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Preface

The building sector is responsible for approximately one-third of global carbon emissions.

As worldwide efforts to reduce carbon emissions are being increasingly implemented, there is a

growing urgency to reduce carbon emissions from buildings. However, designing and operating

building systems that provide a healthy and comfortable indoor environment while minimizing

carbon emissions can be challenging. Therefore, creating a low-carbon yet comfortable building

environment presents a significant research challenge that requires an interdisciplinary approach,

incorporating expertise in regard to building environments, automatic control, architecture, and

artificial intelligence. This reprint aims to highlight recent innovative research and developments

in the building environment, energy, and intelligent technology environments.

Shi-Jie Cao, Dahai Qi, and Junqi Wang

Editors
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Quantifying the Influence of Different Block Types on the
Urban Heat Risk in High-Density Cities

Binwei Zou 1, Chengliang Fan 1,2,* and Jianjun Li 1,*

1 School of Architecture and Urban Planning, Guangzhou University, Guangzhou 510006, China;
zoubinwei@e.gzhu.edu.cn

2 State Key Laboratory of Subtropical Building and Urban Science, Guangzhou 510640, China
* Correspondence: chengliang.fan@gzhu.edu.cn (C.F.); lijianjun@gzhu.edu.cn (J.L.)

Abstract: Urbanization and climate change have led to rising urban temperatures, increasing heat-
related health risks. Assessing urban heat risk is crucial for understanding and mitigating these risks.
Many studies often overlook the impact of block types on heat risk, which limits the development of
mitigation strategies during urban planning. This study aims to investigate the influence of various
spatial factors on the heat risk at the block scale. Firstly, a GIS approach was used to generate
a Local Climate Zones (LCZ) map, which represents different block types. Secondly, a heat risk
assessment model was developed using hazard, exposure, and vulnerability indicators. Thirdly,
the risk model was demonstrated in Guangzhou, a high-density city in China, to investigate the
distribution of heat risk among different block types. An XGBoost model was used to analyze the
impact of various urban spatial factors on heat risk. Results revealed significant variations in heat
risk susceptibility among different block types. Specifically, 33.9% of LCZ 1–4 areas were classified
as being at a high-risk level, while only 23.8% of LCZ 6–9 areas fell into this level. In addition, the
pervious surface fraction (PSF) had the strongest influence on heat risk level, followed by the height
of roughness elements (HRE), building surface fraction (BSF), and sky view factor (SVF). SVF and
PSF had a negative impact on heat risk, while HRE and BSF had a positive effect. The heat risk
assessment model provides valuable insights into the spatial characteristics of heat risk influenced
by different urban morphologies. This study will assist in formulating reasonable risk mitigation
measures at the planning level in the future.

Keywords: heat risk; spatial factors; local climate zone; XGBoost; block scale

1. Introduction

1.1. Background

Climate change and urbanization have the potential to exacerbate the urban heat island
(UHI) and extreme heat events, posing significant heat-related health risks in urban built
environments [1]. Heat events can elevate the risk of various health issues, including heart,
respiratory, and kidney diseases, as well as increase morbidity and mortality rates [2–4]. For
example, the mortality rate in China has surged to 110–140% of the 1995–2014 level due
to the rising heat risk [5]. It is crucial to assess the heat-related health risks in urban
development [6,7]. In the summer of 2022, it was estimated that 9100 deaths in Germany
were attributed to heat-related causes [8]. In India, an estimated 1116 people die from
heat waves every year [9]. Many studies focus on exploring urban heat risk assessment,
aiming to understand the risk pattern within communities and across cities. Urban heat
risk assessment is crucial for revealing risk variation patterns and proposing heat risk
mitigation strategies.

1.2. Literature Review

The interplay between urbanization, climate change, population growth, and aging
can exacerbate health risks associated with high temperatures [1]. In general, heat risk

Buildings 2024, 14, 2131. https://doi.org/10.3390/buildings14072131 https://www.mdpi.com/journal/buildings1
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is regarded as the level of health risk posed to humans by extremely high temperatures.
This risk is particularly acute among socioeconomically and physically vulnerable groups,
including the elderly, disabled individuals, infants, and the impoverished, as well as those
who are frequently exposed to outdoor environments, such as outdoor activity participants
and workers [10]. Empirical assessments of heat-related health risk have primarily relied
on two methods. One approach involves identifying the spatial distribution of the risk by
establishing a regression model. For example, a distributed lagged nonlinear model was
used to evaluate the heat risk of 51 regions in Seoul [11]. Similarly, a weighted regression
model can be used to determine areas of high heat risk in different regions of Singapore,
taking into account UHI intensity and the proportion of the elderly population [12]. An-
other popular method for assessing heat risk is the “Crichton Risk Triangle” framework,
which integrates societal, population, economic, and urban morphology aspects of a city.
This framework considers the following three key dimensions: hazard, exposure, and
vulnerability. Hazard encompasses elements that have the potential to trigger risks, with
extremely high temperatures and heatwaves significantly increasing the likelihood of heat-
related hazards [13]. Exposure primarily concerns the populations that are subjected to high
temperatures, particularly the individuals engaging in outdoor activities [14]. Vulnerability
serves as an indicator of an individual’s resilience to high temperatures, which is influenced
by diverse factors such as encompassing income, education, and age level [15]. Many stud-
ies on heat risk assessments have been conducted at the administrative units. For example,
urban heat island intensity, population density, and elderly population ratio were used to
assess heat risk of Singapore [16]. Results are generally reported at the administrative unit
level, limiting their ability to provide block-scale information on the spatial distribution of
risk levels. Similarly, some studies have conducted risk assessments at the administrative
level [11,17], but few of them have elucidated the relationship between urban morphology
and heat risk at block. Block-scale assessments are crucial as they represent specific urban
block planning and are the directly perceived areas by human inhabitants.

Urban morphology significantly influences the microclimate by altering local wind
patterns and solar radiation, subsequently affecting temperature distributions and heat risk
within various block scales [18,19]. Local Climate Zones (LCZ) is a powerful tool to repre-
sent different block types [20], which can be used to quantify the association between urban
morphology and the thermal environment [21–23]. For example, the heat characteristics
and their spatiotemporal patterns can be thoroughly analyzed based on the categorization
of a LCZ [24]. Remote sensing data revealed UHI effect intensity across different LCZs, with
built-up areas intensifying UHI, while land-cover areas (e.g., LCZ D and LCZ G) mitigate
it. This establishes a linkage between the thermal environment and LCZs in urban areas,
thereby facilitating the application of an LCZ in heat risk assessments [25]. Similarly, an
LCZ map has been used to quantify heat risk level in different LCZ types. Results indicated
that at least 60% of LCZs 1-5 were designated as high-risk areas, while LCZ 6 was deemed
to be more suitable for implementing measures to mitigate heat hazards [26]. Additionally,
an LCZ map can be integrated with urban population mortality rates to assess heat-related
health risk. The findings revealed that densely built-up areas exhibit higher risk levels
compared to land-cover areas [27]. In summary, the LCZ, which aggregates various urban
morphology indicators, can facilitate a comprehensive understanding of the relationship
between different block types and heat risk.

Revealing the correlation between urban morphology factors and heat risks is essential
for developing effective mitigation strategies to reduce these risks. The complex spatial
morphology significantly impacts the urban thermal environment, rendering a singular
linear indicator insufficient to capture its complex relationship with heat risks. Various
machine learning algorithms, such as neural networks [28] and random forests [29], provide
invaluable tools for exploring the nonlinear relationships among multiple morphology
factors. These algorithms have been widely used to investigate the correlation between
urban areas, the urban thermal environment, and the health of residents [30,31]. For
example, the XGBoost algorithm was employed to explore the correlation between the
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morphology factors of European cities and the urban thermal environment. The findings
indicate that approximately two-thirds of temperature variations within cities can be
explained by urban morphological features [32]. Additionally, the random forest algorithm
was used to investigate the influence of urban morphology on Land Surface Temperature
(LST). Results showed that high building density positively affects LST, while the floor area
ratio exhibited a negative impact [33]. Previous studies have successfully elucidated the
relationship between urban structure and its thermal environment, there remains a gap in
methodology for interpreting how different urban spatial factors influence heat risk.

1.3. Research Objectives and Structure

To address the gap, this study proposes a heat risk assessment model to investigate heat
risk at various block types. Firstly, urban morphology factors were obtained using multi-
source data to map LCZs. The proposed model for assessing heat risk was demonstrated
in Guangzhou, a high-density city in China. Furthermore, the correlation between the
heat risk level and different LCZs was quantified through spatial correlation. Finally, the
XGBoost model was applied to interpret the sensitivity of urban morphology on block-level
heat risk. The primary novelties of this study can be summarized as follows: (1) proposing
a novel heat risk assessment model by considering urban morphology factors; (2) revealing
the correlation between urban morphology factors and heat risk, which facilitates the
development of mitigation strategies to reduce high risk areas; and (3) quantifying the
spatial autocorrelation of different heat risk levels and identifying their specific reasons
these variations at a block scale. This study provides support for explaining the relationship
between heat risk and urban morphology factors at block scale, thereby facilitating the
development of healthy and sustainable building designs.

This paper introduces the study area and data sources in Section 2. Section 3 ex-
plains the calculation methods for risk indicators and the heat risk assessment method-
ology. Section 4 presents the results. Sections 5 and 6 provide the conclusions and
discussion, respectively.

2. Study Area and Data

2.1. Study Area

Guangzhou is located in the core of the Greater Bay Area in China (Figure 1), spanning
between 112◦57′~114◦3′ E longitude and 22◦26′~23◦56′ N latitude. It lies within a subtropi-
cal humid climate zone, characterized by a hot summer and a warm winter, with a monthly
average temperature ranging from 14 ◦C to 28 ◦C. With a population of approximately
18.81 million inhabitants and an urbanization rate of 86.48% [34], Guangzhou serves as
a prototypical high-density city that has undergone rapid urbanization, resulting in the
significant expansion of its built-up area. This expansion has given rise to considerable
heat-related health hazards. Therefore, examining the heat risk of various block units is
paramount to developing effective mitigation strategies and fostering a more sustainable
urban environment.

2.2. Data Collection and Pre-Processing
2.2.1. Dataset for Urban Morphology Factors

This study integrated various data sources for Guangzhou, including urban morphol-
ogy, vegetation coverage, water body coverage, and land cover information (Table 1). First,
key urban morphology indicators such as Sky View Factor (SVF), Height of Roughness
Elements (HRE), and Building Surface Fraction (BSF) were calculated using the building
footprints and heights obtained from the architectural data of Guangzhou City. Then,
the Impervious Surface Fraction (ISF) and Pervious Surface Fraction (PSF) were derived
using vegetation coverage data and water body coverage data. Lastly, the land cover was
classified using the land cover data.

3
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Figure 1. The location of Guangzhou, China.

Table 1. Data acquisition and their application in this study.

Theme Source Period Resolution Application

Building footprint https://www.resdc.cn/Default.aspx
(accessed on 4 December 2023) 2019 - LCZ mapping

Water cover https://www.openstreetmap.org/
(accessed on 4 December 2023) 2020 - LCZ mapping

Green cover https://www.openstreetmap.org/
(accessed on 4 December 2023) 2020 - LCZ mapping

Land use [35] https://zenodo.org/ (accessed on
5 December 2023) 2022 1 m LCZ mapping

Landsat-8 https://www.usgs.gov/ (accessed on
5 December 2023) 2015–2020 30 m Hazard/Exposure calculation

Population density https://www.worldpop.org/ (accessed
on 8 December 2023) 2020 100 m Hazard/Exposure calculation

Population density (>65) https://www.worldpop.org/ (accessed
on 8 December 2023) 2020 100 m Hazard/Exposure calculation

Night-time Light
http://59.175.109.173:
8888/app/login.html (accessed on
10 December 2023)

2019 130 m Hazard/Exposure calculation

Anthropogenic heat flux https://dataverse.harvard.edu/
(accessed on 7 February 2024) 2019 500 m Hazard calculation

Mobile signaling data China Unicom mobile phone July 2022 - Residents’ activity preference

2.2.2. Dataset for Heat Risk Assessment

In this study, some risk indicators were calculated using Landsat-8 data. Specifically,
the TIRS10 band (thermal infrared band) of Landsat-8, spanning from July to August
between 2015 and 2020, with the atmospheric correction algorithm, provided the summer
average LST, which represents the hazard dimension. In addition, the Near-infrared (NIR)
and Red-band of Landsat-8 were utilized for calculating the Normalized Difference Vege-
tation Index (NDVI). Meanwhile, the green band (Green), NIR, and Short-Wave Infrared
band one (SWIR1) of Landsat-8 were used to calculate the Enhanced Water Index (EWI).
Population density (PD) represents the exposure dimension. Both the density of population
over 65 years old (OPD) and Nighttime Light data (NTL) were used to calculate the vulner-
ability dimension. The selection of these heat risk indicators were based on the previous
research [26]. Due to differences in resolution, all data were resampled to achieve a 30 m
resolution for calculating risk values.

4
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3. Methodology

3.1. Framework for Heat Risk Assessment

Heat risk assessment is a comprehensive outcome that integrates urban multi-source
data preprocessing, LCZs mapping, heat risk mapping, and spatial patterns analysis.
Figure 2 presents the workflow of the heat risk assessment. Firstly, urban morphology
factors, building data, and land cover data are obtained to generate an LCZ map, which
is subsequently mapped using a GIS-based approach. Then, three heat risk assessment
indicators were selected, including heat hazard, heat vulnerability, and heat exposure. Heat
hazard reflects environmental temperature severity, influenced by the urban environment,
which is crucial for heat risk assessments. When daily maximum temperatures exceed 35 ◦C,
it is considered to be high heat, posing potential negative effects on human health. [36].
Heat vulnerability reflects an individual’s physical state and capacity to cope with heat risks,
influencing resistance, response, and recovery [37–39]. Meanwhile, heat exposure is usually
described as the presence of people, environmental functions, infrastructure, and cultural
assets in areas and contexts susceptible to adverse impacts [40]. These three dimensions are
then multiplied to generate the overall heat risk map. Finally, spatial autocorrelation and
the XGBoost-SHAP methods are employed to investigate the relationship between urban
spatial morphology and heat risk levels.

 

Figure 2. Workflow of the heat risk assessment.

3.2. Improved Heat Risk Assessment Model

The proposed GIS-based risk assessment model is based on Crichton’s risk triangle [41],
including hazard, vulnerability, and exposure indicators. Risk values in different blocks
were calculated using Equation (1). The natural breakpoint method is used to categorize
heat risks into seven levels.

HRK = hazard × vulnerability × exposure (1)

5
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The entropy weight method is used to determine the weight of each indicator. Range nor-
malization transforms multi-source data into a unified range by using Equations (2) and (3) [42].
Information entropy is defined in (Equations (4) and (5)), and the weight is calculated in
(Equation (6)). These weights are used to compile indicators within layers, as shown in
(Equation (7)).

X =

⎡⎢⎣ x11 · · · x1n
...

. . .
...

xm1 · · · xmn

⎤⎥⎦ (2)

Yij = 0.1 +
Xij − min(Xi)

max(Xi)− min(Xi)
× (0.9 − 0.1) (3)

where X is the original indicator matrix composed of m research units and n indicators;
Xij is the original value of the i-th research unit and the j-th indicator; and Yij are the
standardized values.

Pij =
Yij

∑n
i=1 Yij

, i = 1, . . . , n, j = 1, . . . , m (4)

Ej = −ln (n)−1∑n
i=1 Pijln Pij (5)

where Pij is the variation of the indicator size; Ej is information entropy; and n represents n
research units.

wi =
1 − Ej

k − ∑ Ej
(j = 1, 2, . . . , m) (6)

Si = ∑m
j=1 wj ∗ xij (7)

where wi represents indicator weight and Si represents the comprehensive indicator value.

3.2.1. Heat Hazard

Land Surface Temperature (LST) was chosen as the primary indicator of heat hazards.
In addition, anthropogenic heat, resulting from human activities like industrial labor, trans-
portation, and metabolism raises environmental temperature, contributing to microclimate
differences at the block scale [43]. Therefore, anthropogenic heat was considered in the haz-
ard indicators and data from a previous publication [44]. This study calculated the summer
average LST values using the radiative transfer method, known for accurate temperature
estimation [45,46]. Landsat-8 imagery were available from Google Earth Engine of summer
days from July to August between 2015 and 2020.

The two indicators were standardized within the range of 0.1–0.9. The standardized
indicators were then multiplied by their corresponding weights to obtain the heat hazard
value (Equation (8)).

Hazard = LST × wL + AHF × wA (8)

3.2.2. Heat Vulnerability

The elderly is less resilient to high temperatures and more susceptible to related
illnesses. Consequently, population density (>65 years old) (OPD) was chosen as a vulnera-
bility indicator. Furthermore, Night-Time Light (NTL) positively correlates with economic
development [47,48], which can indirectly reflect income levels [49,50] and individual
resilience to heat risks. Both variables were standardized to a range of 0.1–0.9. The
standardized indicators were then multiplied by their respective weights to calculate the
vulnerability value (Equation (9)).

Vulnerability = OPD × wN − NTL × wo (9)

6
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3.2.3. Heat Exposure

Population density (PD) data were included as one of indicators of heat exposure,
which can be obtained from the WorldPop website. Vegetation coverage, as reflected by the
Normalized Difference Vegetation Index (NDVI), provides shade and helps reduce envi-
ronmental temperatures, while water bodies absorb heat, also mitigating heat risks. These
three indicators were standardized to a range of 0.1–0.9. Subsequently, the standardized
indicators were multiplied by their corresponding weights to calculate the exposure value
(Equation (10)).

Exposure = PD × wP − NDVI × wN − EWI × wE (10)

NDVI serves as a vegetation layer indicator (Equation (11)) [51], and EWI clarifies
water body boundaries using remote sensing (Equation (12)) [52]. Therefore, PD, NDVI,
and EWI were chosen as heat exposure indicators.

NDVI =
NIR − R
NIR + R

(11)

EWI =
Green − (NIR + SWIR1)
Green + (NIR + SWIR1)

(12)

where NIR is the near-infrared band; R is the red band; Green is the green band; and SWIR1
is the short-wave infrared band one.

3.3. Block Types Classification

LCZ types were classified into 17 categories that encapsulate morphology characteris-
tics and microclimate changes, consisting of ten built-up areas (LCZ 1~LCZ 10) and seven
land cover areas (LCZ A~LCZ G). Each category possesses distinct surface characteristics
that impact the urban microclimate. Previous studies have established a unified framework
for evaluating urban zoning based on diverse surface characteristics [53,54]. The GIS-
based classification method has proven to be effective in urban climate zone classification,
accurately reflecting the 3D morphology of different block types, thereby justifying its
application in generating the LCZ map [55]. The key processes for LCZ mapping are as
follows: (1) determining the LCZ grid resolution; (2) assessing urban spatial morphology;
and (3) utilizing fuzzy classification and majority voting methods to categorize LCZs.

3.3.1. Grid Resolution

Establishing an appropriate boundary scale significantly enhances LCZ classification
accuracy. Although urban morphology can be segmented, the thermal climate remains
stable within a specific area, influenced by factors such as surface roughness, architectural
geometric properties, and weather conditions. In general, an LCZ’s diameter ranges
from 400 to 1000 m grid resolution [56]. Based on previous research, a 240 m × 240 m
grid resolution has been successfully applied for LCZ classification in Guangzhou [57,58].
Consequently, this study adopts this resolution (240 m × 240 m).

3.3.2. Assessing Urban Morphology Factors

The key parameters that define urban canyon geometry include H (mean building
height on both street canyon sides), W (horizontal canyon extent), and L (canyon length).
These parameters are used to calculate BSF [33], HRE, and SVF. In addition, land cover
interacts with the atmosphere, altering thermal conditions within the canyon. Surface
characteristics play a crucial role in influencing latent heat flux, which in turn affects
temperature dynamics [59]. Land cover can be categorized into impermeable surfaces (e.g.,
asphalt and concrete) and permeable surfaces (e.g., soil, water, and vegetation). These can
be quantitatively represented by the fraction of impermeable surface (ISF) and the fraction
of permeable surface (PSF), as shown in Table 2.
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Table 2. Calculation method for urban morphology factors.

Property Methods Formulas Description

SVF SAGA GIS SVF =
Ssky
Stotal

[60]
where Ssky indicates the visible sky area in the
model space, m2; and Stotal indicates the total sky
in the model space, m2.

BSF Building footprints, ArcGIS pro BSF = Sb
Stotal

[60]
where Sb indicates the total building footprint area,
m2; and Stotal indicates the total block area, m2.

HRE Building height, ArcGIS HRE =
∑n

i Si∗Hi
Stotal

[60]
where Si indicates the building footprint area, m2;
Hi indicates the building height, m; and n indicates
the count of typical buildings within a block.

PSF Green cover, water cover, ArcGIS pro PSF =
Sp

Stotal
[60]

where Sp indicates the total pervious area, m2; and
Stotal indicates the total block area, m2.

ISF ArcGIS pro ISF = 1 − (BSF + PSF) [61] where Si indicates the total impervious area, m2;
and Stotal indicates the total block area, m2.

TRC Davenport classification of terrain
roughness [62] Z0 = f0ZH

where Z0 represents the surface roughness length;
f0 represents the empirical coefficient; and ZH
represents the height of the surface elements [63].

3.3.3. LCZ Mapping and Validation

Remote sensing- and GIS-based methods are widely employed for LCZ classification,
leveraging urban spatial data [64]. Furthermore, GIS-based methods offer valuable function
to further investigate the relationship between heat risk and urban morphology factors [65].
This study adopts a GIS-based method to classify different LCZ types, distinguishing
between built-up areas and land cover areas based on building footprints [56]. Specifically,
land use data were utilized to identify land cover areas, while urban morphology data
were used to map built-up areas. In addition, the fuzzy classification and majority voting
methods were employed to classify built-up areas, as demonstrated in Figure 3. Figure 3a
shows an example of a spatial morphology element, showcasing the application of a
trapezoidal linear function to determine the fuzzy membership of each LCZ type. Figure 3b
demonstrates a map of the spatial morphology element, while Figure 3c shows each
neighborhood block has a dominant LCZ type. Moreover, this study utilized an area-based
assessment method to determine the proportion of classified categories within the total area.
This information is then leveraged to construct a confusion matrix, enabling the calculation
of the overall accuracy for the LCZ classification.

Figure 3. The process of LCZ mapping. (a) Linear fuzzy membership percentage. (b) Example of BSF
in LCZ 5. (c) Built-up area classification.
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3.4. Spatial Correlation Analysis
3.4.1. Pearson’s Correlation

Pearson’s correlation is used to quantify the linear association between urban mor-
phology and heat risk factors [66]. Pearson’s correlation coefficient varies from −1 to 1
(Equation (13)), and r = 1 indicates a perfect positive correlation. r = −1 indicates a perfect
negative correlation.

r =
∑n

i=1
(
Xi − X

)(
Yi − Y

)√
∑n

i−1
(
Xi − X

)2
√

∑n
i=1
(
Yi − Y

)2
(13)

where Xi and Yi represent the i-th observation value of the two variables, respectively; and
X and Y represent the mean of the two variables, respectively.

3.4.2. Spatial Autocorrelation Method

Spatial autocorrelation is the similarity between adjacent data values resulting from
spatial interaction and diffusion. This dependence weakens or disappears when the dis-
tance between the data values increases. Moran’s I is an indicator used to measure spatial
autocorrelation by comparing variable values in neighboring regions [67]. In this study, the
Moran’s I-based univariate local indicator of spatial autocorrelation (LISA) detects spatial
clustering of heat risk, as shown in Equation (14):

I =
N∑n

i=1 ∑n
j=1 wij(xi − x)

(
xj − x

)(
∑n

i=1 ∑n
j=1 wij

)
∑n

i=1(xi − x)2
(14)

where N represents the number of observations (points or polygons); wi and wj repre-
sent the variable values at the locations i and j, respectively; wij represents the weight
indicating the relationship between location i and location j; and x represents the mean
of all observation values. Moran’s I value ranges from +1 to −1. An amount of +1 in-
dicates strong positive spatial autocorrelation, 0 indicates perfect randomness, and −1
suggests dispersion.

Bivariate Moran’s I detects the spatial autocorrelation between urban morphology
and heat risk, interpreting their spatial interrelationship. It consists of the following two
patterns: clustering (high–high, low–low), and dispersion (high–low, low–high). The
calculation method is shown in Equation (15) [68].

I =
xi − x

∑i(xi − x)2 ∑j wij
(
xj − x

)
(15)

where xi and xj are the value of the attributes x at location i and j; x is the average value of
the census tract; and wij is the spatial weight matrix.

3.5. Interpretable Machine Learning Model

The XGBoost machine learning model, renowned for its resistance to nonlinearity,
inherent feature selection, and interpretability, was chosen for this study to analyze urban
morphology indicators and heat risk levels [69]. In this study, the XGBoost model was
employed, with indicators of urban morphology serving as the independent variables
and urban heat risk values serving as the dependent variables. The XGBoost model was
configured with a learning rate of 0.1 and a maximum tree depth of 3. To train the XGBoost
model, 70% of the data were used as the training set, and 30% as the test set. The model’s
performance was assessed through metrics including coefficient of determination (R2),
Mean Squared Error (MSE), and Root Mean Squared Error (RMSE).

The interpretability of the “black box model” is crucial for this study. Shapley Additive
Explanations (SHAP), based on game theory, provide post hoc interpretation, elucidating

9



Buildings 2024, 14, 2131

the outputs of any machine learning model. The core principle of SHAP is to compute the
marginal contribution of features to the model’s output, allowing for the interpretation of
the “black box model” on both global and local levels. Previous research has demonstrated
that SHAP’s interpretation of the XGBoost model yields spatial effect results comparable to
those of the Spatial Lag Model and Multi-scale Geographically Weighted Regression [70].
Therefore, this study employs SHAP for interpretation. For each predicted sample, the
SHAP model generates a “Shapley value”, which represents the sum of the values assigned
to each feature.

4. Results

4.1. Classification Results of LCZ Types

In this study, the overall accuracy of LCZ mapping using the GIS-based method was
85.5%, which is fulfill the high-precision requirement for assessing heat risk [26]. The
spatial pattern of LCZ results is shown in Figure 4a. Land cover areas accounted for 84.4%
of all LCZs. LCZ A-B and LCZ C-D were the most common land covers, accounting for
66.6% and 20.5%, respectively (Figure 4b). They were mainly concentrated in northern hilly
areas. Built-up areas accounted for 15.6% of all LCZs. LCZ 5 and LCZ 2 were the dominant
type, accounting for 24.7% and 20.8%, respectively. They were concentrated in the central
areas of Guangzhou city. The rest of the LCZ types and their proportion are ranked as
follows (Figure 4b): LCZ 10, LCZ 9, LCZ 4, LCZ 6, LCZ 8, LCZ 1, and LCZ 3.

Figure 4. GIS-based block type results: (a) LCZ mapping; (b) proportion of each block type.

4.2. Analysis of Heat Risk Distribution under Different Block Type
4.2.1. Spatial Distribution of Hazard, Vulnerability, and Exposure Indicators

Three risk indicators were categorized into the following seven levels using the natural
breaks method in ArcGIS Pro: very low, lower, low, medium, high, higher, and very high.
The spatial distribution of the three indicators is shown in Figure 5. Figure 5a shows that
hazard values range from 0.13 to 0.79. High-risk areas (i.e., high and higher levels) were
mostly clustered in the west and scattered in the east. These high-risk areas share features
like impermeable and exposed surfaces, receiving abundant solar radiation, resulting in
rapid surface warming. Figure 5b shows that vulnerability values range from 0.10 to
0.90. High-risk areas appeared in the area around Yuexiu district, the historic center in
Guangzhou. This area boasts a dense elderly population that is particularly susceptible
to the adverse effects of high temperatures. Other districts exhibit clusters of medium-
to low-risk areas, while the northern hills and southern riverine regions are marked by
low-risk areas. Moreover, Figure 5c indicates that exposure values span from 0.10 to 0.75.
High-risk levels are also found in Yuexiu, since it is also composed of numerous built-up
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areas with an insufficient number of shaded green spaces. Similarly, the Pearl River area
exhibited similar risks. The rest of the area shows a mix of low-risk and lower-risk levels.

Figure 5. The spatial distribution of (a) hazard, (b) vulnerability, (c) exposure, and the proportion of
(d) hazard, (e) vulnerability, and (f) exposure with different LCZ types.

4.2.2. Spatial Distribution of Heat Risk Levels

The distribution of each LCZ corresponding to the heat risk level is shown in Figure 6.
It indicates that heat risk levels were higher in the city center compared to the suburbs. Very
high–high-risk areas and very low–low-risk areas were primarily distributed in the central
and northern areas. Very high-risk areas were concentrated in central of city (Figure 6a),
which can be attributed to the dense population and a significant elderly population
residing in this area. Compared to the heat hazard in Figure 5a, the risk may be significantly
reduced if social factors are incorporated using the proposed assessment model. The
traditional heat risk assessment method may overestimate high heat risk since it only
considers natural factors. However, the residents in these areas had a strong resilience to
high temperatures when considering social factors.

In addition, built-up areas posed a higher heat risk than land covers, as shown in
Figure 6b. For example, LCZ 4 had the most very high- and high-risk areas, accounting for
15.48% and 21.07%, respectively. Conversely, low-risk areas were the most in LCZ A and B,
accounting for 93.81%, followed by LCZ F at 57.98%. This is evident in the higher heat risk
values for built-up types in comparison to those for land covers, as shown in Figure 7. LCZ
4 had the widest risk distribution, with mean heat risk values of 0.21, followed by LCZ 1
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and LCZ 8. In general, LCZs 1–4, which have high building and population density, are
more likely to be affected by heat risks.

Figure 6. The spatial distribution and the proportion of heat risk within different LCZs.

Figure 7. Boxplot diagrams of the range of heat risk within different LCZs.

4.2.3. Spatial Autocorrelation between Different Heat Risk Levels

The local indicator of spatial autocorrelation (LISA) was used to understand the spatial
clustering of heat risk in Guangzhou. It explains the risk distribution in different built-up
areas (Figure 8). Moran’s I was 0.933, the z-score was 667.934, and the p-value was less than
0.01, indicating a significant positive correlation in the clustering of heat risk. High-risk
areas (high–high clusters) were concentrated in the central area of Guangzhou. Low-risk
areas (low–low clusters) were concentrated in the northern mountainous areas and southern
farmland areas. Compared to the suburbs, urban built-up areas were more likely to exhibit
heat risks related to high temperatures. This is true especially for the built-up areas in LCZs
1–5, which produce a clustering effect of heat risk. Parks and adjacent urban built-up areas
have a variety of clusters, such as the low–high clusters in the city center. This proves that
in these areas, the risk value is lower due to the abundant vegetation coverage.
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Figure 8. Spatial relationship of heat risk using LISA method.

4.2.4. Relationship between Heat Risk and People’s Activity Preferences

This study used the signaling data of China Unicom mobile phones in July 2022
to explore people’s activity preferences in the following three spaces: parks, shopping
malls, and pedestrian streets, as shown in Figure 9. Figure 10a indicates that the hourly
number of visitors in the pedestrian street (LCZs 2) are far greater than that in the park
(LCZs A and B) and shopping mall (LCZs 4), with a higher heat risk level. Compared
to park and shopping center visitors, the frequency of pedestrian street visitors shows
greater variability and periodicity. The number of visitors to pedestrian streets decreases
on weekdays and significantly increases on weekends, while parks and shopping centers
are almost unaffected. Similarly, the average hourly number of elderly visitors in the
street was greater than that in the park and the shopping mall (Figure 10b). Overall, open
activity spaces classified as “built types”, such as pedestrian streets, attract larger crowds,
including the elderly. Secondly, parks and green spaces categorized as “land cover types”
provide shaded areas for cooling and recreation. In addition, a male-to-female ratio was
above 1 (Figure 10c). Men favored parks, preferring low-risk areas like LCZ A and B.
Conversely, women preferred shopping malls and streets despite there being a high heat
risk. To safeguard women’s health, measures addressing their severe heat risk are needed.
Future considerations should include strategies to mitigate heat risk in outdoor spaces,
particularly in pedestrian streets [71].

Figure 9. Three types of space in study area.
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Figure 10. Different outdoor spaces that people visit depending on their activity preferences and
(a) the number of visitors, (b) the density of visitors (>65), and (c) the gender of visitors.

4.3. Relationship between Urban Morphology and Heat Risk
4.3.1. Sensitivity Analysis of Different Urban Morphology Factors

The sensitivity of urban morphology factors to urban heat risk indicators was quanti-
fied using Pearson’s correlation heatmap, as shown in Figure 11. The map can also be used
to analyze the appropriateness of exploring urban heat risk through the analysis of urban
morphology. The results show that the p-value between all indicators was <0.001, and the
confidence interval was 95%, indicating that urban morphology and heat risk factors are
statistically significant. In terms of heat risk indicators, LST, AHF, OPD, NTL, PD, and
EWI exhibited consistency. There was a negative correlation between SVF and PSF and
a positive correlation between BSF, HRE, ISF, and TRC, which is consistent with the heat
risk spatial clustering in Section 4.3.2. In contrast, NDVI exhibited an opposite situation.
The relationship between LST and urban morphology was the highest overall, with an
absolute average Pearson’s relationship coefficient of 0.64. The highest coefficient appeared
between LST and the urban morphology indicator PSF, reaching −0.79. The relationship
between EWI and urban morphology was the lowest overall, with an absolute average
Pearson’s correlation coefficient of 0.15. The lowest coefficient appeared between EWI and
morphology indicator HRE, with a coefficient of only 0.092. While urban morphology may
not directly influence heat exposure and vulnerability, it can exert an indirect impact by
influencing heat risk factors. For instance, higher BSF can accommodate a larger population,
while higher PSF can mitigate the surrounding temperatures.

Figure 11. Heatmap of Pearson’s correlation between urban morphology and heat risk indicators.
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4.3.2. Spatial Relationship between Heat Risk and Urban Morphology

The spatial dependence of heat risk and lagged urban morphology is understood
through bivariate LISA maps and scatter plots, which explain the spatial relationship
between heat risk and urban morphology factors (Figure 12). Moran’s I of HRE (MI: 0.345),
BSF (MI: 0.548), ISF (MI: 0.497), and TRC (MI: 0.329) were significantly positive, exerting
a positive impact on heat risk. Conversely, SVF (MI: −0.561) and PSF (MI: −0.565) had
a negative effect on heat risk, with significantly strong correlation. The corresponding
cluster maps indicate the significant local correlation between the heat risk and urban
morphology. Specifically, the indicators observed in the central area of Guangzhou, which
has high–high clusters and dominant built-up areas, underscore that dense and compact
urban morphology with fewer green spaces are more prone to heat risk in the summer. In
contrast, the same indicators in the northern hilly and riverine areas, which have low–low
clusters and dominant land cover areas, are less susceptible to heat risk. SVF and PSF in
Guangzhou have resulted in high–low and low—high clusters, showing how vegetation
coverage and sky openness can have a negative effect on heat risk. For instance, downtown
Guangzhou exhibits low risk values due to high sky openness and high vegetation coverage
in the north. This can be attributed to the heat absorption capacity of the vegetation. The
smaller the SVF, the more the solar radiation can be blocked with shade.

Figure 12. Spatial relationship between urban morphology and heat risk using bivariate LISA: (a) SVF,
(b) HRE, (c) BSF, (d) PSF, (e) ISF, and (f) TRC.

4.3.3. Effect of Urban Morphology Factors on Heat Risk

Urban morphology influences regional temperature, population, and the economy.
Examining the influence of urban morphology indicators on heat risk can provide valuable
insights for future urban planning and development. The XGBoost-SHAP model helps
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in understanding the effect of urban morphology on heat risk (Figure 13). This study
identified PSF as the predominant factor influencing heat risk, followed by HRE, BSF, SVF,
ISF, and TRC. It is speculated that because 84.4% of the study area comprises land covers
with low heat risk values, it has increased the effect of PSF in model training. The effects
of HRE and BSF were almost consistent, and their correlation with LST was closer. This
result can be attributed to higher buildings and dense layouts that block solar radiation
and reduce the absorption of heat by the surface.

Figure 13. SHAP values of different urban morphology indicators.

To further clarify the impact of urban morphology indicators on heat risk, the de-
pendence plot shows the nonlinear relationship between individual urban morphology
indicators and heat risk indicators (Figure 14). Overall, SVF and PSF showed a negative
correlation, and the dependence between the two was the strongest (Figure 14a,c). The
negative impact of SVF became increasingly evident when the positive impact exceeded
0.75. As the SVF increases, the sky is more visible and, thus, the population density is lower,
meaning that the heat risk is also lower. Conversely, a higher SVF can lead to a greater gain
in solar radiation. The surface temperature then rises, increasing the heat risk. Moreover,
PSF had a negative impact on heat risk after it exceeded 0.6. The impact of BSF and HRE
on heat risk roughly presented an inverted U-shape (Figure 14b,e), which indicates that the
impact on heat risk gradually increased as BSF and HRE increased. However, the impact
declined after reaching a certain level. Nevertheless, the overall impact remained positive.
It is worth noting that too large or too small a BSF can have a negative impact on heat risk.
Similarly, HRE can have a significant negative impact at 15 m because the self-built houses
in the suburbs are mostly 15 m tall. In this case, the regional heat risk was high. ISF had
a positive impact on heat risk when the SHAP value was higher than 0.7, and vice versa
(Figure 14d).

Figure 14. Dependence of the feature based on SHAP values: (a) SVF, (b) BSF, (c) PSF, (d) ISF, (e) HRE,
and (f) TRC.
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5. Discussion

This study developed a GIS-based risk assessment model to analyze the distribution
of heat risk distribution across different block types. The results indicate that LCZs 1–4,
characterized by high building and population density, were more prone to high heat risk.
Conversely, LCZ 10 and LCZ E exhibited low heat risk levels, despite being in high hazard
zones in certain regions, primarily due to their lower population density. It was found that
low-risk areas are present in these areas, such as urban parks (LCZ A~LCZ E). In addition,
this study observed a tendency for spatial clustering of heat risk, with the potential to
transform entire districts into high-risk areas, as shown in Figure 10. Moreover, the low-
high clustering of heat risk was observed at the junction of high-value areas dominated by
built-up areas, and low-value areas dominated by green spaces. This indicates that green
spaces have a significant role in reducing heat risk. Urban planners can effectively reduce
heat risk through the cross-construction of green spaces and built-up areas based on the
findings of this study.

Urban morphology correlates with surface temperature, the economy, population, etc.
(Figure 12), which confirms the appropriateness of exploring the correlation between urban
heat risk and urban morphology. This study found that PSF has the greatest influence
on heat risk. Higher PSF means being able to absorb more solar radiation, raising LST,
while population and economy are also closely related to PSF [72]. The reason may be that
the proportion of green spaces in the study area is too large, increasing the influence of
PSF on heat risk. Further research needs to be conducted in areas with dominant built-up
types. SVF and PSF showed a decreasing impact on urban heat risk. This is because as
SVF increases, it blocks solar radiation and reduces surface temperature. PSF has the same
effect due to lower thermal conductivity and greater heat capacity of PSF than that of the
ISF (Figure 14a,c). HRE and BSF showed an increase and then a decrease, particularly due
to population density. The above results indicate that the GIS-based assessment model can
explain the relationship between urban spatial morphology and heat risk.

This study has several limitations that could potentially introduce inaccuracies in the
heat risk results. Firstly, the GIS-based method for mapping LCZs is limited to areas with a
comprehensive database of building information. This approach may not be suitable for
smaller cities where data acquisition is challenging or incomplete. Secondly, this study
considered only six risk indicators due to the difficulty of obtaining precise block-scale
data. However, numerous factors that influence individuals’ adaptability to heat risks,
including demographic, social, and economical factors, deserve further consideration in
future research. Future studies should prioritize urban built-up areas, characterized by
intense human activities and a higher likelihood of heat risks. Thirdly, a broader range of
socioeconomic factors should be considered, as they may serve as potential indicators of
vulnerability or exposure in future urban heat risk assessments, encompassing aspects such
as the accessibility of parks and hospitals, education levels, and outdoor activity patterns
of residents. Due to data limitations, this study has provided limited exploration between
outdoor heat risk and human activity preferences. Human activity preferences are also
influenced by temporal dimensions and differences in indoor versus outdoor heat risk
within the same area. Finally, the psychological impact on the perception of heat risk is an
essential consideration. Residents’ perception of heat risk may be influenced by mood or
cognitive levels, potentially affecting their resilience to heat risk. This could serve as a risk
indicator to be included in future research.

6. Conclusions

This study proposes an urban heat risk assessment model to explore the influence
of urban morphology and block types on heat risk. Firstly, urban morphology factors,
building data, and land cover data were obtained to generate an LCZ map using a GIS-
based approach. Then, three heat risk assessment indicators were selected, including heat
hazard, heat vulnerability, and heat exposure. These risk indicators are then multiplied to
generate an overall heat risk map. The proposed model was demonstrated in Guangzhou,
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a densely populated city in China. Finally, spatial autocorrelation and the XGBoost-SHAP
methods were employed to investigate the relationship between urban spatial morphology
and heat risk levels.

Results indicated that heat risk levels in built-up areas surpassed those in land covers,
with LCZ 4 exhibiting the highest heat risk, boasting a hazard ratio of 55.23%. Conversely,
LCZ 10 and LCZ 5 were identified as low-risk areas, accounting for 90.10% and 73.94%,
respectively. In residential and commercial areas, such as LCZ 4 and LCZ 1, it is rec-
ommended to adopt mitigation strategies for heat risk. However, in LCZ 9 and LCZ 10,
where population density is low, the adoption of such strategies may not be necessary. In
addition, different block types not only reflect temperature differences, but also lead to
spatial heterogeneity in social activities. For example, LCZ 1 and LCZ 2, which have higher
population densities, exhibit higher heat risks. These results can be used for developing
block-scale urban planning strategies, optimizing the overall spatial morphology of the city,
and reducing the health risks due to high temperatures. Furthermore, when considering
urban morphology factors, such as SVF and PSF, they had a negative effect on heat risk,
while BSF, HRE, and TRC had a more positive effect. This can be attributed to the effect
of solar radiation on the surface temperature and the tendency of people to congregate in
areas with diverse building types. By blocking solar radiation, urban spaces absorb less
heat, resulting in lower temperatures. Additionally, areas with sparser, lower buildings
tend to have lower population densities, which in turn contributes to a more effective
reduction in heat risk at the block level. Therefore, potential strategies for mitigating urban
heat risk could involve increasing tree planting for shading and evenly distributing the
population to create more conducive living environments.

Urban planning shapes the development of diverse block types, characterized by
variations in building height, density, and pervious surface fraction across various urban
areas. These disparities in spatial factors directly influence the absorption and reflection
of solar radiation, contributing to temperature fluctuations within different built environ-
ments. Additionally, the functions and population capacities of different blocks influence
residents’ living behaviors, resulting in a variability in population density. By considering
the combined impacts of both natural and social environments, these factors ultimately
result in spatial disparities in heat risk. The proposed heat risk assessment model can assist
urban planners in evaluating and implementing mitigating strategies for heat risk at the
community and neighborhood level, thereby enhancing the safety of the built environment
for future residents.
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Nomenclature

AHF Anthropogenic heat flux
BSF Building surface fraction
EWI Enhanced water index
Green Green band
HRE Height of roughness elements
ISF Impervious surface fraction
LISA Local indicator of spatial autocorrelation
LST Land surface temperature
MSE Mean squared error
NDVI Normalized difference vegetation index
NIR Near-infrared
NTL Night-time light
OPD Density of population over 65
PD Population density
PSF Pervious surface fraction
R2 Coefficient of determination
RMSE Root mean squared error
SHAP Shapley additive explanations
SVF Sky view factor
SWIR1 Short-wave infrared band
TRC Terrain roughness class
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Abstract: The random movement of occupants in a high-speed railway station results in a more complex
indoor environment. In this study, the indoor thermal environment and the thermal comfort in summer
were investigated via field measurements and questionnaires in the waiting hall of a high-speed railway
station. The results showed that there was an uneven horizontal temperature distribution in the area, and
over 30% of the passengers were dissatisfied with the air conditioning system. In order to improve the
control of the indoor temperature as well as reduce the energy consumption of the air conditioning system,
an improved zonal control strategy and AMPC control optimization algorithm based on real-time people
are proposed, and different control strategies are modeled and simulated using MATLAB/Simulink. It is
concluded that the improved zonal control method proposed in this paper can save 28.04% of the fan
energy consumption compared with the traditional control strategy.

Keywords: high-speed railway station; indoor thermal environment; thermal comfort; Simulink;
zonal ventilation control

1. Introduction

According to the data released by the China National Railway Administration, the total
operating mileage of the national railway reached 150,000 km in 2022, with high-speed railways
accounting for a total operating mileage of 40,000 km [1]. By 2030, the total mileage of the
high-speed railways in China will exceed 45,000 km, covering over 80% of the cities
nationwide [2]. Modern high-speed railway station buildings, as large public buildings,
have a high internal space compared to office buildings, with no internal partitions and a large
flow of occupants, which results in a more complex indoor environment [3,4]. In addition,
unlike other public buildings, modern high-speed railway station buildings have evolved
from simple waiting areas to complex urban spaces with diverse functions and services, which
has brought about issues of passengers' thermal comfort and energy consumption. Previous
studies in terms of thermal comfort have shown that recommendations can be made to ensure
passengers’ thermal comfort in waiting areas as well as to set different thermal environment
parameters to avoid unnecessary energy waste in other non-occupied areas [5,6].

Research on indoor thermal comfort has been carried out for several decades. The
Predicted Mean Vote (PMV) and Percentage of People Dissatisfied (PPD) methods proposed
by Fanger [7] and the adaptive model proposed by De Dear and G Brager [8] are widely used
to evaluate the thermal comfort of indoor environments; high-speed railway station buildings
are included as well. Chirag Deb [9] studied the indoor thermal comfort of a train station in
southern India in summer, and the results showed that the passengers had a high tolerance
and adaptability to the environment. Furthermore, the duration of time passengers spend in
the waiting hall also affects thermal comfort [10]. In fact, passengers’ adaptation to the indoor
thermal environment is higher than the results predicted by the PMV–PPD model, and,
with increasing time spent, passengers’ real thermal neutral temperature gradually reaches
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the predicted thermal neutral temperature [11]. Ye Yuan [12] investigated the dynamic
thermal response of passengers throughout the departure process and determined their
specific thermal comfort needs in different functional zones. The range of thermo-neutral
temperature variations for passengers in different functional zones was derived by means of
a questionnaire survey and calculations in order to provide a reference for improving the
thermal comfort of passengers and optimizing the indoor environment.

In fact, setting the design parameters of an indoor thermal environment directly affects the
thermal comfort of the indoor occupants, and it plays a vital role in the energy consumption of
the building’s air conditioning system. Therefore, the critical aspect to ensuring indoor thermal
comfort and achieving the energy-efficient operation of the air conditioning system lies in
setting appropriate indoor thermal environment parameters. However, due to the complex
nature of large indoor spaces, obtaining their thermal environment parameters has become a
primary concern. Currently, there are two main methods for predicting the indoor airflow and
temperature distribution: micro-scale models and macro-scale models. Micro-scale models
use Computational Fluid Dynamics (CFDs) based on the Navier–Stokes equations to calculate
detailed indoor environments and obtain values for all the relevant parameters. However,
for large indoor spaces under dynamic conditions, accurate results can be obtained but at a
relatively high calculation cost [13,14]. The macro-scale models are mainly divided into node
models and zone models [15]. Node models assume that the indoor environment is uniformly
distributed, thereby ignoring the indoor airflow and temperature distribution. Therefore, these
models can quickly simulate the dynamic changes in the thermal environment but cannot
predict the complex airflow and temperature changes in large indoor spaces.

The zone model is a simulation model between the node model and CFD model,
proposed by Lebrun in 1970 [16]. This model can balance the accuracy and computational
cost of the model while considering the potential of multi-zone coupling, and it can predict
the indoor environmental conditions easily, especially in large open-space buildings. Lu [17]
proposed an adaptive zone method used in an atrium building, which can achieve similar
accuracy with fewer zones compared to the traditional zoning methods. Bauman F [18]
proposed a zoning model for waiting rooms that provides more accurate calculations of the
load both in occupant and non-occupant zones, and the ventilation effects were evaluated,
thus establishing the foundation for further energy-efficient designs.

A precise mathematical model is the fundamental aspect for achieving energy-saving
control in HVAC systems. The energy-saving control in HVAC systems has made great
progress in the past few decades. The most common HVAC system control method is still
traditional PID control. However, when complex and variable indoor environments occur in
real circumstances, the traditional PID control often cannot achieve the desired control effects.
Therefore, new control methods or algorithms are continuously being developed, such as
fuzzy PID control strategies [19], self-disturbance control methods [20], etc. Model predictive
control (MPC) is an online optimization control algorithm with good robustness, excellent
control performance, and low requirements for model accuracy. Therefore, it can be applied to
optimize the building automation control systems, especially in HVAC system control [21]. In
recent years, many researchers have utilized model predictive control methods for intelligent
control in HVAC systems. Tang [22] proposed an MPC method for optimizing the operation
of cold storage integrated central air conditioning systems during rapid DR events, which
effectively reduced the building energy consumption as expected by the power grid, improved
the indoor environments during DR events, and significantly reduced the indoor maximum
temperatures without consuming additional energy. Wang [23] designed a gray-box coupled
model for office buildings and proposed a model predictive control strategy to manage
building energy consumption and indoor air quality. They also evaluated the energy-saving
potential of the proposed control strategies in simulations in different climates. Ren C [24]
et al. proposed a zonal demand ventilation control strategy based on a fast predictive zoning
model to balance the energy savings and indoor infection rate of air conditioning systems,
and the results showed that the proposed ZDCV control strategy improved the energy saving
efficiency by 34% and simultaneously reduced the indoor infection rate.
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This paper investigates the thermal environments of high-speed railway stations, especially
for the waiting areas, adopting on-site measurements and questionnaire surveys to analyze the
thermal environments in waiting areas. Additionally, an improved zoning model is employed
to simulate the internal thermal environment of the target indoor space. The mathematical
relationship for heat transfer within the waiting space is determined based on energy conservation
principles, using real-time passenger flow data as parameters in Simulink to establish a simulation
model, which is different from the previous studies. To clarify, two points that distinguish this
research from the previous studies include the following: 1. in the improved zonal model, the
thermal coupling effect was considered in the control model, which is different from the traditional
zonal model with clear physical partitions; in this study, the zonal division is defined as virtual
walls, namely without real walls or partitions. However, heat and mass transfer may occur
across these virtual boundaries or between the adjacent subzones. 2. We used the real occupancy
as the input of the control simulation, which can handle the supply airflow rate flexibly and
maintain the indoor thermal environment to meet its requirements based on the real number of
passengers. The temperature response and energy consumption under different control strategies
are compared and analyzed. The rest of this paper is organized as follows: Section 2 will introduce
the research methodology; the thermal environment will be summarized in Section 3, such as
thermal images, indoor temperature distribution, CO2 distribution, thermal sensation vote analysis,
and so on; in Section 4, the mathematical model and the control algorithm will be addressed;
Sections 5 and 6 include the simulation results as well as conclusions and discussions.

2. Research Methodology

The proposed method is shown in Figure 1, which mainly contains four parts; the first
part is to obtain the parameters of the indoor thermal environment and questionnaire results
through on-site measurement. The second part is to analyze the thermal indoor environment,
and a zonal control strategy is proposed in this part to deal with the above issues acquired from
part 1; the third part is the modeling and validation process of the proposed control strategies.
The advanced control algorithm as the optimized control scheme is selected to optimize the
control performance. Then, in order to verify the effectiveness of the proposed control method,
the traditional zonal control method and the proposed scheme are compared and evaluated;
finally, the energy consumption of the air conditioning system is predicted and compared.
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Figure 1. Flowchart of the research methodology.
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2.1. Research Object and Method

The second-floor waiting hall of the high-speed railway station is 345 m long from
north to south and 145 m wide from east to west, with a total area of approximately
49,536 m2. It is symmetrical from east to west, with a height of 21 m, slightly higher at
the central skylight area, reaching a height of 24.4 m. The total waiting hall within the
station is approximately 31,398 m2. The cooling air supply inlets in the station are nozzle
diffusers, with multiple of them installed parallel above the waiting area and ticket checking
gates 3 m above the floor, on-site photos are shown in Figure 2 which marked as a, b, and c
on the bottom.

Figure 2. Schematic diagram and measurement area of the high-speed rail station.

Due to the large area of the waiting hall and high internal structural repetition, mea-
surements are conducted only in the waiting areas on both sides of checking gates 4A,
5A, 4B, and 5B, as well as the central aisle. The measurement area is approximately
70 × 34 m, totaling about 2380 m2. Indoor air temperature, CO2 concentration, and other
environmental parameters are measured. The data are collected from 7:00 to 20:30. Ad-
ditionally, a questionnaire survey is conducted to gather passengers’ thermal comfort
perceptions and evaluations of the waiting thermal environment.

The entire measurement area is divided into three zones based on functionality:
waiting zone with fixed seats, queueing zone, and aisle or corridor zone. The mea-
sured area includes two ticket checking gates and four waiting areas on both sides, with
two waiting areas on each side of the gates. The aisle area is located between waiting areas
on the same side, while the queueing area is between the two ticket checking gates, as
illustrated in Figure 1.

2.1.1. Questionnaire

This study employs the Questionnaire Star online survey platform to create electronic
questionnaires, which are randomly distributed to waiting passengers within the station
via QR code sharing. The questionnaire consists of over 20 questions designed to gather
comprehensive information on human responses to the thermal environment. The content
of the questionnaire is primarily described as follows: gender, age, thermal sensation in the
current area, overall thermal comfort, etc. The thermal sensation voting in the questionnaire
utilizes the ASHRAE 7-point thermal sensation scale [21], while the wind sensations are set
according to the thermal sensation voting scale.
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2.1.2. Site Measurement of Thermal Environment

The measurement of thermal environment parameters mainly involves indoor param-
eter collection. The detailed parameters of the testing instruments are shown in Table 1.
The measured parameters include indoor air temperature, indoor air velocity, and indoor
CO2 concentration. Due to the absence of obvious radiant heat sources within the measure-
ment area, this study does not measure black globe temperature. According to ASHRAE
55 standard [25], the measurement point height is set at 1.1 m (which is breathing zone
height when seated).

Table 1. Monitoring instruments for the thermal environment.

Instruments Parameters Range Accuracy

Thermal Imager-TiS50 Temperature −20~+450 ◦C 0.02 ◦C
Thermal

Anemometer-ST866A
Air velocity

Air temperature
0~30 m/s
0~45 ◦C

±1%
±1 ◦C

CO2 detector-AR8200 CO2 concentration 350~9999 ppm ±(30 + 5%) ppm
Laser rangefinder-DL331070L Distance 0.05~70 m ±3 mm
Infrared thermometer-AS842A Temperature −50~600 ◦C ±1.5 ◦C

3. Site Measurement Analysis

3.1. Thermal Environment Measurement Rests
3.1.1. Overall Thermal Environment

Figure 3 shows the thermal images of different areas within the waiting hall, taken
on 8 July 2022 at 10:00 a.m. with an outdoor temperature of approximately 34 ◦C. The
captured areas include the waiting area, queueing area, and main entrance. As depicted in
Figure 3, the maximum temperature difference within the captured areas exceeds 10 ◦C,
with a maximum difference of 11.7 ◦C (Figure 3c) and a minimum difference of 10.2 ◦C
(Figure 3b), indicating significant temperature variations.

(a) (b) 

(c) (d)

Figure 3. Thermal imaging of different areas of the waiting hall: (a) an overview of the waiting hall;
(b) main entrance; (c) waiting area; (d) waiting passengers.
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Figure 3a provides an overview thermal image of the waiting hall, showing a tempera-
ture difference of 10.4 ◦C. Temperature stratification is observed within the waiting hall,
with higher temperatures in the upper space compared to the lower space, particularly
noticeable from the ticket checking gate height. The station hall’s ceiling is composed of
glass skylights, resulting in a significant influence from outdoor conditions and overall
higher temperatures in this area.

Figure 3c,d depict the temperature distribution within the waiting area. As shown in
the figure, the main heat source in the waiting area is the heat generated by the flowing
people, while other heat sources such as advertising boards, lighting, commercial small
shops, etc., have negligible effects and can be disregarded in the following control process.

3.1.2. Horizontal Indoor Air Temperature Distribution

A total of 112 temperature measurement points are set up within the measurement
area, with 16 points in each subzone. The overall temperature distribution within the
measurement area is calculated using MATLAB’s built-in linear interpolation method; the
generated temperature contour is shown in Figure 4 (inwhich blue to red gradient indicating
temperature increasing). The maximum measured temperature within the measurement
area is 28.2 ◦C, while the minimum is 25.7 ◦C, and the maximum temperature difference
is 2.3 ◦C. The temperature variations and zonal average temperatures are summarized in
Table 2. From the figure, it can be observed that there is a significant uneven distribution of
cold and hot spots within the measurement region.

Figure 4. Temperature distribution in the measurement area.

Table 2. Measured temperature ranges and average values in each subzone.

Measurement Area
Waiting Zone Corridor Zone

Queue Zone
1 2 3 4 1 2

Temperature range (◦C) 26.5~27.7 26.5~28.2 26.7~27.5 26.5~27.8 27~27.8 26.7~27.7 25.7~27.3
Average temperature (◦C) 27.25 27.5 26.7 27.4 27.4 27.15 26.7

To explore the reasons for the uneven temperature distribution within the measure-
ment area, waiting zone 3 (waiting area 5A) is selected for temperature measurements
under different conditions. The difference in the number of people is counted and mea-
sured, with three people density values set as follows: λ = 25%, λ = 50%, and λ = 75%,
corresponding to approximately 20 people, 40 people, and 60 people, respectively (here,
λ = 100% means designed number of passengers in this area). Five measurement points
are established in waiting zone 3, and the distribution of measurement points (point 1 to 5)
and temperature measurement results are shown in Figure 5.
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Figure 5. Comparison of the thermal environment of waiting zone 3 with different occupancy densities.

Figure 5 shows the temperature measurement results of waiting zone 3 under different
occupancy density conditions. The X and Y axes represent the positions of the measurement
points within the area, while the Z axis indicates the measured temperature. As shown in
the figure, the highest measured temperature is 27.5 ◦C (measurement point 4, λ = 75%),
and the lowest is 25.5 ◦C (measurement point 1, λ = 25%), with a maximum temperature
difference of 2 ◦C. When occupancy accounts for 25% of the area, the highest measured
temperature is 26.7 ◦C and the lowest is 25.5 ◦C, resulting in a temperature difference
of 1.2 ◦C. With an occupancy rate of 50%, the temperature difference reaches 1.9 ◦C; the
temperature difference is 1.4 ◦C with 75% of designed number of passengers. Under
different occupancy density conditions, there is a temperature difference of over 1 ◦C
between measurement points in waiting zone 3. Under varying occupancy densities,
measurement point 1, which is closer to the air supply diffuser, consistently exhibits the
lowest temperature, while measurement point 4, farther from the air supply diffuser, shows
the highest temperature. Furthermore, at the same measurement point, the temperature
measured when occupancy density is λ = 25% is consistently lower than when λ = 75%.
Therefore, the temperature variation within the waiting zone correlates negatively with the
number of occupants and their distance from the air supply diffuser. It is noted here that
the air supply diffusers are operated with constant speed.

3.1.3. Indoor CO2 Distribution

CO2 concentration is one of the important factors affecting human comfort. Measure-
ments of CO2 concentration and the number of people in waiting zone 3 are conducted
at different times of the day, with the measurement point located in the center of waiting
zone 3 (see Figure 4), and the results are shown in Figure 6. The orange curve in the graph
represents the number of people, while the blue bars represent CO2 concentration. From
the figure, it can be observed that, before 9:00, the number of people and CO2 concentration
show similar changing trends. From 10:00 to 17:00, the number of people remains relatively
stable, with fluctuations of less than 10 people, and, during this period, the CO2 concen-
tration in waiting zone 3 also remains relatively stable. After 18:00, there is a significant
decrease in the number of people, and, at the same time, the CO2 concentration decreases
slowly but follows the same decreasing trend. Therefore, there is a positive correlation
between the change in CO2 concentration and the change in the number of people, with a
slight time lag. It is interesting that the overall CO2 concentrations are less than 600 ppm,
which represents a good indoor air quality (lower than the designed value, normally less
than 1000 ppm); the reason for this can be explained by the tall space and opened indoor
area since the CO2 concentration can be easily diluted in this space.
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Figure 6. Variations in CO2 concentration and number of people in waiting zone 3.

3.1.4. Questionnaire Results

This study collected a total of 542 valid questionnaires, including 335 males and
207 females, with a male-to-female ratio of approximately 6:4. The survey results are shown
in Figure 7.

 
(a) (b) 

 
(c) (d) 

Figure 7. Results of the questionnaire: (a) waiting time for passengers; (b) passenger satisfaction with
the air conditioning system; (c) thermal sensation vote; (d) wind sensation vote.

1. Passenger Waiting Time Statistics

Figure 7a shows the waiting times of passengers. As depicted, 35.7% of passengers
have a waiting time of 30 min or less, 46.3% wait between 30 and 60 min, 13% wait between
60 and 90 min, and only 4% wait for over 90 min. Therefore, passengers generally have
short waiting times at the high-speed railway stations, indicating high mobility among
passengers.
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2. Overall Satisfaction

Using a five-point scale, the overall satisfaction with the air conditioning system in
summer is evaluated. As shown in Figure 7b, over 66% of passengers express satisfaction
with the overall air conditioning system, with 45.57% rating 4 (satisfied) and 20.85% rating
5 (very satisfied). Meanwhile, among those who rated 1 to 3 points, the majority scored
the air conditioning system 3 points (average), with only 3.32% expressing dissatisfaction
(1 point). From the figure, it is evident that over 30% of passengers estimate the air
conditioning system as average or below, indicating potential issues with temperature
control in the high-speed railway station.

3. Thermal Sensation Statistics

Figure 7c displays the thermal sensation voting results of passengers in different areas
of the waiting hall. As shown in the three different areas of the waiting hall, the proportion
of passengers voting for neutral thermal sensation (0) is the highest. Among them, the
waiting zone has the highest proportion of neutral thermal sensation, followed by the
dining zone, while the commercial area’s thermal sensation voting tends to lean towards
slightly cool (−1) and neutral (0). Therefore, the overall thermal comfort is higher in the
waiting zone, followed by the dining area, while the commercial area is generally cooler.
Moreover, thermal sensation varies among passengers in different areas of the waiting hall.

4. Passenger Perception of Airflow

Figure 7d presents the voting results of passengers’ perception of airflow in different
areas of the waiting hall. As shown in the figure, the overall perception of airflow in each
area is neutral. However, over 50% of passengers consider the airflow as too strong in
both the dining and waiting areas. Moreover, the draft perception is achieved by over 40%
of passengers in commercial area. Thus, the overall perception of airflow in the waiting
hall is relatively high. It can be concluded that the mean thermal sensation in the dining
and waiting areas is −1, indicating a perception of high airflow, while the perception of
airflow in the commercial area is more balanced, with the overall thermal sensation close
to neutral.

3.2. PMV Model

The air temperature and indoor air velocity measured on-site are introduced into the
Predicted Mean Vote (PMV) model proposed by ASHRAE 55-2020 [25] to calculate the
PMV and Predicted Percentage of Dissatisfied (PPD) values for the four waiting areas. The
calculation formulas are as follows, and the results are shown in Table 3.

PMV =− 7
83

TRvR +
28
75

TR − 689
74

(1)

PPD = 100 − 95exp(− 0.03353·PMV4−0.2179·PMV2) (2)

where TR is air temperature, ◦C; vR is air velocity, m/s.

Table 3. Calculated PMV in measuring zone.

Measurement Area
Waiting Zone Corridor Zone

Queue Zone
1 2 3 4 1 2

Temperature (◦C) 27.25 27.5 26.7 27.4 27.4 27.15 26.7
Wind speed (m/s) 0.40 0.55 0.79 0.55 0.28 0.49 0.90

PMV −0.05 −0.32 −1.12 −0.35 0.27 −0.29 −1.37
PPD 5.05% 7.13% 31.43% 7.55% 6.51% 6.75% 43.92%

ISO-7730-2005, which is an international standard of analytical determination and
interpretation of thermal comfort using calculation of PMV and PPD indices and local
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thermal comfort criteria [7], when the PMV is between −0.5 and +0.5 and the PPD is
less than 10%, it indicates a comfortable thermal environment. From the table, it can be
observed that waiting area 4 and the queueing area do not perform well in terms of thermal
comfort and tend to be overall cooler. The data from the table indicate that the main
reason for this is the overall high airflow velocity, while the temperature remains within the
comfortable range. During on-site measurements, the air conditioning diffusers through-
out the entire waiting hall are almost at full operation, especially in main stream areas
within the jet flow entrainment region, leading to a strong draft sensation and more severe
energy consumption.

In summary, there is a significant uneven distribution of temperature and velocity in
the waiting zones of the high-speed railway station, resulting in a discrepancy in experi-
ence for passengers in terms of thermal comfort. This is evident from the survey results
and PMV indicators, showing poor thermal comfort perception in certain waiting areas.
It can be concluded that the air conditioning and ventilation strategies employed at the
high-speed railway station have several issues in controlling the regional thermal envi-
ronment. Therefore, in the following section, this study will use professional software to
model the target space, simulate temperature response with real-time passenger flow, and
further investigate the potential energy conservation of the air conditioning system with
proposed control algorithms.

4. Mathematical Control Model

4.1. Model Parameters

As shown in Figure 1, the studied area is simplified into three parts: the waiting
area, the queueing area, and the aisle area. From the thermal images, it can be seen that
there is a significant temperature stratification above the ticket checking gates, which are
approximately 5 m high. Therefore, the height of the target area model in this study is
set to 5 m. The dimensions of the waiting area (L × W × H) are 20 m × 13 m × 5 m,
the queueing area is located between the two ticket checking gates, with dimensions of
30 m × 8 m × 5 m, and the aisle area has dimensions of 30 m × 13 m × 5 m.

Boundary conditions such as the wall temperature of the waiting area and the supply
air temperature are measured. The air supply diffusers in the waiting area are set on both
side walls, with 8 on each side. The air supply outlets in the queueing area are installed
above the ticket checking gates, with a total of 14 on both sides of the gates. There are no
air outlets in the aisle area. Additionally, the specifications of all air supply nozzle diffusers
are consistent, with an outer geometric diameter of 0.45 m and an actual air outlet diameter
of 0.25 m.

Based on the results obtained from the thermal imaging camera, the wall temperature
of the waiting area is 31 ◦C, and the supply air temperature is 21 ◦C. The air supply velocity
from the outlets measured by the anemometer is 4 m/s, the outdoor air temperature in
the measurement area is 29 ◦C, and the indoor air temperature in the measurement area
at 8 a.m. is 26 ◦C.

The determination of the number of people is particularly important as the main
heat source in the study area [26]. From 8:00 a.m. to 8:00 p.m., photos are taken every
30 min to count the number of people in the waiting area, queueing area, and aisle area,
resulting in 12 h of data on the changes in the number of people in the measurement area.
The dynamic changes in the number of passengers in each area are shown in Figure 8. It
can be observed from the figure that the number of people in the waiting area and the
aisle area are relatively stable. The density of people in waiting areas 3 and 4 fluctuates
around 0.33 people/m2, while the density in waiting areas 1 and 2 remains stable at around
0.17 people/m2. The number of people in the aisle area remains at a lower level, with
an average density of only 0.04 people/m2. The changes in the number of people in the
queueing area are more significant. Due to the gathering of people at the ticket checking
gates when the train arrives and departs, there are drastic fluctuations in the number of
people, with a maximum difference exceeding 130 people. The maximum density of people
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in each area at different times is 0.62 people/m2, which is lower than the design density of
0.67 people/m2 [27]. Therefore, traditional ventilation control strategies based on design
occupancy are prone to consume more energy than those based on real-time occupancy.

Figure 8. Calculation results of dynamic occupancy distribution in different areas.

4.2. Mathematical Model

The measurement area of this study is located indoors with few internal devices and no
obvious heat sources. Therefore, the main internal heat source is occupants. To simplify the
model, other heat sources (advertising board, lighting, small shops, equipment, and heat
from the ceiling level) are ignored. Thus, according to the principle of energy conservation,
the simplified equation for the measurement area can be written as follows:

ρCpV
dtn

dτ
= ρCpG(ts − tn) + Q1 + Q2 (3)

where ρ is the air density in kg/m3, Cp is the specific heat capacity of the room in J/(kg·◦C),
V is the volume of the room in m3, G is the air supply volume in m3/s, Ts and Tn are the
supply air temperature and indoor air temperature, respectively, in Celsius, Q1 and Q2 are,
respectively, the heat transferred by the maintenance structure and the heat generated by
occupant, kW. However, the spatial area of the measurement zone is separated by two ticket
checking points in the middle. Moreover, since occupants are not uniformly distributed
in the area but vary spatially over time, it is unreasonable to assume that the temperature
distribution inside the entire area is uniform. Therefore, this model is not suitable for
temperature control in the measurement area.

This paper proposes a method for coordinating temperature zoning control in large
open spaces by incorporating thermal coupling effects. This method divides the large space
into multiple sub-regions while considering the impact of thermal coupling effects between
adjacent regions on the control of the air conditioning system [28,29]. In this study, the
measurement area is divided into seven sub-regions based on their functions and load
characteristics: four waiting areas, two aisle areas, and one queue area, with a total of
five controllable sub-regions since there are no air vents in the aisles. Since there are no
physical partitions between zones in the zoning model, when actual energy exchange occurs
between adjacent zones, the heat transfer between neighboring zones may be unequal due
to differences in airflow on both sides. Even with the same airflow, differences in heat
transfer may occur due to turbulence, a phenomenon known as thermal coupling. In order
to accurately describe the energy exchange between adjacent zones during this process,
some researchers have proposed the definition of a heat exchange coefficient that can be
used to represent thermal coupling between adjacent zones [30–32]:

Qcoup = kc
(
ti − tj

)
(4)

where kc is heat exchange coefficient between adjacent zones, kW/◦C; ti, tj is temperature
of adjacent intervals, ◦C.
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Based on Equation (4), the simplified subzone equation can be obtained accordingly;
the energy conservation equation in waiting area can be written as

ρCpV
dtn

dτ
= ρCpG(ts − tn) + hw Aw(tw − tn) + ha Aa(ta − tn) + kc(tc − tn) + Q (5)

the energy conservation equation in aisle area can be written as

ρCpV
dtn

dτ
= ha Aa(ta − tn) + kc,1(tc,1 − tn) + kc,2(tc,2 − tn) + kc,3(tc,3 − tn) + Q (6)

where ρ is air density, kg/m3; Cp is room heat capacity, kJ/(kg·◦C); V is room volume, m3;
G is air supply flow-rate, (m3/s); tw, ta, tc are side wall temperature, outside air temperature,
and its adjacent zonal temperature, ◦C; hw, ha represents the convective heat transfer
coefficient between the side wall surface and the outside air, as well as between the air
inside the waiting area and the air outside the waiting area, kW/(m2·◦C); kc stands for the
heat exchange coefficient between the waiting area and adjacent areas, kW/◦C; and Q is
internal heat gain generated by occupants, kW.

4.3. Dynamic Thermal Model

In order to predict the thermal response of the building under given conditions (such
as changes in the number of people), a dynamic thermal model of the building is developed.
Detailed white-box models (the mathematical model can be directly acquired from the
relationship between input and output) require high computational costs, while black-box
models (the completely unknown relationship between input and output) require a large
amount of data for training; therefore, this study adopts a gray-box model (the relationship
between the input and output is partly known in the control system) to simulate building
heat transfer. Considering that complex models increase the computational time for control
simulations, the gray-box model is simplified.

