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University of Maribor

Maribor

Slovenia

Davood Khodadad
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Editorial

Climate Change and the Impacts on Power and Energy Systems

Younes Mohammadi 1,*, Boštjan Polajžer 2, Aleksey Palstev 3 and Davood Khodadad 1

1 Department of Applied Physics and Electronics, Umeå University, 90187 Umeå, Sweden;
davood.khodadad@umu.se

2 Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia;
bostjan.polajzer@um.si

3 Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden;
aleksey.paltsev@umu.se

* Correspondence: younes.mohammadi@umu.se

This collection, extracted from the Special Issue “Climate Change and the Impacts on
Power and Energy Systems”, features ten papers that address key topics related to the
resilience and adaptation of electrical power and energy systems in response to climate
change. Among the ten published papers, three are review papers [1–3] and the remaining
seven are research articles [4–10], with the final paper authored by the Guest Editorial team.

The following is a brief summary of these papers, intended as a reference for readers
of this collection.

With rising greenhouse gas emissions, the thermal demands of buildings are increas-
ingly tied to climate conditions. Raimundo and Oliveira [4] examine Heating, Ventilation,
and Air Conditioning (HVAC) energy requirements for various building types in Mediter-
ranean climates, finding that energy efficiency can be enhanced through the strategic use
of insulation and shading. Buonanno et al. [5] investigate photovoltaic (PV) energy fore-
casting using machine learning and weather models, demonstrating that linear models can
effectively refine predictions when data are limited. Gómez-Beas et al. [6] utilize stochastic
flow analysis to optimize mountain-based run-of-river hydroelectric plants, revealing that
the impacts of rainfall can be mitigated with storage solutions to significantly enhance
operational efficiency.

Osawa [7] evaluates residential energy configurations incorporating a bidirectional
Electric Vehicle (EV) power supply, suggesting that battery storage and Vehicle-to-Home
(V2H) systems reduce emissions and improve cost-effectiveness, particularly for house-
holds with variable parking durations. Tratnik and Beković [8] analyze the impact of
Slovenia’s abolition of net metering, finding that aggregators and battery storage enhance
cost savings and energy self-sufficiency in the absence of net metering. Wang et al. [9]
conduct a land eligibility study related to Greece’s decarbonization efforts, concluding
that solar installations have a greater potential impact than wind installations, despite
spatial limitations.

In Scandinavia, particularly Norway and Sweden, Mohammadi et al. [10] explore the
potential impacts of climatic indices, such as the North Atlantic Oscillation (NAO) and the
Atlantic Meridional Overturning Circulation (AMOC), on winter temperatures. They assess
how these impacts influence electrical power systems, specifically in terms of renewable
energy generation and increased power demands during colder winters. Cooper et al. [1]
review anomaly detection in power system state estimation, discussing the potential of
Artificial Intelligence (AI) and data-driven approaches to meet the evolving needs of future
smart grids. Ekonomou and Menegaki [2] focus on building energy usage, emphasizing
the need to transform energy systems by employing sustainable practices to withstand
climate impacts. Finally, Moriarty and Honnery [3] critically evaluate both conventional
and geoengineering solutions to prevent catastrophic climate change, stressing the urgency
of reducing global consumption through accelerated policy measures.

Energies 2024, 17, 5403. https://doi.org/10.3390/en17215403 https://www.mdpi.com/journal/energies1
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In summary, this Special Issue collectively underscores the critical need for adaptable,
resilient power and energy systems, along with innovative climate strategies, to ensure
energy sustainability amid escalating climate challenges. We extend our gratitude to the
Academic and Managing Editors, as well as the reviewers, for their valuable contributions.
Editing these papers has been a rewarding experience. Given the breadth and importance
of this topic, we are pleased to present a second edition, titled “Climate Change in Power
and Energy Systems: Challenges, Innovations, and Solutions”, and look forward to continued
contributions from researchers worldwide.

Author Contributions: Y.M., B.P., A.P. and D.K.; writing—review and editing. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Kempe Foundation (Kempestiftelserna) (https://www.
kempe.com/, accessed on 1 November 2022), grant (funding) number JCK22-0025.
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Investigating Winter Temperatures in Sweden and Norway:
Potential Relationships with Climatic Indices and Effects on
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and Davood Khodadad 1

1 Department of Applied Physics and Electronics, Umeå University, 90187 Umeå, Sweden;
davood.khodadad@umu.se

2 Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden;
aleksey.paltsev@umu.se

3 Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia;
bostjan.polajzer@um.si

4 Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy;
seyedmahdi.miraftabzadeh@polimi.it

* Correspondence: younes.mohammadi@umu.se or mohammadi.yunes@gmail.com; Tel.: +46-0738209544

Abstract: This paper presents a comprehensive study of winter temperatures in Norway and northern
Sweden, covering a period of 50 to 70 years. The analysis utilizes Singular Spectrum Analysis (SSA) to
investigate temperature trends at six selected locations. The results demonstrate an overall long-term
rise in temperatures, which can be attributed to global warming. However, when investigating varia-
tions in highest, lowest, and average temperatures for December, January, and February, 50% of the
cases exhibit a significant decrease in recent years, indicating colder winters, especially in December.
The study also explores the variations in Atlantic Meridional Overturning Circulation (AMOC) varia-
tions as a crucial climate factor over the last 15 years, estimating a possible 20% decrease/slowdown
within the first half of the 21st century. Subsequently, the study investigates potential similarities
between winter AMOC and winter temperatures in the mid to high latitudes over the chosen locations.
Additionally, the study examines another important climatic index, the North Atlantic Oscillation
(NAO), and explores possible similarities between the winter NAO index and winter temperatures.
The findings reveal a moderate observed lagged correlation for AMOC-smoothed temperatures,
particularly in December, along the coastal areas of Norway. Conversely, a stronger lagged correlation
is observed between the winter NAO index and temperatures in northwest Sweden and coastal areas
of Norway. Thus, NAO may influence both AMOC and winter temperatures (NAO drives both
AMOC and temperatures). Furthermore, the paper investigates the impact of colder winters, whether
caused by AMOC, NAO, or other factors like winds or sea ice changes, on electrical power and
energy systems, highlighting potential challenges such as reduced electricity generation, increased
electricity consumption, and the vulnerability of power grids to winter storms. The study concludes
by emphasizing the importance of enhancing the knowledge of electrical engineering researchers
regarding important climate indices, AMOC and NAO, the possible associations between them and
winter temperatures, and addressing the challenges posed by the likelihood of colder winters in
power systems.

Keywords: winter temperatures; Atlantic Meridional Overturning Circulation (AMOC); weakening;
North Atlantic Oscillation (NAO); Singular Spectrum Analysis (SSA); electrical power and energy systems

1. Introduction

1.1. Problem Description

Climate change has heightened global concerns, imposing a comprehensive under-
standing of its regional effects to develop effective adaptation strategies. In Scandinavia,

Energies 2023, 16, 5575. https://doi.org/10.3390/en16145575 https://www.mdpi.com/journal/energies3
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Sweden and Norway face severe winters that rely heavily on stable electrical power and
energy systems to meet specifically heightened heating demands. However, studies such
as [1,2] indicate that climate change may induce substantial alterations in the Atlantic Merid-
ional Overturning Circulation (AMOC), as a crucial component of global oceanic circulation.
The AMOC includes a northward surface warm water flow (upper 1000 m) of North At-
lantic drift, which is balanced by the southward cold deep flow (1000–5000 m) [2–4]. It
plays an essential role in climate by transporting heat, freshwater, and carbon [5–7]. AMOC-
associated poleward heat transport substantially contributes to the North American and
continental European climates [8,9]. The Gulf Stream (GS), in contrast to other western
boundary currents, is expected to slow down because of the AMOC weakening. North
Atlantic Oscillation (NAO) is also another key climatic index. According to a traditional
definition, it is “the difference of normalized sea level pressure anomaly between Iceland
and the subtropical eastern North Atlantic” [10]. The changes in AMOC/GS, in terms of
weakening, have the potential to impact winter temperatures in the European climate [11]
and possibly the regions of Scandinavia. The impact of NAO on the AMOC and/or cli-
mate change is also probable [12,13]. Consequently, investigating the possible influence of
AMOC/NAO on Sweden and Norway’s winter temperatures becomes imperative to assess
the vulnerability of their power and energy systems. Hence, there is a knowledge gap in
analyzing historical temperature data, examining AMOC/NAO variations, and evaluating
their potential effects on power generation and energy systems.

1.2. Literature Review

Several studies have been conducted on the AMOC and GS patterns and trends. The
variability in the AMOC is credited to wind forcing (interannual time) and to geostrophic
forces (interannual to decadal scales) [14]. Increased freshwater fluxes from melting Arctic
Sea and land ice can make “open-ocean convection” and “deep-water formation” weaker in
the Labrador and Irminger Seas, leading to AMOC weakening [11,15]. While one study [15]
has suggested that the AMOC has weakened over the past 13,000 years, and another
study [16] suggested slowing on faster timescales, there is insufficient data-based evidence
to support a conclusion of AMOC-weakening strength over the 20th century in a long-term
view [17] or the last 50 years [14]. Some studies have shown long-term trends [18,19];
however, combining sparse data and large cyclic variability may also cause an improper
understanding [20]. Later, several high-resolution modeling studies, constrained with
limited data, suggested that the detected AMOC weakening at 26◦ N from 2004 is mainly
due to natural variability and that anthropogenic forcing has not yet produced a substantial
AMOC weakening. In addition, direct observations of the AMOC in the South Atlantic
fail to demonstrate an anthropogenic trend unambiguously. Moreover, under a higher
scenario (RCP (Representative Concentration Pathway) 8.5) in CMIP5 (Coupled Model
Intercomparison Project Phase 5) simulations, the AMOC will likely weaken over the
21st century [21], with a decline ranging from 12 to 54% (with uncertainty in the AMOC
behavior projections). Another study [22] predicts a possible AMOC decline between 34
and 45% over the 21st century. According to this study, in a lower scenario, such as RCP4.5,
CMIP5 models forecast a 20% AMOC weakening within the first half of the 21st century,
followed by a subsequent stabilization (minor recovery). The projected AMOC weakening
will be counteracted by deep ocean warming (below 700 m), which will be disposed to
make the AMOC strong. The saltiness transport versus observations in the models, as a
criterion of AMOC stability, showed complicated situations.

However, some argue that coupled climate models require correction for the known
bias and that AMOC variations could be even larger than the gradual decreases predicted
by most models, explaining if the AMOC were to entirely shut down and “flip states”.
Any AMOC slowdown could result in less heat and CO2 absorbed by the ocean from the
atmosphere, which is positive feedback to climate change [21].

Zhang et al. [23] analyzed data obtained from temporally homogenous two-satellite
merged altimeter observations from 1993 to 2016 and inferred that the transport, max-
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imum surface speed, and meridional location of the GS exhibit negative linear trends
east of 61◦ W at the 95% level, although they are small and not significant between 72
and 61◦ W. Additionally, the weakening trend of GS in the 1993–2016 range is combined
with a southward-shifting path, which is associated with the NAO decline in 2010 and a
30% reduction in the AMOC, indicating the link between NAO, AMOC, and sea level.

Andres et al. [24] verified that the mean GS transport at 68.5◦ W within 2010–2014
is almost 10% weaker than that observed by a moored array in the late 1980s. The sixth
assessment report of the intergovernmental panel on climate change (IPCC) [25] has stated
that GS collapse is unlikely, and although GS decreases with a weakening in the AMOC, it
will not shut down in a warming climate. Climate models confirm that GS weakening in
the 21st century is due to global warming [26]. It is suggested that the changes in the GS
strength are related to the variations in the AMOC, and the GS will likely weaken due to
the weakening of AMOC in a warmer climate [26–29]. Chen et al. performed ocean general
circulation model (OGCM) experiments and concluded that AMOC weakening was caused
by a global warming-induced surface freshening of the high-latitude North Atlantic, leading
to the GS weakening [27]. While IPCC is uncertain about the GS behavior as studied in [27],
the GS weakening is highly likely during the latter part of the 21st century [1]. Another
study [30] proposes that AMOC contributes 25% to maintaining a temperature climate in
North-Western Europe. On the other hand, the AMOC has experienced an unprecedented
decline over the past century as well as around 2009–2010. Regarding some models stated
in [30], this weakening by 2100 is 5 to 40% of the historical average state of a separate
model; while others predict 15 to 60% for the same period [30]. It is also suggested that the
GS is one of the reasons for the AMOC weakening [31]. However, having a proper model to
observe AMOC is important. For example, the study in [32] shows that the eddy-rich ocean
model VIKING20X is capable of representing realistic forcing-related and ocean-intrinsic
trends. A potential slowing of the AMOC, of which the GS is one key component, because
of increasing ocean heat content and freshwater-driven buoyancy changes, could have
dramatic climate feedback as the ocean absorbs less heat and CO2 from the atmosphere.
This slowing would also impact the climates of North American and European climates, as
stated in [21].

The major effects of a slowing AMOC are expected to be colder winters and summers
around the North Atlantic Ocean to the Norwegian Sea and small regional increases in
sea levels on the North American coast [33]. Refs. [34,35] estimated, on a global scale,
that the weakened AMOC will cause a 0.2 ◦C cooling in the global mean sea surface
temperature (SST) by 2061–2080. An increase in the frequency of winter extremes due to
AMOC weakening is investigated in [36]. The possible link between AMOC anomalies and
colder winters around 2009–2011 in Europe was studied in [37–39]. Later, in [40], the link is
understood with more evidence. In [41], the impact of AMOC weakening on the Europe
winter climate concluded a large temperature decrease; however, the analysis is general.

The impact of NAO on the AMOC and/or climate change has been studied in many
works. In [12], the relation between NAO, AMOC, and large-scale climate is mentioned. A
positive phase of NAO (NAO+) strengthens AMOC for timescales bigger than 20–30 years.
The study in [13] showed that one European blocking event (which is less movable) and
three NAO+ events contributed to the two heatwaves of July and August 2018.

Although some works have been conducted on the AMOC variations [42–44] and
NAO concepts [45,46], there is still a need to go further and firstly analyze historic tem-
perature data in particular countries (Norway and Sweden, in our case), and, secondly,
investigate any protentional relationships with climate indices such as AMOC and NAO.
The impact of colder potential winters on humanity, especially regarding electrical power
and energy systems, is another needed topic to be considered in terms of energy consump-
tion and generation, peak electrical loads, electrical grid planning (including renewable
energy sources), security of electricity supply, power grid resilience, and buildings’ energy
planning. One evident illustration is the rise in electricity consumption during colder win-
ters due to the substantial usage of electricity for heating. Additionally, extreme weather
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conditions like powerful winds and storms can lead to operational disturbances, potentially
resulting in power outages. Section 5 of this paper conducts an extensive literature review
on these matters to emphasize the significance of this topic for professionals in electrical
power and energy system engineering.

1.3. Contribution and Paper Organization

The contributions of this paper are made in a way to answer the following ques-
tions: What are the latest observations of AMOC and its components? Any evidence for
AMOC/GS weakening as local or long-term? What are the long-term trends in winter
temperatures for Sweden and Norway? Is there any upward/downward trend for the
temperatures as highest, lowest, or average in the different winter months, and if so, how
is it for selected locations in Sweden and Norway? Can any evidence be found to show
some protentional similarity between AMOC variations and the winter temperatures in the
mid to high latitudes? Does another climate index, NAO, have a possible impact on winter
temperatures in the studied locations? Can possible colder winters affect the electrical
power and energy systems, and are the multidisciplinary researchers prepared to address
the colder winters, whether caused by the investigated climatic indices in this study or
other factors like winds or sea ice changes, and associated changes in the electrical power
and energy systems? In order to address these questions, we analyzed the latest measure-
ments of AMOC and its components. Then, we selected six locations to investigate winter
temperatures in terms of highest, lowest, and average values over a span of approximately
50 to 70 years. Two locations in northern Sweden were chosen due to their historically
very cold winters in the past, making it important to predict any potential colder winters
in those areas. Additionally, four locations in Norway, ranging from northern to almost
southern regions, were selected based on data availability. This selection allows us to
assess the potential impact of climatic indices on the entire coastline of Norway, which
is expected to be more susceptible to the effects of the indices compared to other regions
in the country. Our results, obtained from analyzing long-term trends of temperatures,
yearly averages of the climatic indices and temperatures, and lagged correlations between
winter AMOC and temperatures as well as between winter NAO and temperatures show a
stronger possible link of NAO-winter temperatures (particularly December) for northwest
Sweden and coastal areas in Norway, with more confidence for most of the Norwegian sites.
The results also confirm that plans in the face of colder winters in those countries must
commence for the different aspects and parts of the electrical power and energy systems.

The remainder of the paper is organized as follows: Section 2 presents the latest
datasets on AMOC variations from the Rapid Climate Change (RAPID) monitoring pro-
gram [42], the winter temperatures’ dataset extracted from the Norwegian Climate Service
Centre and the Swedish National Knowledge Centre for Climate Change Adaptation for the
selected sites [47,48], and daily variations in the NAO index, based on 1000 hPa pressure
height, obtained from [49]. Section 3 describes the signal processing methods used in this
study. The results of the variability of AMOC (and its components), winter temperature
variations over the selected locations, the possible similarity between winter AMOC and
winter temperatures, and the potential impact of other variables, particularly NAO, on
AMOC and/or temperatures are presented in Section 4. Section 5 states some findings
on the potential impact of colder winters on the operation of electrical and energy power
systems, and, finally, Section 6 concludes the paper.

2. Dataset and Selected Locations

To examine the trend of the AMOC, the most recent daily (a daily aggregation on
the half-day measurements is performed) time-series data of AMOC, and its components
(at 26.5◦ N line) are utilized from the RAPID monitoring program [42]. The dataset is the
daily measurements in Sverdrup (Sv (1 Sv = 106 m3 s−1)) from 7 April 2004 to 10 December
2020. However, it is important to note that while the RAPID dataset has facilitated a better
understanding of the AMOC complexities, some literature, such as [50,51], has identified
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certain limitations and biases associated with it. For instance, Sinha et al. [50] suggest that
the estimated variability at 26.5◦ N is robust on seasonal–interannual timescales, but the
presence of geostrophic transport results in a significant mean bias with minimal variability.
McCarthy et al. [51] also mention that AMOC mooring arrays of RAPID (and SAMBA
(South Atlantic Moored Buoy Array at 34.5◦ S)) have limited coverage on continental
shelves and face challenges in observing deep ocean flows. Nevertheless, this study relies
on the advantages presented by utilizing the RAPID dataset for AMOC investigations, as
reported in [43,44], among the other relevant studies. These data estimate the strength
of the overturning circulation in the North Atlantic at 26.5◦ N. As shown in Figure 1, the
northward red arrow is a schematic of warm surface flow (top 1000 m) of North Atlantic
drift, balanced by the southward blue arrow regarding deep cold flow (1000 to 5000 m).
Both red and blue arrows together make AMOC. However, GS as a key component of
AMOC, by default, flows northward. The dataset of daily NAO index variations since 1950
is obtained from [49], with values derived from 1000 hPa pressure height. Additionally, to
examine potential correlations between climatic indices and temperatures in mid to high
latitudes, six locations are selected, as depicted in Figure 1 and described in Table 1.

December, January, and February are selected as the winter months for the countries
mentioned in Table 1, and their temperatures are extracted from the Norwegian and
Swedish centers for climate adaptations [47,48]. The initial time resolutions for temperature
measurements are 1 h, 2 h, 3 h, 6 h, and half-day.

 
Figure 1. The geographical representation of the six selected locations in Northern Sweden and
Norway (Loc. 1 to 6). The part of the northward red arrow (warm surface flow of AMOC) and the
southward blue arrow (deep cold flow of AMOC) are marked. However, the real circulation of the
arrows is from the Antarctic Ocean to the Greenland Sea and back.
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Table 1. Candidate temperature measurement locations.

Location City/Country
Measurement Period Observed

Years No.

Measurement
StationFrom To

1 Kiruna/Sweden 1958 2020 63 Kiruna
Flygplats

2 Katterjakk/Sweden 1970 2019 50 Katterjåkk
3 Fruholmen/Norway 1955 2022 68 SN94500
4 Torsvag/Norway 1956 2021 66 SN90800

5 Tromsø-
Langnes/Norway 1965 2022 58 SN90490

6 Nordøyan/Norway 1951 2021 71 SN75410

In order to create an integrated dataset for winter temperatures, the temperature
values are aggregated daily (as average/maximum/minimum). It is important to note
that the authors of this study first considered the daily temperature measurements and
found that they had a limited impact on the correlation analysis. Hence, to ensure a
smoother representation of temperature variability and better alignment with the daily
AMOC and/or NAO time series, an averaging with a running 10-day window is then
applied to temperature variations. This approach is effective in reducing the discontinuities
in the data resulting from connecting different months over the years. The choice of a
“10-day time window” was based on the consideration that each month typically consists of
approximately 30 days. While alternative window sizes such as 5, 15, or 20 days were also
considered, they did not impact the analysis of long-term trends or yearly averages. The
selected 10-day window allows for a more meaningful comparison of winter temperature
variations with AMOC and/or NAO, particularly for correlation analysis.

Examining the criteria of average, lowest, and highest temperatures is ascertaining
potential disparities in their respective temperature trends. It is important to consider that
the lowest temperatures recorded at midnight may have originated from colder initial
conditions, whereas the highest temperatures may not have, or to a lesser extent. The
three winter months were examined individually to conduct a comprehensive analysis and
ascertain the most distinct month and potentially the most impacted month in terms of
climatic indices. This analysis holds particular significance for regions such as northeast
Sweden and the coastal areas of Norway, where the characteristics of winter months vary
in terms of cooling intensity, wind patterns, and other contributing factors. However, to
provide a comprehensive assessment and encompass the entirety of the winter season, the
analysis also includes the collective temperatures across all winter months.

3. Methods

The results presented in [52], regarding the use of composite analyses with an ex-
ample for heat wave-SST, highlight the importance of applying comprehensive statistical
approaches before making physical inferences on apparent climate associations. Hence, it is
important to employ true statistical/signal processing methods for our analysis in this study.
A recent method, based on the singular spectrum analysis (SSA (SSA algorithm in this study
is motivated by its usefulness in situations where the periods of seasonal or oscillatory
trends are unknown; additionally, the number of such trends is not predetermined)) [53,54],
is employed to extract the existing patterns within the time series by decomposing them
into their principal parts. This method has not been previously used in such studies. In
this way, AMOC and its components, as well as each of the average/lowest/highest winter
temperatures, are decomposed into a long-term trend (slowly varying component) and
seasonal/variational/oscillatory trends (periodic components—a minimum of one trend is
expectable from the SSA analysis) to show the oscillations and a noise/residual signal. The
steps in SSA to decompose the trends in the time series X = (x1, . . . , xN) with length N are
as follows: 1—embedding X as mapping into K subseries of the X as lagged vectors with
dimension L (L is selected as a number within [3, N/2] automatically with the function
trendcomp in MATLAB R2022b) (1) in a trajectory/embedding matrix (Henkel matrix), as
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columns (2); and 2—applying singular value decomposition (SVD) [55] on the trajectory
matrix:

Xi = (xi, . . . , xi+L−1)
T , 1 < L < N; 1 ≤ i ≤ K; K = N − L + 1 (1)

X = [X1, . . . , XN ] =

⎡
⎢⎣

x1 · · · xK
...

. . .
...

xL · · · xN

⎤
⎥⎦ (2)

Once the eigenvalues of matrix X are calculated, the decomposition of the time series
is completed. Any separation/decomposition of times series X needs the separation of
Henkel matrix X and a set of eigenvalues produced by the SVDs of each separated part. The
primary focus of this study is to analyze the long-term trends observed in the temperature
data and the AMOC. However, seasonal trends specifically for AMOC and its components
are also presented. Furthermore, yearly averages are calculated for the temperature time
series, AMOC, and the NAO index, providing insights into the anomalies within the trends.
The Pearson correlation coefficient [56] is employed at lag zero and at its maximum lagged
value to evaluate the similarity between the AMOC and its components. These correlation
measures serve as quantitative indicators to assess the degree of association between the
AMOC and its constituent elements. The potential relationships between winter AMOC
and temperatures, as well as winter NAO and temperatures, are examined using two
approaches. First, the yearly average of winter AMOC, NAO, and winter temperatures
(spanning the entire winter season) was analyzed. Second, lagged-correlation analysis
(cross-correlations) [57] is conducted between the winter climatic indices and temperatures
over different time lags (in years) for different months of winter as well as for the entire
winter season. The maximum correlation values are then identified. A higher positive
correlation at positive lags could indicate a similarity or potential link between the winter
climatic indices and winter temperatures.

4. Results

This section presents the findings related to the observations of AMOC, winter tem-
perature analysis at selected locations, the possible connection between winter AMOC and
temperatures, and the influence of other variables, such as winter NAO, on AMOC and/or
temperatures.

4.1. AMOC Variations

First, the variability of the AMOC transport using the latest existing recordings is
explained using two approaches. Initially, the AMOC is divided into its components, i.e.,
Florida current (GS transport), meridional Ekman transport, and upper mid-ocean (UMO)
transport between the Bahamas and the Canary Islands, as shown in Figure 2, in terms of
overturning strength (OS in Sv) versus year. GS transport (always observed positive) is
based on electromagnetic cable measurements; Ekman transport (observed as sometimes
negative) is based on the interaction between wind and ocean surface; while the UMO
transport (always observed negative) is the vertical integral of the transport per unit depth
down to the deepest northward velocity (~1100 m) on each day. Overturning transport
(AMOC) is the sum of the three explained components and represents the maximum
northward (positive values) transport of upper-layer waters each day.

The correlation analysis between the daily time series of AMOC and its components is
conducted, and the results are presented in Figure 3. Figure 3a displays Pearson coefficients
at zero lag, Figure 3b shows the corresponding p-values, and Figure 3c illustrates the
maximum or minimum lagged-correlation values. All Pearson coefficients in Figure 3a
have p-values that are very close or equal to zero indicating statistically significant. These
p-values are smaller than the significant obtained level of 3.24 × 10−28, corresponding to
a confidence level of 100 × (1–3.24 × 10−28)~100%. Therefore, the observed correlation
values are considered significant. The results reveal the highest positive similarity between
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AMOC and its Ekman component as +0.69 at zero lag (with a p-value of zero) and as
+0.692 for a one-day lead. This shows a strong direct impact of the Ekman component,
which represents wind stress, in transporting heat into the AMOC during the daily periods.
This finding is consistent with a previous study [44] that also confirmed this relationship
for periods shorter than two months. Additionally, the maximum negative correlation
(minimum) of −0.52 at zero lag and −0.552 at a one-day lag is observed between the GS
and UMO. These components flow in two different directions and the negative correlation
is also supported by [44] for timescales shorter than 1 year. Furthermore, Figure A1 in
Appendix A presents the results using two alternative methods to calculate correlations:
Kendall and Spearman. The Pearson and Spearman methods yield almost similar results,
while the Kendall method shows lower correlation values in comparison.

Figure 2. Daily time series of AMOC and its components from 7 April 2004 to 10 December 2020.
Positive transports correspond to northward flow, while negative values show southward flow.
AMOC negative values are marked by *.

  

(a) (b) (c) 

Figure 3. Correlation between daily time series of AMOC and its components: (a) Pearson coefficients;
(b) p-values corresponded; (c) Minimum/Maximum Pearson lagged correlation.

In the second kind of AMOC analysis, the AMOC measurements (Figure 4a) are
decomposed into three parts according to the SSA method mentioned in Section 3: a
long-term trend, a seasonal trend, and the residual (noise) signal as shown in Figure 4b–d,
respectively. Additionally, the analysis of critical change points (this method finds the years
in which the AMOC change most significantly in terms of the mean value [53,54]; in this
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way, the AMOC variations can be divided into a finite number of regions (selected by the
user as far as is possible by the algorithm in [53]), and the sum of the residual (squared)
error from its local mean can be minimized for each region separately) identified three
critical years (Figure 4a) and four different time windows (with different mean values over
that period): the beginning of 2009, the end of 2009, and the spring of 2010. The minimum
value of AMOC is observed in the interval 2009–2010. However, instantaneous minima are
also recorded at the beginning of 2013 and 2018. The long-term trend (Figure 4b) shows a
fast decrease from 2004 to 2009 from 18 to 16.5 Sv, followed by a slight decrease from 2009
to 2010, which remains almost constant from 2010 to 2012. Small decreases are observed
from 2012 to 2016, and after that, AMOC changes its direction again toward an increase
(i.e., it seems recovering), although some changes between 2018 and 2019 are also observed.
However, the values at the end of the observation period (and of 2020) are still lower than
the ones in 2004. The difference between AMOC values from 2004 to 2020 shows a general
7% decrease for 16 years.

Figure 4. Overturning strength of AMOC (Sv): (a) Daily time series; (b) Long-term trend; (c) Oscil-
lation trend; (d) Residual. The dashed vertical lines in (a) show the points of the year at which the
mean of transport (red horizontal lines in (a)) changes most significantly.

If the decreasing speed remains constant, a decrease of about 20% (with low confidence)
might be estimated over the first half of the 21st century. Next to [14–17], which show the
weakening of AMOC at a fast rate over the 20th century or within the last 50 years, ref. [21]
has predicted a 20% weakening of the AMOC during the first half of the 21st century
and a stabilization and slight recovery after that. The seasonal variations in AMOC are
cyclic, with a decreasing magnitude before 2009 and a constant magnitude after that. The
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high-frequency variations have shown a minimum value of −21 Sv and a maximum of
+15 Sv, as shown in Figure 4d. However, the range of noise values changes mostly from −10
to +10 Sv, which is similar to the 10-day measurements in [44] for the period of 2004–2018.

Figure 5 shows the long-term and seasonal variations for AMOC components. The
general long-term trends show GS weakening (or at least decreasing), as well as strength-
ening of Ekman, and strengthening of UMO in its negative direction (weakening in the
positive direction). However, the behavior is different for the periods after 2017–2018. The
“GS weakening in the same direction as AMOC” and the “strengthening of UMO in the
opposite direction” are the main key for the AMOC weakening, despite Ekman increasing,
as observed in Figures 4b and 5a,c,e. Although a high correlation is observed between
daily measurements of AMOC and Ekman (Figure 3), it is clear (Figures 4b and 5a) that
AMOC is governed/dominated by UMO. This result was also confirmed in [44] for time
intervals longer than a year (our case, daily from 2004 to 2020). The minimum value of GS
was observed around 2010. The cyclic variation for the three components also shows that
the behavior before 2009–2011 is different from that after that period.

Figure 5. AMOC components in terms of long and seasonal trends: (a,c,e) Long-term trends for
UMO, GS, and Ekman; (b,d,f) Seasonal trends for UMO, GS, and Ekman.

To examine the anomalies within the AMOC variations and its components, a yearly
average (based on the daily time series shown in Figure 2) along with its corresponding
yearly standard deviation is depicted in Figure 6. The results in Figure 6 are more similar
to the results published in (Figure 4, [44]) for the AMOC and its component’s interannually
variability than to long-term trends in Figures 4b and 5a,c,e, in which the SSA algorithm
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is applied by employing SVD analysis on the trajectory matrix including lagged sub
time series for each of AMOC and its components, separately. The mean and standard
deviation for the different transports in the year 2020 and after that are 17 ± 4.3 Sv (AMOC),
31.3 ± 3.2 Sv (GS), 4.3 ± 3.4 Sv (Ekman), and −18.5 ± 3.7 Sv (UMO). The minimum values
of AMOC are observed first for 2009–2010 and then for 2010–2011, as dashed vertical
red lines in Figure 6a. The first decline period corresponds to the UMO, and the latter
corresponds to Ekman. In 2019–2020, another local minimum for AMOC was also observed,
corresponding to the year regarding the lowest value of GS. Another observation is the
decreasing value for AMOC and UMO before 2009 and the recovery after that.

Figure 6. The annual average of AMOC and its components in (Sv): (a) AMOC; (b) UMO; (c) GS;
(d) Ekman. OS values are given as mean, + standard deviation, and − standard deviation. Red
dashed lines show the standard deviation in (a–d).

Note that although the long-term trend of AMOC (Figure 4b and the results presented
in [44]) from 2004 to 2020 shows a small recovery after 2014, the under-study interval is
from 2004 to 2020 (according to the availability of data in RAPID AMOC program for
17 years); hence, the trend looks somehow similar to averaged variations for a defined
window (Figure 6a). Considering more data on AMOC and GS, which is essential in the SSA
algorithm, would conclude more precise results for a long-term trend so that the recovered
part is negligible. Moreover, a light decrease in AMOC is observed in 2012 and 2014, and
a more severe decrease is seen in 2019, as shown in Figure 6a for the winter AMOC. The
AMOC trend can be seen as an almost constant trend followed as weakened, such as the
results presented in [35], in which three periods are divided for AMOC strength: before
2000 (almost constant), 2000–2020 (weakening), and 2020–2050 (forecasted weakening with
more strength). We aimed to investigate and confirm whether the AMOC is weakening in a
general sense based on the available data.
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4.2. Winter Temperature Variations at Candidate Locations

This section provides an analysis of winter temperature variations in the selected
locations using two approaches:

(a) An investigation of anomaly detection for all winter months through a yearly average
analysis. This analysis covers the period from 2004 to the present, depending on the existing
temperature data and considering the availability of AMOC data (Figure 7).

Figure 7. Yearly winter (December, January, and February) average temperatures for the selected
locations 1 to 6 from 2004 to present (a–f).

As shown in Figure 7, clearly, the winter months in locations 1 and 2 in Sweden are
much colder than the other locations in Norway. The winter temperatures over the years
can be divided into three periods: when February is the coldest month (before 2012), when
February is becoming warmer, some years even the warmest month (2012–2017), and
when February is close to January temperatures (after 2017). It also shows that February
is somehow becoming warmer over time in the selected locations. The local minima are
observed in 2007, 2009, 2010, 2012, 2018, and 2019. These anomalies in minimum values are
clearer in February. Looking at the yearly average of December, specifically for locations
3, 4, and 6, shows that there is a downward trend before 2010, an upward after that, and
again downward till the end of the observation period.
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(b) A long-term analysis of temperature variations, focusing on daily lowest, highest, and
average temperatures for all winter months. This analysis spans a period of at least 50 years
and, at most, 71 years (Figures 8–13 and Table 2). The SSA’s capabilities in noise reduction,
localized trend analysis, interpretability, and handling missing values and outliers (for
example, the values at the connection point of two similar months over different years in
the temperature time series) make it a powerful tool for extracting long-term temperature
trends that may not be achievable with traditional methods.

 

Figure 8. The daily highest temperatures (with a 10-day running averaging window) for all winter
months in location 1: (a) Time series; (b) Long-term trend. Same legend as used in (b) apply in (a).

 

Figure 9. The daily highest temperatures (with a 10-day running averaging window) for January
and February in location 2: (a,b) Time series; (c,d) Long-term trend. The arrows in (c,d) show the
beginning and end of the downward sector in the long-term trend marked by an ellipse.
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Figure 10. The daily highest temperatures (with a 10-day running averaging window) for December
and January in location 3: (a,b) Time series; (c,d) Long-term trend. The arrows in (c,d) show the
beginning and end of the downward sector in the long-term trend marked by an ellipse.

 
Figure 11. The daily temperatures (with a 10-day running averaging window) in location 4: (a,c) Time
series and long-term trend for average temperature in December; (b,d) Time series and long-term
trend for highest temperature in February. The arrows in (c,d) show the beginning and end of the
downward sector in the long-term trend marked by an ellipse.
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Figure 12. The daily highest temperatures (with a 10-day running averaging window) for January
and February in location 5: (a,b) Time series; (c,d) Long-term trend. The arrows in (c,d) show the
beginning and end of the downward sector in the long-term trend marked by an ellipse.

Figure 13. The daily temperatures (with a 10-day running averaging window) in location 6: (a,c) Time
series and long-term trend for lowest temperature in December; (b,d) Time series and long-term
trend for average temperature in January. The arrows in (c,d) show the beginning and end of the
downward sector in the long-term trend marked by an ellipse.
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Figures 8–13 showcase a chosen set of temperature plots for each location, with a
specific emphasis on the highest temperatures. These plots represent a selection from
various potential combinations, including average, highest, and lowest temperatures, for
December, January, and February, a total 6 × 3 × 3 = 54 time series. The long-term trend of
December/January/February highest temperatures in location 1 for 63 years from 1958 to
2020 (Figure 8b) shows an increase with a constant slope from −9.5 to −5 ◦C (December),
−11 to −7 ◦C (January), and −9 to −7 ◦C (February). This location seems to be affected
more by global warming since the long-term trend is just increasing.

Figure 9a shows the highest temperatures for January in location 2 (northwestern
Sweden). The long-term trend (Figure 9c) shows the increased temperature from −9.5
(1970) to −6.85 ◦C first (around 2011) affected by global warming (+2.15 ◦C increasing
in 42 years). Between the end of 2011 and the end of 2019, the temperature decreased
from −6.85 to −7.9 ◦C, as indicated by an ellipse in Figure 9c (−1.05 ◦C decreasing in
9 years). The downward part may be attributed to specific reasons. A possible scenario is
explained here. According to the results of some of the literature, such as [35], in which a
broad range of AMOC variations are studied and show AMOC weakening (and also the
general view of AMOC in Figure 4b, which shows weakening), the marked area, which
has a faster speed of decreased temperatures than the increased temperatures before that,
may show a possible role of AMOC weakening. Note that the direct impact of global
warming is the warming and increasing temperatures; however, an indirect impact is
on the AMOC weakening, which, by itself, has the task to transfer warm surface water.
Moreover, the speed of AMOC weakening has been confirmed more often than the speed of
global warming [35]. Nevertheless, these observations could not be detected by the yearly
average temperatures shown in Figure 7b from 2004 to 2019. Figure 9b shows the highest
temperatures for February in location 2. The long-term trend (Figure 9d) shows, first, some
small variations by 2005. Between 2005 and 2010, the temperature decreased and then
increased until 2014. After that, a clear decrease in temperature is seen from −8.25 ◦C to
around −9.1 ◦C by the end of 2019, as indicated by an ellipse in Figure 9b. The observations
for the marked period could be also detected by the yearly average temperatures shown in
Figure 7b from 2014 to 2019.

Figures 10–13 show the daily temperatures for locations 3 to 6, respectively. From the
first year of study to around 2017/2019 (for location 3), 2017/2020 (for locations 4 and 6),
and 2016/2017 (for location 5), there is a slight (linear/nonlinear) upward long-term trend.
This is followed by a downward trend, shown by an ellipse in Figures10c,d, 11c,d, 12c,d
and 13c,d.

An analysis of the results from the six locations (some of which are depicted in
Figures 8–13) reveals a general long-term temperature trend indicating an increase, which
can be attributed to global warming. However, it is noteworthy that 50% (27) of these vari-
ous combinations of long-term trends have shown a considerable decrease in recent years.
Additional details regarding the downward long-term temperature trends are presented in
Table 2. The rates of decreasing temperatures, represented as slopes of linear trends, are
sorted by color in the column before the last one. In this column, December exhibits the
highest decreasing rate in locations 4 and 6. The average rate of change in decreasing tem-
peratures per location is as follows: 0.09, 0.04, 0.088, 0.059, and 0.076 ◦C/year for locations
2 to 6, respectively. As seen, locations 2, 4, and 6 have experienced colder temperatures
in recent years. In order to further examine the underlying factors contributing to the
observed downward trends in long-term winter temperatures, indicating the possibility
of colder winters in recent years, a thorough and detailed analysis is required. This inves-
tigation should involve studying temperature change maps and conducting analyses to
establish connections between potential causes and the decrease in temperatures, as well
as explaining why these effects are particularly prominent in December and vary across
different locations. While multiple factors could contribute to these downward trends,
Sections 4.3 and 4.4 will provide valuable insights into two significant climatic indices,
namely, AMOC and NAO, as potential explanatory factors.
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4.3. Possible Similarity between Winter Variations in AMOC and Temperatures of
Candidate Locations

Previous research, including the study referenced as [58], has demonstrated that a
1 Sv alteration in the AMOC can lead to approximately a 0.3 ◦C change in SSTs for decadal-
centennial changes, i.e., a 0.03 ◦C/(year. Sv). Moreover, these studies have also identified
similarities in the variations of AMOC and SSTs. However, they did not pay attention to
the regional winter temperatures affected by AMOC variations.

In a more recent investigation [59], an artificial weakening of the AMOC was con-
ducted, reducing it by an average of 57% over 60 years, equivalent to an average of 7.55 Sv,
i.e., a 1 Sv weakening for 7.94 years. The results indicated that a weakened AMOC has
a cooling effect on the global near-surface air temperature in the Northern Hemisphere,
with an average decrease of −1.09 ◦C/year to −0.14 ◦C/(year. Sv). The majority of cooling
occurs in the Northern Hemisphere, which experiences an average temperature decrease of
−2.09 ◦C/year to −0.26 ◦C/(year. Sv). Notably, the most significant changes are observed
during winter, with a cooling effect of −2.42 ◦C to −0.3 ◦C/(year. Sv). These findings sug-
gest that other factors, such as regional warming/cooling, can also influence the magnitude
of cooling associated with a weakened AMOC. However, it is important to note that the
analysis in the study [59] is conducted using artificially weakened AMOC simulations and
climate models, rather than real observational data.

With the information derived from the previous paragraph, this section examines the
possible similarity between winter variations in AMOC and winter average temperature
variations in the selected locations. Figure 14 illustrates the yearly average variations in
AMOC and temperatures at the locations throughout the entire winter season. This analysis
covers the period from 2004 to the present, depending on the existing temperature data and
considering the availability of AMOC data, which covers from April 2004. The observations
from Figure 14 reveal the winter AMOC deep anomalies in 2010 and 2019. The yearly
average winter temperatures across all locations indicate a synchronized response to the
winter temperatures without any time lag before 2010. Notably, the light and deep minima
observed in AMOC in 2007 and 2010, respectively, coincide with the winter temperature
minima. From 2010 to 2016, specifically for locations 3 to 6, a slight positive lag can be
observed between the AMOC and temperatures. However, starting from 2016 onwards,
it appears that there is a larger time lag between smaller AMOC variations and larger
variations in temperature. It is also noteworthy to pay attention to the local minima of
AMOC in 2018, which is followed by a decrease in temperatures with a lag observed in
locations 3 to 6.

The highest lagged correlation along with their corresponding lag values between
winter AMOC and average temperatures time series spanning from 2005 to 2020, are
presented in Table 3. Almost the same results were concluded for the highest and lowest
temperatures. In general, all computed correlation values are higher than 0.2 for the average
temperatures; however, December exhibits the highest correlation among the winter months
with the AMOC variations. Specifically, locations 4, 6, and 3 demonstrate the strongest
correlations (0.58, 0.52, and 0.49) compared to the other locations. The lag values increase
from locations 1 and 2 to 3 and 4, and further to 5 and 6. From Table 3, the maximum lagged
correlations are notably 0.49 and 0.58 at a lag of 0.065 years (approximately 24 days). For
the entire winter season, the highest correlations and the corresponding lags are observed
in locations 3, 4, and 6 as 0.32, 0.37, and 0.43 with the lags 28, 20, and 12 days, respectively.
The lag values decrease from locations 3 to 6, while almost no lag is observed for locations 1
and 2.

The results from Figure 14 and Table 3 show (1) The possible contribution of AMOC
(indirect most likely) to colder winters locally around 2010, and further, due to the positive
lagged correlations between AMOC and winter temperatures. It should be noted that there
is a decrease observed in 2018–2019 in Figure 14. Although there is no available information
for 2020–2022, according to reference [53], there is a possibility of a decreasing trend in
AMOC during that period. (2) Higher correlations between winter AMOC and temper-
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atures (>0.49) are observed specifically in December, for locations 3, 4, and 6. (3) There
is a pattern where the correlation value increases and the corresponding lag decreases
from location 3 to 4 and then to 6, which are those areas along the southern part of the
coastline of Norway. There is a clear pattern where the correlation value increases and the
corresponding lag decreases from location 3 to 4 and then to 6.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 14. Yearly average variations for winter temperatures and winter AMOC in locations 1 to 6.
(a–f) from 2004 to the latest available year of temperature data. Winter includes all three months of
the season.
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Table 3. Maximum lagged correlation and the corresponding lags between winter AMOC and winter
average temperatures (as per separated months and whole winter) for locations 1 to 6. Colors in the
columns indicate the sorted values from low (bright pink) to high (dark red).

Correlation Lag (Year)

Location Dec Jan Feb Winter Dec Jan Feb Winter

1 0.44 0.24 0.3 0.25 0.032 0.871 3.150 0.011
2 0.45 0.33 0.27 0.26 0.032 0.806 3.080 0.000
3 0.49 0.32 0.29 0.32 0.065 1.129 1.381 0.078
4 0.58 0.35 0.27 0.37 0.065 1.194 2.973 0.055
5 0.47 0.2 0.3 0.28 0.097 1.000 2.973 0.044
6 0.52 0.43 0.3 0.43 0.097 0.258 0 0.033

The objective of this study is not to quantify the exact magnitude of temperature
decrease resulting from changes in AMOC strength but rather to determine if there are
considerably lagged correlations between them. Our focus has primarily been on the impact
of AMOC weakening in low latitudes on colder winters in mid to high latitudes, even
though an AMOC strengthening would be observed for high latitudes [60] linked to colder
winters. According to Table 2, locations 3, 4, and 6 experienced an average temperature
decrease of −0.04 ◦C/year, 0.088 ◦C/year, and 0.076 ◦C/year, respectively. In a simple
analysis, one could consider that an AMOC weakening of 1.3 Sv, 2.6 Sv, and 2.53 Sv, based
on the findings in [58], or 0.28 Sv, 0.63 Sv, and 0.54 Sv, based on the findings in [59], might
have contributed to these temperature decreases. Based on the findings of this section, it
can be concluded that the weakening of AMOC around 2017 played a significant role in
reducing the transfer of warm surface waters. However, despite observing a moderate
correlation, establishing a direct link between winter AMOC and temperatures, as well as
identifying the mechanisms through which AMOC impacts temperatures on daily/monthly
timescales, proves challenging. Nevertheless, there may still exist, with a lesser degree
of certainty that necessitates further investigation, a potential connection between winter
AMOC and winter temperatures in mid to high latitudes, as well as a potential link between
winter AMOC and the downward patterns observed in Table 2. The next section will focus
on examining another variable that may influence winter temperatures.

4.4. Possible Impacts of Other Variables, Particularly NAO, on the Winter AMOC
and/or Temperatures

The moderate correlations observed between winter AMOC and temperatures
(Section 4.3) may not necessarily imply a direct causal relationship. It is possible that
a third variable, such as wind or the NAO, influences the AMOC, the temperatures, or
even both. The previous study [23] explored the relationship between GS weakening,
AMOC weakening, and the NAO decline in 2010, confirming the connection between
AMOC weakening and NAO reduction. Additionally, it has been observed that NAO+

(positive phase of NAO) strengthens the AMOC on timescales exceeding 20–30 years [12].
Research conducted on various mountain cities in Europe, Morocco, Turkey, and Lebanon
in 2011 indicated that projected NAO trends could lead to increased winter modes and
a decrease in the number of cold winters during the 21st century, due to the influence of
global warming [61]. The direct impact of NAO+ on the warm summer in 2018 was also
demonstrated [13]. The spatial variability of NAO has been found to play a crucial role in
regulating the European climate in addition to its temporal variability [62].

In addition to the factor of AMOC weakening, it has been observed that the AMOC
exhibits a strong response to wind-driven variability, particularly by the Ekman component,
which is in turn influenced by the NAO. During NAO+, stronger winds over the subpolar
North Atlantic increase surface heat loss to the atmosphere, promote the formation of dense
water, and result in a strengthened AMOC [63]. A study conducted in [44], utilizing AMOC
anomalies from the RAPID and GloSea5 datasets at 26◦ N, along with Atlantic indices
such as NAO, examined the relationship between NAO phases and various parameters. It
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was found that during an NAO− (NAO+) state period, there is a reduction (increase) in
surface heat loss and weakening (strengthening) of winds over the subpolar North Atlantic,
resulting in a weaker (strengthened) AMOC. Consequently, the transport of heat by AMOC
toward the northward direction decreases (increases), leading to a cooling (warming) effect
on the North Atlantic, and possibly the Norwegian Sea. This aligns with a delayed decrease
(increase) in SST. Hence, a clear link between NAO, winds, AMOC, and SST is established.
A study conducted by [64] examined the influence of winds on the AMOC. They proposed
a fully-coupled climate mode where nudging winds poleward of 45◦ N, through a response
from the Ekman component of AMOC, resulted in statistically insignificant trends in
AMOC and SST trends in the North Atlantic. These findings were pretty consistent with
the observations of AMOC from RAPID at 26.5◦ N. Another study [65] focused on the
impact of NAO on the low-frequency variability of AMOC. The simulation results revealed
that the influence of NAO varied among different models. Some models indicated less
sensitivity of AMOC to NAO, while others suggested a higher sensitivity. This study also
highlighted the importance of the oceanic mean state as a crucial aspect of climate change
that requires improvement in models.

According to the literature investigated in this section, it is concluded that NAO could
have affected the AMOC weakening. Hence, a possible reason for the cooler winters in
the discussed locations could be due to NAO weakening (being in NAO− phase for a long
time). Another scenario for the cooler winters is the direct impact of NAO as attached with
wind changes at those locations. Therefore, the winter yearly average of the NAO index was
calculated using daily values obtained from [49]. The resulting winter yearly average of the
NAO index is presented in Figure 15. The data cover a similar period as Figure 14, ranging
from 2004 to the latest available year of temperature data. Observations from Figure 15
reveal the presence of deep anomalies in the winter NAO index in 2010 (corresponding
to AMOC anomalies) and 2021. These are the years when the NAO anomalies align with
the winter temperatures across all locations. Notably, location 6 demonstrates a clearer
correlation between temperatures and NAO variations compared to the other locations.

The lagged correlations between winter NAO and average temperatures time se-
ries spanning from 2005 to 2020 are shown in Figure 16. Almost the same results were
concluded for the highest and lowest temperatures. Table 4 presents the highest lagged
correlations between the winter NAO index and winter average temperatures, along with
their corresponding lag values. The analysis is conducted both on a monthly basis and for
the entire winter period spanning from 2005 to 2020, which corresponds to the same period
as the AMOC-temperature analysis presented in Table 3. Overall, all computed correlation
values for average temperatures are higher than 0.28. Among the winter months, December
shows the highest correlation with winter NAO variations. However, it is worth noting
that the correlation values between the NAO index and temperatures are higher than those
reported in Table 3 regarding the possible link between winter AMOC and temperatures.
Among the locations, the weakest correlation is observed in location 1 in northern Sweden,
with a value of 0.57. Location 3 in the northernmost part of Norway exhibits a slightly
higher correlation of 0.58. As we move to locations 4, 2, 5 (Locations 2 and 5 are in almost
the same latitude positions), and 6, the correlation values increase to 0.6, 0.62, and 0.66,
respectively. To illustrate this, Figure 17, as a sample, depicts the daily variations in the
NAO index and temperature in December for locations 5 and 6, in which, on most days,
the temperature follows the NAO with or without lag. For the entire winter, the highest
correlations and the corresponding lags are observed in locations 2, 4, and 6 as 0.42, 0.42,
and 0.55 with the lags 16, 12, and 20 days, respectively.

The results obtained from Figures 15 and 16, and Table 4 provide insights into the
possible link between winter NAO and temperatures; the following conclusions are drawn:

(1) There is a strong relationship between winter NAO and temperatures, particularly
during December, for locations 2, 4, 5, and 6. These locations, situated closer to the
coastal areas of Norway rather than the northernmost regions, exhibit correlation
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values exceeding 0.6. Such values suggest a potentially significant influence of NAO
on the temperature patterns observed in these locations.

(2) Among locations 2, 4, 5, and 6, there is a higher probability of having colder winters
influenced by the NAO for locations 2, 4, and 5. This conclusion is supported by the
following observations: (i) the correlation values between the winter NAO index and
winter temperatures are greater than 0.42; (ii) the highest average rates of temperature
decrease in Table 2 support this pattern for locations 2, 4, and 6.

  
(a) (b) 

  
(c) (d) 

 
(e) (f) 

Figure 15. Yearly average variations for winter temperatures and winter NAO index in locations 1 to
6: (a–f) from 2004 to the latest available year of temperature data. Winter includes all three months of
the season.
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(a) (b) 

 
(c) (d) 

  
(e) (f) 

Figure 16. Lagged correlations versus lag (per year) between winter NAO and winter average
temperatures (as per separated months and whole winter) for locations 1 to 6 from 2005 to 2020: (a–f).
Positive correlations at positive lags indicate that the NAO strengthening/weakening leads to an
increasing/decreasing temperature.

In addition to the previously mentioned factors, it is important to consider other
atmospheric parameters such as atmospheric pressure, humidity, solar radiation, and wind
when analyzing the temperatures over those locations. In particular, local wind speed
variations, influenced by factors like the NAO or regional storm activities, could potentially
contribute to the observed temperature reductions in those locations. Researchers [66]
examined the connection between the winter NAO and wind climate in Norway from 1920
to 2010. The findings indicated a strong correlation between NAO+ and a higher occurrence
of southwest winds from the southwest parts (such as location 6 in our study), as well as a
decrease in the frequencies of northeast winds (such as location 3 in our study). However,
there was no significant relationship found between the wind climate and the NAO in
the northernmost part of the country (such as locations 2, 4, and 5). Therefore, based on
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this research, colder temperatures experienced in location 6 might also be attributed to
the increased wind patterns in the area. It is also worth noting that wind simulations for
certain cities in southwestern Norway (near location 6 in our study), between the 1990s
and 2050s, forecast higher possible temperatures [67] around our considered period, which
could mitigate the impact of local winds on observed temperatures. These findings show
that further investigation and research are necessary to fully understand and explore the
factors like winds, and this is an ongoing endeavor for the authors of this study.

Table 4. Maximum lagged correlation and the corresponding lags between winter NAO index and
winter average temperatures (as per separated months and whole winter) for locations 1 to 6. Colors
in the columns indicate the sorted values from low (bright pink) to high (dark red).

Correlation Lag (Year)

Location Dec Jan Feb Winter Dec Jan Feb Winter

1 0.57 0.35 0.31 0.40 0.097 0.129 3.044 0.044
2 0.62 0.37 0.33 0.42 0.065 0.129 3.044 0.044
3 0.58 0.28 0.32 0.37 0.097 0.226 2.973 0.044
4 0.60 0.33 0.32 0.42 0.161 0.129 3.044 0.033
5 0.62 0.32 0.41 0.37 0.194 0 3.044 0.011
6 0.66 0.48 0.51 0.55 0.129 0.194 0.142 0.055

Figure 17. The daily variations in NAO (black line) and daily average temperature (with a 10-day
running averaging window) in December from 2005 to 2020 for (a) Location 5 and (b) Location 6.

5. Cold Winter Impact on the Electrical Power System’s Aspects

The results from Section 4.3 demonstrate a less likely relationship between the weaken-
ing of AMOC (caused by the indirect effects of climate change, specifically global warming
(the direct impact of global warming is evident in the warmer weather patterns we have ob-
served (Figure 8, for instance); however, there is also an indirect impact of global warming
with a possible delay, which can weaken the AMOC; this weakening can lead to a weaker
transfer of warm surface water toward the north, resulting in colder weather [59] conditions
in the affected regions)) and the potential occurrence of colder winters in northwest Sweden
and Norway. Additionally, there is a higher level of confidence regarding the presence
of these colder winters in the coastal areas of Norway. The findings from Section 4.4 also
highlight the more likely role of NAO in influencing the winter temperatures directly.

Therefore, this section focuses on analyzing the potential impact of cold winters,
whether caused by AMOC, NAO, or other climate factors, on the operation of electrical
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power and energy systems in Norway and Sweden. The analysis encompasses aspects such
as electricity generation, consumption, and the security of the electrical grids. Potential
risks are identified from the perspective of ensuring a reliable electricity supply and the
resilience of the power grid. Moreover, potential avenues for future research in this area
are discussed.

5.1. Colder Winters and Electricity Generation

According to the public data available in [68], the installed generation capacities in
2022 were as follows: hydro 82.59% (33.36 GW) and wind 12.64% (5.1 GW) for Norway,
and hydro 37.3% (16.3 GW), nuclear 19.79% (6.9 GW), and wind 27.69% (12.1 GW) for
Sweden. The dominating investments in both countries are in wind power units [69]. In
Norway, hydropower units generated 90% (134.4 TWh), and the generation of wind power
units covered 6.4% of the total electricity generation in 2020 [69]. Electricity generation in
Sweden amounted to 161 TWh, of which 29% was from nuclear, 45% from hydro, 17% from
wind, and 8% from combustion-based power units in 2020 [70,71]. Electricity generation
from solar power units in both countries is becoming increasingly important; however, it is
still negligible.

The operation of hydro generation units during winter months highly depends on
the capacity of reservoirs since water inflow is generally very low [69]. Fortunately, water
inflow in Norway has shown an increasing trend during the past 60 years, and the increase
is relatively the largest during the winter [72]. However, colder winters might reduce
the reservoir capacities due to the possibility of ice formation, which is different for high-
head and low-head hydropower units [73]. Therefore, further research on the impact
of colder winters on electricity generation from hydropower units in Norway is needed.
Such research is also essential because Norwegian reservoirs are likely to mitigate the
intermittent generation of wind power units [74] and support the lack of energy during the
winter months in Europe. Also, the potential risk of reduced electricity generation due to
the shutdown of Sweden’s nuclear power units should be considered.

Furthermore, a possible reduction in electricity generation in Norway and Sweden will
also impact the neighboring countries. The results of modeling the multi-national impacts
of Finland’s closure of coal-fired generation and Sweden’s decrease in nuclear generation
showed reduced import possibilities, increased electricity prices, and the expected rise of
the EU CO2 allowance prices in the Baltic countries [75]. In Nordic countries, CO2 intensity
is expected to decrease due to the planned structural changes in the energy systems.
However, short-term (2009–2010) and long-term (until 2030) hour-by-hour analyses of
marginal electricity generation show that the highest CO2 intensity is from October to
March, especially in Finland [76].

5.2. Colder Winters and Electricity Consumption

The annual electricity consumption per person in Nordic countries, especially in
Sweden, is one of the highest in the world [77]. In Sweden, the residential and service sector
uses the most electricity, followed by the industrial sector and the transport sector [71].
According to public data available in [78,79], electricity consumption in both countries
has been increasing in recent years, as shown in Figure 18, where the average trend is
1.64 TWh/Year for Sweden and 1.19 TWh/Year for Norway. Considering this increasing
trend in electricity consumption, it can be seen that the local maxima for Norway are
around 2010, 2018, and 2021, which are in concert with the local minima of the yearly
winter temperatures, as seen in Figure 7c,d.
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Figure 18. Electricity consumption in Sweden and Norway from 2008 to 2021.

Norway faces an energy deficit almost annually, with the winter season being partic-
ularly crucial. This is due to the predominant use of electric heaters in most residential
buildings, increased demand from the industrial sector, and the growing need for charging
electric cars [74]. Almost 20% of heating comes from electricity [80,81]; consequently, colder
winters will directly increase electricity consumption, mainly because people will spend
more time at home. Therefore, energy savings should be prioritized in the retrofitting of
buildings, even though the investments may not be profitable, as concluded for studied
Swedish cities [82]. One promising technology that can be used for multi-family houses
is a PV/thermal system combined with a ground-source heat pump system [83]. Energy
efficiency should also be increased through the integrated electricity and heating sectors of
municipal energy systems, as proposed in [84] for a case study of Piteå in northern Sweden.
Another possible source of the increased electricity consumption could be the hydrogen-
based steelmaking technology, also known as HYBRIT [85]. In Sweden, HYBRIT requires
approximately 10% of electricity generation, which is possible only when electricity exports
are reduced [86]. Fortunately, hydrogen storage has the potential to provide balancing
services to the power grid.

5.3. Colder Winters, More Likely Storms, and Security of Electricity Supply

As discussed in the previous sections, colder winters in Norway and Sweden generally
increase energy consumption and decrease energy generation. In Norway, the electrical
energy balance in the winter of 2002/2003 was especially critical due to the limited trans-
mission capacity of power lines between the neighboring regions [74]. The security of
electricity supply in Norway was also in focus in the winters of 2009/2010 and 2010/2011
(the years in which AMOC and NAO showed local minima values); however, high prices
encouraged lower consumption, higher production, and increased imports of electricity [69].
In Sweden, cold winter events already require an increase in the balancing capacity of the
power system, which is needed due to the intermittent generation of wind and solar power
units [87,88]. Thus, future research must address the critical question of investments in new
storage capacities and equipment for increasing and controlling electrical energy exchange
between neighboring regions. Another consideration that might impact the power system
operation regarding stability is the amount of inertial energy. From 2017 to 2020, the total
inertial energy in Nordic countries decreased by almost 10% [89]. However, the amount
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of total inertial energy is higher in winter, while the inertial energy of hydropower even
started to increase in 2019. Nevertheless, the increased investments in wind power units
and the possible shutdown of nuclear power units in Sweden might also reduce the total
inertial energy in winter.

