed measures based on their research expertise to
address the problems associated with environmental pollution and health crises in mining;
they have mostly focused their research on their own single area of study. For example,
Li, S. et al. [40,41] have been working on Green Mine Construction and the elimination of
mine pollution, but their research has remained focused on improving mining methods and
thus mitigating mine pollution, without taking into account emissions pollution and the
impact of emissions on public health; furthermore, Sahu, K et al. [42,43] were among the
first researchers to propose the reuse of metal mine solid waste for metal resource recovery
as well as to mitigate mine solid waste pollution, but their research was limited to chemical
recovery processes, and no further research or discussion of mine pollution or public health
threats was undertaken [44,45].

Consequently, in the discussion, we propose the concept of a “Healthy Mine” to
provide a direction for development and solutions to the mine pollution and public health
crises for mining companies to follow and to raise public awareness of mine pollution.

We define a “Healthy Mine” as a mine that actively addresses and mitigates the impact
of mine environmental pollution from the mine discharge (water, solid and dust) on the
ecological environment, residents’ health and the occupational health of miners through
company management, pollution treatment technologies and employee education in the
process of resource development. We advocate all existing mines in the world today should
be moving in this direction so that environmental pollution problems and public health
crises can be well alleviated.

By definition, a mine is considered a “Healthy Mine” if it meets the following basic
conditions: (A) Wastewater and Leachate Treatment: the wastewater and leachate gen-
erating from mine solid waste should be treated, so the mine should actively introduce
wastewater treatment technology, and the quality of discharged wastewater and leachate
should meet the emission standard; (B) “Healthcare”: the mine should ensure that the
surrounding population is not affected by pollution from the mine wastewater pollution
and the leachate pollution; (C) Solid Waste Management: the mine should have strict
management of solid waste discharge sites, and actively implement the land reclamation;
(D) Solid Waste Recycle: the mine should be active in the reuse of mine solids, for example
in the preparation of construction (or backfill) materials; (E) Dust Control: the mine should
actively introduce dust control measure, such as spraying covering agents on the surface of
dusty materials; (F) Company Management and Employee Education: the mine should
make regulations to strictly manage pollution and discharge control during the mining
process, and also strengthen health education for mine employees, for example by strictly
requiring them to wear dust filtering masks during mining operations. Thus, the concept
diagram of the “Healthy Mine” is as follows in Figure 11:
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Figure 11. The concept diagram of the “Healthy Mine”.

5. Conclusions

As the construction of tailings ponds is a potential environmental and safety hazard,
their monitoring is very necessary. Against this background, this paper proposes to classify
tailings ponds into two categories according to whether they are potentially risky or
generally safe and to classify tailings ponds’ remote sensing satellite images using DDN +
ResNet-50 machine learning model based on ML.Net developed by Microsoft. Meanwhile,
this paper also explored the accuracy of the ML.Net machine learning framework and
its machine learning model in classifying tailings pond types according to the different
characteristics of the 1# Tailings Pond and 2# Tailings Pond.

The conclusions we have drawn are as follows:

• ResNet-50 is a residual network that uses a shortcut connection to connect the inputs
directly to the outputs. Its classification is more accurate, solves the problem of deep
network degradation and is well suited to studying the identification and classification
of tailings ponds’ satellite images.

• DDN + ResNet-50 was found to perform well in the identification and classification
of satellite images of tailings ponds. The ML.Net machine learning framework and
its model achieved an accuracy of 83.5% for the identification and classification of
tailings ponds in the case of 20 times cross-validation, achieved an accuracy of 87.8%
for the identification and classification of tailings ponds in the case of three-fold cross-
validation and achieved an accuracy of 87.3% for the identification and classification
of tailings ponds in the case of three-fold cross-validation after expanding the dataset.

• In this study, the identification accuracy of the 2# Tailings Ponds was slightly lower
than that of the 1# Tailings Ponds. This may be due to the fact that the characteristics
of 2# Tailings Ponds are not obvious on the satellite maps: some 2# Tailings Ponds that
are about to be closed or have just been closed do not differ much from 1# Tailings
Ponds on the satellite maps, while some 2# Tailings Ponds that have been closed for
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some time generally already show signs of extensive land reclamation on the satellite
maps, which are different from each other.

In a nutshell, we claim that this research serves as a guide to starting a conversation,
and we hope more and more experts, researchers and scholars will be interested and engage
in research in this field of mine pollution assessment using remote sensing technologies
and machine learning models.
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Abstract: The repeated cyclic freeze-thaw effect in low-temperature environments causes irreversible
damage and deterioration to the microscopic pore structure and macroscopic mechanical properties
of a rock. To study the effects of the freeze-thaw cycle on the porosity and mechanical properties,
the indoor freeze-thaw cycle test and mechanical tests of sandstone-like materials were conducted.
Based on nuclear magnetic resonance, the influence of the freeze-thaw cycle on microscopic pores
was analyzed, and the intrinsic relationship between porosity and mechanical strength was discussed.
Meanwhile, the energy change in the uniaxial compression test was recorded using the discrete
element software (PFC2D). The influence of freeze-thaw cycles on different types of energy was ana-
lyzed, and the internal relationship between different energies and freeze-thaw cycles was discussed.
The results showed that the microscopic pore structure is dominated by micropores, followed by
mesopores and the smallest macropores. With an increase in the freeze-thaw cycle, both micropores
and mesopores showed an increasing trend. The porosity showed an exponentially increasing trend
with the increase in freeze-thaw cycles. The peak strength and elastic modulus decreased exponen-
tially with the increase in freeze-thaw times, while the peak strain showed an exponentially increasing
trend. The strain energy and bond strain energy showed a trend of increasing and decreasing in
the front and back stages of the peak strength, respectively. However, the frictional energy always
showed an increasing trend. The total energy, strain energy, bond strain energy, and friction energy
all showed exponential increases with the increase in the number of freeze-thaw cycles.

Keywords: freeze-thaw cycle; microscopic porosity; nuclear magnetic resonance; mechanical
properties; energy evolution

MSC: 74S30

1. Introduction

With the continuous development of human society, the scale of infrastructure con-
struction and the degree of resource development and utilization in cold regions will be
further improved. However, in low-temperature environments, all geotechnical engineer-
ing will inevitably face the unique effects of freeze-thaw cycles. Rocks in their natural
environment are a kind of porous material with internal defects, such as microcracks and
pores. This repeated rise and decrease in temperature change will lead to water-ice phase
changes in porous or crack water inside the engineering bearing unit with porous charac-
teristics. The volume expansion generated by the phase change can cause damage to the
initial microscopic pore structure of the rock and soil elements, which can eventually have
an important impact on the mechanical characteristics of the bearing unit and the safety
and stability of the project [1]. Therefore, it is of great significance to study the effect of
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cyclic freeze-thaw on the microscopic structure and macroscopic mechanical parameters
for the stability of geotechnical engineering in low-temperature regions.

In recent years, the research on the influence of F-T cycle microscopic pore structure
in rocks has attracted attention. Li and Zhou [2–5] analyzed the effect of freeze-thaw
cycles on the microscopic pore structure of sandstone. The research showed that with
the increase in F-T cycles, the porosity increased and the pore sizes of micropores and
macropores increased significantly. Gao [6] took red sandstone as the research object and
conducted a study on the influence of the F-T cycle on the microscopic pore structure under
the action of the chemical environment. The results showed that, under the action of the
freeze-thaw cycle, the porosity showed a linear growth trend. Meanwhile, new micropores
were constantly emerging inside the specimen. In the study of the influence of F-T cycles on
granite, repeated freezing and thawing of pore water generated damage to the microscopic
pore structure. Among them, the porosity gradually increased with the increase in the
number of cycles, and the micropores gradually developed into macropores [7].

The mechanical strength of the bearing unit in geotechnical engineering plays an
important role in the safety and stability of the project. It is of great significance for the
safe and efficient operation of rocks to study the influence of the freeze-thaw cycle on
mechanical properties. Related research directions have always been the focus of experts
and scholars. Gao [8,9] discussed the variation of internal porosity of sandstone under
the action of the freeze-thaw cycle and established a strength degradation model of water-
saturated sandstone by taking porosity as the dependent variable. At the same time, based
on the statistical damage mechanical model of strain equivalence, a constitutive model of
sandstone segmentation under freeze-thaw conditions was proposed and verified by the
experimental results. Based on the combination of NMR and infrared thermal imaging
detection, Yang [10] analyzed the change trend of porosities and mechanical characteristics
of marble, granite, and sandstone under the action of F-T cycle and discussed the failure
process and failure mode of different rock samples. Through the creep test of sandstone
under the F-T cycle, Li [11] established a constitutive model of nonlinear creep damage
in sandstone.

Previous studies have shown that the process of rock loading and destruction is accom-
panied by the release and dissipation of energy, in which the process of energy dissipation
can indicate the continuous development of microscopic defects and the weakening of the
macroscopic strength until the final destruction [12,13]. From the above research, it can
be seen that during F-T cycles, the physical parameters of different rock samples had a
certain degree of attenuation. In the same way, the energy release and dissipation laws
also have changed accordingly. In recent years, more and more attention has been paid to
the effects of cyclic freeze-thaw on energy release and dissipation laws. Taking sandstone
as the research object, Deng [14] calculated the strain energy, the elastic strain energy,
and the dissipative energy released by using the stress-strain curve, finally analyzing the
influence of the freeze-thaw cycle on different types of energy. The results suggested
that the strain energy, the elastic strain energy, and the dissipative energy all showed a
decreasing trend with an increase in the F-T cycle. Feng [15] discussed the evolution of
specimen porosity, mechanical strength, and energy under F-T cycles. Gao [16] conducted
uniaxial compression tests on blue sandstone under F-T cycles and explored the influence
of cyclic freeze-thaw on the evolution of strain energy, releasable elastic strain energy,
and dissipative energy. The damage model of peak stress and peak strain of specimens
under freeze-thaw action was established by the ratio of dissipative energy to strain energy,
verified with laboratory tests. In summary, the F-T cycle has an important impact on the
microscopic pore characteristics, macroscopic mechanical strength, and energy evolution
of rock samples. However, in previous studies on the energy evolution of rocks under
F-T cycle conditions, most researchers calculated strain energy, releasable strain energy,
and dissipative energy through stress-strain curves in mechanical tests. In this study, the
uniaxial compression process of sandstone-like material under different freeze-thaw cycles
was simulated based on the particle flow code. Different types of energy parameters during
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the loading process were tracked through the internal energy recording module of the
program. Combined with the NMR detection of microscopic pore parameters under dif-
ferent freeze-thaw cycles, the influence of the freeze-thaw cycle on porosity was analyzed
from a microscopic perspective. At the same time, the influence of cyclic freeze-thaw on
mechanical properties and energy evolution was discussed from a macroscopic perspective.
The influence mechanism of the freeze-thaw cycle on the microscopic pores and macro-
scopic mechanical characteristics of sandstone was revealed from multiple angles. The
results of this paper can provide reference and guidance for safety and stability analysis
and instability prevention of open-pit mine slopes, highway shoulder slopes, and other
geotechnical engineering structures in low-temperature environments [17].

2. Experimental Progress and Methodology

2.1. Raw Materials Selection and Sample Preparation

The sample studied in this paper is a sandstone-like material. The original rock is
yellow sandstone from the slope of an open slope in Shandong Province, China. Accord-
ing to the current research on rock-like materials, the cementitious material is ordinary
Portland cement (P.O 42.5) [18–24]. The aggregate is a yellow-white spherical quartz sand
with a particle size of 0.5~1 mm, and the spherical shape can make it fully wrapped by
the cementitious material. The admixtures selected for the test were a yellow-brown,
naphthalene-based high-efficiency water reducer and a white, micron-sized silica pow-
der. The specific parameters of raw materials are shown in Tables 1 and 2. In the sample
production, the mass matching ratio of different raw materials is 0.32:1.00:1.30:0.10:0.01
(water:cement:quartz sand:silica powder:naphthalene water reducer). First of all, different
raw materials are weighed according to different proportions. Then stirring, filling, vibra-
tion, demolding, numbering, and curing were carried out in turn. Finally, different physical
and mechanical parameters of the sample were tested and compared with the original rock.
The test procedures are shown in Figure 1. Table 3 shows the test results for sandstone and
sandstone-like materials. Based on the statistical results, it can be seen that the different
physical parameters of sandstone-like material are basically close to those of sandstone.

Table 1. Chemical composition of Portland cement.

Material Traits
Main Ingredients

3CaO·SiO2 2CaO·SiO2 3CaO·Al2O3 4CaO·Al2O3·Fe2O3

Portland
cement

Taupe
powder 52.8% 20.7% 11.5% 8.8%

Table 2. Detailed parameters of aggregate and admixture.

Material Traits Main Ingredients Particle Size Density (g/cm3)

Quartz sand Yellow and
white particles Quartz > 99% 0.5–1.0 mm 1.49

Naphthalene
water reducer

Brown-yellow
powder

β-Naphthal-
enesulfonate sodium

formaldehyde condensate
- -

Silica fume White powder SiO2 > 99% 1 μm 2.2–2.6

2.2. Laboratory Test
2.2.1. Freeze-Thaw Cycle Test

The freeze-thaw test equipment used in this experiment is the TDS-300 concrete freeze-
thaw testing machine produced by Suzhou Donghua Test Instrument Co., Ltd., and the
working mode of the equipment is air freezing and water thawing. It takes 12 h for the test
equipment to accomplish a full freeze-thaw cycle. Among them, the freezing temperature
is −20 ◦C, and the low-temperature holding time is 4 h. The melting temperature is 20 ◦C,
and the high-temperature holding time is 4 h. A complete freeze-thaw cycle is shown in
Figure 2.
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Figure 1. Test procedures.

Table 3. Statistics test results of a sandstone-like material and sandstone.

Material Density (g/cm3) Porosity (%)
Uniaxial Compressive

Strength (MPa)

Sandstone 2.33 3.186 32.01
Sandstone-like material 2.31 3.431 33.64

 
Figure 2. Complete freeze—thaw cycle process.
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2.2.2. NMR Test

The NMR analysis device is MesoMR23-060H produced by Suzhou Newmai Analytical
Instrument Co., Ltd. The instrument uses the H+ atomic probe of pore water inside rocks to
measure the pore water content of different radii, which is inverted into the pore signal (T2
relaxation time). In the process of sample detection, the magnetic field strength was 0.3 T,
and the central principal frequency of NMR was 12.8 MHZ. The diameter of the probe
coil was 60 mm and the sampling number was 4 times greater. The sampling interval was
6000 ms and the number of echoes was 7000 times. In addition, to saturate the rock sample,
the specimens need to be vacuum saturated before the NMR test. The vacuum pressure
inside the instrument cover was 0.1 MPa. The dry pumping time was set to 360 min and
the wet pumping time was 240 min.

2.2.3. Uniaxial Compressive Strength Test

The equipment for uniaxial compression test was WHY-300 microcomputer-controlled
pressure test equipment produced by Shanghai Hualong Testing Instrument Co., Ltd. The
control mode was displacement, and the loading speed was 1 mm/min. The basis for the
determination of the end of loading was 40% of the peak strength. According to the test
standard specifications [25], the width of test specimen was 50 mm and the length was
100 mm. The uniaxial compressive strength is calculated as follows:

fcc =
F
A

(1)

In the formula, fcc is the uniaxial compressive strength. F is the failure load of the rock
sample. A is the loading area.

2.3. Pore Radius Decision

According to the basic principle of NMR, the relaxation time (T2) of pore water inside
the rock is mainly affected by the surface relaxation (T2surface) of pore water. During the
test, the surface relaxation conforms to the following expression:

1
T2

=
1

T2surface
= ρ2(

S
V
) (2)

In the formula, ρ2 is the relaxation strength of the rock particle surface, which is
mainly controlled by the lithology of the rock. S is the pore surface area, and V is the pore
volume. The NMR testing generally treats the pore shape as spherical, so the formula can
be changed to:

1
T2

= ρ2
Fs

rc
(3)

Fs is the pore shape factor (spherical pores, Fs = 3) and rc is the pore radius. Since ρ2
and Fs are constants in the formula, the formula can be reduced to:

rc = CT2 (4)

As can be seen from Equation (4), the relaxation time is linearly related to the pore
radius and corresponds one by one. Based on the relaxation time distribution characteristics
of the 0-cycle rock sample, the pores are divided into three types of pores: miacropore
(T2 < 1.5 ms), mesopore (1.5 ms ≤ T2 < 16 ms), and macropores (16 ms ≤ T2). The
result of pore radius decision is shown in Figure 3.

2.4. Model Description

The software PFC is a particle flow analysis program developed based on the discrete
element method, which is widely used in the study of microscopic and macroscopic damage
evolution, crack propagation, and failure modes in the processing of rock material [26].
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In numerical simulations, the microparticles of different radii are taken as the basic units.
The mechanical parameters between the units are used to characterize the macroscopic
mechanical properties of rocks. The mechanical parameter relationship between particles is
the relationship between force and displacement, and its equation of motion conforms to
Newton’s second law [27,28]. In addition, the mechanical parameters of different particle
units are not directly related to the macroscopic mechanical properties of rock samples.
Therefore, in numerical simulations, the trial-and-error method is needed to modify the
microscopic parameters of particles until the results are basically consistent with the
laboratory test results [29].
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Figure 3. Pore radius division.

The parallel bonding model is one of the important models of the built-in constitutive
relationships of PFC systems, which can simulate solid materials (rock, concrete, etc.) with
cementing properties. It is a commonly used model for the numerical simulation of current
rock and soil materials. The schematic diagram is shown in Figure 4.

 
Figure 4. The diagram of the parallel bond model. gs is the surface gap between particles and kn is
the normal stiffness of a linear spring. ks is the shear stiffness of a linear spring, and kn is the normal
stiffness of the parallel bond. ks and σc are the shear stiffness and the normal strength of the parallel
bonds. {c , φ

}
is the shear strength of the parallel bond and μ is the coefficient of friction.
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3. Results and Discussions

3.1. The Effects of the Freeze-Thaw Cycle on Microscopic Pore Structure

In NMR detection, the relaxation distribution is an important parameter that reflects
the internal pore signal in rocks. Figure 5 shows the influence of the microscopic pore struc-
ture under different freeze-thaw cycles. As can be seen from Figure 5a, the T2 distribution
basically presents a three-peak feature character. The peak value of the micropore signal
was significantly higher than that of mesopores and macropores. The internal microscopic
pores are mainly micropores, followed by mesopores, and lastly macropores. As the num-
ber of freeze-thaw cycles increased, the T2 distribution shifted significantly to the right,
causing the microscopic pores inside the sample to change from a smaller radius to a larger
radius. In addition, except for individual data points, with the increase in F-T cycles, the
signal peak of micropores and mesopores also showed a significant increase. However, the
change in the peak signal in macropores was not obvious.
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Figure 5. The effect of freezing-thaw cycles on microscopic pore structure. (a) Relaxation distribution;
(b) porosity.

Table 4 shows the statistical results of the pore peak signals of pores of different
radii and porosities under the action of the freeze-thaw cycle. According to the analysis
of statistical results, when the number of freeze-thaw cycles increased from 0 to 30, the
average porosity increased from 3.449% to 3.709%. The increase rate was 7.54%. In the
variation law of peak signals of pores of different radii, except for 10 cycles of the peak
signal of the micropore slightly less than 0 cycles, the peak value of the micropore signal
increased from 0.1197% to 0.12323%, and the increase rate was 2.95%. The peak value of
the mesopore signal increased from 0.00922% to 0.02102%, and the increase rate was 1.28%.
Although the signal peaks of the 10, 20, and 30 cycles of the macropore were greater than
0 cycles, the change in trend from 10 cycles to 30 cycles was not obvious.

Table 4. The test results of microscopic pores under different freezing-thawing cycles.

F-T Cycle Porosity (%)
The Peak of

Micropore (%)
The Peak of

Mesopore (%)
The Peak of

Macropore (%)

0 3.449 0.1197 0.00922 0.00188
10 3.553 0.11857 0.01483 0.00411
20 3.631 0.12249 0.01491 0.00366
30 3.709 0.12329 0.02102 0.00284
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As the temperature decreased, the pore water and crack water inside the sample began
to gradually change from the liquid water state to the solid ice state (Figure 6). At the
same time, the change in water ice morphology in pores or cracks leads to an increase
in the volume of pore or crack fillers, which causes ice crystals in the pore or crack to
generate corresponding pressure on the inner walls of the pore or crack. Studies have
shown that a phase change from water to ice increases the volume by 9% [30–33], and the
ice crystallization pressure can reach several hundred megapascals. When the pressure
of the pore ice crystals in the internal micropores and mesopores on the inner wall was
greater than the ultimate tensile strength of the wall, the radius of the micropores and
mesopores expanded, and the pore volume continued to increase. Therefore, in the NMR
test results, the signal peak of the relaxation time of micropores and mesopores increased,
and the porosity increased. Moreover, with the continuous expansion of the pore radius of
micropores and mesopores, pore communication occurred between different micropores
and mesopores. The micropores and mesopores continued to develop into mesopores and
macropores. Finally, in the NMR test, the relaxation time distribution shifted to the right as
a whole. In addition, there are microcracks of different sizes in the internal microstructure
of the sample. When the pressure of the crack ice of the microcrack on the inner wall
was greater than the ultimate tensile strength, the microcrack also expanded in different
directions, and the volume of the microcrack increased continuously. The NMR results
also showed that the peak signal increased in micropores and mesopores. Similarly, as
the volume of microcracks continued to increase, microcracks of different scales expanded
and connected, and cracks of smaller sizes gradually developed into larger sizes. The test
results also showed that the relaxation distribution began to shift to the right. Moreover,
the porosity and the number of the F-T cycle were fitted. The results showed that the
number of F-T cycles and porosity had a good exponential relationship (R2 = 0.9982), and
the porosity increased exponentially with the increase in the number of F-T cycles.

Figure 6. Propagation and development of pores and cracks under freeze-thaw cycles.

It can be seen that in low-temperature environments, there is a good exponential rela-
tionship between porosity and F-T cycles; the porosity increases with the increase in the F-T
cycle. The results of this experiment can provide reference and support for the subsequent
study of the evolution law of microscopic pore structure in low-temperature environments.

3.2. The Effects of the Freeze-Thaw Cycle on Macroscopic Properties
3.2.1. The Effects of the Freeze-Thaw Cycle on Mechanical Properties

Figure 7a shows the stress-strain curve under different freeze-thaw cycles. It can be
seen that the stress-strain curves have obvious pores compaction, elastic deformation, stable
development of fractures and unstable development stages of fractures under different
freeze-thaw cycles. Meanwhile, with the increase in the number of freeze-thaw cycles, the
strain in the pore compaction stage increased significantly. The peak strength decreased,
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and the peak strain increased observably. Table 5 shows the statistical results of the peak
strength, elastic modulus, and peak strain under different freeze-thaw cycles. When the
number of the F-T cycle increased from 0 to 30, the peak strength decreased from 40.75 MPa
to 17.87 MPa with a reduction rate of 56.15%. The elastic modulus was reduced from
41.73 MPa to 12.63 MPa with a reduction rate of 69.73%. The peak strain increased from
1.40612% to 2.25087%, with an increase rate of 60.08%. According to the influence of freeze-
thaw on the change rate of different mechanical parameters, the F-T cycle had the largest
influence on the elastic modulus, followed by the peak strain, which had the least influence
on the peak strength.
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Figure 7. The influence of the number of freeze-thaw cycles on physical and mechanical parameters.
(a) Stress-strain curve; (b) peak strength and elastic modulus; and (c) peak strain and porosity.

Table 5. The statistical results of mechanical parameters under different freeze-thaw cycles.

F-T Cycle Peak Strength (MPa) Elastic Modulus (GPa) Peak Strain (%)

0 40.75 4.173 1.40612
10 39.73 4.021 1.49959
20 31.72 3.965 1.55147
30 17.87 1.263 2.25087

Change Ratio 56.15% 69.73% 60.08%

The pore compaction stage is a nonlinear deformation stage in which the original
open cracks or pores gradually close during the initial stage of rock loading. With the
increase in the F-T cycle, the number of microscopic pores inside the sample gradually
increased, which also increased the deformation of the pore compaction stage of the sample.
As a result, there was a significant increase in strain during the pore compaction phase,
which ultimately led to an increase in peak strain. Moreover, the peak strain had a good
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exponential relationship with the number of F-T cycles, which increased exponentially
with the increase in the cycles. In order to explore the intrinsic relationship between peak
strength and elastic modulus and the F-T cycle, different mechanical parameters and freeze-
thaw cycles were fitted (Figure 7b,c). The results showed that the peak strength and elastic
modulus have a high exponential relationship with freeze-thaw cycles, and the fitting
correlation coefficient is above 0.99. While the number of F-T cycles gradually increased,
the peak strength and elastic modulus showed an exponential decrease. In previous studies,
it was generally believed that the deterioration of the macroscopic mechanical properties
under low-temperature environments was the result of the changes in the microscopic pore
structure caused by the F-T cycle [34]. Consequently, the relationship between porosity and
uniaxial compressive strength was also considered. The results showed that there was a
good exponential relationship between porosity and compressive strength, and the fitting
coefficient was 0.99825. When the repeated F-T cycle caused the number of microscopic
pores to increase, the mechanical strength showed an exponentially decreasing trend, which
finally affected the safety and stability of the project.

3.2.2. The Effects of Freeze-Thaw Cycles on Energy Evolution

When the particle flow program simulates rock damage under load, the evolution
of different types of energy can be tracked by setting the energy command. Therefore,
before tracing the energy evolution, a numerical simulation of the uniaxial compression
test should be carried out by the trial-and-error method. When the numerical simulation
results are basically consistent with the indoor test results, the energy evolution can be
recorded by turning. Table 6 shows the particle flow simulation parameters of the uniaxial
compression test under different freeze-thaw cycles. In this numerical simulation, the
radius, density, normal and tangential stiffness ratios, porosity, and friction coefficient of
the particle element were kept unchanged. The parameters affecting its peak strength and
peak strain (Emod, pb_Emod, pb_coh, and pb_ten) were changed to simulate the uniaxial
compression test under different cycles.

Table 6. Numerical simulation parameters under different freeze-thaw cycles.

F-T Cycle
Density
(kg/m3)

Radius (m) Kratio Porosity Fric Emod\Pb-Emod (GPa)
Pb_coh/Pb
_ten (MPa)

pb_fa (◦)

0

2000 0.002–0.005 1.5 0.03 0.5

5.66 37.7 20
10 5.53 42.6 50
20 5.12 30.7 40
30 1.16 16.3 20

Figure 8 shows the stress-strain curve and numerical simulation stress-strain curve of
the mechanical test of the 10 cycles. From the figure, the variation trend of the stress-strain
curve simulated by the discrete element program is basically consistent with that of the
indoor mechanical test curve. The values of the elastic modulus and peak strength of the
discrete element program were basically consistent with those of the indoor mechanical test.
The indoor mechanical test results and numerical simulation results of other freeze-thaw
cycles are shown in Table 7. It can be seen that the indoor mechanics test results with differ-
ent cycles were basically similar to the numerical simulation results. The errors in elastic
modulus and peak strength were less than 1 MPa and 0.1 Gpa, respectively. Figure 9 shows
the final failure mode under different freeze-thaw cycles of internal mechanical testing
and numerical simulation. The failure mode of the numerical simulation under different
cycles was basically consistent with the results of internal mechanics tests. Furthermore, the
cracks caused by internal force failure were mainly tensile cracks, accounting for 85.74~64%.
There are fewer shear cracks, accounting for 6~14.26%. Combined with the failure mode
and crack type analysis in the indoor test and numerical simulation, it can be seen that the
failure mode under different cycles was mainly a tensile splitting failure, accompanied by
local shear failure.
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Figure 8. Indoor mechanics test and numerical simulation.

Table 7. Indoor mechanics test results and numerical simulation results under different freeze-thaw
cycles.

Mechanical Properties Peak Stress (MPa) Elastic Modulus (GPa)

F-T cycle 0 10 20 30 0 10 20 30
Laboratory test 40.75 39.73 31.72 17.87 4.173 4.021 3.965 1.263

Numerical simulation 40.19 38.95 32.62 17.78 4.259 4.017 3.909 1.312
Differential value 0.56 0.78 0.9 0.09 0.086 0.004 0.056 0.049

In the numerical simulation of the particle flow program, mechanical energy can be
divided into body energy and contact energy. Body energy is a change in energy caused by
a gravitational load or an applied load. Contact energy is the energy distribution defined
in the contact model. In this law of energy evolution, the total energy is a kind of body
energy, which is the energy generated by the boundary movement of the wall. Therein,
the strain energy and the bond strain energy are the contact energies in the parallel bond
model, which are stored in the linear spring and parallel spring, respectively.

Figure 10 shows the evolution of the number of cracks and four types of energies
under different freeze-thaw cycles. From the figure, although the F-T cycle is different,
the number of cracks in the process of load failure and the evolution of different types of
energy are consistent. Based on the crack propagation of the 0 cycle, the crack propagation
and energy evolution were divided into four stages. The first stage is the crack-free stage
(0–0.44σc). As the force of the specimen gradually increased, the total energy, strain energy,
and bond strain energy showed an increasing trend. At this stage, there were no cracks
and no frictional energy. The total energy was basically converted into strain energy
and cementation energy, which were stored in linear springs and parallel linear springs.
The second stage is the slow growth of cracks (0.44σc–0.75σc). At this stage, the energy
absorption rates for total energy, strain energy, and cementation energy increased, and the
different energies showed an increasing trend. Cracks and frictional energy appeared inside
the specimen, and there was a slow, increasing trend. It can be seen that the friction energy
was synchronized with the crack propagation. When cracks appeared, the friction energy
also appeared. Moreover, the friction energy showed an increasing trend with the increase
in the number of cracks. When the strain between particles reached a certain degree, cracks
occurred between different particles. The energy consumed by friction between particles
when they are cracked is generated by both friction energies. Since the cracks inside the
specimen were in the stage of germination and slow growth, the frictional energy was
small. Therefore, the cementation energy and strain energy were much greater than the
friction energy. The third stage is the crack acceleration growth stage (0.75σc–σc). In the
stage of accelerated crack growth, the total energy, strain energy, and bond strain energy
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continued to show an increasing trend. The number of cracks increased, and the growth
rate of friction energy increased gradually. More and more of the total energy is dissipated
by the frictional energy that overcomes the sliding of the particles. The fourth stage is
the rapid growth of cracks (σc). In the post-peak phase, the crack spread rapidly, and the
friction energy increased rapidly. The bearing capacity of the specimen was weakened, and
the rate of total energy growth decreased. The strain energy and boundary energy stored
by the linear spring and parallel bond spring were released rapidly due to the failure, and
the variation trend changed from increasing to decreasing.

    

  
(a) (b) 

    

  
(c) (d) 

Figure 9. Sample destruction mode under different freeze-thaw cycles: (a) 0 F-T cycle; (b) 10 F-T
cycle; (c) 20 F-T cycle; and (d) 30 F-T cycle.
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Figure 10. The evolution of different types of energy in different F-T cycles: (a) 0 cycle; (b) 10 cycle;
(c) 20 cycle; and (d) 30 cycle.

In order to explore the intrinsic relationship between the number of freeze-thaw
cycles and different types of energy, the energy values of different stages were fitted to
the F-T cycle. The fitting results are shown in Figure 11. The results showed that when
the value points are 0.44σc and 0.75σc, the total energy, strain energy, bond strain energy,
and friction energy have a good exponential relationship with the freeze-thaw cycles, the
fitting coefficients of which are above 0.94. With the gradual increase in the number of
freeze-thaw cycles, the total energy, strain energy, bond strain energy, and friction energy all
showed an exponentially decreasing trend. At the point of peak strength (σc), the number
of freeze-thaw cycles was exponentially related to the total energy and strain energy, and
the fitting coefficient was 0.81964~0.86064. However, the bond strain energy and friction
energy conformed severally to a good exponential relationship with freeze-thaw cycles,
for which the fitting coefficient was above 0.95. While the number of freeze-thaw cycles
gradually increased, the total energy, strain energy, bond strain energy, and friction energy
all showed the law of exponential decrease.

In conclusion, peak compressive strength and different types of energy have a good
exponential relationship with the F-T cycle. The peak strength and different types of energy
showed a decreasing trend with the increase in the number of freeze-thaw cycles. The test
results can provide data support for the safety and stability analysis of rock slopes, such as
mine slopes and highway shoulder slopes in low-temperature environments, providing
guidance for their instability prevention.
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Figure 11. The intrinsic relationship between the number of freeze-thaw cycles and different types of
energy: (a) 0.44σc; (b) 0.75σc; and (c) σc.

4. Conclusions

In this paper, the effects of the F-T cycle on the micropore structure and macroscopic
mechanical properties of specimens were analyzed by carrying out nuclear magnetic reso-
nance detection and mechanical tests of sandstone-like materials. The intrinsic relationship
between porosity and compressive strength was explored. Simultaneously, the discrete
element software (PFC2D) was used to simulate the stress-strain curve of the uniaxial
compression test under different freeze-thaw times. Based on the built-in energy tracking
command of the particle flow software, the evolution of different energies under load
was analyzed. The influence of the F-T cycle on different energies was studied. Finally,
the intrinsic relationship between the number of freeze-thaw cycles and the existence of
different energies was discussed. The main conclusions are as follows:

(1) The microscopic structure is mainly composed of micropores, followed by mesopores,
and lastly macropores. The micropores and mesopores showed an increasing trend
with the increase in the number of freeze-thaw cycles, while the change in large
porosity was not obvious. In addition, the porosity conformed to a good exponential
relationship with the number of freeze-thaw cycles and increased exponentially with
the increase in the cycles.
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(2) The influence of the F-T cycle on elastic modulus is the largest, followed by peak
strength, and the influence of peak strain is the least. The peak strength and elastic
modulus had a good exponential relationship with the number of freeze-thaw cycles.
With the increase in the number of freeze-thaw cycles, the peak strength and elastic
modulus showed an exponentially decreasing trend, while the peak strain showed an
exponentially increasing trend. In addition, there was a good exponential relationship
between the porosity and the uniaxial compressive strength. The uniaxial compressive
strength decreases exponentially with the increase in porosity.

