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Preface

This Reprint focuses on leveraging remote sensing technology to address regional challenges

associated with climate change from a sustainable development perspective. Climate change is

reshaping ecosystems, economies, and social systems worldwide, prompting the urgent need for

innovative solutions that can mitigate its adverse impacts. Remote sensing, with its ability to provide

detailed, scalable, and continuous monitoring of the Earth’s surface, has proven indispensable in

advancing our understanding of climate phenomena and supporting regionally targeted adaptation

and mitigation efforts.

The scope of this Reprint spans a diverse array of topics, including satellite-based monitoring

of extreme weather events, the analysis of biological responses to climate shifts, assessments of

climate-induced losses, and the evaluation of nature’s and humanity’s adaptive capacity to changing

conditions. By offering a comprehensive look at the various applications of remote sensing in

climate-related issues, this Reprint aims to serve as a resource for researchers, policymakers, and

practitioners looking to gain insights into regional climate adaptation strategies and sustainable

practices.

This Reprint was driven by the need to consolidate pioneering studies and technological

advancements that demonstrate remote sensing’s role in understanding and addressing climate

change. Our motivation stemmed from the recognition that although climate impacts are global,

their manifestations and effective countermeasures often vary significantly at regional levels. Thus,

highlighting innovative remote sensing applications tailored to specific regional contexts can foster

more effective, localized strategies to counter climate change.

We hope that this Reprint will be valuable to the scientific community, including researchers,

students, and industry professionals involved in remote sensing, climate science, and sustainable

development. Our intended audience also includes government and policy stakeholders who can

benefit from the insights provided by these studies in making data-driven decisions.

This work represents the collaborative effort of numerous authors whose dedication and

expertise have been instrumental in compiling this collection. We extend our sincere gratitude to

each contributing author for their invaluable work and insights. Additionally, we acknowledge

the support of the reviewers, technical editors, and others who provided constructive feedback

throughout the editorial process, ensuring that this Reprint is of a high quality and relevant.

Our deepest thanks go to all those who have contributed to this project and to the institutions

that supported our authors in their research efforts. This Reprint is a testament to the collective efforts

within the scientific community to advancing knowledge and finding solutions in the face of one of

the most pressing challenges of our time—climate change.

Jun Qin and Hou Jiang

Editors
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Assessing Carbon Reduction Potential of Rooftop PV in China
through Remote Sensing Data-Driven Simulations
Hou Jiang 1 , Ning Lu 1,* and Xuecheng Wang 2
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and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

2 School of Geography and Planning, Nanning Normal University, Nanning 530001, China
* Correspondence: lvn@lreis.ac.cn; Tel.: +86-10-6488-9981

Abstract: Developing rooftop photovoltaic (PV) has become an important initiative for achieving
carbon neutrality in China, but the carbon reduction potential assessment has not properly considered
the spatial and temporal variability of PV generation and the curtailment in electricity dispatch. In this
study, we propose a technical framework to fill the gap in assessing carbon reduction potential through
remote sensing data-driven simulations. The spatio-temporal variations in rooftop PV generations
were simulated on an hourly basis, and a dispatch analysis was then performed in combination with
hourly load profiles to quantify the PV curtailment in different scenarios. Our results showed that the
total rooftop PV potential in China reached 6.5 PWh yr−1, mainly concentrated in the eastern region
where PV generation showed high variability. The carbon reduction from 100% flexible grids with
12 h of storage capacity is close to the theoretical maximum, while without storage, the potential may
be halved. To maximize the carbon reduction potential, rooftop PV development should consider grid
characteristics and regional differences. This study has important implications for the development
of rooftop PV and the design of carbon-neutral pathways based on it.

Keywords: rooftop PV; carbon emission reduction; dispatch modeling; remote sensing

1. Introduction

Solar photovoltaics (PV) has become an important pathway for achieving carbon
emission reduction around the world [1,2]. Globally installed PV capacity has grown more
than eightfold in the last 10 years, providing about 3.6% of the world’s total electricity
consumption in 2021 [3]. Various forms of PVs are proposed for extensive and widespread
development, such as floating PV [4], agricultural PV [5], building-integrated PV [6],
rooftop PV [7], etc. Compared to ground-mounted PVs, rooftop PV has unique advantages,
such as proximity to consumers [8] and no need for additional land [9], making it highly
favored in recent years. In China, the government is implementing a county-based strategy
to promote rooftop PV development to reduce carbon emissions [10].

Several studies have proposed methods to assess rooftop PV potential, which can be
broadly classified into geographic information system (GIS)-based methods and remote
sensing (RS)-based methods [11]. GIS-based methods are used for energy planning at city
scales that involve building structures (e.g., roof slope and façade orientation) [12] and
building interrelationships (e.g., shading and lighting) [13]. They are typically based on
a series of spatial or non-spatial data on available solar radiation and building features,
and combine GIS technology with machine learning, physical modeling, geostatistics,
and sampling methods for analysis [14–16]. GIS technology plays the role in capturing,
storing, manipulating, analyzing, managing, and presenting all types of data. For example,
Bergamasco and Asinari [17] proposed a method integrating GIS and solar radiation
maps to estimate the power generation of rooftop PV in Piedmont, northwestern Italy.
Assouline et al. [18] combined support vector regression and GIS to estimate the electricity
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generation potential of rooftop PV in Switzerland. GIS-based methods are usually suitable
for fine-scale spatio-temporal assessments, and the results can be employed to design effective
policies for rooftop PV development in built environments [11]. However, the intensive
computational demand is a main obstacle to their application on a large scale [13,16].

The typical RS-based approach integrates multi-source remote sensing data to assess
the regional potential of rooftop PV, and the main work usually consists of two aspects,
namely, building footprint extraction and solar resource estimation [7,19]. Mapping the
building footprints from very high-resolution images has attracted a lot of attention be-
cause high-resolution images contain more spatial-detailed contexts on ground objects [20].
For example, Guo et al. [21] proposed a coarse-to-fine boundary refinement network to
extract building footprints from aerial imagery and addressed the challenge of extracting
sharp building boundaries caused by obstructions from nearby shadows or trees, diver-
sity of roof shapes, and variation in building scales. Guo et al. [22] further developed a
model for automatic building footprint updates using bi-temporal remote sensing images.
Regarding solar resource estimation, geostationary meteorological satellites are widely
used to retrieve the total solar radiation and the direct/diffuse fraction at high spatial and
temporal resolutions [23–25]. For example, Jiang et al. [24] introduced a convolutional
neural network to extract spatial patterns from satellite imagery to deal with the spatial
proximity effects in solar radiation inversion. Li et al. [26] applied transfer learning for
global estimates of surface solar radiation, which combines the advantage of radiative
transfer simulations and ground measurements. Compared to GIS-based methods, remote
sensing makes large-scale assessment a reality, and the integration of deep learning signifi-
cantly improves computational efficiency [7,11]. Therefore, RS-based methods are typically
applied to large-scale resource estimation and spatial planning but are not applicable to the
design and integration of individual rooftop PV systems [19,27].

In parallel, light detection and ranging (LiDAR) technology has contributed to the
accurate simulation of PV electricity generations at urban scales [28,29]. The LiDAR-based
method allows for consideration of the shading effects of local topography on PV generation.
LiDAR can be combined with GIS tools to enrich the services, such as optimizing the PV
installations, balance-of-system costs, return on investment, payback time, and potential
carbon reductions [12,14]. For example, Jacques et al. [30] presented a methodology that
combines roof segmentation algorithms with LiDAR data to estimate potential PV capacity
for buildings in Leeds, UK. Gagnon et al. [31] integrated GIS with a regression statistical
approach and LiDAR dataset to determine the potential electricity generation of rooftop PV
across the United States. This kind of solution possesses the advantages of both RS-based
and GIS-based ones, while the high cost of LiDAR is the main reason why they are not yet
widely used [28,31].