The simplified model possesses both controllability and prediction accuracy; thus, it is
widely used for simulating thermal changes in indoor spaces. The controlled area studied
in this paper is located within the building, where solar radiation is low and there are no
significant radiant heat sources; hence, radiative heat transfer can be neglected. Similar to an
electrical network, the thermal changes within each sub-area can be represented by a 1R1C
model. This model uses thermal resistance and thermal capacitance to represent the thermal
characteristics of the building, including the building envelope, external environment,
indoor air, and thermal coupling between subzones. The heat transfer between each
component of the model is depicted in Figure 9. The air temperature within each sub-area
is influenced by the cold air delivered by the HVAC system, external environment, internal
heat gains within the sub-area, and thermal coupling between adjacent areas. Therefore, the
thermal balance equations for each subzone can be revised as follows (Equations (7)–(13)):

Cin,1
dTin,1

dτ
=

Tw − Tin,1

Rw,1
+

Tout − Tin,1

Ra,1
+

Tin,5 − Tin,1

R5,1
+ Qin,1 + QHVAC,1 (7)

Cin,2
dTin,2

dτ
=

Tw − Tin,2

Rw,2
+

Tout − Tin,2

Ra,2
+

Tin,5 − Tin,2

R5,2
+ Qin,2 + QHVAC,2 (8)

Cin,3
dTin,3

dτ
=

Tw − Tin,3

Rw,3
+

Tout − Tin,3

Ra,3
+

Tin,7 − Tin,3

R7,3
+ Qin,3 + QHVAC,3 (9)

Cin,4
dTin,4

dτ
=

Tw − Tin,4

Rw,4
+

Tout − Tin,4

Ra,4
+

Tin,7 − Tin,4

R7,4
+ Qin,4 + QHVAC,4 (10)

Cin,5
dTin,5

dτ
=

Tout − Tin,5

Ra,5
+

Tin,1 − Tin,5

R5,1
+

Tin,2 − Tin,5

R5,2
+

Tin,6 − Tin,5

R5,6
+ Qin,5 (11)

34



Buildings 2024, 14, 1783

Cin,6
dTin,6

dτ
=

Tin,5 − Tin,6

R5,6
+

Tin,7 − Tin,6

R7,6
+ Qin,6 + QHVAC,6 (12)

Cin,7
dTin,7

dτ
=

Tout − Tin,7

Ra,7
+

Tin,3 − Tin,7

R3,7
+

Tin,4 − Tin,7

R4,7
+

Tin,6 − Tin,7

R7,6
+ Qin,7 (13)

Figure 9. Schematic of RC gray-box building thermal model.

In the equation, C and R, respectively, represent the thermal capacitance and thermal
resistance of the model; T represents temperature, with subscripts in, out, and w denoting
the air inside each subzone, the external area, and the surface of the envelope structure,
respectively; Qin denotes the internal heat gains of each subzone; and QHVAC represents the
cooling capacity provided by the HVAC system for each subzone.

The internal heat gains of the subzones are only from human body heat dissipation,
and the occupants in the waiting area are in a state of light activity. According to the
“Energy Efficiency Design Standard for Public Buildings [33]”, the average heat dissipation
per person in transportation buildings is 134 W/person. Therefore, the internal heat gain
Qin is expressed as

Qin = P × q (14)

In the equation, P represents the number of occupants within the area; q denotes the
average heat dissipation per person, which is 134 W/per person.

Additionally, for the convenience of calculating the cooling capacity provided by the
HVAC system for each subzone, it is assumed that the air inside each subzone is uniformly
mixed. The cooling capacity QHVAC provided by the HVAC system is calculated using the
heat transfer equation:

QHVAC,i = ρCGi

(
Tsupply,i − Treturn,i

)
(15)

where ρ, C are air density and heat capacity; Gi is subzone supply airflow rate, m3/s; and
Tsupply,i, Treturn,i are zonal supply and return air temperature, ◦C.

It is worth noting that, at the same time, the above dynamic thermal model of the
building has also been simplified: due to the controlled area being within the building,
the wall temperature and surrounding environmental temperature remain relatively stable
and have minimal impact on the air temperature inside; thus, they are set as constant
temperatures. The heat transfer resistance between adjacent zones in the dynamic thermal
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model of the building is closely related to the heat exchange coefficient kc between zones,
which is a function of the temperature difference between adjacent zones. Therefore, during
the calculation process, the heat transfer resistance between adjacent zones varies at each
time step. The adaptive model predictive control (AMPC) adopted in this study can adjust
the parameters of the model based on real-time data updates, self-correcting at each time
step to improve control accuracy by correcting prediction results.

4.4. Air Conditioning System Control Optimization Based on Model Predictive Control
4.4.1. Control Mechanism of Adaptive Model Predictive Control

Adaptive model predictive control (AMPC) combines the principles of model predic-
tive control (MPC) and adaptive control to handle situations where there is uncertainty,
variation, or unknown parameters in the system model. The key aspect of adaptive MPC
is its ability to adjust the model parameters in real time based on measurements using
recursive or adaptive parameter update methods, thus continuously updating the system
model to reflect changes in its dynamic behavior. Subsequently, based on the updated
model and the current system state, an optimization algorithm is used to solve an opti-
mization problem at each sampling time to compute the optimal control input sequence.
The objective of the optimization problem is to minimize prediction errors while satisfying
constraints to obtain the optimal control strategy. Based on the optimal control input
sequence obtained, only the first control signal is applied and executed, and the process
of model updating, optimization problem solving, and control signal application is re-
peated in the next sampling time. Through this iterative process, adaptive MPC can track
real-time changes in the system’s dynamic characteristics and adjust accordingly based on
real-time information.

Figure 10 illustrates a schematic diagram of the AMPC for the air conditioning system
in the waiting area of the high-speed railway station under real-time passenger conditions.
In the structure of AMPC, the dynamic model of the system is determined based on
measured boundary conditions. To obtain an adaptive model as the control model for MPC
to predict the current output, the model parameters are updated and adjusted using the
output results from the previous time step. Based on the prediction results, the optimal
control signal for the system is determined by solving an optimization problem under the
conditions of the objective function and constraints. In this study, the optimized control
signal is the cooling capacity provided by the air conditioning supply fans in each area.

 

Adaptive MPC

yu

Figure 10. Schematic diagram of AMPC control principle based on real-time number of people.

4.4.2. MPC Control Model

To establish the adaptive model predictive control controller, it is necessary to develop
the dynamic thermal model of the controlled area and an adaptive model for updating
model parameters. Since the issue investigated in this paper is a Multiple Input Multiple
Output (MIMO) problem, a state-space model is adopted to describe the system dynam-
ics. In order to clearly express the relationship between the inputs and outputs of the
control system, the dynamic thermal model of the building (i.e., Equations (7)–(13)) is
linearized and transformed into a continuous-time linear state-space model, as shown
in Equation (16).

dx/dt = Ax + Bu (16)
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Here, system state matrix x = [Tin,1,Tin,2,Tin,3,Tin,4,Tin,5,Tin,6,Tin,7]T; input matrix u =
[Qin,i,QHVAC,i,Tw,Tout]T (i = 1~7). System matrix:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
Cin,1 ·Rw,1

+ −1
Cin,1 ·Ra,1

+ −1
Cin,1 ·R5,1

0 0 0

0 −1
Cin,2 ·Rw,2

+ −1
Cin,2 ·Ra,2

+ −1
Cin,2 ·R5,2

0 0

0 0 −1
Cin,3 ·Rw,3

+ −1
Cin,3 ·Ra,3

+ −1
Cin,3 ·R7,3

0

0 0 0 −1
Cin,4 ·Rw,4

+ −1
Cin,4 ·Ra,4

+ −1
Cin,4 ·R7,4

1
Cin,5 ·R1,5

1
Cin,5 ·R2,5

0 0

0 0 0 0

0 0 1
Cin,7 ·R7,3

1
Cin,7 ·R7,4

1
Cin,1 ·R5,1

0 0
1

Cin,2 ·R5,2
0 0

0 0 1
Cin,3 ·R7,3

0 0 1
Cin,4 ·R7,4

−1
Cin,5 ·Ra,5

+ −1
Cin,5 ·R1,5

+ −1
Cin,5 ·R2,5

+ −1
Cin,5 ·R6,5

1
Cin,5 ·R6,5

0
1

Cin,6 ·R6,5
−1

Cin,6 ·R6,5
+ −1

Cin,6 ·R7,6
1

Cin,6 ·R7,5

0 1
Cin,7 ·R7,6

−1
Cin,7 ·Ra,7

+ −1
Cin,7 ·R3,7

+ −1
Cin,7 ·R4,7

+ −1
Cin,7 ·R6,7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
7×7

input matrix:

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
Cin,1

0 0 0 0 0 0 1
Cin,1

0 0 0 0 0 0 1
Cin,1 Rw,1

1
Cin,1 Ra,1

0 − 1
Cin,2

0 0 0 0 0 0 1
Cin,2

0 0 0 0 0 1
Cin,2 Rw,2

1
Cin,2 Ra,2

0 0 − 1
Cin,3

0 0 0 0 0 0 1
Cin,3

0 0 0 0 1
Cin,3 Rw,3

1
Cin,3 Ra,3

0 0 0 − 1
Cin,4

0 0 0 0 0 0 1
Cin,4

0 0 0 1
Cin,4 Rw,4

1
Cin,4 Ra,4

0 0 0 0 0 0 0 0 0 0 0 1
Cin,5

0 0 0 1
Cin,5 Ra,5

0 0 0 0 0 − 1
Cin,6

0 0 0 0 0 0 1
Cin,6

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1
Cin,7

0 1
Cin,7 Ra,7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
7×16

To determine the values of the block parameters, R and C, for the dynamic thermal
model, the supply air temperature, air temperature, and wall temperature in each area are
recorded and fed into the model. The calculated R and C are shown in Table 4.

Table 4. Parameters of dynamic building thermal model.

Parameter Value (J/K) Parameter Value (K/W) Parameter Value (K/W) Parameter Value (K/W)

Cin,1 1.5756 × 106 Rw,1 5.2083 × 10−4 Ra,1 0.0013 R1,5 0.5495 × 10−4

Cin,2 1.5756 × 106 Rw,2 5.2083 × 10−4 Ra,2 0.0013 R2,5 0.5495 × 10−4

Cin,3 1.5756 × 106 Rw,3 5.2083 × 10−4 Ra,3 0.0013 R3,7 0.5495 × 10−4

Cin,4 1.5756 × 106 Rw,4 5.2083 × 10−4 Ra,4 0.0013 R4,7 0.5495 × 10−4

Cin,5 2.3634 × 106 Rw,5 — Ra,5 5.5556 × 10−4 R5,6 0.3571 × 10−4

Cin,6 1.4544 × 106 Rw,6 — Ra,6 — R6,7 0.3571 × 10−4

Cin,7 2.3634 × 106 Rw,7 — Ra,7 5.5556 × 10−4

4.4.3. Model Discretization

Discretization of the model involves converting the continuous state-space building
thermal model into a discrete state-space model based on sampling time, which is then
applied to the MPC controller. Combining the continuous-time state-space building thermal
model as shown in Equation (16) with the cooling load demand model, the discrete-time
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state-space model can be represented as Equations (17) and (18), which is used for predicting
the evolution of the system in the MPC optimal control strategy.

xk+1 = Adxk + Bduk (17)

yk = Cdxk (18)

where Ad and Bd represent the discrete results of the system matrix A and the input matrix
B at the sampling time, respectively; yk is the predicted result vector containing the indoor
air temperatures of each subzone.

4.4.4. Control Conditions

MPC control mainly consists of four parts: the objective function, constraints, system
dynamics, and current state. Among these, system dynamics and current state refer to the
building dynamic model and initial conditions. The objective of the MPC controller is to
minimize the power consumption of the air conditioning fan under real-time passenger
flow conditions. Therefore, at each time step, the objective of the MPC controller, as shown
in Equation (19), is to achieve stable temperature control and minimize the air conditioning
fan power demand within the prediction horizon, denoted as “N”. The prediction horizon
(N) at each sampling time refers to the duration from the next time step to the end of the
simulated control.

min J =
N−1

∑
0

(
Xk

in − Xre f

)T
Q
(

Xk
in − Xre f

)
+
(

UK
)T

R
(

UK
)
+
(

XN
in − Xre f

)T
F
(

XN
in − Xre f

)
(19)

where Xref is the setpoint for air temperature; the three terms in the equation represent the
weighted sum of errors, the weighted sum of inputs, and the weighted sum of terminal
errors, respectively. Q, R, and F are weights assigned to each term according to the desired
control effect.

The constraints of the MPC controller are defined by Equations (20) and (21), which
include limits on indoor air temperature and the cooling capacity provided by the air
conditioning system. Throughout the control period, the indoor air temperature is con-
strained to be within 0.5 ◦C of the setpoint, and the cooling capacity provided by the air
conditioning system should not be less than 0 W. Utilizing the aforementioned objective
function, inequality constraints, and discrete-time state-space model, the MPC controller is
formulated as a linear optimization problem. Due to its high computational efficiency and
ease of solution, it facilitates optimal control in practical applications.

−0.5 ◦C ≤ TK
MPC − TK

ref ≤ 0.5 ◦C (20)

0 W ≤ QHVAC (21)

4.5. Test Platform

This study utilizes MATLAB/Simulink software (Version R2023a) to test the designed
adaptive MPC controller to optimize the control effectiveness of the air conditioning system
in the high-speed railway station waiting zone under real-time passenger conditions. In
Simulink, a dynamic thermal model of the waiting area is established, and the accuracy of
this model is validated using site measurement results.

The initial temperature of the area is set to 26 ◦C, and there are a total of 8 diffusers
in each waiting area. The model considers the occupants within the area as internal heat
sources, and detailed parameter settings of the model can be found in Table 5.
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Table 5. Setup of the boundary condition.

Waiting Zone (4) Queue Zone Corridor Zone (2) Remarks

Room size 20 m × 13 m × 5 m 30 m × 8 m × 5 m 30 m × 13 m × 5 m
Supply air inlet Round nozzle; Φ = 0.25 m

Number of supply air inlets 8 14 —
Supply airflow rate 1.57 m3/s 2.74 m3/s —

Supply air temperature 21 ◦C
Internal heat gains Occupants; 134 W/person [34]

Enclosure (checking gate) 31 ◦C
The air temperature outside the control area 29 ◦C
Heat exchange coefficient (thermal coupling) 280 W/(m2·◦C) [30]

Convective heat transfer coefficient (wall with air) 9.6 W/(m2·◦C) [35]
Convective heat transfer coefficient (air with air) 12 W/(m2·◦C) [31]

The zonal control model of the waiting area established using Simulink is shown in
Figure 11. The variable air volume system (VAV) employs adaptive MPC control. The
simulation time is set to 12 h, with the set temperature for each zone being Tref = 28 ◦C. The
supply air temperature, ts, remains at 21 ◦C constant. The heat source for the model is the
real-time number of occupants within a 12 h period. The dynamic simulation time step is
set to 1 s.

Figure 11. Simulation model of the measurement area.

In order to test the control performance of the proposed adaptive MPC control method
and to validate the energy-saving control effect of the proposed control strategy on the
operation of the air conditioning system under real-time passenger conditions, this study
designed three scenarios. The specific details are shown in Table 6. Among these, the
designed capacity for waiting areas 1 and 3, based on the seating arrangement within the
waiting area, is 42 people, while, for waiting areas 2 and 4, it is 82 people. According to
the Railway Passenger Station Design Code [36], the capacity for aisle areas is designed for
10 people, and, for queueing areas, it is designed for 40 people.

Table 6. Simulation scenarios.

Cases Controller Internal Heat Gains

Case 1 PID control Design number of people
Case 2

AMPC controlCase 3 Real-time number of people
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5. Analysis of Simulation Results

5.1. Model Validation

The box plots show the measured values, and the yellow lines show the predicted
values. Based on the actual measurement data, the dynamic thermal model of the building
is validated. A comparison between the predicted and measured temperatures of waiting
area 3 is shown in Figure 12. To quantify the deviation between the predicted and measured
data, two metrics are used to evaluate the predictive performance: Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE), as shown in Table 7. Therefore, the model
established in this study can accurately simulate the temperature variations within the area
and serve as a benchmark model.

Figure 12. Comparison between the predicted and actual indoor air temperatures.

Table 7. Accuracy indices of the dynamic building thermal model.

MAE (◦C) RMSE (◦C)

Indoor Air Temperature 0.176 0.206

5.2. Simulation Results of Air Temperature under Different Conditions

Based on the design conditions in Table 6, the temperature responses of each subzone
are simulated and analyzed. The model parameters are consistent for each condition. The
simulated temperature results of the air conditioning operation for 2 h under different
conditions are shown in Figure 13.

Figure 13a shows the temperature control results of case 1. In case 1, each sub-area
is independently controlled using PID controllers while considering inter-zone thermal
coupling. To compare with the proposed adaptive model predictive control (AMPC) results,
the temperature is set to 28 ± 0.5 ◦C. As shown in the figure, the temperature trends in
each sub-area are basically the same, but none of them can be controlled within the design
temperature range. Moreover, the temperature variations in the queueing area and the
aisle area are greater than that in the waiting area, with the temperature difference in the
queueing area exceeding 2 ◦C with variations in the number of people. Therefore, the PID
controller cannot provide accurate control effects for the proposed zoning control method.

Figure 13b shows the temperature responses of each area in case 2. Case 2 adopts
the adaptive model predictive control, with the control conditions as described
in Section 4.4.1, and the main heat source within the area remains the design occupancy.
It can be observed from the figure that, compared to the PID control, the AMPC can sig-
nificantly improve the temperature control effect. After 30 min, the air temperatures in
each respective area are controlled within the design temperature range. It is noted that
the air temperature in the queueing area is consistently lower than in other areas, with an
average temperature difference of 0.37 ◦C. The control setting time is approximately 11 min,
with a maximum overshoot of 1.7 ◦C, indicating good control performance. To be more
in accordance with the actual operation of the high-speed rail station’s air conditioning
system, the proposed AMPC control method uses the actual passenger flow in each area
as the main heat source. The temperature control response of each sub-area under this
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condition is shown in Figure 13c; at the beginning of the control, the temperature reaches
the temperature setpoint at 12 min, with all four waiting areas reaching the designed
values around 23 min. Meanwhile, under actual passenger conditions, the temperature
changes when the number of people are minimal, with only the queueing area experiencing
significant changes due to drastic fluctuations in the number of passengers, resulting in
temperature variations exceeding the control range from 15 to 25 min and from 70 to
80 min. The aisle areas are adjacent to the queueing area, and the effect of inter-area thermal
coupling causes the air temperatures in these two areas to follow the same trend as the
queueing area. However, due to the lower number of people in these areas, the temperature
changes exceed the set temperature limit. Therefore, under the conditions of the AMPC
controller, the temperature responses of each sub-area within the waiting area are within a
reasonable range, indicating an ideal temperature control effect.

 
(a) (b)  

 

(c) 

Figure 13. Simulation results of temperature in each area under different working conditions:
(a) Case 1; (b) Case 2; (c) Case 3.

In conclusion, the control effect of the proposed AMPC control method is significantly
better than that of the traditional PID control method. Moreover, under real-time pas-
senger conditions, the AMPC controller can quickly control the temperature within the
required range.

5.3. Fan Energy Consumption

The performance of the control scenarios with actual occupancy as the heat source
input undoubtedly exceeds the performance of those with design occupancy. However,
the resulting issue of fan energy consumption should not be overlooked. The energy
consumption of ventilation systems is directly proportional to the air volume and can be
calculated using a formula in Ref. [37]. The main difference between case 1 and case 2
lies in the system’s response dynamic performance indicators, while their energy con-
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sumption is almost the same, so no fan energy consumption estimation is created. The
total energy consumption of the fans running for 12 h in cases 2 and 3 is calculated as
shown in Table 8, and the energy consumption of each area is shown in Figure 14. Using
case 2 as a benchmark, the fan energy saving rate of the zoning control method based on
the real-time occupancy proposed in this paper is approximately 10% to 35% (black square
dot), providing an overall energy saving rate of 28.04%.

Table 8. Energy consumption of ventilation (12 h).

Cases Energy Consumption (kWh) Energy Saving Ratio

Case 1 309.13 —
Case 2 311.72 —
Case 3 224.31 28.04%

Figure 14. Fan energy consumption and energy saving rate (12 h).

6. Conclusions

This paper aims to optimize the ventilation control strategy in the high-speed rail
station waiting area. The field surveys of the waiting hall revealed issues related to the
thermal environment. An improved zoning model was proposed and Simulink (R2023a)
software was utilized to simulate different design scenarios, and the following conclusions
were drawn:

There is a significant thermal imbalance phenomenon in the high-speed rail station
waiting area. The maximum temperature difference in the waiting area is 2.3 ◦C, mainly
caused by the uneven distribution of people in the space.

This paper employs a zoning control model to simulate the dynamic temperature
changes in the research area. By introducing the coefficient of heat exchange between
the adjacent zones under the thermal coupling effect (which is different from the pre-
vious studies in which the zonal model has clear physical partitions), the temperature
simulation results of the zoning control model are in accordance with the actual tem-
perature measurements; thus, the proposed zoning model can accurately simulate real
operating conditions.

The zoning control strategy based on real-time occupancy proposed in this paper
can reduce the controller adjustment time and decrease the fan energy consumption.
Compared to the traditional control methods, the comprehensive energy-saving rate is
approximately 28.04%.

7. Limitations and Future Work

In reality, the thermal coupling process between adjacent zones is relatively complex.
Factors such as turbulent flow near virtual boundaries and temperature differences can
affect the value of the heat exchange coefficient. In practical processes, the heat exchange
coefficient between adjacent zones should vary in real time. However, this paper’s analysis
is limited to validating the effectiveness of the optimization ventilation control strategy
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based on the real-time occupancy in ventilation energy savings under the condition where
the heat exchange coefficient varies linearly with the temperature difference between the
neighboring zones. Therefore, the next stage of research needs to verify the effectiveness
of the optimization control strategy under conditions where the heat exchange coefficient
varies in real time due to differences in turbulence intensity and other factors. Addition-
ally, this paper only selected one high-speed rail station as the research subject. Different
high-speed rail station building layouts and dynamic changes in passengers may vary.
Future applications and validations of the proposed energy-saving control strategies should
be conducted in more high-speed rail buildings to improve the universality of the proposed
optimization control strategies. Furthermore, the heat exchange processes between the
subzones in the zoning method are complex, and there is a strong correlation among the
temperature changes between the adjacent areas. The optimization algorithm used by the
AMPC controller proposed in this paper cannot achieve rapid and accurate adjustment
when facing complex situations. Therefore, the future research should also adopt better
optimization control methods to further improve the performance of the controller, en-
abling the efficient energy-saving control of the ventilation and air conditioning systems in
high-speed rail station waiting areas.
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Abstract: The construction sector, including in developed countries, plays a notable part in the overall
energy consumption worldwide, being responsible for 40% of it. In addition to this, heating, ventilat-
ing and air-conditioning (HVAC) systems constitute the largest share in this sector, accounting for 40%
of energy usage in construction and 16% globally. To address this, stringent rules and performance
measures are essential to reduce energy consumption. This study focuses on mathematical optimisa-
tion modelling to enhance the performance of indirect-contact evaporative cooling systems (ICESs),
a topic with a significant gap in the literature. This modelling is highly comprehensive, covering
various aspects: (1) analysing the impact of the water-spraying unit (WSU) size, working air (WA)
velocity and hydraulic diameter (Dh) on the evaporated water vapour (EWV) amount; (2) evaluating
temperature and humidity distribution for a range of temperatures without considering humidity
at the outlet of the WSU, (3) presenting theoretical calculations of outdoor temperature (Tout) and
humidity with a constant WSU size and air mass flow rate (MFR), (4) examining the combined effect
of the WA MFR and relative humidity (φ) on Tout and (5) investigating how Tout influences the
indoor environment’s humidity. The study incorporates an extensive optimisation analysis. The
findings indicate that the model could contribute to the development of future low-carbon houses,
considering factors such as the impact of Tout on indoor φ, the importance of low air velocity for
achieving a low air temperature, the positive effects of Dh on outdoor air and the necessity of a WSU
with a size of at least 8 m for adiabatic saturation.

Keywords: buildings; HVAC; energy consumption; energy-efficient solution; optimisation

1. Introduction

The clean and effective use of energy production is becoming increasingly important
with the increase in the importance and awareness of environmental problems that have
come as a result of global warming [1–6]. The phenomenon of global warming induces the
creation of greenhouse gases, impacting both nature and humans. This is fuelled by the
unregulated surge in energy consumption, reflective of irregular increases in the global
human population and economic advancements, coupled with the escalating combustion
of fossil fuels. In spite of dedicated endeavours to reduce the interval between traditional
energy sources and renewables, only approximately 30% of the overall global energy need
is fulfilled by green energy technologies [7]. In this context, there is widespread agreement
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within the scientific community that conducting investigations into the efficient control
and utilisation of energy resources and effectively decreasing the consumption of energy
is imperative. This issue affects not just one sector, but the entire spectrum of industries.
Hence, if each sector implemented measures to curtail the energy demand, the escalating
greenhouse gas emissions globally could potentially be halted. Urgent and intensified
actions must be taken to achieve stability as a result. A review of literature studies indicates
that a substantial portion of global energy consumption is attributed to buildings. As an
illustration, in the European Union (EU), buildings contribute 40% of the overall energy
consumption [8]. Tzeiranaki et al. [9] reported that the total energy loss for the EU in 2020
was equivalent to approximately 1086 million tons of oil.

In a study conducted years later, regarding the present annual greenhouse gas emis-
sions within the UK territory, standing at 454 MtCO2, approximately 91 MtCO2 was shown
to be related to the functioning of structures. Notably, 90% of these emissions stemmed from
domestic buildings. The emissions directly associated with constructing new buildings in
the UK during 2018 were estimated to range between 17.0 and 18.5 MtCO2. Specifically,
domestic buildings were shown to be responsible for 9.4 and 8.9 MtCO2, consistently [10].
Hence, the issue of energy consumption is not only significantly high, but also has an
evident impact on the environment.

Buildings’ energy consumption is allocated not only to heating, but also to cooling,
making the impact of cooling significant. According to a study by Rashad et al. [11], the
demand for cooling is on the rise in tandem with the increased desire for enhanced comfort
in buildings. Evaporative cooling is highlighted as a strong contender to meet this demand
due to its cost-effectiveness [12]. Evaporative cooling, as underscored by Chen et al. [13], is
presented as a feasible substitute for mechanical vapour compression in air conditioning,
demanding roughly one-fourth of the electric power compared to vapour compression
refrigeration [14].

Evaporative cooling systems currently available can be categorised into direct-contact
(DC) evaporative cooling as well as ICESs. In evaporative cooling through DC, the air
in need of cooling is brought into DC with the LWF and the need can be met through a
heat transfer (HT) between the WA and the LWF [15]. Evaporative cooling through DC
is suitable for usage primarily in arid, hot environmental conditions, or in spaces that
necessitate both cooling and humidification [16]. Conversely, in ICESs, the interior air
decreases in temperature through auxiliary air, known as the WA, which undergoes cooling
by means of evaporation [17]. From a thermodynamic perspective, the moist pathway
takes in heat from the dry pathway through the process of water evaporation, effectively
cooling the non-moist pathway, whilst the latent heat of vaporising water is released into
the WA. The depiction in Figure 1 illustrates the setup of ICESs.

Figure 1. A comprehensive diagram illustrating a counter-flow ICES.

The metal panel situated amid the product and working air generally functions as
a device that facilitates the exchange of heat between the two air streams, available in
plate form [18,19], tube form [18,20] and heat pipe form [18,21]. ICESs possess the utility
of cooling the product air without altering its specific humidity [22]. Moreover, ICESs
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were chosen for this study due to their avoidance of incorporating contaminated water
droplets into the system, a concern that can arise during operation, posing significant
health risks [23]. As a result, these systems have been extensively employed in residential
structures as HVAC systems for over a century [17].

The theoretical examination of ICESs is relatively intricate, given that the air-cooling
process entails simultaneous thermal and mass diffusion at the interface between the water
film and air. Numerous efforts have been undertaken to achieve a precise comprehension of
the thermal characteristics of these systems. Previous theoretical studies utilised 1D mathe-
matical models [24–28]. Erens and Dreyer [29] assessed three analytical models, revealing
that the optimal configuration for the cooling system is achieved with the proportion of
airflow velocity between the primary and secondary components of approximately 1.4,
presuming an equal MFR. Tsay [30] conducted a numerical investigation of a reverse-flow
and moist surface heat exchanger, revealing that a significant portion of the energy transfer
over the water film was soaked through the film vaporisation process. Guo and Zhao [31]
provided a comprehensive examination of an ICES. The impact of diverse factors, including
the speeds of the fundamental and auxiliary air flows, channel width, inlet φ and the
plate’s wettability, on thermal efficiency was explored. They asserted that a decreased
inlet φ of secondary air, increased plate wettability and a greater velocity rate pertain-
ing to the secondary air in relation to the primary air resulted in an enhanced efficiency
of the refrigeration framework. Halasz [32] introduced a comprehensive mathematical
model for evaporative cooling systems. The model was constructed by developing a set
of four fractional derivative formulas that described evaporation without maintaining an
isentropic condition process with a variable watercourse orientation, chilled fluid and air.
Riffat and Zhu [33] introduced a mathematical thermal and mass diffusion model in their
innovative ICES design, incorporating permeable ceramic and thermal conduit elements.
Their findings suggested the potential for achieving substantial cooling capacity in arid and
breezy weathers. They emphasised the importance of setting the indoor air velocity at an
appropriate level of 0.6 m/s for optimal efficiency. Adam et al. [34] investigated heat and
mass transfer in an ICES, specifically focusing on a crossflow arrangement. A numerical
model was developed to predict condensation in the primary air and was validated against
both numerical and experimental data. The simulations explored different condensation
scenarios in the dry channel under severe operating conditions. The results showed that
condensation states depended on these factors, with lower wettability factors delaying and
reducing condensation. Additionally, increasing the secondary air velocity enhanced con-
densation and improved the cooling capacity. Belarbi et al. [35] theoretically explored water
spray evaporation as a means for natural temperature diminishment in dwellings. Some
researchers have engaged in analogous modelling efforts [36,37]. Maheshwari et al. [38]
assessed the potential energy savings of ICESs. They noted a significantly higher energy-
saving potential in interior areas compared to coastal areas. The study revealed that an
ICES in interior areas was 30% further economically efficient in contrast to a conventional
air-conditioning system.

A comprehensive examination of the existing literature clearly indicated numerous
endeavours towards the theoretical exploration of ICESs. Nevertheless, it is apparent from
previous research that achieving a satisfactory alignment between experimental and theo-
retical outcomes has proven challenging due to the intricate nature of the process and the
inherent limitations in assumptions. In addition, there is a pressing need for further studies
dedicated to innovative ICESs explicitly tailored for residential buildings. Consequently, to
achieve a more thorough understanding of the techno-economic evaluation within such
systems, it becomes imperative to undertake a comprehensive analysis that encompasses
both theoretical research and experimental validation. Hence, in response to the existing
gap in the literature regarding comprehensive modelling or validation through experimen-
tal studies, this research introduces a mathematical framework for the inventive design of
ICESs, which has already undergone testing at a trial site in the southeast of the United
Kingdom. It is anticipated that this study, which meticulously considers various factors, is
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likely to significantly contribute to future perspectives by offering a detailed insight into
the novel modelling of temperature reduction systems along with its initial findings.

2. An Innovative Evaporative Cooling System

This investigation constituted the initial segment of a study focused on an innovative
configuration of an ICES. The primary objective of this phase was to discern the operational
system features via a theoretical examination. In this context, the study examined the
influences of operational and environmental factors, including the temperatures inside and
outside, the MFR, the φ levels of the supplied and the WA and the channel configuration
of the heat exchanger, on the comprehensive efficiency of the system. The setup was
developed and built to provide ventilation and cooling for residential structures.

To this end, a test residence was erected in southeastern UK, illustrated in Figure 2,
with the system installed beneath the roof. The outer measurements of the testing structure
were 7 m in size, 3 m in broadness, as well as 4.3 m in height. It featured a pair of windows,
along with a roof skylight (Velux window), all equipped with double glazing. Nevertheless,
it was evident from the test site that the study was conducted in conditions representative
of a summer climate. Table 1 provides the size of the elements of the trial dwelling. The
walls and roof were insulated with 150 mm of mineral wool, while the floor had a 150 mm
insulation layer.

 

Figure 2. A residence designated for testing purposes located in the southeastern region of the UK.

Table 1. Measurements of the elements in the experimental residence.

Trial Residence Components

Exterior Interior Windows Velux Window Door

Size (m) 7 6.7 1.2 0.75 1.5
Width (m) 3 2.7 0.1 0.1 0.1
Height (m) 4.3 2.45–3.3 1 0.9 2.05

The suggested ICES could be divided into two primary components: the heat ex-
changer unit and the WSU. The system was designed to cool the stagnant indoor air
through humidification in the WSU. Afterwards, the cooled air was directed to the poly-
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carbonate heat exchanger (PHE) unit until the isentropic saturation circumstance was
reached. This process enabled a reduction in the Tfa,in at the reverse-fluid heat exchange
systems. Four PHE sheets were manufactured by connecting 0.2 mm thick PHE sheets
using an adhesive with high thermal conductivity, creating a cross sectional area of 10 mm2.
Figure 3 depicts the square cross-section channels of the PHE for both the inflowing and
outflowing air. Two of the PHE sheets were positioned at the facade of the dwelling, whilst
the remaining two were at the rear, as illustrated in Figure 4.

Figure 3. Square-shaped channels of the heat exchange unit for the warm and cold flows.

 

Figure 4. Square-shaped channels of the heat exchange model for the warm as well as cold flows.

The measurements and the wall measure of how thick the PHE are provided in Table 2.

Table 2. Specifications regarding the size of the polycarbonate heat exchanger.

Heat Exchange Plate Wall Thickness (mm)

Size (m) Width (m) Depth (m) Upper Central Lower

1.7 0.425 0.01 0.8 0.2 0.8

The termination of every per PHE sheet inside the structure was accompanied by an
exhaust duct linked to the top conduits and an intake duct linked to the inferior conduits.
The exhaust and intake ducts had a square shape with inner sizes measuring 60 × 60 mm2.
Both the exhaust and intake ducts were subsequently incorporated into rectangular chan-
nels with interior measurements of 105 × 50 mm2. Ultimately, the oblong conduits linked
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to fans with variable air velocities. The outer extremities of the PHE concluded below the
roof slates, facilitating the drainage of condensed water into the gutters. Conversely, air
purifiers would draw fresh air from under the overhangs. The WSU was regulated with a
valve, controlling the MFR for the sprayed water. Spraying was carried out using tap water
circulating within a copper pipe, having internal dimensions measuring 8 mm in diameter
and 1 m in size, positioned at the central point of the exhaust channel immediately prior to
the thermal interchange apparatus. A straightforward representation of the entire system
is presented in Figure 5.

 

Figure 5. Illustration of the suggested ICES setup.

3. Theoretical Framework of the System

In this part, a precise mathematical description of the innovative ICES is introduced.
The model was divided into two components: a theoretical examination of the WSU and a
numerical analysis of the PHE unit. Initially, the rate of water film evaporation into the WA
was calculated under various operating conditions, and the thermophysical characteristics
of the WA were established at the exit of the WSU. A HT comparison for flow within the
channels was utilised to assess the rate of evaporation. The rate of evaporation depended on
the mass transfer coefficient (K), which was identified by the Sherwood number (Sh). The
Sh, which expresses the relationship between convective and diffusive K, was determined
using correlations involving Reynolds (Re) and Schmidt (Sc) numbers. To calculate the
previously talked about unitless quantities, the thermophysical air attributes at the film
temperature (Tf) were operated. Tf was expressed as stated below:

Tf =
Tlwf + Twa,in

2
(1)

The flow’s characteristic was subsequently established using the Re. The Re is a
dimensionless parameter indicating the relationship between the inertial and viscous forces,
providing insight into the significance of these forces under specific flow conditions [39].
For noncircular tube flows, the Re was calculated based on Dh. As a reminder, below we
wrote out the Re formulation:

Re =
ρVDh
μ

(2)

where
ρ: density (kg/m3);
V: velocity (m/s);
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μ: dynamic viscosity ( kg
ms ).

Dh =
4A
p

(3)

In Equation (3), A represents the duct cross-sectional area, while p indicates the
perimeter submerged in the liquid. In the other calculated demand formulation, the Sc can
be found, and it was written out as follows:

Sc =
v

Dm
(4)

where
v: kinematic viscosity ( m2

s );

Dm: mass diffusivity ( m2

s ).
As apparent from the formulation, the Sc is a unitless factor expressed as the rate

between the momentum and mass diffusivities. It can be employed to delineate fluid
flows involving concurrent processes of momentum and mass diffusion convection [40].
Afterwards, the Sh was calculated using the subsequent equation:

Sh =
KDh
Dm

(5)

Sh is a unitless parameter that signifies the convective ratio to dispersive K. The mean
K was determined by employing the mean Sh in accordance with the below formula:

K =
Shdm

Dh
(6)

The line above the abbreviations in the formula means the average.
To calculate the Sh, the subsequent partially theoretical equation established by

Frossling [41] could be applied:

Sh = 2 + 0.552
√

Re 3
√

Sc (7)

Regarding the water vapour spread coefficient, the curve obtained through the regres-
sion adjustment derived from the dataset of Bolz and Tuve [42] could be employed:

Dm = 1.656 × 10−10T2 + 4.479 × 10−8T − 2.775 × 10−6 (8)

The MFR was determined through the disparity in the humidity concentration between
the WSU and the WA. The water vapour’s fractional pressure at the WSU expressed vapour
pressure of water at saturation in vapour of water vapour concentration (cw) at the WSU
was the water vapour density determined using the fractional pressure and temperature.
The concentration at the WSU is known as the mass fraction of water vapour (mfw).

mfw =
cw

ρ
(9)

At Tlfw, the fractional water pressure in the operational atmosphere (Pw,wa), could be
obtained by multiplying the φ with the saturation pressure of the water vapour (Psat,w), as
indicated in the formulation below:

Pw,wa = φPsat,w (10)

The water vapour concentration in the operational atmosphere (cw,wa) was determined
using ρw calculated based on the fractional pressure and temperature. Then, the following
equation could be used:

mfw,wa =
cw,wa

ρ
(11)
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where mfw,wa: mass fraction of water vapour in the operational atmosphere.
The blowing factor (BF) was determined using the following definition to compute

the adjusted mass transfer coefficient (Kcor):

BF = ln
1 + mfw−mfw,wa

mfw,wa−1
mfw−mfw,wa

mfw,wa−1

(12)

The Kcor was adjusted using:
Kcor = KBF (13)

Lastly, the water MFR resulting from evaporation was computed using the next equation:

.
mw = KcorAtot,wsu(cw − cw,wsu) (14)

where Atot,wsu: the overall HT surface area of the WSU.
Establishing the water MFR through evaporation allowed for the determination of the

temperature and φwa at the WSU exit. The cooled and humidified WA, upon leaving the
spraying duct, was then guided to the counter-flow PHE to lower the temperature of the
entering warm fresh air. Subsequently, the second phase of the simulation effort focused
on examining the HT within the innovative plate-type PHE.

The PHE could be envisioned as a pair of straight channels accompanying the move-
ment of fluid that are thermally linked. Assuming the ducts are of the same size (L) and
transports the streams with heat capacity (cj), the MFR of the streams is represented by (

.
mj)

that lower index and “sa” refers to the stale air and “fa” to fresh air. Therefore, Tsa(x) and
Tfa(x) are the temperature profile to the streams and, here, x refers to the interval through
the channel. The analyses were conducted under steady-state conditions, ensuring that the
temperature profiles remained constant and were not dependent on time. Additionally,
it was regarded as the exclusive HT from a limited quantity of fluid to the fluid particle
inside the second channel at the equivalent location. The quantity of the HT within the
channel due to temperature variations was disregarded. According to Newton’s law of
cooling, the rate of energy alteration within a limited section of the flow was directly linked
to the temperature disparity between that segment and the corresponding component in
the alternate duct:

∂usa

∂t
= ξ(Tfa − Tsa) (15)

∂usa

∂t
= ξ(Tsa − Tfa) (16)

Here, uj(x) is the ratio of the thermal energy to size; also, ξ means the thermal coupling
constant divided to size among channels. This alteration in the internal energy led to a
modification at Tsa. The temporal rate of variation for the stream element transported by
the flow was as follows:

∂usa

∂t
= ψsa

dTsa

dx
(17)

∂ufa
∂t

= ψfa
dTfa
dx

(18)

where ψf = cj
.

mj means the thermal MFR. When rearranging the equations between (15)
and (17) as well as (16) and (18), they could be rewritten as follows:

cj
.

mj
dTsa

dx
= ξ(Tfa − Tsa) (19)

cj
.

mj
dTfa
dx

= ξ(Tsa − Tfa) (20)
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Looking at the rearranged equations above, it could be easily understood that there
was no longer a time dependence because the system was essentially stationary. Moreover,
given that the HT was nearly negligible along the extension of the pipe, it was not feasible
to compute any secondary derivatives at any point x, as indicated by the heat equations,
like in the next equations:

Tsa = Ω1 − Ω2
σ1

σ
e−σx (21)

Tfa = Ω1 + Ω2
σ1

σ
e−σx (22)

Therefore
σ1 =

ξ

ψsa
, σ2 =

ξ

ψfa
, σ = σ1 + σ2 (23)

Also, Ω1, as well as Ω2, are in the mean of the integration constants. Now, to determine
the mean temperatures, with the origin of the temperature points set at 0 and the channel
size established as L, the following formulas arose:

Tsa =
1
L

L∫
0

Tsadx (24)

Tfa =
1
L

L∫
0

Tfadx (25)

Tsa,0 = Ω1 − Ω2
σ1

σ
(26)

Tfa,0 = Ω1 + Ω2
σ1

σ
(27)

Tsa,l = Ω1 − Ω2
σ1

σ
e−σl (28)

Tfa,l = Ω1 + Ω2
σ1

σ
e−σl (29)

Tsa = Ω1 − Ω2
σ1

σ2l
(1 − e−σL) (30)

Tfa = Ω1 + Ω2
σ2

σ2l
(1 − e−σL) (31)

Equations (27)–(31) did not matter at all. By choosing at least two of the temperatures,
the integral constant could be eliminated and, thus, shed light on finding the other four
temperatures. Additionally, the overall transfer of heat could be obtained using these
next equations:

dγsa
dt

=

L∫
0

dusa

dt
dx = Ψsa(Tsa,L − Tsa,0) = ξl(Tfa − Tsa) (32)

dγfa
dt

=

L∫
0

dufa
dt

dx = Ψfa(Tfa,L − Tfa,0) = ξl(Tsa − Tfa) (33)

γ represents the overall transfer of heat, whilst u means the internal energy. As is known
from the law of energy conservation, it could be understood from the above equations
that the overall result of energy changes was zero. The above equation, given as the mean
temperature differences, is defined in the literature as logarithmically average temperature
difference, which is one of the measures of heat exchanger efficiency.
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4. Results and Discussion

This section first begins with a theoretical evaluation of the effects of the WSU size,
WA velocity and Dh on the amount of EWV. Accordingly, Figure 6a–c below was created
for the theoretical evaluation.

 

 

(a) (b) 

(c) 

Figure 6. (a) Merged impacts of Lwsu and Dh onto the quantity of EWV. (b) Collective influence of
Lwsu and the vwa on the quantity of EWV. (c) Joint effects of Dh and vwa on the quantity of EWV.

In an alternative investigation, the temperature without considering humidity at the
exit of the WSU and the proportion of moisture in the WA was individually scrutinised
at the WA inlet temperatures of 17 ◦C, 20 ◦C, 23 ◦C, 26 ◦C and 29 ◦C. The outcomes are
depicted in Figure 7a–e, and the theoretical representation of the WSU size was provided.
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(a) (b) 

(d) 
(c) 

Figure 7. Cont.
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(e) 

Figure 7. (a) Depicting the variation in the size of the WSU, the Tdb and the φ of the WA at the exit of
the WSU concerned a temperature of 17 ◦C, (b) at 20 ◦C, (c) at 23 ◦C, (d) at 26 ◦C and (e) 29 ◦C.

As indicated in the figures, it was evident that the temperature and φ of the WA, as
extensively discussed in the literature, played a crucial role in defining the capacity of
the evaporative cooling system. The findings suggested a trend of decreasing the Tout of
the WA with the increasing size of the WSU. Moreover, it was observed that the φ of the
WA attained saturation beyond a certain threshold for each size of the WSU, deviating
from the peak cooling condition. Nevertheless, a WSU size of at least 8 m was the pivotal
requirement to achieve an adiabatic saturation. Nevertheless, the outcomes indicated that
with an increase in the inlet φ of the WA, both the temperature and φ of the outlet WA
witnessed an upward trend.

In a different segment of the results, the theoretical computation was performed for
the Tout and φ of the WA, considering a constant WSU size and air MFR (Lwsu = 6 m,
vwa = 0.1 m/s). The temperature range was scrutinised from 17 ◦C to 29 ◦C, at 3 ◦C incre-
ments, mirroring the approach taken in the previous analysis, as illustrated in Figure 8a–e.
As evident from the illustrations below, how crucial the Dh is in influencing the WA outlet
temperature became apparent. For instance, the observed Ttwa,out of less than 10 ◦C for a
Dh of 0.3 m was an anticipated occurrence, clearly depicted in the images. However, it was
deduced that the φwa,in did not surpass 50% at its best. As highlighted earlier, the Tout,wa
was markedly impacted by the φwa,in. To illustrate, when the WA entered at a temperature
of 17 ◦C with 70% φ, the Tout,wa decreased to 13 ◦C, whereas, with 20% φ, it dropped
below 10 ◦C.
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(a) (b) 

(d) (c) 

Figure 8. Cont.
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(e) 

Figure 8. (a) As influenced by Dh, the Tdb and the φwa at the WSU exit concerned Twa,in at 17 ◦C, (b)
at 20 ◦C, (c) at 23 ◦C, (d) at 26 ◦C and (e) 29 ◦C.

Another aspect explored independently within the research involved considering the
joint impacts of the MFR and φwa on the Tout, as depicted in Figure 9a–e below. The findings
allowed us to observe that achieving a lower WA temperature in the outlet area required
a significantly low air velocity, which could be attained by humidifying the environment
through the addition of water vapour to the WA, albeit requiring a longer duration.
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(a) (b) 

(d) (c) 

Figure 9. Cont.
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(e) 

Figure 9. (a) In relation to the velocity of the WA, the Tdb and the φwa at the exit of the WSU
concerned Twa,in at 17 ◦C, (b) at 20 ◦C, (c) at 23 ◦C, (d) at 26 ◦C and (e) 29 ◦C.

Figure 10 illustrates a linear increase in the Tfa,in, correlating with both the Tfa,out and
the Tfa,wa.

Figure 10. The inlet temperature of fresh air was influenced by both the Tfa,out and the Twa,in of
the PHE.

In the final analysis, we depicted the impact of Tfa,out on φfa,in in Figure 11a–d. As
per the results, if φfa,out was above 40% and the Tfa,out exceeded 35 ◦C, it indicated that the
thermal comfort range for φfa,in would not be met.
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(a) (b) 

(c) (d) 

Figure 11. (a) φfa,in by φfa,out, as well as WA temperature at the exchanger inlet at φfa,out = 10%
(b) at φfa,out = 20%, (c) at φfa,out = 30%, (d) at φfa,out = 40%.

5. Conclusions

• Enhancing the Dh and extending the size of the WSU could give rise to an increment
in the quantity of water vapour.

• Conversely, accelerating the WA speed would contribute to a diminishment in wa-
ter evaporation.

• When considered in terms of cooling efficiency, it became evident that the temperature
of the WA was just as crucial as its φ. The findings demonstrated a significant reduction
in the Tout of the WA with the rise in WSU size.

• On the flip side, it was proven that the φ in the WA attained adiabatic saturation after
a certain value of the WSU size, which was the wanted status.

• Based on the findings from the optimisation analyses conducted with various inlet air
temperatures, achieving the adiabatic saturation status required a WSU size of at least
8 m.

• In another analysis conducted with a similar approach, the focus shifted to diverse
relative humidities of the WA. The results showed that an increase in the inlet φ of the
WA led to higher temperatures and φ of the WA. This underscored the significance of
selecting an optimal value whilst considering indoor thermal comfort conditions.

• Additionally, the outer temperature and φ of the WA were established for Lwsu = 6 m,
vwa = 0.1 m/s, contemplating severe temperatures of the WA at the interior. The
cumulative impacts of Dh and φ were also assessed. We derived a conclusion that
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the Dh had a notable impact on the Tout of the WA. For a Dh of 0.3 m, the Twa,out fell
below 10 ◦C, which appeared to be highly favourable.

• It was stressed that, for the optimal circumstances to be achieved, the φ in the inlet
WA should be maintained below 50%.

• This study also investigated the impacts of the MFR and φ on the Tout. It concluded
that achieving the desired low WA temperature at the outlet required maintaining a
low air velocity.

• Tfa,in increased proportionally with both the temperature of the WA and the Tfa,out.
• The Tout significantly influenced the φ within the indoor environment. For instance,

assuming φfa,out = 40%, if the Tfa,out exceeded 35 ◦C, it indicated that φfa,in may not
fall within the thermal comfort range, as demonstrated in this study.
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Nomenclature

A: Area [m2] K: Mass transfer coefficient [m/s]
BF: Blowing factor L: Length
c: Specific heat capacity [J/kgK] mf: Mass fraction
D: Diameter [m]

.
m: Mass flow rate [kg/s]

Dm: Mass diffusivity [m2/s] P: Pressure [Pa]
HVAC: Heating, ventilating and air conditioning Re: Reynolds number
ICES: Indirect-contact evaporative cooling system u: Thermal energy
PHE: Polycarbonate heat exchanger x: Distance along the duct
Sh: Sherwood number Sc: Schmidt number
T: Temperature [◦C] EWV: Evaporated water vapour
MFR: Mass flow rate DC: Direct contact
HT: Heat transfer
SUBSCRIPTS
cor: Corrected lwf: Liquid water film
db: Dry bulb out: Outside
f: Film sa: Stale air
fa: Fresh air sat: Saturated
h: Hydraulic tot: Total
in: Inlet w: Water vapour
j: Stream wa: Working air
L: Length [m] wsu: Water-spraying unit
GREEK LETTERS
Φ: relative humidity σ: Constant
ν: Kinematic viscosity [m2/s] ξ: Thermal connection constant
μ: Dynamic viscosity [kg/ms] p: Perimeter [m]
Ω: Constant ρ: Density [kg/m3]
Ψ: Thermal mass flow rate w: Constant
γ: Overall transfer of heat [W]
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Abstract: The heat rejected by outdoor units of split A/C conditioners can impact the ambient
outdoor environment of mixed-mode buildings. Nevertheless, how this environmental impact
may affect the space-conditioning energy use and indoor air pollution is poorly understood. By
coupling EnergyPlus and Fluent, this study examines the effects of outdoor units’ heat rejection
on the building surroundings, building cooling load, and indoor PM2.5 exposure of a six-storey
mixed-mode building. The building had an open-plan room on each floor, with the outdoor unit
positioned below the window. The coupled model was run for a selected day when the building
was cooled by air conditioning and natural ventilation. Five mixed-mode cooling strategies were
simulated, reflecting different window-opening schedules, airflow rates of outdoor units, and cooling
set-points. The results indicate that compared with the always-air-conditioned mode, the mixed-
mode operation could significantly mitigate the negative impact of heat rejection on space-cooling
energy consumption. Increasing the airflow rate of outdoor units led to a lower increase in demand
for space cooling and lower indoor PM2.5 exposure. If one of the six rooms needs to be cooled to
a lower temperature than the others; choosing the bottom-floor room helped achieve more energy
savings and better indoor air quality.

Keywords: building simulation; split A/C conditioners; mixed-mode building; cooling loads; expo-
sure to indoor PM2.5

1. Introduction

In Hong Kong, split A/C conditioners are widely installed in buildings. A split A/C
conditioner consists of a unit installed indoors and a unit installed outdoors. During
cooling, outdoor units reject the heat from indoor units to outdoors. A building interacts
with its ambient outdoor environment by heat convection between the ambient outdoor air
and external surfaces, as well as by the exchange of air between the indoor and ambient
outdoor environment of the building through ventilation and infiltration [1]. The outdoor
air temperature can therefore significantly influence building energy consumption.

As the outdoor units’ heat rejection can significantly influence ambient outdoor tem-
peratures, the heat rejection data have been incorporated in several studies on building
energy use. Chow and Lin [2] used a modelling approach to investigate the temperature
profile of the air within a tall building re-entrant where the outdoor units were located; the
model outputs indicate (1) that the heat rejected by the outdoor units of lower-floor rooms
caused an increase in the temperatures of the air around upper-floor rooms and (2) that
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there was a higher amount of energy required for air conditioning due to this temperature
increase. Many attempts have been made to reduce the negative effects caused by heat
rejection on the energy efficiency of buildings. Chow et al. [3] examined the impacts of
different re-entrant shapes on the space-cooling energy demand of residential buildings and
suggested that outdoor units should be installed in T-shaped re-entrants to achieve better
cooling efficiency. Research by Nada and Said [4] investigated the cooling performance of
outdoor units arranged in different ways in a building shaft and found the layout that was
most effective in terms of reducing space-conditioning energy consumption.

The above studies have shown the impact of heat rejection on the energy efficiency
of sealed air-conditioned buildings, where the occupants kept the air conditioning on and
windows closed. There has been, however, little research looking at how heat rejection may
modify the energy consumption of mixed-mode buildings, which rely on both air condi-
tioning and window-assisted natural ventilation to maintain occupant thermal comfort
while avoiding a significant energy cost for the air conditioning [5]. Motivated by the need
to cut carbon emissions from the building sector, the government of Hong Kong has started
to encourage the implementation of mixed-mode cooling for existing buildings [6]. The
effectiveness of mixed-mode cooling, however, is highly dependent on the ambient outdoor
air temperatures. Opening windows cannot always help maintain indoor air temperatures
at an acceptable level if the difference in temperature between ambient outdoor air and
indoor air is too small and can even result in an energy penalty if the temperature of the
ambient outdoor air is higher than that of the indoor air [7].

Another potential problem with mixed-mode cooling lies in diminished indoor air
quality. Outdoor air pollutants can infiltrate into buildings via external walls, roofs, and
open windows and therefore influence the level of indoor air pollution exposure, which can
have negative impacts on occupant health [8]. Consequently, ambient outdoor air pollution
is highly related to the risk of health problems for people living in mixed-mode buildings.

There is a series of studies that analyse the characteristics of air pollutants around buildings.
There have been both field studies [9–11] indicating that buildings with different locations (e.g.,
urban, rural, and roadside) experienced different levels of ambient outdoor air pollution and
modelling studies [12–14] showing different levels of ambient outdoor air pollution for flats on
different floors of the containing building. Keshavarzian et al. [15] investigated the influences
that different building cross-section shapes might have on the dispersion of air pollutants near a
single building. Cui et al. [16] used a modelling approach to look at how the layout of buildings
in an urban street canyon could affect the dispersion of pollutants around buildings. Xiong and
Chen [17] assessed the impact of horizontal sunshields on the ambient outdoor air pollutant
concentrations of rooms with single-sided ventilation.

Whereas previous research has examined the way in which the concentration of ambi-
ent outdoor air pollutants was influenced by factors including the location, height, building
geometrics, and urban street canyon, there has been little research on how heat rejected
by outdoor units can modify the concentration of the air pollutants around buildings. The
majority of outdoor units are operated to discharge hot air into the outdoor environment.
The high volumes of discharged hot air are likely to influence the airflow near the building,
thereby influencing the dispersion of air pollutants near the building. Although some
studies [18–20] have looked at changes in the airflow patterns around buildings as a result
of heat rejection, their focus was centred on the relationship between the airflow pattern
and the cooling efficiency of outdoor units. The impact of heat rejection on the level of air
pollutants around buildings is still poorly understood.

The literature review concluded that: (1) more attention should be paid to the effect of
heat rejection from outdoor units on the performance of mixed-mode buildings, where the
air conditioning can be switched off and windows can be open under favourable indoor–
outdoor temperature differences and (2) the effect of heat rejection from outdoor units on the
concentrations of air pollutants in the proximity of mixed-mode buildings remains unclear.
The objectives of this study are to examine how heat rejection may influence the ambient
air temperatures and ambient fine particle (also known as PM2.5) concentrations of a
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mixed-mode building and how these influences will change the space-cooling demand and
occupant exposure to indoor PM2.5. The building energy modelling tool EnergyPlus [21]
was employed to estimate the space-cooling demand and occupant exposure to indoor
PM2.5, whilst the CFD software Fluent 2021R1 [22] was employed to estimate the airflow
patterns and the concentrations of outdoor PM2.5 around the building. Several mixed-
mode cooling strategies were simulated in order to demonstrate how ambient outdoor
environmental conditions could vary according to control variables including the window-
opening schedule, airflow rate of outdoor units, and the cooling set-point. By assessing
the building performance under different mixed-mode cooling strategies, the ways in
which a mixed-mode building can be operated to reduce energy consumption and improve
occupant health are discussed.

2. Methodology

2.1. Building Model

The building model was run for a city block that had nine six-storey buildings
(Figure 1a). The nine buildings were arranged in a layout of 3 × 3 and were all identi-
cal in size, orientation, and construction. This type of city block is typical in the dense
urban areas in Hong Kong according to the real estate data source [23]. The building in
the middle was the mixed-mode building of interest. The building had an open-plan room
(floor area: 80 m2; ceiling height: 3.4 m) on every floor, the exception being the ground floor.
Each room had a south-oriented window, which had a height of 1.8 m and was 5.0 m in
width. Stairs, lifts, and the ground-floor space (Figure 1b) were not included in the analysis.
The surrounding buildings were treated as shading and wind-blocking components. The
street canyon was 10 m in width. The model parameters, including the environmental
conditions, fabrics, occupancy pattern, cooling system, and mixed-mode cooling strategies,
are described below.

 

Figure 1. (a) The 3D view of the city block. (b) Section view of the mixed-mode building. (c) The 3D
view of the street canyon. (d) The surface used for drawing contours and vectors.

2.1.1. Environmental Conditions

Data on weather conditions were provided by the Hong Kong Observatory 2021
database [24]. Data on the background levels of outdoor PM2.5 were provided by the Hong
Kong EPD 2021 database [25]. The model was run for a three-day period during which the
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mixed-mode building was cooled using both air-conditioning and natural ventilation via
open windows. The first two days were treated as “warmup days” in order to facilitate
the convergence of results. The outdoor temperatures, wind speeds, wind directions, and
background levels of outdoor PM2.5 for the third day are shown in Figure 2. The mean
values of the weather variables of the selected three-day period can represent the annual
average weather conditions for Hong Kong. The advantage of using a three-day period
is the reduction in computational costs, especially for the Fluent model. Given that the
wind mainly blew from the south towards the north, a southerly wind was simulated for
simplicity. In addition to the southerly wind, a northerly wind was simulated by only
changing the wind direction without modifying the other weather parameters so as to
demonstrate the impact of the wind direction.

Figure 2. (a) Outdoor air temperatures and background outdoor PM2.5 for the third day. (b) The
wind rose diagram for the third day.

2.1.2. Fabrics

This paper used an existing study [26] for the building envelope data (Table 1). The
thermal conductivity of each material was provided by the Buildings Department (BD) [27].
It was assumed that there was no exchange of heat between a room and its adjoining rooms.
The airtightness of the building envelope was modelled using a permeability measurement
(i.e., the rate of air leakage at 50 Pa indoor–outdoor pressure difference). The permeability
was used to demonstrate the impact of different wind pressures on the infiltration rate. The
infiltration rate of the building was first calculated using the ISO 13790 methodology [28]
and then was changed into the permeability (11.5 m3/h/m2) based on the surface area and
volume of the building.

2.1.3. Occupancy Pattern

The occupancy pattern determines both the internal heat gains and period of exposure.
The number of occupants in individual rooms was set as seven to comply with the appro-
priate design occupation density for offices [29]. Occupants were assumed to be present
from 08:00 to 15:00. The generation rates of the heat from people (130 W/person), lights
(12 W/m2), and appliances (15 W/m2) were provided by CIBSE tables [29]. The occupancy
pattern was overlaid on the profile of indoor PM2.5 concentrations to determine occupant
exposure to indoor PM2.5.

68



Buildings 2024, 14, 318

Table 1. The materials and thermal characteristics of individual building fabrics.

Type Materials U-Value (W/m2K) Solar Absorptance
Longwave Emission

Coefficient
Solar Heat Gain

Coefficient (SHGC)

External walls

Mosaic tiles (5 mm) + Cement
(10 mm) + Heavy concrete (100

mm) + Gypsum plaster (10
mm)

3.1 Front: 0.4
Back: 0.5

Front: 0.9
Back: 0.9

Windows Tinted glass (6 mm) 4.6 0.5

Roof

Concrete tiles (25 mm) +
Asphalt (20 mm) + Cement (50
mm) + Polystyrene (50 mm) +

Heavy concrete (150 mm) +
Gypsum plaster (10 mm)

0.4 Front: 0.1
Back: 0.5

Front: 0.9
Back: 0.9

Ground floor
Floor tiles (10 mm) + Gypsum
plaster (10 mm) + Reinforced

concrete (180 mm)
3.0 Front: 0.8

Back: 0.5
Front: 0.9
Back: 0.9

2.1.4. Cooling Device

The cooling device in each room was modelled as a split A/C conditioner. The
specification of the split A/C conditioner was taken from the engineering data provided by
an A/C manufacturer [30]. The split A/C conditioner had a COP of 3.1. The outdoor unit,
which took in air through the inlet on the back and discharged air through the outlet on
the front, was positioned below the window of each room (Figure 1a). The air inlet and air
outlet had areas of 1.1 m2 and 0.9 m2, respectively. To simplify analysis, the impact that the
outdoor unit’s air intake might have on the airflow pattern near the building was ignored.
The outdoor unit could be set up to operate at a high airflow rate of 85 m3/min or a low
airflow rate of 65 m3/min.

2.1.5. Mixed-Mode Cooling Strategies

The mixed-mode building of interest was neither only naturally ventilated nor fully air-
conditioned but relied on a combination of different energy-efficiency cooling techniques.
The techniques used to cool each room included air conditioning and natural ventilation
via an open window. Four air-conditioning patterns were considered, including:

1. (all rooms 27 ◦C + low airflow rate): during occupied hours, all the rooms were cooled to
a set-point of 27 ◦C. The outdoor units were set up to operate at a low airflow rate of
65 m3/min.

2. (all rooms 27 ◦C + high airflow rate): during occupied hours, all the rooms were cooled to
27 ◦C. The outdoor units were set up to operate at a high airflow rate of 85 m3/min.

3. (room five 23 ◦C and the rest 27 ◦C + low airflow rate): during occupied hours, the top-floor
room (i.e., room 5) was cooled to 23 ◦C, whereas the rest were cooled to 27 ◦C. The
outdoor units were set up to operate at a low airflow rate of 65 m3/min.

4. (room one 23 ◦C and the rest 27 ◦C + low airflow rate): during occupied hours, room 1 (i.e.,
the room on the bottom floor) was cooled to 23 ◦C, whereas the rest were cooled to 27
◦C. The outdoor units were set up to operate at a low airflow rate of 65 m3/min.

Two ventilation patterns were considered, including:

A. (no window opening): all the windows in the building were closed. This reflects the
ventilation pattern of a sealed air-conditioned building.

B. (temperature-dependent window opening): a large indoor temperature swing can occur
when the window was open, especially when there is a large indoor–outdoor tempera-
ture difference. This ventilation pattern aimed to comply with ASHRAE 55-2017 [31],
which specifies that in order to reduce the negative impact of a large indoor tempera-
ture swing on occupant thermal comfort, the change in the temperature of the indoor
air during a four-hour period should not exceed 3.3 ◦C. To meet the ASHRAE 55-2017
requirement, the temperatures inside and outside each room were calculated through-
out the simulation period. When the difference in temperature between indoors and
outdoors was in the range of 0 and Tthreshold , the window was open. When the indoor–
outdoor delta temperature was larger than Tthreshold, the window was closed. In both
cases, the window was closed if the air conditioning was on, if natural ventilation
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was not able to keep indoor temperatures below the cooling setpoint, or if no one
was in the room. The value of Tthreshold was determined via a series of simulations,
with Tthreshold varying from 5.8 ◦C (i.e., the difference between the lowest temperature
of the ambient outdoor air and the cooling set-point) to 0 in increments of −0.1 ◦C.
Simulations stopped when the ASHRAE 55-2017 requirement was met; the value of
Tthreshold was then determined.

Mixed-mode cooling strategies were developed by combining the air-conditioning
and ventilation patterns described above. In total, there were five different mixed-mode
cooling strategies to be simulated (Table 2).

Table 2. The five different mixed-mode cooling strategies.

Mixed-Mode Cooling Strategy Air-Conditioning Pattern Ventilation Pattern

Strategy 1A 1 (all rooms 27 ◦C + low airflow rate) A (no window opening)
Strategy 1B 1 (all rooms 27 ◦C + low airflow rate) B (temperature-dependent window opening)
Strategy 2B 2 (all rooms 27 ◦C + high airflow rate) B (temperature-dependent window opening)
Strategy 3B 3 (room five 23 ◦C and the rest 27 ◦C + low airflow rate) B (temperature-dependent window opening)
Strategy 4B 4 (room one 23 ◦C and the rest 27 ◦C + low airflow rate) B (temperature-dependent window opening)

2.2. Simulations

The building model described in Section 2.1 was developed in both EnergyPlus (v9.6)
and Fluent (v2021-r1). EnergyPlus was applied to calculate cooling loads using the equation
for heat balance, model the indoor airflow using the AirflowNetwork model, and calculate
concentrations of indoor PM2.5 using the generic contaminant transport algorithm. Fluent
was applied to model the turbulent airflow near the building using the governing equations
for incompressible airflow and calculate the concentrations of ambient outdoor PM2.5
through a stochastic tracking approach. To ensure the accuracy of the input data (i.e., the
temperatures of ambient outdoor air, ambient outdoor PM2.5 concentrations, wind pressure
coefficients, and temperatures of exterior surfaces), this study adopted a quasi-dynamic
coupling method for EnergyPlus—Fluent co-simulation. The methods and assumptions
used in the simulations are detailed below.

2.2.1. EnergyPlus Simulations

The outputs from Energyplus simulations included exterior surface temperatures,
cooling loads, and concentrations of indoor PM2.5. These variables were calculated at an
interval of 10 min and output hourly.

The temperature of an exterior surface was calculated using the equation:

q′′
asol + q′′

LWR + q′′
conv − q′′

ko = 0 (1)

where q′′
asol is the absorbed heat flux from solar radiation (W/m2), q′′

LWR is the exchange
of long wavelength radiation flux with the air and the surroundings (W/m2), q′′

conv is the
exchange of convective flux with the outside air (W/m2), and q′′

ko is the conduction heat
flux (W/m2).

The cooling load was estimated using the equation:

Qsun_rad + Qinternal surface_rad + Qven + Qinf + Qcond + Qinteral heat − Qcooling = 0 (2)

where Qsun_rad is the heat gain from solar radiation (W), Qinternal surface_rad is the transfer
of radiative heat from the internal surfaces (W), Qven is the ventilation heat gain (W), Qinf
is the infiltration heat gain (W), Qcond is the conduction heat gain (W), Qinteral heat is the
occupant and equipment heat gain (W), and Qcooling is the cooling load (W).
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According to the previous study [32], the heat rejection rate was calculated by adding
up the energy required to cool the indoor space and the energy required for the A/C
operation. The outlet air temperature of the outdoor unit was estimated using the equation:

Tair_outlet =
Qrejected

MairCp,air
+ Tair_inlet (3)

where Qrejected is the rate of heat rejection (kW), Mair is the outdoor unit airflow (kg/s),
Cp,air is the specific heat of air (kJ/kg·K), and Tair_inlet is the temperature of the air at the
inlet of the outdoor unit (◦C).

The indoor level of outdoor-sourced PM2.5 was determined using the generic contami-
nant model [33]. The outdoor-sourced PM2.5 was modelled using a combination of PM2.5
from vehicles and the background levels of outdoor PM2.5 for Hong Kong (described in
Section 2.1.1). The emission rate of PM2.5 from vehicles in the street canyon (Figure 1c)
was 1.13 × 10−7 kg/s, according to a study on the air pollution caused by road traffic [34].
The ingress of the air from the ambient outdoor environment was modelled by assuming
that there were cracks within the building fabrics (external walls, the roof and, when open,
windows). The fraction of pollutant loss caused by the deposition of pollutants in the cracks
(a.k.a. penetration factor) was set as 0.8 for closed windows and 1.0 for open windows [35].
Window opening was modelled assuming a two-way flow. The internal floors, ceilings, and
walls were assumed to have cracks that allowed for the exchange of PM2.5 between different
rooms. The reference air mass flow coefficient of the cracks was assigned according to
the area of the building surface and the permeability of the building envelope, with the
exponent of air mass flow being 0.66 [36]. The rate of the deposition of outdoor-sourced
PM2.5 was set as 0.19 h−1 [37]. It should be noted that the penetration rate and deposition
rate of a particle are strongly related to the size of the particle; however, for simplicity, all
the particles in this study were assumed to have the same size.

2.2.2. Fluent Simulations

The outputs from Fluent simulations included the temperature of the air around the
building, concentration of PM2.5 around the building, and coefficient of wind pressure. Data for
these outputs were obtained from the grid layer that was closest to the building envelope.

The flow field was modelled using a three-dimensional standard k-ε model, which
has frequently been used by similar studies because of its robustness and relatively low
computing costs [38,39]. As in other similar research [16,40], the airflow was assumed to be
numerically stable and was therefore incompressible turbulent. The general form of the
governing equation for the airflow that is incompressible turbulent is written as:

∂

∂t
(∂) +∇·(u∂)−∇·(Γ∂∇∂) = S∂ (4)

where u is the average velocity, S is the source term, Γ is the coefficient of effective diffusion,
and ∂ is the scalar, which can be turbulent kinetic energy (k), rate of dissipation (ε), or
velocity ingredients.

The velocity–pressure coupling was solved using the SIMPLE algorithm. The second-
order method was used to solve the pressure, convective, and diffusive terms. A standard
wall function was assigned to the regions near walls. The time step of the simulation was
1 s. The number of iterations was kept below 600 for each time step. The convergence
of results was obtained when the values of scaled residuals were less than 10−5 for the
continuity equation and less than 10−6 for other equations.
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The distribution of outdoor PM2.5 was determined via a stochastic tracking method
that estimates the particle trajectories by solving the balance of forces acting on the particle.
The equation of the force balance for a particle is as follows:

dvp

dt
= Fd

(
v − vp

)
+

gx

(
ρp − ρ

)
ρp

+ Fadd (5)

where vp is the velocity of the particle, v is the velocity of air, Fd
(
v − vp

)
is the drag force

for every unit mass of the particle, gx is the acceleration due to gravity, ρp is the density of
the particle, ρ is the density of air, and Fadd is the additional acceleration term. No collision
between particles was considered in this study.

A step-by-step report of particle trajectories was used to locate individual particles.
The concentration of particles was determined using a particle-in-box approach. The
equation for the particle-in-box approach is as follows:

C =
Mp∑n

i=1 Ni
k

Vk
(6)

where Mp is the particle mass, Ni
k is the ith particle that is in the box k, and Vk is the volume

of the box k.
As suggested by COST [41] and AIJ [42], a computational domain of the flow field

(Figure 3a) was developed, with the inlet being 5H (H: the building’s height, which was
20 m) away from the city block, the outlet being 15H away from the city block, the sky
being 5H away from the city block, and the lateral boundary being 5H away from the city
block. To meet the size requirement of the validation carried out in Section 2.3, the entire
model was scaled down by a factor of 25. For a reduced-scale model, the independence
of the Reynolds number (Re) should be assessed [16]. The results of pre-simulations show
that the Re values were 2.9 × 105 and 2.6 × 105 at building height and around outdoor
units, respectively. Therefore, the independence requirement [43] that Re at the height of
the building or around the envelope feature should be greater than 1.0 × 104 was met.

The structured grids within the city block (especially near buildings) were dense,
whereas those in the surrounding regions were coarse (Figure 3b). The grid layer closest
to the building surfaces, outdoor units, and ground was 0.001 m in height. This meshing
strategy led to a mean y∗ of around 82, which was within the range of 30–300 required for
a standard wall function [41]. To ensure there was a smooth transition in the size of the
grids, the grids were drawn using an inflation ratio of no greater than 1.2.

An analysis of the grid sensitivity was conducted to keep the model outputs (including
the normalised wind speeds and normalised PM2.5 concentrations for ninety measurement
points on the nominal vertical lines in the street canyon (Figure 1c)) independent of the
grid size. The threshold for grid independence is that the root mean square error (RMSE)
should be below 10%, as used in [15,44]. RMSE was determined using the equation:

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(7)

where i is a measurement point up to n number of measurement points and yi and ŷi are
the results of the measurement point i with two different grid configurations.
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Figure 3. (a) The size of the flow field. (b) The mesh for the city block.

This study tested three different grid sizes (i.e., coarse, basic, and fine grids), with
a refinement factor of 1.1 [41]. The number of cells for the coarse, basic, and fine grids
were 1.9, 3.6, and 7.8 million, respectively. The results show that the RMSE between the
coarse grids and basic grids was 23.1% and the RMSE between the basic grids and fine
grids was only 4.6%. Therefore, the resolution of basic grids was considered sufficient and
was applied to perform the validation performed in Section 2.3 and the parametric studies
carried out in Section 3.