(3) The failure mode of mechanical testing under different F-T cycle conditions was simi-
lar to that of numerical simulation. The failure is mainly tensile, accompanied by shear
failure locally. The failure mode is mainly tensile failure, accompanied by shear failure.
In energy evolution, strain energy and bond strain energy showed an increasing trend
before the peak intensity and a decreasing trend after the peak intensity. The friction
energy and crack synchronously showed an accelerated increasing trend before the
peak strength and a rapid increasing trend after the peak. The total, strain, bond strain,
and friction energy had an exponential relationship with the number of freeze-thaw
cycles. With the increasing number of freeze-thaw cycles, different types of energy
showed an exponentially decreasing trend.
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NMR Nuclear magnetic resonance
F-T cycle Freeze-thaw cycle
Kratio Normal-to-shear stiffness ratio
Emod Effective modulus
Pb_Emod Bond effective modulus
Pb_coh Cohesion
Pb_ten Tensile strength
pb_fa Friction angle
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Abstract: Previously conducted studies have established that the rationality of the parameters of
medium-deep hole blasting is one of the main factors affecting the blasting effect. To solve the problem
of the parameter design and optimization design of medium-deep hole blasting in underground
mines, a method of parameter design and the optimization of medium-deep hole blasting based on
the blasting crater tests and numerical simulation analyses has been proposed in this study. Based on
the background of deep underground mining in Gaofeng Mine, a two-hole blasting model has been
established, and the blasting parameters are simulated and analyzed by the damage stress variation
of the two-hole model. During the study, the initial values of blasting parameters were first obtained
from the field blasting crater test, then the blasting parameters were optimized and analyzed by
LS-DYNA software, and finally, the optimization scheme was demonstrated by the corresponding
blasting test. The results of the field test showed that the design method of integrated blast crater test
and numerical simulation analysis can effectively optimize the design of medium-deep hole blasting
parameters and improve the blasting effect to a large extent. This study also provides an effective
design system for the design of deep hole blasting parameters in similar mines.

Keywords: medium-deep hole blasting parameters; parameter design and optimization; blast crater
test; LS-DYNA numerical simulation optimization; analysis of rock breaking by blasting

MSC: 74-10; 74G15

1. Introduction

In mining engineering, medium-deep hole blasting has been widely used in mining.
Compared with shallow hole blasting, medium-deep hole blasting has a larger one-time
blasting amount, more ore caving, low explosive consumption, and high production
efficiency. Moreover, the mining cycle is reduced and the production auxiliary system
is simplified [1,2].

It has been proved that reasonable blasting parameters are core to ensuring the quality
of medium-deep hole blasting, and the design and optimization of blasting parameters
are of great significance to mining [3,4]. In recent years, a lot of work has been carried
out to determine the parameters of blasting and the impact of disturbances on the rock
mass. Stanković et al. [5] have studied the effect of vibration monitoring instruments
positioning on burst vibration, and give recommendations for vibration monitoring in-
struments positioning during test blasts on any new site, to optimize charge weight per
delay for future blasting works without increasing the possibility of damaging surrounding
structures. Sołtys [6] has used a matching pursuit algorithm to assess the impact of blasting
in open-pit mines on the surrounding area and has proved that by taking into account
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frequency changes over time, vibration analysis can help make much more profound and
reliable predictions in this field.

In traditional blasting parameter optimization and design, mines mainly design blast-
ing parameters based on empirical formulas and adjust blasting parameters according
to geological conditions and other conditions. Himanshu et al. [7] have designed the
blasting parameters for Ring holes on underground slopes based on empirical formulas
and projected the rock fragmentation effect using the Kuz-Ram model, which has also
achieved some success. However, the empirical formula method is simple to operate, but
the method is subjective to human influence, lacks the corresponding theoretical support,
and the effect of optimization also has certain limitations [8]. Nowadays, blasting projects
have higher requirements in terms of fragmentation, explosive energy control, blasting
efficiency, and safety and environmental protection, and traditional methods can no longer
achieve the requirements, so a fine blasting theory has gradually been developed that is
more compatible with modern blasting requirements [9].

Up to now, the refined blasting design and optimization system have been applied to
more and more blasting fields. Pal et al. [10] have conducted a systematic study on drilling,
blasting parameters, gas hazards, strata behavior, and ground vibration to solve the design
problem of underground-induced blasting, providing a research idea for a similar blast
design. Widodo et al. [11] have analyzed the overbreak and underbreak of each scheme dur-
ing field blasting, and obtained the optimal scheme under different explosives and blasting
parameters, which effectively improved the blasting effect. These methods have achieved
good results, but there are some shortcomings that do not reflect the optimization work
of blasting parameters. Instead, the common method used in field blasting test research
is to design and optimize blasting parameters based on blast crater tests. Jeon et al. [12]
have conducted a blasting crater test in underground mines and calculated the minimum
explosive quantity of rocks according to the characteristics of rock blasting damage. This
method effectively improved the blasting charge. Zhang et al. [13] have conducted blast
crater tests under different stress load conditions and proposed a design method for blast
parameters considering field stresses based on the test results. The design method based
on field blasting tests makes the blasting parameters closer to the actual conditions of the
mine, but the method is also subjectively influenced by humans and may produce some
errors. Thus, based on the blasting crater test, an intelligent algorithm-based parameter
optimization method is proposed. Monjezi et al. [14] have used a genetic algorithm to
optimize blasting parameters, which effectively reduced blasting fly rock generation. De-
hghani et al. [15] have optimized blasting parameters by a cuckoo optimization algorithm,
which effectively reduced blasting fly rock. Saghatforoush et al. [16] have used artificial
neural networks for the prediction of blasting fly rock and achieved optimization of blast-
ing parameters by the ant colony optimization algorithm. Bastami et al. [17] have used
gene expression programming and particle swarm optimization to predict and optimize
blasting costs and obtained optimized blasting parameter designs through blasting cost
optimization analysis, which effectively improved blasting fragmentation and reduced
the adverse consequences of the blasting process. Sirjani [18] has used the artificial neural
network (ANN) model and statistical models to study the anti-rupture in the blasting
process. According to the prediction and analysis of the model, the optimal blast pattern
design parameters are determined.

These algorithms have greatly improved the rationality of blasting parameters, but the
optimization scheme based on intelligent algorithm still has problems such as incomplete
analysis and evaluation of the influence factors of blasting parameters, and the intelligent
algorithm only focuses on the data itself without linking the relationship between the data,
Therefore, the analysis system of blasting parameter optimization based on numerical
simulation was gradually formed in the subsequent research [19]. Huang et al. [20] have
used PFC2D to optimize blasting parameters and obtained the optimal blasting parameters
by analyzing the simulated blasting effects and stress values at monitoring points under
different parameters. Jiang et al. [21] have analyzed the damage characteristics of VCR
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blasting surrounding rocks using FLAC3D and derived the relationship between explosive
quantity and damage radius of surrounding rocks, which provides a theoretical basis for
optimizing blasting parameters. Mejía et al. [22] have simulated the blasting of different
shaped explosive charges using CFD and ANSYS, and obtained Characterization of Blast
Wave Parameters of Shaped Charges through the analysis of shock wave stresses to provide
support for the design of charging parameters of poly energy charges. The blasting can be
simulated by FLAC3D, PFC2D, and other software, but LS-DYNA is the most widely used
software in research and practical application. LS-DYNA can clearly show the formation
process of fracture area and the development of damage fracture in rock during blasting
and can also monitor the stress at key points during the simulation process [23–25]. Huo
et al. [26] have analyzed the rock damage of lateral blasting using LS-DYNA and improved
the blasting parameters based on the simulation results. Sun et al. [27] have used LS-DYNA
software to carry out numerical simulation analysis on the influence of different factors
on the blasting presplitting process and have determined the best parameters for blasting
drilling. The practice has proven that LS-DYNA software can easily and accurately simulate
the process of blasting and rock breaking, and now it has become a common analysis tool
in blasting research. However, the optimization of blasting parameters based on numerical
simulation greatly improves the rationality of the parameters, but the simulation requires
certain initial parameter data, and most of the initial parameter data in the study come from
empirical design, lacking the corresponding experimental basis, and to a certain extent, it is
also detached from the actual situation of the mine site.

Analyzing the above, it can be noted that the design of medium-deep hole blasting
parameters is a very topical issue. Therefore, the purpose of this study is to obtain reason-
able parameters for medium-deep hole blasting underground in the Gaofeng Mine, and
to achieve this, it is necessary to solve the following tasks: (1) carry out field engineering
geological investigation and field blasting crater test; (2) carry out a numerical simulation
to optimize blasting parameters; (3) and carry out field blasting tests and analyze blasting
results. The specific blasting parameter optimization design process is demonstrated in
Figure 1.

Fine design and optimization of medium-deep hole 
blasting parameters

Single hole blasting crater  test

Variable hole distance porous simultaneous 
initiation blasting crater test

Blasting crater test of inclined plane step

Optimal comparison scheme of 
blasting parameters

Field blasting test

Inversion of blasting parameters 
based on field tests

Optimization of blasting parameters 
based on numerical simulation

Field engineering 
geological survey

Field blasting crater 
test

Fine design scheme of medium-deep 
hole blasting parameters

 

Figure 1. Fine design and optimization flow chart of medium-deep hole blasting parameters (done
by the authors).
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2. Inversion of Medium-Deep Hole Blasting Parameters Based on Blasting Crater Test

This blasting crater test includes a single-hole blasting crater test, variable hole distance
porous simultaneous initiation blasting crater test, and blasting crater test of the inclined
plane step. The blasting crater test is based on the Livingston blasting crater theory, also
known as the energy balance theory. According to Livingston, when a spherical charge
explodes inside the rock, the degree of deformation and destruction of the rock depends
largely on the amount of energy that passes through it. Livingston studied the effect of
changing the embedment depth of the charge on rock failure with the weight of the charge
unchanged and proposed that the relationship between the critical embedment depth of
the charge Le and the charge quantity Q can be expressed by the following formula [28]:

Le = E × Q1/3 (1)

where Le is the critical burial depth, E is the strain energy coefficient, and E is constant for
specific rocks and explosives. Q is the weight of the globular package.

Livingston’s blasting crater theory is based on the ball charge test. The charge quantity
for the blasting of spherical charge is calculated according to the law of cubic root similarity.
That is, when the same explosive explodes in the same kind of rock, each parameter of the
blasting crater with a certain effect is exploded when the amount of explosive is Q0, and
each parameter of the other blasting crater when the amount of explosive is changed to Q1
and meets the cubic formula [28]:

(
Lj1

)3

(
Lj0

)3 =

(
Qj1

)3

(
Qj0

)3 =

(
Rj1

)3

(
Rj0

)3 =
V1

V0
=

Q1

Q0
(2)

where subscriptions 0 and 1 represent the original blasting model and derived model,
respectively. Lj is the best burying depth of explosives for blasting crater tests. Qj is the
best charge quantity for the blasting crater test. Rj is the best radius of the blasting crater.
Vj is the optimum volume of the blasting crater.

According to the basic principle that the shape of the blasting crater is similar under
different charge amounts and the optimum consumption per unit is unchanged, the param-
eter relation of different blasting craters under different cylindrical charge conditions can
be obtained by replacing the buried depth of spherical charge with the depth of blasting
hole. Finally, according to the blasting similarity principle, the blasting parameters of
medium-deep holes under the same geological conditions can be derived from the blasting
parameters of spherical charge [29].

2.1. Engineering Background

The average thickness of the ore body at the test mining site of the medium-deep
hole blasting drop at the Guangxi Summit Mine is about 10 m. The ore body elevation is
−110 m~−134 m, the length of the ore body is about 21 m, the middle thickness is thin at
both ends, and it is an independent small orebody. Minerals and surrounding rocks are
more moderately stable than those affected by historical excavation. Depending on the
shape distribution of the ore body and mining equipment, mining is divided into upper
and lower parts, and a blasting network is used for ore falling. In the design, the depth of
the deep hole is 12 m and the diameter of the hole is 65 mm. The details of the ore body are
demonstrated in Figure 2.
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Blasting cutting groove

Ventilation patio

Experimental Stope
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Underground ramp

-151 Level tunnel

-109 Level tunnel

 
Figure 2. Three-dimensional model of orebody (done by the authors).

The deposit type of the Gao Feng mine is a cassiterite-sulfide type deposit, with a
clear boundary between the ore body and the surrounding rocks. The underground ore
is mainly cassiterite, with a saturated compressive strength of 80~100 MPa, and the ore
is dense and massive with good solidity. The rock quality is above medium, and most of
the rock body is above medium integrity. The enclosing rocks are mainly biogenic reef
tuffs with a saturated compressive strength of 58 to 90.1 MPa. For hard rocks, the rock
quality is above medium, and the enclosing rocks are mostly of good integrity and high
compressive strength.

Medium-deep hole blasting has been attempted in the Gaofeng Mine. Due to various
factors, it results in a high block rate and an unsatisfactory blasting effect. Because of the
above problems, this test carries out a fine design of medium-deep hole blasting parameters
through field tests and numerical simulation methods to improve the blasting effect

2.2. Blasting Crater Test Scheme

Firstly, through the single-hole blasting crater tests, the optimum buried depth of the
charge center, the volume, and the radius of the blasting crater are determined under the
condition of the single hole. Secondly, based on the parameters of single-hole series blasting
crater tests, the variable-spacing multi-hole and same-stage blasting crater tests are carried
out, and the optimum hole spacing and explosive consumption under this test condition
are deduced. Finally, the minimum resistance line parameters of blasting are determined
by the crater test of inclined step blasting. According to the blasting similarity theory, the
optimum range of medium-deep hole blasting parameters can be calculated. There are
20 holes with 40 mm diameters in this series of hole crater tests. The specific arrangement
of the test holes is demonstrated in Figure 3.
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Figure 3. Blasthole arrangement for series blasting crater tests.

2.3. Analysis of Experimental Results

As demonstrated in Figure 4, the field test data collected are processed by CAD, 3D
MINE, and MATLAB. The final series of test results are yielded in Table 1.

(a) Multi hole simultaneous blasting crater test with variable hole spacing

Blasting boundary

18#17#16#15#14#13#

(b) Single-blasthole blasting crater test

5#

Spalling area

Crater area

Resistance line
920mm

(c) Inclined bench blasting crater test

 
Figure 4. Field effect of series blasting crater tests.
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Table 1. Series blasting crater test results.

Parameter Unit Value Parameter Unit Value

Optimum depth of explosive Lj/m 0.5 Optimum crater radius Rj/m 0.58
Critical burial depth of explosives Le/m 0.67 Optimal crater volume Vj/m 0.32
Optimum depth ratio Δj 0.74 Strain energy coefficient E 1.01
Optimum hole base spacing aj/m 1.0 Optimum resistance line Wj/m 0.9

According to the blasting similarity theory, the average charge required to break a rock
per cubic meter is a fixed value for a given rock. In cylindrical charge, when the charge
parameter is changed to the charge quantity per unit length, the proportional relation
changes from cubic relation to square relation. That is, the blasting similarity relationship
can be expressed by the following formula [30]:

Lx

Ly
=

(
qx

qy

)1/2
(3)

where Lx and Ly are the linear parameters of the bore corresponding to the cylindrical
charge blasting model and the blasting test model, such as resistance line, hole bottom
distance, etc. qx and qy are the charge quantities of the cylindrical charge blasting model
and the blasting test model, respectively.

Therefore, based on the above analysis, when the hole diameter is 65 mm, the parame-
ters of medium-deep hole blasting are calculated as follows:

(1) Unit loading q = 1.58 kg/m.
(2) Hole distance a = 1.6 m.
(3) Resistance line b = 1.4 m.

3. Blasting Parameter Optimization Based on Numerical Simulation

3.1. Model Building

LS-DYNA nonlinear finite element software was used to optimize the parameters
obtained from the blasting test. At present, the blasting method of row by row is mainly
adopted for medium-deep holes under the Gaofeng Mine, and there are only two free
planes in each row, and there is a certain stage difference between front and back blasting.
Therefore, in order to facilitate more convenient simulation analysis and be more suitable
for the actual mine production, the model is simplified to analyze the first-row blasting
problem, and a double-hole blasting model is established. At the same time, since the hole
depth was much larger than the aperture in the test, the numerical model was simplified into
a two-dimensional calculation model without affecting the accuracy of the simulation [31].
In the simulation, the fluid-structure coupling calculation method was used for modeling,
the Lagrange algorithm model was set for rock, the Euler algorithm model for explosive,
and the 1/2 symmetric grid model was adopted. Since the blasting model was based on
the plane stress problem of the infinite body, in addition to the free plane of the cutting
groove, no reflection boundary conditions are set in the other three directions, and normal
constraints are set in the Z direction [32]. The middle part of the model is the ore area,
and the two sides are the surrounding rock area to simulate the blasting and crushing
environment of the ore under the surrounding rock clip production. The front area of the
model is the free surface area, which is used to simulate the free surface formed by the
blasting and cutting groove. The specific model settings are yielded in Figure 5.
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Figure 5. Numerical calculation model.

3.2. Material Parameter
3.2.1. Rock Material Model

RHT (Riedel-Hiermaier-Thoma) constitutive model was selected for rock materials,
which was proposed by Riedel, Hiermaier, and Thoma on the basis of the HJC (Holmquist-
Johnson-Cook) model. The influence of the third invariant of the deviatoric stress tensor J3
on the shape of the failure surface was introduced to determine the strain type and stress
state of the material, and the strength of the material was elucidated by the yield surface,
failure surface, and residual strength surface [33,34]. This model is also used to simulate
damage constitutive models of rock impact and blasting.

There are many parameters of the RHT model, including default parameters, physical
and mechanical property parameters, calculation and derivation parameters, equation-
of-state parameters, damage parameters, and strength-related parameters. In the early
stage of this test, relevant indoor rock mechanics tests have been completed, and specific
mechanical property parameters have been obtained. By referring to relevant literature
and similar model parameter design experience [35–37] and determining the values of all
parameters of the model, as yielded in Table 2.

3.2.2. Explosive Material Model

During simulation, the HIGH-EXPLOSIVE model in the LS-DYNA material library
is used to describe the constitutive relation of explosive, and the Jones-Wilkins-Lee (JWL)
equation of state (EOS) is used to describe the relationship between explosive volume
expansion and explosive pressure. This equation can fully reflect the stress variation
process of explosives in the process of the explosion and is widely used in simulated
blasting models [38–40].
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Table 2. RHT material parameters input in LS-DYNA.

Parameter Value Parameter Value

Mass density (kg/m3) 4530 Tensile strain rate dependence exponent
BETAT 0.0189

Elastic shear modulus (GPa) 17.39 Pressure influence on plastic flow in tension
PTF 0.001

Eroding plastic strain EPSF 2.0 Compressive yield surface parameter GC* 0.53
Parameter for polynomial EOS B0 1.2 Tensile yield surface parameter GT* 0.7
Parameter for polynomial EOS B1 1.2 Shear modulus reduction factor XI 0.5
Parameter for polynomial EOS T1 (GPa) 39.15 Damage parameter D1 0.04
Failure surface parameter A 2.1 Damage parameter D2 1
Failure surface parameter N 0.125 Minimum damaged residual strain EPM 0.015
Compressive strength FC (GPa) 85.62 Residual surface parameter AF 1.6
Relative shear strength FS* 0.2311 Residual surface parameter NF 0.61
Relative tensile strength FT* 0.048 Gruneisen gamma GAMMA 0
Lode angle dependence factor Q0 0.68 Hugoniot polynomial coefficient A1 (GPa) 39.15
Lode angle dependence factor B 0.05 Hugoniot polynomial coefficient A2 (GPa) 46.98
Parameter for polynomial EOS T2 0 Hugoniot polynomial coefficient A3 (GPa) 9.004
Reference compressive strain rate EOC 3 × 10−5 Crush pressure PEL (MPa) 57.08
Reference tensile strain rate EOT 3 × 10−6 Compaction pressure PCO (GPa) 6.0
Break compressive strain rate EC 3 × 1025 Porosity exponent NP 3.0
Break tensile strain rate ET 3 × 1025 Initial porosity ALPHA 1.1
Compressive strain rate dependence
exponent BETAC 0.0144

3.3. Modeling Scheme

The corresponding simulation scheme is set up according to the initial blasting pa-
rameters obtained from the field blasting crater test. During the simulation, the blasting
schemes with different resistance lines are first compared and analyzed, and the parameters
of the best resistance lines are determined. Then, the blasting schemes with different hole
distances are simulated and analyzed, so as to attain the best blasting hole network pa-
rameter scheme. In addition, according to the related research, increasing the hole density
coefficient can effectively improve in medium-deep hole blasting effect and decrease the
rate of large blocks, but the first row of the blast hole density coefficient should not be too
big, the first row of the best hole density coefficient of between 0.9 and 1.1 [41]. Therefore,
in order to avoid invalid pore mesh parameter schemes and simplify the workload of
numerical simulation, when setting relevant pore mesh parameter schemes, the shot hole
density coefficient of the simulation scheme should be kept within the range of the best
shot hole density coefficient.

3.4. Analysis of Numerical Simulation Results
3.4.1. Blasting Rock-Breaking Analysis

In numerical simulation blasting, the rock is generally considered to be broken if
the damage coefficient of the rock is above 0.6 [26]. Therefore, the rock breakage in the
blasting process can be demonstrated in a more comprehensive way according to the cloud
map of rock damage fissure changes. According to modern blasting rock-breaking theory,
rock destruction is mainly formed by the combined action of explosion shock wave and
detonation gas [42]. According to the blasting rock-breaking theory, taking the initial
blasting parameter model of 1.6m×1.4m as the research object, the blasting rock-breaking
process is divided into 4 stages, as yielded in Figure 6.

159



Mathematics 2023, 11, 1612

Crushing area

Radial fissure

(a) compression phase

Through fissure
Reverse tensile 

failure

(b) Damage phase

(c) Expansion phase 

Weak stress wave

(d) End phase 

Fracture further expands

Figure 6. Simulated blasting rock-breaking process.

The first stage is the compression stage, as yielded in Figure 6a. Under the action
of a high-pressure shock wave, the surrounding rock near the gun hole is compacted to
form a compressible crushing zone. Since the crushing zone absorbs most of the energy of
the blasting shock wave, the explosion shock wave rapidly attenuates into stress waves.
Although the strength of the stress wave is not enough to compress the rock, the outer rock
of the crushing zone is still subjected to strong radial compression, and radial cracks are
generated to form the cracked zone.

The second stage is the damage stage, as yielded in Figure 6b. This stage is the main
rock-breaking stage. The stress waves between the two holes begin to superposition, and
the cracks are connected, resulting in rock failure. Moreover, when the stress waves are
transmitted to the free surface, reflections are generated, and the compressive stress waves
become tensile stress waves, resulting in large area tensile failure of the free surface rock
under the action of reflected tensile force.

The third stage is the expansion stage, as yielded in Figure 6c. At this stage, with the
continuous action of stress waves and blasting gas, the cracks continue to expand, resulting
in further rock damage.

The fourth stage is the end stage, as yielded in Figure 6d. At this stage, the stress wave
and blasting gas have attenuated to the point that the rock cannot be damaged and the
crack cannot continue to expand.

Through the simulation of the rock-breaking process of blasting, it can be seen that the
position of the free surface during blasting is mainly caused by the tensile failure caused by
the reflection of the tensile stress wave. The damage distribution area of this part of the rock
is large, and the rock-breaking condition is relatively good. However, the rock between the
holes is mainly caused by the mutual penetration of radial cracks caused by the blasting
shock wave. This part of the damage mainly depends on the combined action of radial
compression stress and detonation gas. The damaged area is small, and the crushing effect
is worse than that of the free surface.
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3.4.2. Influence of Resistance Line on Blasting Effect

According to the above-simulated rock-breaking analysis process, the effect of the
damage fracture program and stress monitoring curve on different resistance lines is
simulated and analyzed. The hole spacing was set at 1.6 m, and the resistance lines were
set at 1.5 m, 1.4 m, and 1.3 m, respectively. The simulated damage results of each scheme
are yielded in Figure 7.

(a) Scheme 1: 1.6m×1.5m

Poor damage
effect

 

(b) Scheme 2: 1.6m×1.4m

(c) Scheme 3: 1.6m×1.3m

Poor damage
effect

 

Figure 7. Simulation results of rock damage fracture.

It can be seen from Figure 7 that as the resistance line decreases, the crushing effect
of the free surface rock body is also better, but the analysis from Figure 7c demonstrated
that when the free surface resistance line is smallest, the rock crushing degree between the
gun holes is poorer, which indicates that not the smaller the resistance line, the better the
overall crushing effect. This may be due to the resistance line being small or the free-face
reverse tensile stress wave having prematurely destroyed the free-face rock, resulting
in the premature release of blast gas from the free face, thus affecting the effect of rock
fragmentation between the shell holes. Therefore, from the perspective of the development
of damage crushing, when the resistance line is 1.3 m, the simulation obtained the best
damage-crushing effect of the free face, and when the resistance line is 1.4 m, the overall
damage-crushing effect of blasting is the best.

In order to compare and analyze the damage effects of each scheme more accurately,
corresponding stress monitoring points (history one and history two) are set in the middle
of the hole and in the middle of the free surface during the simulation process. The blasting
damage of rock mass between the free surface and the hole can be judged by the stress of
the blasting shock wave. The shock wave monitored by each scheme is yielded in Figure 8.
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Figure 8. The results of the blast wave monitoring.

Figure 8 demonstrated that around 0.4 ms after blasting, the blasting shock wave is
transmitted to the free surface and rapidly increases to the maximum value. Then, the
reflection begins to decrease to form a tensile stress wave, which gradually decays to 0. The
tensile stress wave also fluctuates up and down due to the interaction between the blast
wave in the gun hole. By comparing and analyzing the stress monitored by the free surface,
it can be seen that when the hole distance is fixed at 1.6 m, the smaller the resistance line,
the longer the action time of the free surface tensile stress wave, and the more uniform
the change. According to the blasting mechanism, the damage to the free surface rock is
mainly caused by reflecting the tensile stress wave. Therefore, from the perspective of the
tensile stress wave, the smaller the resistance line is. The damage and crushing effect of
free-face rock are also better.

According to the stress distribution monitoring at the intermediate point of the hole, it
can be seen that at about 0.3 ms, the blasting shock wave is transmitted to the intermediate
point of the hole and quickly reaches the maximum value, about 70 MPa. Although the
stress value of the shock wave at this time is less than the compressive strength of the rock,
which is not enough to damage the rock, according to the analysis of blasting rock breakage,
blasting rock breakage is not a single impact failure but rather the combined action of shock
waves and detonation gas. Therefore, it can be seen from the damage fracture diagram
that, although a shock wave is not enough to damage rock, the rock still suffers damage
and failure under comprehensive action conditions. It can be seen from the analysis of the
graph that the cracks between the two holes are free planes of each other to a certain extent,
so a certain reflected tensile stress also appears in the monitoring stress. However, the free
plane conditions formed by the holes are limited, and the tensile stress generated between
the holes is small.

162



Mathematics 2023, 11, 1612

3.4.3. Analysis of Hole Distance Simulation Results

According to the above simulation results, under the condition that the optimal
resistance line is 1.4 m, the hole spacing is set at 1.6 m, 1.5 m, and 1.4 m, respectively, to
conduct the simulation test. In order to fully verify the influence of the resistance line,
another 3 models with 1.6 m, 1.5 m, and 1.4 m hole spacing were set under the condition
of the 1.3 m resistance line. The simulated damage results of each scheme are yielded in
Figure 9.

(a) Scheme 1: 1.6m×1.5m

Poor damage 
effect

 

(b) Scheme 2: 1.6m×1.4m

(c) Scheme 3: 1.6m×1.3m

Poor damage 
effect

 

(d) Scheme 3: 1.6m×1.3m

(e) Scheme 6: 1.5m×1.3m

 

(f) Scheme 7: 1.4m×1.3m

Figure 9. Simulation results of rock damage fracture.

As can be seen from Figure 9, when the resistance line is 1.4 m, the damaging effect
of free-face rock in Scheme 2 is slightly worse than that in Scheme 4 and Scheme 5, but
the damage condition is also in a good state. According to the damaging effect of the rock
between the holes, the damaging effect of Scheme 4 is better than that of Scheme 2 and
Scheme 5. It is analyzed that the interaction between the holes may be weakened when the
hole distance is too large. However, when the hole distance is small, the shock wave forms
the penetrating fissure on the line between holes too early, resulting in the explosion of
energy escaping in advance. Therefore, when the resistance line is 1.4 m, the rock blasting
damage effect is the best when the hole distance in Scheme 4 is set at 1.5 m.

Compared with the analysis of each scheme in Figure 9, it can be seen that when the
resistance line is 1.3 m, the free surface blasting damage effect of each scheme is better than
that of the scheme with the resistance line being 1.4 m. Meanwhile, the rock damage and
breakage effect between the free surface and the hole is better as the hole distance is smaller.
To a certain extent, it promotes the damage and crushing effect of rock between holes and
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free face. Therefore, when the resistance line is 1.3 m, the rock damage effect is the best
when the hole spacing in Scheme 7 is 1.4 m.

Comprehensive comparative analysis of Scheme 4 and Scheme 7, although the
2 schemes are the best schemes at the resistance line of 1.4 m and 1.3 m, respectively,
there are still some differences, as can be seen from Figure 9b,f, there is a certain weak
damage zone between the gun hole and the free surface damage for both schemes (red
circled part in the figure), and obviously, the comparison can be seen that compared with
Scheme 4, the weak damage zone area of Scheme 7 is smaller, so the overall blast damage
effect of Scheme 7 is better from the blast damage point of view.

In order to determine the blasting effect of the two schemes in the weak damage area
more accurately, the corresponding blasting shock wave monitoring point (history 3) is
established in the weak fracture area in the simulation, and the blasting damage situation
is judged by analyzing the shock wave stress there. The specific distribution of the shock
wave is yielded in Figure 10.

Figure 10. The results of the blast wave monitoring.

It can be seen from Figure 10, the pressure of the blasting shock wave rapidly increases
to the maximum value of about 60 MPa at 0.4 ms after detonation, and the maximum
pressure value of Scheme 7 is slightly larger than Scheme 4, and then decreases rapidly.
Affected by the free surface reflected tensile stress wave, it fluctuates up and down to a
certain extent. Some tensile stress even appears in Scheme 7 at 1.8 m. The reason may
be that Scheme 7 is more strongly influenced by the free surface reflection tensile stress,
which leads to the rapid reduction of compressive stress. From this aspect, it can also be
demonstrated that, under the condition that the total blasting energy remains unchanged,
the reverse tensile effect generated by Scheme 7 is stronger, and the tensile force transmitted
to the weak crushing zone is also larger. Therefore, it can be said that the damage-crushing
effect of Scheme 7 in the weak crushing zone is better than that of Scheme 4.

Based on the above analysis, it can be seen from the blasting damage and stress
distribution of Scheme 4 and Scheme 7 that the optimal hole mesh parameter scheme
should be Scheme 7: 1.4 m × 1.3 m.

4. Field Blasting Test

To further verify the reliability of the theoretical analysis and numerical simulation
test results, the optimal Scheme 7 obtained by numerical simulation and the initial Scheme
2 obtained by blasting crater test are selected for the field blasting test. Two rows of
holes were arranged in each scheme, and parallel medium-deep holes were arranged in
the middle of the rear plate. To better control the footplate boundary, fan-shaped holes
were set near the footplate boundary. To avoid excessive concentration of explosives, a
cross-charging structure was adopted in the fan-shaped holes. The hole layout is yielded in
Figure 11.
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Figure 11. Field blasting hole layout.

The site blasting situation is yielded in Figure 12. According to the analysis of the field
blasting effect, most of the blasting fragmentation of Option 2 obtained by the blast crater
test are more uniform, but local blasting chunks are still generated, as yielded in Figure 12a.
However, in Scheme 7, which is obtained by numerical simulation optimization, there are
almost no blasting chunks after blasting. The blasting fragmentation is more uniform on
the whole, and the blasting effect is better than Scheme 2, as yielded in Figure 12b.

(a) Scheme 2: 1.6m×1.4m

Blasting block

 

(b) Scheme 7: 1.4m×1.3m

Even blasting fragmentation

 

Figure 12. Field blasting test results.

Comparing the blasting results of the two schemes, Scheme 2 obtained by the blast
crater test produced some blast chunks, while the optimized hole network parameters
achieved a better crushing result. According to the numerical simulation results, the reasons
for the large blast chunks are largely due to the weakening of the reverse tensile stress wave
caused by the large resistance line, and the large hole network parameters also mean that
more rock volume needs to be crushed per unit of explosive, thus leading to insufficient
crushing. The numerical simulation results also show that the blast fragmentation in the
hole spacing direction is the same for Scheme 2 and Scheme 7, while there is a large differ-
ence in the weak fragmentation zone in the resistance line direction, so it can be indicated
that the blasting chunks at the site may originate from the weak fragmentation zone.

Through the field blasting test, it is proved that the parameters of medium-deep hole
blasting based on the blasting crater test cannot accurately represent the optimal parameter
scheme, and it is also proved that the combination of the blasting crater test and numerical
simulation method can effectively carry out fine design and optimization of medium-deep
hole blasting parameters.
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5. Discussion

The design and optimization of blasting parameters are still the key issues limiting the
application and development of medium-deep blasting. Some studies use the blast crater
test to design the parameters of medium-deep hole blasting, the test results of this method
can better reflect the actual situation of the mine site, but it is easily be affected by human
subjective factors during data collection, and the integrity of the test site surrounding rock
is required by the blast crater test, so this method does not accurately obtain the optimal
parameter scheme. Some studies have also used numerical simulations to optimize blasting
parameters, and this method has greatly improved the rationality of the blasting parameter
design. The analysis of blasting damage by numerical simulation is also more accurate,
but numerical simulation requires a certain amount of simulation data, which is generally
obtained by empirical design, and these data lack the corresponding experimental basis.
Therefore, only using numerical simulation can neither reflect the actual situation of the
mine nor accurately calculate the optimal parameter scheme.

In a similar study on the design and optimization of blasting parameters, Wang
et al. [43] used numerical simulation and blast crater tests to optimize the blasting pa-
rameters of deep holes in the bottomless column segmental collapse method. He used a
combination of a series of blast crater tests and LS-DYNA numerical simulation, but unlike
this paper, he first analyzed the blasting parameters by numerical simulation analysis and
then optimized the parameters based on the blast crater tests to verify them. The research
idea of this method is clear in principle, and its biggest advantage is that the numerical
simulation results can be verified by blast crater tests. However, the method faces the
same problem as described above, which requires a reasonable source of simulation data to
ensure the validity of the simulation. Secondly, the optimization of the parameters through
blast crater tests requires strict requirements for blast crater tests and certain measures in
the quarry to reduce the errors generated by human subjective factors. In this study, rea-
sonable data sources were obtained through blast crater tests, numerical simulations were
used to optimize the test data to eliminate errors in blast crater tests, and the optimized
data were verified through field blast tests, which overall solved the related problems
more reasonably.

6. Conclusions

This article discusses the design and optimization of medium-deep hole blasting
parameters in underground mines. The article proposes a method of parameter design and
optimization of medium-deep hole blasting based on the blasting crater test and numerical
simulation analysis. This study effectively addresses the parameter issues in medium-
deep hole blasting in the Gaofeng mines, improving blasting efficiency. The following
conclusions have been drawn:

(1) It is obtained that the optimum hole network parameter of the medium-deep hole
in the Gaofeng Mine is 1.4 m × 1.3 m, and the reliability of this parameter has been verified
through on-site blasting tests. The blasting parameters are applicable to medium-deep hole
blasting under similar test conditions in the Gaofeng mines.

(2) It has been demonstrated that the blasting parameter design method based on the
blast crater test has some errors and does not accurately represent the optimal blasting
solution. It is necessary to optimize the obtained parameters.