More intense winters could result in more storms battering Europe. This, with a weak
scenario, could be a further consequence of AMOC weakening [59]. While there may be
limited scientific research on this specific aspect, some ecosystem scientists have mentioned
it, as reported in sources such as the Guardian [90] or the ClearIAS [91] websites. A study
conducted by [92] further supports the notion of increasing storms during the negative
phase of the NAO. The major event in Nordic countries was the 2005 Gudrun storm (the
year that one of the NAO declines appeared, as reported in Figure 17), causing economic
damage to the electric power service, calculated to be around EUR 3 billion [77]. With
important evidence, another winter storm in 2011 (the year that AMOC and NAO declines
appeared) caused significant disruption in Norway because the high winds brought trees
down on power lines [69]. Furthermore, researchers in [93] showed for 30 cities in Sweden
that uncertainties in renewable energy potential and demand could lead to a drop in power
supply reliability (up to 16%) due to extreme weather events. Such extreme weather events
inevitably result in the operation of protection relays to disconnect the faulty elements
(power lines, power transformers, and generation units). In order to enhance the resilience
of the power grid [94], several measures should be considered, such as the implementation
of wide-area monitoring systems in the transmission grid [95–99], smart and closed-loop
operation of the distribution grid [100–105], as well as the installation of power quality
monitoring and mitigation systems in order to check the impact on disturbances such as
RMS voltages (daily or in short time intervals) [106,107].

6. Conclusions

This study aimed to investigate the winter temperatures in Norway and northern
Sweden over a period ranging from 50 to 71 years. Six locations were selected, including two
in Sweden (1 and 2) and four in Norway (3 to 6). The analysis utilized the SSA algorithm
to examine the temperature’s long-term trends. The overall long-term trend indicated
an increase, which could be attributed to global warming. However, when considering
different combinations of highest, lowest, and average temperatures for December, January,
and February, 50% of the variations showed a significant decrease in recent years. The
average rate of decreasing temperatures was observed as: 0.09, 0.04, 0.088, 0.059, and
0.076 ◦C/year for locations 2 to 6, respectively, in which locations 2, 4, and 6 experienced
colder temperatures, particularly in December, in recent years. The time series of AMOC,
a significant climate index, was analyzed from 2004 through to 2020, and the results
showed that the values were rarely negative, implying a net flow southward. A maximum
positive correlation was observed between AMOC and the Ekman component, showing a
direct impact of this component on the AMOC transports. The long-term trend of AMOC
measurements presented a 7% general decrease over 17 years, which would lead to an
approximate 20% decrease/slowdown forecasted over the first half of the 21st century.
However, more data on AMOC would result in more precise results for the AMOC long-
term trend concluded from the SSA algorithm. Calculating yearly average values of AMOC
transfer variations and its components also showed an anomaly (local minima) during
2009–2010 for all, in 2014 for GS, and in 2019 for both GS and AMOC.

Secondly, the potential similarity between winter AMOC variations and winter tem-
peratures in the six selected locations at mid to high latitudes was investigated. This
analysis involved examining the yearly average of winter AMOC and temperatures as well
as calculating the lagged correlations between them. The results revealed (1) The possible
contribution of AMOC (indirect most likely) to colder winters was realized, particularly
around 2010, and further, due to the positive lagged correlations between AMOC and
winter temperatures. (2) Higher correlations between winter AMOC and December temper-
atures (>0.49) were observed specifically in December, for locations 3, 4, and 6. Moreover,
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higher correlation values were observed for locations 3, 4, and 6. (3) There was a clear
pattern where the correlation value increases and the corresponding lag decreases from
location 3 to 4 and then to 6, which are those areas along the southern part of the coastline
of Norway.

Thirdly, the potential link between another significant climate factor, the NAO, and
winter temperatures across the six selected locations was investigated. Similar to the
AMOC-temperature analysis, we conducted the same analysis to assess the relationship
between the winter NAO index and temperatures, and the results yielded that (1) There is
a strong association between the winter NAO and temperatures, specifically in December,
for locations 2, 4, 5, and 6, which are situated closer to the coastal areas of Norway but
not the northernmost regions. The correlation values between the winter NAO index and
December temperatures exceed 0.6, indicating a possible significant influence of NAO
on these locations. (2) Among locations 2, 4, 5, and 6, there is a higher probability of
experiencing colder winters impacted by the NAO for locations 2, 4, and 5. This conclusion
is supported by the following observations: (i) correlation values between the winter NAO
index and winter temperatures surpass 0.42; (ii) the highest average rates of temperature
decrease were observed earlier for locations 2, 4, and 6.

Fourthly, we examined the impact of colder winters on various aspects of electrical
power and energy systems such as electricity generation, electricity consumption, and the
security of supply in Sweden and Norway. It was concluded that (1) Colder winters have
the potential to reduce reservoir capacities in Norway due to the possibility of ice formation
in hydropower units. (2) Reduced electricity generation in Sweden’s winters could shut
down the nuclear power units. (3) A possible reduction in electricity generation in Norway
and Sweden will also impact the neighboring countries. (4) Colder winters directly increase
electricity consumption as the demand for electrical heaters in residual buildings rises.
Additionally, increased demand is observed in the industrial sector and for charging
electric vehicles. (5) A notable example is the winter of 2010, during which a decline in
AMOC, NAO, and winter temperatures coincided with increased electricity consumption
in Norway. (6) Winter storms, particularly in colder winters, can pose challenges to the
resilience and security of power grids, potentially leading to disruptions in the supply
of electricity.

In general, our study reveals several important findings. The cities located near the
borders of Norway exhibit an overall upward temperature trend that can be followed with
a downward trend. Although there was a moderate correlation, specifically for December,
between AMOC and temperatures, there has not been clear evidence of a direct impact
of AMOC on the winter temperatures on daily/monthly timescales. Considering the
NAO variations, in detail, highlighted that the temperatures in December can be impacted
directly from NAO, attached with stronger lagged correlations, albeit to varying degrees
across different sites. While we did not specifically examine the AMOC-NAO connection
in this study, based on the existing literature it might be concluded that NAO could impact
both winter temperatures and AMOC. Understanding the interplay between these climate
factors is crucial for comprehending temperature variations. To explain the reasons behind
the observed downward temperature trends in most locations and subsequent colder
winters in recent years, a detailed investigation is needed. The investigation must consider
the maps of the temperature changes and analysis to support the links between the reasons
and downward temperatures, and explanations as to why it affects particularly December
and some locations differently. While there are many potential reasons for these downtrend
trends, some possible scenarios could be the weakening of the climatic indices investigated
in this study. Colder winters in Norway and Sweden, whether influenced by AMOC, NAO,
or other factors, pose challenges for electrical power and energy systems. Researchers
must address the challenges of balancing between generation and consumption as well
as ensuring the resilience of power grids, which might be crucial in winter, and it is not a
good idea to wait and experience such cold winters unprepared. Finally, it is important
to note that the climatic indices of AMOC/NAO are complex and variable systems, and
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there is still considerable uncertainty surrounding their extent, so further research should
focus on improving our understanding of these climate phenomena and their possible role
in winter climate patterns. We recommend that future studies employ more robust and
physically based methods to estimate the colder winters and the phenomena impacting
them, moving beyond the statistical/signal processing approaches used in this study. In
particular, it would be beneficial to investigate the influence of winter winds in greater detail
across the study locations. Additionally, incorporating another Atlantic index, i.e., Atlantic
multidecadal variability (AMV), could provide valuable insights. Expanding the analysis
to include more locations across Sweden and Norway, and creating a comprehensive
correlation–location map would also enhance our understanding of regional variations.
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Appendix A

Figure A1 gives the correlation coefficient and corresponding p-values using Kendal
and Spearman methods.

 
(a) (b) 

  
(c) (d) 

Figure A1. Coefficient correlations and corresponding p-values: (a,c) Kendal; (b,d) Spearman.
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Figure A2 shows an uncompressed version of the temperature plotted in Figure 10a to
give an understanding of smoothed jumps between each month over different years.

Figure A2. An uncompressed version of the temperature plotted in Figure 10a.
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Abstract: Conventional methods of climate change (CC) mitigation have not ‘bent the curve’ of
steadily rising annual anthropic CO2 emissions or atmospheric concentrations of greenhouse gases.
This study reviews the present position and likely future of such methods, using the recently pub-
lished literature with a global context. It particularly looks at how fast they could be implemented,
given the limited time available for avoiding catastrophic CC (CCC). This study then critically exam-
ines solar geoengineering, an approach often viewed as complementary to conventional mitigation.
Next, this review introduces equity considerations and shows how these even further shorten the
available time for effective action for CC mitigation. The main findings are as follows. Conventional
mitigation approaches would be implemented too slowly to be of much help in avoiding CCC, partly
because some suggested technologies are infeasible, while others are either of limited technical poten-
tial or, like wind and solar energy, cannot be introduced fast enough. Due to these problems, solar
geoengineering is increasingly advocated for as a quick-acting and effective solution. However, it
could have serious side effects, and, given that there would be winners and losers at the international
level as well as at the more regional level, political opposition may make it very difficult to implement.
The conclusion is that global energy consumption itself must be rapidly reduced to avoid catastrophic
climate change, which requires strong policy support.

Keywords: climate change; climate equity; energy equity; energy reductions; fossil fuels;
global sustainability; policy changes; renewable energy; technological optimism

1. Introduction

Interest in climate change (CC) and means of CC mitigation is at an all-time high.
According to the Scopus database, a total of over 426,000 papers have so far been published
with the term ‘climate change’ in either the title, abstract, or keywords. In 2022, the
figure was over 48,000, more than double the 2016 number. However, this vast number of
reviewed papers has not led to any reduction in carbon emissions. On the contrary, CO2
emissions from energy and industry rose from 21.3 gigatonnes (Gt) in 1990, the year of the
first Intergovernmental Panel on Climate Change (IPCC) report, to 33.9 Gt in 2021 [1]. This
was paralleled by the rise in overall greenhouse gas (GHG) emissions, which reached an
estimated 59.0 ± 6.6 GtCO2 equivalent (GtCO2-eq) in 2019 [2].

A further factor to consider is that Earth faces several other environmental challenges
in addition to CC [3]. Steffen et al. [4] originally identified nine planetary boundaries,
including CC, for which the crossing of any could prove catastrophic. These other global
problems include the deterioration of the ocean environment and ongoing acidification,
biodiversity loss, and air, water, and land pollution, especially by plastics [5–9]. Also,
as Crist et al. [10] warned, the world’s present population, let alone projected further
increases [11], make achieving a sustainable future Earth even more difficult.
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What is novel in this paper is the stress on the crucial importance of the time factor in
assessing the feasibility of the various possible responses to CC and its interaction with
equity considerations. For CC mitigation, the important factor is not the ultimate potential
for each proposal, but whether it can be effectively deployed in time to avert not only
catastrophic CC [12] but also the other challenges to global sustainability. Synergistic
interactions among these various threats can potentially further shorten the time we have
available for effective action to avoid crossing a given threshold [13] Or, as the IPCC [2]
put it, we can have high confidence that ‘Climatic and non-climatic risks will increasingly
interact, creating compound and cascading risks that are more complex and difficult to
manage’. A full discussion of this time dimension is lacking in virtually all of the many
studies that address CC mitigation.

In Section 2, the frequency of published papers in Scopus on various possible ap-
proaches to dealing with climate change, as well as the approach used for article selection
in this paper, are presented and discussed. Section 3 stresses the crucial importance of
timing: can any of these proposed solutions make a real difference in the crucial next
decade or two? Section 4, in turn, examines the various conventional mitigation methods
from this time-based viewpoint. In Section 5, solar geoengineering (SG) is considered as an
alternative to the slow shift to low-carbon fuels, but it has known and possibly unknown se-
rious risks. Section 6 examines the complex questions of equity in income, energy use, and
CO2 emissions in both low- and high-income countries. Finally, Section 7 discusses all these
methods and finds that none of them, singly or together, can affect the reduction in climate
forcing that is needed over the critical next couple of decades. The overall conclusion is
that the changes needed—including energy reductions and the need to sustain biodiversity
and cut land, air, and water pollution—necessitate the end of global economic growth.

2. Materials and Methods

Figure 1 uses the Scopus database to show how annual publications on various
methods of CC mitigation have changed over the years. Although not an energy-related
CC mitigation approach, SG was included since it is regarded by many as an alternative (or
at least a complement) to conventional mitigation approaches [14]. It is evident that interest
in bioenergy with carbon capture and storage (BECCS), SG (also called solar radiation
management (SRM)), and direct air capture (DAC) only took off after around 2010. In
contrast, the more general term carbon dioxide removal (CDR), which includes BECCS and
DAC as well as methods like reforestation, enhanced weathering (EW), and soil carbon
sequestration, has had many annual publications for decades. As mentioned, the term
‘climate change’ returned a total of over 426,000 papers, with annual numbers beginning to
rise sharply in the late 1980s. Over the same period, a further 70,400 papers included the
term ‘global warming’ in place of ‘climate change’, lifting the combined total to almost half
a million articles.

In this paper, the various approaches to avoiding CCC are critically discussed. The em-
phasis on papers selected for discussion in general meet two criteria. First, they preferably
should be global in scope, since CC is a global problem; local solutions may not be feasible
elsewhere and could even be globally counterproductive. Second, given the progress
in both understanding the nature of CC and the assessment of the viability of proposed
mitigation solutions, very recent papers were preferred over older ones. The IPCC’s sixth
assessment reports [15,16], particularly its 2023 Synthesis Report [2], were relied on for the
science of global warming and the up-to-date surveys of mitigation methods. The annual
publications by BP [1] and the International Energy Agency (IEA) [17] were used for global
and national energy statistics.
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Figure 1. Plot of the annual number of annual publications in the Scopus database with the terms
‘BECCS’, ‘DAC’, ‘SG OR SRM’, and CDR in the title, abstract, or keywords, from 1980 to 2022.

3. Importance of Timing for Low-Carbon Energy

A complication for CC mitigation is the short time left for effective action. Already,
the world is experiencing a spate of record-breaking extreme weather events—floods, heat
waves, droughts, and wildfires [18,19]. Both their severity and frequency are anticipated
to rise in a non-linear manner as the temperature rises; the increase from 1.0 to 1.5 ◦C can
be expected to produce more damage than the previous increase from 0.5 to 1.0 ◦C, just as
this latter rise was more damaging than that from 0 to 0.5 ◦C [2]. This does not mean that,
when the mean global temperature surpasses 1.5 or 2.0 ◦C above pre-industrial levels, we
should give up all attempts at mitigation. Even a 3.0 ◦C rise, while disastrous in its effects,
is much less severe than a 4 ◦C increase [2].

Different mitigation methods not only have different average costs and potentials but
also have different time frames for their implementation. For all forms of renewable energy
(RE) except bioenergy, lifetime energy input costs are dominated by energy for construction,
as the annual operating energy costs are small. Due to this, the rate of introduction of new
RE is important, as formalised in dynamic energy analysis (DEA).

Capellán-Pérez et al. [20] examined the consequences of a complete global shift to
100% RE for electricity by 2060. Their modelled results showed that the average energy
return on investment (EROI) would fall from its current value of about 12 to about 3 by
2050 and would then stabilise at about 5. The authors pointed out that these low values
are well below those thought needed to maintain a (growth-oriented) industrial economy.
The reason for these low EROI values is that much of the output from the RE plants is
needed to build new RE plants, limiting the amount of energy available to run the rest of
the economy. From another angle, Fizaine and Court [21] argued that, for the US, ‘growth
is only possible if its primary energy system has at least a minimum EROI of approximately
11:1’. The conclusion is that if the aim is to keep industrial economies going, DEA/EROI
considerations show that the rate of uptake of RE for electricity—and for primary energy
generally—must be curtailed.

A further factor that could slow down the rate of non-carbon energy sources is that,
in many OECD countries, electricity production is falling [1]. This is the case for major
economies such as Germany and the UK, where usage peaked a decade or more ago [1].
With falling demand, there is less need for new electricity power capacity of any type, which
again hinders growth in RE electricity in these countries. Although the output of wind and
solar is increasing in both Europe and the Organization for Economic Cooperation and
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Development (OECD) overall [1], further growth in RE may be dictated by the replacement
rate of ageing generation infrastructure rather than growth in demand. For total commercial
primary energy consumption, the decrease is even more pronounced, with the OECD
overall and, especially, European Union (EU) countries, experiencing a peak around 2007 [1].
Table 1 shows the change in the share of total primary energy and total low carbon primary
energy of the OECD and non-OECD over the period 2011–2022.

Table 1. OECD and non-OECD share of primary energy and low carbon fuel primary energy for 2011
and 2022.

Energy Type\Year 2011 2022

OECD primary energy share (%) 46.5 38.8
Non-OECD primary energy share (%) 53.5 61.2

OECD low carbon primary energy share (%) 61.1 48.1
Non-OECD low carbon primary energy share (%) 38.9 51.9

Source [1].

If CO2 was a short-lived gas in the atmosphere—with, say, an atmospheric lifetime of
only one year—then any reduction in annual emissions would also reduce atmospheric CO2
concentrations. The problem is, of course, that CO2 has a very long atmospheric lifetime.
Although the exact figure is disputed (see, e.g., [22,23]), full recovery to its pre-industrial
atmospheric levels could take centuries. It follows that most of the CO2 the world has
emitted since the 1950s will still be present over the crucial next few decades.

The multiple challenges to sustainability discussed in the Introduction complicate the
search for timely CC mitigation solutions in two ways, which adds to the urgency of a
rapid response to ongoing CC. Climate change—and how we respond to it—affects other
environmental problems such as biodiversity loss [6]. More generally, various global limits
can act synergistically, lowering a threshold and, thus, the time available for effective action
to avoid crossing a given threshold [13]. Unfortunately, it is not possible to give any dates
for when the various approaches would be able to play a dominant role in CC mitigation.
Only for RE are estimates available for various scenarios, with the IEA [24] forecasting RE as
just over half of global primary energy by 2050 in their Announced Pledges Scenario (APS).

4. Assessment of Conventional Approaches

In 1990, the IPCC Intergovernmental Panel on Climate Change (IPCC) released its
first report. At that time, the conventional methods for mitigation could have provided
a feasible solution. These approaches include greatly increased use of the various forms
of renewable energy (RE); nuclear power; increased energy efficiency; and CDR, both
by biological and mechanical means. But, as is shown here, these solutions, even taken
together, cannot give the world much relief from climate change. The reasons include the
following, with one or more applicable to each approach:

• They cannot deliver major CC mitigation in a timely manner;
• Their mitigation potential is too small;
• Feedback effects reduce their mitigation potential;
• Political opposition limits their deployment at scale;
• Their expansion conflicts with other important aims.

The authors discussed the difficulties facing these various approaches in previous
publications (see, e.g., [25,26]). Hence, in this section, emphasis is placed on the first of
these points: how rapidly could each of these reduce global climate forcing?

4.1. Non-Fossil Fuel Energy Sources

Solar and wind energy are not only the fastest-growing RE sources [24] but also
those with the greatest expansion potential. Nevertheless, DEA indicates that their rate of
growth could be limited if sufficient energy is available for the non-energy sectors of the
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economy [19]. As already discussed, the rate at which their output can grow is governed
by their EROI [27]. A characteristic of all RE sources except biomass is that nearly all
energy inputs—for materials mining and processing, for construction, for access roads,
and for transmission and distribution power lines—must be made upfront, before any
energy output can be obtained. The maintenance energy costs are relatively minor. Only
dismantling and site cleanup energy costs must be postponed until the plant’s end of life.

If the EROI for wind and solar energy is high, then only minor energy inputs are
needed, and the net energy available for the non-energy economy sectors is high. But if it is
low—below a value of about 5–10—an ‘energy cliff’ [27] is encountered, such that input
energy costs are significant, and DEA analysis is needed. The problem is that the EROI
values for wind and, especially, for photovoltaic (PV) systems are strongly contested (see,
e.g., [28–30]), with some researchers giving very high values for PV and others giving very
low values.

The key explanation for this divergence is the inclusion or otherwise of important
input costs, especially those termed Ecosystem Maintenance Energy (ESME) costs [31].
These include the energy costs of avoiding pollution from the mining of the often-scarce
materials needed for wind and PV energy systems. All too often, such mining in tropical
African countries and elsewhere ignores the local pollution that is generated. Even when
tailing dams are constructed, they often fail [32]. This suggests that the input energy costs
for RE electricity systems (which have much higher materials input per gigawatt (GW) of
capacity than fossil fuel (FF) plants [33]) are often significantly under-estimated, which
means that their EROI values are inflated. Lower EROI values also mean that emission
savings are also lower than expected. Further, while adding energy storage systems such as
batteries to smooth the supply in RE networks can recover curtailed energy, they ultimately
act to reduce EROI and come with considerable ESME costs [31].

Hydro, bioenergy, and geothermal electricity are expected to exhibit only slow growth
in all the IEA [24] scenarios, and together are several times smaller than wind and solar
combined. Despite their minor potential, it is still useful to look at their GHG emissions
profile over time. Tropical hydro systems emit high levels of CO2 and methane gas over
their early years of operation. Geothermal plants also emit CO2, and only achieve carbon
balance after several centuries [34]. For bioenergy plantations, Sterman et al. [35] stressed
that many decades are needed for regrowth, so the CO2 drawdown from plantations would
not be available in the coming decades. The development of RE projects can impact not
only local biodiversity [36] but also many globally significant biodiversity areas [37], even
beyond the area occupied by the RE plant [38].

For hydro, bioenergy, and geothermal electricity, time considerations show that over
the early years of operation, GHG reductions are far less than expected. A further complica-
tion for hydropower is that ongoing CC could change river flows and their timing, leading
to faster reservoir siltation rates, all of which could reduce lifetime TWh and, thus, EROI.
Glacier loss in the Himalayas could initially lead to higher hydro potential, though there
would be decreased potential as glaciers shrink. There is also increased risk to Himalayan
hydropower projects from ‘Glacial Lake Outburst Floods’ [39]. For bioenergy, competition
for food could push bioenergy production out of prime farmland (such as is used in the US
for corn ethanol production), again lowering EROI, because of increased need for water
and fertiliser inputs.

Nuclear energy’s share of global electricity production is expected to fall further,
having peaked at 14.6% in 2006—well before the 2011 Fukushima accident—before falling
to 9.8% in 2012 [1]. There are several reasons for this market share decline. Nuclear plants
take a long time to plan and build, particularly compared with wind or PV solar farms.
This is especially true for plants in the major OECD countries, where political opposition
led to moratoriums on new plants and long construction times for plants being built in
a number of countries. A related point is that many plants are nearing the end of their
service lives, so closures would hinder net nuclear output growth, even if new plants are
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built. The end result is that nuclear power is most unlikely to play more than a minor role
in energy production over the coming decades [25].

The IEA [24] presented three future energy scenarios and gave the expected contribu-
tion of all RE sources, as well as nuclear energy, to the global primary energy supply up
to 2050. Table 2 shows their percentage contributions in 2010 and 2021 and the expected
values in 2030, 2040, and 2050 for the APS. This scenario is actually an optimistic one, given
that the world is not on track to reach this target. Even so, less than half of global energy in
2040 is projected to come from non-carbon sources. In the IEA’s back-casting exercise to see
what would be needed for the ‘Net Zero Emissions by 2050′ (NZE 2050) scenario, RE and
nuclear energy together would still provide less than 40% of global primary energy in 2030.

Table 2. Share of RE and nuclear energy in global primary energy in 2010, 2020, and 2021 and the
EIA’s APS scenario for 2030, 2040, and 2050.

Energy Type\Year 2010 2020 2021 2030 2040 2050

RE (all types) (%) 8.3 11.7 11.9 23.8 38.2 50.7
RE (all types) EJ 45 69 74 141 239 319

Nuclear energy (%) 5.6 4.9 4.8 6.1 7.8 8.9
Nuclear energy EJ 30 29 30 39 49 56

Source [24].

4.2. Carbon Dioxide Removal (CDR)

Carbon dioxide removal can take many forms, both biological and mechanical. Biolog-
ical approaches include reforestation and sequestration in soils and a technology untried at
scale, bioenergy with carbon capture and storage (BECCS). These various approaches are de-
scribed in detail in [3]. Their climate mitigation potential over the next two decades appears
minor. Carbon capture and storage (CCS), needed for CO2 capture from FF power stations,
as well as for BECCS and DAC, despite its discussion for three decades, presently sequesters
only a few tens of millions of tonnes of CO2, compared with the tens of billions needed to
be a major CC mitigation solution. It is also more costly than other approaches [40]. CO2
utilisation is attracting increased attention but is presently insignificant. Table 3 gives the
values for the GtC emissions avoided for each of the listed scenarios for 2030, 2040, and
2050. Even in these optimistic scenarios, in 2030 only 0.4–1.2 Gt of CO2 would be captured,
compared with the nearly 23 Gt still released in the IEA NZE 2050 scenario.

Bastin et al. [41] calculated that a global tree planting program could sequester a total
of 205 Gt of CO2, largely by increasing soil carbon and afforestation in grasslands and
scrublands. Veldman et al. [42], in their critique of the Bastin et al. paper [41], claimed
that their estimate was too high by a factor of five and that a more realistic—but still
useful—value was 42 Gt. This far lower estimate was partly caused by over-estimating soil
organic carbon gains, failing to account for warming from boreal forests because of reduced
albedo, and neglecting existing human use of savannas, grasslands, and shrublands. In an
earlier review, Boysen et al. [43] argued that such global terrestrial carbon fixation could
only counteract business-as-usual warming at the expense of nearly all natural ecosystems.

Figure 2 outlines the various technical approaches that can be taken to reduce CO2
emissions into the atmosphere. The already-discussed low-carbon energy sources (RE and
nuclear), while already well-established, continue to benefit from technical improvements
(e.g., in solar PV cell efficiency), whereas CO2 removal methods are in their infancy or
are yet to be attempted. A key advantage for CDR is that it enables the present fossil
fuel economy to continue—at least until readily exploitable reserves of FF, particularly oil,
are depleted, with the likely consequence of the delayed implementation of low carbon
alternatives. Aside from the moral hazard attached to this approach, the question of when
‘peak oil’ will occur is unclear, with some arguing that there are only a few years left before
it occurs (e.g., [44]), while others argue that it will occur decades in the future (e.g., [45]). A
recent view is that the question is irrelevant, since ‘peak demand’ would come well before
‘peak supply’ [46]; but, if SG is adopted, peak oil could be a limiting factor.
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Figure 2. Diagram of conventional approaches for reducing GHG emissions into the atmosphere.

Table 3. CCUS (including BECCS and DAC) in various zero emissions scenarios by 2050 (in annual
Gt of CO2 avoided).

Scenario 2021 2030 2040 2050

IEA 2022 (NZE) 0.04 1.22 4.42 6.23
BP 2023 0.04 NA NA 6.05

DNV 2022 0.04 0.4 3.6 5.8
Sources [24,47,48].

4.3. Energy Efficiency

The theoretical potential for energy efficiency improvements is large [49,50], but
several obstacles stand in the way of rapid efficiency gains, even though energy efficiency is
likely the cheapest method of CC mitigation. One obstacle to rapid change is the existence
of the large and still-growing generating capacity of FF power stations, as well as a large
and still growing global vehicle fleet [51]. Most efficiency improvement methods rely on
new equipment replacing inefficient old equipment.

Energy savings from efficiency improvements are also reduced by the well-known
energy rebound effect [52]—the lower fuel costs of (say) vehicle operation can induce
extra travel. Furthermore, the desire for private vehicles in countries with low present
ownership levels tends to swamp any efficiency gains. The deep energy/carbon reductions
from efficiency gains are also offset by the widespread introduction of new energy-using
equipment or practices, such as ride-on lawnmowers, mechanical hedge clippers, and
leaf blowers for gardens. A recent innovation, Bitcoin mining, is very energy intensive; a
2023 study found that its global electricity use exceeded that of many countries, including
Norway [53]. Another example is bottled water, which is first collected from the source and
then distributed from bottling plants in small trucks, replacing the far more energy-efficient
tap water.

In the case of vehicular transport, three developments negate efficiency gains. The first
is the desire for faster travel—time efficiency (speed) can conflict with energy efficiency.
Hence, public transport is replaced by car travel, and aircraft dominate long-distance travel.
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The second development is the increase in non-propulsion energy needs in vehicles, for
entertainment, driver aids, and environmental control. The third is the global shift to larger
sports utility vehicles replacing cars. In the US in 2021, such vehicles formed 77% of all
four-wheel private vehicle sales, at USD 14.57 million [54]. Rapid reductions in GHGs from
energy efficiency improvements seem unlikely in a market-based global economy.

5. Solar Geoengineering: Impact on Low-Carbon Energy

The above discussion shows that none of the conventional methods for CC mitigation
look capable of delivering major reductions in carbon emissions any time soon, let alone
reducing atmospheric levels of GHGs, unless strong supporting policies are introduced. To
be clear: conventional approaches without the strong policy support needed have failed
so far, as shown by rising annual GHG emissions, as discussed in the Introduction. Thus,
early advocates envisaged SG as a way of completely counteracting climate forcing without
the need to change either global energy consumption or the energy mix.

It is acknowledged, however, that deploying SG to counter (say) a doubling of atmo-
spheric CO2 ppm compared with the pre-industrial value of around 280 ppm could lead to
unacceptable side effects, worsening climate impacts (such as precipitation decreases) in
some regions [14] in an already water-stressed world [55]. Instead, it is proposed that SG
be used to counteract perhaps 50% of global warming [14].

In its most discussed form, SG involves the annual placement of sulphate aerosols
in the lower stratosphere to increase Earth’s albedo. In order to offset half the climate
forcing from anthropogenic CC, a radiative forcing of about −2 W/m2 is needed. This
could be achieved by the annual placement of 12 Mt of sulphur into the lower stratosphere,
perhaps using airplanes. Annual costs were estimated as anywhere between USD 20 and
200 billion [56].

One possible important effect of SG (and also all CDR methods) is that it could dis-
courage the uptake of low-carbon sources of energy. Proponents for SG claim that it is
far cheaper for a given reduction in climate forcing than low-carbon energy and, further,
can be rapidly implemented in a year or two [57,58]. It can also be rapidly terminated
should the side effects prove unacceptable. However, Trisos et al. [59] warned of the ‘po-
tentially dangerous consequences for biodiversity of solar geoengineering implementation
and termination’.

Above all (again, like CDR), it enables the continuation of the fossil fuel economy,
which has strong support from industry and FF exporting economies such as Organization
of the Petroleum Exporting Countries (OPEC) countries [57].

Another problem with CO2 atmospheric emissions into the atmosphere is that oceans
absorb 25–30% of this CO2, where it causes ocean acidification (OA), a serious threat to
ocean ecosystems [8]. This OA would continue unabated under SG, though not if, for
example, RE is used for CC mitigation, since atmospheric CO2 emissions are avoided. For
a fair comparison, the monetary, energy, and environmental costs of countering OA must
be included for SG. Slaked lime is one option for such ocean alkalinity enhancement (OAE).
Slaked lime could be relatively cheaply spread by freight ships, but its unavoidably high
local concentrations could have serious adverse effects on ocean ecosystems [60].

Aircraft would enable more uniform spreading, but Gentile et al. [61] found that
depending on aircraft height and dispersal time, aircraft energy use would involve a
28–77% energy penalty, with the cost per tonne of CO2 neutralised between USD 31 and
1920. Since each extra molecule of ocean CO2 must be neutralised, the quantities involved
are very large; Fakhraee et al. [62] found that 6–30 Gt of CaO or MgO would be needed
annually, depending on the assumptions made. In summary, when the need for OAE is
factored in, SG may well be more expensive than more conventional options and would
also entail additional ecological risks, which are still poorly understood.

Due to these serious problems, many scientists even opposed further research into
SG [63–65]. In the words of McGuire [64], it is simply ‘the wrong answer to the wrong question’.
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One localised form of SG—painting urban roofs and pavements with a high albedo
coating—avoids the freeloader effect that bedevils meaningful reduction efforts, since
the benefits solely accrue for the urban residents, and, further, does not need any new
technology. Although its radiative forcing is negligible at −0.01 W/m2 and, hence, is useless
for global cooling, it is being implemented and has no adverse effects elsewhere. In contrast,
any globally effective SG initiatives would have potentially serious ecological effects, as
well as facing political opposition from nations perceiving themselves to be disadvantaged.

6. Global Equity in Energy and Climate Change Impacts

So far, this review—in line with the great majority of papers on energy—did not factor
in equity considerations. As an editorial in Nature, referring to the enormously influential
2009 paper by Rockström et al. [66], ‘A safe operating space for humanity’, put it: ‘A gap in
the original concept was that it lacked environmental justice and equity—it needed to take
into account the fact that everyone, especially the most vulnerable, has an absolute right
to water, food, energy and health, alongside the right to a clean environment’ [67]. The
original 2009 paper found that three of the nine planetary boundaries had been crossed.
However, the authors now list eight boundaries, namely ‘climate, natural ecosystem area,
ecosystem functional integrity, surface water, groundwater, nitrogen, phosphorus and
aerosols’, and, when equity considerations are factored in, they argue that seven of these
thresholds have already been crossed [68]. Why is there an increase in the number of
planetary thresholds considered to have been breached? The answer lies in the fact that
different geographical regions and even different groups of people in the same region, for
instance an urban area, can experience the impacts of climate change very differently.

Equity has many aspects, and the ones relevant to energy use and subsequent GHG
emissions include income, energy use, and CO2 emissions’ distribution, both at the national
and household levels. Chancel and Piketty [69] examined world income distribution over
the past century. They found that at the international level inequality was falling, but at
the household level it was increasing. Energy inequality is also still high, even at the inter-
national level, particularly if only commercial fuels are considered [17]. Kartha et al. [70]
showed that CO2 emissions are very unequally distributed among the world’s households.
The top 10% of households accounted for 49% of emissions in 2015, with the bottom 50%
only emitting 7%. When split into sectorial emissions, the poorest 50% of the world’s
population emitted less than 20% of the total GHG emissions from transport and energy
but an almost equal share from agriculture. On an average per capita basis, IEA statistics [1]
show that emissions from the highest emitting country are 200 times those of the lowest. As
the IPCC [2] stated, ‘Vulnerable communities who have historically contributed the least to
current climate change are disproportionately affected’.

Another form of inequity is revealed when the cumulative emissions of CO2 are
considered. Since CO2 is a long-lived gas in the atmosphere, cumulative as well as annual
emissions are important. In 1965, OECD countries accounted for 68.8% of global CO2
emissions from fossil fuel use and industry. By 2022, the much-enlarged list of OECD
countries accounted for only 33.7% of such CO2 emissions, although the average emissions
per capita in OECD countries was almost twice as high as the global average [1]. But, when
cumulative emissions are considered, 55.6% of all energy-related emissions since 1850 have
been from OECD countries, with the figure dropping to 45.9% when all GHG emissions are
considered [71].

6.1. Inequality in Low-Income Countries, Especially in the Tropics

Low-income countries, particularly those in tropical Africa, Asia, and South America,
are anticipated to experience the negative effects of CC both earlier and more severely than
high-income countries. There are several reasons for this difference:

• Tropical ecosystems are near their upper thermal limit, so rising temperatures could
exceed optimum plant germination temperature or even exceed the upper limit for
germination [72]. (Further, [73] argued that many tropical ecosystems have adapted
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to a narrow temperature range, although Sentinella et al. [72] dispute this claim.)
Thus, temperature rises could have adverse consequences for agriculture. In contrast,
in more temperate climates, rising temperatures shift more species closer to their
optimum germination temperature [73].

• Even for similar extreme weather events like floods or droughts, the risks for low-
income communities and households are much higher than in wealthier countries, as
poorer communities have fewer resources, both material and administrative, for cop-
ing and recovery and tend to lose a bigger share of their wealth. Even worse, a vicious
cycle can occur between losses from disasters—whatever the cause—and poverty: ‘(. . .)
poverty is a major driver of people’s vulnerability to natural disasters, which in turn
increase poverty in a measurable and significant way’ [74]. Cappelli et al. [75] even ar-
gued for a vicious cycle that ‘keeps some countries stuck in a disasters-inequality trap’.

• Further, there are significant differences in human mortality from extreme weather
events depending on the level of vulnerability. As the IPCC [2] noted, ‘Between 2010
and 2020, human mortality from floods, droughts and storms was 15 times higher in
highly vulnerable regions, compared to regions with very low vulnerability’.

The question to ask here is how already-adopted conventional policies for CC
mitigation—and proposals such as SG—affect the prospects for more equality in an un-
equal world. The example of traditional biomass fuel is instructive. A possible conflict
exists between the ‘simplistic’ desire of many CC mitigation advocates for low-income
countries to move directly to RE and forego FFs. As Ramachandran [76] argued, for cooking
meals in places like India, FFs such as liquid petroleum gas (LPG) should greatly reduce
the damaging health effects of particulate pollution that occur with traditional biomass
fuels. Vital health concerns can and should sometimes override CC mitigation.

An important example illustrates the difficulties involved in trying to balance CC
mitigation and equity. One heavily favoured adaptation to rising global temperatures and
heat waves conflicts with CC mitigation efforts: the use of air conditioner (A/C) units.
Globally, A/C numbers have very closely followed an exponential curve since at least 1990,
and in 2021 they numbered over two billion. If this exponential growth pattern persists, the
IEA [77] forecasts this figure to rise to over 5.5 billion units by 2050, with especially large
increases in A/C units expected for both China and India. Even as early as 2016, A/C units
consumed 10% of global electricity or more than 2000 terawatt hr (TWh) [78]. However,
solar electricity output, with its peak during the hottest hours, is well-matched to provide
power for A/C units.

There is no easy solution to this dilemma. The need for A/C units for most but not
all countries is evident from the work of Raymond et al. [79], who documented how, in
some regions of the world, wet bulb temperatures on occasion exceed 35 ◦C, which marks
the upper physiological limit of human tolerance. Humans can become acclimatised to
lower temperatures [79], but, beyond 35 ◦C wet bulb temperatures, A/C appears to be the
only solution. Even so, a mixture of acclimatisation and A/C could be used, with A/C
only used for higher temperatures and not for room temperatures above 20 ◦C. As Hanna
and Tait [80] argued, both ‘behavioral and technological adaptations’ are necessary for
adaptation to rising global warming.

Although 90.4% of the global population had access to electricity in 2020, households
without electricity were heavily concentrated in tropical African countries [81]. Further-
more, it is important that electricity companies are publicly owned, as energy in the hands
of private companies is not a guarantee of access for everyone. Residents of many such
countries are still mainly engaged in agriculture, requiring prolonged periods of being
outside. Most of their fuel is still from traditional biomass, which also requires much time
outside for its collection. Further, at present, apart from sleeping, many other human
activities take place outside the house [82]. So, even if electricity was available, and the
cost of A/C units and power consumption could be afforded, it may not help such tropical
residents avoid life-threatening temperatures.
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6.2. Inequality in High-Income Countries

A few years ago, it could be argued that although poor countries would be the first
to experience the full brunt of CC, high-income countries such as those in the core OECD
would not experience much adverse change until global temperatures reached 3 ◦C above
pre-industrial levels [83]. We now know better, as evidenced by the record-breaking heat
waves in Europe [84] and the forest fires in California [85].

It is important to consider equity problems, not only between high- and low-income
countries but also within high-income countries as well, as shown for the US by Polonik
et al. [86]. Large cities often exhibit a pronounced urban heat island (UHI) effect. The UHI
effect has several contributory factors, including heat release from vehicles, buildings, etc.;
the ‘canyon effect’ of tall buildings blocking back radiation from escaping; and reduced
evapotranspiration from paved surfaces [87]. Chakraborty et al. [88], based on a study
of the distribution of the UHI effect and income in 25 cities around the globe, found that
the UHI effect—together with its deleterious health effects—disproportionately affected
low-income groups. The main reason was that low-income areas in cities tend to have a
much smaller area given to parks and vegetation—and, conversely, a higher share of paved
areas—which reduces evapotranspiration from their surfaces. The risks in all countries
from extreme temperatures are higher for urban dwellers [89].

7. Discussion and Conclusions

The discussion above shows that the technical solutions for mitigating climate change
have so far not been successful. Further, given the limited time we have to avoid extremely
disruptive CC, these methods, even together, can only be a complementary approach
to tackling CC over the next decade or so. This conclusion has even more force when
inequality—of incomes, energy use, and climate change damages—are factored into CC
mitigation policies. As already discussed, Gupta et al. [68] and Rockström et al. [90] argued
on equity grounds that no further temperature increase should be allowed—even a 1.5 ◦C
rise is too high.

The limitations of this review mainly arise from the extreme uncertainty surrounding
how the future climate will evolve, both regionally and globally. Witze [84] summed up
this uncertainty as follows: ‘Unprecedented temperatures are coming faster and more
furiously than researchers expected, raising questions about what to anticipate in the
future’. This, in turn, is partly the result of uncertainty about whether (and when) the
world’s nations will implement policies that seriously tackle CC. Another uncertainty is
the possibility of some breakthrough technology that can quickly mitigate CC. However,
given the multiple environmental problems we face, experience shows that any innovation
could well exacerbate these other risks to our future.

What options are left for avoiding CCC, given the failure of existing and proposed
approaches? The only approach is a rapid reduction in GHG emissions, not only by
low-carbon or CDR methods but also by rapid reductions in energy use itself, initially in
high-energy-use nations. The response to the COVID-19 crisis in the form of stringent
lockdowns and the resulting emissions reductions indicates the importance of strong
policies [91]. This conclusion is at odds with the continued growth in global energy use,
as forecast by various government and energy organisations [2,24,47,48,51]. In a previous
review, the authors [3] detailed the possible policy changes that are needed to support RE
introduction and energy and GHG reductions.

As shown, large energy efficiency improvements cannot be expected in the context of
continuing global economic growth. Jason Hickel and colleagues [92] stressed the urgent
need for what is lacking from the IPCC and in other official documents: CC mitigation
scenarios that do not assume the continuation of global economic growth. Such global
economic ‘degrowth’ would not be uniform, in that reductions would first need to apply to
the OECD and other high-income countries—or, even better, high-income households in
every country.
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In a later paper, Hickel and colleagues [93] gave some ideas for how such degrowth
could be achieved in high-income countries, mainly by focusing more on satisfying human
needs. In particular, they advocated for cutting production in sectors such as animal
products, private transport, aviation, and fast fashion and ending the planned obsolescence
of goods. They also advocated for providing high-quality public health care, housing, and
education, so human welfare can be improved with low resource use. At the same time,
equity demands some growth in low-income countries—or households. Here, the UN’s
Sustainable Development Goals (SDGs) [94] could be used as a starting point in meeting
basic human needs.

In an earlier paper, the authors showed how large reductions in GHG emissions are
possible, particularly in agriculture worldwide, with crop pests being a key problem in
low-income countries and food waste in high-income nations. Also, for passenger transport,
especially in high-mobility countries, large GHG reductions are possible by shifting the
emphasis from vehicular mobility to access and by promoting non-motorised modes of
transport and public transport [3].

Deep emission reductions from a rapid reduction in FF use will prove very difficult
to politically implement in high-income countries, and there is no guarantee of success.
In fact, the model results of van Ruijven and colleagues [95] indicated that energy use
would strongly grow until 2050. Although most energy growth would come from assumed
economic growth, the changing climate led to further energy growth of 11–58%, depending
on the scenario.

This review identifies a number of shortcomings and gaps in the published literature.
A vital one is a better idea as to how the climate—especially the frequency, duration, and
severity of extreme weather events—will respond to further increases in atmospheric GHGs.
More work is also needed to produce realistic costs for the various options and for when
they could be deployed.

Although the majority of the population in OECD countries thinks that CC is a serious
problem, one that needs to be urgently addressed, this support may be predicated on
there being a relatively painless solution like a massive shift to low-carbon fuels or the use
of CDR, particularly if it is promoted as a means of providing more time for deploying
low-carbon technologies. As this review argues, such technological optimism is likely
unwarranted, so fundamental social and political changes are needed. But, to echo the
words of UK’s former prime minister, Margaret Thatcher: ‘There is no alternative’.
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Nomenclature

A/C air conditioner
APC Announced Pledges Scenario
BECCS bioenergy with carbon capture and storage
CC climate change
CCC catastrophic climate change
CCS carbon capture and storage
CDR carbon dioxide removal
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CO2 carbon dioxide
CO2-eq carbon dioxide equivalent
DAC direct air capture
DEA dynamic energy analysis
EIA Energy Information Administration
EJ exajoule (1018 joules)
EROI energy return on investment
ESME Ecosystem Maintenance Energy
ESS Earth System Science
EU European Union
EW enhanced weathering
FF fossil fuels
GHG greenhouse gas
Gt gigatonne = 19 tonnes
GW gigawatt (109 watts)
IEA International Energy Agency
IPCC Intergovernmental Panel on Climate Change
Mt megatonne (106 tonnes)
OA ocean acidification
OAE ocean alkalinity enhancement
OECD Organization for Economic Cooperation and Development
OPEC Organization of the Petroleum Exporting Countries
ppm parts per million (atmospheric)
PV photovoltaic
RE renewable energy
SDG Sustainable Development Goal
SG solar geoengineering
SRM solar radiation management
t CO2/cap tonnes of CO2 per capita
TWh terawatt hours (1012 watt hrs)
USD US dollars
UNEP United Nations Environment Program
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Abstract: Energy keeps the global economy alive, while also being extensively exposed to various
climate change impacts. In this context, severe business competition (e.g., the building sector) and
the unwise use of natural resources and ecosystem services (e.g., fossil fuel energy sources) seem to
sharpen the relevant effects of climate change. Indicatively, contemporary issues at the interface of
building energy performance and environmental quality levels include consequences from global
warming, the increasing release of carbon dioxide to peak electrical loads, power grids, and building
planning, and energy demand and supply issues. In light of such concerns, the present review
paper attempts to disclose the multifaceted and multidisciplinary character of building energy use
at the interface of the economy, the environment, and society against climate change. This review
highlights energy efficiency concepts, production, distribution, consumption patterns, and relevant
technological improvements. Interestingly, the reviewed contributions in the relevant literature
reveal the need and necessity to alter the energy mix and relevant energy use issues. These include
developments in climate-proof and effective systems regarding climate change impacts and shocks.
Practical implications indicate that the sustainable development goals for clean energy and climate
action should be followed if we wish to bring a sustainable future closer and faster to our reality.

Keywords: climate change; building energy use; energy efficiency; sustainable future

1. Introduction

The sustainable use of resources or efficient allocation can lead to low-performance
rates of natural systems (e.g., overconsumption, overexploitation). These issues correlate
widely with unstructured, unplanned, and intense economic activities and human inter-
vention (e.g., built environment, land coverage). As a result, already severe climate change
conditions are sharpening. In turn, this situation reflects the availability (e.g., supply and
demand perspective), sustainability (e.g., fossil fuels or renewables), and quality status
of the provided ecosystem services—for instance, provisioning services, such as energy.
Conventional energy is derived from scarce resources, and governments should use it
conservatively and efficiently [1]. The targeted outcome supports the never-ending pur-
suit of optimizing resource exploitation within the limits set by natural dynamics and
socio-economic forces. Supportively, ref. [2] claims that investigating the relationship be-
tween environmental indicators and macroeconomic variables is highly important to foster
relevant policies like, for instance, fiscal policies on CO2 emissions.

Energy systems emphasize the concept of green buildings offering an engineering
and science base [3]. Moreover, the interdependencies of energy systems and building
constraints (e.g., engineering, planning, design, carbon footprints) are crucial to achieving
carbon-neutral building energy systems throughout their lifecycle [4]. Buildings are consid-
ered the most significant energy-saving space in the world, and they remain suitable fields
to apply technologies for emission reduction [5]. Ref. [6] notes that the building stock relies
primarily on energy generated by fossil fuels for heating and cooling purposes.
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From this perspective, seeing how climate change interrelates with building energy use
and efficiency would be beneficial. Both affect energy systems extensively, which in turn
interrelate with environmental quality. This is a great opportunity to review and understand
how the concept of ‘buildings’ affects the transition toward sustainable development. The
present study aims to thoroughly review high-impact research efforts that discuss the
impacts of climate change and building energy-related issues at the interface. The current
review is led by the following research question: “What are the effects of climate change
on buildings’ power and energy systems concerning existing research?” To accomplish
this study purpose, we process an integrative review process to meet the purpose of this
study. Ref. [7] claims that integrative reviews interrelate to varied data sources, enhancing
a holistic understanding of the topic in question and confronting the complexity inherent
in scientific research.

Energy resource availability seems to be one of the most critical research issues, espe-
cially about building sectors’ concerns. Correspondingly, the challenge lies in recognizing
high-leverage interventions, such as today’s decisions on future building energy trends,
might create fundamental changes for improving energy systems. These significant con-
cerns stimulated our research to explore relevant literature and gather inputs and insights
across science in light of a better future. What are the effects of climate change on energy
production, distribution, and consumption related to building end-use demand? What
are the prospects? How might these changes affect economic growth and welfare status?
Are there any established linkages and causalities? These are challenging questions in
academia and business, which pursue pathways to optimize resources and processes to
‘build’ sustainability within the economic system. For instance, this becomes evident in
high-energy demand sectors (e.g., the building sector) and relevant consumption patterns
(e.g., end-use needs).

However, these considerations do not reproduce significant progress to achieve the de-
sired balance between socioeconomic and nature dynamics, even though relevant literature
has stressed the significance of energy efficiency in high-leverage industries. An integrative
review of climate change impacts on building energy-related issues has yet to be processed.

The structure of the paper is the following: The Methodology section presents the
theoretical background of the review process followed in this study. The next section
includes the data extraction process. The following two sections concentrate on the building
energy review process and the results of this study. The Recommendation section focuses
on the gathered information, gaps, and future research perspectives. Finally, the last section
concludes the results.

2. Methodology

By perceiving the challenge of exploiting natural resources sustainably, this study
broadly reviews a series of selected published studies that discuss the climate change
impacts on power and energy systems.

Whether systematic or integrative, literature reviews offer a way of summarizing
individual research studies and other types of articles. Thus, these reviews integrate
current topic knowledge [8]. It should be mentioned that the main difference between the
systematic and the integrative review process is that the former concerns experimental
study trials. The latter considers both non-experimental and experimental studies.

The present study processes an integrative review to gather and summarize previous
research efforts on power and energy systems. This process allows the researcher to
understand the issues of interest more deeply and thoroughly. Supportively, the integrative
review approach includes a wide range of methodologies. For instance, experimental and
non-experimental research, theoretical or empirical, and qualitative or quantitative studies
offer great applicability for multiple research fields. Interestingly, ref. [9] asserts that such a
process aims to define concepts, review theories and ‘gaps,’ contribute to the literature, and
analyze methodologies adopted to describe research issues. In this framework, such an
approach is suitable for a scope broadly related to a phenomenon or the research field of
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interest [7]. An integrative review process provides opportunities to incorporate findings
and analysis of information into decision-making processes.

According to ref. [10], researchers adopt the integrative literature review since it
exceeds merely analyzing and synthesizing research findings or primary studies [11].
They also argue that this process allows for integrating qualitative and quantitative data,
opinions, discussion papers, and policy documents. This process adds sources of scientific
information, creating a more comprehensive understanding of the specific phenomenon
under research [12–14]. The integrative review provides a challenge to integrate existing
knowledge from various communities of practice and recommend future initiatives for
research [15].

Furthermore, as ref. [7] reports, little attention has been paid to efforts combining
empirical and theoretical reports. The integrative review process widely considers this
issue. As a review method, it also increases its potential to turn primary research methods
into a more significant part of evidence-based practice initiatives. Consequently, the value
of this process highlights its broadest character and enhances rigor. In this perspective, an
integrative review process comprises five steps: problem identification, literature search,
data evaluation, data analysis, and presentation of findings. Such an approach facilitates a
researcher’s review effort to integrate concepts, theories, evidence, and methodologies for
the topic in question [16].

Integrative literature reviews are suitable to address mature research fields and topics
or new, developing, emerging scientific issues as a research topic matures and the interest
in the literature increases. Consequently, the relevant knowledge base is expanding and
growing for this particular topic [17].

When processed in a detailed, well-organized, and thoughtful manner, many benefits
derive from an integrative review process. For instance, strength evaluation of the reviewed
studies’ evidence, gap identification, research opportunities for further research efforts,
integration (bridging) of relevant areas in a scientific domain, identification of core issues
in science, generation of a research question, identification of conceptual and theoretical
frameworks, and exploration of all successful methods used from researchers to reach
results [18]. Consequently, in practical terms, it is an inclusive way to summarize various
types of evidence justified by many methodologies, whereas it delivers a wider scientific
view of the topic [11].

Receiving background knowledge from a sizable body of reviewed studies can lead
current research efforts to define the scope and extent of a research topic [19]. Multiple
types of data sources permit synthesizing the findings and identifying the main topic
under review, enabling authors to develop a new understanding of the topic [20]. Figure 1
presents the steps to obtain the final number of reviewed publications (flowchart).

Figure 1. Steps to process this study’s integrative review.
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3. Data

This study’s integrative review process was structured based on reliable and accredited
publications within the scientific community. Search terms included energy systems, energy
consumption, energy production, energy distribution, energy efficiency, energy growth
nexus, power systems, electrical power, climate change impacts, climate adaptation, climate
mitigation, renewable energy, and energy mix. Three of the most popular, acknowledged,
and dependable databases were used to retrieve published studies relevant to the purpose
of the present work: Scopus, Science Direct, and MDPI. The literature review was extended
by searching the Google search engine and relevant Google Scholar data to find peer-
reviewed articles published in journals indexed in the abovementioned databases. After
receiving results, papers were screened for duplicates or slight relevance with the subject
of interest. Essentially, publications were excluded if the study’s primary purpose was not
aligned with the impacts of climate change on buildings’ power and energy systems. Then,
studies were evaluated based on the Abstract and eligibility criteria. Criteria for keeping the
studies for further review were the explicit purpose of the study, conclusions, and specific
theoretical and practical implications based on test results or contributions. Another
criterion was the novelty of methodologies used to support their scientific argument.
Each study was thoroughly read and then listed based on the classification needs of this
integrative review process. Particularly, the inclusion criteria for proceeding further with
the review process were: a well-defined and visibly justified contribution to the relevant
literature (e.g., research gap); the paper should have undertaken a blind peer-review process
before getting published; the year of publication (e.g., studies published after the year 2000);
robustness and reliability of methodology adopted; and language restrictions (e.g., written
in the English language). Our data extraction purpose was to focus on and carefully analyze
studies that have made acknowledged contributions to the relevant literature. Additionally,
studies should have meticulously progressed relevant research efforts concerning climate
change and its impacts on power and energy systems.

The review process included a variety of methods, materials, and tools used in sci-
entific approaches from different viewpoints. These methods should highlight the mul-
tifaceted and interdisciplinary nature of the research subject. Diversity in methodology
and variations in research results were identified during the process. A comprehensive
analysis of the studies was made to classify points of relevance to the present effort. Then,
comparisons with similar papers on the same research field took place. Next, determination
of trends and tendencies in the literature was implemented. Last, the integration and
summation of the significant findings related to the thematic field of the present review
process was completed.

This followed data extraction process of the present study remains very constructive
in retrieving each study’s desired vital points and research results. To increase the reliability
of this work, the data extraction process was carefully made and double-checked by both
authors to overcome mistakes due to data entry errors and potential misinterpretations of
concepts and methodologies of reviewed published studies.

The data extraction process allowed us to receive 197 publications. These selected
publications were divided into seven categories based on their thematic field. Table 1
presents the number of retrieved studies based on the thematic area. Table 2 shows the
number of reviewed studies based on the year of publication. Figure 2 illustrates a spider
chart for data from Table 1, whereas Figure 3 concerns an additional spider chart from
Table 2. Figure 4 shows the total number of reviewed studies. Furthermore, a trend analysis
has been added (Figure 5) considering the number of publications per reference year to
have a complete picture of the received results.
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Table 1. Thematic fields and reviewed studies.

Building
Materials

Data
Analysis

(e.g., Econo-
metric

Analysis)

Methods and
Technology (e.g.,
Benchmarking

Methods, Smart
Technology

Model Op-
timization

(e.g.,
Building
Energy

Systems)

Occupants
(e.g.,

Behavior)

Policy (e.g.,
Policy
Plans,
Frame-
works)

Simulations and
Scenarios (e.g.,

Heating, Cooling,
Energy Use)

11 40 35 35 27 11 38

Table 2. Reviewed studies based on year of publication.

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

1 2 4 0 4 0 1 4 5 2

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

5 6 19 8 10 12 9 9 9 8

2020 2021 2022 2023

14 8 24 33

Figure 2. Spider chart for thematic fields and reviewed studies.

Figure 3. Spider chart for reviewed studies based on year of publication.
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Figure 4. Chart for the total number of reviewed papers.

Figure 5. Trend analysis for the number of publications and reference year. The left axis indicates the
number of reviewed publications. The horizontal axis indicates reference years.

4. Buildings and Energy

There is a growing interest in energy use and consumption and its environmental
implications. This is mainly due to fossil fuel use, over time, rapidly and gradually, as
the core energy source and the related greenhouse gas emissions (GHGs) and carbon
dioxide (“CO2”) releases. This situation results in raising the global temperature to a
great extent. Buildings contribute largely to energy-related emissions [21]. Therefore, the
role of buildings (e.g., residential, non-residential) and their lifespan in this process (e.g.,
energy demand, energy-related emissions, emissions footprint) are considered fundamen-
tal. Ref. [22] mentions that the energy supply side should be able to cover future energy
demands. In turn, energy demand varies based on various factors. As indicated in ref. [23],
the critical determinants behind the building energy service demand vary according to
different trends in the socio-economic system, technological factors, behavioral aspects,
climate issues [24–27], and numerous electrification pathways. One key issue for limiting
energy consumption regarding demand reduction concerns improving building stocks [28].
Buildings concretely represent the energy used in various processes (e.g., mining, process-
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ing, manufacturing, and transporting building materials) and the energy consumed in
constructing and decommissioning the buildings [21]. Given the long lifetime of buildings,
estimated at 50 years, it is significant to review their response to climate change throughout
the years. The future perspectives on energy consumption (e.g., heating and cooling) should
be considered. Not surprisingly, the issue of energy use in buildings can be incorporated
into well-structured and organized mitigation and adaptation measures against climate
change. Interestingly, this seems to be a high-impact issue related to weather conditions, cli-
mate zones, and energy efficiency. Energy efficiency concerns technological advancements
and smart energy systems that use less energy to produce the same or better outcomes
and tasks. It was calculated that in 2002, buildings globally accounted for about 33% of
the world’s GHGs [29]. Recent estimations indicate that buildings still cause 36% of the
European Union’s energy-related GHGs [30]. This issue in the building sector is currently
at the top of the agenda signifying its importance in reaching the European Union’s energy
and climate objectives for 2030 and 2050. Specifically, ref. [31] clearly states that from
2028 new public sector buildings will be zero-emission. Additionally, from 2030 all new
buildings will be zero-emission buildings. The agreement launched a new energy category
for buildings, “A0”, concerning energy performance certificates indicating zero-emission
buildings. The final target is to activate renovations, move forward to a gradual phase-
out of the worst-performing buildings, and improve profoundly regarding the national
building stock. This means better and more energy-efficient buildings will result in a
decarbonized building stock by 2050. Furthermore, these targets are expressed thoroughly
in ref. [32] for improving the well-being of people and a net-zero age. Interestingly, ref. [33]
conducted a study concerning the Building Renovation Passport (BRP) concept in terms of
definitions and content (structure) to offer useful building-related documentation.

Given such worries, more sustainable investments will become a reality (e.g., buildings
with eco-friendly materials and advanced energy systems). People (e.g., entrepreneurs
and individuals) will make more informed decisions regarding energy-saving and cost-
saving options (e.g., heating, cooling, and running appliances and devices). According
to ref. [34], it is an imperative need to improve the energy intensity per square meter
concerning the building sector by 30% by 2030 to stay consistent with the Paris Agreement
climate goals. From Figure 6, which demonstrates the annual “CO2” emissions globally,
we conclude that the building sector accounts for 27% of global “CO2” emissions [35].
Figure 7 presents the heating degree days (y-axis) for the United States, European Union,
and China. Figure 8 illustrates the cooling degree days in summer (y-axis) for the United
States, European Union, and China.

Figure 6. Global “CO2” emissions, annually–globally [35].
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Figure 7. Heating degree days in winter months. The blue box plot indicates the period 2000–2021 on
average. The green bullet indicates the year 2022 [36].

Figure 8. Cooling degree days in summer months. The blue box plot indicates the period 2000–2021
on average. The green bullet points for the year 2022 [36].