2.2.3. EnergyPlus and Fluent Co-Simulation

The quasi-coupling method was adopted for EnergyPlus–Fluent co-simulation. The
coupling process is shown in Figure 4. First, EnergyPlus was run using the environmental
data (shown in Section 2.1.1) to calculate the temperatures of the exterior surfaces and the
outdoor units’ heat rejection rates. Then, Fluent was run using the outputs from EnergyPlus
(including the temperatures of exterior surfaces and the rates of heat rejection) as boundary
conditions to calculate temperatures of ambient outdoor air, concentrations of ambient
outdoor PM2.5, and coefficients of wind pressure. Finally, EnergyPlus was run using the
modified environmental data that included the temperatures of ambient outdoor air and
concentrations of ambient outdoor PM2.5 output from Fluent to calculate the cooling loads,
concentrations of indoor PM2.5, temperatures of exterior surfaces, and heat rejected by
outdoor units. The data exchange between EnergyPlus and Fluent was handled by Matlab
2020b [45] and took place every hour.
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Figure 4. The coupling process: data exchange between EnergyPlus and Fluent.

Table 3 summarizes the Fluent simulation’s boundary conditions.

Table 3. Boundary conditions of the CFD domain during the coupling process.

Boundary Type Conditions

Ground Wall Non-slip; surface temperatures based on the meteorological data.
Building envelope Wall Non-slip; exterior surface temperatures outputted by EnergyPlus.

Sky and non-inlet/outlet laterals Wall Non-slip; adiabatic.

Domain inlet Velocity inlet Wind speed profile: UZ ; temperature profile: TZ ; turbulence kinetic energy
profile: kZ ; and turbulence dissipation rate profile: εZ .

Domain outlet Pressure outlet Gauge pressure of 0 pa; temperature profile TZ ; turbulence profiles: kZ and εZ .

Outlet of the outdoor unit Velocity inlet Airflow rate: 65 or 85 m3/min; area of the air outlet: 0.9 m2; and temperature
profile of Tair_outlet (see Equation (3)).

It should be noted that UZ and TZ in Table 3 were calculated based on the follow-
ing equations in order to match the wind speed and temperature patterns modelled in
EnergyPlus:

Umet

(
δmet

Zmet

)αmet
(Z

δ

)α

= UZ (8)

Ttro +
LEZ

E +Z − LHtro = TZ (9)

Ttro = TZ ,met − L(
EZmet

E +Zmet
− Htro) (10)

where Umet is the measured velocity of the weather monitoring station (m/s), δmet is the
boundary layer thickness of the velocity profile of the weather monitoring station (m),
Zmet is the height of the velocity sensor of the weather monitoring station (m), αmet is the
exponent of the velocity profile of the weather monitoring station, Z represents the altitude,
δ represents the thickness of the boundary layer of the velocity profile of the site, α is the
velocity profile exponent of the site, L is the air temperature gradient (k/m), E is the Earth
radius, Z is the altitude, Htro is the offset for the troposphere, Ttro is the ground-level air
temperature for the troposphere (◦C ), TZ ,met is the measured outdoor air temperature
of the weather station (◦C ), and Zmet is the height of the air temperature sensor of the
weather station (m).
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The turbulence kinetic energy profile (kZ ) mentioned in Table 3 was determined
according to the following equation:

kZ = 0.5 ×
(

u′2
x,Z + u′2

y,Z + u′2
z,Z
) ∼= 1.5 × u′2

Z (11)

where u′
x,Z , u′

y,Z , and u′
z,Z are the root mean square of the velocity of the wind blowing in

the x-axis, y-axis, or z-axis directions at a height of Z and u′
Z is the root mean square of the

velocity of the streamwise wind at a height of Z .
The turbulence dissipation rate profile (εZ ) mentioned in Table 3 was determined

according to the following equation:

εZ = C0.5
∂ kZ

Ureference
Zreference

α

( Z
Zreference

)α−1
(12)

where C∂ is the dimensionless constant of the standard k-ε model and Ureference is the
reference velocity of the wind at a reference height of Zreference.

2.3. Validation

The simulation tools used herein were validated according to the results from the
literature review and filed measurements. In Sections 2.3.1 and 2.3.2, the grid size was
determined according to the sensitivity analysis carried out in Section 2.2.2.

2.3.1. Airflow around Buildings

Data from a wind tunnel test carried out by the Architectural Institution of Japan
(AIJ) [42] was used to assess the ability of Fluent to accurately model the flow field around
buildings. In this wind tunnel test, nine cubes were arranged in a 3 × 3 array (Figure 5a).
Each cube was 0.2 m in length. The street canyon was 0.2 m in width. As suggested by
COST and AIJ (described in Section 2.2.2), the computational domain was developed using
Fluent. The cube surface’s grid layer height was 0.003 m. The mean y∗ is about 75. The
Fluent model used the boundary conditions of the wind tunnel test.

Figure 5. (a) The cubes used in the test carried out by AIJ. (b) The locations of points used to measure
velocity.

The measurement point (Figure 5b) heights were 0.02 m to measure velocities around
cubes. The normalised velocity was equal to the ratio of the velocity of a point (U∗

z)
and the inflow velocity at the same height (Uz,inlet). The comparison between measure-
ments and simulations is shown in Figure 6. The average of the percentage differences
(100% × (predicted value − measured value)/measured value) was 15.5%, which shows
a good match between the predicted and measured velocities.
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Figure 6. The simulated and measured normalised velocity for individual measurement points.

In addition, the model accuracy was assessed based on three dimensionless metrics,
which were the factor of 2 of observations (FAC2), the fractional mean bias (FB), and the
normalised mean square error (NMSE). The dimensionless metrics were calculated using:

FAC2 =
1
n

n

∑
i=1

ni with ni =

⎧⎨⎩
1, if 0.5 ≤ si

mi
≤ 2

1, if mi ≤ WF and si ≤ WF
0, else

(13)

FB =
2 × (∑n

i=1 mi − ∑n
i=1 si)

∑n
i=1 mi + ∑n

i=1 si
(14)

NMSE =
∑n

i=1(mi − si)
2

∑n
i=1 mi × ∑n

i=1 si
(15)

where ni is the ith data point, s represents the simulation results, m represents the mea-
surement results, and WF is the allowable absolute difference [46]. A CFD model that is
acceptable for use in urban scenarios should meet the following requirements: FAC2 ≥ 0.3,
−0.67 ≤ FB ≤ 0.67, and NMSE ≤ 6 [47,48]. The CFD model developed in this section met
the criteria, as FAC2 is 1, FB is −0.1, and NMSE is 0.03. Consequently, the final k-ε model
in conjunction with the numerical setups could provide accurate estimates of the airflow
patterns around buildings.

2.3.2. The Level of Air Pollution around Buildings

Data from a wind tunnel test carried out by the University of Hamburg [49] were used
to assess the accuracy of ambient outdoor pollutant concentrations predicted by Fluent.
In this wind tunnel test, 21 rectangular blocks (Figure 7a) were arranged in a 3 × 7 array.
Each rectangular block had the same dimensions: 0.15 m length, 0.1 m width, and 0.125 m
height. The street canyon was 0.1 m in width. The CFD domain was developed based
on the suggestions from COST and AIJ (described in Section 2.2.2). Both the grid layers
closest to the block surfaces and the ground have heights of 0.002 m (with y∗ being about
67). The boundary conditions of the wind tunnel test were applied to the Fluent model.
The air pollutant emission source is the block’s bottom (Figure 7a). The emission velocity
was 0.1 m/s, with the emission area being 4.6 cm2.
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Figure 7. (a) The rectangular blocks. (b) The locations of measurement points.

The study used 437 measurement points (Figure 7b) with heights of 0.0075 m for
pollutant concentration measurements. The concentration values were normalised to a
dimensionless K value that was calculated based on the equation:

K =
CmeasuredUrefH2

CsourceQsource
(16)

where Cmeasured is the measured pollutant concentration (ppm), Csource is the pollutant
concentration of the emission source (ppm), Uref is the measured reference velocity at a
height of 0.66 m (m/s), H is the block height (m), and Qsource is the emission rate of air
pollutants (m3/s).

The comparison between the simulations and measurements is shown in Figure 8,
which shows there was a good accuracy between the simulation and the measurement
results. This conclusion was further supported by the metrics that reveal that FAC2 is 1,
FB is −0.1, and NMSE is 0.2. Consequently, the selected k-ε model and stochastic tracking
model, in conjunction with the numerical setups, could provide reliable estimates of the
pollutant concentrations within a city block.
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Figure 8. The simulated and measured normalised pollution levels of individual measurement points
(the profile of the normalised concentrations is shown in the format of log due to sharp increases in
concentrations relative to the strength of emission sources).

2.3.3. Space Cooling Demand and Indoor PM2.5

Data from a field measurement was used to check the accuracy of space-cooling
energy use and indoor pollutant levels predicted by EnergyPlus. A typical Hong Kong
flat was used for field measurements (Figure 9a). The main bedroom of the flat had an
air conditioner, with the COP being 2.4. The characteristics of the building fabrics were
summarised as follows: (1) the rate of heat flow through the external walls, windows,
roof, and ground floor were 3.1, 4.6, 0.42, and 0.54 W/m2K, respectively; (2) the window
had a SHGC of 0.76; and (3) the airtightness of the building at 50 Pa was 10.1 m3/h/m2.
Windows and internal doors remained closed. During the measurement period, the air
conditioner was run to maintain the indoor temperature of the main bedroom at 24 ◦C.

 
Figure 9. (a) The measured flat. (b) The layout of the measured flat.

Measurements were taken from 28–30 September 2017. A power metre (SP2; Broad-
Link, Hangzhou, China) was applied to record the electric energy required to run the air
conditioner in the main bedroom. The PM2.5 level was measured via a calibrated air quality
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monitor (DUSTTRAK 8530 EP; TSI, Shoreview, MN, USA) that was accurate to ±5% and
could measure the pollution level in the range from 0.001 mg/m3 to 150 mg/m3. The
indoor PM2.5 level was measured using the air quality monitor positioned in the middle of
the main bedroom, whereas the outdoor PM2.5 level was measured using the air quality
monitor positioned on the stairs (Figure 9b). The nearby weather station (Kowloon City)
data were used.

To understand the difference in results between measurements and simulations, the
normalised mean bias error (NMBE) and the coefficient of variation of the root mean
squared error (CVRMSE) were applied. ASHRAE Guideline 14-2014 [50] suggests that the
simulation results are reliable if NMBE < ±10% and CVRMSE < 30%. The two errors
were calculated as follows:

NMBE[%] = 100 × ∑n
i=1(yi − yi

∗)
n × y

(17)

CVRMSE[%] = 100 ×
√

∑n
i=1 (yi − yi

∗)2/n

y
(18)

where n is the number of data points, y is the measurement result, y∗ is the simulation
result, and y is the average of all the measurements.

An EnergyPlus model of the measured flat was constructed based on the geometry,
building fabrics, air conditioner, weather conditions, and levels of outdoor PM2.5 described
above. Comparisons were made using the results for September 29, 2017. In general,
the simulation results have good accuracy compared with the measurement results, as
evidenced by Figure 10. The NMBE is 4.5% and the CVRMSE is 7.3%, which meets
ASHRAE requirements. The simulated levels of indoor PM2.5 were also in agreement with
the measured ones, with the values of NMBE (8.5%) being less than 10% and CVRMSE
(10.2%) being less than 30%. Consequently, the selected AirflowNetwork model and generic
contaminant transport model, in conjunction with the numerical setups, could provide
reliable estimates of energy demand for space-cooling and levels of indoor PM2.5.
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Figure 10. Comparisons between the measured and simulated electric energy needed for air condi-
tioning and indoor PM2.5 concentrations.

3. Results

The results presented herein show the ambient outdoor environmental conditions
(i.e., temperatures, PM2.5 concentrations, and airflow patterns), energy demand for space
cooling, and indoor PM2.5 exposure of the mixed-mode building operated using the cooling
strategies described in Section 2.1.5. Based on the data taken from the surface shown in
Figure 1d, the velocity vector, as well as the contours of temperatures and PM2.5 concen-
trations, were drawn to help explain the results. A reference case with no heat rejected by
the outdoor units was simulated so that variations in the surrounding outdoor environ-
ment because of heat rejection and the resulting changes in building performance could
be estimated. There are two outdoor unit position scenarios: a leeward scenario, where
the outdoor units are positioned on the leeward side, and a windward scenario, where the
outdoor units are on the windward side (described in Section 2.1.1).

3.1. Ambient Outdoor Temperatures

Figure 11 shows the changes in the temperatures of the outdoor air around individual
rooms due to heat rejection. The positive values represent that, compared with the reference
case, the temperature increases.
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Figure 11. Changes in the temperature of the outdoor air around individual rooms caused by heat
rejection from outdoor units under different mixed-mode cooling strategies (the grey background
indicates that the outdoor unit was on).

3.1.1. Windward Scenario

Strategy 1A reflects those from previous modelling studies [17,18] examining the
influence of heat rejection on the energy efficiency of sealed air-conditioned buildings, with
heat rejection resulting in higher temperatures for the outdoor air around the building
during the entire working period (Figure 11a). The increase in temperature for the outdoor
air around individual rooms ranged from 0.1 ◦C to 1.4 ◦C. Averaged over the working hours,
room 2 saw the greatest temperature increase. This was because whereas the hot air from
each outdoor unit moved upwards because of the buoyancy effect, the conflict between the
downward wind movement and the upward hot air movement kept the heat accumulated
at second-floor height (Figure 12a). Room 5 saw the lowest temperature increase, since the
downward wind took away the heat rejected by its outdoor unit (Figure 12a).
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Figure 12. The contours of outdoor temperatures and velocity vectors within the street canyon at
10:00 with different mixed-mode cooling strategies and wind directions.

Compared with Strategy 1A, Strategy 1B shows that the temperature increase was elim-
inated or reduced at certain times during the working period (Figure 11b). No changes in the
temperature of the outdoor air around individual rooms were observed from 08:00 to 11:00,
during which all the outdoor units were switched off. During the period from 11:00 to 15:00,
the increase in the temperature of the outdoor air around individual rooms was reduced to
a range of 0.1 ◦C to 1.2 ◦C. This range was brought down further by Strategy 2B (Figure 11c),
largely due to the fact that the outlet air temperature of the outdoor unit decreases as the
airflow rate of the outdoor unit increases (according to Equation (1)).

When modelled under Strategy 3B, the temperature of the outdoor air around each
room increased during the period from 08:00 to 11:00 (Figure 11d). This result is in line
with Figure 12b. This is because the hot air from room 5’s outdoor unit was dispersed by
the downward wind and caused the outdoor air temperature to increase around rooms
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1 to 4. The results for Strategy 4B show that the temperature of the outdoor air around
room 1 increased during the period from 08:00 to 11:00 (Figure 11e). This was caused by
the trapped heat of the heat rejection from the outdoor unit of room 1 due to the downward
wind (Figure 12c).

3.1.2. Leeward Scenario

The leeward scenario predicted an increase in the temperature of the outdoor air
around individual rooms operating under Strategy 1A (Figure 11f). However, the leeward
scenario shows a 1.6 ◦C greater temperature increase than the windward scenario. This
result was because of two reasons: (1) under the windward scenario, wind dispersed part
of the discharged heat (Figure 12a), and (2) under the leeward scenario, most of the heat
was accumulated around the building (Figure 12d). The higher-floor rooms saw a higher
temperature increase because the outdoor units’ rejected heat moved upwards.

For rooms 1 to 4, there was no significant difference between Strategy 1B and Strategy
3B on the temperature increase (Figure 11g,i). Room 5, on the other hand, saw a greater
temperature increase under Strategy 3B than under Strategy 1B. This result was due to
two factors: (1) more heat was rejected for room 5 as the cooling set-point was lower and
(2) the rejected heat of room 5’s outdoor unit moved upwards (Figure 12e). An increase in
the temperature of the outdoor air around individual rooms was predicted by Strategy 4B
during the period from 08:00 to 11:00 (Figure 11j) because of the rejected heat of room 1’s
outdoor unit moved upwards (Figure 12f). It should also be noted that under Strategy 4B,
the outdoor unit of room 2 was switched on one hour earlier (10:00–11:00) because the hot
air coming from the room 1’s outdoor unit caused higher ambient outdoor air temperatures.

3.2. Ambient Outdoor PM2.5 Concentrations

The changes in the concentrations of outdoor PM2.5 around individual rooms caused
by heat rejection are shown in Figure 13, where the positive values represent higher
concentrations compared with the reference case, whereas the negative values represent
lower concentrations.
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Figure 13. Changes in the concentrations of outdoor PM2.5 around individual rooms caused by heat
rejection from outdoor units under different mixed-mode cooling strategies (the grey background
indicates that the outdoor unit was on).

3.2.1. Windward Scenario

The results of Strategy 1A indicate a reduction in the concentrations of outdoor PM2.5
around rooms 1 to 4 during the entire working period, with the average reduction for each
room ranging from 0.8 μg/m3 to 10.6 μg/m3 (Figure 13a). This reduction was attributed
in large part to the variation in the characteristics of the airflow within the street canyon.
The air flow pattern at the bottom of the street canyon is affected when considering the
hot air coming from outdoor units in the simulation. The airflow vortex was moved to the
leeward side of the surrounding building (Figure 14a,b). This means that the fine particles
released from the middle of the street canyon were prone to be blown to the surrounding
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buildings by the wind. A reduction in the levels of outdoor PM2.5 around rooms 1 to
4 was predicted by Strategy 1B during the period from 11:00 to 15:00 (Figure 13b); this
was again related to the movement of the airflow vortex at the street canyon’s bottom.
Strategy 2B led to a greater reduction in the ambient outdoor PM2.5 concentrations than
Strategy 1B (Figure 13b,c), largely because the position of the airflow vortex was closer to
the surrounding buildings, so the airflow rate of the outdoor units increased (Figure 14c).

 

Figure 14. Cont.
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Figure 14. The contours of the concentrations of outdoor PM2.5 and velocity vectors within the street
canyon at 10:00 with different mixed-mode cooling strategies and wind directions and with and
without considering heat rejection from outdoor units.

The results of Strategy 3B show no obvious changes in the levels of outdoor PM2.5
around the building (the exception being room 4, which saw a slight concentration decrease)
during the period from 08:00 to 11:00 (Figure 13d). This was because of two reasons: (1) the
heat rejection from room 5 was found to only change the pattern of the airflow near
room 4 and room 5 (Figure 14e,f) and (2) the PM2.5 from the middle of the street hardly
moved to room 5 when there were no winds blowing them upwards. A reduction in the
concentrations of outdoor PM2.5 around rooms 1 to 4 could be seen under Strategy 4B
during the period from 08:00 to 11:00 (Figure 13e). This was because the heat rejected
by room 1 interfered with the upward wind that transported PM2.5 from the street to the
surroundings of the building (Figure 14g,h).

3.2.2. Leeward Scenario

The results of Strategy 1A show an increase in the concentration of outdoor PM2.5
around room 1 and a reduction in the concentrations around rooms 2 to 5 during the entire
working period (Figure 13f). When heat rejection was absent, PM2.5 from the street was
blown to the surroundings of individual rooms by the upward wind (Figure 14j). Above
room 1’s outdoor unit there was a clockwise airflow vortex if heat rejection was considered
in simulation (Figure 14i). This vortex could trap PM2.5 that was transported by upward
winds, resulting in an increase in the levels of outdoor PM2.5 around room 1. Rooms 2 to
5 saw lower levels of ambient outdoor PM2.5, likely attributable to more PM2.5 from the
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street being contained near room 1. Similarly, higher levels of outdoor PM2.5 around room
1 and lower levels of outdoor PM2.5 around rooms 2 to 5 could be seen under Strategies
1B, 2B, and 3B during the period from 11:00 to 15:00 or under Strategy 4B during the
entire working period (Figure 13g–j). When modelled under Strategy 3B, no change was
seen in the concentrations of outdoor PM2.5 around rooms 1 to 4 during the period from
08:00 to 11:00 (Figure 13i). However, during the same period, room 5 experienced higher
ambient outdoor PM2.5 concentrations due to the clockwise vortex above its outdoor unit
(Figure 14d).

3.3. Cooling Loads

The building cooling loads were determined by summing the cooling loads of rooms 1
to 5. The changes in the building cooling loads due to heat rejection are shown in Figure 15,
where the positive values represent higher cooling loads compared with the reference case.

Figure 15. Changes in building cooling loads because of heat rejection under different mixed-mode
cooling strategies.

3.3.1. Windward Scenario

As expected, the increased ambient outdoor temperatures described in Section 3.1.1
resulted in higher building cooling loads. Compared with Strategy 1A, Strategy 1B led to
a 43.2% reduction in the increase in cooling loads (Figure 15). This result is in line with
Figure 11a,b, showing that each room experienced lower ambient outdoor temperatures
under Strategy 1B than under Strategy 1A. Similarly, the building cooling load predicted by
Strategy 4B was 15.9% lower than that predicted by Strategy 3B (Figure 15) because of the
increase in the temperature of outdoor air around rooms 2 to 5 being lower under Strategy
4B than under Strategy 3B (Figure 11d,e). Strategy 2B showed energy saving benefits, as
the predicted building cooling load increase was 13.3% lower than Strategy 1B (Figure 15).
This means increasing the airflow rate of outdoor units can improve energy efficiency.

3.3.2. Leeward Scenario

Higher outdoor temperatures meant greater building cooling loads, which is similar to
the windward scenario. The trend between different strategies was: Strategy 1A resulted in
the greatest cooling-load increase, followed Strategy 4B, then Strategy 3B, then Strategy 1B,
and finally Strategy 2B (Figure 15). The cooling-load increase predicted by the windward
scenario was on average 60.6% smaller than that predicted by the leeward scenario. The
difference between Strategy 3B and Strategy 4B was the opposite of that observed under
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the windward scenario, with Strategy 3B leading to a 11.7% lower increase in cooling loads
than Strategy 4B.

3.4. Indoor Levels of PM2.5 Exposure

The results of exposure to indoor PM2.5 were averaged over the working hours.
Changes in the exposure of each room caused by heat rejection are shown in Figure 16,
where the positive values represent a greater exposure in comparison with the reference
case and the negative values represent lower exposures.

Figure 16. Changes in the exposure concentrations of individual rooms caused by heat rejection
under different mixed-mode cooling strategies.

3.4.1. Windward Scenario

The results of Strategy 1A indicate that people in rooms 1 to 4 had reduced exposure
to indoor PM2.5 (Figure 16a), which was attributable to the reduced levels of ambient
outdoor PM2.5 (Figure 13a). No change in exposure was seen for room 5 (Figure 16a),
as the concentrations of outdoor PM2.5 around room 5 remained the same (Figure 13a).
Compared with Strategy 1B, Strategy 2B led to lower indoor PM2.5 exposures for rooms 1 to
4 (Figure 16a), showing the potential health benefit of increasing the airflow rates of outdoor
units. Strategy 3B led to higher indoor PM2.5 exposure than Strategy 4B (Figure 16a),
mainly because the heat rejection from room 1 had a much stronger modifying effect on
the concentrations of outdoor PM2.5 around the building than the heat rejection room 5
(Figure 14e–h).

3.4.2. Leeward Scenario

Higher levels of indoor PM2.5 exposure for room 1 were seen under each strategy
(Figure 16b). This is because, as shown in (Figure 14i), there were greater concentrations of
ambient outdoor PM2.5 due to the formation of a vortex above the outdoor unit of room
1. People in rooms 2 to 5, on the other hand, experienced lower levels of indoor PM2.5
exposure because of the reduction in the concentrations of outdoor PM2.5 around rooms
2 to 5 (Figure 13f–j). Strategy 2B led to lower indoor PM2.5 exposures for each room than
Strategy 1B (Figure 16b), showing the potential health benefit of increasing the airflow rates
of outdoor units.
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4. Discussion

4.1. Main Findings

The simulation results indicate that the building had higher cooling loads because
of the higher temperatures of ambient outdoor air due to heat rejection. This adverse
energy effect varied in response to the wind direction, with simulation results showing
that the cooling-load increase predicted by the windward scenario was 60.6% lower than
that predicted by the leeward scenario. Under the leeward scenario, the heat rejected by
the lower-level outdoor units could even result in the increased use of air-conditioning for
rooms on higher levels. Averaged over the windward and leeward scenarios, the cooling-
load increase due to heat rejection was 40.9% lower when windows were open based on
temperature difference than when windows remained closed. This finding means that
the influence of heat rejection on space-cooling energy consumption can vary significantly
between sealed air-conditioned and mixed-mode buildings. Although an increase in the
airflow rate of outdoor units could reduce the rate of ambient outdoor temperature increase
due to heat rejection and thus lead to a smaller increase in cooling loads, this may not be
possible in all buildings, for example those with concerns about noise. Additionally, the
increased costs of running fans may reduce or even offset this energy benefit.

The position of the room that was cooled to a lower temperature than the others had
a major influence on the cooling-load increase due to heat rejection, with the results of
the windward scenario showing that the cooling-load increase predicted by Strategy 4B
(room 1 being cooled to 23 ◦C and rooms 2 to 5 being cooled to 27 ◦C) was 15.9% lower
than that predicted by Strategy 3B (room 5 being cooled to 23 ◦C and rooms 1 to 4 being
cooled to 27 ◦C). The results for the windward scenario also indicate that Strategy 4B led to
a lower indoor PM2.5 exposure than Strategy 3B. An implication of these two findings is
that under the windward scenario, an activity (e.g., meeting) that requires the indoor space
to be cooled to a relatively low set-point temperature should take place in room 1 (i.e., the
room on the bottom floor) rather than room 5 (i.e., the room on the top floor) in order to
reduce space-conditioning energy consumption while improving indoor air quality.

Under the windward scenario, occupants experienced lower levels of exposure to
indoor PM2.5 since the heat rejection led to lower levels of ambient outdoor PM2.5. The
results for the leeward scenario show that occupants in room 1 faced higher levels of
exposure to indoor PM2.5 when heat rejection was present. In addition, it was found
that the windward scenario led to lower cooling-load increases than the leeward scenario.
Therefore, the location of outdoor units is a critical design decision. Outdoor units should
be placed on the windward side of a building. Under both wind direction scenarios, higher
airflow rates for outdoor units led to lower ambient outdoor PM2.5 concentrations and thus
contributed to better indoor air quality. Therefore, in addition to user preference, ease of
installation, and cost, the decision to choose an outdoor unit may also come down to the
rated airflow rate.

4.2. Limitations and Future Research

This study carries with it several limitations. Whereas the typical arrangement of
outdoor units in Hong Kong was applied to the modelled building, future research on
buildings that have different arrangements of outdoor units (e.g., outdoor units installed
in re-entrants) is worth investigating. In addition, placing outdoor units on a single side
is an important modelling simplification and must be acknowledged. Further work is
ongoing to simulate the scenario that outdoor units are installed on both the windward and
leeward sides. Previous studies [17,19] have suggested that the airflow pattern in a street
canyon can change significantly between different aspect ratios. Further work is required
to test more different aspect ratios to validate the sensitivity of the model. Indoor-sourced
fine particles play an important role in indoor PM2.5 exposure but are not considered
herein. Heat rejection can influence the air exchange between the indoors and outdoors,
thereby affecting the ability of indoor-sourced fine particles to exfiltrate. Fine particles
from both indoor and outdoor sources will be modelled in future research. Outdoor units
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and envelope features such as external shading devices and balconies could be closely
connected because they are usually positioned next to each other. The presence of external
shading devices or balconies is likely to affect the flow pattern of the air discharged from
outdoor units. Therefore, the combined effects of outdoor units and envelope features on
the indoor environmental conditions should be investigated in future research.

Caution is also needed when generalising simulation results to the buildings that have
the same geometrics as the modelled building. This study assigned a single orientation,
a single occupancy pattern, and a single vertical profile of wind speeds to the model.
However, it is acknowledged that variations in these model inputs may significantly
influence the model outcomes. In terms of orientation, due to a greater exposure to the sun,
a room with south-facing windows generally has higher indoor temperatures compared
with its counterparts with non-south-facing windows [51]. This means that people in rooms
with non-south-facing windows may air condition their rooms less frequently to maintain
indoor thermal comfort. A decreased use of A/C can reduce the effects of heat rejection on
space-cooling demands and indoor PM2.5 exposure and thus influences the study results.
The occupancy pattern determines both the internal heat gains and the periods when rooms
are occupied and thus could have great impacts on space-cooling demands and indoor
PM2.5 exposure. The simulations were run based on an occupancy schedule representative
of offices, and further research on whether similar results can be obtained from different
occupancy schedules (e.g., household occupancy) is required. All simulations were run
with a vertical profile of wind speeds that reflect a dense urban environment. The hot air
discharged by outdoor units can influence the airflow pattern within the street canyon and
therefore changes the conditions of the outdoor air around the building. The impact of
the hot air on the airflow pattern within the street canyon, however, is likely to vary when
wind speeds are modified to reflect a less dense urban environment.

5. Conclusions

By using a coupled EnergyPlus–Fluent modelling approach, this work has been able
to investigate how heat rejection from outdoor units influenced the ambient outdoor
environment of a mixed-mode building operating under different cooling strategies and
how these influences affected space-cooling demands and indoor PM2.5 exposure. The
main outcomes of this study are:

1. The mixed-mode building had higher cooling loads because of the increase in ambient
outdoor temperatures due to heat rejection. This adverse energy effect was more
significant when windows remained closed than when windows were open based on
temperature difference;

2. Placing outdoor units on the windward side is beneficial to disperse the rejected heat
from outdoor units, whereas the leeward scenario may “trap” the heat. Therefore, the
windward scenario had 60.6% lower cooling load increase than the leeward scenario;

3. In the windward scenario, PM2.5 from the street was kept away from the buildings
due to the airflow vortex generated by the heat rejection of the outdoor units, so the
indoor PM2.5 was lower. Under the leeward scenario, the bottom-floor room saw
higher ambient outdoor PM2.5 concentrations due to heat rejection; occupants in the
bottom-floor room thus experienced greater exposure to indoor PM2.5;

4. The combination of outcomes (2) and (3) indicates that outdoor units should be placed
on the windward side of a building in order to reduce both the space-cooling demands
and exposure to indoor PM2.5;

5. An increase in the airflow rate of outdoor units offers the co-benefits of energy savings
and occupant health under both the windward and leeward scenarios;

6. Under the windward scenario, if one room needs to be cooled to a lower temperature
than the others, the bottom-floor room is a better choice than the top-floor room for
energy savings and occupant health.
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Abstract: Development in economics and social society has led to rapid growth in electricity demand.
Accurate residential electricity load forecasting is helpful for the transformation of residential energy
consumption structure and can also curb global climate warming. This paper proposes a hybrid
residential short-term load forecasting framework (DCNN-LSTM-AE-AM) based on deep learning,
which combines dilated convolutional neural network (DCNN), long short-term memory network
(LSTM), autoencoder (AE), and attention mechanism (AM) to improve the prediction results. First,
we design a T-nearest neighbors (TNN) algorithm to preprocess the original data. Further, a DCNN is
introduced to extract the long-term feature. Secondly, we combine the LSTM with the AE (LSTM-AE)
to learn the sequence features hidden in the extracted features and decode them into output features.
Finally, the AM is further introduced to extract and fuse the high-level stage features to achieve the
prediction results. Experiments on two real-world datasets show that the proposed method is good
at capturing the oscillation characteristics of low-load data and outperforms other methods.

Keywords: residential short-term load forecasting; deep learning; dilated convolutional neural
network; long and short-term memory network; attention mechanism

1. Introduction

With the development of smart cities and smart homes, the daily electricity units of
the residents are becoming increasingly numerous, resulting in a more complicated power
system. As shown in Figure 1, a typical residential power supply includes biomass power
generation, photovoltaic power generation, hydropower generation, and wind power
generation. The residential electricity demand poses a huge potential threat to maintaining
the stability of the power system. However, the existing energy supply structure is still
dominated by thermal power generation, and the carbon emissions of thermal power gen-
eration will lead to climate warming, which, on the contrary, leads to an increase in energy
demand. Hence, accurate residential power load forecasting is important. Generally, power
load forecasting is divided into three categories: short-term load forecasting, medium-term
load forecasting, and long-term load forecasting [1]. Short-term load forecasting can predict
the sum of energy consumption within a few minutes or hours, which can optimize the
energy dispatch and reduce the micro-grid primary energy loss [2]. Further, residents can
reduce electricity costs by formulating electricity utilization strategies with the current
pricing scheme. In addition, short-term load forecasting provides a judgment basis for
some abnormal power information and guarantees the safety of people’s lives and property.
Therefore, in this paper, we mainly consider how to design a suitable short-term load
forecasting method to improve forecasting accuracy.
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Figure 1. Structure of residential energy supply.

Short-term load forecasting is a time series forecasting problem. The factors that
influence residential short-term load forecasting are complex and significant, including
social events, electricity price adjustments, human behavior, and other uncertainties. Ini-
tially, researchers relied on artificial feature analysis to obtain empirical models, which
is time-consuming and inaccurate [3]. Due to the widely different distribution of resi-
dential electricity consumption, load forecasting tends to utilize machine learning and
deep learning to optimize the results. Support vector machine (SVM) [4], autoregressive
integrated moving average (ARIMA) [5], extreme gradient boosting regressor (XGBoost) [6],
artificial neural network (ANN) [7], and long short-term memory network (LSTM) [8] are
the most commonly used methods [9]. Machine learning methods exhibit some benefits:
(1) they have high computational efficiency; (2) they are highly interpretable in their basic
form [10]. Although machine learning methods perform well in load forecasting, deep
learning for load forecasting can obtain better results. First, deep learning does not require
the creation of feature engineering in machine learning. Second, deep learning has a good
generalization [11].

Currently, many studies have focused on the accuracy of short-term load forecasting.
However, they have ignored trend tracking in oscillating data, especially in valley data.
The oscillating data are likely to correspond to the operation of some power consumption
units. If this situation cannot be predicted accurately, then for future fault monitoring and
other studies, the system’s stability will be challenging to achieve because of the increased
likelihood of misjudgment. Therefore, this paper proposes a hybrid model, i.e., DCNN-
LSTM-AE-AM, for residential short-term load forecasting. Figure 2 shows the architecture
of the proposed DCNN-LSTM-AE-AM. By broadening the temporal horizon, we utilize
the dilated convolutional neural network to extract temporal features from the time series.
Then, the LSTM-AE is applied to mine the electricity consumption characteristics thor-
oughly. Finally, an attention mechanism (AM) is used to reflect the importance of behaviors
in load prediction. The main contributions of this paper are listed as follows:

• Considering that individual data loss may still occur due to various conditions, we
propose the T-nearest neighbors (TNN) algorithm to solve the problem of missing
values, which can estimate the missing load according to the load data of adjacent
similar days.

• We propose a hybrid short-term residential electricity load forecasting model (DCNN-
LSTM-AE-AM). This proposed model focuses on the trend tracking of oscillating
data, which can be captured with almost no delay, and provides a technical basis for
predicting power failures in advance. Compared with other methods, DCNN-LSTM-
AE-AM can capture the valley load data, which improves the prediction accuracy.

• The proposed DCNN-LSTM-AE-AM model is validated on two real-world datasets
and compared with the existing methods. Experimental results show that this model
improves the prediction results and has a good generalization.
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Figure 2. Architecture of the proposed DCNN-LSTM-AE-AM.

The rest of this paper is organized as follows. Section 2 reviews the related work.
Section 3 proposes the main results on how to design a hybrid short-term residential
electricity load forecasting model. In Section 4, the experimental results are demonstrated,
and some comparisons with the other three models are made. Finally, Section 5 concludes
the paper and future work.

2. Related Work

In this section, we discuss the previous research on short-term load forecasting. The ex-
isting approaches for feature extraction can be divided into three: manual feature screening,
traditional machine learning, and deep earning.

In the early days, load data were less affected by uncertain factors such as human
behavior and climate change. Researchers first processed the data by relying on expert
experience. Then, with the application of some statistical methods, they tried to build a
prediction model. For example, Taylor analyzed the seasonal cycle within the day and week
as the key features and processed them with five statistical methods to obtain an optimal
forecasting result [12]. Statistical methods are rich in theory and highly interpretable for
some specific characteristics. However, due to the growth in the living standard, the
approaches are difficult for experts to interpret the complex data.

With the advance of big data and artificial intelligence, data-driven load forecasting
technologies have received attention extensively [13–17]. The computing capacity of hard-
ware devices has greatly influenced short-term load forecasting. He et al. [18] utilized
ARIMA to design a high-frequency short-term load forecasting model. The model divided
the inputs by season and then used hourly load data to predict energy consumption for
the next month. Cao et al. [19] divided the dataset by the characteristics of similar daily
meteorological conditions and applied ARIMA for prediction. Although the above models
predicted well in the same season, such models based on seasons are extremely dependent
on manual screening and do not have the ability to generalize. Cai et al. [20] proposed an
energy prediction model that combined the K-means and data mining methods to analyze
the energy consumption of 16,000 residential buildings. Mohammadi et al. [21] proposed
a hybrid model based on sliding window empirical mode decomposition (SWEMD) to
predict the power consumption of small buildings. They also proposed an algorithm to
optimize the model parameters. Chauhan et al. [22] designed a hybrid model based on
SVM and ensemble learning for prediction, where load data were processed separately
through hourly and daily resolutions. Experiments in Aguilar Madrid and Antonio [6]
showed that the XGBoost could obtain the best performance from the machine learning
algorithms set. Massaoudi et al. [23] proposed an ensemble-based LGBM-XGB-MLP hybrid
model to improve prediction performance. Although traditional machine learning models
can achieve good results in load forecasting, they all require more effort in the feature
selection and parameter optimization process [11].

Deep learning has received explosive growth in various fields. Some typical networks
for deep learning, such as ANN [24–26], convolutional neural network (CNN) [27], recur-
rent neural network (RNN) [28], and LSTM [29], have been widely used in load forecasting.
Chen et al. [30] added periodic features and utilized a deep residual network (ResNet) to
predict the hourly residential load, whose evaluation performance had been improved.
From the aspect of demand-side management (DSM), Kong et al. [31] proposed an im-
proved deep belief network (DBN) method to forecast 1-h-level loads. Compared with
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others, this method could significantly improve both the day-ahead and week-ahead load
forecasting results. Dong et al. [32] proposed a distributed deep belief network (DDBN)
with Markov switching topology, which improved distributed communication stability
and prediction accuracy.

It should be noted that energy consumption is generated by a variety of complex
factors, so how to utilize the nonlinear models to improve prediction accuracy is the main
consideration. Recently, CNN has injected vitality into short-term load forecasting [33–35].
Amarasinghe et al. [36] tried to apply CNN for prediction on the residential load dataset [37].
Experimental results show that this method is effective, but the prediction accuracy needs
to be improved. Sadaei et al. [38] proposed a hybrid algorithm combining CNN and fuzzy
time series (FTS) for forecasting. This method converted multivariate time series into
multi-channel images. The proposed model overcame some advanced time series models
for short-term load forecasting with better results and solved the problem of over-fitting.

RNN, LSTM, and gated recurrent neural network (GRU) are designed for time-series
data, which is sensitive to temporal features. They can fully mine time-related features
between adjacent data. Rahman et al. [39] utilized RNN to forecast the 1-h commercial and
residential load data in the medium and long-term forecasting and thus realized the load
trend tracking. However, it is challenging for RNNs to achieve convergence on data within
a long time interval. Kong et al. [8] relied on the multi-layer LSTM to predict individual
energy consumption. Compared with others, Kong et al. [8] not only solved the problem
of RNN but also improved the prediction accuracy. Li et al. [40] proposed an improved
GRU to dynamically capture temporal correlations within the forecast period, enabling the
model to adapt to different datasets.

In the field of load forecasting, it is more inclined to utilize the feature extraction
capabilities of the hybrid model to improve forecasting accuracy. Shi et al. [41] proposed
a pooling method based on the LSTM network, which further improved the prediction
accuracy of LSTM through backpropagation and pooling. Jiang et al. [42] proposed a
hybrid model based on CNN and LSTM to predict household energy consumption. Unlike
other combined methods, this method divided the input into two parts: long and short
data. Then, they obtained a result with sufficient feature interaction through data fusion.
Yue et al. [43] combined ensemble empirical mode decomposition (EEMD), permutation
entropy (PE), feature selection (FS), LSTM, and bayesian optimization algorithm (BOA) to
optimize the prediction accuracy. Further, some reasonable explanations were made for the
reconstructed subsequences. Lin et al. [44] proposed an AM-based auto-encoder structure
for LSTM, which provided superior prediction accuracy and had a good generalization.
Wei et al. [45] proposed detrend singular spectrum fluctuation analysis (DSSFA) to extract
trend and periodic components and then input these components into LSTM to improve
short-term forecasting accuracy. Laouafi et al. [46] proposed an adaptive hybrid ensemble
method named CMKP-EG-SVR and optimized the result of the mixture model through a
gaussian-based error correction strategy.

3. Model Architecture of Residential Short-Term Load Forecasting

The goal of residential short-term load forecasting is to improve residents’ electric-
ity experience. It is an essential part of energy supply management. In this section, we
mainly introduce a complete forecasting architecture that can improve residential load
forecasting accuracy.

Figure 3 shows the process of residential short-term load forecasting, DCNN-LSTM-
AE-AM. In Figure 3, the missing data are first processed based on the TNN algorithm,
and the DCNN layer extracts the initial features. Then, the LSTM-AE is used to extract
the spatiotemporal feature information. Finally, the AM is introduced to analyze the
importance of the extracted features and outputs the final prediction result.
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Figure 3. Process of residential short-term load forecasting.

3.1. Data Processing

Residential energy consumption data are collected by smart meters. Smart meters
can accurately collect and transmit data to the data management center through various
communication networks. Considering that the communication network is susceptible to
interference by multiple factors, data loss is inevitable. Therefore, the missing data needs
to be processed by some methods. This paper proposes the T-nearest neighbors (TNN)
algorithm to fill in the missing data. At time t, TNN is defined as follows:

It ← 1
K

(
It− K

2 T + It−( K
2 −1)T + · · ·+ It−T + It+T + · · ·+ It+( K

2 −1)T + It+ K
2 T ,
)

(1)

where K represents the number of selected adjacent values; T represents the interval period;
It is the output of TNN at time t. The algorithm can solve the problem that the duration
of missing data is relatively long. When the duration of the missing data is too long, the
missing data will be ignored.

Moreover, the collected load data usually has a small amount of singular data, which
will affect the overall model. Therefore, it is necessary to scale these data to some fixed
range so that they will conform to a certain distribution. In this paper, we use a linear
normalization, i.e., the max-min normalization, to process the load data, which is defined
as follows:

θnorm =
θ − θmin

θmax − θmin
, (2)

where θnorm represents the normalized output; θ represents the current input; θmax and θmin
represent the upper and lower bounds of the current sequence input, respectively.

3.2. Dilated Convolutional Neural Network

CNN has been widely used in image processing ever since it was proposed [36].
Recently, time series data has also tried to use CNN to deal with short-term load forecasting.
The core of CNN is weight sharing. Each CNN has a convolution kernel, which shares
different weights according to the convolution operation. However, CNN will lose this
feature information with long-term regularity, such as valley oscillation load [47]. To
broaden the horizon of CNN, in this paper, we transform the convolution computation of
continuous data into the convolution computation of skipping data, which is called the
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dilated convolutional neural network (DCNN) [48,49]. For a τ-dimension input vector
ν ∈ R

τ and a kernel w : {0, . . . , k − 1} ∈ R, the dilated convolution operation on element s
of input vector ν is defined as:

ys =
k−1

∑
i=0

ν[s + r · i] · w[i], (3)

where the dilated convolution adjustment rate r is expressed as the interval step size for
selecting input data; k represents the kernel size. In addition, τ represents the time step.

Figure 4a,b illustrate the internal structures of CNN and DCNN, respectively. In
Figure 4, CNN has one dimension, a kernel of one, and a dilation rate of one, while DCNN
has one dimension, a kernel of one, and a dilation rate of one. The first layer is the original
input layer, the second layer is the hidden layer, and the third layer is the output layer. In
addition, after adding the convolution layer, the activation function and pooling layer are
added appropriately to help the backpropagation of the gradient.

(a) (b)

Figure 4. Structure of CNN and DCNN: (a) CNN; (b) DCNN.

3.3. LSTM-Based Autoencoder
3.3.1. Long Short-Term Memory Network

RNN is a forward-propagating sequential neural network. When it deals with long-
duration data, it usually faces some challenges, such as gradient disappearance and gradient
explosion. Hochreiter and Schmidhuber [29] proposed an improved network based on the
RNN structure and named it LSTM. The internal structure of the LSTM is shown in Figure 5,
where the memory cell can retain information from a long time ago, and the forget gate
can choose to discard some feature information. Backpropagation in the LSTM strengthens
the interaction ability of context information and reserves more useful spatiotemporal
feature information.

Figure 5. Internal structure of LSTM.
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The update principles of the LSTM are defined as:

ft = σ
(

Wf txt + Wf hht−1 + b f

)
, (4)

ut = σ(Wtxxt + Wuhht−1 + bu), (5)

gt = tanh
(

Wgxxt + Wghht−1 + bg

)
, (6)

ot = σ(Woxxt + Wohht−1 + bo), (7)

ct = gt � ut + ct−1 � ft, (8)

ht = tanh(ct)� ot, (9)

where ft, ut, gt, ot in Equations (4)–(7) represent the information at the forget gate, input
gate, input node, and output gate at time t; σ, tanh are the multiplication calculations and
activation functions; b f , bu, bg, bo are the bias parameters of the corresponding processing
units; ct, ht in Equations (8) and (9) represent memory cells; Wf t, Wf h, Wtx, Wuh, Wgx, Wgh,
Wox, and Woh are the weight matrices of the corresponding processing units; � represents
element multiplication; FC represents the fully connected layer. These units use functions
σ and tanh to continuously compress the input xt to a smaller range.

3.3.2. Bidirectional Long Short-Term Memory Network

The bidirectional long short-term memory network (BiLSTM) is a variant of LSTM. As
shown in Figure 6, BiLSTM is a special network structure formed by superimposing two
LSTM layers. The LSTMs synchronously train the input data at the same time step. These
two LSTM layers differ in that one input the data in a positive temporal order, and the other
processes it in a reverse temporal order. This structure not only utilizes the information of
the previous moment but also relies on the information of the latter moment [50,51].

Figure 6. Standard structure of BiLSTM.

Let
−→
ht and

←−
ht be the hidden states of forward and backward propagation, respectively.

Then,
−→
ht ,

←−
ht , and the output Ht of BiLSTM are calculated as follows:

−→
ht =

−−−→
LSTM(ξt, St−1), t ∈ [1,T], (10)

←−
ht =

←−−−
LSTM(ξt, St+1), t ∈ [T, 1], (11)

Ht = FC
(−→

ht ,
←−
ht

)
. (12)

where ξt represents the current input at current time t; St represents the internal state in
the LSTM, that is, the memory cells and the hidden state; T represents the time steps.

3.3.3. Autoencoder

Autoencoder (AE), as an artificial neural network (ANN), is a conceptual network
structure with an encoder and decoder. The AE aims to find an optimal set of connection
weights by minimizing the reconstruction error between the original input and the out-
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put [52]. For any AE, there is a n-dimensional input vector ϕt and an output vector εt with
random dimensions. The input ϕt can be mapped to output εt according to the following
mapping functions:

Θ = f
(
W̃ · ϕt + α

)
, (13)

εt = ρ
(
Ŵ · Θ + β

)
, (14)

where Θ is the mapping output of the encoding layer; W̃ and Ŵ are two weight matrices;
f and ρ are two activation functions; α and β are the bias parameters of the encoder and
decoder, respectively.

Obviously, simple nonlinear AE is difficult for time series data feature extraction. As
shown in Figure 3, in this paper, the LSTM and BiLSTM are combined to construct the AE.
In order to learn more feature information and increase the sensitivity of the contextual
information connection, the encoder part adopts two BiLSTM layers. In addition, the
increase in the depth of the neural network structure is conducive to the extraction and
fusion of load features. In the decoder part, we only need to add two LSTM layers as the
feature analysis layer to reduce the unnecessary network computing burden.

3.3.4. Attention Mechanism

The AM pays more attention to the important parts of reconstructing the cognitive
world instead of making an average judgment on the whole. Figure 7 shows the structure
of the AM. In Figure 7, FC is the fully connected layer, which fuses with the output of the
AM. The output of the AM can be calculated as follows:

μt = ∑ Ωt � ηt. (15)

where ηt = {h1, · · · , hχ} is the output decoded by LSTM-AE and is a χ -dimensional
hidden state vector at time t; Ωt = {λ1, · · · , λχ} is a weight matrix.

Figure 7. Structure of attention mechanism.

The matrix Ωt in (15) can be implemented according to the following procedure.
First, the output ηt represents the input of the AM. Then, the alignment model a(·) aligns
the input with the output vector φt = {ε1, · · · , εχ}. The alignment score φt is calculated
as follows:

φt = a(δt−1, ηt). (16)

In this study, the alignment model a(δt−1, ηt) represents tanh(δt−1 � ηt + γ), where
the cell state δt−1 decoded by LSTM-AE represents the χ-dimensional hidden state vectors
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at time t − 1; γ is a vector of bias parameters. Finally, each element λj is computed by
applying a softmax operation:

λj =
exp
(
ε j
)

∑χ
i=1 exp(εi)

, (17)

where i and j represent the i-th and j-th elements in φt. After injecting the AM, we also apply
multiple fully connected layers as the output layer to complete the final load forecasting.

4. Experiment Results and Analysis

In this section, we will show the effectiveness of our proposed DCNN-LSTM-AE-AM
load forecasting method through some experiments.

4.1. Experiment Settings
4.1.1. Dataset Selection

The experiments use two real-world power load datasets to test our proposed method’s
robustness and generalization. The household electricity consumption dataset from the
UCI machine learning library (IHEPC) [37] records the energy consumption information of
a house from 2006 to 2010. It contains multiple attributes: date, time, global active power,
global reactive power, voltage, current, and active power of three-room types: kitchen,
bathroom, and bedroom. There are 2,075,269 1-min-level data, including 25,979 missing
values. Table 1 shows detailed information on IHEPC. The global active power represents
the actual power consumption, so this paper only takes the global active power as the
input. Another dataset is from the smart grid and smart city (SGSC) [53] projects carried
out by the Australian government and industry consortium Ausgrid. Data in the SGSC
dataset are collected from 10,000 households and some retail stores in New South Wales
(NSW) from 2010 to 2014. In this paper, the IHPEC is organized as the sum of energy
consumption within 15 min and 1 h. Since the SGSC only provides electricity consumption
per half hour, the SGSC is organized as the sum of energy consumption within 30 min and
1 h. Figure 8 shows the randomly selected data of IHPEC at a 15-min resolution and the
randomly selected data of one household from SGSC at a 30-min resolution.

Table 1. Information from the IHEPC dataset.

Variable Description

Data Recorded date
Time Current moment

Global active power Sum of active power per minute
Global reactive power Sum of reactive power per minute

Voltage Voltage per minute
Global intensity Sum of current per minute
Sub metering1 Power used by kitchen per minute
Sub metering2 Power used by room per minute
Sub metering3 Power used by bathroom per minute
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(a)

(b)

Figure 8. Visualization of selected datasets: (a) IHEPC at a 15-min resolution; (b) SGSC at a 30-min
resolution.

4.1.2. Experiment Setup

All networks are built based on Python3.6, Keras2.2, and TensorFlow2.0. The device is
configured with a 2.6 GHz intel i9 CPU and a 16GB NVIDIA TESLA T4 GPU.

According to the findings in [8], some rules of thumb for hyperparameter selection are
adopted. Since hyperparameter selection is a time-consuming task, in this paper, we try to
use different combinations of parameters to obtain the optimal performance in MSE. Table 2
lists the hyperparameter settings of the proposed DCNN-LSTM-AE-AM. The first 1D-Conv
layer uses the DCNN with a kernel of 3, 12 filters, and a dilation rate of 2 to extract features
and ReLU as output results. The number of the second 1D-Conv layer’s filters is upgraded
to 24. These two SpatialDropout layers randomly zero the parameters with probabilities
0.1 and 0.2, respectively. In the LSTM-AE, 32 units are used in all four temporal models.
In the final output layer, the AM uses 32 units, and the three Dense layers use 96, 32, and
1 unit, respectively. We set the maximum training epoch to 50. All other methods are
also tested on the same equipment, hyperparameter configuration, and environment to
allow horizontal comparisons. In addition, XGBoost obtains optimal performance with the
number of estimators set to 30 after constantly changing the number of estimators.
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In this paper, we split the dataset into a training set and a test set, whose ratios are
designed as 0.67 and 0.33. We fill the missing values in the training set according to the TNN
algorithm. The missing values in the test set are ignored to prevent prior knowledge leakage.

Table 2. Hyperparameter settings.

Network Hyperparameters

1D-Conv The convolution kernel size is 3, the number of filters is 12,
the dilation rate is 2, and the activation function is ReLU

1D-Conv The convolution kernel size is 3, the number of filters is 24,
the dilation rate is 2, and the activation function is ReLU

1D-SpatialDropout 0.1
BiLSTM 32 units
BiLSTM 32 units
LSTM 32 units
LSTM 32 units

1D-SpatialDropout 0.2
Attention 32 units

Dense 96 units
Dense 32 units
Dense 1 unit

4.1.3. Evaluation Metric

It is well known that the classification task can be evaluated by accuracy in percentage.
However, this kind of accuracy is not appropriate for evaluating any regression task.
In this paper, in order to objectively evaluate the fairness and integrity of the methods,
we use four evaluation metrics: MAE, RMSE, MSE, and MAPE. The MAE is a method
of averaging quantization errors. Compared with MAE, the other methods have made
some improvements. MSE pays more attention to the influence of outliers on the overall
prediction effect. RMSE performs arithmetic square root on the overall basis of the MSE,
which amplifies the difference of the MSE. MAPE can focus on the gap between the error
and the actual value. The formulations for the MAE, RMSE, MSE, and MAPE are listed
as follows:

MAE =
1
N

N

∑
i=1

∣∣∣ψpred − ψ
∣∣∣, (18)

MSE =
1
N

N

∑
i=1

(ψpred − ψ)2, (19)

RMSE =

√√√√ 1
N

N

∑
i=1

(ψpred − ψ)2, (20)

MAPE =
100%

N

N

∑
i=1

∣∣∣∣ψpred − ψ

ψ

∣∣∣∣. (21)

where N represents the total amount of the load data; ψ and ψpred represent the actual load
and the predicted load, respectively. For all those evaluation metrics, we have that the
smaller the value, the more accurate the model.

4.2. Influence of Hyperparameters

This subsection sets various optimized hyperparameters to achieve the best perfor-
mance. We evaluate the performance of the proposed model under these hyperparameters
by the MSE. To ensure the fairness of the experiments, we compare the influence of batch
size, optimizer, and learning rate on the MSE with other parameters that remain unchanged.
Figure 9 shows the MSE of the proposed method under different hyperparameter settings.
From Figure 9, we can have that our method has a certain degree of sensitivity to hyperpa-
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rameters. According to the experimental results in Figure 8, we choose the batch size of 64,
the optimizer as Adam, and the learning rate as 0.001.

Figure 9. MSE of the proposed model under different hyperparameters.

4.3. Influence of Time Step

Time step τ, i.e., the length of the input data, is one of the factors affecting the
robustness and accuracy of the proposed short-term load forecasting model. In deep
networks, long time-series data often results in overfitting. Hence, the data length also
affects the performance of our proposed method. The MSE, RMSE, MAE, and MAPE values
under different data lengths are shown in Table 3. The evaluation metrics with lengths
between 8 and 14 have very little difference. Therefore, in these following experiments, we
let the data length be 12.

Table 3. Performance of our proposed method under different data lengths.

Length MSE RMSE MAE MAPE

6 0.00434 0.0659 0.0351 0.7599
8 0.00420 0.0648 0.0332 0.8521
10 0.00418 0.0647 0.0344 0.7662
12 0.00411 0.0641 0.0331 0.6175
14 0.00415 0.0644 0.0334 0.6757
16 0.00426 0.0653 0.0338 0.7421
18 0.00444 0.0666 0.0348 0.7952
20 0.00450 0.0671 0.0357 0.7853
22 0.00458 0.0677 0.0366 0.8322
24 0.00446 0.0668 0.0370 0.8964

4.4. Performance Evaluation on IHEPC Dataset

The performance of the proposed DCNN-LSTM-AE-AM is compared with some sole
models and some hybrid models. The sole models include XGBoost, DCNN, LSTM [8],
and AM; while the hybrid models include LSTM-AE [54], CNN-LSTM [42], DCNN-AM,
DCNN-LSTM-AE, and LSTM-AE-AM. The evaluation metrics comparison among different
methods at 15-min and 1-h resolutions are shown in Table 4. From Table 4, we have that:
(1) our proposed method obtains the best metrics of 0.0041 in MSE, 0.0640 in RMSE, 0.0333
in MAE, and 0.6757 in MAPE at the 15-min resolution; (2) while for the dataset at the 1-h
resolution, our proposed method outperforms others with metrics of 0.0086 in MSE, 0.0926
in RMSE, 0.0667 in MAE, and 0.7257 in MAPE at the 1-h resolution. (3) Compared with the
existing methods, the overall prediction accuracy of the DCNN-LSTM-AE-AM at different
resolutions has obtained a little improvement. (4) Performances of those sole models are
worse than those of hybrid models. It is worth noting that there is not much difference
between the performance of DCNN-AM, LSTM-AE-AM, and DCNN-LSTM-AE-AM.
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Table 4. Prediction performance comparisons on the SGSC dataset.

Method Resolution MSE RMSE MAE MAPE

XGBoost 15 min 0.0463 0.2152 0.1541 0.8683
1 h 0.0410 0.2025 0.1120 0.7268

DCNN 15 min 0.0403 0.2007 0.1192 0.6869
1 h 0.0412 0.2030 0.1132 0.7284

LSTM 15 min 0.0491 0.2216 0.1263 1.0384
1 h 0.0548 0.2341 0.1356 1.4831

AM 15 min 0.0663 0.2575 0.1228 1.4286
1 h 0.0687 0.2621 0.1346 1.3788

LSTM-AE 15 min 0.0179 0.1338 0.0855 0.7863
1 h 0.0232 0.1523 0.0878 0.8265

CNN-LSTM 15 min 0.0158 0.1257 0.0712 0.6930
1 h 0.0197 0.1403 0.0997 0.7556

DCNN-AM 15 min 0.0081 0.0900 0.0452 0.6938
1 h 0.0091 0.0954 0.0466 0.7028

DCNN-LSTM-AE 15 min 0.0222 0.1490 0.0709 0.7380
1 h 0.0295 0.1718 0.0823 0.7428

LSTM-AE-AM 15 min 0.0043 0.0656 0.0378 0.6854
1 h 0.0095 0.0975 0.0682 0.7530

DCNN-LSTM-AE-AM 15 min 0.0041 0.0640 0.0333 0.6757
1 h 0.0086 0.0927 0.0667 0.7257

To show the effect of individual data in the model, we also use four box-figures to
show the performance of different models in MSE, RMSE, MAE, and MAPE. As shown
in Figure 10, four subfigures are used to show the performance of the IHEPC dataset
at a 15-min resolution. Since we have given the average results in Table 4, the average
results are no longer marked in the subfigures, and only the median results are marked.
From Figure 10, one can have that: (1) the proposed method outperforms others in all the
evaluation metrics; (2) the median of the metrics is lower than that of other methods; (3) the
MSE, RMSE, and MAE obtain significant improvement, while the increase in MAPE is
relatively small.

Figure 10. Prediction results of different methods on the IHEPC dataset at a 15-min resolution.

Figure 10 also shows that all the mentioned forecasting methods are still far from
accurate prediction, which is the direction we need to focus on. Further, CNN-LSTM,
LSTM-AE, and our proposed method all inherit the feature extraction capability of LSTM.

To demonstrate our proposed model’s trend-tracking capability, we show the prediction
results of the mentioned four sole models and the six hybrid models in Figures 11 and 12.
From Figure 11, it can be seen that the tracking trend of deep learning methods, except
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for the AM, can outperform traditional machine learning. DCNN is always trying to
match the low-load data. The LSTM has outstanding temporal feature extraction and good
trend tracking, but the error with respect to the actual load is large. Although the overall
performance of using only AM is not good, the AM is suitable for forecasting low-load
data. The performance of AM benefits from local feature fusion capability.

Figure 11. Prediction results of some sole models on the IHEPC dataset at a 15-min resolution.

From Figure 12, one can have that: (1) Different hybrid models have different predic-
tion results. (2) The LSTM-AE is similar to the LSTM, which further narrows the numerical
gap. (3) Although the CNN-LSTM is sensitive to data with large fluctuations in value and
predicts the result with a small error, there is a large error when capturing the valley values.
This is one of the reasons for the large value of MAPE. (4) DCNN-AM and LSTM-AE-AM
are increasingly perceptive to the low-load data. The addition of AM in the last layer is
definitely the main contributor to improving the prediction performance of the hybrid
model on the low-load data. (5) Compared with the other five mentioned hybrid models,
DCNN-LSTM-AE-AM can quickly capture the data in this situation and predict the valley
data very well. This benefits from the broadened time horizon of the DCNN. The introduc-
tion of AM makes the weights closer to the actual load, which significantly reduces the
prediction error. In addition, the results of DCNN-LSTM-AE suggest that no combination
of hybrid models can improve the prediction results.
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Figure 12. Prediction results of some hybrid models on the IHEPC dataset at a 15-min resolution.

4.5. Performance Evaluation on SGSC Dataset

Our proposed method is also tested on the SGSC dataset, where it shows excellent
accuracy and has a good generalization. Table 5 shows the evaluation metrics comparisons
of different forecasting methods on the SGSC dataset. The performance of the proposed
method on the SGSC dataset is similar to that on the IHEPC dataset, and both have obtained
the best results for each evaluation metric. The MSE of the proposed method obviously
gets improved compared with other methods. The other evaluation metrics also have a
small increase.

As shown in Figure 13, we compare the actual load with the prediction results. In this
study, a residential user is arbitrarily selected, and the proposed DCNN-LSTM-AE-AM
can easily predict the load at the next moment. The proposed method can capture the
overall trend of the actual load with small time offsets and numerical errors. In addition,
the method also has good predictability for the valley data. This confirms that DCNN and
AM have a good ability to capture long-term regular data.
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Table 5. Prediction performance comparisons on the SGSC dataset.

Method Resolution MSE RMSE MAE MAPE

XGBoost 30 min 0.0456 0.2135 0.1203 0.9298
1 h 0.0403 0.2007 0.0980 0.8296

DCNN 30 min 0.0433 0.2081 0.1329 0.6796
1 h 0.0465 0.2156 0.1366 0.7862

LSTM 30 min 0.0483 0.2198 0.1298 1.1001
1 h 0.0522 0.2285 0.1401 1.5131

AM 30 min 0.0652 0.2553 0.1893 1.6235
1 h 0.0689 0.2625 0.2006 1.7692

LSTM-AE 30 min 0.0166 0.1288 0.0799 0.7567
1 h 0.0218 0.1476 0.0762 0.7992

CNN-LSTM 30 min 0.0142 0.1192 0.0804 0.6728
1 h 0.0182 0.1349 0.0991 0.7256

DCNN-AM 30 min 0.0083 0.0911 0.0489 0.6118
1 h 0.0089 0.0943 0.0496 0.6412

DCNN-LSTM-AE 30 min 0.0242 0.1556 0.0756 0.7128
1 h 0.0289 0.1700 0.0862 0.7196

LSTM-AE-AM 30 min 0.0048 0.0693 0.0384 0.6203
1 h 0.0056 0.0748 0.0696 0.6495

DCNN-LSTM-AE-AM 30 min 0.0041 0.0640 0.0329 0.5901
1 h 0.0081 0.0900 0.0657 0.6336

Figure 13. Prediction results of DCNN-LSTM-AE-AM on the SGSC dataset at a 30-min resolution.

5. Conclusions

This paper proposes a short-term load forecasting model to predict residential energy
consumption. A hybrid electric load forecasting model, i.e., DCNN-LSTM-AE-AM, is
constructed with the introduction of existing deep learning methods. We use multiple
similar-days data in the vicinity of missing values as the basis for inferring the original
data and use the TNN algorithm to fill in the missing data. In the initial feature-extraction
stage, DCNN broadens the time horizon to retain the load features. LSTM-AE is used to
improve the analysis capability of features. In the feature fusion stage, the importance of
features in each period is summarized based on AM, which enhances the final prediction
accuracy. The validity of the proposed method is verified on two real-world datasets.
Experimental results show that the proposed method improves the accuracy of residential
load forecasting and can capture low-load data features.

In future work, we need to improve the accuracy of residential load forecasting by
exploiting residential lifestyle features. Moreover, how to achieve real-time forecasting
through methods such as online learning is another work.
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Abstract: Currently, reinforcement learning (RL) has shown great potential in energy saving in HVAC
systems. However, in most cases, RL takes a relatively long period to explore the environment
before obtaining an excellent control policy, which may lead to an increase in cost. To reduce the
unnecessary waste caused by RL methods in exploration, we extended the deep forest-based deep
Q-network (DF-DQN) from the prediction problem to the control problem, optimizing the running
frequency of the cooling water pump and cooling tower in the cooling water system. In DF-DQN,
it uses the historical data or expert experience as a priori knowledge to train a deep forest (DF)
classifier, and then combines the output of DQN to attain the control frequency, where DF can map
the original action space of DQN to a smaller one, so DF-DQN converges faster and has a better
energy-saving effect than DQN in the early stage. In order to verify the performance of DF-DQN, we
constructed a cooling water system model based on historical data. The experimental results show
that DF-DQN can realize energy savings from the first year, while DQN realized savings from the
third year. DF-DQN’s energy-saving effect is much better than DQN in the early stage, and it also has
a good performance in the latter stage. In 20 years, DF-DQN can improve the energy-saving effect by
11.035% on average every year, DQN can improve by 7.972%, and the model-based control method
can improve by 13.755%. Compared with traditional RL methods, DF-DQN can avoid unnecessary
waste caused by exploration in the early stage and has a good performance in general, which indicates
that DF-DQN is more suitable for engineering practice.

Keywords: HVAC; cooling water system; reinforcement learning; DF-DQN

1. Introduction

In order to achieve the goal of carbon neutrality, countries around the world are com-
mitted to energy saving and emission reduction. Building energy consumption accounts
for a large part of energy consumption around the world [1], and heating, ventilation, and
air-conditioning (HVAC) systems occupy a major part, reaching more than half of energy
consumption. The cooling water system is an essential subsystem of the HVAC system,
which mainly consists of cooling water pumps, cooling towers, and chiller condensers [2].
The operation of the cooling water system has an important influence on the entire HVAC
system, and optimal control of the cooling water system can effectively reduce energy
consumption of the HVAC system. Thus, the optimal control of the cooling water system
is crucial.

In HVAC systems, optimal control policies are often used to reduce operation costs and
to ensure the thermal comfort of occupants [3,4]. Optimal control policies can be classified
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into traditional control policies and advanced control policies in intelligent buildings, where
the former one contains sequencing control (rule-based control) and process control, and
the latter one includes soft-computing control policies, hard-computing control policies,
and hybrid control policies [5]. Many optimal control methods have been tried for cooling
water system control, such as proportional-integral (PI) controllers, proportional integral
derivative (PID) controllers, and model predictive control (MPC) controllers. These meth-
ods heavily rely on the system model, various sensors, and controllers in the system, so the
disadvantages of these methods are also obvious. Model-based methods often require a
perfect model of the system, while system modeling is usually difficult in real applications
even if we can attain enough data from different sensors. According to Zhu et al., the
uncertainties of the model have a serious impact on the control performance [6]. In the
actual system operation, the aging of the equipment or the renewal of some equipment
may lead to inconsistency between the system model and the actual system [7]. Even if the
initially established model is accurate enough, continuous changes in the actual system
over time lead to an unavoidable decrease in the performance of the control method.

To avoid the impact of the imperfect system model on control policies, data-driving
methods in artificial intelligence have received too much attention in HVAC control prob-
lems recently. Reinforcement learning (RL) is a kind of classical data-driven and model-free
method in artificial intelligence. In recent years, RL has attracted increasing attention
for building energy efficiency control problems [8,9], because it can provide a simple
framework by learning from interaction with the environment directly. In these studies,
RL methods can provide a model-free framework for achieving energy saving, but they
often fail to achieve a good control effect in the early stage, or can be even worse than
some baseline control policies, which are mainly caused by the agent’s exploration of the
environment. Moreover, in the exploration process by the trial-and-error mechanism, they
may also cause a certain degree of damage to the equipment, which may directly lead to an
increase in cost. These two problems severely limit the practical use of RL in the field of
HVAC optimization applications. Therefore, in order to maintain RL control effectiveness
and achieve the maximum possible energy savings, it is necessary to reduce the time of
this process in some way so that the RL control policy converges more quickly to reduce
unnecessary costs.

In this paper, we tried to use DF-DQN to tackle this problem. Due to the introduction
of DF, we mapped the original action space to a smaller one, and then combined the label
of DF to attain the final control action, which directly reduced the output action of DQN.
Moreover, the label of DF had the guidance of a priori knowledge, which not only ensured
a good control effect, but also can realize energy saving in the early stage. The main
contributions of this paper are as follows:

• We extended our previously proposed DF-DQN from the prediction problem to the
control problem. The introduction of DF mapped the original DQN output action
space into a new smaller action space, which could accelerate the convergence speed
of DQN;

• We used DF-DQN to control a cooling water system in HVAC and to realize energy
savings from the early stage. A priori knowledge was introduced as a deep forest
classifier, which can not only reduce the action space, but also reduce the exploration
of the agent. The experimental results show that DF-DQN can save energy from the
first year, while DQN can achieve similar energy saving from the third year;

• We verified the performance of DF-DQN in an environment based on the modeling
of a real cooling water system, so as to ensure the credibility of DF-DQN. The data
that DF-DQN and other compared methods used were collected from a real-world
system, and the simulation environment was built based on this system. The code and
the experimental data are available at: https://github.com/H-Phoebe/DF-DQN-for-
energy-saving-control (accessed on 20 August 2022).
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2. Related Works

In recent years, more and more researchers have tried to solve practical problems with
RL methods. In the applications of the HVAC system, the complexity and lag of the HVAC
system directly lead to an increase in modeling cost, while RL can provide model-free
control and have good control performance. However, RL generally takes a relatively long
time to learn a better control policy, and this process may lead to some unnecessary energy
wastage and cost increases, so some researchers try to avoid this wastage by speeding up
the convergence of RL algorithms, which can achieve more energy saving at the same time.

Applications of RL in HVAC. Lork et al. [10] used Q-learning to achieve a balance
between comfort and energy savings in rooms. They used a Bayesian convolutional neural
network combined with data from all rooms to construct a temperature and air conditioning
power prediction model to reduce uncertainty. This model was then adapted to individual
rooms and the temperature set point was controlled using Q-learning. Qiu et al. [8] used
Q-learning to obtain optimal control of the cooling water system in HVAC, wherein the RL
controller can save 11% of the system energy, more than the 7% saved by the local feedback
controller. Ahn et al. [11] used DQN to achieve a model-free optimal control policy in
HVAC and the results proved that DQN can reduce energy consumption, and provided
model-free optimal control. Brandi et al. [12] used DQN to control the water supply
temperature set point of the heating system terminal unit, which can achieve a heating
energy saving ranging between 5% and 12%. Yan et al. [13] applied DDPG to generate
an optimal control policy for a multi-zone residential HVAC system, which can greatly
reduce energy consumption while ensuring comfort. In addition, the DDPG-trained agent
can intelligently balance different optimization objectives with generalization ability and
adaptability to unknown environments. Ding et al. [14] used RL algorithms to control the
indoor temperature of a residential HVAC system, which can achieve energy conservation
while maintaining indoor thermal comfort. Qiu et al. [15] used three multi-agent RL
algorithms to control the condenser system in HVAC. The experimental results showed that
the interaction multi-agent RL algorithm can achieve better energy-saving effects compared
to the other two algorithms. Amasyali et al. [16] used the deep RL controller to control
the power cost of electric water heaters in residential buildings. The experimental results
showed that this method does not cause discomfort to users, and can save 19–35% of the
power cost compared with the baseline control.

Improve RL convergence speed. In engineering applications, the convergence time
of RL methods may be several months or even years, which directly leads to an increase
in cost. Therefore, some researchers have tried to shorten this time to reduce the cost of
practical applications. Li et al. [17] controlled the HVAC system in order to control energy
consumption and ensure comfort, and they put forward multi-grid Q-learning to solve the
problem of slow convergence rate in RL. Yu [18] et al. developed an exploration policy for
the RL controller using a priori knowledge, which can guide the RL controller to explore
the action space, thus reducing the training time. Fu et al. [19] used a multi-agent RL to
realize the collaborative control optimization of multiple devices in the HVAC system.
The experimental results showed that the method converges faster than single-agent RL
method. In [20], the authors mention that adding a priori knowledge can help the RL
controller reduce training time.