(3) The study provides a comprehensive and systematic method for the design and
optimization of medium-deep hole blasting parameters and offers valuable insights into the
design of deep hole blasting parameters in similar mines. By using the proposed method,
the rationality and reliability of the blasting parameters can be improved immensely, which
can help to ensure the safety and efficiency of underground mining operations.
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Abstract: Sedimentary rocks provide information on previous environments on the surface of the
Earth. As a result, they are the principal narrators of the former climate, life, and important events
on the surface of the Earth. The complexity and cost of direct destructive laboratory tests adversely
affect the data scarcity problem, making the development of intelligent indirect methods an integral
step in attempts to address the problem faced by rock engineering projects. This study established
an artificial neural network (ANN) approach to predict the uniaxial compressive strength (UCS) in
MPa of sedimentary rocks using different input parameters; i.e., dry density (ρd) in g/cm3, Brazilian
tensile strength (BTS) in MPa, and wet density (ρwet) in g/cm3. The developed ANN models, M1, M2,
and M3, were divided as follows: the overall dataset, 70% training dataset and 30% testing dataset,
and 60% training dataset and 40% testing dataset, respectively. In addition, multiple linear regression
(MLR) was performed for comparison to the proposed ANN models to verify the accuracy of the
predicted values. The performance indices were also calculated by estimating the established models.
The predictive performance of the M2 ANN model in terms of the coefficient of determination (R2),
root mean squared error (RMSE), variance accounts for (VAF), and a20-index was 0.831, 0.27672,
0.92, and 0.80, respectively, in the testing dataset, revealing ideal results, thus it was proposed as the
best-fit prediction model for UCS of sedimentary rocks at the Thar coalfield, Pakistan, among the
models developed in this study. Moreover, by performing a sensitivity analysis, it was determined
that BTS was the most influential parameter in predicting UCS.

Keywords: artificial neural network; multiple linear regression; sedimentary rocks; Thar coalfield;
uniaxial compressive strength

MSC: 86-10

1. Introduction

Sedimentary rocks provide information about the previous environment of the Earth’s
surface. As such, they are the primary narrators of climate, life, and important events that
occurred prior to the Earth’s surface being formed. Uniaxial compressive strength (UCS) is
an essential rock strength parameter widely used in the design of rock structures [1,2]. UCS
is an integral parameter in rock characterization, tunnel construction, slope stability analysis,
construction, bridges, and other rock-related complications [3–8]. Direct estimation of UCS
based on the principles of ISRM (International Society of Rock Mechanics) and ASTM (American
Society for Testing and Materials) is a complex, time-consuming, and expensive procedure. It
makes testing infeasible for engineering projects where large amounts of data are needed.

To overcome these shortcomings, this study establishes artificial neural network (ANN)
predictive models for the estimation of UCS. Many research scholars have established
predictive methods to deal with such complex problems using various statistical methods
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such as ANN and adaptive neuro-fuzzy interference system (ANFIS) [9–17]. Currently,
intelligent methods such as ANN, ANFIS, PSO (particle swarm optimization), and GA
(genetic algorithm) are frequently applied to solve problems related to rock structure
design [2], and these methods are considered to be fast and economical, as well as to have
achieved good agreement between the measured and predicted values of rock mechanical
properties, i.e., UCS and E (modulus of elasticity in MPa), among others [13]. Torabi-Kaveh
employed ANN and multiple regression methods to estimate UCS, and their findings
indicated that the ANN method performed better [18]. Yagiz analyzed ANN and multiple
regression for predicting UCS of carbonate rocks and found that the ANN method is in
good agreement with traditional multiple regression [19]. Ceryan also employed the ANN
and regression methods to predict UCS of carbonate rocks and proposed that the ANN
results were significantly accurate [20]. Mohamad used a PSO-based ANN method to
estimate UCS of soft rocks with input parameters of Brazilian tensile strength (BTS) in MPa,
point load index (Is(50)) in MPa, and ultrasonic (Vp) in m/s, and demonstrated the high
performance of the proposed model [21]. The ANN method has proved to be a key method
among all intelligent methods and is thus mostly used to solve challenging problems that
are reliant on laboratory experimental data because of their high efficiency and ability to
learn from inputs [22]. Based on the reliable predictions of ANN methods, some researchers
have estimated various mechanical properties of rocks by analyzing the correlation among
various physical parameters [23,24]. Yin employed an ANN back-propagation algorithm,
which has been considered as the best prediction method based on previous studies [25].
Skentou used hybrid ANN models for predicting UCS of granite rocks with optimal results.
Similarly [26], Kaloop developed six hybrid ANN models to predict UCS of different rock
types. Based on the performance indicators, such as R2 and RMSE [27], the multivariate
adaptive regression splines (MARS) revealed ideal results compared with other models
developed in the study. Xiang estimated the in situ rock strength from borehole geophysical
logs using ANN models [28]. KÖKEN used different soft computing models including
ANN for estimating the fracture toughness of rocks [29]. Table 1 shows previous studies
using intelligent methods to predict UCS.

Table 1. Previous studies using intelligent methods to predict UCS.

Method Input Output R2 References

ANN n, Is, μ, ρ, Vp UCS 0.97 (Madhubabu et al., 2016) [1]
ANN ρ, n, Vp, Ab UCS 0.93 (Abdi et al., 2018) [4]
ANN n, r, Wabs UCS 0.92 (Kamani et al., 2020) [14]
ANN Vp, Is(50), BTS UCS 0.97 (Mohamad et al., 2015) [21]
ANN Rn, Vp, DD UCS 0.82 (Li et al., 2020) [30]
ANN Is, Vp, Rn, n UCS 0.93 (Dehghan et al., 2010) [31]

ANFIS BTS, Vp UCS 0.60 (Yesiloglu-Gultekin et al., 2013) [32]
PSO-BP DD, MC, Vp, Is(50), Id2 UCS 0.999 (Mohamad et al., 2018) [33]

ICA-ANN Rn, Vp, Is(50) UCS 0.949 (Armaghani et al., 2016a) [34]
ICA-ANN n, Rn, Vp, Is(50) UCS 0.915 (Armaghani et al., 2016b) [35]

MLR n, Is, μ, ρ, Vp UCS 0.91 (Madhubabu et al., 2016) [1]
MLR ρ, n, Vp, Ab UCS 0.88 (Abdi et al., 2018) [4]
MLR Vp, IS(50), SHN, BPI UCS 0.91 (Heidari et al., 2018) [36]
MLR Id2, Is(50), N, é UCS 0.58 (Yılmaz et al., 2008) [37]

This study applied the ANN approach to estimate UCS with different input parameters
such as dry density (ρd) in g/cm3, Brazilian tensile strength (BTS) in MPa, and wet density
(ρwet) in g/cm3. A total of 78 sedimentary rock samples, i.e., claystone, sandstone, and
siltstone, of each type of core rock were selected from Block IX of the Thar coalfield. For the
developed ANN models, the dataset is distributed as follows: model 1 (M1) is the overall
dataset, model 2 (M2) consists of 70% as the training dataset and 30% as the testing dataset,
and model 3 (M3) consists of 60% as the training dataset and 40% as the testing dataset.
Similarly, multiple linear regression (MLR) analyses are performed for comparison to the
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proposed ANN model to check the accuracy of the predicted values. The performance
indices are also calculated by estimating the established models. Furthermore, to determine
the effect of each variable on the estimated values of UCS, a sensitivity analysis was
performed. The complexity and cost of direct destructive laboratory tests adversely affect
the data scarcity problem, making the development of intelligent indirect methods an
integral step in attempts to address the problem faced by rock engineering projects. In
this study, we apply, for the first time, an intelligent prediction method to predict UCS of
sedimentary rocks from Block IX of the Thar coalfield. To the best of the authors’ knowledge,
there is no such application of intelligent prediction techniques.

2. Materials and Methods

2.1. Building Dataset

In this study, sedimentary rock samples, i.e., claystone, sandstone, and siltstone, were
collected from Block IX of the Thar coalfield, Pakistan. Figure 1 represents the geological
site of the collected rock samples [38]. Initially, a total of 78 core rock samples of each
type were prepared and subdivided into standardized samples according to ISRM and
ASTM standards to maintain the same rock core dimensions as well as geological and
geotechnical features [39,40]. Next, these rock samples were tested in the laboratory at the
Department of Mining Engineering, Mehran University of Engineering and Technology, to
determine the physical and mechanical parameters, including ρd in g/cm3, BTS in MPa,
ρwet in g/cm3, and UCS in MPa, using a universal testing machine (UTM), as shown in
Figure 2a,b. Figure 2a,b represent the deformed rock core specimen for UCS and BTS tests,
respectively. Table 2 presents the five heads and five tails of the dataset of physical and
mechanical parameters. Table 3 shows the minimum, maximum, average, and standard
deviation of parameters of rock samples determined in the laboratory.

 

Figure 1. Geological site of the collected rock samples [38].

Figure 2. (a) Deformed rock core specimen for Brazilian tensile strength test and (b) deformed rock
core specimen for UCS test.
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Table 2. Physical and mechanical parameters of the dataset.

Dataset ρd (g/cm3) BTS (MPa) ρwet (g/cm3) UCS (MPa)

1 1.91 0.305 2.13 0.404
2 1.75 0.217 2.01 0.491
3 1.77 0.318 2.04 0.531
4 1.78 0.271 2 0.579
5 1.76 0.292 2.04 0.557

. . . . . . . . . . . . . . .
74 1.81 0.178 2.1 0.541
75 1.84 0.189 2.11 0.476
76 1.96 0.2 2.18 0.508
77 1.78 0.108 2.09 0.511
78 1.84 0.138 2.09 1.415

Table 3. The minimum, maximum, average, and standard deviation of the dataset.

Parameters ρd (g/cm3) BTS (MPa) ρwet (g/cm3) UCS (MPa)

Minimum 1.22 0.023 1.63 0.304
Maximum 2.12 0.627 2.3 3.55
Average 1.76 0.32 2.04 1.38

Standard deviation 0.22 0.13 0.15 0.98

Figure 3 represents histogram plots of the original dataset in this study: (a) dry density
(g/cm3), (b) BTS (MPa), (c) wet density (g/cm3), and (d) UCS (MPa). Figure 4 presents
the pairwise plot of the original dataset of different parameters and UCS under this study.
Notably, none of the parameters are well-correlated to the UCS, thus all of the parameters
are analyzed for UCS prediction. In addition, Figure 4 represents a moderate positive
correlation of BTS with UCS; however, the dry density and wet density show a negative
correlation with UCS.

  

  

Figure 3. Histogram plots of the original dataset in this study: (a) dry density (g/cm3), (b) BTS (MPa),
(c) wet density (g/cm3), and (d) UCS (MPa).
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Figure 4. Correlation plot of inputs (dry density (g/cm3), BTS (MPa), and wet density (g/cm3)) and
output (UCS (MPa)) of the original dataset in this study.

2.2. Methods

The artificial neural network (ANN) approach was employed to predict UCS with three
corresponding inputs: ρd (g/cm3), BTS (MPa), and ρwet (g/cm3). Figure 5 demonstrates
the flow chart of the predictive modeling process for UCS. Owing to the small number of
resources available for collecting samples, the current study used a limited dataset, that is,
78 samples divided for the established models, including M1, M2, and M3, as presented in
Table 4. M1 means the model was trained on the overall dataset, M2 means the model was
trained on 70% (55 datasets) of the dataset and tested on 30% (23 datasets) of the dataset,
and M3 means the model was trained on 60% (47 datasets) of the dataset and tested on 40%
(31 datasets) of the dataset. In addition, Taylor diagram representation was used, which
explains a brief qualitative depiction of the best fit of the model to standard deviations and
correlations. Moreover, cosine amplitude method (CAM)-based sensitivity analysis was
carried out in order to estimate the influence of each input variable on output UCS.

 
Figure 5. Flow chart of the predictive modeling process for UCS.

173



Mathematics 2023, 11, 1650

Table 4. The dataset distribution for the ANN and MLR models.

Model Code Dataset Dataset Distribution (%) Total Dataset

Model 1 (M1) Overall 100 78

Model 2 (M2)
Train 70 55
Test 30 23

Model 3 (M3)
Train 60 47
Test 40 31

2.2.1. Artificial Neural Network

The concept of ANN was originally introduced by Frank Rosenblatt in 1958 [41]. ANN
is considered to be the most common and effective soft computing technique based on the
function of the human brain’s nervous system [42–47]. This technique is mainly used to
solve complex rock structure design problems, i.e., mining, civil, geotechnical, geological
engineering, and so on. The ANN structure is an essential factor in designing the ultimate
prediction model, as the structure affects the learning capability and performance when
estimating the network data. The ANN is structured with three layers (i.e., input layer,
hidden layer, and output layer) with a number of interrelated units, called neurons, and
the method is used to classify the appropriate correlation between the specified input and
output parameters [48]. Figure 6 shows the structure of the ANN to estimate UCS in this
research. Because of the complexity of the problem, each neuron has sufficient neuron
capacity, and each neuron is related to the weight of the next layer [49–51]. Equation (1) is
used to evaluate the approximate number of neurons in the hidden layer, as the improper
selection of the number of neurons in the hidden layer often leads to “under-fitting” and
“over-fitting” and must be avoided.

NH ≤ 2N1 + 1 (1)

Figure 6. Structure of the artificial neural network.

ANN toolbox in MATLAB package 2018a was used in this study to develop the
feed-forward back propagation (FFBP) ANN model with 3-7-1. BP is the most commonly
applied powerful learning algorithm in multilayer networks [52,53]. The predictive input
parameters, ρd, BTS, and ρwet, were allocated to an input layer composed of three neurons
to predict UCS of the output layer. The ANN models, M1, M2, and M3, were trained, tested,
and validated. One hundred epochs were used to train the models and the minimum vali-
dation error was considered as a stopping point to prevent overfitting. Figure 7 represents
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the validation curves for the training performance of the ANN models of UCS. Therefore,
model M2 demonstrates the best performance curve of UCS, with validation error equal
to 0.14562, which is reached at 0 epochs. Figure 8 illustrates the training scatter plots of
predicted UCS against measured UCS, as M1 for overall dataset and as M2 and M3 for the
training and testing dataset, respectively.

Figure 7. Validation performance curves of UCS at (a) M1, (b) M2, and (c) M3.

Figure 8. ANN training scatter plots of predicted UCS against measured UCS for (a) M1, (b) M2, and
(c) M3.

2.2.2. Multiple Linear Regression

SPSS (version 23) was used to conduct a multiple linear regression (MLR) analysis
to determine the existence of a linear relationship between the dependent variable and
the independent variables. Regression analysis is used to determine the independent
variables’ significance in determining the dependent variable’s values [54]. More precisely,
the purpose of regression analysis in this study was to compare the performance of the
ANN analysis to that of conventional linear regression. This approach has also been used
in several recent studies on the application of ANNs and linear regression analysis [55].
The basic linear regression equation (Equation (2)), modified to include our dependent and
independent variables, is as follows:

D = α + B1T1 + B2T2 + B3T3 + . . . BnTn + e (2)

where D represents the dependent variable, α represents the regression constant, B repre-
sents the regression coefficient, and T represents the value of the independent variable.
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2.2.3. Model Evaluation

This study used ANN and MLR methods. To verify the prediction results of models
M1, M2, and M3, the performance indices were calculated. The outcomes of all established
models are illustrated as measured and predicted values. Equations (3)–(6) were used
to find the coefficient of determination (R2), root mean squared error (RMSE), variance
accounts for (VAF), and a20-index of each model, respectively. Table 5 represents the
performance indices of the ANN and MLR models for predicting UCS on the overall
dataset, training dataset, and testing dataset.

R2 =
∑n

i=1

(
UCSo −

−
UCSo

)(
UCSp −

−
UCSp

)
√

∑n
i=1

(
UCSo −

−
UCSo

)2(
UCSp −

−
UCSp

)2 (3)

RMSE =

√
∑n

i=1
(
UCSo − UCSp

)2

n
(4)

VAF =

[
1 − var

(
UCSo − UCSp

)
var(UCSo)

]
× 100 (5)

In addition, to further assess the reliability of the model, a new engineering index,
a20-index, was applied to the studied models.

a20 − index =
m20

N
(6)

where UCSo is the measured value; UCS  is the predicted value; UCS  and UCS  are the
mean of the measured and predicted value, respectively; and n shows the number of
the dataset. m20 denotes the dataset with a value rate of measured UCS/predicted UCS
between 0.80 and 1.20 and N represents the dataset number.

3. Prediction and Discussion of Uniaxial Compressive Strength

The main objective of this study is to investigate the capability of an intelligent model,
i.e., ANN, for predicting UCS of sedimentary rocks. The actual and predicted output
values were later collated and plotted to ease the performance analysis and correlation
studies of these developed models. Various analytical metrics including R2, RMSE, VAF,
and a20 index were used as performance criteria to examine the final output, to analyze
and compare the expected models, and to evaluate the optimal model for data prediction.
Model 1 (M1) is the overall dataset, model 2 (M2) consists of 70% as the training dataset
and 30% as the testing dataset, and model 3 (M3) consists of 60% as the training dataset
and 40% as the testing dataset.

Figure 9 indicates the predicted values of the ANN model M1 for UCS against the mea-
sured UCS for the overall dataset. The predicted correlation coefficient of M1 is R2 = 0.793.
Based on the M1 predicted outputs, Figure 10a shows the aggregated comparison of pre-
dicted versus measured values for UCS. Figure 10b specifies the change in relative error
between the measured and predicted values. The MSE value of model M1 achieved is
0.00599. Figure 10c illustrates the error histogram of the established model M1. Here, it can
be considered that the distribution of the errors is approximately zero, which is in good
agreement with the performance of model M1.
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Figure 9. ANN model M1 results for UCS plotted against the measured data.

   

Figure 10. The demonstration of ANN model M1 for UCS. (a) Model M1 results aggregated with
measured UCS. (b) The variation in error between the measured and predicted values. (c) Error
histogram.

Figure 11 shows the predicted outputs of the ANN model M2 for UCS versus measured
data for the training and testing data. For the training and testing data, the predicted R2

values of model M2 are 0.834 and 0.831, respectively. According to the M2 estimated results
for the training data, Figure 12a displays the aggregated comparison of the predicted
against measured values for UCS. Figure 12b shows the change in relative error between
the measured and predicted values. The MSE value of model M2 is 0.00002. Figure 12c
denotes the error histogram of model M2. It can be seen that the distribution of the
errors is almost zero, which indicates that the performance of the proposed model M2 is
satisfactory and reliable. Similarly, Figure 12d exhibits the aggregated comparison of the
predicted against measured values for UCS of estimated outputs of M3 for the testing data.
Figure 12e denotes the change in relative error between the measured and predicted values.
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The MSE value is achieved as 0.07657. Figure 12f represents the error histogram of model
M3. Consequently, it can be seen that the distribution of the errors is nearly zero, which
indicates that the performance of the proposed model M2 is acceptable.

  

Figure 11. ANN model M2 results for UCS plotted against the measured data for the (a) training and
(b) testing data.

   

   

Figure 12. The demonstration of ANN model M2 for UCS. (a) The model M2 results aggregated with
the measured UCS. (b) The variation in error between the measured and predicted values. (c) Error
histogram for the training data and (d) model M2 results aggregated with the measured data. (e) The
variation in error between the measured and predicted values. (f) Error histogram for the testing
data.

In Figure 13, the predicted outputs of the ANN model M3 for UCS versus measured
data for the training and testing data are presented. Thus, the predicted R2 values of
model M3 are 0.807 and 0.775 for the training and testing data, respectively. Regarding the
estimated results of M3 for the training data, Figure 14a shows the aggregated comparison
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of the predicted against measured values of UCS. Figure 14b shows the change in relative
error between the measured and predicted values. The MSE value of M3 is 0.00015.
Figure 14c signifies the error histogram of the developed model M3. Hence, it can be noted
that the error distribution approaches zero, which shows that the performance of model M3
is adequate. Likewise, for predictive outputs of M3 for the testing data, Figure 14d reveals
the aggregated comparison of the predicted against measured values for UCS. Figure 14e
indicates the change in relative error between the measured and predicted values. The
MSE value of M3 is 0.04541. Figure 14f presents the error histogram of model M3. Thus,
the distribution of the errors is nearly zero, which indicates that the performance of the
established model M3 is satisfactory.

  

Figure 13. ANN model M3 results for UCS plotted against the measured data for the (a) training and
(b) testing data.

   

   

Figure 14. The demonstration of ANN model M3 for UCS. (a) Model M3 results aggregated with
the measured UCS. (b) The variation in error between the measured and predicted values. (c) Error
histogram for the training data and (d) model M3 results aggregated with the measured data. (e) The
variation in error between the measured and predicted values. (f) Error histogram for the testing
data.
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The first step is to determine whether the data under consideration are appropriate for
linear regression analysis. Numerous tests are suggested in the literature for this purpose.
Apart from R2, another very commonly used test is the ANOVA test. In the first case,
linear regression was used to determine the relationship between the dependent variable
measured UCS and the three independent variables: ρd, BTS, and ρwet. In Table 6, the R2

values of UCS are estimated using different equations of the MLR models, including M1,
M2, and M3, for the overall dataset and training and testing data, i.e., 0.187 for M1, 0.292
and 0.066 for M2, and 0.425 and 0.062 for M3, respectively. Therefore, the R2 values of
UCS are quite satisfactory in models M1, M2, and M2. Furthermore, the ANOVA test also
rejected the null hypothesis at a significance value of p < 0.001.

Table 5. Performance indices of the ANN and MLR models for predicting UCS for the overall dataset,
training dataset, and testing dataset.

Model
UCS

R2 RMSE VAF (%) a20-index

ANN

M1 Overall dataset 0.793 0.07739 0.96 0.95

M2
Train 0.834 0.00484 0.99 0.99
Test 0.831 0.27672 0.92 0.80

M3
Train 0.807 0.01211 0.99 0.99
Test 0.775 0.21311 0.90 0.80

MLR

M1 Overall dataset 0.187 6.70404 0.98 1.07

M2
Train 0.292 3.33067 0.77 0.80
Test 0.066 1.40950 0.81 0.99

M3
Train 0.425 1.32518 0.82 1.05
Test 0.062 7.12692 0.99 0.99

Table 6. Multiple linear regression analysis for UCS in MPa; ρd (g/cm3), BTS (MPa), and ρwet (g/cm3)
are the dry density, Brazilian tensile strength, and wet density, respectively.

Model Code Dataset Equation R2

M1 Overall UCS = 1.49 − 0.93ρd + 3.12BTS + 0.26ρwet 0.187

M2
Train UCS = 1.04 − 1.11ρd + 4.35BTS + 0.41ρwet 0.292
Test UCS = 7.83 − 7.24ρwet + 4.61ρd + 0.80BTS 0.066

M3
Train UCS = 0.72 − 1.80ρd + 0.80ρwet + 6.17BTS 0.425
Test UCS = 0.59 − 4.05ρwet + 4.90ρd + 0.24BTS 0.062

Taylor Diagram

The Taylor diagram provides a short numerical explanation of how the fit patterns
match their connection and standard deviation. The Taylor diagram can be expressed as
follows:

R =

1
Z ∑Z

z

(
ln −

−
l
)(

mn − −
m
)

σlσm
(7)

where R denotes the correlation; Z denotes the discrete points; ln and mn represent two

variables; σl and σm show the standard deviation of l and m, respectively; and
−
l and

−
m

denote the average of σl and σm, respectively.
Figure 15 indicates the Taylor diagrammatic correlation between the R2, RMSE, and

standard deviation of the original and predicted UCS for the M2 and M3 ANN and MLR
models for the testing stage. The prediction of ANN model M3 is highly correlated with the
original values and, compared with the other developed models, the standard deviation is
similar to the original value. Thus, ANN model M2 with R2 = 0.831 is the most suitable for
predicting UCS of sedimentary rocks in the Thar coalfield, Pakistan, among the developed
models.
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Figure 15. Demonstration of the Taylor diagram for the testing data based on ANN and MLR.

In an ideal scenario, the best-fit prediction model is considered as the one in which
the R2 value is highest, the RMSE is lowest, the VAF is at a maximum, and the a20-index is
reliable. Therefore, according to Figure 15, ANN model M2 for the testing dataset revealed
the optimal results and is proposed as the best-fit prediction model for UCS in this study.

4. Sensitivity Analysis

It is crucial to accurately analyze the most important parameters that have a great
influence on UCS of rock, which can certainly be problematic in the design of structures.
Therefore, in this study, the cosine amplitude method was used to investigate the relative
influence of the input parameters on the output [56,57]. The general formula of the adopted
method can be expressed as follows:

rij =
∑n

k=1 (UCS ikUCSjk

)
√

∑n
k=1 UCS2

ik∑n
k=1 UCS2

jk

(8)

where UCSi and UCSj are input and output values, respectively, and n denotes the dataset
number during the testing stage. Finally, rij ranges between 0 and 1, specifying additional
evidence of the accuracy between each variable and the target. According to Equation (6), if
the rij of any parameter is 0, this indicates that there is no significant relationship between
this parameter and the target. On the contrary, when rij is equal to 1 or approximately 1, a
significant relationship can be considered that can greatly influence UCS of the rocks.

Figure 16 shows the relationship between each input parameter (ρd, BTS, and ρwet)
of the developed model and the output (UCS). Therefore, it can be seen from the figure
that BTS is the most influential parameter in predicting UCS. The corresponding coefficient
values are ρd = 0.0437, BTS = 0.485, and ρwet = 0.0435.

Figure 16. The effect of input variables on the result of the established model.
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5. Conclusions

In this study, an intelligent method was used to predict the output, UCS, of sedimen-
tary rocks collected from Block IX of the Thar coalfield, using ρd, BTS, and ρwet as input
parameters. The physical and mechanical properties of rock samples were determined
in a laboratory in accordance with ISRM and ASTM standards. This study determined
the predictive performance of ANN and MLR models by determining the highest R2, the
smallest RMSE, the highest VAF, and a reliable a20-index as follows:

For ANN models, R2, RMSE, VAF, and a20-index were 0.793, 0.07739, 0.96, and 0.95,
respectively, for M1; 0.834 and 0.831, 0.00484 and 0.27672, 0.99 and 0.92, and 0.99 and 0.80,
respectively, for the training and testing dataset of M2; and 0.807 and 0.775, 0.01211 and 0.21311,
0.99 and 0.90, and 0.99 and 0.80, respectively, for the training and testing dataset of M3.

In comparison, for the MLR models, R2, RMSE, VAF, and a20-index were 0.187, 6.70404,
0.98, and 1.07, respectively, for M1; 0.292 and 0.066, 3.33067 and 1.40950, 0.77 and 0.81,
and 0.80 and 0.99, respectively, for the training and testing dataset of M2; and 0.425 and
0.062, 1.32518 and 7.12692, 0.82 and 0.99, and 1.05 and 0.99, respectively, for the training
and testing dataset of M3.

Thus, the proposed ANN model M2 for the testing dataset yielded the optimal results
and is proposed as the best-fit prediction model for UCS in this study.

Finally, by performing a sensitivity analysis, it was concluded that BTS was the most
influential parameter in predicting UCS.

The current study used only ANN to predict UCS, in comparison with MLR, which
could have produced more suitable results. However, future work will focus on predicting
UCS using metaheuristic techniques and enhancing the accuracy of the model prediction
and model performance in heterogeneous and big datasets. Moreover, the author plans
to investigate UCS using optimized machine learning algorithms as well as hybrid and
ensemble learning. Furthermore, some other influential attributes will be added to the UCS
database to further understand the nature of this study area.
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Nomenclature

Abbreviation/Symbol Parameter Name Abbreviation/Symbol Parameter Name

UCS Uniaxial compressive stregth R2 Coefficient of determination
ISRM International Society of Rock Mechanics RMSE Root mean squared error
ASTM American Society for Testing and Materials VAF Variance accounts for
ANN Artificial neural network μ Poisson’s ratio
ANFIS Adaptive neuro-fuzzy interference system ρ and r Density
PSO Particle swarm optimization BTS Brazilian tensile strength
GA Genetic algorithm SHN Schmidt hardness
MARS multivariate adaptive regression splines ρwet Wet density
ICA Imperialist competitive algorithm N Porosity
Is Point load strength index Is(50) Point load index
Rn Schmidt hammer rebound number Vp P-wave velocity
BPI Block punch index Ab and Wabs Water absorption
DD, ρd Dry density
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Abstract: One of the most undesirable consequences induced by blasting in open-pit mines and
civil activities is flyrock. Furthermore, the production of oversize boulders creates many problems
for the continuation of the work and usually imposes additional costs on the project. In this way,
the breakage of oversize boulders is associated with throwing small fragments particles at high
speed, which can lead to serious risks to human resources and infrastructures. Hence, the accurate
prediction of flyrock induced by boulder blasting is crucial to avoid possible consequences and its’
environmental side effects. This study attempts to develop an optimized artificial neural network
(ANN) by particle swarm optimization (PSO) and jellyfish search algorithm (JSA) to construct the
hybrid models for anticipating flyrock distance resulting in boulder blasting in a quarry mine. The
PSO and JSA algorithms were used to determine the optimum values of neurons’ weight and biases
connected to neurons. In this regard, a database involving 65 monitored boulders blasting for
recording flyrock distance was collected that comprises six influential parameters on flyrock distance,
i.e., hole depth, burden, hole angle, charge weight, stemming, and powder factor and one target
parameter, i.e., flyrock distance. The ten various models of ANN, PSO–ANN, and JSA–ANN were
established for estimating flyrock distance, and their results were investigated by applying three
evaluation indices of coefficient of determination (R2), root mean square error (RMSE) and value
accounted for (VAF). The results of the calculation of evaluation indicators revealed that R2, values of
(0.957, 0.972 and 0.995) and (0.945, 0.954 and 0.989) were determined to train and test of proposed
predictive models, respectively. The yielded results denoted that although ANN model is capable
of anticipating flyrock distance, the hybrid PSO–ANN and JSA–ANN models can anticipate flyrock
distance with more accuracy. Furthermore, the performance and accuracy level of the JSA–ANN
predictive model can estimate better compared to ANN and PSO–ANN models. Therefore, the
JSA–ANN model is identified as the superior predictive model in estimating flyrock distance induced
from boulder blasting. In the final, a sensitivity analysis was conducted to determine the most
influential parameters in flyrock distance, and the results showed that charge weight, powder factor,
and hole angle have a high impact on flyrock changes.

Keywords: flyrock; blasting; soft computing; ANN; jellyfish research algorithm; particle swarm

MSC: 68T20; 68T01

1. Introduction

Blasting works typically involve applying the intensity of an explosion to rock masses
in order to break them apart and displace them. Some of the explosives’ strength is
employed in these operations to accomplish the targeted objectives, and a considerable
amount of them is wasted [1]. In addition, blasting energies have an effect on a wide
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variety of places in the surrounding blasting area, the majority of which are undesired and
ruinous. The wasted blasting energy is applied to release undesirable environmental and
destructive side effects such as flyrock, dust emission, toxic gas pollution, ground vibration,
backbreaks, toe problems, boulders, etc. [2–5].

The term “fly rock” describes the egregious fragmentation that produces under ran-
dom status at the place beyond the intended explosion-safe boundary [6]. This undesirable
problem of blasting poses a significant risk, particularly when machinery and buildings
are positioned near the locations of the blasting sites [7]. The boulders that are formed as a
result of blasting are referred to as “oversize boulders” in the mining industry. Only specific
transportation machines and crusher tools can manage the large fragmentation (oversize
boulders) in any way, including loading, transporting, or loading operations. When viewed
from a more pragmatic perspective, oversize boulders are considered fragmented sizes
that must undergo repeated blasting and breakage to be processed further—this process is
named secondary blasting. Due to the difference in types of transportation and crushing
machinery utilized varies from one activity to the other, it is difficult and impractical to
assign a dimension or range of measurements of the oversize boulders [8]. The appropriate
rock particles to standard and optimum equipment’s loading and hauling cause enhance
the productivity and effectiveness of the transporting machines and crushers and reduce
the practical costs of processing. Furthermore, the best import rock sizes into a crusher are
the size that decrements its maximum efficiency, power consumption, and the amount of
wear and tear due to crushing rocks.

Oversize boulders may cause a variety of effects on the efficiency of operational mining
processes, including the necessity for supplemental time required for separating chunks,
inadequate loading works, secondary blasting, the imposition of additional costs, addi-
tional wear on transportation machines and their possible destruction, and incrementing
in the amortization of the trucks, shovels and crushes. The formation of oversize boul-
ders in mine and quarry sites will actually occur based on different factors, which can be
divided into the following four categories (Figure 1): (1) geologically associated circum-
stances; (2) blasting design pattern parameters; (3) type and characteristics of explosive; and
(4) human-related factors [9].

Figure 1. Factors to produce blast-induced oversize boulders.

One of the most significant parameters that affect the production of oversized boulders
is the descriptive geology situation. Geological conditions play a crucial role in the genera-
tion of blast-induced oversize boulders, not just near the blasting faces but additionally
from inside the shot. Nevertheless, controlling geological conditions during designing and
performing blasting operations is impossible because it is classified as a group of uncon-
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trollable parameters [10]. Blasting pattern design parameters are an additional category of
important parameters that are used for producing oversize boulders. These parameters
should be adjusted optimally to generate appropriate fragment size distribution.

Some of the blasting pattern design factors, including stemming, hole depth, hole
diameter, burden, and spacing, are illustrated in Figure 2, and categorized in the controllable
parameters of blasting rounds and can be determined by the designer and mine engineers
to obtain optimum rock fragmentation.

Figure 2. A view of blasting bench and pattern design parameters.

The characteristics of explosives are discussed in the third category. The widest ex-
plosives used in mine blasting are dynamite, water gel, and ANFO, which have different
densities, resistivities, and specific charges. Therefore, these parameters also have consid-
erable effects on oversize boulders due to bench blasting [9]. Mistakes that were caused
by human intervention in the designing and carrying out of blasting activities are other
affecting parameters on oversize boulders. The blasting team constantly maintains control
over the performance of the blasting designs and ensures that they are finished [11].

Over the past several decades, there have been numerous experimental and empirical
systems proposed with the intention of forecasting the particle size distribution and flyrock
produced by bench blasting [11–13]. On the other hand, because of the present complicated
circumstances of the blast design process, the findings of the proposed experimental sys-
tems were not satisfactory [14]. As a result, presenting a unique empirical model for the
purpose of predicting flyrock and rock fragmentation is unacceptable and unexpected [15].
In addition to empirical approaches, many studies developed statistical models and for-
mulas to determine the flyrock and fragment rock sizes (see Table 1). Nonetheless, using
statistically based methods to solve a highly non-linear issue such as flyrock and rock
fragmentation can be a challenging and difficult endeavor. Many attempts are conducted
to solve engineering problems by using artificial intelligence and soft computing tech-
niques [16–25]. Therefore, the application of intelligent machine learning, such as artificial
intelligence (AI) and soft computing (SC), could have relevance and benefit when attempt-
ing to solve issues related to this type. These methods have successfully been applied to
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effectively apply in a variety of disciplines of engineering, and the conclusions drawn from
those applications have been advocated as solutions to real-world issues (see Table 1). In
the last decade, numerous attempts have been conducted to model blast-induced flyrock
phenomena in mines and predict its’ distance utilizing artificial intelligence techniques
(Table 1).