In contrast to the refined assessment of PV power generation potential, the estimation
of PV carbon reduction capacity is relatively crude [32]. Typically, the estimated potential
is regarded as the activity level and multiplied by the grid emission factors published
by government departments to calculate carbon reduction potential [32,33]. There are
two main problems associated with such an approach. First, the fine-scale spatial and
temporal variability of PV power generation is not considered. The variability leads
to a mismatch between PV generation and user-side demand, and thus, a portion of PV
electricity is to be curtailed during dispatching; that is, not all PV electricity can be delivered
to the grid and then consumed by end users [34,35]. Second, the impact of the grid’s own
characteristics is ignored. It is known that the grid’s ability to absorb variable generations
varies with different system flexibility and energy storage capacity [36,37]. In addition,
since clean energy already exists in the grid [2,38], it is unlikely that one unit of rooftop PV
electricity will replace an equivalent amount of power in the current grid.

In this study, we attempted to solve the above problems by simulating fine-scale
variability in rooftop PV power generation using multi-source remote sensing data and
performing dispatch analysis by combining hourly PV generation with the hourly customer-
side load. In this way, the portion of rooftop PV generation that was actually consumed was
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calculated to correct for the overestimation of carbon reduction. The main contributions of
this study embody three aspects:

(1) The high-resolution mapping of the distribution of China’s rooftop PV potential.
An empirical relationship was established to estimate the rooftop area from the
settlement area. Multi-source remote sensing data were integrated to simulate the
spatio-temporal variation in rooftop PV electricity generation.

(2) The technical framework for calibrating the overestimation of carbon emission reduc-
tion. Rooftop PV generation curves and customer-side load profiles were combined
to obtain the PV curtailment rates during electricity dispatch. Current PV penetration
rates were used to calibrate the grid emission factors for PV-specific ones.

(3) The quantification of carbon reductions in China’s rooftop PV. We designed twelve
scenarios with 80%, 90%, and 100% flexibility and 0, 4, 8, and 12 h of storage capacity
to reflect the differences in the grid’s ability to absorb intermittent PV electricity.

The paper is organized as follows. Section 2 describes the remote sensing data,
including settlement footprints, building footprints, solar radiation, and air temperature, as
well as the models used for PV generation simulation and dispatch analysis. Section 3 shows
the results for rooftop PV potential and carbon reduction potential. Further discussion is
presented in Section 4, and conclusions are drawn in Section 5.

2. Materials and Methods

The workflow for assessing the carbon reduction potential of rooftop PV through
remote sensing data-driven simulations is shown in Figure 1.
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Figure 1. Workflow for assessing the carbon reduction potential of rooftop PV.

First, an empirical relationship between settlement footprints and building footprints
was built to map the national rooftop area and its distribution. Second, remote sensing
data on total solar radiation, diffuse fraction, and air temperature, as well as PV system
parameters, were fed into the Global Solar Energy Estimator (GSEE) [39] to simulate the PV
system’s electricity generation efficiency, which is measured by the capacity factor (CF) de-
fined as the ratio of a PV system’s actual output over a given period to the maximum output
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under standard test conditions over that period. Third, the Renewable Energy Flexibility
(REFLEX) [40] model was used for dispatch modeling based on hourly PV generations and
load profiles, given grid flexibility, storage capacity, and other settings. Finally, potential
carbon reductions were calculated according to the simulated curtailment rate, the total
amount of rooftop PV generation and known penetration rates, and emission factors.

2.1. Estimation of Rooftop Resources

Accurate surveys of rooftop area rely on very high resolution (e.g., WorldView, GeoEye,
and Pleiades satellites) and LiDAR remote sensing [7,20,41]. However, this approach faces
challenges of high cost and low efficiency when applied over large areas. Therefore,
it is impractical to conduct rooftop surveys over the 9.6 million square kilometers of
China’s territory. In contrast, extracting settlement footprints from moderate- or high-
resolution remote sensing is more cost-effective, and settlement footprint products with
global coverage are already available [42,43]. Figure 2a shows the settlement area in China
at 500 m resolution, which is aggregated from the world settlement footprint products [43].
These settlement footprints indicate the extent to which the buildings locate and can be
used as a reference for rooftop area estimation.
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Figure 2. Settlement and building footprints. (a) Settlement area in China at a spatial resolution of
500 m, aggregated from the world settlement footprint products [43]; (b) building rooftop area at a
spatial resolution of 500 m, which was calculated based on sub-meter building footprints in Jiangsu
Province, China [7].

Regional building footprint extraction has been conducted in many regions [44,45].
Previously, we conducted a rooftop footprint survey in Jiangsu Province by fusing multi-
source remote sensing images [7]. Figure 2b shows the rooftop area distribution based on
the sub-meter building footprints. We counted the settlement area and rooftop area of each
town in Jiangsu Province and found that these two areas had a significant linear correlation
with a coefficient of determination of 0.9247 at a 95% confidence level (Figure 3a). Such a
correlation was also observed at the global scale [27]. We further validated this correlation
at the county level and observed a coefficient of determination of 0.9495 at a 95% confidence
level (Figure 3b), implying the stability of the relationship across different scales. Here,
we extended this relationship to the entire country to map the rooftop area based on the
settlement area at 500 m resolution. In addition, according to the experiences in Europe
and China, only about 60% of the rooftop is suitable for PV installations [7,8]. Therefore,
the effective rooftop area ( Ar) was calculated from the settlement area (As) as:

Ar = 0.6 × 0.3633 × As (1)
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2.2. Simulation of PV Generation

In this study, we used GSEE [39] to simulate the PV system’s performance, pixel
by pixel, at a spatial resolution of 500 m, and on an hourly basis. Its inputs consisted
of climate data from remote sensing inversion (mainly including solar radiation and air
temperature) and PV system parameters (including installed capacity, panel orientation,
panel tilt angle, panel material, and inverter efficiency). Hourly solar radiation data were
from geostationary meteorological satellite images. Jiang et al. [46] produced hourly solar
radiation products in China using an outstanding deep learning algorithm, and the accuracy
was proven to be superior over other products [47]. Here, we collected the hourly data
from 2007 to 2018 and used multi-year averages for simulation. The distribution of annual
total solar radiation and the fraction of diffuse solar radiation are illustrated in Figure 4a,b,
respectively. We assumed that all rooftop PV systems were south-facing and tilted at an
optimal angle (θT) that varied with the latitude (ϕ) and diffuse fraction (Rd), as [48]:

θT = 4.521 + 0.430 × ϕ + 0.006 × ϕ2 + 54.504 × Rd − 80.712 × Rd
2 (2)

This empirical relationship was validated at 98 radiation stations in China [48].
Figure 4c shows the calculated distribution of θT in China according to the empirical rela-
tionship and spatial estimates of the diffuse fraction. Hourly air temperatures (Figure 4d)
were retrieved from the ERA5-Land reanalysis data [49]. We simulated the performance
of PV modules composed of crystalline silicon material, assuming an inverter loss of 10%.
The installed capacity was set to 1 kW; hence, the output of GSEE was equal to CF.

When the CF is known, the PV electricity generation (EPV) can be calculated as:

EPV = Ar × DP × CF, (3)

with DP denoting the PV installation density (here, a density of 74 W/m2 was adopted
according to the practices in Jiangsu Province, China [7]). In addition, the coefficient of
variation (CV) in daily averaged CF was calculated to provide a comparable understanding
of the variability in rooftop PV generations [50]:

CV =
δ

µ
, (4)

where δ and µ denote the standard deviation and mean of CF, respectively.
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2.3. Calculation of Carbon Reductions

If the electricity generated by rooftop PV is delivered to the electrical grid to replace
the power from other sources, rooftop PV contributes to carbon emission reductions. We
calculated CO2 equivalent emission reductions (Cr) based on the approach provided by the
Intergovernmental Panel on Climate Change (IPCC) [51]:

Cr = (1 − Rc)× AD × EF(
1 − Rp

) , (5)

where AD represents activity data, equaling the amount of PV electricity consumption (EPV)
in this study; EF represents the emission factor that is associated with each unit of electricity
supplied by a grid (tCO2e MWh−1); and Rc and Rp denote the curtailment rate and the
penetration rate, respectively.