According to ref. [36], emissions were increased due to fossil fuel power plants cov-
ering consumption needs for excess cooling demand during extreme summer heat. Cool-
ing degree days in 2022 exceeded typical levels or even the maximum level seen for
2000–2021. Furthermore, for the year 2021, cooling and heating consumption needs from
extreme weather increased global emissions by around 60 Mt “CO2”. Two-thirds of this are
due to additional cooling needs. The remaining one-third came from heating needs. This
accounted for almost one-fifth of the total worldwide rise in “CO2” releases. Improving
energy efficiency in buildings seems a promising way to reach, or at least considerably
approach, the carbon neutrality target by 2050. From this perspective, ref. [26] asserts that
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improvements in the building stock and advancements concerning commercial equipment
and household appliances can positively impact energy use and building services. This
will result in limiting “CO2” emissions. Experts should specifically set minimum levels of
energy performance requirements (standards), such as appliance and equipment standards
or building energy codes [25]. Furthermore, ref. [37] argues that energy efficiency efforts
should be categorized into the following sections: envelope design, form, orientation and
height, ventilation, carbon emission, renewable energies, and occupant behavior. The
review concerned 48 studies considering the energy and carbon performance of high-rise
buildings (HRB) between 2005–2020. In the literature review in ref. [38], 134 studies were
systematically reviewed. The focus was on multiple topics for improving energy efficiency
by limiting devastating impacts on the environment with socio-economic concerns. This
research interrelates Sustainability Development Goals, namely SDG11, which considers
sustainability in cities and communities, and SDG13, which concerns climate action.

Literature on climate change impacts on building energy consumption is increasing,
driven by the need to process adaptation measures since they can greatly safeguard the
built environment’s long-term integrity and effective operation [39]. According to ref. [40],
studies related to the impacts of climate change on buildings can be grouped into five
categories: (i) estimation of impacts concerning energy consumption; (ii) adaptation and
mitigation measures for buildings toward combating adverse effects of climate change;
(iii) models for building retrofitting and renovation to handle the climate change;
(iv) creation of new methods and tools for making projections for future conditions;
(v) handling and estimating uncertainty concerning climate projection models and rel-
evant impacts on building simulation results. Ref. [23] highlights the role of uncertainties
when making projections and relevant estimations for energy consumption patterns and
“CO2” emissions in the case of buildings. Notably, ref. [41] presents three methodological
phases to evaluate climate change impacts on buildings. The first phase includes the study
context identification, which concerns the geographical context and the building typology.
The second phase refers to future weather prediction. This phase considers the selection of
emission scenarios, global circulation models (GSMs), downscaling techniques, weather
file types, and study periods. The third phase relates to energy consumption prediction,
and concerns dynamical simulation models and regression models to compare future time
slices with a reference period.

The energy transition concept is widely acknowledged in the literature as a shift
in the so-called ‘energy paradigm’, namely replacing fossil fuels with renewable energy
sources to decarbonize energy systems [42]. In this effort, authors stress the importance
of the ‘energy triangle’ approach: (i) generate electricity directly from renewables; (ii)
use electricity as the core energy vector; and (iii) electrification of end-use. This ‘jump’
from fossil fuels to renewables constitutes an answer provider, a fundamental response
against ‘quick fixes’ or ‘easy solutions’ that treat only symptoms of problems. Tackling
effectively (e.g., building planning) and efficiently (e.g., using wisely resource materials)
the impacts of climate change requires deep knowledge of the current situation. Forecasts
for future scenarios and proactive rather than reactive behavior from all stakeholders are
essential. This series of events will provide spatial planners, policy and decision-makers,
and officials an advantage to prevent worse situations. The role of buildings in this process
is fundamental. In this regard, ref. [43] emphasizes the energy efficiency benchmarking of
buildings. It is an accurate technique to measure, track, and limit end-use energy usage
of buildings by adopting comparative scenarios. This approach discloses opportunities to
order energy-saving processes, such as modifications to end-use appliances or building
operations. The proposed approach employs machine-learning techniques to maximize
accuracy and precision compared to other benchmarking methods [44–46]. Data gathering
and availability of relevant information to process simulation models and use tools and
techniques to evaluate building performance is crucial. For instance, ref. [47] asserts that
the precise provision of data (e.g., daily, monthly) concerning a typical meteorological year
(TMY) is a requirement and important task. With this procedure, we can evaluate building
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energy consumption, which impacts the good use of outdoor data for building energy
conservation. Consequently, in the absence of adequate data provision, the predictive
power of models and the dependability of results are in question. To overcome these
difficulties, ref. [48] proposes a building information modeling (BIM) and building energy
modeling (BEM) process grounded on a 3D laser scanning process. Geometric information
on the existing building can be implemented in the case of inadequate information to run
building energy models. Moreover, ref. [49] developed a new approach that combines
machine learning and a domain knowledge-based expert system. This system is helpful
to increase building energy flexibility supported by a rule-based expert system and a
decision tree model. Authors conceptualize energy flexibility as indicators related to cost
and energy-saving margins (potential), load, and peak shaving efficiency.

Officials in ref. [6] state that by 2030, GHG emissions of buildings within the European
Union must be limited by 60%, final energy consumption by at least 14%, and energy con-
sumption for heating and cooling purposes by 18%, compared to 2015 levels. Researchers
who recognize such a need constantly develop tools to evaluate energy efficiency and take
corrective actions for embedding sustainability into the building sector. Ref. [50] completed
one of these works. The authors highlight buildings’ spatial and functional dimensions
and incorporate them into urban building energy modeling (UBEM). They apply such an
approach to forecasting hourly heat load profiles of residential buildings using detailed
building simulation tools. This effort is vital for high-resolution results concerning spatial
and temporal dimensions. The literature stresses the significance of UBEM, especially in
modeling large-scale buildings. For instance, ref. [51] systematically processed a literature
review considering physics-based modeling techniques. The main purpose was to assess
conservation energy-related measures.

Given the multiple outstanding studies concerning sufficiency, efficiency, and renew-
ables for attaining goals for reducing GHGs and energy demand, ref. [52] identified a gap in
achieving building energy sufficiency (BES) in the building operational phase. They consid-
ered not only energy or emissions requirements but also addressed occupant demand. The
definition of BES varies in the relevant literature. In the building sector, occupant demands
are categorized into four categories: time and space, quality and quantity, control and
adjustment, and flexibility, matching human well-being with building energy sufficiency.
Energy sufficiency is defined as “a state in which the population’s basic needs for energy
services are met equitably and ecological limits are respected” [53]. An issue that is more
than challenging, contemporary, and important to achieve sustainability. Refs. [54,55]
mention that lifestyle and occupant behavior can be recognized as crucial determinants
impacting buildings’ final energy use.

Technological advancements and innovations in the construction and use of buildings
are important for experiencing sustainability goals. This is how smart technology enters
the equation of building energy efficiency. Notably, ref. [56] states that data-driven models
for occupancy prediction are appropriate (e.g., indoor environmental data-driven model)
with machine learning techniques. In this context, Bluetooth Low Energy (BLE) technology
promises to increase energy efficiency in buildings. Notably, such a smart technology
approach identifies a set of occupancy profiles representing the varied occupancy patterns
observed in the research area [57]. Interestingly, technology-oriented solutions help to
reduce energy consumption with a positive impact on protecting the built environment.
However, technological solutions and innovations concerning materials used are demand-
ing and complex issues since buildings comprise dynamic systems, and the occupants
demonstrate different behaviors in a complex mode [54].

Current and future researchers should motivate, inspire, and guide further inno-
vative achievements, models, and applications to maximize space for energy efficiency
and drastically limit energy use in buildings. Given the conditions in socio-economic
systems worldwide, this is a multidisciplinary task with many variables in the ‘equation’
of sustainable development (GHGs, “CO2” emissions) and predictors of building energy
consumption and efficiency.
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5. Results

The review process discloses the results of selected articles. This study aimed to release
contemporary issues from reviewed articles concerning climate change impacts derived
from building energy use and related GHGs and “CO2” emissions. These results can be
further examined for inclusion in decision-making processes. They can also contribute
to formulating energy management schemes and building planning for energy-efficient
buildings. Ref. [58] concludes that using remotely sensed data when making predictions
for energy efficiency levels of buildings brings opportunities for future work. This work
can integrate additional data sources compared to on-site, in-field visits of certified energy
auditors, which might make the whole process slow, costly, and geographically incomplete.
The research concerned data from 40,000 buildings in the United Kingdom. Accordingly,
technology plays a unique role in promptly getting things done efficiently, accurately, and
cost-effectively. For instance, using the Internet of Things (IoT) smart ecosystems helps
reach decisions that can benefit all stakeholders in the energy system [59]. Supportively,
ref. [60] proposes a novel IoT-based occupancy-driven plug load management system. En-
ergy use reduction is feasible with these systems’ help, whereas their applicability promises
a building-wide implementation. Review results show that these issues deeply interrelate
with the concepts of ‘smart’ or ‘intelligent’ buildings. Interestingly, advanced technology
helps make predictions, define occupancy profiles, and adjust heating, ventilating, and air
conditioning (HVAC) operations. Then, we expand our ability in light of limiting building
energy consumption [61]. This is especially the case in building lighting, a fundamental
issue in the literature. Since artificial lighting accounts for 19% of energy consumption in
building environments, advanced lighting control systems facilitate occupants to regulate
or customize their luminance preferences (indicatively see ref. [62]).

Climate change mainly impacts building-energy demand by increasing or decreasing
the demand needs for cooling and heating. Building technologies (e.g., building equipment
and shell, renovations to the building stocks) contribute primarily to achieving energy-
efficient buildings [25]. Ref. [22] concludes that climate change affects residential demand
due to average temperature rise, weather conditions, and space heating and cooling needs.
Future energy and electricity consumption demand considerations are associated with
numerous factors: environmental (e.g., energy mix and renewables inclusion) and so-
cioeconomic factors (e.g., severe market competition and energy use, production lines,
and innovations). The main methods adopted to estimate the future residential demand
use are parametric, energy balance, and degree-day models [22]. Another method is the
building energy simulation technique [21]. Various energy simulation tools are processed
to elaborate on energy and “CO2” building performance and energy efficiency gains. All
are targeted to enrich strategies and plans for decreasing the environmental impact of
buildings due to climate change. Ref. [63] stated that no validated tool could precisely and
explicitly simulate buildings’ power demand; for instance, at the city level. Thus, space
for further improvements and deployments of new models is present and comparable to
existing ones.

Optimization methods and settings always play a significant role in processing scenar-
ios. They help draw safe conclusions about how buildings will behave and evaluate their
resilience and mitigation capacity [40]. Energy efficiency issues are also critical [64]. Inter-
estingly, machine learning and a domain knowledge-based expert system ease building
demand-side management while they advance the building’s energy design and control
systems for greater demand flexibility [49]. Review results show that energy flexibility is
vital for keeping a power grid sustainable and resilient. Furthermore, it is a significant mea-
sure to decrease utility costs for building owners [65]. Moreover, we receive information
for building characteristics (e.g., energy consumption) based on machine learning methods
from various authors, such as [66–68], as well as for energy efficiency inputs based on deep
learning-based multi-source data fusion frameworks [69].

Energy sufficiency is highly important since it comprises one of the three energy
sustainability strategies, following energy efficiency and renewables [70]. The authors
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elaborated on 230 sufficiency-related policy measures from a systematic document analysis.
They searched the European national energy and climate plans (NECPs) and long-term
strategies (LTSs). They concluded that relevant regulatory frameworks comprise a valuable
instrument to achieve great sufficiency rates concerning national energy management plans
in European Union countries.

Mitigation and adaptation alternatives challenge the potential to handle changing
conditions of climate. Mitigation measures can be applied to building envelopes and
internal loads [71,72]. Dropping the lighting load density is a great energy-saving option,
mainly applied in cooling-dominated buildings in warmer climates [73]. Ref. [74] found
that an improved artificial light source (e.g., LED lamp technology) will support constant
solar lighting and energy efficiency in indoor illumination. The role of technology always
remains crucial in using less energy without losing the desired output. Climate adaptation
measures should be appropriately planned when designing buildings and at the operation
stages to limit significantly negative impacts [75].

The preceding results stemming from the reviewed studies focused on minimizing the
devastating impacts of buildings and energy needs regarding climate change conditions.
Consequently, links exist among energy demand, the building and construction industry,
and climate change impacts. These interrelations question the achievement of a nation’s
goals toward a sustainable future—an issue that needs continuous efforts, multifaceted
approaches, and cooperation. These issues need partnerships in academia and business
environment, within countries, across nations, always with a long-term perspective. A
crucial issue for receiving benefits from all research efforts remains the proper and ethical
circulation of gained knowledge among scientists. Review studies offer this opportunity
in favor of advancing the flow of research results, conceptual frameworks, and any other
scientific input.

In this context, Figure 9 illustrates the technical aspect at the interface of buildings’
efficiency and climate change impacts. This figure showcases how the technical relation-
ships interact with building energy performance and behavior to reduce relevant “CO2”
emissions. Table 3 presents the more popular methods and models processed by reviewed
studies to accomplish robust research and make forecasts and projections based on simu-
lations and scenarios, for instance, reduction of energy consumption and relevant “CO2”
emissions. Practically, we wish to increase the contribution of renewables in the energy mix
for residential and non-residential buildings, and reviewed studies with technical aspects
concerns, including the fundamental role of building design and building envelope and
materials to experience building efficiency. A wide range of technical factors should be put
together to achieve the outcome of using less energy without losing quality. For instance,
the thermal performance of materials, buildings’ thermal insulation (e.g., walls, ceilings,
roofs), and buildings’ systems (e.g., HVAC control systems and occupants’ energy use pro-
files) were the subject of research to increase efficiency, avoid diminished comfort, identify
energy use patterns, gather data, and prevent energy loss. The reviewed studies stress
the importance of using eco-friendly materials and replacing traditional or conventional
ones. Indicatively, the authors highlight the need to use insulated concrete forms instead
of traditional poured concrete in building foundations. Furthermore, the authors propose
to replace spray-foam insulation with structured insulated panels in buildings’ structural
framing.
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Figure 9. Technical aspects at the interface of buildings’ energy efficiency and climate.

Table 3. Reviewed data-driven econometric methods and optimization models.

Data-Driven Analysis Optimization Methods

Econometric
models—specifications

(e.g., regression
models—statistical

analysis)

Qualitative and quantitative
analysis

Simulations Scenarios (e.g.,
energy modeling,

occupancy prediction
models, building stock

models)

Classifications algorithms

Panel data analysis Computational methods and
software

Parametric and sensitivity analysis GIS-driven statistical models

Social network analysis
Quadratic assignment procedure Benchmarking models

Data mining methods and analysis Machine learning models

Energy optimization models (e.g., scenarios and simulations) will direct the distri-
bution and transmission endeavors to reduce linkages and power grid problems (e.g.,
overconsumption, overloading). This sequence of events requires alignment of the energy
sector with reduction targets of carbon emissions (e.g., replacement of fossil fuel to produce
energy and generate electricity). For this reason, technological advancements and innova-
tions (e.g., intelligent buildings, smart technology, Internet of Things (IoT)-run devices)
might keep buildings’ energy performance, consumer behavior, and energy use patterns in
the desired equilibrium with positive environmental impacts.
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6. Recommendations

This study’s review covered a wide range of issues and topics related to energy
efficiency and the energy footprint of buildings as a function of climate change impacts.
All researchers’ efforts concentrate on technologies, regulatory frameworks, models, and
instruments that help reduce “CO2” emissions and energy use of buildings. Many studies
focus on energy savings and the energy performance of buildings to embed sustainability
in the construction phase, operation, and lifecycle of buildings. Ref. [76] underlines the
necessity for highly energy-efficient and decarbonized building stock toward a decrease of
19%, at least by 2050. Supportively, it is central to advance the energy efficiency of buildings
to reach the targets of a carbon emission peak by 2030 and carbon neutrality by 2060 [77,78].
Indicatively, in the case of the European Union, energy performance certificates provide a
pathway to determine the energy efficiency of buildings [79]. These figures are not simply
numerical values or percentages, but mirror the current reality; they mark future objectives
and call for immediate action to advance the built environment.

At a time of increasing interest in developing ‘green’ consumption patterns, the rela-
tionship between energy and high-leverage market sectors (e.g., the building sector) seems
to be a motivating topic for research. All efforts should focus on managing natural and tech-
nical resources to meet all environmental, economic, and social needs; for instance, from
construction to building operations and occupant behavior. Perceiving these responses’
direction, magnitude, linkages, and causalities allow researchers to anticipate environmen-
tal changes better and adapt as necessary. Interestingly, switching focus from short-term
management plans to long-term strategies based on comprehensive and sophisticated
research efforts is a promising way to bring sustainability to the building sector.

Keeping the momentum active, methodologies and econometric models (e.g., panel
data or time series analysis) are significant. These methodologies investigate linkages,
causalities, and long-term relationships. They decode impacts between growth variables at
a macro level and energy-related variables. In turn, researchers can use variables or proxies
or indicators that reflect building performance, efficiency, sufficiency, flexibility, demand,
end-use, resilience, and request of the energy grid operator. This approach needs further
development since it is scarce, untested, or insufficiently mentioned.

For instance, a set of variables for further elaboration could be building energy
consumption rates or British thermal units (BTUs) from cooling and heating devices
(air-conditioning) in different climate zones and seasons. This approach could impact
environmental degradation or growth rates in the context of the Environmental Kuznets
Curve (EKC) hypothesis and energy growth nexus discussion. This approach can be
adopted for a group of countries (e.g., eurozone member states, OECD countries, G7 coun-
tries, G20 countries, Asian countries, and USA states. Another interesting point would
be the inclusion of high-leverage and profitable market sectors (e.g., the construction sec-
tor) under the same econometric modeling. In this approach, data received from various
techniques mentioned in this study could widely benefit such an approach. This perspec-
tive might have needed to be more visible to the broader community within natural and
socioeconomic systems for energy-related issues.

Indicatively, ref. [80] states that the energy-growth nexus concentrates on the con-
tribution of energy as a factor of production in the economic sector. Consequently, this
approach helps to reach results concerning the sensitivity of the growth process against
energy conservation measures. In particular, concerns are visible regarding the optimum
equilibrium between use—users and demand—growth [81] (Ekonomou and Halkos, 2023).
Hence, we obtain feedback for regulating energy consumption. For instance, for limiting
greenhouse emissions and fossil fuel resource depletion in the presence of climate change.
This is an unexplored area in the case of buildings, and future opportunities for thorough
research are present, particularly for highly energy-dependent economies.

Another interesting point is the EKC hypothesis test. Refs. [82,83] explored the linkage
between environmental quality and the economy in the EKC hypothesis context. They
determined a specific point after which the growth process does not impact environmental
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quality levels. In this strand of literature, variables that determine building energy-related
variables are absent. For instance, “CO2” emissions from buildings could enter the EKC
equation for further research. Given the importance of the building sector in the economic
system, researchers should grasp the opportunity and open a new debate based on this
approach. Building materials should be eco-friendly with thermal insulation characteristics
to ‘arm’ buildings capable of becoming efficient. Indicatively, we mention replacing poured
concrete with insulated concrete and using structured insulated panels instead of spray
foam insulation in buildings’ structural framing (see [84,85]).

Many researchers utilize building model simulations, use databases, and establish
scientific arguments based on forecasts and projections with environmental concerns. One
additional research field that can be matched with these research findings would be their
impacts on welfare status concerning the Index of Sustainable Economic Welfare (ISEW).
These results can interrelate with relevant climate change impacts. Ref. [1] elaborates further
on inputs and insights we gain when investigating the role of ISEW in the interaction of
energy and economic growth.

Individual behavior regarding energy use and building appliances and devices is a cru-
cial issue that deserves our scientific attention. This issue directly connects
pro-environmental behavior, environmental awareness, and everyday life’s eco-friendly
attitude. Lifestyle trends and ways of thinking and acting (e.g., mindset, culture) affect
building energy demand and use. In this perspective, one could process empirical research
focusing on willingness to pay for energy quality improvements (e.g., renewables, solar
panels, photovoltaics, smart technologies) in buildings (e.g., residential and non-residential
buildings). For instance, this approach can be processed on a city scale or neighborhood.
Moreover, the willingness to accept living and acting in conventional, traditional buildings
that impact environmental quality levels can be explored. The received results can be
matched with climate change impacts. These preference-stated methods can benefit climate
change mitigation and adaptation plans. Furthermore, estimating the total economic value
concerning the effects of climate change on building an environmental footprint is a valu-
able addition to scientific research. Consequently, they can guide the relevant absorption of
economic resources and utilization of financial instruments. Indicatively, in the case of the
European Union, an option could be the National Strategic Reference Framework (ESPA).
This financial instrument can advance building environmental performance against climate
change. These issues and topics remain less visible in the relevant literature.

Last but not least, we must act individually and collectively under interdisciplinary
teams. The goal is to reach tangible and measurable results and yield prosperity in human
life, in which a practical role is assigned to the built environment.

We should note that many authors have adopted the PRISMA flowchart (indicatively
see [86]) to visualize and conduct their review process. This approach is highly referenced
and recommended in the relevant literature and is dependable for conducting similar
reviews.

7. Conclusions

The present integrative review study concerns the climate change impacts in the pres-
ence of energy-related issues attributed to buildings. Buildings play a fundamental role in
preserving air quality (e.g., “CO2” emissions), type of energy resource use (e.g., fossil fuels
against renewables), and energy demand and end-use issues. Reviewed articles resulted
from a comprehensive review process from well-acknowledged databases: SCOPUS, Sci-
enceDirect, and MDPI. All reviewed articles contributed to relevant literature on a wide
range of issues. Indicatively, studies presented in this work concern building simulation
modeling, energy efficiency issues, technology and innovations, and energy sufficiency
matters.

Results indicate that energy efficiency is an issue under continuous research and opti-
mization methods to receive data and make projections and forecasts for future scenarios.
This is a demanding and challenging issue. Sustainable energy use is not an issue of
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customization, but an integrated concept profoundly related to energy efficiency. Gathered
knowledge suggests that building stocks and materials must limit devastating environmen-
tal effects in light of climate change conditions. Mitigation and adaptation strategies call
for the integration of ‘green’ patterns in the building sector and consider maximizing the
percentage of renewables in the energy mix related to building consumption. Environmen-
tal benefits from reducing energy consumption rely on improving machine learning and
knowledge-based methods and techniques. Researchers constantly improve these issues
by offering new understandings of building environmental performance.

Future challenges call for demonstrating a proactive character, individually and col-
lectively, if we wish to experience a better future in the built environment. New areas
for further research arise. Empirical studies can be implemented to investigate linkages
of building environmental indicators with economic growth rates and environmental
degradation regarding climate change impacts.

Considering all of the above, the role of buildings in preserving the natural and human
environment is vital. We anticipate that the present review study will benefit current and
future research to move closer, safer, and faster to sustainable building environments and
combat climate change drastically.
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Abstract: Foundational and state-of-the-art anomaly-detection methods through power system state
estimation are reviewed. Traditional components for bad data detection, such as chi-square testing,
residual-based methods, and hypothesis testing, are discussed to explain the motivations for recent
anomaly-detection methods given the increasing complexity of power grids, energy management
systems, and cyber-threats. In particular, state estimation anomaly detection based on data-driven
quickest-change detection and artificial intelligence are discussed, and directions for research are
suggested with particular emphasis on considerations of the future smart grid.

Keywords: anomaly detection; cyber-security; false data injection; hypothesis testing; machine
learning; power system monitoring; quickest-change detection; state estimation

1. Introduction

Since its introduction by Schweppe in the late 1960s [1,2], power system state es-
timation has proved an integral component of Energy Management Systems (EMSs).
Schweppe’s proposed nonlinear static state estimation (SSE) provides estimates of the
actual network status, which could then be leveraged for subsequent analysis, including
contingency evaluation and power flow studies [3]. Soon after, strategies for mitigating
erroneous measurement data [4,5] were developed to ensure the fidelity of the power
system state estimates. SSE and dynamic state estimation (DSE) both share a rich history of
research [6–8]; however, SSE has seen more real-world implementation. Nevertheless, DSE
shows great promise in having an enhancing role in legacy SSE-based EMS [9], especially
with the increased adoption of synchrophasor measurements [10], and thus, anomaly-
detection methods using both approaches are surveyed.

Numerous sources of state estimation error have been identified and formulated
in the literature, including measurement, parameter, and topology discrepancies with
respect to the system model. More recently, with the integration of EMS into sophisticated
computer networks, the potential for cyber-security vulnerabilities became apparent. What
new considerations must be made when bad data are malicious? Stealthy false data
injection attacks [11], for example, were formulated as an exercise in fooling legacy bad-
data-detection schemes. That said, attacks on cyber-physical systems have yielded very
real consequences, including equipment damage and rolling blackouts [12]. Anomaly-
detection techniques that can properly handle these manufactured instances of bad data,
and thus improve bad data processing in state estimation generally, are surveyed in this
review. This review also hopes to highlight some considerations for future approaches
to anomaly detection in state estimation, including implementation-based research in the
face of increasingly dynamic load and generation profiles, the complexity of distributed
cyber-physical infrastructure, and pushes for combined SSE and DSE approaches for higher-
fidelity EMS information to improve control, efficiency, and stability in the future smart
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grid. Because the field of anomaly detection covers a wide range of approaches, this survey
limits its scope to power system state estimation, which is a central component of EMS and
is expected to remain as such well into the future [9].

Articles selected for this review were chosen based on their impact on the power
state estimation anomaly detection field. For earlier foundational works, the authors
sought to include papers with lasting influence and citation impact for bad data detection
generally. Particular emphasis was placed on real-world implementation in modern EMSs.
More recent works required consideration of cyber-attacks and/or error types designed
to circumvent the approaches of older works. Because many of these approaches have
yet to be implemented in EMSs, selected papers required notable metrics of improvement
compared to legacy detection methods.

The contributions of this work include:

• Providing a history of legacy bad data detection and error types in power system state
estimation and the connection to newer detection approaches and cyber-attack types.

• Surveying various sources of state estimation cyber-threats and the challenges they
pose to anomaly detection schemes.

• An overview of newer approaches for anomaly detection based on quickest-change
detection and AI.

• Considerations for future research, including the incorporation of dynamic load
profiles, autocorrelated data, and asynchronous measurements.

This review is organized as follows. Section 2 provides a brief theory of static and
dynamic state estimation generally and the components used for bad data detection. Section 3
describes the theory and physical meaning behind three main types of error in state estimation:
measurement, parameter, and topology. Section 4 outlines the traditional methodologies
developed for bad data detection and identification, which often serve as a basis for many
modern approaches. Section 5 discusses malicious data attacks designed specifically to
circumvent traditional bad data detection. Section 6 describes more modern approaches
that aim to overcome these pitfalls. Section 7 provides a summary and considerations for
future work.

2. Power System State Estimation

2.1. Static State Estimation

One of the most used models to perform power system SE is the Weighted Least
Squares (WLS) estimator [7]. A power system with n buses and d measurements can be
modeled through a set of nonlinear algebraic equations in the measurement model:

z = h(x) + e (1)

where z ∈ R
1×d is the measurement vector, x ∈ R

1×N the state variables vector, h : R1×N →
R

1×d is a continuous nonlinear differentiable function, and e ∈ R
1×d is the measurement

error vector. Each measurement error ei is assumed to follow a zero mean Gaussian
distribution. N = 2n − 1 is the number of unknown state variables, i.e., the complex
voltages at each bus.

In the traditional WLS approach, the state vector estimate in (1) is determined by
minimizing the weighted norm of the residual [13], represented with the cost function J(x):

J(x) = ‖z − h(x)‖2
W = [z − h(x)]TW[z − h(x)] (2)

where W = R−1 is the inverse covariance matrix of the measurements, otherwise known
as the weight matrix.

Linearizing the measurement model (1) yields

Δz = HΔx + e (3)
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where H = ∂h
∂x is the Jacobian matrix of h at the current state estimate. The estimate of the

linearized state vector is then given by

Δx̂ = (HTWH)−1HTWΔz. (4)

The estimated value of the measurement vector mismatch Δz is given by

Δẑ = HΔx̂ = PΔz. (5)

where P = H(HTWH)−1HTW denotes the linear projection or “hat” matrix. The idempo-
tent matrix P also has the following properties [7]:

PH = H (6a)

(I − P)H = 0. (6b)

These properties facilitate an expression for the measurement residuals [8]:

r = Δz − Δẑ (7a)

= (I − P)Δz (7b)

= (I − P)(HΔx + e) (7c)

= (I − P)e [Using Equation (6b)] (7d)

= Se (7e)

where S is known as the residual sensitivity matrix, which was first recognized in [5] for
representing the sensitivity of the measurement residual to the measurement error during
bad data processing. Also useful is the residual covariance matrix Ω [7]:

[r] = [Se] = 0 (8a)

Cov[r] =
[
rrT

]
= S

[
eeT

]
ST (8b)

= SR = Ω. (8c)

The residual covariance matrix is used for the detection and identification of bad data,
as well as providing insight into the degree of interaction; these concepts will be elaborated
upon further in Section 3.

2.2. Dynamic State Estimation

SSE does not consider any history of the measurement vector z, but instead provides
a snapshot of the system. This “memoryless” assumption of SSE proved sufficient for
real-time monitoring in early EMS. For one, power networks were not as regimented at
the distribution level, with far fewer microgrids, distributed energy resources, and net
load dynamics compared to today’s systems. Secondly, the measurement data fed to
the state estimator almost always came from measurement devices with slow sampling
rates, such as the 2–4 s range of SCADA. One might argue, then, that the true bottleneck
for capturing dynamic behavior in state estimation was slow metering rates. That said,
Schweppe’s formulation arrived just shortly after the introduction of the Kalman filter
in 1961 [14], which inspired power researchers to seek formulations beyond the still-
developing SSE. The practical hangup of slow meter sampling rates would be relieved
somewhat with the introduction of synchronized phasor measurements in the 1980s [10].
Phasor Measurement Units (PMUs) provide higher sampling rates compared to SCADA
but also GPS coordination to avoid the uncertainty associated with asynchronicity.

Like SSE, dynamic state estimation (DSE) encompasses a wide range of methods. Early
DSE formulations considered the same set of measurements and state variables as those
used in SSE: active and/or reactive power flow and injections and complex bus voltages.
Other approaches seek to better capture load dynamics by considering generator rotor
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angle and speed as differential-algebraic state variables [9,15,16]; however, this review
will primarily consider DSE-based anomaly-detection implementations that use algebraic
state variables.

DSE can be accomplished by modeling the power system as a discrete-time dynamic
system. The Kalman filter is used [17] to estimate the state variables at time k through
prediction and measurement update steps upon each iteration:

Predict:

x̂k|k−1 = Ak x̂k−1|k−1 (9)

Fk|k−1 = AkFk−1|k−1AT
k + Qk. (10)

Update:

Kk = Fk|k−1HT
k

(
HkFk|k−1HT

k + Rk

)−1
(11)

x̂k|k = x̂k|k−1 + Kk

(
zk − Hk x̂k|k−1

)
(12)

Fk|k = Fk|k−1 − KkHkFk|k−1 (13)

where, at time k, Ak is the state transition matrix, Kk is the Kalman gain matrix, and Hk
is the measurement matrix. Fk|k and Fk|k−1 denote the state covariance matrix estimates
based on measurements up to times k and k − 1. Qk and Rk are the process and observation
noise covariance matrices, respectively.

The authors of the first Kalman filter power system DSE approach [18] hinted at its
compatibility with anomaly-detection methods, which, at the time, were being studied
for SSE. Early work soon after [19,20] formulated bad data detection by analyzing the
innovation process:

vk = yk − h(x̂k|k−1). (14)

Additional approaches for bad data processing in DSE include asymmetry analysis
based on the skewness of the normalized estimation error [17,21]. DSE anomaly detection
research remains an active field [16,22], especially since dynamic load and generation
profiles are commonplace in microgrid systems with distributed energy resources (DERs).

3. Bad Data Types and Considerations

Bad data can be classified as either single or multiple. For single bad data, one
measurement in the system is corrupted with a large error. Multiple bad data describe
more than one measurement being in error and can be further classified by the degree of
interaction and conformity [7]. Multiple bad data are said to interact when the residuals
are highly correlated, whereas conformity describes the degree to which gross errors
are “masked” in the residual (i.e., nonconforming errors present as highly normalized
residuals) [8]. Another illustration of how error is not always fully reflected in the residual
is the concept of leverage points [23–26], which can hinder the effectiveness of the largest
residual methods. Leverage points arise as a consequence of system topology, parameter
values, and measurement placement and are usually caused by the following: (i) injection
and flow measurements near branches with a small X/R ratio; (ii) injection measurements
near buses with a large number of incident branches; and (iii) a measurement with a large
weight [6,27]. Even a single leverage point can compromise bad data detectability.

Gross errors that exist beyond the acceptable noise limit of the state estimation model
can be categorized into three types: measurement, parameter, and topology. Each of these
errors suggests a discrepancy between the measurement data and model and are described
further in the following.
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3.1. Measurement Error

Measurement error is inevitable given the limitations of metering equipment accuracy.
Meters can fail or degrade, introducing bias and compromising both accuracy and Gaussian
error assumption: empirical studies of synchrophasor errors have yielded heavy-tailed
error distributions such as Cauchy, Student’s t, logistic, and Laplace [28,29]. Further, the
communications infrastructure itself may contribute to measurement error in the case of
failure or interference [7]. Particularly egregious measurement errors that suggest physically
impossible grid conditions, such as negative bus voltage magnitudes or magnitudes several
times larger or shorter than nominal values, are filtered through pre-processing [8], but more
“agreeable” measurement errors can nevertheless affect the accuracy of state estimates.

3.2. Parameter Error

Parameter errors suggest discrepancies between measurement data and the system
model. While Schweppe in his original formulation [1] did recognize the impact of er-
roneous model parameters, such errors were not considered in the network model. For
example, a parameter error might arise when the variability in a line-impedance value due
to extreme weather conditions is not taken into account. The mismatch between the mea-
surement data and the line impedance database value, which is used in the Y-admittance
matrix for power flow calculations, would be reflected in the state estimation result.

A simple alteration of (1) yields an augmented model [30] and linearization:

zi = hi(x, p0) + ei ≈ hi(x, p) +
∂hi
∂p

Δp + ei (15)

where p is the true parameter value, p0 is the erroneous parameter value, and Δp = p0 − p
is the parameter error.

Stuart and Herget [31] investigated the impact of parameter errors on SSE by simulat-
ing erroneous values for line impedance, measurement error variance, and transformer tap
settings. Of particular note was an observed relationship between the severity of error and
lightly loaded lines.

Parameter errors can be thought of as a special case of multiple bad data in which
only the measurements pertaining to the erroneous model parameter are in error. As such,
studies have been performed with the goal of differentiating between the two. In [32],
it was shown through analysis of the state estimation error distribution that parameter
errors are reflected only in the measurement functions with erroneous parameter values.
Parameter estimation itself has been treated as a process separate from state estimation. A
practical implementation of this was first developed in [33], in which a sensitivity-based
WLS estimation approach is used to both identify and estimate parameter error.

3.3. Topology Error

Like parameter errors, topology errors suggest discrepancies in the measurement
model. System topology describes the bus-branch network configuration at the time of state
estimation. Topology processing, which precedes state estimation, normally determines
the correct status of manual switching and the circuit-breaking apparatus. A topological
discrepancy, such as a branch outage unaccounted for by the topology processor, would
be reflected in the Jacobian measurement matrix H, which requires accurate bus-branch
connection logic for the calculation of power flow. Topology errors can significantly
compromise state estimation accuracy through multiple conforming bad data [7]. Early
work showed that such topology errors can be reflected in the state estimation error [34,35]
and that normalized residual methods could be used for detection. Other approaches
suggest incorporating the statuses of switching devices themselves as additional state
variables [36], aiding in the identification of topology errors as such.
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4. Bad Data Detection

To preserve the accuracy of state variable estimates, bad data must be detected,
identified, and either eliminated or corrected. Whether the source of the bad data is
measurement-, parameter-, or topology-based, detection is the first step. The classical
components of bad data detection can be broadly categorized into three main branches
and are often used in conjunction with one another: chi-square χ2 testing, residual-based
methods, and hypothesis testing.

4.1. Chi-Squared χ2 Test

For a set of d random variables {Xi, i = 1, 2, . . . , d} with unit Gaussian distribution
Xi ∼ N (0, 1), a new random variable with χ2 distribution is defined as Y = ∑d

i=1 X2
i [6].

This follows the form of the cost function defined in (2) and can be written as the perfor-
mance index [8]

J(x̂) =
d

∑
i=1

(
zi − hi(x̂)

σi

)2

(16)

assuming that the measurement errors are independent and distributed ei ∼ N (0, σ2). J(x̂)
then follows a χ2 distribution with d − N degrees of freedom, where d is the number of
measurements and N is the number of unknown state variables.

A critical value C = χ2
(d−N),p can then be obtained based on the degrees of freedom

d − N and the desired detection confidence with probability p = 1 − α, where α is a
constraint on false probability. If J(x̂) ≥ C, then bad data are suspected; otherwise, the
measurements are assumed to be free of bad data. χ2 testing has proved valuable for the
detection of bad data even in the early history of SSE [5], where it was quickly realized that
χ2 and normalized residual methods can outperform one another generally, but that χ2

often proved better for multiple bad data.

4.2. Residual-Based Methods

The χ2 test soon became commonplace for the detection of bad data detection in
WLS SSE for a specified constraint on false probability α, after which residual analysis
could be performed for the identification of the measurement(s) in error [37]. However,
in the case of single bad data in larger networks, the analysis of both the weighted and
normalized residuals also proved viable for detection due to a more pronounced response
in the presence of gross errors when compared to χ2 testing. The use of normalized
residuals for bad data detection was introduced in [5]. Using the residual covariance matrix
Ωii = diag(Ω), the normalized residuals can be defined

rN
i =

|ri|√
Ωii

(17)

It was shown in [5] that, after bad data had been detected through means such as the
χ2 test, a list of the normalized residuals in descending order could be obtained. The largest
normalized residual could be used to identify the measurement in error, after which the
measurement was removed and the state estimation re-run. If bad data were still detected,
the procedure would repeat until all erroneous measurements were eliminated. Further
techniques were developed to correct measurements contaminated with bad data, rather
than eliminating them [8]. Correction keeps the measurement structure intact, which is
especially important in cases of limited redundancy.

Both the detection and identification of bad data can be achieved without χ2 testing
by comparing the largest normalized residual to a statistical threshold depending on the
desired sensitivity [7]. The case studies in [5] demonstrated that, in the case of multiple bad
data, either interacting or noninteracting, no consensus could be developed as to whether
χ2 testing or the largest normalized residual test proved superior for bad data detection. A
geometric interpretation of the normalized residuals was developed in [38], significantly
improving the generalizability of multiple interacting bad data detection. The residual
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difference between estimated and actual measurements continues to be a vital component
in state estimation anomaly detection, including in newer formulations to be expanded
upon in Section 6.

4.3. Hypothesis Testing

Hypothesis testing is a statistical method for deciding between accepting a null hy-
pothesis H0 or an alternative hypothesis H1 based on available observations. In power
system state estimation, the hypotheses are formulated as follows:

H0: zi is a valid measurement.
H1: zi is a measurement in error.

The first work to use hypothesis testing identification (HTI) for bad data in power sys-
tem state estimation [39] developed regions of acceptance between H0 and H1 by comparing
the estimation error to a threshold dependent on the measurement standard deviation
and a pre-selected constraint on false probability α. New results of this HTI method were
presented in [40], where the optimality of the linear estimator is established along with a
decision strategy based on a constraint for missed detection β. In [41], the authors bridge
the gaps between theory and practice by implementing the HTI on eight test systems, show-
casing its strengths in detecting multiple interacting bad data. For bad data identification,
HTI methods show significant advantages over methods based on normalized residuals,
which may be strongly correlated [7]. HTI techniques also demonstrated potential for
discerning error type, such as in topology error identification [42,43].

5. When Bad Data Become Malicious

The introduction of the concept of false data injection attacks (FDIAs) [11] helped to
highlight the limitations of classical bad-data-detection methods. What if bad data are
malicious and/or statistically derived to avoid conventional detection? The basic idea of
FDIAs is that an attacker can design an injection of multiple interacting bad data, which
is then applied to the measurement vector z. Consider the representation za = z + a,
where a = (a1, a2, . . . , am)T is a vector of malicious data. The attacker’s goal is to design
a to alter the state estimates, which EMSs use to make operating decisions, but without
triggering bad data detection. Ramifications of undetected attacks include compromised
system stability [12] and negative economic impact [44]. The success of such attacks is
largely dependent on the information available to the attacker, such as the number of
meters compromised, state estimates, system topology, and Jacobian structure, to name
a few.

Denial-of-service (DoS) attacks are another source of mismatch between the measure-
ment data fed to the state estimator and the true power system state. Causes for DoS attacks
are numerous [45], including communication channel jamming, packet flooding, and com-
promising of metering devices such as SCADA and PMUs so that data are not updated
for that region of the power grid. For state estimation, DoS attacks are typically modeled
as a set of measurements that are no longer available, which can negatively impact state
variable accuracy. If stealthiness is desired, care would need to be taken on the attacker’s
part so as not to render the system unobservable. FDIAs can also be designed to create a
topology error attack [46–48], in which a conventionally nondetectable mismatch between
measurement data and topology processing can lead to compromised system stability and
cost-effective operation.

The authors of [49] present FDIA strategies from the attacker and defender perspec-
tives. For the attacker, it is typically assumed that there is a cost associated with the
information obtained. With this in mind, an algorithm is presented to find the minimal set
of measuring devices required to manufacture an unobservable attack. In [50], a compara-
tive analysis of the FDIA impact between so-called DC and AC SSE is conducted. DC SSE
considers active power measurements only, with bus voltage angles as the state variables.
In contrast, the complete AC SSE considers both active and reactive power measurements,
with bus voltage magnitudes and angles as the state variables. Such a study was important
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due to the DC model warranting far more attention in the FDIA research space at the time,
despite the full nonlinear AC model finding use in real-world EMS applications [51,52].

Impacts of FDIAs on Kalman filter DSE approaches were studied in [53], where it was
found that the unscented Kalman filter (UKF) [54] yielded better performance compared
to the extended Kalman filter (EKF) [55] and the enhanced EKF [56]. Further, an online
nonparametric cumulative sum (CUSUM) approach was proposed to detect anomalies
based on distribution changes in the state estimation error. This is related to quickest-
change detection approaches, which will be elaborated upon further in Section 6.1. A
Kalman filter state estimation approach was proposed in [57], where a Euclidean detector
was used to overcome the shortcomings of the χ2 test for detecting statistically derived
FDIAs as well as DoS attacks.

The FDIA formulation highlighted a need for improved bad data detection. The
classification of bad data as such would also need improvement. Common confusion matrix
metrics like false negatives and false positives become harder to minimize when stealth
FDIAs can closely resemble power system events like transients, switching, and sudden
load changes. Further, with the increasing push towards the cyber-physical operation of
the smart grid [58], many new points of entry for cyber-attack became apparent, such as
Internet of Things (IoT) infrastructure [59], communication channels [60], and distributed
computing [61]. The intersection of model-based and data-driven solutions should grow
to better handle the bad data detection limitations posed by FDIAs. With state estimation
anticipated to remain a vital component of EMSs, new formulations based on quickest-
change detection and AI should be developed for improved anomaly detection.

6. Recent Approaches

6.1. Quickest-Change Detection

Quickest-change detection (QCD) is concerned with detecting a possible change in the
distribution of a monitored observation sequence [62], which is indicative of an anomaly
in a stochastic environment. The general goal of QCD theory is to design algorithms to
detect these changes with the smallest detection delay possible, subject to a constraint on
false alarms.

Three main ingredients are needed in the QCD problem [63]: an observed stochastic
process {Xn, n = 1, 2, . . .}, a change time τa at which the statistical properties of the
process undergo change, and a decision maker that declares a change time τs based on
observations of the stochastic process. A false alarm is defined as an instance of the decision
maker declaring a change before the change occurs: I{τs < τa}. The constraint on false
alarm follows from the Neyman–Pearson hypothesis testing formulation [64], which is
foundational to the QCD problem.

The Neyman–Pearson Lemma [65] establishes the optimal test for binary hypothesis
testing, involving the null (H0) and alternate (H1) hypotheses. For a single observation X:

H0: X has pdf p.
H1: X has pdf q.

Then, comparing the likelihood ratio q(X)/p(X) to a threshold value is the most power-
ful test in terms of deciding which hypothesis is true while minimizing missed detection
subject to a constraint on false alarms [66]. The likelihood ratio plays a fundamental role
in recursive sequential-change-detection algorithms such as Page’s CUSUM [67] and the
Shiryaev–Roberts procedure [68], each of which enjoys optimality properties in terms of
minimizing false alarm and detection delay (τs − τa)+ max(0, τs − τa). These properties
are given proper discussion in [62].

QCD approaches have shown great promise for power system anomaly detection
applications, such as line outage detection and identification [69–71]. QCD has further
application in detecting changes in the state estimation error, which has been proposed
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for fault and FDIA detection. The first QCD approach for state estimation FDIA detection
implemented an adaptive approach using the CUSUM statistic:

Sn = max{0, Sn−1 + L(Zn)} , n ≥ 1 , with S0 = 0. (18)

where {Zn, n = 1, 2, . . .} is the observed stochastic process and L is the log-likelihood
ratio. Sample plots of a subtle change in a Gaussian observation process, along with the
corresponding CUSUM statistic, are included in Figure 1.

Figure 1. Example of a small mean shift observation sequence with the corresponding CUSUM
evolution.

Because the exact form of the post-change distribution q is not known, the authors
in [72,73] used a Rao test-based approximation [74] of the generalized likelihood ratio
test for CUSUM-based FDIA detection. A low-complexity Orthogonal Matching Pursuit
CUSUM (OMP-CUSUM) approach in [75] accounts for the unknown change distribution
by maximizing the cumulative log-likelihood ratio to detect FDIAs that are sparse (i.e., only
a small number of meters are assumed accessible to the attacker).

Both centralized and distributed CUSUM-based approaches for FDIA detection are
proposed in [76], replacing the unknown parameters of the post-change distribution with
their maximum likelihood estimates (MLEs). For the centralized case, the observed stochas-
tic process of interest is the projection of the measurement vector on the orthogonal Jacobian
space component R⊥(H). This is expressed as ỹn � Pnyn, where P is the previously de-
fined linear projection matrix. The distributed case partitions the power system into areas
and estimates the state variables through the alternating direction method of multipliers
(ADMM) [77], where each area i has its own observed process {ỹi

n, n = 1, 2, . . .}. These
approaches outperformed the adaptive-CUSUM approach in [72,73], due in part to the
improved detection of FDIAs with negative and larger elements of the attack vector a.
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The work in [78] incorporates a Kalman filter approach and separately evaluates
DoS attacks and FDIAs. Better detection performance was observed for stealth FDIAs in
particular, in which perfect system topology knowledge allows an attacker to inject false
data along the column space of H. Four Kalman filtering techniques in [53] were evaluated
using nonparametric CUSUM, in which both pre- and post-change distributions p and q are
unknown. Hybrid FDIA/jamming attacks are assessed for the Kalman filter CUSUM-based
detector in [79]. The distinction between persistent and non-persistent attacks was made
as well. Most CUSUM-based detectors assume persistence in the change in the observed
stochastic process, and so an intermittent attack series could be designed to increase the
detection delay. Thus, the Generalized Shewhart Test, which can detect significant increases
in L, is presented as a countermeasure against stealthy, non-persistent FDIAs. A relaxed
generalized CUSUM (RGCUSUM) algorithm is presented in [80] for FDIA detection. A
relaxation on maximizing the post-change likelihood over the unknown parameters yielded
a more computationally efficient algorithm than its generalized CUSUM counterpart. A
normalized Rao CUSUM-based detector with a time-varying dynamic model was employed
in [81] to better distinguish between FDIA and sudden load changes.

The work in [82] also assesses the Shiryaev–Roberts (SR) procedure, along with
CUSUM for change detection. In contrast to CUSUM, the optimality of the SR proce-
dure pertains to detecting τ at a distant time horizon [83,84]. The SR procedure is defined
recursively as

Tn = exp
(

L(Zn)
)
[Tn−1 + 1] , n ≥ 1 , with T0 = 0. (19)

Further, the modified CUSUM and SR procedure algorithms [85] are employed in
the same work as evaluation benchmarks for a so-called DeepQCD algorithm for online
cyber-attack detection, which uses deep recurrent neural networks to detect changes in
transient cases and with autocorrelated observations.

6.2. AI Approaches

FDIA detection can be framed as a binary classification problem in which the mea-
surement vector z is determined to be either normal (negative class) or anomalous (pos-
itive class). One of the first to use semi-supervised and supervised learning for FDIA
detection [86] explored perceptron, support vector machine (SVM), k-nearest neighbors
(k-NN), and sparse logistic regression algorithms for supervised learning. Semi-supervised
learning, in which unlabelled test data are incorporated in training, was explored with
semi-supervised SVMs. Many valuable takeaways were garnered from this work, includ-
ing considerations of power system size and and computational complexity; however,
stealthy FDIAs were not considered. An Extended Nearest Neighbors (ENN) algorithm
was proposed in [87] to better handle the imbalanced data problem (i.e., cases in which the
number of negative class samples greatly exceeds or is significantly less than the number
of positive class samples). Classification performance was then compared to SVM and
k-NN algorithms. The work in [88] used a method based on the margin-setting algorithm,
typically used in image processing applications, in which hypersphere decision boundaries
were formed through labeled PMU time-series data. The MSA approach yielded supe-
rior classification performance compared to standard artificial neural networks (ANNs)
and SVM.

Unsupervised principal component analysis (PCA) showed utility in the construction
of stealthy and blind FDIAs, as well as in developing robust detection methods [89,90]. PCA
is again employed in [91] as a preprocessing step to project higher-dimensional correlated
measurement data to a lower dimension, removing the correlation between data and
magnifying the distance between normal and anomalous measurements. For performance
comparison, the authors implemented a supervised distributed ADMM-based SVM, which
could only outperform the PCA-based anomaly detection when the training set was large.
Mahalanobis distance-based ensemble detection methods demonstrated success for FDIA
detection in [92–95], including in high-fidelity real-time simulation.
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Reinforcement learning (RL)-based QCD approaches are explored in [82,96]. The
QCD problem can be formulated as a case of optimal stopping, in which a decision to
exercise must be made to minimize cost [97,98]. In QCD, this is understood as declaring
a stop time τs at a cost relative to the actual stop time τa. For the Markov Decision
Process (MDP) component of RL, one can either seek to maximize reward or minimize
cost [99]. Two components for the cost are constructed [97]: one for continuing (associated
with missed detection) and one for stopping (associated with false alarm). The authors
in [96] use a model-free state–action–reward–state–action (SARSA) approach to learn
the expected future cost for each state–action pair in a Q-table. The authors opt for a
quantization scheme for learning when faced with the continuous observation space.
Because the actual change time τa is a hidden state, a partially observable Markov decision
process (POMDP) formulation is used. This RL approach significantly outperformed the
Euclidean [57] and cosine-similarity metric [100]-based detectors in terms of minimizing
the mean probability of false alarm and detection delay for various cyber-attack types,
including hybridFDI/jamming, DoS, and network topology attacks.

Neural network and deep learning approaches also show promise for malicious and
standard bad data detection. A Deep-Belief-Network-based classifier is proposed in [101]
using Conditional Gaussian–Bernoulli Restricted Boltzmann Machines in the hopes of re-
vealing higher-dimensional temporal features of stealthy FDIAs. The temporal correlation
between measurements with the state estimator is analyzed through Recurrent Neural
Networks (RNNs) for FDIA detection in [102]. A nonlinear autoregressive exogenous
(NARX) model configuration for ANNs is explored in [103] for stealthy optimized FDIA
detection. The authors in [104] consider a limited set of target labels for attacked measure-
ment data, an example of semi-supervised learning. Autoencoders, used for dimensionality
reduction and feature extraction, are integrated into a generative adversarial network. The
framework compensates for the limited labeled data set by using two neural networks: one
generative, responsible for creating fake samples, and the other discriminative, responsible
for distinguishing between real and generated samples.

7. Conclusions and Suggestions for Future Work

A survey of legacy bad-data-detection procedures has been presented along with
limitations with respect to malicious bad data. Cyber-attack formulations such as FDIA
highlight the need for better data detection by pointing out the theoretical manipulation of
grid-operating procedures by bad actors. Even if one argues that the FDIA formulation
is more of a theoretical exercise than a practical concern, it still points to shortcomings in
legacy bad data detection. Standard bad data and physical line faults under the leverage
point conditions discussed earlier are difficult to detect for similar reasons as statistically
derived stealth FDIAs. Newer methods such as QCD and AI seek to overcome legacy
bad-data-detection techniques by leveraging features such as measurement data temporal
patterns and probability density changes in the state estimation error.

Increased access to real state estimation measurement data would aid greatly in
accessing the practicality of QCD and AI anomaly-detection formulations. For example, a
QCD formulation assuming independent and identically distributed (i.i.d.) observations
may be compromised under dynamic load and generation profiles, in which case the
measurement data exhibit complicating factors like autocorrelation, as investigated in [82].
The robustness of newer anomaly detection strategies to asynchronous measurement data
should also be investigated. Until synchronized measurement data for state estimation
become standard, uncertainty quantification of this type should considered so as not to
be considered a false-positive source of anomalous behavior. The availability of time-
series data such as SCADA and/or PMU measurements for multi-bus systems would aid
state estimation researchers in quantifying uncertainty and measurement correlation. It
is also recommended that future work incorporate dynamic load and generation profiles
to better reflect the future directions of the modern smart grid. This was a motivation in
the work [81], which highlighted the importance of discerning anomalies from dynamic
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behavior such as large load shifts. Such conditions are expected to increase with more DER
penetration in the future smart grid and should be included when evaluating detection and
identification metrics.
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Abstract: To achieve sustainable development, the energy transition from lignite burning to renewable
energy resources for electric power generation is essential for Greece. Wind and solar energy have
emerged as significant sources in this transition. Surprisingly, numerous studies have examined the
potential for onshore wind based on land eligibility, while few studies on open-field photovoltaic (PV)
installations have been conducted. Therefore, based on the Specific Framework for Spatial Planning
and Sustainable Development for Renewable Energy Sources (SFSPSD-RES), along with insights
from previous relevant studies, this work conducts a land eligibility analysis of onshore wind and
open-field PV installations in Greece using the software Geospatial Land Availability for Energy
Systems (GLAES 1.2.1) and ArcGIS 10.2. Additionally, through an in-depth exploration of wind and
solar PV energy potential in decommissioned lignite mines integrated with wind power density
(WPD) and global horizontal irradiation (GHI) maps, this study compares the suitability of wind
versus solar as energy sources for the decarbonization of Greece. Overall, despite the greater spatial
eligibility for onshore wind turbines compared to open-field PV power plants, the relatively lower
wind energy potential and operational limitations of wind turbines lead to the study’s conclusion
that solar energy (PV) is more suitable for the decarbonization of Greece.

Keywords: land eligibility; renewable energy resources; onshore wind; open-field PV; GIS

1. Introduction

In order to keep the global average temperature rise well below 2 K above pre-
industrial levels and to pursue efforts to limit the temperature rise to 1.5 K, the Paris
Climate Agreement was signed by 196 countries in 2015 [1]. Greece, as one of the signa-
tory countries, has set national energy policies in different periods to achieve a phased
sustainable development. Since the early 1960s, Greece has met most of its electric power
demand from thermal power stations burning either lignite on the mainland or heavy fuel
oil on the islands. Based on the European Energy Policy, the goal of renewable energy
penetration in 2020 (Law 3851/2020) formulated at the national level in Greece in 2010
marked the start of the Greek energy transition [2]. As Figure 1 shows, Greek electric
power generation shifted from coal to natural gas by 2020 and wind and solar PV gradually
became important sources of electric power generation recently [3]. In terms of power
generation resources for Greece, solar accounted for 10.7% of the total installed capacity,
while wind accounted for 23% of the total installed capacity in 2023 [4]. For the country’s
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sustainable development, further electric power generation from renewable energy sources
(RESs) is needed. The Greek National Energy and Climate Plan (NECP) aims to deploy
renewable energy generation systems on the islands, interconnect them with the electricity
grid on the mainland, and phase out most of the heavy fuel oil-based power generation
on the islands by 2030. Another policy, the National Climate Law, enacted in May 2022,
set targets to achieve a 55% reduction in the total greenhouse gas emissions by 2030, an
80% reduction by 2040, and ultimately reach net zero emissions by 2050 [3]. It also outlined
the essential emissions reduction measures and set a binding target to end lignite power
generation by 2028.

Figure 1. Electric power generation by variable sources in Greece from 1990 to 2020 [5].

It is evident that the need for RESs to achieve energy transition in Greece is growing
rapidly. According to the National Climate Law [3], the energy transition plan of Greece
focuses on wind and solar PV. Therefore, it is very timely and topical to study Greece’s
wind and PV potential. While there are a plethora of studies about wind potential using
the Geographic Information System (GIS) for Greece [6–10], relatively few studies, such as
the one by Vagiona [11], have been conducted about the country’s PV potential.

This work aims to explore the prospective wind and PV energy prospects in Greece by
identifying the optimal locations for wind turbines and PV installations using geospatial
data. The approach contrasts with those of previous studies [6,8–11] in Greece, which
did not incorporate economic criteria into the land eligibility analysis, thereby providing
a more comprehensive evaluation of the viability of RESs. It also aims to compare the
electric-generating capacity of the existing wind turbines and PV power plants at their
present state with the predicted wind and PV potential to assess the most suitable RESs
for Greece, either wind or solar. Recognizing their untapped value, while mining areas
are normally excluded from such studies, special attention is dedicated to the potential of
wind and PV in former lignite mining areas that could markedly increase the efficiency of
RESs in Greece. This will not only broaden the scope of land use for energy production
but also support the transition to sustainable development by turning neglected sites into
productive assets.

2. Materials and Methods

2.1. Study Areas

Greece, a country located in southeastern Europe, consists of 13 regions with a total
area of about 132,000 km2. By 2023, according to statistics [12], the total population of
Greece was 10,497,595 inhabitants and, among the more than 2000 Greek islands, only
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about 170 islands were inhabited. Although many uninhabited islands host established
nature reserves for flora and fauna, other areas that meet the designated standards are
worthy of becoming sites of investment in renewable energy due to the abundance of wind
and solar resources [10]. Based on the Archaeological Cadastre of Greece [13], the current
inventory reveals the presence of 220 museums, 420 historical sites, 844 protected areas,
3100 archaeological sites, and 17,000 monuments in the entire territory of the country. In
the established network of nature protection areas in the European Union, Greece has
a total of 446 protected areas, including 239 Special Areas of Conservation (SAC) and
181 Special Protection Areas for birds (SPAs), with the remaining 26 areas falling into both
categories [14].

In this work, the operations were based on a shapefile of Greece [15]. Before the land
eligibility analysis, Natura 2000 areas were excluded first according to SFSPSD-RES [16]. In
order to determine the land position that can support the construction of wind turbines and
PV power plants in Greece, the open-source tool GLAES [17] and the Prior datasets contain-
ing typical criteria for variable RESs were utilized. A geographic analysis was conducted
to assess the wind and solar potential in Greece. This analysis involved the utilization of
the Digital Elevation Model of Greece obtained from the European Environment Agency
Digital Elevation Model (EU-DEM) [18]. Additionally, WPD data at a height of 100 m were
obtained from the Global Wind Atlas [19], while GHI data were obtained from the Global
Solar Atlas [20]. These datasets were employed to compare the approximate wind and solar
potential in Greece using a Geographic Information System digital platform, specifically
ArcGIS 10.8 (Esri, Aylesbury, UK).

2.2. Current State Analysis

At present, Greece has established many wind and PV farms based on previous or
recently designated standards. Data affecting the construction of wind turbines and PV
power plants under the current conditions were analyzed to develop a series of land
constraints for the suitable placing of wind turbines and PV power plants in Greece.
Meanwhile, the data of 2023 from the Geoinformation Map of the Regulatory Authority for
Energy [21] were used to present the existing construction areas of wind and solar energy.
Subsequently, the areas with installed wind turbines and PV power plants were combined
with the DEM map and mean WPD and GHI maps of Greece to understand the topography
of the current construction locations and assess the current electric-generating capacity
of Greece.

2.3. Geospatial Land Availability for Energy Systems (GLAES)

Land eligibility is a process that evaluates the suitability of a land parcel for imple-
menting a specific technology based on a predetermined set of exclusion constraints and
serves as a fundamental and widely utilized procedure through which geospatial criteria
shape the distribution patterns across a given region [22]. Since not all open fields are
eligible for the installation of wind turbines and PV power plants, land eligibility analysis
based on geospatial data is an essential step before analyzing RES potential.

GLAES is based on Python 3 language, providing a simple and efficient way to
analyze land eligibility using the Prior datasets [17]. Ryberg et al. [23] examined more
than 50 literature sources that independently conducted a land eligibility analysis for
prevalent variable RES technologies, documenting the approaches and frequencies used in
defining the criteria. In this study, 28 typical criteria were identified, which included the
distance from settlements and the distance from airports. Meanwhile, depending on the
underlying motivations driving their exclusion, the identified criteria were divided into
4 distinct groups, namely, socio-political, physical, conservation, and economic. The typical
criteria were further subdivided into multiple sub-criteria, for example, the exclusion
distance from settlements is different for urban and rural areas. Finally, a collection of
standardized datasets called Prior was developed [23], which defined common criteria
related to variable RESs in the European context. There were 46 Priors in total, each of which
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represented the values of a criterion or sub-criterion across Europe and was georeferenced
using the EPSG:3035 spatial reference system at a spatial resolution of 100 m by 100 m.
The comprehensive documentation of each Prior dataset can be found in the work of
Ryberg et al. [23]. The GLAES model and the Prior datasets can be obtained via GitHub [17].
The threshold of each criterion in the Prior datasets was determined considering the social,
technical, environmental, and economic factors specific to Greece. These are discussed in
Sections 2.4 and 2.5.