Table 1. Some studies conducted in the field of flyrock prediction.

Reference Year Inputs AI Algorithm

[1] 1975 HD Empirical
[26] 1981 HD, SC Empirical
[2] 1988 ST/B Empirical
[27] 2005 B, ST, HD Empirical
[15] 2009 HD, Fs Empirical
[28] 2010 HD, ST, BS, SD, PF, Qmax, N, RD ANN
[7] 2011 B, S, HD, ST, SD, PF, Qmax, RD FIS, SM
[8] 2011 B, S, HD, ST, PF, Qmax, BI, RMR ANN
[9] 2011 d, B, HD, ST, BS, SD, PF, Qmax, BI ANN
[29] 2012 B, S, HD, ST, SD, PF, Qmax, RMR ANN-GA
[10] 2012 PF, HD, SD, S, d, B, ST ANN, SVM
[30] 2012 B, S, ST, HD, HD, SC, Q Empirical
[31] 2013 HD, S, B, d, Qmax ANN
[32] 2013 HD, S, B, ST, PF, SD SVM
[13] 2014 B, S, CPM, Q, σc, RQD MVRA
[14] 2014 PF, S, HD, ST, B, Qmax FIS, ANN
[33] 2015 d, B, S, HD, Q, CPM, σc, RQD ANN, ANFIS
[34] 2016 BDF, EDF, RMR Empirical
[35] 2016 B, S, CPM, PF, σc, RQD MVRA, BPNN
[36] 2018 B/S, H/B, SD, PF, Qmax RD LS-SVM, SVR
[37] 2019 B/d, S/B, ST/B, H/B, PF, Xb MDA
[38] 2020 B, S, ST, PF RD ELM
[39] 2020 B, S/B, ST/B, H/B, d, B/d, PF, Qmax, VoD RMR, BI FRES
[6] 2022 B, S, ST, PF, Q Z-FCM-ANN
[3] 2022 N, HD, B, S, ST, BRH, PF, Q ANN
[40] 2022 ST, Q, PF ANN
[41] 2022 d, HD, S, PF, B/S, ST, Qmax ANFIS, HGSO-ANFIS
[42] 2023 HD, S, B, ST, PF DT, XGBoost, AdaBoost

According to the abovementioned literature and Table 1, although a precise and smart
model for estimating oversize boulders and flyrock is of relevance in mining operations,
there is no research that considers the resulting flyrock from boulder blasting. Hence,
this study focuses on structuring a smart system for the accurate prediction of flyrock
after boulder blasting. The phase of proposing a predictive model is organized using the
present optimized multi-layer perception neural network by three optimization algorithms,
i.e., PSO and jellyfish search algorithm (JSA). The method employed in this research to
anticipate flyrock after oversize boulder blasting is transferable to the solution of various
unwelcome problems that can arise from blasting operations in mine and quarry sites. The
remainder of the paper is organized as follows: Section 2 provides Methods and Materials.
The description of the case study and analysis of the required data are presented in Section 3.
The model development and performance of developed models in this study are presented
in Section 4. Section 5 addresses the results and discussions. Finally, the obtained results
are concluded in Section 6.

2. Methods and Materials

2.1. Jellyfish Search

Chou and Truong [43] presented an Artificial Jellyfish Search (JSA) algorithm in 2021
by modeling it after the predatory procedures carried out by jellyfish, which comprises

189



Mathematics 2023, 11, 2358

three involvement of behaviors: (i) jellyfish generally observe a single regulating point,
which may be the ocean current or the movement of individuals within the group, as well
as a temporal control mechanism, (ii) jellyfish are more interested in locations in which
there is a greater quantity of food available, and (iii) the quantity of food is allotted, and
the fitness function for it is calculated in accordance with the allocation.

2.1.1. Population Initialization

The initializing of the individuals in JSA is performed using the information on a
logical diagram [44], which removes the adverse impacts of randomly generated initial
values commonly approved by conventional metaheuristics, such as a minimal convergence
speed and a local optimum that can present a fall hazard as a consequence of an absence of
the jellyfish variety. The following is an expression of the JSA-based rational diagram [43]:

Xi+1 = ϑXi(1 − Xi) , 0 ≤ X0 ≤ 1 (1)

in which Xi signifies the chaotic position values of the ith jellyfish, X0 indicates the initially
generated jellyfish, and the ϑ is equal to 4.0 [43].

2.1.2. Ocean Current

Ocean currents that include significant quantities of nutrients attract jellyfish to a
location and update their position based on the trend that ocean currents are moving in.
The following equation can serve as a model for it:

Xi(t + 1) = Xi(t) + rand(0, 1)× (X∗ − β × rand(0, 1)× μ) (2)

where X* indicates the populations of jellyfish optimal position, μ denotes the average
location of the jellyfish swarm, and β stands for the distribution-related factor, which
number is fixed to 3.

2.1.3. Jellyfish Swarm

There are two categories of jellyfish motion in swarms: passive and active motions.
Throughout repetitions, the position of a particular jellyfish is updated as follows:

Xi(t + 1) = Xi(t) + γ × rand(0, 1)× (Ub − Lb) (3)

where Ub and Lb stand the upper and lower bounds of the search area, and c refers to the
motion-related factor, which is fixed at 0.1.

The following equation simulates the jellyfish in the swarm’s active motion:

Xi(t + 1) = Xi(t) + rand(0, 1)×
→

direction (4)

A jellyfish swarm perpetually proceeds in the path in which there is a greater supply
of food, which displays the direction of the motions of jellyfish within the population. The
following objective function (OF) equation is used to determine the motions direction of
individual jellyfish:

→
direction =

{
i f f

(
Xj

) ≥ f (Xi) Xj(t)− Xi(t)
i f f

(
Xj

)
< f (Xi) Xi(t)− Xj(t)

(5)

where f is the OF related to location X.

2.1.4. Time Control Mechanism

The timing control scheme in JSA has been modified such that it may be used to direct
the motion of jellyfish in response to ocean currents and among swarms of jellyfish. The
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execution of JSA is heavily reliant on the timing regulating function c(t), which arbitrarily
vacillates between the range of 0–1 and may be represented as follows:

c(t) =
∣∣∣∣
(

1 − k
kmax

)
× (2 × rand(0, 1)− 1)

∣∣∣∣ (6)

where k represents the total number of repetitions, kmax signifies the maximum number
of iterations, and Figure 3 presents the flowchart of JSA. The pseudocode of the jellyfish
search algorithm is shown in Figure 4.

Figure 3. Algorithmic flowchart of the jellyfish search algorithm.

2.2. Particle Swarm Optimization

Particle swarm optimization, abbreviated as PSO, is a metaheuristic algorithm that
was first introduced by Kennedy and Eberhart [45]. The accumulated behavior of particles
served as motivation for the development of PSO. PSO has a significantly higher learning
performance and uses much less memory than the other algorithms, such as the genetic
algorithm. These are just two of the many benefits of adopting PSO. This algorithm
uses a population of particles to search for the best personal (pbest) and best global (gbest)
coordinates in order to determine the optimal location. In other words, throughout every
repetition of the process, the particles advance in the direction of discovering the optimal
places. The following are the formulas that can be used to calculate the speed and location
of the particles:

Vnew = w × V + C1 · r1(pbest − X) + C2 · r2(gbest − X) (7)

Xnew = X + Vnew (8)

in which V is the first velocity, X denotes the particles’ positions, C1 and C2 indicate
the constants related to positive acceleration, Vnew signifies the new velocity, Xnew rep-
resents the location of particles, w is the inertial weight, and r1 and r2 stand the ran-
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dom numbers in the range of (0, 1). The diagram and flowchart of PSO are illustrated
in Figures 5 and 6, respectively.

Figure 4. Pseudocode of the jellyfish search algorithm.

Figure 5. The diagram of the PSO algorithm.
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Figure 6. The flowchart of the PSO algorithm.

2.3. Artificial Neural Network

Artificial neural networks (ANN) originate from the structure of human brains in
information processing. In the human brain, first, the information is imported and then
proceed by neurons. Finally, the output information is output to execute commands. In the
processing step, a training process is performed by neurons to obtain accurate and correct
information. This process is also conducted for neural networks. ANNs comprise the main
three layers involving inputs, output(s), and hidden layers. The main role of each layer is to
keep the neurons (binding components) together in each layer and connect them through
the weights. The neurons pass the information received from the input source to the next
level (layers) [46]. The available data are transmitted from the input neurons to the hidden
neurons and, subsequently, to the output neurons (last layer). This data transfer from
one layer to another is associated with oscillation (strengthening or weakening), which
is controlled by the weights in each layer. However, the main core of neural network
processing is the neural computations performed in each layer; meanwhile, in the first
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step, the imported data into the system is weighted. Then, the linear or sigmoid transfer
function is utilized to pass data to the first hidden layer. Finally, the new data generated in
the hidden layer are transferred to the output layer based on a similarly expressed process.
It is noteworthy that the important components in the ANNs are the neurons’ number
in layers because the neurons affect the network performances [47]. Based on this, the
number of input and output neurons is equal to the number of imported input and outputs
to the system, respectively. However, the hidden neurons are determined according to
a trial–error procedure. In the mentioned explanation, the data processing is conducted
based on the available training algorithms, in which the feedforward-backpropagation (BP)
algorithm is widely applied in network training because of its accuracy and speed.

It should be noted that the weighting of neurons during transmitting data is performed
randomly; the random weights and biases are generated and modified in the training step.
The design of the network structure and the calculation of the appropriate weight are the
two primary components that constitute the ANN modeling process. The BP training
method applies adjustments to the network weights in order to minimize error levels by
using those values. The values that are acquired at each step are compared with the values
that are wanted for the output at the end of the process. In the event that the errors are
undesirable, the procedure should be repeated to obtain the required values and bring the
system error to an acceptable level.

2.4. Hybrid System

Several studies have been conducted in the field of engineering applications to improve
the capabilities of ANNs models by using optimization techniques (Table 1). It is possible
that the ANN model can also provide unacceptable predictions due to the fact that BP is not
really that efficient at locating the precise global minimum. However, the ANN technique
has a greater propensity to get stuck in local minima, whereas optimization algorithms, by
adjusting the weight and bias of ANNs, can overcome this problem. In the current research,
a JSA as a novel metaheuristic algorithm is combined with the ANN, named the JSA–ANN
hybrid system, to predict flyrock distance from boulder blasting. Then, the prediction
result of JSA–ANN was compared to the PSO algorithm. The hybrid systems search a
global minimum, and then ANN selects the method that has the potential to provide the
highest accuracy.

3. Case Study and Data Analysis

For access to the required datasets, the Ulu Tiram quarry mine was considered, which
is explored in the Johor site in Malaysia. The geographical location of the Ulu Tiram quarry
mine is at a latitude of 1◦36′41′ ′ N and a longitude of 103◦49′0′ ′ E. The main ore extraction
in this mine is granite, with rock strength ranging from 50–90 MPa. The production rate of
Ulu Tiram quarry mine for each month is 15,000–35,000 tons, which is supplied through
the implementation of blasting operations. The boulder production-induced mine blasting
was regarded as one of the most significant ecological challenges in the aforementioned
locations. Normally, after several blasting (i.e., primary blasting), there is a need to blast
the boulders produced by these primary blasts. The site’s regular hauling and crushing
equipment are unable to manage the enormous boulder in any way, including loading,
transporting, or handling it. From a more pragmatic standpoint, an oversize boulder can be
thought of as a fragment size that must first be subjected to secondary blasting and fracture
before any further processing can take place. It is not possible to assign a size or set of
dimensions to the oversize boulder since the method of loading, transferring, and crushing
the rock varies from one operation to the next. In the mentioned quarry, a total number of
20 boulders with a volume ranging between 2.1–3.8 m3 were investigated, and the relevant
information, together with their flyrock values, were measured.

In total, sixty-five blast datasets were gathered, with each containing information on
the hole diameter, hole depth, burden, hole angle, charge weight, stemming, powder factor,
and boulder distance as an output. Ammonium nitrate and fuel oil (ANFO) were charged
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as explosives in blasting rounds. The maximum and minimum blast-hole diameters of 2.95
and 5.9 inches, respectively, were used in various procedures. The effective parameters
of boulder blasting and corresponding ranges are reported in Table 2. In addition, the
distribution plot of effective parameters listed in Table 2 is depicted in Figure 7.

Table 2. The range of effective parameters on flyrock distance.

Input Output

Parameters Hole Depth Burden Hole Angle Charge
Weight Stemming Powder

Factor
Flyrock
Distance

Sign HD B HA CW St PF Flyrock

Unit (cm) (cm) (◦) (kg) (cm) (kg/m3) (m)

Min 71 57 22 2.7 31 0.6 157
Average 86.91 77.18 27.46 3.41 39.80 0.79 227.66
Max 101 96 33 4.3 49 1.01 300
Standard
Deviation 7.11 10.63 2.95 0.40 5.41 0.10 37.54

Figure 7. The histogram plot of effective parameters on flyrock distance.

Two video cameras were installed to capture the maximum distance of fragmented
boulder pieces. The prepared benched for performing blasting rounds were colored to
indicate the spaces between blasted boulders. Utilizing the aforementioned cameras, the
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pieces of boulders could be distinguished after the explosion. The maximum distance of
fragmented boulder pieces was then determined to be the horizontal separation of pieces
at their greatest. It is noteworthy that the data collected in this research have not been
used in the research literature before, and for the first time in this research, the prediction
of the maximum distance of fragmented boulder pieces is addressed. Figure 8 shows the
production of a large number of boulders that require secondary blasting to be fragmented
into portable sizes. Furthermore, the drilling of holes with a diameter of 8.9 cm in boulders
is shown in Figure 9.

Figure 8. Oversize boulders in the case study.

Figure 9. The drilled hole in the oversize boulder for charging and blasting operation.
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4. Model Development

In this paper, the modeling and estimation of flyrock distance due to oversize boulder
blasting were performed by the ANN model and hybrid systems of PSO–ANN and JSA–
ANN. To do this, the four main steps were considered; (1) the available 65 datasets that
were collected in a quarry mine in Malaysia were randomly classified into two phases
training data (80% of whole data, 52 datasets) and testing data (20% of whole data, 13
datasets). (2 All of the data, including six influential parameters and flyrock data, were
converted to normalized values in the range of [−1,1] utilizing the following equation [5]:

xn =
xi − xmin

xmax − xmin
(9)

in which xn, xi, xmin, and xmax are the normalized values, measured data, and minimum
and maximum of datasets, respectively. (3) The capabilities of the developed models were
assessed using three evaluation metrics, including R2, RMSE, and VAF, which can be
calculated as follows [48]:

R2 = 1 −

⎛
⎜⎜⎝

n
∑

i=1
(Oi − Pi)

2

n
∑

i=1
(Pi − Pi)

2

⎞
⎟⎟⎠ (10)

RMSE =

√
1
n

n

∑
i=1

(Oi − Pi)
2 (11)

VAF = 100 ·
(

1 − var(Oi − Pi)

var(Oi)

)
(12)

where Oi and Pi indicate actual and anticipated values, respectively; is the average of
the anticipated amounts, and n stands the number of data. (4) The determined statistical
metrics were rated by a rating system proposed by Zorlu et al. [49], and a color intensity
system was used to validate the results of the rating system.

4.1. ANN

In this study, the examination of flyrock distance was the main emphasis. In order
to obtain the structure that has the highest efficiency and is capable of forecasting flyrock
distance accurately and to the best degree of accuracy, a variety of network models were
developed using a variety of hidden neuron sizes and transfer functions. To pass the data
from the structured layer to the next layer in an architecture, transfer functions including
“LOGSIGMOID”, “TANSIGMOID”, and “PURELIN” were used, along with a variety
of training techniques, including, among others, “trainlm”, “trainoss”, and “traingdx”.
This evaluation was the assignment that was provided to the rating approach that was
developed by Zorlu et al., and the R2 and RMSE metrics were the metrics utilized in order
to evaluate and choose the optimal architecture among the models that were run with high
efficiency and precision. Using this method, the R2 and RMSE values for the training and
testing parts are calculated, and the scores for those quantities are determined. According
to this ranking method, the ranking of the architecture is considered to be better when
both the values of R2 and VAF are larger and when the value of RMSE is smaller. Table 3
provides a rundown of the results of these computations in summary form.

It is important to highlight that the outcomes were evaluated using a technique known
as color intensity rating (CIR), and the outcomes of both were examined. The CIR technique
is a creative and quantitative tool for the problem of selecting the best ANN architecture.
Within this approach, the architectures are each allocated a particular coloring (for example,
blue), and the model that has a greater rating shows a higher color temperature.
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Table 3. Different topology of ANN models in anticipating flyrock distance.

Model
No.

Training Testing Training Rates Testing Rates Total
Rate

Rank
R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF

1 0.880 13.106 65.783 0.848 11.256 83.126 1 1 1 1 1 1 6 10
2 0.938 8.194 98.110 0.931 7.509 92.166 7 9 9 9 9 9 52 2
3 0.916 10.542 97.858 0.894 10.303 89.412 3 2 8 6 2 8 29 6
4 0.940 8.235 93.983 0.879 9.821 86.232 9 8 4 3 5 4 33 5
5 0.957 7.392 99.472 0.945 7.473 93.961 10 10 10 10 10 10 60 1
6 0.917 9.934 91.989 0.864 10.027 85.595 4 4 3 2 4 3 20 9
7 0.905 10.215 93.983 0.882 9.055 88.025 2 3 4 4 7 6 26 8
8 0.919 9.559 96.439 0.909 8.771 88.772 5 6 7 7 8 7 40 3
9 0.939 8.544 91.989 0.885 10.130 85.588 8 7 2 5 3 2 27 7
10 0.928 9.611 93.983 0.928 9.699 87.771 6 5 4 8 6 5 34 4

The yellow color indicates the intensity of statistical metrics and their rates. Bold row indicates the best model.

On the other hand, the lower the rate of models, the lower their color temperature
becomes, resulting in it becoming almost completely white. All of the numbers in Table 3
have been given the appropriate shading in light of these explanations and the procedure
that has been presented. Table 3 presents ten distinct topologies, of which only one was
deemed suitable for inclusion in the study as a candidate for the best ANN topology.
Among the ten different topologies of ANN, only ANN5, which had received the highest
rate possible, i.e., 60, was chosen to serve as the ideal architecture since it performed better
than the other models. Furthermore, according to the mentioned scoring tool, the color
that was designated to the ANN5 was used to have the maximum intensity. This indicates
that all approaches are equivalent and provide very accurate results when selecting the
best topology. Because of this, the ANN5 was chosen as the best available ANN model
to predict flyrock distance. It has a structure of 6-4-10-1 (with two hidden layers), and
the activation function of the input, hidden, and output layers are respectively “tansig”,
“tansig”, and “purelin” type. Figure 10 shows the identified topology that was selected as
well as the architecture that was produced by the toolbox of the MATLAB program.

As can be seen in Figure 10, the activation function of all layers was a sigmoid type.
Figure 10 also demonstrates that a variable known as “bias” was used in all levels of
the network, with the exception of the input layer. As a result, the prediction of the
flyrock distance was carried out using the data collected from 65 boulder blasting, which
were classified into train and test. The effectiveness of the ANN architectures that were
constructed is compared in Table 3. The results indicated that the ANN model presents the
R2 values of 0.957 and 0.945 for the training and testing parts, respectively.

4.2. Hybrid Models

There are instances whenever the algorithms/models/techniques outperform other
models when it involves estimating. Therefore, in this case, it could be advantageous for
the modeling that was conducted better to be more heavily involved in the optimized
hybrid models. The hybrid models are based on the concept that optimized models with
more competence ought to have a greater influence on the results. This is accomplished
by optimizing the weight and biases in the ANN structures. There are several ways
to find these weights and biases. One of these suggestions is the use of metaheuristic
optimization algorithms. This section addresses the development of hybrid models, i.e.,
PSO–ANN and JSA–ANN, for predicting flyrock-induced boulder blasting in open-pit
mines. The controllable parameters applied in adjusting PSO and JSA are fixed in the
optimization framework to yield the highest performance degree and accuracy level for
flyrock estimation.
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Figure 10. The designed ANN topology for predicting flyrock distance.

4.3. PSO–ANN

As aforementioned in PSO methodology, this metaheuristic algorithm is controlled by
various parameters involving a number of particles, inertia weight, and velocity equation’s
coefficient that the iteration number managed error reduction. These parameters apply
a considerable effect on the PSO. In this study, the inertia weight and velocity equation’s
coefficients are set at 2 and 0.25, respectively, due to the suggestion of previously con-
ducted research [42] that obtained accurate prediction results. Hence, the inertia weight
of 2 and the velocity equation’s coefficient of 2.5 was employed in PSO–ANN modeling
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process. Furthermore, the iteration number is considered as 1000 repetitions. Nevertheless,
the parameter of the number of particles should be determined by the trial-and-error ap-
proach. Therefore, the swarm is defined as various populations, including 50 particles to
500 particles, and the RMSE function is used for evaluating the performance of PSO.

The obtained results of PSO in optimizing weights of neurons and biased values are
depicted in Figure 11 and Table 4. Figure 11 illustrates the RMSE value obtained for each
PSO swarm size. It can be found that the RMSE values of the PSO–ANN model converge
for all swarm sizes in iteration 475. The different PSO–ANN systems were structured for
anticipating flyrock distance based on various swarm sizes, as presented in Table 4, and
then the best PSO–ANN system was chosen among the ten presented models. For better
choosing, Zorlu’s rating system was used, as shown in Table 4. The PSO–ANN with swarm
sizes of 200 and a total rate of 41 was the superior model compared to other presented
PSO–ANN models. The statistical metrics related to this model were the R2 of (0.972 and
0.954), RMSE of (5.533 and 7.751), and VAF of (99.680 and 93.608), for the training and test
phases, respectively.

Figure 11. PSO–ANN models with different swarm sizes.

Table 4. Various swarm sizes of PSO in anticipating flyrock distance.

Model
No.

Swarm
Size

Training Testing Training Rates Testing Rates Total
Rate

Rank
R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF

1 50 0.956 7.389 97.116 0.952 6.164 94.832 1 3 2 9 9 10 34 6
2 100 0.961 7.184 95.692 0.946 6.457 93.871 6 6 1 3 5 4 25 9
3 150 0.964 6.963 99.430 0.942 6.906 93.155 7 8 5 1 3 2 26 8
4 200 0.972 5.533 99.680 0.954 7.751 93.608 10 10 7 10 1 3 41 1
5 250 0.957 7.204 99.430 0.944 7.066 92.908 3 4 5 2 2 1 17 10
6 300 0.960 7.192 99.858 0.950 6.385 94.059 5 5 8 8 7 5 38 3
7 350 0.957 7.178 98.255 0.949 6.325 94.287 2 7 3 7 8 7 34 6
8 400 0.957 7.672 100.000 0.948 6.076 94.656 4 1 10 5 10 9 39 2
9 450 0.965 6.587 98.255 0.949 6.427 94.175 8 9 3 6 6 6 38 3

10 500 0.966 7.442 99.964 0.947 6.469 94.628 9 2 9 4 4 8 36 5

The green color indicates the intensity of statistical metrics and their rates. Bold row indicates the best model.
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4.4. JSA–ANN

To obtain the optimum value of neuron weights and biases in the ANN architecture
(6-4-10-1) that was designed in the previous section, the JAS algorithm was used. Nev-
ertheless, the controllable parameters of JSA should first be adjusted and implemented
to achieve the most accurate results. In this regard, the selected topology was employed
in developing all hybrid systems. As described in the JSA methodology, the number of
populations is considered a controllable parameter of JSA. To specify the best number of
jellyfish, several JSA-ANN–ANN models with different populations, i.e., 25, 50, 75, 100, 125,
150, 175, 200, 225, and 250, were trained. The revealed results in Figure 12, the parametric
investigation indicated that the number of jellyfish of 200 could achieve the best accuracy
and higher system capacity.

Figure 12. JAS–ANN models with different swarm sizes.

In the present research, the JSA optimization was implemented to identify the ANN
model’s optimum weights and biases. The JSA algorithm initializes by the originally
created initial solution, similar to the existing evolutionary computing algorithms.

The JS algorithm searches the optimum values following the four main stages.
Stage 1. The initial population of the artificial jellyfish, Xi (i = 1, 2, . . . , n), is generated

using the chaotic map operation:
In the search space, the jellyfish serve as a model. The study’s maximum iterations

and the population size of the jellyfish are set at 1000 and 250, respectively.
Based on the trial-and-error procedure, beta and gamma have respective values of 4.5

and 0.09.
Stage 2. Finding the X*:
In this study, the RMSE values are calculated to find the fitness function as shown in

the following equation:

Ff =

√√√√√√√
⎛
⎜⎜⎝

n
∑

i=1

(
XO

i − XE
i
)2

ns

⎞
⎟⎟⎠ (13)

in which XO
i , XE

i and n are the measured flyrock, obtained flyrock by the model, and a
number of datasets, respectively. An artificial jellyfish with the lowest fitness function is
given to the X* by the algorithm.

Stage 3. Continue as follows until the maximum number of iterations has been reached:
Utilizing Equation (6), ascertain the time control function, c(t).
Perform a local or global search for artificial jellyfish.
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Examine the produced values and, when they do not fall inside the given ranges,
replace them with new ones.

Considering the new values, and if the fitness function’s value is the lowest, add it
to X*.

Here, the JSA method is used to find the weights that will be used to construct the
basic models for the JSA–ANN model. Hence, a value between [0, 1] should be selected

at random to preserve the
n
∑

i=1
Wi = 1. The RMSE works as the cost function in this

minimization process.
For selecting the best value for the number of jellyfish, the different JSA–ANN models

with different populations were designed, and the results were evaluated based on the
RMSE function, as illustrated in Figure 12. Based on Figure 12, RMSE changes are fixed after
500 iterations. Therefore, the JSA–ANN model with the number of jellyfish of 200, beta of
4.5 and gamma of 0.09 was constructed. The various generated results were compared and
evaluated using the statistical metrics, i.e., R2, RMSE, and VAF, as shown in Table 5. Similar
to the evaluation of PSO–ANN, the developed JSA–ANN models were evaluated based on
the rating system to choose the best JSA–ANN system with a high level of accuracy and
acceptable performance prediction level.

Table 5. Different swarm sizes of JSA in anticipating flyrock distance.

Model
No.

Swarm
Size

Training Testing Training Rates Testing Rates Total
Rate

Rank
R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF

1 25 0.988 3.788 99.964 0.990 4.368 98.706 1 1 8 9 2 9 30 6
2 50 0.988 3.629 98.718 0.971 4.197 96.525 2 2 4 2 4 3 17 9
3 75 0.991 3.425 97.721 0.978 4.261 96.460 6 4 3 5 3 2 23 8
4 100 0.990 3.299 99.110 0.979 3.573 97.597 4 5 5 6 6 5 31 5
5 125 0.990 3.214 99.430 0.976 3.453 97.649 5 6 7 4 7 6 35 4
6 150 0.989 3.587 97.116 0.964 4.796 96.313 3 3 2 1 1 1 11 10
7 175 0.995 2.791 99.964 0.992 3.282 98.664 9 9 8 10 8 8 52 2
8 200 0.995 2.449 100.000 0.990 2.602 98.832 10 10 10 8 10 10 58 1
9 225 0.992 3.095 99.110 0.983 3.101 98.300 8 8 5 7 9 7 44 3

10 250 0.992 3.150 96.439 0.975 3.700 97.298 7 7 1 3 5 4 27 7

The blue color indicates the intensity of statistical metrics and their rates. Bold row indicates the best model.

5. Results and Discussion

The purpose of the current research is to propose a precise model for modeling and
predicting flyrock distance due to oversize boulder blasting in a quarry mine located in
Malaysia. The most effective parameters were six numbers identified and imported into
the modeling process. Based on the available data, the ANN model, as well as the two
hybrid PSO–ANN and JSA–ANN systems, were developed to determine the superior
predictive flyrock model between other proposed models. The obtained results relevant to
the considered best models of ANN, PSO–ANN, and JSA–ANN based on R2, RMSE, and
VAF metrics in anticipating flyrock are shown in Table 6—these predictive models train well
as a result of their high achievements in terms of the training data. The generated model
achieves a high precision level among testing dataset indicates because it is well-developed.

Table 6. Results of the ANN and hybrid models in estimating flyrock distance.

Developed
Model

Train Test Train Rating Test Rating Total
Rate

Rank
R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF

ANN 0.957 7.392 91.989 0.945 7.473 93.961 1 1 1 1 2 2 8 3
PSO–
ANN 0.972 5.533 99.680 0.954 7.751 93.608 2 2 2 2 1 1 10 2

JSA–ANN 0.995 2.791 99.964 0.989 2.896 98.872 3 3 3 3 3 3 18 1
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Although all of the predictive models have the ability to predict flyrock, the JSA–ANN
predictive model has the potential to deliver greater performance capabilities in terms of
R2 values throughout the training phase as well as the testing phase. According to these
findings, the JSA–ANN model has the potential to achieve the lowest overall system error
of all the models that have been applied. Figure 13 depicts the anticipated values for flyrock
together with the measured values obtained from the application of the ANN, PSO–ANN,
and JSA–ANN prediction models. The anticipated findings for both the training dataset
and test phases are provided here in this figure. Based on this figure, despite the fact that all
models have adequately performed the estimation of flyrock distance, the JSA–ANN model
has the potential to establish itself as a novel hybrid system in this field. Table 7 illustrates
the results that we have acquired about the effectiveness indicators of the developed model.
The information presented in Table 7 shows a comparison between the prediction precision
and capability level of our suggested method and that of a number of the most recent
studies. According to the findings, the JSA–ANN model provides a higher performance
ability in the modeling and prediction of flyrock than the other techniques.

Figure 13. The results of developed models in predicting flyrock distance.
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Table 7. Comparative analysis of the precision of our suggested method with that of other research.

Author Year Method R2

[38] 2020 Extreme Learning Machine 0.955
[39] 2020 FRES 0.981
[6] 2022 Z-FCM–ANN 0.991
[3] 2022 ANN 0.982
[41] 2022 HGSO-ANFIS 0.924
[50] 2022 Ensemble model 0.974
[42] 2023 AdaBoost 0.99

Proposed technique
ANN 0.945

PSO–ANN 0.954
JSA–ANN 0.989

6. Sensitivity Analysis

For assessing the impact of all of the influential factors on flyrock, an analysis of
sensitivity was conducted employing the cosine amplitude (CA) method (Equation (14))
introduced by Yang and Zhang [51]:

rij =

l
∑

k=1
gik · gjk√(

l
∑

k=1
g2

ik

)
·
(

m
∑

k=1
g2

jk

) (14)

in which gik and gjk indicate the inputs and output(s), respectively. k reveals the number
of datasets. Noteworthy, a higher value of rij signifies inputs that matter most. Figure 14
shows the effect of each parameter on flyrock. The values of 0.993, 0.992, and 0.991 for
the effectiveness of charge weight, powder factor, and hole angle demonstrated that this
parameter had the highest effect on flyrock intensity; moreover, the burden with the rij
value of 0.973 had the least effect on flyrock intensity. Furthermore, insignificant charge
weight changes cause considerable flyrock changes.

Figure 14. The effectiveness of considered variables on flyrock intensity.
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7. Conclusions

This research focuses on the development of an innovative hybrid system for flyrock
prediction in a quarry mines. To do this, the most influential variables on the flyrock
distance-induced boulder blasting were identified from available literature and imported
to the ANN model. The neurons’ weights and biases were optimized by two optimization
algorithms of PSO and JSA. The JSA–ANN model was first presented for estimating flyrock.
For each ANN, PSO–ANN, and JSA–ANN model, the different models with various
structures and swarm sizes were designed, and the evaluation indices of R2, RMSE, and
VAF were calculated for them.

To choose the best predictive model, a rating system was employed, and the model
with the highest rate was introduced as the superior model. The evaluation of the achieved
predictions indicated that both the PSO–ANN and JSA–ANN hybrid models are able to
present precise results in estimating flyrock distance. However, the JSA–ANN model yields
a higher accuracy prediction level and lower error. The R2 values of (0.957, 0.972, and 0.995)
and (0.945, 0.954, and 0.989) were determined to train and test the ANN, PSO–ANN and
JSA–ANN predictive models, respectively. Moreover, the RMSE values of (7.392, 5.533,
and 2.791) and (7.473, 7.751, and 2.896) were used to train and test the ANN, PSO–ANN
and JSA–ANN models, respectively. These findings reveal the highest capability of the
JSA–ANN hybrid model compared to the others.

It can be concluded that a hybrid JSA–ANN system is identified as the best predictive
model to estimate flyrock distance if a predictive model with the highest accuracy and
lowest error is required. It is worth noting that the results of sensitivity analysis indicated
that the largest and smallest impact parameters on flyrock distance were charge weight
and burden, respectively.

The current study has some limitations; thus, the following further examinations are
suggested as possible next steps. Firstly, the data that was utilized may be extended to
incorporate more full data with further blasting that was captured. Second, there is a desire
to strengthen both the predictive and optimizing capabilities of the system. Third, since the
number of data samples is relatively low, artificial data augmentation techniques can be
used to increase the size and diversity of the dataset.

In light of the fact that the estimation and optimization models used in this inves-
tigation have room for development, it has been concluded that the utilization of novel
approaches that enable the utilize hybrid combinations is the most effective method for
improving both the estimation and optimization settings. Based on practical applications,
the provided framework can be modified to apply to various sectors of engineering, particu-
larly mining and building engineering. Nevertheless, the ensemble soft computing method
can be used to boost the performance capacity of estimation objectives and enhance the
accuracy level of soft computing approaches. These suggested techniques can be employed
to conduct an analysis of safety data and locate possible dangers, blasting safety regions,
and risks associated with blasting activities. The flyrock distance can be anticipated when
the blasting activities begin in order to monitor for any possible problems or damages that
could happen to the personnel, equipment, and residential area that is close to a safe area.
If the anticipated outcomes are higher than those specified in the literature or standards,
the blasting pattern or structure can be revised once again such that the anticipated flyrock
values remain inside the safe limits that have been advised. In general, soft computing
techniques can be applied to evaluate the data related to the environment and analyze the
influence of mining activities on the surrounding ecosystem.
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Abstract: The criteria for measuring soil compaction parameters, such as optimum moisture content
and maximum dry density, play an important role in construction projects. On construction sites,
base/sub-base soils are compacted at the optimal moisture content to achieve the desirable level of
compaction, generally between 95% and 98% of the maximum dry density. The present technique
of determining compaction parameters in the laboratory is a time-consuming task. This study
proposes an improved hybrid intelligence paradigm as an alternative tool to the laboratory method
for estimating the optimum moisture content and maximum dry density of soils. For this purpose, an
advanced version of the grey wolf optimiser (GWO) called improved GWO (IGWO) was integrated
with an adaptive neuro-fuzzy inference system (ANFIS), which resulted in a high-performance hybrid
model named ANFIS-IGWO. Overall, the results indicate that the proposed ANFIS-IGWO model
achieved the most precise prediction of the optimum moisture content (degree of correlation = 0.9203
and root mean square error = 0.0635) and maximum dry density (degree of correlation = 0.9050 and
root mean square error = 0.0709) of soils. The outcomes of the suggested model are noticeably superior
to those attained by other hybrid ANFIS models, which are built with standard GWO, Moth-flame
optimisation, slime mould algorithm, and marine predators algorithm. The results indicate that
geotechnical engineers can benefit from the newly developed ANFIS-IGWO model during the design
stage of civil engineering projects. The developed MATLAB models are also included for determining
soil compaction parameters.