PV generation varies depending on local weather conditions, so they do not always
correlate well with customer-side demand. If PV generation exceeds the net demand,
the excess generation is at risk of being curtailed. In Equation (5), we introduce (1 − Rc)
to correct for the decline in AD due to the curtailment; that is, this item indicates the
proportion of rooftop PV generation that is delivered to the grid. We used the REFLEX
model to simulate the electricity dispatch of each regional grid (Figure 5a) to obtain the Rc
value when their respective rooftop PV potential was fully released. The REFLEX model
compares the generations from rooftop PV and other plants with the net system load,
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hour by hour, to calculate the fraction of load met by PV generation. When PV generation
exceeds the net load, the excess portion is curtailed or placed into storage, if available. The
amount of storage in a grid is characterized by the average hourly load, for example, if
the average hourly load is 30 GW, 2 h storage represents 60 GWh of energy capacity. The
REFLEX model can evaluate the ability of an entire grid system to accommodate variable
generations (e.g., solar PV and wind) according to the minimum generation level across the
system. The minimum generation level represents the limit of both baseload generators, as
well as generators that must remain online to reliably meet the variability and uncertainty
of the net load and can be more generally expressed as the system flexibility, defined as the
fraction of the must-run generators below the annual peak [36]. In this study, we designed
a set of scenarios with different flexibility (80%, 90%, and 100%) and storage capacity (4 h,
8 h, and 12 h) levels. The typical load profiles of each grid were extracted from the report
issued by the National Energy Administration [52]. The example of the Beijing grid is
displayed in Figure 5b,c. The hourly loads throughout the year were calculated as [52]:

Li,j = Lpeak,i −
Hmax − Hj

Hmax − Hmin

(
Lpeak,i − Lbase,i

)
, (6)

where Hj denotes the load at hour j, Hmax is the maximum load, and Hmin is the minimum
load, whose values vary depending on whether the day belongs to weekdays (blue line in
Figure 5b) or weekends (brown line in Figure 5b). Li,j denotes the load at hour j of day i,
Lpeak,i is the peak load of day i (red line in Figure 5c), and Lbase,i is the base load of day i
(green line in Figure 5c).
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Emission factors are sourced from China’s Regional Grid Emissions Factors 2019 [53].
We used the operating margins (OMs) that represented emission factors from existing
power plants in the electric grid, and the values for the northwest, north, northeast, central,
east, and south grids were 0.8922, 0.9419, 1.0826, 0.8587, 0.7921, and 0.8042 tCO2/MWh,
respectively. Since these values were calculated for a generation mix that already included
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zero-emission PV electricity and rooftop PV did not displace existing clean energy on
the grid, the emission reductions calculated by directly applying these factors were un-
derestimated. Here, we used the current renewable energy penetration rate (Figure 6a,
sourced from https://www.bjx.com.cn/, accessed on 30 December 2022) to correct for this
underestimation, as EF

(1−Rp)
.
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from https://www.bjx.com.cn/, accessed on 30 December 2022); (b) total carbon emissions of the
corresponding regions in each regional grid in 2019 [54].

For clear recognition of the magnitude of emission reductions from rooftop PV, we
defined a metric called the carbon offset rate (Ro):

Ro =
Cr

Ca
(7)

This metric compared the emission reductions (Cr) to the total CO2 emissions in
2019 (Ca). The emission inventories for each regional grid (Figure 6b) were collected from
the China Emission Accounts and Datasets (https://www.ceads.net.cn/, accessed on 30
December 2022) [54]. Ro ≥ 1 indicated that carbon neutrality could be achieved within the
grid by developing rooftop PV.
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3. Results
3.1. Electricity Generation Potential

Figure 7 shows the spatial distribution of rooftop PV electricity generation poten-
tial, as well as statistics by regional grid. In total, the theoretical maximum potential
reached 6.5 PWh yr−1, of which, more than 80% was concentrated in the eastern part of
China. The North China Plain, Yangtze River Delta, and Pearl River Delta represented
the most notable hotspots. The potential per unit area (500 m × 500 m) in these re-
gions could exceed 5 PWh yr−1. However, the western parts with high-quality solar
energy resources accounted for less than 20% of the potential. As for the 33 regional
grids, Shandong (681.9 TWh yr−1), Henan (521.0 TWh yr−1), Jiangsu (489.3 TWh yr−1),
Jinan (400.3 TWh yr−1), and Guangdong (381.7 TWh yr−1) grids had the greatest potential.
According to energy statistics, these grids were in the front ranks of electricity consump-
tion (Figure 7b). Such a coincidence reflects the advantages of rooftop PVs; that is, their
electricity generation is close to the energy demand.
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Figure 8a illustrates the variability of rooftop PV electricity generation, expressed as
the CV of the daily averaged CF. In general, the variability was small in western China
while large in eastern China (especially in the south). The variability was extremely high
(CV > 0.6) in the Sichuan basin and the middle and lower reaches of the Yangtze River,
due to frequently cloudy and rainy weather. The spatial pattern of CV implied that most
rooftop PV generations were characterized by significant volatility and uncertainty. Spatial
aggregation was an effective way to reduce volatility. As demonstrated by the case of
the Beijing grid (Figure 8b), the variability remained high after aggregation. Moreover,
the fluctuations were highly stochastic and irregular in nature, making them difficult to
forecast [55]. This issue was compounded by the shortened forecasting horizon because
the fluctuations were more frequent and drastic at finer time scales (cf. the black and
blue lines in Figure 8b). When comparing the hourly rooftop PV generations with the
load profiles of the Beijing grid (Figures 5c and 8b), the mismatch between the two was
clear. This mismatch magnified the difficulty of electricity dispatch [34]. Meanwhile, the
increased variability imposed a more cyclic operating profile on dispatchable generation,
with considerable cost implications [56].
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3.2. Carbon Reduction Potential

We calculated the ratio of the minimum base load relative to the maximum peak load
as a lower bound for grid flexibility in our scenario design. Based on the calculation results,
we simulated the potential carbon reductions in the 33-region grid under 80%, 90%, and
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100% flexibility and 0, 4, 8, and 13 h of storage capacity (Table 1). As shown in Figure 9a, the
carbon reduction potential declined with decreasing flexibility. A less flexible grid had more
electricity from must-run units, so the net load to be met by variable PV generations was
lower, putting rooftop PV at greater risk of curtailment [36]. The adoption of energy storage
technology enhanced the capability of reducing carbon emissions (Figure 9a). Rooftop PV
systems generate electricity during the daytime and store the excess to meet the load during
the nighttime, ensuring that more electricity can eventually be consumed. Given 100%
grid flexibility, 4 h storage capacity increased carbon reductions by 30% compared to the
no-storage scenario. In contrast, at the same 100% flexibility, 12 h storage capacity increased
the carbon reduction potential by only 9% compared to the 8 h storage case, suggesting
that the role of storage diminished with expanding capacity. Because of the diminishing
effect, 8–12 h storage capacity hardly worked at 80% flexibility. In the scenario with 90%
grid flexibility and 8 h storage capacity, the total carbon reductions reached 4471.2 MtCO2,
consisting of 457.3 MtCO2 from the Northwest grid, 1226.8 MtCO2 from the North grid,
469.0 MtCO2 from the Northeast grid, 824.9 MtCO2 from the Central grid, 886.7 MtCO2
from the East grid, and 606.6 MtCO2 from the South grid (Figure 9b).

Table 1. Potential carbon reductions (unit: MtCO2) in each regional grid under different scenarios.