3. Preliminaries

3.1. MDP

RL, as a class of control techniques in machine learning, has been explored for its
potential in HVAC systems. In RL, the problem can often be considered as a sequential
decision-making case, and the agent can learn by interacting with the environment directly,
as shown in Figure 1.

115



Buildings 2022, 12, 1787

Figure 1. The interaction progress between agents and environments in RL.

Markov’s decision process (MDP), a classical formalization of sequential decision-making,
is often used to model RL problems. An MDP can be defined as a tuple 〈S, A, T, R, γ〉, where
S is the collection of states, A is the collection of actions, T is a transition function, R is an
immediate reward function, and γ is a discount factor. In the interactive process, for some
states, the agent can select an action to act on the environment, and receive a scalar reward
and a next state [21]. The final goal of RL is to maximize a cumulative numerical reward,
Rt, as is shown in Equation (1).

Rt =
∞

∑
k=0

γkrt+k+1 (1)

where γ ∈ [0, 1] is the discount factor, k represents k time steps after time step t, and rt+k+1
represents the immediate reward of the corresponding time step. The agent selects an
action a ε A by policy π, then the agent moves to the next state st+1, then the agent obtains
the immediate reward rt+1 from the environment. In RL, the action value Q is used to
represent the exception of a cumulative discounted reward, which is starting from state s
and taking action a. The action value Q is shown in Equation (2).

Qπ(s, a) = Eπ

[
∞

∑
k=0

γkRt+k+1|st = s, at = a

]
(2)

The optimal policy π∗ can be achieved by evaluating the action value function:

Q∗(s, a) = maxQπ(s, a) = E
[

Rt+1 + γ max
a′

Q∗
(
st+1, a′

)|st = s, at = a
]

(3)

Finally, the optimal policy π∗ can be obtained.

3.2. Deep Forest

Deep forest (DF) [22] is a decision tree ensemble approach and can be applied to
classification tasks. DF can obtain good performance in most cases, even with different data
in different domains, which mainly benefits from two techniques, namely multi-grained
scanning and the cascade forest structure.

Multi-grained scanning uses sliding windows of various sizes for sampling to obtain
more feature sub-samples, so as to obtain more and richer feature relationships. Then,
a certain amount of the random forest and cascade forest are trained with the obtained
feature sub-samples to obtain the feature vector.

The cascade forest structure is used to enhance the representation learning ability
of DF. In a cascade forest, each level receives the characteristic information processed
by the previous level, then the processing results in inputs, which are then output to
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the next level. The first level’s input of a cascade forest is the feature vector after multi-
granularity scanning transformation. The final prediction result is obtained at the last level
and expressed as an aggregate value.

In addition, the training process of the deep forest is efficient, and it can operate
normally even if the training data scale is small. The structure of DF is shown in Figure 2.

Figure 2. Structure of deep forest.

3.3. DQN

Traditional methods in RL, such as SARSA and Q-learning, can effectively solve
problems with a small state and action space by establishing Q-table. However, when
the state space is large enough or continuous, such as practical problems in HVAC, these
methods may fail to achieve a control policy. DQN, a method proposed by Google’s
DeepMind in 2015 [23], has been applied in HVAC controls in recent years. Different from
SARSA and Q-learning, DQN can solve problems with large or continuous state space [24],
mainly benefiting from its two specific techniques.

Firstly, DQN uses the mechanism of experience replay to eliminate the correlation of
network inputs. This means storing the transfer samples (s, a, r, s′) while the agent interacts
with the environment and samples randomly to train the agent. Secondly, there are two
networks in DQN, where one is the Q-network, and the other is the target network. These
two networks have the same structure, but have different parameters. The Q-network
outputs the current Q value, and the target network outputs the target Q value. After some
iterations, the parameters of the Q-network are copied to the target network. The loss
function is shown in Equation (4).

L(θi) = E

[(
r + γmax

a′
Q
(
s′, a′ |θ−i )− Q(s, a |θi)

)2
]

(4)

where a′ is the action selected in state s′, and θi and θ−i are the parameters of Q-network
and target network, respectively.

4. Environment and Modeling

4.1. Cooling Water System Layout

In this paper, we tried to control the cooling water system to reduce the energy
consumption of the HVAC system. The cooling water system is an important part of
HVAC, including chillers, cooling water pumps, cooling towers, and some other necessary
equipment. To achieve the goal of energy saving, it is important to enable this equipment
to be controlled more efficiently. In another word, we should try to find an optimal policy
to coordinate this equipment. Based on a real application, we constructed a cooling water
system platform, which contained four chillers, three cooling water pumps, and seven
cooling towers (the same type of equipment has the same settings), as shown in Figure 3.
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Figure 3. The layout of the cooling water system.

To measure the effect of the control policy, we adopted the system coefficient of
performance (COP), which is often used to measure the energy-saving performance of
HVAC systems. The system COP is defined in Equation (5).

COP =
CLsystem

∑ Pchillers + ∑ Ptowers + ∑ Ppumps
(5)

where ∑ Pchillers is the total power of all chillers (kW), ∑ Ptowers is the total power of all
cooling towers (kW), and ∑ Ppumps is the total power of all cooling water pumps (kW).
CLsystem is the system cooling load, which is defined in Equation (6).

CLsystem = Cp × ρ × Fchw × (Tchwr − Tchws)÷ 3600 s/h (6)

where Cp is the specific heat capacity of water (4.2 kJ/(kg·K)), ρ is the water density
(1000 kg/m3), Fchw is the chilled water flowrate (m3/h), Tchwr is the inlet chilled water tem-
perature of chillers (◦C), and Tchws is the outlet chilled water temperature of chillers (◦C).

4.2. System Simulation Modeling

For the system simulation, some real data and parameters were collected, but some oth-
ers could not be achieved directly, so we tried to use the regression method to attain them.

We regressed the chiller model with historical data, which could be used to attain the
chiller’s COP, and further, we calculated the chiller’s power, as shown in Equation (7).

Pchiller = CL / COPchiller (7)

where COPchiller is obtained by Equation (8).

COPchiller = chiller model(CL, Tcwr, Tchws, Fchw) (8)

where Tcwr is the inlet cooling water temperature of chillers (◦C). Some other related
parameters are shown in Equations (9)–(11) [8].

Tcws = Tcwr + (Pchiller + CL)÷ Cp × Fcw × ρ

3600 s/h
(9)

Tchws = max
[

Tchwsset, T′
chwr − CC ÷ Cp × Fchw × ρ

3600 s/h

]
(10)
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Tchwr = Tchws + CL ÷ Cp × Fchw × ρ

3600 s/h
(11)

where Tchwsset is the Tchws set point of a chiller, T′
chws is the Tchws of last time step, Fcw is the

cooling water flowrate (m3/h), and CC is the chiller cooling capacity.
The power of the cooling water pump model is calculated by Equations (12) and (13).

K =
fpumpactual

fpumprated

(12)

Ppump = a + b × K + c × K2 + d × K3 (13)

where fpumpactual and fpumprated are the actual running frequency and rated running fre-
quency of the real cooling water pump, and a, b, c, d are determined by the regression of
historical data.

The cooling tower model is defined as Equations (14) and (15).

Ptower = a + b × ftoweractual + c × ftoweractual
2 + d × ftoweractual

3 (14)

Tcwr = tower model
(
Tcws, ftoweractual , Twb, Fcw

)
(15)

In Equation (14), ftoweractual is the actual running frequency of cooling tower, a, b, c, d
are determined by the regression of historical data. In Equation (15), Tcwr is the inlet
cooling water temperature of chillers (◦C), Tcws is the outlet cooling water temperature
of chillers (◦C), Twb is ambient wet-bulb temperature (◦C), and Fcw is the cooling water
flowrate (m3/h).

For each model, we randomly selected 80% of the collected data set for training and
20% of the data for testing, using MAPE (mean absolute percentage error) and CVRMSE
(the coefficient of variation of the root mean square error) as the error metrics to evaluate
the accuracy of the models. All models had a MAPE of less than 5% and CVRMSE of less
than 10%, which indicates that the accuracy of each model was within the acceptable range.

The controller controlled the on and off states of this equipment and the operating
frequency. An iterative process was as follows: Firstly, Tcws was obtained from the CL and
the switching state of the chiller model; then, Fcw was obtained by combining the operating
frequency and Tcws; finally, Tcwr was obtained by combining the cooling tower model with
Fcw and the Twet. All the parameters were iterated until Tcwr converged (i.e., the difference
of Tcwr between two successive iterations was less than 0.1 ◦C). If the Tcwr did not converge
within 50 iterations, the last result of Tcwr was adopted and the iteration was stopped [8].
The specific process is shown in Figure 4.

4.3. Data Collection

We used the data collected from the actual system to verify our proposed method. The
details of this actual system corresponded with our simulation environment.

We collected real data from 1 July 2021 to 10 October 2021, 102 days in total, where
the sample interval was half an hour. The CL is shown in Figure 5, and the wet-bulb
temperature is shown in Figure 6.
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Figure 4. Simulation process.

Figure 5. The temporal distribution of the cooling load. The deeper the color, the heavier the load.
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Figure 6. The temporal distribution of the wet-bulb temperature. The deeper the color, the higher
the temperature.

As shown in Figures 5 and 6, the darker the color, the greater the value of CL and the
wet-bulb temperature (Twet). From Figure 5, we can find that the main cooling demand of
the system was concentrated between 6:00 and 23:00 every day.

5. Methodology

5.1. MDP Modeling

Using RL methods for control problem requires MDP modeling of the environment.
The details of the modeling are represented as follows:

(a) State
In this paper, we took the combination of ambient the wet-bulb temperature (Twet)
and system cooling load (CLsystem) as state. There were two reasons for using these
two variables:

(1) The operation of the system has no influence of these variables;
(2) CLsystem is a component factor of COP, which is related to the operation of

cooling water system.

(b) Action
In this paper, operating frequencies of cooling tower fans and cooling water pumps
were taken as the action (e.g., [pump_action : 35 hz, tower_action : 35 hz]). In addi-
tion, the action was discretized and the control accuracy was 1 hz. In order to protect
the equipment, the action needed to be limited within a reasonable range. We limited
the action frequency within [20, 50] for both the cooling tower and cooling water
pump, so there were 31 actions in total for each one.

(c) Reward
COP was taken as the reward in this paper. In the case of the same CLsysytem, the
higher the COP value is, the sum of power is the lowest, which reflects the purpose of
energy saving. The reward is shown in Equation (16).

Reward = COP =
CLsystem

∑ Pchillers + ∑ Ptowers + ∑ Ppumps
(16)

5.2. DF-DQN for Control

Figure 7 depicts the overall framework of DF-DQN for control in cooling water system.
Firstly, we labeled the collected state data, including cooling load and wet-bulb temperature,
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according to the a priori knowledge. The label was the running frequency of the equipment
more or less than the value of the base number under this state. If the operating frequency
of the equipment under this state was less than base number, the label was ‘0’; otherwise,
the label was ‘1’. The labeled state data were used to train the deep forest classification
model, of which 80% was used for training and 20% was used to test the accuracy of the
trained model.

Figure 7. Overall framework of DF-DQN for cooling water system.

After training, the DF classification model can output a label for the new state, which
represents the relationship between the actual frequency of equipment operation and the
base number, and this label can be converted into a sign to shrink the action space thereafter.
Figure 8 gives more details.

Figure 8. The process of training a DF classifier.

Secondly, we obtained the relationship between the actual frequency of the equipment
operation and base number under some states, namely the sign. We also needed the
difference between the operating frequency of the actual equipment and the base number.
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In this part, we trained DQN agent, which output an action a′t, the absolute value of the
difference between the true action and base number, namely Δ.

At last, according to the actual data we collected, the DF classifier output a positive
sign or negative sign (‘+’ & ‘−’), and DQN output Δ. Based on sign, Δ, and base number,
we could obtain the actual equipment running frequency, namely action at. The actual
action is calculated according to Equations (17) and (18).

Sign = DFclassi f ier(state) (17)

at = basenumber + Sign
(
a′t
)

(18)

where sign is output by DF, a′t is output by DQN in DF-DQN.

5.3. Theoretical Analysis of Shrink Action

The DF classifier labeled each state. It could replace the original action space with
a smaller action space combined with the label, so as to realize the reduction of the
action space.

Owing to the introduction of DF in DQN, the original action space of each equip-
ment was reduced from 31 to 16, so the original combined action pace was reduced from
31 × 31 to 16 × 16. Therefore, the action space of each equipment was reduced by nearly
half, while the combined action of the two equipment reduced the action space by nearly
3/4 with the increase in equipment types. The introduction of DF could make the combined
action space decrease exponentially. Figure 9 presents more details.

Figure 9. DF reduce action space.

Theoretically, if DF can divide each action into M categories with the same number,
and the final combined actions include N kinds, the reduced action space of DF-DQN can
follow Equation (19).

(Action space)DF−DQN

Original action space
≈
(

1
M

)N
(19)

Based on the above analysis, when dealing with the problem with large action space
or multiple action combinations, DF can significantly shrink the scale of the original action
space, which can reduce the complexity of the problem to a certain extent finally.

In this paper, M = 2, N = 2, so the combined action of the two equipment was shrunk
into about 1/4 of the original action space.

5.4. DF-DQN Algorithm

The details of DF-DQN for the cooling water system is shown in Algorithm 1.
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Algorithm 1. DF-DQN for cooling water system

Initialize replay memory D to capacity N
Initialize action value function Q with random weights θ

Detect and replace outliers in training set
Split the training set (80% for training, 20% for testing)
Train the deep forest classifier F
For episode = 1, M do

Attain initial state st of the cooling water system
For t = 1, T do

Select a random action a′t with probability ε, otherwise a′t = maxQ(st, a; θ)
Attain positive or negative sign through F
Combine base number, sign (‘+’ or ‘−’), a′t to derive at (the true running frequency of cooling

water system)
Execute action at in cooling water system
Observe reward rt and state st+1 from the simulation system
Store transition (st, a′t, rt, st+1) in D
Sample random minibatch of transitions (sj, a′j, rj, sj+1) from D

Set yj =

{
rj f or terminal state st+1

rj + γmax
a′

Q
(

sj+1, a′; θ
)

otherwise

Update Q function using
(

yi − Q
(

sj, aj; θ
))2

Copy parameters every J steps
Update state st ← st+1

End for
End for

6. Experiment and Result

To verify the performance of DF-DQN, we compared it with three other benchmark
methods. In addition, we presented some experiments about the effect of DF accuracy on
the performance of DF-DQN.

6.1. Compare Methods

1. DF-DQN: DF-DQN is the method we proposed before [25], which has been used to
solve prediction problem. We extended DF-DQN to control problems in this paper;

2. DQN: In this paper, DQN and DF-DQN share the same parameter settings in the
DQN part. For the cooling water system, the action space was small and discrete, and
its state space was large enough, so usually DQN can provide a good control policy
according to paper [24];

3. Baseline control: The PID control was selected as the baseline method, which is
often used in real HVAC control applications. This method selects the action by
approaching the difference between Tcws and Tcwr. We took the baseline control
method for comparison because it is the original control method in this system;

4. Model-based control: The model-based control is the best method among all methods,
and can select the best action in each situation, but this method is heavily dependent
on the model. In this paper, we traversed the best action in each state as the model-
based control. Actually, it is often impossible to deploy the model-based control
method in real applications, but in this paper, based on our simulation model, the
model-based control method provided the best policy. We used the model-based
control method for comparison because it has the best control performance of all
methods in this system.

6.2. Parameters Setting

We used DF-DQN and three other methods to control this system for comparison,
including DQN, a baseline control, and a model-based control.
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The agent in DF-DQN took the ε − greedy policy to select the action. At the beginning,
we ensured the agent could explore the environment as much as possible, so we set
εinital = 1. We used a liner decay during the process, and set Δε = 0.0001, εmin = 0.01.
In order to make the agent take more focus on the current COP, we set γ = 0.01. The
agent’s policy network and target network were both composed of two hidden layers. The
minibatch was set to 32. The capacity of memory pooling (Memorycapacity) was set to 1000,
and we set Cstep (Copy steps) to 100, Cstep = 100. The learning rate was set to 0.01, α = 0.01.
All parameters are shown in Table 1.

Table 1. Parameters of DF-DQN and DQN.

Parameters Value

εinital 1
Δε 0.0001

εmin 0.01
γ 0.01

Memorycapacity 1000
Cstep 100

α 0.01

In this system, the equipment contained chillers, cooling water pumps, and cooling
towers. We used RL to control the cooling water pumps and cooling towers. As for the
chillers, we used a sequence control [26] to reduce unnecessary refrigerating capacity, which
can protect chillers at the same time. The workflow of this system is shown in Appendix A.

6.3. Experimental Result

In this paper, we used the model-based control to attain the best action in each state,
so that we could attain the label of the cooling water pump and cooling tower’s action
under each state. We used DF for two classifications to judge whether the frequency of
the cooling water pump and cooling tower was more or less than the base number in each
state. If it was more than the base number, we labeled it as 1 (represent ‘+’); otherwise, we
labeled it as 0 (represent ‘−’). The accuracy of DF can reach 97.319% and 99.694%. DF-DQN
combined DF and DQN, where DF output sign ‘+’ or ‘−’, and DQN of DF-DQN output
Δ, and then we combined them with base number to attain the final action of the cooling
water pump and cooling tower.

Cumulative reward in an episode was taken to prove the convergence of DF-DQN.
With the increase in episode, when the value of cumulative reward fluctuated less, we
believe that the method converged. One of the comparison methods, DQN, also used the
same method. The reward was defined by Equation (16), namely COP, and the higher
reward not only conveyed that it had better converge, but also represented that the method
had better energy-saving performance.

We explain the experimental results from two aspects: one is the influence of DF’s
accuracy on DF-DQN, and the other is control performance of DF-DQN.

6.3.1. Influence of DF’s Accuracy on DF-DQN

The accuracy of DF affected the performance of DF-DQN. In order to better explain
the influence of DF accuracy on the performance of DF-DQN, we made a test with a low
accuracy case. We used DF-DQN (false label) and DF-DQN to control the system for
20 years in our simulation environment. We randomly generated labels to replace the
original labels that DF generated, so that we could analyze the impact of DF accuracy on
the performance of DF-DQN. The accuracy of the randomly generated labels was 50% of
the original labels. We compared the experimental results of DF-DQN (false label) with the
DF-DQN from three aspects: COP, cumulative power, and energy-saving effect.
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Before comparison, we needed to ensure that both methods could converge. The
convergence of the two methods is shown in Figure 10, where one episode in the training
process is one year.

Figure 10. Comparison of cumulative reward between DF-DQN (false label) and DF-DQN.

DF-DQN (false label) and DF-DQN both converged at last. Although the wrong label
was used, DQN still learned the control policy under the wrong labels and converged.
However, the cumulative reward of DF-DQN was higher than that of DF-DQN (false label)
on the whole, which also reflected the better performance of DF-DQN. In addition, the
performance of DF-DQN (false label) decreased a lot due to the false labels.

As shown in Figure 11, the COP of DF-DQN (false label) was lower than that of
DF-DQN in 20 years, which indicates that the control performance of DF-DQN (false label)
was worse than that of DF-DQN in each year, and the energy-saving effect decreased
accordingly, which also can be found in the cumulative power comparison in Figure 12.

Figure 11. Comparison of COP between DQN and DF-DQN.
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Figure 12. Comparison of cumulative power between DF-DQN and DF-DQN (false label).

We compared the energy-saving effect of these two methods, and used the baseline
control method of the system as a benchmark. The partial energy-saving effect comparison
can be found in Table 2.

Table 2. Partial energy-saving effect comparison result.

Energy Saving (Compared to Baseline Control)

Year DF-DQN DF-DQN (False Label)

1st 8.074% −10.022%
2nd 11.337% −8.037%
3rd 10.086% −4.224%
5th 11.157% −5.191%
10th 11.580% −1.934%
15th 12.168% −3.754%
20th 10.177% −4.094%

Average (20 years) 11.035% −4.104%

Regardless of the comparison of COP, the cumulative power, or the energy-saving
effect, DF-DQN (false label) was worse than DF-DQN. The direct reason for this result was
the wrong labels. From the comparison result, we found that the accuracy of DF directly
affected the performance of DF-DQN, and the low accuracy of DF led to a decrease in the
performance of DF-DQN. Therefore, for DF-DQN control in this problem, it was crucial to
improve the accuracy of DF as much as possible.

6.3.2. Performance of DF-DQN Compared with DQN, Baseline Control, and
Model-Based Control

DF-DQN and DQN both converged at last, but in the beginning episodes, DF-DQN
achieved a higher cumulative reward. The difference between DF-DQN and DQN can be
found in Figure 13 more clearly.
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Figure 13. Comparison of cumulative reward between DQN and DF-DQN.

As shown in Figure 13, the cumulative reward of DF-DQN was much greater than that
of DQN before the fifth episode, which reflects that the control performance of DF-DQN
was much better than DQN in the early stage. After the fifth episode, DQN outperformed
DF-DQN, which was due to the accuracy of DF. However, the performance of DF-DQN
was almost approaching DQN.

In order to compare the performance of the baseline control method, DQN, DF-DQN,
and the model-based control method, we used them to control the system for 20 years in
our simulation environment. We compared their performance in three aspects: the COP,
the cumulative power, and the energy-saving effect.

(a) COP

The COP is shown in Figure 14. The model-based control method was the best method
among these methods in theory, and its COP was the highest in practice. The baseline
control method is a relatively poor control method compared with others, and its COP was
the lowest in most of the years.

Figure 14. COP comparison of each method.
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From Figure 14, we found that the COP obtained by DQN and DF-DQN was gradually
becoming higher, indicating that their energy-saving effect was gradually becoming better,
which is just as we have mentioned before, and the higher system COP, the better the
energy-saving performance. The distribution of COP in the first year reflects that the
control effect of DQN was much worse than that of DF-DQN, but it gradually became
better in the later years. The COP reflected its better energy-saving performance to a certain
extent, but not absolutely. In addition, the minimum COP obtained by DQN and DF-DQN
was relatively small, which was due to the poorly selected actions in a few states.

As for DQN, its COP was less than the baseline control method in the first year, and
the distribution of COP in the first year was also relatively scattered, but in the second
year, the distribution of COP became concentrated, and its COP was more than the baseline
control method, which meant that DQN’s control performance became better in the second
year. Finally, DQN’s COP became stable, which means that the control policy of DQN was
becoming stable and convergent.

In contrast with DQN, DF-DQN’s COP was between the baseline control method and
model-based control method from the first year and this trend remained in the following 20
years, which reflected that DF-DQN can obtain a better control effect from the beginning,
and the control effect was better than DQN in the early stage. Moreover, the performance
of DF-DQN was more stable than DQN in 20 years.

The performance of DQN was not good in the early stage, and its COP was not
between the baseline control method and model-based control method until the policy
converged. In contrast, DF-DQN met this condition not only after the convergence of the
control policy, but also from the very beginning, which reflected that DF-DQN converged
faster than DQN, and had a better performance than DQN in the early stage.

(b) Cumulative power

In order to intuitively analyze the energy-saving effect of these four methods, we
compared the annual cumulative power under these four methods’ control policies, and
the comparison results are shown in Figure 15.

Figure 15. Cumulative power of each method in 20 years.

In Figure 15, the model-based control method had the lowest cumulative power,
which is consistent with the intuition. The baseline control method had a relatively poor
energy-saving effect, and its cumulative power was relatively more than others.

The magnitude of DQN’s cumulative power was larger than that of the model-based
control method and less than the baseline control method from the third year. In Figure 14,
though DQN’s COP was more than the baseline control method in the second year, its
cumulative power was still more than the baseline control method. In Figure 15, the
cumulative power of DQN in the second year was less than that in the first year, and it
continued to decrease until the fourth year, and then remained stable. As we mentioned in
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the previous part, the lower COP did not absolutely mean a better energy-saving effect, but
from the experimental results, we found that the second year’s policy was better than the
first year’s, which is also be conveyed in Figure 15.

DF-DQN’s cumulative power was much lower than the baseline control method from
the first year, and this trend continued to decrease until the second year and then remained
stable. In addition, DF-DQN’s cumulative power was also much less than DQN’s in the
first three years, and after that, it almost approached DQN. It is obvious that DF-DQN
can not only achieve a good energy-saving effect, but can also save energy from an early
stage. Compared with DQN, the energy-saving effect of DF-DQN in the early stage was
much better.

(c) Energy saving

Taking the baseline control method as the benchmark, we compared the other three
methods’ energy-saving effects in each year. The partial comparison results are represented
in Table 3, and the complete comparison results are shown in Appendix B.

Table 3. Partial comparison effect results.

Energy Saving (Compared to Baseline Control)

Year DQN DF-DQN
Model-Based

Control

1st −29.996% 8.074% 13.755%
2nd −9.843% 11.337% 13.755%
3rd 0.798% 10.086% 13.755%
5th 12.195% 11.157% 13.755%

10th 11.908% 11.580% 13.755%
15th 11.461% 12.168% 13.755%
20th 12.094% 10.177% 13.755%

Average (20 years) 7.972% 11.035% 13.755%

There is no doubt that the model-based control method had the best energy-saving
effect, reaching 13.775%. The energy-saving effect of DQN and DF-DQN both had a growth
process before the convergence.

According to the experimental results, DQN could not achieve the goal of energy
saving until the third year. In particular, in the first year, its energy-saving effect was
29.996% worse than the baseline control method. In the second year, DQN’s saving effect
became much better than the first year, but was still 9.843% worse than the baseline control.
Until the third year, DQN’s saving effect was 0.798% better than the baseline control
method, and began to remain stable from the fourth year, and was able to achieve a 10–12%
energy-saving effect each year. DQN’s energy-saving effect was not good in the early
stage, but it became better and better with training. After 20 years control, its average
energy-saving effect reaches 7.972%.

In contrast, DF-DQN could achieve the goal of energy saving from the first year, and
remained with a 10–11% energy-saving effect. In the first year, it could achieve 8.074%
better than the baseline control method, and kept becoming better in the second year,
reaching 11.337%. After 20 years of the control, its average energy-saving effect reached
about 11.035%.

DQN may have a better energy-saving effect in the later years, but it has to explore
the environment before converging, which led to its worse performance in the early stage.
Considering of the service life of the equipment, DF-DQN may have a better energy-saving
effect than DQN in general, and our experimental results also proved this.

7. Conclusions and Future Work

In this paper, we extended DF-DQN from the prediction problem to the control
problem, which was used to achieve the goal of energy saving with respect to the cooling
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water system control in HVAC. We compare its performance with DQN, baseline control
method and the model-based control method. The experimental results show that since
the a priori knowledge was introduced as a deep forest classifier, DF-DQN’s action space
could be mapped to a smaller one. DF-DQN did not need to spend a lot of on exploring the
environment, so it converged much faster than DQN, which is the main reason that DF-
DQN shows a better performance in the early stage compared to DQN. In the latter stage,
the performance of DF-DQN was always slightly worse than DQN, and the reason is that
the DF classifier may have output some wrong labels in a few states, which directly affected
the result and DF-DQN’s performance. Compared with the model-based control method,
DF-DQN performed slightly worse in saving energy, but it did not require any complete
system model, thus avoiding the unnecessary cost of modeling, which was valuable in the
engineering practice.

DF-DQN had obvious energy-saving effects in the early stage and the overall energy-
saving effect was also good, but its performance was directly affected by DF, which relied
on historical data or expert experience. Thus, it is particularly important to train a DF clas-
sifier with excellent performance. DF-DQN has a good energy-saving effect in engineering
applications, and is more practical than traditional RL methods, but it is not suitable for
systems lacking historical data or expert experience. In addition, in this paper, we only
considered two controllable equipment, but if more equipment need to be controlled, for
example, more than 10 equipment, the performance of DF-DQN might decrease, which is
limited by the DQN. Thus, for the future works, we will focus on following two aspects:
(1) improving the accuracy of DF classifier or constructing a new classifier with higher
accuracy, which could improve the final control performance in the current DF-DQN frame-
work. (2) When more equipment of different types is involved, multi-agent reinforcement
learning method can be adopted into the DF-DQN framework.
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Appendix A

The workflow of this system:
The workflow can be described as following steps:

A. In time step t, the agent observes the state st, and decides to turn the system on or
off according to CL. This process is shown in the right-hand part of Figure A1. The
details of this process are shown below:
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Figure A1. The workflow of system.

(1) If CL is less than 20% of the chiller cooling capacity (CC) that one chiller can
offer, the system will be turned off;

(2) If CL is more than 20% of the rated refrigerating capacity that one chiller can
offer and less than the refrigerating capacity that all the chillers can offer,
namely 4 × CC, we will turn on the system, and the number of chillers is
decided by the minimum x, which can make x × CC ≥ CL, and x is the
number of chillers we turn on. x can be calculated by Equation (A1).

x = CL // CC + 1 (A1)

where “//” represents exact division. No matter how many chillers we turn
on, the CL assigned to each chiller is the same. As for cooling water pumps
and the cooling towers, we turn on 2 and 4, respectively.

(3) If CL is more than 4 × CC, we turn on all the chillers, cooling water pumps,
and cooling towers, namely 4, 3, 7, respectively.

B. We use the DF-DQN controller to control cooling water pumps and cooling towers, select
the frequency of them, and combine them into an action (pump_action, tower_action).
The system COP, reward in RL, can be observed after executing the action. The action
is selected by ε − greedy policy;

C. Then we train our DF-DQN agent;
D. Transfer to next state st+1;
E. End the current learning and move to step (A).

Appendix B

The energy-saving effects obtained by all methods in this paper are shown in Table A1.

Table A1. Energy-saving effect of each method compared with baseline control.

Energy Saving (Compared to Baseline Control)

Year DQN DF-DQN DF-DQN (False Label) Model-Based Control

1st −29.996% 8.074% −10.022% 13.755%
2nd −9.843% 11.337% −8.037% 13.755%
3rd 0.798% 10.086% −4.224% 13.755%
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Table A1. Cont.

Energy Saving (Compared to Baseline Control)

Year DQN DF-DQN DF-DQN (False Label) Model-Based Control

4th 11.362% 11.273% −5.659% 13.755%
5th 12.195% 11.157% −5.191% 13.755%
6th 11.752% 11.677% −2.374% 13.755%
7th 11.879% 11.480% −3.465% 13.755%
8th 12.503% 11.578% −2.349% 13.755%
9th 8.957% 11.757% −3.350% 13.755%
10th 11.908% 11.580% −1.934% 13.755%
11th 12.440% 11.636% −2.274% 13.755%
12th 11.195% 10.299% −2.866% 13.755%
13th 11.763% 10.879% −2.266% 13.755%
14th 10.893% 10.311% −3.364% 13.755%
15th 11.461% 12.168% −3.754% 13.755%
16th 12.042% 11.855% −2.420% 13.755%
17th 10.967% 11.850% −7.476% 13.755%
18th 12.583% 10.639% −3.268% 13.755%
19th 12.490% 10.893% −3.704% 13.755%
20th 12.094% 10.177% −4.094% 13.755%

Average 7.972% 11.035% −4.104% 13.755%
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Abstract: In recent years, machine learning has gradually been applied to building energy-saving
designs to reduce the time consumption of the optimization screening stage. However, since most of
the existing research scholars come from the fields of computers and engineering, the application of
machine learning technology mostly involves complex programming as well as software in the field
of engineering, which requires multiple software to be coupled to achieve. In view of the differences
between disciplines and the high learning threshold, these theories are difficult to apply and promote
in practical work in the field of architecture. In this regard, this paper focuses on the improvement of
methods, based on the Grasshopper platform, proposes a detached energy-saving residential form
generation design method and process, to explore the optimal energy-saving building form in a more
concise and efficient way. Based on this new method, on the basis of verifying its feasibility through
a residential building case, two machine learning algorithms, neural network (ANN) and support
vector machine (SVM), are compared and studied, and the applicability of these two algorithms in
different building performance indicators is further discussed. The results show that the ANN model
has the highest accuracy and is more suitable for the prediction of building energy consumption; in
view of the simple and fast operation of SVM, it is more suitable for comfort prediction with relatively
low accuracy requirements. By combining the above two machine learning methods, work efficiency
can be improved while satisfying the prediction of relevant performance indicators. This method can
help architects quickly search for the best building energy-saving form design scheme in the scheme
design stage and provide data support and information feedback for architects in design conception
and deepening.

Keywords: detached house; energy efficient building; machine learning; multi-objective optimization;
Grasshopper

1. Introduction

With the rapid growth of China’s economy after the reform and opening up, residential
buildings have flourished in the past decades and become one of the most important
building types for national construction development and solving people’s livelihood
problems [1]. Residential buildings consume a large amount of primary energy, increase
a large amount of carbon emissions, and become an important cause of global warming.
Therefore, low-carbon residential construction is the most important task to achieve the
goal of “double carbon”.

In recent years, the multi-objective optimization method has been more widely used
in the retrofitting and generation of energy-efficient buildings. Di Wu et al. [2] incorporated
building cost into the optimization index and used the Design Builder software platform
to optimize a comprehensive screening of building energy consumption and economics
relying on the NSGA-II algorithm. Shao Teng et al. [3] took the regional climate as the
entry point and used the particle swarm algorithm (PSO) and Hooke-Jeeves algorithm
to work together with the coupling of multiple software such as GENOPT and Energy-
Plus to carry out the design optimization study of the building envelope as a variable.
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Zhang Yong et al. [4] incorporated comfort into the optimization index and proposed a
decomposition-based multi-objective evolutionary optimization (MOEA/D) method for
building energy efficiency design, which is comparatively better than the typical NSGA-II
algorithm in terms of distributivity and convergence, and raised the issue of how to
combine machine learning to reduce computational time consumption in the outlook.
Yuan Gao et al. [5,6] relied on the Grasshopper platform to find the optimal design for
winter heating energy consumption and comfort with building planning and single-unit
parameters as variables, and incorporated the TOPSIS comprehensive evaluation method
to filter the Pareto solution set. Chingwen Xue et al. [7] based on MATLAB platform with
the help of C programming language, through the building performance of 1000 samples
simulations and used neural networks (ANN) to establish mapping relationships between
variables and performance parameters to speed up the convergence of the optimization
screening phase.

Through combing the literature, in the study of multi-objective optimization of build-
ings, in order to achieve better convergence and distribution, most research focuses on
the improvement of algorithms. However, since the optimization process requires the
intervention of performance simulation software to simulate the corresponding building
variables and then the performance parameters obtained are optimized and filtered, taking
the Honeybee plug-in as an example, its simulation time is 1–20 min per time. In the
process of multi-objective optimization, hundreds or thousands of performance simulations
are often required, so most of the time in the optimization process is consumed in the
performance simulation, which can take up to several hours. It can be seen that it is difficult
to solve the above problem by algorithmic improvement alone.

Although the newly proposed agent model idea [8–12] reduces the time consumption
in the performance simulation link through machine learning, it is mostly used for building
energy consumption prediction and building reconstruction, and there is little research on
the building form generation link. In addition, most of the scholars in the current research
come from the computer and engineering fields, so the application of machine learning
technology mostly involves complex programming and software in the engineering field
and needs to be realized by coupling multiple software. In view of the differences be-
tween disciplines and the high learning threshold, these theories are difficult to apply and
popularize in practical work in the field of architecture.

This paper focuses on the improvement of the method and takes Rhino-Grasshopper
(GH), a popular parametric design software in the field of architectural design, as the oper-
ation platform, and adds innovative modules of data sampling, performance simulation
drive, and accuracy evaluation in the Octopus plug-in through visual programming and
improves the optimization algorithm and process equipped with it from the perspective
of architects. The optimization algorithms and processes are improved to achieve a set of
independent energy-efficient residential form generation design methods that are simple to
operate and can be completed on only one software platform, which successfully solves
the above problems. The applicability of two machine learning methods, ANN and SVM,
for different prediction target values is further analyzed. The method can help architects
quickly find the optimal energy-efficient building form design in the schematic design
stage and provide data support and feedback to architects in design conceptualization
and refinement.

2. Literature Review

As mentioned in the introduction of this paper, the application of machine learning in
building energy consumption was originally used to solve the problem of excessive time
consumption in the multi-objective optimization stage. Therefore, this section, in order
to improve the efficiency of the multi-objective optimization problem for the origin, from
algorithm improvement to the intervention of machine learning algorithms, then reviews
the literature on the application of machine learning in building energy consumption
and building generation, so as to analyze the advantages and disadvantages of existing
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technologies and methods, so as to help explain the process of the research problems
proposed in this paper and the value and significance of the research methods proposed in
this paper.

2.1. Optimization

As an important branch of artificial intelligence, the theoretical prototype of optimiza-
tion algorithms, “heuristic search”, can be traced back to Herbert Simon’s “The Sciences of
the Artificial” book in 1969 [13]. With the increasing demand for design optimization in
architectural design, more and more optimization algorithms are embedded in the archi-
tectural design platform, which provides a variety of available algorithms for architects to
solve different design optimization problems. In recent years, multi-objective optimization
algorithms have also been widely used in rural reconstruction. The research can be divided
into the following two directions: the first is the improvement of the optimization algorithm,
and the second is the optimization results and information feedback (Table 1).

Table 1. The development of optimization algorithm research problems.

Research Direction Research Problem Reference

Improvements to the
Optimization Algorithm

Galapagos plug-in based on genetic algorithm and
annealing algorithm, but only for single-objective optimization. [14]

Octopus plug-in based on GH platform, this plug-in
introduces SPEA-2 and Hyper-Volume Evolutionary Algorithm (HypE),

which can perform multi-objective optimization compared
to the previous generation Galapagos plug-in.

[15]

The application of NSGA-II algorithm in Design Builder,
MATLAB, and other software platforms is better than SPEA-2

algorithm in terms of convergence and distribution.
[2]

The MOEA/D algorithm uses the information of adjacent problems to
update the individual position, avoiding the population falling into local

optimum, and has great advantages over the previous generation
algorithm in maintaining the solution distribution.

[16,17]

The introduction of machine learning solves the time-consuming problem
of multi-objective optimization by establishing a “surrogate model”. [8–12]

Optimization results and
information feedback

The optimization results appear in the visual form of the Pareto solution
set, which is convenient for the architect to conduct intuitive screening, but

the number of the generated solution sets is often large, which brings
certain difficulties for the architect to analyze the optimization results.

[18,19]

By grouping and clustering the distribution of design variants
in the result space, architects can compare only the differences

between different clusters, and avoid redundant information from
analyzing a large number of similar design variants.

[20]

The K-means clustering algorithm is used to group the
design variants in the optimization results in the target result space,

and the performance characteristics of each group are analyzed
and compared through parallel coordinates.

[21]

The Pareto solution set is further evaluated and screened by
the TOPSIS comprehensive evaluation method, which reduces
the workload of architects in the solution set screening process.

[5]

The improvement of the optimization algorithm helps to improve its convergence and
distribution. The algorithm that first appeared on the GH platform was the Galapagos
plug-in developed by David Rutten [14]. The plug-in includes the genetic algorithm and the
annealing algorithm. Among them, the genetic algorithm is based on the standard genetic
algorithm and controls the genetic similarity of the two parent individuals selected in the
hybridization process through the “breeding” parameter; the appearance of this plug-in
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is also an important step in the era of computer optimization for architectural design. It
is widely used in building performance optimization and urban climate improvement.
However, since Galapagos can only be optimized for a single objective, Vierlinger et al. [15]
developed an Octopus plugin capable of multi-objective optimization. The plug-in in-
troduces SPEA-2 and Hyper-Volume Evolutionary Algorithm (HypE) to allow users to
optimize multiple objectives and visualize the individuals found during the optimization
process through a 3D coordinate system, which can help architects filter suitable design
variants in the Pareto solution set. The emergence of Octopus has a greater improvement
than Galapagos in terms of algorithm improvement and software interaction design. With
the introduction of the NSGA-II algorithm in software platforms such as Design Builder
and MATLAB, its comprehensiveness is better than SPEA-2. To improve, Wu Di [2] and
other scholars use this algorithm to screen passive energy-saving technologies and compre-
hensive energy-saving technologies by means of multiple software couplings, but there
are still problems such as slow convergence speed and easy local convergence. Then the
MOEA/D (multi-objective evolutionary algorithm based on decomposition) algorithm ap-
peared, which has great advantages in maintaining the solution distribution [16,17]; at the
same time, by using the information of adjacent problems to update the individual position,
it avoids the population falling into a local optimum. Zhang Yong [4] and other scholars
established a building model in SketchUp, ran the MOEA/D algorithm in MATLAB to
generate a new solution, and then used the Visual C++ interface program to decode the
new solution to Energy-Plus and output the energy of the building. The index value of
time consumption and uncomfortable time is proposed, and in its outlook, it proposes how
to combine machine learning and other methods to solve the problem of computational
time consumption.

Although the improvement of the new algorithm can improve the optimization ef-
ficiency to a certain extent because the performance simulation software is required to
intervene in the optimization process to simulate the corresponding building variables,
and then the obtained performance parameters are optimized and screened, so most of the
time it will be simulated by the performance. It is difficult to solve the above problems by
the improvement of the algorithm alone; with the development of computer technology in
recent years, machine learning algorithms have been introduced into the multi-objective
optimization design of buildings; that is, by establishing a “surrogate model” to reduce
the performance in the optimization process. The time consumed by the simulation will be
discussed in detail in Section 2.2.

At the level of optimization results and information feedback, the processing and
visualization of optimization results are also important means to help architects extract
design information from them. In the results of multi-objective optimization, they often
appear in the form of Pareto solution sets. However, the number of generated solution sets
is It is often larger, which brings certain cognitive difficulties for architects in analyzing
and optimizing results [18,19], so the processing of solution sets is particularly important.
Some researchers propose to post-process the optimization results; that is, to extract a small
number of representative design variants from the optimization results containing a large
number of design variants to help architects quickly grasp the core information reflected
in the optimization results. For example, scholars such as Negendahl [20] carried out a
design optimization experiment of building a facade curtain wall with energy consumption,
sunshine, cost, and heat load as multiple objectives. In order to extract key information from
the Pareto front surface of design variants, the authors chose to visualize the optimization
results in an “objective space” composed of a coordinate system and group and cluster these
design variants according to their distribution in the resulting space. Through clustering,
architects can compare only the differences between different clusters and avoid redundant
information from analyzing a large number of similar design variants. Then, Chen [21] and
other scholars took the space cooling system of the building as the design optimization
object and carried out multi-objective optimization for electricity consumption, cost, and
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sunshine. The target result space is grouped, and the performance characteristics of each
group are analyzed and compared by parallel coordinates.

In addition, scholars such as Gao Yuan [5] further evaluated and screened the Pareto
solution based on the GH platform through the TOPSIS (technology for order preference
by similarity to an ideal solution) comprehensive evaluation method, which reduced the
workload of architects in the process of solution selection.

2.2. Application of Machine Learning in Architectural

In recent years, with the development of computer technology, digital design has grad-
ually become the mainstream of architectural design, and the mutual penetration between
disciplines has also brought the application of many new technologies to architectural
design. Machine learning technology originated from artificial intelligence and statistics,
and is widely used in image recognition, manufacturing, and other fields. In recent years,
it has been used in the field of architectural design. Literature review according to 5 main
directions of application of machine learning in architectural design (Table 2).

Table 2. The development of research problems in the application of machine learning in
architectural design.

Research Direction Research Problem References

Building
Performance Prediction

The time-consuming problem in multi-objective
optimization is solved by establishing a “surrogate model”. [8–12,22]

Based on the Rhino platform, a real-time visualization modeling platform is
established by using GAN neural network, which can help architects to

analyze the impact of urban wind and heat environment intuitively.
[23]

Generating 3D Wind Field Data Based on SOM Algorithm. [24]

Based on the idea of “surrogate model”, scholars such as
Thomas Wortmann developed an optimization plug-in (Opossum) based on

the GH platform. Compared with the traditional optimization algorithm,
this plug-in can obtain performance optimization results more quickly.

[25]

Architectural
Form Generation

Based on the GH platform, a three-dimensional convolutional neural network
(3dCNN) is created. By transferring the three-dimensional shape of the building,

the network can identify three architectural features.
[26]

On the basis of the former research, the adjacency information of
each sampling point is added, and the translated building shape

information is handed over to the autoencoder for processing.
[27]

Compared with the previous generation method, the three-dimensional model
of the building is segmented in different directions, and the image of the cut

surface is used as the learning information of the input of the neural network,
and then the GAN neural network is used to generate the building form.

[28]

Building Plan Generation

Generative Design Method Based on GAN Neural Network. [29–31]

The machine learning method based on graph structure
(Top-view representations) is a kind of deep learning algorithm.

Compared with the GAN neural network algorithm, this method has
more advantages in expressing the spatial topology relationship of buildings.

[32–35]

Building Renovation
Building facade generation based on GAN neural network. [36]

Building Performance Improvement Based on ANN Neural Network. [7]

Machine learning has demonstrated its potential as a “pattern recognition” tool for
applied research in building performance prediction. Among them, in solving the problem
of slow convergence in the multi-objective optimization stage mentioned in Section 2.1,
the application of machine learning technology in this stage is mainly used to establish
the relationship between input and output variables, also known as the surrogate model;
that is, the machine learning algorithm learns the relationship between input and output
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variables from multi-dimensional sample data, so as to establish a model of the correlation
between input and output values, so this method is widely used in building energy con-
sumption prediction [8–12], architectural environment simulation [22] and other building
performance related fields. In solving the urban-scale environmental performance simula-
tion, Duering S, Chronis, and other scholars established a real-time visualization modeling
platform based on the Rhino platform using the GAN neural network [23]. The relationship
between the graphs can help architects to intuitively analyze the influence of urban wind
and heat environment, thereby optimizing the urban form. In addition, the SOM algorithm
also has corresponding applications in generating 3D wind field data [24]. Based on the
idea of a “surrogate model” in machine learning, scholars such as Thomas Wortmann [25]
developed an optimization plug-in (Opossum) based on the GH platform. Compared with
the traditional optimization algorithm, the plug-in can obtain performance optimization
results more quickly, but due to the random number sampling method being used, results
in a low model accuracy.

At the level of architectural form generation, in recent years, the focus has been on
how to transfer the 3D shape of the building for machine learning to call, and it has
been applied in the 3D convolutional neural network (3dCNN), that is, the 3D model
of the building is pixelated. By making a three-dimensional distribution of pixels, the
corresponding neural network can be created. At present, David Newton [26] created a
three-dimensional convolutional neural network based on the GH platform, which can
identify three architectural features, and then scholars such as Jaime de Miguel [27] added
the adjacency information of each sampling point on this basis, The translated architectural
shape information is handed over to the autoencoder for processing, and the architectural
shape information is finally compressed into a vector in a latent space through four hidden
layers. Scholars such as STEINFELD [28] adopted another method to establish a method of
building shape generation based on machine learning. That is, another idea was adopted
in the translation of building shapes, and the three-dimensional model of the building
was divided in different directions. The image is used as the learning information at the
input of the neural network, and then the GAN neural network is used to generate new
architectural shapes.

The research on building plan generation is mainly divided into two different paths.
The first is the generative design method based on the GAN neural network, that is, training
in the form of image pixels to obtain a new building plan scheme [29–31]. In recent years,
this method has also been widely used in the reconstruction and generation of building
facades, but the problem is that it cannot be accurately exchange data with modeling
software. The second is a machine learning method based on top-view representations,
which is a kind of deep learning algorithm. This method has more advantages than
the GAN neural network algorithm in expressing the spatial topology relationships of
buildings [32–35].

With the saturation of urban buildings nowadays, building renovation gradually be-
comes a new research hotspot, and machine learning techniques are applied here. Thanks
to the advantages of GAN neural networks in processing two-dimensional image data,
similar to building planes, GAN neural networks are mainly used in the study of building
façade renovation, which can assist architects in rapid batch pattern design in old neigh-
borhoods and township renovation [36], eliminating the need to manually perform a large
number of design patterns based on “mechanical” operations. In building performance
retrofitting [7], neural networks (ANNs) are widely used because of their outstanding
performance in terms of model accuracy, mostly using the MATLAB platform to invoke
performance simulation software through programming, and then a certain number of
simulation data samples are handed over to neural networks for learning to establish
“agent models”. Finally, the best combination of building parameters is selected through a
multi-objective optimization algorithm, which can also be regarded as a further application
of machine learning technology in the area of building energy consumption.
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Through the review of related research status and problems and the reviews of “op-
timization algorithm” and “application of machine learning technology in architectural
design”, it can be seen that machine learning technology has been widely used in archi-
tectural design. Although SVM, ANN, and other traditional machine learning algorithms
do not have the same “magic” as deep learning, they have great potential in the fields of
building performance and building renovation, and the performance feedback in multi-
objective optimization is accelerated by machine learning technology, which is also more in
line with “intelligent” building needs. However, since most of the scholars in the existing
research are from computer and engineering fields, the application of machine learning
techniques mostly involves complex programming and software in the engineering field
and requires multiple software coupling to achieve, which is difficult to promote in the
practical work in the field of architecture due to the difference between disciplinary fields
and high learning threshold.

3. Detached Energy-Efficient Housing Generation Method

In contrast to the diversity and complexity of urban architecture, detached housing is
often characterized by modality and lightness, and passive energy efficiency tools such as
form adaptation are particularly important. With the development of computer technology,
the relationship between computers and architecture has become closer and closer. From
the early days when the two fields were unrelated, to the 1990s when architects began to
use computers for simple drafting and modeling, and nowadays when computers begin to
assist architects in simple design tasks, architectural design has gradually differentiated
into an independent research system.

Building design generation as a broad computer-generated concept covers many
building generation ideas and methods. Specifically, it can be divided into the following two
categories: the first is the “top-down” generation approach, i.e., the design generator builds
a parametric model and then hands it over to the solver for filtering using optimization
algorithms. This method is usually used in cases where there are few design elements and
the relationship between them is simple, such as residential buildings with few building
blocks and simple functions, or the generation of building façade components; the second
type is the “bottom-up” operational design optimization, which integrates the solution
and generation process of the design problem into a unified algorithm, which can solve
the layout problem among multiple buildings, but the optimization algorithm is difficult
to intervene [13–15]. Therefore, it is appropriate to adopt the first type of “top-down”
approach in this study.

This paper regards building energy conservation as an important index of building
form generation. The genetic algorithm carried in Octopus is used to optimize and screen
the energy conservation indicators of buildings, so as to obtain the building form with the
lowest energy consumption and relatively high comfort. As mentioned in the introduction,
in the previous solution process, this stage often took a lot of time, and the intervention of
the machine learning algorithm greatly shortened the time consumed in this process.

The parametric model part mainly includes parameter setting, LHS, performance
simulation, machine learning, and accuracy evaluation, which is the core part of this study;
the optimization algorithm part uses the Octopus solver for optimization screening. The
detailed process is shown in Figure 1.
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Figure 1. Flow chart of generation and optimization of detached energy-saving houses.

3.1. Parameter Setting

In the parameter setting, the architect needs to use field research and environmental
monitoring to analyze the meteorological conditions, cultural customs, the owner’s needs,
and building codes of the countryside to set the number, type, and value range of the
corresponding variables. The basic form parameters such as width, depth, height, and area
of the building can be controlled by native commands such as domain box and number
slider in GH; the parameters such as window to wall ratio and building orientation need to
be controlled by the corresponding battery in the create module of Honeybee.

3.2. Latin Hypercube Sampling

Honeybee is a full-featured and highly accurate performance simulation plug-in based
on the GH platform. Its internal operator can directly invoke the Energy-Plus calculation
kernel to complete simulation analysis of annual thermal and cooling loads, comfort, etc. It
is important to note that there are usually hundreds of thousands of variable parameter
values arranged and combined in buildings, and as mentioned in the introduction of
this paper, it would take a long time to perform computational simulations if Octopus
is used directly for optimization screening at this stage. Therefore, it is necessary to
sample the parameter values to generate a small and representative sample, and then input
the sample variables into Honeybee separately for performance simulation, and finally
establish the relationship between the design variables and the target values by means of
machine learning.

Latin hypercube sampling (LHS) is a special stratified sampling method [37,38]. Its
characteristic is that the collected sample data has good distribution and avoids the problem
of sample data aggregation caused by the traditional random sampling method. Therefore,
it is also widely used in computer experiments. However, due to the lack of plug-ins
for sample collection in octopus, and the existing studies mostly using Python or R lan-
guage programming to sample [6,8], the operation is cumbersome and requires other
software intervention. Therefore, this paper supplements this cluster in GH through visual
programming (Figure 2).

With a total of m variables x1, x2, . . . xm, N samples need to be collected. According
to the sampling principle of LHS can be summarized as the following three steps: seg-
mentation, taking values, and disruption. Step 1 (Segmentation): Use Divide Domain in
GH to decompose each of the m variables into the same N small intervals. The number of
small intervals is the number of required samples. Step 2 (take value): Use the Random
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command to select a random value in each interval. If you want to adjust the number of
decimal places to be retained in this stage, you can enter the corresponding expression
in Evaluate. Step 3 (Disorder): Finally, use the Jitter command to disorder each of the N
values in the m variables and then combine them with the values in the other variables.

Figure 2. The battery diagram of the Latin hypercube sampling method based on GH.

3.3. Performance Simulation

Before the performance simulation, we need to clarify the performance target; gen-
erally, the more target values need to be simulated, the longer it takes. Relying on the
power of Honeybee, the target values can be obtained through simulation calculation, such
as cooling and heating load, equipment load, comfort, solar radiation value, and other
performance targets, which can be set flexibly according to the demand in specific project
practice. After setting the performance targets of the building, it is necessary to import the
parameter samples obtained by LHS sampling into Honeybee for performance simulation,
but the number of samples is often hundreds and it is difficult to perform manually, so it is
necessary to build a driver module in GH that can import the data from the sample library
into Honeybee simulation in turn. In this paper, the simulated parameters in the sample
data are exported sequentially by data record and timer commands, and the parameter
values to be simulated are assigned to the corresponding cell groups sequentially by list
item (Figure 3). When all the parameter samples are simulated, the simulated values
collected in the data record are checked and verified for later use in machine learning.

Figure 3. Performance simulation computing battery pack.

3.4. Machine Learning and Evaluation
3.4.1. Machine Learning

Machine learning originated in the fields of artificial intelligence and statistics. In re-
cent years, it has been used in the field of building energy consumption prediction to speed
up optimization. That is, an input-output correlation model is established through machine
learning, and new data is input into the trained model. Predictive models can predict the
corresponding data outputs, a process known as “surrogate models” or “metamodels” [39].

As mentioned in Section 2.2, there are many types of machine learning algorithms;
however, due to the different characteristics and principles of the algorithms, they have
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their own areas of expertise; for example, the GAN neural network in deep learning is
good at identifying image data, so it is mostly used in the field of architecture for the
generation of plans and facades. In this study, the predicted indexes are the performance
parameters of detached houses, including building energy consumption and comfort,
which are regression problems with data labels, and the application of traditional machine
learning algorithms has more potential in the field of building energy consumption and
renovation, therefore, this paper unfolds with ANN and SVM learning algorithms.

In addition, relevant machine learning plug-ins have appeared in GH in recent years,
such as Lunchbox, Octopus, Owl, and other plug-ins that package algorithms into different
operators, among which Octopus is equipped with machine learning and multi-objective
optimization modules, which have the characteristics of simple operation and relatively
comprehensive functions; therefore, it is appropriate to choose Octopus as the operating
platform for the machine learning part.

An ANN is a mathematical model that simulates a biological neural network for
information processing, referred to as a neural network. It has the characteristics of high
classification accuracy, strong learning ability, and good prediction and classification ability
for untrained data [40].

The emergence of the MP-neuron model laid the foundation for the development of
neural networks, however, the model with only one layer of functional neurons has limited
learning ability and can only solve linearly separable problems for the nonlinear problem
in Figure 4a cannot be fitted accurately. The neural network composed of multiple neurons
and hidden layers enables ANN to deal with nonlinear problems better (Figure 4b). As
shown in Figure 4, the greater the number of neurons, the smoother the fitted curve and
the higher the accuracy of the model, but if the number of neurons exceeds a certain value,
overfitting will occur and the accuracy decreases. In the problem of building performance
prediction, the output values of energy consumption and indoor comfort are continuous
variables, which can be regarded as a regression problem. The neural network can build
a prediction model with high accuracy by adjusting the number of hidden layers and the
number of neurons, so it is widely used in the field of building performance prediction and
is therefore one of the machine learning algorithms focused on in this paper.

Figure 4. Neural network fitting curve comparison.

Its operation in Octopus relies mainly on the following two parts: the input module
(network learning) and the output module (network evaluate). The input of the learning
module corresponds to the sample parameter values obtained from LHS; the output cor-
responds to the target values after simulating the performance of the sample parameter
values; since the input and output values in this battery module only identify the values
within [−1, 1], the sample data needs to be mapped to the interval [−1, 1] and then given
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to network learning for neural network training. The infrastructure of a neural network
is composed of multiple layers of parallel units called neurons, so the number of hidden
layers and the number of neurons inside are important factors that affect the accuracy
of a neural network, and if the neurons are underestimated, the ANNs ability to store
information may be reduced. On the contrary, overestimation may lead to unnecessary
learning and even overfitting of the neural network, and the “trial-and-error” method is
commonly used to find the right number of hidden layers and neurons [7]. In Octopus, the
number of hidden layers and neurons can be adjusted by controlling the parameter values
of layers and nodes at the input side of the network learning battery. After the training is
completed, the trained neural network is connected to the network evaluate battery, and
the target value after prediction through the neural network is obtained by inputting the
parameter values that need to be simulated on the I side (Figure 5).

Figure 5. ANN battery pack.

SVM is a supervised binary classifier based on the statistical VC dimension theory
and the principle of structural risk minimization. Cortes and Vapnik formally proposed
a support vector machine (SVM) in 1995 [41]. SVM was first developed from statistical
theory and is also known as SVC (support vector classify) for classification problems and
SVR (support vector regression) for regression problems. SVMs usually separate samples
by a linear function for linearly separable binary classification problems, but there is not
only one but an infinite number of straight lines that can separate the data, so the support
vector machine corresponds to the straight line that can correctly divide the data with the
largest interval. However, such a classifier is still a weak classifier and still cannot solve
some linear indistinguishable problems in reality, as shown in Figure 6 in the original space
where the data are located. The kernel function in SVM solves this problem by mapping
the data from the binary plane to a higher-dimensional space and finding an optimal plane
in that space to separate these two types of data. From a mathematical point of view, let the
curve in Figure 6, which separates orange and blue, be a circle with the equation x2 + y2 = 1.
The principle of the kernel function is seen as mapping x2 to X and y2 to Y. The equation of
the hyperplane becomes X + Y = 1, which makes the nonlinear separable problem in the
original space become a linear separable problem in the new space through the mapping
effect of the kernel function.

In dealing with the regression problem, the principle is similar to that of SVC. First of
all, it is necessary to ensure that the fitted line should reflect all the sample data as much
as possible, so the distance between the hyperplane and the farthest sample point in the
regression task should be as large as possible, but the situation shown in Figure 7a will
occur when the distance is guaranteed to be the largest, so a limit is added to the interval in
SVR. The deviation of the model f (x) from y should be less than or equal to ε. The deviation
range is also called the ε pipeline, and the correct fitted curve shown in Figure 7b can be
achieved by adding restrictions to the sample data interval. In the case of nonlinear fitting,
the same principle as in the classification problem is used to transform the nonlinear fit
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into a linear one by mapping the sample data to a higher dimensional space with a kernel
function (Figure 8).

Figure 6. The principle analysis of the kernel function in the SVM linear inseparable problem.

Figure 7. SVR linear fitting schematic.

Figure 8. SVR nonlinear fitting schematic diagram.

In Octopus, there is a similar operation logic to ANN, which is also composed of
an input module (SVM learning) and an output module (SVM Evaluate). Unlike ANN,
the input sample value does not need to be mapped. Because SVM has a strict statistical
theory and mathematical foundation, unlike ANN, which needs to rely on the experience
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and knowledge of designers, it needs to adjust fewer parameter values, and its operation
difficulty is lower than ANN. (Figure 9).

Figure 9. SVM battery pack.

3.4.2. Evaluation

The two machine learning algorithms are not superior or inferior in nature, and the
more suitable machine learning method should be selected when dealing with different
sample data; for example, SVM can be used for small samples with high dimensionality,
while ANN can be used for samples with a large number of samples and noisy data.
However, in the specific practice process, the operator needs to have strong data sensitivity
and certain operating experience, otherwise, it is difficult to judge the nature of the sample
data, so this paper proposes a classification attempt, that is, the sample data are imported
into two machine learning algorithms for training, and the accuracy of machine learning
is evaluated by the following two common model evaluation methods: root mean square
error (RMSE) and coefficient of determination (R2) [41]. The machine learning method
with the better evaluation grade is used to establish the relationship between the variables
requiring higher model accuracy and the performance simulation target value. Among
them, the smaller the root mean square error indicates, the better the model prediction, the
larger the coefficient of determination, and the higher the model accuracy. Its calculation
formula is as follows:

RMSE =

√
1
n
·∑n

i=1(yi − ŷi)2 (1)

R2= 1 − ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − yi)

2 (2)

where yi represents the predicted value generated by machine learning, yi represents the
average value of yi, and ŷi represents the simulated value of performance generated by
Honeybee calculation. In the “classification attempt” process, 70% of the sample data are
usually used for machine learning and 30% for accuracy evaluation. In this paper, the
above evaluation method is implemented in GH using a native cell written in the math
module (Figure 10).

In addition, if the accuracy of the model is too low for both machine learning methods,
it may be caused by factors such as insufficient sample data or improper operation and
needs to be returned for verification and modification.
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Figure 10. Evaluation of modular battery packs and usage examples.

3.5. Multi-Objective Optimization

Two important indicators of building energy conservation are energy consumption
and comfort. In the optimization screening, multi-objective optimization of the residential
building form parameters is performed using the SPEA-2 algorithm equipped with Octopus
through a machine learning module in order to find the building form with the lowest
energy consumption and the highest comfort level within a specific range of parameters
(Figure 11). Since many-objective optimization parameters are contradictory in nature, a
solution may be better for one objective but worse for others, so it is necessary to perform a
specific analysis in the Pareto solution set [42,43], taking into account the actual situation,
e.g., the user of the house spends more time in the house and needs to take more into
account the level of indoor comfort, so the Pareto solution set can be chosen to favor the
comfort level. For example, in areas where energy is relatively scarce, building energy
efficiency is more important, so solutions with lower energy consumption can be selected
in the Pareto solution set.

Figure 11. Multi-objective optimization operation battery pack.
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4. Experiment and Results

In this section, the above operation process is practically performed so as to verify the
effectiveness of this method, and the ANN and SVM algorithms are compared and studied
to derive a machine learning approach more suitable for detached residential buildings for
practical reference.

4.1. Sampling Method Comparison Experiment

With variables x1, x2, which both take values in the range [0, 1], 10 sample data are
sampled in the interval using the LHS operation process proposed in this paper with GHs
native random number command, respectively, and the generated data are displayed using
scatter plots. The comparison of the sampling points in (Figure 12) easily shows that the
sampled data after the operation using the above method exhibits the characteristics of
uniform LHS sampling distribution, while the sampled data in the traditional random
number command has the disadvantages of overlapping data and uneven sampling. This
experiment proves the effectiveness of the sampling method in this paper.

Figure 12. Comparison of LHS and Random sampling.

4.2. A Comparative Study of Machine Learning Algorithms

Two machine learning algorithms, ANN and SVM, are selected for comparative study.
The two algorithms use the same learning samples and test data to ensure the objectivity
of the experiment. When generating the sample data, the weather data of Jinan City is
selected as an example for the reference independent house building shown in this paper.
It adopts the form of a single-layer flat roof. The building is a steel frame structure as a
whole, the exterior walls and roof are equipped with insulation layers, and the ventilation
rate is set to 0.5 h−1. The windows are made of double-layer hollow Low-e glass with an
argon-filled air layer in the middle. The thermal transmittance (U-value) is 0.8 w/(m2·K),
and the solar heat gain coefficient (SHGC) is 0.65. Tables 3 and 4 provide details of the
structural and material properties of the building envelope and the internal heat gain.

In this paper, five main parameter variables affecting the form and performance of
buildings are set (Table 5), and two important indicators in building energy efficiency
design, building energy consumption (EUI) and comfort, are taken as optimization target
values. Through the Honeybee plug-in, 500 performance simulations were conducted;
400 samples were used for machine learning, and the remaining 100 samples were used
for testing.
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Table 3. Structural and material properties of the building envelope.

Construction
Component

Layers
Thickness

(mm)
Conductivity
(W/(m2·K))

Density
(kg/m3)

Roof

Roof membrane 25 0.71 1856
Typical insulation - - -
Metal roof surface 0.8 45 7824
Generic insulation 50 0.03 43

HW concrete 200 1.95 2240
Ceiling air gap 100 0.55 1.28

Acoustic tile 20 0.06 368

Exterior wall

Stucco 25 0.71 1856
Gypsum board 15 0.16 800

Typical insulation - - -

Gypsum board 15 0.16 800

Exterior window
Low-e glass 6 0.99 2528

Argon cavity 12 0.017 1.78
Low-e glass 6 0.99 2528

Table 4. Internal heat gains.

Source of Internal Heat Gain Heat Gain
Schedule

Weekday Weekend

Owner 100 W/Owner 00:00–8:00 and 18:00–24:00 Always at home
Lighting 6 W/m2 19:00–22:00

Refrigerator 150 W Always on
Television 60 W 18:00–22:00 8:00–10:00 and 18:00–22:00

Table 5. Variable parameter settings.

Variable Name Value Range Step

Width/m [12, 15] 0.1
Depth/m [5, 6] 0.1

Floor height/m [3, 4] 0.1
Building orientation/(◦) [0, 180] 1

Building window–wall ratio [0.3, 0.5] 0.1

The first step of training is to determine the number of hidden layers and the number
of neurons in the ANN by using the “trial and error” method. The RMSE value reaches
the minimum and the R2 value reaches the maximum when the number of hidden layers
is 4, and then the RMSE value starts to increase and the R2 value becomes smaller when
the number of hidden layers increases. After determining the number of hidden layers
to 4 and continuing to test the optimal number of neurons for the ANN, the RMSE and
the R2 values start to level off when the number of neurons increases to 7. Continuing to
increase the number of neurons does not significantly improve the accuracy of the model
but increases the training time. Therefore, in order to balance the training accuracy and
training time, a hidden layer of 4 and a number of neurons of 7 were selected to build the
neural network, and the RMSE and R2 values of the model were 0.20 and 0.99, respectively.
The model has the highest accuracy and takes the least time when the number of hidden
layers is 3 and the number of neurons is 10 (Figure 13).
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Figure 13. Test map of hidden layer and number of neurons.

The same sample data as ANN was used to import SVM for machine learning and
use 100 samples for the evaluation test, and the accuracy of the obtained model is shown
in Table 6. The comparison of the accuracy of the two machine learning algorithms in
Table 6 shows that ANN is better than the SVM algorithm in the prediction accuracy of
building energy consumption and comfort for both sample data. The RMSE has the same
units as the output variable and can be considered as the average error of the model; the
error of SVM in this target value of the annual comfort time is about 3 days, for which
the error is within the acceptable range and can be used. SVM algorithm; however, in the
prediction of building energy consumption, the error of 1.17 kwh/m2 is too large for this
target value because the area of detached houses is generally around 90–200 m2, and it is
more appropriate to use the machine learning algorithm of ANN.

Table 6. Accuracy comparison of machine learning methods.

Sample Name Machine Learning Algorithm RMSE R2

Comfort
ANN 0.20 0.99
SVM 1.08 0.89

EUI
ANN 0.29 0.99
SVM 1.17 0.90

In previous studies, the accuracy of the model was often used as the only criterion to
evaluate the applicability of machine learning algorithms, and only a single algorithm was
used in practical applications. This section further compares ANN and SVM algorithms
widely used in dealing with regression problems through a simple detached house case on
the basis of verifying the feasibility of the proposed method. Considering the complexity
and accuracy of machine learning algorithm operation, SVM is simple and fast in operation,
so it can be used for year-round comfort prediction with relatively low model accuracy;
while ANN is more complicated in operation, but the model is more accurate, so it is more
suitable for the model that requires a high forecast of building energy consumption. In
summary, two machine learning methods, ANN and SVM, can be integrated and used
in the generation of detached residential forms so as to achieve the purpose of efficient
operation and accurate prediction.
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4.3. Building Form Generation Result

The trained machine learning model is used for multi-objective optimization. After
86 iterations, the optimization results converge to form a Pareto front solution set. Figure 14
shows the EUI and comfort values of 500 database cases and Pareto solution sets used for
machine learning. Each point in the figure is a solution associated with a set of decision
variables representing a design scenario. The Pareto-front solutions yielded better building
performance as far as the two optimization objectives are concerned.

Figure 14. EUI and comfort value of 500 sample data and Pareto-front solutions.

Another advantage of the method proposed in this paper is that all the operational
processes are completed on one software platform, and the overall consistency is good. The
solutions generated from the Pareto solution set can be displayed in Rhino-Grasshopper
in real-time. Figure 15 shows nine building form generation cases selected in the Pareto
frontier solution set, in which the orange block is the generated building form, the white
block is the surrounding environment of the site, and the red line represents the red
line of building land. As described in Section 3.5 Multi-Objective Optimization in this
paper, the two performance indexes optimized are often contradictory, so they need to be
analyzed in detail in practical applications. For example, in the generated case shown in
Figure 15, considering the integration of the building and the surrounding sites, Case5,
Case6, Case8, and Case9 have improved the comfort of the whole year while ensuring low
energy consumption, but they are obviously less integrated with the surrounding sites and
exceed the scope of land use. Although Case7 has slightly higher energy consumption
than Case4, the comfort of the whole year has been greatly improved; therefore, it is more
suitable as a preliminary architectural form solution.

With the support of machine learning and a multi-objective optimization algorithm,
this method takes building energy conservation as the goal to explore the optimal build-
ing volume. The generated building form model can be intuitively expressed in Rhino-
Grasshopper, which can provide data support and intuitive form visual feedback for archi-
tects at the conception stage and facilitate further deepening and analysis of the scheme.

152



Buildings 2022, 12, 1504

Figure 15. Building form generation case (from Pareto solution).

5. Conclusions

From the perspective of architects, this paper relies on Grasshopper, a widely used
parametric design software in architecture, as a technical platform, and adds innovative
modules of data sampling, performance simulation drive, and accuracy evaluation to the
Octopus plug-in through visual programming and improves and perfects the algorithm
and optimization process it carries. It solves the problem of complex programming and
coupling of multiple software programs in the previous study of energy-efficient building
design optimization and further improves work efficiency. The applicability of SVM and
ANN in different building performance indicators is further analyzed through a residential
building case. The experimental results show that ANN and SVM can be used to predict the
energy consumption and comfort level of buildings respectively in the design of detached
energy-saving houses, which can improve work efficiency while ensuring the accuracy of
the model. This method can help architects quickly search for the best building energy-
saving form design scheme in the scheme design stage and provide data support and
information feedback for architects in design conception and deepening.

Architecture is a unique discipline, combining technology and art. In addition to
meeting the requirements of building performance, such as energy-saving optimization, the
process of building form generation is also the process of shaping spatial experience and
modeling art, so how to effectively balance the relationship between building performance
and design aesthetics in the context of future artificial intelligence is a further problem to
be solved.
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Abstract: Compared with traditional pipe networks, the complexity of air conditioning water systems
(ACWSs) and the alternation of cooling and heating are more likely to cause pipe network leakage.
Pipe leakage failure seriously affects the reliability of the air conditioning system, and can cause energy
waste or reduce human comfort. In this study, a two-stage leakage fault diagnosis (LFD) method
based on an Adam optimization BP neural network algorithm, which locates leakage faults based on
the change values of monitoring data from flow meters and pressure sensors in air conditioning water
systems, is proposed. In the proposed LFD method, firstly, the ACWS network’s hydraulic model
is built on the Dymola platform. At the same time, a cuckoo algorithm is used to identify the pipe
network’s characteristics to modify the model, and the experimental results show that the relative
error between the model-simulated value and the actual values is no more than 1.5%. Secondly, all
possible leakage conditions in the network are simulated by the model, and the dataset is formed
according to the change rate of the observed data, and is then used to train the LFD model. The
proposed LFD method is verified in a practical project, where the average accuracy of the first-stage
LFD model in locating the leaking pipe is 86.96%; The average R2 of the second-stage LFD model is
0.9028, and the average error between the predicted location and its exact location with the second-
stage LFD model is 6.3% of the total length of the leaking pipe. The results show that the proposed
method provides a feasible and convenient solution for timely and accurate detection of pipe network
leakage faults in air conditioning water systems.