Keywords: soil compaction; adaptive neuro-fuzzy inference system; grey wolf optimiser; swarm in-
telligence

MSC: 68Txx

1. Introduction

In the parlance of geotechnical engineering, soil compaction is a method of com-
pressing soil particles by reducing air voids while maintaining steady water content [1,2].
Compaction can be used to enhance the mechanical qualities of soils in a number of differ-
ent ways. Proctor [3] recommended compacting soil with different water contents at an
appropriate compaction energy. As a result, the compaction curve can be used to determine
the optimum moisture content (OMC) and maximum dry density (MDD) of soils. To sustain
the long-term performance of various engineering structures, such as embankments of
railways, highways, and airport runways, these two compaction parameters are commonly
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used [4–8]. Understanding and predicting the compaction characteristics of different soils
is thus a crucial aspect of every construction project [9–13].

Analytical techniques and laboratory experiments can be used to calculate the OMC
and MDD [1,14,15]. However, to precisely characterise the compaction curve, at least 4
to 5 tests must be carried out in the laboratory, which takes a long time [9,14]. In order
to conduct tests and obtain accurate results, highly qualified technical staff and expert
personnel are needed. The laboratory values of OMC and MDD are utilised to compact
soils of sub-base/base layers to achieve 95–98% MDD in the field. Thus, it is important to
create smart, data-driven algorithms for calculating the OMC and MDD based on existing
experimental records [1,15,16]. To determine the OMC and MDD of soils, a number of
prediction models have previously been put forth. Regression analysis and different data
from particular soils were used to create the majority of these models. However, according
to the literature, the prediction accuracy of these models tends to decrease as the size of the
database increased [1,14,17].

In order to address the issue with a larger database and improved accuracy, machine
learning techniques (MLTs) have recently been employed to estimate the OMC and MDD
of soils. Using evolutionary polynomial regression (EPR) and artificial neural networks
(ANNs), the compaction characteristics of 55 soil samples were predicted [18]. The group
method of data handling (GMDH) was used by Ardakani and Kordnaeij [19] to estimate
the compaction parameters of 212 samples. Based on the results of 451 experiments using
the index properties and conventional proctor tests, Kurnaz and Kaya [16] employed
GMDH, support vector machine (SVM), extreme learning machine (ELM), and Bayesian
regularisation neural network to estimate the OMC and MDD of soils. Recently, Tiwari
et al. [17] used hybrid least square support vector machine (LSSVM) approaches to estimate
the OMC and MDD of soils, and found satisfactory results.

These prediction models, in comparison to regression analysis models, displayed
better determination coefficient (R2) values, ranging from 0.90 to 0.98 [1,14]. Nevertheless,
these studies used only a few different types of soils. Past studies have shown that within a
given soil range, forecast accuracy can be ensured; nevertheless, the issue of the limited soil
type and the inadequate consideration of soil factors may result in inaccurate predictions.
Prediction models constructed and validated with the fewest number of influential param-
eters, which are typically determined when samples are brought to the laboratory, are also
regarded as the most effective. In contrast, the nonlinear stress-strain relationships, the
stress-strain time-conditioning response, and the elasto-plastic behaviour under loading
and unloading conditions make soil materials highly complex [20–24]. Therefore, a high-
performance soft computing model is considered necessary to estimate the OMC and MDD
of soils, taking into account a wide range of soil types and the most influential variables
(such as grain size analysis, plasticity characteristics, etc.) that can be readily measured in
the laboratory.

According to the most recent literature, ensemble-based and hybrid MLTs are the best
suited approaches for estimating the anticipated outputs, such as load-carrying capacity
assessment of semi-rigid steel structures [25], patch load resistance of stiffened plate
girders [26], soil compaction parameters [27], compression index [24], etc. Additionally, due
to the complexity of the task at hand, it is required to look at a variety of advanced MLTs in
order to find more precise estimating models. A detailed review of the literature reveals
that the main advantage of the neuro-fuzzy system is that it combines neural network
properties with fuzzy logic; hence, eliminating the limitations of these two MLTs can be
found in the literature [28,29]. After ANN, Adaptive neuro-fuzzy inference system (ANFIS)
is one of the widely used MLTs and can be implemented easily to estimate the desired
output(s). ANFIS has the advantage of knowing both numbers and languages. ANFIS also
makes use of ANN’s capacity to classify data and recognise patterns. Specifically, ANFIS
is more transparent to the user than the ANN model and generates fewer memorisation
errors. The fundamental advantage of the neuro-fuzzy system is that it blends neural
network properties with fuzzy logic, removing the limitations of both. While fuzzy logic
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deals with knowledge that can be obtained and comprehended, neural networks deal with
knowledge that can be obtained only via optimised learning [28,30]. However, like many
other MLTs, ANFIS has some limitations, such as overfitting issues. Additionally, because
it is hard to define the exact global optimum, it may produce undesirable outcomes during
the validation phase [14,31].

To solve these issues, researchers have employed a number of meta-heuristic algo-
rithms (MHAs), such as GA, PSO, GWO, etc. [28,29,32], and a number of hybrid models
of traditional MLTs and MHAs were built for the estimation of desired output(s). It is
important to note that construction of an effective ANFIS model requires optimum selec-
tion of its consequent and antecedent (C&A) and fuzzy inference system (FIS) parameters.
These two parameters significantly affect how the learning phase turns out, which in turn
affects how well a hybrid ANFIS model can predict the desired variables. Due to the robust
global search capabilities of MHAs, the C&A parameters of ANFIS are iteratively adjusted,
resulting in improved performance. Over the past decade, several hybrid ANFIS models
have seen widespread use in addressing a wide range of engineering problems, including
compressive strength estimation [28,33], flood assessment [34], prophecy of groundwater
level [35], and so on.

Nevertheless, a detailed review of the literature reveals that no previous study has
employed hybrid ANFIS models constructed with a specific group of MHAs to predict soil
compaction parameters. On the other hand, it is important to highlight that no algorithm
provides perfect solutions for all optimisation problems due to improper exploration
and exploitation (E&E) processes [31,36]. Therefore, implementing a standard version of
MHA in hybrid modelling does not ensure optimum hybrid model generation. It may
also be noted that researchers reported modified versions of MHAs and demonstrated
that the performance of standard MHA could be improved by implementing different
strategies [37–39]. Considering these points as a reference, and to fill the gap in the
literature, an enhanced hybrid technique of ANFIS and an improved grey wolf optimiser
(IGWO), i.e., ANFIS-IGWO, has been constructed and presented in this study for the
estimation of OMC and MDD of soils. The performance of the ANFIS-IGWO model was
compared to that of three hybrid ANFIS models built using moth-flame optimisation (MFO),
slime mould algorithm (SMA), and marine predator algorithm (MPA). The performance of
the ANFIS-IGWO model was also compared with the standard hybrid model of ANFIS
and GWO, i.e., ANGIS-GWO. Thus, as a part of ongoing research and to extend the work
of Bardhan and Asteris [14], a suitable database of various soils was compiled from the
studies of Günaydın [15], Wang and Yin [1], and Bardhan and Asteris [14] and a modified
database was prepared. Specifically, a total of 251 datasets from 15 different soils were
acquired and utilised in the current study for the estimation of the OMC and MDD of soils.

The remainder of this work is organised as follows. The significance of the present
study is presented in Section 2. Section 3 details the methodological development of
ANFIS-based hybrid models. Section 4 discusses data collection, descriptive details, and
the computer modelling procedure. Section 5 provides and discusses the realisations of the
developed models, followed by Section 6 with the limitations and future scope of the study.
At the end, summary and conclusions are presented.

2. Research Significance

In the last two decades, a multitude of modern computational methods, techniques,
and algorithms have been proposed and published with the aim of predicting the response
of complex phenomena whose strongly non-linear nature and behaviour make impossible
the widely accepted use of deterministic techniques [25,26]. In these methods, artificial
intelligence, machine learning, and MHAs have a dominant position. In fact, despite
the fact that these techniques started with the first applications in medicine [40], they
were particularly applied in the fields of sciences [30,41–43] and engineering [44–48]. The
use of contemporary intelligence techniques in geotechnical and geological engineering
domains, such as landslide susceptibility mapping [49], reliability analysis [50], and es-
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timation of various geotechnical parameters [24,27] can also be found in the literature.
However, the existing literature in the geotechnical engineering area does not demonstrate
sufficient implementation of enhanced/improved versions of MHAs in estimating various
geotechnical parameters. Taking the above discussion as a reference, this study proposes
a high-performance intelligence paradigm built using an upgraded version of MHA for
estimating the OMC and MDD of soils.

3. Methodology

This section presented the theoretical details of GWO and IGWO, followed by a short
discussion on MFO, SMA, and MPA. Subsequently, the methodological development of
hybrid ANFIS models is presented and discussed. However, before presenting the above
details, the working principles of the ANFIS are briefly presented.

3.1. Adaptive Neuro-Fuzzy Inference System

ANFIS, proposed by Jang [51], is an ANN-FIS integration, which was intended to
eliminate the drawbacks of the individual ANN and FIS approaches. ANFIS is grounded
in fuzzy logic and rules produced in the particular training procedure of the model. These
inference systems contain five layers (see Figure 1). The nodes of layer 0 are the inputs,
while the nodes of layer 5 represent the output in the connection-based structure. The fixed
adaptable nodes of the hidden layers stand for the membership functions (MFs).

Figure 1. A basic architecture of ANFIS.

For a summarised description of the ANFIS approach, let x1 and x2 be the inputs.
Additionally, let f be the output. The ANFIS represents the relationship between the inputs
and output by fuzzy if–then rules. The Takagi–Sugeno fuzzy rules in the model are shown
as:

Rule-1: i f x1 is A1 and x2 is B1, then f1 = p1x1 + q1x2 + r1
Rule-2: i f x1 is A2 and x2 is B2, then f2 = p2x1 + q2x2 + r2

where A1, A2, B1, and B2 are linguistic symbols, while p1, q1, r1, p2, q2, and r2 are the
consequent variables. The layers include:

Layer 1: Fuzzification layer—it is assumed that node i has an adaptive function as:
O1,i = μAi (x), where O1,i is the output of node i, while μAi denotes the MF.
Layer 2: Ruler layer—Node i within this layer is assumed to be fixed (II). In addition, the node
output is generated by incoming signals, such as O2,i = wi = μAi (x)× μBi (x) f or i = 1, 2,
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where O2,i denotes the output of the second layer, and wi represents the firing strength of
rule i.
Layer 3: Normalisation layer—Node i undergoes normalisation in the third layer (firing
strengths). The ratio of the firing force of rule i to the total firing force can be obtained as:
O3,i = wi = wi/(w1 + w2), where O3,i is the output of the third layer, and wi stands for
the normalised firing strength.
Layer 4: Defuzzification layer—In this layer, each of the nodes is adaptive and has a
function representing the contribution of rule i to the total output.
Layer 5: Output layer—Eventually, this layer yields the final output.

ANFIS can be equipped for MF parameter identification through hybrid learning
approaches. Such approaches define the parameters of the defuzzification layer using the
forward least squares technique. Errors undergo backpropagation to modify ai, bi, and ci as
the premise parameters through gradient descent. For more details, the works of Paryani
et al. [49], Piro et al. [30], Golafshani et al. [28], can be referred to.

3.2. Grey Wolf Optimiser

GWO [52] is comes under the category of evolutionary algorithm developed for
optimisation based on the imitation of the grey wolves’ social behaviour. Specifically, this
algorithm mimics the process that grey wolves utilise to capture their prey, along with
the structure of their leadership. For the recreation of the hierarchical structure in GWO,
grey wolves of four different types are assumed for every wolf pack. The leader and the
most significant wolf in the pack are called α, β and δ wolves. ω wolves with minimum
responsibility are placed at the bottom of the food. In GWO, the entire hunting process can
be classified as searching, encircling, hunting, and attacking. The mathematical expression
for encircling prey is given by:

D =
∣∣∣C.Xp(t) − X(t)

∣∣∣ (1)

X(t+1) = Xp(t) − A.D (2)

where X and Xp are the position vectors of the grey wolf and the prey, respectively; t and
t + 1 represent current and subsequent epochs, respectively. A and C are two vectors given
by:

A = 2a.r1 − a (3)

C = 2.r2 (4)

where r1 and r2 are the two random vectors that are uniformly distributed [0 1], and the
components of a are linearly decreased from 2 to 0. When |A| > 1, the exploration of prey
location is possible by diverting the search agents. Conversely, with |A| < 1, convergence
of search agents can be used to achieve exploitation. The hunting process in GWO can be
mathematically modelled as follows:

Dα = |C1.Xα − X|; Dβ =
∣∣C2.Xβ − X

∣∣; Dδ = |C3.Xδ − X| (5)

Xi1 = Xα − A1.(D α) ; Xi2 = Xβ − A2.(D β

)
; Xi3 = Xδ − A3.(Dδ) (6)

X(t+1) = (Xi1 + Xi2 + Xi3)/3 (7)

In GWO, E&E is handled using parameters a and C, in which the parameter a is
decreased from 2 to 0. Additionally, it is seen that the final position would be in a random
place within a circle, which is defined by the positions of α, β, and δ in the search space.
More mathematical details can be found in the original work of Mirjalili et al. [52].
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3.3. Improved Grey Wolf Optimiser

In GWO, α, β, and δ guide ω wolves toward regions of the search space where the
optimal solution is likely to be located. This approach may result in entanglement in a
locally optimal solution. Another drawback is the decline in population diversity, which
causes GWO to approach the local optimum. Nadimi-Shahraki et al. [53] proposed IGWO
to address these problems. According to the study of Nadimi-Shahraki et al. [53], the
enhancements involve a new search strategy involving a step of selecting and upgrading.
Therefore, IGWO consists of three phases, as discussed below.

Initialising phase: During the initialisation phase, N wolves are randomly distributed
in [lj, uj], as:

Xij = lj + randj[0, 1]× (
uj − lj

)
, i ∈ [1, N], j ∈ [1, D] (8)

The position of the i-th wolf in the t-th iteration, represented by Xi(t) = {xi1, xi2, . . . ,
xiD}, where D is the dimension number. The fitness value of Xi(t) is calculated using f
(Xi(t)).

Movement phase: The IGWO, proposed by Nadimi-Shahraki et al. [53], includes a
different mobility tactic known as the dimension learning-based hunting (DLH) method,
in which each wolf is learned by its neighbours to be a different contender for the new
position, Xi(t).

Selecting and updating phase: During this stage, the best candidate is first chosen by
contrasting the fitness ratings between two candidates Xi-GWO(t + 1) and Xi-DLH(t + 1), given
by:

Xi(t + 1) =

{
Xi−GWO(t + 1), i f f (Xi−GWO) < f (Xi−DLH)

Xi−DLH(t + 1) otherwise
(9)

Then, to update the position of Xi(t + 1), if the fitness of the selected candidate is less
than Xi(t), Xi(t) is updated by the selected candidate. Otherwise, Xi(t) remains unchanged.
After this procedure, the iteration count is increased by 1, and the search operation is
repeated until the predetermined number of epochs has been reached.

3.4. Brief Overview of MFO, SMA, and MPA

The other employed MHAs, viz., MFO, SMA, and MPA, are briefly discussed in this
sub-section. All of these MHAs are swarm-based and they have been widely used in
different engineering disciplines [54–57].

MFO, proposed by Mirjalili [58], is an innovative MHA that draws inspiration from
the intriguing behaviour of moths attracted to flames. MFO incorporates the unique phe-
nomenon of moths spiralling around a flame into its search strategy. This behaviour, while
seemingly irrational and perilous for the moths, serves as a metaphor for E&E in optimisa-
tion problems. MFO leverages a chaotic search mechanism that emulates the unpredictable
flight patterns of moths around a flame. This mechanism enables the MFO to efficiently ex-
plore diverse solution spaces, avoiding stagnation in the local optima. By introducing chaos,
the MFO promotes global exploration while maintaining its ability to exploit promising
regions of the search space. The core idea behind MFO is to strike a balance between E&E,
mimicking the trade-off faced by moths as they navigate the dangerous allure of flames. By
dynamically adjusting the balance between E&E strategies, the MFO adaptively evolves its
search behaviour, allowing it to effectively handle complex optimisation problems with
varying landscapes. The effectiveness of MFO has been demonstrated across a wide range
of applications, including engineering design, data mining, and image processing. Its
ability to handle both continuous and discrete optimisation problems make it a versatile
tool in the field of MHAs.

SMA [59] simulates the nutritive phase of a slime mould as a unique approach that is
grounded in nature (a single-celled eukaryote). The foraging behaviour of slime moulds
is simulated by this programme. By smelling potential food sources, slime moulds locate
them, wrap them, and then digest them by secreting enzymes. In SMA, the phase of
iterations to produce the highest smell concentration is the theoretical description of how
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to approach the optimal solution. The slime mould’s flexible weight ensures rapid conver-
gence and prevents it from becoming stranded in regional extremes. This approach enables
the slime mould to advance along any viable path in the direction of the ideal outcome,
which mimics the slime mould’s eating-related architecture. The next stage is wrapping
the meal using contractions of the intravenous framework inside the upper and lower
limitations. The vein with the maximum contraction of food generates more bio-oscillator
waves, which cause the cytoplasm to flow more quickly through the vein, increasing its
thickness. The search patterns in SMA are altered in response to the opposing signals from
veins regarding the concentration of food.

MPA [60], a MHA inspired by the natural principles governing optimal foraging
strategies and encounter rates between predator and prey in marine ecosystems. Marine
predators adopt a Lévy strategy when navigating environments with scarce prey, while
employing Brownian movement in areas abundant with prey. Throughout their lifetimes,
these predators exhibit a consistent balance of Lévy and Brownian movement as they
traverse diverse habitats. Environmental factors, such as eddy formation, influence their
behaviour, prompting adaptive changes to explore regions with varying prey distributions.
Leveraging their remarkable memory capabilities, they capitalise on the recollection of
successful foraging locations and associations with other individuals. MPA harnesses these
concepts to guide its search process, mimicking the adaptive foraging behaviour of marine
predators. By integrating these nature-inspired mechanisms, MPA demonstrates a powerful
optimisation approach capable of addressing complex problems in diverse domains.

Note that the detailed working principles of these OAs are not presented in this study
because they are well established, and the original studies of MFO [58], SMA [59], and
MPA [60] can be referred to for more details.

3.5. Hybrid Modelling of ANFIS and MHAs

In this work, the C&A parameters of ANFIS were optimised using MHAs. It is
important to note that proper setting of the FIS and C&A parameters is necessary for
creating an optimum ANFIS model because learning parameters have a significant impact
on the model’s performance. Notably, the selection of all of the ANFIS hyperparameters
at once is a challenging operation because they must be searched in continuous domains,
leading to an infinite number of parameters sets. As a result, it is possible to define the
problem of ANFIS parameter tweaking as an optimisation problem. Thus, the values of the
FIS and C&A parameters were optimised using IGWO, GWO, MFO, SMA, and MPA, and
five hybrid ANFIS models, i.e., ANFIS-IGWO, ANFIS-GWO, ANFIS-MFO, ANFIS-SMA,
and ANFIS-MPA, were created. A flow chart of the construction procedure of the hybrid
ANFIS models is presented in Figure 2.
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Figure 2. Flow chart of hybrid ANFIS model construction.

4. Data Description and Modelling

A broad variety of experimental results of soil compaction parameters were acquired
from the studies of Günaydın [15], Wang and Yin [1], and Bardhan and Asteris [14]. Specifi-
cally, a total of 372 results were obtained, the details of which are presented in Table 1. The
work of Günaydın [15] consists of 126 compaction results of nine distinct soil types (CH, CI,
CL, GC, GM, MH, MI, ML, and SC) with six influencing parameters, viz., fines content (F),
sand content (S), gravel content (G), specific gravity, liquid limit (LL), and plastic limit (PL).
Wang and Yin [1] gathered a total of 226 records from the literature. The database includes
G, S, F, LL, PL, and compaction energy of various soil types, such as CL, CL-ML, CH,
MH, ML, SC, SP-SC, SW-SC, SM, GC, GP-GC, GW-GC, and GM. Bardhan and Asteris [14]
presented 20 experimental records of soil compaction parameters, including four distinct
soil types (CH, CI, CL, and SC) and six influencing parameters, identical to Günaydn [15].
According to the study of Wang and Yin [1], the majority of 226 soil compaction experiments
were conducted using either the conventional Proctor or the reduced compaction energy.
Additionally, thirty modified Proctor compaction tests were incorporated into the database.

Table 1. Details of data pre-processing for OMC and MDD estimation.

Particulars
No. of Actual

Data
Actual Data
Dimension

No. of Data
Selected

Final Data
Dimension

Günaydın [15] 126 126 × 8 126 126 × 7
Wang and Yin [1] 226 226 × 8 105 105 × 7
Bardhan and Asteris [14] 20 20 × 8 20 20 × 7
Final dataset (for this study) - - 251 251 × 7

Note: The data dimension also includes OMC and MDD parameters.

In this study, the database presented by Wang and Yin [1] has been revised, and a total
of 105 records were chosen. Additionally, all datasets of Günaydın [15] and Bardhan and
Asteris [14] were used. Therefore, 126, 105, and 20 experimental records were acquired from
the studies of Günaydın [15], Wang and Yin [1], and Bardhan and Asteris [14], respectively.
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The details of data dimension are also presented in Table 2. Therefore, the final database
includes 251 records and five influential parameters viz., F in %, S in %, G in %, LL in
%, and PL in %, of 15 different soil types. These five influential parameters were used to
estimate the OMC and MDD of soils. Descriptive details of the final dataset are given in
Table 2. In addition, the minimum and maximum values of influential (soil-type wise) and
compaction parameters are presented in Table 3. Note that the abbreviations of soil types
are presented as per the Indian Standard Soil Classification System (ISSCS) and ASTM [61].

Table 2. Descriptive statistics of the employed dataset.

Particulars F (%) S (%) G (%) LL (%) PL (%) OMC (%)
MDD

(kN/m3)

Min. 8.60 0.00 0.00 16.00 6.10 7.00 13.73
Avg. 63.76 27.95 8.29 40.14 20.63 17.16 17.25
Max. 100.00 83.60 67.10 70.00 32.50 31.00 21.48
Stnd. Error 1.49 1.09 0.74 0.63 0.28 0.24 0.08
Stnd. Dev. 23.62 17.19 11.78 9.93 4.50 3.87 1.29
Variance 557.68 295.50 138.65 98.62 20.21 15.00 1.67
Kurtosis −0.90 −0.31 3.55 0.20 0.15 0.87 0.54
Skewness −0.20 0.33 1.85 0.67 −0.06 0.38 0.02

Table 3. Soil type-wise details of the employed dataset.

Soil Types
F S G LL PL OMC MDD

Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.

CH 53.80 100.00 0.00 41.16 0.00 20.00 50.00 70.00 18.00 31.00 17.50 30.80 13.93 17.42
CI 49.00 75.00 21.00 44.95 0.05 23.07 35.15 49.40 14.40 26.72 13.95 23.75 15.19 19.41
CL 33.00 99.00 1.00 65.00 0.00 22.00 23.00 49.30 6.10 27.00 11.00 22.00 15.89 19.28
CL-ML 81.00 81.00 19.00 19.00 0.00 0.00 27.00 27.00 21.00 21.00 17.00 17.00 17.46 17.46
GC 13.00 41.50 19.90 45.61 30.39 67.10 27.60 63.20 13.40 26.11 7.60 18.80 16.43 20.51
GM 40.00 50.00 17.25 28.69 24.69 37.75 40.20 50.90 26.00 26.61 13.85 20.40 16.36 17.55
GP-GC 9.40 9.40 41.90 41.90 48.70 48.70 37.80 37.80 14.70 14.70 8.40 8.40 20.60 20.60
GW-GC 8.60 8.60 44.30 44.30 47.10 47.10 29.50 29.50 14.10 14.10 7.00 7.00 21.48 21.48
MH 60.00 100.00 0.00 36.48 0.00 3.52 50.40 64.00 26.00 32.50 19.40 31.00 13.73 16.09
MI 59.00 74.00 24.24 34.61 1.76 6.39 47.90 49.35 28.41 28.85 18.00 21.95 16.36 16.39
ML 53.00 90.00 10.00 37.00 0.00 10.00 25.00 47.00 14.55 28.00 10.40 22.00 15.89 19.24
SC 15.00 48.00 30.90 71.26 0.00 39.00 16.00 61.10 9.00 26.24 9.00 18.50 16.28 20.50
SM 44.00 44.00 56.00 56.00 0.00 0.00 16.00 16.00 9.00 9.00 9.00 9.00 20.01 20.01
SP-SC 8.80 8.80 83.60 83.60 7.60 7.60 31.20 31.20 19.30 19.30 10.80 10.80 19.13 19.13
SW-SC 9.60 9.60 77.30 77.30 13.10 13.10 30.40 30.40 18.80 18.80 9.80 9.80 19.72 19.72

Figure 3 shows the comparative histograms for each influential variable. To better
illustrate, the correlation matrices between influential variables and compaction parameters
are presented in Figure 4. From the information given in Table 2, Figures 3 and 4, it can be
seen that the OMC has a negative correlation with the contents of S and G, whereas F, LL,
and PL show a positive correlation. In contrast, F, LL, and PL exhibit negative correlations,
while S and G contents have positive correlations with MDD. Notably, these figures are
particularly useful, as they indicate the range of values of the parameters for which the
reliability is limited, and further experimental investigation is required for values of the
parameters included in these regions and not with the aim of updating the database in the
future.

After finalising the database, it was divided into two subsets: a training (TR) subset
that contained 80% of the overall dataset and a testing (TS) subset that contained the
remaining 20% of the data. The following steps can be used to describe the computational
modelling process for estimating soil compaction parameters: (a) choosing the main dataset;
(b) data normalisation; (c) data partitioning and selection of TR and TS subsets; (d) model
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construction using a training subset; (e) check model performance; (f) check terminating
criteria; (g) model validation if terminating criteria are satisfied; and (h) performance
assessment. The steps of computational modelling are illustrated in Figure 5.
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Figure 3. (a–e) Comparative histogram (values are in normalised form).

(a) (b) 

Figure 4. Correlation matrix between soil parameters and OMC (a) and MDD (b).
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Figure 5. Steps of computational modelling.

5. Results and Discussion

The outcomes of the hybrid ANFIS models used to estimate soil compaction param-
eters are described in this section. As previously mentioned, the primary dataset was
divided into training (201 samples) and testing (50 samples) subsets before the models were
built. Note that all models were constructed and validated using identical training and
testing subsets. The output of the developed models was then assessed using a number
of indices, namely performance index (PFI), correlation coefficient (R), variance account
factor (VAF), Willmott’s Index of agreement (WI), mean absolute error (MAE), root mean
square error (RMSE), RMSE to observation’s standard deviation ratio (RSR), and weighted
mean absolute percentage error (WMAPE). Notably, these indices are frequently used
to evaluate the generalisability of any prediction model from a variety of perspectives,
including correlation accuracy, related error, amount of variation, and so on.

In contrast, the deterministic parameters of MHAs, such as swarm size, maximum
iteration number, and upper and lower bounds, play a vital part in hybrid modelling; thus,
they were calibrated throughout the optimisation process. The details of the deterministic
and hyper-parameters of hybrid ANFIS models in estimating soil compaction parameters
are described in the following sub-section, followed by a comparative assessment of the
results.

PFI = adj.R2 + 0.01VAF − RMSE (10)

R =

√
∑n

i = 1(yi − ymean)2 − ∑n
i = 1(yi − ŷi)2

∑n
i = 1(yi − ymean)2 (11)

VAF (%) =

(
1 − var(yi − ŷi)

var(yi)

)
× 100 (12)

WI = 1 −
[

∑n
i = 1

(
yi − ŷi)

2

∑n
i = 1{|ŷi − ymean|+ |yi − ymean| }2

]
(13)

MAE =
1
n

n

∑
i = 1

|(ŷi − yi)| (14)

RMSE =

√
1
n

n

∑
i = 1

(yi − ŷi)2 (15)
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RSR =
RMSE√

1
n ∑n

i = 1(yi − ymean)2
(16)

WMAPE =
∑n

i = 1

∣∣∣ yi−ŷi
yi

∣∣∣× yi

∑n
i = 1 yi

(17)

where yi = actual ith value; ŷi = estimated ith value; n = is the number of samples; and
ymean = mean of the actual value. Note that for a perfect predictive model, the values of the
aforementioned indices should be identical to their identical values, the details of which
can be obtained from the literature [14,17].

5.1. Model Performance

The results of the hybrid ANFIS models that were built to estimate soil OMC and
MDD are presented in this sub-section. As stated above, the optimum selection of hyper-
parameters is a challenging operation, and hence, proper tuning of FIS and C&A parameters
was performed during the course of hybrid modelling. The number of FIS parameters (NFIS)
were investigated between 2 and 15. Using Gaussian MF and RMSE as fitness functions,
the most appropriate value of NFIS was determined to be 5. Notably, Gaussian and linear
MFs were used in the input and output layers, respectively. A total of 60 C&A membership
functions of ANFIS were optimised for the nine-dimensional input space. Note that the
optimised values of NFIS and C&A were chosen following a trial-and-error approach and
according to the performance during the testing phase. The convergence behaviour and
computational time of the developed hybrid ANFIS models are presented in Figures 6 and 7,
respectively. It should be noted that the computational time of the developed ANFIS-IGWO
model was found to be longer due to the use of an upgraded version of GWO that required
changed mathematical calculations to handle E&E operations. Moreover, it is seen that all
the developed hybrid models converge within 500 epochs; hence, they are considered to be
sufficient as the maximum iteration count.

The performance of the developed ANFIS models is presented in Tables 4 and 5,
respectively, for the OMC and MDD estimations. The abilities of the constructed models
for training, testing, and total outputs are shown here. It should be underlined that the
training subset performance was used to define the goodness of fit of the developed models,
while the testing dataset was used to evaluate their generalisation potential. According to
Table 4, it is seen that the developed ANFIS-MPA achieved the highest R and lowest RMSE
values of 0.9335 and 0.0590, respectively, during the training phase of OMC prediction.
However, during the testing phase, the constructed ANFIS-IGWO achieved the most precise
precision, with R = 0.8645 and RMSE = 0.0754. According to the overall results of the OMC
estimation, the ANFIS-IGWO was determined to be the best-fitted model with R = 0.9203
and RMSE = 0.0635, followed by ANFIS-MFO (R = 0.9191 and RMSE = 0.0636), ANFIS-
GWO (R = 0.9167 and RMSE = 0.0647), and ANFIS-MPA (R = 0.9153 and RMSE = 0.0652).
The developed ANFIS-SMA model was the least performing model, with R = 0.9139 (lowest
among other developed models) and RMSE = 0.0658 (highest among other developed
models).

On the contrary, the results of Table 5 exhibit that the developed ANFIS-MPA (R = 0.9142
and RMSE = 0.0692) and ANFIS-MFO (R = 0.9131 and RMSE = 0.0697) models were
found to be the top-two models during the training phase of MDD estimation, while the
constructed ANFIS-IGWO (R = 0.8619 and RMSE = 0.0738) and ANFIS-GWO (R = 0.8562
and RMSE = 0.0749) models were found to be the best-two models in the testing phase.
According to the overall results of the MDD estimation, the ANFIS-IGWO was determined
to be the best-fitted model with R = 0.9050 and RMSE = 0.0709, followed by ANFIS-
GWO (R = 0.8973 and RMSE = 0.0735), ANFIS-SMA (R = 0.8964 and RMSE = 0.0739), and
ANFIS-MFO (R = 0.8935 and RMSE = 0.0752). The developed ANFIS-MPA model was
the least performing model, with R = 0.8866 (lowest among other developed models) and
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RMSE = 0.0774 (highest among other developed models). These findings demonstrate the
good predictive performance of the suggested ANFIS-IGWO model during both the OMC
and MDD predictions.

Figure 6. Convergence curve of the developed hybrid ANFIS models for (a) OMC and (b) MDD
estimations.

Figure 7. Illustration of the computational time of the developed hybrid ANFIS models.
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Table 4. Performance indices for OMC prediction.

Phases Models PFI R VAF WI MAE RMSE RSR WMAPE

Training ANFIS-IGWO 1.6686 0.9307 86.5973 0.9636 0.0479 0.0602 0.3662 0.1088
ANFIS-GWO 1.6550 0.9274 86.0065 0.9610 0.0473 0.0615 0.3741 0.1081
ANFIS-MFO 1.6757 0.9328 86.8809 0.9622 0.0453 0.0598 0.3636 0.1036
ANFIS-SMA 1.6439 0.9247 85.5093 0.9594 0.0487 0.0626 0.3808 0.1106
ANFIS-MPA 1.6801 0.9335 87.1078 0.9638 0.0449 0.0590 0.3591 0.1025

Testing ANFIS-IGWO 1.3766 0.8645 73.3267 0.9167 0.0604 0.0754 0.5607 0.1627
ANFIS-GWO 1.3726 0.8625 73.3937 0.9132 0.0602 0.0762 0.5666 0.1623
ANFIS-MFO 1.3494 0.8560 72.4010 0.9107 0.0584 0.0770 0.5729 0.1573
ANFIS-SMA 1.3526 0.8604 71.9109 0.9143 0.0625 0.0772 0.5742 0.1683
ANFIS-MPA 1.2137 0.8395 62.7992 0.9041 0.0641 0.0854 0.6353 0.1726

Total ANFIS-IGWO 1.6265 0.9203 84.6266 0.9577 0.0504 0.0635 0.3932 0.1182
ANFIS-GWO 1.6125 0.9167 84.0233 0.9549 0.0499 0.0647 0.4004 0.1176
ANFIS-MFO 1.6222 0.9191 84.4224 0.9555 0.0479 0.0636 0.3936 0.1130
ANFIS-SMA 1.6012 0.9139 83.5102 0.9536 0.0515 0.0658 0.4071 0.1207
ANFIS-MPA 1.6066 0.9153 83.7206 0.9551 0.0488 0.0652 0.4032 0.1147

Note: Bold values indicate best-obtained performance.

Table 5. Performance indices for MDD prediction.