2.4. Onshore Wind Land Eligibility Analysis

For onshore wind energy, there are already many studies on land eligibility considering
different series of land constraints. For instance, the European Environment Agency
conducted a land eligibility analysis of onshore wind only excluding protected areas, such
as Natura 2000, and found that the available area for onshore wind is 85.3% in Europe [24].
In contrast, other studies opted to apply multiple land constraints to analyze land eligibility.
McKenna et al. [25] and Eurek et al. [26] both selected agricultural areas, settlement areas,
protected areas, forests, waterbodies, slope, and elevation as land constraints, although
the set thresholds for each exclusion constraint were different. Eurek et al. [26] found that
40% of the area in Europe is eligible for wind energy. In comparison, in addition to the
land constraints mentioned above, McKenna et al. [25] also excluded buffer areas around
airports, harbors, roads, and railways and used higher resolution maps, revealing that
23% of land surface in Europe is eligible. Moreover, Ryberg et al. [27] reviewed 53 land
eligibility studies to develop a set of common land constraints for Europe considering
social, technical, environmental, and economic factors and found that the total eligible area
amounts to 1,352,260 km2 for onshore wind turbines in Europe overall, which includes an
eligible area of 28,326 km2 in Greece. However, according to the specific circumstances
of different countries, there will be certain differences in the formulated exclusion criteria
and thresholds. At the national level in Greece, a Special Framework for the Spatial
Planning and the Sustainable Development of Renewable Energy Sources (SFSPSD-RES)
was formulated, which in addition to considering common land constraints, such as
settlements and protected areas, also excluded archaeological reserves and considered
visual factors, i.e., the esthetic impact of wind turbines on the landscape [16]. Several
subsequent studies on wind farms’ site selection in Greece were based on this framework.
Tsoutsos et al. [7] conducted a study in Crete and found that 2517 km2 on the island are
available. Latinopoulos and Kechagia [8] also conducted a study in the region of Kozani
based on SFSPSD-RES, but they excluded the areas where the average wind speed is
below 4.5 m/s and the slope above 25%, concluding that there are 550 km2 available for
wind farms.

In this study, the series of land constraints that were used to analyze the land eligibility
of onshore wind in Greece are summarized in Table 1. These were based on SFSPSD-RES, a
previous study conducted in Greece [16], and a generalized land constraints list for onshore
wind developed by Ryberg [27]. In order to estimate the eligible area and distributions for
onshore wind turbines, a reference wind turbine was used (Table 2). The parameters of this
reference wind turbine correspond to the Vestas V136 wind turbines available at present
and to technology changes for future wind turbines by 2050 [28].
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Table 1. Land constraints for onshore wind turbines.

Constraint Threshold Data Source

Socio-political:
Distance from Rural Settlements >500 m CLC [29]
Distance from Urban Settlements >1000 m EuroStat [30]

Distance from Roadways >120 m Open Street Map [31]
Distance from Railways >120 m Open Street Map [31]

Distance from Power Lines >120 m Open Street Map [31]
Distance from Touristic Areas >1500 m Open Street Map [31]

Distance from Airports >3000 m CLC [29], EuroStat [30]
Distance from Agricultural Areas Excluded CLC [29]

Physical:
Terrain Slope <17◦ EuroDEM [18]

Distance from Coastlines >1500 m CLC [29]
Distance from Sandy Areas Excluded CLC [29]
Distance from Woodlands Excluded CLC [29]
Distance from Waterbodies Excluded CLC [29]

Distance from Rivers Excluded EuroStat [30]
Distance from Wetlands Excluded CLC [29]

Conservation:
Distance from Natural Monuments >800 m WDPA [32]

Distance from Parks >800 m WDPA [32]
Distance from Landscapes >1000 m WDPA [32]

Natura 2000 Areas Excluded Natura 2000 [14]

Economic:
Wind Speed <4 m/s Global Wind Atlas [19]

Access Distance <5 km Open Street Map [31]
Connection Distance <20 km Open Street Map [31]

Table 2. Summary of the parameters of the reference wind turbine [28].

Parameter Value

Hub Height 120 m
Rotor Diameter 136 m

Capacity 4200 kW
Specific Power 289 W/m2

In the socio-political group of criteria, SFSPSD-RES set a safe distance to urban (popu-
lation > 2000 inhabitants) and rural (population < 2000 inhabitants) settlements considering
noise and safety factors that could cause a negative impact on society [33]. At the same time,
it clearly stipulated that wind turbines must be installed at least 1500 m away from touristic
areas. For safety reasons, wind turbines should be installed at a distance from airports due
to the possible interference with aviation radar signals [33]. Also, they should be installed
at a certain distance from roads, railways, and power lines, but to reduce transportation
and transmission cost, the distance should not be too large [34]. Land use covers, such as
agricultural, industrial, and mining areas, were excluded in related studies of Greece [6–8].
However, this work sought to explore the RES potential of deserted and decommissioned
lignite mines in Greece without excluding mining sites.

In the physical group, slope was assessed as the third most significant factor affect-
ing the construction of wind turbines in the study of Karamountzou and Vagiona [10].
Less steep land provides a better access to construct and maintain wind turbines [33,35];
therefore, the present study excluded areas with slopes greater than 17◦. According to
SFSPSD-RES [16], wind turbines are not allowed to be constructed in the areas of sand,
wetland, and woodland and should be constructed 1500 m away from the coastline. Wa-
terbodies and rivers are often covered by protected area status and are important for the
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functioning of biodiversity and ecosystems [36]. Therefore, waterbodies and rivers were
excluded in this work.

Natura 2000 areas are explicitly excluded by SFSPSD-RES. However, Natura 2000 sta-
tus only includes protected bird and habitat areas. Considering the cultural environment
and heritage protection of Greece, it is worth setting a certain exclusion threshold around
protected natural monuments, parks, and landscapes [8].

In order not to reduce the performance and increase the cost of construction and
maintenance of wind turbines, the study by Karamountzou and Vagiona [10] combined
technology and economics to evaluate the criteria, and found four important economic
criteria, one of which was slope and the remainder were wind velocity, access distance (the
distance from accessible roadways), and connection distance (the distance from a power
line). Wind speed is an extremely important factor affecting the operation of wind turbines.
The wind turbine starts to work when the wind speed reaches a certain value, at which
the wind speed is called cut-in speed [28]. According to the power curve of the reference
turbine, the cut-in speed is 4 m/s [28]. Therefore, areas where the average wind speed is
below 4 m/s were excluded. Under the condition of ensuring that the wind turbines are at
a certain safe distance from roadways and power lines, the distance should not be too large,
because it will lead to increased construction, maintenance, and electricity production and
transmission costs [9,35]. Finally, the thresholds for access and connection distance were
determined based on the study by Ryberg et al. [27].

2.5. Open-Field PV Land Eligibility Analysis

While there are many studies on the land eligibility analysis of onshore wind, studies
on the suitable construction of open-field PV power plants are relatively few. However, the
analysis of land eligibility for PV in open areas adopts the analysis method of multi-criteria
exclusion, considering the factors of society, technology, environment, and economy as well
as that of onshore wind. A detailed study of European wind and solar energy potential
by Ryberg [28] presented a consilient list that included 26 criteria that could be applied
as exclusion constraints to select eligible areas for PV at the country level of Europe and
found that the area eligible for open-field PV is 294,851 km2 in Europe and the eligible
area in Greece is 11,740 km2. Although these established exclusion criteria cannot be fully
generalized for open-field PV studies in a specific country, it lays the foundation for related
studies in Europe. Based on exclusion criteria listed by Ryberg [28], Tlili et al. [37] conducted
a literature review [38] about the areas that need to be excluded for the construction of PV
power plants in France and found that the potential area for PV in France is 40,694 km2.
Likewise, on the basis of the general exclusion criteria list, Maestre et al. [39] reduced the
threshold for some criteria, such as adjusting the distance from settlements areas from
200 m to 100 m, because the work was based on a hypothetical framework favorable to
Spanish decarbonization goals between 2030 and 2050, and added some criteria in line
with Spanish national conditions, such as historical sites. Finally, Maestre et al. [39] found
that there was 143,820 km2 eligible for open-field PV panels in Spain. Few studies have
been conducted on the suitable sites of open-field PV in Greece. Vagiona [11] conducted a
study on Rhodes Island (Greece), which considered 6 exclusion criteria, such as land cover,
distance from protected areas, and altitude, based on SFSPSD-RES and showed that nine
sites were eligible for open-field PV on Rhodes Island without mentioning the total eligible
area. Unlike other studies [37,39], the criteria chosen for excluding land constraints in the
study by Vagiona [11] did not include the slope and northward slope factors, which could
lead to a poor performance of the PV panels due to shading [28].

Although the SFSPSD-RES of Greece provides exclusion criteria for wind turbines’
construction and many related studies provide detailed land constraints and thresholds
based on this framework, the exclusion criteria for PV power plants have not been elabo-
rated. Therefore, in this section, the analysis of open-field PV land eligibility for Greece
was mainly based on some criteria for the site selection of PV parks mentioned in the
SFSPSD-RES and the detailed study by Ryberg [28] on analyzing PV potential in Europe
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(Table 3). Meanwhile, as Greece is very close to Turkey and the climate of the two countries
is similar, this section combined relevant studies conducted in Turkey to provide a more
informative analysis. Additionally, a specific PV panel (Table 4) was used as a reference to
determine the eligible areas for open-field PV power plants and to model their distribution
in decommissioned lignite mines. The selected PV panel offered the optimal representation
of distribution, while ensuring the highest number of full load hours [28].

Table 3. Land constraints for open-field PV.

Constraint Threshold Data Source

Socio-political:
Distance from Settlements >200 m CLC [29]

Distance from Airports >2000 m CLC [29], EuroStat [30]
Distance from Industrial Areas Excluded CLC [29]

Distance from Agricultural Areas Excluded CLC [29]

Physical:
Terrain Slope: Total <10◦ EuroDEM [18]

Terrain Slope: Northward <3◦ EuroDEM [18]
Distance from Elevation <1500 m EuroDEM [18]

Distance from Waterbodies >500 m CLC [29]
Distance from Woodlands Excluded CLC [29]
Distance from Wetlands Excluded CLC [29]
Distance from Coastlines Excluded CLC [29]

Distance from Sandy Areas Excluded CLC [29]

Conservation:
Distance from Natural Monuments >200 m WDPA [32]

Distance from Landscapes Excluded WDPA [32]
Distance from Parks Excluded WDPA [32]
Natura 2000 Areas Excluded Natura 2000 [14]

Economic:
Connection Distance <20 km Open Street Map [31]

Access Distance <10 km Open Street Map [31]

Table 4. Summary of the parameters of the reference open-field PV panels, Winaico WSx-240P6 [28].

Parameter Value

Max Power 240.4 W
Area 1.663 m2

Technology Polycrystalline

Initially, according to SFSPSD-RES [16], the construction of PV parks is prohibited in
areas of agriculture, wetlands, forests, natural monuments, protected landscapes, national
parks, and Natura 2000 areas.

In the group of socio-political criteria, PV power plants should be built close enough to
residential areas to provide a better energy demand and lower costs of electricity transmis-
sion without affecting the lives of residents [40]. In order to avoid accidents caused by the
reflection of PV panels, based on the study by Vagiona [10], airports and the surrounding
area within 2000 m were excluded. Most studies [11,28,41,42] considered some land covers,
such as operational industrial and mining areas, as exclusion criteria since activities on
them can stain PV panels leading to an inefficient performance. The same applies for land
eligibility for onshore wind; however, this study did not exclude mining sites.

In physical criteria, in addition to considering the overall terrain slope (steep terrain
can increase the construction cost), the northward slope should be also considered, because
the self-shading losses of PV panels can be significantly high even with only slightly north-
facing slopes [28]. Constructing PV power plants in high-altitude areas will increase the
cost of the installation and transportation of materials; therefore, it is suggested to set the
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exclusion threshold of elevation to 1500 m [11]. At the same time, in order not to pollute
environmental water resources when constructing PV panels, Ryberg’s study [28] suggested
that waterbodies and surrounding areas up to 500 m should be excluded. According to
several studies [41–43], since the topography and geological structure of sands and beaches
are not suitable for constructing PV power plants, sandy and beach areas were excluded.

Two significant economic indicators were considered in this section, namely, connec-
tion distance (the distance to power lines) and access distance (the distance to accessible
roads). It is suggested that PV power plants should be constructed as close as possible to
power lines, since the farther away from the power lines, the higher the cost and loss of
electricity power transmission [44]. Moreover, it is also necessary to ensure that the distance
between PV stations and the road is not too far, because a longer distance will increase
the transportation cost of construction and the cost of operation and maintenance [45]. In
summary, based on Ryberg’s study [28], this section excluded the areas that were more
than 20 km away from power lines and more than 10 km away from roads.

2.6. Deserted Lignite Mine Potential

According to the NECP, the Greek government has set a goal to completely eliminate
coal-fired power generation in the country by 2028 [46]. Based on this plan, some lignite
power stations, such as Kaida I and II as well as Amyndeo I and II, have been shut down
since 2019 [47]. However, for Greece, a country long dependent on lignite for power
generation, such an ideal and complete energy transition is difficult. In order to stabilize
the electricity power supply system for a future entirely powered by natural gas and
RESs, five lignite-burning power stations in Agios Dimitrios, Meliti, and Megalopolis are
scheduled to have their operations extended to 2025 by the Public Power Corporation
(PPC) in Greece [48]. It is obvious that the phasing out of lignite power generation is
inevitable based on the energy transition plan of the Greek government. In the context
of the shutdown of lignite-fired stations, lignite mines will be decommissioned, with
potentially large areas without conservation value becoming available for other uses, such
as renewable power generation. Meanwhile, there is an excellent connection to the power
grid at these locations, which can be used by the newly installed PV parks. Therefore, it is
important to analyze the RES potential of former lignite mines in Greece.

In this section, a lignite mining site in Megalopoli (Figure 2) and two lignite mining
sites in Ptolemaida (Figure 3) were chosen as the study areas. The Ptolemaida Mine of
Western Macedonia located in the northern part of Greece is the largest lignite mine in the
whole of Greece, followed by what is the largest lignite mine in the Peloponnese Peninsula
of Southern Greece, the Megalopoli Mine [49]. Due to the extension of operation at the
Megalopoli lignite power station until 2025 and the expected closure of the Ptolemaida
lignite power station in 2028, lignite mines in both regions are still in use. However,
with the mandatory and inevitable shutdown of lignite power station in Megalopoli, the
adjacent mine will be decommissioned in parallel, since lignite is not suitable for long-
distance transport.

Without excluding mining sites using GLAES, this section aimed to explore the wind
and solar energy potential in the mining areas of Megalopoli and Ptolemaida combined
with WPD and GHI. Meanwhile, a reference wind turbine (Table 2) and solar panels
(Table 4) were used to assess the renewable energy potential of these open-pit mines after
their decommissioning. The separation distance for wind turbines was based on 8D × 4D,
where D represents the rotor diameter of the turbine. The separation distance for PV parks
was 1000 m.
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Figure 2. Location and region of the Megalopoli lignite mine.

 

Figure 3. Location and region of the Ptolemaida lignite mine.
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3. Results

3.1. Current State of Wind Turbines and PV Power Plants

Figure 4 shows the current distribution of installed wind turbines in Greece, with the
areas featuring wind turbines highlighted in red. The total area occupied by wind turbines
is 2095 km2, accounting for 1.5% of Greece’s total land area.

 

Figure 4. Currently installed wind farms’ area in Greece.

By the end of 2022, the cumulative installed wind power capacity in Greece reached
4681.4 MW [50]. Wind turbines are predominantly distributed in Thrace, Western Mace-
donia, Central Greece, and the Peloponnese. Meanwhile, the altitude at which the wind
farms were constructed is depicted in Figure 5a. The color of an area corresponds to its
altitude, with high altitudes being represented by lighter shades and lower altitude by
darker shades. The altitude values adhere to this color scheme in the subsequent diagrams
related to DEM. Additionally, Figure 5b presents a WPD map combined with the locations
of the existing wind farms. In this map, areas with a redder hue indicate higher mean WPD
values, whereas areas with lighter shades of red correspond to lower mean WPD values.
It is worth noting that the majority of the wind turbines were installed at relatively high
altitudes, as shown in Figure 5a, specifically on mountain ridges. These areas exhibit higher
mean WPD values in Greece, as indicated in Figure 5b, and higher average WPD values
signify more abundant and favorable wind resources [19].
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(a) (b) 

Figure 5. (a) The current wind farms combined with the DEM map of Greece. (b) Mean WPD map of
Greece with the installed wind farms, where the blue areas indicate the areas with wind turbines.

Figure 6 displays the current areas in Greece where PV parks have been constructed.
The total land area occupied by PV parks is 1984 km2, accounting for 1.5% of the total land
area of Greece. According to Petrova [51], the cumulative capacity of PV parks in Greece
reached 5488 MWp in 2023. Meanwhile, it can be noted that the current PV parks are
predominantly situated in Western Macedonia and Thessaly, where they are constructed on
flat terrain with a relatively low elevation, as shown in Figure 7a. Since the GHI values can
accurately quantify the solar energy potential for PV [52], higher GHI values correspond to
a greater solar energy potential. Therefore, PV parks are strategically constructed in areas
with relatively high GHI values, as shown in Figure 7b.
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Figure 6. Areas of the currently installed PV parks in Greece.

(a) (b) 

Figure 7. (a) The current PV parks combined with the DEM map of Greece. (b) Mean GHI of Greece
with the installed PV parks, where the blue areas indicate the areas with PV parks.
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3.2. Onshore Wind Potential

As stated in Section 3.4, the Natura 2000 areas were excluded from the start of analy-
sis. The remaining socio-political, physical, conservation, and economic constraints were
excluded sequentially using GLAES (Figure 8). Upon the exclusion of the socio-political
criteria, the land eligibility for onshore wind turbines in Greece was determined to be
44.58%. However, after excluding the physical criteria, the land eligibility ratio dramati-
cally decreased to 16.21% and further dropped to 15.45% after excluding the conservation
criteria. Finally, after excluding the economic criteria, the land eligibility for onshore wind
turbines in Greece was determined to be 12.16%. Figure 8 clearly indicates that the physical
criteria significantly impact the feasibility of constructing onshore wind turbines in Greece.
Furthermore, among the economic criteria, the slope is the factor that most affects land
eligibility; if the slope criterion is not excluded, land eligibility for onshore wind in Greece
increases to 19.9%.

 

Figure 8. Land eligibility prediction process for onshore wind in Greece.

To provide a visual representation of the land eligibility for onshore wind turbines,
Figure 9 presents a map where the eligible area constitutes 16,055 km2, accounting for
12.16% of the total Greek area. Additionally, Figure 10 combines the predicted wind turbine
locations with the mean WPD map of Greece. These figures demonstrate that the projected
wind turbine sites are concentrated in Western Macedonia and Northern Thessaly, the
eastern part of Central Greece, the Peloponnese, and the islands of Crete and Rhodes.
As mentioned in Section 4.1, areas with a higher mean WPD are predominantly situated
in mountainous regions with high altitudes. However, most eligible areas predicted by
GLAES are distributed across flat terrain with relatively low mean WPD values. Only a
few areas with a high mean WPD, such as the island of Crete and the junction area of the
southern part of Central Greece and Attica, can support wind turbine construction.

99



Energies 2024, 17, 567

Figure 9. Onshore wind land eligibility excluding the land constraints from Table 1.

Figure 10. Predicted onshore wind turbine areas with the mean WPD map, in which blue areas
indicate the areas with predicted wind turbines.
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3.3. Open-Field PV Potential

The four categories of the exclusion criteria were successively excluded using GLAES,
and the outcomes of each exclusion process are presented in Figure 11. Initially, the
exclusion of the socio-political criteria resulted in 50.19% of the land being deemed eligible
for open-field PV construction. However, this proportion drastically decreased to 7.71%,
marking a reduction of 42.48%, when the physical criteria were excluded. The exclusion
of the conservation criteria did not significantly impact the proportion of eligible land,
with the value remaining at 7.44%. Finally, after excluding the economic criteria, the area
suitable for PV power plants in open areas of Greece amounted to 4.67% of the country’s
total land area. Generally, physical criteria significantly influence the land eligibility for
open-field PV power plants, with slope being the most important factor. Without excluding
the slope criterion, the land eligibility for open-field PV increased to 18.17%.

 

Figure 11. Land eligibility prediction process for open-field PV in Greece.

Figure 12 illustrates a map displaying the eligible areas for open-field PV power plants
as predicted by GLAES. The total eligible area in Greece encompasses 6166 km2, accounting
for 4.67% of the country’s total land surface. The predicted open-field PV power plant
locations are predominantly on flat terrain. Moreover, Figure 13 clearly shows the relatively
high mean GHI values in the eligible areas, particularly in the southern regions of Greece,
such as the Peloponnese and the islands of Crete and Rhodes. These regions present peak
GHI values, indicating the substantial solar energy potential of open-field PV installations
in the predicted eligible land areas.
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Figure 12. Open-field PV land eligibility excluding the land constraints from Table 3.

Figure 13. Predicted open-field PV area with the mean GHI map, in which blue areas indicate the
areas with PV power plants.

3.4. Renewables’ Potential of Decommissioned Lignite Mines

The potential installation of wind turbines and PV panels in the lignite mining areas
of Megalopoli (25 km2), Ptolemaida I (134 km2), and Ptolemaida II (57 km2) was simulated
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using GLAES as the basis. The investigation employed a baseline wind turbine (Table 2)
and a reference PV panel (Table 4) for the analysis. Table 5 presents the findings for wind
turbines’ and PV parks’ placements, along with the respective annual energy potential.

Table 5. The predicted placements of wind turbines and PV parks along with the energy potential of
both in the lignite mines of Megalopoli and Ptolemaida I and II.

Lignite Mine Megalopoli Ptolemaida I Ptolemaida II Total

Wind:
Wind Turbines 34 155 61 250

Wind Turbine Power (kW) 4200 4200 4200
Energy Yield (kWh/kW) 3000 3000 3000

Wind Energy Potential (GWh) 428 1953 769 3150

Solar:
PV Parks 21 102 37 160

Area for PV (km2) 11.5 68.9 22.1 102.5
PV Peak Power (GWp) 1.7 9.9 3.2

Energy Yield (kWh/kWp) 1400 1400 1400
PV Energy Potential (GWh) 2324 13,901 4465 20,690

In the context of wind turbines, the Megalopoli Mine has a capacity of 34 turbines,
possessing a total energy potential of 428 GWh annually. As for the Ptolemaida I Mine, it can
accommodate 155 turbines, producing 1953 GWh of energy potential annually. Meanwhile,
the Ptolemaida II Mine can host 61 turbines and is capable of producing 769 GWh of energy
potential. Furthermore, the Megalopoli Mine can accommodate 21 PV parks, covering an
area of 21 km2 and generating an energy potential of 2324 GWh. The Ptolemaida I Mine can
be covered by 102 PV parks, accounting for an area of 68.9 km2 and yielding an impressive
energy potential of 13,901 GWh annually. The Ptolemaida II Mine, on the other hand, has
the capacity for 37 PV parks, covering an area of 22.1 km2 with an energy potential of
4465 GWh per annum.

Overall, significantly, based on the results of the three lignite mines studied, the PV
parks have an almost 7-fold greater potential for electric energy generation compared to
wind turbines. A detailed breakdown of the distribution of the wind turbines and PV parks
is provided in Section 4.2, followed by a comprehensive discussion of the comparative
electric power generation potential of both technologies.

4. Discussion

4.1. Comparison between the GLAES-Defined Eligible Areas with the Current State

Compared to previous studies [6,8–11,16], this work incorporated wind speed, access,
and connection distance directly into the exclusion criteria. Based on the land eligibility
analysis conducted for onshore wind turbines and open-field PV power plants, it is evident
that the area identified as eligible by the GLAES model was considerably larger than
the areas presently developed for such use in Greece. Specifically, the land area deemed
eligible for onshore wind turbines surpassed the extent of wind farms by 13,960 km2,
while the eligible area for PV power plants exceeded the current coverage of PV parks by
4182 km2. These comparative findings emphasize the significant land capacity available
for the deployment of wind and solar projects in Greece.

Figure 14 illustrates a spatial comparison between the areas suitable for wind turbines’
construction according to GLAES and areas where wind turbines have already been in-
stalled. It is apparent that a significant number of predicted eligible areas are situated
on low-elevation and flat terrain, which differs from the current state of wind turbines’
placement. Notably, many wind turbines have been installed at high elevations, a practice
not accounted for in the GLAES model. Nevertheless, the identification of unsuitable
areas for wind turbine installation by GLAES does not imply that these areas are actually
unsuitable for constructing wind turbines. While considering land constraints, the actual
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construction also needs to evaluate the wind energy potential of specific locations. Given
that Greece exhibits a greater wind energy potential at higher elevations, the installation of
wind turbines in such areas is justifiable.

 

Figure 14. Current wind farms and predicted wind turbine areas shown in the DEM map of Greece.

Furthermore, the land eligibility maps, which indicate the predicted suitability of land
for onshore wind and open-field PV, were merged with the existing wind farms and PV
parks, as shown in Figures 15 and 16, respectively. Figure 15 reveals that a significant
proportion, specifically 76.5% of the established wind farms, are situated in regions that
were excluded from the onshore wind land eligibility analysis because of the terrain slope.
Moreover, with potential implications for nature conservation, it was observed that 10.1% of
wind farms have been constructed within Natura 2000 areas. Similarly, Figure 16 illustrates
that 49.3% of the existing PV parks have been constructed in regions that were excluded by
the land eligibility analysis for open-field PV installations. Additionally, 10.1% of these PV
parks are situated in Natura 2000 areas. It should be noted that the reason for this can be
attributed Greece’s early initiative in the construction of wind farms, which date back to
the early 1980s [53], before the implementation of Natura 2000. Additionally, the utilization
of solar PV technology commenced in 2006 with the introduction of feed-in tariffs [54].
However, it was not until 2012 that a specific framework for the development of RESs in
Greece, known as SFSPSD-RES, was proposed and implemented. Moreover, due to the
later start in constructing PV power plants compared to wind turbines, the area covered by
PV parks in the excluded regions is significantly smaller.
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Figure 15. Unsuitable areas for wind turbines’ construction and the existing wind farms in Greece.
White areas present the eligible land, while gray areas present the unsuitable land. Green areas and
red areas, respectively, stand for Natura 2000 sites and the current wind farms.

 

Figure 16. Unsuitable areas for the construction of PV power plants and the existing PV parks in
Greece. White areas present the eligible land, while gray areas present the unsuitable land. Green
areas and red areas, respectively, stand for Natura 2000 sites and the current PV parks.
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4.2. Comparison of the Wind and Solar PV Energy Potential in the Mining Areas under Study

Figure 17 depicts the distribution of wind turbines in conjunction with the mean
WPD for each mining area. Additionally, Figure 18 illustrates the distribution of PV parks
combined with the mean GHI in each lignite mine.

Figure 17. (a) Simulated placements of wind turbines with the WPD map of the Megalopoli Mine.
(b) Simulated placements of wind turbines with the WPD map of the Ptolemaida I Mine. (c) Simulated
placements of wind turbines with the WPD map of the Ptolemaida II Mine.

Figure 18. (a) Simulated placements of PV parks with the GHI map of the Megalopoli Mine. (b) Sim-
ulated placements of PV parks with the GHI map of the Ptolemaida I Mine. (c) Simulated placements
of PV parks with the GHI map of the Ptolemaida II Mine.

Although there is potential for constructing additional wind turbines in decommis-
sioned lignite mines, it should be noted that the wind energy potential of the three mining
areas may not surpass the solar energy potential when comparing Figures 17 and 18. This
observation is supported by the WPD and GHI maps for the entire country. The data
revealed that the average WPD for Greece is 797 W/m2 [19], whereas the average GHI is
1550 kWh/m2 [20]. Interestingly, Figure 17 clearly illustrates that the WPD peaks of the
three lignite mines correspond to low-value areas within the whole area of Greece, with
values of 245.965 W/m2, 265.881 W/m2, and 318.608 W/m2, which are significantly lower
than the average WPD. Furthermore, it is evident that there are only a few wind turbines
situated in the regions with the peak WPD values of each mine, with a mere total of 15 wind
turbines having been observed. On the contrary, the extreme GHI values in the three lignite
mines all exceed the average value of GHI for the entire region of Greece, amounting to
1707.5 kWh/m2, 1577.2 kWh/m2, and 1593.2 kWh/m2, as shown in Figure 18. Notably, the
peak GHI areas of the Megalopoli Mine and the Ptolemaida II Mine contain four PV parks
each, while almost all PV parks are concentrated in the extreme GHI area of the Ptolemaida
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I Mine. For robust verification, this study conducted a comprehensive examination by
consolidating the electric energy potential WPD values achievable from wind turbines
and the electric energy potential GHI values achievable from PV panels, revealing that
the potential of electric generation by PV panels in the three lignite mines significantly
surpasses that of wind turbines. The results from Table 5 further confirm that the potential
of wind energy in the three lignite mines is lower than that of solar PV. Therefore, it is
concluded that the total potential of solar PV in the lignite mines of Megalopoli, Ptolemaida
I, and Ptolemaida II is 20,690 GWh, which is almost 7-fold greater than that (3150 GWh)
of wind.

However, PV fields with such a high peak power output as the ones that can be
built on the areas of the three lignite mines from this study could be a critical component
in the electricity grid of Greece. Daily and seasonal variations in electricity production
need to be smoothed by employing means for the storage of electricity, e.g., hydrogen or
thermal energy storage. The seasonal storage of renewable energy using hydrogen involves
capturing excess energy during the times of high renewable generation, such as sunny
or windy days, and converting it into hydrogen through electrolysis. This hydrogen can
then be stored for extended periods, i.e., several months, serving as a clean and efficient
energy carrier. During low renewable energy periods, like calm or cloudy days, the
stored hydrogen can be utilized in fuel cells or natural-gas-fired power stations to generate
electricity, providing a reliable energy source. This approach addresses the intermittency of
renewable sources, enabling a more consistent and sustainable power supply throughout
the year. Additionally, the deployment of hydrogen in seasonal storage contributes to the
decarbonization of the energy sector by offering a versatile solution for large-scale energy
storage and distribution. What is more, the study of Schmidt et al. [55] showed that, for
a few load cycles per year, hydrogen storage is more cost effective than using batteries.
Another promising option for storing surplus renewable electrical energy is the application
of the so-called Carnot batteries, which can store large amounts of energy in the form of
high-temperature heat in inexpensive materials, such as water, stone, or molten salt, and are
much cheaper than batteries [56]. In conjunction with seasonal heat storage systems, they
can store heat energy for months. The size, capacity, and energy management of Carnot
batteries can be adapted to the specific demand, i.e., the capacities of several megawatts
are expected to be available from 2030 onwards.

In general, at the regional level in Greece, the potential for open-field PV is greater
than that of onshore wind. It is safe to assume that the potential is even greater when roof
areas, parking sites, and industrial areas are included (as they should be). At the same
time, although the adoption of PV power generation in Greece came after wind power
generation, a recent report indicated that the total installed PV capacity has exceeded
the total installed wind capacity for Greece in 2022 [57]. Additionally, the abundance of
sunshine in Greece allows for less restricted operations of PV power plants. In contrast,
wind turbine operations face more complex limitations. For instance, low wind speeds
generally make the installation of wind turbines unviable, while wind speeds that are
too high necessitate the shutdown of wind turbines for their protection. Moreover, the
construction of wind farms generally entails higher material and financial costs compared
to that of PV power plants [57]—the cost of photovoltaic energy has declined by about 90%
over the last decade, resulting in a remarkable 30% growth per year [58]. Furthermore, the
focus on PV power plants will potentially allow for the further enhancement of biodiversity
conservation in Greece. This is because the current focal areas for wind power production
(Thrace, Western Macedonia, Central Greece, and the Peloponnese as well as, overall, the
higher elevation areas) are regions of potentially high biodiversity value [59]. A focus on
PV power production provides an opportunity for the Natura network of protected areas to
expand further in those regions. In conclusion, the combination of the present analysis and
considering the wider efficiency, economic, and biodiversity protection factors, this study
concluded that solar energy (PV) is better suited than wind power for the decarbonization
efforts of Greece.
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Last but not least, a very important advantage of the proposed use of decommissioned
lignite mining areas is that no valuable agricultural land is consumed for the generation of
renewable electric energy.

4.3. Limitations

Based on the SFSPSD-RES of Greece, this study incorporated land eligibility analysis
for onshore wind and open-field PV, combining insights from previous relevant research
conducted in Europe, particularly in Greece. In order to assess land suitability, a com-
prehensive list of land constraints was formulated, encompassing social, technological,
environmental, and economic factors. By imposing exclusion land constraints using GLAES,
the areas eligible for constructing wind turbines and PV power plants were obtained. How-
ever, it is important to note that the land eligibility analysis, based solely on the current
policies and previous empirical studies, can only provide indicative results. The overall
process of constructing renewable energy system entails complex aspects that must be
considered. These include assessing the potential of RESs, evaluating construction costs,
and analyzing topographic and geological conditions specific to the target area. Further
investigations can be carried out to examine the discrepancy between the estimated suitabil-
ity areas for wind turbines and the wind turbines actually built (see Figure 5). Especially on
mountain tops, the wind potential is systematically underestimated when using averaged
wind speed data, as shown in the study by Hu et al. [60]. In a future study, the effect of
topology at the sub-grid level will be included in the land suitability analysis.

Additionally, it is crucial to secure the support and involvement of local residents and
stakeholders, among other relevant considerations. Consequently, the successful imple-
mentation of wind turbines and PV power plants necessitates not only model simulations
but also thorough field investigations, which together enable optimizing electric power
generation efficiency and minimizing costs to ensure the utmost effectiveness of renewable
energy generation.

With the phasing out of lignite mines in Greece, there is a significant opportunity to
construct renewable energy systems in decommissioned lignite mines. However, there are
certain limitations in constructing wind turbines and PV power plants in these mining areas.
Geotechnical stability, slopes, and landslides, for Example, should be considered during
construction [61]. Moreover, this study compared the potential of wind energy and solar
PV energy in Greece, specifically focusing on decommissioned lignite mines. The analysis
mainly utilized the WPD and GHI maps of Greece for discussion. It should be noted that
there is no direct relationship between WPD and GHI values; rather, they serve as reference
indices for estimation proposes. The electric power output of wind energy and solar PV
predominantly depends on their respective power capacities. Therefore, this work used a
reference wind turbine and a reference PV panel to estimate the number of constructable
turbines and the area for PV parks so that the energy potential can be calculated under ideal
conditions. Finally, it was found that the PV energy potential significantly surpassed that of
wind energy in the decommissioned lignite mines under study. It is essential to recognize
that the estimated potential represents a technically possible maximum. The exploitable
potential may be substantially lower due to practical, ecological, or technological limitations
(which cannot be addressed in this work). Detailed site-specific studies are imperative for a
realistic assessment.

Furthermore, a comprehensive calculation of electric generation is an intricate process
that necessitates the consideration of numerous factors. In the case of wind energy, the
power generation capacity is determined by climatic factors, such as air density and temper-
ature, as well as physical factors, like wind speed and the spatial and temporal variations in
wind patterns. Similarly, the power generation capacity of solar PV is influenced by climatic
parameters, like air quality and sunshine hours, in addition to physical factors, such as
solar irradiance in combination with atmospheric conditions. Overall, the calculation of
wind energy and solar PV energy capacities for the whole territory of Greece is an intricate
and challenging task, thus representing a limitation.
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5. Conclusions

In the context of Greece’s energy transition dominated by wind and solar energy, this
work assessed the land eligibility of onshore wind turbines and open-field PV power plants
to provide insights of reference for their suitable construction. Meanwhile, the electric
generation potential of the two RESs in the decommissioned lignite mines of Megalopoli
and Ptolemeida were specifically compared to further discuss the most suitable RESs
for Greece, either wind or solar. This work concluded that solar (PV) energy in Greece
has a greater potential of electricity generation than that of wind energy. Considering
only land eligibility during optimal conditions, Greece’s 132,032 km2 of suitable areas for
PV could generate an electricity of 205 TWh, significantly surpassing the country’s total
electricity consumption of 52.8 TWh in 2020 provided by International Energy Agency. And
in decommissioned lignite mines, while wind turbines appear unsuitable for electricity
generation, PV systems have significant potential. Moreover, it is worth mentioning that a
joint venture between the German utility RWE and Public Power Corp. (PPC) of Greece is
already constructing solar projects, named Amynteo Cluster I and II, with a total capacity
of 210 MWp and 280 MWp, respectively, in the former Amynteo open-pit lignite mine of
Western Macedonia [62].

Through the land eligibility analysis of onshore wind turbines and open-field PV
power plants using GLAES, it was found that Greece has significant land potential for
both compared to the current state. It is worth noting that the construction locations
of wind turbines modeled using GLAES is quite different from the current installations.
Most of the current wind turbines are located at high altitudes with a high wind energy
potential, which is contrary to the predicted results. Additionally, although the eligible
area for wind turbines (12.16%) is much larger than that of PV power plants (4.67%), a
significant proportion of the predicted eligible land for wind turbines is located in low
electric generation potential areas, especially in the studied lignite mining areas. Meanwhile,
this study made a start to analyze the land eligibility for both the onshore wind and open-
field PV of Greece and compared the electric energy potential of wind and solar power. In
general, the successful construction of wind turbines and PV power plants not only needs to
be based on model predictions considering socio-politics, technology, the environment, and
economy, but also requires a thorough field investigation of the target construction areas.
Moreover, the most direct way to compare the potential of wind and solar energy sources is
to calculate their electric power capacity. However, due to the complexity of the calculation,
which needs to consider many climatic factors, this work did not conduct the calculation,
thus remaining a limitation. Overall, this work provided meaningful references for the
construction of wind turbines and open-field PV power plants for Greek decarbonization.
Notably, part of the wider significance of this study lies in the estimation of the potential
of renewable energy available by using the areas of three decommissioned lignite mines,
which is in the order of magnitude of the electricity produced by gas in 2020 in all of Greece.
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Empowering Active Users: A Case

Study with Economic Analysis of the

Electric Energy Cost Calculation

Post-Net-Metering Abolition in

Slovenia. Energies 2024, 17, 1501.

https://doi.org/10.3390/en17061501

Academic Editor: Marco Merlo

Received: 26 February 2024

Revised: 15 March 2024

Accepted: 18 March 2024

Published: 21 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Empowering Active Users: A Case Study with Economic
Analysis of the Electric Energy Cost Calculation
Post-Net-Metering Abolition in Slovenia

Eva Tratnik * and Miloš Beković
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Abstract: This paper addresses the issue of the abolition of annual net metering in Slovenia and
compares the electric energy costs for the studied active user after the abolition. The article also
provides an exploration of the role played by an aggregator, which serves as a central entity that
enables individuals to participate in the electric energy market. An analysis of the case study of an
active user was made, where an analysis was made of the measurements of household consumption
and photovoltaic plant production for the year 2022. This article presents an economic analysis with
and without net metering and an analysis of the aggregator involvement strategies. In addition, a
battery energy storage system was also considered in the analysis. An important part of the article
is the identification of the flexibility potential for shiftable loads, which enable an aggregator to
acquire insight into the energy consumption profile and energy production profile of active users.
The following indicators were used to compare the strategies: annual electric energy cost and the
indicators including self-sufficiency, self-consumption, and grid dependency. The findings indicate
that, even in the absence of annual net metering, the active user can lower their costs for electric
energy with the help of an aggregator.

Keywords: active user; battery storage system; case study; economic analysis; net metering;
photovoltaic system

1. Introduction

The flexibility potential of active users is ever increasing due to the growth in the use
of the following power-consuming and/or power-producing appliances in households:
heat pumps (HPs) for heating, electric vehicles (EVs), battery energy storage systems
(BESSs), and renewable energy sources (RESs) such as solar power plants. An active user
is an individual or a group of end-users who provide services for adjusting consumption
and/or production. The integration of home appliances with home energy management
systems (HEMSs) does present some challenges for households due to the complexity of the
underlying processes and technologies [1,2], but also helps to improve the energy efficiency
in households. The lack of awareness among active users about the sustainable use of
electric energy decelerates the usage of HEMSs in households [3].

The EU countries have a variety of programs to encourage households to install
photovoltaic systems (PVs) in their homes, as discussed in [4–6]. One of the programs that
encourage households to install PV plants in Slovenia is net metering, which is described
later. In [7], a method for the sizing of a PV plant and the environmental perspective are
presented for a case study in Slovenia. The support laws and regulations of countries that
encourage PV plants are some of the key factors in the economic feasibility of investing in a
PV plant. An overview of the supporting policies in five EU countries through investment
profitability is provided in [8]. This paper offers a detailed analysis of the support policies
for photovoltaic installations in the residential sector across major European markets
such as Flanders (Belgium), Germany, Italy, Spain, and France. It evaluates the economic
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viability of a household investment in a photovoltaic installation through a model based
on the discounted cash flows of the installation over its lifetime. The study suggests
that Italy’s support system has been the most profitable among the countries studied
since 2010. Despite decreasing support levels, residential installations are still profitable
in most cases under the current support policies, except for Spain. The study further
highlights the potential of self-consumption to increase profits, especially in Spain and
Germany. However, Flanders’ policy has no impact on levels of self-consumption. Finally,
a comparison of past and present policies indicates varying levels of success in keeping
the profitability of investments stable over the years, depending on the efficiency of the
support policy. Germany’s support system stands out as the most balanced one over the
last five years. The results of the study show that the supporting policies have a significant
impact on investments’ profitability. Household users can also sell their electric energy
and have different options, as discussed in [9], which compares the following three electric
energy sales mechanisms: feed-in tariffs, net metering, and net purchase with sale. Each
mechanism has been described using a simple microeconomic model. The mechanisms
have been compared in terms of social welfare and the retail electric energy rate.

Annual net metering allows the solar power plant to cover the household’s electric
energy needs while surpluses and deficits are regulated by the grid. When production
exceeds consumption, the power plant sends the excess energy to the grid, while, during
lower production time, the household receives electric energy from the grid. The annual
calculation is made only once a year, at the end of the calendar year, and is based on the
difference between the supplied and received electric energy. The decision as to whether
any excess energy that arises after the end of the billing period will be handed over to the
supplier for a fee or free of charge is a matter of agreement between the customer and the
supplier. Several studies have been performed to optimize the size and operation of PV
plants. In [10], the researchers were focused on the optimal design of PV systems in light of
the specificity of Polish regulations. Since the annual net metering was valid, the annual
consumption was relevant in the dimensioning of the PV plant. With the abolition of net
metering, the methods for sizing PV plants will change.

The Directive 2019/944 EU [11] requires that the network fee must be non-discriminatory,
regardless of whether the household user is included in the net metering policy. With the new
regulation, the household user will be required to pay a network fee for all the electric energy
delivered from the distribution grid [12]. Therefore, Slovenia coordinated its legalization with
the EU legislation and adopted the Act on Promoting the Use of renewable energy sources [13]
and the regulation on self-supply with electric energy from renewable energy sources [14],
which will enter into force in 2024. Legislations will bring major changes in Slovenia’s network
fee tariffs and abolish the concept of annual net metering, and cause many households in
Slovenia to wonder about the profitability of investments in a PV plant. Households with
installed PV plants need to consider their energy management strategies.

There is always a discrepancy between produced energy and household consumption.
Therefore, for a reliable power supply, it is essential to connect the PV plant to the distribu-
tion grid or energy storage system. With the development and massive integration of BESS,
many studies have been conducted to address the advantages of BESS in PV applications.
A study performed by [15] is being carried out to provide household and commercial
users with the optimal size of a PV plant based on their yearly consumption. In [16], the
researchers proposed a multi-objective optimal sizing of a grid-connected household with
a PV plant and BESS to minimize the total electric energy cost and grid dependency. In [17],
the optimal size for a PV-BESS system is considered by the depth of discharge value and
the optimal tilt angle of the PV panels. The BESS degradation was ignored. In [18], a
framework is presented of a two-stage optimization model for the planning and operation
for a household with a PV-BESS system. As a result, it is necessary to choose the optimal
size of the PV and BESS to achieve the minimum cost of the system.

Active users can vary their electric energy consumption according to their needs
and preferences, taking advantage of dynamic pricing and generation from renewable
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energy sources. Price-based programs are based on dynamic tariffs, where the prices of the
tariff values change depending on the electric energy market circumstances and network
conditions. Price-based programs based on time and power demand can be classified as
the following [19]: time-of-use pricing, real-time pricing, and critical-peak pricing. In [20],
a self-scheduling model for a HEMS is presented considering time-of-use pricing and
real-time pricing, aiming to reduce the users’ electric energy costs. Additionally, various
scenarios with the inclusion of BESSs are studied, to examine their impact on optimal
performance. A HEMS optimization model for scheduling home appliances effectively
under a time-of-use pricing tariff is presented in [21]. The HEMS optimizes the performance
of multiple household appliances, including BESSs, EVs, air conditioners, and water heaters,
to minimize electric energy costs.

The HEMS allows active users to manage their consumption and/or production actively,
and to participate in new energy services and new opportunities in flexibility markets [22,23].
New energy services are implemented by combining consumers and producers. A more active
involvement of active users will also require a new concept of the flexibility market. In [24],
the trends in the new flexibility market were selected and compared, where the results showed
that the new market platforms present promising models regarding technical and economic
justification. Aggregator platforms for local trading between active users, like promoting
peer-to-peer trading, were also analyzed in the article.

Demand-side flexibility (DSF) mechanisms can be classified into implicit and explicit
DSF mechanisms [25]. Under the implicit DSF mechanism, active users increase or decrease
consumption or production in response to electric energy price signals. Under the explicit
DSF mechanism, active users increase or decrease consumption or production in response
to the aggregator signal, which is based on energy market needs and ancillary products. The
aggregator is a retailer of flexibility and has different roles: they aggregate, and coordinate
flexibility provided by users, trade with flexibility, and conclude contracts with active
user and flexible users (Flex Requesting parties), the transmission system operator, the
distribution system operator, and the balance responsible party (BRP). In response, new
aggregator platforms and flexibility market models are being developed and analyzed
in [24]. The regulatory framework for the aggregator role is still under discussion, and is
implemented differently in several EU countries. The status of explicit DSF for active users
in the 26 EU Member States was examined in [26].

Consumption in households consists of different types of power-consuming appliances.
In [27], home appliances are categorized as shiftable, interruptible, weather-based, and non-
manageable. Shiftable appliances have flexible delays with specific energy consumption
profiles, e.g., washing machines, dishwashers, etc. Interruptible appliances have fixed en-
ergy consumption when they are switched on and non-energy consumption when they are
switched off, e.g., water heaters, refrigerators, etc. Weather-based appliances depend upon
the weather and dimensions of the premises, e.g., heating, ventilation, and air conditioning
appliances. Non-manageable appliances do not have the option to adjust their consumption,
e.g., TVs, lights, etc. The home appliances in [28] are divided into two groups, shiftable and
non-shiftable, and this division of home appliances is used in the following.

The HEMS requires the development of a framework for handling the energy needs
and demands of an active user without compromising the comfort level and without
greater involvement of the active user, so the process must be as automated as possible.
The increasing use of RESs and BESSs in households can have significant benefits to the
operations of HEMSs. The advantage of using a BESS is to store produced energy with
the RES, and to use energy when the electric energy price is high. In [29], a HEMS with a
RES and BESS is presented, where the findings obtained by simulating the problem using
household data thoroughly confirm the efficiency of the provided HEMS in lowering the
electric energy cost while keeping the appropriate level of consumer discomfort.

This work aims to examine the possibilities for an active user after the abolition of
net metering and explore the economic analysis of households with solar PV plants in
Slovenia, comparing the cost-effectiveness of households with and without net metering
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policies. An integral aspect of the article involves calculating the flexibility potential of an
active user, which is technologically available using algorithms for detecting flexible loads.
The focus is on a case study of a single-family home with an installed PV plant. In the
study, a comprehensive analysis is carried out with and in the absence of net metering, as
well as investigating strategies with aggregator involvement. The self-sufficiency indicator
(SS), self-consumption (SC) indicator, grid-dependency indicator (GD), and annual electric
energy costs (PEB) are calculated to determine the economic viability of each strategy.
Two main contributions are provided in this work. Firstly, the identification algorithms
for identifying shiftable loads are included, which offers a robust methodology for the
recognition of such loads. Secondly, it presents an analysis encompassing scenarios with
and without net metering alongside strategies involving aggregators.

The paper is organized as follows. An introduction to the discussed problem is given
in the first section. The case methodology is discussed in the second section. In the third
section, a case study description is presented, whereas the fourth section presents and
discusses the obtained results. The fifth section gives a conclusion, where the outline is
presented for future work.

2. Methodology

2.1. Electric Energy Cost Calculation Model

Understanding the electric energy cost can help active users to make informed deci-
sions about their energy consumption and to optimize their energy use to reduce costs.
Electric energy costs consist of the following: the market price of electric energy, the net-
work charge (transmission network charge and distribution network charge), contributions
(a contribution for a market operator (C1), a contribution for energy efficiency (C2), a
contribution to support the production of electric energy from renewable energy sources
(RES), and high-efficiency co/generations (C3)), and the excise duties on electric energy
(C4). The network charge represents the amount that an active user of the transmission
system must pay for utilizing the system. Its purpose is to cover the costs incurred by
the electricity system operators in each year of the regulatory period. The Energy Agency
establishes the network charge for the electricity system in accordance with the Legal
Act on the methodology for determining the regulatory framework for electricity system
operators. The prices set by the Energy Agency for contributions and charges, which were
valid in 2022, were used. In Slovenia, there is a two-rate tariff system, which is shown
Figure 1. The low tariff (LT) is applied during off-peak hours, which last from 00:00 to 5:59
and from 22:00 to 23:59. The LT is also used on holidays and weekends. The high tariff
(HT) is applied during peak hours, which last from 6:00 to 21:59.

Figure 1. LT and HT on (a) weekdays (Monday to Friday) and (b) weekends (Saturday and Sunday)
and national holidays.
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The prices for LT (PLT) and price HT (PHT) are shown in Table 1. The network charge
for LT (NCLT) is lower than the network charge for HT (NCHT). The capacity charge (CC)
is a fixed charge based on the contracted capacity of the discussed household user. The
capacity charge must be paid monthly. The rated power is determined by the current
limiter, while the connection power and billing power are determined by the network
regulation. The billing power (PB) of the user is determined by the contract with the user
based on the network regulation, according to which the billing power may also be lower
or higher than the connection power. The billing power determines the amount of two
charges on the electric energy bill: CC and C3. The CC and C3 factors are paid monthly
and are not related to the electric energy consumption, but rather to the contracted power.
Table 1 presents prices for tariffs and different charges for calculating the final price of
electric energy without VAT.

Table 1. Charges and prices that are used to calculate the final price of electric energy for Slovenian
households.

PLT

[EUR/kWh]
PHT

[EUR/kWh]
NCLT

[EUR/kWh]
NCHT

[EUR/kWh]
CC

[EUR/kW]
C1

[EUR/kWh]
C2

[EUR/kWh]
C3

[EUR/kW]
C4

[EUR/kWh]

0.118 0.082 0.03215 0.04182 0.77417 0.00013 0.0008 0.36948 0.00153

The annual electric energy costs (PE) for a user are calculated using Equation (1), where
factor 12 is used for the CC and C3 factors because we are calculating the consumption
for the whole year. To allocate Ec

L to the different tariff rates accurately, it is necessary
to segregate the total load consumption based on the time of the day. The Ec

G data were
divided into corresponding periods to determine the energy consumption under LT (EcLT

G )
and HT (EcHT

G ), and can be written by (1).

Ec
G(t) = EcLT

G (t) + EcHT
G (t) (1)

PE = EcLT
G · PLT · CLT + EcHT

G · PHT · CHT + 12 · PB · Cc+
+Ec

G · C1 + Ec
G · C2 + 12 · PB · C3 + Ec

G · C4
(2)

2.2. Calculation of the SS, SC, and GD Indicators

The self-sufficiency (SS), self-consumption (SC), the grid-dependency (GD) indicators
are calculated and can be used to assess the level of energy independence of a system.
The SS indicator is used to estimate how much energy a PV plant can provide for its own
needs without relying on external resources. The SS indicator describes the relationship
between the energy produced from the PV plant for the observed time period and the total
consumption of the household for an observed time period, and can be calculated using (3).
The observed time period (T) can be a day, a month, a year, or any period of time.

SS =

T
∑

t=1
Ep

PV(t)

T
∑

t=1
Ec

L(t)
· 100 (3)

The SC indicator is used to estimate how much electric energy generated from the PV
plant is actually used in a 15 min time interval. The SC indicator describes the relationships
between the energy actually consumed from the PV plant for the observed time period and
the total consumption of the load for the observed time period, and can be written by (4).
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SC =

T
∑

t=1
Ec

PV(t)

T
∑

t=1
Ec

L(t)
· 100 (4)

When the BESS is included in the household, the SC indicator is used to estimate how
much electric energy is generated from the PV plant, and the BESS is actually used in a
15 min time interval. Equation (5) is used to calculate the SC indicator with the inclusion of
the BESS in the household.

SS =

T
∑

t=1
Ep

PV(t) +
T
∑

t=1
Ec

BESS(t)

T
∑

t=1
Ec

L(t)
· 100 [%] (5)

The difference between the SS in the SC indicators is that the SS indicator is used
to calculate a ratio between the total energy produced from the PV plant and the total
consumption of load for the observed time. The SC indicator is used to calculate how much
energy produced electric energy from a PV plant is actually consumed in a 15 min interval
by a household user. The GD indicator is used to estimate the level of grid dependency. It
is defined by (6) and describes the ratio between the consumption from the grid and the
total load consumption.

GD =

T
∑

t=1
Ec

G(t)

T
∑

t=1
Ec

L(t)
· 100 [%] (6)

The mentioned parameters, particularly the SS and GD indicators, assume a crucial
role under the new accounting system, as the network no longer serves as virtual storage
for produced energy. In ideal scenarios, our goal is absolute independence from the grid
(SS = 100%). However, achieving this would necessitate an economically unjustifiably large
BESS capable of maintaining such autonomy, especially during the winter months. Conversely,
we aim to minimize the GD indicator, implying a shift in the load profile. Active users are
encouraged to align their consumption with daily production, thereby reducing the GD
indicator. Both parameters, therefore, wield significant influence in the decision-making
process for individuals when determining the placement of the RES and BESS.

2.3. Description of the Aggregator Role

Household consumers and active users are becoming more equipped (PV plants and
advanced metering) and have the potential to provide new services of flexibility. Flexibility
is described as a movement in the active user’s load profile caused by changes in the
load profile. Although the flexibility potential of household active users is limited, an
effective grouping of active users may be sufficient to keep the power system balanced. A
new role—the aggregator—is required in the energy value chain for the consumers and
prosumers to have access to this flexibility market. The aggregator connects numerous
modest flexibility resources into a usable flexibility volume by working between active
suppliers and active users. With the participation of active users in the energy value chain,
an understanding of new relationships, services, and programs will be required. Any legal
or natural person who wishes to participate actively in the electric energy market will have
to join the Balance Scheme. Balance Schemes and electric energy market operators are
connected through a set of procedures, regulations, and market mechanisms that ensure an
efficient and reliable supply of electric energy. This connection is critical for maintaining
the balance between electric energy generation and consumption in the power grid. The
electric energy market in Slovenia is organized hierarchically into a Balance Scheme, which
is managed by the electric energy market operator, Borzen, and d.o.o.

118



Energies 2024, 17, 1501

Document [30] addresses several possible aggregator implementation models that
can be used to implement the aggregator role in current energy markets. The document
presents six aggregator models, and one of these models was adopted for further research.
The relationships between an active user, a new entity in the future electric energy market
aggregator, and supplier are shown in Figure 2. The aggregator establishes all the contrac-
tual relations necessary to participate in the flexibility market and establishes connections
with customers who own flexible resources. Active users will be compensated according to
the degree of asset flexibility they provide. In order to adhere to the size and temporal re-
quirements of particular flexibility products, the aggregator constructs a portfolio of assets.
A balance responsible party (BRP) is in charge of balancing demand and supply actively for
its portfolio. The aggregator is in charge of activating flexibility, while the active user is in
charge of energy change. It is important to emphasize that, in order to participate in market
mechanisms where active users can offer their flexibility potential, the active user must/can
have separate contracts with the electric energy supplier and the aggregator. Aggregators
empower active users to participate actively in DSF mechanisms to obtain incentives to
reduce the load during peak periods. It is crucial to emphasize that aggregators play a
key role in optimizing energy consumption. By managing and coordinating the various
resources in their portfolios actively, aggregators can help active users implement energy
conservation strategies, demand response initiatives, and redeployment practices.

 
Figure 2. The assumed relationship between active user, new entity aggregator, and supplier in the
future electric energy market.

Electric energy trading involves buying and selling electric energy in various forms,
such as power contracts, futures, options, and swaps. This trading can occur between
different market participants, including active users, aggregators, and energy service
providers. Electric energy markets are structured differently in different regions and
countries, but they all aim to provide an efficient and reliable electric energy supply at a
reasonable price. Generally, electric energy markets operate based on supply and demand,
where the price is set by the intersection of the supply curve (i.e., the amount of electric
energy producers are willing to generate at a given price) and the demand curve (i.e., the
amount of electric energy consumers are willing to buy at a given price).

Electric energy trading can occur in various markets, including wholesale markets,
balancing markets, capacity markets, and futures markets. Wholesale markets are used
for large-scale transactions between electric energy producers and consumers, while spot
markets allow for the real-time trading of electric energy at current prices. Futures markets
allow market participants to trade contracts for the future delivery of electric energy.
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An electric energy market model requires crucial data from previous trading periods.
Patterns and trends in electric energy demand and supply, as well as the prices at which
electric energy is traded on the market, can be identified by analyzing the data. This
information can then be utilized to develop a model that simulates the behavior of the
electric energy market under different conditions. Energy exchanges such as the BSP South
Pool Energy Exchange serve as an important source of data for data acquisition. The BSP
South Pool Energy Exchange allows electric energy trading in the Slovenian and Serbian
electric energy on the day-ahead, intraday, and balancing markets. Furthermore, the BSP
Energy Exchange offers various other services and products, such as capacity reserve auc-
tions, balancing market services, and the trading of guarantees of origin certificates. These
products and services aim to provide a comprehensive platform for market participants
to manage their electric energy portfolios and risks efficiently. BSP stands for the “BSP
Regional Energy Exchange”, which is a Slovenian energy exchange company that operates
a trading platform for trading electric energy. A market model for electric energy trading
was developed based on day-ahead trading annual data. The hourly trading price (Tp)
data were employed in our analysis. This information was used to develop a model that
simulates the behavior of the day-ahead electric energy market. Figure 3 offers a detailed
overview of the hourly trading price fluctuations that occurred throughout 2022.

Figure 3. Hourly trading price on the day-ahead market for electric energy.

The patterns in the prices at which electric energy is traded on the day-ahead market
were identified by analyzing the data. The analysis of the trading price on the day-ahead
market revealed that the peak trading price of electric energy on the day-ahead market was
observed in August, while the minimum trading price of electric energy on the day-ahead
market was noted in December.

2.4. Identification of Flexibility Potential for a Shiftable Load

By defining the flexibility potential, an active user’s appliances and sources can be
utilized optimally. This enables the aggregator to gain insight into the active user’s energy
consumption profile and energy production profiles. The ability of an active user to
consume or produce electric energy in response to an external signal is referred to as
positive and negative flexibility. The positive flexibility potential represents the capability
to increase energy consumption or decrease electric energy production as needed. The
negative flexibility potential relies on the ability to decrease electric energy consumption
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or increase electric energy production as needed. Both types of flexibility potential are
crucial and can be offered to an aggregator. The flexibility potential of the active user
is determined by evaluating the flexibility potential for each shiftable household load.
Shifting the active user’s appliances and sources can help reduce the cost of electric energy.
However, these changes require some level of compromise in terms of daily electricity
pattern usage routines. This compromise can result in discomfort, which can be defined as a
loss or impairment of energy comfort. The literature has identified three types of discomfort
that have been discussed in this context [31]: delay or waiting time due to shifting time-
flexible appliances, temperature deviation due to thermostat settings of temperature-based
appliances, and power deviation resulting from reduced power of instant power-based
appliances. To ensure the active user’s comfort in strategy 2, a strategy was implemented
where shiftable loads were manipulated only once a day, with each activation lasting just
30 min. The approach aimed to minimize the active user’s discomfort while still achieving
a reduction in cost for electric energy.