Keywords: BP neural network; air conditioning water systems; leakage fault diagnosis

1. Introduction

With people’s aspirations and pursuit of a better life, the requirements for indoor
air quality have gradually increased [1], and centralized or semi-centralized central air
conditioning systems are being more and more widely used in today’s buildings. As an
important part of air conditioning systems, the pipe network not only plays an important
role in connecting the unit, the air conditioning terminal device, and the cooling side,
but also undertakes the key task of transporting and distributing the cold or heat to
each terminal device. However, as the use of air conditioning systems grows over the
years, many factors—such as the pipe material, surrounding environment, laying method,
construction quality, and operation and maintenance management—affect the reliability of
the air conditioning water system (ACWS) pipe network, and pipe leakage has become one
of the most frequent failures in the whole life cycle of air conditioning systems [2].
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Usually, ACWSs are equipped with water make-up devices, so a small leakage in the
pipe network is often not obvious, and is often overlooked. However, pipe leakage failure
often causes immeasurable damage to the actual running of the system. Figure 1 shows
the common forms of damage to ACWS pipe networks. The “Practical Heating and Air
Conditioning Design Manual” [3] stipulates the hourly leakage and replenishment of the
ACWS. If a large public building is designed according to this standard with a floor area of
20,000 m2, the hourly make-up water to the ACWS due to pipe network leakage is 800 L.
At the same time, the make-up water is cold or hot water treated by high-priced softening;
in addition to the large waste of water resources and energy consumption, pipe network
leakage may also cause the system to deviate from the best working operating point [4],
thus affecting human comfort. Pipe network leakage has become the most common but
difficult-to-deal-with problem in ACWS failures. In addition, the vast majority of accidents
in the pipe network do not occur suddenly, but are gradual, slow processes [5]. Pipe
network leakage is a precursor to major accidents, such as long-term neglect of the leakage
problem which, in the event of an accident, can seriously threaten people’s lives and the
safety of their property. Therefore, if the pipe leakage can be detected and solved in a timely
manner, one can not only avoid the waste of water resources and energy consumption by
the system, but also prevent the problem before it occurs, effectively reducing the possibility
of safety accidents such as pipe bursts.

  
(a) (b) 

Figure 1. Common forms of damage to ACWS pipe networks: (a) leakage causes ACWS performance
degradation; (b) ACWS water leakage causes mildew.

The key means of solving leakage problems in pipe networks is to use scientific and
effective pipe network leakage detection methods to accurately locate the location of the
leak(s) in the faulty pipe network. Discussion has been made of various pipeline fault
detection methods, viz., vibration analysis, pulse-echo methodology, acoustic techniques,
negative-pressure-wave-based leak detection systems, support-vector machine (SVM)-
based pipeline leakage detection, interferometric-fiber-sensor-based leak detection, filter
diagonalization method (FDM), etc. It was found that these methods have been applied for
specific fluids, such as oil, gas, and water [6]. In air conditioning systems, the popularity
of temperature, pressure, and flow sensors has led many scholars to propose diagnostic
methods for pipe leakage based on statistical or analytical methods, including the pressure
gradient method [7], pressure point analysis [8], negative pressure wave method [9], and
extended Kalman filter [10] (the leakage position is determined using the 9-DOF IMU (3D
accelerometer, 3D gyroscope, and 3D magnetometer) sensor data in the extended Kalman
filter), which were found to have limited application scenarios based on examples, or to be
more appropriate as auxiliary diagnostic tools.

With the development of artificial neural network technology, more and more scholars
are exploring the possibilities of this technology for identifying pipe network leakage
faults [11–13]. Lei et al. [14] established a BP-neural-network-based heating pipe network
leakage fault diagnosis model based on artificial neural network, and introduced the
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idea of hierarchy into pipe network leakage diagnosis. Duan et al. [15] established an
adaptive neuro-fuzzy inference system (ANFIS)-based LFD model for centralized heating
pipe networks. The example verified that the ANFIS-based heat network LFD model is
stable and has high diagnostic accuracy. Xue et al. [16] proposed an XGBoost-based district
heating network leakage diagnosis method, using the rate of change of observed data
from the flow and pressure sensors installed in the system to locate the leaky pipe section.
A series of studies have shown that the technology applied to district heating networks
(DHNs) has good diagnostic accuracy and stability—especially BP neural networks, which
show a strong ability of nonlinear fitting and self-sample learning. However, with the
increasing volume and complexity of ACWS networks, the traditional manual inspection
or hardware-based network leakage diagnosis methods struggle to meet the requirements
of “quick, accurate and steady” diagnosis of leakage faults in ACWS networks [14].

While there are a few studies on ACWS leakage diagnosis, this study focuses on the
actual diagnosis effect of a BP neural network algorithm on the ACWS leakage problem. In
addition, most of the pipe network LFD methods mentioned above regard the leaking pipe’s
number as the final diagnosis result. When the leaking pipe is long, this causes problems
with the diagnostic efficiency. Leakage diagnosis of pipelines can prevent environmental
and financial losses [17], and instability of air conditioning water systems can lead to lower
energy efficiency of air conditioning systems [18]. This study aims to diagnose pipes’ exact
leakage location after diagnosing the identity of the leaking pipe. Compared with DHNs,
ACWSs are more directly customer-facing, and affect the customer experience more quickly
when they leak. Therefore, compared with other networks, it is more necessary to study the
leakage diagnosis of ACWS networks, and to explore the feasibility of BP neural network
technology for practical applications.

This paper proposes the possibility of applying an Adam-optimized BP neural network
algorithm to the diagnosis of pipe leakage in ACWSs, establishes a simulated hydraulic
model of pipe network leakage based on the Dymola platform (a kind of engineering
modeling platform, detailed in Section 2.2.1), adopts the cuckoo search algorithm to identify
the characteristics of the pipe network so as to ensure the reliability and accuracy of
the simulation model, proposes a two-stage leakage diagnosis method with the Adam-
optimized BP neural network—which not only locates the leaky pipe section, but also
locates the exact leakage point on the pipe—and demonstrates the application of the
method based on a practical project.

The rest of this paper is organized as follows: Section 2 briefly describes the research
methodology, with practical examples. Section 3 shows and analyzes the actual results of
the method. Section 4 discusses the case results and implications. Section 5 presents the
main conclusions of this study.

2. Materials and Methods

2.1. Research Overview

Figure 2 shows the research path and design ideas of this paper, and the methods used
are detailed in the subsequent section.

Figure 3 shows the detailed diagnosis process. When the ACWS is stable, the leakage
diagnosis is triggered by monitoring the make-up water’s flow rate (if the pipe network
system is not installed with a make-up water flow sensor, the difference between the water
supply’s main flow rate and the return’s main flow rate is used as the make-up water flow
rate) when the set threshold is exceeded in the duration (which can be set). The real-time
data (i.e., flow rate and pressure) monitored by the system are provided to the pipe network
model and the BP neural network for second-stage diagnosis, respectively, and the first-
stage diagnosis is performed by the sample set of leak conditions from the Dymola pipe
network water system model, which outputs the identification number of its leaky pipe
section. At the same time, to determine whether the length of the pipe section exceeds the
set threshold length, if the length of the pipe section is shorter than the set threshold, the
second-stage diagnosis is skipped and the network fault information is output directly; if
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the length of the pipe section is longer than the set threshold, the second-stage diagnosis is
triggered, and the exact location of the leakage and the identity of the leaky pipe section
are output as the results of the fault information to complete the accurate identification of
the leakage fault in the ACWS.

Figure 2. Research path and design ideas.

The ACWS network hydraulic model was built on the Dymola platform (detailed
in Section 2.2.1); the identification of network resistance characteristics by the cuckoo
algorithm (detailed in Section 2.2.2) helps to improve the hydraulic model and ensure that
the model is as close as possible to the actual system. Meanwhile, the two-stage leakage
diagnosis methods of the pipe network were all built using an Adam-optimized BP neural
network, with different parameters set according to the different output variables of the
two stages (detailed in Section 2.2.3).

Figure 3. Research diagram of two-stage leakage diagnosis in ACWSs.
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2.2. Method Description
2.2.1. Hydraulic Model of the ACWS Network under Simulated Leakage Conditions

The Dymola platform is a multidisciplinary system modeling and simulation tool
based on the Modelica language (an object-oriented physical modeling language) [19].
It has a library of models and simulation specialties suitable for multiple engineering
domains, and has proven its applicability in the engineering field, while “Modelica.Fluid”
provides the basis for developing the network hydraulic model. However, the existing
components cannot meet the simulation under leakage conditions, so for this paper we
developed a hydraulic model that can simulate different leakage conditions based on the
Dymola platform.

The model is shown in Figure 4. In the event that a leak occurs at a certain point on
the pipe, the simulated leakage is divided into two pipes—“pipe1” and “pipe2”—and the
two pipes are connected by a tee junction without pressure loss, and then connected by a
“negative flow source” (corresponding to the source module in Figure 4), which can be set
by the user. All of the above components are “packaged” into a new element.

 

Figure 4. Hydraulic model of pipe leakage on the Dymola platform.

By setting the flow rate of the “negative flow source” and the ratio of the length of
each pipe to the total pipe length (i.e., the simulated pipe leakage volume and leakage
location), the model is built under different leakage conditions. In order to verify the
accuracy of the hydraulic model of the pipe leakage, the classical theoretical calculation
method and the simulation method based on the hydraulic model are used to calculate the
pressure difference between the inlet and outlet of the same pipe, and the model is verified
by comparing the calculation results (details in Appendix A).

2.2.2. Cuckoo Search Algorithm for the Identification of Network Resistance
Characteristics

The hydraulic model established using Dymola described in Section 2.2.1 is not suf-
ficient to simulate the actual pipe network system. In the actual pipe network, there are
factors such as pipe corrosion, internal wall scaling, etc. The resistance characteristics of
the pipe network inevitably deviate from the initial design calculation values, and the key
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to establishing an accurate hydraulic model of the pipe network lies in the identification of
the resistance characteristics of the pipe network. Optimization algorithms are a common
method for the identification of pipe network resistance characteristics. The performance
of the cuckoo search algorithm was compared with that of the particle swarm algorithm,
differential evolution algorithm, artificial bee swarm algorithm, and other algorithms based
on various test functions [20], showing that the cuckoo search algorithm has fewer parame-
ters, simple operation, easy implementation, generality and robustness, and excellent local
and global search capabilities with comprehensive advantages. Meanwhile, the object of
this paper is similar to the research objects in the literature on the identification of pipe
resistance characteristics, so the cuckoo search algorithm was used in this study to help
improve the hydraulic model.

Before applying the optimization algorithm, it is necessary to determine the objective
function of the identification of the resistance characteristics of the pipe network in this
study. The purpose is that the final identification parameters optimized by the algorithm
can make the simulated parameters of the hydraulic model as close as possible to the actual
monitored values. In this study, the sum of the absolute value of the relative error between
the actual monitored values and the model-simulated values of each sensor (pressure and
flow rate) in the pipe network system is used as the objective function, and the formula is
shown in Equation (1):

obj(S) =
Z

∑
z=1

(
NP

∑
i=1

∣∣∣∣Ps − Pm

Pm

∣∣∣∣+ NQ

∑
j=1

∣∣∣∣Qs − Qm

Qm

∣∣∣∣
)

(1)

where Z is the number of conditions involved in the calibration; NP and NQ represent the
numbers of pressure and flow sensors installed in the network system, respectively; Pm,
and Ps represent the monitored and simulated pressures, respectively; and Qm and Qs
represent the monitored and simulated pipe section flow rates, respectively. There are also
implicit constraints between the simulated pressure Ps and the simulated pipe flow Qs, i.e.,
the hydraulic balance equations (i.e., nodal continuity equation, basic loop energy equation,
and Bernoulli’s equation) of the network itself need to be met.

The process of identifying the resistance characteristics of the ACWS network based
on the cuckoo search algorithm is as follows:

Step 1: Build a pipe network simulation model based on deterministic parameters.
Step 2: Set parameters such as population size, discovery probability Pa, maximum

number of iterations N of the algorithm, and random initialization of bird’s nest locations,
with each set of bird’s nest locations representing a set of pipe resistance characteristic
coefficients to be identified.

Step 3: Substitute each nesting position into the pipe network simulation model to
calculate the objective function value of each nesting position (i.e., each set of pipe resistance
characteristic coefficients), and compare them to obtain the current optimal nesting position
and the optimal objective function value.

Step 4: Keep the optimal nest location in the previous generation, update the nest
locations other than the optimal nest using Lévy flight, and calculate the corresponding
objective function value, compare the obtained objective function value with the current
optimal value, and update the current optimal objective function value [21].

Step 5: Compare the random number r with the discovery probability Pa. If r > Pa,
change the nest location once randomly; if not, keep it the same. Finally, retain the optimal
set of nest locations.

Step 6: If the maximum number of iteration generations has been reached or the search
precision requirement has been met, continue to the next step; otherwise, return to Step 4

Step 7: Output the global optimal nest location, which is the optimal resistance
coefficient of the pipe network in this search process.
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The optimal results obtained according to the above steps are used as the pipe network
resistance coefficients of the hydraulic model, making the hydraulic model more accurate
and closer to the actual operation of the system.

2.2.3. Adam Optimization Algorithm for the LFD Model

“BP neural network” usually refers to multilayer feedforward neural networks trained
with the error backpropagation (BP) algorithm. BP neural networks have been widely
used in many engineering fields—such as pattern recognition, intelligent control, fault
diagnosis, image recognition processing, and optimization computation—due to their
nonlinear mapping capability, self-learning and self-adaptive capability, and generalization
capability.

The Adam (adaptive moment estimation) optimization algorithm is an improved
algorithm for traditional BP neural networks, which adopts independent adaptive learning
rates for different parameters by calculating the first-order moment estimation and second-
order moment estimation of the gradient during the training of the neural network [22].
It has been experimentally shown that neural networks based on the Adam optimization
algorithm not only have faster training speed compared to other stochastic optimization
methods, but also do not easily fall into local optima, and have excellent performance in
practice. Therefore, this study uses the Adam optimization algorithm as the kernel for the
LFD model of the ACWS.

This paper adopts the concept of hierarchy in the structure of the LFD model [23]. On
the one hand, the ACWS undertakes the building’s heat and cold load, and there are a
variety of control methods, such as fixed-flow and variable-flow systems, variable-flow
systems that contain the supply and return main-fixed temperature control systems, supply
and return main-fixed differential pressure control systems, and the most unfavorable
end-fixed differential pressure control systems. The control system is complex; on the other
hand, the length of each pipe section in the ACWS is unevenly distributed, and the number
of stages varies greatly—the long pipes may be hundreds of meters, while the short pipes
may only be one or two meters. If all the pipes are diagnosed with leakage faults, this
will affect the diagnosis time and reduce efficiency, while there is research showing that
two-stage fault diagnosis, compared to single-fault diagnosis (a single diagnosis to identify
the section of the leaky pipe and the leakage location), has higher diagnostic accuracy as
well as relatively less training time [24], which not only reduces the complexity of fault
diagnosis and the training time of diagnosis, but can also adjust the fault diagnosis process
and improve the efficiency of fault diagnosis according to the user’s needs in the actual
application process. Therefore, this paper uses the two-stage LFD model for fault diagnosis
of the ACWS pipe network.

The leakage conditions are simulated by the improved hydraulic model, and the
sample datasets under different conditions are obtained. Then, the two-stage LFD model is
trained by setting the parameters of the Adam optimization algorithm (such as the number
of hidden layer nodes, the activation function of the hidden layer, and the regularization
parameter). The training and testing process of the neural network was achieved in this
study using the Python programming language.

2.2.4. LFD Model Performance Evaluation Indicators

In order to verify the application effect of the LFD model, it is also necessary to
introduce indicators to measure the performance of the two-stage LFD model [25]. Since the
two-stage LFD models solve different types of problems, different performance evaluation
indicators need to be used, as shown in Table 1.
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Table 1. Model performance evaluation indicators.

Performance Evaluation
Indicators

Definitions

First-stage diagnosis model

Accuracy Accuracy = TP+TN
TP+TN+FP+FN

P P = TP
TP+FP

R R = TP
TP+FN

F1 F1 = 2PR
P+R

Second-stage diagnosis model

MSE (mean squared error) MSE = 1
m

m
∑

i=1
(yi − ŷi)

2

MAE (mean absolute error) MAE = 1
m

m
∑

i=1
|yi − ŷi|

R2 (coefficient of
determination) R2 = 1 − ∑m

i=1(ŷi−yi)
2

∑m
i=1(yi−yi)

2

First-stage diagnosis is a typical multiple-classification task, so it uses the model
performance evaluation indicators commonly used for classification tasks: precision, recall,
and F1 score. For the binary classification task, the samples can be classified into four cases
according to the combination of true and predicted categories: TP (true positive), FP (false
positive), TN (true negative), and FN (false negative).

Second-stage diagnosis is a typical regression task, so its performance needs to be
evaluated using different evaluation indicators from first-stage leakage diagnosis. The
commonly used performance evaluation indicators for regression tasks are shown in
Table 1, where m denotes the total number of samples, yi represents the true marker of xi,
ŷi represents the prediction result of the learner for xi, and yi represents the average of the
m sets of true values.

2.3. Case Study

Taking a Guangzhou (China) metro station’s ACWS system pipe network project as an
example, the ACWS form is a primary pump variable-flow system with fixed differential
pressure control for the supply and return mains. The chilled water system has a supply
and return water temperature of 10 and 17 ◦C, respectively. The system pressure point is set
at the entrance of the circulating water pump, and the pressure is 32.3 kPa. Pressure sensors
are set for the cold source and each terminal device’s import and export, and flow sensors
are set for the chilled water main pipe and each terminal device’s return branch pipe.

In order to model the actual pipe network system on the Dymola platform, the system
needs to be reasonably simplified, as follows: 1© the chiller, the pump, and other equipment
in the room are combined into one node (cold source); 2© if two pipes are connected and
there is no node in the middle, the two pipes are combined into the same pipe; 3© the local
resistance of the fittings in the pipe is expressed using the length of the straight pipe section
of the same diameter as the connected pipe (i.e., the local resistance’s equivalent length).
The supply and return water system, with pipe section numbers, is shown in Figure 5.
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Figure 5. Supply and return of water in the ACWS network.

The case pipe network includes 1 cold source (S), 9 terminal devices (T1–T9), 30 pipes
(pipe1–pipe30), and 31 sensor monitoring points (11 flow sensors and 20 pressure sensors),
where the basic parameters of each pipe section are shown in Figure 6.

D
ia

m
et

er
(m

)

Le
ng

th
(m

)

Pipe number

Figure 6. Basic parameters of the case pipe network.

The cuckoo search algorithm was used to identify the resistance characteristics of the
case pipe network, and the parameters are shown in Table 2. The training curves of the
optimization algorithms show that when the number of iterations reaches 100, the average
and optimal fitness values of the algorithms no longer decrease significantly, and the
algorithms can be considered to have reached convergence. In order to avoid the random
error in the single identification process, the algorithm was operated independently 10
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times, and the average value of the 10 identification results was taken as the final result of
the identification of the resistance characteristics of the pipe network.

Table 2. Parameter settings of the cuckoo search algorithm used for the identification of resistance
characteristics.

Parameter Setting

Population size of each generation 50
Discovery probability 0.25

Maximum number of iterations 100

A sufficient number of training samples is a prerequisite for a satisfactory diagnostic
performance of a pipe network LFD model, and the more comprehensive the leakage
conditions contained, the more abundant the training data, and the better the performance
of the final training diagnostic model. However, it is very difficult—almost impossible—to
obtain a large and comprehensive set of fault condition data via experimental testing or
historical data logging for the ACWS network in this case. Therefore, the Dymola model
simulation was used to obtain the data samples required for the training of the LFD model.
The simulated leakage conditions were as follows: for each pipe leak point setting in the
case study, the ratio of the distance from the start of the pipe section to the total pipe length
was selected as 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8,
0.85, 0.9, or 0.95, while the ratio of the possible leakage volume from the total circulating
water volume was selected as 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, or 5%.

According to the above setting conditions, for the 30 pipes in the case pipe network
system, each pipe has 19 possible leakage points, and each leakage point can have 9
different degrees of leakage. For each leakage working condition, 5130 sets of simulated
data samples can be obtained, one by one. At the same time, taking into account the random
error of the sensor measurement process in the actual case, a certain amount of artificial
noise is added to the original data generated by the simulation model, and the artificially
added noise X follows a normal distribution with a mean of 0 and a standard deviation
of σ. The accuracy level of the case pipe network sensor is 0.2%FS (full-scale, range), and
according to the “3σ” criterion of normal distribution, σ is taken as 1/3 of 0.2% FS.

In the settings of the first-stage LFD model, all data samples are randomly divided
into a training set and a test set at a ratio of 9:1. The random partitioning process takes
the form of stratified sampling. The training set is used to train the BP neural network
model, while the test set is used to replace the fault data monitored in the actual case. The
neural network adopts a single-hidden-layer structure. The parameter settings of the Adam
optimization BP neural network algorithm used for the first-stage LFD model are presented
in Table 3.

Table 3. Parameter settings of the Adam optimization BP neural network algorithm used for the
first-stage LFD model.

Parameter Setting

Number of hidden layer nodes 31
Activation function of hidden layer Identity function

Regularization parameter 0.0001
Maximum number of iterations 3000

Convergence precision 1 × 10−4

In the settings of the second-stage LFD model, the length threshold θL = 50 m is set as
the basis for determining whether to perform secondary diagnosis of leaks according to
the conditions of the case system. The output of the second-stage LFD model is the exact
location of the leakage point in the ACWS, which is expressed as the distance of the leakage
point from the beginning of the pipe section/the total length of the leakage pipe. Due to
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the fact that the second-stage LFD model is also based on the BP neural network model, its
training and testing methods are essentially the same as those of the first-stage LFD model.
Some of the settings are different, as follows: the training and testing sets are randomly
divided at a ratio of 7:3, and the activation function is a ReLU function.

3. Results

3.1. Results of Identification of the Case Pipe Network’s Characteristics

The flow and pressure parameters of four groups of case pipe networks under regular
conditions were selected as the original data for solving the objective function of pipe net-
work resistance characteristic identification, and another set of flow and pressure data were
selected to verify the effect of identification of the pipe network resistance characteristics
based on the cuckoo search algorithm. In order to avoid the accidental error of the single
identification process, the algorithm was operated 10 times independently, and the average
value was taken as the final result, as shown in Table 4.

As shown in Table 4, from the identification results of the pipe network’s resistance
characteristics, we found that the resistance characteristic coefficient of each pipe section
was quite different; the smallest was 24 s2/m5, and the largest was 487,138.3 s2/m5. The
main reason for this was the large difference in the pipes’ length in the case system, and the
internal situation of the pipe network was also different.

Due to the fact that the actual monitored values of the pipe network contain only
two parameters of flow and pressure, it was necessary to substitute the results of the
optimal pipe network resistance characteristic coefficients identified by the algorithm into
the hydraulic model of the pipe network, and to evaluate the identification accuracy and
precision of the algorithm by comparing the simulated values with the actual monitored
values of flow and inlet/outlet pressure at each terminal, the results of which are shown in
Figure 7.

Table 4. Results of identification of the case pipe network’s characteristics.

Pipe
Number

Coefficient of Pipe Resistance
Characteristic (s2/m5)

Pipe
Number

Coefficient of Pipe Resistance
Characteristic (s2/m5)

1 53.3 16 588.0
2 24.0 17 6188.9
3 267.4 18 6749.5
4 277.5 19 32,186.2
5 487,138.3 20 32,118.5
6 344,413.0 21 119,729.4
7 2257.2 22 115,777.9
8 2249.1 23 426,030.6
9 11,666.6 24 383,965.0
10 11,909.8 25 52,034.0
11 12,438.9 26 43,475.3
12 12,068.8 27 7121.1
13 4295.8 28 7064.7
14 4421.0 29 347,589.0
15 718.9 30 414,020.7
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Figure 7. (a) Comparison of monitored and simulated flow values. (b) Comparison of monitored and
simulated pressure values.

It was found that the optimal identification of the pipe resistance characteristic coef-
ficients based on the cuckoo algorithm was largely consistent with the actual monitored
values after being substituted into the original hydraulic model. As depicted in Figure 7a,
the minimum difference in flow rate was 0.04 m3/h, while the maximum difference was
0.63 m3/h. As depicted in Figure 7b, the minimum difference in pressure was 0.02 kPa,
and the maximum difference was 0.3 kPa. Further discussing the identification results of
the pipe network’s resistance characteristics, it can be observed that the average relative
error between the monitored and simulated values of the flow rate at each terminal was
1.358%, the average relative error between the monitored and simulated values of the water
supply pressure at each terminal was 0.057%, and the average relative error between the
monitored and simulated values of the return water pressure at each terminal was 0.089%.

The above data show that the hydraulic model optimized by the cuckoo search algo-
rithm to identify the resistance characteristics achieves an acceptable error range for the
actual project. This verifies that this method can be used for the calibration and optimiza-
tion of the ACWS hydraulic model, and also provides technical possibilities for application
in other complex pipe networks, such as heating and municipal pipe networks. Due to the
leakage condition dataset used to train the two-stage LFD model being generated from
the hydraulic model simulation, the hydraulic model has a significant impact on the LFD
model simulation results.

3.2. Results of the First-Stage LFD Model

Before testing the model, it is necessary to set the neural network’s number of hidden
layer nodes, because the number of nodes affects the performance of the LFD model. It
has been shown in the literature [26] that if the number of hidden layer nodes is too small,
the neural network will lack the necessary learning ability and information processing
ability. If the number of hidden layer nodes is too large, it will not only greatly increase the
complexity of the neural network structure, and make the neural network more likely to
fall into local minima during the learning process, but also make the learning speed of the
neural network very slow. The range of node numbers is determined with a commonly
used empirical formula, and then tested and adjusted to obtain the optimal number of
hidden layer nodes for the neural network.

According to the settings of the first-stage LFD model (detailed parameter settings are
shown in Table 3), we used the Python programming language for the training and testing
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of the neural network. A total of 100 experiments were repeated to avoid the random
error caused by a single experiment. Each time, the dataset was resampled to obtain a new
training set and test set, and the average of 100 experiments was taken as the final result of
the first-stage LFD model.

Table 5 presents each pipe’s average precision, recall, and F1 score from 100 experi-
ments. The average precision was 87.26%, and the average recall was 86.96%. The first-stage
LFD model’s precision and recall were above 85%. However, there were still some pipe
categories with poor diagnosis results such as pipe numbers 1, 2, 3, 4, 7, 8, 15, and 16 in the
case network (discussed in Section 4.1).

At the same time, in order to further evaluate the performance of the first-stage LFD
model, two evaluation indicators—accuracy and macro-F1—were selected to evaluate the
overall performance of the model in 100 test sets. Figure 8 shows the accuracy and macro-F1
of the BP-neural-network-based leak-stage diagnosis model for the ACWS network on the
100 test sets. The horizontal axis is the accuracy of the LFD model on the test set for each
group of experiments, while the vertical axis is the macro-F1 of the LFD model on the test set.

Table 5. First-stage LFD model’s average performance metrics.

Pipe
Number

Precision (P) Recall (R) F1
Pipe

Number
Precision (P) Recall (R) F1

1 62.40% 66.53% 0.6440 16 66.07% 66.65% 0.6636
2 64.85% 66.18% 0.6551 17 92.39% 85.90% 0.8902
3 51.19% 51.55% 0.5137 18 95.58% 90.14% 0.9278
4 57.51% 60.86% 0.5914 19 96.08% 95.91% 0.9599
5 99.47% 98.19% 0.9882 20 93.68% 95.21% 0.9444
6 99.64% 97.90% 0.9876 21 99.06% 98.54% 0.9880
7 72.19% 73.08% 0.7263 22 99.52% 97.13% 0.9831
8 84.09% 84.98% 0.8453 23 99.11% 98.24% 0.9868
9 93.16% 91.86% 0.9251 24 97.60% 97.49% 0.9755
10 95.38% 92.93% 0.9414 25 97.85% 92.82% 0.9527
11 93.41% 92.10% 0.9251 26 96.50% 91.98% 0.9418
12 94.61% 95.67% 0.9514 27 92.54% 98.01% 0.9520
13 89.31% 89.67% 0.8949 28 89.66% 96.37% 0.9289
14 91.69% 91.80% 0.9174 29 98.44% 96.48% 0.9745
15 57.31% 60.13% 0.5869 30 97.47% 94.62% 0.9602
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Figure 8. Performance metrics of the Adam-based LFD model on the test set.

168



Buildings 2022, 12, 610

As shown in Figure 8, the performance of the Adam-based LFD model was relatively
stable in 100 sets of test experiments, and the classification accuracy of the LFD model for
the case network was between 84.41% and 89.47%, while the macro-F1 was between 0.8458
and 0.8966. After the final calculation, the average accuracy of the BP-neural-network-based
LFD model was 86.96%, and its average macro-F1 was 0.8709. The results show that the
first-stage LFD model performs satisfactorily.

3.3. Results of the Second-Stage LFD Model

In this case, a total of eight pipes exceeded the threshold of 50 m. According to the
settings of the second-stage LFD model (detailed parameter settings are shown in Table 3),
the Python programming language was also used for the training and testing of the neural
network.

Figure 9 presents the average MAE, MSE, and R2 values for each of the eight pipes
under 100 test experiments, with a stable overall performance. The minimum MSE was
0.00518 and the maximum was 0.01117, with the average value being 0.00708, which is less
than 0.01; the minimum R2 value was 0.85 and the maximum was 0.93, with the average
value being 0.90, which is greater than 0.9.
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Figure 9. Second-stage LFD model performance in 100 sets of test experiments.

Taking the pipe13 leakage model as an example, the experimental results are presented
for one randomly selected group out of 100 test experiments. Figure 10 shows the exact
leakage locations and the model-predicted leakage locations in the test set. Except for a few
outliers, the majority of the predicted values are close to the actual values, and it can be
intuitively inferred that the BP-neural-network-based second-stage LFD model is able to
predict the pipe leakage location accurately. Thus, the second-stage LFD model has good
diagnostic efficacy.
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Figure 10. Distribution of simulated actual leakage locations and LFD-predicted locations for pipe13.

4. Discussions

4.1. Two-Stage LFD Model Discussion

The simulation results of the first-stage LFD model show that the diagnostic efficacy of
some pipes is poor—such as pipe numbers 1, 2, 3, 4, 7, 8, 15, and 16—and the precision and
recall rates are less than 85%. Therefore, the first-stage LFD model is prone to classification
errors, resulting in incorrect diagnosis.

According to Table 4, the pipes with poor diagnostic efficacy of the first-level diagnosis
model of pipe network leakage have the common characteristics of mutual connection
and small resistance characteristic coefficients. Therefore, when these pipes have leakage
failures, the parameter amplitude of the pipe network caused by leakage is limited—
especially when the sensor reading itself has a certain random error—and the parameter
change caused by the leakage of a pipe with a small resistance characteristic coefficient is
easy to cover with noise, so it is difficult for the first-stage LFD model of the pipe network
to achieve a diagnosis.

In response to the problem that the pipe network’s LFD model is prone to misdiagnosis
when leakage occurs in pipes with small resistance coefficients, this paper also seeks
solutions from the following four perspectives:

(1) Improving the accuracy of sensors: Sensors with high accuracy should be installed
and used as far as possible within the allowable range of conditions. The higher the
accuracy level of the sensors, the less likely the reading error of the sensors to cover up the
impact of pipe leakage, resulting in improved diagnostic accuracy of the LFD model.

(2) Cooperative diagnosis of multiple working conditions: In the event that it is difficult
to make a diagnosis in a single working condition, the system’s operating conditions can
be switched to re-diagnose the leakage, and the fault diagnosis results of multiple working
conditions can be used to collaboratively locate the leaky pipe section.

(3) Checking the second-ranking pipe based on probability distribution: Since the
kernel of the LFD model is the probability distribution of the neural network algorithm,
the second-ranking pipe in the probability ranking is checked, and if no fault occurs in this
pipe, the pipes in the next ranking are checked by analogy.
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(4) Combining pipe categories: Since the pipe categories prone to misclassification
often have characteristics of low resistance and interconnection, it is useful to combine such
pipes into one category and then carry out fault diagnosis, and when a fault is found in
this category in practical application, all pipes within its combination should be inspected.
Since the resistance characteristic coefficients of such pipes are small, and the pipe lengths
are usually not too long, this does not theoretically increase the work difficulty of the
maintenance personnel significantly.

In this case study, if pipes 1, 3, 7, and 15 and 2, 4, 8, and 16 are respectively combined
into one category and other settings remain unchanged, the average accuracy of the BP-
neural-network-based LFD model will be increased to 94.86%, which is 7.89% higher than
the average accuracy before combining, It can be seen that the diagnostic effect of the
first-stage LFD model can be improved by combining the pipe categories.

The simulation results of the second-stage LFD model show that the predicted value of
the model is close to the simulated actual value under the leakage condition. The threshold
set by the secondary leakage model in this paper is 50 m, and the average deviation between
the predicted leakage point position and its actual position is 6.3% of the total length of
the leaky pipe. This is acceptable for pipes over 50 m long. Applying the second-stage
LFD model in engineering practice can help locate the exact leakage location of long pipes
quickly, even if there are deviations, and when human initiative is exercised, maintenance
workers can quickly locate the leakage point in the area near the resultant value, which
plays an important role in reducing labor costs and improving time efficiency.

4.2. Limitations

In this paper, 11 flow sensors and 20 pressure sensors were installed in the ACWS
network. The number of sensors in the case network is relatively complete, but in other
projects, the number of sensors in many ACWSs is lower [27], which may reduce the
performance of the LFD model, so the performance of the LFD model with different
numbers of sensors should be explored in subsequent research.

At the same time, due to climate overheating [28], more passive design strategies are
being added to buildings, which will lead to increased complexity and reduced reliability
of air conditioning systems [29]. This directly affects the stability of ACWSs, so this factor
should be considered in future research.

In addition, this paper is devoted to the study of pipeline leakage faults, which account
for more than 80% of ACWS faults [30]. However, there are still blockage and junction
problems in actual running water systems, which will be another direction for further
research. Moreover, the ACWS pipe network leakage diagnosis method proposed in
this paper only accounts for single-point pipe network leakage problems. Although the
phenomenon of multiple simultaneous leakage failures is rare in the normal operation
of running pipe network systems, there still exists a certain degree of possibility of this
situation occurring. Therefore, the problem of multiple leakage faults occurring at the same
time in ACWS pipe networks needs to be investigated in the future.

5. Conclusions

This paper proposes a leakage diagnosis method for ACWSs using an Adam opti-
mization BP neural network algorithm, which is able to provide fault diagnosis. When a
leak occurs in the actual pipe network system, the method locates the leaky pipe in the
network and then locates the exact leakage location on the pipe. The main conclusions are
summarized as follows:

(1) A hydraulic model that can simulate pipe network leakage was developed on the
Dymola platform. In order to ensure the accuracy and reliability of the hydraulic model, a
method of identifying the pipe network’s resistance characteristics based on the cuckoo
search algorithm was proposed, and the identification results of the algorithm were applied
to the case of an ACWS pipe network. The average relative error of the flow rate at each
terminal was 1.358%, the water supply pressure at each terminal was 0.057%, and the return
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water pressure at each terminal was 0.089%. The results show that the average relative
error between the simulated values and the actual monitored values obtained using the
method was no more than 1.5%. The hydraulic model was consistent with the real system,
and it is practicable to generate the dataset under leakage conditions with this model.

(2) A two-stage LFD model based on the Adam-optimized BP neural network algo-
rithm was proposed. The case study shows that the average accuracy of the first-stage LFD
model for locating leaky pipes was 86.96%, and when the method of combining some pipe
categories with smaller resistance characteristic coefficients was used, the average accuracy
of the model increased to 94.86%. The second-stage LFD model of pipe network considers
pipe’s with a length of over 50 m in the ACWS system; the average R2 of the second-stage
LFD model was 0.9028, and the average error between the predicted location of the leakage
point and its simulated actual location was 6.3% of the total length of the leakage pipe.

It should be noted that the hydraulic model of pipe network leakage built on the
Dymola platform can be applied not only in ACWSs, but also in leakage studies of pipe
networks of other engineering water systems (e.g., district heating pipe networks and
municipal water supply networks). In addition, the proposed cuckoo search algorithm
performs excellently in the identification of resistance characteristics of the pipe network,
making the hydraulic model closer to the actual operating system, and providing a method
to achieve an accurate hydraulic model. Meanwhile, the proposed Adam-optimized BP
neural network algorithm for the two-stage fault diagnosis model shows accuracy in
practical engineering applications, providing a promising and sustainable solution for
actual ACWS leakage problems. More importantly, the design concept of hierarchical
diagnosis opens up the possibility of complex water system diagnosis, and the operation
and maintenance of water systems will be more intelligent and efficient in the future.
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Appendix A

The theoretical calculation method is the most commonly used method for hydraulic
calculation of pipe networks under leakage conditions. Based on the constant flow condition
of the pipe, the import and export pressure difference of the pipe under leakage conditions
can be calculated using the Darcy formula.

Example: In a straight pipe with a total length of 10 m, the nominal diameter of the
pipe is DN65, the absolute roughness of the inner wall of the pipe is 0.2 mm and the
distribution is uniform, the water temperature in the pipe is 10 ◦C, the inlet flow of the
pipe is always maintained at 10 L/s, and the flow rate of the fluid in the pipe is 3.0 m/s
without leakage.

In order to avoid the influence of contingency on the results of a single experiment, a
total of 10 different sets of experiments were set up. Each experiment was set up with a
different leakage volume and leakage location (the leakage location was expressed as the
ratio of the distance of the leakage point from the starting point of the pipe to the total pipe
length). The experimental results are shown in Table A1.
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Table A1. Pressure difference between the inlet and outlet of a pipe, as determined by two methods.

Number
Leakage

Volume (L/s)
Leakage
Location

Pressure Difference between
the Inlet and Outlet of the

Pipe (kPa) Relative
Error (%)Theoretical

Value
Simulated

Value

1 0 0 19.011 18.962 −0.257
2 0.1 0.1 18.675 18.627 −0.260
3 0.5 0.1 17.365 17.318 −0.273
4 1.0 0.1 15.802 15.757 −0.289
5 0.1 0.5 18.825 18.756 −0.365
6 0.5 0.5 18.097 18.049 −0.266
7 1.0 0.5 17.288 17.181 −0.273
8 0.1 0.9 18.974 18.925 −0.258
9 0.5 0.9 18.828 18.780 −0.259
10 1.0 0.9 18.655 18.606 −0.261

The results show that under different leakage conditions, the simulation results of the
inlet and outlet pressure difference of the experimental pipe are very close to the theoretical
calculation results. The maximum absolute value of the relative error is 0.365%, and the
average error is −0.276. The error is usually within the acceptable range of hydraulic
calculation, so the developed leakage hydraulic model is suitable for simulating the actual
pipe leakage.
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Abstract: Chilled water systems have large time delays and large inertia, and the traditional PID
controller has a poor control effect. In this paper, an improved sparrow search algorithm is proposed
to optimize the control of chilled water systems. Firstly, the random walk strategy was used to
randomly perturb the sparrows to improve the searching ability of the sparrows. Then, a Gauss
mutation was added in the iteration process of sparrows to enhance the local search ability. Finally, the
values of the PID parameters as obtained by the above methods were substituted into the controller
for simulation. The simulation results show that the method proposed in this paper improves the
search accuracy of the sparrow search algorithm and effectively solves the problems of large time
delays and large inertia in the chilled water system. The method in this paper took the least amount
of time for the system to reach the steady state at only 12.75 s. The control effect of the proposed
method was also better than that of the improved ant colony optimization algorithm. The rise time
was 2.713 s, and the adjustment time was 4.95 s.

Keywords: sparrow search algorithm; random walk strategy; Gauss mutation; PID parameter
optimization; chilled water system

1. Introduction

A chilled water system is the main part of an HVAC system. It consumes a significant
amount of energy and has an important influence on the refrigeration effect [1]. The energy
consumption of a chilled water system comprises about 30% of the energy consumption
of air conditioning [2,3]. In a chilled water system, energy efficiency can be achieved by
changing the equipment, control strategy, pipeline layout [4] or temperature control [5] or
using other methods. A chilled water system is time-varying and has a time delay [6]. A
chilled water system with a better control effect would be conducive to creating energy-
saving air conditioning systems [7]. Z.J. Ma et al. proposed an online control scheme.
Compared with the conventional control method, the energy consumption of the chilled
water pump was reduced by 11.99–24.86% [8]. Using the traditional PID controller to
control the system will lead to the system to overshoot, resulting in slow responses and
other problems. It does not work very well.

Swarm optimization algorithm has been applied in various fields, including ant colony
optimization (ACO) [9], particle swarm optimization (PSO) [10], grey wolf optimization
(GWO) [11] and so on. The above group optimization algorithms have the problem that
they are easy to fall into the local optimum. Many people have improved the optimization
algorithm. Y. Wang et al. used the improved ant colony algorithm to find the global optimal
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solution [12]. F. Zhang et al. used Gauss mutation and self-adjusting pheromones to
improve the ant colony algorithm to optimize the controller in a chilled water system and
improved the searching ability and convergence ability of the algorithm [13]. A. Dixit et al.
proposed a new differential evolution algorithm based on particle swarm optimization. The
performance comparison showed that the algorithm could improve the convergence speed
significantly and avoid premature closing [14]. J.C. Gu et al. added discrete heredity into the
grey wolf optimization algorithm to further improve the search ability. The experimental
data show that this algorithm was more effective than other algorithms [15]. J.K. Xue et al.
proposed the Sparrow Search Algorithm (SSA) in 2020, which had good convergence speed
and stability [16]. X.C. Li et al. used the SSA, which can quickly and accurately search the
required parameters [17]. X.L. Sun et al. proposed an improved sparrow algorithm and
applied it to load forecasting [18,19].

In order to achieve a better control effect, this paper used the sparrow search algorithm
to find the optimal PID control parameters. However, like other algorithms, the sparrow
search algorithm is also prone to fall into local optimum and population diversity decreases
with the increase in iteration times. Based on the above description, in order to solve the
disadvantages of the sparrow search algorithm, this paper proposes an improved sparrow
search algorithm and used it to optimize the control of a chilled water system. Firstly,
the random walk strategy was used to perturb the position of the sparrows to enhance
the global search ability of the sparrow. Secondly, Gauss mutation was applied to change
the sparrows’ position, so that individual sparrows could carry out a full search of their
surroundings, and the local searching ability of the sparrow group was improved. Finally,
the optimization algorithm was applied to a chilled water system and compared with the
ant colony algorithm and particle swarm optimization algorithm. The simulation results
show that the proposed method improved the search precision of the sparrow search
algorithm and reduced the overshoot of the system. The control effect was also better
than that of other optimization algorithms. The main contributions of the authors are as
follows: (1) The sparrow search algorithm was improved using the random walk strategy
and Gaussian variation in this paper. (2) The improved sparrow search algorithm was
applied to a frozen water system.

The paper is divided into five sections including the introduction. Section 2 presents
the related methods. Section 3 presents the main results of this paper. A discussion is given
in Section 4. The conclusion is presented in Section 5.

2. Related Methods

2.1. Sparrow Search Algorithm Optimizes PID Parameters

The sparrow search algorithm optimizes the values of the three parameters of the
PID controller, which are proportional, integral and differential, and its purpose is to
find the corresponding PID parameters when the objective function value is the lowest,
which can control the control system more effectively. In the sparrow swarm algorithm,
the finders are responsible for finding the optimal region of the objective function values,
and the participants will move close to them to form an orderly sparrow swarm [16].
Participants who are in very bad positions will go to other areas to search. The participants
will constantly monitor the finders through the position update and the feedback of the
objective function values. If the participants’ positions are better than those of the finders
at this time, they will become the finders.

We sorted the objective function values from smallest to largest and updated the
positions of each sparrow in real time. Finders account for 20% of the sparrows, and the
rest are participants. The position update of the finders is shown in Equation (1).

xd+1
i,j =

⎧⎨⎩xd
i,j · e(

−j
α·dmax

), if R2 < ST

xd
i,j + Q · L, if R2 ≥ ST

(1)
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where xd
i,j represents the position of the jth sparrow in the ith dimension in the dth iteration,

i = 1, 2, 3, j = 1, 2, 3, . . . , n, d = 1, 2, 3, . . . , dmax; dmax represents the maximum number of
iterations; α is a random number, and its value range is (0, 1); Q is a random number subject
to normal distribution; L represents a matrix of one row and three columns in which the
elements are 1; R2 represents the alert value, which is in the range of (0, 1); ST represents
the safe value, and the value range is (0.5, 1); When R2 < ST, this indicates that the sparrows
have not found the predator, the population is in a safe state and the finders can perform a
more extensive search, thus finding a better feeding area. When R2 ≥ ST, this indicates that
some sparrows have spotted a predator and will alert others, who will immediately change
their search strategy and move to a safe area.

The number of participants accounts for 80% of the sparrows, and the position update
is shown in Equation (2).

xd+1
i,j =

⎧⎪⎨⎪⎩ Q · e
(

xd
worst−xd

i,j
j2

)
, if j > n

2

xd
p +
∣∣∣xd

i,j − xd
p

∣∣∣ · A+ · L, otherwise
(2)

where xd
worst represents the worst position in the group; xt

p represents the best position
occupied by the finders; A represents a matrix of one row and three columns in which the
elements are randomly assigned to either −1 or 1, and A+ = AT(AAT)−1. When j > n/2,
this indicates that the jth participant has a relatively low fitness value. It does not acquire
food and is in a state of extreme hunger. It needs to fly somewhere else to find food. When
j ≤ n/2, this indicates that the jth participant will search for things around the best location
found so far.

In the sparrows, the detection and early warning mechanism was also added, so
that when the sparrow senses danger, and it will move to a safe place. In this paper,
these sparrows account for 20% of the population, and the position update is shown in
Equation (3).

xd+1
i,j =

⎧⎪⎨⎪⎩
xd

best + β ·
∣∣∣xd

i,j − xd
best

∣∣∣, if f j > fg

xd
i,j + K · (

∣∣∣xd
i,j−xd

worst

∣∣∣
( fi− fw)+ε

), if f j = fg

(3)

where xd
best is the best position in the group; β represents the step size control parameter

and is a normal random number with a mean of 1 and a variance of 0. K is a random
number with the value range of [–1, 1]. fj is the fitness value of the jth sparrow; fg and fw
represent the maximum and minimum fitness values in the population, respectively; and
ε is a very small constant. It keeps the denominator from being 0, and it is 10−8. When
f j > fg, this indicates that sparrows are on the fringes of the population and are extremely
vulnerable to predators. When f j �= fg, this indicates that the sparrows in the middle of the
group are aware of the danger and need to move closer to other sparrows to reduce the risk
of predation.

Equations (1)–(3) are the updated formulae for the sparrow group position in the
sparrow search algorithm. Parameters of the PID controller in the chilled water system are
expressed in the form of a sparrow group, as shown in Equation (4).

X =

⎡⎢⎢⎢⎢⎣
xd

1,1 xd
2,1 xd

3,1
xd

1,2 xd
2,2 xd

3,2
...

...
...

xd
1,n xd

2,n xd
3,n

⎤⎥⎥⎥⎥⎦ (4)

where d represents the number of current iterations; and n represents the number of
sparrows in the population.
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The fitness function is shown in Equation (5).

f =
∫ t

0
e2(t)dt (5)

where e(t) is the difference between the input value and the output value.
In the group of sparrows, each column represents three parameters of PID. The fitness

function value of each sparrow is shown in Equation (6).

F =

⎡⎢⎢⎢⎣
f d
1

f d
2
...
f d
n

⎤⎥⎥⎥⎦ (6)

2.2. The Main Improvement Steps of Sparrow Search Algorithm
2.2.1. Random Walk Strategy

The expression of the random walk strategy is shown in Equation (7).

X(t) = [0, cumsum(2r(rand(t, 1))− 1)] (7)

where X(t) is the set of steps of the random walk; cumsum is the formula for calculating
the sum; and t is the number of steps of the random walk, and it is dmax. r(t) is a random
number, and its definition is shown in Equation (8).

r(t) =
{

1, rand(t, 1) > 0.5
0, rand(t, 1) ≤ 0.5

(8)

where rand(t,1) is a matrix of t rows and 1 column, with the value range of [0, 1].
After updating the positions of the sparrows, the boundary values of the variables are

updated, following the rule that the larger the number of iterations is, the smaller the scope
of search is. The form is shown in Equations (9) and (10).

lbd+1
i =

−lbd
i

I
+ xd

best (9)

ubd+1
i =

ubd
i

I
+ xd

best (10)

where lbd
i represents the lower boundary value of the ith dimensional variable in the dth

iteration; ubd
i represents the upper boundary value of the ith dimensional variable in the

dth iteration; and i represents the boundary reduction factor, as shown in Equation (11).

I =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 + 102 · d
dmax

, if d > dmax · 0.2
1 + 103 · d

dmax
, if d > dmax · 0.5

1 + 104 · d
dmax

, if d > dmax · 0.7
1 + 105 · d

dmax
, if d > dmax · 0.9

1 + 106 · d
dmax

, if d > dmax · 0.95

(11)

After the random walk, the sparrows’ positions are updated, as shown in Equation (12).

xd
i =

(xd
i − ai) · (ubd

i − lbd
i )

(bi − ai)
+ lbd

i (12)

where xd
i represents the position of the ith dimension in the dth iteration of the sparrow; ai is

the minimum value of the random walk of the ith dimensional variable; bi is the maximum
value of the random walk of the ith dimensional variable.

178



Buildings 2022, 12, 269

2.2.2. Gauss Mutation

Gauss mutation uses the mutation factor of the genetic algorithm for reference. Gauss
mutation was used to change the positions of sparrows in this paper. The mutation will
produce a random number conforming to the normal distribution with a mean of μ and
a standard deviation of σ. The fitness will be calculated according to the mutated value,
and the original value will be chosen to be replaced. If the fitness value after the mutation
is smaller than the value before the mutation, the original value will be replaced with the
value after the mutation, and vice versa. The formula of the gauss mutation is shown in
Equation (13).

xd
i = xd

i (1 + N(0, 1)) (13)

According to the characteristic of normal distribution, Gauss mutation has strong
local search ability and can search the local area around sparrows adequately. The Gauss
mutation improved the diversity of the sparrow search algorithm, which is conducive to
finding the optimal position more quickly and accurately.

3. Results

3.1. Establishment of Optimization Model

The simulation of this paper was carried out in MATLAB 2019a. The mathematical
model of the chilled water system is very complicated and belongs to a high-order system.
Thus, a second-order model with time delay was used instead. The mathematical model of
the chilled water system is shown in Equation (14).

G(s) =
Ke−τs

(T1s + 1)(T2s + 1)
(14)

where T1 and T2 are the inertial time constants; K is the amplification factor; and τ is the
lag time parameter of the chilled water system.

A block diagram of the optimized chilled water system based on the improved sparrow
search algorithm is shown in Figure 1.

Figure 1. The block diagram of the chilled water system based on the algorithm.

3.2. Comparison of Simulation Effects

In order to verify the effectiveness of the proposed method, the proposed method
was compared with the sparrow search algorithm, particle swarm optimization algorithm
and ant colony optimization algorithm. The control method adopted was temperature
difference control. The temperature difference between the supply and return water of
the chilled water was set at 5 ◦C. The sampling time of the system was 0.5 s. The three
parameters of the PID controller had an upper limit of 5 and a lower limit of 0. The group
size of the swarm optimization algorithm in this paper was 50, and the maximum number
of iterations was 100. Other parameters of the group algorithm were set as follows:

Particle swarm optimization algorithm: w = 0.7 (inertia factor) and c1 = 2, c2 = 2
(acceleration constant).
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Ant colony optimization algorithm: Rho = 0.7 (Pheromone evaporation coefficient),
Q = 1 (Pheromone intensity) and Lam = 0.2 (Crawling speed of ants).

The specific parameter values of the improved part and the sparrow search algorithm
are detailed in Section 2.

The control object model adopted in this paper is shown in Equation (15). The optimal
PID parameter values found by each algorithm are shown in Table 1. The simulation
diagram of the system is shown in Figure 2.

Table 1. The optimization results of each algorithm.

Methods Kp Ki Kd

This paper 3.6982 0.034355 3.3944
SSA 1.4747 0.027479 0.44203
PSO 4.2188 0.0326 5
ACO 3.8493 0.0339 3.7885

Figure 2. Simulation diagram of the system.

Since the application of the sparrow search algorithm in frozen water system has
not been reported, in order to be more convincing, this paper also makes a comparison
with literature. In Ref. [13], F. Zhang et al. used the improved ant colony algorithm to
optimize the control of a chilled water system. In order to improve the searching ability
and fast convergence, Gaussian variation and self-adjusting pheromones were introduced,
and the sum of deviation squares was used as the objective function. The control method
adopted was temperature difference control, which was controlled at 5 ◦C, and the outlet
temperature of the chilled water was set at 7 ◦C. The purpose of the control was to keep the
temperature of the return water at 12 ◦C. The model adopted by the control object is shown
in Equation (15).

G(s) =
12e−30s

(50s + 1)(s + 1)
(15)

The sampling time of the system was 5 s, and the range of optimization parameters
was Kp ∈ [0, 0.6], Ki ∈ [0, 0.5], Kd ∈ [0, 1]. The PID parameters optimized by the improved
ant colony algorithm in [13] were 1.6561, 0.0325 and 0.8839. The PID parameters optimized
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by the method in this paper were 0.26399, 0.0052043 and 0.83927. The simulation results
are shown in Figure 3. The control performances of the two methods are shown in Table 2.

Figure 3. Simulation diagram of improved sparrow search algorithm.

Table 2. Comparison of control performance.

Methods Overshoot Rise Time Adjustment Time

Literature [13] 0% 4.4 s 6.23 s
This paper 0% 2.713 s 4.95 s

4. Discussion

As can be seen from Figure 2, the simulation effect of the unimproved sparrow search
algorithm was the worst, and even overshoot appeared. After the improvement in this
paper, the overshoot was reduced. The method in this paper took the least amount of time
for the system to reach the steady state at only 12.75 s. The time taken for the SSA, PSO and
ACO to reach the steady state was 19.21 s, 17.45 s and 16.39 s, respectively. The proposed
method has a better control effect than other methods.

From the perspective of control performance, the method proposed in this paper
performed better than the control in [13] in both the rise time and adjustment time. The
rise time was 2.713 s, and the adjustment time was 4.95 s. The control method proposed in
this paper has a fast response speed, and its stability was improved accordingly. In view
of the hysteresis of chilled water system, this method can improve the response speed of
the controller.

5. Conclusions

In this paper, an improved sparrow search algorithm was proposed to optimize
the control of chilled water systems. The random walk strategy was used to perturb the
sparrows’ positions, and Gauss mutation was added to improve the sparrows’ search ability.
Compared with the particle swarm optimization algorithm and ant colony optimization
algorithm, the simulation results show that the improved method proposed in this paper
not only improved the search ability of the sparrow search algorithm but also improved
the control effect of the chilled water system. The method in this paper took the least
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amount of time for the system to reach the steady state at only 12.75 s. The control effect
of the proposed method is also better than that of the improved ant colony optimization
algorithm. The rise time was 2.713 s, and the adjustment time was 4.95 s. In future research,
we will apply other methods to the swarm optimization algorithm to further improve the
search ability of the swarm optimization algorithm.
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Abstract: When deep reinforcement learning (DRL) methods are applied in energy consumption pre-
diction, performance is usually improved at the cost of the increasing computation time. Specifically,
the deep deterministic policy gradient (DDPG) method can achieve higher prediction accuracy than
deep Q-network (DQN), but it requires more computing resources and computation time. In this
paper, we proposed a deep-forest-based DQN (DF–DQN) method, which can obtain higher prediction
accuracy than DDPG and take less computation time than DQN. Firstly, the original action space is
replaced with the shrunken action space to efficiently find the optimal action. Secondly, deep forest
(DF) is introduced to map the shrunken action space to a single sub-action space. This process can
determine the specific meaning of each action in the shrunken action space to ensure the convergence
of DF–DQN. Thirdly, state class probabilities obtained by DF are employed to construct new states
by considering the probabilistic process of shrinking the original action space. The experimental
results show that the DF–DQN method with 15 state classes outperforms other methods and takes
less computation time than DRL methods. MAE, MAPE, and RMSE are decreased by 5.5%, 7.3%, and
8.9% respectively, and R2 is increased by 0.3% compared to the DDPG method.

Keywords: energy consumption prediction; deep forest; deep Q-network; shrunken action space

1. Introduction

Global energy consumption increases drastically every year due to economic devel-
opment and population growth. Building energy consumption is an integral part of the
world’s total energy consumption, accounting for 20.1% on average [1]. In many countries,
this percentage is much higher; for example, it accounts for 21.7% and 38.9% of total energy
consumption in China and America, respectively [2,3]. This increasing energy consump-
tion exacerbates global warming and the scarcity of natural resources. Hence, improving
building energy efficiency is crucial, as it can slow down global warming and promote the
sustainable development.

Energy consumption prediction plays an important role in improving building energy
efficiency, since it can facilitate the implementation of many building energy efficiency
measures, namely demand response of buildings [4], urban energy planning [5], and fault
detection [6]. It can also assist in assessing operation strategies of different systems, such as
heating, ventilation, and air conditioning (HVAC) systems [7], and indirect evaporative
cooling energy recovery systems [8] to save energy. Therefore, numerous studies have been
concerned with energy consumption prediction, and many methods have been introduced
to predict energy consumption.
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1.1. Related Work
1.1.1. Energy Consumption Prediction

According to Ref. [9], all methods for energy consumption prediction can be roughly
classified into engineering, statistical, and artificial intelligence methods. Table 1 shows the
merits and demerits of these methods.

The engineering methods employ physics principles and thermodynamic formulas
to calculate the energy consumption of each component of the building. Relationships
between input and output variables are very clear, but these methods require detailed build-
ing and environmental information, which is often very difficult to obtain. Some researchers
have tried to simplify engineering models to effectively predict energy consumption.

Yao et al. [10] proposed a simple method of formulating load profile (SMLP) to predict
the daily breakdown energy demand of appliances, domestic hot water, and space heating.
This method predicted energy demand for one season at a time since the average daily
consumption for each component varied seasonally. Wang et al. [11] simplified the physical
building model to predict cooling load. The parameters of the simplified models of the
building envelopes were determined using easily available physical properties based on
frequency response characteristic analysis. Moreover, they employed a thermal network of
lumped thermal mass to represent a building’s internal mass with parameters identified
using monitored operation data. However, because they used simplified models, the
prediction results may not have been completely accurate [12].

Statistical methods use mathematical formulas to correlate energy consumption data
with influencing factors. Ma et al. [13] employed multiple linear regression (MLR) and
self-regression methods to construct models based on the analysis of the relevant power
energy consumption factors, such as specific population activities and weather conditions.
They used the least square method to estimate parameters and predicted monthly power
energy consumption for large-scale public buildings. Lam et al. [14] developed a new
climatic index based on the principal component analysis (PCA) of three major climatic
variables: dry-bulb temperature, wet-bulb temperature, and global solar radiation. Then,
regression models were constructed to correlate the simulated daily cooling load with
the corresponding daily new index. The calculation processes of these statistical methods
are straightforward and fast, but they often cannot handle stochastic occupant behaviors
and complex interactions between factors, so they are not flexible and often have poor
prediction accuracy [15].

Artificial intelligence methods can learn from historical data, which are usually called
data-driven methods, and they usually performance better than other methods [16]. In
Ref. [17], all artificial intelligence methods were broadly divided into two categories:
traditional artificial intelligence methods and deep learning methods. However, in practice,
decision tree (DT), support vector machine (SVM), artificial neural network (ANN), and
many other traditional machine learning methods can be regarded as traditional artificial
intelligence methods. Azadeh et al. [18] proposed a method based on ANN and analysis of
variance (ANOVA), which was used to predict annual electricity consumption. The method
was more effective than the conventional regression model. Hou et al. [19] employed SVM
to predict the cooling load of HVAC system, and the results indicated that the SVM method
was better than auto-regressive integrated moving average (ARIMA) methods. In Ref. [20],
DT, stepwise regression, and ANN methods were employed to predict electricity energy
consumption in Hong Kong. The prediction results indicated that DT and ANN methods
performed slightly better in the summer and winter phases, respectively. However, these
traditional artificial intelligence methods adopt shallow structures for modeling, limiting
models’ prediction accuracy.

Deep learning (DL) methods may not always reflect physical behaviors, but they
can learn more abstract features from raw inputs to construct better models [21]. Cai
et al. [22] used recurrent neural network (RNN) and convolutional neural network (CNN)
to forecast time-series building-level load in recursive and direct multi-step manners. The
experimental results showed that the gated 24-h CNN method could improve prediction
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accuracy by 22.6%, compared with the seasonal auto-regressive integrated moving average
with exogenous inputs (ARIMAX). Ozcan et al. [23] proposed dual-stage attention-based
recurrent neural networks to predict electric load consumption. The method used the
encoder and decoder for feature extraction as well as the attention mechanism. The
experimental results indicated that the proposed method outperforms other methods.

Deep reinforcement learning (DRL) methods are another category of artificial intel-
ligence methods that cannot be neglected. DRL methods combine the perception of DL
with decision-making of reinforcement learning (RL) and have achieved many substantial
results in many fields, such as games [24], robotics [25], and autonomous driving [26]. In
the building field, DRL methods are mainly used to find the optimal control in HVAC
systems [27,28]. Many researchers have also used DRL methods for energy consumption
prediction and achieved satisfactory results. For instance, Liu et al. [29] explored the per-
formance of DRL methods for energy consumption prediction, and the results showed that
the deep deterministic policy gradient (DDPG) method achieved the highest prediction
accuracy in single-step-ahead prediction. However, the potential of DRL methods has not
been fully realized. One limitation of current works is that many researchers only focus on
the DDPG method, but ignore the classical deep Q-network (DQN) method.

Table 1. Summary of merits and demerits of the prediction methods.

Method Merits Demerits

Engineering [10,11]
Relationships between input
and output variables are very

clear

Detailed building
information is required

Statistical [13,14] Straightforward and fast Not flexible

Artificial intelligence

Traditional machine learning
[18–20] Learn from historical data Adopt shallow structures

for modeling

Deep learning [21,22,29] Extract more abstract features
from raw inputs

May not always reflect the
physical behaviors

1.1.2. Predictive Control

Predictive control is a multivariable control strategy based on prediction, and its aim
is to minimize the cost function [30]. The predictive control strategy can reduce energy
consumption and improve energy efficiency in the building field. Shan et al. [31] utilized
chiller inlet guide vane openings as an indicator of chiller efficiency and cooling load to
develop a robust chiller sequence control strategy. In the strategy, the opening or closing
of a chiller was based on the measured cooling load and the predicted maximum cooling
capacity, which was obtained by the MLR method. The experiment showed that the strategy
could save 3% energy in a tested building compared with a typical strategy. In Ref. [32],
predictive control was applied to space heating buildings. The heating demand of buildings
was predicted using EnergyPlus software. Then, the predictive control strategy selected
the appropriate operation schedule to minimize the electricity cost while meeting the
heating demand of buildings. Finally, different buildings achieved cost savings of around
12–57% through a 7-day simulation. Imran et al. [33] proposed an IoT task management
mechanism based on predictive optimization to minimize the energy cost and maximize
thermal comfort. In this mechanism, the predictive optimization was based on the hybrid of
prediction and optimization and used to optimize and control energy consumption. It was
shown that predictive optimization-based energy management outperformed standalone
prediction and optimization mechanisms in smart residential buildings.

In predictive control, methods of prediction and control are different. Prediction
methods are usually employed to solve this regression problem, and control methods are
used to find the optimal solution. DRL can also be used in predictive control as a model-
free control method. For instance, Qin et al. [34] proposed a multi-discipline predictive
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intelligent control method for maintaining thermal comfort in an indoor environment. SVR
was employed to construct an environmental prediction model, then the DRL method was
applied to train an intelligent agent for intelligent control in the indoor environment. The
results showed that the predictive control method could ensure thermal comfort and air
quality in the indoor environment while minimizing energy consumption. Fu et al. [35]
established a thermal dynamics model to predict the future trend of HVAC systems. Twin
delayed deep deterministic policy gradient algorithm and model predictive control (TD3–
MPC) were proposed to pre-adjust building temperatures at off-peak times. It was shown
that TD3–MPC reduced energy consumption cost by 16% and thermal comfort RMSE
by 0.4.

DRL methods can also be used to solve prediction problems. Some researchers have
noted the power of the DDPG method, and use this method to predict HVAC system energy
consumption [36]. However, the classical DQN method is often neglected and is rarely
used for building energy consumption prediction.

1.2. The Purpose and Organization of This Paper

To date, the DDPG method has been investigated and developed more than other
methods since it can process continuous action space problems; the DQN method with
discrete action space is usually neglected. However, it cannot be ignored that the DDPG
method often needs more computing resources and computation time to achieve high
prediction accuracy. In contrast, the DQN method may not achieve such high prediction
accuracy, but it can take less computation time than the DDPG method.

To obtain a higher prediction accuracy than the DDPG method and take less computa-
tion time than the DQN method, a deep-forest-based DQN (DF–DQN) method is proposed.
The main contributions of this paper are as follows:

(1) The shrunken action space is proposed to replace the original action space, then
DF–DQN method can quickly obtain the optimal action in the shrunken action space.

(2) State classes obtained by deep forest (DF) are used to determine the specific
meaning of each action in the shrunken action space, and they can map the shrunken action
space to a single sub-action space. Hence, the convergence of the DF–DQN method can be
ensured.

(3) New states, composed of state class probabilities and historical energy consumption
data, are constructed to improve the robustness of the DF–DQN method.

The remainder of this paper is structured as follows. In Section 2, theories of DQN and
DF methods are simply described. Section 3 presents the overall framework of the DF–DQN
method for energy consumption prediction. Then, the procedure of data pre-processing
and MDP modeling are described in detail. Section 4 depicts experimental settings and
adopted metrics of all methods, and experimental results are compared and analyzed.
Some conclusions are given in Section 5.

2. Related Theories

2.1. Deep Reinforcement Learning
2.1.1. Reinforcement Learning

RL is an essential branch of machine learning; its final goal is to maximize the accumu-
lative discount reward Rt [37], as shown in Equation (1):

Rt =
∞

∑
k=0

γkrt+k+1 (1)

where γ is a discount factor and k represents different time steps. rt+k+1 represents the
immediate reward in different time steps. Generally, RL problems can be modeled as a
Markov decision process (MDP) to be solved. A MDP is a five-tuple (S, A, P, R, γ), where
S is a set of states, A is a set of actions, P is a transition function, and R is a reward function.
In the process of an agent interacting with the environment, the agent receives a state
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st and executes an action at at time step t. Notably, the action at is selected by policy
π, which represents a mapping from the state space S to the action space A. Then, the
agent is transferred to the next state st+1, which is determined from the probability of
state transition P(st+1|st, at) . Simultaneously, the immediate reward rt+1 is obtained by
the environment.

In RL methods, the action value function Q represents the expectation of accumulative
discount reward starting from state s and taking action a:

Qπ(s, a) = Eπ

[
∞

∑
k=0

γkRt+k+1|st = s, at = a

]
(2)

Policy π can be evaluated and improved by the action value function and optimal
action value function, which can be denoted as:

Q∗(s, a) = max
π

Qπ(s, a) = E
[

Rt+1 + γmax
a′

Q∗
(
st+1, a′

)∣∣∣∣st = s, at = a
]

(3)

Finally, the optimal policy π∗ is obtained, and the final goal Rt can be achieved by the
optimal policy.

2.1.2. Deep Q-Network

Traditional RL methods, such as Q-learning and SARSA [38,39], can only tackle tasks
with state spaces that are small and discrete. Recent methods have diverged from these
restrictions by employing the deep neural network to approximate the action value function.
However, these methods usually are not stable as they combine RL methods with function
approximation, such as linear function or deep neural network [40]. This problem has
recently been overcome by DQN with two specific techniques.

Firstly, the mechanism of experience replay is adopted to remove strong correlations
between successive inputs, which means that experience tuples are stored in the replay
memory and sampled randomly to train an agent. Here, experience tuples are generated
by the interaction between the agent and the environment.

Secondly, to reduce correlations with targets, a separate network, namely the target Q-
network, is constructed to generate targets and update the Q-network. Specifically, every J
steps, the target Q-network is obtained by cloning the Q-network to calculate targets for the
following J steps. The loss function at iteration i can be formulated by using two networks:

L(θi) = E[(r + γmax
a′

Q(s′, a′|θ−i )− Q(s, a|θi))
2
] (4)

where (s, a, r, s′) is an experience tuple sampled in the replay memory, and a′ is the selected
action in state s′. θ−i and θi represent the parameters of the target Q-network and Q-
network, respectively.

2.2. Deep Forest

DF is a novel decision tree ensemble method that can be applied for classification
tasks [41]. Two techniques, namely multi-grained scanning and cascade forest structure,
improve the performance of DF.

In the procedure of multi-grained scanning, all training samples are first transformed
into instances using a sliding window. Then, all instances are employed to train a certain
number of completely random tree forests and random forests, as well as the class vectors
are generated. Finally, the transformed feature vectors are obtained by concatenating these
class vectors.

The cascade forest structure is used to enhance the representational learning ability of
DF. Each level receives feature information processed by its preceding level and outputs its
processing result to the next level. The transformed feature vectors, which are the outputs
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of multi-grained scanning, are used to train the first level of the cascade forest. The final
results are obtained at the last level and expressed as the maximum aggregated value.

3. DF–DQN Method for Energy Consumption Prediction

3.1. Overall Framework

Figure 1 depicts the overall framework of DF–DQN method for energy consumption
prediction. The energy consumption data is divided into a training set and a test set
according to the date. Then, the method, which can identify local outliers, is executed to
detect outliers in the training set, and outliers are replaced considering date attribute and
time factor. Feature extraction is then conducted to select h historical data as features, as
well as samples and their corresponding labels can be constructed by these features. In
addition, the features of each sample need to be normalized before they are transmitted
into DF and DQN, which can enhance prediction accuracy.

Figure 1. Overall framework of the DF–DQN method.

In the training process, a DF classifier is trained, firstly, by samples and labels, which
are generated by the training set. Once the classifier training is complete, the normalized
samples can be passed into a DF classifier as raw feature vectors. The transformed feature
vectors are obtained in the procedure of multi-grained scanning. Then, the cascade forest
structure takes the transformed feature vectors as inputs and outputs the probabilities of
each class. The state at time step t (i.e., st) can be constructed, which is composed of the
normalized historical data and the corresponding probabilities of each class. The Q-network
takes st as input to calculate Q values for all actions, and an action with probability 1 − ε
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that has the maximum Q value or a random action with probability ε should be selected.
The action selected at time step t (i.e., at) is the predicted energy consumption. Hence, the
immediate reward can be obtained by the predicted energy consumption and the actual
energy consumption at time step t. Similarly, the target Q-network can take the state at
time step t + 1 (i.e., st+1) as input to calculate target Q values for all actions. Finally, loss
can be calculated by Q values and target Q values, and employed to update the Q-network.

In the test process, when the DF–DQN method receives h normalized historical data,
the probabilities of each class are first obtained by DF. Then, a new state is constructed, and
Q values for all actions are calculated. The action with the highest Q value is selected as the
predicted energy consumption.

3.2. Data Pre-Processing

In this study, the data set concerned was the energy consumption data in an office
building in Shanghai. The energy consumption data was collected every hour from 1
January 2015 to 31 December 2016. There were a total of 17,520 observation samples as the
data from 29 February 2016 was not collected.

Since there may have been mixed use of electric meters, outliers were generated with
high probabilities. We first detected outliers to improve the accuracy of energy consumption
prediction. The local outlier factor (LOF) method is a density-based unsupervised method
for identifying local outliers [42]. To find possible outliers, it can calculate local density
deviation (i.e., LOF value) for each sample to their neighbors. If LOF values are high,
samples have high probabilities of being treated as outliers. Similarly, samples with lower
LOF values are more likely to be considered as normal data. Therefore, the LOF method
can detect abnormal energy consumption data in the training set.

Outliers cannot be simply discarded after they are detected. The energy consumption
data were collected at intervals of 1 h and had time-series periodicity. The absence of
outliers would make the data series less accurate and make feature extraction and method
execution more difficult. Therefore, outliers were replaced, which was more conducive to
energy consumption prediction.

The replacement of outliers requires consideration of the time factor. In addition, the
impact of holidays is not negligible for office buildings. These factors should be considered
when replacing outliers. If the energy consumption data of workday is an outlier, it
can be replaced by the average value, which is calculated by the sum of normal energy
consumption data at the same time on the previous and following workday. The method
used to replace holiday outliers is the same. This process can be formulated as below:

AE(d, t) =

⎧⎪⎨⎪⎩
NE(d − i, t) condition1

NE(d−i,t)+NE(d+j,t)
2 condition2

NE(d + j, t) condition3
(5)

condition1.d − i ≥ p, d + j > q, W(d − i) = W(d)
condition2.d − i ≥ p, d + j ≤ q, W(d − i) = W(d) = W(d + j)

condition3.d − i < p, d + j ≤ q, W(d) = W(d + j)

where i, j ∈ N, AE, and NE denote the abnormal and normal energy consumption data.
The date and time of energy consumption data are represented by d and t respectively.
W(d) can determine the date attribute of d (workday or holiday), and p and q represent the
start and end date in the training set.