Phases Models PFI R VAF WI MAE RMSE RSR WMAPE

Training ANFIS-IGWO 1.5872 0.9116 83.0798 0.9526 0.0540 0.0702 0.4114 0.1202
ANFIS-GWO 1.5551 0.9036 81.6465 0.9471 0.0559 0.0731 0.4284 0.1243
ANFIS-MFO 1.5933 0.9131 83.3592 0.9532 0.0529 0.0697 0.4085 0.1178
ANFIS-SMA 1.5528 0.9030 81.5383 0.9464 0.0564 0.0734 0.4300 0.1256
ANFIS-MPA 1.5981 0.9142 83.5737 0.9535 0.0522 0.0692 0.4053 0.1160

Testing ANFIS-IGWO 1.3740 0.8619 73.4131 0.9244 0.0620 0.0738 0.5229 0.1257
ANFIS-GWO 1.3524 0.8562 72.4607 0.9213 0.0636 0.0749 0.5308 0.1291
ANFIS-MFO 1.0522 0.7831 57.7198 0.8794 0.0709 0.0943 0.6679 0.1438
ANFIS-SMA 1.3428 0.8538 72.0656 0.9189 0.0646 0.0759 0.5381 0.1311
ANFIS-MPA 0.8772 0.7560 45.8550 0.8642 0.0771 0.1042 0.7382 0.1564

Total ANFIS-IGWO 1.5630 0.9050 81.8582 0.9493 0.0556 0.0709 0.4256 0.1214
ANFIS-GWO 1.5328 0.8973 80.5090 0.9442 0.0574 0.0735 0.4407 0.1254
ANFIS-MFO 1.5161 0.8935 79.7219 0.9429 0.0565 0.0752 0.4514 0.1234
ANFIS-SMA 1.5292 0.8964 80.3568 0.9431 0.0580 0.0739 0.4433 0.1268
ANFIS-MPA 1.4878 0.8866 78.3472 0.9401 0.0571 0.0774 0.4644 0.1247

Note: Bold values indicate best-obtained performance.

To better demonstrate the performance of the developed ANFIS models, scatterplots
are presented in Figures 8 and 9 for the OMC and MDD estimations, respectively. Herein,
the illustrations of actual and estimated values for the best three models (based on RMSE
value) are shown. The amount of variance in these diagrams can be visualised by viewing
red-coloured dotted lines put at 10% levels. The performance of the generated hybrid mod-
els is compared in the following sub-section, and a comparative assessment is presented
using a variety of graphical illustrations.
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(a) (b) (c) 

  
(d) (e) (f) 

  

Figure 8. Scatter plot of OMC prediction for the best three models (based on RMSE index) in
(a–c) training and (d–f) testing phases.

(a) (b) (c) 

  
(d) (e) (f) 

Figure 9. Scatter plot of MDD prediction for the best three models (based on RMSE index) in
(a–c) training and (d–f) testing phases.
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5.2. Discussion of Results

It is critical to highlight that a data-driven model is incomplete without a visual
representation of the results. Visualisations enable the identification of the degree of
accuracy and associated errors in a model that is easier to comprehend. Therefore, the
results are displayed in the form of an accuracy matrix, Taylor diagrams, and radar plots.
Notably, the Taylor diagrams are shown for the testing dataset only, since the performance
of a data-driven model during the testing dataset should be accepted with more certainty.
For thoroughly assessing a model’s overall correctness, these diagrams are quite beneficial.
An accuracy matrix is a heat map matrix that is used to measure the level of accuracy that
a model achieves in terms of certain performance criteria. This matrix makes it simple to
evaluate a model’s correctness without having to look up each index’s value. As previously
stated, a number of indices must be created to assess a model’s accuracy from multiple
angles; however, interpreting results by looking at each index’s values takes time and
necessitates in-depth observation. Figure 10 shows the accuracy matrix for the models
created for the OMC and MDD predictions. The accuracy matrix demonstrates that the
constructed ANFIS-IGWO attained higher predictive precision against each index during
the testing phase.

On the other hand, the Taylor diagram [62] is used to provide a quick assessment of a
model’s accuracy in terms of the coefficient of correlation, ratio of standard deviations, and
RMSE index. Generally, a point inside a Taylor diagram indicates a model. The position of
the point should line up with the reference point for an ideal model. The Taylor diagrams
for the hybrid ANFIS models developed for OMC and MDD predictions are shown in
Figure 11. In addition to the accuracy matrix and Taylor diagrams, radar plots representing
the R value are also presented in Figure 12 for the training, testing, and total cases of OMC
and MDD estimations. A ridgeline chart and distribution with Kernel smooth of error
between actual and estimated values are presented in Figure 13. From these diagrams, the
predictive capability of hybrid ANFIS models can be assessed from different perspectives.

However, according to the aforementioned results, the ANFIS-IGWO model was found
to be the best-obtained model in both instances of prediction. As indicated previously, eight
indices were used to evaluate the performance of the developed ANFIS models. Based
on the overall results against OMC prediction, the developed ANFIS-IGWO achieved
the highest level of accuracy, with R = 0.9203 and RMSE = 0.0635, whereas against MDD
prediction, R = 0.9050 and RMSE = 0.0709 achieved the highest level of accuracy. Therefore,
the suggested ANFIS-IGWO model can be used to approximate the OMC and MDD ranges
for various soil types. This will aid engineers and practitioners in reducing the operational
time required for laboratory compaction experiments. The developed MATLAB models,
as well as the employed dataset, are included as Supplementary Materials for future use.
The details of MATLAB implementations of the developed models are also presented in
Appendix A. For better demonstration, the steps of OMC and MDD estimations using basic
soil parameters and the developed MATLAB models are illustrated in Figure 14.
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Figure 10. Accuracy matrix (testing phase) for (a) OMC and (b) MDD predictions.

  
(a) (b) 

Figure 11. Taylor diagram (testing phase) for (a) OMC and (b) MDD predictions.
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Figure 12. Radar plot representing the R value for (a–c) OMC and (d–f) MDD predictions.

  

  

Figure 13. Ridgeline chart (left) and distribution with Kernel smooth (right) plots for (a,b) OMC and
(c,d) MDD predictions.
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Figure 14. Illustration of the steps of OMC and MDD estimations using basic soil parameters and the
developed MATLAB models.

6. Limitations and Future Research

In this section, the limitations of the proposed ANFIS-IGWO model are presented,
as well as the main points that need to be further investigated. Regarding the estimation
of the OMC and MDD of soils, it is worth noting that despite the excellent prediction it
achieves, and which are presented in the previous section, it only applies to values of the
input parameters between the minimum and the maximum values (refer to Table 2) that
have the corresponding parameters of the database used to train and develop the model.
Additionally, the reliability of the proposed model is limited for parameter value ranges,
where the number of experimental data and soil types are not sufficient. That is, in cases in
which the number of data is very small, and thus unable to satisfactorily describe the soil
compaction. For example, based on the histograms of Figure 3, it was found that there is
not enough data in some regions. Such value ranges, where there is a shortage of each of
the input parameters, should be studied experimentally in the near future and updated the
database with the aim of future development of more efficient forecasting soft computing
models.

7. Summary and Conclusions

Soil compaction parameters play a vital role in construction projects. They are crucial
for comparing the level of compaction achieved in the field. However, the traditional
laboratory method for determining OMC and MDD is time consuming. Therefore, the main
objective of this study is to sidestep the need for multiple laboratory tests by leveraging the
predictive capabilities of high-performance hybrid intelligence paradigms. Taking these
points into consideration, the current study proposes a high-performance hybrid model
to sidestep the operation of typical laboratory testing of soil compaction parameters. To
achieve this goal, an ANFIS-IGWO model was constructed, and the performance of this
model was compared with four hybrid ANFIS models, namely ANFIS-GWO, ANFIS-MFO,
ANFIS-SMA, and ANFIS-MPA. The experimental results clearly demonstrate that the
proposed ANFIS-IGWO model effectively predicts soil compaction parameters. With an
accuracy range of 92.5% to 94%, according to the RMSE index, the developed ANFIS-IGWO
model exhibits superior generalisation abilities for estimating soil compaction parameters.
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According to the overall outcomes, the proposed ANFIS-IGWO model offers a signifi-
cant advantage by transforming the C&A parameters of the model into the coordinates of
individual wolves within the community. Each wolf’s position represents a result of the
ANFIS-IGWO model, with NFIS = 5 and 500 epochs utilised. However, a drawback of the
ANFIS-IGWO model is its high computational cost due to the implementation of a modified
approach. Multiple runs were performed to identify the most suitable search space for accu-
rate output estimation, further increasing the time required. Other limitations encompass
no external validation performed and the exclusion of factors such as compaction energy
and the parental significance of soils during modelling. Therefore, additional research is
needed to expand the application of the suggested ANFIS-IGWO model in estimating soil
compaction parameters. Future directions should involve (a) a comprehensive assessment
of the model’s superiority using real-life data from diverse construction sites; (b) external
validation using a real-life database of different soil types; (c) consideration of compaction
energy as an influencing variable; (d) the implementation of newly introduced MHAs
and their improved/enhanced, and (e) a comprehensive analysis of hybrid and traditional
ANFIS paradigms in estimating soil compaction parameters. Nevertheless, the employed
dataset and the MATLAB models developed in this study are provided as Supplementary
Materials to encourage further research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math11143064/s1.
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version of the manuscript.
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Nomenclature

ANFIS
Adaptive neuro-fuzzy

MF Membership function
inference system

ANFIS-GWO Hybrid model of ANFIS and GWO MFO Moth-flame optimisation
ANFIS-IGWO Hybrid model of ANFIS and IGWO MHA Meta-heuristic algorithm
ANFIS-MFO Hybrid model of ANFIS and MFO MLT Machine learning technique
ANFIS-MPA Hybrid model of ANFIS and MPA MPA Marine predators algorithm
ANFIS-SMA Hybrid model of ANFIS and SMA NFIS Number of FIS parameters
ANN Artificial neural network OMC Optimum moisture content
C&A Consequent and antecedent PFI Performance index
E&E Exploration and exploitation PL Plastic limit
ELM Extreme learning machine R Correlation coefficient
EPR Evolutionary polynomial regression R2 Determination coefficient
F Fines content RMSE Root mean square error

FIS Fuzzy inference system RSR
RMSE to observation’s
standard deviation ratio

G Gravel content S Sand content
GMDH Group method of data handling SMA Slime mould algorithm
GWO Grey wolf optimiser SVM Support vector machine
IGWO Improved grey wolf optimiser TR Training subset
LL Liquid limit TS Testing subset
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LSSVM Least square support vector machine VAF Variance account factor

MAE Mean absolute error WI
Willmott’s Index of
agreement

MDD Maximum dry density WMAPE
Weighted mean absolute
percentage error

Appendix A

• MATLAB implementation for the developed ANFIS-IGWO model.

%% Dataset uploading: For dataset uploading via an Excel sheet named ‘PROJECT.’ The
training dataset should be kept in the TR sheet, and the testing dataset should be kept in
the TS sheet. The output value should be placed in the right-most column. All the values
are given in normalised form.

train=xlsread(′PROJECT′, ′TR′);
test=xlsread(′PROJECT′, ′TS′);
xtrain = train(:,1:end-1); ytrain = train(:,end);
xtest = test(:,1:end-1); ytest = test(:,end);

%% Loading of the ANFIS-IGWO model for OMC estimation
%% Loading of anfis_igwo_mdd is necessary for MDD estimation

load anfis_igwo_omc
load anfis_igwo_mdd

%% Prediction of training and testing outputs (normalised values)

Pr_train_norm=evalfis(xtrain,fis);
Pr_test_norm=evalfis(xtest,fis);

%% Generation of de-normalisation values of OMC

Pr_train_act=(Pr_train_norm*24) + 7;
Pr_test_act=(Pr_test_norm*24) + 7;

%% Generation of de-normalisation values of MDD

Pr_train_act=(Pr_train_norm*7.7499) + 13.7340;
Pr_test_act=(Pr_test_norm*7.7499) + 13.7340;
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Abstract: Slope instability can lead to catastrophic consequences. However, predicting slope stability
effectively is still challenging because of the complex mechanisms and multiple influencing factors.
In recent years, machine learning (ML) has received great attention in slope stability prediction due
to its strong nonlinear prediction ability. In this study, an optimum-path forest algorithm based on
k-nearest neighbor (OPFk-NN) was used to predict the stability of slopes. First, 404 historical slopes
with failure risk were collected. Subsequently, the dataset was used to train and test the algorithm
based on randomly divided training and test sets, respectively. The hyperparameter values were
tuned by combining ten-fold cross-validation and grid search methods. Finally, the performance
of the proposed approach was evaluated based on accuracy, F1-score, area under the curve (AUC),
and computational burden. In addition, the prediction results were compared with the other six
ML algorithms. The results showed that the OPFk-NN algorithm had a better performance, and the
values of accuracy, F1-score, AUC, and computational burden were 0.901, 0.902, 0.901, and 0.957 s,
respectively. Moreover, the failed slope cases can be accurately identified, which is highly critical in
slope stability prediction. The slope angle had the most important influence on prediction results.
Furthermore, the engineering application results showed that the overall predictive performance of
the OPFk-NN model was consistent with the factor of safety value of engineering slopes. This study
can provide valuable guidance for slope stability analysis and risk management.

Keywords: slope stability prediction; machine learning (ML); optimum-path forest (OPF); k-nearest
neighbor (k-NN); hyperparameter tuning

MSC: 86-10

1. Introduction

Slope instability is a global geological problem, which is one of the three major geolog-
ical problems in nature besides earthquakes and volcanoes. Many geotechnical projects,
such as open-pit mining, mountain roads, tailings dams, and landfills, are seriously threat-
ened by slope instability. A serious slope instability disaster can cause casualties, building
damages, and huge economic losses. For example, on 20 December 2015, a catastrophic
landslide occurred at the Hong’ao landfill in Shenzhen, China, resulting in 77 deaths,
33 buildings buried, and direct economic losses of more than 880 million RMB [1]. On the
evening of 11 March 2017, a landslide at the Koshe landfill in Ethiopia’s capital, Yah, caused
113 deaths and more than 80 people missing [2]. Due to heavy rainfall on 18 October 2020,
a landslide occurred in Vietnam’s Quang Tri province, claiming the lives of 22 soldiers [3].
Because of its serious consequences, predicting the risk of slope instability is crucial and
plays a significant role in disaster prevention.

The prediction methods of slope stability can be classified into four categories. The
first one is instrumental monitoring technology. Currently, many on-site monitoring tech-
niques of slope deformation have been applied to monitor the early warning signs of
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slope instability. For example, Zhang et al. [4] used distributed fiber optic strain sensors
to monitor the shear displacement in the Three Gorges Reservoir region in China, and
two potential circular sliding surfaces were successfully identified. Dixon et al. [5], Sh-
iotani [6], and Codeglia et al. [7] adopted the acoustic emissions (AE) technology to monitor
the signals generated by the fracture of soil and rock materials in the slope. By analyzing
the relationship between AE characteristics and slope deformation, AE-based criteria were
used to evaluate the long-term stability of slopes. In addition, some other techniques,
such as remote sensing [8], terrestrial laser scanning [9], synthetic aperture radar [10],
and time domain reflectometry [11], were applied to slope stability monitoring. These
technologies have relatively high prediction accuracy because the precursor information of
slope instability can be obtained directly, but the installation process is complicated, and
the cost is high.

The second one is the theoretical analysis method. It is proposed from the view of
mechanical mechanisms. Many theoretical and analytical approaches have been used
to analyze slope stability, such as the limit equilibrium method (LEM) [12], the strength
reduction method (SRM) [13], and the limit analysis method [14]. The factor of safety (FOS),
calculated by the ratio of resisting force to driving force, is used to evaluate the stability
of the slope. When the value of FOS is larger than 1, the slope is stable; otherwise, it is
unstable [15]. Faramarzi et al. [16] employed LEM to calculate the FOS and analyzed the
rock slope stability of the Chamshir dam pit. Liu [17] adopted the SRM to obtain the FOS
of the established slope model. Mbarka et al. [18] combined the Monte Carlo approach,
LEM, and SRM for the reliability analysis of homogeneous slopes with circular-type failure.
Although the theoretical and analytical methods are simple, they are unsuitable for slopes
with complex conditions due to the simplified formulas and assumptions.

The third one is the numerical simulation technique. With the rapid development
of numerical simulation methods, finite element method (FEM) [19], boundary element
method [20], discrete element method [21], numerical manifold method [22], and other
methods have been widely used in slope stability analysis. Sun et al. [23] simulate the
progressive failure process of jointed rock slopes based on the combined finite-discrete
element method. Ma et al. [24] analyzed the slope stability under a complex stress state
with saturated and unsaturated seepage using the fast Lagrangian analysis of continua.
Wei et al. [25] investigated the kinetic features of slope instability based on particle flow
code. Haghnejad et al. [26] analyzed the effect of blast-induced vibration on slope stability
using dynamic pressure in three dimensions distinct element codes. Song et al. [27] adopted
an improved smoothed-particle hydrodynamics method to calculate the slope safety factor.
Zhang et al. [28] adopted a realistic failure process analysis to evaluate the stability and
investigated the failure mode of the high rock slope during excavations. In addition, some
researchers have integrated numerical simulation and mathematical methods to analyze
the slope stability. For example, Dyson and Tolooiyan [29] adopted FEM and Monte Carlo
to determine the FOS and damage probability of slopes. Although the numerical simulation
methods are convenient to operate, the accuracy strongly depends on constitutive models
and mechanical parameters [30].

The fourth one is the machine learning (ML) algorithm. With the accumulation of
slope cases, some researchers attempted to develop slope stability prediction models using
ML algorithms. There are two types of predicted outputs: FOS and stability status. Lu and
Rosenbaum [31] adopted an artificial neural network to estimate the FOS and SS on 46 slope
cases collected by Sah et al. [32]. Based on the same database, Samui [33] and Yang et al. [34]
used a support vector machine (SVM) and genetic programming to determine FOS, re-
spectively. Amirkiyaei and Ghasemi [35] constructed two tree-based models to assess
circular-type failure slopes based on 87 cases. Zhou et al. [36] collected 221 slope cases
and employed the gradient-boosting machine to predict the SS. Wang et al. [37] hybridized
a genetic algorithm with a multi-layer perceptron to predict FOS using 630 cases. In ad-
dition, several researchers performed a comparative analysis of multiple ML algorithms.
Hoang and Tien Bui [38] carried out a comparative study of SS prediction using a ra-

232



Mathematics 2023, 11, 3071

dial basis function neural network, an extreme learning machine, and least squares SVM.
Mahmoodzadeh et al. [39] adopted Gaussian process regression, support vector regres-
sion, decision trees (DT), long-short-term memory, deep neural networks, and k-nearest
neighbors (k-NN) to determine FOS. All the above ML algorithms performed well on
slope stability prediction. However, a large number of slope stability cases are required to
improve its credibility.

Compared with other approaches, ML algorithms can obtain reliable prediction results
by establishing the nonlinear relationship between input and output. It is a promising
method for predicting slope stability. But to date, there is no one ML algorithm that can be
applied to all slope engineering conditions under the consensus of the geotechnical industry.
Accordingly, it is meaningful to investigate more robust ML algorithms to achieve better
prediction results. Recently, the optimum-path forest (OPF) algorithm has been successfully
applied in many fields, such as face recognition [40], Parkinson’s disease identification [41],
laryngeal cancer pathology detection [42], land use classification [43], and network intrusion
detection [44]. However, the OPF algorithm is susceptible to outliers. In response to
this deficiency, Papa et al. [45] proposed the OPF algorithm based on k-NN (OPFk-NN),
and the discriminative performance of the OPF model was improved. In combination
with the k-NN algorithm, the OPFk-NN algorithm can provide better performance for
classification tasks by leveraging the topological properties of the data [46]. Compared to
other classification algorithms, the OPFk-NN algorithm has several advantages, including
(1) it is free of hyperparameters, (2) it does not assume separability of the feature space,
(3) it has a unique feature selection and classification mechanism that can effectively handle
the high-dimensional and nonlinear data with outliers, (4) and its training step is usually
much faster than traditional ML approaches.

Considering that the OPFk-NN has great predictive performance and has not yet been
employed to predict the stability of slopes, this study aims to investigate the feasibility of
OPFk-NN for predicting slope stability. In addition, a comparison against OPF, radial basis
function support vector machine (RBF-SVM), random forest (RF), DT, k-NN, and logistic
regression (LR) classifiers is performed.

2. Methodology

2.1. k-NN Based OPF Classifier

The OPF is a graph-based classifier [47,48]. Its classification principle is to denote the
training samples as nodes and connect them by path. Then, the optimal path tree (OPT)
is constructed by executing the shortest path algorithm on the graph. Finally, the test
sample is mapped onto the OPT, and its class is determined. Figure 1 shows the schematic
diagram of the OPF-based classifiers. The nodes with different colors in the set S represent
different classes, and the nodes outside the set S are the samples to be classified. A series
of adjacent nodes are defined as path π. Among all paths, the one with the maximum
path-cost function f (πt) is called OPT, and all OPTs constitute OPF. There are three different
classes in Figure 1; the blue sample s is the root node of the OPT where sample t is located,
so sample t is classified as blue.

The OPFk-NN is a variant of the OPF algorithm, and the main difference between them
is the adjacency of the samples in the training set. The latter is to construct a complete
graph, while the former is to construct a k-NN graph [45]. The OPFk-NN algorithm is
divided into training and classification phases.
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Figure 1. Schematic diagram of OPF-based classifiers [49].

2.1.1. Training Phase

The first step is to construct a k-NN graph Gk based on the training set Z1. The sample
s is weighed by a probability density function ρ(s):

ρ(s) =
1√

2πσ2
∣∣G∗

k (s)
∣∣ ∑
∀t∈G∗

k (s)
exp

(−d2(s, t)
2σ2

)
, (1)

where σ =
d f
3 , df is the maximum arc weight in Gk, and d(s, t) is the distance between

sample s and sample t.
The second step is to calculate the path cost function f min, which is defined as:

fmin(〈t〉) =
{

ρ(t) if t ∈ S
ρ(t)− 1 otherwise

fmin(πs · 〈s, t〉) = min{ fmin(πs), ρ(t)}
, (2)

According to the method proposed by Papa et al. [50], the k value of k-NN is deter-
mined by maximizing the accuracy of the training set in the range [1, kmax]. The value of
kmax defaults to 5. After determining the value of k, the algorithm is applied to retrain the
classifier. The function f min is replaced by f ′min, which is defined as:

f ′min(〈t〉) =
{

ρ(t) if t ∈ S
ρ(t)− 1 otherwise

f ′min(πs · 〈s, t〉) =
{
−∞ if λ(t) = λ(s)
min{ f ′min(πs), ρ(t)} otherwise

. (3)

Figure 2 is the schematic diagram of the training phase, where Figure 2a indicates the
k-NN graph generated from the training set, Figure 2b represents the minimum spanning
tree calculated by the k-NN graph, Figure 2c denotes the two samples of different colors
labeled as prototype samples (marked by black dashed circles), and Figure 2d signifies the
OPFk-NN classifier composed by all the OPTs. The red squares and green circles represent
different classes, respectively.
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Figure 2. Schematic diagram of the training phase [50], (a) a two-class (“green circles” and “red
squares”) complete graph, (b) minimum spanning tree (MST), (c) labeled prototypes (marked by
black dashed circles), (d) optimal path forest.

2.1.2. Classification Phase

After training the OPFk-NN classifier, the sample t in the test set Z2 is classified. The
k-NN is first calculated from Z1 to a testing sample t. Then, it is verified which sample
s ∈ Z1 satisfies the equation below:

V(t) = max{min[V(s), ρ(t)]}∀s ∈ Z1 (4)

Figure 3 indicates the classification process of OPFk-NN. The blue triangle is the sample
to be classified. Figure 3a shows that the blue triangle is connected to the k-nearest training
samples in the generated OPF, and Figure 3b illustrates that the triangle is conquered by
the samples of the red squares class and labeled as red.

2.2. Proposed Approach

Figure 4 depicts the flowchart of the proposed approach. First, due to the different
units of indicators and the diversity of data distribution, the raw data is pre-processed. The
dataset is standardized using a Gaussian distribution with zero mean and unit standard
deviation. Subsequently, 80% of samples are used for training, and the remaining 20%
are adopted for testing [51,52]. For the k-NN, RBF-SVM, RF, DT, and LR algorithms, the
grid search and ten-fold cross-validation (CV) methods are used to select the optimal
hyperparameters. Finally, the test set is predicted, and the optimal classifier is determined
according to the evaluation metrics.
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Figure 3. Schematic diagram of classification phase [50], (a) the sample to be classified (blue triangle)
is connected to all training nodes in the generated optimal path forest, and the connection strength
f max is calculated for each path, (b) the triangle is conquered by “red squares” class samples and
classified as “red”.

 

Figure 4. Flowchart of the proposed approach.

The OPFk-NN and OPF are implemented based on the Python library “opfython” [53],
and the k-NN, RBF-SVM, RF, DT, and LR are conducted on the Python library “scikit-
learn” [54]. All experiments are conducted using a Windows1064 bits computer with 8Gb
of RAM running an Intel® Core™ i7-9700F CPU @ 3.00 GHz × 2.

If the predictive performance of our proposed approach is acceptable, it can be used
for engineering applications in several ways. For example, it can be integrated into slope
monitoring systems to provide real-time alerts for potential instability. The model can
also be used to evaluate slope stability during the design phase of construction projects to
ensure the safety and stability of the slope. Additionally, the model can be applied to slope
stability analysis and risk management, which can be used by geotechnical engineers in
various projects related to slope instability.
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2.3. Performance Evaluation Metrics

In this study, several metrics are used to evaluate the performance of classifiers and
figure out the optimal classifier for slope stability prediction [30,55].

A confusion matrix, which can also be called a likelihood table or error matrix, is used
to visually represent whether the performance is ideal or not. Table 1 shows the confusion
matrix for the slope-stability prediction, where true positive (TP) means the number of
stable cases predicted correctly, false positive (FP) means the number of stable cases pre-
dicted incorrectly, true negative (TN) means the number of failed cases predicted correctly,
and false negative (FN) means the number of failed cases predicted incorrectly. According
to Table 1, true negative rate (TN/(TN + FP)) and false positive rate (FP/(FP + TN)) can
be defined.

Table 1. Confusion matrix for slope stability prediction.

Actual Condition
Predicted Condition

Stable Failed

Stable True positive False negative
Failed False positive True negative

Accuracy indicates the ratio of the cases correctly predicted to the total cases, which
can be calculated by: accuracy = (TP + TN)/(TP + TN + FP + FN).

F1-score indicates the harmonic mean of precision and recall, which can be calcu-
lated by: F1-score = 2precision · recall/(precision + recall), where precision = TP/(TP + FP),
recall = TP/(TP + FN).

The area under the curve (AUC) is defined as the area under the receiver operating
characteristic (ROC) curve, which is commonly used to evaluate the performance of classi-
fiers. Bradley [56] proposed classification criteria of AUC as follows: not discriminating
(0.5–0.6), poor (0.6–0.7), fair (0.7–0.8), good (0.8–0.9), and excellent (0.9–1).

Computational burden is used to evaluate the computational efficiency of algorithms.
The mean and standard deviation of computation time are used as the evaluation metrics
in this study.

2.4. Hyperparameter Tuning

In general, the performance of most ML algorithms is highly dependent on the hy-
perparameters. There are several hyperparameter tuning methods, such as manual search,
grid search, random search, Bayesian optimization, gradient-based optimization, and evo-
lutionary optimization [57]. In this study, the grid search algorithm is combined with the
k-fold CV method to select the optimal hyperparameters.

The grid search algorithm is to grid the hyperparameters in a fixed range in equal
steps, compare all hyperparameter combinations exhaustively, and then select the optimal
hyperparameters. To avoid the risk of overfitting or selection bias in the model, the k-fold
CV method is used in the hyperparameter tuning process, illustrated in Figure 5. The
original training set is randomly split into k folds, of which k − 1 folds are used as the
training sub-set, and the remaining fold is used as the validation set in turn. Then, the
average accuracy of k rounds is calculated to evaluate the performance and determine the
optimal hyperparameters [58]. In this study, k was selected as 10 after considering the
calculation time and variance [59].
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Figure 5. Flowchart of k-fold CV.

3. Data Collection

3.1. Dataset Description

The failure surfaces of the slopes are prone to occur near the potential slip surface.
Because of the excavation at the foot of the slope or water seepage at the top of the slope,
the shear stress on the potential slip surface exceeds the shear strength, causing the local
slope instability, as shown in Figure 6. A large number of engineering cases and theoretical
analyses indicate that there are three main aspects that affect slope stability: the physical–
mechanical properties of the potential slip surface, the basic geometrical parameters, and
the external triggering factors. [12,18,60–62]. Considering the independent correlation
between indicators and the easy availability of indicator values, six indicators were selected
in this study, including the unit weight (γ), the cohesion (c), the internal friction angle (ϕ),
the slope angle (β), the slope height (H), and the pore pressure ratio (ru). The detailed
descriptions of these indicators are displayed in Table 2.

ru

H

c

Figure 6. The 3D schematic diagram of slope failure.

238



Mathematics 2023, 11, 3071

Table 2. Descriptions of input indicators.

Indicator Description Measurement Method

γ (kN/m3) It indicates the weight of soil/rock per unit volume.
It can be measured by performing the standard mass
volume method, mercury displacement method, or
gravimeter method in the laboratory.

c (kPa)
It indicates the attraction between molecules on the
surface of adjacent material particles within the
soil/rock.

It can be determined by performing direct shear tests
and triaxial compression tests in the laboratory.

ϕ (◦) It indicates a measure of the ability of a unit of soil/rock
to withstand shear stress.

It can be determined by performing direct shear tests
and triaxial compression tests in the laboratory.

β (◦) It indicates the angle between the slope plane and the
slope bottom. It can be measured in the field by an inclinometer.

H (m) It indicates the vertical distance from the slope bottom
to the slope top.

It can be measured in the field using a surveying
instrument such as a total station.

ru
It is defined as the ratio of the pore pressure and normal
stress at a certain point within a slope.

It can be measured by installing pore water piezometers
on-site or by performing immersion tests or infiltration
tests in the laboratory.

In this study, a database of 404 slopes with failure risk from various countries was
collected (available in “Appendix A”) [32,36,57,63–72]. There are two statuses of slope
stability: stable (207 cases) and failed (197 cases). Among them, most of the failed slopes
were circular-type failures. The distribution of slope SS on the overall dataset is given in
Figure 7, and the statistical values of data samples are illustrated in Table 3.

Figure 7. Distribution of slope stability status.

Table 3. Statistical values of slope stability dataset.

Value Type γ (kN/m3) c (kPa) ϕ (◦) β (◦) H (m) ru

Minimum 10.06 0 0 4.24 3.45 0
Median 21.38 29.7 28.27 34.03 51 0.2

Maximum 31.3 300 57.36 59.35 565 0.75
Mean 21.69 39.38 27.74 34.19 84.26 0.18

Standard 3.84 40.54 9.63 10.86 94.97 0.17

3.2. Dataset Analysis

The violin plots of six indicators are shown in Figure 8. They were a combination
of box plots and density plots and indicated the overall distribution of the dataset. For
each violin plot, the white dot in the center was the median of the samples, the top and
bottom of the thick black line represented the third and first quartile of the samples, and
the top and bottom of the thin black line indicated the upper and lower adjacent value.
From Figure 8, it can be seen that the distribution of γ, ϕ, β was relatively balanced, and
the medians were basically in the middle of the violin plots. While for c, H, ru, there were
some individual outliers.
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Figure 8. Violin plots of the dataset.

The heatmap of the Pearson correlation coefficient between each indicator is shown
in Figure 9. According to Figure 9, all correlation coefficients were less than 0.5, and the
highest correlation was only 0.41, which indicated that the correlation between indicators
was poor. Therefore, all indicators were relatively independent and important for predicting
slope stability.

Figure 9. Correlation matrix of six indicators.
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To visualize the distribution of the dataset, the correlation pair plots of the two slope
SS were displayed in Figure 10. The distribution plots of these six indicators were shown
on the diagonal line, and the correlation scatter plots between indicators were shown on
the non-diagonal line. It can be seen that the differences in the distribution of indicators for
both slope statuses were slight, and there was no apparent correlation among the indicators.
Therefore, it was difficult to classify the slope SS only using one indicator, and the effect of
all indicators should be incorporated for better accuracy.

Figure 10. Correlation pair plots of six indicators.

4. Results and Analysis

4.1. Results of Hyperparameters Tuning

The average accuracy of ten-fold CV corresponding to different hyperparameters for
k-NN, LR, DT, RF, and RBF-SVM algorithms is shown in Figure 11. According to Figure 11,
the overall performance can be observed. With the increase of hyperparameter values, the
average accuracy of LR decreased, but the other models had several peaks. Compared with
other models, the results of RF were more stable. Based on the best average accuracy of
ten-fold CV, the optimal hyperparameter values were determined. The scope, interval, and
final optimization results of hyperparameter values are indicated in Table 4.
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(a) 

(b) 

Figure 11. Cont.
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(c) 

(d) 

Figure 11. Cont.
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(e) 

Figure 11. Grid search of hyperparameters tuning: (a) k-NN, (b) LR, (c) DT, (d) RF, and (e) RBF-SVM.

Table 4. Results of hyperparameters tuning.

ML Algorithms Hyperparameters Scope of Values Interval of Values Optimal Values

k-NN n_neighbors (1, 31) 1 7
LR Inverse of regularization strength C1 (0.1, 10) 0.1 0.1

DT
max_depth (1, 10) 1 7

min_samples_leaf (1, 10) 1 3

RF
n_estimators (1, 101) 10 31
max_depth (1, 20) 1 11

RBF-SVM
gamma (0.01, 0.6) 0.01 0.55

Penalty coefficient C2 (3, 4) 0.1 3.3

4.2. Models Comparison and Evaluation

After the hyperparameters were tuned, these seven ML algorithms were used to
predict slope stability based on the test set. The confusion matrix, accuracy, and F1-score
were calculated to compare the performance of each algorithm, which were illustrated in
Table 5. It can be observed that OPFk-NN performed best with the highest accuracy of 0.901,
followed by OPF, RF, k-NN, RBF-SVM, and DT with an accuracy of 0.876, 0.827, 0.815, 0.802,
and 0.765, respectively. LR performed worst with an accuracy of 0.679. Furthermore, the
rank was the same when using the F1-score. Therefore, based on the overall prediction
performance, the rank was OPFk-NN > OPF > RF > k-NN > RBF-SVM > DT > LR.

The ROC curves and AUC values of these seven classifiers are presented in Figure 12.
It can be seen that the ROC curve of the OPFk-NN classifier was closer to the left and upper
axes than others, indicating better performance. The AUC values of OPFk-NN, RBF-SVM,
RF, OPF, k-NN, DT, and LR were 0.895, 0.885, 0.876, 0.870, 0.783, and 0.720, respectively.
According to the AUC classification criterion mentioned in Section 2.3, only OPFk-NN
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performed excellently, RBF-SVM, RF, OPF, and k-NN performed well, while DT and LR
performed fair.