100% Flexibility 90% Flexibility 80% Flexibility
0 h 4 h 8 h 12 h 0 h 4 h 8 h 12 h 0 h 4 h 8 h 12 h

Xinjiang 111.5 153.1 166.5 166.8 101.9 145.3 165.8 166.8 91.6 136.1 163.8 166.4
Tibet 3.6 4.8 5.9 6.6 3.0 4.3 5.3 5.6 2.5 3.7 4.4 4.5

Qinghai 20.4 20.4 20.4 20.4 20.4 20.4 20.4 20.4 20.3 20.4 20.4 20.4
Gansu 59.8 82.6 95.6 96.6 54.2 77.5 93.9 96.5 48.2 71.8 90.8 94.5

Ningxia 47.2 54.6 54.6 54.6 43.9 54.5 54.6 54.6 39.9 54.3 54.6 54.6
Shan’xi 74.6 100.6 126.0 144.5 65.6 91.6 117.2 128.5 56.2 82.2 102.8 107.7
Beijing 54.4 73.4 86.8 89.6 47.5 67.0 80.5 83.2 39.9 59.2 68.8 70.3
Tianjin 41.5 56.4 68.0 72.3 36.7 51.8 64.6 68.5 31.6 46.8 58.0 59.7

Jibei 92.4 125.5 158.2 186.6 82.2 115.4 148.3 168.9 71.6 104.7 136.9 144.9
Jinan 129.8 172.1 214.3 245.4 113.9 156.2 197.3 213.0 97.5 139.7 171.4 176.1

Shanxi 117.9 162.2 196.5 208.3 105.7 150.7 188.8 204.2 92.7 138.0 178.6 188.9
Shandong 253.3 341.1 428.3 504.1 221.9 309.7 396.0 442.8 189.2 277.0 354.5 367.4

Mengxi 124.9 151.2 151.3 151.3 115.8 150.7 151.3 151.3 105.3 148.4 151.3 151.3
Mengdong 43.3 57.6 71.9 84.0 37.9 52.2 66.5 72.7 32.4 46.7 59.1 60.3

Heilongjiang 70.9 92.8 114.7 127.0 62.7 84.6 104.7 110.9 54.4 76.3 90.6 92.8
Jilin 54.4 71.6 88.8 98.9 48.1 65.3 80.8 86.6 41.7 58.9 70.2 72.9

Liaoning 134.3 183.1 230.3 271.1 120.4 169.3 217.0 247.1 106.0 154.8 202.3 216.3
Sichuan 100.0 135.2 158.6 163.5 88.2 124.3 152.2 158.1 75.4 112.0 136.9 139.5

Chongqing 37.6 48.8 51.5 51.5 32.8 45.8 50.8 51.2 27.2 41.1 44.9 45.1
Henan 168.2 225.7 283.2 330.4 143.9 201.5 258.5 282.1 118.7 176.3 218.9 225.9
Hubei 93.2 126.2 156.9 176.8 80.8 113.9 145.0 156.9 67.6 100.7 124.6 129.7
Hunan 78.7 105.0 131.1 149.4 67.9 94.2 118.7 128.3 56.6 82.9 99.8 103.7
Jiangxi 64.3 86.3 108.1 125.3 56.4 78.3 99.7 110.0 48.0 70.0 87.5 91.1
Anhui 89.4 120.7 151.9 177.6 76.4 107.8 138.5 152.7 62.9 94.2 117.6 123.0
Jiangsu 242.2 330.3 389.8 406.6 214.6 305.0 373.3 394.4 184.8 276.0 346.4 358.3

Shanghai 48.5 55.2 55.4 55.4 44.5 54.5 55.4 55.4 39.1 53.0 54.9 55.2
Zhejiang 162.3 205.7 212.0 212.5 146.8 197.9 209.1 210.0 129.0 184.4 203.4 204.4

Fujian 84.2 107.8 110.7 110.8 76.8 104.5 110.4 110.6 68.4 99.1 109.0 109.5
Yunnan 67.7 91.5 114.4 130.7 60.8 84.6 107.9 118.9 53.7 77.4 99.1 102.9
Guizhou 51.2 68.3 73.7 73.9 45.4 63.9 72.9 73.5 38.9 58.2 67.4 68.1
Guangxi 64.4 86.2 107.9 124.9 56.5 78.4 99.9 109.3 48.2 70.1 87.7 89.7

Guangdong 230.1 299.2 310.8 311.2 207.2 286.2 306.4 307.5 180.9 265.2 297.4 299.8
Hainan 12.5 16.8 21.1 24.6 11.0 15.3 19.6 21.8 9.5 13.8 17.6 18.2

Total 3028.8 4011.9 4715.0 5153.1 2691.9 3722.3 4471.2 4762.1 2329.9 3393.5 4091.4 4212.7
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Figure 9. Potential carbon reductions from rooftop PV. (a) Total carbon reductions in China under
different scenarios; (b) distribution of potential in the six primary regional grids.

Using the total CO2 emissions in 2019 as a reference, we calculated the minimum and
maximum offset rates for each grid among the twelve scenarios simulated, as shown in
Figure 10a,b, respectively. Overall, the North and Central grids were relatively poor, with
most grids having minimum offsets of less than 20%; while the East and South grids fared
well, with most grids having maximum offsets exceeding 50%. Except for the Qinghai
grid, all other grids witnessed varying degrees of improvement in the offset, owing to
the increased flexibility and storage capacity. The Qinghai grid itself had little rooftop PV
potential, so curtailment rarely occurred, even when the peak output of the rooftop PV
came across the lowest base load. Energy storage did not make sense for the Qinghai grid
(Table 1). By comparison, the Guizhou, Mengxi, Ningxia, and Chongqing grids were the
most worrisome, while the Guangdong, Zhejiang, and Beijing grids were the most exciting
in terms of both minimum and maximum offset rates. In addition, we can conclude that
carbon neutrality cannot be achieved in China by relying on rooftop PV alone, given that
the offset rates of all grids were below 100% in all scenarios.
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4. Discussion

Our evaluations revealed that China has a considerable amount of rooftop PV elec-
tricity generation. Although rooftop PV potential showed great spatial heterogeneity, it
exhibited a good match with energy demand (Figure 7). On the one hand, the major
energy-consuming provinces, such as Guangdong, Shandong, Jiangsu, and Zhejiang, were
at the forefront in terms of the total potential; on the other hand, the potential was mainly
concentrated in urban areas with high intensities of energy consumption. This is precisely
the advantage of rooftop PV over large ground-based PV plants: helping not only to reduce
energy losses in transmission but also to save on electricity transmission costs [37,57]. In
addition, rooftop PV offers the option of bypassing land competition. If the same amounts
of rooftop PV electricity were obtained by installing ground-based PVs, a minimum net area
of approximately 30,196 square kilometers would be required, which would be equivalent
to six Shanghai cities. This is almost unacceptable for the densely populated eastern region,
where land resources are inherently competitive [9].

In addition to being directly related to the number of electricity generations, carbon
emission reduction is also affected by market consumption [58]. In this study, we quantified
this effect through electricity dispatch based on hourly generation simulations and load
profiles. The results revealed that fully releasing the potential of rooftop PV could reduce
CO2 equivalent emissions by 2.3–5.2 Gt, lower than those (~5.9 Gt) emitted when the
generated electricity is completely consumed without curtailment. Nevertheless, the
potential reduction is equal to 21%–47% of China’s total emissions in 2019 [54]. Such a scale
is sufficient to make a significant contribution to China’s carbon neutrality [59,60]. Our
study highlights the importance of increasing grid flexibility and preparing energy storage
to obtain a greater amount of carbon reduction. When grid flexibility increased from 80% to
100%, carbon reductions increased by about 25%, and an additional increase of about 60%
was attainable if 8–12 h of energy storage were available. It is worth noting that the effect
of increased flexibility and energy storage varied from grid to grid (Table 1), suggesting
that rooftop PV development planning should be tailored to local conditions.

The amount of both roof resources and energy consumption reflects, to some extent,
the level of regional development, and thus, the two coincide spatially. In contrast, carbon
emission intensity was higher in the developed eastern regions than in the central and
western regions, so the total emissions were not consistent with the rooftop PV potential in
space. This leads to significant spatial differences in the process of carbon neutrality that
depend on rooftop PV (Figure 10). Based on the twelve scenarios simulated, we presented
a plausible range of offset rates. It should be noted that the offset rates can be further
enhanced by using larger energy storage or other means, such as load shifting, and may be
decreased if the flexibility is lowered. However, the uncertainty will not be great, as 12 h of
energy storage and 80% flexibility is close to the limit. In addition, increased flexibility and
greater storage capacity are not necessarily better because their effectiveness also depends
on the characteristics of customer-side loads and PV generations in the grid. This, once
again, emphasizes the importance of differentiated layout and planning when developing
rooftop PV, which may also be true for other PV development.

5. Conclusions

In this study, we designed a technical framework for integrating multi-source remote
sensing data to assess the carbon reduction potential of rooftop PV. The key point was to
obtain the PV curtailment rate through a dispatch model based on the spatio-temporal
simulations of hourly PV generation and the load profiles of each grid. The main conclu-
sions include:

(1) The maximum electricity generation of rooftop PV in China reached 6.5 PWh yr−1, of
which more than 80% was concentrated in densely populated areas in the east and
characterized by high variability.