In this study, the date range of the training set was from 1 January 2015 to 31 October
2016. If one of the two normal energy consumption dates is outside the range, the outlier
can be directly replaced with other normal energy consumption data. The dates of two
normal energy consumption data used to replace outliers usually do not simultaneously
fall outside the date range in the training set. The reason for this is that the date span is
large. It should be mentioned that the above process of detecting and replacing outliers
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can only be performed in the training set, and the test data, which was unknown, cannot
be used.

Feature extraction is the next step, selecting a certain number of historical energy con-
sumption data as features. We set the number to h. If the energy consumption at time step t
(denoted as Et) needs to be predicted, h historical data from t − h to t − 1 can be selected as
features, which can be denoted as (Et−h, . . . , Et−1). In other words, (Et−h, . . . , Et−1) is used
to predict the actual energy consumption at time step t. (Et−h, . . . , Et−1) can be regarded as
a sample, and Et is the corresponding label. Therefore, when the total number of training
data is M, M − h samples and labels can be constructed.

In order to improve the accuracy of energy consumption prediction, each feature of
the samples should be normalized as below:

X̃(j)
i =

X(j)
i − μ(j)

σ(j)
(6)

where X(j)
i and X̃(j)

i denote the previous and normalized value of j-th feature of the i-th sam-
ple, and μ(j) and σ(j) denote the mean and standard deviation of the j-th feature, respectively.

3.3. MDP Modeling

When the DF–DQN method is employed to predict energy consumption, the prediction
problem should be transformed into a control problem. This means that the process of
energy consumption prediction should be modeled as an MDP, and the state, action and
reward function should be defined.

The MDP constructed by the DF–DQN method improves settings in DQN method for
energy consumption prediction. When the DQN method predicts energy consumption,
all states are previous normalized samples. Specifically, h normalized historical energy
consumption data, which is denoted as

(
Ẽt−h, Ẽt−h−1, . . . , Ẽt−1

)
, compose the state at time

step t (i.e., st). In terms of the setting of actions, the range of historical energy consumption
data determines the number of actions and action values, which is the predicted energy
consumption. If the range of historical data is [x, z], and the step size is g, the action selected
at time step t (i.e., at) can be selected from {x, x + g, x + 2g, . . . , z}, which represents the
original action space, and the total number of actions is (z − x)/g + 1. By contrast, the
DF–DQN method shrinks the original action space and introduces the DF classifier for
energy consumption prediction.

3.3.1. Shrunken Action Space

This section describes the procedure of shrinking the original action space. Assuming
that the historical data range is {10,59} and the step size is 1, the original action space X is
generated as depicted in Figure 2. It should be mentioned that the action value is equal
to the predicted energy consumption in the action space X. For example, the value of first
action is 10, which means that the predicted energy consumption is 10. In practice, all
action values in the action space X can be converted into other forms. Figure 2 illustrates
this process, where action values of 10, . . . , 59 are transformed into 10 + 0, . . . , 50 + 9.
Therefore, the original action space X can be replaced with the action space Y, and the action
space size is not changed.
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Figure 2. An example of shrinking action space.

The action space Y can be equally divided into a certain number of sub-action spaces,
and all states corresponding to each sub-action space can be classified into one class.
Therefore, we assume that each row of actions in the action space Y composes a sub-action
space, and its corresponding states are classified into one class. Finally, five sub-action
spaces are generated, and all states that compose the state space can be classified into
five classes (i.e., C0, C1, C2, C3, C4). As shown in Figure 2, C0 represents that all states that
correspond to actions in the first sub-action space are classified into class 0. Similarly, the
meaning of C1, C2, C3, and C4 can be obtained.

After the state classes are determined, the actions of the same sequence in all sub-
action spaces can be represented uniformly. This is because the correlation of these actions
can be established by using state classes. The exact formula is denoted below:

x +
z − x + 1

N
× i + j i = 0, 1, 2, 3, 4. j = 1, . . . , 9 (7)

where x and z are equal to 10 and 59, which are the lower and upper bounds of the range
of historical data. N and i denote the number of state classes and the i-th state class,
respectively, and j represents the j-th action in the shrunken action space. The final result is
shown at the bottom of Figure 2. Fifty actions in the action space Y are replaced with ten
actions in the action space Z. At this point, Z can be regarded as the shrunken action space.
Note that the step size is set to 1, and the number of actions in each sub-action space is 10
in the above example. In a more general sense, the step size is g, and the number of actions
in each sub-action space is n. The actions of same sequence in all sub-action spaces can be
represented as below:

x +

z−x
g + 1

N
× i + j i = 0, 1, . . . , N − 1. j = 0, g, 2g, . . . , n (8)

The result of applying this formula is that N × n actions in the original action space
are replaced with n actions in the shrunken action space.
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3.3.2. DF Classifier

Unlike the DQN method, the DF–DQN method needs a trained DF classifier. A DF
classifier is chosen because it is not sensitive to hyperparameters and is easy to train. In
Ref. [41], it was shown that DF could achieve excellent performance using almost the same
settings of hyper-parameters when it is applied to different data across different domains. A
DF classifier is introduced for two purposes. First, it can map the shrunken action space to
a single sub-action space. Second, the state class probabilities obtained by the DF classifier
are employed to construct new states.

The training of the DF classifier is based on the shrunken action space. In the process
of shrinking the original action space, each sub-action space is generated by the range
of energy consumption data. Further, different data ranges indicate different classes. As
shown in Figure 3, {10–19} can be regarded as one sub-action space, and the data range
{10–19} can represent the class C0. Assuming that a sample obtained by feature extraction
is (Et−h, Et−h+1, . . . , Et−1) and its corresponding label is Et, if Et is within the range, the
extra class label of (Et−h, Et−h+1, . . . , Et−1) is C0. Therefore, all samples obtained by feature
extraction have additional class labels since their original labels must be within the energy
consumption range of a sub-action space. These samples and class labels can compose the
training set to train a DF classifier.

Figure 3. The training process of the DF classifier.

In the DF–DQN method, the input of the trained DF classifier is the original state
composed of historical energy consumption data, and outputs are state class probabilities.
These probabilities serve two purposes. Firstly, they can determine a single sub-action
space. Secondly, they can be deployed to construct new states.

In the shrunken action space, each action has multiple meanings. For instance, the first
action in the shrunken action space can represent the first action of each sub-action space.
Similarly, in the Q neural network, one action has multiple meanings, which means that
one neuron is used to represent multiple actions. The result is that the Q network cannot
determine the specific meaning of the neuron at each time step, so it cannot converge
effectively. State class probabilities, which are obtained by the DF classifier, can map the
shrunken action space to a single sub-action space, then determine the specific meaning
of each action. Assuming that the total number of classes is five, and the state class
probabilities are (0.7, 0.05, 0.1, 0.1, 0.05), the corresponding state can be regarded as the first
class. The shrunken action space is then equal to the first sub-action space, and it can be
denoted as {10, 11, . . . , 19}. This process is shown in Figure 4.
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Figure 4. Mapping the shrunken action space to a single sub-action space.

Further, we constructed new states composed of the normalized historical data and its
corresponding state class probabilities. This is because mapping the shrunken action space
to a single sub-action space is a probability process. The Q-network should consider the
probability factor when calculating the Q value, so new states are constructed to replace
the original state. Moreover, new states can also be seen as integration. The performance
of the DF classifier is integrated with the decision-making ability of DQN to enhance the
prediction accuracy for energy consumption prediction.

Finally, the state of the DF–DQN method at time step t (i.e., st) is composed of
normalized historical energy consumption data and corresponding state class proba-
bilities, which is represented by a vector (P0, P1, . . . , PN−1, Ẽt−h, Ẽt−h−1, . . . , Ẽt−1). Here,
Pi denotes the probability that (Ẽt−h, Ẽt−h−1, . . . , Ẽt−1) is determined to i-th class and
(Ẽt−h, Ẽt−h−1, . . . , Ẽt−1) represents h normalized historical data. The action selected at time
step t is at, which denotes that the predicted energy consumption is at at time step t. The
immediate reward function can then be set as follows:

rt+1 = −|Et − at| (9)

where Et represents the actual energy consumption at time step t. It should be men-
tioned that the closer the reward is to zero, the higher the prediction accuracy of the
DF–DQN method.

3.4. DF–DQN Method

Once the problem of energy consumption prediction is modeled as an MDP, the
DF–DQN method can be executed. Algorithm 1 depicts the main training process of the
DF–DQN method for energy consumption prediction.
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Algorithm 1 DF–DQN method for energy consumption prediction

(1) Initialize state classes N
(2) Initialize replay memory D
(3) Initialize action-value function Q with random weights θ

(4) Initialize target action-value function Q̂ with weights θ− = θ

(5) Split the data set
(6) Detect and replace outliers in the training set
(7) Extract features to construct samples and labels
(8) Train the deep forest classifier
(9) Repeat (for each episode)
(10) Randomly select a sample
(11) Use DF classifier to obtain the possibility of each class
(12) Construct initial state (denoted as st)
(13) Repeat (for each step)
(14) Select a random action at with probability ε

(15) otherwise choose at = argmax Q(st, a; θ)
(16) Execute action at and receive immediate reward rt
(17) Construct state st+1
(18) Store transition (st, at, rt, st+1) in D
(19) Sample a mini-batch

(
sj, aj, rj, sj+1

)
from D

(20) Set yj =

{
rj

rj + γmax
a′

Q̂
(

sj+1, a′
∣∣∣θ−) if episode terminates at step j + 1

otherwise

(21) Update Q function using (yj − Q
(

sj, aj; θ
)
)

2

(22) Every J steps reset Q̂ = Q
(23) st ← st+1
(24) Until terminal state or maximum number of steps is reached
(25) Until maximum number of episodes is reached

4. Case Study

The MLR, SVR, DT, DQN, DF–DQN, and DDPG methods were used for energy
consumption prediction. Sections 4.1 and 4.2 describe the experimental settings of all
methods and four evaluation metrics of prediction accuracy. In Section 4.3, all methods are
compared and analyzed from three perspectives, namely prediction accuracy, convergence
rate, and computation time.

4.1. Experimental Settings

In the process of feature extraction, historical energy consumption data for the last
24 h were selected as features to predict future energy consumption. Hence, there were
24 neurons in the input layer of the DQN and DDPG methods. In contrast, the inputs of
the DF–DQN method were composed of historical data and state class probabilities, so
the number of neurons in the input layer was 24 + N (i.e., the number of state classes). In
addition, the range of energy consumption was (129, 1063) in the training set, which means
that all methods were performed in the continuous action space. Because the DQN and
DF–DQN methods can only process discrete problems, the continuous action space was
first converted into a discrete action space. We set the step size to 1 and the range of (129,
1063) was converted into 935 discrete points. The number of actions in the DQN method
and the DF–DQN method were 935 and 935/N, respectively.

The hardware platform and package version used in the study are described in
Tables 2 and 3, respectively. In addition, the hyper-parameters of all methods are summa-
rized in Table 4. The DQN, DF–DQN, and DDPG methods used two hidden layers, and the
number of neurons in each hidden layer was 32. In regard to the output layer, the number
of neurons in the DQN and DF–DQN methods were consistent with the number of actions,
while the DDPG method directly outputted the predicted energy consumption so that
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the number of neurons was 1. Further, the hyper-parameters of other methods obtained
through extensive numerical experiments are also listed in Table 4.

Table 2. Hardware platform.

Hardware Platform Configuration

Operating system Windows 10
RAM 8 GB
CPU Intel Core i5-9500

Programing language Python
Programing software PyCharm

Table 3. Package version.

Package Version

TensorFlow 2.2.0
TensorLayer 2.2.3

NumPy 1.19.4
pandas 1.1.5

DeepForest 0.1.4

Table 4. Hyper-parameters of all methods.

Method Parameters Results

MLR / /
SVR Kernel function Linear
DT Evaluation function Mean squared error

Maximum depth of the tree 16
DQN Neurons 24,32,32,935

Activation function ReLu
Learning rate 0.01

DF–DQN Neurons 24+N,32,32,935/N
Activation function ReLu

Learning rate 0.01
DDPG Neurons (actor) 24,32,32,1

Activation function (actor) ReLu
Learning rate (actor) 0.001

Neurons (critic) 24,32,32,1
Activation function (critic) ReLu

Learning rate (critic) 0.001

4.2. Evaluation Metrics

In order to compare the prediction accuracy of all methods, four evaluation metrics
were adopted in this study, namely mean absolute error (MAE), mean absolute percentage
error (MAPE), root mean square error (RMSE), and coefficient of determination (R2). These
evaluation metrics can be denoted as:

MAE =
1
m

m

∑
i=1

∣∣yi − y′i
∣∣ (10)

MAPE =
1
m

m

∑
i=1

∣∣∣∣yi − y′i
yi

∣∣∣∣ (11)

RMSE =

√
1
m

m

∑
i=1

(yi − y′i)
2 (12)
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R2 = 1 − ∑m
i=1 (yi − y′i)

2

∑m
i=1 (yi − y)2 (13)

where m denotes the total number of samples, yi and y′i represent the predicted value and
actual value of the i-th sample, respectively. y is the average of actual value.

4.3. Results and Analyses

In this section, each method was trained ten times under the settings of the hyper-
parameters presented in Table 4, and all experimental results were obtained as averages.

4.3.1. Prediction Accuracy

Figure 5 illustrates predicted results of the DF–DQN method with different state
classes, where the horizontal axis reflects the predicted energy consumption and the
vertical axis represents the actual energy consumption. In each sub-figure, the solid blue
line indicates that the predicted energy consumption is equivalent to the actual energy
consumption, and the blue dashed line denotes the 20% error. The shaded area represents
that the predicted value differs less than 20% from the actual value. Therefore, the number
of predicted points contained in the shaded area can reflect the prediction accuracy. The
DF–DQN method with 15 and 19 state classes outperformed others, and the DF–DQN
method with three state classes was the least effective. The predicted points show the trend
of classification since the states were classified using the DF–DQN method. Specifically, the
classification trend was noticeable in in the DF–DQN method with 5, 7, and 11 state classes.

Figure 5. Predicted results of the DF–DQN method with different state classes.

Table 5 describes the prediction accuracy of the DF–DQN method with different state
classes under four evaluation metrics, and the significant values are indicated in bold.
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Notably, the DF–DQN method with 15 state classes had the lowest MAE, MAPE, and
RMSE values, and the highest R2 value. Therefore, the prediction accuracy of the DF–
DQN method with 15 state classes was the highest. Table 5 also shows that the prediction
accuracy increased roughly as state classes increased. However, some unexpected results
were observed due to the classification accuracy and the influence of random factors in the
training process. For example, the prediction errors of the DF–DQN method with two, four,
and five state classes were lower than that of the DF–DQN method with six and seven state
classes. Nonetheless, the trend that the increasing number of state classes improved the
prediction accuracy was not affected. It also should be mentioned that excessive state classes
decreased the prediction accuracy of the DF–DQN method due to the low classification
accuracy. Therefore, the optimal number of state classes requires extensive experiments to
obtain. In this experiment, the DF–DQN method with 15 state classes outperformed other
numbers of state classes.

Table 5. Prediction accuracy of the DF–DQN method with different state classes.

N Number of Actions Accuracy of Classification MAE MAPE RMSE R2

2 468 99.392% 23.333 7.960% 36.774 0.978
3 312 94.706% 29.630 9.664% 48.750 0.961
4 234 96.168% 22.950 7.828% 39.141 0.974
5 187 95.178% 23.357 7.866% 38.686 0.976
6 156 92.739% 27.439 9.476% 44.295 0.968
7 134 89.583% 27.512 9.655% 41.153 0.971
8 117 89.098% 23.810 8.074% 39.536 0.974
9 104 88.327% 23.152 7.886% 40.831 0.973
10 94 84.139% 24.456 8.370% 42.201 0.970
11 85 83.907% 23.643 8.246% 40.044 0.974
12 78 83.586% 22.254 7.845% 37.480 0.976
13 72 80.307% 21.921 7.379% 36.248 0.978
14 67 77.548% 20.912 7.231% 34.936 0.980
15 63 76.462% 20.432 7.021% 34.057 0.981
16 59 73.005% 20.975 7.390% 34.331 0.980
17 55 71.633% 20.971 7.545% 35.410 0.980
18 52 69.037% 20.590 7.315% 35.442 0.979
19 50 66.714% 20.596 7.367% 34.408 0.980
20 47 64.740% 20.623 7.272% 35.198 0.980

In addition, results using the DQN, DDPG, MLR, SVR, and DT methods were com-
pared with those using the DF–DQN method. As shown in Figure 6, the DF–DQN method
with 15 state classes and the DDPG method outperformed other methods. In order to
further analyze the prediction accuracy of all methods, predicted results of a certain period
were selected for display. Note that the energy consumption on workdays and holidays
should only be compared with other results of their type, as the results from each category
are quite different. Figure 7 depicts predicted results of all methods on workdays, where the
horizontal axis reflects the time and the vertical axis represents the energy consumption. In
each sub-figure, the blue line represents actual energy consumption, and the line of another
color denotes the predicted energy consumption. It can be seen that all methods captured
the energy consumption trend, and only the MLR method showed slight fluctuation. In
contrast, the predicted results on holidays were inaccurate, as seen in Figure 8. The DQN,
MLR, and SVR methods showed fluctuation, and the DT method had a noticeable error
point. The DDPG method and the DF–DQN method with 15 state classes also captured
part of the trend of actual energy consumption. A possible explanation for this might be
that all methods were unable to learn the features of holiday energy consumption when
only historical data were used as input.

Table 6 describes the prediction accuracy of all methods in detail. Notably, the DDPG
method had advantages in energy consumption prediction, and its prediction accuracy
was higher than the MLR, SVR, DT, and DQN methods. However, for the DF–DQN
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method with 15 state classes, MAE, MAPE, and RMSE decreased by 5.5%, 7.3%, and 8.9%
respectively, and R2 increased by 0.3% compared to the DDPG method. The results verify
the superiority of DF–DQN, and demonstrate the potential of the collaboration between
DF and DQN.

Figure 6. Predicted results of all methods.

Figure 7. Predicted results of all methods on workdays.
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Figure 8. Predicted results of all methods on holidays.

Table 6. Prediction accuracy of all methods.

Method MAE MAPE RMSE R2

MLR 41.069 12.869% 56.577 0.946
SVR 37.041 11.192% 63.150 0.930
DT 26.349 8.868% 50.470 0.959

DQN 27.942 9.362% 39.869 0.973
DDPG 21.619 7.573% 36.417 0.978

DF–DQN (N = 15) 20.432 7.021% 34.057 0.981

4.3.2. Convergence Rate and Computation Time

Figure 9 depicts MAE varying tendencies of DRL methods from the first episode,
where the horizontal axis reflects iterations of the episode and the vertical axis represents
MAE. It is evident that the convergence rate of the DQN method was the slowest, and
the converged MAE was the highest among all DRL methods. However, the DDPG and
DF–DQN methods could not be compared effectively since a very high MAE value was
generated in the DDPG method. Therefore, a new figure from the fifth episode is shown
to facilitate the analysis of the DDPG and DF–DQN methods. As shown in Figure 10, the
convergence rate of the DDPG method was similar to that of the DF–DQN method with
three state classes, and they converged near the 100th episode. The DF–DQN method with
15 state classes had the fastest convergence rate and roughly converged at the 75th episode.
Further, the converged MAE value of the method was lower than other methods. It is also
noteworthy that the larger the number of state classes, the faster the DF–DQN method
converged, and the converged MAE value decreased as the total number of state classes
increased. This is because the state classification lowered the initial value of MAE and
accelerated the convergence rate of the DF–DQN method.

The convergence rates of the MLR, SVR, and DT methods are superior to DRL methods.
This conclusion is presented in Table 7. The computation time of these methods is much
lower than that of DRL methods. It is worth noting that the computation time of DRL
methods was based on 200 episodes, as presented in Table 7. However, these DRL methods
converged before the 200th episode. The computation time of the DQN method was about
625 s since the method converged at the 150th episode. Similarly, the DDPG and the
DF–DQN methods with 15 state classes took 665 s and 262 s, respectively. Hence, of all
DRL methods, the DF–DQN method with 15 state classes required the least computation
time, and the DDPG method was slower than the DQN method. One important reason for
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this is that the DF–DQN method performs in the shrunken action space, and the number
of actions was significantly lower than that of the DQN method. Regarding the DDPG
method, two kinds of neural networks, actor and critic networks, should be trained. These
networks take long computation times, even though the total number of parameters is
lower than other methods.

Figure 9. Variation tendency of MAE in DRL methods from first episode.

Figure 10. Variation tendency of MAE in DRL methods from the fifth episode.

Table 7. The computation time of all methods.

Method Computation Time

MLR 0.07
SVR 7.734
DT 0.362

DQN 833.714
DDPG 1329.007

DF–DQN (N = 15) 699.529
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5. Conclusions

This paper proposed a DF–DQN method to demonstrate the potential of DRL methods
with discrete action space for energy consumption prediction. In the DF–DQN method, the
original action space was divided into a certain number of sub-action spaces by the range
of historical energy consumption data. Then, actions of the same sequence in all sub-action
spaces were uniformly denoted to compose the shrunken action space. Compared with
the original action space, the total number of actions in the shrunken action space was
reduced greatly. Further, DF was introduced since each action has multiple meanings in the
shrunken action space. State class probabilities obtained using DF can uniquely determine
each action’s specific meaning in the shrunken action space and map the shrunken action
space to a single sub-action space, which ensures the convergence of the DF–DQN method.
Moreover, the state class probabilities can also be employed to construct new states to
improve the robustness of the DF–DQN method by taking into account the probabilistic
process of shrinking the original action space. Based on the above operations, DF–DQN
can find the optimal action quickly in the new shrunken action space.

The experimental results show that the prediction accuracy of the DF–DQN method
with 15 state classes outperforms the MLR, SVR, and DT methods, even if it requires more
computation time than these methods. In our experiments, for DRL methods, the DF–DQN
method with 15 state classes had the highest prediction accuracy and fastest convergence
rate, and required the least computation time. Specifically, compared to the DDPG method,
the DF–DQN method with 15 state classes decreased MAE, MAPE, and RMSE by 5.5%,
7.3%, and 8.9%, respectively, and increased R2 by 0.3%.

This study demonstrated that the DF–DQN method with discrete action space has
great potential for predicting energy consumption. However, the study conducted in
this paper may contain inaccuracies. The number of state classes is an additional hyper-
parameter and must be determined by extensive experiments. Future work will overcome
the above deficiencies and explore the performance of the DF–DQN method for multi-step
ahead prediction in recursive and direct multi-step manners.
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Abstract: Increased world energy demand necessitates looking for appropriate alternatives to oil
and fossil fuel. Countries encourage institutions and households to create their own photovoltaic
(PV) systems to reduce spending money in electricity sectors and address environmental issues.
Due to high solar radiation in the Kingdom of Saudi Arabia (KSA), the government urges people
and institutions to establish PV systems as the best promising renewable energy resource in the
country. This paper presents an optimal and complete design of a 300 kW PV system installed in
a limited rooftop area to feed the needs of the Ministry of Electricity building, which has a high
energy consumption. The design has been suggested for two scenarios in terms of adjusting the
orientation angles. The available rooftop area allowed to be used is insufficient if a tilt angle of 22o is
used, suggested by the designer, so the tilt angle has been adjusted from 22o to 15o to accommodate
the available area and meet the required demand with a minimum shading effect. The authors of
this paper propose a modified scenario “third scenario” which accommodates the available area and
provides more energy than the installed “second scenario”. The proposed panel distribution and
the estimated energy for all scenarios are presented in the paper. The possibility of changing tilt
angles and the extent of energy production variations are also discussed. Finally, a comparative study
between measured and simulated energy is included. The results show that August has the lowest
percentage error, with a value of 2.7%, while the highest percentage error was noticed in November.

Keywords: solar energy; PV module; power density; panel orientation; tilt angle

1. Introduction

In the last few decades, there has been a trend toward using clean energy sources in
the world. Those intermittent energy sources are environmentally friendly and economical
throughout the years. Developing countries, in particular, are inclined to utilize such
resources to meet their energy demand. KSA is one of the highest energy-producing
countries in the Middle East, with approximately 63 GW, most of which depends on
oil [1–4]. This fact is considered a serious challenge for the electricity sector in the kingdom.
Consequently, officials and specialists are keen to look for alternatives to address this
problem adequately. Therefore, the National Renewable Energy Program in Saudi Arabia

Buildings 2022, 12, 92. https://doi.org/10.3390/buildings12020092 https://www.mdpi.com/journal/buildings205



Buildings 2022, 12, 92

has been established to develop and maximize the utilization of renewable energy resources
and to become one of the main sources rather than depending entirely on oil.

Solar energy resources are considered the breakthrough that can highly overcome such
power generation problems in most Middle East countries. Therefore, KSA is going toward
increasing the use of solar energy to reduce the dependence on oil in producing energy.
The average radiation in KSA ranges between 5 and 7 kWh/m2 [1,2,4–8]. This amount of
solar radiation is relatively high compared to the neighboring countries [1,9–11]. To make
the use of this free and clean energy possible, the KSA government issued legislation and
laws that facilitate and assist the new installations and designs of solar energy systems on
the roofs of residential and commercial buildings.

Designing a PV system requires knowledge about the solar radiation theory and its
calculation. The determination of the peak sun hours, which refer to the amount of energy
received by the panels or, in other words, how much energy is received during the day
in a specific area, is one of the most important pieces of information needed to design a
PV system [3,4]. Peak power or the kilowatt peak (kWp) of the power demand has to be
calculated before determining the number of panels that have to be accommodated with
the roof capacity [12].

Several research studies in the literature discussed the general assessment of solar
radiation resources in Saudi Arabia and the vision of the kingdom for the upcoming decade.
Network design, implementation, and data quality assurance are described in [1]. In
addition, the authors analyze the first year of broadband solar resource measurements
from a new monitoring network in Saudi Arabia developed by the King Abdullah City
for Atomic and Renewable Energy (K.A.CARE). The analysis used 12 months (October
2013–September 2014) of data from 30 stations distributed across the country based on one-
minute measurements of global horizontal irradiance (GHI), diffuse horizontal irradiance
(DHI), direct normal irradiance (DNI), and related meteorological parameters. In [4], the
authors provide a maiden attempt to investigate how much sustainability substance is in
the 2030 Vision of Saudi Arabia. The Sustainable Society Index (SSI) has been employed to
examine the 2030 Vision and understand the Kingdom’s commitment to building resilient,
inclusive, and sustainable societies. The Vision and National Transformation Program
(NTP) texts were matched against five broad measures and 22 submeasures. Both the
2030 Vision and the NTP align with the SSI measures in some respect. The goals and
objectives reflect the aspirations and context of Saudi Arabia. The carbon emission is
expected to be zero in 2060 in KSA, so it is expected to be reduced by 60% in 2030 [5].
Several projects are carried out throughout the country, and different studies are presented
to introduce the system regulations and policies. According to [6–10], certain policies that
promote the renewable energy sector and regulate the relations with electricity and grid
connection sectors are subsidized in KSA. The net metering and feed-in tariff policies are
employed to exchange the surplus energy with the electricity network in KSA.

For rooftop PV systems, net-metering was tested in 2017 and found to be the most
suitable policy for small-scale PV systems. The applicability of using feed-in tariff (FiT)
policy in KSA is reviewed in [11], in comparison with that implemented in USA and
Germany. It is concluded that KSA has the ability to adopt and use this technique.

Specific case studies in KSA have also been discussed in the literature to achieve the
vision of the kingdom in the sector of solar energy. The authors in [12] examine the best
tilt angle for a solar panel to maximize the collected amount of solar irradiation. A daily
global and diffuse solar radiation measured on a horizontal surface is considered in this
research. The optimal angle for each month allows capturing the most solar energy for
the Madinah site, KSA. The authors concluded that the annual optimal tilt angle is almost
equal to the location’s latitude. In [13], a comprehensive analysis is presented in order
to improve the solar energy performance of residential buildings in KSA by optimizing
the building envelope elements. The elements included in energy cost and energy energy-
saving analysis include the wall insulation, roof insulation, window area, window glazing,
window shading, and thermal mass.
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Figure 1 illustrates the anticipated progress towards increasing the energy produced
by renewable energy resources. Overall, the targeted capacity by 2030 would cover 58.7 GW
as stated by the kingdom vision [1–3]. The plan set an initial step of producing 9.5 GW
of electrical energy, followed by producing 27 GW in the next five years. By maintaining
efforts, the plan is expected to be realized, as previously presented, utilizing solar, wind,
and CSP energy.

Figure 1. The vision of renewable energy in KSA for 2030.

When installing the PV system over buildings’ roofs, one of the significant factors that
should be considered is the sun path. The more solar panels exposed to the direct sun, the
more energy is harvested. Each location in the world has a specific sun path and unique
tilt, azimuth, and elevation angles [12]. Figure 2 represents the most significant angles that
play an important role in PV system design.

Figure 2. The main angles in PV system design.
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The desired tilt angle varies according to the case study under test. The designers
should ensure that the solar panels face the sunlight perpendicularly, as much as possible,
since the solar panels produce the highest power when they face the sun directly. During
the winter semester, the solar panels face the sun at a sharp angle. Therefore, the energy
produced by the PV system is low compared to the energy produced during the summer
semester. In the winter semester case, the operator should ensure harvesting large amounts
of solar energy by choosing proper orientation angles. The optimum tilt angle in KSA
is approximately equal to the site’s latitude under test [13,14]. In addition, the elevation
angle significantly affects the proper method of installing the panels with the most suitable
spacing between rows. This must be determined to avoid the possibility of energy reduction
that panels cause for each other. Figure 3 illustrates the relationship between elevation
angle and spacing between rows in the PV system.

Figure 3. Relationship between elevation angle and spacing between rows.

Several studies consider the performance of rooftop solar panels by assessing different
design and simulation methodologies. The effect of rooftop obstacles and shadow can be
determined using photovoltaic software to identify the azimuth and tilt angles [15]. One
study assesses the impact of a building’s shading and analyzes the available rooftop area
using hillshade analysis [16]. The study estimates the potential of a rooftop system when
shaded area is excluded. PV systems in rooftops and facades and a shadow algorithm
are developed in [17]. It is concluded that although facades receive lower solar radiation,
they have a substantial impact on potential urban PV systems once they are utilized.
Mangiante et al. in [18] carried out a comparison between rooftop solar arrays in terms
of neighborhood orientation and tree shadows. These obstacles affect the solar energy
potential. The height and age of the trees are found to have an effect as well.

Other research studies are conducted to investigate the available areas on the surface
of the urban cities [19–23]. In [19], a review systematically presents the studies that con-
sider estimating the rooftop area of the cities and the potential deployment of rooftop PV
systems. A technical and geographical assessment of the rooftop area in urban cities using
novel methodology is presented in [20]. A hierarchical methodology is employed for the
estimation process, which encompasses three phases of estimation: physical, geographical,
and technical potentials. Geometry calculations and irradiation analysis for tilted rooftop
surfaces are performed in [21], including the use of image processing for shadow estima-
tion algorithms in different sun positions. It has been found that in large urban cities, the
appropriate analysis method needs three-dimensional data of the studied location.

Many articles focus on solar capacity assessment in rooftop systems in terms of sizing,
installation angles, and the efficiency of photovoltaic systems [24–28]. The complete design
of a grid-connected PV system is presented in [24,28]. Performance investigation and
rooftop analysis are carried out in [26–32]. In [26], a financial and technical feasibility
study is performed, which is applicable for only certain geographical locations and weather
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conditions. For evaluating system performance, the authors in [25] provide a photovoltaic
plant design that operates with a seasonal tilt angle according to plant location. The tilt
angle is set to be the same as the corresponding latitudinal value of the location to obtain
the highest solar radiation. In [29], the rooftop area is assessed using the optimal tilt angle,
and 60% of the area is found to be suitable for photovoltaic system implementation.

The research study in this paper aims to fill the gap by providing a comprehensive
solar analysis to investigate the feasibility of establishing an on-grid PV system of 330 KW
in KSA, exactly in Jeddah city, and introduce the proper building approach. The project is
designed to feed the needs of the Ministry of Electricity building, which is a governmental
complex with high energy-consuming appliances. The design aims to find the proper way
to distribute the solar panels on the roof of the Ministry buildings. This task has been
achieved by manipulating the tilt angle until obtaining the desired angle which enables
the working staff to accommodate the available area with targeted production, considering
that the shading must be avoided and reduced as much as possible.

The rest of the paper is organized as follows: Section 2 describes the design method-
ology of the PV system under test; two different scenarios are suggested in this section.
The energy production for both scenarios is presented and compared. Panel orientation is
discussed in Section 3, in which different orientation angles are defined and presented. The
single-line diagram of the entire system is also presented in this section. PVsol simulator
is used to estimate the performance ratio of this study. The size of the PV system for the
second scenario is introduced in Section 4. Finally, the number of needed PV panels and
inverters and the appropriate approach of connections are discussed in this section, prior
to the conclusion in Section 5.

2. Design Methodology

The goal of establishing this project is to reduce the electricity bill by utilizing the
empty spaces in the roof of the buildings and identifying the adequate distribution of solar
panels. Table 1 shows the monthly and annual energy consumption of the building. The
sizing of the project depends on the capacity of the available spaces. PVsol software was
used to investigate the most appropriate orientation of PV panels. The targeted building
needs 333 KW, which is the desired capacity. It is a serious challenge to accommodate
such demand with a limited area. Undoubtedly, it is required for the designer to identify
the proper orientation of solar panels. By adjusting the tilt angles, two scenarios were at
disposal. The first scenario requires the utilization of three roofs of Ministry buildings
while the second one requires only two roofs, which is the allowed case.

Table 1. Monthly and annual energy consumption of the building.

Month Energy Consumption (kWh)

January 952,500
February 949,100

March 942,000
April 937,500
May 932,500
June 930,100
July 928,100

August 938,100
September 939,300

October 941,800
November 942,500
December 948,500

Annual energy (MWh) 11,282
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2.1. First Scenario

As previously mentioned, the first scenario required the space of three roofs to install
PV panels due to the proposed tilt angle. The first suggestion was to adjust the tilt angle
to 22◦ to harvest solar energy as much as possible (see Figure 4). The advantage of this
approach is that the system’s efficiency is more significant than those with lower tilt angles.
The optimum tilt angle differs depending on the case study under consideration. Solar
panels create the most power when they face the sun directly, so designers should make sure
that the panels face the sun perpendicularly as much as feasible. In addition, large space is
needed to meet the desired energy capacity at the optimum tilt angle of 22◦ (three complete
roofs as previously mentioned), but only two complete roofs are available. Therefore,
the second scenario is proposed by the designer to accommodate the limitations in the
roof areas.

Figure 4. Distribution of the panels in the first scenario.

2.2. Second Scenario

To face the problem of being forbidden to use the entire area, one possible solution is to
change the tilt angle to reduce shading and accommodate the area restriction with targeted
capacity. This was done by decreasing the tilt angle to 15◦ rather than 22◦. This will reduce
the distance between the PV panels to prevent shading and consequently reduce the entire
area of installation. Figure 5 presents the distribution of the PV panels on the available area
using the second scenario in which the tilt angle is 15◦. It is clear that the PV panels are
installed over two complete roofs and three separate small, distributed roofs in which the
total area is less than the first scenario area.
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Figure 5. Distribution of the panels in the second scenario.

2.3. Third Scenario

An additional solution has been suggested by the authors to accommodate the limited
area of the roof buildings. The solution is based on using the optimal tilt angle of 22◦ for
the first string of the PV system and a tilt angle of 15◦ for the other strings. The advantage
of using this configuration is that it provides more energy than the second scenario and
accommodates the limited area of the roof building without shading. Figure 6 shows the
authors’ proposed configuration, which can be used over buildings’ roofs where the area
is limited. Figure 7 shows the relationship between elevation angle and spacing between
rows for all scenarios. It is clear that the distance between rows is increased by increasing
the tilt angle. Therefore, the first scenario has the maximum spacing between rows.

Figure 6. The configuration of the third scenario.
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Figure 7. Relationship between elevation angle and spacing between rows: (a) Scenario 1,
(b) Scenario 2, (c) Scenario 3.
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2.4. Estimating of Energy Production

This section presents the method of estimating the energy production of the PV systems
by varying the tilt angle. In addition, a comparative study between the simulated energy
output of the PV system and the measured ones is also presented in this section.

The energy produced by the PV system (E) depends on several parameters as sug-
gested by [32]:

E = A × r × GR × PR (1)

where:

A—Surface area.
r—Solar panel efficiency.
GR—Tilted surface mean solar radiation.
PR—Performance ratio.

The performance ratio used in this study is 0.798, according to the PVsol simulator for
the system, while the average solar radiation for tilted surface, GR, is given by [33,34]:

GR = (G − D)RB + DRD + GρRR (2)

where G and D are ground and diffuse solar radiation in kWh/m2, respectively. The symbol
ρ refers to the ground reflection, and the radiation coefficients RP, RD, and RR are given
by [35–39]:

RP =
cos(L − β) cos δ cos ωss + sin(L − β) sin δ

cos L cos δ cosωss + sin L sinδ
(3)

where L, β, and ωss are location latitude, tilt angle, and hour angle, respectively. δ is the
declination angle and can be given by:

δ = 23.45 sin
360(284 + n)

365
(4)

where n is the number of days in the year. The reflected solar radiation RR is calculated as:

RR =
1 − cos β

2
(5)

RD =
1 + cos β

2
(6)

By simulating and substituting the previous equations, the energy yield can be esti-
mated for the intended location.

As mentioned before, the three scenarios would produce different amounts of energy
even though the number of panels is the same. The energy production of the PV system
varies during the year, in which the maximum energy production is in May and the lowest
energy production is in December in both scenarios.

Figure 8 presents a comparison between the energy production for all scenarios. It can
be noticed that the first scenario has the maximum energy production, followed by the third
scenario. This is expected due to the higher tilt angle which exposes the panels to more solar
energy than the second scenario. Furthermore, in the first and the third scenarios, the area
of the panels exposed to the sunlight is greater than that in the second scenario. However,
the second scenario has been installed by the designer due to the reasons mentioned before,
while the third scenario is a new scenario suggested and presented in this paper.
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Figure 8. Energy production for all scenarios on a monthly basis.

3. System Configuration

The connection diagram between the panels and the inverters is shown in Figure 8.
The panels are connected in four main groups: 2 × 17, 6 × 17, 2 × 15, and 7 × 17. Each
group has a specific number of strings, in which panels are connected in series.

Table 2 gives details about the selected tilt and elevation angles, the distances between
the PV panels, and the total roof areas for all scenarios. Table 3 shows solar irradiance in
kWh/m2 at different inclination angles.

Table 2. Selected angles, distances, and the total roof areas for all scenarios.

Angles and Distances

Scenario 1 Scenario 2 Scenario 3

Tilt angle 22◦ 15◦ 22◦ (First String)/15◦ (Others)
Elevation angle 27◦ 19.2◦ 19.2◦

Height difference (m) 1.3 1.04 1.3 (First String)/1.04 (Others)
Model row spacing (m) 1.73 1.42 1.42

Total roof area (m2) 2267.8 1893.77 1893.77

In this section, the size of the PV system for the second scenario, which has been
selected, is introduced. The number of needed PV panels and inverters and the appropriate
approach of connections are discussed.

The required PV panels that met a demand of 300 kW are decided to be 790 modules
of 380 W each. In addition, six inverters are needed to integrate the PV system with the
grid [30,31]. The method of connecting the PV models with the inverters in the form of
strings is shown in Figure 9. More details about the required system parameters and
quantities are also shown in Table 4.
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Table 3. Solar irradiance in (kWh/m2) at different inclination angles.

Month Inclination Angle (degree) Solar irradiance (kWh/m2)

January 60 164
February 60 147

March 30 189
April 30 205
May 10 241
June 10 254
July 10 262

August 10 245
September 30 229

October 30 215
November 60 183
December 60 156

Total energy 2490

Figure 9. Connection diagram between the panels and the inverters.

Table 4. Equipment sizing details.

Case Type or Quantity

PV pannel surface 2118 m2

Dimensions of module 2000 mm × 991 mm × 40 mm
Brand of PV modules JASOLAR

Model number JAM72S03-380/PR
Rated maximum power of PV module (W) 380

Type of cell Mono
Number of PV modules 790

Brand of inverters Chint
Model number CPS SCA50KTL-DO/400

Rated AC output power (kW) 50
Number of inverters 6

Installation type Rooftop

The single-line diagram (SLD), shown in Figure 10, was drawn and sized according
to the Ministry of Electricity standards of grid integration for the distribution system of
low and medium voltages. Moving in detail to the SLD, the number of the connected solar
panels is 790 panels distributed in an area of 2118 m2. In addition, there are six inverters
with a capacity of 50 kW each. The appropriate connection between these panels and

215



Buildings 2022, 12, 92

inverters is to establish three groups of series panels, 15, 16, and 17, each group connected
with one of the inverters’ MPPTs. This distribution is determined by the inverters’ voltage
limits, which keep the voltage up to 950 volts.

Figure 10. Single-line diagram of the entire system.

Moreover, the SLD represents the sizing of cables and their cross-sectional areas (CSAs)
that connect the panels with the inverters. PV cables and AC cables that connect inverters
with the grid are also presented in this diagram. Their cross-sectional areas are 6 mm2

and 35 mm2, respectively. From the main bus bar to the grid, cables of 185 mm2 are used.
A molded case circuit breaker (MCCB), with 122 A capacity, is connected between every
inverter and the main bus bar. The main circuit breaker, which is established between the
main bus bar and the low voltage grid, has a capacity of 500 A.

4. Comparison between Measured and Estimated Energy

Table 5 illustrates the estimated energy for the studied location considering the three
different scenarios throughout the year. Nevertheless, the second scenario was established,
and the measured energy for this scenario has been available since August 2019. Therefore,
the comparison depends on the measured energy from August to December when the
system was ready and successfully integrated with the grid. Table 6 gives information
regarding the estimated average energy on a monthly basis. Generally, the estimated energy
output is close to the measured output for the given period. The minimum value of the
percentage error registered was in August, with a value of about 2.7%, while the maximum
value appeared in November, about 18%.
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Table 5. Monthly and annual estimated energy production of all scenarios in kWh.

Month 22◦ Tilt Angle 15◦ Tilt Angle
Configuration Proposed

by the Author

January 42,863.72 40,586.62 41,346.98
February 43,120.12 42,701.92 41,905.32

March 51,605.42 50,982.12 51,189.88
April 48,698.62 49,404.42 49,169.15
May 48,710.22 50,453.52 49,872.42
June 46,055.82 48,218.22 47,497.42
July 47,434.52 49,388.12 48,736.92

August 47,504.22 49,234.62 48,657.95
September 47,435.52 47,469.221 47,458.12

October 49,030.32 47,195.12 47,806.98
November 44,819.02 41,655.71 42,710.34
December 43,419.12 39,732.51 40,961.58

Annual energy
production 560,696.64 557,025.33 557,313.06

Table 6. Comparison between estimated and measured energy output of the PV system in kWh, with
percentage error calculations.

Estimated at 15◦ Tilt Measured Percentage Error %

August 49,234.62 47,909.40 2.69
September 47,469.221 44,873.24 5.46

October 47,195.12 40,545.59 14.10
November 41,655.71 33,842.27 18.75
December 39,732.51 34,447.50 13.30

January 2020 40,586.62 35,971.36 11.37

There are several circumstances for reducing the energy production of the PV system
and therefore reducing the efficiency of the PV system. For instance, excessive heat, espe-
cially in KSA, and other nonanticipated weather conditions decrease the energy production
of the system [40–46].

5. Conclusions

This paper proposed a new PV configuration over the buildings’ roofs for limited-area
applications. The proposed configuration is based on selecting an optimum tilt angle for
the first string of the PV system that generates the largest amount of energy. The other
strings of the PV system, in this configuration, can be selected to prevent shading in the
limited-area roofs. The proposed new configuration was simulated and tested with other
scenarios. The first scenario used the optimal tilt angle for the whole PV system, which
generates the maximum amount of electric energy. However, this scenario can only be used
if the roof’s area is not limited, which is not a critical case. Knowing that, in the case of a
roof area restriction, it is more efficient to change the tilt angle of the PV panels than to
obtain the shading of the PV panel, as the amount of energy produced varies insignificantly.
Therefore, the second scenario, which was applied to accommodate the limited roof area,
produces lower energy than the proposed configuration.

The proposed configuration can be used routinely over buildings’ roofs where the roof
area is limited to produce a larger amount of energy. In addition, this configuration can
be applied for small-capacity PV systems as well. Nevertheless, the area saved for such
systems will be very small, since the saved area per module for each tilt angle is very small.
The authors recommend using the new configuration where roof area is limited to increase
the energy output of the whole PV system, although some regulations regarding PV system
installations in some countries prevent the use of such a configuration over the roof of a
building for aesthetic reasons.
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Abstract: For mountain tunnels, ground heat exchangers can be integrated into the tunnel lining
to extract geothermal energy for building heating and cooling via a heat pump. In recent decades,
many researchers only focused on the thermal performance of tunnel lining Ground Heat Exchangers
(GHEs), ignoring the energy efficiency of the heat pump. A numerical model combining the tunnel
lining GHEs and heat pump was established to investigate the energy efficiency of the heat pump.
The inlet temperature of an absorber pipe was coupled with the cooling load of GHEs in the numerical
model, and the numerical results were calibrated using the in situ test data. The energy efficiency ratio
(EER) of the heat pump was calculated based on the correlation of the outlet temperature and EER.
The heat pump energy efficiencies under different pipe layout types, pipe pitches and pipe lengths
were evaluated. The coupling effect of ventilation and groundwater flow on the energy efficiency of
heat pump was investigated. The results demonstrate that (i) the absorber pipes arranged along the
axial direction of the tunnel have a greater EER than those arranged along the cross direction; (ii) the
EER increases exponentially with increasing absorber pipe pitch and length (the influence of the pipe
pitch and length on the growth rate of EER fades gradually as wind speed and groundwater flow
rate increase); (iii) the influence of groundwater conditions on the energy efficiency of heat pumps is
more obvious compared with ventilation conditions. Moreover, abundant groundwater may lead
to a negative effect of ventilation on the heat pump energy efficiency. Hence, the coupling effect of
ventilation and groundwater flow needs to be considered for the tunnel lining GHEs design.

Keywords: geothermal energy; tunnel lining GHEs; numerical model; energy efficiency; building
cooling

1. Introduction

In China, the main source of building energy consumption is fossil energy, which
amounts to 0.3 billion tonnes of coal equivalent per year [1]. The massive consumption
of fossil energy has led to a series of problems, such as waste of resources and environ-
mental degradation. Therefore, it is imperative to replace fossil energy with environment-
friendly energy, especially in building cooling and heating, which is over 40% of building
consumption [2]. Geothermal energy is a renewable and low-carbon energy source [3].
Ground-embedded structures, e.g., piles [4,5], underground diaphragm walls [6] and tun-
nel linings [7], can be coupled with ground source heat pump (GSHP) systems to extract
geothermal energy for building heating and cooling. Many researchers pay attention to
the tunnel lining Ground Heat Exchangers (GHEs) because of a large heat exchange area
and no drilling, compared to traditional borehole GHEs. For the tunnel in a mountain
environment, the tunnel lining GHEs can meet the energy requirement of adjacent users,
such as the village away from the tunnel entrance of 1–2 km [8]. Moreover, the tunnel
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management center is usually only a few hundred meters from the tunnel entrance, which
is a good option for using geothermal energy extracted by the tunnel lining GHEs. Figure
1 presents the diagram of the tunnel lining GHEs, the geothermal energy is transferred
to tunnel lining GHEs by absorber pipes equipped between the primary and secondary
linings, then absorbed geothermal energy is applied to heat and cool the building via the
heat pump.

Figure 1. Diagram of tunnel lining GHEs.

The ground heat exchangers (GHEs) and heat pumps are the essential parts of the
GSHP system. At present, there are many studies on the tunnel lining GHEs. Adam
and Markiewicz [9] installed energy geotextiles into the tunnel lining GHEs in the exper-
imental section of the Lainzer tunnel, which enhances efficiency of tunnel lining GHEs
construction. Zhang et al. [10] assessed the thermal efficiency of tunnel lining GHEs in a
mountain environment; the influencing factors on thermal performance of tunnel lining
GHEs were further analyzed. Some research works showed that the groundwater condi-
tions can improve thermal efficiency of tunnel lining GHEs, which help to recover ground
temperature [11,12]. Di Donna and Barla [13] investigated the influence of hydraulic con-
ductivity, thermal conductivity, groundwater temperature, and flow velocity on thermal
performance of tunnel lining GHEs using a 3D numerical model of tunnel lining GHEs
with a constant inlet temperature of absorber pipe. Ventilation conditions can improve
the thermal performance of tunnel lining GHEs [14,15]. Li et al. [16] found that the effect
of diurnal air temperature variation on the temperature of fluid inside the absorber pipe
was slight and hysteretic. Dornberger et al. [17] proposed a design chart to summarize the
effect of airflow characteristics in the tunnel on the geothermal energy potential of tunnel
lining GHEs based on a 3D numerical model of tunnel lining GHEs. In this model, the
convective heat transfer boundary was set on the tunnel internal surface to simulate the
airflow inside the tunnel. Zhang et al. [18] conducted laboratory model tests to investi-
gate the effect of ventilation and groundwater flow on the thermal efficiency of tunnel
lining GHEs. The results showed that the temperature field of the surrounding rock was
uneven under the influence of ventilation and groundwater flow, and the absorber pipes
should be arranged upstream of the groundwater flow field. The geological conditions and
ventilation conditions depend on the environment, which are the significant indicators to
assess the heat exchange capacity of tunnel lining GHEs. Moreover, optimizations of tunnel
lining GHEs design parameters and operation mode are also important [8]. Ogunleye
et al. [19,20] investigated the effect of the design parameters and operation mode on tunnel
thermal efficiency by the numerical methods. In this numerical model, the varying tunnel
air temperature was imposed on the tunnel internal surface, the results showed that the
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absorber pipe length had the most significant impact, and an optimal intermittent ratio
was necessary for improving thermal performance of tunnel lining GHEs.

The GSHP system changes not only the temperature of the building environment
but also the temperature of the underground environment. The heat is injected into the
underground by GHEs in cooling mode, which will induce a decrease in heat pump energy
efficiency. However, most of the above studies only focused on the thermal performance
of tunnel lining GHEs, ignoring heat pump energy efficiency. Hence, evaluation of the
energy efficiency of heat pump under different absorber pipe layout types, pipe pitches
and pipe lengths by a numerical model combining the tunnel lining GHEs and heat pump
was necessary. In this model, the inlet temperature of the absorber pipe varied with time
based on the cooling load. Meanwhile, the variation in the energy efficiency with pipe
pitch and pipe length under different groundwater and ventilation conditions also were
investigated. Based on the above numerical results, optimizations of the design parameters
of the tunnel lining GHEs were discussed deeply, and some engineering suggestions for
tunnel lining GHEs were given.

2. Methodology

2.1. Mathematical Formulation

The complex heat transfer process of the tunnel lining GHEs concerns convective heat
transfer of liquid inside the absorber pipe, the convective heat transfer of tunnel air, and
conduction heat transfer of a composite solid medium. To reduce computational costs, the
assumptions were as follows: (1) the thermal properties of the solid medium are constant;
(2) the thermal contact resistance of tunnel lining and surrounding rock is ignored [15,19];
(3) the heat transfer of absorber pipe wall follows a quasi-steady state [15].

The conduction heat transfer equation of tunnel secondary and primary lining can be
as follows:

ρiCp,i
∂Ti
∂t

= ∇·(ki·∇Ti) + Qi(i = 1, 2) (1)

where Ti denotes the temperature (◦C); ρi denotes the density (kg/m3); ki denotes the
thermal conductivity (W/m ◦C); Cp,i denotes the specific heat capacity (J/(kg ◦C)); Qi

denotes the heat source (W/m3); denotes the time (s); and i = 1, and 2 are the secondary
lining and primary lining.

When the groundwater flow field was considered in the model, the rock was regarded
as a porous medium. The heat transfer governing equations are as follows:

(ρCp)e f f
∂Tr

∂t
+ (ρCpv f )e f f · ∇Tr = ∇ ·

(
ke f f · ∇Tr

)
(2)

(ρCp)e f f = (1 − εp)ρrCp,r + εpρ f Cp, f (3)

ke f f = (1 − εp)kr + εpk f (4)

where ρ f denotes the density of the water (kg/m3); Cp, f denotes the specific heat capacity
of the water (J/(kg ◦C)); k f denotes the thermal conductivity of the water (W/(m ◦C));
Tr denotes the temperature of the surrounding rock (◦C); ρr denotes the density of the
surrounding rock (kg/m3); Cp,r denotes the specific heat capacity of the surrounding rock
(J/(kg ◦C)); kr denotes the thermal conductivity of the surrounding rock (W/(m ◦C));
(ρCp)e f f denotes the effective volumetric heat capacity (J/(m3 ◦C)); ke f f denotes the effec-
tive thermal conductivity (J/(kg ◦C)); v f denotes the groundwater flow rate (m/s); and εp
denotes porosity.

In the groundwater seepage field, Darcy’s law is usually employed to simulate the
groundwater flow within a porous medium, and the governing equations are as follows:

∂εpρ f

∂t
+∇(ρ f v f )e f f = 0 (5)
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v f = − κ

μ f
·
(
∇p f + ρ f g∇D

)
(6)

κ = −Kh
μw

ρwg
(7)

where κ denotes the permeability (m2); μw denotes the dynamic viscosity of the water (Pa s);
p f denotes the pore pressure in the ground (Pa); g denotes the gravitational acceleration
vector (m2/s); D denotes the elevation along the direction of the vertical coordinate (m);
and Kh denotes the hydraulic conductivity (m/s).

The transient convective heat transfer equations of liquid inside the absorber pipe are
presented below.

The momentum equation is given by:

ρL
∂uL
∂t

= −∇pL − 1
2

fD
ρL
dh

|uL|uL (8)

The continuity equation is defined as:

∂ρL
∂t

+∇ · (ρLuL) = 0 (9)

The energy conservation equation is:

ρL ACp,L
∂TL
∂t

+ ρL ACpuL · ∇TL = ∇ · (AkL∇TL) +
1
2

fD
ρL A
dh

|uL|3 + qwall (10)

qwall = hc(T1 − TL) (11)

hc =
2π

1
dp,inhin

+ 1
kp

ln
(

dp,out
dp,in

) (12)

hin = Nu
kL
dh

(13)

where ρL denotes the liquid density (kg/m3); Cp,L denotes the liquid specific heat capacity
(J/(kg ◦C)); kL denotes the thermal conductivity of the liquid (W/(m ◦C)); uL denotes liquid
flow velocity (m/s); pL denotes liquid pressure (Pa); fD denotes the Darcy friction factor; dh
denotes the hydraulic diameter (m); dp,out and dp,in denote the outer and inner diameters
of the absorber pipe (m), respectively;A denotes the inner cross-section of the pipe (m2); kp
denotes the thermal conductivity of the absorber pipe (W/m ◦C); qwall denotes the heat
flux (W/m); hc denotes the equivalent convective heat transfer coefficient (W/m ◦C); hin
denotes the convective heat transfer coefficient of the internal film of the pipe (W/m2 ◦C);
and TL denotes the liquid temperature (◦C).

2.2. Initial and Boundary Conditions

The initial ground temperature can be expressed as:

T0(y, t) = TM + ASe−y
√

ω
2ar cos(ωt − y

√
ω

2ar
) (14)

where TM denotes the annual average temperature at the ground surface; AS denotes the
amplitude of the ground surface temperature variation; ω denotes the angular frequency
of the annual temperature variation, ω = 2π/365; and ar is the rock thermal diffusivity.

The depth of ground temperature fields influenced by the air temperature is about
10–15 m [14]. The tunnel GHEs are located in the constant temperature layer with sufficient
depth. The influence of air temperature on the temperature fields of surrounding rock can
be neglected [14,15,21]. Hence, the constant temperature boundary conditions are imposed
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on the far-field boundaries. The adiabatic boundary conditions are imposed on the vertical
surfaces crossing the tunnel axis due to the symmetry of the heat transfer model.

The dynamic air temperature is applied to interface of the tunnel and air as a convec-
tive heat transfer boundary to simulate airflow in the tunnel, which is defined as:

k1∇T1 = h(T1 − Tair(t)) (15)

where Tair(t) denotes the time-dependent air temperature (◦C), and the h denotes convec-
tion heat transfer coefficient (CHTC) (W/m2 ◦C).

The CHTC can be written as [22,23]:

h = aVb + c (16)

where V denotes wind speed (m/s); parameters a, b and c are 4.2, 1 and 6.2, respec-
tively [15].

To simulate the groundwater flow, a hydraulic head difference is set on the upper and
lower boundaries. The no-flow temperature boundary conditions are set on the lateral
boundaries, which are shown in Figure 2.

Figure 2. Schematic of heat transfer model.

2.3. Heat Pump Integration

The GHEs can be used in the GSHP system to meet the building load. The GHEs’ load
in the cooling modes are written as:

QCooling
GHE (t) = QCooling

b
(t) + QCooling

hp
(t) (17)

The energy efficiency ratio (EER) is applied to assess the heat pump energy efficiency
in cooling modes. The EER is written as:

EER(t) =
QCooling

b (t)

QCooling
hp (t)

(18)
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where QCooling
hp (t) denotes the heat pump energy consumption (W); QCooling

b (t) denotes

the load of the building; and QCooling
GHE (t) denotes the cooling load of the tunnel lining

GHEs (W).
The EER can be calculated by a quadratic function of the outlet temperature [24,25].

The EER equation used in this study is given by:

EER(t) = M − NTout(t) + STout(t)
2 (19)

The parameters M, N and S of the heat pump model (Equation (19)) offered by the
manufacturer [26] are 9.08, 0.179 and 0.00102, respectively, which are used in this study.
The EER function could be easily extended to other different types of heat pumps.

As shown in Figure 3, the inlet temperature depends on the cooling load of the tunnel
lining GHEs.

Figure 3. Schematic of inlet temperature variation.

This inlet temperature can be calculated by:

Tin(t) = Tout(t) +
QGHE(t)

ρLuL ACp,L
(20)

where Tin (t) denotes the inlet temperature (◦C); Tout(t) denotes the outlet temperature
(◦C); and QGHE(t) denotes the cooling load of the tunnel lining GHEs (W).

3. Numerical Model

3.1. Model Validation

COMSOL Multiphysics software was employed to develop a 3D heat transfer numeri-
cal model of the tunnel lining GHEs.

The results of the field tests performed on real-scale tunnel lining GHEs section of
Linchang Tunnel were reported in [10], which were used to verify the heat transfer model.
The inner diameter of the tunnel was 5.7 m, and the secondary and primary linings had
thicknesses of 35 cm and 17 cm. The other model parameters are presented in Table 1.
A numerical model with a length of 100 m, a width of 60 m, and a height of 11 m was
developed. Figure 4 presents the 3D view of the proposed heat transfer model.
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Table 1. Parameters of model.

Material Parameters Unit Value

Rock
Mass density (ρr) kg/m3 2530

Thermal conductivity (kr) W/m ◦C 3.22
Specific heat capacity (Cp,r) J/kg ◦C 1670

Tunnel lining

Mass density (ρ1, ρ2) kg/m3 2400
Thermal conductivity (k1, k2) W/m ◦C 1.85

Specific heat capacity (Cp,1, Cp,2) J/kg ◦C 970
Inner diameter (dt,in) m 5.7

Primary lining thickness (б1) m 0.17
Secondary lining thickness (б2) m 0.35

Absorber pipe

Thermal conductivity (kp) W/m ◦C 0.32
Inner diameter (dp,in) mm 23

Outer diameter (dp,out) mm 32
Flow velocity (uL) m/s 0.6

Pipe pitch (J) m 0.5
Pipe length (L) m 70

Carrier liquid
Thermal conductivity (kL) W/m ◦C 0.56

Specific heat capacity (Cp,L) J/kg ◦C 4200
Mass density (ρL) kg/m3 1000

Figure 4. A 3D view of proposed heat transfer model.

In order to determine enough elements to achieve convergence, a grid-dependent
numerical study was performed, and a finer grid was used around the absorber pipe.
As shown in Table 2, the outlet temperature in continuous mode converged at 2,326,849
elements, achieving a grid-size independent solution. Figure 5 shows the experimental and
numerical outlet temperatures of absorber pipe. The experimental outlet temperature of the
absorber pipe has a large oscillation due to the periodic operation of the heat pump. The
numerical results showed agreement with the experimental results. Therefore, we believe
that the numerical model can accurately simulate the operation of tunnel lining GHEs.

Table 2. Grid study.

Elements Number Temperature (◦C)

1,362,852 8.46
1,662,152 8.42
1,971,699 8.38
2,326,849 8.36
2,666,951 8.36
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Figure 5. Numerical and experimental results.

3.2. Parametric Numerical Study

In the parametric numerical study, the operation of the tunnel lining GHEs was
considered for three months of cooling. The model of the tunnel in Section 3.1 was used
to perform the parametric numerical study. The measured air temperature was set on
the boundary between the air and tunnel internal surface to simulate the effect of airflow.
Different groups of tunnel lining GHEs could be arranged parallelly to meet the building
cooling load. This study focused on one group of tunnel lining GHEs to investigate the
effect of the tunnel lining GHEs parameters (absorber pipe layout types, pipe pitches
and pipe lengths) on the energy efficiency of the heat pump. The temperature difference
between the inlet and outlet was set to 5 ◦C according to the Design Code for Heating
Ventilation and Air Conditioning of Civil Buildings (in China) [27], which corresponds to a
tunnel lining GHEs cooling load of 5.235 kW. The maximum wind speed was determined
to be 5 m/s according to the monitoring data of the wind speed range [15]. The porosity
of the surrounding rock is assumed as 10% for simulating the groundwater flow. The
parameters of parametric study are presented in Table 3.

Table 3. Parameters of parametric numerical study.

Characteristic Unit Value

Pipe pitch (J) m 0.3, 0.4, 0.5 S, 0.6
Pipe length (L) m 250–400
Wind speed (V) m/s 0.1 S, 1, 3, 5

Groundwater flow rate (vf) m/s 0 S, 10−6, 10−5, 10−4, 10−3

The parameters with subscripts are the standard values when the other parameters are investigated.

4. Energy Efficiency of Heat Pump with Tunnel Lining GHEs

4.1. Effect of GHEs Absorber Pipe Layout Types on Heat Pump Energy Efficiency

As shown in Figure 6, the absorber pipe layout types contain a type-1 absorber pipe
arranged along the cross direction of the tunnel and a type-2 absorber pipe arranged along
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the axial direction of the tunnel. The area and length of the absorber pipe layout can be
calculated by Equation (21).{

Ltotal= [( LC/J)+1]× LA + LC
A = LC × LA

(21)

where Ltotal denotes the absorber pipe length (m); LC denotes the length along the tunnel
cross direction (m); LA denotes the length along the axial direction of the tunnel (m);
J denotes the absorber pipe pitches (m); and A denotes the area of the absorber pipe
layout (m2).

 
(a) (b) 

Figure 6. (a) Type-1 layout and (b) type-2 layout.

To facilitate a comparison between the effects of different absorber pipe layout types
on the heat pump energy efficiency, the area and length of the type-1 absorber pipe are
the same as those of the type-2 absorber pipe. The area and length of the two types of
absorber pipe layouts are 100 m2 and 220 m. As shown in Figure 7, the EERs of two types
of absorber pipes layout decreased with the elapsed time for 90 days. The EER values of
two types of absorber pipes layout reached 3.56 and 3.62 on the 90th day, respectively, and
the EER values of the type-2 absorber pipe were greater than EER values of the type-1
absorber pipe, indicating that the type-2 absorber pipe layout was better than the type-1
absorber pipe layout.

To analyze the above results, the temperature field around the absorber pipe at the
center of the tunnel model is presented, as shown in Figure 8.

From Figure 8, it is apparent that more heat accumulated around the type-1 absorber
pipe compared with the type-2 absorber pipe, leading to a decrease in the EER. Figure 9
depicts the heat transfer schematic of different absorber pipe layout types at the tunnel
surface. The heat transfer direction of type-1 absorber pipe was mainly along the axial
direction of the tunnel, while the heat transfer direction of type-2 absorber pipe was mainly
along the cross direction of the tunnel. Moreover, heat accumulated easily between the
different groups of absorber pipes. Hence, there was more heat accumulation in the tunnel
model with the type-1 layout compared with tunnel model with the type-2 layout.
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Figure 7. Variation in EER with the elapsed time.

Figure 8. Ground temperature distributions of different absorber pipe layout types.

  
(a) (b) 

Figure 9. (a) Heat transfer schematic of type-1 absorber pipe layout at tunnel surface. (b) Heat transfer schematic of type-2
absorber pipe layout at tunnel surface.
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Although the temperature change along the axial direction of tunnel and the buoyancy
effect were not considered in this model, it was acceptable that the convective heat transfer
boundary between the tunnel surface and air was used to simulate the convective heat
transfer of tunnel air. Zhang et al. (2016) found that there was mainly forced convection
along the axial direction of the tunnel in the mountain tunnel, and the maximum tem-
perature difference between different temperature measurement points within the same
cross section was only 0.18 ◦C, which meant that the temperature variation of the cross
section could be neglected for the mountain tunnel. Peltier et al. (2019) found that constant
values of the convection heat transfer coefficient could be used to describe the heat transfer
performance in the tunnels driven by airflows when no disturbances of the thermal and
velocity boundary layers were encountered with the longitudinal distance. This study
focused on the mountain tunnel, a section of the mountain tunnel with a length of 11 m
was used to investigate the effect of ventilation on the thermal performance of tunnel lining
GHEs qualitatively. Hence, the variation in wind speed and air temperature could be
neglected. In summary, compared with the type-1 layout, the type-2 layout exhibited a
greater EER, recommending for the mountain tunnel lining GHEs design.

4.2. Effect of GHEs Absorber Pipe Pitch on Heat Pump Energy Efficiency

Based on the above results, the type-2 absorber pipe layout arranged along the axial
direction of the tunnel had the higher heat pump energy efficiency. Hence, the type-2
absorber pipe layout was used in the investigation on the effect of GHEs absorber pipe
pitch on the heat pump energy efficiency, and the absorber pipe length was fixed at 291.1 m.

As shown in Figure 10a, the EER increased exponentially with increasing wind speed
for the same pitch. As shown in Figure 10b, the EER increased exponentially with an
increase in the absorber pipe pitch. The influence of the pitch on the growth rates of EER
had a diminishing trend as the wind speed increased. When the wind speed was 0.1 m/s,
the growth rates of the EER corresponding to the absorber pipe pitches ranging from 0.3 to
0.4 m, 0.4 to 0.5 m, and 0.5 to 0.6 m were 5.88%, 3.29%, and 2.26%, respectively. When the
wind speed was 5 m/s, the growth rates of the EER corresponding to the absorber pipe
pitches ranging from 0.3 to 0.4 m, 0.4 to 0.5 m, and 0.5 to 0.6 m were 4.19%, 2.09%, and
1.58%, respectively.

 
(a) (b) 

Figure 10. (a) Variation in EER with wind speed under different absorber pipe pitches. (b) Variation in EER with absorber
pipe pitch under different wind speeds.

As shown in Figure 11a, the EER increased exponentially with increasing groundwater
flow rate for the same pitch. The EER increased dramatically when the groundwater flow
rates were from 0 m/s to 10−4 m/s. For instance, the EER under the pitch of 0.3 m increased
from 3.86 to 4.91, resulting in a rate of increase of 27.20%, when the groundwater flow
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rates were from 0 m/s to 10−4 m/s. However, the growth rate of the EER was low when
the groundwater flow rate was from 10−4 m/s to 10−3 m/s, resulting in a growth rate of
2.69%. As shown in Figure 11b, the influence of the pitch on the growth rates of EER had a
diminishing trend as the groundwater flow rate increased. When the groundwater flow
rate was 0 m/s, the growth rates of the EER corresponding to the absorber pipe pitches
ranging from 0.3 to 0.4 m, 0.4 to 0.5 m, and 0.5 to 0.6 m were 5.88%, 3.29%, and 2.26%,
respectively. When the groundwater flow rate was 10−3 m/s, the growth rates of the EER
corresponding to the absorber pipe pitches ranging from 0.3 m to 0.4 m, 0.4 m to 0.5 m, and
0.5 m to 0.6 m were 2.26%, 1.38%, and 0.69%, respectively.

 

(a) (b) 

Figure 11. (a) Variation in EER with groundwater flow rate under different absorber pipe pitches. (b) Variation in EER with
absorber pipe pitch under different groundwater flow rates.

4.3. Effect of GHEs Absorber Pipe Length on Heat Pump Energy Efficiency

The absorber pipe length was the most influential factor in the thermal performance of
the tunnel GHEs [18]. To investigate the effect of GHEs absorber pipe length on heat pump
energy efficiency, the variations in the EER with increasing the absorber pipe length under
the same absorber pipe pitch of 0.5 m on the 90th day are plotted in Figures 12 and 13.

 
(a) (b) 

Figure 12. (a) Variation in EER with wind speed under different absorber pipe lengths. (b) Variation in EER with absorber
pipe length under different wind speeds.
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(a) (b) 

Figure 13. (a) Variation in EER with groundwater flow rate under different absorber pipe lengths. (b) Variation in EER with
absorber pipe length under different groundwater flow rates.

As shown in Figure 12a, the EER increased exponentially with increasing wind speed
for the same length. As shown in Figure 12b, the EER increased exponentially with an
increase in the absorber pipe length. The influence of the length on the growth rates of EER
had a diminishing trend as the wind speed increased. The absorber pipe length ranged
from 293.5 m to 398.5 m. When the wind speed was 0.1 m/s, the EER increased from 3.92
to 4.24, resulting in a rate of increase of 8.16% in the EER. When the wind speed was 5 m/s,
the EER increased from 4.05 to 4.32, resulting in a rate of increase of 6.67% in the EER.

As shown in Figure 13a, the EER increased exponentially as groundwater flow rate
increased for the same length. Groundwater conditions could enhance the heat pump
energy efficiency significantly. For instance, when the groundwater flow rate increased
from 0 m/s to 10−5 m/s, the EER under the absorber pipe length of 293.5 m increased
from 3.92 to 4.52, resulting in a rate of increase of 15.31%. As shown in Figure 13b, the
influence of the length on the growth rate of EER had a diminishing trend with increasing
groundwater flow rate. For instance, the absorber pipe length ranged from 293.5 m to
398.5 m. When the groundwater flow rate was 0 m/s, the EER increased from 3.92 to 4.23,
resulting in a rate of increase of 7.91% in the EER. When the groundwater flow rate was
10−3 m/s, the EER increased from 5.04 to 5.24, resulting in a rate of decrease of 3.97% in
the EER.

4.4. Discussion

Based on the above results, the effects of the mountain tunnel lining GHEs design
parameters and coupling effect of the ventilation and groundwater flow on the heat pump
energy efficiency were discussed deeply in this section.

According to Section 4.2, increasing absorber pipe pitch could enhance the heat pump
energy efficiency. However, the pipe pitch could not increase freely when designing the
tunnel lining GHEs. As shown in Figures 10 and 11, the growth rate of the EER decreased
with increasing the pipe pitch. The growth rate of the EER would fall further when the
wind speed and groundwater flow rate are increased. Moreover, increasing pipe pitch
would lead to a larger layout area, which might be beyond the available layout area of
the tunnel. Tinti et al. [8] believed that the design code of tunnel lining GHEs depended
on the largest heat exchange surface area, the lowest pressure drops and investment cost.
Hence, the pipe pitch design needs to consider the largest heat exchange area and shortest
pipe length. The shortest pipe length can be determined based on the minimum EER [9],
which is regarded as the critical pipe length. As shown in Figures 12 and 13, it can be seen
that the good ventilation and groundwater conditions can decrease the critical pipe length,
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which is helpful to save the cost. Hence, cost savings can be accomplished by arranging the
absorber pipes in the tunnel section with good ventilation and groundwater conditions.

To investigate the coupling effect of ventilation and groundwater flow on the heat
pump energy efficiency, the absorber pipe pitch and length were fixed at 0.5 m and 293.5 m,
respectively. The EERs of the heat pump under the different wind speeds and groundwater
flow rates are presented in Figure 14. The effect of wind speed on the growth rate of EER re-
duced gradually with increasing groundwater flow rate, and the effect of groundwater flow
rate on the growth rate of EER also decreased gradually as the wind speed increased. This
is because the larger wind speed and groundwater flow rate are helpful to slow down the
heat accumulation of the surrounding rock. Ventilation and groundwater conditions share
responsibility for improvements in heat pump energy efficiency. It is worth noting that
when the groundwater flow velocity reached 10−3 m/s, the ventilation did not enhance the
EER. This is because the abundant groundwater reduced heat accumulation significantly,
which led to a lower temperature of the absorber pipe than the air temperature. Hence,
the coupling effect of ventilation and groundwater flow is significant for the tunnel lining
GHEs design. Moreover, as shown in Figure 14, the groundwater conditions have a greater
influence on the heat pump energy efficiency compared with the ventilation conditions.