The flexibility potential of EVs is defined by the EV charging habits that are analyzed
throughout the year. The flexibility potential of EVs is defined with (7), where Ec

EV is
the electric energy consumption of the EV. The assumptions considered in defining the
flexibility potential of the EV are as follows: the EV is charged every day and the EV is
available every day after 16:00. The positive flexibility potential of the EV is defined by
allowing the reduction and rescheduling of EV charging during charging periods, and
changing the positive flexibility potential on an annual basis, as can be seen in Figure 4a.
The negative flexibility potential of the EV includes identifying instances when the EV
has not yet been fully charged within the day, and if it is past 16:00, the charging can
be rescheduled. The negative flexibility potential of the EV throughout the year can be
seen in Figure 4b.

E =

⎧⎨
⎩ E+(t) =Ec

EV(t), i f t > 16:00&
t

∑
t=0

Ec
EV(t) = 0

E−(t) = −Ec
EV(t),

, (7)
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Figure 4. Positive and negative flexibility potential for the EV (a,b) and HP (c,d).

The flexibility potential of the HP is defined by (8), where Ec
HP is the electric energy

consumption of the HP. The negative flexibility potential of the HP on an annual basis can
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be seen in Figure 4b, while the positive flexibility potential of the HP on an annual basis
can be seen in Figure 4d. The f HP weighting factor is a parameter that typically ranges
between 0 and 1, determining the degree to which we want to adjust the power of the HP.

E =

{
E+(t) =Ec

HP(t) · fHP
E−(t) = −Ec

HP(t) · fHP
, (8)

The flexibility potential of the PV is defined with (9), where Ep
PV is the electric energy

produced from the PV and Ec
L is the consumption of the load. The negative flexibility potential

of the PV size is defined as the difference between the energy produced from the PV and the
consumed energy, and can be seen in Figure 5a. The positive flexibility potential of the PV is
defined as zero, because PV plant systems are dependent on solar irradiance, which cannot be
controlled by an active user, and can be seen in Figure 5b. The amount of produced energy
from the PV plant is determined primarily by the environmental conditions.

E =

{
E+(t) =0

E−(t) =Ep
PV(t)− Ec

L(t) > 0
, (9)
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Figure 5. Positive and negative flexibility potential for a PV (a,b) and a BESS (c,d).

The flexibility potential of a BESS can be quantified based on its capacity to store
and release energy at specific times, its efficiency in these processes, and its ability to
respond to various grid events and signals. The operation and dynamics of the charging
and discharging of the BESS are different for different strategies, which are described below.
The flexibility potential of the BESS is defined by (10), where SOCmin and SOCmax are
changing according to the strategy and different modes. The flexibility potential of the
BESS is offered to an aggregator only in strategy 2. The negative flexibility potential of the
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BESS on an annual basis can be seen in Figure 5c, while the positive flexibility potential of
the BESS on an annual basis can be seen in Figure 5d.

E =

{
E+(t) = (SOC(t)−SOCmax)·CBESS

100
E−(t) = (SOC(t)−SOCmin)·CBESS

100

, (10)

2.5. Definition of Strategies

The research aims to explore the possibilities for active users after the abolition of
net metering, and two strategies were designed for this purpose. Engaging in the electric
energy market is a viable option for an active user. Nonetheless, since direct participation
in the electric energy market is not possible, the active user needs to establish a connection
with an aggregator. Two strategies were formulated to evaluate the advantages for an
active user in collaborating with an aggregator. Given the recent approval of subsidies by
the state for the construction of a BESS, there has been a notable increase in their adoption
in households. Consequently, the upcoming analysis focuses on testing the strategy on
two active user cases: one with the PV plant and another with both the PV plant and BESS.
The operation for strategy 1 involves offering only excess energy from the PV plant to the
aggregator. Strategy 2 offers a shiftable household load in addition to excess energy from
the PV plant to the aggregator.

2.5.1. Strategies for an Active User with a PV Plant Only

In Figure 6a, the presentation shows strategy 1, which shows the scenario where the
engaged active user provided excess energy from the PV plant to the aggregator. In Figure 6b,
the presentation shows strategy 2, which shows the scenario where the engaged active user
provided excess energy from the PV plant and shiftable load to the aggregator. Shiftable loads
in strategy 2 are identified using the identification algorithm for shiftable loads presented in
Section 2.3. Strategy 2 offers the flexibility potential of the HP and the flexibility potential of
the EV to an aggregator. By incorporating shiftable loads, the active user’s flexibility potential
can be increased, providing the aggregator with more flexibility potential.

Figure 6. Strategy 1 (a) and strategy 2 (b) for an active user with a PV plant only.

Operation during strategy 1 for an active user with a PV plant only: The electric energy
produced from the PV plant (Ep

PV) is divided into two energies: the energy consumed
directly by the load (Ec

PV) and the excess energy (EPV_e) which is offered to an aggregator,
and, further, to the electric energy market, and can be written with (11).

Ep
PV(t) = Ec

PV(t) + EA
PV_e (t) (11)

123



Energies 2024, 17, 1501

The load consumption Ec
L is equal to the energy taken from the grid (Ec

G) and the
energy produced with the PV plant that is actually consumed directly by the load (Ec

PV),
and can be written by (12).

Ec
L(t) = Ec

G(t) + Ec
PV (t) (12)

In strategy 2, the following three modes of operation are distinguished: operation
before activation, operation during activation, and operation after activation. Operation
during activation is the same as in strategy 1, as the active user’s flexibility potential
is offered to an aggregator. Operation before and after activation will be presented in
the following. The energy produced from the PV plant (Ep

PV) is divided into the follow-
ing two energies: the energy that supplies the load directly (Ec

PV) and the excess energy
(EG

PV_e ) which is sent to the grid, and can be written by (13). The distribution of the load
consumption (Ec

L) remains the same as in (13).

Ep
PV(t) = Ec

PV(t) + EG
PV_e (t) (13)

2.5.2. Strategies for an Active User with a PV and BESS

In Figure 7a, the presentation shows strategy 1, which shows the scenario where the
engaged active user provided excess energy from the PV plant that remained after charging
the BESS to the aggregator. In Figure 7b, the presentation shows strategy 2, which shows
the scenario where the engaged active user provided excess energy from the PV plant,
BESS, and shiftable load to the aggregator. The shiftable loads in strategy 2 are identified
the same as in the previous example.

Figure 7. Strategy 1 (a) and strategy 2 (b) for an active user with a PV plant and BESS.

Operation during strategy 1 for an active user with a PV and BESS: the energy pro-
duced from the PV plant (Ep

PV) is divided into the following two energies: the energy
that supplies the load directly (Ec

PV) and the excess energy (EPV_e) which is offered to an
aggregator, and can be written by (14).

Ep
PV(t) = Ec

PV(t) + EPV_e (t) + EBESS
PV_e(t) (14)
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The load consumption (Ec
L) is equal to the energy taken from the grid (Ec

G) and the
energy produced with the PV plant that is actually consumed directly by the load (Ec

PV),
and can be written by (15).

Ec
L(t) = Ec

G(t) + Ec
PV (t) + Ec

BESS (t) (15)

Excess energy from the PV plant EPV_e is equal to the energy sent to the aggregator
(EA

PV_e) and the energy that charges the BESS (EBESS
PV_e).

EPV_e(t) = EA
PV_e(t) + EBESS

PV_e(t) (16)

Three modes of operation are discussed for operation during strategy 2 for an active
user with a PV and BESS. The operation before and after activation will be presented in the
following. The energy produced from the PV plant (Ep

PV) is divided into two energies: the
energy that supplies the load directly (Ec

PV) and the excess energy (EPV_e) which is offered
to an aggregator, and can be written by (17). The distribution of the load consumption (Ec

L)
remains the same as in (15).

Ep
PV(t) = Ec

PV(t) + EG
PV_e (t) + EBESS

PV_e(t) (17)

The excess energy from the PV plant EPV_e is equal to the energy sent to the aggregator
(EA

PV_e) and the energy that charges the BESS (EBESS
PV_e).

EPV_e(t) = EG
PV_e(t) + EBESS

PV_e(t) (18)

Operation of the BESS during strategy 1: The efficiency of charging (ηc) and discharg-
ing (ηd) are considered when energy is stored in the BESS. The BESS is charged when there
is excess energy available. The energy stored in the BESS (Es

BESS) is positive in the case of
charging the BEES, and is calculated according to (19).

EBESS(t) = EBESS
PV_e(t) · ηc (19)

Discharge begins when the energy from the PV plant is not sufficient to consume the
load. Ec

BESS is negative in the case of discharging the BEES and is calculated according to (20).

EBESS(t) = Ec
BESS(t) · ηd (20)

The energy stored in the BESS Es
BESS is calculated using (21), where Es

BESS(t − 1) is the
energy stored at the previous moment and the EBESS.

Es
BESS(t) = Es

BESS(t − 1) + EBESS(t) (21)

The state of charge (SOC) is the ratio between the energy stored in the BESS and the
size of the BESS, and is calculated using (22).

SOC(t) =
Es

BESS(t)
CBESS

· 100 (22)

The operation of the BESS during strategy 1 can be described using (23), and operates
between the lower limit (SOCmin), which is 20%, and the upper limit (SOCmax), which is 90%.

SOCmin ≤ SOC(t) ≤ SOCmax (23)

2.5.3. Elaboration on the Distinction in the Operation of the BESS between Strategy 1
and Strategy 2

In strategy 1, the BESS operates within the range of the lower limit of the SOCmin set
to 20% and the upper limit of the SOCmax set to 90%, as shown in Figure 8a. The operation
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of the BESS in strategy 2 is divided into the following 3 modes: before the operation,
during the operation, and after the operation of the BESS. Before the activation, the SOCmax
is set to 60%, as seen in Figure 8b. Therefore, the BESS remains available for charging
or discharging during the activation mode. During the activation, the BESS undergoes
charging or discharging based on the aggregator signal. The BESS is operated during the
activation within the range of the lower limit of the SOCmin set to 10% and the upper
limit of the SOCmax set to 90%. After the activation mode, two cases can be distinguished
based on the action during activation. The BESS was discharged when a signal for negative
flexibility was received from the aggregator. Subsequently, after the activation, the BESS
underwent recharging from the grid. In a case where a signal for positive flexibility was
received from the aggregator, and the BESS was charged from the grid; subsequently, after
the activation, the BESS underwent discharging to the grid. A more detailed presentation of
the BESS performance during and after activation will be elucidated in the Results section.

Figure 8. Performance of the BESS for strategy 1 (a) and strategy 2 (b).

2.6. Profit Determination

The profit from the sale of excess energy from the PV plant, PPV_e is calculated using
(24), where EG

PV_e is the excess energy from the PV plant, Tp is the trading price, and f A is a
weighting factor that indicates how much the aggregator reduces profit relative to the Tp.
Factor f A is in the range of 0 to 1. If factor f A is equal to 1, it signifies that the aggregator
compensates in alignment with the prevailing electric energy prices on the day-ahead
market.

PPV _e(t) = EG
PV_e(t) · Tp(t) · fA(t) [€] (24)

The difference between the electric energy payment PEB and the profit from the sale of
excess energy PPV_e is calculated using (25), which is represented as Pd. Pd signifies the
actual costs for electric energy that the active user is obligated to pay subsequent to the sale
of excess energy.

Pd = PEB − PPV_ e (25)
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3. Case Study Description

The case study involved an active user in a single house with an installed PV plant of
11 kW. The house was equipped with an HP for central heating and a charging station for an
EV. The research process consisted of several critical stages, as shown in Figure 9, starting
with data acquisition. Information on electric energy consumption and energy produced
from the PV plant in the 15 min interval was obtained on the “Moj elektro” platform. The
data from the platform were exported in Excel and processed further in Matlab. The next
step was data analysis, focusing on the consumption and production patterns. Following
that, the identification of shiftable loads was conducted, and, additionally, a BESS was
included. Important data-driven results were derived as a result of this comprehensive
analysis. The results were divided into the following 3 categories: the analysis with net
metering, the analysis without net metering, and the analysis to evaluate the advantages of
a collaboration between an active user and an aggregator, where two strategies were tested.

 

Figure 9. Process of the research.

3.1. Analyzing the Data

The analysis was conducted by examining the daily energy consumption and PV plant
production records from the previous years. An analysis was carried out of the active user
electric energy consumption and PV production for the year 2022. The daily Ec

L of each
month is presented in Figure 10a. It can be seen how Ec

L changed depending on the season.
The average daily Ec

L was 31.26 kWh, with a total yearly Ec
L of 11.17 MWh. In Figure 10b,

the average Ep
PV of each month is presented, with higher production during the summer

months. The average daily Ep
PV was 29.81 kWh, with a total yearly Ep

PV of 11.97 MWh.
Based on the data, it can be inferred that the winter consumption is higher than the summer
consumption due to the use of an HP for heating. Additionally, PV production is at its peak
during the summer and at its lowest during the winter.

Month

0

10

20

30

40

50

60

70

80

Month

0

10

20

30

40

50

60

70(a) (b)

Figure 10. Daily load consumption (a) and PV production distributed (b) by month.
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3.2. Algorithm for Shiftable Load Identification

Active users must estimate their flexibility potential to provide flexibility services.
The identification of flexible loads in an active user profile is key in the estimation of
the flexibility potential. It is also necessary to determine the degree of flexibility of the
associated loads with a weighting factor. The algorithm for the identification of the EV and
HP is presented below. The Algorithm 1: Identification of EV is designed to identify the
moment with the highest electric energy consumption within each day. After the moment
with the highest consumption is identified, the consumption for four moments before and
after are examined to determine the EV consumption.

Algorithm 1: Identification of EV

Load input parameter (Ec
L, t)

for t = 1,..,tend(365) → days in year
if t== tLT → max Ec

L for that day[
Ec

Lmax, tEV
]
= max(Ec

L(t)) → find max consumption and index for that moment
for every day
End

calculate the consumption of EV if tEV − 4 ≤ t ≤ tEV + 4
EEV(t) = Ec

L(t) · c1
calculate the consumption of EV 1 < tEV − 4, tEV + 4 > tend EEV(t) = 0
EEV(t) is a vector of EV consumption for every 15 min for a whole year

The Algorithm 2: Identification of HP was designed to compare the consumption be-
tween summer and winter days. The first step is to deduct the consumption of the EV from
the total consumption. The average consumption for the summer dates is calculated next.
Then, the algorithm subtracts the average summer consumption from the consumption in
the heating season to determine the HP consumption. The summer season was defined
from 21 June 2022 to 23 September 2022 and the heating season was defined from 1 January
2022 to 10 March 2022 and from 1 October 2022 to 31 December 2022.

Algorithm 2: Identification of HP

Load input parameter (Ec
L, t)

Ec
LW(t) = Ec

L(t)− EEV(t)→EV consumption is subtracted from the consumption of all loads
Find summer dates (21 June 2022 till 23 September 2022)→tsd
For t = tsd

Ec
LW(t) = mean(Ec

LW(t))→average summer profile for every 15 min
End
Find dates for the heating season (21 June 2022 till 23 September 2022) →thd
for t = 1,..,thd → days in year

Ec
HP(t) = Ec

LW(t)− Ec
LW(t)

End
calculate consumption of HP EHP(t) = Ec

HP(t) · c1
EHP(t) is a vector of EV consumption for every 15 min for a whole year

The results of the algorithm for the identification of shiftable loads are presented in
Figure 11, providing a comprehensive overview of the energy consumption patterns. The
results of the EV recognition algorithm can be observed in Figure 11a,c. The highest point
of total consumption during the day was located and is marked in Figure 11a,c with a gray
dashed line. There is no noticeable difference between the EV consumption during the
summer months in Figure 11a and the winter months in Figure 11c. The performance of
the HP recognition algorithm is observed in Figure 11b,d. On the selected summer day,
there was no HP consumption, while, on the selected winter day, the HP consumption
was detected.
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Figure 11. Results of the EV (a,c) and HP (b,d) recognition algorithm for the selected summer and
winter days.

With the help of the identification algorithms, the consumption was divided into
the following three categories: EV consumption and HP consumption, which both can
be referred to as the consumption of shiftable loads and non-shiftable loads, as seen in
Figure 12, where the consumption is presented for each month. The annual consumption
of the EV amounted to 2 MWh, with the electric energy consumption remaining relatively
consistent throughout the year, with a slight increase during the winter months due to the
cold weather impacting to the travel range of the EV. The annual consumption of the HP
amounted to 3 MWh, while the annual consumption of the non-shiftable household load
amounted to 6 MWh.

Figure 12. Load consumption for the shiftable (EV in HP) and non-shiftable household loads for
every month.
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4. Results and Discussion

4.1. Analysis with Net Metering

The analysis carried out using net metering revealed that the active user involved in
net metering only has to pay the difference between the consumed and produced electric
energy if the user consumed more energy than produced. Based on the analyzed data, the
annual load consumption of EL

c was 11.17 MWh, while the energy produced from the PV
Ep

PV was 11.97 MWh. Since the active user produced as much energy as they consumed,
they only needed to pay the monthly fixed fees, which include the capacity charge and
contribution C3. As a result, the active user involved in net metering paid EUR 96.07
without VAT for PE, which is calculated using (26).

PE = 12 · PB · Cc + 12 · PB · C3 (26)

Despite its proven benefits, the net metering policy in Slovenia is set to be abolished.
This upcoming change is expected to transform the financial landscape for active users.
As a result, it has become crucial to evaluate the economic feasibility of PV plants in the
absence of net metering and explore the benefits of the active user’s collaboration with an
aggregator, where two strategies were investigated.

4.2. Analysis without Net Metering

With the upcoming abolition of net metering, the active user will no longer be enrolled
in the net metering policy, which means that annual accounting will no longer be available.
Therefore, an analysis of the consumed and produced energy was conducted in 15 min time
intervals without net metering, which yielded the results shown in Table 2. The analysis of
15 min time intervals showed that the Ec

PV was only 1.92 MWh, which means that minimal
electric energy was consumed in the 15 min interval. Without involvement in the net
metering policy, the active user with a PV plant would only have to pay EUR 1401.2 for the
PEB, and the PPV_e would be EUR 0, which means the Pd would be EUR 1401.2.

Table 2. Results of analysis without net metering.

Strategy Pd [EUR]
CBESS

[kWh]
SS [%] SC [%] GD [%]

Without 1401.2 - 107 17 83

Without 1116.0 10 107 36 64

The grid is often perceived as a vast storage system due to the implementation of net
metering policies. However, this perception fails to acknowledge the inherent limitations of
the grid in storing excess energy generated by PV plants effectively, particularly during peak
production periods in the summer. As a result, mismatches between energy production
and consumption arise, notably during the winter months, when the demand escalates due
to increased use of heat pumps for heating purposes. Such discrepancies pose challenges
to system stability. This article has introduced indicators such as SS, GD, and SC to provide
a more accurate representation of the level of self-sufficiency exhibited by active users and
their dependence on the power grid. The SS indicator was 107%, indicating that the PV
plant produces more electric energy annually than the active user consumes. However,
only 17% of the electric energy produced by the PV plant was consumed, resulting in
an SC indicator of 17%. The GD indicator was 83%, indicating that the majority of the
electric energy consumed was from the grid. The GD indicator was very high because
the produced energy from the PV was not consumed at the same 15 min interval. In the
absence of net metering, the results of the indicators remained unchanged when compared
to the results obtained through strategy 1. Therefore, no distinct outcomes were mentioned
for strategy 1. Figure 13a–c represent the variations in the SS, GD, and SC indicators over
the entire year. The SS indicator was highest in the summer months, where the values
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reached up to 300%, which means that the PV plant produced more electric energy than
the active user consumed. However, in the winter months, particularly in January and
December, the amount of the SS indicator decreased drastically to 20%, which was the
lowest point throughout the year. The GD indicator was higher in the winter months and
lower in the summer months, while the SC indicator was lower in the summer months and
higher in the winter months. In the month of August, the SS indicator showed that the
active user had produced more electric energy than they had consumed, with a percentage
of 300%. However, taking a closer look at the GD indicator for the same month, it was
observed that it was only 67%, while the SC indicator was 33%. This implies that, despite
producing more electric energy than it consumed on a monthly basis, the active user still
relied heavily on the grid for the majority of the 15 min intervals.

 S
S

 [%
]

 S
C

 [%
]

 G
D

 [%
]

Figure 13. Analysis of the SS (a), SC (b), and GD (c) indicators for every month without the net
metering policy and strategy 1 for an active user with a PV only.

An active user with a PV plant and BESS would have to pay less for the PEB, which
can be seen in results displayed in Table 2. The active user with a PV plant and BESS paid
EUR 285.2 less for the Pd, and the PPV_e was EUR 0 because the excess electric energy was
not sold. The SC indicator was higher than in the case with the PV only, since a certain part
of the excess energy from the PV plant was stored in the BESS and then consumed when
needed. Therefore, the GD indicator was lower in the case with the PV plant and BESS.

Figure 14 shows the energy exchange with the grid for each day of the year. The blue
color indicates the case without the included BESS and the red color indicates the case with
the included BESS. Figure 14a shows how much energy is taken from the grid for each day,
where it can be observed that, in the case without the BESS, more energy from the grid was
taken compared to the case with the BESS. For the Ec

G for the whole year without the BESS,
it amounts to 9.25 MWh, and for the case with the BESS included, it amounts to 7.35 MWh.
Figure 14b shows how much excess energy from the PV plant is sent to the grid, where can
be observed that, in both cases, more excess energy is sent to the grid during the summer
months. In the case without the BESS, more excess energy is sent to the grid. For the whole
year without the BESS included, it amounts to 10.05 MWh, and for the case with the BESS
included, it amounts to 7.95 MWh.
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Figure 14. Energy exchange with the grid: (a) energy taken from the grid and (b) energy sent to the grid.

To evaluate the potential benefits of combining an active user and an aggregator, the
following two strategies were taken into account for two different active users: an active
user with a PV only and an active user with a PV and BESS. Through this analysis, the costs
for electric energy and the benefits of these strategies can be evaluated, and the optimal
strategy can be determined for an active user. The results of implementing both strategies
are presented as follows: a comparison of the results obtained with the analysis for the
active user with a PV plant only with the results obtained with the analysis for the active
user with a PV plant and BESS for each strategy separately. Finally, a comparison of the
results is presented in terms of the price, profit, and indications between the results obtained
without using net metering and the results obtained from implementing the strategies.

4.3. Analysis of Strategy 1

Figure 15 presents a comparison of the flexibility potential between an active user
with a PV plant only and an active user with a PV plant and BESS for strategy 1. The
positive flexibility potential was equal to zero, since only excess energy was offered to the
aggregator. A comparison between the flexibility potential of two active users, one with
a PV plant and the other with a PV plant and BESS, is presented in Figure 15. Figure 15a
shows the daily flexibility potential for the selected summer day, while Figure 15c shows
the corresponding flexibility potential for the winter day. The active user with a PV plant
and BESS had a lower negative flexibility potential of the PV plant than the active user
with the PV plant only, because the excess energy generated by the PV must first charge the
BESS before being offered to the aggregator. Figure 15b shows a comparison of the sum
of the flexibility potential for each month. For an active user with a PV plant, the annual
negative flexibility potential was 10.05 MWh. However, for an active user with both a PV
plant and BESS, the annual negative flexibility potential was lower, and it was 7.68 MWh.

132



Energies 2024, 17, 1501

 E

-4 E
 E

Figure 15. Comparison of the flexibility potential between an active user with a PV plant only and
an active user with a PV plant and BESS for strategy 1: (a) for the selected summer day, (b) annual
monthly flexibility potential, and (c) for the selected winter day.

An analysis of strategy 1 was performed, yielding the results shown in Table 3. For an
active user with a PV plant, only the PPV_e was greater than in the case with an active user
with a PV and BESS, because an active user with a PV plant has more excess energy that
can be sold to the aggregator. The PPV_e was dependent on the factor f A and agreed with
the aggregator, and the higher the factor is, the greater the PPV_e that can be obtained.

Table 3. Results from strategy 1 analysis.

Strategy
CBESS

[kWh]
f A

PPV_e

[EUR]
Pd

[EUR]

1 - 0.2 599.7 801.5

1 - 0.4 1199.5 201.7

1 - 0.6 1.799.2 −397.9

1 10 0.2 459.8 656.1

1 10 0.4 919.7 196.3

1 10 0.6 1379.5 −263.54

4.4. Analysis of Strategy 2

Figure 16 presents a comparison of the flexibility potential between an active user
with a PV plant only and an active user with a PV plant and BESS for strategy 2. Figure 16a
shows the daily negative potential for the selected summer day, while Figure 16c shows
the positive potential for the same day. The flexibility potential for an active user with a
PV plant consists of the sum of individual flexibility potentials: the flexibility potential of
the PV plant, the flexibility potential of the EV, and the flexibility potential of the HP. In
addition to the previous ones, the potential for an active user with a PV plant and BESS
also contains the potential of the BESS. Figure 16b shows a comparison of the sum of the
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negative flexibility potential for each month, while 16d shows a comparison of the sum for
the positive flexibility potential for each month. The annual negative potential for an active
user with a PV plant was 15.34 MWh, while the annual positive potential was 4.4 MWh.
The annual negative potential for an active user with a PV plant and BESS was 66 MWh,
while the annual positive potential was 22 MWh. The flexibility potential represents the
capacity for active users to adjust their electric energy consumption patterns, especially
in response to external signals. However, the extent to which this flexibility potential is
harnessed and offered to aggregators varies from one individual to another, depending on
their willingness to adapt and optimize their energy consumption patterns. Therefore, this
flexibility potential serves as the basis for assessing the amount of potential that the active
user can offer to the aggregator.

 E

 E  E

 E

Figure 16. Comparison of the flexibility potential between an active user with a PV plant only and an
active user with a PV plant and BESS for strategy 2: (a) negative flexibility potential for the selected
summer day, (b) annual monthly negative flexibility potential, (c) positive flexibility potential for the
selected summer day, and (d) annual monthly positive flexibility potential.

Figures 17 and 18 were created to provide a clearer understanding of how the flexibility
potential was composed. Figure 17 shows the composition of the flexibility potential for
an active user with a PV only. Figure 17a shows the negative flexibility potential for the
selected summer day, while Figure 17b shows the negative flexibility potential for the
selected winter day. The negative flexibility potential for active user with the PV consists
of the negative flexibility potential of the PV, the negative flexibility potential of the EV,
and the negative flexibility potential of the HP during the heating season. The negative
flexibility potential of the PV was evident during the electric energy generation. The
negative flexibility potential of the HP was present during the heating season, and the
power of the HP can be manipulated. The negative flexibility potential of an EV occurs
when the EV is charging and can be rescheduled. Figure 17c shows the positive flexibility
potential for the selected summer day, while Figure 17b shows the positive flexibility
potential for the selected winter day. The positive flexibility potential of the PV is not
present, since the input power of the PV plant cannot be manipulated. As a result, active
users with PVs do not have any positive flexibility potential. However, during the heating
season, the positive flexibility potential of the HP arises, as its power can be manipulated.
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Figure 17. Composition of the flexibility potential for an active user with a PV: (a) the negative
flexibility potential for the selected summer day, (b) the negative flexibility potential for selected
winter day, (c) the positive flexibility potential for selected summer day, (d) the flexibility potential
for selected winter day.
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Figure 18. Composition of the flexibility potential for an active user with a PV and BESS (a) the
negative flexibility potential for the selected summer day, (b) the negative flexibility potential for
selected winter day, (c) the positive flexibility potential for selected summer day, (d) the flexibility
potential for selected winter day.
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Figure 18 shows the composition of the flexibility potential for an active user with a PV
and BESS. Figure 18a shows the negative flexibility potential for the selected summer day,
while Figure 18b shows the negative flexibility potential for the selected winter day. The
negative flexibility potential for an active user with a PV and consists of the same negative
flexibility potential as an active user with a PV only with the addition of the negative
flexibility potential of the BESS. The BESS possesses negative flexibility potential, which
can be utilized by discharging the BESS from 60% to 10% of the SOC. Figure 18c shows
the positive flexibility potential for the selected summer day, while Figure 18b shows the
positive flexibility potential for the selected winter day. The positive flexibility potential of
the BESS is present, and it can be charged from 60% to 90% of the SOC. The main difference
between the flexibility potential of an active user with a PV and an active user with a PV
and BESS is that the active user with the BESS constantly has access to the BESS, which is
available for the aggregator’s use.

The following results are presented to provide a clearer understanding of what occurs
during the activation mode/aggregation signal. Figure 19 shows the load consumption
for the selected day during two responses to the aggregator signal. In Figure 19, activation
1 was marked at 7:15, when the aggregator sent a signal for positive flexibility. Similarly,
activation 2 was marked at 17:15, when the aggregator sent a signal for negative flexibility.
Figure 19 displays the changes during and after activation 1 in the box on the left corner,
where the load consumption changed by 0.50 kWh during activation 1. After the activation,
the load consumption for activation 1 was lower than in the case without activation, due
to the fact that, during activation, the house was heated more than normal, so, after
activation, the heating of the house was reduced. Changes during and after activation 2 are
shown in Figure 19 in the box in the middle. The load consumption changed by 3.73 kWh
during the activation.

Figure 19. Changes in load consumption during the aggregation signal, where activation 1 is marked
with first black box and activation 2 is marked with the second black box.

The consumption from the grid for the selected day during two responses to the
aggregator signal is displayed in Figure 20. The changes during and after activation 1 are
shown in Figure 20 in the box in the left corner. The change in consumption from the grid
during the activation 1 was 3.34 kWh. The changes during and after activation 2 are shown
in Figure 20 in the box in the middle. The change in consumption from the grid during the
activation 2 was 6.17 kWh.

136



Energies 2024, 17, 1501

Figure 20. Consumption from the grid during the aggregator signal for positive and negative
flexibility signals, where activation 1 is marked with first black box and activation 2 is marked with
the second black box.

Figure 21 shows the excess energy sent to the grid, and Figure 22 shows the SOC for
the selected day during two responses to the aggregator signal. The BESS was charged to
90% SOC during activation 1, which means that, as part of its operational requirements, it
must subsequently be discharged down to 60% SOC. This ensures that the BESS operates
within the specified SOC range and is ready for activation. Therefore, after activation
1, the excess energy from the BESS is sent to the grid. During activation 2, the BESS is
discharged from 60% to 20% SOC. Hence, not only the load consumption was reduced
during activation 2, but also excess energy was sent to the grid.

Figure 21. Excess energy sent to the grid during the aggregator signal for positive and negative
flexibility, where activation 1 is marked with first black box and activation 2 is marked with the
second black box.
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Figure 22. SOC during the aggregator signal for positive and negative flexibility, where activation 1
is marked with first black box and activation 2 is marked with the second black box.

An analysis of strategy 2 was performed, yielding the results shown in Table 4. For a
case with an active user with a PV plant and BESS, the PPV_e was 56% higher than in the
case of an active user without the BESS. It is important to consider that an amount of profit
was generated through 365 activations, each lasting only 30 min. After the activations,
there was still excess energy left. In the case of an active user with a PV plant, the excess
energy was higher than in the case of an active user with a PV and BESS. In the case of
strategy 2, the Pd for the active customer was lower as compared to strategy 1. However,
strategy 2 involved offering significantly less excess energy than in strategy 1. Excess
energy was still left post-activation and represents the potential for the sale of excess energy.
Active users have an exciting opportunity to make the most of their excess energy, either
by selling it or exploring alternative ways to use it effectively. This not only helps them
to maximize their renewable energy investments, but also presents an intriguing prospect
to contribute towards a sustainable future. The SS indicator remained the same. The GD
indicator increased by 2% compared to the previous strategy, because the operation of the
BESS changed during activation.

Table 4. Results for strategy 2.

Strategy
CBESS

[kWh]
f A

PPV_e

[EUR]
Pd

[EUR]
EG

PV_e
[kWh]

SS [%] SC [%] GD [%]

2 - 1 26.6 1346.0 8.29 107 15 85

2 10 1 148.8 967.2 6.01 107 32 68

4.5. Limitations and Usability

The presented results cater to two primary audiences: potential active users on the
one hand and potential aggregators (flexibility providers) on the other. For the first group,
active users, it is crucial to have a clear and transparent understanding of the implications
of their potential inclusion in the flexibility system. By doing so, they can actively engage
in the flexibility market using their investment inputs (PVs and BESSs), thereby attaining
economic benefits through relatively minor adjustments in energy consumption. On the
active user’s side, limitations arise from the permitted connection power of the PV system
and BESS, along with financial constraints. We also highlight that active users can engage in
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multiple daily activations in both energy transmission and reception directions, contingent
upon their capacities.

There is compelling potential for flexibility and the activation of energy needs among
a larger number of active users. This collective energy could prove valuable for balance
groups, the distribution network, or the transmission network. The essence of this segment
lies in securing adequate capacity, enabling the aggregator to present a compelling offering
to the flexibility market on behalf of active users.

As the European flexibility market aims for uniformity across the entire European
Union, the outcomes of the case at hand are valuable not only for the current users but also
for other potential users of this service.

5. Conclusions

This study focused on investigating the economic feasibility of households with PV
plants in Slovenia in light of the abolition of net metering policies. One of the important
parts of this article was conducting a preliminary analysis based on a case study. The
highest electric energy consumption is in the winter season and the highest PV production
is in the summer season. Assuming that the active user is generating more electric energy
from their PV plant than they consume, without net metering they would be forced to sell
any excess electric energy to the grid for a relatively low price and buy electric energy from
the grid when they need it at a higher price. This can result in a significantly higher cost
of electric energy. To explore options for active users after the abolition of net metering,
two strategies were designed, including engaging in the electric energy market. The recent
approval of subsidies for the BESS led to the testing of two active users’ cases: an active
user with a PV plant only and an active user with a PV and BESS. Collaboration with the
aggregator is necessary, since direct participation in the electric energy market for active
users is not possible.

In order to provide flexibility services, active users need to estimate their flexibility
potential, which involves identifying shiftable loads. The identification algorithm outlined
in the study for identifying the EV and HP emerges as a pivotal component, offering a
robust methodology for discerning such loads. This aspect of shiftable load identification
assumes paramount importance within the broader context of resource management and
sustainability initiatives, as it lays the groundwork for optimizing energy usage and facili-
tating the integration of renewable energy sources. Moreover, shiftable load identification
plays a crucial role in DRP and grid flexibility initiatives.

We highlight various economic aspects comparing scenarios with and without net
metering, with the latter carrying an exceptional cost burden. The economic advantage of
using battery energy storage systems (BESSs) becomes apparent, particularly when coupled
with collaboration with an aggregator.

Without net metering, we introduced two strategies to address high electricity bills.
Strategy 1 focuses on maximizing revenue by selling excess energy generated by renewable
sources, such as a PV plant. Strategy 2 involves activations through an aggregator, present-
ing a potential for profit despite offering less excess energy. In strategy 1, profit depends on
the agreed factor fA and is higher for active users with a PV plant.

In the article, new indicators such as SS, GD, and SC have been introduced to provide
a more precise representation of the level of self-sufficiency shown by active users and their
reliance on the grid. The SS indicator remained the same, regardless of the chosen strategy,
indicating that the PV plant generated more electric energy annually than the active user
consumed. The GD indicator was higher, and, therefore, the SC indicator was lower in the
case of strategy 2 due to the modified operation of the BESS.

This work contributes to the understanding of the potential of renewable energy
sources and the BESS as an alternative to traditional energy sources. The results of this
analysis can guide active users in making informed decisions regarding their investment in
PV systems and energy management strategies. Future work will be based on production
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and consumption forecasts and detailed economic analysis, with the inclusion of the price
of the investment.
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Abbreviations

C1 A contribution for a market operator [EUR]
C2 A contribution for energy efficiency [EUR]

C3
A contribution to support the production of electric energy from renewable energy
sources and high-efficiency co-generations [EUR]

C4 Excise duties on electric energy [EUR]
CBESS BESS capacity [kWh]
Cc Billing power [kW]
EBESS Instantaneous energy in the BESS [kWh]
Ec

BESS Energy consumed from the BESS [kWh]
Ec

G Energy taken from the grid [kWh]
Ec

PV Energy that supplies the household load directly from the PV [kWh]
Ec

L Load consumption energy [kWh]
Ep

PV Energy produced from the PV plant [kWh]
EG

PV_e Excess energy sent to the grid [kWh]
EBESS

PV_e Excess energy from the PV plant that supplies the BESS [kWh]
Es

BESS Energy stored in the BESS [kWh]
EcLT

G Energy used under LT [kWh]
EcHT

G Energy used under HT [kWh]

fA
Weighting factor that represents the reduction in profit, and it must be agreed upon with
the aggregator

fHP Weighting factor that determines the extent to which we need to modify the power of the HP
GD Grid-dependency indicator [%]
NLT Network charge for LT [EUR/kWh]
NHT Network charge for HT [EUR/kWh]
PEB Initial costs for electric energy [EUR]
Pd Costs for electric energy after deduction of the costs for PPV _e [EUR]
PPV _e Profit from selling the excess energy [EUR]
PLT Cost for LT [EUR/kWh]
PHT Cost for HT [EUR/kWh]
SC Self-consumption indicator [%]
SOC State of charge [%]
SOCmin Minimum state of charge [%]
SOCmax Maximum state of charge [%]
SS Self-sufficiency indicator [%]
Tp Trading price on the day-ahead market [EUR/kWh]
ηc Charging efficiency
ηd Discharging efficiency
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Technology, Nonoichi 921-8501, Japan; j-osawa@neptune.kanazawa-it.ac.jp

Abstract: To reduce CO2 emissions in the residential and transportation sectors, distributed energy
technologies, such as photovoltaic power generation (PV), stationary storage batteries (SBs), battery
electric vehicles (BEVs), and vehicle-to-home (V2H) systems, are expected to be introduced. The
objective of this study was to analyze the impact of the installed capacity of PV and SB, the type
of vehicle, and their combination on the economic and environmental performance of the total
energy consumption of residences and vehicles. Thus, this study developed a model to optimize
the technological configuration of residential energy systems, including various vehicle types and
driving patterns. The simulation results showed that it is more economically and environmentally
efficient to install a BEV and a V2H system in households with longer parking times at the residence
and to install an SB in addition to these technologies in households with shorter parking times at the
residence. Furthermore, comparing a gasoline vehicle and an SB, the most economical combination,
with a BEV and a V2H system and with a BEV, a V2H system, and an SB, estimated the carbon tax
rate necessary for cost equivalence. The result indicated that the carbon tax rate needs to be increased
from its current level.

Keywords: clean energy vehicle; optimization; photovoltaic; residential energy system; vehicle-to-home

1. Introduction

As floods, droughts, extreme heat, torrential rains, and other weather disasters have
occurred in many parts of the world in recent years, climate change has become an im-
portant issue of concern. To mitigate the negative impacts of climate change, Japan and
many other countries are supporting the development of new technologies to achieve
carbon neutrality. In the transportation sector, in addition to improving the fuel efficiency
of gasoline vehicles (GVs), clean energy vehicles such as hybrid electric vehicles (HEVs),
plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell
vehicles (FCVs) are being developed and introduced to the market. Furthermore, the use of
distributed energy technologies, such as decentralized power sources and power storage
devices, is expected in the residential sector as a measure to improve energy use efficiency
and reduce CO2 emissions. Photovoltaic power generation (PV) and stationary storage
batteries (SBs) have already begun to be introduced into residences. The introduction of
BEVs as an energy storage technology into residences has been attracting attention in recent
years. Moreover, the introduction of a vehicle-to-home (V2H) system using a dedicated
power conditioner that connects the BEV to the distribution board of the residence will
enable a bidirectional power supply between the BEV and the residence, allowing the BEV
to be used as a residential power storage system. This is expected to reduce CO2 emissions
through more efficient energy use in the residential and transportation sectors.

Several studies have evaluated the effects of PVs, BEVs, and V2H systems on the
efficiency of electricity use in residences. Osawa et al. [1] calculated and compared the
self-sufficiency rate, self-consumption rate, and CO2 emissions in five cases, i.e., GVs,
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BEVs, GVs and SBs, BEVs and SBs, and BEVs and V2H systems. The self-sufficiency
rate indicates the percentage of energy consumption of the residence that is covered by
the amount of PV electricity generated, whereas the self-consumption rate indicates the
percentage of PV electricity generated that is consumed by the residence. The comparison
results indicated that the introduction of a BEV and V2H system has the potential to
reduce CO2 emissions compared with the case of BEVs alone. In addition, Akimoto et al. [2]
investigated SB charging, BEV charging, and daytime operation of heat pump water heaters
as operational methods for the self-consumption of PV surplus electricity and compared
the effects of installing each device. The results showed that households with less frequent
use of vehicles and shorter driving distances have higher self-consumption of PV surplus
power and lower CO2 emissions and annual costs, whereas households with more frequent
use of vehicles and longer driving distances cannot fully consume PV surplus power.
Kobashi et al. [3] assumed a cost decline in PVs, SBs, and BEVs until 2030 in Kyoto, Japan,
and Shenzhen, China, and evaluated the economic and environmental advantages of PVs
and V2H systems over PVs and SBs in Japan in the future. Nishioeda et al. [4] surveyed the
PV generation capacity, private vehicle usage patterns, and electricity demand of residences
in Tagajo, Japan, through questionnaires and on-site surveys. Then, based on those results,
they estimated the amount of PV-generated surplus electricity and the amount of surplus
electricity charged to BEVs.

Several studies have examined the optimal configuration of equipment installed in
residences to improve the efficiency of residential energy systems. Higashitani et al. [5,6]
optimized residential equipment configuration and operation, such as with SBs and gas
water heaters, to minimize the annual costs in each case of GVs, BEVs, and combined
BEVs and V2H installation. The results showed that it is more economical to combine
V2H systems and SBs in households where BEVs are absent for long periods of time. New
installations of heat pump water heaters were also shown to be effective. Erdinc et al. [7]
developed a model to optimize PV and SB capacities in a residence with a BEV and V2H
system. Wu et al. [8] optimized the SB size and battery operation strategy in a household
with PVs and a BEV. The results showed that V2H systems have the potential to reduce
daily electricity costs.

As described above, existing studies have evaluated the effectiveness of BEVs and
V2H systems from various perspectives. However, these studies have focused on BEVs
and have yet to analyze the implications of the introduction of other types of vehicles,
such as HEVs, PHEVs, and FCVs. Moreover, vehicle types have not been included as
design variables for optimization. A comprehensive study to optimize the technological
configuration of vehicle types and PV and SB installed capacities, with or without V2H
installation, considering the variety of vehicle types and the future price declines in these
technologies has not yet been conducted. Various powertrains are being developed with
the goal of achieving carbon neutrality and satisfying diverse consumer preferences, and
consideration of the characteristics of these various vehicle types is important for the design
of future energy systems.

Several previous studies have focused solely on the transportation sector, without
considering the residential sector, and have examined optimal plans for the introduction
of clean energy vehicles [9–13]. These studies have shown that the characteristics of each
vehicle type, such as the energy source, CO2 emissions, and cost, affect future installation
plans. On the other hand, the introduction and operational effects of clean energy vehicles
in conjunction with the transportation and residential sectors, such as V2H systems, have
not been considered. Assuming a wide variety of vehicle options, there is currently no
comprehensive discussion about whether they should be implemented alone or in com-
bination with SBs or V2H systems. Such information would be valuable for developing
future scenarios for vehicles and residential energy systems for more efficient energy use.

In this study, a model was developed to evaluate and optimize the technological
configuration of residential energy systems that include various vehicle types. The objective
of this study was to analyze the impact of the installed capacity of PVs and SBs, the type
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of vehicle, and their combination on the economic and environmental performance of the
total energy consumption of residences and vehicles. A unique feature of this study is that
it considered various types of vehicles with low environmental impacts in addition to the
introduction of PVs, SBs, and V2H systems into residences. Each vehicle type has different
battery capacities and energy sources, resulting in different operational effectiveness and
optimal PV and SB capacities. Moreover, the cost and CO2 emissions of the residential
energy system for each technological configuration were calculated, and a multi-objective
optimization model considering both economic and environmental aspects was developed.
In recent years, consumer preferences have diversified, and some consumers are concerned
not only with economic efficiency but also with environmental efficiency. In addition, the
government of Japan needs to reduce CO2 emissions to achieve carbon neutrality. When
considering future environmental and energy policies for the diffusion of distributed energy
technologies, it would be beneficial to develop a multi-objective optimization method that
considers both environmental and economic aspects and provides results. Furthermore,
multiple patterns of vehicle usage were assumed. The study examined how the time
of vehicle absence during the day would affect the effectiveness of V2H systems and
SB implementation.

Section 2 of this paper describes the new model for evaluating and optimizing the
technological configuration of residential energy systems. Section 3 elaborates on the
various prerequisite data for the model. Section 4 presents and explains the simulation
results generated by the model, and Section 5 presents the conclusions of this study and
discusses future prospects based on the discoveries made herein.

2. Methods

2.1. Framework

An overview of the analytical model constructed in this study is shown in Figure 1. The
study consists of three categories of inputs: residential data, vehicle data, and equipment
data. To define the residential data, the first step is to select the target region. In this study,
the Kanto region of Japan was selected as a case study. Based on the selected target region,
residential data such as electricity demand, solar radiation, and electricity prices were
established. In addition, vehicle data and equipment data such as price, charge/discharge
capacity, and durability years were used. Because vehicle absence time is considered
an important parameter that can affect the economic and environmental performance of
V2H systems, three patterns were established. Then, based on these inputs, the charging
and discharging of electricity and the total energy consumption of the residence and the
vehicle were calculated. As there are various possible configurations of vehicle type,
PV capacity, SB capacity, and V2H installations, it is important to consider which types
of technological configurations will be required in the future based on economic and
environmental aspects. It is then necessary to provide information that will be valuable in
making policy decisions for improving energy efficiency. Therefore, this study developed an
optimization model to calculate the optimal configuration of vehicle type, PV capacity, SB
capacity, and V2H installation with two objective functions: minimization of annual costs
and minimization of annual CO2 emissions. In this study, the genetic algorithm (NSGA-II)
of Pymoo (version 0.6.1) [14] was used to perform multi-objective optimization. The
mathematical formulas for the optimization model are described in the following section.

A flow chart of the residential energy system in the analytical model developed in
this study is shown in Figure 2. In this model, electricity demand at residences and vehicle
driving demand were considered. Several configurations of PV capacity, SB capacity, and
vehicle type were assumed. The model allows for the analysis of changes in electricity
demand and supply for each configuration. The time resolution of the model is 1 h.
Operation on a total of 48 representative days by month, weekday/holiday, and weather
(sunny/other) is considered, and this is multiplied by the number of days in each category
for each region to calculate values for one year. Considering the vehicle types currently on
the market that are compatible with the V2H system, we set two vehicle types capable of
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using the V2H system: PHEVs and BEVs. The electricity supply from these two vehicle
types to the residence was assumed to be rechargeable and dischargeable only when the
vehicles were at the residence.

 
Figure 1. Overview of the analytical model.

Figure 2. Flow chart of the modeled residential energy system.
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2.2. Optimization Model
2.2.1. Objective Function

In this study, two objective functions were established, i.e., annual costs and annual
CO2 emissions (Equations (1) and (2), respectively).

Annual costs consisted of three costs: the installation cost of vehicles and equipment,
the energy cost, and the carbon cost for CO2 emissions (Equation (1)). The installation
cost of vehicles and equipment, which is a fixed cost, was converted to a one-year cost
by using the durable years and the interest rate (Equation (3)). The interest rate was set
at 3%. The energy cost was defined as the sum of the annual purchase costs of electricity,
gasoline, and hydrogen (Equation (4)). The electricity cost was defined as the difference
between the cost of purchasing grid power and the profit from the sale of surplus power
generated by PVs. The time resolution of the model is 1 h. Based on the operation on a total
of 48 representative days by month, weekday/holiday, and weather (sunny/other), the
values were multiplied by the number of days in each category and calculated for one year
(Equations (4)–(8)). Electricity prices were set as amounts for daytime (7–22) and nighttime
(23–6), respectively. In addition, electricity prices were set according to the energy mix of
the Kanto region, based on the business scope of the major electric power companies in
Japan. Many countries have introduced or are considering carbon taxes to achieve carbon
neutrality. In Japan, a carbon tax has been partially introduced as a “tax for global warming
countermeasures” [15]. Therefore, the carbon tax rate was multiplied by the CO2 emissions
in each case of technological configuration and added to the annual cost.

Annual CO2 emissions were defined as the annual purchases of grid power, gasoline,
and hydrogen multiplied by their respective CO2 intensity (Equations (9)–(12)). The CO2
intensity of grid power was set based on the energy mix of the Kanto region. The sale of
surplus electricity to the grid was not considered a CO2 reduction effect (Equation (10)).

min ACk(Tik, PVAik, SBCik) = ∑
i

Tik(TCik + ECik + CCik) (1)

min ACEk(Tik, PVAik, SBCik) = ∑
i

Tik(ELCEik + GACEik + HYCEik) (2)

TCik = VTCik
r(1 + r)vtdi

(1 + r)vtdi − 1
+ PVAik ID

r(1 + r)pvd

(1 + r)pvd − 1
+ SBCik

r(1 + r)sbd

(1 + r)sbd − 1
(3)

ECik = ∑
m,d,w

NDkmdw(ELCikmdw + GACikmdw + HYCikmdw) (4)

ELCikmdw = ∑
h

ELUikhmdwELPkh (5)

ELUikhmdw = GTHikhmdw + AECikhmdw (6)

GACikmdw = ∑
h

AGCikhmdwGPk (7)

HYCikmdw = ∑
h

AHCikhmdwHPk (8)

CCik = CP(ELCEik + GACEik + HYCEik) (9)

ELCEik = ELCIk ∑
h,m,d,w

NDkmdw

({
ELUikhmdw, GTHikhmdw ≥ 0
AECikhmdw, GTHikhmdw < 0

)
(10)

GACEik = GACI ∑
h,m,d,w

NDkmdw AGCikhmdw (11)
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HYCEik = HYCIk ∑
h,m,d,w

NDkmdw AHCikhmdw (12)

In the above, i is the technological configuration type [GV, HEV, PHEV, BEV,
FCV, GV_SB_PV, HEV_SB_PV, PHEV_SB_PV, BEV_SB_PV, FCV_SB_PV, PHEV_V2H_PV,
BEV_V2H_PV, PHEV_V2H_SB_PV, BEV_V2H_SB_PV]; k is the target year [2025, 2030];
h is the hour [0–23]; m is the month [1–12]; d is the day category [weekday, holiday];
w is the weather category [sunny, other]; r is the discount rate [%]; vtd is the durable
years of each vehicle type [years]; pvd is the durable years of PV power [years]; sbd is
the durable years of the SB [years]; T is the sales volume of vehicle type [units]; PVA
is the PV installation area [m2]; SBC is the storage capacity [kWh]; AC is the annual
costs [million yen]; ACE is the annual CO2 emissions [t-CO2]; TC is the installation cost
of vehicles and equipment [million yen]; EC is the energy cost [million yen]; CC is the
carbon cost for CO2 emissions [million yen]; ELCE is the CO2 emissions from electricity
[t-CO2]; GACE is the CO2 emissions from gasoline [t-CO2]; HYCE is the CO2 emissions from
hydrogen [t-CO2]; VTC is the installation cost of each vehicle type [million yen]; ID is the
installation density [kW/m2]; ND is the number of days in each category [days]; ELC is the
electricity cost [million yen]; GAC is the gasoline cost [million yen]; HYC is the hydrogen
cost [million yen]; ELU is the electricity usage [MJ]; ELP is the electricity price [yen/MJ];
AEC is the amount of electricity for additional charging while driving [MJ]; AGC is the
consumption of gasoline used for driving [MJ]; GP is the gasoline price [yen/MJ]; AHC is
the consumption of hydrogen used for driving [MJ]; HP is the hydrogen price [yen/MJ]; CP
is the carbon tax rate for CO2 emissions [yen/t-CO2]; ELCI is the CO2 intensity of electricity
[g-CO2/MJ]; GACI is the CO2 intensity of gasoline [g-CO2/MJ]; HYCI is the CO2 intensity
of hydrogen [g-CO2/MJ]; and GTH is the amount of electricity purchased or sold between
the residence and the grid power [MJ].

Equation (13) shows the energy balance. The hourly residential electricity demand
and supply coincide. Considering residential electricity consumption, PV generation,
vehicle charging/discharging, and SB charging/discharging, the system was set up to
purchase electricity from the grid when demand exceeds supply and sell electricity to
the grid when demand falls below supply. Moreover, based on previous research [16],
hourly PV generation was calculated by multiplying the amount of solar radiation by the
installed area, module conversion efficiency, temperature loss factor, and integration factor
(Equation (14)).

GTHikhmdw = (ELDkhmdw + HTVikhmdw + HTSikhmdw)

−(PTHikhmdw + VTHikhmdw + STHikhmdw)
(13)

PTHikhmdw = SRkhmdwPVAikCETLm IF (14)

In the equations, ELD is the amount of electricity consumed by a residence [MJ]; HTV
is the amount of electricity flowing from the residence to the vehicle to charge the vehicle
[MJ]; HTS is the amount of electricity flowing from the residence to the SB to charge the
SB [MJ]; PTH is the amount of electricity generated by PVs [MJ]; VTH is the amount of
electricity flowing from the vehicle to the residence due to the vehicle’s discharge [MJ]; STH
is the amount of electricity flowing from the SB to the residence due to the SB discharge
[MJ]; SR is the amount of solar radiation [MJ/m2]; CE is the module conversion efficiency
[-]; TL is the temperature loss factor [-]; and IF is the integration factor [-].

2.2.2. Constraints

First, constraints were set for V2H and SB operations. Electricity generated by PVs is
prioritized for consumption in the residence; if there is a surplus, it is charged to a SB or
vehicle. Even after charging a SB or vehicle, if there is a surplus, electricity is sold to the grid.
If the consumption in the residence exceeds the electricity generated by PVs, electricity
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is supplied from a SB or vehicle. If there is still a shortage after power supply from a SB
or vehicle, electricity is purchased from the grid. When both V2H systems and SBs are
introduced, priority is given to the V2H system. In other words, after charging/discharging
from the vehicle by the V2H system, if there is still a surplus/deficiency of electricity, SB
charging/discharging is performed. Moreover, the purchase of electricity from the grid and
the sale of electricity to the grid cannot occur at the same time. Similarly, it is not possible
to charge a SB and vehicle and supply power from a SB and vehicle at the same time. The
two types of vehicles that could supply power to the residence were PHEVs and BEVs. The
vehicles were designed to be able to charge and discharge electricity only when parked at
a residence.

Additionally, the amount of electricity stored in the batteries of SBs, PHEVs, and BEVs
must be less than or equal to their storage capacity (Equations (15) and (16)). The system
was set to stop discharging to the residence when the amount of charge fell below the lower
limit. However, during driving, there is no lower limit of discharge, and the system is set
to charge the battery externally if the amount of charge is insufficient. With reference to
previous studies [1,17,18], the lower limit of the charge for BEVs and PHEVs was set at
40% of the storage capacity. The lower limit of the charge for SBs was set at 20% of the
storage capacity. The lower limit was set with the strategy of not affecting driving in the
case of vehicles and of allowing use in an emergency in the case of SBs. Furthermore, the
amount of electricity entering and leaving the storage battery each hour coincides with the
change in the state of charge (SOC) of the storage battery (Equations (17) and (18)):

VSOCikhmdw ≤ VBCik (15)

SSOCikhmdw ≤ SBCik (16)

VSOCikhmdw = VSOCikh−1mdw + (HTVikhmdw − VTHikhmdw + AECikhmdw)/cmk (17)

SSOCikhmdw = SSOCikh−1mdw + (HTSikhmdw − STHikhmdw)/cmk (18)

where VSOC is the SOC of the battery of each vehicle type [kWh]; VBC is the battery
capacity of each vehicle type [kWh]; SSOC is the SOC of the SB [kWh]; and cmk is the
conversion factor between megajoules and kilowatt–hours [-].

Then, two constraint conditions were set: the number of units and the PV area in-
stalled. In this study, the number of vehicles owned per household was assumed to be one
(Equation (19)). Furthermore, the area available for PV installation depends on the area
of the detached houses, which varies from prefecture to prefecture. Therefore, the area
available for installation in the Kanto region was calculated by multiplying the average
area of a detached house in each prefecture of the Kanto region (Ibaraki, Tochigi, Gunma,
Saitama, Chiba, Tokyo, Kanagawa, and Yamanashi Prefecture) by the installable area ratio.
The value was then used as the upper limit for the PV installed area (Equation (20)):

∑
i

Tik = 1 (19)

PVAik ≤ PVUL (20)

where PVUL is the upper limit for the installed PV area [m2].

3. Prerequisite Data

3.1. Technology Parameters

The values of the parameters for vehicles and equipment that do not change from year
to year are shown in Table 1.
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Considering the vehicle types currently on the market that are compatible with the
V2H system, we set two vehicle types capable of using a V2H system: PHEVs and BEVs.
Then, based on previous studies [5,6], the charging and discharging capacity was set to
6 kWh when the V2H system was used. Conversely, when charging without the V2H
system, the charging capacity was set to 3 kWh.

Previous studies [17,18] have found that many users recharge BEVs when their SOC is
approximately 30–35% because of concerns about their driving range. Therefore, 40% was
set as the lower limit rate of discharge. If the SOC falls below 40%, discharge is stopped,
and the battery is recharged when it is parked at the residence the next time. When driving,
there is no lower limit of discharge. If the battery capacity becomes insufficient while
driving, the vehicle is recharged externally using electricity or gasoline. In addition, as a
response to emergencies, a lower limit discharge rate of 20% was also set for SBs.

Table 1. Technology parameters that do not change from year to year.

Technology Parameter

Vehicle

Durability [year] 14
Charging capacity [kWh] 6 (V2H), 3 (Others)

Discharging capacity [kWh] 6 (V2H)
Lower limit rate of discharge [%] 40

Rate of initial SOC [%] 50

PV

Durability [year] 25
Installation area [m2] 6, 11, 16, 21, 26, 31, 36, 41, 46, 48

Maximum installable area
(Kanto region) [m2] 37

Module conversion efficiency [-] 0.18

Temperature loss factor [-]
0.9 (December–February)

0.8 (June–August)
0.85 (Others)

Integration factor [-] 0.7

SB

Price [million yen/kWh] 0.042
Durability [year] 15

Storage capacity [kWh] 4, 6, 8, 10, 12
Charging and discharging capacity [kWh] 2.5

Lower limit rate of discharge [%] 20
Rate of initial SOC [%] 50

The optimal levels of PV installation area and SB capacity are expected to vary depend-
ing on the technological configuration, such as which type of vehicle is used and whether a
V2H system is used. Therefore, the PV installation area and SB capacity were considered as
design variables, consisting of 10 and 5 alternatives, respectively.

Furthermore, distributed energy technologies are still in the early stages of market
penetration, and prices tend to be relatively high, but the cost is projected to decrease in
the future. Therefore, the prices of each vehicle type and PV generation were set based
on the projected values in the target year based on previous research [9,19]. On the other
hand, GVs and SBs were considered to have less price volatility than other technologies
and thus were assumed to have fixed values [5,9]. Additionally, the fuel economy and
battery capacity of each vehicle type were set based on previous studies [9,20], considering
changes over time.

3.2. Solar Radiation Data and Electricity Demand Data

Data on the hourly values of the total solar radiation and weather for January–
December 2018–2022 were obtained from the Japan Meteorological Agency [21]. Aver-
age values were then calculated by month, weekday/holiday, and weather category
(sunny/other). Data for the Kanto region were taken from Tokyo, where the headquarters
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of Tokyo Electric Power Company, one of Japan’s major power companies operating in the
Kanto region, is located.

For electricity demand and total floor area of houses, we used data actually measured
in detached houses from the “Database of Energy Consumption in Houses” created by the
Research and Study Committee on Energy Consumption in Houses of the Architectural
Institute of Japan [22]. The study used data from nine residences in the Kanto region be-
tween October 2002 and March 2005. We also obtained data from the Japan Meteorological
Agency [21] on total solar radiation and weather for hourly values at the same time of
year when electricity demand was actually measured. The median electricity demand
per area by month, weekday/holiday, and weather category was then calculated. The
median electricity demand per area was then multiplied by the average of the total floor
area in the Kanto region [23] to calculate the electricity demand of the average household
by month, weekday/holiday, and weather category. The weather category for each future
day was randomly assigned based on the percentage of weather categories for each month
in 2018–2022. It was assumed that the incidence of each weather category in the future
would be approximately the same as in the past. In this study, the total floor area was
considered a characteristic of each detached house, and electricity demand per area was
used. On the other hand, from the perspective of considering the overall trend in electricity
demand for detached houses, this study did not analyze other characteristics in detail, such
as the number of people in the household. Although these data are not necessarily the same
as current data, this study used median values that exclude outliers, which we believe is
useful for observing overall trends in the effectiveness of the linkage between vehicles and
residences. It is also possible to change the input data as the survey data are updated. Thus,
we do not believe that this circumstance will affect the usefulness of the model itself.

3.3. Energy Parameters

The energy sources are gasoline for GVs, HEVs, and PHEVs, electricity for BEVs and
PHEVs, and hydrogen for FCVs. For PHEVs, electricity is used for BEV driving, and
gasoline is used for HEV driving. This study also considered CO2 emissions during both
the driving phase of the vehicle and the production phase of the energy source.