(2) Unlocking China’s full rooftop PV potential could reduce CO2 equivalent emissions
by 2.3–5.2 Gt, depending on the grid flexibility and storage capacity.
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(3) The potential carbon reductions could offset 21%–47% of China’s total emissions,
using the data in 2019 as a reference; thus, it could make a significant contribution to
carbon neutrality.

(4) Both carbon reductions and their offset rates vary greatly from grid to grid, highlight-
ing the need for rooftop PV development plans tailored to local conditions.
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Abstract: This study provides pioneering research on the vegetation of archaeological areas in Iran
to enhance its naturalistic and bioindication values by selecting the Pasargadae World Heritage
Site (WHS). Vegetation surveys were carried out in different homogeneous habitats, analyzing the
plant communities through statistical elaboration, syntaxonomic role, mapping, and enhancement of
plants with conservation interest. In an ecological approach, the study included an analysis of the
recent climate changes and human interventions influencing the water resources. Results revealed
seven main vegetation types reflecting ecological gradients shaped by environmental, edaphic,
and anthropogenic factors. The syntaxonomic analysis showed a primary subdivision in semi-
natural grasslands and synanthropic vegetation. Several key species were identified as bioindicators
of multiple factors, such as: Launaea acanthodes, Stipa barbata, Alhagi maurorum, Bellevalia saviczii,
Glycyrrhiza glabra, Convolvulus arvensis, and Hordeum murinum. The vegetation map showed how the
hilly grassland communities hosted the highest number of species with conservation interest and their
need to be better protected. Bio-climatic data, such as the construction of dams and the exploitation
for irrigation purposes, pointed to the increasing xeric conditions, which make urging conservation
efforts for the site’s historical and naturalistic values. The study underscores the importance of
preserving places with high plant diversity for effective site management, and enhances the intricate
relationship between vegetation and natural features in the occurring environmental changes.

Keywords: archaeological site; biodiversity; climate change; syntaxonomy; vegetation mapping;
nature conservation

1. Introduction

Archaeological sites display the interaction of the natural environment and human
activities [1–6]. In this interaction, multiple dynamics are involved, in which vegetation can
have both a negative and sometimes a positive action in the conservation of archaeological
structures [7]. Indeed, the growth of plants in archaeological areas recurrently gives rise
to biodeterioration phenomena, which is related to the development of their roots [8–17].
However, less consideration has been given to the benefits and values that the plants can
provide, both in terms of the direct benefits they offer and the indirect advantages gained
from understanding their role. In fact, the presence of plants in archaeological areas has a
mitigating effect on the microclimate, thus ensuring higher stability and durability of the
monuments and offering better comfort for those who visit these places [18,19]. Indeed,
several studies demonstrated the mitigating action of plants by reducing solar radiation,
maintaining a higher relative humidity, and reducing weathering, contaminant deposition,
and wind erosion as well [20–23]. Moreover, some contributions [18,24–26] provided a
methodological framework for evaluating the heritage value of vegetation. Furthermore,
wild plants can also show indications of buried archaeological structures, thus adding
information to the history of the site [27–31].
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In addition, archaeological areas, being better protected from anthropogenic distur-
bance compared to other human-managed areas, have proven to be valuable refuges for
biodiversity conservation [5,6,32,33]. The permanence of natural habitats and the floristic
richness found in these areas is considerable, with the occurrence of a high number of
species of conservation interest [6,32,34–37].

Analyzing plant communities in archaeological areas, such as their distribution and
bioindication values, can greatly enhance the efficiency of site management and enrichment
activities [18,20]. In fact, understanding how plant species are spatially and numerically dis-
tributed within the archaeological areas can facilitate management planning and activities,
minimizing their negative impacts and promoting the benefits that plant communities can
provide in these contexts [11,38,39]. Conversely, the vegetation growing on archaeological
sites is influenced not only by human activities, but also by environmental and climatic
conditions, as well as their ecological characteristics can serve as a bioindicator of these
changes [40,41]. Due to severe climatic conditions, vegetation in arid or semi-arid envi-
ronments shows a relative adaptive capacity, which becomes more significant considering
current climate changes [42,43]. Vegetation maps of archaeological sites are useful tools
for management planning, providing insight into the reading of the site characteristics,
both for precise location of the various types of plant communities and contribution to the
conservation of monuments [39].

In the Mediterranean areas, while several studies have addressed the vegetation of
archaeological areas, research carried out on archaeological sites in arid or semi-arid envi-
ronments is limited [6,32,44], despite their relevance and fragility caused by the occurring
climatic changes. Notably, the UNESCO World Heritage Site (WHS) of Pasargadae, dating
back to the 6th century BC [45,46], is of significant historical importance for its age, and its
value since it is the place where the Persian Garden originated. The origin of the garden it-
self can be related to the favorable rainfall and hydrological conditions, since in the past the
site had a high availability of water. However, the aridity has increased over the centuries,
and this phenomenon has evidently intensified more recently. The present desiccation of
the river was the consequence of both direct human interventions and the current climate
change [47,48]. Moreover, Pasargadae is located in the border zone of the Zagros mountains,
and the Irano-Turanian region, and it results in a rich ecotone from a biodiversity point of
view, as well as a high naturalistic interest [6]. Following our recent floristic assessment [6]
and the biodeterioration evaluation due to plant growth [17,49], we wish to deepen the
knowledge of the site, by adding detailed insights into the vegetation’s naturalistic values
that characterize the various parts of the site and the emerging issues linked to the climatic
changes. In particular, this study will analyze the different types of vegetation growing in
the archaeological area to: (1) assess their ecological and syntaxonomic characteristics and
enhance their bioindication values; (2) evaluate the naturalistic interest and the distribution
in the area through their mapping; and (3) give a preliminary assessment of the effects of
the increasing stresses induced by the warming and desiccation of the area.

The findings will be useful for both the enhancement of natural values and the pro-
tection of monuments on the site, thus ensuring a balance between the need to preserve
natural and cultural values, which is an aspect that should be better considered in the
management plan of archeological sites [5,10,24,39,49,50].

2. Materials and Methods
2.1. The Study Area: Pasargadae World Heritage Site

The Pasargadae Plain (Figure 1), also known as the Morghab Plain, is one of the vast
alluvial sedimentary intermountain basins that is characteristic of the central and eastern
part of the Zagros Mountains range [48] which form a plateau at 1400–1800 m above sea
level, surrounded by a 2200–2500 m high mountain range [51]. It was formed during
the Zagros orogeny, dating back to the Mesozoic era [52], and it is located in a unique
position in High Zagros, where it experienced Wurm glaciation and later pluvial stages [51].
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Polvar/Sivand River, the principal watercourse of Pasargadae, crosses the region from
northeast to southwest, joining the plain of Persepolis downstream [48].
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Figure 1. Views of the Pasargadae archaeological area: (a) the areal map of the site with the location
of monuments in the site, riverbeds, Zagros Mountain, farmlands, and villages; 1. Cyrus the Great
Tomb, 2. Caravanserai, 3. Private Palace, 4. Watercourses of Royal Garden, 5. Pavilion B, 6. Pavilion
A, 7. Audience Hall, 8. Gate Palace, 9. Stone Tower, 10. Fortification terrace.; (b) the landscape of
the surrounding area with trees of Pistacia atlantica (Babak Sedighi: archive of Pasargadae research
center); and (c) the landscape of the Cyrus Tomb (Author, May 2019).

Pasargadae holds significant historical and geographical importance in the Fars
Province of Iran since it was the location of the first capital of the Achaemenid Empire, the
ancient Persian capital founded by Cyrus the Great around 546 BCE, due to the favorable
orographic and hydrogeological conditions [45,46]. In fact, the plain is surrounded by a
range of hills and mountains radiating from the Zagros Mountains chains, and the condi-
tions of a well-watered basis and a wide area of arable land played an important role in the
site’s choice and provided a favorable environment for agricultural development [48,53].
The natural landscape of the area not only consists of Zagros and Irano-Turanian biodi-
versity but has also been impacted by human activities such as agriculture and pastoral
activities over centuries. The plain features archaeological remains, notably the tomb of
Cyrus the Great, along with other structures showcasing ancient Persian architecture and
cultural achievements.

The climate of the Pasargadae area is classified within the Mediterranean xeric con-
tinental bioclimate, characteristic of southern Iran and northern Fars [54], which exhibits
semi-arid features, including warm and dry summers and relatively cold winters.