Table 5. Confusion matrix, accuracy, and F1-score of the classifiers.

Classifiers Actual Condition
Predicted Condition

Accuracy F1-Score
Stable Failed

OPFk-NN
Stable 37 4

0.901 0.902Failed 4 36

OPF
Stable 38 3

0.876 0.884Failed 7 33

RF
Stable 37 7

0.827 0.841Failed 7 30

k-NN
Stable 36 8

0.815 0.828Failed 7 30

RBF-SVM
Stable 35 9

0.802 0.814Failed 7 30

DT
Stable 33 11

0.765 0.776Failed 8 29

LR
Stable 28 16

0.679 0.683Failed 10 27

Figure 12. ROC curves and AUC of seven classifiers.

The average computation time for each classifier during the training and testing
phases over 20 runs was calculated, as listed in Table 6. The results were presented in the
following format: x ± y, where x and y indicated the average time and standard deviation,
respectively—noted that the values in bold indicated the minimum time consumed. It can
be observed that the k-NN took the least time in the training phase, followed by LR, OPF,
OPFk-NN, RBF-SVM, and RF. In the testing phase, the time consumed by each classifier was
not significantly different, and the difference between the maximum and minimum values
was less than 0.2 s. For the total time, the rank was k-NN > LR > OPF > OPFk-NN > DT >
RBF-SVM > RF. The total computation time of the OPFk-NN classifier was less than 1 s.
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Table 6. Average computation time of classifiers over 20 runs.

Time OPFk-NN OPF RF RBF-SVM DT LR k-NN

Train 0.915 ± 0.027 0.322 ± 0.034 117.751 ± 1.163 82.326 ± 1.149 2.162 ± 0.067 0.402 ± 0.035 0.187 ± 0.011
Test 0.042 ± 0.002 0.097 ± 0.004 0.055 ± 0.003 0.171 ± 0.005 0.008 ± 0.001 0.008 ± 0.001 0.011 ± 0.002
Total 0.957 ± 0.026 0.419 ± 0.033 117.806 ± 1.164 82.497 ± 1.149 2.170 ± 0.067 0.410 ± 0.036 0.198 ± 0.011

4.3. Relative Importance of Indicators

The relative importance of indicators was significant for the design of support struc-
tures in slope engineering. In this study, the relative importance of each indicator was
calculated by combining the OPFk-NN model with the permutation feature importance tech-
nique [73]. The permutation feature importance is a model inspection technique available
in the Python library “scikit-learn” [54]. Values of indicators were shuffled in turn within
the test set, the slope stability prediction results were generated by the OPFk-NN model, and
the accuracy changes were recorded. Then, the prediction accuracy changes of indicators
were ranked, and the relative importance was derived. As shown in Figure 13, the slope
angle was the most important indicator with an importance value of 30.5%, followed by
internal friction angle (22%), cohesion (19.7%), unit weight (12.3%), slope height (7.93%),
and pore pressure ratio (7.63%).

Figure 13. Relative importance of indicators.

5. Discussions

The prediction of failed cases is particularly important, which may lead to the develop-
ment of slope instability if predicted incorrectly [74]. Therefore, the false positive rate and
true negative rate were presented together in Figure 14. It can be seen that the false positive
rate and true negative rate of RBF-SVM, k-NN, and RF were the same, and the OPFk-NN had
the largest true negative rate and the lowest false positive rate. From this view, the OPFk-NN
classifier performed better. The reason is that the OPFk-NN algorithm can effectively process
high-dimensional and nonlinear slope data with outliers, improve the data quality of the
model in the training phase, and predict the failed slope cases more accurately.
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Figure 14. False positive rate and true negative rate of each classifier.

When the trade-off between AUC and the computational burden was considered,
the OPFk-NN classifier was the most prominent because it demonstrated the optimal per-
formance (AUC = 0.901) in less computation time (total time < 1 s) among the seven
classifiers. It is worth noting that the OPFk-NN classifier was pretty much faster than
RBF-SVM (86.2 times faster) and RF (123.1 times faster), although the difference in their per-
formance was not significant. Therefore, the OPFk-NN classifier achieved the best trade-off
between performance and efficiency.

According to the importance scores, all indicators were non-negligible for slope sta-
bility prediction. The physical–mechanical properties had the greatest influence on the
slope stability (ϕ = 22%, c = 19.7%, γ = 12.3%), followed by the geometrical parameters
(β = 30.5%, H = 7.93%). Some measures can be adopted to improve the slope stability
from two directions. One is to optimize the slope geometry parameters, especially the
slope angle. Another is to improve the physical–mechanical properties by using grouting-
reinforcement techniques.

Although the OPFk-NN approach obtained excellent results in the slope stability pre-
diction, there are also some limitations:

(1) More indicators should be considered. Although the six indicators in this study
affect the slope stability significantly, other factors such as excavation, the properties
of clay minerals, vegetation coverage, earthquake, and rainfall also have an effect on
the slope stability. It is significant to analyze the influences of these indicators on the
prediction results;

(2) The dataset is relatively small. The performance of ML algorithms greatly depends
on the quantity and quality of data. Although the OPFk-NN algorithm performs well on
this dataset, a better dataset might further improve the predictive performance. Therefore,
it is necessary to build a larger slope database;

(3) Slopes are typically composed of multiple layers of various geotechnical materials
whose properties and spatial distribution can significantly affect slope stability. As the
number of slope failure cases increases, a comprehensive and diverse slope dataset should
be expanded in future work. Such efforts are crucial for advancing the field of geotechnical
engineering and ensuring the safety of human lives and infrastructure;

(4) The safety factor of slope stability can reflect the percentage of slope instability, and
the slope stability analysis can be better considered a regression problem. Therefore, it is
necessary to compile relevant data and develop relevant ML models for slope FOS value
estimation in future work.
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6. Engineering Application

In order to further verify the reliability of the proposed OPFk-NN model, it was neces-
sary to apply it to evaluate the stability of engineering slopes. For this, eight typical slopes
were collected from the Jing-xin expressway in Hebei Province, China, where landslides
frequently occurred [75].

The FOS values of these eight slopes and the estimation results of the OPFk-NN model
were recorded in Table 7. It can be seen that the overall prediction performance of the
OPFk-NN model was consistent with the FOS values of the slopes.

Table 7. Predictive results of OPFk-NN model on engineering slopes.

Slopes γ (kN/m3) c (kPa) ϕ (◦) β (◦) H (m) ru FOS Status

1 22.4 20.0 27.0 30.0 54.0 0.12 1.208 Stable
2 21.4 31.5 42.0 34.0 18.0 0.23 2.448 Stable
3 19.0 50.0 32.0 42.0 26.0 0.17 1.786 Stable
4 19.6 17.8 29.2 41.2 50.0 0.31 0.979 Failed
5 20.2 16.7 22.3 42.4 26.6 0.47 0.869 Failed
6 20.4 25.0 20.4 35.0 65.9 0.42 0.833 Failed
7 20.0 20.0 36.0 45.0 50.0 0.14 1.102 Stable
8 23.0 18.3 25.2 39.6 61.2 0.30 0.824 Failed

7. Conclusions

Slope stability prediction is a crucial task in geotechnical engineering. This study
investigated the performance of the OPFk-NN algorithm for the stability prediction of slopes.
A total of 404 historical slope cases with failure risk from various countries were collected
after considering the slope damage mechanism and geological conditions simultaneously.
The OPFk-NN, OPF, RBF-SVM, RF, k-NN, DT, and LR were used to evaluate and compare
the predictive performance. To avoid the risk of overfitting or selection bias, ten-fold CV
and grid search methods were selected to tune the hyperparameters. Overall, the prediction
results of the OPFk-NN algorithm were better and more reliable, and its prediction accuracy
and F1-score were 0.901 and 0.902, respectively. According to the ROC curves and AUC
values, the performance rank of the seven classifiers was OPFk-NN > RBF-SVM > RF > OPF
> k-NN > DT > LR. In addition, the OPFk-NN achieved the highest TNR and the lowest
FPR, which indicated that it could predict failed slope cases better. After considering
the total calculation time, the OPFk-NN classifier achieved the optimal trade-off between
performance and efficiency. Based on the importance scores of indicators, the slope angle
was the most influential indicator on prediction results. Furthermore, the engineering
application results showed that the overall predictive performance of the OPFk-NN model
was consistent with the FOS value of engineering slopes.

In the future, more parameters such as excavation, the properties of clay minerals, ge-
ological formation, vegetation coverage, earthquake, and rainfall can be considered so that
the feasibility of the OPFk-NN classifier can be further validated using more comprehensive
and diverse slope datasets. In addition, the proposed methodology can be recommended
for the application of other mining and geotechnical engineering projects, such as rockburst
risk prediction and pillar stability prediction.
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Nomenclature
Abbreviation Full Name

AE Acoustic emissions
LEM Limit equilibrium method
SRM Strength reduction method
FOS Factor of safety
FEM Finite element method
ML Machine learning
RBF-SVM Radial basis function support vector machine
DT Decision trees
OPF Optimum-path forest
k-NN k-nearest neighbors
RF Random forest
LR Logistic regression
OPT Optimal path tree
CV Cross-validation
TP True positive
FP False positive
TN True negative
FN False negative
TNR True negative rate
FPR False positive rate
AUC Area under the curve
ROC Receiver operating characteristic

Appendix A. Database of Slope Cases

No. Location γ (kN/m3) c (kPa) ϕ (◦) β (◦) H (m) ru Status
Instability

Type

1
Congress street, open cut slope,

Chicago, USA
18.68 26.34 15 35 8.23 0 Failed Circular

2 Brightlingsea slide, UK 16.5 11.49 0 30 3.66 0 Failed Circular
3 Unknown 18.84 14.36 25 20 30.5 0 Stable -
4 Unknown 18.84 57.46 20 20 30.5 0 Stable -
5 Case 1: open pit iron ore mine, India 28.44 29.42 35 35 100 0 Stable -
6 Case 2: open pit iron ore mine, India 28.44 39.23 38 35 100 0 Stable -
7 Open pit chromite mine, Orissa, India 20.6 16.28 26.5 30 40 0 Failed Circular
8 Sarukuygi landslide, Japan 14.8 0 17 20 50 0 Failed Circular
9 Open pit iron ore mine, Goa, India 14 11.97 26 30 88 0 Failed Circular
10 Mercoirol open pit coal mine, France 25 120 45 53 120 0 Stable -

11
Marquesade open pit iron ore mine,

Spain
26 150.05 45 50 200 0 Stable -

12 Unknown 18.5 25 0 30 6 0 Failed Circular
13 Unknown 18.5 12 0 30 6 0 Failed Circular

14
Case 1: Highvale coal mine,

Alberta, Canada
22.4 10 35 30 10 0 Stable -

15
Case 2: Highvale coal mine,

Alberta, Canada
21.4 10 30.34 30 20 0 Stable -

16
Case 1: open pit coal mine, Newcastle

coalfield, Australia
22 20 36 45 50 0 Failed Circular

17
Case 2: open pit coal mine, Newcastle

coalfield, Australia
22 0 36 45 50 0 Failed Circular

18 Unknown 12 0 30 35 4 0 Stable -
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No. Location γ (kN/m3) c (kPa) ϕ (◦) β (◦) H (m) ru Status
Instability

Type

19 Unknown 12 0 30 45 8 0 Failed Circular
20 Pima open pit mine, Arizona, USA 23.47 0 32 37 214 0 Failed Circular
21 Case 1: Wyoming, USA 16 70 20 40 115 0 Failed Circular
22 Seven Sisters Landslide, UK 20.41 24.9 13 22 10.67 0.35 Stable -
23 Case 1: The Northolt slide, UK 19.63 11.97 20 22 12.19 0.405 Failed Circular
24 Selset Landslide, Yorkshire, UK 21.82 8.62 32 28 12.8 0.49 Failed Circular
25 Saskatchewan dam, Canada 20.41 33.52 11 16 45.72 0.2 Failed Circular
26 Case 2: The Northolt slide, UK 18.84 15.32 30 25 10.67 0.38 Stable -
27 Sudbury slide, UK 18.84 0 20 20 7.62 0.45 Failed Circular
28 Folkstone Warren slide, Kent, UK 21.43 0 20 20 61 0.5 Failed Circular
29 River bank side, Alberta, Canada 19.06 11.71 28 35 21 0.11 Failed Circular
30 Unknown 18.84 14.36 25 20 30.5 0.45 Failed Circular
31 Unknown 21.51 6.94 30 31 76.81 0.38 Failed Circular

32
Case 2: open pit iron ore mine,

Goa, India
14 11.97 26 30 88 0.45 Failed Circular

33 Athens slope, Greece 18 24 30.15 45 20 0.12 Failed Circular
34 Open pit coal mine Allori coalfield, Italy 23 0 20 20 100 0.3 Failed Circular

35
Case 1: open pit coal mine,

Alberta, Canada
22.4 100 45 45 15 0.25 Stable -

36
Case 2: open pit coal mine,

Alberta, Canada
22.4 10 35 45 10 0.4 Failed Circular

37
Case 3: open pit coal mine, Newcastle

coalfield, Australia
20 20 36 45 50 0.25 Failed Circular

38
Case 4: open pit coal mine, Newcastle

coalfield, Australia
20 20 36 45 50 0.5 Failed Circular

39
Case 5: open pit coal mine, Newcastle

coalfield, Australia
20 0 36 45 50 0.25 Failed Circular

40
Case 6: open pit coal mine, Newcastle

coalfield, Australia
20 0 36 45 50 0.5 Failed Circular

41
Case 1: Harbour slope,
Newcastle, Australia

22 0 40 33 8 0.35 Stable -

42
Case 2: Harbour slope,
Newcastle, Australia

24 0 40 33 8 0.3 Stable -

43
Case 3: Harbour slope,
Newcastle, Australia

20 0 24.5 20 8 0.35 Stable -

44
Case 4: Harbour slope,
Newcastle, Australia

18 5 30 20 8 0.3 Stable -

45 Unknown 27 40 35 47.1 292 0 Failed Circular
46 Unknown 25 46 35 50 284 0 Stable -
47 Unknown 31.3 68 37 46 366 0 Failed Circular
48 Unknown 25 46 36 44.5 299 0 Stable -
49 Unknown 27.3 10 39 40 480 0 Stable -
50 Unknown 25 46 35 46 393 0 Stable -
51 Unknown 25 48 40 49 330 0 Stable -
52 Unknown 31.3 68.6 37 47 305 0.25 Failed Circular
53 Unknown 25 55 36 45.5 299 0.25 Stable -
54 Unknown 31.3 68 37 47 213 0.25 Failed Circular

55
Three Gorges hydropower

project, China
26.49 150 33 45 73 0.15 Stable -

56
Three Gorges hydropower

project, China
26.7 150 33 50 130 0.25 Stable -

57
Three Gorges hydropower

project, China
26.89 150 33 52 120 0.25 Stable -

58
Three Gorges hydropower

project, China
26.57 300 38.7 45.3 80 0.15 Failed Unknown
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No. Location γ (kN/m3) c (kPa) ϕ (◦) β (◦) H (m) ru Status
Instability

Type

59
Three Gorges hydropower

project, China
26.78 300 38.7 54 155 0.25 Failed Unknown

60
Three Gorges hydropower

project, China
26.81 200 35 58 138 0.25 Stable Unknown

61
Three Gorges hydropower

project, China
26.43 50 26.6 40 92.2 0.15 Stable Unknown

62
Three Gorges hydropower

project, China
26.69 50 26.6 50 170 0.25 Stable Unknown

63
Three Gorges hydropower

project, China
26.81 60 28.8 59 108 0.25 Stable Unknown

64 Dingjiahe phosphorus mine, China 27.8 27.8 27 41 236 0.1 Stable -
65 Guilin-Liuzhou highway, China 27.1 22 18.6 25.6 100 0.19 Failed Unknown
66 Xiaolangdi reservoir, China 22.3 0 40 26.5 78 0.25 Stable -
67 Jingzhumiao reservoir, China 18.6 0 32 26.5 46 0.25 Stable -
68 Jingzhumiao reservoir, China 18.6 0 32 21.8 46 0.25 Stable -
69 Yuecheng reservoir, China 18.8 9.8 21 19.29 39 0.25 Failed Unknown
70 Yuecheng reservoir, China 21.2 0 35 18.43 73 0.25 Stable -
71 Gushan reservoir, China 17.2 10 24.25 17.07 38 0.4 Stable -
72 Laobu reservoir, China 19 11.9 20.4 21.04 54 0.75 Stable -
73 Wenyuhe reservoir, China 18 5 26.5 15.52 53 0.4 Failed Unknown
74 Wenyuhe reservoir, China 18 5 22 15.52 53 0.4 Failed Unknown
75 Hongwuyi reservoir, China 17.4 20 24 18.43 51 0.4 Failed Unknown
76 Hongwuyi reservoir, China 17.8 21.2 13.92 18.43 51 0.4 Stable -
77 Lingli reservoir, China 18.8 8 26 21.8 40 0.4 Failed Unknown
78 Lingli reservoir, China 18 21 21.33 21.8 40 0.4 Failed Unknown
79 Zhejiang sea wall, China 17.6 10 16 21.8 9 0.4 Stable -
80 Zhejiang sea wall, China 17.6 10 8 21.8 9 0.4 Stable -
81 Hunan anxiang reservoir, China 17.4 14.95 21.2 45 15 0.4 Failed Unknown
82 A reservoir dam in Jiangxi, China 18.82 25 14.6 20.32 50 0.4 Failed Unknown
83 Qing River area landslide, China 22 29 15 18 400 0 Failed Circular
84 Qing River area landslide, China 23 24 19.8 23 380 0 Failed Circular
85 Qing River area landslide, China 22 40 30 30 196 0 Stable -
86 Qing River area landslide, China 22.54 29.4 20 24 210 0 Stable -
87 Qing River area landslide, China 22 21 23 30 257 0 Failed Circular
88 Qing River area landslide, China 23.5 10 27 26 190 0 Failed Circular
89 Qing River area landslide, China 22.5 18 20 20 290 0 Stable -
90 Qing River area landslide, China 22.5 20 16 25 220 0 Stable -
91 Qing River area landslide, China 21 20 24 21 565 0 Stable -
92 Guzhang gaofeng slope, China 27 27.3 29.1 35 150 0.26 Failed Circular
93 Guzhang gaofeng slope, China 27 27.3 29.1 37 184 0.22 Failed Circular
94 Guzhang gaofeng slope, China 27 27.3 29.1 34 126.5 0.3 Failed Circular

95
Chengmenshan open pit copper

mine, China
25 46 35 50 285 0.25 Stable -

96 Baijiagou earth slope, China 20.45 16 15 30 36 0.25 Stable -

97
Jingping first stage hydropower

station, China
27 70 22.8 45 60 0.32 Stable -

98
Left bank accumulation body of

Xiaodongjiang hydropower
station, China

22 10 35 45 10 0.403 Failed Unknown

99
Longxi landslide of Longyangxia

hydropower Station, China
20 20 36 45 30 0.503 Failed Unknown

100
Chana landslide of Longyangxia

hydropower Station, China
20 0.1 36 45 50 0.25 Failed Unknown

101
Canal slope of Baoji gorge with Wei

River diversion project, China
20 0.1 36 45 50 0.503 Failed Unknown
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No. Location γ (kN/m3) c (kPa) ϕ (◦) β (◦) H (m) ru Status
Instability

Type

102
Yellowstone landslide in the Three
Gorges of the Yangtze River, China

22 0 40 33 8 0.393 Stable -

103
Baiyian landslide in the Three Gorges

reservoir area, China
24 0 40 33 8 0.303 Stable -

104
Baihuanping landslide in the Three

Gorges reservoir area, China
20 0 24.5 20 8 0.35 Stable -

105
Gaojiazui landslide in the Three Gorges

reservoir area, China
18 0 30 33 8 0.303 Stable -

106
Songshan ancient landslide at

Lechangxia hydropower station, China
27 43 35 43 420 0.25 Failed Unknown

107
Back channel landslide in the Three

Gorges reservoir area, China
27 50 40 42 407 0.25 Stable -

108
Jipazi landslide in the Three Gorges

reservoir area, China
27 35 35 42 359 0.25 Stable -

109
Jiuxianping Landslide in the Three

Gorges reservoir area, China
27 37.5 35 37.8 320 0.25 Stable -

110 Heishe landslide, China 27 32 33 42.6 301 0.25 Failed Unknown

111
Liujiawuchang landslide in the Three

Gorges reservoir area, China
27 32 33 42.2 289 0.25 Stable -

112
Majiaba landslide in the Three Gorges

Reservoir Area, China
27.3 14 31 41 110 0.25 Stable -

113
Sandengzi landslide in the Three

Gorges Reservoir Area, China
27.3 31.5 29.703 41 135 0.25 Stable -

114
Yaqianwan landslide in the Three

Gorges Reservoir Area, China
27.3 16.8 28 50 90.5 0.25 Stable -

115
No. 3 landslide of Sanbanxi
hydropower station, China

27.3 36 1 50 92 0.25 Stable -

116 Shijiapo landslide, China 27.3 10 39 41 511 0.25 Stable -
117 Tanggudong landslide, China 27.3 10 39 40 470 0.25 Stable -
118 Tianbao landslide, China 25 46 35 47 443 0.25 Stable -

119
Shipingtai landslide of Xiaoxi

hydropower station, China
25 46 35 44 435 0.25 Stable -

120 Dongyemiao landslide, China 25 46 35 46 432 0.25 Stable -
121 Hongtupo landslide, China 26 150 45 30 230 0.25 Failed Unknown

122
Lianziya landslide in the Three Gorges

reservoir area, China
18.5 25 0 30 6.003 0.25 Failed Unknown

123
No. 6 landslide of Jishixia hydropower

station, China
18.5 12 0 30 6.003 0.25 Failed Unknown

124 Unknown 21.4 10 30.343 30 20 0.25 Stable -

125
No. 1 landslide of Jishixia hydropower

station, China
22 20 36 45 50 0 Failed Unknown

126 Daxi landslide, China 22 0 36 45 50 0 Failed Unknown

127
Right Bank landslide of Zihong

reservoir, China
12 0 30 35 4 0 Stable -

128 Zhongyangcun landslide, China 12 0 30 45 8 0 Failed Unknown

129
Yangdagou landslide of Xunyang

hydropower station, China
31.3 68 37 49 200.5 0.25 Failed Unknown

130 Unknown 20 20 36 45 50 0.29 Failed Unknown
131 Maidipo Landslide, China 19.6 21.8 29.5 37.8 40.3 0.25 Stable -
132 Maidipo Landslide, China 23.1 25.2 29.2 36.5 61.9 0.4 Stable -
133 Shaling Landslide, China 23.8 31 38.7 47.5 23.5 0.31 Stable -
134 Niugunhan Landslide, China 22.3 20.1 31 40.2 88 0.19 Stable -
135 Xieliupo Landslide, China 23.5 25 20 49.1 115 0.41 Stable -
136 Zhaojiatang Landslide, China 23 20 20.3 46.2 40.3 0.25 Stable -
137 Touzhaigou Landslide, China 21.5 15 29 41.5 123.6 0.36 Stable -
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No. Location γ (kN/m3) c (kPa) ϕ (◦) β (◦) H (m) ru Status
Instability

Type

138
Shenzhen reservoir diversion tunnel

landslide, China
23.4 15 38.5 30.3 45.2 0.28 Failed Unknown

139
Taipingyi hydropower station diversion

tunnel landslide, China
19.6 17.8 29.2 46.8 201.2 0.37 Stable -

140 Bawangshan Landslide, China 22.1 24.2 39.7 45.8 49.5 0.21 Stable -
141 Unknown 18.9 17.5 31 33.5 90.5 0.26 Stable Circular
142 Unknown 20.2 16.7 22.3 42.4 26.6 0.25 Stable Circular
143 Unknown 21.5 14 19.3 35 65.9 0.32 Stable Circular

144
KSH Slope in Tailie elementary

school, China
20 8 20 10 10 0 Failed Unknown

145
KSH Slope on the right of Circle E of

Tailie Overpass, China
27.3 37.3 31 30 30 0 Stable -

146
KSH Landslide on the left of
K71 + 625~K71 + 700, China

20.6 26.31 22 25 35 0 Failed Unknown

147 KSH Slope of Pingxite Bridge, China 21.6 6.5 19 40 50 0 Failed Unknown

148
KSH Slope on the right of

K76 + 085~K76 + 200, China
22.4 28.9 24 28 35 0 Failed Unknown

149
KSH Slope on the left of

K77 + 920~K78 + 100, China
23.2 31.2 23 30 33 0 Failed Unknown

150
KSH Slope on the left of

K79 + 165~K79 + 300, China
26.8 37.5 32 30 26 0 Stable -

151
KSH Slope on the right of

K79 + 920~K80 + 035, China
27.4 38.1 31 25 42 0 Stable -

152
KSH Landslide on the right of

ZAK0 + 315~ZAK0 + 407, China
21.8 32.7 27 50 50 0 Failed Unknown

153
KSH Slope on the left of

K83 + 260~K83 + 360, China
21.8 27.6 25 35 60 0 Failed Unknown

154
KSH Slope on the right of

K88 + 300~K88 + 420, China
26.5 35.4 32 30 21 0 Stable -

155
KSH Slope on the right of

K88 + 700~K88 + 876, China
26.5 36.1 31 35 39 0 Stable -

156
KSH Slope on the right of

K89 + 730~K89 + 841, China
27 35.8 32 30 69 0 Stable -

157
KSH Slope on the right of

K90 + 225~K90 + 345, China
27 38.4 33 25 22 0 Stable -

158
KSH Slope on the right of

K90 + 225~K90 + 345, China
21.4 28.8 20 50 52 0 Failed Unknown

159
KSH Slope on the left of

K99 + 120~K99 + 260, China
26 42.4 37 38 55 0 Stable -

160
KSH Slope on the left of

K100 + 280~K100 + 410, China
26 39.4 36 25 30 0 Stable -

161
KSH Slope on the left of

K100 + 615~K100 + 915, China
25.6 38.8 36 25 26 0 Stable -

162
KSH Landslide on the left of

K103 + 330~K103 + 450, China
20 30.3 25 45 53 0 Failed Unknown

163
KSH Landslide on the left of

K103 + 330~K103 + 450, China
25.8 34.7 33 30 50 0 Stable -

164
KSH Landslide on the left of

K104 + 892~K105 + 052, China
21.8 28.8 26 35 99 0 Failed Unknown

165
KSH Landslide on the left of

K105 + 260~K105 + 330, China
21.8 31.2 25 30 60 0 Failed Unknown

166
KSH Slope on the left of

K106 + 268~K106 + 577, China
24 41.5 36 30 51 0 Stable -

167
KSH Slope on the left of

K106 + 992~K107 + 085, China
24 40.8 35 35 50 0 Stable -
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No. Location γ (kN/m3) c (kPa) ϕ (◦) β (◦) H (m) ru Status
Instability

Type

168
KSH Landslide on the left of

K107 + 856~K107 + 968, China
20.6 27.8 27 35 70 0 Failed Unknown

169
KSH Landslide on the left of

K108 + 960~K109 + 010, China
20.6 32.4 26 35 55 0 Failed -

170
KSH Landslide on the left of

K108 + 960~K109 + 010, China
25.8 38.2 33 27 40 0 Stable Unknown

171
KSH Landslide on the left of

K108 + 960~K109 + 010, China
25.8 39.4 33 25 45 0 Stable Unknown

172
KSH Landslide on the left of

K110 + 421~K110 + 500, China
21.1 33.5 28 40 31 0 Failed -

173
KSH Landslide on the left of

K110 + 980~K110 + 240, China
21.1 34.2 26 30 75 0 Failed -

174
KSH Slope on the right of

K112 + 720~K112 + 815, China
26.6 42.4 37 25 52 0 Stable Unknown

175
KSH Slope on the left of

K113 + 500~K113 + 580, China
26.6 44.1 38 35 42 0 Stable Unknown

176
KSH Slope on the left of

K113 + 500~K113 + 580, China
26.6 40.7 35 35 60 0 Stable Unknown

177
KSH Slope on the left of

K114 + 224~K114 + 258, China
25.8 41.2 35 30 40 0 Stable Unknown

178
KSH Slope on the left of

K117 + 200~K117 + 412, China
25.8 43.3 37 30 33 0 Stable Unknown

179
KSH Front slope of tunnel in Songjieya

K122 + 310, China
21.7 32 27 45 60 0 Failed -

180
KSH Landslide on the right of
K122 + 350~K122 + 455, China

20.6 28.5 27 40 65 0 Failed -

181
KSH Landslide on the left of

K127 + 440~K127 + 590, China
21.5 29.8 26 40 70 0 Failed -

182
KSH Landslide on the left of

K127 + 440~K127 + 590, China
26.5 42.9 38 34 36 0 Stable Unknown

183
KSH Landslide on the left of

K137 + 650~K137 + 730, China
20.8 15.6 20 30 45 0 Failed -

184
KSH Landslide on the left of

K138 + 624~K138 + 797, China
20.8 14.8 21 30 40 0 Failed -

185
KSH Landslide on the right of
K75 + 760~K76 + 000, China

19.6 29.6 23 40 58 0 Failed -

186
KSH Slope on the right of

ZBK0 + 000~ZBK0 + 185, China
25.4 33 33 20 35 0 Failed -

187
KSH Landslide on the left of
K84 + 602~K85 + 185, China

22.4 29.3 26 50 50 0 Failed Unknown

188
KSH Slope on the right of

K91 + 614~K91 + 660, China
26.2 41.5 36 35 30 0 Stable -

189
KSH Slope on the right of

K91 + 720~K91 + 771, China
26.2 42.3 36 23 36 0 Stable -

190
KSH Slope on the left of

K100 + 950~K101 + 300, China
25.6 39.8 36 30 32 0 Stable -

191
KSH Slope on the left of

K102 + 691~K102 + 880, China
25.6 36.8 34 35 60 0 Stable -

192
KSH Slope on the right of

K118 + 360~K118 + 549, China
26.2 42.8 37 30 37 0 Stable -

193
KSH Slope on the right of

K119 + 823~K119 + 951, China
26.2 43.8 38 35 68 0 Stable -

194
KSH Landslide on the right of
K124 + 340~K124 + 562, China

20.6 32.4 26 30 42 0 Failed Unknown

195
KSH Slope on the right of

K131 + 280~K131 + 380, China
26.5 41.8 36 42 54 0 Stable -
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196
KSH Landslide on the left of