Based on previous studies [9,24], the price of gasoline was calculated based on the
price of crude oil plus petroleum, coal, and gasoline taxes and refining and distribution
margins. With reference to the study of Osawa [9], the CO2 intensity of gasoline was set to
approximately 85.

The price and CO2 intensity of hydrogen were set based on the assumption that blue
hydrogen will be mainly used until 2029 and that green hydrogen will be mainly used after
2030. The price and CO2 intensity of hydrogen vary depending on whether it is produced
domestically or abroad. However, hydrogen is still a technology in the development and
demonstration stages, and the cost and CO2 intensity of hydrogen produced abroad and
transported to Japan will vary greatly depending on the country of production. Therefore,
in this study, the price and CO2 intensity were set assuming domestic production and
transportation [25–29].

The purchase price of electricity is affected by the mixture of power sources in the
region. Based on previous work [24,30], this study calculated the power supply mixture for
the Kanto region in 2020 and multiplied it by the cost of each power source to determine
the cost of electricity generation. The cost of electricity generation was then deducted from
the current daytime and nighttime electricity purchase prices, and the respective margins
were calculated. The future electricity purchase price was then set by multiplying the Kanto
region’s energy mix by the future cost of each power source and adding each margin. Based
on a previous study [6], the sale price of surplus electricity was fixed at 8.5 yen/kWh. The
CO2 intensity of electricity was also calculated by multiplying the energy mix by the CO2
intensity of each power source, based on previous work [31].
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3.4. Vehicle Driving Patterns

It is assumed that the time spent parked at the residence affects the effectiveness
of the V2H system. Therefore, based on previous studies [1,5,6], three driving patterns
were developed for this study (Table 2). Pattern A assumes that the main purpose of use
is shopping and that users make short-distance trips. Pattern B assumes that the main
purpose of use is commuting on weekdays and shopping on weekends and holidays. The
SOC is assumed to remain unchanged (constant) during the time the vehicle is parked
at the office. Pattern C assumes that the main purpose of use is shopping on weekdays
and long-distance driving on weekends and holidays, and that the vehicle is used for
long-distance travel. The annual mileage values in 2025 calculated from the hourly mileage
were approximately 8490 km for driving pattern A, 10,950 km for driving pattern B, and
13,250 km for driving pattern C. Osawa [9] estimated the average annual mileage to be
9601 km, which is close to the mileage values used in this study; thus, the values are
considered to be a reasonable setting.

Table 2. Vehicle driving patterns.

Pattern Day Category Use
Parking Time
at Residence

Mileage [km/h]

A
Weekdays Shopping 0–9

12–23
10

Holidays Shopping 0–9
13–23

B
Weekdays Commuting 0–7

18–23
10

Holidays Shopping 0–9
13–23

C
Weekdays Shopping 0–9

12–23
10

Holidays Long-distance driving 0–9
17–23

4. Results and Discussion

4.1. Optimal Technological Configuration

This section describes the calculation results of the optimal technological configuration
for residential energy systems that include a variety of vehicle types.

Figure 3 shows the Pareto optimal solution for each driving pattern in 2025 and 2030.
The Pareto optimal solution shown in the figure reveals that the curve shifts to the lower
left from 2025 to 2030. This indicates that the reduction potential of annual costs and annual
CO2 emissions improves as the cost of vehicles and PVs declines and their installation
becomes easier. By driving pattern, the curve shifts to the upper right for B and C compared
to A. This indicates that for driving pattern A, in which vehicles spend more time parked
at the residence, a bidirectional power supply could improve both annual costs and annual
CO2 emissions.

Table 3 shows the technological configuration of the optimal solutions that consider
both annual costs and annual CO2 emissions in a balanced manner, which are shown in the
rhombus in Figure 3. This optimal solution describes the solution with the lowest sum of
values of each objective function of the Pareto optimal solution normalized and multiplied
by an equal weight (0.5 each), respectively. For the technological configurations in each
optimal solution in Table 3, the combination of BEVs and V2H systems was chosen in both
2025 and 2030 for driving pattern A, which assumes more time parked at the residence.
It is assumed that PV power will not be deployed to the maximum extent because of its
limited ability to consume and store the amount of electricity it generates. This is attributed
to the fact that the BEV is not at the residence for some time. For driving pattern B, which is
used for commuting on weekdays, and driving pattern C, which is used for long-distance
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driving on weekends and holidays, the combination of HEVs and SBs was selected for
2025. On the other hand, the combination of BEVs, V2H systems, and SBs was selected for
2030. This suggests that a V2H system would not be fully effective in 2025 because of the
short parking time at the residence and that it would be more beneficial to introduce SBs in
addition to HEVs. HEVs also have better fuel economy than GVs, which is advantageous
when the driving distance is long. For 2030, BEVs were chosen instead of HEVs, and
V2H systems and SBs were introduced. An SB was added as a way to charge the surplus
electricity generated by PVs and discharge it for residential electricity consumption when
the BEV is not at the residence. Furthermore, the price of PV power will decrease in the
future. With the introduction of SBs, the area of PV installation increases, indicating that
more energy can be produced and used at the residence.

 
(a) (b) 

 

 

(c)  

Figure 3. Pareto optimal solution for (a) driving pattern A; (b) driving pattern B; (c) driving pattern C.

Table 3. Optimal technological configurations in 2025 and 2030.

Driving
Pattern

Year
Technological

Configuration Type
Installation Area of

PVs [m2]
Storage Capacity of

an SB [kWh]

A
2025 BEV_V2H_PV 31 -
2030 BEV_V2H_PV 31 -

B
2025 HEV_SB_PV 21 12
2030 BEV_V2H_SB_PV 36 4

C
2025 HEV_SB_PV 21 12
2030 BEV_V2H_SB_PV 31 10

Table 4 shows the technological configurations of the two optimal solutions for driving
pattern A in 2030: the case with minimized annual costs and the case with minimized
annual CO2 emissions. In the case of minimizing annual costs, a combination of GVs and
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SBs was chosen. The area of the PV installation was 26 m2, and the installed SB capacity was
6 kWh. The system is designed to generate and use only the amount of electricity needed
for residential consumption, which is similar to the current residential energy system. On
the other hand, in the case of minimizing annual CO2 emissions, a combination of BEVs,
V2H systems, and SBs was chosen. The installed PV area was 36 m2, and the installed SB
capacity was 10 kWh. It is assumed that the maximum amount of electricity is generated at
the residence and then stored and used. The introduction of an SB is accompanied by an
increase in the installed area of PVs compared with the case of BEVs and V2H systems in
driving pattern A in 2030 (Table 3).

Table 4. Optimal technological configurations for driving pattern A in 2030.

Case
Technological
Configuration

Type

Installation Area
of PV [m2]

Storage Capacity of
SB [kWh]

Minimized annual costs GV_SB_PV 26 6
Minimized annual

CO2 emissions BEV_V2H_SB_PV 36 10

Figure 4 illustrates the comparison of annual costs and annual CO2 emissions of GV,
HEV, and PHEV_V2H_PV cases with the technological configurations of each optimal
solution for driving pattern A in 2030. In all cases, the costs of installing vehicles, PVs, and
SBs account for a large proportion of the total costs. The energy cost is lowered significantly
by utilizing V2H systems and SBs. Furthermore, the combination of BEVs and V2H systems
can significantly reduce annual CO2 emissions compared with GVs and HEVs. Even when
a GV is used, the combination of a GV and an SB results in a significant reduction in annual
CO2 emissions. When a BEV is replaced by a PHEV under the same condition of PV use, a
BEV is superior in both annual costs and annual CO2 emissions.

Figure 4. Comparison of annual costs and annual CO2 emissions between the technological configura-
tion of each optimal solution and GV, HEV, and PHEV_V2H_PV cases (driving pattern A, 2030).

To achieve carbon neutrality, the government of Japan plans to change the energy
source of vehicles from gasoline to electricity or hydrogen. However, the result in Figure 4
shows that it is reasonable for consumers to choose a combination of GVs and SBs in addi-
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tion to PV installation when cost is a priority. To change the energy source, it is necessary
to set up a carbon tax that would cost the same amount as the combination of GVs and SBs.
The carbon tax rates at which the combinations of BEVs and V2H systems and BEVs, V2H
systems, and SBs in driving pattern A in 2030 would cost the same as in the combination
of GVs and SBs are approximately 24,000 yen/t-CO2 and 46,000 yen/t-CO2, respectively.
The current tax rate of the “tax for global warming countermeasures” introduced in Japan
is 289 yen/t-CO2. Furthermore, the carbon tax rate at which the BEVs, V2H systems, and
SBs in driving patterns B and C in 2030 would cost about the same amount as the GVs and
SBs was more than around 60,000 yen/t-CO2. It is clear that the operation of vehicles has a
significant impact on the design of the carbon tax. Thus, it is essential to reform the existing
carbon tax rate.

4.2. Supply and Demand for Electricity

This section describes the daily electricity supply and demand for several optimal
solutions and their characteristics.

Figure 5 shows the daily electricity supply and demand in two cases in Tables 3 and 4:
a combination of BEVs and V2H systems and a combination of BEVs, V2H systems, and
SBs in driving pattern A in 2030. First, in the case of BEVs and V2H systems, it is clear
that most of the electricity is supplied by the BEV at night. During the day, the BEV is
charged with surplus power according to the amount of PV electricity generated. However,
during the time when the vehicle is out of the residence, the PV power generated is not
fully consumed and is sold to the grid. In contrast, in the case of BEVs, V2H systems, and
SBs, the surplus PV power is charged to the SB, even when the BEV is out of the residence.
As a result, the entire amount of PV generation can be consumed in residence or charged to
a vehicle or SB. No electricity is purchased from the grid, which contributes to the reduction
in CO2 emissions. On the other hand, the SB charges the surplus PV power generated
during the day, becomes fully charged, and then does not operate. This occurs because
the BEV discharges at night, utilizing its large-capacity battery to provide the electricity
consumed by the residence.
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(a) (b) 

Figure 5. Calculated daily electricity supply and demand for driving pattern A in 2030 (August,
weekday, sunny). (a) the case of BEVs and V2H systems; (b) the case of BEVs, V2H systems, and SBs.

Figure 6a shows the daily electricity supply and demand for BEVs, V2H systems,
and SBs in driving pattern C in 2030. As in driving pattern A, the nighttime electricity
consumption is covered by the discharge from the BEV. On the other hand, in driving
pattern C, the driver goes for a long drive during the day on holiday, and the SB absorbs the
surplus power from the PV generation system. The electricity required to charge the BEV
after driving is partly covered by the discharge from the SB, which is charged during the
day. It reveals that the economic efficiency of the SB improves when the daytime driving
distance is long. On the other hand, due to the upper limit of the SB’s discharging capacity,
additional electricity is purchased from the grid to recharge the BEV.
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Figure 6. Calculated daily electricity supply and demand in 2030. (a) the case of BEVs, V2H systems,
and SBs for driving pattern C (August, holiday, sunny); (b) the case of PHEVs and V2H systems for
driving pattern A (August, weekday, sunny).

In the case of BEVs (Figure 5), there is ample capacity in the storage battery of the BEV.
Given that the battery capacity of BEVs is approximately 50 kWh, it is clear that the battery
capacity of the BEV is not fully utilized. Therefore, the electricity supply and demand were
calculated for the case in which the BEV in Figure 5a is replaced by a PHEV (Figure 6b). As
a result, it was found that the battery capacity of the PHEV is approximately 13 kWh, which
is insufficient to cover the nighttime electricity demand or absorb all of the surplus PV
electricity generated during the daytime. In other words, assuming the residential energy
system alone, the battery capacity of the PHEV is insufficient. Thus, increasing the battery
capacity of PHEVs would be beneficial for more efficient energy use in residential energy
systems. When introducing BEVs, it is also important to consider schemes to utilize their
battery capacity more effectively, such as by implementing a bidirectional power supply
to not only residences but also offices and commercial facilities where people commute
and shop.

5. Conclusions

This study developed a model to evaluate and optimize the technological configuration
of residential energy systems, considering a variety of distributed energy technology
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options. The objective of this study was to use the model to analyze the impacts of
the installed capacity of PVs and SBs, the type of vehicle, and their combination on the
economic and environmental performance of the total energy consumption of residences
and vehicles. The overall results showed that introducing V2H systems and SBs is expected
to reduce annual costs and CO2 emissions. This study underscores the importance of
understanding the relationship between vehicle type, the capacity of SBs and PVs, and
the effective combination of these technologies. The impact of residents’ vehicle driving
patterns on choosing optimal technological configurations highlights the necessity for
customized energy solutions tailored to individual lifestyles and needs. The extension of
the model to households with different geographical and socio-economic backgrounds is
expected to broaden our understanding of residential energy system optimization across
various contexts. A detailed analysis revealed the following key findings:

• The optimal technological configuration, considering the balance between annual
costs and annual CO2 emissions, varied depending on the vehicle driving patterns.
For residences with long parking times, the combination of BEVs and V2H systems
was most effective in 2025 and 2030. In contrast, with long times outside the residence,
the combination of HEVs and SBs was selected for 2025, and the combination of BEVs,
V2H systems, and SBs was selected for 2030. In addition to BEVs, the introduction of
SBs has increased the installed PV area and improved energy efficiency.

• When cost is a priority, it is reasonable for consumers to choose a combination of GVs
and SBs in addition to PV power. For residences with long parking times, the carbon
tax rates at which the combinations of BEVs and V2H systems and BEVs, V2H systems,
and SBs in 2030 would cost the same amount as GVs and SBs are approximately
24,000 yen/t-CO2 and 46,000 yen/t-CO2, respectively. The current tax rate of the
“tax for global warming countermeasures” introduced in Japan is 289 yen/t-CO2.
Increasing the carbon tax rate could be effective.

• Considering the daily electricity supply and demand, when the parking time at the
residence is long, a large amount of electricity can be made self-sufficient by installing
BEVs and V2H systems, or BEVs, V2H systems, and SBs in addition to PV power.
Furthermore, even for households that spend a lot of time outside the residence, by
introducing SBs, a portion of the electricity used to charge the BEV after driving could
be covered by discharging electricity from the SB, which is charged with surplus PV
electricity during the day. The introduction of additional SBs has increased flexibility
in electricity supply and demand.

• PHEVs, while cheaper to purchase than BEVs, have less battery capacity, which was
found to be insufficient for covering nighttime electricity demands or absorbing all
the surplus electricity generated by PV systems during the daytime.

Furthermore, in contrast with previous studies, this study optimized for a variety of
vehicle types in addition to PV installed area, SB capacity, and whether a V2H system is
used. The additional installation of SBs showed the potential to increase energy efficiency
by allowing an increased installed PV area and utilizing its energy for post-drive charging
of BEVs. The study also clarified the carbon tax rate at which BEVs and V2H systems and
BEVs, V2H systems, and SBs would have cost levels comparable with those of the most
economically rational combination, GVs and SBs.

The optimization model of this study provides valuable insights for developing future
scenarios for vehicles and residential energy systems for more efficient energy use. The
study also contributes to the development of sustainable energy systems in relation to
goals 7 and 13 of the Sustainable Development Goals (SDGs) [32]. However, it should
be noted that there are uncertainties in the prerequisite data, such as fuel and vehicle
prices. In this study, data on demand patterns for electricity were used for a specific
region. However, electricity demand patterns may vary from region to region. In addition,
although electricity demand per floor area was used as the basis for this study, the number
of people in the household and other factors may also affect electricity demand. Vehicle
driving patterns may also differ between urban and rural areas. A future issue for this
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study is to consider the diversity of households. In addition, electricity supply and demand,
such as PV generation, and vehicle driving patterns are uncertain, and the model needs
to be improved to account for these unexpected fluctuations. It is important to carry out
further research to gain a deeper understanding of the impact of the optimal technological
configuration of each residence on the electricity system at the local level. Furthermore,
raising people’s awareness of environmental and energy issues and changing their behavior
are also important. Educational programs have been developed at some universities in
recent years, and their effectiveness has been confirmed [33–35]. Another challenge is using
the findings of this research to educate potential personnel involved in the development of
sustainable energy systems.
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Abstract: The highly temporal variability of the hydrological response in Mediterranean areas affects
the operation of hydropower systems, especially in run-of-river (RoR) plants located in mountainous
areas. Here, the water flow regime strongly determines failure, defined as no operating days due to
inflows below the minimum operating flow. A Bayesian dynamics stochastic model was developed
with statistical modeling of both rainfall as the forcing agent and water inflows to the plants as the
dependent variable using two approaches—parametric adjustments and non-parametric methods.
Failure frequency analysis and its related operationality, along with their uncertainty associated with
different time scales, were performed through 250 Monte Carlo stochastic replications of a 20-year
period of daily rainfall. Finally, a scenario analysis was performed, including the effects of 3 and
30 days of water storage in a plant loading chamber to minimize the plant’s dependence on the river’s
flow. The approach was applied to a mini-hydropower RoR plant in Poqueira (Southern Spain),
located in a semi-arid Mediterranean alpine area. The results reveal that the influence of snow had
greater operationality in the spring months when snowmelt was outstanding, with a 25% probability
of having fewer than 2 days of failure in May and April, as opposed to 12 days in the winter months.
Moreover, the effect of water storage was greater between June and November, when rainfall events
are scarce, and snowmelt has almost finished with operationality levels of 0.04–0.74 for 15 days
of failure without storage, which increased to 0.1–0.87 with 3 days of storage. The methodology
proposed constitutes a simple and useful tool to assess uncertainty in the operationality of RoR plants
in Mediterranean mountainous areas where rainfall constitutes the main source of uncertainty in
river flows.

Keywords: Run-of-River (RoR) hydropower plant; river flow; energy production; operationality;
failure; uncertainty; WiMMed

1. Introduction

Hydropower is one of the cheapest renewable energy sources that can be generated
without toxic waste [1,2] and has very low operation and maintenance costs [2,3]. Of the
total renewable energy production in Europe, the majority was generated from hydropower,
accounting for 425.8 TWh [4]. Most hydropower plants in use today are traditional or con-
ventional hydropower plants designed with a dam, a lake, a penstock, and a powerhouse.
In contrast, non-conventional hydropower plants, such as run-of-river (RoR) power plants,
constitute a more environmentally friendly option [1,2,5]. In RoR plants, a fraction of the
stream flow is diverted through penstocks to a powerhouse and then returned to the stream.
The reservoir is frequently absent, or it is a tiny pond or chamber.

The contribution of small hydropower plants (SHPs) to the worldwide electrical
capacity is at a more similar scale to the other renewable energy sources (1–2% of the total
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capacity) [3]. Europe is the market leader in small-scale hydropower technology, with
Spain, Italy, France, Germany, and Sweden being the main producers [3]. Small SHPs
and, among them, RoR plants are especially useful thanks to their low administrative and
executive costs and short construction time compared to projects with storage reservoirs of
a similar power capacity [5].

The operation of hydroelectric power plants is subject to different conditioning factors,
including the hydraulic conditions of the riverbed, the specific operating conditions of the
plant’s instrumentation, and certain restrictions, such as compliance with the environmental
flow regime established in the corresponding legislation. One of the main drawbacks of
RoR plants is the high degree of uncertainty of the available river flows upstream of the
plant owing to meteorological fluctuations, resulting in an unpredictable power generation
capacity [5,6], which is even more prevalent in the current climate change scenario [2,7,8].

Some of the main energy infrastructures affected by climate change are hydropower
plants located in snow-covered mountainous areas, where climate change is expected to
result in a later and shorter snow season and less snow coverage [8,9]. Mountains are
considered “water towers” since they provide water for both ecosystems and anthropogenic
demands in downstream areas [10]. In Mediterranean mountains with both alpine and semi-
arid conditions, the variability in the climate enhances the complexity of the hydrological
regime. These areas have particularly extreme conditions, in which the high variability
in the annual and seasonal climate regimes is usually propagated and amplified by the
river flow [10]. Moreover, the highly variable snowpacks, in both time and space, and
the presence of several accumulation and melting cycles during the snow season lead
to a strong seasonality of the streamflow response in headwater catchments [11]. Thus,
RoR plants in Mediterranean mountains operate with even more irregular production
subject to the run-of-river flow, which depends on the highly variable forcing agents of the
rainfall–runoff processes and snow cover dynamics. Consequently, these plants often have
to cease operation when the flow drops below the turbine operating level or rises above the
maximum allowed by the turbines, thus affecting power generation and, therefore, plant
performance [2].

RoR systems are subject to several uncertainties in both operation and manage-
ment [12]. Thus, the challenge of the operation of RoR hydroelectric plants for water
resource managers is to quantify how much water will be available for power generation.
Especially in the Mediterranean snow-dominated mountains where river flows follow a
strong seasonal pattern with significant interannual variability, having a seasonal forecast-
ing system with limited uncertainty and sufficient reliability for decision-making would be
a very useful tool for their seasonal and annual planning and would reduce opportunity
costs due to the lack of such a forecast.

Thus, the main objective of this study was to obtain a simple and versatile stochastic
flow-forecasting structure from the significant forcing agents that allow for anticipating
the regime of river inflows to run-of-river hydroelectric power plants and the number of
days of failure for operational purposes at time scales of interest in hydrological planning.
In addition, the effect of possible storage in a load chamber was included to optimize the
operation of the chamber by minimizing the run-of-river power plant’s dependence on
the river flow. The most critical component of river flows in Mediterranean areas are low
flow periods because of the mild winter temperatures in combination with long, dry, sunny
periods [13]. Thus, the minimum regime as the most limiting variable in the operation of
power plants constitutes the basis of this study.

Stochastic models are often applied in hydrology to generate different samples of
meteorological and hydrological data that are equally likely with respect to the observed
series [14,15]. The stochastic forecasting structure developed in this study is based on
scientific knowledge of rainfall–runoff processes and a rigorous analysis of the stochastic
relationships of their main descriptor variables. Therefore, the main forcing agents that
determine the increase in humidity in the contributing basin were first identified. Secondly,
an analysis was carried out to identify the significant relationships between the forcing
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agents and the target variables at the different temporal scales established. Then, a Bayesian
analysis of the probability of occurrence of the inflow rates was made based on the an-
tecedent hydrological conditions. Finally, a scenario analysis was performed to assess the
effect of using a small storage chamber to optimize the management of hydroelectric power
RoR plants with maximum use of the natural fluvial contributions in the study area.

2. Materials and Methods

2.1. Study Site and Data Sources

The study site was the Poqueira system in Sierra Nevada (37◦ N; −3.3◦ W), which is
a national park and biosphere reserve located in a mountainous area in southern Spain,
where the presence of snow has a great effect on the hydrology of the downstream areas [8].
The contributing basin to the hydropower plants has an area of 38.4 km2, with an average
slope of 23◦ and an elevation ranging from 3453 m a.s.l. to 449 m a.s.l., with a mean value
of 2161 m a.s.l. There is great variability in the precipitation regime due to the interaction
of both the alpine and Mediterranean climates of the region, with the accumulated annual
precipitation rate reaching 1200 mm in wet years and 220 mm in dry years within the
period of 1961–2015 [2]. Above 2500 m a.s.l., the presence of snow is persistent, although it
is commonly found at altitudes above 1000 m a.s.l. from November to May, with a very
heterogeneous spatial distribution of the snow cover [2,11].

Three consecutive RoR hydroelectric plants, HP1, HP2, and HP3 (Figure 1), belong-
ing to an important Spanish company in the energy sector and with a capacity between
10 and 12 MW, are located in the basin [2]. The hydroelectric plant located at the highest
altitude is Poqueira (HP1), which is supplied from a load chamber located at 2100 m a.s.l.
The operation of this system is as follows: the turbined flow in the upstream plant (HP1) is
carried through a pipeline that connects the load chambers to the next plant (HP2). In the
same way, from the latter, it reaches the HP3 plant. For the study of the operation of these
mini power plants in a concatenated series, only the case of HP1 has been analyzed since
the turbine flow in this plant determines the operation of the other two plants downstream.
For this reason, ecological flow restrictions must be applied to the HP1 plant since it is the
first one in the series. The minimum ecological flow established in the Basin Hydrological
Plan to be supplied from the HP1 plant is 0.35 m3/s, as a constant flow throughout the
year [2]. Therefore, the minimum operating flow of HP1 is the sum of the minimum turbine
flow and the minimum ecological flow established (Table 1).

Figure 1. Location of the Poqueira River basin in southern Spain and the three RoR hydroelectric
plants system in the study area.
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Table 1. HP1 characteristics.

Characteristic Value

Generation capacity 14.4 MW
Net jump 570 m

Nominal turbine flow 2.5 m3/s

This hydroelectric power plant has a low-capacity load chamber that can be used to
slightly compensate for the effect of a significant decrease in the inflow to the plant. Its low
storage capacity means that it can be considered a RoR plant.

Regarding meteorology, the available daily data (precipitation, temperature, solar
radiation, humidity, and windspeed) belong to different meteorological networks in the
area (Red Guadalfeo, SAIH Guadalquivir, RIA-JA) [2,16–18]. Daily flow series at the basin
outlet are available from the SAIH (automatic hydrological information system) of the
Andalusian internal basins between 1998 and 2015.

For the hydrological characterization of the contributing basin to HP1, a series of
hydrometeorological data of sufficient length were required to collect different scenarios
of extreme flow events, both dry periods and floods, as well as periods of average flow
in the basin. In general, data series of at least 20 years are required to obtain meaningful
estimations from fluvial regimes in which periodicities in flow have an important bear-
ing [19,20]. Given that the available data series have some gaps and due to the need to use
cumulative values distributed over the contributing basin to the HP1 hydroelectric power
plant, a hydrological simulation was carried out in the basin for the period from December
1998 to August 2019 with the WiMMed (Water Integrated Management in Mediterranean
Environments) model, a physically based and fully distributed hydrological model [21].
The use of the WiMMed model is justified as it was conceived considering the particularities
that exist in Mediterranean areas in terms of the large spatial and temporal variability in
the variables and parameters that determine the rainfall–runoff processes, with special
consideration of drying processes. In fact, the WiMMed model is already calibrated and
validated in numerous Mediterranean basins [22]. The WiMMed model performs hourly
calculations of the energy and water balance on a gridded representation of the terrain,
providing input data to circulate both the surface and sub-surface flows throughout the
basin area to the selected outlets.

In previous studies [13,21,23], the model was calibrated in the contributing basin where
the headwater watershed that contributes to HP1 is located. The accuracy of distributed
precipitation estimation is one of the most significant factors when reproducing the fluvial
regime in semiarid regions [13,24,25]. More information regarding the datasets used
to implement the model on the study site can be found in the literature [2,13,16,21,23].
The results of the hydrological simulation and the measured flows in the period from 1998
to 2015 with available measurements are shown in Figure 2. The correlation coefficient
between the daily series of measured and simulated flows is 0.79, so it is considered that
the simulation correctly represents the hydrological dynamics of the basin.

Following the hydrological simulation performed using the WiMMed model, daily
maps with a 30 × 30 m cell size resolution were generated for rainfall, snowfall, snow
water equivalent, snowmelt, and evaposublimation. Table 2 presents the mean, maximum,
minimum, and standard deviation values of the mean daily river flow (Q), accumulated
rainfall (R), snow water equivalent (SWE), and snowmelt (SWM) in the contributing basin
to the HP1 power plant at the annual and monthly scales. The mean spatial annual values
were computed as the aggregation of the daily values for each water year (from September
to August for the latitude of the study site). The strong hydrological variability typically
found in semiarid Mediterranean mountainous areas [13,26] can be appreciated at the
study site, where there are monthly maximum flow values (Q) of up to 4.8 m3/s in January
and 0.59 m3/s in August. The interannual variability is also evident, with extreme values
(maximum and minimum) that sometimes exceed by one order of magnitude the mean
values of most of the variables.
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Figure 2. Results of hydrological simulation and measured river flow at study site.

Table 2. Mean, maximum, minimum, and standard deviation values of the mean daily river flow (Q),
accumulated rainfall (R), snow water equivalent (SWE), and snowmelt (SWM) in the contributing
basin to the HP1 power plant at the annual and monthly scales.

Annual Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug

R (mm)
Mean 874.7 45.5 103 121.5 129.4 80.1 105.3 115.8 96.3 55.1 12.5 2.1 8.2
Max 1804.5 104 266.5 280.3 684.5 271.3 384 397.6 192.4 184.5 45.6 9.6 35.9
Min 485.6 0.55 18.8 18.9 0.98 4.9 0 22.6 4.1 5.8 0 0 0
S. D. 318.3 33.1 73 82.3 167.6 68.2 83.4 90.2 51.1 53.6 12.4 3 10.4

Q (m3/s)
Mean 0.7 0.13 0.28 0.61 0.85 0.9 0.78 1.06 1.1 1.15 0.75 0.34 0.16
Max 2.0 0.35 0.92 3.5 2.9 4.8 3.3 3.7 2.4 2.6 2.7 1.4 0.59
Min 0.3 0.03 0.08 0.10 0.08 0.11 0.19 0.28 0.35 0.31 0.12 0.06 0.03
S. D. 0.5 0.08 0.23 0.78 0.78 1.05 0.69 0.83 0.60 0.69 0.69 0.33 0.14

SWE (mm)
Mean 10,392 0.39 22.2 408.1 1154.7 1640.2 1854.8 2434.3 1784.3 938.2 147.9 6.9 0.07
Max 42,029 7.7 94.4 2036 3889 6399 7886 10581 8506 5509 1352 121.9 1.4
Min 1497.7 0 0 4.9 54.8 28.3 103.3 63.9 213.1 4.24 0 0 0
S. D. 10,143 1.71 30.2 500 1076.7 1766.2 1955.1 2554.4 2021.3 1405.2 316.3 27.13 0.31

SWM (mm)
Mean 263.8 0.25 4.3 17.6 30.4 25.6 29.4 49 54.5 39.1 12.7 0.9 0.02
Max 638.1 4.3 12.1 46.3 116.9 64.9 83 110.4 102.6 114.6 87.7 16.1 0.3
Min 92.6 0 0.05 1.3 0.92 2.8 2.3 5.2 9.4 1.1 0 0 0
S. D. 125.1 1 4.4 16.5 28.2 15 19.6 28.2 26 33.7 22.8 3.6 0.07

2.2. Methodological Framework

In order to carry out the stochastic analysis, first the dependency structure between the
forcing agents and the objective variables related to plant operationality was obtained at the
annual and monthly scales to select the most influential forcing variables. Then, a Bayesian
dynamics forecast of the water inflows to the plant was computed with the application
of the Monte Carlo technique together with statistical modeling of the objective variables
using two approaches—parametric adjustments and non-parametric methods. Parametric
methods refer to the parametric relationships between the forcing agents and the target
variables, such as polynomials, exponentials, or potential adjustments. In contrast, non-
parametric methods assume that the data do not have a particular statistical distribution
and, thus, are based on the use of the empirical cumulative distribution functions of the
variables. Using the probability distribution functions of inflows to the plant and the
variable number of days of failure at the corresponding time scale, the probability of the
plant’s operationality was then computed.
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Finally, an assessment of the operationality of the hydropower plant was performed
with the analysis of several scenarios, including the hydropower plant operation rules and
varying levels of water stored in the loading chamber.

2.2.1. Dependency Structure among Variables

First, the forcing agents and target variables were identified at the annual and monthly
scales since these are the time scales of interest in the operation of hydroelectric power
plants. Forcing agents are the variables that determine the increase in humidity in the
basin that supplies the hydroelectric plants. Since this is an area influenced by a high
mountain climate, in addition to rainfall, the presence of snow strongly determines the
hydrological dynamics of the contributing basin [11,16]. Therefore, rainfall, snowfall, snow
water equivalent, snowmelt, and evaposublimation were identified as possible forcing
agents for the dependence analysis.

In terms of target variables, operationality has been defined in the scope of this study
as the probability of being able to produce energy in the hydroelectric plant in 20 years.
Operationality is, therefore, the complement of the probability of failure [13], with failure
being defined as the day on which there is no energy production due to the flow being
lower than the minimum operating flow. Therefore, the number of days on which the
plant did not operate due to a circulating flow lower than the minimum operating flow
was generated from the data series of daily flows available. The relationship between the
two variables was then analyzed in order to quantify the probability of failure based on the
mean daily flow. Thus, the final target variables are the mean daily flow (Qmean) and the
number of days of failure (Nfailure) at the annual and monthly scales.

Based on the 20-year series of the variables considered, classical descriptive analysis
techniques were applied by means of adjustments and analysis of the correlation coefficients
between the series of forcing agents and target variables at different time scales—annual
and monthly. The adjustments made between the variables were parametric relationships
of the first-, second-, and third-degree polynomials, exponentials, and potentials. Due to
space limitations in the Results section, only the best correlations obtained from all the
parametric adjustments made for each variable are shown. However, all the parametric fits
can be made available upon request to the authors.

Finally, the best parametric adjustments obtained for each time scale were selected.

2.2.2. Bayesian Dynamics Forecast of Water Inputs and Analysis of Operationality

In order to generate predictions of the target variables, the mean daily flow, and the
number of days of failure, along with their associated uncertainty, the simulation of the forcing
agent by Monte Carlo was combined with two approaches or methods—parametric and
non-parametric. Figure 3 shows the calculation sequence with rainfall (R) as the forcing agent.

The parametric method (PM) is based on the parametric relationship between the
forcing agent (e.g., rainfall or snowfall) and the target variable generated in the previous
section. This method starts with the cumulative distribution function (cdf) of the forcing
agent accumulated at the corresponding time scale and continues with the following
calculation sequence, which shows rainfall as an example of the forcing agent (Figure 3):

1. A total of 250 sets of 20-year series of equally probable rainfall were obtained with
Monte Carlo using the cdf of the available rainfall data series.

2. The mean daily flow was calculated from the best parametric fit with the accumulated
rainfall; thus, the forecast was included in the calculation.

3. The number of days of failure was calculated from its best parametric relationship
with the mean daily flow (Appendix A).

Regarding the non-parametric method (NPM), techniques already used in various
areas of Europe were applied [13,22]. In this case, we started directly from the cumulative
distribution functions of the rainfall, the mean daily flow, and the number of days of
failure at the annual and monthly scales. Each of these functions was divided into 6 parts,
considering the criterion that in each of these sections there should be at least 3 data points
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of the average flow or number of days of failure. Then, the cdf of each of the partitions of the
different cumulative distribution functions was developed. Based on these developments,
the calculation sequence of the non-parametric method was as follows (Figure 3):

1. A total of 250 sets of 20-year series of equally probable monthly rainfall were obtained
with Monte Carlo using the distribution of the available monthly rainfall data series.

2. The obtained rainfall values were used to generate 250 repetitions of the 20-year
mean daily flow data series, applying quantile mapping to the distribution functions
generated in the partitions of the distribution functions of the measured data series,
as this procedure is analogous to generating 250 repetitions of a series of number of
days of failure.

Figure 3. Calculation sequence of Bayesian dynamics forecast of water inputs: (a) parametric method
(PM) and (b) non-parametric method (NPM). Blue lines are cdf of the 250 sets of 20-year series of
equally probable rainfall (i), mean daily flow (ii), or number of days of failure (iii) obtained with
Monte Carlo. In red, the empirical cdf obtained from the observed data.
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Finally, the operationality of the hydropower plants was analyzed in terms of the com-
plementary probability associated with the occurrence of failure based on the flow regime.
To accomplish this analysis, the cdf of the target variables (the mean daily flow and the
number of days of failure at the annual and monthly scales) was intercepted at the y-axis at
the corresponding quartiles of 1, 2, and 3. Thus, it is possible to know with a 25, 50, or 75%
probability whether the number of days of failure per year or month does not exceed a certain
value above which the production of hydroelectric energy becomes unfeasible.

2.2.3. Scenario Analysis

Once the forecast of the number of days of failure for a given month is known, it is
useful to know the effect of possible storage in a small load chamber to maximize the use
of the incoming natural fluvial contributions.

The variable that determines the failure in the operation of a plant is a mean daily
flow lower than the minimum daily operation flow, assigning to the variable Nfailure the
failure or not in the operation of the plant. Scenario analysis was performed with a variable
storage volume, which was null in case it did not exist, in order to simulate the operation
of the plant as a pure RoR plant.

The number of days of failure was calculated on a daily scale from the available flow
data series. Thus, the variable Nfailure was assigned the value of failure or not, not only
depending on the availability of the flow provided but also taking into account the volume
stored in the load chamber, if any. Then, the number of days of failure as a measure of
operationality was aggregated at the corresponding time scale. Three were analyzed: no
storage in the load chamber, which is equivalent to pure RoR plants, and a small load
chamber volume equivalent to 3 days, which is the capacity of the chambers in other RoR
plants in the area with similar characteristics (i.e., power generation capacity). Also, for
comparison with traditional hydropower plants with larger storage systems, a chamber
volume equivalent to 30 days is shown. This last value, oversized for the characteristics of
the plant under study, is shown only for visual effect in order to clearly elucidate the effect
of storage.

Figure 4 shows the flow chart of the plant operation calculation:

1. It is checked whether the incoming flow is equal to or higher than the minimum
turbined flow to operate the plant.

• If it is equal to or higher, a new volume of available water in the water chamber
is calculated, which is equal to the existing volume plus that which exceeds the
incoming flow on the day after the release. The day is assigned as a non-failure
in the operation of the plant.

• If it is lower or null, it is checked to see whether the incoming flow can be
supplemented with the stored volume available in the load chamber.

- If it can be supplemented, the new volume of the load chamber is calculated
after extracting the required volume. The day is assigned as a non-failure in
the plant’s operation.

- If it cannot be supplemented, the day is assigned as a failure in the plant’s
operation.

2. The calculation continues until the 20-year series is complete.
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Figure 4. Flux diagram of the scenario analysis from the calculation of Nfailure for hydropower plant management.

3. Results and Discussion

3.1. Dependency Structure between Variables
3.1.1. Annual Scale

At an annual scale, a good linear relationship was observed between the maximum
annual daily flow (Qmax) and the mean annual daily flow (Qmean) (Table 3), with an R2 value
of 0.82. Regarding the relationship of the maximum annual daily flow with the average
annual rainfall (R) and maximum annual daily rainfall (Rmax), lower linear correlations were
observed, with R2 values of 0.8 and 0.52, respectively. The low correlation in this latter analysis
can be explained by the snow influence in the area, which determined that the day with the
maximum daily flow was not the same as the day with the maximum daily rainfall.

Table 3. R2 of the linear correlations among the following variables: Qmean (mean annual daily
river flow), Qmax (maximum annual daily river flow), R (annual rainfall), ES (annual evaposubli-
mation), S (annual snowfall), SWM (annual snowmelt), SWE (annual snow water equivalent), and
Nfailure (annual number of days of failure). Values over 0.6 are in bold.

Nfailure Qmean Qmax R Rmax S R − ES SWM SWE

Nfailure 1 0.63 0.33 0.65 0.19 0.36 0.64 0.38 0.41
Qmean 0.63 1.00 0.82 0.98 0.41 0.67 0.97 0.75 0.72
Qmax 0.33 0.82 1.00 0.80 0.52 0.43 0.82 0.51 0.51

R 0.65 0.98 0.80 1.00 0.41 0.67 0.99 0.74 0.72
Rmax 0.19 0.41 0.52 0.41 1.00 0.15 0.43 0.19 0.34

S 0.36 0.67 0.43 0.67 0.15 1.00 0.58 0.98 0.81
R − ES 0.64 0.97 0.82 0.99 0.43 0.58 1.00 0.67 0.66
SWM 0.38 0.75 0.51 0.74 0.19 0.98 0.67 1.00 0.85
SWE 0.41 0.72 0.51 0.72 0.34 0.81 0.66 0.85 1.00
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The best correlations at the annual scale were found between the annual mean daily
flow and the average annual rainfall (R), reaching an R2 of 0.98, and the average rainfall
minus the evaposublimation flux (R − ES) (Table 3), since it represents the net precipitation
that directly contributes to runoff generation. Regarding the correlation between the
annual mean daily flow and the snow-related variables, average snowfall (S), average snow
water equivalent (SWE), and average snowmelt (SWM), slightly lower linear correlation
coefficients were obtained. oscillating between 0.67 and 0.75, with the highest correlation
being with snowmelt (0.75). These lower values were due to the highly variable snowpack
with the presence of several accumulation and melting cycles during the snow season, as
well as a non-negligible evaposublimation flux [11].

Regarding the annual number of days of failure (Nfailure), the best correlations were
found with both the mean annual daily flow and the annual rainfall, obtaining R2 values of
0.63 and 0.65, respectively.

3.1.2. Monthly Scale

At a monthly scale, not only the linear correlation was considered but also the
quadratic and exponential correlation, following previous studies that have flow-related
variables [27,28] and use rainfall as the independent variable to better capture the non-linear
effects of the hydrological water balance at shorter time scales. In addition, correlation with
the value of some variables in the antecedent month was included in the analysis in order
to analyze a possible monthly lag effect in the circulating flow.

Table 4 shows the correlation coefficients obtained between the monthly mean daily
flow variable and the rest of the variables identified at a monthly scale for the best adjust-
ments obtained for the sake of greater conciseness of the manuscript. However, the values
obtained for all the adjustments per month carried out in this study can be made available
upon request to the authors.

Table 4. Best correlation coefficients of the monthly mean daily flow with the variables analyzed.
Values over 0.6 are in bold.

September October November December January February March April May June July August

Nfailure 0.05 0.9 0.88 0.89 0.86 0.91 0.91 0.87 0.91 0.94 0.93 0.77
Qm_max 0.74 0.9 0.94 0.98 0.99 0.97 0.99 0.94 0.95 0.99 0.99 1

Rm 0.35 0.84 0.36 0.54 0.65 0.72 0.73 0.02 0.46 0.25 0.75 0.06
Rm_prev 0.05 0.35 0.72 0.5 0.92 0.77 0.59 0.74 0.16 0.38 0.36 0.71
Rm_max 0.07 0.76 0.03 0.48 0.44 0.49 0.41 0.22 0.34 0.46 0.73 0.36

Rm_max_prev 0.01 0.7 0.55 0.26 0.87 0.51 0.38 0.43 0.34 0.35 0.57 0.69
Rm −
ESm

0.35 0.84 0.37 0.54 0.55 0.72 0.68 0.03 0.45 0.24 0.75 0.56

Sm 0.24 0.47 0.07 0.51 0.35 0.76 0.46 0.02 0.38 0.39 -- --
Sm_prev -- 0.29 0.83 0.05 0.89 0.49 0.62 0.7 0.39 0.39 0.5 --
SWMm 0.27 0.28 0.4 0.49 0.7 0.67 0.51 0.62 0.75 0.91 0.65 --
SWEm 0.02 0.49 0.16 0.45 0.9 0.9 0.89 0.79 0.71 0.9 0.61 --

Analogously to the annual scale, a good correlation was again observed between the maxi-
mum monthly daily flow and the mean monthly flow, with R2 values between 0.74 and 1 (Table 4).

Regarding the monthly rainfall (Rm), good correlations were observed in the months
of October, January, February, March, and July, with correlation coefficients between
0.65 and 0.84. When the same analysis was performed with the rainfall in the previous
month (Rm_prev), the highest correlation coefficients were found in January, February, April,
and November, with even higher R2 values between 0.72 and 0.92.

As for the monthly snowfall (Sm), there was a good correlation only in the month
of February (0.76, Table 4), reaching higher values in the months of November, January,
March, and April with the snowfall of the previous month (Sm_prev). Finally, with respect
to the monthly snow water equivalent (SWEm) and the snowmelt (SWMm), the correlation
coefficient values were higher than 0.51 in the months from January to July, exceeding 0.62
in most months (Table 4).

At the monthly scale, the correlation between the monthly number of days of failure
(Nfailure) and the monthly mean river flow (Qm mean) reached R2 values of over 0.77 in most
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months (Table 4), exceeding 0.86 in most cases. Thus, the number of days of failure can be
reproduced once the required forecasts of monthly river flows are available.

As already pointed out by previous studies at the study site [11], the peculiar snow
dynamics result in the seasonality of the streamflow response in this headwater catchment.
These results confirm this statement as the highest correlations with respect to the mean
monthly flow occurred in the winter months, with monthly rainfall improving, in some
cases, the correlation with respect to the rainfall of the previous month. In contrast, in the
spring and summer months, the best correlations were obtained with the snowmelt and
snow water equivalent. Despite being clear that the precipitation and snow depths impacted
the monthly river flow, their effect was not instantaneous. Thus, this non-instantaneous
time relationship needs to be considered, as already applied in previous studies [29], when
looking for the best forcing variable at the monthly scale.

Considering that the main source of uncertainty in the flow regime in Mediterranean
watersheds is due to variability in the occurrence of meteorological agents (mainly rain-
fall) [30], a more detailed analysis of lag times in the influence of rainfall accumulated in
the antecedent months on the river flows was carried out. This analysis helped to solve
the low correlation values obtained between the monthly mean flow and the monthly
rainfall (Table 4) in certain months (e.g., December, May, and June). Thus, Table 5 shows the
best correlations found for the monthly mean flow with one or several antecedent months
of accumulated rainfall, as appropriate. The correlation coefficients in the table refer to
the first-, second-, and third-degree polynomial adjustments, exponential adjustments,
and potential adjustments in the case of December. The parametric expressions of these
adjustments can be found in Table A1 in Appendix A. Correlation coefficients higher than
0.7 were reached in all months, and thus, these adjustments were used to reproduce the
monthly river flow dynamics once the required forecasts of monthly rainfall were available.
It can also be observed how, in most months, better correlations were obtained than those
resulting from considering the current month or only a lag of one month (Table 4). The only
exception is September, when no good correlation was found, neither with the rainfall in
September nor extending the analysis to the rainfall of previous periods accumulated at
various time scales, which is in accordance with previous studies in the basin encompassing
the study area [13].

Table 5. Best correlation coefficients between accumulated rainfall and mean monthly river flow.

River Flow Forecast Forecasting from Rainfall of R2

January December 0.92
February December and January 0.91

March February and March 0.83
April February to April 0.80
May February to May 0.71
June February to June 0.80
July February to June 0.80

August February to June 0.82
September September 0.33

October September and October 0.83
November October and November 0.94
December November and December 0.78

Two trends can be observed that group the forecast into three blocks. From October to
December, the highest correlation was obtained between the rainfall of the previous month
and that of the current month, i.e., the October flow was obtained with the accumulated
rainfall of September and October, and in the same way, with November and December.
In these months, the flow was mainly produced directly by the occurrence of rainfall–runoff
events, mainly in liquid form, which explains this correlation between the previous month
and the current month.

171



Energies 2024, 17, 1705

In the months of January and February, the occurrence of solid rainfall events or
snowfall begins to be more frequent, so water accumulates in the snow layer and the
proportion of direct runoff decreases, introducing a certain lag time in terms of river flows.
Therefore, it was observed that the rainfall of the current month did not improve the average
daily flow forecast for that month. Thus, the flow of January correlates to a greater extent
with the rainfall of December, while the flow of February correlates with the accumulated
rainfall of December and January.

The third block corresponds to the months from March to August, where snowmelt is
the main variable describing the average daily flow in this period. In this case, starting with
the February rainfall, the rainfall of the current month was accumulated until June. That is,
the river flow in March was obtained from the accumulated rainfall of February and March;
that of April was obtained from the accumulated rainfall of February, March, and April; and
so on, until June. July and August were included in this block because their flow is related
to the accumulated rainfall from February to June. Again, the role of accumulated water
as snow may explain these correlations. Snowmelt begins in spring around the month of
March and extends until the months of May-June, according to the hydrometeorological
dynamics of the year [11,16], so the rainfall that occurs in these months, together with
that of the previous months in which part of it would have accumulated as snow in Sierra
Nevada, determines the runoff of the current month. In the case of July and August, there
is little or no rainfall in these months, so the average flow in these months is due to the
rainfall accumulated in the previous months.

In the case of the target variable number of days of failure (Nfailure), parametric
adjustments were also obtained with the mean river flow variable (Qmean), given that, from
the results shown in Table 4, there was a good correlation between these variables in most
months. In this case, the effect of the lag time influence of the river flow on the number of
days of failure was not observed, so the parametric adjustments were made with the mean
river flow of the same month as the target forecast. The parametric expressions of these
adjustments can be found in Table A2 in Appendix A.

3.2. Bayesian Dynamics Forecast of Inflows to the Plant
3.2.1. Mean Daily Flow and Number of Days of Failure

In Figure 5, the cdf of both the parametric and non-parametric methods is shown
for the target variables Qmean and Nfailure. The empirical cdf of each variable obtained
from observed data is represented in red. With both methods, the distribution of the
mean river flow was reproduced using the 250 replications, with greater dispersion in
the case of the non-parametric method, where, for instance, for 1 m3/s of the mean river
flow, the probability was between 0.63 and 0.95 using the parametric method and between
0.4 and 0.95 using the non-parametric method (Figure 5).

In the case of the target variable, the number of days of failure, the parametric method
properly reproduced the shape of the empirical cdf. In contrast, the non-parametric method
clearly overestimated the value of this variable; that is, this method gave lower probabilities
for a higher number of days of failure than what actually occurred, and the stochastic
replications did not encompass the empirical cdf distribution of the variable.

A comparison of the basic statistics of both the observed and simulated series is pre-
sented in Table 6. The quantiles of the simulated series are of the same order of magnitude
as the observed series, notably for the parametric method (e.g., 0.48 m3/s for the 50th
percentile of the mean annual daily river flow). For the number of days of failure, the non-
parametric method adequately reproduced the extremes of the distribution (e.g., 71 days
for the fifth percentile and 310 days for the 90th percentile), although this method overesti-
mated the value of the variable for the 50th percentile (267 days instead of 179 days in the
observed series).
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Figure 5. Cumulative distribution functions (cdf) of the mean annual daily river flow and the number
of days of failure in the parametric and non-parametric methods. In red, the empirical cdf obtained
from the observed data.

Table 6. The 5th, 50th, and 90th percentiles (F5, F50, F90) of the observed and simulated mean annual
river flow (Qmean, Qpmean, and Qnpmean m3/s) and number of days of failure (Nfailure, Npfailure, and
Nnpfailure days), using the parametric and non-parametric methods. The statistics of the simulated
series represent the average over the 250 replicates generated for each variable.

Percentile Qmean Qpmean Qnpmean Nfailure Npfailure Nnpfailure

F5 0.26 0.004 0.056 79 88 71
F50 0.48 0.48 0.51 179 210 267
F90 1.26 1.15 1.48 303 325 310

Regarding the monthly scale, in most months, both methods properly reproduced the
shape of the empirical distribution functions of the mean monthly daily flow (Figures 6 and 7),
except in September, when the non-parametric method (Figure 7) encompassed the shape
of the empirical distribution function. However, a greater dispersion was observed in the
monthly daily flow predictions made using the non-parametric method in all the remaining
months (Figure 7), being greater in September, October, December, and May.

Similarly, for the variable number of days of failure, the parametric method (Figure 8)
best reproduced the shape of the empirical distribution function than the non-parametric
method (Figure 9), with the worst fits being those for September and January. In all cases
(Figures 8 and 9), the dispersion was greater for this variable, with a tendency to assign
lower probabilities to higher failure values, i.e., to more days of failure in the month, in the
same way as at the annual scale, especially in the months from November to June.
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Figure 6. Cumulative distribution functions of monthly river flow using parametric method. In red,
the empirical cdf obtained from the observed data.

Figure 7. Cumulative distribution functions of monthly river flow using non-parametric method.
In red, the empirical cdf obtained from the observed data.
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Figure 8. Cumulative distribution functions of monthly number of days of failure using parametric
method. In red, the empirical cdf obtained from the observed data.

Figure 9. Cumulative distribution functions of monthly number of days of failure using non-
parametric method. In red, the empirical cdf obtained from the observed data.

3.2.2. Operationality Assessment

In the decision-making support process, the distribution functions of quartiles 1, 2, and 3
were obtained for both the mean daily river flow and the number of days of failure at the
annual and monthly scales. At the annual scale (Figure 10), with both methods, the probability
of having an annual mean river flow of 0.45 m3/s is 25%, whereas the probability of having an
annual mean river flow of 0.73 m3/s is 50%, with the greatest difference between the methods
found in the case of quartile 3 (75% probability). Regarding the variable number of days
of failure, as shown in Figure 10, with the non-parametric method, a tendency to assign a

175



Energies 2024, 17, 1705

higher number of days of failure to the three quartiles was observed. Unlike with the mean
daily river flow, great differences between the methods were found in the cases of quartiles 1
and 2, whereas the results obtained with both approaches are practically the same for a 75%
probability.

Figure 10. Cumulative distribution function of quartiles 1 (blue), 2 (black), and 3 (green) for annual
river flow and number of days of failure using parametric method (circles) and non-parametric
method (solid line).

At the monthly scale and with respect to the mean monthly daily river flow (Figure 11),
the results reveal that both methods show similar tendencies in terms of the distribution
of quartiles 1 and 2 in all months, with some greater differences in the 75th percentile,
especially in the months of October and December and from January to April.

Figure 11. Cumulative distribution function of quartiles 1 (blue), 2 (black), and 3 (green) for monthly
river flow using parametric method (circles) and non-parametric method (line).

Regarding the number of days of failure (Figure 12), the results show that higher oper-
ationality occurs in the snowmelt season between April and May, with a 25% probability
of having fewer than 1 and 2 days of failure, respectively (Figure 12), according to the
parametric method, which increases to 5–12 days with a 75% probability. In the winter
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months (December to March), there is a 25% probability of having fewer than 12 days of
failure (Figure 12). These results again reveal the influence of snowmelt, along with its
effect on the increase in flow rates in the spring months and, thus, fewer days of failure.

Figure 12. Cumulative distribution function of quartiles 1 (blue), 2 (black), and 3 (green) for monthly
number of days of failure using parametric method (circles) and non-parametric method (line).

3.3. Scenario Analysis

Figure 13 shows the distribution functions of the number of days of failure at the
annual scale for the different storage scenarios. Obviously, there is a shift in the cdf toward
the left (lower number of days of failure) of the stochastic cdf with a higher volume stored,
and thus, higher frequencies for a lower number of days of failure when the storage is
included can be observed, being more pronounced in the case of 30 days of storage. Thus,
with a 90% probability, the number of days of failure in the scenario without storage ranges
between 239 and 354 days. However, in the scenario with 3 days of storage, 0 days of
failure were reached in one of the simulations, although it can be considered that with a
90% probability, the range decreases to between 226 and 350 days of annual failure. Finally,
for the scenario with 30 days of storage, the range of the number of days of failure changes
from 151 to 350 days, i.e., the lower limit of this interval significantly decreased.

At the monthly time scale (Figure 14), the same trend was observed, with the effect of
the water storage being greater in the months between June and November, when there
are very few rainfall events and the snowmelt has almost finished. Thus, the effect of
the decrease in the flow regime is compensated by the storage in the loading chamber.
As an example, for this scale, in July, the range of probabilities for 15 days of failure is
between 0.036 and 0.76 if there is no storage, between 0.1 and 0.76 in the scenario of 3 days
of storage, and increasing to between 0.25 and 0.87 for the scenario of higher storage. This
variation in percentages is greater in the month of November, where the probability of
15 days of plant operation failure is between 0.04 and 0.74 when there is no storage, between
0.1 and 0.87 when there are 3 days of storage, and increasing to between 0.25 and 0.9 for
the case of 30 days of storage.
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Figure 13. Cumulative distribution functions of number of days of failure in different storage
scenarios: without storage, with 3 days of storage, and with 30 days of storage at annual scale. In red,
the empirical cdf obtained from the observed data.

Figure 14. Cumulative distribution functions of number of days of failure in different storage
scenarios: without storage, with 3 days of storage, and with 30 days of storage at monthly scale.
In red, the empirical cdf obtained from the observed data.
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4. Discussion

The operation of run-of-river plants in Mediterranean mountainous basins is highly
sensitive to the natural inflows to the plants. The challenge of snow-dominated Mediter-
ranean mountainous RoR plants is the strong seasonality and interannual variability of river
flows, as well as the input data availability to implement other existing data-demanding
forecasting tools. Thus, this study proposes a new simple seasonal forecasting system that
integrates the dynamic effect of the precipitation regime as a valuable tool for decision-
making and action plans for strongly heterogeneous Mediterranean watersheds, where
the straightforward application of other existing tools is not feasible nowadays due to the
limitations of the input data requirements.

A seasonal forecasting system with limited uncertainty and sufficient reliability for
decision-making means an improvement in their seasonal and annual planning, as well as
a reduction in opportunity costs due to the lack of such a forecast.

First, significant forcing agents that allow for anticipating the regime of river inflows
to RoR hydroelectric power plants need to be identified at each temporal scale. The best
correlations were found between the mean daily flow and the average rainfall at the annual
scale. At the monthly scale, different lag times in the influence of rainfall accumulated in
the antecedent months had to be considered to capture its non-instantaneous impact on
the river flows. These variable monthly lag times corresponded to the three main types
of monthly river flows that mainly depend on rainfall (September–December), snowfall
(January–February) and snowmelt (March–August), respectively. As for the monthly
number of days of failure, an effect of the lag time influence of rivers was not observed, so
the mean river flow of the same month can be considered the target forecast.

The results of this study are conditioned by the quality of the input data and the
goodness of the calibration obtained with the model used to generate the distributed maps
of the hydrometeorological variables analyzed, as well as the flow data series. Furthermore,
the parametric approach is based on the best fits obtained among the variables, which
introduces additional uncertainty associated with them.

The best statistical forecasts of the target variables were obtained with the parametric
method in this case study. However, the non-parametric approach constitutes a very
interesting option as a first evaluation as well as when parametric adjustments among
variables with a high correlation are not available for the study site.

Despite the limitations stated above, our results allow for implementing a simple
methodology to evaluate the operationality of the plant with natural inflows. The study of
the operation of hydroelectric plants at annual and monthly scales allows for the inclusion
of forecast precipitation and flow data generated by the European Centre for Medium-
Range Weather Forecasts (ECMWF), available through the Copernicus Climate Change
Service (C3S) [31–33]. With these data, the simple forecasting system presented here allows
for performing a monthly forecast of the operationality and the number of days of failure
of run-of-river hydroelectric plants six months ahead. Thus, the potential impact on water
resource management and renewable energy generation is straightforward. The application
of this approach in any other RoR plant only requires the proper identification of the forcing
variable or target forecasts at each temporal scale of interest and parametric adjustments if
the parametric approach is the chosen option. Nevertheless, the uncertainty of the forecasts
will depend on the length and quality of the available hydrometeorological data series.

Previous studies have assessed the impact of changes in hydrometeorological condi-
tions on various aspects of electrical power and energy systems (e.g., electricity generation,
electricity consumption, etc.) [34]. Making energy infrastructures resilient to climate change
requires dedicated policies and sophisticated decision-making measures to build adap-
tive capacity [35]. In this context, the proposed methodology constitutes a useful tool to
assess uncertainty in the operationality of RoR plants and can be supported by forecast
information through climate services [36,37]. The development of decision support tools
for water management in hydroelectric plants is determined to minimize the impact of the
variability in the flow regime in the medium and long term in the case of RoR hydroelectric
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plants. In these plants, the availability of water storage is limited or non-existent, so this
type of tool makes it possible to limit the uncertainty associated with the production of the
hydroelectric plant on a monthly and seasonal scale, at least six months in advance. Thus,
this methodology can assist hydropower systems as the managers can plan the production
of the plant at the beginning of the calendar year until the end of the snowmelt, as well as
maintenance shutdowns of the plants during months of lower productivity.

5. Conclusions

A Bayesian dynamics stochastic model was developed in this study based on the simula-
tion of rainfall with Monte Carlo at the annual and monthly scales, combining two methods—
parametric and non-parametric. The best statistical forecasts of the target variables, the mean
daily river flow and the number of days of failure, were obtained with the parametric method
based on the best adjustments at each temporal scale considered. The results show a greater
dispersion in the variable number of days of failure, with a tendency to assign lower probabil-
ities to higher failure values. The operationality assessment performed showed the influence
of snowmelt and its effect on the increase in flow rates in the spring months, with a 25%
probability of having 1 and 2 days of failure in April and May, respectively, while in the winter
months, this probability of 25% corresponds to having fewer than 12 days of failure and close
to 30 days of failure in the remaining months.

A scenario analysis was carried out with the inclusion of water storage in the load
chamber of hydroelectric plants and assessing its effect on the variable number of days
of failure as a measure of the plant’s operationality. The results show the expected
trends: the higher the load chamber considered, the higher the operationality level, and
239 to 151 annual days of failure without storage and with 30 days of storage, respectively,
with a 90% probability. Regarding the monthly scale, the effect of water storage is greater
in the months between June and November, with an operationality level of 0.04–0.74 for
15 days of failure without storage in November and of 0.25–0.9 with 30 days of storage.
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Appendix A

Tables A1 and A2 show, respectively the fits and correlation coefficients (R2) at annual
and monthly scale, between the mean river flow (Qmean) and rainfall (R), and between the
number of days of failure (Nfailure) and the mean river flow (Qmean).
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Table A1. Fits and correlation coefficients (R2) between mean river flow (Qmean) at annual and
monthly scale and rainfall (R).