Previous elaborations (2006–2021) [6] showed a certain variation in rainfall with
average values of approximately only 222.8 mm, primarily concentrated from December
to May, including occasional snow at higher altitudes, followed by a dry period from
June to September. At the same time, the annual temperature typically ranged between
14.7–17.5 ◦C, with the lowest absolute temperature recorded at −10.6 ◦C in February and
the highest at 44.4 ◦C in July. Relative humidity averaged around 39–41%, showcasing
significant fluctuations throughout the day, with winter temperatures often falling below
0 ◦C [47].

2.2. Methodology
2.2.1. Vegetation Sampling

Following the phytosociological approach of the Zurich–Montpellier school [55], the
vegetation survey was conducted (May 2022) in sampling areas selected on the basis of
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homogeneous edaphic and stational conditions in order to avoid ecotones and overlapping
among different communities. In total, 33 plots of 10 m × 10 m (Figure 2) were carried
out randomly in the different areas, such as highly disturbed areas near the monuments,
dry riverbed areas, remnants of the Royal Garden watercourses, semi-natural grasslands,
shrublands under several edaphic conditions, and stony and rocky hills. In each plot,
the vegetation survey was carried out visually estimating the plant coverage index of the
Braun-Blanquet scale: + = <1%; 1 = 1–5%; 2 = 5–25%; 3 = 25–50%; 4 = 50–75%; 5 = 75–100%.
In addition, the most relevant environmental variables and edaphic factors, such as slope,
aspect, altitude, and soil characteristics, were collected.
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Figure 2. WHS of Pasargadae, Fars Province (Iran): map of the 33 surveys carried out within the site.
The sampling locations covered: highly disturbed areas near the monuments (1–3,23,25), dry riverbed
area (11,12,14,29,32), remnants of the Royal Garden watercourses (16–18), semi-natural grasslands
and shrublands under several edaphic conditions (4–7,10,24,26,28,31,33), and stony and rocky hills
(8,9,13,15,19–22,27,30).

For the vascular plant species identification, we used the Flora Iranica [56], comparing
data with those obtained from the floristic study of Hosseini et al. [6] and with the herbar-
ium specimens stored in the Herbarium of the University of Roma Tre. The nomenclature
followed the “World of Flora Online” [57].

2.2.2. Statistical Elaborations and Syntaxonomic Analysis of Plant Communities

To analyze the different communities based on their plant composition, as well as
the similarities and differences between them, a cluster analysis was performed to group
plots into vegetation units based on a set of species and cover abundances. Data dissimi-
larity matrices were calculated using the Bray–Curtis dissimilarity index. A hierarchical
cluster analysis was performed on this matrix using the mean agglomeration method
(UPGMA), and the optimal number of clusters was determined using the Silhouette in-
dex [58]. A dendrogram was derived to illustrate the dissimilarities between samples
and species, sorted according to the distance matrices [59]. Furthermore, to study the
ecological gradients between the vegetation clusters, an ordination graph of sampling sites
was created using the Non-Metric Multidimensional Scaling (NMDS) method. The latter is
an unconstrained method which attempts to represent, as closely as possible, the pairwise
dissimilarity between objects in a low-dimensional space, unlike maximizing the variance
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or correspondence between objects in an ordination, as other methods do [60]. We also
passively projected the environmental variables measured in the field on the NMDS plots
to highlight the ecological drivers between the vegetation clusters.

Furthermore, we conducted a syntaxonomic analysis of the plant communities based
on the ecological interpretation, mainly following Zohary [61]. However, given that Zo-
hary’s work is somewhat dated and lacks detailed regional information, we compared our
findings with the more recent analysis of vegetation types in Fars province [62]. To address
this gap, species identified in our study but not listed in Zohary [61] were attributed to
specific syntaxa based on the group divisions done by Khodagholi [62].

An investigation on bioindication values of the plant communities was carried out
based on the scientific literature, considering the habitats that commonly host the most
recurrent species within each community.

2.2.3. Evaluation of Plant and Communities of Conservation Interest

The natural and conservation status of the species found in the plots were cross-
referenced with the Red Data Book of Iran [63], scientific literature [6,64–66], and the
International Directives of CITES. New records and notes on species from the scientific
literature were also evaluated.

2.2.4. Vegetation Mapping

The vegetation map was created through field surveys and photo interpretation.
Indeed, for each vegetation type identified in the field, the extent and distribution within
the perimeter of the archaeological site were estimated by recording the GPS coordinates of
each area boundary The QGIS Software version 3.36 was utilized to map the distribution
of the different vegetation units, providing a spatial representation of different plant
communities. A photointerpretation of areas was also carried out, comparing collected
data with orthophotos taken from Google Satellite.

Subsequently, we produced a map that illustrates the distribution of species with
conservation interest, highlighting areas with the highest and lowest abundance among the
different clusters.

2.2.5. Preliminary Evaluation of Recent Environmental Changes

The climate analysis involved meteorological data from Fars, sourced from nearby syn-
optic stations (Persepolis, Safashahr, and Arsenjan) through http://www.irimo.ir, (accessed
on 11 July 2023). This analysis included diagrams covering the past 16 years (2006–2022),
and we developed the occurring trends. We also conducted analytical diagrams focusing
on the most recent 4 years to evaluate possible recent drastic changes.

We also evaluated the occurrence of further anthropic activities which could influence
the climatic conditions of the site, analyzing the recent documentation referred to water
management [67–71].

3. Results
3.1. Ecological and Syntaxonomic Characteristics of the Plant Communities and Their
Bioindication Values

The resulting dendrogram of the 33 plots carried out in the site (Figure 3), based on
similarities in species composition and cover abundances, highlighted the presence of seven
main distinct clusters, which correspond to: 1. hilly grasslands; 2. grasslands dominated
by Stipa barbata Desf.; 3. shrublands dominated by Alhagi maurorum Medik; 4. Grasslands
dominated by Bellevalia saviczii Woronow; 5. grasslands dominated by Glycyrrhiza glabra
L.; 6. ruderal vegetation of the Royal Garden watercourses; and 7. grasslands dominated
by Hordeum murinum L. Three of them differ the most from all the others, in particular, in
order of relevance, the groups 1, 2, and 3. The remaining four groups are divided into two
subgroups (groups 4–5 and 6–7), which show a certain internal similarity:
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Figure 3. Dendrogram of vegetation trough cover data and corresponding pictures of vegetation
types growing in the Pasargadae (May 2022). Plant communities (clusters): 1. hilly grasslands;
2. grasslands dominated by Stipa barbata Desf.; 3. shrublands dominated by Alhagi maurorum Medik;
4. Grasslands dominated by Bellevalia saviczii Woronow; 5. grasslands dominated by Glycyrrhiza
glabra L.; 6. ruderal vegetation of the Royal Garden watercourses; and 7. grasslands dominated by
Hordeum murinum L. The numbers not in bold from 1 to 33 indicate the different sampling areas.

The ordinations with the cluster arrangements in an ecological space resulting from
the NMDS are displayed in Figure 4. This ordination confirms the cluster analysis results,
regarding the organization of the groups. Two ecological gradients are evident: one along
the x-axis from cluster 1 to cluster 5, and another along the y-axis from clusters 1 and 2 to
cluster 7. The y-axis variability appears to be influenced by edaphic and geomorphological
factors, since the observed hilly grasslands and grasslands dominated by Stipa barbata
(clusters 1 and 2) grow in rockier and more sloped soils or with the presence of humps,
and the other grasslands grow mainly in clay and loamy soils. The variability observed
along the x-axis seems to be linked mainly to the anthropogenic disturbance, which has the
highest values in clusters 7 and 3, characterized also by higher plant covers, and the lowest
in clusters 1 and 2.

22



Sustainability 2024, 16, 3784

Sustainability 2024, 16, 3784 7 of 22 
 

the highest values in clusters 7 and 3, characterized also by higher plant covers, and the 
lowest in clusters 1 and 2. 