K138 + 840~K138 + 930, China
20.8 15.4 21 30 53 0 Failed Unknown

197 Unknown 17.98 4.95 30.02 19.98 8 0.3 Stable -
198 Unknown 21.47 6.9 30.02 31.01 76.8 0.38 Failed Circular
199 Unknown 21.78 8.55 32 27.98 12.8 0.49 Failed Circular
200 Unknown 21.4 10 30.34 30 20 0 Stable -
201 Unknown 21.36 10.05 30.33 30 20 0 Stable -
202 Unknown 19.97 10.05 28.98 34.03 6 0.3 Stable -
203 Unknown 22.38 10.05 35.01 30 10 0 Stable -
204 Unknown 22.38 10.05 35.01 45 10 0.4 Failed Circular
205 Unknown 19.08 10.05 9.99 25.02 50 0.4 Failed Circular
206 Unknown 19.08 10.05 19.98 30 50 0.4 Failed Circular
207 Unknown 18.83 10.35 21.29 34.03 37 0.3 Failed Circular
208 Unknown 16.47 11.55 0 30 3.6 0 Failed Circular
209 Unknown 19.03 11.7 27.99 34.98 21 0.11 Failed Circular
210 Unknown 19.06 11.71 28 35 21 0.11 Failed Circular
211 Unknown 19.6 12 19.98 22 12.2 0.41 Failed Circular
212 Unknown 13.97 12 26.01 30 88 0 Failed Circular
213 Unknown 18.46 12 0 30 6 0 Failed Circular
214 Unknown 13.97 12 26.01 30 88 0.45 Failed Circular
215 Unknown 18.84 14.36 25 20.3 50 0.45 Failed Circular
216 Unknown 18.8 14.4 25.02 19.98 30.6 0 Stable -
217 Unknown 18.8 14.4 25.02 19.98 30.6 0.45 Failed Circular
218 Unknown 18.8 15.31 30.02 25.02 10.6 0.38 Stable -
219 Unknown 20.56 16.21 26.51 30 40 0 Failed Circular
220 Unknown 27.3 16.8 28 50 90.5 0.25 Stable -
221 Unknown 27 16.8 28 50 90.5 0.25 Stable -
222 Unknown 20.96 19.96 40.01 40.02 12 0 Stable -
223 Unknown 21.98 19.96 36 45 50 0 Failed Circular
224 Unknown 19.97 19.96 36 45 50 0.25 Failed Circular
225 Unknown 19.97 19.96 36 45 50 0.5 Failed Circular
226 Unknown 18.77 19.96 9.99 25.02 50 0.3 Failed Circular
227 Unknown 18.77 19.96 19.98 30 50 0.3 Failed Circular
228 Unknown 21.98 19.96 22.01 19.98 180 0.1 Failed Circular
229 Unknown 22 20 36 45 50 0 Failed Circular
230 Unknown 18 24 30.15 45 20 0.12 Failed Circular
231 Unknown 18.83 24.76 21.29 29.2 37 0.5 Failed Circular
232 Unknown 18.77 25.06 19.98 30 50 0.2 Failed Circular
233 Unknown 18.77 25.06 9.99 25.02 50 0.2 Failed Circular
234 Unknown 27.3 26 31 50 92 0.25 Stable -
235 Unknown 20.96 30.01 35.01 40.02 12 0.4 Stable -
236 Unknown 18.97 30.01 35.01 34.98 11 0.2 Stable -
237 Unknown 27 32 33 42.4 289 0.25 Stable -
238 Unknown 20.39 33.46 10.98 16.01 45.8 0.2 Failed Circular
239 Unknown 20.96 34.96 27.99 40.02 12 0.5 Stable -
240 Unknown 27 40 35 43 420 0.25 Failed Circular
241 Unknown 19.97 40.06 30.02 30 15 0.3 Stable -
242 Unknown 19.97 40.06 40.01 40.02 10 0.2 Stable -
243 Unknown 20.96 45.02 25.02 49.03 12 0.3 Stable -
244 Unknown 17.98 45.02 25.02 25.02 14 0.3 Stable -
245 Unknown 26.7 50 26.6 50 170 0.25 Stable -
246 Unknown 18.8 57.47 19.98 19.98 30.6 0 Stable -
247 Unknown 26.8 60 28.8 59 108 0.25 Stable -
248 Unknown 31.3 68 37 47 213 0.25 Failed Circular
249 Unknown 31.3 68 37 46 366 0.25 Stable -
250 Unknown 31.3 68.6 37 47 305 0.25 Failed Circular
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251 Unknown 15.99 70.07 19.98 40.02 115 0 Failed Circular
252 Unknown 22.38 99.93 45 45 15 0.25 Stable -
253 Unknown 19.8 10 8 30 10 0.25 Stable -
254 Unknown 19.63 11.97 20 22 21.19 0.4 Failed Circular
255 Simulated by finite element analysis 17.93 78.2 18.49 33.42 120.79 0 Failed Circular
256 Simulated by finite element analysis 18.02 40.92 21.18 21.86 34.65 0.1 Stable -
257 Simulated by finite element analysis 25.76 64.11 21.4 15.76 30.38 0.5 Stable -
258 Simulated by finite element analysis 25.55 14.8 3.44 41.06 33.31 0.4 Failed Circular
259 Simulated by finite element analysis 23.85 78.48 33.9 22.88 118.09 0.1 Stable -
260 Simulated by finite element analysis 18.34 92.2 40.51 40.89 139.48 0 Stable -
261 Simulated by finite element analysis 25.15 33.36 39.25 45.48 148.37 0.3 Failed Circular
262 Simulated by finite element analysis 19.24 65.34 34.2 21.8 64.56 0 Stable -
263 Simulated by finite element analysis 19.91 46.83 32.8 18.15 77.25 0.2 Stable -
264 Simulated by finite element analysis 24.36 0.41 27.04 28.44 99.28 0.3 Failed Circular
265 Simulated by finite element analysis 20.04 67.59 42.91 25.86 4.06 0 Stable -
266 Simulated by finite element analysis 20.31 71.43 31.46 28.18 110.81 0.2 Stable -
267 Simulated by finite element analysis 19.26 43.88 34.26 44.16 122.49 0 Failed Circular
268 Simulated by finite element analysis 17.99 7.2 19.23 55.56 82.75 0 Failed Circular
269 Simulated by finite element analysis 17.85 73.21 22.22 46.32 77.08 0 Failed Circular
270 Simulated by finite element analysis 19.14 94.52 14.6 33.78 105.01 0.5 Failed Circular
271 Simulated by finite element analysis 21.01 44.08 26.49 28.94 97.57 0 Failed Circular
272 Simulated by finite element analysis 19.33 99.3 33.1 34.82 55.54 0 Stable -
273 Simulated by finite element analysis 16.1 65.25 20.21 20.17 17.27 0.3 Stable -
274 Simulated by finite element analysis 19.9 73.05 45.46 32.99 9.53 0.4 Stable -
275 Simulated by finite element analysis 19.62 3.67 31.06 5.87 92.13 0.4 Stable -
276 Simulated by finite element analysis 20.71 28.37 14.49 26.49 63.78 0 Failed Circular
277 Simulated by finite element analysis 22.12 37.55 38.11 33.33 29.93 0.1 Stable -
278 Simulated by finite element analysis 21.54 32.07 18.89 27.06 58.89 0.3 Failed Circular
279 Simulated by finite element analysis 17.4 108.19 30.04 47.3 111.28 0.3 Failed Circular
280 Simulated by finite element analysis 17.39 20.26 26.6 56.38 34.45 0.3 Failed Circular
281 Simulated by finite element analysis 18.63 106.66 14.27 38.62 68.73 0.5 Failed Circular
282 Simulated by finite element analysis 17.68 94.92 25.4 45.11 65.97 0.4 Failed Circular
283 Simulated by finite element analysis 14.59 10.92 27.55 47.11 141.66 0.1 Failed Circular
284 Simulated by finite element analysis 18.72 87.53 23.28 33.15 61.82 0 Stable -
285 Simulated by finite element analysis 15.17 35.57 42.06 14.6 183.27 0 Stable -
286 Simulated by finite element analysis 15.79 31.63 28.09 48.97 12.09 0.5 Stable -
287 Simulated by finite element analysis 15.87 69.53 48.47 27.1 17.83 0 Stable -
288 Simulated by finite element analysis 16.56 74.15 18.33 37.2 31.92 0 Stable -
289 Simulated by finite element analysis 16.27 44.32 21.6 27.07 151.39 0.4 Failed Circular
290 Simulated by finite element analysis 17.09 52.7 26 42.55 17.87 0.4 Stable -
291 Simulated by finite element analysis 19.49 100.82 31.34 54.81 21.06 0.3 Stable -
292 Simulated by finite element analysis 23.46 56.15 31.06 43.67 53.54 0 Failed Circular
293 Simulated by finite element analysis 15.48 46.54 43.56 39.42 14.92 0.2 Stable -
294 Simulated by finite element analysis 24.36 64.7 39.14 46.87 141.85 0.3 Failed Circular
295 Simulated by finite element analysis 22.39 59.91 11.89 22.7 94.67 0.2 Failed Circular
296 Simulated by finite element analysis 22.42 161.55 20.7 39.03 15.89 0 Stable -
297 Simulated by finite element analysis 19.51 63.27 37.01 18.77 90.45 0.4 Stable -
298 Simulated by finite element analysis 21.16 124 21.92 30.41 116.84 0.5 Stable -
299 Simulated by finite element analysis 22.53 34.61 26.81 58 102.93 0 Failed Circular
300 Simulated by finite element analysis 22.77 27.51 25.23 14.95 67.59 0.2 Stable -
301 Simulated by finite element analysis 19.2 55.28 24.02 29.8 91.59 0.3 Failed Circular
302 Simulated by finite element analysis 23.17 17.75 23.6 53.51 24.8 0.3 Failed Circular
303 Simulated by finite element analysis 24.89 121.63 30.2 35.32 16.18 0.5 Stable -
304 Simulated by finite element analysis 24.03 72.37 28.77 37.74 59.21 0.1 Stable -
305 Simulated by finite element analysis 23.05 12.16 14 23.3 89.05 0 Failed Circular
306 Simulated by finite element analysis 18.22 77.64 46.58 43.19 24.52 0.4 Stable -
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307 Simulated by finite element analysis 20.47 16.87 35.48 27.58 17.86 0 Stable -
308 Simulated by finite element analysis 20.99 63.58 48.54 30.91 68.82 0 Stable -
309 Simulated by finite element analysis 18.74 49.05 17.54 14.34 118.98 0 Failed Circular
310 Simulated by finite element analysis 21.26 9.78 43.23 17.42 90.73 0 Stable -
311 Simulated by finite element analysis 21.07 29.89 14.46 21.98 22.31 0 Failed Circular
312 Simulated by finite element analysis 20.27 25.33 23.75 8.37 42.76 0 Stable -
313 Simulated by finite element analysis 19.9 25.05 25.46 44.15 37.03 0 Failed Circular
314 Simulated by finite element analysis 20.32 14.9 14.35 42.66 80.26 0 Failed Circular
315 Simulated by finite element analysis 20.57 34.55 44.41 38.36 122.28 0 Stable -
316 Simulated by finite element analysis 19.1 133.38 41.5 31.38 109.11 0 Stable -
317 Simulated by finite element analysis 18.88 9.77 21.01 51.49 33.34 0 Failed Circular
318 Simulated by finite element analysis 20.26 122.61 23.44 24.92 114.17 0 Stable -
319 Simulated by finite element analysis 16.3 91.72 27.7 41.82 87.53 0 Failed Circular
320 Simulated by finite element analysis 13.6 58.07 38.63 36.61 32.97 0 Stable -
321 Simulated by finite element analysis 19.65 28.79 17.38 35.79 68.78 0 Failed Circular
322 Simulated by finite element analysis 16.1 81.18 30.16 4.84 125.44 0 Stable -
323 Simulated by finite element analysis 26.52 68.74 20.76 24.86 123.99 0 Failed Circular
324 Simulated by finite element analysis 23.12 57.21 29.96 26.39 94.95 0 Stable -
325 Simulated by finite element analysis 25.06 14.97 14.86 47.79 142.71 0 Failed Circular
326 Simulated by finite element analysis 23.15 46.41 23.56 48.54 22.44 0 Failed Circular
327 Simulated by finite element analysis 19.27 129.46 27.54 34.61 87.63 0 Stable -
328 Simulated by finite element analysis 22.3 40.64 21.93 24.05 103.19 0 Failed Circular
329 Simulated by finite element analysis 22.37 43.37 19.15 45.03 119.95 0 Failed Circular
330 Simulated by finite element analysis 15.37 53.03 28.06 40.94 79 0.35 Failed Circular
331 Simulated by finite element analysis 23.35 29.97 16.38 39.73 33.92 0.405 Failed Circular
332 Simulated by finite element analysis 17.14 127.05 41.92 31.87 114.99 0.49 Stable -
333 Simulated by finite element analysis 16.1 71.69 20.81 52.77 70.06 0.2 Failed Circular
334 Simulated by finite element analysis 23.18 17.74 13.86 26.71 60.39 0.38 Failed Circular
335 Simulated by finite element analysis 18.34 36.34 30.19 29.44 143.1 0.45 Failed Circular
336 Simulated by finite element analysis 16.9 31.8 33.65 29.21 81.74 0.5 Stable -
337 Simulated by finite element analysis 24.83 119.28 13.24 26.86 113.91 0.11 Failed Circular
338 Simulated by finite element analysis 13.93 80.9 37.13 34.16 58.25 0.45 Stable -
339 Simulated by finite element analysis 17.61 59.31 19.1 43.28 31.25 0.38 Failed Circular
340 Simulated by finite element analysis 24.6 11.36 1.7 20.19 11.06 0.45 Failed Circular
341 Simulated by finite element analysis 30.31 22 23.94 36.99 104.02 0.12 Failed Circular
342 Simulated by finite element analysis 20.69 69.68 40.34 49.39 111.42 0.3 Failed Circular
343 Simulated by finite element analysis 23.82 300 21.77 20.57 23.9 0.25 Stable -
344 Simulated by finite element analysis 16.77 24.09 34 22.53 26.72 0.4 Stable -
345 Simulated by finite element analysis 28.11 0.69 21 18.22 99.46 0.25 Failed Circular
346 Simulated by finite element analysis 18.27 6.45 20.69 26.3 17.04 0.5 Failed Circular
347 Simulated by finite element analysis 10.06 62.41 39.99 39.04 58.31 0.25 Stable -
348 Simulated by finite element analysis 20.85 74.42 11.34 39.57 13.17 0.5 Stable -
349 Simulated by finite element analysis 20.98 52.5 23.55 33.67 49.7 0.35 Failed Circular
350 Simulated by finite element analysis 17.56 27.82 17.23 37.23 67.61 0.3 Failed Circular
351 Simulated by finite element analysis 21.4 67.99 38.11 32.72 132.33 0.35 Stable -
352 Simulated by finite element analysis 25.29 125.82 0 48.07 56 0.3 Stable -
353 Simulated by finite element analysis 15.47 79.39 47.88 32.46 81.14 0.15 Stable -
354 Simulated by finite element analysis 22.3 38.64 31.01 43.92 47 0.25 Failed Circular
355 Simulated by finite element analysis 16.82 0.05 23.92 29.45 36.22 0.25 Failed Circular
356 Simulated by finite element analysis 25.93 13.72 22.36 35.79 53.37 0.15 Stable -
357 Simulated by finite element analysis 22.56 63.51 31.13 38.36 49.54 0.25 Stable -
358 Simulated by finite element analysis 18.56 21.04 24.82 5.3 45.92 0.25 Stable -
359 Simulated by finite element analysis 21.47 41.59 18.76 45.73 48.47 0.15 Failed Circular
360 Simulated by finite element analysis 19.01 29.34 12.19 30.35 12.07 0.25 Stable -
361 Simulated by finite element analysis 22.84 68.46 10.91 35.94 63.73 0.25 Failed Circular
362 Simulated by finite element analysis 20.36 11.89 36.6 16.58 108.92 0 Stable -

257



Mathematics 2023, 11, 3071

No. Location γ (kN/m3) c (kPa) ϕ (◦) β (◦) H (m) ru Status
Instability

Type

363 Simulated by finite element analysis 25.28 83.67 18.4 36.46 106.8 0.1 Failed Circular
364 Simulated by finite element analysis 30.27 38.55 22.46 39 29.53 0.5 Failed Circular
365 Simulated by finite element analysis 21.71 16.57 19.68 29 60.8 0.4 Failed Circular
366 Simulated by finite element analysis 23.67 55.72 38.36 38.68 100.02 0.1 Stable -
367 Simulated by finite element analysis 21.84 53.21 35.12 15.3 108.67 0 Stable -
368 Simulated by finite element analysis 18.58 82.65 21.89 31.64 20.11 0.3 Stable -
369 Simulated by finite element analysis 22.23 30.81 21.8 31.44 3.45 0 Stable -
370 Simulated by finite element analysis 24.05 30.89 28.57 36.87 71.36 0.2 Failed Circular
371 Simulated by finite element analysis 23.57 162.62 12.59 56.79 155.28 0.3 Failed Circular
372 Simulated by finite element analysis 21.03 8.32 28.22 31.63 49.25 0 Failed Circular
373 Simulated by finite element analysis 19.88 30.86 21.47 50.14 38.23 0.2 Failed Circular
374 Simulated by finite element analysis 27.2 53.62 28.3 21.82 56.78 0 Stable -
375 Simulated by finite element analysis 23.88 43.5 26.48 43.07 13.52 0 Stable -
376 Simulated by finite element analysis 25.55 64.91 16.97 33.45 97.58 0 Failed Circular
377 Simulated by finite element analysis 18.04 38.49 43.96 32.44 27.54 0.5 Stable -
378 Simulated by finite element analysis 25.7 84.49 18.66 42.65 7.75 0 Stable -
379 Simulated by finite element analysis 15.07 3.58 35.12 36.52 22.1 0 Failed Circular
380 Simulated by finite element analysis 22.21 86.74 27.43 25.2 13.37 0.3 Stable -
381 Simulated by finite element analysis 20.56 46.9 13.47 10.75 3.88 0.4 Stable -
382 Simulated by finite element analysis 21.05 95.94 36.24 37.34 132.92 0.4 Stable -
383 Simulated by finite element analysis 18.93 9.28 31.46 43.31 33.06 0 Failed Circular
384 Simulated by finite element analysis 23.88 10.07 22.75 28.3 23.92 0.1 Failed Circular
385 Simulated by finite element analysis 22.44 10.48 31.88 26.22 101.93 0.3 Stable -
386 Simulated by finite element analysis 21.17 12.58 40.51 49.4 111.54 0.3 Failed Circular
387 Simulated by finite element analysis 28.07 160.77 26.2 24.64 162.76 0.3 Stable -
388 Simulated by finite element analysis 24.3 45.96 44.35 38.12 56.21 0.5 Stable -
389 Simulated by finite element analysis 21.13 76.34 37.55 19.9 5.05 0.4 Stable -
390 Simulated by finite element analysis 20.41 44.66 28.23 33.89 86.39 0.1 Failed Circular
391 Simulated by finite element analysis 13.12 94.38 8.11 20.66 34.42 0 Stable -
392 Simulated by finite element analysis 18.09 11.87 3.46 34.43 78.52 0 Failed Circular
393 Simulated by finite element analysis 18.67 115.4 27.1 14.56 91.16 0.5 Stable -
394 Simulated by finite element analysis 17.46 99.03 24.1 4.24 42.94 0 Stable -
395 Simulated by finite element analysis 20.05 91.29 32.17 39.26 70.97 0 Stable -
396 Simulated by finite element analysis 27.17 14.55 15.02 44.82 19.18 0.4 Failed Circular
397 Simulated by finite element analysis 22.35 0 57.36 37.5 15.1 0.4 Stable -
398 Simulated by finite element analysis 19.58 0 14.6 27.18 77.83 0.3 Failed Circular
399 Simulated by finite element analysis 16.44 0 29.22 40.24 21.74 0 Stable -
400 Simulated by finite element analysis 23.96 0 28.04 32.4 74.58 0.2 Failed Circular
401 Simulated by finite element analysis 19.6 0 22.79 59.35 155.73 0.3 Failed Circular
402 Simulated by finite element analysis 27.35 0 33.92 34.03 5.7 0.2 Failed Circular
403 Simulated by finite element analysis 21.03 0 17.72 5.79 57.31 0 Stable -
404 Simulated by finite element analysis 25.74 0 17.23 30.03 80.53 0.4 Failed Circular

Case 1–44 reported by [32]. Case 45–54 reported by [63]. Case 55–63 reported by [64]. Case 64 reported by [65].

Case 65–82 reported by [70]. Case 83–91 reported by [66]. Case 92–94 reported by [67]. Case 95–97 reported

by [36]. Case 98–140 reported by [68]. Case 141–143 reported by [36]. Case 144–196 reported by [72]. Case 197–254

reported by [69]. Case 255–404 reported by [57]. KSH denotes Kaili-Sansui highway.

References

1. Zhan, L.-T.; Guo, X.-G.; Sun, Q.-Q.; Chen, Y.-M.; Chen, Z.-Y. The 2015 Shenzhen catastrophic landslide in a construction waste
dump: Analyses of undrained strength and slope stability. Acta Geotech. 2021, 16, 1247–1263. [CrossRef]

2. Asnakew, S.; Shumet, S.; Ginbare, W.; Legas, G.; Haile, K. Prevalence of post-traumatic stress disorder and associated factors
among Koshe landslide survivors, Addis Ababa, Ethiopia: A community-based, cross-sectional study. BMJ Open 2019, 9, e028550.
[CrossRef] [PubMed]

3. Van Tien, P.; Luong, L.H.; Duc, D.M.; Trinh, P.T.; Quynh, D.T.; Lan, N.C.; Thuy, D.T.; Phi, N.Q.; Cuong, T.Q.; Dang, K.; et al.
Rainfall-induced catastrophic landslide in Quang Tri Province: The deadliest single landslide event in Vietnam in 2020. Landslides
2021, 18, 2323–2327. [CrossRef]

258



Mathematics 2023, 11, 3071

4. Zhang, C.-C.; Zhu, H.-H.; Liu, S.-P.; Shi, B.; Zhang, D. A kinematic method for calculating shear displacements of landslides using
distributed fiber optic strain measurements. Eng. Geol. 2018, 234, 83–96. [CrossRef]

5. Dixon, N.; Smith, A.; Flint, J.A.; Khanna, R.; Clark, B.; Andjelkovic, M. An acoustic emission landslide early warning system for
communities in low-income and middle-income countries. Landslides 2018, 15, 1631–1644. [CrossRef]

6. Shiotani, T. Evaluation of long-term stability for rock slope by means of acoustic emission technique. NDT E Int. 2006, 39, 217–228.
[CrossRef]

7. Codeglia, D.; Dixon, N.; Fowmes, G.J.; Marcato, G. Analysis of acoustic emission patterns for monitoring of rock slope deformation
mechanisms. Eng. Geol. 2017, 219, 21–31. [CrossRef]

8. Akbar, T.A.; Ha, S.R. Landslide hazard zoning along Himalayan Kaghan Valley of Pakistan—By integration of GPS, GIS, and
remote sensing technology. Landslides 2011, 8, 527–540. [CrossRef]

9. Marsella, M.; D’Aranno, P.J.V.; Scifoni, S.; Sonnessa, A.; Corsetti, M. Terrestrial laser scanning survey in support of unstable slopes
analysis: The case of Vulcano Island (Italy). Nat. Hazard. 2015, 78, 443–459. [CrossRef]

10. Atzeni, C.; Barla, M.; Pieraccini, M.; Antolini, F. Early Warning Monitoring of Natural and Engineered Slopes with Ground-Based
Synthetic-Aperture Radar. Rock Mech Rock Eng. 2015, 48, 235–246. [CrossRef]

11. Ho, S.-C.; Chen, I.H.; Lin, Y.-S.; Chen, J.-Y.; Su, M.-B. Slope deformation monitoring in the Jiufenershan landslide using time
domain reflectometry technology. Landslides 2019, 16, 1141–1151. [CrossRef]

12. Chen, Z.Y.; Mi, H.L.; Zhang, F.M.; Wang, X.G. A simplified method for 3D slope stability analysis. Can. Geotech. J. 2003, 40,
675–683. [CrossRef]

13. Nie, Z.; Zhang, Z.; Zheng, H. Slope stability analysis using convergent strength reduction method. Eng. Anal. Boundary Elem.
2019, 108, 402–410. [CrossRef]

14. Wang, L.; Sun, D.; Li, L. Three-dimensional stability of compound slope using limit analysis method. Can. Geotech. J. 2019, 56,
116–125. [CrossRef]

15. Liu, H.; Xu, D.; Min, Y. Discussion on the Multi-Solution of Three-Dimensional Slope Safety Factor. Geotech. Geol. Eng. 2021, 39,
3361–3370. [CrossRef]

16. Faramarzi, L.; Zare, M.; Azhari, A.; Tabaei, M. Assessment of rock slope stability at Cham-Shir Dam Power Plant pit using the
limit equilibrium method and numerical modeling. Bull. Eng. Geol. Environ. 2017, 76, 783–794. [CrossRef]

17. Liu, F. Stability Analysis of Geotechnical Slope Based on Strength Reduction Method. Geotech. Geol. Eng. 2020, 38, 3653–3665.
[CrossRef]

18. Mbarka, S.; Baroth, J.; Ltifi, M.; Hassis, H.; Darve, F. Reliability analyses of slope stability. Eur. J. Environ. Civ. Eng. 2010, 14,
1227–1257. [CrossRef]

19. Ma, Z.; Liao, H.; Dang, F.; Cheng, Y. Seismic slope stability and failure process analysis using explicit finite element method. Bull.
Eng. Geol. Environ. 2021, 80, 1287–1301. [CrossRef]

20. Nie, Z.; Zhang, Z.; Zheng, H.; Lin, S. Stability analysis of landslides using BEM and variational inequality based contact model.
Comput. Geotech. 2020, 123, 103575. [CrossRef]

21. Zhao, Y.; Zhao, G.; Zhou, J.; Ma, J.; Cai, X. Failure mechanism analysis of rock in particle discrete element method simulation
based on moment tensors. Comput. Geotech. 2021, 136, 104215. [CrossRef]

22. Yang, Y.; Xu, D.; Liu, F.; Zheng, H. Modeling the entire progressive failure process of rock slopes using a strength-based criterion.
Comput. Geotech. 2020, 126, 103726. [CrossRef]

23. Sun, L.; Grasselli, G.; Liu, Q.; Tang, X.; Abdelaziz, A. The role of discontinuities in rock slope stability: Insights from a combined
finite-discrete element simulation. Comput. Geotech. 2022, 147, 104788. [CrossRef]

24. Ma, Z.; Zhu, C.; Yao, X.; Dang, F. Slope Stability Analysis under Complex Stress State with Saturated and Unsaturated Seepage
Flow. Geofluids 2021, 2021, 6637098. [CrossRef]

25. Wei, J.; Zhao, Z.; Xu, C.; Wen, Q. Numerical investigation of landslide kinetics for the recent Mabian landslide (Sichuan, China).
Landslides 2019, 16, 2287–2298. [CrossRef]

26. Haghnejad, A.; Ahangari, K.; Moarefvand, P.; Goshtasbi, K. Numerical investigation of the impact of geological discontinuities on
the propagation of ground vibrations. Geomech. Eng. 2018, 14, 545–552. [CrossRef]

27. Song, X.; Zhang, X.; Wu, S. Study on slope stability analysis and large deformation characteristics of failure based on SPH method.
Comput. Part. Mech. 2023. [CrossRef]

28. Zhang, Y.W.; Tang, L.X.; Bai, D.C.; Zhou, P. Numerical Simulation of Failure Process on Soil Slope with Different Support
Measures. Appl. Mech. Mater. 2014, 580–583, 665–668. [CrossRef]

29. Dyson, A.P.; Tolooiyan, A. Comparative Approaches to Probabilistic Finite Element Methods for Slope Stability Analysis. Simul.
Modell Pract. Theory 2020, 100, 102061. [CrossRef]

30. Liang, W.; Luo, S.; Zhao, G.; Wu, H. Predicting Hard Rock Pillar Stability Using GBDT, XGBoost, and LightGBM Algorithms.
Mathematics 2020, 8, 765. [CrossRef]

31. Lu, P.; Rosenbaum, M.S. Artificial neural networks and Grey Systems for the prediction of slope stability. Nat. Hazard. 2003, 30,
383–398. [CrossRef]

32. Sah, N.K.; Sheorey, P.R.; Upadhyaya, L.N. Maximum likelihood estimation of slope stability. Int. J. Rock Mech. Mining Sci. Geomech.
Abstracts 1994, 31, 47–53. [CrossRef]

33. Samui, P. Slope stability analysis: A support vector machine approach. Environ. Geol. 2008, 56, 255–267. [CrossRef]

259



Mathematics 2023, 11, 3071

34. Yang, C.X.; Tham, L.G.; Feng, X.T.; Wang, Y.J.; Lee, P.K.K. Two-stepped evolutionary algorithm and its application to stability
analysis of slopes. J. Comput. Civ. Eng. 2004, 18, 145–153. [CrossRef]

35. Amirkiyaei, V.; Ghasemi, E. Stability assessment of slopes subjected to circular-type failure using tree-based models. Int. J. Geotech.
Eng. 2020, 16, 301–311. [CrossRef]

36. Zhou, J.; Li, E.; Yang, S.; Wang, M.; Shi, X.; Yao, S.; Mitri, H.S. Slope stability prediction for circular mode failure using gradient
boosting machine approach based on an updated database of case histories. Saf. Sci. 2019, 118, 505–518. [CrossRef]

37. Wang, H.; Moayedi, H.; Kok Foong, L. Genetic algorithm hybridized with multilayer perceptron to have an economical slope
stability design. Eng. Comput. 2021, 37, 3067–3078. [CrossRef]

38. Hoang, N.-D.; Tien Bui, D. Chapter 18—Slope Stability Evaluation Using Radial Basis Function Neural Network, Least Squares
Support Vector Machines, and Extreme Learning Machine. In Handbook of Neural Computation; Samui, P., Sekhar, S., Balas, V.E.,
Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 333–344.

39. Mahmoodzadeh, A.; Mohammadi, M.; Ali, H.F.H.; Ibrahim, H.H.; Abdulhamid, S.N.; Nejati, H.R. Prediction of safety factors for
slope stability: Comparison of machine learning techniques. Nat. Hazard. 2021, 111, 1771–1799. [CrossRef]

40. Papa, J.P.; Falcao, A.X.; Levada, A.L.; Corrêa, D.C.; Salvadeo, D.H.; Mascarenhas, N.D. Fast and accurate holistic face recognition
using optimum-path forest. In Proceedings of the 2009 16th International Conference on Digital Signal Processing, Santorini,
Greece, 5–7 July 2009; pp. 1–6.

41. Bernardo, L.S.; Quezada, A.; Munoz, R.; Maia, F.M.; Pereira, C.R.; Wu, W.; de Albuquerque, V.H.C. Handwritten pattern
recognition for early Parkinson’s disease diagnosis. Pattern Recognit Lett. 2019, 125, 78–84. [CrossRef]

42. Papa, J.P.; Spadotto, A.A.; Falcao, A.X.; Pereira, J.C. Optimum path forest classifier applied to laryngeal pathology detection. In
Proceedings of the 2008 15th International Conference on Systems, Signals and Image Processing, Bratislava, Slovakia, 25–28 June
2008; pp. 249–252.

43. Pisani, R.J.; Mizobe Nakamura, R.Y.; Riedel, P.S.; Lopes Zimback, C.R.; Falcao, A.X.; Papa, J.P. Toward Satellite-Based Land Cover
Classification Through Optimum-Path Forest. IEEE Trans Geosci. Remote Sens. 2014, 52, 6075–6085. [CrossRef]

44. Bertoni, M.A.; de Rosa, G.H.; Brega, J.R.F. Optimum-path forest stacking-based ensemble for intrusion detection. Evol. Intell.
2021, 15, 2037–2054. [CrossRef]

45. Papa, J.P.; Nachif Fernandes, S.E.; Falcao, A.X. Optimum-Path Forest based on k-connectivity: Theory and applications. Pattern
Recognit Lett. 2017, 87, 117–126. [CrossRef]

46. Hensel, F.; Moor, M.; Rieck, B. A Survey of Topological Machine Learning Methods. Front. Artif. Intell. 2021, 4, 681108. [CrossRef]
47. Papa, J.P.; Falcao, A.X.; Suzuki, C.T.N. Supervised Pattern Classification Based on Optimum-Path Forest. Int. J. Imaging Syst.

Technol. 2009, 19, 120–131. [CrossRef]
48. Papa, J.P.; Falcao, A.X.; de Albuquerque, V.H.C.; Tavares, J.M.R.S. Efficient supervised optimum-path forest classification for large

datasets. Pattern Recognit. 2012, 45, 512–520. [CrossRef]
49. Chen, S.; Sun, T.; Yang, F.; Sun, H.; Guan, Y. An improved optimum-path forest clustering algorithm for remote sensing image

segmentation. Comput. Geosci. 2018, 112, 38–46. [CrossRef]
50. Papa, J.P.; Falcao, A.X. A New Variant of the Optimum-Path Forest Classifier. In Proceedings of the 4th International Symposium

on Visual Computing, Las Vegas, NV, USA, 16–18 October 2008; pp. 935–944.
51. Zhao, G.; Wang, M.; Liang, W. A Comparative Study of SSA-BPNN, SSA-ENN, and SSA-SVR Models for Predicting the Thickness

of an Excavation Damaged Zone around the Roadway in Rock. Mathematics 2022, 10, 1351. [CrossRef]
52. Liang, W.; Sari, A.; Zhao, G.; McKinnon, S.D.; Wu, H. Short-term rockburst risk prediction using ensemble learning methods. Nat.

Hazard. 2020, 104, 1923–1946. [CrossRef]
53. de Rosa, G.H.; Papa, J.P. OPFython: A Python implementation for Optimum-Path Forest. Software Impacts 2021, 9, 100113.

[CrossRef]
54. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg,

V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn Res. 2011, 12, 2825–2830.
55. Yuan, C.; Moayedi, H. The performance of six neural-evolutionary classification techniques combined with multi-layer perception

in two-layered cohesive slope stability analysis and failure recognition. Eng. Comput. 2020, 36, 1705–1714. [CrossRef]
56. Bradley, A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997,

30, 1145–1159. [CrossRef]
57. Kardani, N.; Zhou, A.; Nazem, M.; Shen, S.-L. Improved prediction of slope stability using a hybrid stacking ensemble method

based on finite element analysis and field data. J. Rock Mech. Geotech. Eng. 2021, 13, 188–201. [CrossRef]
58. Moayedi, H.; Osouli, A.; Nguyen, H.; Rashid, A.S.A. A novel Harris hawks’ optimization and k-fold cross-validation predicting

slope stability. Eng. Comput. 2021, 37, 369–379. [CrossRef]
59. Liang, W.; Sari, Y.A.; Zhao, G.; McKinnon, S.D.; Wu, H. Probability Estimates of Short-Term Rockburst Risk with Ensemble

Classifiers. Rock Mech Rock Eng. 2021, 54, 1799–1814. [CrossRef]
60. Bishop, A.W.; Morgenstern, N. Stability Coefficients for Earth Slopes. Geotechnique 1960, 10, 129–153. [CrossRef]
61. Fellenius, W. Calculation of stability of Earth dam. In Transactions of the Second Congress Large Dams; International Commission on

Large Dams: Washington, DC, USA, 1936; pp. 445–462.
62. Morgenstern, N.R.; Price, V.E. The Analysis of the Stability of General Slip Surfaces. Geotechnique 1965, 15, 79–93. [CrossRef]

260



Mathematics 2023, 11, 3071

63. Feng, X.-T.; Hudson, J.A. The ways ahead for rock engineering design methodologies. Int. J. Rock Mech. Min. Sci. 2004, 41,
255–273. [CrossRef]

64. Xu, W.; Shao, J.F. Artificial Neural Network Analysis for the Evaluation of Slope Stability. In Application of Numerical Methods to
Geotechnical Problems; Cividini, A., Ed.; Springer: Vienna, Austria, 1998; pp. 665–672.

65. Li, W.-X.; Yang, S.-C.; Chen, E.-Z.; Qiao, J.-L.; Dai, L.-F. Neural network method of analysis of natural slope failure due to
underground mining in mountainous areas. Yantu Lixue Rock Soil Mech. 2006, 27, 1563–1566.

66. Wang, H.B.; Xu, W.Y.; Xu, R.C. Slope stability evaluation using back propagation neural networks. Eng. Geol. 2005, 80, 302–315.
[CrossRef]

67. Jin, L.; Feng, W.; Zhang, J. Maximum likelihood estimation on safety coefficients of rocky slope near DAM of Fengtan project.
Yanshilixue Yu Gongcheng Xuebao/Chinese J. Rock Mech. Eng. 2004, 23, 1891–1894.

68. Wang, C. Study on Prediction Methods for High Engineering Slope. Master’s Thesis, Beijing Jiaotong University, Beijing,
China, 2009.

69. Qi, C.; Tang, X. Slope stability prediction using integrated metaheuristic and machine learning approaches: A comparative study.
Comput. Ind. Eng. 2018, 118, 112–122. [CrossRef]

70. Chen, L.-Q.; Peng, Z.-B.; Chen, W.; Peng, W.-X.; Wu, Q.-H. Artificial neural network simulation on prediction of clay slope
stability based on fuzzy controller. Zhongnan Daxue Xuebao Ziran Kexue Ban J. Central South Univ. Sci. Technol. 2009, 40, 1381–1387.

71. Lin, S.; Zheng, H.; Han, B.; Li, Y.; Han, C.; Li, W. Comparative performance of eight ensemble learning approaches for the
development of models of slope stability prediction. Acta Geotech. 2022, 17, 1477–1502. [CrossRef]

72. Chen, C.; Xiao, Z.; Zhang, G. Stability assessment model for epimetamorphic rock slopes based on adaptive neuro-fuzzy inference
system. Electron. J. Geotech. Eng. 2011, 16 A, 93–107.

73. Altmann, A.; Tolosi, L.; Sander, O.; Lengauer, T.J.B. Permutation importance: A corrected feature importance measure. Bioinfor-
matics 2010, 26, 1340–1347. [CrossRef] [PubMed]

74. Viet-Ha, N.; Nhat-Duc, H.; Hieu, N.; Phuong Thao Thi, N.; Tinh Thanh, B.; Pham Viet, H.; Samui, P.; Dieu Tien, B. Effectiveness
assessment of Keras based deep learning with different robust optimization algorithms for shallow landslide susceptibility
mapping at tropical area. Catena 2020, 188, 104458. [CrossRef]

75. Sun Jishu, X.J.; Wang, J.; Li, W. Application of Relevance Vector Machine Model in Slope Stability Prediction. Sci. Tech. Eng. 2021,
21, 12234–12242.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

261





MDPI AG
Grosspeteranlage 5

4052 Basel
Switzerland

Tel.: +41 61 683 77 34

Mathematics Editorial Office
E-mail: mathematics@mdpi.com

www.mdpi.com/journal/mathematics

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s).

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from

any ideas, methods, instructions or products referred to in the content.





Academic Open 

Access Publishing

mdpi.com ISBN 978-3-7258-2356-7