River Flow Forecast Forecasting from Rainfall of Relationship R2

Annual Annual Qmean = 0.0014·R − 0.57 0.99

January December Qmean = 7.70e−6·R2 + 1.07e−3·R + 0.40 0.92
February December and January Qmean = 3.14e−3·R + 0.13 0.91

March February and March Qmean = 0.353·e−0.0042·R 0.83
April February to April Qmean = −7.40e−8·R3 + 8.29e−5·R2 − 0.024·R + 2.74 0.80
May February to May Qmean = −6.56e−8·R3 + 8.05e−5·R2 − 0.026·R + 3.11 0.71
June February to June Qmean = 7.97e−6·R2 − 0.0025·R + 0.40 0.80
July February to June Qmean = 2.39e−8·R3 − 2.68e−5·R2 + 0.011·R − 1.31 0.80

August February to June Qmean = 7.25e−9·R3 − 7.66e−6·R2 + 0.0032·R − 0.37 0.82
September September Qmean = −1.64e−6·R3 + 2.37e−4·R2 − 0.0075·R + 0.14 0.33

October September and October Qmean = 0.092e0.00626·R + 7.52e−17·e0.1112·R 0.83
November October and November Qmean = 0.107e0.00567·R + 7.29e−6·e0.0277·R 0.94
December November and December Qmean = 0.0015·R1.142 0.78

The variable number of days of failure acts as a discrete variable in its extreme values,
given by the limits of turbine operation in the hydroelectric plant. Therefore, to prepare
the parametric adjustments for this variable, the same limits have been respected as for the
turbine. That is, when the flow variable on the corresponding scale gives a value lower than
the minimum turbine speed, the maximum value of the corresponding scale is assigned to the
variable number of days of failure. Similarly, the flow value in the river flow above which
there is no operational failure in the hydroelectric plant at the scale considered has been
identified. Between these values, a parametric adjustment has been made for each month.

Table A2. Fits and correlation coefficients (R2) between number of days of failure (Nfailure) and mean
river flow (Qmean) at annual or monthly scale. The forecasting river flow month is the same than the
forecast target month for Nfailure.

Nfailure Forecast
Forecasting from River Flow

of
Relationship R2

Annual mean Annual mean Nf ailure = 162.82·Q2
mean − 467.64·Qmean + 414.07 0.89

January January Nf ailure = 700.1·e−8.201·Qmean 0.95
February February Nf ailure = 211.5·e−6.123·Qmean 0.93

March March Nf ailure = 326.3·e−5.923·Qmean 0.91
April April Nf ailure = −0.81·e−0.87·Qmean + 170.8·e−5·Qmean 0.88
May May Nf ailure = 148.6·e−4.49·Q 0.86
June June Nf ailure = −5.52·Q3

mean + 36.48·Q2
mean − 74.47·Qmean + 44.99 0.93

July July Nf ailure = 86.52·Q3
mean − 164.9·Q2

mean + 42.47·Qmean + 28.53 0.98
August August Nf ailure = −220.9·Q3

mean + 71.35·Q2
mean − 4.79·Qmean + 31.04 0.99

September September -- --
October October Nf ailure = 178.5·Q3

mean − 251.7·Q2
mean + 69.02·Qmean + 26.04 0.97

November November Nf ailure = −5.35·Q3
mean + 35.83·Q2

mean − 71.45·Qmean + 41.14 0.89
December December Nf ailure = −11.34·Q3

mean + 61.55·Q2
mean − 97.95·Qmean + 47.86 0.84
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Abstract: Accurate predictions of photovoltaic generation are essential for effectively managing
power system resources, particularly in the face of high variability in solar radiation. This is especially
crucial in microgrids and grids, where the proper operation of generation, load, and storage resources
is necessary to avoid grid imbalance conditions. Therefore, the availability of reliable prediction
models is of utmost importance. Authors address this issue investigating the potential benefits of
a machine learning approach in combination with photovoltaic power forecasts generated using
weather models. Several machine learning methods have been tested for the combined approach
(linear model, Long Short-Term Memory, eXtreme Gradient Boosting, and the Light Gradient Boosting
Machine). Among them, the linear models were demonstrated to be the most effective with at least
an RMSE improvement of 3.7% in photovoltaic production forecasting, with respect to two numerical
weather prediction based baseline methods. The conducted analysis shows how machine learning
models can be used to refine the prediction of an already established PV generation forecast model
and highlights the efficacy of linear models, even in a low-data regime as in the case of recently
established plants.

Keywords: machine learning; PV forecasting; microgrids; signal processing

1. Introduction

Climate change is deeply related to anthropic activities on earth, especially those of
the industrial, agriculture, energy production, and transport sectors. Decarbonization is a
challenging task in such contexts. It requires novel methods, technologies, strategies, and
systems. In the last few decades, considerable efforts have been made by scientists and
researchers to facilitate the decarbonization pathway. This is particularly true in the energy
sector with numerous implemented initiatives to reduce its Greenhouse Gas (GHG) emis-
sions [1]. These initiatives increasingly also have an economic assessment of the problem [2]
underlining how the effects of global warming have negative repercussions on local or
global economies, and also how risk mitigation interventions are much less expensive than
the consequences of possible extreme events due to ongoing climate change [3]. From a
political point of view, both national and international energy transition plans set ambitious
decarbonization objectives. Initiatives such as the European Green Deal, Fit for 55%, and
the National Ecological Transition Plans emphasize the central role of electrification in
different sectors (mobility, heating, etc.), and the substantial contribution of renewable
energy sources to electricity generation. In this context, microgrids certainly represent one
of the most promising models of transformation of the electricity system. The development
of microgrids has emerged as a catalyst for the seamless integration of renewable energy
sources into the broader energy ecosystem. Microgrids can function as cohesive entities,
capable of islanded operating (grid-off mode) or are able to function in concert with the
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main AC grid (grid-on mode). Microgrids represent a solution favoring the integration
of renewable energy sources into both Alternating Current (AC) and Direct Current (DC)
grids by power electronics converters.

The operation of microgrids depends on characteristics, functioning modes, and the
reliability of their internal resources and the power systems they are interfaced with [4].
They can be managed through diverse controller configurations, such as hierarchical, de-
centralized, or centralized ones. Hierarchically controlled microgrids are of particular
significance; each of them is characterized by a Master controller endowed with the capabil-
ity to oversee and optimize internal resources in alignment with specific energy or economic
strategies. Moreover, local Slave controllers are assigned to individual microgrid resources
or groups of resources, ranging from renewable power plants and loads to energy storage
systems. These controllers are in charge of measures and data transmission, the execution
of commands, and alarm activation in the case of critical operation. Data collected and
acquired are typically transmitted and processed by Energy Management Systems (EMSs)
and specialized platforms, facilitating the planning and optimization of power flows [5].

Within this transformative landscape, Italy has made significant strides, with its
photovoltaic (PV) plants boasting an installed capacity of 25 GW as of 2022. Notably, ap-
proximately 33% of these installations fall within the 200–1000 kW range [6]. Such sources
offer a sustainable and eco-friendly energy solution, but their intermittent and variable pro-
duction patterns can pose operational challenges that can be effectively addressed through
proper modeling [7] and forecasting methodologies [8]. Accurate forecasts play a pivotal
role in enabling meticulous planning, strategic commitment, the efficient management
of available resources in the renewable energy sector [9], and in ancillary service provi-
sion [10]. Errors in energy forecasts can result in significant economic losses for microgrids,
including unnecessary energy purchases from the main grid or excessive energy storage.
Precise forecasts help us to mitigate these inefficiencies, reduce energy waste, and optimize
investments in energy infrastructure, ultimately resulting in substantial economic savings.

For the optimal operation of microgrids, the availability of accurate forecasts is non-
negotiable. These forecasts extend to the prediction of generation from renewable sources
and from projected microgrid demand.

1.1. Literature Review

While ground-based observations from solar metric stations provide valuable data,
they are often burdened by high costs and may not offer continuous, long-term coverage.
As an alternative, meteorological satellites provide the means for the indirect determination
of solar parameters, including cloudiness, albedo, and solar radiation reaching the earth’s
surface. Contemporary meteorological forecast models, particularly numerical weather
prediction (NWP) ones, have become essential for estimating renewable energy resources,
notably solar radiation. Meteorological forecast models, nowadays, are able to predict
renewable resources well [11], and their valuable data can be used in further forecasts
of solar power plant production (PV [12] and Concentrated Solar Power systems). The
NWP models could offer great spatial and temporal coverage against observation data,
which are spatially sparse and lack long temporal resolution. Those models can simulate
the future and past atmospheric conditions, and they have become very valuable tools in
the management of renewable energy plants [13]. Significantly, meteorological forecast
models have demonstrated their proficiency in predicting renewable resources and have
evolved tools in forecasting and managing renewable energy systems. Recent years have
witnessed a surge in the adoption of Machine Learning (ML) techniques predicting PV
output [14]. They are deeply analyzed in the literature sector [15]. Several ML models,
including Multiple Linear Regression (MLR), Support Vector Machine (SVM), Random
Forest (RF), Gradient Boosting (GB), Fully Connected Neural Network (FCNN), Bayesian
Neural Network (BNN), Support Vector Regression (SVR), and Regression Tree (RT), have
been harnessed and subjected to comparative analyses across diverse studies. For example,
in [15], several approaches, grouped into direct (methods that output directly the PV power)
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and indirect (methods that require the solar irradiance forecast, the estimation of the plane
of array irradiance, and the PV performance model) forecasting techniques, are evaluated.

A comparative analysis of MLR, SVR, RF, GB, and FCNN methodologies is reported
in [16] for a day-ahead solar power forecast. It is carried out taking into account historic
power production and regional weather prediction related to 152 PV systems. The con-
ducted comparison underscores the fact that GB and RF techniques excel in predicting
production for both individual and aggregated PV systems when compared with other
considered methods. The BNN method is compared to SVR and RT techniques in [17].
Another study is reported in [18], where the PV production for the University of Manchester
plant is forecasted considering different-sized datasets and diverse time horizons.

In [19], the authors employed MLR and Artificial Neural Network (ANN) methods for
predicting PV production within a solar microgrid. The paper concluded that MLR offers
simplicity and computational efficiency but struggles with capturing complex non-linear
relationships, whereas ANN excels in capturing non-linear patterns albeit demanding
larger datasets and computational resources with reduced interpretability. Furthermore,
the authors in [20] examined enduring techniques for predicting energy consumption, PV,
and wind power production.

Furthermore, in [21], cloud cover, humidity, and temperature impacts on PV gener-
ation predictions were evaluated by 175 time series. They were obtained measuring the
production of an actual rooftop-mounted PV system installed in Utrecht (Netherlands).
Moreover, the authors offered a concise overview of prediction methodologies employed
in microgrids, particularly for short-term forecasting.

In the context of a microgrid, PV production forecasting was also discussed in [22],
and the Tunicate Swarm Algorithm (TSA)-based Least-Square Support Vector Machine
(LSSVM) was applied. It offers the advantages of robustness to noisy data and the ability
to capture complex patterns, while suffering from the need for hyperparameter tuning and
is computationally demanding. The TSA-based Multilayer Perceptron Neural Network
(TSA-MLPNN) provides flexibility in capturing non-linear relationships and uncertainty
estimation but demands significant computational resources and may be sensitive to
overfitting. On the other hand, the Whales Optimization Algorithm (WOA)-based LSSVM
offers advantages in convergence speed and robustness to local optima, but it may require
careful hyperparameter tuning and lacks interpretability.

Lastly, in [23], a blended Fuzzy-PSO smart forecasting method is deployed, and its
precision is documented and contrasted with Fuzzy and Fuzzy-GA prediction models.
The authors underline the advantages of the Fuzzy-PSO smart forecasting method, which
include the ability to combine the strengths of both fuzzy logic and Particle Swarm Opti-
mization (PSO), potentially leading to improved accuracy and robustness in prediction.
However, this method may require more computational resources due to the optimization
process involved in PSO, and its interpretability could be reduced compared to standalone
Fuzzy logic models.

Recently, the hybridization of data-driven approaches based on the history of observed
production and of physical approaches that employ both weather forecast and a math-
ematical model of the PV system are emerging as effective solutions [24]. For example,
in [25], an ANN employs clear sky solar radiation and weather forecast data to obtain
a PV production prediction, while, in [26], an ANN that has inputs and also the output
of a five-parameter equivalent model of a PV module (using datasheet data or using an
optimization method to identify the parameters) is considered. The studies observe that
PV production forecasting is improved by the combined (hybridized) methods.

1.2. Beyond the State of the Art

In this work, we propose a combined approach of an already established NWP-based
PV production model with an ML model that leverages the past observations of production
to improve the final performance. Differently from works present in the literature, our
approach assesses different types of ML models and two baseline models (a physical and a
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data-driven one). The ML model does not have direct access to weather forecast variables.
The novelty of our approach is hence in the combination of these different elements, where
some of them can be assumed to be already available on a considered site, to improve the
final forecasting result.

By improving the accuracy of PV production forecasts, our research plays a crucial
role in ensuring that solar energy is harnessed to its full potential, furthering the micro-
grid’s support to minimize carbon footprints and advance the cause of the sustainable
energy transition.

The analyzed case study refers to the ENEA—Italian National Agency for new tech-
nologies, energy and economic sustainable development—microgrid realized at the Re-
search Centre of Portici (Italy). It is a demonstrator of “Multivector Integrated Smart
Systems and Intelligent microgrids for accelerating the energy transition” (MISSION)
project furnished with renewables (solar and wind), a Combined Heat Power (CHP) plant,
storage devices, and a data center critical load.

The objective of achieving carbon-neutral microgrids is actively pursued by optimiz-
ing and managing the available resources in alignment with energy and environmental
objectives [27]. The proposed models are implemented in the MISSION demonstrator, the
functionality of which has strong connections with precise PV output predictions, ensuring
appropriate resource management.

A promising aspect of the proposed combined method consists of its significant
performance improvement, also in a low-data regime, as seen in the case of recently installed
plants. This research is poised to make a substantive contribution to the overarching mission
of cultivating sustainable, climate-resilient energy systems and driving the realization of
carbon-neutral microgrids. In our previous article [28], we described some preliminary
results that were extended with more models for comparison, a more detailed discussion
of results, and a more extensive literature review.

The manuscript is organized as follows. Section 2 is dedicated to prediction models
and the considered combined approach description. In Section 3, details about the model
training process are provided. The conducted tests and obtained results are reported and
commented on in Section 4.

2. Materials and Methods

2.1. Weather Research and Forecasting Model

The Weather Research and Forecasting model (WRF) is one member of the NWP model
family designed for both atmospheric research and operational forecasting applications [29].
The model is used in different research areas in a wide range of meteorological applications
where different time and horizontal resolutions, from tens of meters to thousands of
kilometers, could be applied [30].

In this work, the computational spatial resolution of the WRF model is set to
10 km × 10 km with 151 × 151 simulation grid points. The computational domain covers
the entire region of the Italian peninsula with a center at 41.25◦ latitude and 13.5◦ longitude.
The model uses 30 sigma atmospheric vertical levels and 4 soil levels. Input boundary
conditions are given with four-time-daily runs of the Global Forecast System [31]. The WRF
model starts its forecast at 00:00 UTC for the next 48 h where the first hours are considered
as a model spin-up. The described WRF model provides different atmospheric outputs.
In the assessed application, the authors consider only atmospheric temperature (TA) and
Cloud Cover (CC). The outputs of the described atmospheric forecasting model are used as
data inputs for the PV plant production model that will be detailed below.

2.2. BaselineP Model

In PV plant installation sites, where observations of solar irradiance, in particular
Global Horizontal Irradiance (GHI) are available, the maximum potential of global irradi-
ance at the horizontal surface can be estimated. The specific maximum potential radiation
is estimated when ground horizontal irradiance is considered with no cloud condition.
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This information, together with the astronomical sun position and extraterrestrial global
horizontal irradiance, provide an input for the “clear-sky” model.

Observations of GHI are expensive, and, with the lack of these data, satellite data
and NWP models are used to estimate atmospheric temperature, cloud coverage, relative
humidity, and radiation balance outcomes.

First, Cloud Cover (CC) is used from a weather model to decrease the intensity of the
GHI clear sky value (GHIclear sky) and to obtain the GHI forecast for a specified location
(GHIpred). The mathematical expression of the previous statement is written in Equation (1):

GHIpred = GHIclear sky·(o f f set + (1 − o f f set)·(1 − CC)) (1)

where the offset is 0.35 and CC is 0 for a no clouds condition, and 1 for completely covered
cloudy conditions [32]. When GHIpred for the desired location is calculated, the decomposi-
tion model of solar radiation can be applied.

Each PV module has its own orientation, azimuth angle (α) with respect to the south
direction, and tilt (β) of the panel with respect to the horizontal plane. The decomposition
model allows us to compute Global Irradiance on any oriented PV surface (GI) as reported
in Equation (2). The incident radiation GI on the panel surface is composed of three
components: the direct radiation Idir, the diffuse radiation Idi f f , and the radiation reflected
from the ground Ire f :

GI = Idir + Idi f f + Ire f (2)

Now, the temperature of PV module (TM) can be computed as in Equation (3) [33]:

TM = TA + (NOCT − 20)
GIpred

G
(3)

where TA stands for ambient temperature [◦C] (output from WRF model), NOCT is the
Nominal Operating Cell temperature [◦C] calculated for a wind speed at a PV module
height of 1 m/s, an ambient temperature of 20 ◦C, and an irradiance value of G = 800 W/m2.

Finally, it is possible to calculate the PV production forecast for a specific plant (PVpred)
in the following 24 and 48 h by using the PVWatts model represented in Equation (4):

PVpred = η Pn
GIpred

GI0
(1 + K(TM − T0))(1 − A) (4)

where η is the inverter efficiency, Pn is the nominal power of the PV plant [W], GI0 is
the global solar radiation at standard test condition (=1000 W/m2), K is the temperature
coefficient of PV modules [%◦C−1], TM is the temperature of the PV module, T0 is the
reference cell temperature at the standard test conditions (25 ◦C), and A represents the
system losses [34].

Given the great generality of the WRF model, the BaselineP model can be readily
applied to any location.

In this work, we have considered NOCT = 47 ◦C, Pn = 9000 W, K = −0.45%◦C−1,
A = 14%, η = 0.95 in Equations (3) and (4).

2.3. BaselineD Model

When there is constant monitoring of PV production and ground solar radiation
available, an uncomplicated model to forecast PV production could be used, here called
BaselineD model. This model represents the relationship between measurements of PV
production and GHI observations, as described in Equation (5):

PVobs = m · GHIobs + q (5)

The parameters m and q are fitted based on the available monitored PV production
and GHI values. This mathematical function is then applied on the outputs of Equation (1)
(GHIpred) to calculate the forecast of PV production (PVpred). This model could be used
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when observations are available. The found linear correlations are valid only for the exact
PV plant and cannot be used for different PV locations.

In Figure 1, the relationship between PV plant production (PVobs) and the observa-
tion of GHI (GHIobs), and their corresponding correlation coefficients for 3 January 2021,
is depicted. The example of a cloudy day is shown to present that an unpredictable ra-
diation condition of PV production also has linear dependence with GHI. In this study,
365 relationships are obtained, one for each day of the year, and the relationship depicted
by Equation (5) differs for each day. The correlation of the previous day can be used for the
forecast of the next day because the astronomical sun–earth position has small variations.
Daily correlations are valid only for the considered PV plant and the same approach could
be used where there are available daily measurements of PV production and GHI.

Figure 1. Correlation between the PV production and GHI observations. The blue dots are the
observations of GHI and PV production, and red dashed line is the computed regression line.

A conceptual scheme of both BaselineP and BaselineD models is presented in Figure 2.

Figure 2. Conceptual scheme of BaselineP (blue) and BaselineD (green).
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2.4. Proposed Approach

This section focuses on forecasting a target value (y) for a specific time (t) and for the
following H − 1 time steps where H is the forecasting horizon. There are many possible
approaches, but a general scheme involves the following:

• Target values;
• Past covariates: variables influencing the target value, observed in the previous W

time steps;
• Future covariates: variables impacting the target value, related to the time t and to the

subsequent H − 1 time steps, and that are known at the prediction time.

This concept is outlined in Equation (6), where the term yt−i denotes the target value
in the past, at the time step t-i; xp

t−j (with p ∈ {1, . . . , P}) is the value of the p-th past
covariate at the time step t-j; and z f

t+k (with f ∈ {1, . . . , F}) indicates the value of the f -th
future covariate at the time step t + k:

yt:t+H−1 = f
(

yt−1, . . . , yt−W , x1
t−1, . . . , x1

t−W , . . . , . . . ...xP
t−W , z1

t, . . . , z1
t+H−1, . . . , zF

t, . . . , zF
t+H−1

)
(6)

A schematic representation of Equation (6) is presented in Figure 3, where the past
target values together with past and future covariates are employed to predict the next H
target values.

Figure 3. Generic forecasting problem’s conceptual layout using future and past covariates.

In a scenario involving the production forecast of PV systems, the past covariates
can be represented by various measurements such as solar irradiance and temperature.
Conversely, the future covariates can be acquired either through weather forecasts or by
utilizing PV production forecasts generated by baseline models, as performed in this work
and illustrated in Figure 4.

The weather forecast module generates predictions for various weather variables for
the next H hours. Subsequently, the baseline model utilizes these forecasts to provide a
corresponding PV production forecast that can be employed by the ML model as future
covariates, together with observed production, to enhance and refine the result.

Several ML regression models can be considered. In this work, we have focused on a
linear model, Long Short-Term Memory (LSTM), eXtreme Gradient Boosting (XGB), and
the Light Gradient Boosting Machine (LGBM), which are briefly described below. Even
though these ML models are often employed in forecasting tasks, the originality of our
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approach is using their combination with baseline models in order to have a more precise
energy prediction model that leverages both historical data and a PV production forecast
obtained from BaselineP or BaselineD.

Figure 4. Proposed approach’s conceptual scheme.

2.4.1. Linear Model

In the context of linear models [35], a mathematical representation capturing the
relationship between the target variable to be predicted at time t (denoted as yt), the
historical target values {yk}t−W

k=t−1, and the future covariates {z k}t+H−1
k=t is reported in

Equation (7):

yt = δ0 +

(
t−W

∑
k=t−1

αkyk

)
+

(
t+H−1

∑
k=t

γkzk

)
(7)

Here, δ0 represents the intercept, while αk are the weights associated with the past
target values and γk are the weights associated with the future covariates.

A crucial prerequisite to the predictions involves obtaining estimations for the future
covariates (zk) and the past target values (yk). In the present study, the authors adopt a
multi-model approach wherein H distinct models are trained. Each model is designed to
predict a single value of the target within the interval [t, t + H − 1].

2.4.2. Long Short-Term Memory (LSTM)

Differently by Feed Forward Neural Networks (FFNNs), the Recurrent Neural Net-
works (RNNs) are specialized in handling sequential data, and the computed output is not
only dependent on the input but also on the hidden state of the system that is updated as
the sequence is processed [35]. Utilizing the input (xt) and the state from the preceding step
(ht−1), it is possible to update the current state (ht) and compute the output (ot) through the
following equations:

ht = σh(Wx · xt + Wh · ht−1 + bh) (8)

ot = σo(Vh · ht + bo) (9)

Here, σh and σo denote activation functions for the state and output, respectively; Wx,
Wh, and Vh are the weight matrix for the input–state connection, the recurrent connection
between states, and for the state–output connection, respectively; and bh and bo serve
as the bias vectors for the state and output, respectively. The Long Short-Term Memory
(LSTM) [36] is a specific RNN designed to mitigate issues like vanishing and exploding
gradients by incorporating a memory element (ct).

2.4.3. Gradient Boosting Methods

XGB [37] and LGBM [38] are two powerful ML algorithms belonging to the family of
Gradient Boosting methods. The former employs a regularizer on the tree complexity to
avoid overfitting and the latter makes the tree expand, leaf-wise. They are widely adopted
due their speed, scalability, and robustness.
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2.5. Datasets

To train and evaluate ML models, we need the PV production forecast obtained from
BaselineP and BaselineD, the weather forecast, and the observed PV production. All data
cover the year 2021 (from 1 of January to 31 of December).

2.5.1. PV Production

The observed PV production data are obtained by a PV installation above a motorcycle
parking lot at the ENEA Research Centre located in Portici (NA), Italy. It consists of
36 glass/mono-crystalline panels, producing a nominal power of 9 kWp with a total
covering area of 60 m2. The installation has a tilt angle of 7◦ and is 28◦ south-east oriented
(with 0◦ representing the south). The generated electrical energy is utilized for internal
purposes after being delivered to the centre.

2.5.2. The Weather Forecast and the Baselined PV Production Forecast

The weather forecast values have been considered for the entire year of 2021. They
represent the GHI and the predicted temperature for each day throughout the year on
hourly basis.

These values are employed to predict the PV generation employing the BaselineP and
BaselineD models described in Section 2.2 and Section 2.3, respectively.

In Figures 5 and 6, the actual and the predicted PV generation are shown for a sunny
day and cloudy day (when the value of the daily clearness index (the ratio between the
global irradiance and extraterrestrial irradiance on a horizontal surface) is greater than 0.65,
the day is considered sunny otherwise cloudy) for the year 2021, respectively.

Figure 5. (Top) the actual and predicted PV production, using BaselineP and BaselineD, for a sunny
day in the test set; (bottom) difference between the ground truth (observed) and the prediction results
obtained using BaselineP and BaselineD.
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Figure 6. (Top) the actual and predicted PV production, using BaselineP and BaselineD, for a cloudy
day in the test set; (bottom) difference between the ground truth (observed) and the prediction results
obtained using BaselineP and BaselineD.

2.6. Metrics

The Root-Mean-Square-Error (RMSE) and the Coefficient of Variation (CV) are the
metrics employed to evaluate the performance of the implemented models. The RMSE
quantifies how closely a model’s predictions ŷ(t) align with the actual target values y(t),
often referred to as the ground truth. In this case, N represents the number of values taken
into account. Differently, CV offers insights into the dispersion of errors relative to the
average observed value y. The RMSE, expressed in Watts, is computed using Equation (10),
while the CV is dimensionless and is computed using Equation (11):

RMSE =

√√√√ 1
N

N

∑
t=1

(y(t)− ŷ(t))2 (10)

CV =
RMSE

y
∗ 100 (11)

3. Model Training

The considered dataset is divided into three sets: the training set, validation set, and test
set. Namely, the training set goes from 1 January 2021 0:00 to 30 September 2021 23:00, the
validation set is internal to the training set and goes from 1 August 2021 0:00 to 30 September
2021 23:00, and the test set goes from 1 October 2021 0:00 to 31 December 2021 23:00.

The authors utilized the pre-known information of the sunrise and sunset time (ob-
tained from Sunrise Sunset API (https://sunrise-sunset.org/api accessed on 26 February
2024)) to refine the predictions.
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The implementation of the models was carried out utilizing Python, and some libraries
such as Darts [39] version 0.27.1, Numpy version 1.24.3, pandas version 1.5.3, and Scipy
version 1.10.1.

The experiments were conducted on a Personal Computer (PC) equipped with an Intel
Core i7-9700 CPU running at 3.00 GHz with eight cores, 16 GB of RAM, and a NVIDIA
GeForce GTX 1050Ti GPU. The operating system used was Windows 10 Pro.

4. Discussion

Figures 7 and 8 depict the forecasting for two representative days in the test set, a
sunny and a cloudy day, respectively, together with the difference between the ground
truth and the prediction.

Table 1 presents the outcomes of the PV generation forecasting, utilizing only the two
baseline models, BaselineP and BaselineD, and the combined models LinearD, LinearP,
LSTMD, LSTMP, XGBD, XGBP, LGBMD, and LGBMP, where the final P and D indicate
which is the employed baseline model, BaselineP or BaselineD, respectively. All models
(except baselines) employ a 48 h window for past target values, with a forecasting horizon
of 24 h.

For each metric, considering the days in the test set, the authors calculated the average
and standard deviation (in parentheses). The Wilcoxon signed rank test was used to
compare the metrics obtained from the combined approach and the related baseline. The
null hypothesis under consideration was that the paired samples obtained by the baseline
and the model that utilizes it originate from the same distribution. In Tables 1 and 2,
* represents the rejection of the null hypothesis considering a p-value < 0.05, associated
with a statistically significant difference between the baseline and related combined model.
Table 2 presents the average and standard deviation of RMSE computed over the days of
the test set for all considered models, differentiating between sunny and cloudy days, as
defined previously.

Figure 7. (Top) ground truth compared to the forecasting results of PV production obtained using
only the baselines (BaselineP and BaselineD) and four combined models (LinearP, LinearD, LGBMP,
LGBMD) for a cloudy day; (bottom) prediction error.
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Figure 8. (Top) ground truth compared to the forecasting results of PV production obtained using
only the baselines (BaselineP and BaselineD) and four combined models (LinearP, LinearD, LGBMP,
LGBMD) for a cloudy day; (bottom) prediction error.

Table 1. PV generation forecasting results. For the days in the test set, the average (standard deviation)
of RMSE and CV is calculated.

Type Model RMSE CV

D

BaselineD 436.87 (253.95) 100.19 (91.62)
LinearD 420.72 (221.13) * 99.30 (95.83) *
LSTMD 435.18 (245.29) 100.15 (95.84)
XGBD 502.75 (259.69) * 115.01 (106.85) *

LGBMD 445.17 (245.45) 99.33 (85.65)

P

BaselineP 470.73 (248.73) 107.50 (96.66)
LinearP 438.47 (231.66) * 103.26 (96.53) *
LSTMP 454.46 (260.33) * 102.53 (91.77) *
XGBP 487.92 (255.42) 112.51 (106.10)

LGBMP 443.08 (250.66) * 99.91 (90.17) *

Table 2. PV generation forecasting results divided for sunny and cloudy days. For the days in the
test set, the average (standard deviation) of RMSE is calculated.

Type Model Sunny Days Cloudy Days

D

BaselineD 223.57 (159.13) 485.62 (246.31)
LinearD 267.35 (170.66) * 455.77 (216.37) *
LSTMD 260.65 (176.97) * 475.07 (228.16)
XGBD 358.11 (188.82) * 535.81 (262.36) *

LGBMD 287.85 (184.33) * 481.12 (243.511)

P

BaselineP 281.16 (159.12) 514.06 (245.22)
LinearP 254.81 (149.02) * 480.44 (226.68) *
LSTMP 257.04 (195.29) 499.59 (252.20)
XGBP 335.36 (193.64) * 522.80 (255.04)

LGBMP 290.70 (213.31) 477.92 (245.50) *
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From Table 1, we can observe that BaselineD already produces promising results,
having considered aspects not modeled by BaselineP and having discovered the observation
of real data. Among the evaluated models, the linear ones outperform the other ones in
terms of RMSE and consistently outperform the baselines, with a statistically significant
improvement of 6.9% in the P case and of 3.7% in D case. Moreover, in the D case, compared
to baseline, the linear model returns to a lower RMSE in 58.1% of all test set days (and in
67.1% of cloudy days), and in 69.8% of all test set days (and in 68.6% of cloudy days) in the
P case.

In the D case, when specifically addressing only sunny days within the test set (Table 2),
the baseline is optimal, but, considering only the cloudy days in the test set (83% of the
total), the most effective solution becomes the linear model.

In P case, instead, linear model is the best model for sunny days and is the second-best
approach after LGBM for cloudy days.

In Figure 9 the difference between the ground truth and the prediction is estimated
on an hourly basis (from 5:00 to 17:00) and only for baselines and linear models. For the P
case, the median error of the linear model is nearer to zero than that of the baseline. For the
D case, instead, the median error of the baseline is lower, but the errors are usually more
dispersed, presenting a higher range than the linear model.

Figure 9. Box-and-whisker plot of the difference between ground truth and the prediction for the
BaselineP, BaselineD, LinearP, and LinearD models. The white circles are the outliers.

Although the usage of one year of data is a limitation of this study, it allows authors
to demonstrate the efficacy of the proposed methodology and of linear models even in a
low-data regime, which is frequently the case in scenarios within a newly established plant.
Integrating additional years into the dataset has the potential to help the ML models and to
enable the exploration of more complex models that may have benefits from an extensive
dataset. Moreover, the authors would like to point out that the proposed approach is
general, and it is suitable to be applied in emerging photovoltaic systems where a weather
forecast module and historical energy production dataset are available.

5. Conclusions

The forecasting of PV power holds essential significance in accurately strategizing and
managing resources for grids and microgrids. It plays a pivotal role in aligning supply and
demand, thereby aiding in preventing grid imbalances.

In this study, the authors explored the application of an approach leveraging informa-
tion derived from both historically observed PV power generation and PV power forecasts
generated by numerical weather prediction models. The conducted analysis highlights
how machine learning models can be utilized to enhance the prediction of an already
established PV generation forecast model. Several machine learning methods, including
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the linear model, Long Short-Term Memory, eXtreme Gradient Boosting, and the Light
Gradient Boosting Machine, were tested for the combined approach. However, the linear
models proved to be the most effective, showing at least a 3.7% improvement in RMSE in
PV production forecasting compared to two numerical weather prediction-based baseline
methods. Among the employed machine learning models, the linear models demonstrated
their validity, surpassing baseline performances and showcasing their effectiveness with
only one year of data.

Author Contributions: Conceptualization, A.B. and G.C.; methodology, A.B., G.C., I.B. and G.A.;
software, A.B., G.C. and I.B.; data curation, G.C., I.B., F.P. and G.L.; writing—original draft preparation,
A.B., G.C., I.B., S.F. and G.A.; writing—review and editing, A.B., G.C., I.B., S.F., G.A., G.G. and M.V.;
visualization, A.B., G.C. and I.B.; supervision, M.V. and G.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Research Fund for the Italian Electrical System under the
contract agreement “Accordo di Programma Mission Innovation 2021–2024—Project MISSION (POA
Smart Grid)” between ENEA and the Ministry of the Environment and Energetic Safety (MASE).

Data Availability Statement: The dataset related to PV generation is available on request from
the authors.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Kumi, E.N.; Mahama, M. Greenhouse gas (GHG) emissions reduction in the electricity sector: Implications of increasing renewable
energy penetration in Ghana’s electricity generation mix. Sci. Afr. 2023, 21, e01843. [CrossRef]

2. Tol, R.S.J. A meta-analysis of the total economic impact of climate change. Energy Policy 2024, 185, 113922. [CrossRef]
3. Rezai, A.; Taylor, L.; Foley, D. Economic Growth, Income Distribution, and Climate Change. Ecol. Econ. 2018, 146, 164–172.

[CrossRef]
4. Adinolfi, G.; Ciavarella, R.; Graditi, G.; Ricca, A.; Valenti, M. A Planning Tool for Reliability Assessment of Overhead Distribution

Lines in Hybrid AC/DC Grids. Sustainability 2021, 13, 6099. [CrossRef]
5. Vinothine, S.; Arachchige, L.N.W.; Rajapakse, A.D.; Kaluthanthrige, R. Microgrid Energy Management and Methods for Managing

Forecast Uncertainties. Energies 2022, 15, 8525. [CrossRef]
6. Gestore dei Servizi Energetici. Rapporto Statistico Solare Fotovoltaico 2022. Available online: https://www.gse.it/documenti_

site/Documenti%20GSE/Rapporti%20statistici/GSE%20-%20Solare%20Fotovoltaico%20-%20Rapporto%20Statistico%202022
.pdf (accessed on 26 February 2024).

7. Buonanno, A.; Caliano, M.; Di Somma, M.; Graditi, G.; Valenti, M. A Comprehensive Tool for Scenario Generation of Solar
Irradiance Profiles. Energies 2022, 15, 8830. [CrossRef]

8. Yang, D.; Wang, W.; Gueymard, C.A.; Hong, T.; Kleissl, J.; Huang, J.; Perez, M.J.; Perez, R.; Bright, J.M.; Xia, X.; et al. A review
of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality.
Renew. Sustain. Energy Rev. 2022, 161, 112348. [CrossRef]

9. Graditi, G.; Buonanno, A.; Caliano, M.; Di Somma, M.; Valenti, M. Machine Learning Applications for Renewable-Based Energy
Systems; EAI/Springer Innovations in Communication and Computing; Springer: Cham, Switzerland, 2023; Volume Part F665,
pp. 177–198. [CrossRef]

10. Bekhit, R.; Bianco, G.; Delfino, F.; Ferro, G.; Noce, C.; Orrù, L.; Parodi, L.; Robba, M.; Rossi, M.; Valtorta, G. A platform for demand
response and intentional islanding in distribution grids: The LIVING GRID demonstration project. Results Control Optim. 2023,
12, 100294. [CrossRef]

11. Climate Models | NOAA Climate.gov. Available online: https://www.climate.gov/maps-data/climate-data-primer/predicting-
climate/climate-models (accessed on 26 February 2024).

12. Fuoco, D.; Mendicino, G.; Senatore, A.; Balog, I.; Caputo, G.; Spinelli, F.; Lepore, M.; Franconiero, D.; Mautone, P.; Oliviero,
M. Modelli Previsionali di Producibilità: Ambiti Applicativi. Rapporto Tecnico di Ricerca Industriale D5.3a. Available on-
line: http://www.comesto.eu/wp-content/uploads/2020/11/D5.3a_Modelli-previsionali-di-producibilit%C3%A0_ambiti-
applicativi.pdf (accessed on 26 February 2024).

13. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Third Edition—IEA-
PVPS. Available online: https://iea-pvps.org/key-topics/best-practices-handbook-for-the-collection-and-use-of-solar-resource-
data-for-solar-energy-applications-third-edition/ (accessed on 26 February 2024).

14. Ledmaoui, Y.; El Maghraoui, A.; El Aroussi, M.; Saadane, R.; Chebak, A.; Chehri, A. Forecasting solar energy production: A
comparative study of machine learning algorithms. Energy Rep. 2023, 10, 1004–1012. [CrossRef]

15. Gupta, P.; Singh, R. PV power forecasting based on data-driven models: A review. Int. J. Sustain. Eng. 2021, 14, 1733–1755.
[CrossRef]

197



Energies 2024, 17, 2203

16. Visser, L.; AlSkaif, T.; van Sark, W. Benchmark analysis of day-ahead solar power forecasting techniques using weather
predictions. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019;
pp. 2111–2116.

17. Theocharides, S.; Theristis, M.; Makrides, G.; Kynigos, M.; Spanias, C.; Georghiou, G.E. Comparative Analysis of Machine
Learning Models for Day-Ahead Photovoltaic Power Production Forecasting. Energies 2021, 14, 1081. [CrossRef]

18. Scott, C.; Ahsan, M.; Albarbar, A. Machine learning for forecasting a photovoltaic (PV) generation system. Energy 2023, 278,
127807. [CrossRef]

19. Kallio, S.; Siroux, M. Photovoltaic power prediction for solar micro-grid optimal control. Energy Rep. 2023, 9, 594–601. [CrossRef]
20. Dutta, S.; Li, Y.; Venkataraman, A.; Costa, L.M.; Jiang, T.; Plana, R.; Tordjman, P.; Choo, F.H.; Foo, C.F.; Puttgen, H.B. Load and

Renewable Energy Forecasting for a Microgrid using Persistence Technique. Energy Procedia 2017, 143, 617–622. [CrossRef]
21. Gaboitaolelwe, J.; Zungeru, A.M.; Yahya, A.; Lebekwe, C.K.; Vinod, D.N.; Salau, A.O. Machine Learning Based Solar Photovoltaic

Power Forecasting: A Review and Comparison. IEEE Access 2023, 11, 40820–40845. [CrossRef]
22. Tayab, U.B.; Yang, F.; Metwally, A.S.M.; Lu, J. Solar photovoltaic power forecasting for microgrid energy management system

using an ensemble forecasting strategy. Energy Sources Part A Recover. Util. Environ. Eff. 2022, 44, 10045–10070. [CrossRef]
23. Teferra, D.M.; Ngoo, L.M.; Nyakoe, G.N. Fuzzy-based prediction of solar PV and wind power generation for microgrid modeling

using particle swarm optimization. Heliyon 2023, 9, e12802. [CrossRef] [PubMed]
24. Mayer, M.J. Benefits of physical and machine learning hybridization for photovoltaic power forecasting. Renew. Sustain. Energy

Rev. 2022, 168, 112772. [CrossRef]
25. Ogliari, E.; Dolara, A.; Manzolini, G.; Leva, S. Physical and hybrid methods comparison for the day ahead PV output power

forecast. Renew. Energy 2017, 113, 11–21. [CrossRef]
26. Niccolai, A.; Dolara, A.; Ogliari, E. Hybrid PV Power Forecasting Methods: A Comparison of Different Approaches. Energies

2021, 14, 451. [CrossRef]
27. Fabozzi, S.; Graditi, G.; Valenti, M. Techno-economic design of a smart multienergy microgrid. In Proceedings of the 2022 AEIT

International Annual Conference (AEIT), Rome, Italy, 3–5 October 2022.
28. Buonanno, A.; Caputo, G.; Balog, I.; Adinolfi, G.; Pascarella, F.; Leanza, G.; Fabozzi, S.; Graditi, G.; Valenti, M. Combined

Machine Learning and weather models for photovoltaic production forecasting in microgrid systems. In Proceedings of the 2023
International Conference on Clean Electrical Power (ICCEP), Santa Margherita Ligure, Italy, 27–29 June 2017; pp. 216–222.

29. WRF Model Users Site. Available online: https://www2.mmm.ucar.edu/wrf/users/ (accessed on 26 February 2024).
30. WRF Community. Weather Research and Forecasting (WRF) Model, UCAR/NCAR. 2000. Available online: https://www2.mmm.

ucar.edu/wrf/users/ (accessed on 26 February 2024).
31. Global Forecast System (GFS) | National Centers for Environmental Information (NCEI). Available online: https://www.ncei.

noaa.gov/products/weather-climate-models/global-forecast (accessed on 26 February 2024).
32. Larson, D.P.; Nonnenmacher, L.; Coimbra, C.F. Day-ahead forecasting of solar power output from photovoltaic plants in the

American Southwest. Renew. Energy 2016, 91, 11–20. [CrossRef]
33. CEI 82-25: 2008 Guide for Design and Installation of Photovoltaic. Available online: https://www.intertekinform.com/en-au/

standards/cei-82-25-2008-319110_saig_cei_cei_735215/ (accessed on 26 February 2024).
34. Dobos, A.P. PVWatts Version 5 Manual. 2014. Available online: www.nrel.gov/publications (accessed on 26 February 2024).
35. Murphy, K.P. Probabilistic Machine Learning: An Introduction; Massachusetts Institute of Technology: Cambridge, MA, USA, 2022.
36. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
37. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the KDD ’16: 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association
for Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [CrossRef]

38. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. LightGBM: A Highly Efficient Gradient Boosting Decision
Tree. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17); Curran Associates Inc.:
Red Hook, NY, USA, 2017; pp. 3149–3157. Available online: https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f4
4a102fde848669bdd9eb6b76fa-Paper.pdf (accessed on 26 February 2024).

39. Herzen, J.; Lässig, F.; Piazzetta, S.G.; Neuer, T.; Tafti, L.; Raille, G.; Van Pottelbergh, T.; Pasieka, M.; Skrodzki, A.; Huguenin,
N.; et al. Darts: User-Friendly Modern Machine Learning for Time Series. J. Mach. Learn. Res. 2022, 23, 1–6. Available online:
http://jmlr.org/papers/v23/21-1177.html (accessed on 26 February 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

198



Citation: Raimundo, A.M.; Oliveira,

A.V.M. Assessing the Impact of

Climate Changes, Building

Characteristics, and HVAC Control

on Energy Requirements under a

Mediterranean Climate. Energies 2024,

17, 2362. https://doi.org/10.3390/

en17102362

Academic Editors: Boštjan Polajžer,

Davood Khodadad, Younes

Mohammadi and Aleksey Paltsev

Received: 16 April 2024

Revised: 10 May 2024

Accepted: 12 May 2024

Published: 14 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Assessing the Impact of Climate Changes, Building
Characteristics, and HVAC Control on Energy Requirements
under a Mediterranean Climate

António M. Raimundo 1,* and A. Virgílio M. Oliveira 2

1 University of Coimbra, Department of Mechanical Engineering, Pólo II, Rua Luís Reis Santos,
3030-788 Coimbra, Portugal

2 Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Rua Pedro Nunes–Quinta da Nora,
3030-199 Coimbra, Portugal; avfmo@isec.pt

* Correspondence: antonio.raimundo@dem.uc.pt

Abstract: Despite efforts to mitigate climate change, annual greenhouse gas emissions continue to
rise, which may lead to the global warming of our planet. Buildings’ thermal energy needs are
inherently linked to climate conditions. Consequently, it is crucial to evaluate how climate change
affects these energy demands. Despite extensive analysis, a comprehensive assessment involving
a diverse range of building types has not been consistently conducted. The primary objective of
this research is to perform a coherent evaluation of the influence of climate changes, construction
element properties, and the Heating, Ventilation, and Air Conditioning (HVAC) system type of
control on the energy requirements of six buildings (residential, services, and commercial). The
buildings are considered to be located in a temperate Mediterranean climate. Our focus is on the
year 2070, considering three distinct climatic scenarios: (i) maintaining the current climate without
further changes, (ii) moderate climate changes, and (iii) extreme climate changes. The buildings
are distributed across three different locations, each characterized by unique climatic conditions.
Buildings’ envelope features a traditional External Thermal Insulation Composite System (ETICS)
and expanded polystyrene (EPS) serves as thermal insulation material. Two critical design factors
are explored: EPS thickness ranging from 0 (no insulation) to 12 cm; and horizontal external fixed
shading elements varying lengths from 0 (absence) to 150 cm. Six alternative setpoint ranges are
assessed for the HVAC system control: three based on the Predicted Mean Vote (PMV) and three
based on indoor air temperature (Tair). Results were obtained with a validated in-home software tool.
They show that, even under extreme climate conditions, the application of thermal insulation remains
energetically favorable; however, its relative importance diminishes as climate severity increases.
Then, proper insulation design remains important for energy efficiency. The use of external shading
elements for glazing (e.g., overhangs, louvers) proves beneficial in specific cases. As climate changes
intensify, the significance of shading elements grows. Thus, strategic placement and design are
necessary for good results. The HVAC system’s energy consumption depends on the level of thermal
comfort requirements, on the climate characteristics, and on the building’s type of use. As climate
change severity intensifies, energy demands for cooling increase, whereas energy needs for heating
decrease. However, it is essential to recognize that the impact of climate changes on HVAC system
energy consumption significantly depends on the type of building.

Keywords: climate change; buildings’ energy requirements; HVAC control; buildings’ thermal insula-
tion; external solar shadings; buildings’ type of use; Mediterranean climate; buildings climatization

1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) report on climate change
mitigation in 2022 [1] highlights significant trends in the global emissions of radiatively
active substances (e.g., greenhouse gases (GHGs) and aerosols). Despite climate change
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mitigation efforts, annual greenhouse emissions grew on average by 2.2% per year from
2000 to 2019, compared with 1.3% per year from 1970 to 2000. Slightly different values
for these emissions are reported on the Emissions Gap Report 2022 of the United Nations
Environment Programme [2], where an average annual growth rate of 2.6% per year from
2000 to 2009 and 1.1% per year from 2010 to 2019 is reported. According to both reports,
a peak was reached in 2019, followed by a decrease in 2020 due to COVID-19-related
restrictions; it is also suggested that, in 2021, the level of total global emissions of GHGs
and aerosols will be like, or even surpass, the 2019 level. According to the IPCC report [1],
the building sector was responsible for 32% of the final energy consumption and 19% of the
global equivalent of CO2 emissions. These facts underscore the urgent need for sustainable
practices and targeted policies to mitigate climate change and reduce emissions in the
building sector.

1.1. Overview

Based on coherent and consistent assumptions about driving forces, such as demo-
graphic and socioeconomic development, technological change, energy consumption, and
land use, the Intergovernmental Panel on Climate Change (IPCC) regularly presents plausi-
ble alternative forecasts for the future evolution of global emissions of radiatively active
substances (e.g., greenhouse gases (GHGs) and aerosols) [3–5]. The likelihood of each
emission scenario depends on the level of sustainability occurring in the global economy.
Using these alternative emission forecasts, the IPCC has developed a series of “climate
projections”, which are commonly referred to as “climate scenarios”.

In the second Assessment Report of the IPCC, published in 1996 [3], a set of alternative
climate projections known as the “IS92 scenarios” was presented. Later, the IPCC Special
Report on Emissions Scenarios [4] introduced the “SRES scenarios”, comprising 40 distinct
scenarios grouped into four families: A1, A2, B1, and B2. These scenarios vary in terms
of their accumulated emissions and global warming potential. Specifically: SRES scenario
families B1 and B2 can be considered to have a moderate impact; SRES scenario families A1
and A2 are associated with a high impact. Globally, these scenarios can be ordered from
lowest to highest impact as follows: B1, B2, A1, A2.

In the fifth Assessment Report of the Intergovernmental Panel on Climate Change [5],
four alternative scenarios for climate change are presented. These scenarios are known as
Representative Concentration Pathways (RCP) and serve as critical tools for understanding
and planning different future climates. Each RCP represents a different trajectory of GHGs
emissions, shaped by various factors such as population size, economic activity, lifestyle,
energy use, land use patterns, technology, and climate policy. They include a stringent
mitigation scenario (RCP 2.6), two intermediate scenarios (RCP 4.5 and RCP 6.0), and one
scenario with very high global emission of substances radiatively active (RCP 8.5).
‚ RCP 2.6 (stringent mitigation scenario): it assumes substantial and sustained reduc-

tions in GHGs emissions, representing a world where global efforts effectively limit
climate change.

‚ RCP 4.5 (intermediate scenario): moderately reduced GHGs emissions reveal a future
with some mitigation measures but are not as stringent as RCP 2.6.

‚ RCP 6.0 (intermediate scenario): it involves intermediate emission reductions and
considers a world where climate action is taken, but not to the same extent as RCP 4.5.

‚ RCP 8.5 (high emissions scenario): it represents a future with very limited climate
policies and very high global emissions of radiatively active substances, promoting a
substantial environmental impact.

The land scenarios within the RCP framework offer a diverse range of potential futures,
ranging from a net reforestation (RCP 2.6), some net reforestation (RCP 4.5), forestation
similar to actual reality (RCP 6.0) and further deforestation (RCP 8.5). In terms of global
emission of substances radiatively active and comparatively to present, scenario RCP 2.6
represents a future characterized by a substantial net reduction, scenario RCP 4.5 represents
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a future with some reduction, scenario RCP 6.0 represents a future with similar emissions,
and scenario RCP 8.5 represents a future with a strong increase.

Relative to 1850–1900, global warming at the end of the 21st century (2081–2100) is
projected to likely exceed 1.5 ◦C for RCP 4.5, RCP 6.0, and RCP 8.5 (high confidence), likely
to exceed 2 ◦C for RCP 6.0 and RCP 8.5 (high confidence), more likely than not to exceed
2 ◦C for RCP 4.5 (medium confidence), but unlikely to exceed 2 ◦C for RCP 2.6 (medium
confidence) [5].

The RCP scenarios cover a wider range of projections than SRES scenarios, as they
also considered forecasts for land use and for climate policy. Globally, RCP 8.5 is broadly
comparable to the SRES A2 scenario, RCP 6.0 to B2, RCP 4.5 to B1, and there is no equivalent
scenario in SRES projections for RCP 2.6 [5].

1.2. State of the Art

Achieving good indoor environmental quality is crucial for promoting a pleasant sense
of well-being and ensuring work efficiency [6,7]. Among the various factors that contribute
to indoor environmental quality, thermal comfort stands out as particularly significant,
even more so than visual and acoustic comfort or indoor air quality [8]. Furthermore, a
substantial portion of a building’s environmental impact results from energy consumption
by the Heating, Ventilation, and Air Conditioning (HVAC) system [9,10]. Therefore, to
minimize our ecological footprint, it is essential to maintain conditions of thermal comfort
with low energy consumption.

The energy consumption of a building’s air conditioning system—whether residential,
commercial, or service-oriented—depends on several critical factors. These include the
desired level of thermal comfort, the efficiency and type of control of the Heating, Ven-
tilation, and Air Conditioning (HVAC) system, the building’s architectural design and
solar orientation, the characteristics of its passive construction elements, the thermal gains
produced by the internal energy systems, the type of building occupancy, and the climatic
conditions [7]. Moreover, given the extended lifespan of buildings (typically spanning
50–100 years), the likelihood of climate change occurring during their operational lifetime
is substantial. Consequently, construction and refurbishment projects must account for
sustainable operation in both the present and future climates [11–14].

Thermal comfort is influenced by both environmental conditions (such as air tem-
perature, humidity, air velocity, and mean radiant temperature) and individual factors
(including activity level and clothing characteristics) [15,16]. To maintain optimal thermal
comfort indoors, HVAC systems adjust one or more parameters related to the thermal
environment. The effectiveness of these systems hinges on two critical factors: equipment
energy efficiency and the proficiency of the control system in ensuring thermal comfort and
indoor air quality [7]. A wide variety of possibilities exists for HVAC control systems. The
most common involves constraining environmental parameters within a specified range,
without considering individual occupant factors [7,9]. Unfortunately, these procedures
do not guarantee the desired thermal comfort quality and often result in higher energy
consumption compared to occupant-based control methodologies [6,7,17,18].

The building characteristics that lead to the lowest value of energy demand for climati-
zation strongly depends on the climate of the building location [10]. This holds true not only
for extreme cold and hot climates but also for temperate regions, including the Mediter-
ranean, where marked seasonal variations occur, with both cold and hot seasons [19],
both necessitating HVAC systems to achieve indoor thermal comfort [9,10,20,21]. Con-
sequently, the selection of the best constructive solutions for buildings located in these
climates remains challenging.

The production of energy—whether thermal, mechanical, or electrical—from fuels,
particularly fossil fuels, results in a significant emission of greenhouse gases (GHGs), which
have a major impact on global warming [1,2]. This drawback can be mitigated by two
primary approaches: producing energy from renewable sources and reducing overall
energy consumption. Consequently, buildings must be designed to operate sustainably.
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Achieving this goal involves minimizing energy usage while relying on renewable energy
sources [11–14].

Energy consumption for air conditioning depends on the climate characteristics, the
building’s type of use, the quality of its passive and active constructive elements, the level
of thermal comfort assured, and the HVAC system energy efficiency and the proficiency of
its operation control [7,10,12], and represents a very significant portion of the building’s
energy consumption [22,23].

Buildings, whether new or existing, are significant energy consumers. Then, they
must have an active role in mitigating climate change, namely by ensuring thermal comfort
conditions with reduced energy consumption. Given their long lifespan—often exceeding
50 years [20]—it becomes imperative to identify solutions that reduce energy consumption
by HVAC systems in buildings. This holds true for both current climatic conditions and
possible alternatives (scenarios) arising from ongoing climate change.

1.3. Objectives and Scope

It is widely acknowledged that climate change will result in global warming [1,5,13].
Furthermore, a connection is predicted between the current climate characteristics and
those anticipated due to climate change. Consequently, future climate scenarios for specific
locations are typically derived from the present climate conditions at those sites [24–26],
among others. Therefore, in studies like the one at hand, the current climate of the building’s
location holds relevance and must be taken into account.

It has been well-established that due to a warmer climate, the energy requirements for
heating buildings will decrease, whereas the energy demands for cooling will rise [12,13,26,27],
among others. The extent of the reduction in heating energy needs and the magnitude
of the increase in cooling energy requirements depend on several factors, including the
building’s use, the characteristics of its passive and active construction elements, and the
specific climate conditions. Consequently, this dynamic can lead to either an increase or a
decrease in energy consumption for air conditioning. So, the main objective of this research
is to conduct a comprehensive assessment of how climate changes, properties of construc-
tion elements, and the type of HVAC system control impact the energy requirements for
climatization in a wide range of buildings (including residential, service, and commercial
structures) placed in a Mediterranean climate.

The building stock comprises six types of structures: residential, including apartments
within multifamily buildings and detached houses; service buildings with permanent
occupancy, such as clinics; and service buildings with intermittent use, including schools
and bank branches. Additionally, there is a commercial building, and a supermarket, which
also has intermittent utilization.

All buildings share the same type of passive construction solutions, both opaque
and glazed. As is often recommended for this type of construction, the opaque elements
of the building envelope are equipped with a traditional External Thermal Insulation
Composite System (ETICS) based on expanded polystyrene (EPS) material [10,20,28–31].
EPS thicknesses ranging from 0 (no insulating material) to 12 cm were tested, along with
horizontal external fixed shading elements varying in length from 0 (absence) to 150 cm.

HVAC System and Setpoint Ranges: The HVAC system in all the buildings relies on a
chiller/heat-pump with consistent performance coefficients. For the HVAC control system,
six alternative setpoint ranges were assessed: three based on the Predicted Mean Vote
(PMV), and three based on the indoor air temperature (Tair).

To accurately represent the temperate Mediterranean climate, the buildings were
hypothetically situated in three distinct locations, each characterized by a different climate
intensity: mild, moderate, and intense. This study considered the year 2070, and three
climatic scenarios were assumed: (i) NCC—no further climatic changes (maintenance of
the current climate); (ii) MRS—mid-range scenario (RCP 4.5), representative of medium-
intensity climate changes; and (iii) HRS—high-range scenario (RCP 8.5), representing
strong climate changes.
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2. Research Objects

Six buildings, each with varying acclimatized areas, occupancy levels, internal thermal
gains, and distinct types of use, were selected to represent the building stock: (i) an
apartment at midlevel of a multi-story building; (ii) a detached house; (iii) a clinic with
hospitalization; (iv) a high school; (v) a bank branch; and (vi) a medium-sized supermarket.

To enable meaningful comparisons between the various buildings, we assumed that
they were all constructed using identical passive construction solutions (including opaque,
glazed, and shading elements), and each one is equipped with a Heating, Ventilation, and
Air Conditioning (HVAC) system that exhibits consistent seasonal energy performance.

2.1. Buildings’ Main Characteristics and Occupancy

Table 1 provides a summary of the key characteristics of these buildings. The net and
gross areas exclude non-acclimatized spaces. For further details about the layout and main
features of these buildings can be found in the work by Raimundo et al. [20].

Table 1. Summary of the characteristics of the 6 buildings considered: Np—maximum number of
occupants, Nf —number of floors, Acl—acclimatized floor area, Agf—gross floor area, Ch—ceiling
height, Vol—acclimatized volume, Aopc—opaque area of external envelope, Aglz—glazed area of
external envelope, AR—aspect ratio = (Aopc + Aglz)/Vol, EA—envelope area ratio = (Aopc + Aglz)/Acl),
GA—glazed area ratio = Aglz/Acl.

Apartment Detached House Clinic High School Bank Branch Supermarket

Np [persons] 4 4 151 1100 12 194
Nf [--] 1 3 2 4 1 1

Acl [m2] 109.4 167.1 926.7 11,246.0 111.4 1035.3
Agf [m2] 141.6 212.6 1161.2 14,147.5 134.7 1176.1
Ch [m] 2.62 2.96 3.72 3.84 2.60 3.60

Vol [m3] 286.6 494.6 3447.3 43,184.6 316.2 3727.1
Aopc [m2] 58.6 343.4 743.4 22,703.8 181.0 2830.6
Aglz [m2] 21.3 49.7 192.8 2975.3 37.2 96.6
AR [m−1] 0.28 0.79 0.27 0.59 0.69 0.79

EA [--] 0.73 2.35 1.01 2.28 1.96 2.83
GA [--] 0.19 0.30 0.21 0.26 0.33 0.09

In general terms, occupancy and operating profiles exhibit the following characteris-
tics:

- Across all buildings, occupancy and operating profiles vary based on the time of day,
the day of the week, and the week of the year;

- When a building is unoccupied, the Heating, Ventilation, and Air Conditioning
(HVAC) system remains off, and the lighting systems are either turned off or op-
erate at very low power;

- Residential buildings are assumed to be unoccupied during the first fifteen days of
August and permanently occupied during the remaining days of the year, by four
people on Saturdays and Sundays, and between 6 P.M. and 8 A.M. on weekdays
(Mondays to Fridays) and by one person the rest of the time;

- The clinic operates continuously throughout the year, with higher occupancy intensity
between 8 A.M. and 8 P.M. on weekdays and on Saturdays;

- The school is only occupied between 8 A.M. and 6 P.M. on weekdays, it remains
closed on Saturdays and Sundays and its operation follows the Portuguese academic
calendar, so it operates at 100% during regular school periods; at 50% during the 1st
examination phase (15–30 June); at 25% during the 2nd examination phase (1–15 July);
at 25% during admission phase (16–31 July); and is closed during school holidays (the
first 15 days of April, 1 to 31 August, and the last 15 days of December);
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- The bank branch operates every weekday of the year and is occupied between 8 A.M.
and 6 P.M., and it remains closed on Saturdays and Sundays;

- The supermarket operates every day of the year and it is occupied between 8 A.M.
and 10 P.M., but with more intense activity on Saturdays and Sundays.

2.2. Opaque Elements of Buildings’ Envelope

Each type of opaque construction element relies on a common base structure, con-
sistent across all buildings and climates. The base structure most used in Portugal was
assumed [20,32], which leads to buildings with substantial thermal inertia, a strategic
choice for an effective mitigation of both overheating and cooling load peaks [10,13].
Table 2 outlines the base structure details for the opaque elements in contact with the
exterior, including their thickness, useful thermal mass (Mt), and thermal transmission
coefficient (U).