 
Figure 4. NMDS ordination of the vegetation samples carried out in the Pasargadae WHS, Iran 
(NMDS stress  =  0.14; Shepard plot non-metric fit R2  =  0.95 and linear fit R2  =  0.78). Clusters are 
circled and over-imposed on NMDS plots. 1. Hilly grasslands; 2. Grasslands dominated by Stipa 
barbata Desf.; 3. Shrublands dominated by Alhagi maurorum Medik; 4. Grasslands dominated by 
Bellevalia saviczii Woronow; 5. Grasslands dominated by Glycyrrhiza glabra L.; 6. Ruderal vegetation 
of the Royal Garden watercourses; and 7. Grasslands dominated by Hordeum murinum L. The 
numbers not in bold from 1 to 33 indicate the different sampling areas. 

The syntaxonomic analysis of the vegetation showed the presence of different 
alliances and orders of plant communities, which can be subdivided into the main 
categories of synanthropic vegetation and semi-natural grasslands (Table 1). The classes 
attributed to each category resulted in Chenopodietea Oberd. 1957 and Secalinetea Orientalia 
Zohary 1973, for the synanthropic vegetation, and Artemisietea herbae-albae iranica Zohary 
1973 and Astragaletea iranica Zohary 1973 for the semi-natural grasslands (Tables 1, 2 and 
S1–S5) [61,62]. 

Table 1. Syntaxonomic scheme of the main resulting vegetation types. 

1. SYNANTHROPIC VEGETATION 
1.1 RUDERAL AND SEGETAL VEGETATION OF MAN-MADE HABITATS 
CHENOPODIETEA Oberd. 1957 
SECALINETEA ORIENTALIA Zohary 1973 

Tricetalia 7apsica77a Zohary 1950 
Prosopidion farctae segetale Zohary 1973 

Triticetalia iranica Zohary 1973 
Secalion cereale segetale Zohary 1973 

Hulthemion persicae segetale Zohary 1973 
2. SEMI-NATURAL GRASSLANDS 
2.1 SEMI-DESERTS AND STEPPES VEGETATION 

Figure 4. NMDS ordination of the vegetation samples carried out in the Pasargadae WHS, Iran
(NMDS stress = 0.14; Shepard plot non-metric fit R2 = 0.95 and linear fit R2 = 0.78). Clusters
are circled and over-imposed on NMDS plots. 1. Hilly grasslands; 2. Grasslands dominated by
Stipa barbata Desf.; 3. Shrublands dominated by Alhagi maurorum Medik; 4. Grasslands dominated by
Bellevalia saviczii Woronow; 5. Grasslands dominated by Glycyrrhiza glabra L.; 6. Ruderal vegetation of
the Royal Garden watercourses; and 7. Grasslands dominated by Hordeum murinum L. The numbers
not in bold from 1 to 33 indicate the different sampling areas.

The syntaxonomic analysis of the vegetation showed the presence of different alliances
and orders of plant communities, which can be subdivided into the main categories of
synanthropic vegetation and semi-natural grasslands (Table 1). The classes attributed
to each category resulted in Chenopodietea Oberd. 1957 and Secalinetea Orientalia Zohary
1973, for the synanthropic vegetation, and Artemisietea herbae-albae iranica Zohary 1973 and
Astragaletea iranica Zohary 1973 for the semi-natural grasslands (Tables 1, 2 and S1–S5) [61,62].

Table 1. Syntaxonomic scheme of the main resulting vegetation types.

1. SYNANTHROPIC VEGETATION

1.1 RUDERAL AND SEGETAL VEGETATION OF MAN-MADE HABITATS
CHENOPODIETEA Oberd. 1957
SECALINETEA ORIENTALIA Zohary 1973

Tricetalia 7apsica77a Zohary 1950
Prosopidion farctae segetale Zohary 1973

Triticetalia iranica Zohary 1973
Secalion cereale segetale Zohary 1973

Hulthemion persicae segetale Zohary 1973
2. SEMI-NATURAL GRASSLANDS
2.1 SEMI-DESERTS AND STEPPES VEGETATION
ARTEMISIETEA HERBAE-ALBAE IRANICA Zohary 1973

Artemisietalia iranica typica Zohary 1973
Artemisietalia iranica tragacantha Zohary 1973

ASTRAGALETEA IRANICA Zohary 1973
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Table 2. Synoptic Table showing the classes of frequency (from I to V) of the species occurring
among the different clusters. Clusters: 1. Hilly grasslands; 2. Grasslands dominated by Stipa barbata
Desf.; 3. Shrublands dominated by Alhagi maurorum Medik; 4. Grasslands dominated by Bellevalia
saviczii Woronow; 5. Grasslands dominated by Glycyrrhiza glabra L.; 6. Ruderal vegetation of the
Royal Garden watercourses; and 7. Grasslands dominated by Hordeum murinum L. Life forms: Ch =
chamaephyte, G = geophyte, H = hemicryptophyte, T = therophyte.

Synoptic Table

Clusters Life Form 1 2 3 4 5 6 7

Artemisietalia iranica tragacantha Zohary 1973
Stipa barbata Desf. H III V I I I I
Launaea acanthodes (Boiss.) Kuntze H IV II II V III III
Astragalus cancellatus Bunge H III III III III II
Medicago sativa L. H II II III I IV
Helichrysum leucocephalum Boiss. H IV
Salvia macrosiphon Boiss. Ch II I I III II
Noaea mucronata (Forssk.) Asch. & Schweinf. Ch III I II II
Centaurea balsamita subsp. kermanensis (Bornm.) Wagenitz T I II II I
Centaurea bruguierana subsp. belangeriana (DC.) Bornm. T I IV I
Lomelosia olivieri (Coult.) Greuter & Burdet T III I II
Senecio glaucus L. T I I IV
Astragalus cemerinus Beck Ch II I
Astragalus fasciculifolius Boiss. H I
Hertia angustifolia (DC.) Kuntze Ch II
Picris strigosa M.Bieb. H I II I
Astragalus borraginaceus Rech.f. H I II
Phlomis persica Boiss. H I II
Zosima absinthifolia Link H II
Cousinia gracilis Boiss. H II
Peganum harmala L. Ch I I
Phlomis aucheri Boiss. H II
Phlomis orientalis Mill. H I I
Pimpinella aurea DC. H I I
Reseda alba L. H I I
Acantholimon serotinum Rech.f. & Schiman-Czeika H I
Centaurea calcitrapa L. H I
Cousinia leptomera Rech.f. H I
Cousinia nekarmanica Rech.f. H I
Polygonum hyrcanicum Rech.f. H I
Silene sisianica Boiss. & Buhse T I
Stachys inflata Benth. H I

Artemisietalia iranica typica Zohary 1973
Bellevalia saviczii Woronow G IV II V IV I II
Boissieria squarrosa (Banks & Sol.) Nevski T IV I IV IV III III
Taeniatherum caput-medusae (L.) Nevski T IV II II IV II I
Euphorbia dracunculoides Lam. T I III III I II
Dianthus crinitus subsp. kermanensis Rech.fil H IV
Aegilops tauschii Coss. T I I
Aegilops crassa Boiss. T I I I
Lactuca orientalis (Boiss.) Boiss. Ch I I
Stipa hohenackeriana Trin. & Rupr. H I II
Bellevalia glauca (Lindl.) Kunth G II
Crupina vulgaris Pers. ex Cass. T I I
Diarthron lessertii (Wikstr.) Kit Tan Ch I
Eryngium billardieri Delile H I
Euphorbia sororia Schrenk T I
Stipa lessingiana Trin. & Rupr. H I
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Table 2. Cont.