Figure 14. Coupling effect of ventilation and groundwater flow on energy efficiency.

5. Conclusions

In this paper, a numerical model of coupling the tunnel lining GHEs and heat pump
was established to investigate the effects of the absorber pipe layout type, absorber pipe
pitch, absorber pipe length, wind speed and groundwater flow rate on the energy efficiency
of heat pump. The main conclusions can be summarized as follows:

(1) For the mountain tunnel, the absorber pipe arranged along the axial direction of the
tunnel exhibits a higher energy efficiency for the heat pump with tunnel lining GHEs
compared with the absorber pipe arranged along the cross direction of the tunnel.

(2) The EER increases exponentially with increasing absorber pipe pitch and length. The
influences of pipe pitch and length on the growth rate of EER show a diminishing
trend as the wind speed and groundwater flow rate increase.

(3) The influence of groundwater flow on the heat pump energy efficiency is more
remarkable than that of tunnel ventilation. Moreover, abundant groundwater may
lead to a negative effect of ventilation on the heat pump energy efficiency. Hence, the
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coupling effect of ventilation and groundwater flow needs to be considered for the
tunnel lining GHEs design.
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Abstract: In recent years, in order to promote the construction of low-carbon communities (LCCs) in
China, many scholars have proposed an evaluation indicator system of LCC. The existing indicator
systems are mostly established from the macro perspective of environmental impact and resource
conservation, but few are from the micro technical perspective. Thus, the aim of this study is to
construct a micro technical evaluation indicator system for LCCs. Firstly, the index system was
divided into three categories: low-carbon building, low-carbon transportation, and low-carbon
environment. Then, the technical indicators were selected through empirical analysis. The indicator
weights were assigned by the improved analytic hierarchy process (AHP) and the multi-level fuzzy
comprehensive evaluation method was used as the evaluation method of the indicators. Finally,
in order to examine the practicality of the indicator system, two typical communities in Tianjin
and Shanghai were selected as case studies. The results showed that the indicator system gave a
reasonable low-carbon level for the two communities, which was in line with the actual low-carbon
construction status of each community. In addition, the evaluation results pointed out that the low-
carbon community (LCC) in Tianjin needs to further strengthen the construction of the low-carbon
environment, including community compactness, rainwater collection and utilization, and waste
recycling. For the LCC in Shanghai, it was pointed out that the construction of the low-carbon
building and low-carbon transportation needs to be strengthened. The indicator system can be used
as a tool for urban planning and construction personnel to evaluate the construction progress and
low-carbon degree of LCC.

Keywords: low-carbon community; technical indicators; improved analytic hierarchy process; multi-level
fuzzy comprehensive evaluation method

1. Introduction

In recent decades, with the rapid development of different countries, global carbon
emissions have increased rapidly [1,2]. The increasing carbon emissions have increased
the pressure on natural systems and resources, which directly leading to global climate
change and the deterioration of the ecological environment [3]. The rapid urbanization
process is one of the main factors leading to the increase in carbon emissions. Urban areas
contribute more than 70% of the total energy demand and a corresponding proportion
of the world’s CO2 emissions [4]. As the most basic unit in urban construction, the
urban community is not only the main space carrier of human life, entertainment, and
industrial production, but also the main carrier of urban carbon emissions [5,6]. Low
carbon research at the community level is the foothold of the implementation of low-carbon
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urban planning strategies, and also plays a role in improving the low-carbon technology of
single buildings [7,8]. Therefore, how to build an LCC has become a research hotspot in
many countries.

As the largest developing country and the second largest economy in the world,
China’s rapid urbanization process consumes a lot of energy and produces a lot of carbon
emissions, accounting for about a quarter of the world’s total carbon emissions in the
past five years [9]. The research on LCC in China is of great significance for both China
and the world to reduce carbon emissions. At present, the research on LCC is mainly
divided into quantitative and qualitative evaluation. In terms of quantitative evaluation of
LCCs, song et al. [10] proposed an accounting framework for community carbon emissions
based on the method of life cycle assessment (LCA), including direct fossil fuel combus-
tion emissions, energy purchase (electricity, heat, and water) emissions, and supply chain
emissions reflected in commodity consumption, which quantified the scale and mitigation
potential of community carbon emissions. Yıldırım et al. [11] collected data on energy
use, land demand, raw material consumption, and carbon emissions of communities, and
quantified the environmental impact of different wastewater treatment options using LCA.
Lin et al. [12] established a comprehensive accounting model based on the guidelines of
the Intergovernmental Panel on Climate Change (IPCC) and the LCA method to more
comprehensively and accurately quantify the carbon emissions and carbon sinks of com-
munities. Although quantitative evaluation can give more intuitive results, its time and
data requirements, complexity, and cost–benefit ratio have great uncertainty. There are still
some difficulties in the application of quantitative evaluation in the actual LCC planning.
The qualitative evaluation of LCC has the characteristics of simplicity, fewer data, and
strong comprehensiveness, which is welcomed by scholars and urban planners. The United
Kingdom has proposed a BREEAM community evaluation system for the construction
of sustainable communities. The United States established the LEED-ND system to eval-
uate the sustainable development of community planning and construction. Japan has
established the CASBEE-UD system to guide the ecological and green construction of
communities [13,14]. Most of these evaluation index systems are built from the perspective
of ecology, livability, and sustainability, and rarely from the perspective of low carbon. In
terms of the construction of LCC evaluation indicators, the Chinese National Development
and Reform Commission issued the Pilot Low-Carbon Communities Construction Guide,
which defines the construction objectives, contents, and standards of China’s LCCs. From
the perspective of “carbon source control” and “carbon sink expansion”, Wang et al. [15]
established six evaluation indicators of LCCs. Based on the actual situation of urban LCCs
in Guangdong Province, Xie et al. [16] established an evaluation system. Based on the the-
ory and practice of LCC, Luo and Zhan [17] constructed the evaluation index of renewable
energy utilization and green vegetation. Jiang and Guo [18] developed the evaluation index
of LCC from the planning experience of LCC, such as energy conservation and creating
a suitable ecological environment. Moghadam et al. [19] developed a new multicriteria
spatial decision support system, which established the relationship between the energy of
urban communities and the economic, social, technical, and environmental performance of
transformation interventions, and provided meaningful community energy transformation
schemes. However, most of the above LCC evaluation indicators are established from the
macro perspective of reducing environmental impact and saving resources, and there are
no evaluation indicators established from the micro technical perspective. Macroscopic
evaluation indices can grasp the construction direction of LCCs, while technical evaluation
indices are specific measures to reduce carbon emissions in each construction direction.
Therefore, it is necessary to establish a technical evaluation index system of LCCs. The
purpose of building the indicator system is to provide a useful tool for community plan-
ners to evaluate the low-carbon degree of a low-carbon community in the planning and
construction stage or operation stage, and point out the low-carbon technologies that need
to be further strengthened in a community.
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In this study, firstly, combined with the previous construction contents of LCCs and the
construction management departments of Chinese communities, the technical indicators of
LCCs were divided into three categories: low-carbon building, low-carbon transportation,
and low-carbon environment. Based on the examples of the LCC evaluation index system at
home and abroad, and combined with the actual situation of China, a technical index pool
was established, and the appropriate indicators were selected through empirical analysis.
Then, the weight of the selected index was calculated by using the improved AHP, and the
multi-level fuzzy comprehensive evaluation method was selected as the evaluation method
of the index. Finally, two typical communities in Tianjin and Shanghai were selected to
verify the practicality of the index system. The indicator system constructed in this study
gave a reasonable low-carbon level for the two communities, which was in line with the
actual low-carbon construction status of each community. The indicator system can not
only evaluate the degree of low carbon in a community, but also indicate the aspects in
which a community needs to strengthen the use of low-carbon technology, which can
be used as a tool for community planning and construction personnel to evaluate the
construction progress and degree of low carbon in LCCs.

2. Methodology

In the process of constructing an indicator system, the selection of the indicator and
the assignment of the indicator weight are the two most important steps [20,21]. In terms of
the selection of indicators, some scholars use frequency analysis; that is, the indicators with
higher frequency are used preferentially [22,23]. However, in this method, the important in-
dicators with lower frequency are often ignored. Lu et al. [24] established some sustainable
indicator systems according to local regional geographical characteristics and the ecological
environment, drawing lessons from the existing LCC evaluation indicator system, which
are often not systematic. In this study, based on the current LCC evaluation system and
famous LCC cases (including BedZED in the U.K., the Vauban District in Germany, the
Hammarby community in Sweden, Beder in Denmark, and the Changxindian community
in Beijing [25]), an indicator pool was established, and then the technical indicators were
selected through empirical analysis to build a comprehensive technical indicator system for
constructing LCCs [26]. For the assignment of indicator weight, the most commonly used
method is the analytic hierarchy process (AHP) [27,28]. However, the traditional AHP is
suitable for the comparative judgment of a small number of indicators, which is difficult to
apply to the more complex evaluation indicators of LCCs. Additionally, the consistency
test of the traditional AHP comparison matrix is complicated [29,30]. In this study, the
improved AHP overcame the shortcomings of the traditional AHP, and the weight of each
indicator could be calculated quickly and conveniently [31,32]. Then, for the index system,
a suitable comprehensive evaluation method needs to be selected. Currently, the more
commonly used comprehensive evaluation methods include the Grey Correlation Method,
Artificial Neural Network Method, Technique for Order Preference by Similarity to an
Ideal Solution (TOPSIS) Method, and Fuzzy Comprehensive Evaluation Method. The Grey
Correlation Method is applicable to a large number of evaluation indicators, and some
indicators have the characteristics of correlation or repetition [33,34]. The Artificial Neural
Network Method is more suitable for the case of a large amount of data [35]. Because
the TOPSIS Method has no definite method for the transformation of neutral indicators,
the final result of comprehensive evaluation is not very accurate [36,37]. The Fuzzy Com-
prehensive Evaluation Method is a comprehensive evaluation method based on fuzzy
mathematics. It has the characteristics of clear results and strong systematization, and it
can better solve fuzzy and difficult-to-quantify problems [38]. The technical indicator sys-
tem constructed in this study is a qualitative indicator that have the problem of being fuzzy
and difficult to quantify in the evaluation. Based on the comprehensive analysis of the
characteristics of different comprehensive evaluation methods, the Fuzzy Comprehensive
Evaluation Method was selected. The technical route of this study is shown in Figure 1.
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Figure 1. The technical route of the study.

2.1. Classification of the Technical Indicator System

Before constructing the evaluation technical indicator system for LCCs, it is necessary
to clarify the classification of the indicator system for LCCs, which plays a very important
role in the selection of the technical indicator and determines whether the technical indicator
system is systematic [39,40]. At present, in China and the wider international context, there
is the same definition of LCCs. It is generally believed that the construction of LCCs
can reduce resource consumption and improve energy efficiency, thereby delaying global
warming and ultimately achieving the development of a low-carbon economy [41,42].
Wang et al. [15] constructed an indicator system for LCCs based on six indicator categories:
layout planning, transportation planning, architectural planning and design, environmental
planning, municipal engineering planning, and construction management. Zhang et al. [43]
analyzed the construction of indicators such as energy, transportation, waste management,
and water management through cases in four communities. Jiang and Guo [18] summarized
five aspects based on the successful experiences of two communities in terms of low-carbon
planning including public participation, especially the important role of the government,
making full use of energy, such as wind energy and solar energy, reasonable use of land, a
reasonable layout of road traffic, and a convenient pedestrian transportation system.

To summarize, the indicator categories of LCCs mainly include building, transporta-
tion, land planning, and environmental life. In China, the construction of communities
mainly involves three departments: building, transportation, and environment. In this
study, the evaluation technical indicator system of LCCs was divided into three categories:
low-carbon building, low-carbon transportation, and low-carbon environment. These three
categories cover the main content of low-carbon community construction, and the indica-
tors of each category can be managed by the corresponding departments. The following is
an explanation of the three categories of indicators.
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1. Low-carbon building: Buildings are the main sources of carbon emissions in com-
munities. At present, there is no construction standard for low-carbon building in
China. In this study, the detailed technical indicators for the construction of low-
carbon building were established. The relevant evaluation technical indicators for the
construction of LCCs that were established in this study were based on low-carbon
buildings being used as a base point to radiate to low-carbon transportation and
low-carbon environment.

2. Low-carbon transportation: Low-carbon transportation refers to optimizing a network
structure, attaching importance to the construction of a slow-moving transportation
system, and improving the convenience of a public transportation system. Every
community needs to strengthen the management of motor vehicles and the application
of advanced traffic management technology. At the same time, a community should
pay attention to the promotion of low-carbon and environmentally friendly modes of
transportation for residents.

3. Low-carbon environment: Low-carbon environment refers to scientific and reasonable
community land layout planning, water environment planning, and household waste
management. Low-carbon environment affects the choice of resident travel methods,
which can create a good microclimate for a community and reduce environmental
pollution.

2.2. Screening Method for Technical Indicators
2.2.1. Establishment of Technical Indicator Pool

In order to comprehensively construct the evaluation technical indicators of LCCs, in
this research, a technical indicator pool was built by drawing on the concept of the topic
pool in the “General Framework for Compiling Guidelines for Corporate Social Respon-
sibility Reports in China”. According to the research on the current development status
of LCC assessments, all the main indicators related to LCCs, green ecological community,
and sustainable community are defined in this framework.

China’s indicator systems related to LCCs, which were mainly referred to in this study,
include:

1. Technical announcement of the 11th Five Year Plan of the Ministry of Construction;
2. “Low carbon Housing Technology System Framework and Emission Reduction Indi-

cators”, issued by the China Real Estate Research Association and Housing Industry
Development and Technology Committee;

3. “Key Points and Technical Guidelines for the Construction of Green Ecological Resi-
dential Areas”, organized and compiled by the Housing Industrialization Promotion
Center of the Ministry of Construction;

4. “Eco-residential Neighborhood Assessment Manual”, published by the Industrializa-
tion Promotion Center Group, the Ministry of Construction; and

5. The Guide for Evaluation Technology for Low-Carbon Urban Areas and The Guide
for Evaluation Technology for Low-Carbon Communities based on local Beijing
standards.

The international common indicator system related to low-carbon communities that
this study mainly referred to includes:

1. The LEED-ND formulated by the U.S. Green Building Council;
2. The BREEAM Communities formulated specifically for neighborhoods by the U.K.;
3. The CASBEE-UD created based on the CASBEE formulated by Japan, after taking

into account urban areas and buildings.

2.2.2. Empirical Analysis

Empirical analysis is a method for comprehensively analyzing various factors based on
researchers’ professional knowledge and previous work experience. This method belongs
to the category of qualitative analysis and has certain artificial subjectivity, but it is the most
simple and feasible analysis method. In application, the method of increasing the number
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of researchers and synthesizing opinions can reduce subjectivity as much as possible and
improve the accuracy of a conclusion [26]. As far as this study is concerned, there are
many relevant evaluation technical indicators of LCCs, and there are overlapping concepts,
inconsistent statistical calibers, and inconsistent data availability among some indicators.
At the time of this study, the empirical analysis method could be used to compare and
discriminate indicators to select the most appropriate evaluation technical indicators for
LCCs. Experts judged each indicator according to the following standards: (1) each
indicator is related to the community’s carbon emissions; (2) each indicator should be
logically related to each other; (3) the selected indicators should be typical and wraparound
research field terms; (4) the indicators should be practical in a real situation and should
be simple, accompanied by an explicit definition; (5) each indicator not only considers
the present development condition of LCCs, but also includes the possibility of future
development and changes. The results are denoted by “agreement, unsure, disagreement”.

In the community, building carbon emissions, transportation carbon emissions, and
living environment carbon emissions account for 54%, 40%, and 6%, respectively [44–46].
According to this feature, this study stipulated that the proportion of the number of experts
in each field selected to the total number of experts should not be less than the proportion
of carbon emissions in this field, so that more important indicators could be screened
out. In addition, the experts selected by the research team have at least two professional
backgrounds, which is to avoid the problem that experts with only one professional
background often only choose indicators in their familiar field. A total of 24 experts were
selected for this study. Experts in the field of building carbon emissions, transportation
carbon emissions, and living environment carbon emissions accounted for 92%, 71%, and
63%, respectively, meeting the specified requirements. The results are shown in Table 1. In
each row, the number of filled circles represents the number of professions that the expert
is familiar with. The three filled circles represent experts with professional backgrounds in
the three fields. The two filled circles represent experts with professional backgrounds in
the two fields. Experts were asked to select indicators by filling out questionnaires. When
experts selected indicators, only the ones agreed by more than two-thirds of the experts
were selected into the system, which ensures the scientificity of indicator selection. Experts
screened the indicators in the technical indicator pool according to the above criteria,
eliminated indicators not related to LCC construction, and developed specific descriptions
for each removed indicator.

Table 1. Professional background information of 24 experts.

Serial Numbers of the Experts A B C

1 • • •
2 • • •
3 • •
4 • •
5 • •
6 • •
7 • •
8 • •
9 • •

10 • •
11 • •
12 • •
13 • •
14 • •
15 • • •
16 • • •
17 • • •
18 • •
19 • • •
20 • •
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Table 1. Cont.

Serial Numbers of the Experts A B C

21 • •
22 • •
23 • •
24 • •

Note: “A” represents the field of building carbon emissions. “B” represents the field of transportation carbon
emissions. ”C” represents the field of living environment carbon emissions.

2.3. Weight Calculation Method for the Technical Indicators
2.3.1. Improved AHP

The technical evaluation indicators for low-carbon communities were characterized by
strong systematization, wide coverage, and large quantities. The improved AHP was easy
to operate, which overcame the difficulty of using fuzzy words such as “slightly” important,
“relatively” important, and “extremely” important to express the relationship between the
two elements accurately, and it did not require consistency tests to be conducted separately.
The process was clear and simple.

1. After setting n indicators for a certain decision system A, i.e., G1, G2 . . . Gn, the
corresponding weights were W1, W2 . . . Wn, and W1 + W2 + . . . + Wn = 1. In order
to construct the judgment matrix, a comparison matrix was established using the
three-scale method.

C =

⎛⎜⎜⎜⎝
c11 c12 . . . c1n
c21 c22 . . . c2n
...

...
...

...
cn1 cn2 . . . cnn

⎞⎟⎟⎟⎠ = (cij)n×n (1)

where, if Gi is more important than Gj, cij is 1; if Gi is as important as Gj, cij is 0; if Gi is less
important than Gj, cij is 1.

2. The comparison matrix C was used to calculate the optimal transfer matrix O through
mathematical conversion.

Oij =
1
n

n

∑
t=1

(cit + ctj) (2)

O =

⎛⎜⎜⎜⎝
O11 O12 . . . O1n
O21 O22 . . . O2n

...
...

...
...

On1 On2 . . . Onn

⎞⎟⎟⎟⎠ = (Oij)n×n (3)

3. The optimal transfer matrix O was transformed into the consistency matrix D, which
was also called the judgment matrix of the indicator.

Dij = exp(Oij) (4)

D =

⎛⎜⎜⎜⎝
D11 D12 . . . D1n
D21 D22 . . . D2n

...
...

...
...

Dn1 Dn2 . . . Dnn

⎞⎟⎟⎟⎠ = (Dij)n×n (5)

4. The solution for the eigenvector W of D was determined.
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The square root method was used to find W =
(

W1, W2, . . . , Wn
)T , and the ob-

tained eigenvector Wi could be used as the weight of each indicator [31,32].

2.3.2. Establishment of Tree Hierarchy Mode

Before calculating the weight of technical indicators, the hierarchical structure of an
indicator model is established first. The tree hierarchy model uses a “directed tree” data
structure to represent various entities and the relationships between entities. Each node
in the tree represents a record type, and there is a clear structure and simple relationship
between nodes [47]. This model takes the research object as a system and makes decisions
according to the thinking mode of decomposition, comparative judgment, and synthesis.
It has become an important tool of system analysis developed after mechanism analysis
and statistical analysis. The establishment of the index model with tree structure is of great
significance to the research and calculation of index weight.

2.4. Evaluation Method of Technical Indicators
2.4.1. Fuzzy Comprehensive Evaluation Method

The fuzzy comprehensive evaluation method is a comprehensive evaluation method
based on fuzzy mathematics, which is based on the fuzzy set theory [48,49]. The following
is the basic principle of the fuzzy comprehensive evaluation method.

The evaluation target is regarded as a fuzzy set composed of many factors, which is
called the factor set. Then, the evaluation level that these factors can select is set. The fuzzy
set that makes up the evaluation is called the evaluation set. The membership grade of each
single factor for each evaluation level is called the fuzzy matrix. Then, according to the
weight distribution of various factors in the evaluation target, the quantitative solution of
the evaluation is obtained through calculation (called fuzzy matrix synthesis). The specific
steps are as follows.

1. Determination of the factor set of the evaluation object:

U = {u1, u2, . . . , um} (6)

where U is the object of evaluation and um is m evaluation indices of the evaluation object.

2. Determination of the evaluation level set:

V = {v1, v2, . . . , vn} (7)

For the evaluation target U, the evaluation results in n may be made, V represents
the evaluation set of target U, and the specific level needs to be described in appropriate
language according to the evaluation content. The ratings of the technical indicators
screened out in this study were rated as “excellent”, “good”, “general”, and “poor”, as
shown in Table 2.

Table 2. Ratings of the technical indicators.

Ratings Specifications

Excellent

The application of the low-carbon technologies corresponding to the technical
indicator is in full compliance with the local climate, resources, and other

aspects. The specifications and installation position of the technical components
are reasonable, the construction meets the requirements, and the operation is in

good condition, which has a good effect on reducing carbon emissions.

Good

The application of the low-carbon technologies corresponding to the technical
indicator is in line with the local climate, resources, and other aspects. The

specification and installation position of the technical components are relatively
reasonable, the construction essentially meets the requirements, and the

operation condition meets the relevant standards, which has a certain effect on
reducing carbon emissions.
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Table 2. Cont.

Ratings Specifications

General

The application of low-carbon technologies corresponding to the technical
indicator did not fully meet the local conditions of climate and resources. The

specifications and installation position of the technical components are not
reasonable, the construction did not meet the corresponding requirements, and

the emission reduction effect achieved is limited.

Poor

The application of low-carbon technologies corresponding to the technical
indicator did not conform to the local climate, resources, and other aspects, and

it had little effect on reducing carbon emissions, or there is no low-carbon
technology corresponding to this technical indicator.

By analyzing the detailed planning diagram, construction description diagram, actual
operation report, and other relevant documents of a low-carbon community, relevant
professionals can evaluate the technical indicators constructed in this study according to
the evaluation criteria.

3. Single factor evaluation and establishment of the fuzzy relationship matrix R:

R =

⎛⎜⎜⎜⎝
R11 R12 . . . R1n
R21 R22 . . . R2n

...
...

...
...

Rm1 Rm2 . . . Rmn

⎞⎟⎟⎟⎠ (8)

where Rij (i = 1, 2, . . . , m; j = 1, 2, . . . , n), indicating the membership degree of the evaluation
target to the evaluation set vj from the perspective of the factor ui. In this step, experts or
relevant personnel usually evaluate each factor of the evaluation target. Rij refers to the
ratio of the number of people whose evaluation result is vj to the total number of evaluators
for factor ui.

4. According to the factor weight W =
(

W1, W2, . . . , Wn
)T obtained by the improved

AHP, the evaluation result of F is calculated.

F = W × R (9)

2.4.2. Multi-Level Fuzzy Comprehensive Evaluation Method

The evaluation technical indicator system of the LCCs is multi-level, so the multi-level
fuzzy comprehensive evaluation method is needed. The principle is the same as that of
the first level fuzzy comprehensive evaluation method, but the factor set U is divided into
S subsets according to the type of attribute, and the subsets are recorded as U1, U2, . . . ,
US. For each subset Ui, the fuzzy comprehensive evaluation is carried out according to the
first-level model. After the evaluation results are obtained, each Ui is taken as an element to
continue to build the evaluation matrix, and so on [50]. The comprehensive scoring system
of the LCCs in this study was divided into four grades according to the comprehensive
scoring results of the low-carbon level, namely, grade I, grade II, grade III, and grade IV.
The details are shown in Table 3.

Table 3. Comprehensive rating of low-carbon communities.

Level I II III IV

Total score
Excellent

85–100
(including 85)

Good
70–85

(including 70)

Genera
l60–70

(including 60)

Not low carbon
0–60
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3. Results and Discussion

3.1. Technical Evaluation Indicators of LCC

Through the establishment of the indicator pool and the empirical analysis of the
indicator, the experts in the field of carbon emissions selected 34 indicators from the
73 indicators in the indicator pool. The selected indicators were highly systematic and sci-
entific, and they fully represented the construction content of LCCs. The final determination
results are shown in Table 4.

Table 4. Technical index and its specific explanation.

Indicators Specifications

D1 Green planting system Tree transplantation technology, artificial greening cultivation technology,
and anti-seasonal planting technology

D2 Roof greening system Light roof greening technology, thin substrate roof greening and vertical
cultivation technology, and planting concrete planting roof technology

D3 Vertical greening system Placement of suitable green plants on the exterior surface of a building

D4 Solar energy utilization technology
Passive solar energy utilization technology, solar power generation, solar

heating, solar light utilization, solar thermal utilization, solar air
conditioning, and refrigeration

D5 Geo-energy utilization technology Geothermal power generation technology and geothermal heating
technology

D6 Wind energy utilization technology Passive wind energy utilization technology and wind power generation
technology

D7 Biomass energy utilization technology Straw gasification technology, and biogas application technology

D8 Wall Wall insulation technology, coating insulation technology, and phase change
wall materials

D9 Roof Ventilation roofing, thermal insulation roofing, cold roof systems, and water
storage roofing

D10 Door and window
Broken bridge energy-saving windows, composite energy-saving windows,
and insulating glass doors and windows (inert gas insulating glass, low-E

insulating glass)

D11 Shading technology External shading systems, internal shading systems, body shading systems
(hollow glass louver shading technology), and light-guided shading systems

D12 Building ground system Floating floors, overhead floors, and phase change heat storage floors

D13 Water supply and drainage system Water supply and drainage system optimization technology and
water-saving appliances

D14 Heating system Pipe insulation technology, central heating technology, decentralized heating
technology, and heating supply end systems

D15 Ventilation system Passive ventilation systems and high efficiency and energy-saving
ventilation systems

D16 Lighting system High efficiency and energy-saving lamp systems, light guide lighting
systems, and light collection lighting systems

D17 Air conditioning system Ice water storage air conditioning systems, air conditioning systems, variable
air volume air conditioning systems, and air conditioning water systems

D18 Intelligent monitoring system
Intelligent lighting control systems, air conditioning, heating and ventilation

equipment intelligent control systems, electrical equipment remote
intelligent control systems

D19 Property management system Waste disposal systems, building property intelligent management centers,
and building property digital management control platforms

D20 Design technology for building outdoor
environment Reasonable building spacing, building plot ratios, and building densities
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Table 4. Cont.

Indicators Specifications

D21 Building design technology Building shape coefficient controls, window wall ratio controls, and building
orientation design

D22 High-quality public transportation system

The establishment of intelligent public transportation microcirculation
networks, the establishment of one-stop transportation platforms, and the

distance from the entrance and exit to the public transport station
conforming to the national high quality public transport requirements

D23Slow traffic network The establishment of a people-oriented slow traffic system (high-quality
bicycle and pedestrian transportation network suitable for residents)

D24 Motor vehicle demand management The implementation of the strict management of motor vehicle demand
policies and encouraging the use of new energy vehicles

D25 Strict management standard for energy
consumption and emission

Encouraging the use of clean energy vehicles and implementing strict energy
consumption and emission management standards

D26 Advanced traffic management technology Road traffic data collection, scientific transmission and processing
information, and real-time release of traffic operation information

D27 Land utilization pattern of multi-functional
mix

With comprehensive diversified functional space, the intensive use of land
can be achieved, and a community functional network can be formed to meet

the needs of diversified and multi-level activities

D28 Compact space pattern for low-carbon
community

Advocating for rational population size and diversified land use, shortening
the distance between activity spaces and families, reducing pollution and

energy consumption

D29 Balanced layout of public service facilities The establishment of balanced public service facilities to facilitate the life and
travel of residents

D30 Rainwater collection technology The roof use of rainwater and ground infiltration use of rainwater

D31Recycled water reuse technology
After the centralized treatment of domestic wastewater (bathing, washing,
kitchen, and toilet), the wastewater can be reused for greening irrigation,

vehicle washing, road washing, and household toilet flushing

D32 Permeable ground and constructed wetland
technology

Increasing the proportion of permeable surfaces to rechargeable groundwater
sources and establishing artificial wetlands

D33 Solid waste disposal and recycling technology
The waste disposal and recycling in the community to achieve the goal of the
sustainable development of the community and to reduce the pollution to

the environment

D34 Garbage classification and collection The establishment of waste sorting collection devices and treatment and
transportation systems

3.2. Weight Calculation for Technical Indicators
3.2.1. Tree Hierarchy Model of Technical Indicators

In this study, the hierarchical structure of the indicator model was divided into the
target layer, primary indicator, secondary indicator, and tertiary indicator. First, the target
layer was composed of LCCs. The division of the primary indicator was determined
according to the three categories of the technical indicator system. The primary indicator
could be divided into low-carbon building, low-carbon transportation, and low-carbon
environment. The secondary indicator was determined according to the category of the
screened indicator, and the tertiary indicator was the specific screened technical indicator.
Indicators at all levels are shown in Table 5, and the hierarchy structure of the index model
is shown in Figure 2.

3.2.2. Calculating the Weights of the Technical Indicators

In the process of calculating the index weight, 24 experts with two or more pro-
fessional backgrounds in low-carbon fields were selected in this study. These experts
comprehensively considered when comparing the weights of indicators, which avoided
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the problem that they tended to score a certain indicator higher due to cognitive limitations.
The departments to which these experts belonged included universities, urban planning
and design institutes, and government management departments. Experts in universities
mainly considered problems from the level of basic theoretical knowledge, experts in urban
planning and design institutes mainly considered problems from the aspect of practicability,
and experts in government management departments mainly considered problems from
the aspects of economic benefits and community management. Therefore, the calculated
index weight was considered in different aspects, which increased the scientificity of index
weight. In order to further eliminate the imbalance of index weight, the index weight
given by all experts was arithmetically averaged. In this study, the Delphi method was
used to issue the questionnaire, which made experts make a more objective and reasonable
evaluation of the index weight. By programming the improved AHP with MATLAB and
computing the collected questionnaire data, the weights of the indicators at all levels
relative to the target layer were obtained, as shown in Figures 3–5.

 
Figure 2. Hierarchical diagram of technical evaluation indicators for LCCs.

 
Figure 3. Radar for primary indicator weights.
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Table 5. Indicators for all levels of low-carbon communities.

Target
Layer

Primary Indicator
Secondary
Indicator

Tertiary
Indicator

A LCC

B1 Low-carbon building

C1 Low-carbon technology of
greening system

D1 Green planting system, D2 Roof greening
system, D3 Vertical greening system

C2 Low-carbon technology for
building energy supply

D4 Solar energy utilization technology, D5
Geo-energy utilization technology, D6 Wind
energy utilization technology, D7 Biomass

energy utilization technology

C3 Low-carbon technology for
building envelope

D8 Wall, D9 Roof, D10 Door and window,
D11 Shading technology, D12 Building

ground system

C4 Low-carbon technology for
building equipment

D13 Water supply and drainage system, D14
Heating system, D15 Ventilation system, D16

Lighting system, D17 Air conditioning
system

C5 Low-carbon technology for
building operation

management

D18 Intelligent monitoring system, D19
Property management system

C6 Low-carbon technology of
building design

D20 Design technology for building outdoor
environment, D21 Building design

technology

B2 Low-carbon transportation

C7 Road planning D22 High-quality public transportation
system, D23 Slow traffic network

C8 Traffic management

D24 Motor vehicle demand management,
D25 Strict management standard for energy
consumption and emission, D26 Advanced

traffic management technology

B3 Low-carbon environment

C9 Land layout planning

D27 Land utilization pattern of
multi-functional mix, D28 Compact space
pattern for low-carbon community, D29

Balanced layout of public service facilities

C10 Water environment
planning

D30 Rainwater collection technology, D31
Recycled water reuse technology, D32

Permeable ground and constructed wetland
technology

C11 Domestic waste
management

D33 Solid waste disposal and recycling
technology, D34 Garbage classification and

collection

Among the primary indicators, B1 had the largest weight ratio, which was about
0.4279. Buildings are the largest carbon emission source in a community. Therefore, it
is necessary to strengthen the construction of low-carbon building in the construction
of low-carbon communities and make good use of various energy-saving and emission
reduction measures. The weight of B2 and B3 accounted for about 0.28, and these two
indicators had similar effects on low-carbon communities.

Among the secondary indicators, the top four were C7, C9, C8, and C2, accounting
for 0.1733, 0.1271, 0.1221, and 0.0888, respectively. The construction of C7, C9, and C8 was
mainly to reduce the travel by private cars, use public transportation as far as possible, and
travel by walking in order to reduce the traffic carbon emissions. C2 low-carbon technology
for building energy supply is a very important link in the construction of low-carbon
buildings. Choosing appropriate renewable energy technology according to local natural
resources is a very important way to reduce the carbon emissions of buildings. Among
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all the secondary indicators, the proportion of C1 was the lowest, which showed that
compared with other indicators, the impact on the construction of LCCs was small.

 
Figure 4. Radar for secondary indicator weights.

 
Figure 5. A bar chart for the tertiary indicator weights.

Among the tertiary indicators, according to the categories of B1, B2, and B3, the
indicators at their respective levels were analyzed and discussed in order to be more
meaningful for the construction of low-carbon communities. Within the scope of B1,
the top-ranking indicators were D21, D18, D19, and D4. The scientific and reasonable
building design is the premise of building utilization of natural resources. D18 and D19
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play an important role in the operation of buildings and determine whether buildings
can save energy efficiently. D4 is the most widely used and most mature technology in
buildings [51,52]. The electricity and heat generated by solar energy reduce the dependence
on traditional energy and play an important role in energy conservation and emission
reduction. Within the scope of B2, the top-ranking indicators were D22, D23, D25, and D24.
D22 and D23 are the most important indicators of low-carbon transportation planning, and
they play an important role in reducing or even replacing private car travel. High-quality
road planning can form a convenient system for public travel and pedestrian travel, and
it can reduce a large number of traffic carbon emissions. In the B3 scope, the top-ranking
indicators were D33, D29, and D28. The construction of D33 strengthens the utilization
of resource cycle, and it is a landmark indicator for low-carbon communities to save
resources and reduce energy consumption. D29 can facilitate the clothing, food, housing,
and transportation of residents, reduce travel time, and promote the use of non-motor
vehicles to travel for residents. D28 is conducive to the saving of land. The moderate
increase in floor area ratios and building densities can effectively reduce road paving areas
and the length of facilities and pipelines, and reduce the impact on ecological factors.

4. Case Study

In order to verify the practicality of the evaluation index system and the availability
of index data, it was necessary to test the index system and apply it to the evaluation
of actual communities. The study selected two communities as the application objects
of the index system. The first community is the Tianjin Eco-city “Shimao New Town”
community. The community is located on the north side of the Yongdingzhou Wetland
Ecological Park and on the south side of the National Animation Industry Park, with a total
area of 1.46 square kilometers. The “Shimao New Town” community was established in
2014. The community adopted a variety of energy-saving technologies. It is a typical green
energy-saving community and has achieved suitable evaluation. The second community
is the “Dongming” community under the jurisdiction of Shanghai’s Pudong New Area,
covering an area of 5.95 square kilometers. The community was established in 1999 and is
an older community with relatively few applications of green energy-saving technologies.

By consulting the detailed planning documents and construction documents of the two
communities, the low-carbon technologies used in community construction were sorted
out. Ten experts from Beijing urban community planning and design institutes were invited.
They have been engaged in low-carbon planning and design and actual construction of
communities for a long time, and they are all professionals with senior professional titles.
These experts have rich experience in the application of the index system. Each expert
evaluated the low-carbon technologies adopted by the two communities and determined
the rating of the tertiary indicators. Through the transformation of the multi-level fuzzy
comprehensive evaluation method, the comprehensive scores of the two communities and
the scores of primary and secondary indicators are shown in Tables 6 and 7. The score of
the “Shimao New Town” community was 78, and it belonged to the II level. According
to the comprehensive score of the LCCs, it could be concluded that the community was a
better LCC, and some suggestions could be summarized from the scores of the indicators at
all levels to guide the future construction of the community. It could be seen from the scores
of the primary indicators that the low-carbon construction of B1 and B2 was better, and the
low-carbon construction of B3 was poor. In terms of the construction of B1, the buildings
in the “Shimao New Town” community adopted many green energy-saving technologies
and had a good score. However, as can be seen from the scores of the secondary indicators,
the construction of low-carbon technologies for a green system and building energy supply
needed to be strengthened in the B1 field. The low-carbon construction of the community
should adopt a variety of greening methods, such as the vertical greening of the building
facade, the greening of the roof, and the greening of the area around the building. Buildings
should make use of various forms of renewable energy technologies according to local
conditions to reduce the use of traditional energy. The score of B2 was relatively high, and
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the low-carbon construction of road planning and traffic management was better. The
“Shimao New Town” community focused on the construction of a slow traffic network and
established a public transportation-oriented transportation system. Within the scope of B3,
the scores of all indicators were relatively low, and the community needed to be further
improved in terms of community compactness, rainwater collection and utilization, and
waste recycling. The score of the “Dongming” community was 66, belonging to the III
level. The community was a general low-carbon community. It could be seen from the
scores of the primary indicators that the scores of B1 and B2 were relatively low, and the
score of B3 was relatively high. The score of B1 was relatively low because the “Dongming”
community was established earlier, and most buildings did not adopt suitable low-carbon
and energy-saving technologies. The technical indicators contained in B1 needed to be
further improved. The “Dongming” community did not pay attention to the planning and
construction of low-carbon transportation in the construction stage, which led to the low
score of B2. In the later period, the community implemented stricter traffic management
policies to reduce traffic carbon emissions. Therefore, the secondary indicator C8 contained
in B2 had a high score. The “Dongming” community had a better low-carbon construction
in B3, because the community implemented energy-saving and emission-reduction policies
in terms of low-carbon environment, including garbage classification, waste recycling, and
rainwater recycling. It could be seen from the secondary indicators included in B3 that the
community achieved relatively excellent scores in the construction of C10 and C11.

Table 6. Scores of the target layer and the indicator layers at all levels.

Target Layer A Total Score of
Target Layer

Primary Indicator B
Score of Each

Primary Indicator
Secondary Indicator C

Score of Each
Secondary
Indicator

LCC 78

B1 Low-carbon
building 78

C1 Low-carbon
technology of greening

system
68

C2 Low-carbon
technology for building

energy supply
52

C3 Low-carbon
technology for building

envelope
82

C4 Low-carbon
technology for building

equipment
73

C5 Low-carbon
technology for building
operation management

98

C6 Low-carbon
technology of building

design
96

B2 Low-carbon
transportation 97

C7 Road planning 98

C8 Traffic management 95

B3 Low-carbon
environment 58

C9 Land layout planning 64

C10 Water environment
planning 64

C11 Domestic waste
management 45
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Table 7. Scores of the target layer and the indicator layers at all levels.

Target Layer A Total Score of Target
Layer

Primary Indicator B
Score of Each

Primary Indicator
Secondary Indicator

C
Score of Each

Secondary Indicator

LCC 66

B1 Low-carbon
building 58

C1 Low-carbon
technology of

greening system
69

C2 Low-carbon
technology for

building energy
supply

44

C3 Low-carbon
technology for

building envelope
70

C4 Low-carbon
technology for

building equipment
60

C5 Low-carbon
technology for

building operation
management

49

C6 Low-carbon
technology of

building design
66

B2 Low-carbon
transportation 59

C7 Road planning 44

C8 Traffic
management 81

B3 Low-carbon
environment 84

C9 Land layout
planning 80

C10 Water
environment

planning
85

C11 Domestic waste
management 90

Figure 6 compared the scores of target layers and indicators at all levels of the
two communities. As can be seen from Figure 6, the target layer score of the “Shimao New
Town” community was higher than that of the “Dongming” community. The “Shimao
New Town” community was well built in terms of low-carbon building and low-carbon
transportation. In the field of low-carbon building, almost all technical indicators of the
“Shimao New Town” community were better than those of the “Dongming” community,
especially the construction of C5 and C6. In the field of low-carbon transportation, the
“Shimao New Town” community was ahead of the “Dongming” community in the con-
struction of C7 and C8. In terms of C7 construction, there was an obvious gap between
the “Dongming” community and the “Shimao New Town” community. In the field of
low-carbon environment, the “Dongming” community was better than the “Shimao New
Town” community in various indicators. The two communities could learn from each other
and further strengthen the application of low-carbon technologies for indicators with low
scores.
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Figure 6. Scores of target levels and indicators at all levels of the two communities.

5. Conclusions

The study established a technical evaluation index system for low-carbon communities.
According to the existing indicator for LCC construction, an indicator pool was established,
and the relevant technical indicators of LCC construction were selected through empirical
analysis. The improved AHP was selected to calculate the weight of the index, and the
multi-level fuzzy comprehensive evaluation method was determined to be the evaluation
method of the technical indicator.

On the above basis, the two typical communities in Tianjin and Shanghai were selected
to verify the operability of the index system. The indicator system constructed in this study
gave a reasonable low-carbon level for the two communities, which was in line with
the actual low-carbon construction status of each community. In addition, for the low-
carbon community in Tianjin with high scores, the evaluation results pointed out that the
community had better construction in low-carbon building and low-carbon transportation
indicators, and further pointed out that the community needed to strengthen the application
of low-carbon technology of the greening system and building energy supply in the field of
low-carbon building. In terms of the relatively poor low-carbon environmental indicators of
the community, the evaluation results pointed out that the community needed to be further
improved in terms of community compactness, rainwater collection and utilization, and
waste recycling. For the low-carbon community in Shanghai with low scores, the evaluation
results showed the advantages and disadvantages of the community in the construction of
low-carbon building, low-carbon transportation, and low-carbon environment indicators.
The community applied few low-carbon technologies in low-carbon building and needed to
promote the application of various low-carbon technologies. Regarding the construction of
low-carbon transportation, the evaluation results pointed out that the community needed
to further strengthen the construction of road planning. The low-carbon environment
construction of the community was relatively suitable, which could provide experience
for the low-carbon construction of other communities. The indicator system can not only
evaluate the degree of low carbon in a community, but also indicate the aspects in which a
community needs to strengthen the use of low carbon technology, which can be used as
a tool for community planning and construction personnel to evaluate the construction
progress and degree of low carbon in LCCs. Furthermore, the method of constructing
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the technical index system in this study can provide a reference for future qualitative
research. In the low-carbon construction of communities, planners should pay attention to
the construction of low-carbon buildings, which is of great significance to the construction
of low-carbon communities.

However, the study does have limitations. The empirical analysis method and im-
proved AHP method used in this study are subjective methods, and the application scope
of these methods needs to be further explored. In terms of the selection of the number of
experts and the selection of indicators, more scientific methods need to be studied. The
weight of indicators needs further analysis and discussion. Furthermore, in addition to
establishing a qualitative evaluation index system for low-carbon communities, carbon
measurement and quantitative evaluation of communities should also be considered. It
is necessary to determine how to combine a qualitative technical indicator system with
carbon dioxide emissions.
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Abstract: In practical building control, quickly obtaining detailed indoor temperature distribution
is necessary for providing satisfying personal comfort and improving building energy efficiency.
The aim of this study is to propose a fast prediction method for indoor temperature distribution
without knowing the thermal boundary conditions in practical applications. In this method, the index
of contribution ratio of indoor climate (CRI), which represents the independent contribution of each
heat source to the temperature distribution, has been combined with the air temperature collected by
one mobile sensor at the height of the working area. Based on a typical office model, the effectiveness
of using mobile sensors was discussed, and the influence of its acquisition height and acquisition
distance on the prediction accuracy was analyzed as well. The results showed that the proposed
prediction method was effective. When the sensors fixed on the wall were used to predict the
indoor temperature distribution, the maximum average relative error was 27.7%, whereas when the
mobile sensor was used to replace the fixed sensors, the maximum average relative error was 4.8%.
This indicates that using mobile sensors with flexible acquisition location can help promote both
reliability and accuracy of temperature prediction. In the human activity area, data from a set of
mobile sensors were used to predict the temperature distribution at four heights. The prediction
accuracy was 2.1%, 2.1%, 2.3%, and 2.7%, respectively. However, the influence of acquisition distance
of mobile sensors on prediction accuracy cannot be ignored. The distance should be large enough
to disperse the distribution of the acquisition points. Due to the influence of airflow, some distance
between the acquisition points and the room boundaries should be given.

Keywords: temperature distribution; prediction; CFD; contribution ratio of indoor climate (CRI);
mobile sensors

1. Introduction

As people spend about 90% of their time indoors [1], the indoor thermal environment
becomes very important to their daily lives. Therefore, many researchers have made con-
siderable efforts in creating comfortable indoor thermal environments to improve people’s
living conditions [2,3]. Meanwhile, the indoor thermal environment also has a significant
impact on buildings’ energy consumption, which is very important for sustainable de-
velopment. Existing studies have shown that the energy consumption from buildings in
China accounts for approximately 21% of the societal energy consumption, especially from
urban buildings (75%) [4]. To reduce the energy consumption of buildings while ensuring
thermal comfort, creating non-uniform indoor thermal environments has been consid-
ered. In this process, the buildings’ ventilation mode gradually changes from traditional
mixed ventilation (MV) to demand-oriented ventilation, such as displacement ventilation
(DV) [5,6] and stratum ventilation (SV) [7,8]. The change of ventilation mode means that
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the indoor thermal environment cannot be considered as perfectly mixed, and obtaining its
detailed temperature distribution becomes necessary. Computational fluid dynamics (CFD)
has been used as an effective tool for studies of indoor thermal environments, such as
airflow movement [9,10], heat transfer between indoor components [11,12] and pollutant
dispersion [13,14]. Indoor temperature distribution, however, is affected by various heat
sources, which are dynamically changing with time, hence difficult to obtain in practice.
This means that accurate boundary conditions could not be identified in advance to support
CFD simulation. Additionally, the requirements on both computational resources and time
for CFD are high. Even if the required dynamic boundary conditions can be determined
in advance, for example by supercomputers, the process still must set and calculate CFD
repeatedly to achieve dynamic calculation of the indoor thermal environment, which is
time-consuming. Considering the above, it is difficult to achieve real-time control of indoor
thermal environments by this method.

In this regard, several new methods have been proposed to replace CFD for quick
calculation of indoor temperature distribution. The CFD reduced-order method achieves
the reduction of the order of large-scale simultaneous equations in CFD, using grid number
as dimensions, and it can effectively increase the calculation efficiency with some sacrifice
in accuracy. Sempey et al. simplified the CFD model by solving only the energy balance
equation and reducing its order by proper orthogonal decomposition so that it can be
applied to real-time control applications [15]. To improve the problems of CPU-unfriendly
calculations as well as the complex meshing required, Cao et al. proposed applying
the momentum source to the Navier-Stokes equations to simulate the motion of human
bodiess/objects [16]. Fast fluid dynamics (FFD) is an intermediate approach between
nodal models and CFD, which decouples pressure and velocity to achieve fast prediction
of indoor airflow [17,18]. When integrating the models for HVAC systems with coupled
multizone and CFD simulations for airflows, Tian et al. have incorporated the FFD model
to improve computational efficiency [19]. Liu et al. have proposed an FFD-based joint
method to accelerate the indoor-environment inverse design process and evaluated the
effectiveness of four FFD models [20]. Contribution ratio of indoor climate (CRI) is an index
extracted from CFD calculation results, and it quantitatively represents the independent
contribution of each heat source on indoor temperature distribution. This index was first
proposed by Kato et al. in 1994 [21], and it was derived from Sandberg’s ventilation
efficiency [22] and Kato’s effectiveness of contamination exhaust [23]. Zhang et al. have
extended both the concept and the calculation method of CRI to the natural convection
airflow field [24]. Based on this, they further proposed a basic formula for calculating the
temperature distribution and combined it with network models to improve the accuracy
of long-term dynamic building performance simulation [25]. The accessibility, which is
similar in concept to CRI, describes the independent effect of supply air and contaminant
source on an arbitrary location within a finite time period [26]. Shao et al. have proposed
a concise expression for fast prediction of indoor non-uniform temperature distribution
using the accessibility and analyzed its reliability [27]. Additionally, Ma et al. further
defined three transient accessibility indices to reveal the transient effects of supply air,
contaminant source, and initial condition, respectively, and established a method predicting
the concentration distribution in transient states [28]. The low-dimensional model (LM)
uses the discrete method to greatly reduce the amount of high-resolution grid data in order
to save computational time [29]. To verify its reliability [30], Ren and Cao elaborated the
linear temperature model (LTM) to attain an LLTM (low-dimensional linear temperature
model)-based CRI model for fast and reliable calculation of complicated temperature
fields [31]. Although the methods noted above can accelerate the calculation of indoor
temperature distribution to a certain extent, they still need significant calculation time
in practical applications. For instance, although it has been reported that the calculation
speed of FFD is 20–50 times faster than that of CFD simulation [32] and could potentially
be accelerated with a graphic processing unit (GPU) and parallel computation [33,34],
its calculation time is still much longer than that is required by BES. More importantly,
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these methods were all derived from CFD itself, so the requirement to have pre-determined
indoor heat sources still exists, hence they are still difficult to use in practical applications.

To develop a temperature distribution prediction method suitable for practical control,
Sasamoto et al. have developed a method that can quickly predict indoor temperature
distribution using CRI and a finite number of air temperature measurements collected by
fixed sensors [35]. However, due to the limitation of the fixed sensors in both installation
location and installation number, its prediction accuracy needs to be improved. Therefore,
this study has proposed to use one mobile sensor at the height of working areas, instead
of fixed sensors, to collect air temperature, with the intention to get faster and more
accurate prediction of temperature distribution. Through establishing a typical office
model, the effectiveness of using mobile sensors instead of fixed sensors was explored and
discussed. Meanwhile, through a comparison on prediction accuracy, the influences of both
acquisition height and acquisition distance of this mobile sensor were further analyzed to
guide practical applications.

2. Method Development

2.1. Definition of CRI

Based on an assumption that heat transfer is linear in a steady airflow field, the CRI
index can be used to represent the independent contribution of each heat source to in-
door temperature distribution. This concept has been extended to the response factor of
heat sources in transient cases [36,37] and the evaluation of contaminant and moisture
distribution [23,38]. Its specific definition in a forced convection airflow field is the ratio of
temperature rise/drop at a location caused by one individual heat source to the absolute
value of uniform temperature rise/drop caused by the same heat source. It indicates
the range and degree of influence from each heat source within a steady airflow field,
and its value is a relative intensity, in which the actual temperature rise/drop caused by
each heat source is normalized by the absolute value of its own perfect mixing condition.
For example, a CRI higher/lower than 1.0 at a location means that the influence of that
heat source is higher/lower than that in the case of perfect mixing. The CRI of the heat
source i at the location Xj is defined by Equation (1):

CRIi(Xj) =
Δθi(Xj)

Δθi,o
=

θi(Xj)− θn

θi,o − θn
=

θi(Xj)− θn

qi/CpρF
(1)

In one example, the heat emission from the heat source i is 200 W, resulting in a
temperature rise of 0.8 ◦C at the location Xj. If heat diffuses uniformly through the whole
space, the uniform temperature rise will be 1 ◦C. According to Equation (1), the CRI of the
heat source i at the location Xj is 0.8, indicating that the heat source i has a smaller impact
than the average indoor environment at the location Xj.

For more information about the basic premises, definitions, calculation methods,
and mathematical meaning of CRI, please refer to Zhang et al., which gives a systematic
and comprehensive introduction of this term [39].

2.2. Prediction Algorithm

As the airflow field can be considered as stable, the CRI of each heat source can be
seen as constant. This means that if the heat emission or absorption from one heat source
increases by a factor of 3, the temperature rise/drop within the field will increase by a
factor of 3, regardless of location. Therefore, the CRI is an effective index for calculating
dynamic temperature distribution without repeating CFD calculations. That is, when the
heat emission or absorption from any heat source changes, the temperature change caused
by this heat source at any location could be calculated by multiplying the heat by its
CRI. A new temperature distribution can then be obtained by superimposing the effect
of all heat sources. Therefore, when there are m heat sources in a room dominated by
forced convection, the temperature rise/drop could be defined as Δθi,o and the CRI of
heat source i to the location j as Cji, when the heat emission or absorption from each heat
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source uniformly diffuses throughout the entire room. The temperature rise/drop from the
neutral temperature at any location Δθ(Xj) could then be expressed by Equation (2):

Δθ(Xj) = Cj1 · Δθ1,o + Cj2 · Δθ2,o + . . . + Cjm · Δθm,o (2)

Generally, the m heat sources include not only directly convective heat sources but
also radiative heat sources, like walls. These radiative heat sources may not generate heat
themselves, but they gain heat from other heat sources by radiation and then transfer heat
to or absorb heat from indoor air by convection. Therefore, both directly convective heat
source sand radiative heat sources were considered as contributing to the temperature
distribution. For accurate prediction of temperature at any location, all CRI and the uniform
temperature rise/drop caused by them need to be calculated.

By rewriting Equation (2) into matrix form, Equation (3) is obtained:

Δθ(Xj) =
[

Cj1 Cj2 · · · Cjm
]
⎡⎢⎢⎢⎣

Δθ1,o
Δθ2,o

...
Δθm,o

⎤⎥⎥⎥⎦ (3)

In practice, the thermal boundary conditions of indoor thermal environments are
generally dynamic and difficult to determine. Even if only steady-state calculations are-
considered, the intensity of each heat source still cannot be determined accurately. That is,
the uniform temperature rise/drop caused by all heat sources cannot be determined ac-
curately. Therefore, when calculating the uniform temperature rise/drop caused by each
heat source, one mobile sensor was used to collect air temperature at n arbitrary loca-
tions in space (defined as Δθsi) and the measured temperature was then substituted into
Equation (3), as shown in Equation (4):⎡⎢⎢⎢⎣

Δθ
′
s1

Δθ
′
s2

...
Δθ

′
sn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
C11 C12 · · · C1m
C21 C22 · · · C2m

...
...

. . .
...

C1m C2m · · · Cnm

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Δθ1,o
Δθ2,o

...
Δθm,o

⎤⎥⎥⎥⎦ (4)

According to Equation (4), in order to calculate Δθi,o, it needs to multiply the inverse
matrix Cij on both sides of the equation. This requires that the number of air temperature
measurements collected within a space should be equal to the number of heat sources,
that is, n = m. The Δθi,o could then be obtained by Equation (5):

⎡⎢⎢⎢⎣
Δθ1,o
Δθ2,o

...
Δθm,o

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
C11 C12 · · · C1m
C21 C22 · · · C2m

...
...

. . .
...

C1m C2m · · · Cmm

⎤⎥⎥⎥⎦
−1⎡⎢⎢⎢⎣

Δθ
′
s1

Δθ
′
s2

...
Δθ

′
sn

⎤⎥⎥⎥⎦ (5)

By substituting Equation (5) into Equation (3), an expression for predicting tempera-
ture at any location can be obtained, as defined by Equation (6):

Δθ(Xj) =
[

Cj1 Cj2 · · · Cjm
]
⎡⎢⎢⎢⎣

C11 C12 · · · C1m
C21 C22 · · · C2m

...
...

. . .
...

C1m C2m · · · Cmm

⎤⎥⎥⎥⎦
−1⎡⎢⎢⎢⎣

Δθ
′
s1

Δθ
′
s2

...
Δθ

′
sn

⎤⎥⎥⎥⎦ (6)

According to Equation (6), the temperature distribution can be predicted through
calculating the CRI of each heat source in advance and collecting air temperature measure-
ments equal to the number of heat sources.
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2.3. Mobile Sensors

As noted earlier, Sasamoto et al. used some fixed sensors equal to the number of heat
sources to collect air temperature measurements in a space and then combined them with
CRI for temperature distribution prediction [35]. This method is suitable for practical appli-
cations without identified boundary conditions in advance. However, there are limitations
in terms of both installation locations and installation numbers. For example, when the
number of monitored data points increases, the number of fixed sensors also needs to
increase, leading to higher expense and bigger installation space needs. Additionally,
the installation locations of fixed sensors are not changeable and are usually far away
from the target control area, such as near air outlets, at high positions on the wall,
or where people cannot easily touch them. This means that the air temperature collected
for Equation (6) is location-dependent, so it may not be representative of the real situation
of each heat source.

With the development of mobile carriers in control engineering, mobile sensor tech-
nology has become a popular solution for controlling buildings’ indoor environment,
to overcome the limitations of fixed sensors. Xue and Zhai have developed a method using
mobile sensors to capture both spatial and temporal distributions of pollutant concentra-
tions in order to estimate the location of pollutant sources [40]. This method does not
consider thermal factors, especially the influence of a change in the heat source on the air-
flow field, and it also adopts the probability method to explore the most probable location
of pollutant sources, so it cannot achieve simple calculation of temperature at any location
within a space. However, using mobile sensors to monitor environmental information
provides a feasible and efficient idea for studies of indoor thermal environments.

Therefore, in this study, one mobile sensor (as shown in Figure 1) has been used to
replace fixed sensors when collecting air temperatures within a space. Mobile sensors
have the characteristics of variable acquisition height, diverse acquisition path, and flexible
acquisition location. They are adjustable according to actual requirements or prediction
demand to collect more suitable data with no restrictions, to achieve better temperature
distribution prediction by Equation (6).

Figure 1. A mobile sensor.
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3. Case Study

3.1. Verification of CFD Simulation

In this study, both indoor airflow field and temperature field were simulated using
Ansys Fluent—a CFD tool that accounts for both indoor airflow and temperature distribu-
tion characteristics. The finite volume method was used to discretize the Reynolds aver-
aged Navier-Stokes equations and the averaged energy and mass conservation equations.
The standard k − ε model and the discrete ordinates (DO) model were used to simulate
both indoor turbulent flow and indoor radiation. The air materials adopted the Boussinesq
model to consider the buoyancy term, which treats air density as a constant value in all
solved equations, except for the buoyancy term in the momentum equation. The SIMPLE
algorithm was adopted to solve the pressure-velocity coupling problem, and the standard
scheme was applied for pressure discretization. The second-order upwind difference
scheme was used for momentum and energy. A linear under-relaxation iteration was used
to ensure convergence. The energy and other solutions were converged until the residuals
of all cells in the simulation domain reached within 10−8 and 10−4.

To validate the accuracy of simulation from ANSYS Fluent, a full-scale model was es-
tablished and its prediction results were compared with data collected from the experiment
done by Tian et al. [41], with a test chamber of 4.0 m (length) × 3.5 m (width) × 3.5 m (height),
as shown in Figure 2, with thermally insulated walls, floor, and ceiling. There was a desk,
a closet, a computer, and a thermal manikin in the test chamber, with three fluorescents
installed on the ceiling. The manikin and the three fluorescents led to a total cooling load
of 496 W, thus about 35 W/m2. After a grid-independence test, 643,585 grids were adopted
to balance accuracy and time. The air was supplied from a double grille diffuser located at
the height of 1.36 m above the floor while the air was exhausted through a left-wall-based
diffuser mounted at the height of 3.16 m above the floor. The ventilation rate of the chamber
was 2.2 air changes per hour (ACH). Comparisons between simulation and measurement
results along five sampling lines in the chamber are illustrated in Figure 3, showing good
agreement between the two datasets (with an error of less than 1 ◦C in temperature and
0.1 m/s in velocity). Therefore, this simulation method was considered as accurate and
usable in this study.

Figure 2. Configuration of the test chamber.
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(a) Verification of temperature 

(b)  

Figure 3. Comparison between simulated and measured data at 5 heights at sampling lines 1–5
(remarks: measurement point X-Y m, where X is the number sampling line and Y is the heights of
0.1 m, 0.6 m, 1.1 m, 1.7 m and 2.3 m).

3.2. Description of the Model and Simulation

As shown in Figure 4, a typical office model has been established in this study, with
dimensions of 14 m (length) × 10 m (width) × 4 m (height). There were four air supply
inlets on the ceiling and four air exhaust outlets at the bottom of the two opposite walls.
The walls, the ceiling, and the floor of this office were all thermally insulated. There were
6 lamps and 24 working positions (each with a person and a computer) in the office.
To simplify the computational model, the radiative heat transfer of the walls and floor
were considered as one heat source. Similarly, the radiative heat transfer of the ceiling and
the heat emission from six lamps were considered as one heat source. This left the heat
emission from four adjacent working positions, which were considered as one heat source.
Therefore, there were a total of nine heat sources in this simulation work. The numerical
method for calculating the temperature distribution of this office has been described above,
and the specific boundary conditions are listed in Table 1. The neutral temperature in
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the office was assumed to be 25 ◦C. The office was discretized into 5,800,535, 7,784,596,
and 10,746,488 hexahedral control volumes. After a grid-independence test, the middle
definition was adopted to balance accuracy and time.

Table 1. Summary of numerical simulation conditions.

Surface Boundary Condition

Walls/Ceiling/Floor Wall; Adiabatic
Lamp Wall; Heat flux: 150 W/m2.
Person Wall; Heat flux: 45 W/m2

Computer Wall; Heat flux: 70 W/m2

Air supply Velocity-inlet; Velocity: 1.0 m/s. Temperature: 21 ◦C
Air exhaust Outflow

Figure 4. A model for the office.

According to the coupled calculation results of both convective and radiative heat
transfers, the airflow field and the temperature field can be obtained. The cross sections
y = 1.0 m and z = 2.1 m were taken as examples, with the velocity distribution and the
temperature distribution are shown in Figures 5 and 6, respectively. The calculation results
showed that the air was supplied vertically from the inlet toward the floor, with observable
backflow along the floor and the walls. Simultaneously, the air supply directly reached
the working area, which could effectively take away internal heat emissions and diffuse
them to other places. Near the working positions, the air was warmed up significantly, so a
heat plume around them could be observed. Due to the effect of backflow and buoyancy,
the temperature distribution in the room was obviously stratified from bottom to top.

The sub-temperature distribution of each heat source was calculated with the airflow
field described above. Taking one working position as an example, its CRI distribution
obtained by Equation (1) is shown in Figure 7. The calculation results showed that the CRI
of the heat emission from one working position (with four people and four computers)
ranged between 0 and 4.67. It could be observed that near this heat source, the CRI was
greater than 1.0. However, with the increase in distance, the heat diffusion was weakened.
The CRI thus was less than 1.0 in most areas, meaning that the heat source had an obvious
effect on the area around it, but a relatively small effect at larger distances.
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(a) Velocity distribution (y = 1.0 m cross section) 

(b) Temperature distribution (y = 1.0 m cross section) 

Figure 5. Velocity and temperature distributions (y = 1.0 m cross section).

265



Buildings 2021, 11, 458

(a) Velocity distribution (z = 2.1 m cross section) 

(b) Temperature distribution (z = 2.1 m cross section) 

Figure 6. Velocity and temperature distributions (z = 2.1 m cross section).

Figure 7. CRI distribution of the heat emission from the one working position (with four people and
four computers) (y = 1.0 m cross section).
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4. Results

4.1. Comparison on Prediction Accuracy between Fixed Sensors and Mobile Sensors

In the comparison, 10 temperature prediction points in the plane with the height of
1 m, 2 m and 3 m, respectively, were selected. They were named as L-1 to L-10, M-1 to
M-10, and H-1 to H-10, respectively. It should be noted that in this study the locations of
all prediction points were only different in height, but with identical plane coordinates.
According to the requirements of the prediction algorithm, the number of collected air
temperature measurements needs to be equal to the number of heat sources. Therefore,
nine air temperatures were collected. The fixed sensor locations are shown in Figure 8.
It is worth noting that the acquisition location of the sensors has a great impact on the
prediction results. In other words, even if the number of sensors is the same, different
results and prediction accuracy will be obtained by using the proposed algorithm with
different acquisition locations. For example, in the study of Sasamoto et al. [35], the fixed
sensors were installed near each heat source, and the prediction accuracy was acceptable.
There are two reasons why fixed sensors were all installed on the walls in this study:
(1) This is more suitable for the actual situation; (2) The purpose of this study is to verify
the application disadvantages of fixed sensors. That is, taking the actual situation as
a reference, the limitations of fixed sensors are analyzed and further the solutions are
proposed. Meanwhile, a mobile sensor with the acquisition height of 1.2 m was used
to collect the air temperature at several locations in the space, also shown in Figure 8.
The above two groups of collected air temperatures were used to predict the temperature
of 30 points at the three heights, with their prediction results shown in Figure 9.

Figure 8. Acquisition points of fixed sensors and mobile sensors.

When the air temperature collected by fixed sensors was used for prediction, according
to Table 2, the corresponding average relative errors were 5.7%, 10.8%, and 27.7% at the
heights of h = 1.0 m, h = 2.0 m, and h = 3.0 m, respectively, which were relatively large.
The reasons for the unsatisfactory results are considered as follows:

Table 2. Prediction of each point using fixed sensors and mobile sensors.

Average Relative Error Fixed Sensors Mobile Sensors

At the height of h = 1.0 m 5.7% 2.1%

At the height of h = 2.0 m 10.8% 3.3%

At the height of h = 3.0 m 27.7% 4.8%

First, the influence of the acquisition locations of the sensors on the prediction accuracy
noted above cannot be ignored. Second, we suppose that it is mainly related to the influence
of airflow distribution. The proposed prediction algorithm consists of two parts: the CRI
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matrix and the air temperature matrix. The assumption of a steady airflow field is the basic
premise for calculating CRI. Specifically, when the airflow field is dominated by forced
convection in the room, although the influences from other heat sources exist, the effect
is smaller than that of forced convection, and thus can be ignored. That is, the airflow
field can be considered as steady for a small variation range of supply air temperature and
velocity. However, this is an ideal assumption, which has deviation in practical applications.
For example, near the walls, air supply/exhausts, and local heat sources, due to the
influence of boundary layer, air backflow and heat plume, the airflow distribution in these
areas is complex and unstable, resulting in large errors in the calculation of CRI. In the
proposed prediction algorithm, the application of sensors used to collect air temperature
is combined with CRI to calculate the heat source intensity. Therefore, when using the
fixed sensors on the walls with unstable airflow distribution to predict the temperature
distribution, the inaccurate calculation of CRI at any sensor location was used repeatedly to
calculate the intensity of each heat source. This leads to the influence of each CRI calculation
error being superimposed and expanded, further affecting the prediction accuracy. This is
the main reason for the lower prediction accuracy when using fixed sensors to predict
temperature distribution.

Especially, Figure 9 showed that when using fixed sensors for temperature predic-
tion, obvious abnormalities occurred at some locations, such as L-7, L-8, H-1, and H-10.
In addition to the reasons noted above, we assume their locations also have an impact on
the prediction accuracy. L-7 and L-8 were located at the lower part of the wall and close
to the supply air, which was more vulnerable to the influence of air backflow after the
supply air meets the floor and other surfaces. Therefore, it will affect the CRI calculation of
each heat source here and further affect the prediction accuracy. Similarly, H-1 and H-10
were located at the higher part of the wall and close to the corner of the room. The airflow
distribution here is affected by many factors, such as air backflow near the adjacent walls,
heat plume above the heat source, etc. The prediction error thus also increases.

(a) Prediction at the height of 1.0 m using fixed sensors and mobile sensors 

Figure 9. Cont.

268



Buildings 2021, 11, 458

(b) Prediction at the height of 2.0 m using fixed sensors and mobile sensors 

(c) Prediction at the height of 3.0 m using fixed sensors and mobile sensors 

Figure 9. Prediction of different heights using fixed sensors and mobile sensors.
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When using the mobile sensors with flexible acquisition locations instead of the fixed
sensors for temperature prediction, the corresponding average relative errors were 2.1%,
3.3%, and 4.8%, respectively. This shows that the proposed temperature distribution
prediction method based on CRI and finite air temperature is reliable, which is consistent
with the research results of Sasamoto et al. [35]. Additionally, this indicates that due to
some restrictions in practical applications, using mobile sensors instead of fixed sensors to
predict the temperature distribution is appropriate. Besides, not in all cases, the prediction
results obtained by using the mobile sensors are satisfactory.

4.2. Analysis on the Impact of Mobile Sensors Acquisition Height on Prediction Accuracy

The height of the mobile sensor can be adjusted in the vertical direction according
to the actual situation and the prediction demand. Generally, the purpose of regulating
the indoor thermal environment is twofold: reduce energy consumption and maintain
comfortable conditions. Therefore, the air temperature within human activity areas is
usually the main controlled variable. To figure out the influence of the acquisition height of
mobile sensors on the prediction accuracy of this area, 10 prediction points at the heights
of h = 0.7 m, h = 1.0 m, h = 1.2 m and h = 1.5 m, named 1-P1 to 1-P10, 2-P1 to 2-P10, 3-P1
to 3-P10, 4-P1 to 4-P10 and 5-P1 to 5-P10, respectively, were selected, with identical plane
coordinates. Air temperatures obtained by the mobile sensor introduced in Section 4.1
was used to predict the air temperature at these points, with prediction results shown
in Figure 10.

(a) Prediction at the height of 0.7 m using mobile sensors 

Figure 10. Cont.
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(b) Prediction at the height of 1.0 m using mobile sensors 

(c) Prediction at the height of 1.2 m using mobile sensors 

Figure 10. Cont.
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(d) Prediction at the height of 1.5 m using mobile sensors 

Figure 10. Prediction of different heights using mobile sensors.

Similarly, according to Table 3, the corresponding average relative errors were 2.1%,
2.1%, 2.3%, and 2.7% at the heights of h = 0.7 m, h = 1.0 m, h = 1.2 m, and h = 1.5 m, respec-
tively. Consequently, it can be concluded that in the human activity area, the acquisition
height of mobile sensors has little influence on the prediction accuracy.

Table 3. Prediction of different heights using mobile sensors.

Average Relative Error Mobile Sensors

At the height of h = 0.7 m 2.1%

At the height of h = 1.0 m 2.1%

At the height of h = 1.2 m 2.3%

At the height of h = 1.5 m 2.7%

4.3. Analysis on the Impact of Mobile Sensors Acquisition Distance on Prediction Accuracy

To better guide the application of mobile sensors in practical situations, it should
not only consider how to set the acquisition height of mobile sensors, but also consider
the acquisition distance of mobile sensors. To explore the impact from this aspect, given
a mobile sensor acquisition path (the acquisition height was 1.2 m), several acquisition
distances were designed, which were 1 m, 2 m, 3 m, 4 m and 5 m. In the case of each
acquisition distance, 3, 3, 3, 3, and 2 acquisition point distributions were given, respectively,
as shown in Figures 11–15. The selected prediction points were the same as those at the
1.2 m height discussed in Section 4.2, named 3-P1 to 3-P10.
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(a) Distributions of acquisition points 

(b) Prediction results 

Figure 11. Prediction of mobile sensors with acquisition distance of 1.0 m.
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(a) Distributions of acquisition points 

(b) Prediction results 

Figure 12. Prediction of mobile sensors with acquisition distance of 2.0 m.
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(a) Distributions of acquisition points 

(b) Prediction results 

Figure 13. Prediction of mobile sensors with acquisition distance of 3.0 m.
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(a) Distributions of acquisition points 

(b) Prediction results 

Figure 14. Prediction of mobile sensors with acquisition distance of 4.0 m.
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(a) Distributions of acquisition points 

(b) Prediction results 

Figure 15. Prediction of mobile sensors with acquisition distance of 5.0 m.

Figures 11–15 and Table 4 also show the prediction results and the corresponding
average relative errors of each prediction point under the various distributions of acquisi-
tion points noted above. The prediction results showed that smaller acquisition distances
would make the distribution of acquisition points more concentrated, hence leading to an
obvious reduction in prediction accuracy. As shown in MS1 and MS3 in Figure 11, MS7 in
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Figure 13, and MS10 in Figure 14, the corresponding average relative errors were 19.9%,
30.7%, 16.7%, and 9.2%, respectively. However, it also had the situation that the prediction
accuracy was relatively high with small acquisition distances, for example, the average
relative errors were 1.6% and 0.8% in the cases of MS2 in Figure 11 and MS6 in Figure 12,
respectively. This indicates that the uncertainty of temperature distribution prediction
using the air temperature collected by mobile sensors with smaller acquisition distance was
larger, and the prediction accuracy at this time cannot be guaranteed. When controlling
indoor thermal environments in practical applications, it must quickly and accurately
obtain temperature distributions. Therefore, it is necessary to give a design criterion for
selecting an acquisition distance of mobile sensors with lower uncertainty, higher accuracy,
and wider application scope. Through a careful comparison of the prediction results un-
der the distributions of acquisition points with various acquisition distances, as shown
in Figures 11–15, a conclusion was drawn that the acquisition distance should be large
enough to make the distribution of acquisition points more dispersed.