Table 2. Base structure of some opaque elements of the external envelope.

Element Description (from Outside to Inside) Values

Wall
Traditional plaster with 2 cm, bored brick of 22 cm,
not-ventilated air space with 1 cm, bored brick of 11 cm,
traditional plaster with 2 cm

Thickness = 38 cm
Mt = 150 kg/m2

U = 0.88 W/(m2 K)

Pillar/Beam
Traditional plaster with 2 cm, inert reinforced concrete (iron
volume less than 1%) with 22 cm, not-ventilated air space of
1 cm, bored brick of 11 cm, traditional plaster with 2 cm

Thickness = 38 cm
Mt = 150 kg/m2

U = 1.36 W/(m2 K)

Floor above outside
Traditional plaster with 2 cm, lightened slab of 38 cm,
light-sand concrete of 7.5 cm, screed (mortar) of 5.5 cm, oak
wood with 2 cm

Thickness = 55 cm
Mt = 150 kg/m2

U = 1.17 W/(m2 K)

Ground floor Waterproofing layer, lightened slab of 38 cm, light-sand concrete
of 7.5 cm, screed (mortar) of 5.5 cm, oak wood with 2 cm

Thickness = 54 cm
Mt = 150 kg/m2

U = 1.23 W/(m2 K)

Accessible roof
Mosaic tile with 1 cm, screed (mortar) of 5.5 cm, waterproofing
of 3 mm, light-sand concrete of 7.5 cm, lightened slab of 38 cm,
traditional plaster with 2 cm

Thickness = 55 cm
Mt = 150 kg/m2

U = 1.39 W/(m2 K)

Not accessible roof
Sandstone (inert) with 4 cm (or ceramic tile), waterproofing of
3 mm, screed (mortar) of 4 cm, lightened slab of 23 cm,
traditional plaster with 2 cm

Thickness = 33 cm
Mt = 150 kg/m2

U = 2.40 W/(m2 K)

The basic structure of each opaque construction element is enhanced by the application
of expanded polystyrene (EPS) on the outer surface through an External Thermal Insulation
Composite System (ETICS), often recognized as an efficient solution in terms of energy
demands [10,20,28–31]. An additional advantage is its versatility, as it can be employed
in both new constructions and building refurbishments. EPS thermal insulation material
was chosen due to its economic and environmental benefits, its integrability into nearly all
opaque elements, and its durability of at least 50 years [10,20,29].

EPS thicknesses ranging from 0 cm (without insulation) to 12 cm were tested, repre-
senting the economically viable range for buildings situated in temperate Mediterranean
climates [10,20]. As an example, Table 3 displays the thermal transmission coefficient (U)
values for the more relevant opaque elements of the external envelope, corresponding to
different EPS thicknesses. Like the buildings, these values have already been considered in
previous works [7,10,20]. Notably, the impact on the U value diminishes as the thickness of
thermal insulation increases.
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Table 3. Thermal transmission coefficient [W/(m2 K)] of some opaque elements of the external
envelope as function of EPS thicknesses.

EPS
Thickness

[cm]

Thermal Transmission Coefficient—U [W/(m2 K)]

Wall Pillar/Beam
Floor
above

Outside

Ground
Floor

Accessible
Roof

Non-
Accessible

Roof

0 0.88 1.36 1.17 1.23 1.39 2.40

1 0.72 1.01 0.90 0.94 1.03 1.49

2 0.62 0.83 0.75 0.78 0.84 1.12

3 0.54 0.69 0.64 0.65 0.70 0.88

4 0.48 0.59 0.56 0.57 0.60 0.73

5 0.43 0.52 0.49 0.50 0.52 0.62

6 0.39 0.46 0.44 0.45 0.47 0.54

7 0.36 0.42 0.40 0.41 0.42 0.49

8 0.33 0.38 0.36 0.37 0.38 0.43

9 0.30 0.34 0.33 0.33 0.34 0.38

10 0.28 0.32 0.30 0.31 0.32 0.35

11 0.26 0.29 0.28 0.28 0.29 0.32

12 0.25 0.28 0.27 0.27 0.28 0.30

2.3. Glazing Elements

The glazing system identified by Raimundo et al. [33] as the most economically
advantageous for buildings located in Portugal was selected. The windows incorporate an
aluminum frame with thermal barrier and double glazing (colorless of 6 mm + 11 mm air-
layer + colorless of 4 mm), and they are externally protected by blinds made of horizontal
plastic strips. This glazing system has a thermal transmission coefficient (U) and a solar
factor (g⊥) of Uw = 3.05 W m−2 K−1 and g⊥w = 0.79 when the blind element is not active
and of Uwp = 1.56 W m−2 K−1 and g⊥wp = 0.05 when it is active.

2.4. External Fixed Shading Elements

Likely, climate change will lead to an increase in both the outside air temperature and
the intensity of solar radiation [1,4,5], and, consequently, buildings will experience reduced
energy requirements for heating and increased energy demands for cooling [12,26,27],
among others. To reduce cooling needs without compromising natural interior light-
ing, an effective strategy is the implementation of external horizontal glazing shading
systems [34–37].

Despite the existing glazing areas in the current architecture (referred to as the base
architecture) being partially shaded by building elements such as balconies and facade
cutouts, an assessment was conducted to evaluate the impact of installing horizontal ex-
ternal fixed shading elements on air conditioning energy consumption. However, the
application of additional shades was only considered for glazing areas not already shaded
by elements of the base architecture or when such shading had minimal relevance. Addi-
tionally, given the buildings’ location in the northern hemisphere, no additional shading
elements were considered for glazing oriented toward east-northeast, north, or west-
northwest.

If present, all additional external fixed horizontal shading elements are positioned at
the top of the respective window and have the same length, and shade lengths ranging
from 0 cm (no shade) to 150 cm, in increments of 10 cm, have been tested. It is important to
recognize that whereas external fixed glazing shades have the potential to reduce cooling
energy demands, they may also increase heating energy requirements. Consequently, the
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energy impact of installing fixed glazing shades depends on the building’s use type and
the prevailing climate conditions.

2.5. Heating, Ventilation, and Air Conditioning System

In temperate Mediterranean climates, buildings rely on both heating and cooling
systems to maintain thermal comfort. Among the available options, electric air-source
heat pumps demonstrate reasonable performance in heating mode. Consequently, systems
based on air-source chiller/heat pumps are commonly chosen [7,20,32]. Therefore, these
are the Heating, Ventilation, and Air Conditioning (HVAC) systems considered. The indoor
air renewal is ensured by Air Handling Units (AHUs) and/or air-extraction fans, both
operating at an efficiency of 70% [7,20].

The HVAC systems are assumed to be equipped with a chiller/heat-pump classified
as European class A+ [38], as it aligns with the equipment commonly installed in practice.
The chiller has a seasonal energy efficiency ratio SEER = 5.85 in cooling mode and the
heat-pump has a seasonal coefficient of performance SCOP = 4.30 in heating mode [7,10,38].

3. Methods and Conditions

The present study relies on a numerical assessment of the relationship between energy
demand and consumption for air conditioning with the level of thermal comfort indoors,
the building’s type of use, the building’s passive and active construction elements, and the
climate specificities, considering alternative scenarios of climate change.

3.1. Calculation Tool

The version 5.07 of SEnergEd software [7,10,20,33], a validated in-home tool developed
for research purposes, was employed in this study. This user-friendly software integrates
algorithms for dynamically simulating the thermal and energy behavior of various building
types (residential, commercial, and service). Its capabilities include assessing thermal com-
fort, analyzing environmental impact, and evaluating the economic aspects of a building’s
life cycle.

This software predicts the thermal behavior of buildings using a reformulated version
of the dynamic hourly model known as 5R1C (which stands for five thermal resistances
and one thermal capacitance) described in ISO 13790 [39]. The thermal behavior and energy
needs are conditioned by the maximum useful capacity of the HVAC system installed in
the building. Energy demands from other equipment and systems (such as domestic hot
water, lighting, and appliances) are calculated dynamically based on their hourly operating
profiles and installed power. By considering the energy performance of the equipment and
systems, the energy demands are then converted into actual consumption.

The operation of the HVAC system can be controlled using either indoor air temper-
ature (Tair) setpoints or predicted mean vote (PMV) setpoints [15,16]. Additionally, both
control strategies incorporate an additional setpoint for air relative humidity (RH). This
procedure is carried out following a predictive control algorithm model. In addition to
the control by setpoints and with the ability to override them, hourly operating profiles of
HVAC systems can be defined.

Further details about the SEnergEd software can be found elsewhere [7,10,20,33].

3.2. Control of the Climatization System Operation

According to standards ASHRAE 55:2004 [15] and ISO 7730:2005 [16], the predicted
mean vote (PMV) is determined based on the overall thermal balance of the human body. Its
absolute value correlates with the percentage of people who experience thermal discomfort,
more specifically, PMV = 0 indicates thermal comfort, PMV < 0 means discomfort due to
cold, and PMV > 0 is discomfort due to heat. The calculation of PMV value requires the
knowledge of four environmental parameters (air temperature, air humidity, air velocity,
and mean radiant temperature) and of three individual factors (clothing intrinsic insulation,
metabolic rate, and external work).
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In each hourly time-step, the SEnergEd software computes the following parameters
within the thermal zone: air temperature, humidity, and mean radiant temperature. Then,
the clothing’s intrinsic thermal insulation, the person’s physical activity and external work,
and the air’s velocity must be provided as input parameters. The values considered in
this study for these parameters, typical of habits in Mediterranean temperate climates, are
shown in Table 4. These values vary based on the building’s type of use, the season of the
year, and whether it is daytime or nighttime.

Table 4. Intrinsic clothing insulation, activity level, and indoor air velocity.

During During Intrinsic Clothing Activity Air Velocity

the: the: Insulation [clo] Level [met] [m/s]

Apartment Winter Day/Night 1.3/2.6
and Spring and Autumn Day/Night 1.0/2.0 1.2/0.8 0.2

Dwelling Summer Day/Night 0.7/1.4

Winter Day/Night 1.3/2.0
Clinic Spring and Autumn Day/Night 1.0/2.0 1.4/0.8 0.2

Summer Day/Night 0.7/1.4

Winter Day 1.3
School Spring and Autumn Day 1.0 1.4 0.3

Summer Day 0.7

Bank Winter Day 1.4
branch Spring and Autumn Day 1.2 1.2 0.2

Summer Day 1.0

Winter Day/Night 1.5/1.5
Supermarket Spring and Autumn Day/Night 1.2/1.2 1.5/1.5 0.3

Summer Day/Night 0.7/0.7

Six possibilities for the operation of the HVAC system were considered. In three of
them, the control was performed by setpoints of the predicted mean vote (PMVmin ≤ PMV
≤ PMVmax) and in the other three, this control is performed by air temperature setpoints
(Tmin ≤ Tair ≤ Tmax). A control with air relative humidity setpoints (RHmin ≤ RH ≤ RHmax)
was associated with both controls (in the present study RH was maintained between 50
and 70%). In addition to the control by setpoints, and with the ability to override them,
hourly operating profiles were defined.

Table 5 outlines the six possibilities considered for HVAC system control, along with
the hypothesis of the non-existence of an HVAC system (NHS). A, B, and C represent PMV
setpoints, separated by increments of 0.25. The three Tair setpoints are labeled as DT1, DT3,
and DT5, where DT1 represents a temperature difference between the upper and lower
limits of 1 ◦C, DT3 of 3 ◦C, and DT5 of 5 ◦C, respectively. In the case of the bank branch
and the supermarket, the setpoint values of Tair are slightly lower than the corresponding
ones for the other buildings, since it was considered that the occupants of those buildings
usually wear clothing with higher thermal insulation.

The setpoint limits considered for both PMV and Tair, as shown in Table 5, are based
on the endorsements outlined in the standard EN 16798-1 [40], which provides specific
conditions that must be met in buildings to achieve defined levels of indoor environmental
quality. Controls A and DT1 guarantee the highest quality of thermal comfort and align
with the Category I level of this standard, recommended for spaces occupied by fragile
individuals or those with special requirements. Controls B and DT3 counterpart Category
II, endorsed for buildings to be used by people without special requirements, but with
high expectations. Controls C and DT5 fall under Category III, suggested for spaces
with moderate expectations. NHS concerns the situation where the building lacks an
HVAC system.
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Table 5. Types of control of operation of the buildings’ climatization system.

Control Control of HVAC System

Type Apartment, Dwelling, Clinic, School, Bank Branch, and Supermarket

A −0.25 ≤ PMV ≤ +0.25 PPD ≤ 6.3%
B −0.50 ≤ PMV ≤ +0.50 PPD ≤ 10.2%
C −0.75 ≤ PMV ≤ +0.75 PPD ≤ 16.8%

NHS No HVAC system

Apartment, Dwelling,
Clinic, and School

Bank Branch Supermarket

DT5 20 ≤ Tair ≤ 25 ◦C 19 ≤ Tair ≤ 24 ◦C 18 ≤ Tair ≤ 23 ◦C
DT3 21 ≤ Tair ≤ 24 ◦C 20 ≤ Tair ≤ 23 ◦C 19 ≤ Tair ≤ 22 ◦C
DT1 22 ≤ Tair ≤ 23 ◦C 21 ≤ Tair ≤ 22 ◦C 20 ≤ Tair ≤ 21 ◦C

3.3. Climate Scenarios

Research related to the thermal energy demand of buildings often relies on simulation
tools, which necessitate a file containing a year’s worth of hourly climate data specific to
the building’s location. Subsequently, to assess the impact of climate change on the thermal
and energy behavior of buildings, appropriately prepared climate data files are essential.
There are two primary approaches for creating these files: one involves predictions based
on historical data, whereas the other relies on fundamental physical models [25]. In this
study, we employ the historical model to generate the required hourly climate dataset files.
For this, the “morphing procedure” proposed by Belcher and colleagues was used [24].
This approach involves generating future design weather data by adjusting present-day
climate data using “correction coefficients” derived from “global climatic models” tailored
to specific climate change scenarios. To derive the correction coefficients, the global climate
model CGCM3.1/T47, developed by the “Canadian Center for Climate Modeling and
Analysis” [41] was employed, which generates values for nearly all geographical locations
on the planet, with a resolution of 3.75◦ × 3.75◦.

The morphing of each individual weather parameter is accomplished using three
alternative algorithms [24,25]: shifting, linear stretching (scaling factor), and a combination
of both (shifting and stretching). The shifting method relies on an absolute change in the
monthly mean value of the variable, and it is employed when a change in the mean is
predicted for that specific weather parameter in that given climate change scenario. The
linear stretching is used when a proportional change to either the mean or the variance of
the individual weather parameter is predicted in that climate change scenario; for instance,
this approach is suitable for variables like solar radiation, which becomes zero at night. A
combination of shift and stretch is applied in cases where both the mean and variance of an
individual weather parameter are expected to change (e.g., air temperatures), reflecting
changes in average, minimum, and maximum daily values. Deeper details about the
mathematical operations involved in the “morphing procedure” can be found in Belcher
et al.’s paper [24].

To generate files for future climate scenarios based on the current climate, adjustments
were made only to the values of dry bulb temperature, relative humidity, and direct,
global, and diffuse solar radiation. The values of the components of solar radiation were
obtained using the scale factor morphing procedure (linear stretching), ensuring that the
solar radiation values align with the projected changes. The dry bulb temperature at each
hour of each month was determined using a combination of the morphing procedures
shifting and stretching, which led to changes in average, minimum, and maximum daily
values. Unfortunately, the global climate model used (CGCM3.1/T47) does not provide
predictions for the correction coefficient needed to obtain relative humidity. However, it
does offer predictions for specific humidity [41]. Therefore, to derive the relative humidity
of the considered future climate scenarios, it was necessary to first obtain the corresponding
specific humidity values and then convert them into relative humidity using appropriate
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methods. The specific humidity value for each hour of each month was obtained using the
linear stretching methodology.

The buildings (residential, services, and commercial) under consideration are hy-
pothetically situated in a temperate Mediterranean climate. This climate type spans an
extensive range of countries (including Greece, Italy, Portugal, Spain, Turkey), and several
specific regions (such as parts of Albania, Australia, France, South Africa, and California).
Temperate climates strike a balance: they are neither excessively hot in summer nor too cold
in winter, and they avoid extreme dryness or excessive humidity. Despite this moderation,
these climates exhibit substantial temperature differences between day and night, and
present marked climatic variations across different seasons. The Köppen–Geiger climate
classification designates these temperate Mediterranean climates as Csa or Csb [12,30].

Significant climatic disparities exist across regions within temperate Mediterranean
climates (referred to here as MC) [7,19]. To accurately represent these climates, we hy-
pothetically position buildings in three distinct locations, each characterized by different
weather patterns. These locations correspond to the following MC types: (i) mild in winter
and mild in summer (MC1); (ii) moderate in winter and moderate in summer (MC2);
and (iii) intense in winter and intense in summer (MC3). The locals selected to represent
these climate types are all located in Portugal and are Funchal (at an elevation above sea
level Z = 415 m) for mild climate MC1; Ansião (Z = 361 m) for moderate climate MC2;
and Mirandela (Z = 600 m) for intense climate MC3. These carefully selected localities
provide a comprehensive snapshot of the diverse climatic variations within the temperate
Mediterranean regions.

In this analysis, the year 2070 is considered and three distinct climate change scenarios
are explored as follows: (i) no further climate changes (NCC); a mid-range scenario (MRS);
and a high-range scenario (HRS). The NCC scenario assumes that the current climate
remains unchanged, with no additional alterations beyond the existing climatic conditions.
The MRS scenario represents medium-intensity climate changes, as projected by the IPCC
Representative Concentration Pathway RCP 4.5 [5], representing some impact on climate,
affecting ecosystems, weather patterns, and global temperatures. The HRS scenario emerges
from extreme climate changes, as forecasted by the IPCC scenario RCP 8.5, and represents
a severe impact on climate.

Various methodologies exist for classifying the different climate types. Among these,
the approach based on heating degree days(HHD [◦C·day/year]) and cooling degree
days(CDD [◦C·day/year]) provides a more direct link between outdoor weather conditions
and energy requirements for heating and cooling, respectively [7,30,42].

In this study, the HDD and CDD values are defined with respect to reference tempera-
tures of 20 ◦C and 25 ◦C, respectively, and are accordingly referred to as HDD20 and CDD25.
Their values for the three temperate Mediterranean climate types selected (MC1, MC2,
MC3) and the three climate change scenarios considered (NCC, MRS, HRS) are summa-
rized in Table 6. The corresponding annual average values of air temperature Tm (and its
difference to the NCC scenario ΔTm), of air relative humidity RHm (and its difference to the
NCC scenario ΔRHm), and of horizontal global solar radiation HGSRm (and its difference
to the NCC scenario ΔHGSRm) are also presented in Table 6.

Figure 1 displays boxplot graphs that provide a global overview of the climate pre-
dictions for the year 2070, for the three types of temperate Mediterranean climate selected
(MC1, MC2, MC3) and the three climate change scenarios considered (NCC, MRS, HRS).
As they are the most indicative, the values of air temperature, relative humidity, and global
solar radiation incident on a horizontal plane are presented in this figure. In each case
shown, the lower line indicates the minimum value, the bottom line of the box the first
quartile (25th percentile), the line inside the box the median, the marker inside the box the
mean, the top edge of the box the third quartile (75th percentile) and the upper line the
maximum value.
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Table 6. HDD20 and CDD25 values [◦C·day/year] and annual average values of air temperature Tm

(and its difference to the NCC scenario, ΔTm) [◦C], of air relative humidity RHm (and its difference
to the NCC scenario, ΔRHm) [%], of horizontal global solar radiation HGSRm (and its difference to
the NCC scenario, ΔHGSRm) [W/m2], of maximum difference in air temperature during the year
ΔTmax (= Tmax − Tmin) [◦C], and of average values of air temperature Tm (and its difference to the
NCC scenario, ΔTm) [◦C] for the stations of the year, for the temperate Mediterranean climate types
selected and the climate change scenarios considered.

Climate Type NCC
MRS

(RCP 4.5)
HRS

(RCP 8.5)

MC1 HDD20 1256 682 456
Mild CDD25 16 72 148

Tm (ΔTm) 17.0 (--) 18.4 (+1.4) 19.4 (+2.4)
RHm (ΔRHm) 76 (--) 79 (+3) 74 (−2)
HGSRm (ΔHGSRm) 284 (--) 328 (+44) 329 (+45)
ΔTmax 19.6 11.7 11.1

MC2 HDD20 2111 1732 1357
Moderate CDD25 81 134 257

Tm (ΔTm) 15.1 (--) 16.5 (+1.4) 18.3 (+3.2)
RHm (ΔRHm) 73 (--) 72 (−1) 69 (−4)
HGSRm (ΔHGSRm) 317 (--) 361 (+44) 362 (+45)
ΔTmax 29.9 26.7 28.6

MC3 HDD20 2762 2170 1739
Intense CDD25 144 152 276

Tm (ΔTm) 13.6 (--) 15.3 (+1.7) 17.0 (+3.4)
RHm (ΔRHm) 69 (--) 72 (+3) 74 (+5)
HGSRm (ΔHGSRm) 305 (--) 323 (+18) 336 (+31)
ΔTmax 35.9 28.4 30.0

MC1 + MC2 + MC3 Winter 10.6 (--) 12.6 (+2.0) 13.7 (+3.1)
Tm (ΔTm) Spring 15.2 (--) 15.7 (+0.5) 17.0 (+1.8)

Summer 20.7 (--) 22.2 (+1.5) 24.2 (+3.5)
Autumn 14.3 (--) 16.3 (+2.0) 17.9 (+3.6)

As depicted in Table 6, both the values of HDD20 (heating degree days at 20 ◦C)
and CDD25 (cooling degree days at 25 ◦C) increase as the severity of the present climate
intensifies. However, their behavior diverges based on the impact of climate change. The
value of HDD20 decreases as climate change becomes stronger. Conversely, the value
of CDD25 rises with increasing of climate change intensity. These trends highlight the
relationship between climate severity, ongoing climate changes, and temperature-related
energy demands.

The global climate forecasts, as depicted in Table 6 and Figure 1, indicate an increase
in the average air temperature (Tm) with the escalation of climate change intensity. Addi-
tionally, climate change alters temperature patterns throughout the year, affecting both the
maximum temperature difference (ΔTmax = Tmax − Tmin), and the average air temperatures
across seasons. Relatively to the NCC scenario, climate change leads to a decrease of ΔTmax,
which is more pronounced in the MRS scenario than in the HRS one. The average values of
air temperature Tm reveal that in the present climate (NCC scenario), the coldest season of
the year is winter, followed by autumn, spring, and summer (the hottest). In the situation
of further climate change, the order will be winter, spring, autumn, and summer, and all
stations of the year will warm up with the increase in climate change intensity, but not
in a uniform way. The station less affected by climate change will be the spring and the
most affected will be the autumn. These predictions also highlight that there will be no
substantial alteration in relative humidity values, and a definitive relationship between
these values and climate change intensity remains elusive. Regarding horizontal global
solar radiation, an elevation in the corresponding value is anticipated as climate change
severity intensifies. Notably, the variation in the average value of horizontal global solar
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radiation (HGSRm) is significant when transitioning from the NCC scenario (no further
climatic changes) to the MRS (mid-range scenario, RCP 4.5), but less pronounced when
moving from MRS to HRS (high-range scenario, RCP 8.5).

 

Figure 1. Boxplot representation of the climate in 2070, for the three Mediterranean climates selected
(MC1, MC2, MC3) and the three climate change scenarios considered (NCC, MRS, HRS), by (a) air
temperature, (b) relative humidity, and (c) global solar radiation on a horizontal plane.

In Table 6, considering the mild climate MC1, the average air temperature (Tm) exhibits
the values of 17.0 ◦C for the NCC scenario, of 18.4 ◦C for the MRS scenario, and of 19.4 ◦C
for the HRS scenario. The average horizontal global solar radiation (HGSRm) values are
284 W/m2 for NCC, 328 W/m2 for MRS, and 329 W/m2 for HRS. Taking the NCC scenario
as reference, we observe an increase in average air temperature (ΔTm) of +1.4 ◦C in the MRS
scenario and of +2.4◦C in the HRS one. Additionally, climate change leads to a decrease in
the maximum difference in air temperature during the year (ΔTmax) of 7.9 ◦C for the MRS
and of 8.5◦C for the HRS. The change in HGSRm (ΔHGSRm) is of +44 W/m2 for MRS and
of +45 W/m2 for HRS.

In the context of the moderate MC2 climate, Table 6 reveal average air temperatures
(Tm) of 15.1 ◦C for the NCC scenario, of 16.5◦C for the MRS scenario, and of 18.3 ◦C for the
HRS scenario. The average horizontal global solar radiation (HGSRm) exhibits the values of
317 W/m2 for NCC, of 361 W/m2 for MRS, and of 362 W/m2 for HRS. Comparing these
values to the NCC reference, we note an increase of ΔTm = +1.4 ◦C in the MRS case and a
more substantial rise of ΔTm = +3.2 ◦C in the HRS case. Climate change leads to a decrease
in the maximum difference in air temperature during the year (ΔTmax) of 3.2 ◦C for the
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MRS and of 1.3 ◦C for the HRS. The change in HGSRm amounts to ΔHGSRm = +44 W/m2

in the MRS and ΔHGSRm = +45 W/m2 in the HRS.
For the intense climate MC3, Table 6 reveals the values of Tm = 13.6 ◦C for the NCC

scenario, 15.3 ◦C for the MRS scenario, and 17.0 ◦C for the HRS scenario. In this type
of climate, HGSRm = 305, 323, and 336 W/m2 for the NCC, MRS, and HRS scenarios,
respectively. Comparing previous values with the NCC reference, we observe an increase
of ΔTm = +1.7 ◦C in the MRS scenario and a more substantial rise of ΔTm = +3.4 ◦C in the
HRS one. Climate change leads to a decrease in the maximum difference in air temperature
during the year (ΔTmax) of 7.5 ◦C for the MRS and of 5.9 ◦C for the HRS. The change
in HGSRm amounts to ΔHGSRm = +18 W/m2 in the MRS and ΔHGSRm = +31 W/m2 in
the HRS.

To assess whether the differences between scenarios are statistically significant, we
employed a Student’s t-test, considering a two-tailed distribution and two samples with
unequal variance. Probabilities associated with this test were calculated for three key
parameters: air temperature (Tair), relative humidity (RH), and horizontal global solar
radiation (HGSR). Relative to the present climate (scenario NCC), the other two (mid-range
(MRS) and high-range (HRS)), show a significant statistical difference (p < 0.001) for the
three previous parameters (Tair, RH, and HGSR) in the three Mediterranean climates (mild
(MC1), moderate (MC2), and intense (MC3)). The difference is also statistically significant
(p < 0.001) between MRS and HRS scenarios for the parameters Tair and RH, but not for
HGSR (p > 0.05).

4. Results and Discussion

The energy perspective was employed to assess the relation between the thickness
of thermal insulation and the length of horizontal external fixed glazing shades with
the building type, the type of control of the Heating, Ventilation, and Air Conditioning
(HVAC) system, and the severity of climate change. For this, three climate change sce-
narios projected for the year 2070 (NCC—no further climate changes, MRS—mid-range
scenario, and HRS—high-range scenario), and six different buildings located in temperate
Mediterranean climates (an apartment, a detached house, a clinic, a school, a bank branch,
and a supermarket) were considered. The energy perspective considered includes only
the operational energy, without accounting for embodied energy on materials or energy
associated to buildings’ end-of-life. Then, “energy demand” and “energy needs” refer to
the “operational useful annual thermal energy” requirement for heating or for cooling, and
“energy consumption” refers to “operational energy consumption by the HVAC system
(electric energy) during an entire year”.

The results presented in the subsequent sections are normalized per square meter
(m2) of the acclimatized spaces’ floor area. Table 1 provides details on the net (Acl) and
gross (Agf) floor areas of the buildings. As previously indicated in Table 5, six alternatives
for HVAC system control were explored. These alternatives include three by predicted
mean vote (PMV) setpoints (labeled as A, B, and C), and three by indoor air temperature
(Tair) setpoints (labeled as DT1, DT3, and DT5). “A” corresponds to −0.25 ≤ PMV ≤ +0.25,
“B” to −0.50 ≤ PMV ≤ +0.50, “C” to (−0.75 ≤ PMV ≤ +0.75), “DT1” to a temperature
difference between the upper and lower limits of 1 ◦C, “DT3” represents a difference of
3 ◦C, and “DT5” reflects a difference of 5 ◦C. Furthermore, the non-existence of an HVAC
system (NHS) was accounted for.

This study involves a total of 67,392 cases (=16 shading lengths × 13 insulation thick-
ness × 6 buildings × 3 climate change scenarios × 3 locations × 6 HVAC setpoint types).
To handle this large number of cases efficiently, the following strategy was implemented:
(1st) The in-home software was prepared to simulate the 3 climate change scenarios, the
3 locations and the 6 HVAC setpoint types in each run (1 run → simulation of 54 cases);
(2nd) the simulations were conducted in two rounds (which reduces the cases considered
to 9396): identification of the optimal thermal insulation thickness for buildings without
additional shading (78 runs → 4212 cases); and 2nd round-identification of the optimal
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shading length only for buildings with the optimal thermal insulation thickness (96 runs
→ 5184 cases). With this strategy, it was necessary to prepare and make only 174 runs.

4.1. Optimal Thermal Insulation Thickness and External Shade Lengths

Achieving the right balance between insulation thickness, shade length, and HVAC
control is crucial for maximizing energy efficiency while ensuring occupant comfort. Each
building type, climate type, and climate change scenario requires tailored solutions.

The optimal thermal insulation thickness and glazing shade length depend on the
specific perspective: energy efficiency, environmental impact, or economic cost. This issue
has been already addressed by Raimundo’s team [10,20], where the same buildings and
locations were considered, but only for the present climate (NCC scenario). In the present
work, only the energy perspective was considered.

In energy terms, the optimal values for thermal insulation thickness of the opaque
elements of the building envelope and the length of external shades are those that result
in the lowest energy consumption for climatization (both heating and cooling). The corre-
sponding values were determined for each building type and each HVAC control through
a two-step process: (1st) the optimal thickness of expanded polystyrene (EPS) insulation for
the base architecture of the building (without any additional shading) was obtained; (2nd)
the optimal length for external shades (considering the opaque elements insulated with the
previously EPS thickness) was achieved. EPS thicknesses ranging from 0 cm (no insulation)
up to 12 cm were checked, as this range aligns with economic viability for buildings in
temperate Mediterranean climates [10,20]. Shade lengths within the range of 0 cm (no
additional shading) to 150 cm were tested. For aesthetic reasons, the shade length was
limited to 150 cm.

Due to the simplification adopted in the simulations (in steps of EPS thickness and of
shade length), the optimal values of the thermal insulation thickness and of shade length
can be slightly different from the values obtained. Also, they can even have a value greater
than the maximum tested, respectively, 12 and 150 cm. Then, the values identified as
“optimal” must be looked at as the “best solution” within the range of the values tested.

Based on a global analysis, it was discovered that the energy-optimal values for EPS
thickness and external shade length differ depending on whether the HVAC system is
controlled using PMV or Tair setpoints. However, these values are equal or nearly identical
for control types A, B, and C, as well as for control types DT1, DT3, and DT5. Therefore,
it suffices to specify whether the HVAC system control is based on PMV or Tair setpoints.
The optimal values obtained for thermal insulation thickness and for shade length are
summarized in Table 7, for the three types of Mediterranean climates (MC1, MC2, MC3)
and the three climate change scenarios (NCC, MRS, HRS) considered, as a function of the
type of HVAC system control.

The results presented in Table 7 indicate that the energy-optimal values for thermal
insulation thickness and shade length tend to align with either the respective minimum
values (0 cm, 0 cm) or the respective maximum values (12 cm, 150 cm, respectively) that
were tested. Additionally, for assessment purposes, the buildings can be categorized as:
(i) of permanent use (apartment, detached house, and clinic); (ii) of intermittent use and
low internal thermal loads (school and bank branch); and (iii) of intermittent use and high
internal thermal loads (supermarket).

In the case of buildings with permanent use, the energy-optimal thermal insulation
thickness is consistently 12 cm across all types of HVAC system control, temperate Mediter-
ranean climates, and climate change scenarios. This arises from the fact that, for these
types of buildings (with low internal thermal loads) and passive constructive elements
(with high thermal mass), the increase in thermal insulation thickness leads to a decrease
in energy consumption for heating and an increase in energy consumption for cooling,
as shown by the results of this study (figures not shown) and what is reported in the
bibliography [10,20,30,42]. Additionally, with the increase in thermal insulation thickness,
the rate of decrease in energy consumption for heating is greater than the rate of increase in
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consumption for cooling, which is reflected in a continuous decrease in energy consump-
tion for air conditioning. In this type of buildings, the use of additional glazing shades is
energetically advantageous when the HVAC system is controlled by PMV setpoints. On the
other hand, these elements do not bring energy advantages when this control is performed
by Tair setpoints.

Table 7. Energetically optimal values of thermal insulation (EPS) thickness (0 to 12 cm), and of
external fixed horizontal shade length (Shd) (0 to 150 cm), as function of Mediterranean type of
climate (MC1, MC2, MC3), type of control of HVAC system (PMV/Tair), and climate change scenario
(NCC, MRS, HRS).

Apartment NCC: No Further Climatic Changes MRS: Mid-Range Scenario (RCP 4.5) HRS: High-Range Scenario (RCP 8.5)

Climate MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3

HVAC EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd

Control [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm]

PMV 12 80 12 60 12 40 12 110 12 90 12 60 12 150 12 130 12 110

Tair 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0

Dwelling NCC: no further climatic changes MRS: mid-range scenario (RCP 4.5) HRS: high-range scenario (RCP 8.5)

Climate MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3

HVAC EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd

Control [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm]

PMV 12 100 12 70 12 50 12 140 12 110 12 90 12 150 12 130 12 110

Tair 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0

Clinic NCC: no further climatic changes MRS: mid-range scenario (RCP 4.5) HRS: high-range scenario (RCP 8.5)

Climate MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3

HVAC EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd

Control [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm]

PMV 12 150 12 130 12 100 12 150 12 130 12 110 12 150 12 150 12 150

Tair 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0

School NCC: no further climatic changes MRS: mid-range scenario (RCP 4.5) HRS: high-range scenario (RCP 8.5)

Climate MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3

HVAC EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd

Control [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm]

PMV 0 150 12 50 12 20 0 150 6 90 12 70 0 150 3 150 8 150

Tair 12 0 12 0 12 0 6 150 12 0 12 0 0 150 12 0 12 0

Bank NCC: no further climatic changes MRS: mid-range scenario (RCP 4.5) HRS: high-range scenario (RCP 8.5)

Climate MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3

HVAC EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd

Control [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm]

PMV 0 150 12 70 12 40 0 150 12 110 12 80 0 150 0 150 12 150

Tair 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0

Super NCC: no further climatic changes MRS: mid-range scenario (RCP 4.5) HRS: high-range scenario (RCP 8.5)

Climate MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3

HVAC EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd EPS Shd

Control [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm]

PMV 0 150 0 150 0 150 0 150 0 150 0 150 0 150 0 150 0 150

Tair 0 150 12 150 12 150 0 150 12 150 12 150 0 150 12 150 12 150

In the case of the school and the bank branch, the values presented in Table 7 reveal
that the energy-optimal thermal insulation thickness is greater when the HVAC system is
controlled using Tair setpoints compared to PMV setpoints. As climate intensity increases
(from MC1 to MC2 to MC3), the optimal insulation thickness tends to rise. Conversely, with
more severe climate change scenarios (from NCC to MRS to HRS), the optimal thickness
tends to decrease. When the Mediterranean climate is mild (MC1) and the HVAC system
is controlled by PMV setpoints, the optimal solution is always the absence of thermal
insulation (0 cm). Regardless of the climate type (MC1, MC2, or MC3), when Tair setpoints
are used, the optimal EPS thickness is consistently 12 cm under the current climate scenario
(NCC). Irrespective of the climate change scenario (NCC, MRS, or HRS), when the HVAC
system is controlled by Tair setpoints, the optimal EPS thickness remains 12 cm in the case
of moderate (MC2) and intense (MC3) Mediterranean climates. For these building types,
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additional glazing shades offer energy advantages when the HVAC system is controlled by
PMV setpoints. However, these elements do not confer similar energy benefits when the
HVAC system is controlled by Tair setpoints.

For the supermarket, the energy-optimal EPS thickness is 0 cm (i.e., no thermal
insulation) when the control of the HVAC system is carried out by PMV setpoints and
when the building is in a location with a mild Mediterranean climate (MC1). For all other
situations, the optimal EPS thickness equals the maximum tested value of 12 cm. In this
building, regardless of climate type or climate change scenario, the use of additional glazing
shades is energetically advantageous when the HVAC system is controlled by both PMV
and Tair setpoints.

Understanding the interplay between thermal insulation, glazing shading, climate
characteristics, and HVAC control strategies is essential for energy-efficient design in
buildings. Buildings’ energy consumption is significantly influenced by the climatic condi-
tions they face [7,10,12]. Thus, the severity of climate change will have a major influence
on energy use for air conditioning. Consequently, optimizing building design in energy
terms necessitates precise knowledge of the future climatic conditions [11–14]. Although
achieving this precision is challenging, certain good practices can guide the process.

Within the tested climate change scenarios (NCC, MRS, and HRS) and the considered
temperate Mediterranean climates (MC1, MC2, and MC3), as climate change severity
increases, there is a tendency for reduced energy-optimal EPS thickness and for an increase
in energy advantage of using glazing shades, but these trends are not highly significant.
Then, buildings designed for good energy performance in the current climate (NCC)
will maintain good performance in the future. Even if global warming reaches levels
equivalent to the HRS scenario, well-designed buildings will remain energy-efficient. It
should be recognized that good energy performance does not necessarily equate to optimal
performance. Also, as local specific climate conditions play a significant role in buildings’
energy demand, the extension of the previous statement to other climate types must be
performed with caution, especially in hot and/or humid climates.

4.2. Energy Demands for Heating and for Cooling

Figure 2 illustrates the impact of climate change scenarios on annual energy demand
for heating (left column) and for cooling (right column) across the six different building
types incorporating the energy-optimal values for thermal insulation thickness and glazing
shading length. Each case shown includes all types of setpoints (A, B, C, DT1, DT3, DT5)
and temperate Mediterranean climates (MC1, MC2, MC3). As can be observed, the annual
energy needs for heating and for cooling clearly depend on the building type of use, on the
climate intensity (MC1, MC2, MC3) and on the climate change scenario (NCC, MRS, HRS).

In the published literature, it is commonly asserted that even in temperate climates, the
demand for thermal energy for heating typically exceeds that for cooling. However, Figure 2
reveals that this statement does not universally hold true. Contrary to the general trend,
the supermarket exhibits significantly higher energy needs for cooling than for heating
in all climate change scenarios and climate types considered. Also, for all building types,
cooling demands surpass heating demands in the HRS scenario (high-intensity climate
changes), which emphasize the importance of addressing cooling requirements in future
climate conditions. In the NCC (no further climatic changes) and MRS (medium-intensity
climate changes) scenarios, heating demands exceed cooling demands for all buildings
except the supermarket.

The supermarket experiences varying energy demands based on the season. Although
winter requires minimal heating, summer necessitates substantial cooling efforts to main-
tain a comfortable environment for shoppers and staff. The low energy needs for heating
are due to the high internal head loads and the occupants’ high clothing insulation and
activity level, whereas the substantial energy needs for cooling are due to the high internal
head loads and the noticeable occupants’ activity level. Otherwise, the thermal energy
needs of the bank branch are both significant, for heating (in winter) due to occupants’
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sedentary activities and clothing thermal insulation below appropriate, and for cooling (in
summer) mainly due to occupants’ clothing thermal insulation above the recommended.

Heating energy demand [kWh m 2 year 1] Cooling energy demand [kWh m 2 year 1] 

 

 

 

Figure 2. Buildings’ annual energy demand for heating and for cooling for the three climate change
scenarios and the three Mediterranean climate types (MC1, MC2, MC3) of buildings with the optimal
values of thermal insulation thickness and glazing shading length (with TI&GS). Each case shown
includes all setpoints (A, B, C, DT1, DT3, DT5).

Regardless of the climate change scenario, the buildings with the lowest energy
demand for heating are the school (in the case of mild climate MC1) and the supermarket
(in the cases of moderate MC2 and intense MC3 climates). The buildings with the highest
energy demand for heating are the clinic (MC1 and MRS), the detached house (MC1 and
HRS), and the bank branch (in all the other situations).

Irrespective of the climate type and across all climate change scenarios, the building
with the lowest energy demand for cooling is the school. In climate types MC1 and MC2
and under all climate change scenarios, the supermarket experiences the highest energy
requirements for cooling. In climate type MC3 and across all climate change scenarios, the
building with the highest energy demands for cooling is the bank branch.

Regardless of the building type or the climate change scenario, thermal energy de-
mands for climatization increase with the intensity of the climate (MC1 → MC2 → MC3).
Irrespective of the building type or the climate intensity, the energy needs for heating
decrease as the severity of climate change grows (NCC → MRS → HRS). Conversely, the
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energy needs for cooling rise as the severity of climate change increases. These two last
statements align with extensive reports in the bibliography [12,26,27].

To assess the impact of climate change scenarios on energy demands for heating
and cooling, the probability associated with a Student’s t-test, considering a two-tailed
distribution and two samples of unequal variance, was calculated using the NCC (present
climate) scenario as the reference. The results obtained for the level of statistical difference,
for scenarios mid-range (MRS) and high-range (HRS) and Mediterranean climates mild
(MC1), moderate (MC2), and intense (MC3), are shown in Table 8.

Table 8. Student’s t-test statistical significance of the difference relative to the NCC scenario of energy
demands for heating and for cooling, for scenarios MRS and HRS and climate types MC1, MC2, and
MC3. Legend: — → no statistical difference (p > 0.05), * → significant difference with p < 0.05, ** →
significant difference with p < 0.01.

Building
Climate Heating Demand Cooling Demand

Type MRS HRS MRS HRS

Apartment MC1 — * — —
MC2 — ** — —
MC3 — ** — —

Detached MC1 — * — —
house MC2 — ** — *

MC3 — ** — *

Clinic MC1 — * — —
MC2 — * — —
MC3 — ** — —

School MC1 — * — —
MC2 — * — *
MC3 — ** — *

Bank MC1 — — — —
branch MC2 — — — *

MC3 — — — **

Supermarket MC1 — — — —
MC2 — — — *
MC3 — — — *

The results shown in Table 8 reveal that, regardless of building and climate types, the
difference relative to the present climate (NCC scenario) in energy demand for heating
and for cooling is not statistically significant in the case of the mid-range scenario (MRS).
Regardless of the type of climate, in the case of the climate change high-range scenario
(HRS), the decrease in energy demand for heating is statistically significant for buildings
with permanent use (apartment, detached house, and clinic) and the school, and not
statistically significant for the bank branch and the supermarket. For the HRS scenario, the
augmentation of energy demand for cooling is not statistically significant in the case of the
mild climate (MC1), regardless of the type of building, and for the apartment and the clinic,
regardless of the type of climate.

Figures 3 and 4 illustrate the annual energy demand for heating (left column) and
cooling (right column) for buildings with permanent use (Figure 3) and for buildings with
intermittent use (Figure 4), when placed in the moderate Mediterranean climate (MC2).
Due to space limitations, only results related to climate MC2 were present, which fall
between the mild (MC1) and intense (MC3) climates. The results shown in these figures
demonstrate that the energy demands for heating and cooling indoor spaces depend on
the building type of use, on the climate change scenario, on the type of operation of the
climatization system, and on the existence of thermal insulation of opaque elements and
glazing shading.
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Heating energy demand [kWh m 2 year 1] Cooling energy demand [kWh m 2 year 1] 

  

 

Figure 3. Annual energy demand for heating and for cooling of buildings with permanent use, in
Mediterranean climate type 2 (MC2): NCC—no further climatic changes; MRS—mid-range scenario
(RCP 4.5); HRS—high-range scenario (RCP 8.5); no TIoGS—without thermal insulation or glazing
shading; with TI&GS—with energy-optimal thermal insulation and glazing shading.

In general, the results indicate that across all buildings and situations, the thermal
energy requirements for heating are higher when the HVAC system control relies on indoor
air temperature (Tair) setpoints compared to when it is based on predicted mean vote (PMV)
setpoints. Conversely, for energy demands related to cooling, the situation is reversed;
values are higher when the HVAC system control uses PMV setpoints rather than Tair
setpoints. Therefore, from an energy demand perspective, the ideal HVAC control system
operates based on PMV setpoints during the heating function and switches to Tair setpoints
during cooling periods. However, in terms of thermal comfort, the energy-optimal HVAC
control system consistently relies on PMV setpoints [7].
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Heating energy demand [kWh m 2 year 1] Cooling energy demand [kWh m 2 year 1] 

  

 

Figure 4. Annual energy demand for heating and for cooling of buildings with intermittent use, in
Mediterranean climate type 2 (MC2): NCC—no further climatic changes; MRS—mid-range scenario
(RCP 4.5); HRS—high-range scenario (RCP 8.5); no TIoGS—without thermal insulation or glazing
shading; with TI&GS—with energy-optimal thermal insulation and glazing shading.

As stated in previous studies [7,10,20], increasing the thickness of thermal insulation
applied to a building’s opaque elements leads to improved thermal comfort indoors, to a
substantial decrease in annual energy requirements for heating, and to a slight increase in
those for cooling. Conversely, the installation of external glazing shades contributes to better
thermal comfort (by eliminating excess indoor air temperature peaks) and reduces energy
demands for cooling, albeit with an insignificant increase in heating requirements [34–37].
Thus, the energy impact of applying thermal insulation becomes evident through the graphs
depicting heating demands (left column of Figures 3 and 4). Similarly, the significance
of installing glazing shades is apparent from the graphs related to cooling needs (right
column of Figures 3 and 4).
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The results depicted in Figures 3 and 4 consistently demonstrate that, regardless of the
climate change scenario, the application of thermal insulation to opaque elements of the
building envelope consistently reduces energy demands for heating, which is particularly
relevant for buildings with permanent use (apartment, detached house, and clinic) and
has limited relevance for buildings that are intermittently occupied (school, bank branch,
and supermarket). Conversely, when considering energy terms, the installation of exterior
glazing shades is almost always beneficial, although it never becomes highly significant.

4.3. Energy Consumption by the HVAC System

The Heating, Ventilation, and Air Conditioning (HVAC) system in all buildings is
based on a chiller/heat-pump of European class A+, with a seasonal coefficient of perfor-
mance (SCOP) of 4.30 in heating mode, a seasonal energy efficiency ratio (SEER) of 5.85 in
cooling mode, and on ventilation equipment with a performance coefficient of 70%.

The annual energy consumption by the HVAC system of the six buildings, when
placed in the three Mediterranean climate types (mild (MC1), moderate (MC2), and intense
(MC3)), exposed to the three climate change scenarios (no further climate change (NCC),
mid-range (MRS), and high-range (HRS)), and considering energy-optimal values for
thermal insulation thickness and glazing shading length, is depicted in Figure 5. The data
are presented in the form of boxplot graphs, and each case including all setpoints (A, B, C,
DT1, DT3, DT5).

Figure 5. Annual energy consumption by the HVAC system (for heating, cooling, and ventilation) of
buildings with the energy-optimal values of thermal insulation thickness and glazing shading length
(with TI&GS), for Mediterranean climates mild (MC1), moderate (MC2), and intense (MC3). Each
case shown includes all setpoints (A, B, C, DT1, DT3, DT5).

The results from Figure 5 underscore that, irrespective of climate type or climate change
scenario, the school consistently exhibits significantly lower annual energy consumption
for climatization compared to other buildings. In the mild climate (MC1), the clinic has the
highest annual energy consumption for climatization under the present climate scenario
(NCC). Meanwhile, the supermarket takes the lead in both the mid-range (MRS) and high-
range (HRS) climate change scenarios. Regardless of the climate change scenario, the bank
branch consistently demonstrates the highest annual energy consumption for climatization
in temperate (MC2) and intense (MC3) climates.
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Regardless of the climate change scenario, energy consumption for climatization in
buildings generally increases with the intensity of the climate (MC1 → MC2 → MC3),
except for the supermarket. Conversely, the supermarket’s energy consumption decreases
as the climate intensity rises. The reason behind this divergence lies in the supermar-
ket’s unique characteristics compared to other buildings. Specifically, the supermarket
experiences higher internal heat gains (due to factors such as lighting, people, and de-
vices), and occupants have higher clothing insulation and activity levels (as indicated
in Table 4). Consequently, the supermarket’s energy demand for cooling outweighs its
heating requirements.

Irrespective of climate intensity, and except for the supermarket, the energy consump-
tion for climatization in buildings decreases as the severity of climate changes increases
(NCC → MRS → HRS). For the supermarket, this energy consumption rises with the
increasing severity of climate change. The underlying reason is that, in this building type,
the energy demand for cooling outweighs that for heating.

The results obtained with a Student’s t-test for the level of statistical difference in
the energy consumption by buildings’ HVAC systems for scenarios mid-range (MRS) and
high-range (HRS), and Mediterranean climates mild (MC1), moderate (MC2), and intense
(MC3), are summarized in Table 9. These results reveal that, regardless of building and
climate types, the difference in energy consumption for climatization relative to the NCC
scenario is not statistically significant in the case of the mid-range scenario (MRS). In the
case of the high-range scenario (HRS), whatever building type, the difference remains
not statistically significant for buildings placed in the mild (MC1) and moderate (MC2)
climates. Therefore, the difference becomes statistically significant only when both the
intense climate (MC3) and the extreme climate change scenarios (HRS) coincide.

Table 9. Student’s t-test statistical significance of the difference relative to the NCC scenario of energy
consumption by the HVAC system, for scenarios MRS and HRS and climate types MC1, MC2, and
MC3. Legend: — → no statistical difference (p > 0.05), * → significant difference with p < 0.05, ** →
significant difference with p < 0.01.

Building
Climate HVAC Consumption

Type MRS HRS

Apartment MC1 — —
MC2 — —
MC3 — *

Detached MC1 — —
house MC2 — —

MC3 — **

Clinic MC1 — —
MC2 — —
MC3 — *

School MC1 — —
MC2 — —
MC3 — *

Bank MC1 — —
branch MC2 — —

MC3 — *

Supermarket MC1 — —
MC2 — —
MC3 — *

Comparing the statistical differences related to energy consumption by the HVAC
system (shown in Table 9) with those related to energy demands for heating and cooling
(presented in Table 8), leads to the conclusion that the energy efficiency of the HVAC system
plays a decisive role in determining the significance of the differences in energy consumption
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associated with various climate change scenarios. This fact highlights the critical importance
of HVAC system energy performance in the energy consumption for climatization.

Figures 6 and 7 illustrate the annual energy consumption for heating, cooling, and
ventilation in buildings with permanent use (Figure 6) and in buildings with intermittent
use (Figure 7), when placed in the Mediterranean climates MC1 (mild; left column) and MC3
(intense; right column). As shown, the energy consumption by the HVAC system depends
on the building type of use, the existence of thermal insulation of opaque elements of the
building’s envelope and of external glazing shading, the type of control of climatization
system operation, the climate change scenario, and the Mediterranean climate type.

Mediterranean climate type 1 (MC1) Mediterranean climate type 3 (MC3) 

  

  

Figure 6. Annual energy consumption by the HVAC system (for heating, cooling, and ventilation), in
Mediterranean climates type 1 and 3, of buildings with permanent use. Legend: NCC—no further
climatic changes; MRS—mid-range scenario (RCP 4.5); HRS—high-range scenario (RCP 8.5); no
TIoGS—without thermal insulation or glazing shading; with TI&GS—with energy-optimal thermal
insulation and glazing shading.
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Mediterranean climate type 1 (MC1) Mediterranean climate type 3 (MC3) 

  

  

Figure 7. Annual energy consumption by the HVAC system (for heating, cooling, and ventilation), in
Mediterranean climates type 1 and 3, of buildings with intermittent use. Legend: NCC—no further
climatic changes; MRS—mid-range scenario (RCP 4.5); HRS—high-range scenario (RCP 8.5); no
TIoGS—without thermal insulation or glazing shading; with TI&GS—with energy-optimal thermal
insulation and glazing shading.

In general, the results highlight that the influence of climate type and the presence
of thermal insulation in opaque elements and external glazing shades is much more pro-
nounced for buildings with permanent use (apartment, detached house, and clinic) than
for buildings with intermittent use (school, bank branch, and supermarket).
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The benefits of having thermal insulation in opaque elements and external glazing
shades become more pronounced as the climate intensity increases (MC1 → MC2 → MC3).
Interestingly, these benefits remain consistent across all climate change scenarios (NCC,
MRS, HRS). These statements emphasize the importance of energy-efficient building design
regardless of the specific climate change context.

As mentioned earlier, the type of control of the climatization system operation is
directly linked to the desired thermal comfort. The results depicted in Figures 6 and 7
reveal that, as expected, energy consumption by the air conditioning system increases as
the quality of thermal comfort improves (from C → B → A; and from DT5 → DT3 → DT1).
This increase is more pronounced in buildings with permanent use than in those with
intermittent occupancy.

4.4. Influence of HVAC System Type of Control

Different types of HVAC system control led to different levels of thermal comfort
indoors. The relation between the type of setpoint and the thermal comfort level is not
addressed here, but it was analyzed in another work of the authors [7], where the same
buildings and locations were considered, but for the present climate (NCC scenario).

In this study, six control types were considered (as detailed in Table 5), three of them
by the traditional setpoints of indoor air temperature (Tair)—referred as DT1, DT3, and
DT5—and the remaining three by setpoints of the predicted mean vote (PMV)—designed
as A, B, and C. In terms of thermal comfort quality, controls A and DT1 guarantee a high
level, B and DT3 a good level, and C and DT5 a moderate level. These traits highlight the
importance of selecting the appropriate control strategy to ensure the desired occupants’
thermal comfort.

A comprehensive comparison was conducted to explore the relationship between the
two control types of air conditioning system operation (PMV or Tair setpoints), the three
Mediterranean climate types (MC1, MC2, MC3), and the three climate change scenarios
(NCC, MRS, HRS), considering the buildings with the energy-optimal values of thermal
insulation thickness and of glazing shading length. Table 10 summarizes the findings of
this assessment, where the type of HVAC system control associated with lower annual
energy consumption for air conditioning is identified.

As mentioned earlier, across all buildings and situations, the energy consumption by
the air conditioning system increases as the quality of thermal comfort improves (from C →
B → A; and from DT5 → DT3 → DT1), but this increase is more pronounced in buildings
with permanent use than in those with intermittent occupancy. Additionally, the thermal
energy requirements for heating are lower when the HVAC system control relies on PMV
setpoints, whereas the energy demands for cooling are lower when the control is based on
Tair setpoints. This inference emphasizes the trade-off between thermal comfort, type of
control of HVAC system operation and energy consumption for climatization that must be
considered in building design.

The results presented in Table 10 reveal that the energy-optimal type of HVAC system
control depends on the building and on the Mediterranean climate types. Interestingly, it is
independent of the climate change scenario. In the case of intense climate (MC3), regardless
of the building type, controlling the HVAC system using PMV setpoints consistently leads
to lower energy consumption for climatization. In the case of climate types MC1 (mild)
and MC2 (moderate) and for buildings with permanent use (apartment, detached house,
and clinics) and the supermarket, it is preferable to control the HVAC system using Tair
setpoints. For the school and the bank branch, the better option is always to control the
HVAC system using PMV setpoints.

Previous insights emphasize the importance of tailored HVAC control strategies based
on specific building contexts and present climate conditions. Conversely, within temperate
Mediterranean climates, the severity of climate change is unlikely to significantly affect the
better control type of HVAC systems operation.
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Table 10. HVAC system control type that leads to lower energy consumption for climatization, for
the three Mediterranean climate types (MC1, MC2, MC3) and the three climate change scenarios
(NCC, MRS, HRS), considering the buildings with the energy-optimal values of thermal insulation
thickness and of glazing shading length.

Building
Climate Climate Change Scenario

Type NCC MRS HRS

Apartment MC1 Tair Tair Tair
MC2 Tair Tair Tair
MC3 PMV PMV PMV

Detached MC1 Tair Tair Tair
House MC2 Tair Tair Tair

MC3 PMV PMV PMV

Clinic MC1 Tair Tair Tair
MC2 Tair Tair Tair
MC3 PMV PMV PMV

School MC1 PMV PMV PMV
MC2 PMV PMV PMV
MC3 PMV PMV PMV

Bank MC1 PMV PMV PMV
Branch MC2 PMV PMV PMV

MC3 PMV PMV PMV

Supermarket MC1 Tair Tair Tair
MC2 Tair Tair Tair
MC3 PMV PMV PMV

5. Conclusions

This study aims to systematically assess how climate changes, properties of con-
struction elements, and the type of control used in HVAC systems impact the energy
requirements of six buildings (apartment, detached house, clinic, school, bank branch, and
supermarket) situated in a temperate Mediterranean climate.

The buildings were situated in three different climate zones: mild (MC1), moderate
(MC2), and intense (MC3). The buildings’ envelopes incorporate a traditional External
Thermal Insulation Composite System (ETICS) based on expanded polystyrene (EPS).
Insulation thicknesses ranging from 0 (without insulation) to 12 cm, as well as horizontal
external fixed shades with lengths varying from 0 (absence) to 150 cm, were tested. Six
different setpoint ranges for the HVAC system control were evaluated: three based on the
predicted mean vote (PMV) and three based on the indoor air temperature (Tair). For the
year 2070, three climatic change circumstances were assumed: (i) maintaining the current
climate (NCC); (ii) resulting from medium-intensity climate changes (mid-range scenario,
MRS); and (iii) subsequent from extreme climate changes (high-range scenario, HRS).

Climate hourly dataset files were prepared by applying “coefficients” predicted by
“global climatic models” to present-day climate data using the “morphing procedure”
methodology. A Student’s t-test was performed on air temperature (Tair), relative humidity
(RH), and horizontal global solar radiation (HGSR). In relation to present climate (scenario
NCC), the other two (MRS and HRS) exhibit a statistically significant difference (p < 0.001)
for the parameters Tair, RH, and HGSR across the three climate types (MC1, MC2, and
MC3). Additionally, there is a statistically significant difference (p < 0.001) between the
MRS and HRS scenarios for Tair and RH, but not for HGSR (p > 0.05).

The energy-optimal values for thermal insulation thickness and the length of the shade
tend to align with either the respective minimum (0 cm, 0 cm) or maximum values (12 cm,
150 cm, respectively) that were tested. Generally, this optimal insulation thickness is greater
when the HVAC system is controlled using Tair setpoints compared to PMV setpoints.
This thickness tends to increase with higher climate intensity and decrease with more
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severe climate change. Except for the supermarket, the use of additional glazing shades
is energetically advantageous when the HVAC system is controlled by PMV setpoints,
but not when it is performed by Tair setpoints. For the supermarket, the use of additional
glazing shades is advantageous regardless of the HVAC control type.

As expected, irrespective of building and climate types, an escalation in the severity
of climate changes reduces the energy requirements for heating and amplifies the energy
demands for cooling. The relative magnitude of these fluctuations depends on both the
specific building and the climate type.

When comparing the two types of HVAC system control, the thermal energy require-
ments for heating are lower when the control of the HVAC system is performed by PMV
setpoints, and the energy demands for cooling are lower when this control is performed by
Tair setpoints. Therefore, from an energy demand perspective, the ideal HVAC control sys-
tem operates based on PMV setpoints during heating periods and switches to Tair setpoints
during cooling periods.

As anticipated, energy consumption by the air conditioning system increases with
improved thermal comfort, more pronounced in buildings with continuous occupancy
than in those with intermittent use. Regarding energy consumption for climatization, the
optimal type of HVAC system control varies based on the specific building and climate
conditions, but not of the climate change scenario.

In all building types and climates, relative to the current climate (NCC scenario), the
difference in energy demands for heating and cooling is statistically significant only in the
case of extreme climate change (HRS). On the other hand, the energy efficiency of the HVAC
system is also a determining factor in its energy consumption. Therefore, the statistical
significance of the difference between energy needs cannot be directly extrapolated to
energy consumption for air conditioning. If buildings are equipped with an HVAC system
based on a class A+ chiller/heat-pump, compared to the NCC scenario, the difference in
energy consumption for climatization is only statistically significant when the HRS scenario
and climate type MC3 are simultaneously present.

For buildings equipped with an HVAC system based on a class A+ or higher chiller/heat-
pump, the impact on energy consumption for air conditioning due to factors such as thermal
insulation, external glazing shading systems and HVAC system control type depends very
little on the climate change scenario. Consequently, a building designed for good energy
performance in the current climate will likely maintain that efficiency when exposed to
the climate resulting from future climate change. As the energy efficiency of the HVAC
system plays a crucial role, so this assertion may not hold if the energy efficiency of the air
conditioning system is significantly lower than the one considered in this study.
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