Table 4. Prediction of mobile sensors with different acquisition distances.

MS1 MS2 MS3 MS4 MS5 MS6

Average relative error 19.9% 1.6% 30.7% 2.7% 2.7% 0.8%

MS7 MS8 MS9 MS10 MS11 MS12

Average relative error 16.7% 0.9% 1.4% 9.2% 0.5% 2.0%

MS13 MS14

Average relative error 2.1% 2.3%

5. Limitations

Although the application of mobile sensors instead of fixed sensors to collect air
temperature in the area with stable airflow distribution can greatly improve the prediction
accuracy, the influence of air distribution on the method proposed in this study cannot
be easily ignored. An existing study has shown that the relationship between the sensor
acquisition point and the airflow direction would affect the prediction accuracy [40].

Carefully observing the acquisition point distributions in the cases of MS1 and MS3 in
Figure 11, MS7 in Figure 13, and MS10 in Figure 14, it can be seen that most of them were
close to wall surfaces, where the airflow distribution is relatively complex. When the mobile
sensor collects the air temperature near the boundary of the room, the prediction accuracy
thus cannot be guaranteed. Whereas in the case with identical acquisition distances,
with acquisition points that are located in the interior of the room and far away from the
boundary of the room, the prediction accuracy was improved. For example, the average
relative error of the acquisition point distribution shown in MS2 in Figure 11 is 1.6%,
which is far less than the average relative error of the acquisition point distribution shown
in MS1 and MS3 in Figure 11. Similarly, the comparison between the prediction results
obtained under the distribution of each acquisition point shown in Figure 13 also verifies
this conclusion. Therefore, to ensure the prediction accuracy, some distance between the
acquisition points and the room boundaries should be given.

Additionally, the more detailed relationship between the acquisition location of mobile
sensors and airflow distribution still needs to be further explored, which will be the focus
of a future study. The optimization of acquisition distance and acquisition path of mobile
sensors could be achieved to further reduce the time required for predicting temperature
distribution in practical applications.

6. Conclusions

Because of the complexity and dynamic nature of indoor thermal environments and
their impact on energy consumption, the control of indoor thermal environments has
always been an important research focus. In this circumstance, it is necessary to obtain the
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indoor temperature distribution rapidly and in detail. In this study, a method predicting
indoor temperature distribution has been proposed for the purpose of real-time prediction
and precise control of indoor thermal environments in practical applications. In this
method, the air temperature was collected by one mobile sensor at the working area height,
and combined with the contribution ratio of indoor climate (CRI) to realize the rapid
prediction of indoor temperature distribution. Through establishing a typical office room,
the reliability and effectiveness of using mobile sensors instead of fixed sensors for air
temperature collection for temperature distribution prediction has been verified through
accuracy comparison. Furthermore, several acquisition heights and acquisition distances
of mobile sensors were tested, and their impact on prediction accuracy was analyzed.
The main findings from this study are summarized as follows:

(1) Due to some restrictions in practical applications, using mobile sensors instead of
fixed sensors can realize the temperature distribution prediction of residential height
by reducing the number of sensors. If there are no restrictions, the application
of fixed sensors for prediction can also meet the requirements, but they are also
limited by the acquisition height and acquisition path. Under this condition, it is
possible that the combination of fixed sensors and mobile sensors can obtain higher
prediction accuracy.

(2) The acquisition height of mobile sensors has shown little impact on prediction accu-
racy in human activity areas. By comparing the prediction accuracy of mobile sensors
for temperature distribution at different heights, it was found that the difference
between them was not significant. Therefore, when using mobile sensors to predict
the temperature distribution in human activity areas, there is no need to specifically
set the acquisition height.

(3) The acquisition distance should be large enough to make the distribution of acquisi-
tion points more dispersed. By comparing the prediction accuracy of mobile sensors
with different acquisition distances, the results show that smaller acquisition distances
made acquisition points more concentrated, hence reducing prediction accuracy. Con-
sidering the influence of airflow distribution, the acquisition points should be not
very close to room boundaries.

From the above analysis, the method proposed in this study could be beneficial to the
rapid prediction of non-uniform temperature distribution in the perspective of satisfying
thermal comfort while improving energy efficiency. It will make outstanding contributions
to the control strategy based on real-time response to the thermal environment.
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Nomenclature

uj[m/s] air velocity
νt[kg/(m · s)] turbulent viscosity
t[s] time
Prt[J · s] turbulent Prandtl number
Cp[J/(kg · K)] specific heat of indoor air
ρ[kg/m3] air density
q[W] heat emission and absorption of all heat sources
qi[W] heat emission or absorption of heat source i
Xj[m] component of the spatial coordinates (j = 1,2,3)
θ[◦C] air temperature
θn[◦C] air neutral temperature, i.e., indoor initial air temperature
Δθi[

◦C] temperature rise or drop caused by heat source i
θi,o[

◦C] uniform air temperature caused by heat source i

Δθi,o = θi,o − θn[◦C]
temperature rise or drop of the uniform air temperature caused by
heat source i from θn

θi(Xj)[
◦C] air temperature at the location Xj caused by heat source i

Δθi(Xj) = θi(Xj)− θn[◦C]
temperature rise or drop at the location Xj caused by heat source
i from θn

F[m3/s] volume of supply air
V[m3] room volume
m number of heat sources
n number of sensor points
Cji CRI of heat source i to location j
Δθ ′

si temperature rise or drop collected by mobile sensors from θn
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Abstract: The sunken courtyard has long been used in underground spaces and provides an im-
portant outdoor environment. It introduces natural elements to create a pleasant space for human
activities. However, this study measured a typical sunken courtyard and found potential problems of
excessive solar radiation and accumulated air pollutants in summer when at an acceptable outdoor
temperature for human activities. To improve the comfort and health of a sunken courtyard, this
research proposes some green retrofit designs. Firstly, compared with green wall, water and a tree,
sunshade is a primary measure to improve thermal comfort. Combining sunshade, a green wall and
water reduces the temperature by up to 5.6 ◦C in the activity zone during the hottest hour. Secondly,
blocking/guiding wind walls can effectively improve the wind environment in a sunken courtyard,
but only when the wind direction is close to the prevailing wind. A blocking wind wall was better
at affecting velocity and uniformity, while the guiding wind wall was more efficient at discharging
air pollutants. This study initially discusses the climate-adaptive design of underground spaces
in terms of green, thermal comfort and natural ventilation. Designers should generally integrate
above/underground and indoor/outdoor spaces using natural and artificial resources to improve
comfort and health in underground spaces.

Keywords: comfort; health; green; sunken courtyard; retrofit design; climate-adaptive design

1. Introduction

Urban intensification and vertical development are driving underground spaces to-
wards becoming important activity spaces, particularly in downtown and railway areas.
The sunken courtyard (or sunken plaza), which is a long-standing spatial form, plays a
significant role in enclosing underground spaces in terms of connecting to the outdoors,
improving thermal comfort, introducing natural elements and reducing traffic noise and
energy consumption [1,2]. However, greening is disappearing from current sunken court-
yards and being replaced by artificial materials, such as tiles, metals and plastic. Vernacular
architecture and scientific studies have shown that soil, water and plants effectively modify
sunlight, temperature, humidity and air quality [3,4]. In the summer, artificial materials
with high albedo increase the radiant temperature, causing courtyards to be unsuitable
for human activities. This situation also causes potential health risks, thereby preventing
people from moving around outdoors during epidemics [5] and can cause health hazards,
such as the release of total volatile organic compounds (TVOCs) and particulate matters
(PMs) [6]. Therefore, there are research requirements and practical needs for monitoring
environmental parameters and analyzing potential deficiencies in artificial sunken court-
yards. Moreover, green retrofit designs can be developed purposefully and by scientifically
combining microclimate simulations.
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Existing research has indicated that location, orientation, form, geometry and construc-
tion affect the physical performances of sunken courtyards, including lighting, ventilation,
energy and thermal comfort [1,4,7–9]. However, these factors are determined during the
early design and construction phase. Subsequently, changing them would be extremely
costly or even difficult because the construction of underground spaces is highly irre-
versible, particularly for those with other buildings or facilities aboveground. This study
uses site measurements and environmental conditions as a basis for focusing on retrofit
designs to improve the thermal comfort and air quality of existing sunken courtyards,
including internal layout, building surface, greening and ventilation potential. In the
summer weather, excessive radiation and air pollutants have been identified by analyzing
the variation and correlation of air temperature, black-bulb temperature, relative humidity,
wind velocity, CO2, TVOCs and PMs, as the two most important problems. It has been
identified that unshaded areas and building materials lead to high radiant temperatures.
Physiological equivalent temperature (PET) is adopted by comparing several thermal
comfort indicators. Furthermore, excessive TVOCs and PMs indicate that airflow in the
courtyard is unable to discharge air pollutants. A wind vector is adopted to evaluate the
ventilation potential driven by ground winds.

The simulation results supported the hypothesis that there is excessive solar radiation
and accumulated air pollutants. The thermal effects of a sunshade, a green wall, water
and the presence of a tree, as well as the natural ventilation effects of ground winds were
simulated using ENVI-met Version 4 and Cradle scSTREAM Version 14. On the one hand,
sunshades are a primary measure to improve thermal comfort in the summer, reducing
the physiological equivalent temperature (PET) by up to 3 ◦C in the activity zone during
the hottest hours. Green walls and shallow water reduce PET by up to 3 ◦C and 0.8 ◦C,
respectively, when in specific positions. Combining a sunshade, a green wall and water
reduce PET by up to 5.6 ◦C in the activity zone where the measured maximum of 39.5 ◦C
drops to below 35 ◦C (which is hot for PET). On the other hand, a guiding wind wall
introduced ground winds and created suitable and uniform wind fields in the activity
zone and discharged air pollutants. A guiding wind wall can also be combined with a
green wall and controllable louvers to provide controllable and comfortable ventilation.
Actual measurements and retrofit designs indicate that underground spaces with good
thermal performance often disregard climate-adaptive designs in the early stages. This
study initially discusses the climate-adaptive design of underground spaces in terms of
green, thermal comfort and natural ventilation. Introducing additional natural elements
into sunken courtyards improves physiological comfort and also visual and psychological
delight. This study is a direct reference for retrofit designs and newly built courtyards,
providing numerous comfortable and healthy spaces for urban activities.

2. Methodology

2.1. Field Measurements

The measured sunken courtyard used in this research is located at an underground
shopping mall in the center of Nanjing, China (Figure 1). Nanjing has a subtropical mon-
soon climate with an annual average temperature of 15.4 ◦C, an annual high temperature of
39.7 ◦C, and it belongs to the hot summer and cold winter climate zone in China. Nanjing is
known as a hot summer city in China and is experiencing significant warming. Summer in
Nanjing is also becoming longer and arrives in mid-May [10,11]. However, dates where the
temperatures were above expected levels were not studied because, from observations dur-
ing the previous summer, people were generally reluctant to stay in the sunken courtyard
being measured for long periods when it exceeded 33 ◦C. Furthermore, China sets 35 ◦C as
the threshold for high temperature warnings and outdoor work allowances. In the previ-
ous 140-day summer in Nanjing, only 19 days exceeded 33 ◦C. Three adjacent weekends,
29–30 May and 5 June 2021 (the weather was cloudless and sunny with a high temperature
of 32 ◦C and a Beaufort Wind Force of 2–3), were selected in advance based on weather
forecasts. The study period began at 10:00 (mall opening) and ended at 18:00 (dinner) when
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solar radiation decreased significantly to a steady phase. Three measurements showed
highly consistent patterns and characteristics, which were sufficient to support validity
and representativeness. Data from 30 May were chosen because there were only a few
unforeseen interferences and numerous evident interactions of environmental parameters.

Figure 1. The measured sunken courtyard in Nanjing, China.

The measurement instrument was placed on a table and its probe was approximately
1.1-m high, which was also the height of the consumers’ faces when sitting for a long time in
the courtyard. Table 1 summarizes the specifications of the JT integrated monitor of thermal
environment and air quality. The sampling interval was set at 10 s to sensitively determine
the environmental effects of changing winds. A total of 2881 data sets were analyzed over
an eight-hour period (i.e., 10:00–18:00). Meanwhile, environmental parameters required
by ENVI-met were measured. Air temperatures, relative humidity (RH) and building
surface temperatures were measured at a height of 2 m in the center of the courtyard. Air
temperatures and RH were measured using a TANDD TR-72wf thermo recorder with
a precision of 0.5 ◦C and 5% RH. Surface temperatures were measured using a Fluke
59 mini-infrared thermometer with a temperature precision of 2 ◦C. Wind velocities and
directions were measured at a height of 10 m from the courtyard floor. Wind velocities
were measured using Testo 405i hot-wire anemometer with a velocity precision of 0.1 m/s
and temperature precision of 0.5 ◦C.

Table 1. Specifications of JT integrated monitor of thermal environment and air quality.

Parameters Range Precision

Air temperature −40–85 ◦C ±0.3 ◦C
Globe temperature 20–85 ◦C ±0.3 ◦C (20−40 ◦C)

Wet-bulb temperature 5–40 ◦C ±0.5 ◦C
Relative humidity 0–100% RH ±2%RH

Wind velocity 0.05–2 m/s ±(0.03 m/s + 2% reading)
PM2.5 0–999 ug/m3 ±10% reading
CO2 0–5000 ppm ±30 ppm

TVOCs 0.1–0.6 ppm ±10% reading

2.2. Thermal Comfort Evaluation

Outdoor thermal comfort indices can be divided into three categories: (1) cold and hot
thermal stress indices based on regression analysis, such as Wet-bulb globe temperature
(WGBT) and predicted mean vote amended by Jendritzky (PMV*) [12]; (2) indices based
on steady-state heat transfer models, such as OUT Standard Effective Temperature (OUT-
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SET*) [13] and PET [14]; and (3) indices based on unsteady heat transfer models, such as the
Universal Thermal Climate Index (UTCI) [15]. Table 2 summarizes the factors involved in
some commonly used indicators. Based on the literature review, PET and UTCI have been
recommended and widely used in recent years. Compared with UTCI, PET is considerably
more sensitive to wind velocity and solar radiation [16,17]. Moreover, PET requires wind
velocity to be measured at 1.1 m, whereas UTCI requires wind velocity to be measured
at 10 m. Therefore, PET is better adapted to the requirements of the current study. At
any given place, outdoors or indoors, PET is equivalent to the air temperature at which,
in a typical indoor setting, the heat balance of the human body (work metabolism 80 W
of light activity was added to basic metabolism; heat resistance of clothing 0.9 clo) is
maintained with core and skin temperatures equal to those under the conditions being
assessed [14]. Table 3 shows PET ranges corresponding to different thermal sensations. In
the current study, clothing insulation (0.6 clo) and metabolic rate (1.0 met or 60 W/m2)
were predicted according to field observation and ASHRAE Standard 55-2017: Thermal
Environmental Conditions for Human Occupancy [18].

Table 2. Commonly used outdoor thermal comfort indices.

Index

Physical Factor (Climatic Conditions) Physiological Factor (Physiological Regulation)

Air
Temperature

Humidity
Air

Velocity
Radiation

Skin
Temperature

Skin
Wettedness

Core
Wettedness

Clothing
Insulation

Metabolic
Rate

WGBT + + + +
PMV* + + + + + + + +

OUT-SET* + + + + + + + +
PET + + + + + + + + +

UTCI + + + + + + + + +

Table 3. Thermal sensations and corresponding PET ranges.

Thermal Sensation Very Cold Cold Cool Slightly Cool Neutral Slightly Warm Warm Hot Very Hot

PET range (◦C) <4 4–8 8–13 13–18 18–23 23–29 29–35 35–41 >41

The RayMan Version 1.2 model was applied to calculate PET from the measure-
ment data. The RayMan model is a diagnostic micro-scale radiation model developed
by the department of meteorology and climatology at the Albert Ludwigs University of
Freiburg. This model is designed to calculate radiation fluxes in simple and complex
environments [19]. Mean radiation temperature (Tmrt) is a key index for calculating PET
and can be approximately calculated from the SkyHelios model and Sky View Factor in
RayMan. However, the current study adopted a considerably accurate calculation by
measuring the globe temperature which is explained in ISO 7726:1998-Ergonomics of the
thermal environment-Instruments for measuring physical quantities [20]. It is obtained using the
following equation:

Tmrt =

[(
Tg + 273.15

)4
+

1.1 × 108v0.6

εD0.4 × (Tg − Ta
)]1/4

− 273

where Tg = globe temperature (◦C), v = wind velocity (m/s), ε = globe emissivity (0.95),
D = globe diameter (mm) and Ta = air temperature (◦C).

2.3. Simulation of Retrofit Designs

The microclimate effects of four retrofit designs were modeled using Rhinoceros
software and simulated in ENVI-met software, including a water pond, a tree, wall greening
and a sunshade. ENVI-met is widely used and validated for predicting microclimates for
buildings and green areas. The courtyard in this study is 15 m × 23 m and has a calculation
domain of 45 m × 69 m; the simulation results shown in similar medium-sized courtyards
were satisfactory [21–24]. Furthermore, the ground environment of the measured courtyard

285



Buildings 2021, 11, 413

is a green garden. No large buildings are within three times the scale of the courtyard and
as such do not affect the microenvironment [25].

Table 4 shows the environmental parameters at the heights required by the ENVI-met
simulation. These measured parameters were added to the epw.weather file. The epw.
file that is recommended for ENVI-met provided geographical location, solar angle and
radiation in this study; this was downloaded from https://www.ladybug.tools/epwmap/
(accessed on 12 September 2021) supported by the US Department of Energy. This study
compared the simulation results of three grid sizes (i.e., 2 m, 1 m and 0.5 m, which are the
smallest supported by ENVI-met) and found that a grid size of 1 m significantly balanced
simulation precision and computation time. Figure 2 shows the sizes and materials of the
original and modified courtyards.

Table 4. Environmental parameters required by ENVI-met simulation.

Hourly averaged
environmental

parameters

Time
2-m Height (Courtyard Center) 10-m Height (Ground Surface)

Air Temperature (◦C) RH (%) Wind Velocity (m/s) Wind Direction (◦)

09:00 31.6 58.2 2.5 202.5
10:00 32.2 52.8 1.6 247.5
11:00 32.8 48.5 2.3 202.5
12:00 33.5 38.6 1.6 270.0
13:00 34.9 35.8 2.7 270.0
14:00 35.8 35.3 1.6 292.5
15:00 37.0 31.7 2.4 225.0
16:00 33.8 36.6 1.3 135.0
17:00 32.7 39.1 2.1 292.5
18:00 31.7 42.2 1.9 112.5
19:00 31.2 48.6 2.7 112.5

Initial building temperature (09:00) 30.2 ◦C

Note: 0-m height of the sunken courtyard floor.

Figure 2. Models of original and modified courtyards.

Numerical models and settings were validated by comparing the simulated and
measured temperatures and RH. However, the measurements of the hourly average wind
velocities were 3–8 times that of those simulated (0.06 m/s–0.28 m/s), which seriously
affects the calculation of PET. This result supported our assumption that the sunken
courtyard was minimally affected by ground winds. Therefore, the measured wind velocity
was used to modify the simulated PET. The comparative results showed that temporal
trends are more consistent with errors of Ta (0.9–4.0%), RH (6.8–19.7%) and PET (6.0–15.6%)
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(Figure 3). ENVI-met calculated high solar radiation and low humidity, which were also
found in previous studies, but were at acceptable levels [22,26,27]. The effect of green
renovation was mainly assessed by comparing the differences of the simulated PET.

Figure 3. Model validation (s: simulation, m: measurement).

Given the shortcomings of ENVI-met in fine-scale computerized fluid dynamics (CFD)
simulations, this study adopted Cradle scSTREAM Version 14, which is a specialized
computational fluid dynamics software, to accurately simulate the wind environment in
the sunken courtyard. Referring to Chinese standards, “GB 50736-2012, Design code for
heating ventilation and air conditioning of civil buildings” [28], Table 5 summarizes the
computational settings that meet the requirements of outdoor wind environment analysis.

Table 5. Computational settings of CFD simulations.

Computational Domain

Material Air (incompressible)
Analysis type Turbulence flow, heat, solar radiation, steady state

Turbulence model Renormalization group (RNG) k-ε model
Ambient temperature 31.6 ◦C

Initial solid temperature 30.2 ◦C

Boundary Condition

Basic type External flow (winds blowing through buildings)
Prevailing wind 2.6 m/s (10 m height), SSE

Roughness category Urban area formed by medium-rise buildings (4–9 story) mainly
Flow boundary Power law (inlet), static pressure (outlet)
Wall boundary Noslip (power law or smooth)

Thermal boundary Adiabatic (outer), heat transfer (fluid-solid), conduction (solids)

Solar Radiation

Location Nanjing, 32◦00′ (Latitude), 118◦48′ (Longitude)
Date and time 30 May, 9:00 a.m.

Solid absorptance Architectural material

3. Results

3.1. Analysis of Measurement Data
3.1.1. Correlation Analysis

A correlation analysis was conducted using SPSS (Table 6). Firstly, PET was strongly
positively correlated with Ta and Tg and strongly negatively correlated with RH. Secondly,
TVOCs were strongly positively correlated with air temperature, which also led to a strong
negative correlation with humidity. Thirdly, wind velocity has a limited effect on the
concentration of air pollutants, which is contrary to common sense in ventilation. A
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positive correlation amongst CO2, PM2.5 and TVOCs initially proved that there was air
stagnation in the sunken courtyard.

Table 6. Pearson correlation analysis of environmental parameters.

PET Tmrt Ta Tg RH v CO2 PM2.5 TVOC
PET 1 0.982 ** 0.986 ** 0.988 ** −0.848 ** −0.227 ** 0.374 ** 0.290 ** 0.495 **

Tmrt 1 0.941 ** 0.999 ** −0.782 ** −0.108 ** 0.275 ** 0.273 ** 0.396 **
Ta 1 0.953 ** −0.897 ** −0.262 ** 0.462 ** 0.300 ** 0.579 **

Tg 1 −0.797 ** −0.134 ** 0.295 ** 0.277 ** 0.416 **
Absolute Correlation RH 1 0.224 ** −0.495 ** −0.193 ** −0.596 **

0.0–0.1 Not v 1 −0.266 ** −0.092 ** −0.264 **
0.1–0.3 Weak CO2 1 0.449 ** 0.854 **
0.3–0.5 Moderate PM2.5 1 0.364 **
0.5–1.0 Strong TVOC 1

**. Correlation significant at 0.01 level (two-tailed).

3.1.2. Excessive Solar Radiation

Temporal trends of the measured data showed a significant concordance amongst
PET, Tmrt, Ta and Tg (Figure 4). Humidity showed a significant negative correlation with
temperature in terms of overall trends and local changes. Given the effect of solar radiation
on ambient temperature and humidity, solar radiation can be deduced as the decisive
factor influencing the thermal environment in the sunken courtyard. Local changes in
wind velocity had evident cooling effects but did not affect the overall trend of PET
(Figure 5). From 10:00 to 15:00, solar radiation led to Tmrt > Tg > PET > Ta. Before 15:00,
the four temperatures steadily increased and started to exceed 35 ◦C (the hot threshold for
PET) at approximately 11:30. After reaching a maximum of 39.5 ◦C (PET) at 15:00, these
temperatures decreased rapidly because of self-shading of the sunken courtyard and a
reduction of direct solar radiation. Additionally, Tmrt and Tg were occasionally lower than
PET, which may be related to increasing humidity. These temperatures decreased gradually
and converged after 17:00. Therefore, controlling solar radiation is the primary means of
improving thermal comfort, with relative potential for increasing humidity.

Figure 4. Temporal trend of strongly correlated thermal comfort parameters.
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Figure 5. Temporal trend of weakly correlated thermal comfort parameters.

3.1.3. Air Stagnation and Pollutant Accumulation

Concentrations of PM2.5, CO2 and TVOCs were consistently stable, even with evident
winds (Figure 6). However, there was an unforeseen scenario: at approximately 15:30, a
consumer stayed close to the instrument for 20 min smoking and eating, thereby leading to
a sudden increase in these concentrations. Table 7 shows the healthy building standards in
China and the US, in which PM2.5 (average 36.4 μg/m3) and TVOC (0.65 ppm) were consis-
tently exceeded, whilst CO2 (522.8 ppm) was below the threshold. Specifically, TVOCs were
nearly four times over the thresholds, which may be derived from the interior air in the
mall and decoration materials in the courtyard. Although the sunken courtyard is an open
outdoor space, it is not connected to the ground wind environment, thereby preventing the
discharge of air pollutants. Additionally, fresh air from the above ground garden cannot
enter the sunken courtyard. Occasional there were breezes in the measurements that were
mainly caused by air convection between open doors. Therefore, the sunken courtyard
should be modified to introduce substantial natural winds.

Figure 6. Temporal trends of wind velocity and air pollutants.

Table 7. Air pollutant thresholds in healthy building standards.

Air Pollutant
T/ASC 02-2016: Assessment Standard

for Healthy Building
The WELL Building Standard-V2 Remark

PM2.5 (μg/m3) 35 35 24-h mean
CO2 (ppm) 1000 800 24-h mean

TVOC (ppm) 0.15 0.125 8-h mean
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3.2. Simulation of Green Retrofit Designs
3.2.1. Retrofit Design for Thermal Comfort

Figure 7 shows the PET reduction when using a sunshade, a green wall, a tree, water
and their combination in the middle section of the courtyard. Table 8 summarizes ENVI-
met parameters of green retrofit measures. Firstly, the sunshade reduces PET throughout
the courtyard, most noticeably immediately below the sunshade by 2–4 ◦C. In the activity
zone (0–2 m high), it reduces the temperature by 1–3 ◦C. Secondly, the green wall increases
the surrounding PET by 0–2 ◦C, which is caused by sunlight reflection and heat storage
in the leaves. However, it reduces the temperature by 2–4 ◦C in the central activity zone.
Thirdly, contrary to common experience, a tree with a dense canopy increases the PET in
most of the courtyard, but reduces the temperature by 2–3 ◦C in the central activity zone. A
comparison of 15 m and 20 m tall trees shows that the canopy should preferably be above
ground level to avoid blocking surface winds. Fourthly, shallow water has a very limited
cooling effect, only cooling its surroundings by less than 0.8 ◦C. Fifthly, combining the four
designs reduces the temperature by up to 4.9 ◦C in the activity zone. Finally, considering
the counteraction of the trees, the combination of a sunshade, a green wall and water
reduces the temperature by up to 5.6 ◦C in the activity zone. This design integrates the
cooling effects of three designs to reduce the measured maximum temperature of 39.5 ◦C
to below 35 ◦C (which is hot for PET).

 

Figure 7. ENVI-met simulation results of improved designs for PET.
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Table 8. ENVI-met parameters of green retrofit measures.

Green Retrofit Measure Number Parameter

Sunshade 000001 Single wall, SunSail, material (PV), thickness (0.2)
Green wall 01AGDS Greenings with air gap, green and mixed substrate

Tree 0000BS 20 m height, dense, distinct crown layer, albedo (0.2), transmittance (0.3)
Water 0000WW default

3.2.2. Retrofit Design for Natural Ventilation

Pressure difference is fundamental for organizing natural ventilation. This study aims
to promote wind-pressure ventilation to introduce ground wind into the sunken courtyard
and exhaust accumulated air pollutants. The two retrofit designs and original courtyard
were compared by CFD simulation (Figure 8) in a prevailing SSE wind.

 
Figure 8. CFD simulation results of improved designs for natural ventilation.

First, the original courtyard had a wind velocity of 0.2–1.4 m/s in the activity zone,
which was just perceptible but has a limited cooling effect in the summer. The vector
diagram showed airflows circulating in the courtyard without being noticeably carried by
ground winds. Therefore, the sunken courtyard becomes an outdoor ventilation “dead
zone” and accumulates air pollutants, thereby confirming the uncertainties of previous
measurements and ENVI-met simulation.
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Thereafter, the 5-m high wall blocked ground winds to create a negative pressure zone
in the courtyard and promote ground winds that sucked out underground airflows. The
airflow field was effectively increased to 0.8–2.2 m/s in the activity zone. This condition
was inspired by the upward wind in the surrounding area induced by the windward side
of buildings in an urban wind environment. A blocking wall on the south side of the
courtyard improved wind velocity, airflow exchange and the ventilation area better than
the north side according to a comparison simulation. Furthermore, airflows were steadily
circulated from the sunken courtyard to the ground, although many polluted airflows enter
the courtyard again.

Lastly, guiding surface winds into the courtyard to create a positive pressure zone
enables effective and consistent ventilation. This condition was inspired by widely used
wind towers and wind deflectors in both aboveground and underground buildings. The
3-m high guiding wind wall increased the airflow field to 0.8–1.8 m/s in the activity zone.
The guiding wind wall was installed 1 m from the original wall and did not encroach on a
significant area. Although the guiding wind wall did not create a more uniform and faster
wind than the blocking wind wall, it directed ground winds into the sunken courtyard
more directly and with less circulation of polluted airflows.

In addition, both wind walls can be combined with greening or water cooling to reduce
airflow temperature and upward buoyancy in the summer. Guiding wind walls can also be
combined with controlled louvers in the top opening to avoid winter wind and undesirable
airflow. Figure 9 shows ventilation performances of guiding wind walls for north, south
and west (similar to east) ground winds with the same velocity as the prevailing wind
(2.6 m/s). For wind direction close to the prevailing wind, there was a better performance
on increasing wind velocity and discharging air pollutants. For wind direction contrary to
the prevailing wind, it was no better than the effect of a slight discharge passage. For wind
direction perpendicular to the prevailing wind, it was ineffective but had no negative effect.

 
Figure 9. Ventilation performance of guiding wind wall in different wind directions.

Both wind walls can effectively improve the wind environment in the sunken court-
yard, but only in wind directions close to the prevailing wind. A blocking wind wall was
better at improving the wind environment for velocity and uniformity, while the guiding
wind wall was more efficient at discharging air pollutants. When controlled louvers are
closed, the blocking wind wall became a prevailing wind wall as well.
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3.3. Summary

The main microclimatic problems in the measured sunken courtyard, that is, excessive
solar radiation and accumulated air pollutants, were identified through analyzing field
measurement and software simulations. First, compared to a green wall, water and a
tree, sunshade was the primary measure to improve thermal comfort. When applying
the findings to other sunken courtyards, position, size and angle of a sunshade should
be adapted to local climate in order to balance summer shading with winter heating.
Deciduous liane and photovoltaic panels can be combined with a sunshade to improve
shading effects and ecological benefits. Secondly, large trees that provide partial shade
for courtyards not only cause solar radiation to accumulate under the crown layer, but
also weaken natural ventilation above and underground. Therefore, the traditional and
empirical design concept of “more trees is better” may not apply. Appropriate plants should
be chosen for different architectural interfaces to address corresponding environmental
problems. Lastly, this study only applied the default setting of water in ENVI-met and
found little effect on the courtyard microclimate. This requires further research on water of
different depths, sizes and volumes. The design implications described above are further
extended in Section 4.

4. Discussion

From this study of the thermal environment and air quality of the sunken courtyard,
a classic underground space, it is clear that many empirically well and comfortably built
environments conceal comfort and health problems, such as bad thermal conditions, accu-
mulated pollutants and a lack of natural elements. In the early stages of building design,
the designer should incorporate modeling and simulation to predict environmental quality.
In turn, building design and environmental control should be adapted to the climatic
conditions and usage requirements. This facilitates energy savings, natural access and
reduces potential risks of the equipment used in the spaces. To counter global warming
and the health crises, underground spaces cannot simply be artificially designed, due
to the difficulties of construction and management, but should, as much as possible, be
naturalized and healthy. The following section provides extended discussions on “greening
underground spaces” and “adaptive designs for thermal environments”.

4.1. Greening Underground Spaces
4.1.1. Multiple Benefits

Greening underground spaces can enhance vitality and positive impressions. It can
also help to regulate the microclimate in order to improve thermal comfort and air quality
and promote healthy urban and social environments.

Firstly, greening revitalizes underground spaces into pleasant, comfortable and lively
public spaces. The public has negative impressions of underground spaces, mostly from tradi-
tional cultures or unpleasant experiences, such as gloomy, damp, stuffy or lost environments.
The sunken courtyard connects to the ground, bringing in natural elements, such as light, wind
and water, which naturalize the underground environment and show the weather and time of
day. This condition enhances multi-sensory experiences and also eliminates the unsafe and
unhealthy psychological cues of underground spaces [29]. Furthermore, sunken courtyards
enhance a sense of place and identity by providing external views and attractive images, which
also echoes vernacular architecture and traditional context [30].

Secondly, plants and water effectively regulate the microclimate to enhance environ-
mental quality whilst reducing energy consumption and carbon emissions. Plants enhance
thermal comfort through transpiration, the absorption of carbon dioxide and the release of
oxygen through photosynthesis. Plants can also absorb air pollutants (e.g., Vanda against
nicotine and Tortoise against formaldehyde). Water acts as an efficient heat sink owing
to its high thermal capacity and enhances absolute humidity and thermal comfort [31].
Meanwhile, these measures reduce operational loads for environmental control equipment,
thereby reducing energy consumption and carbon emissions.
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Thirdly, planted spaces in urban areas are beneficial to healthy environments in
numerous ways [32]. Green spaces directly contribute to public health, notably because
they enable citizens to engage in various activities that reduce obesity and prevent diseases,
such as cardiovascular and lung disease. Additionally, outdoor activities are promoted to
reduce the risk of indoor infections during epidemics.

4.1.2. Greening Design

The use of limited underground space to create a green atmosphere requires an
elaborate design. Floors, walls and ceilings are available for plant design, creating a
green underground space for a surrounding, immersive experience. Firstly, plants on
the floor are easily accessible to people and provide spatial orientation. Fixed planting
beds provide the soil depth required for plant growth. However, it inevitably takes up
the already insufficient underground space and affects space availability. Removable
containers can be arranged flexibly to meet different spatial requirements and can also
be changed for seasonal scenes and various experiences. Secondly, a green wall does not
encroach on horizontal spaces and provides an evident greening effect and recognizability.
Modular green walls can easily be removed and replaced, providing a green underground
space throughout the year. A green wall is also a widely used measure for regulating the
microclimate and has been studied for its effectiveness in reducing radiation, enhancing
thermal comfort and air quality and blocking noise [4,33,34]. Thirdly, a green ceiling
contributes to the surrounding natural atmosphere, does not encroach on spaces available
for human activities and provides coherent orientations. Additionally, a green ceiling
can be combined with an outdoor pergola or sunshade to create a markedly pleasant
environment in sunken courtyards. Lastly, water can be used in three spatial interfaces
and with plants and has superior effects on thermal comfort. Note that water can provide
animated landscapes and pleasant soundscapes. Water curtain walls, fountains and water
spray [35,36] increase the thermal comfort, liveliness and vitality of underground spaces,
giving occupants multi-sensory experiences.

Sunlight, air and water limit plant selection in underground spaces. Sunlight deter-
mines the photosynthesis and transpiration of plants. Outdoors, natural light is introduced
as much as possible whilst balancing thermal temperatures and daylight [37]. Indoors,
natural light can be supplied through direct, reflected or light-guided techniques, as well
as by lighting that simulates the natural spectrum. Air movement affects temperature and
humidity, which affect the root health and bacterial growth of plants. Poor air movement
increases indoor carbon dioxide during plant respiration and affects human health. Water
can be flexibly regulated through rainwater collection, grey water and irrigation systems.
Therefore, drought-loving, shade-loving and cryptogamous plants are suited to under-
ground greening, particularly in environments lacking in natural elements. Table 9 lists
some plants suitable for underground spaces.

Table 9. Some plants suitable for underground spaces.

Green Methods Plant Types Plants

Green floor
Arbor Royal palm, hemp palm, ficus lyrata
Shrub Octophylla, monstera, rohdea

Herbage, liane, pteridophyta Scindapsus, begonia cathayana hemsl, ophiopogon japonicus, moss
Green wall Herbage, liane Euphorbia humifusa, ivy, wisteria

Green ceiling Herbage, liane Scindapsus, ivy, chlorophytum comosum
Green water Herbage Eichhornia crassipes, iris hexagonus, lotus

4.2. Adaptive Designs for Thermal Environments

Thermal environments cannot simply be designed to meet certain environmental
standards. A healthy and energy-efficient thermal environment requires an adaptive
design and flexible regulation. On the one hand, standard thermal comfort indicators
should be modified according to the characteristics of underground spaces and the target
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population. On the other hand, energy-efficient-oriented thermal design should integrate
indoor and outdoor environments. Moreover, energy-oriented thermal regulation should
integrate indoor and outdoor environments to fully use natural and artificial cooling and
heat sources. Traditional designs focus on the interior and only consider using outdoor
wind and light to reduce energy consumption of indoor environmental controls. Air and
light between indoor and outdoor environments can be organized to maximize energy
efficiency. For example, excessive cold air can penetrate from the indoors to the courtyard
through open doors rather than mechanical exhaust systems, thereby reducing the energy
consumption of equipment and also enhancing the thermal comfort of a sunken courtyard.
Therefore, after analyzing the thermal demands generated by the environment and people,
designers should integrate the surrounding environment and resources to design buildings,
facilities, greening and operations with adaptive approaches.

4.2.1. Demand Analysis for Thermal Environment and Ventilation

The two common methods of thermal comfort are the predicted mean vote (PMV)
and percentage of people dissatisfied (PPD) methods developed by Fanger [38], and the
adaptive model proposed by Nicol and Humphreys [39]. Adaptive thermal comfort models
combine field studies and linear regression to obtain specific temperatures adapted to loca-
tion, climate and population [40]. Li et al. conducted a long-term and comprehensive study
of underground thermal environments in various climatic zones in China. Firstly, four
climatic zones for underground engineering in China were classified. Secondly, thermal
comfort models and recommended temperature ranges for the different climate zones
are proposed by regression analysis through field measurement and thermal sensation
survey [41,42]. The current study classified Nanjing in the humid climate zone and sug-
gested an indoor neutral temperature (25.43 ◦C) and an indoor acceptable temperature
(23.80–27.65 ◦C). Lastly, the effects of temperature, relative humidity, wind velocity and the
length of time that people dwell in the space, on thermal comfort in an underground mall
were analyzed. The high temperature of transitional spaces between indoors and outdoors
positively affected thermal comfort and energy consumption [43]. The research has been
instructive for sunken courtyards as transitional spaces. The acceptable temperatures
indoors are substantially lower than outdoor temperatures. Cool indoor air can naturally
exhaust from the courtyard to enhance thermal comfort during hot times. Furthermore, an
adaptive temperature gradient can provide dynamic thermal pleasure from the ground, to
a courtyard, to the interior [44]. This condition also reduces cardiovascular and respiratory
diseases caused by sudden exposure to hot and cold.

High thermal inertia of the surrounding soil provides a stable and delayed thermal
environment to reduce the effects of outdoor climate fluctuations. The air-conditioning
load of underground buildings is less than that of aboveground. However, excessive
humidity in the summer, which causes condensation and insufficient sunlight, increases
the dehumidification load of air-conditioning systems [45,46]. Humid air indoors also
moderates dry environments in the sunken courtyard on summer afternoons.

Typical indicators of indoor air quality in underground buildings include concentra-
tions of formaldehyde, TVOCs, CO2 and radon, which are the main risk factors for sick
building syndrome (SBS) and building-related illness (BRI) [45]. The most significant air
pollutants in underground malls are TVOCs and formaldehyde from indoor decorations,
catering and merchandise. These pollutant concentrations are significantly correlated with
wind velocity and significantly positively correlated with air temperature and relative
humidity [6]. Additionally, radon is a common problem for underground building air qual-
ity. Ventilation, coating level, decorating materials and geological formation are the main
influencing factors [47]. Air pollutants infiltrate and accumulate in sunken courtyards, mak-
ing them an environment which has a greater health risk than indoor environments with
mechanical exhaust systems. Therefore, promoting ventilation using natural or artificial
resources is key to the environmental health of courtyards.
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4.2.2. Adaptive Design for Sunken Courtyard Microclimates

Site layout, building form, building configuration, building surfaces, greening and
amenities of the built environment design significantly affect the thermal environment and
energy efficiency. Vernacular experience and passive design of traditional buildings can
be adapted to contemporary architectural design using innovation [48–50]. Even the built
environment determines the long-term problems faced by microenvironments. Common
problems in underground spaces include high humidity, lack of sunlight and views, poor
air circulation and air quality and difficulty diffusing out noise. Considerable equipment,
energy and space are required to compensate for the health and comfort deficiencies caused
by the built environment [51–53]. The sunken courtyard is a significant solution that ideally
connects and regulates indoor and outdoor microclimates and introduces the two most
important natural elements: sunlight and wind.

Several studies have extensively explored adaptive solar, wind and thermal designs.
Orientation, form, geometry and movable sunshade can be designed to provide substan-
tial shadow in the summer and receive extensive sunlight in the winter. Reducing solar
radiation in the summer should be balanced with heating in the winter, because sunken
courtyards may not provide sufficient sunlight and acceptable thermal comfort in the
winter [2]. Li studied, measured and simulated the ventilation and lighting performance of
a sunken courtyard and found that its height and width are positively correlated with a
ventilation effect. Furthermore, the height–lighting relationship suggested a north–south
orientation and 5-m height adapted to the research field [54]. For additional daylighting
and energy saving, Omrani et al. studied how the depth (D), width (W) and length (L) of
sunken courtyards affect daylighting performance inside rooms and showed a Well Index
(WI) = 0.5 that refers to D/W for a square plan or D(W + L)/2 WL for a rectangular plan [9].
Additionally, some studies on building surfaces and greening have been instructive. Ghaf-
farianhoseini et al. evaluated the ability of unshaded courtyards to provide thermally
comfortable outdoor spaces according to different design configurations and scenarios,
including orientation, height and wall albedo and vegetation [55]. Similarly, high albedo
surfaces, a water pond and vegetation were suggested to mitigate heat loads and moderate
the microclimate of courtyards [23,56].

Natural ventilation can effectively improve thermal comfort and air quality in daily
life and during epidemics and has the immense potential to control efficiency and save en-
ergy [57–59]. However, adequate and stable natural ventilation in a separate underground
space is difficult to obtain. In shallow underground spaces and hot-humid climates, the
generation of buoyancy by the vertical temperature difference between underground and
aboveground is not evident [60,61]. Thermal pressure ventilation needs stable temperature
differences, which can be obtained by active and passive designs. Firstly, solar chimneys
and photovoltaic–thermal collectors can collect solar energy to create temperature differ-
ences and promote stable ventilation [62]. Secondly, earth–air–heat exchanger systems
use the constant temperature of the subsoil to heat or cool outdoor air [63]. Underground
water cooling and spray cooling can be applied adaptively to reduce the length of cooling
ducts. Thirdly, temperature differences created by connected courtyards or atria, which are
widely used in traditional group buildings, can also create stable natural ventilation. Lastly,
the previously discussed wind pressure ventilation can be further enhanced by the design
of wind towers, wind ducts and wind catchers [8,58]. Figure 10 presents some concepts for
active and passive designs to promote natural ventilation in underground spaces.
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Figure 10. Active and passive techniques for natural ventilation in underground spaces.

5. Conclusions

Sunken courtyards, as major outdoor spaces underground, can provide comfortable,
healthy and natural environments. Sunlight, wind and greening are the key factors to
improving thermal comfort, air quality and usage experience. This study identified the
existing problems of excessive summer solar radiation and accumulated air pollutants in a
sunken courtyard through field measurements and simulations.

1. Measurements showed that excessive solar radiation caused PET to peak at 39.5 ◦C
in the sunken courtyard when the weather forecast was below 33 ◦C. Increasing
humidity and wind velocities can reduce PET to a limited extent.

2. Ground wind conditions hardly affected the sunken courtyard causing poor thermal
comfort and accumulated pollutants. PMs and TVOCs consistently exceeded health
standards and were likely to originate from artificial building materials, catering
and merchandise.

3. In the activity zone, the sunshade most effectively reduced PET by 1–3 ◦C. The green
wall reduced the temperature by 2–4 ◦C in the central zone. The shallow water only
cooled its surroundings by less than 0.8 ◦C. Contrary to common experience, the
tree with a dense canopy increased the PET in most of the courtyard but reduced
the temperature by 2–3 ◦C in the central zone. Combining a sunshade, a green
wall and water reduced the temperature by up to 5.6 ◦C and reduced the maximum
temperature of 39.5 ◦C to below 35 ◦C (which is hot for PET).

4. Blocking/guiding wind walls can effectively improve the wind environment in the
sunken courtyard, but only in wind directions close to the prevailing wind. A blocking
wind wall was better at velocity and uniformity, while the guiding wind wall was
more efficient at discharging air pollutants.

5. Climate-adaptive designs have immense potential and demand in underground
spaces. Green-adaptive design considers the growth characteristics and environmen-
tal effects of plants to avoid a negative impact on an underground microclimate.
Thermal-adaptive design balances daylight and heating to increase building self-
shading in the summer and provide additional light in the winter. Wind-adaptive
design integrates indoor and outdoor spaces to improve thermal comfort and passive
ventilation through the use of natural and artificial sources.

The limitations of this study are the simulation errors of solar radiation and humidity
in ENVI-met, and its grid sizes and greening functions. The potential of wind pressure
ventilation in underground courtyards was only discussed initially and lacked realistic
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simulations. Future research and engineering should combine significantly accurate envi-
ronmental simulations with comprehensive adaptive design to improve the comfort and
health of underground spaces.
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Abstract: District heating networks make up an important public energy service, in which leakage is
the main problem affecting the safety of pipeline network operation. This paper proposes a Leakage
Fault Detection (LFD) method based on the Linear Upper Confidence Bound (LinUCB) which is
used for arm selection in the Contextual Bandit (CB) algorithm. With data collected from end-users’
pressure and flow information in the simulation model, the LinUCB method is adopted to locate the
leakage faults. Firstly, we use a hydraulic simulation model to simulate all failure conditions that can
occur in the network, and these change rate vectors of observed data form a dataset. Secondly, the
LinUCB method is used to train an agent for the arm selection, and the outcome of arm selection is
the leaking pipe label. Thirdly, the experiment results show that this method can detect the leaking
pipe accurately and effectively. Furthermore, it allows operators to evaluate the system perfor-
mance, supports troubleshooting of decision mechanisms, and provides guidance in the arrangement
of maintenance.

Keywords: contextual bandit; linear upper confidence bound; reinforcement learning; district heating
pipe network; fault detection

1. Introduction

Intelligent fault detection is a very important part of future city digital develop-
ment [1]. District Heating (DH) is an indispensable public energy service that transfers
heat from heat sources to satisfy users who live in buildings [2]. A District Heating System
(DHS) is shown in Figure 1 [3]. A DHS [4] is made up of three main components: heat
sources, district heating networks, and substations. The temperatures of supply water
and return water of the district heating networks (DHNs) are approximately 75–90 ◦C and
40–50 ◦C, respectively [5]. District heating networks distribute heat for residential and
commercial heating purposes and domestic hot water in buildings. It is necessary to create
a comfortable and pleasant indoor climate and guarantee the productive and domestic
water [6]. Although DHSs can bring convenience to our lives, they will malfunction for
several reasons. Even heat cessation may occur in severe cases. Heat cessation will cause
severe harm to social activities and inhabitants’ lives. Accordingly, a reliable and online
fault detection method should be applied to detect real-time faults.

Several problems may occur in the operation of DHNs as time goes on. Heat transfer
causes temperature reduction. Friction of hot water against the pipe shell causes pressure
losses. Both of these can lead to heat loss in the system. Moreover, pipe corrosion, insulation
layer damage or fall off, leakage and other reasons may lead to pipe network malfunction.
Among them, the phenomenon of hot water leaking from a damaged insulation layer or

Buildings 2021, 11, 275. https://doi.org/10.3390/buildings11070275 https://www.mdpi.com/journal/buildings301
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pipe shell cracking is common. Unfortunately, in existing DHNs, the observational data of
leakage faults are relatively rare and cannot cover all leakage cases [7]. In order to obtain
more data and realize online fault detection, it is necessary to simulate a district heating
network, which can not only adapt to temperature fluctuations and user needs, but also
anticipate component or entire system failures through fault detection and diagnosis (FDD).
This will ultimately reduce costs for both utility companies and end-users.

 

Figure 1. A District Heating System (DHS).

In general, traditional FDD methods can be divided into: (1) signal processing-based
methods; (2) analytical model-based methods; and (3) knowledge-based methods. These
methods can achieve certain detection accuracies and basically detect these leakage faults,
but they need large modeling efforts and lack accuracy and flexibility. Furthermore, with
the development of artificial intelligence technology, a hybrid detection system combined
with a variety of different intelligent technologies is the development trend of intelligent
fault detection [8]. In the building pipe network, the sensors of pressure and flow are
typically installed at each heat source, substation, and user terminal. In order to support the
operation and maintenance of district heating systems, Supervisory Control and Data Ac-
quisition (SCADA) systems can monitor and record running data in real time. Specifically,
the leakage fault of DHSs will cause slight changes in the flow and pressure parameters
compared with normal circumstances, which inspires researchers to locate leakage faults
through these subtle changes. Based on this point, several leakage fault detection (LFD)
methods have been implemented to locate leakage points. Zhao et al. [9] studied the
leakage detection and location of natural gas pipelines based on negative pressure and
combined the negative pressure wave method with the signal theory to propose a solid
part method to find the singularity. In order to locate the leakage, the gas velocity in the
Romberg and the Dichotomy Searching methods are considered in the location formula.
Jia et al. [10] provided a new pipeline leakage location method that combined the advanced
FBG circumfluence strain sensor with an effective classification algorithm based on a BP
neural network. Xue et al. [11] proposed a machine learning-based detection method for
heating pipe network leakage by establishing a hydraulic simulation system to obtain
a leakage dataset, adding a strong integrated algorithm, XGBoost, to the model, which
finally outputs the leaking pipe label. Lei et al. [12] used a BP neural network to detect
leakage faults both in a branch-shaped heating network and loop-shaped heating network.
At the same time, he also used an SVM to make improvements. Morteza et al. [13] pro-
posed a leakage detection method based on Artificial Neural Networks (ANNs). Berg
et al. [14] proposed using a thermal image enhancement analysis method to reduce the
number of false alarms in the leakage of heating networks. Most of the pipe network LFD
methods discussed above focus on wave detection or supervised learning. The DHN is
a closed circulation network consisting of an equal number of supply and return pipes.
However, due to the cost problem, in most cases, there are not enough sensors to monitor
all pipes’ situations. Thus, more efficient LFD methods are necessary. A reliable LFD
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method for DHNs ought to have three features: high accuracy, low investment, and online
and real-time detection capabilities.

Reinforcement learning is the closest to the human learning style in machine learning,
which provides an alternative solution for the fault detection of a smart city energy sys-
tem. Reinforcement learning is a powerful unsupervised learning method in which the
environment gives agent feedback and the agent selects the optimal action with the goal
of obtaining the maximum expected cumulative reward [15]. Based on the idea of “only
using the current state to obtain the optimal action” in reinforcement learning, this paper
proposes a method for the rapid online detection of pipe network leakage faults based
on Contextual Bandit [16,17]. In this paper, reinforcement learning is used to carry out
some exploratory research in the field of pipe leakage fault detection. The results show
that the fault detection accuracy is improved, and our method has a high adaptability for
different pipe networks. Moreover, the proposed method does not depend on the model of
the problem. Based on the collected sensor data, it can perform the online training auto-
matically. Thus, it also features low investment and online real-time detection capabilities.
Three main components of this research are summarized as follows.

1. A reinforcement learning-based approach needs a large number of samples associated
with all possible leakage fault situations. Unfortunately, in existing district heating
networks, the observational data of leakage faults are relatively rare and cannot cover
all leakage cases. Therefore, the hydraulic simulation model established by Xue [11]
is used to obtain a leakage dataset [18]. In order to ensure the accuracy of the results,
an impedance identification method was also used;

2. When a malfunction occurs, the overall DHN make-up water will often change greatly,
which will trigger the alarm. In order to enhance system robustness, a delayed alarm
triggering algorithm is applied to check the make-up flow rate regularly to indicate
whether a leakage has occurred;

3. The core of the leakage fault detection model is Contextual Bandit (CB). It mainly in-
cludes model parameter synchronization, model prediction, an exploitation–exploration
mechanism, real-time feature recording and storage, etc. The model uses the observed
data as states to indicate agent arm selection which is a leaking pipe label.

2. Theoretical Background

2.1. Contextual Bandit

In probability theory and machine learning, the multi-armed bandit problem (also
called the K- or N-armed bandit problem) is a problem to which a fixed set of finite resources
should be allocated among different choices to maximize the cumulative expected payoff.
This is a typical reinforcement learning problem, which reflects the exploration–exploitation
tradeoff dilemma. The gambler must decide which machines to play, how many times
to play each machine and in which order to play them, and whether to continue with
the current machine or try a different machine. In this problem, each machine provides
a random reward based on a probability distribution specific to that machine. The gambler
goal is to maximize payoff through a series of lever pulls.

Figure 2 compares the relationship between the state and the action in different bandit
algorithms. In the top subfigure, as a multi-armed bandit problem, the reward is only
affected by the action. In the middle one, the contextual bandit problem, both states and
actions can affect the reward. Additionally, in the bottom one, a full RL problem, the next
state will be affected by the action, and the reward will be affected by both states and
actions and it will also be delayed at the same time [19].

In a multi-armed bandit problem, the agent picks a pull from multiple arms of that
bandit, and a payoff corresponding to the value between 0 and 1 is obtained. The problem
is considered solved when the agent always chooses the arm that can return a relatively
large payoff. In this case, the agent completely ignores the state of the environment, as
there is only a single unchanging state [20].
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In a contextual bandit problem, at each iteration, based on a state and the rewards
of the arms played in the past, which is often represented as a d-dimensional eigenvector
(contextual vector), an agent can choose which arm to play with. In the learning process,
the agent has to try to collect more and more information, which is about the relationship
between the state and the reward. In this way, it can choose the best arm to pull according
to the current state [21].

LinUCB is an online linear method of Contextual Bandit. The basic idea is to assume a
linear relation between the expected reward of an action and its contextual state, and a set
of linear predictors is also used to model the representation space [22].

Figure 2. The relationship between state and action in different bandit algorithms.

2.2. Upper Confidence Bound (UCB)

Rather than performing the exploration by simply selecting an arbitrary action, it is
better to define a heuristic information formula for the arm selection. The UCB algorithm
uses uncertainty in the action-value estimations for balancing exploration and exploitation.
With UCB, At, the action selected at time step t, is:

At = argmax
a

[
Qt(a) + c

√
ln t

Nt(a)

]
(1)

where t denotes the total operational numbers of each arm currently; Nt(a) denotes the
number of times action a has been selected before time t, and c is a confidence value that
controls the level of exploration. If Nt(a) = 0, a is considered as the most likely action to
be chosen.

Equation (1) can be thought of as being formed from two distinct parts. Qt(a) rep-
resents the exploitation part. UCB is based on the principle of “optimism in the fact of
uncertainty”, which basically means if you do not know which action is best, then select
the one that currently seems to be the best—that is, the action with the highest estimated
reward will be selected.

The second half of the equation represents the exploration, where the degree of
exploration is controlled by hyper-parameter c. Effectively, this part of the equation
provides a measure of the uncertainty for the action’s reward estimation. If an action has
not been selected frequently, or has not been selected at all, then Nt(a) will be very small.
Therefore, the uncertainty term will be large, which will make this action more likely to
be selected. Every time an action is taken, the agent become more confident about its
estimation. In this case, Nt(a) increases, and so the uncertainty term decreases, which will
make it less likely to be selected as exploration (although it may still be selected as the
action with the highest value, mainly due to the exploitation term). When an action is
not being selected, the uncertainty term will grow slowly, due to the ln function, whereas
every time that the action is selected, the uncertainty will decrease rapidly due to the
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increase in Nt(a). Gradually, the exploration part decreases (since Nt(a) goes to infinity,
the square root term goes to zero), and eventually actions are selected based only on the
exploitation part [23].

3. LFD Method Based on Reinforcement Learning

3.1. Delayed Alarm Triggering Algorithm

The amount of make-up water is used to measure whether a leakage has occurred.
Nevertheless, due to the influence of measurement error and environmental noise, an in-
stantaneous peak value will inevitably appear [24]. Inspired by electric power systems, this
paper uses a delayed alarm triggering algorithm to reduce the effects of these interferences.

It is not recommended to trigger the alarm signal immediately when the amount
of make-up water just exceeds the threshold value G∗

m (typically set to 1% of the total
circulating flow rate Gm). The maximum tolerance M (typically set to 1

2 N0) acts as a buffer.
When the buffer is full, the alarm will be triggered. For each check, the maximum observed
value N0 can be set according to the sampling interval. The simulation systems often set the
sampling intervals to less than 10 min. Thus, waiting for several succussive observations
can reduce the disturbance of measurement errors and noise, which makes the algorithm
more robust.

3.2. CB-Based Leakage Fault Detection
3.2.1. Fault Detection Process

Figure 3 shows the leakage fault detection process using the Contextual Bandit algo-
rithm. Firstly, the establishment of a small DHN pipe network is used for simulating all
leakage faults that can occur in the networks, which can be used to construct a dataset.
Then, the simulated leakage data and real leakage data are used to train a CB model.
Secondly, when the amount of the overall network make-up water exceeds the threshold,
the alarm system will not be triggered until the buffer is full. It can effectively mitigate
the interference of measurement errors and noise. Finally, when the leakage occurs, the
observed data are sent to the CB model for the best arm selection, which is the leaking pipe
label [25].

 

Figure 3. Flowchart of leakage fault detection for Contextual Bandit.
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3.2.2. LinUCB for Disjoint Linear Model

This method solves context-independence problem in a traditional MAB and considers
the influence of the state on arm selection.

We assume that the expected payoff of an arm a is linear in the d-dimensional feature
xt,a, with some unknown coefficients vector θ∗a —namely, for all t:

E[rt,a|xt,a] = xT
t,aθ∗a (2)

where xt,a is the contextual information, i.e., the information about the eigenvectors of
a pipe network. The parameters of the model are not shared among different arms. Each
arm has a set of weights with a weighted relationship to the d-dimensional features to
obtain the expected payoff. Considering the total loss function of multiple experiments on
a single arm, we define the square loss function as follows:

loss(θ) = ‖ca − Daθa‖2 + ‖Idθa‖2 (3)

We use the L2 regularization ‖Idθa‖2 to prevent overfitting, where Id is the d × d
identity matrix. By making the derivative of θa in Equation (3) equal to zero, we obtain:

∂loss(θ)
∂θ

= 2DT
a (Daθa − ca) + 2IT

d Idθa = 0 (4)

θ̂a =
(

DT
a Da + Id

)−1
DT

a ca (5)

Let Da be a m × d matrix at trail t, where the rows correspond to m training inputs,
and ca ∈ Rm is the corresponding reward vector. Since it is an extension of the UCB
method, in addition to obtaining the expected value, we also need a confidence upper
bound. Fortunately, an upper bound has been found that is at least 1 − δ [26].

P
{∣∣∣xT

t,a θ̂a − E[rt,a|xt,a]
∣∣∣ ≤ α

√
xT

t,a(DT
a Da + Id)

−1xt,a

}
≤ 1 − δ (6)

where α = 1 +
√

ln(2/δ)/2 is a constant, for any δ > 0 as well as xt,a ∈ Rd. The UCB arm
selection strategy can be obtained from the inequality above. At each trial t, choose:

at
de f
= argmaxa∈At

(
xT

t,a θ̂a + α
√

xT
t,a A−1

a xt,a

)
(7)

where At
de f
= DT

a Da + Id,b = DT
a ca.

Ridge regression can also be seen as a Bayesian point estimate, where the poste-
rior distribution of the coefficient vector, denoted as p(θa), is a Gaussian with mean θ̂a
and covariance A−1

a . The predicted variance of the expected payoff xT
t,aθ∗a is evaluated

as xT
t,a A−1

a xt,a, and then
√

xT
t,a A−1

a xt,a becomes the standard deviation. Moreover, in the

information theory, the differential entropy of p(θa) is defined as − 1
2 ln
(
(2π)ddetAa

)
.

The entropy of p(θa) is updated with the addition of the new point xt,a. Then, it be-
comes − 1

2 ln
(
(2π)ddet

(
Aa + xt,axT

t,a
))

. The entropy reduction in the model posterior is
1
2 ln
(
1 + xT

t,a A−1
a xt,a

)
. The contribution from xt,a is evaluated by this quantity for model

improvement. Therefore, the arm selection criterion in Equation (7) can also be seen as
a tradeoff between the payoff estimation and reduction in the uncertainty in the model [27].

3.2.3. Algorithm Design

Firstly, the datasets measured by the sensors are processed by splicing into ma-
trixes, which are regarded as different state spaces Da in CB. There are n flow sensor data
D1

f = {d1, d2, d3, . . . , dn}n×d, and m−n pressure sensor data D2
p = {d1, d2, d3, . . . , dm−n}(m−n)×d,
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which are combined to form Da =
{

d1
f , d2

f , d3
f , . . . , dm

f , d1
p, d2

p, . . . , dm−n
p

}
m×d

, modeled as

states in RL. a pipes can be modeled as actions in RL. The arm selection in CB is just the
action selection, which also means locating the leakage pipe in DHS, at = argmaxa∈At(

xT
t,a θ̂a + α

√
xT

t,a A−1
a xt,a

)
. The reward function is set to ca = Bandit(a), where Bandit(a)

corresponds to a normal distribution function between 0 and 1. Additionally, the leaking
pipe corresponds to the maximum value of Bandit(a). Iteratively updating the A and b
values is carried out to update the weights θ. The overall algorithm is shown in Algorithm 1.

Algorithm 1. Leakage fault detection algorithm based on Contextual Bandit

Input : Da =
{

d1
f , d2

f , d3
f , . . . , dm

f , d1
p, d2

p, . . . , dm−n
p

}
m×d

flow and pressure sensor data.

Gm, total mass flow of replenished water
G∗

m, flow threshold, set to 10% of Gm
N0, maximum number of observations in one inspection

Output: a, selected action (select a leaky pipe)
(a) loop
(b) initialize α, m(0), s = false, M = 0.5 N0
(c) for t = 1,2, . . . , N0 do:
(d) if s = false then:

(e) if G(t)
m > G∗

m: m(t) = m(t−1) + 1
(f) if m(t) ≥ M: s = true
(g) break
(h) else: m(t) = m(t−1) − 1
(i) else for t = 1,2,3, . . . :
(j) get the current contextual association vector for all arms
(k) for all a:
(l) if a is new:
(m) set Aa to d-dimensional unit matrix
(n) set ba to d-dimensional zero vector
(o) calculate θ̂ = A−1

a ba

(p) calculate arm selection probability at = argmaxa∈At

(
xT

t,a θ̂a + α

√(
xT

t,a A−1
a xt,a

))
(q) update Aat = Aat + xt,at x

T
t,at

(r) update bat = bat + rtxt,at

4. Experimental Analysis

4.1. Model Parameters

There are 16 users in our simulation model. The flow parameters of each pipe in the
simulation model are given in Table 1.

Table 1. Heat source and user flow design information.

User-ID Pipe Name Mass User-ID Pipe Name Mass

U0 n1 2196.4 U8 n30 458.9
U1 n23 75.7 U9 n31 118.7
U2 n24 172.7 U10 n32 49.6
U3 n25 214.4 U11 n33 183.2
U4 n26 116.2 U12 n34 187.4
U5 n27 148.3 U13 n35 67.2
U6 n28 25.3 U14 n36 143.4
U7 n29 16.9 U15 n37 218.5

We used the stratified sampling method to divide the leakage dataset into a training
set and a test set. In total, 70% of the whole leakage dataset was used as the training set and
the rest were used as the test set. Table 2 shows the design information and data quantity
of the pipe network.
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Table 2. Pipe network design information and data quantity.

Parameter Number

Number of main pipes (supply water and return water) 78
Number of flow sensors 16

Number of pressure sensors 31
Number of data collected per pipeline leakage 100–400

Number of training sets 10,609
Number of test sets 4506

The supply water network is shown in Figure 4, and the return water network flows
in the opposite direction to the supply water network, with pipe sections numbered n’ [28].

 

Figure 4. Supply water network in a DHS (diagram).

4.2. Evaluation Criteria

In order to implement the LinUCB algorithm for the given dataset, we first parsed
each line of the input text file in the following way:

1. Strip every line of new line character;
2. Iterate over each line of input, which act as individual time steps, and split the line

based on a single space. This gives us a list of 48 elements;
3. Pop the head of the list and assign it as the arm for the current step;
4. Take the remaining 47 elements and assign them to the context array for the

current step.

This gives us all the parameters required to perform the online reward prediction of
the arms [29].

Then, with all the required parameters, we calculated the coefficient, payout and
standard deviation for each arm at every step and chose the arm with the highest payoff
(i.e., upper confidence bound) as our selection. This prediction was followed by an update
of matrixes “A” and “b” for the predicted arm. This was repeated for all time steps.

In order to evaluate the accuracy of our algorithm, we used the cumulative take-rate
replay which at time T is defined as:

C(T) =
ΣT

t=1yt × 1[πt−1(xt) = at]

ΣT
t=11[πt−1(xt) = at]

(8)

Whenever the selected arm is equal to the current arm, the identity function evaluates
to 1 and the CTR is updated for that time stamp [30].
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4.3. Analysis of Experimental Results
4.3.1. Comparison with Other Methods

At present, supervised learning methods are mainly used for pipe network fault
leakage detection, such as XGBoost, forward neural networks, and support vector machines,
etc. XGBoost is an optimized version of gradient tree promotion, which has had a good
effect on multi-classification tasks. In the application scenario of this paper, the classification
accuracy of XGBoost can reach 86.55% [11], the traditional BP network and SVM only reach
85% [12], and the accuracy of improved support vector machine can reach 92% [13].

Specifically, we consider a dynamic environment and apply the learned model to each
new leakage pipe situation. It can perform experiments in the environment, obtain samples
online, extract experience from the experiments, and modify the weights θ according to
the tendency of past pipe damage. Our method, compared with other supervised learning
methods (1) can acquire samples online without manual labeling and (2) enables online
learning and has greater adaptability to new changes.

In the training phase, since reinforcement learning searches in a large space, the
convergence speed is slower than that of neural networks. In practice, for example, the
online learning characteristics of reinforcement learning make the speed of convergence
depend on online sample acquisition. After the model stabilized, the Contextual Bandit
algorithm supports the addition and deletion of dynamical candidate pipes. When a new
pipe is added, it will be initialized in real time, added to the arm selections, given a certain
exploration rate. In contrast, the neural network-based multi-classification approach has to
add an input to the input layer, retrain the neural network, and correct the weights when
a new pipe is added.

A comparison of accuracy rates of the different research methods is shown in Table 3.

Table 3. Accuracy comparison of different research methods.

Research Methods Accuracy

XGBoost (Loop network fault) [11] 86.55%
BP (Secondary leakage fault) [12] 80%

SVM (Secondary leakage fault) [12] 85%
HKLS-SVM [13] 92%

CB (Loop network fault) 95.08%

Although the fault detection algorithm proposed in this paper has a slower conver-
gence time than other supervised learning methods. However, our method can realize
online learning, support the addition and deletion of new pipes, and improve the accuracy
at the same time. This is extremely helpful for DHN companies and end-users.

4.3.2. Arm Selection Analysis

As shown in Figure 5, the UCB method is compared with the random selection method,
ε–greedy method, and the Boltzmann method. After comparing these four methods, we
found that the randomly selection method has the worst performance and the other
three methods have a small difference in cumulative reward. However, the UCB strategy
fluctuates less and is very stable, which not only guarantees the accumulation of rewards,
but also an accurate estimate of the real rewards of each arm.

Figure 6 shows the situation of arm selection when a leakage occurs in the 15th and
21st pipes, respectively. In this case, the pipe with the largest UCB value has the maximum
likelihood of being selected, followed by the pipe with the second-largest average UCB
value. It validates the fact that LinUCB selects the pipe with the highest upper confidence
bound. Additionally, it shows that the algorithm is correct and feasible.
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Figure 5. Comparison of four arm selection methods.

  
(a) 

  
(b) 

Figure 6. Left: reward prediction and right: arm selection when leakages occur in the (a) 15th and (b) 21st pipes. (On the
left figure, the Y axis shows the reward for each pipe, and the X axis shows the number of pipes (i.e., the arm to be selected).
The Y axis in the right figure represents the number of choices made by the agent, and the X axis represents the pipe to
be selected).

4.3.3. Parametric Analysis

The explore–exploit mechanism in the algorithm is balanced by tuning the value of
α. Several different mechanisms are used to identify which α value works the best. The α
values are taken as 1, 0.001, 0.0001, 1/

√
t, and 0.001/(correct-selections/10), respectively.

A comparative analysis of the various α values shows how accuracy of the algorithm varies
based on different α values in Figure 7.
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Figure 7. CTR values for different α values.

As is evident from the plots, the best CTR value is achieved with α as “0.001/(number
of correct selections/10)”, when the CTR value is 0.95. Subsequently, the CTR values are
0.94, 0.87, 0.91, and 0.20 for α values of 0.001, 0.0001, 1/

√
t and 1, respectively.

When the α value is 1, we observe that the selected counts are almost the same for all
arms due to the minimal number of exploitations, thus giving it a very poor CTR value of
0.2. A significant improvement in the results can be seen when changing the value of α as
a function of the square root of time step. This is mainly because the agent is regulating the
degree of exploration and exploits the most out of the trained algorithm as the time passes.

A better result is obtained when using an α value of 0.001. The reason for this is that
in this case we are limiting the exploration to a very small value and exploiting the most.
This assures a positive outcome for the experiment.

In order to improve the CTR and achieve better results on this dataset, we assigned
α = 0.001/(correct-selections/10) and obtained the best result so far. This increased the
exploitation, particularly for the arms which gave us better results, and increased the
exploration of the arms which have not been the best selections so far. This approach raised
the CTR value of the LinUCB algorithm even further to 0.9508, which has been the best
CTR rate of all the α values experimented with.

Moreover, it is apparent from the experimentation that the choice of α is very important
as it governs the exploitation versus exploration tradeoff and can drastically improve the
results, if selected wisely.

5. Conclusions

In this paper, a new leakage fault detection method based on Contextual Bandit is
proposed. The entire experimental results show that the LinUCB algorithm is helpful
to solve the challenge of context-independence and construct an effective pipe selection
model for leakage faults.

Our method has three major advantages, including a high accuracy of 95.08%, low
investment and online real-time detection capabilities. As for the low-investment problem,
our method does not require additional sensors and installation of other equipment, and
the current existing sensors from substations and end-users are enough to obtain data.
As for the online learning and real-time detection problem, the SCADA system or IBMS
system can obtain real-time data online, which can provide a software basis for rapid fault
detection. At the same time, LinUCB is also an online learning algorithm. Therefore, the
LinUCB algorithm just needs to collect the sensor data in real time to train an agent, which
can be used to identify the right leakage pipe. However, it is different from the traditional
online learning method (such as Follow the Regularized Leader (ftrl), OpenDayLight (ODL),
etc.). Two main differences are as follows: (1) traditional methods try to construct a unified
model for the entire scenario, while each pipe in LinUCB is a separate model. (2) Traditional
online learning methods use a greedy strategy for making decisions based on the learned
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knowledge without exploration (but greedy strategies are often not optimal). However, on
the other hand, LinUCB has a more complete exploitation and exploration mechanism, and
focuses on long-term cumulative rewards, which is much more appropriate for reflecting
the optimal policy.

Since DHNs are closed recurrent networks, the amount of make-up water can be
an indicator to identify if a leakage occurs in the network. The delayed alarm triggering
algorithm is used to trigger an alarm when a malfunction occurs and reduce the measuring
errors and the interference of noise at the same time [31]. As the uptime of the DHS is much
longer than the downtime, real leakage data are relatively rare. Therefore, the established
model is used to simulate and obtain data for all possible leakage faults. When the leakage
signal is sent, the change rate vectors from the installed sensors are input into the trained
model, which can quickly output the leaking pipe label. The experimental results show
that the existing number of sensors can obtain enough data to ensure the LFD model
achieves an excellent detection performance, and the detection accuracy can reach 95.08%.
It also shows that this method can accurately and effectively detect leaking pipes, allow
operators to evaluate system performance, support troubleshooting decision mechanisms,
and provide assistance in the arrangement of maintenance [32]. At the same time, we
think that our method is also applicable to the leakage fault detection of air conditioning
water systems.

Although our method can achieve a fairly high accuracy, it relies heavily on accurate
data and suitable pre-processing. Therefore, combining the sensor fault detection method
and our method can perhaps increase the robustness of FDD. In addition, based on the
investigation of single agent, future work will consider using a multi-agent to detect multi-
point leakage faults. Moreover, the application of reinforcement learning in fault detection
and diagnosis is our research plan in the future.
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