Synoptic Table

Clusters Life Form 1 2 3 4 5 6 7

Astragaletea iranica Zohary 1973
Achillea vermicularis Trin. H IV III V V I II
Allium sphaerocephalon L. G I III IV III
Onosma microcarpum DC. H II
Secalion cereale segetale Zohary 1973
Glycyrrhiza glabra L. G I IV V IV V III IV
Lactuca serriola L. T I IV I III II V
Zoegea leptaurea L. T III III II II II
Hyoscyamus reticulatus L. G II III III
Medicago monantha (C.A.Mey.) Trautv. T I I I I III I
Consolida orientalis (J.Gay) Schrödinger T I III I
Medicago persica (Boiss.) E.Small T I I II I
Sisymbrium irio L. T I II II
Alcea kurdica Alef. H III I
Centaurea virgata subsp. squarrosa (Boiss.) Gugler H I I
Convolvulus argyracanthus Rech. f., Aellen & Esfand. Ch II
Galium tricornutum Dandy T I
Sisymbrium irio L. T I I
Turgenia latifolia (L.) Hoffm. T II
Anchusa azurea Mill. H I
Matthiola chenopodiifolia Fisch. & C.A. Mey. T I
Reseda lutea L. H I

Hulthemion persicae segetale Zohary 1973 and Tricetalia iranica
Zohary 1973

Bromus tectorum L. T II I II III III
Gundelia tournefortii L. H IV I
Papaver argemone L. T I III
Carthamus oxyacantha M.Bieb. T I II
Koelpinia linearis Pall. T II I
Valerianella szovitsiana Fisch. & C.A. Mey. T III
Tragopogon graminifolius DC. H II
Camelina hispida Boiss. T I II
Lepidium draba L. G I I

Prosopidion farctae segetale Zohary 1973, Triticetalia orientalia Zohary
1949–50 and Secalinetea orientalia Zohary 1973

Alhagi maurorum Medik. Ch IV V II I
Alhagi pseudalhagi (M. Bieb.) Desv. ex B. Keller & Shap. H I II I I I
Centaurea solstitialis L. H I III
Falcaria vulgaris Bernh. T I I IV
Gypsophila pilosa Huds. G II
Bongardia chrysogonum (L.) Spach H I
Chenopodietea Oberd. (1957) T
Hordeum murinum subsp. glaucum (Steud.) T V III III III V
Cyanus depressus (M.Bieb.) Soják H II II III II II V
Onopordum leptolepis DC. G III I IV III II I IV
Cynodon dactylon (L.) Pers. H I I II V I I
Convolvulus arvensis L. T II II III
Chardinia orientalis (L.) Kuntze T III I I II
Erodium cicutarium (L.) ’‘Hér. G I II
Scorzonera tunicata Rech.f. & Köie H II
Tragopogon collinus DC T II I II
Companions T
Nigella oxypetala Boiss. T I III II II V II
Eremopyrum bonaepartis (Spreng.) Nevski H I III IV IV II II
Festuca arundinacea Schreb. H III I III I
Marrubium crassidens Boiss. T I II
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Table 2. Cont.

Synoptic Table

Clusters Life Form 1 2 3 4 5 6 7

Crepis sancta subsp. nemausensis (P.Fourn.) Babc. T I I II
Tragopogon porrifolius subsp. longirostris (Sch.Bip.) Greuter H I II
Chorispora tenella (Pall.) DC. T I II
Descurainia sophia (L.) Webb ex Prantl T I II
Hordeum spontaneum K.Koch T I I I
Marrubium vulgare L. G I I
Nonea caspica (Willd.) G.Don T I II
Siebera nana (DC.) Bornm. T I I
Agrostis gigantea Roth T II
Filago pyramidata L. T II
Garhadiolus hedypnois Jaub. & Spach T II
Plantago lanceolata L. H I
Rochelia disperma (L.f.) K.Koch T II
Scabiosa persica Boiss. T II
Barbarea plantaginea DC. H I
Hordeum vulgare L. T I
Leopoldia tenuiflora (Tausch) Heldr. G I
Minuartia meyeri (Boiss.) Bornm. T I
Moltkia gypsacea Rech.f. & Aellen H I
Muscari neglectum Guss. ex Ten. G I
Prunus arabica (Olivier) Meikle P I
Rhaponticum repens (L.) Hidalgo H I
Scirpoides holoschoenus (L.) Soják G I
Solanum villosum Mill. (heterotypic synonym) T I
Zeravschania membranacea (Boiss.) Pimenov H I

The dominant species for each cluster, as evidenced by Tables 1 and S1–S5, were:
for cluster 1, Launaea acanthodes, Helichrysum leucocephalum, and Dianthus crinitus subsp.
kermanensis; for cluster 2, Stipa barbata; for cluster 3, Alhagi maurorum; for cluster 4, Bellevalia
saviczii; for cluster 5, Glycyrrhiza glabra; for cluster 6, Convolvulus arvensis and Tragopogon
collinus; and for cluster 7, Hordeum murinum. Such dominant species enhance the following
bioindication values for the different clusters:

1. dry and windy rocky slopes of lands abandoned after extensive grazing [72–74];
2. dry and stony soils of semi-natural habitats [75];
3. disturbed areas and extreme dry conditions [72,76–78];
4. clayey soils [78];
5. silty-sandy alluvial deposits, subject to grazing and post-cultivation in steppe areas [79,80];
6. ruderal areas [17,81];
7. trampled areas [82].

Vegetation found in steppe soils was predominantly co-dominated by species from
the genus Astragalus, and is commonly associated with extensive pastures undergoing
post-abandonment succession.

3.2. Naturalistic Interest of the Species and the Distribution in the Area

Fifteen endemic species of conservation interest were found at the site, and their
distribution and conservation status are detailed in Table 3. These endemic species fall into
three distribution groups (Table 3). Most are distributed both in Fars and other Iranian
regions (12 species); Cousinia nekarmanica and Astragalus cemerinus were not reported
before [6] for the Fars region. Therefore, this site represents their only regional station;
Acantholimon serotinum is endemic to the Fars region; Cousinia gracilis Boiss. Represents a
new discovery within the site, which was not reported by Hosseini et al. [6].
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Table 3. Endemic species to Iran recorded in the site and their conservation status, defined following
Rechinger [56] and the Red Data Book of Iran [63].

Family Species Rechinger Distribution Conservation
Status

Apiaceae Zeravschania membranacea (Boiss.)
Pimenov Fars and other Iran regions DD

Asteraceae Centaurea balsamita subsp. kermanensis
(Bornm.) Wagenitz Fars and other Iran regions LR

Asteraceae Cousinia gracilis Boiss. Iran Endm Fars and other Iran regions DD
Asteraceae Cousinia nekarmanica Rech.f. Other Iran regions LR
Asteraceae Helichrysum leucocephalum Boiss. Fars and other Iran regions LR
Asteraceae Hertia angustifolia Kuntze Fars and other Iran regions LR
Boraginaceae Moltkia gypsacea Rech.f. & Aellen Iran Endm Fars and other Iran regions LR
Fabaceae Astragalus cemerinus Beck Other Iran regions LR

Fabaceae Astragalus fasciculifolius Boiss. subsp.
fasciculifolius Iran Endm Fars and other Iran regions LR

Fabaceae Medicago persica (Boiss.) E.Small Fars and other Iran regions LR
Lamiaceae Phlomis aucheri Boiss. Iran Endm Fars and other Iran regions LR
Lamiaceae Phlomis persica Boiss. Iran Endm Fars and other Iran regions LR

Plumbaginaceae Acantholimon serotinum Rech.f. &
Schiman-Czeika Iran Endm Fars DD

Polygonaceae Polygonum hyrcanicum Rech.f. Fars and other Iran regions LR
Solanaceae Hyoscyamus kotschyanus Pojark. Iran Endm Fars and other Iran regions LR

The IUCN Conservation Status of each species obtained from [63] is reported in Table 3,
showing that most of the species are considered at Low Risk (LR), but also three species are
data deficient (DD), including Acantholimon serotinum, which is Fars endemic.

Table 4 shows the distribution of the endemic species with conservation interest among
the different clusters. Cluster 1, which corresponds to the hilly areas furthest from visitor
paths, is the one that holds the highest number of species with conservation interest, with
a total of nine species, including five found exclusively here. Cluster 2, i.e., grasslands
dominated by Stipa barbata, occurring sporadically within the site, comes next, with five
species, two of which were exclusive. Combining the previous data, we can also note that
among the semi-natural grasslands, Artemisietalia iranica tragacantha Zohary 1973, within
the class Artemisietea herbae-albae iranica Zohary 1973, resulted in the richest in terms of
species composition, particularly within clusters 1 and 2.

Clusters 3, 4, 6, and 7 appear similar, with two or three species, one of which was
exclusive, while Cluster 5, which comprises grasslands dominated by Glycyrrhiza glabra,
exhibited the lowest richness, with only one species and no exclusive ones.

By analyzing the distribution of plant communities, as derived from QGIS 3.36 soft-
ware, we can note the significant heterogeneity in the distribution and size of the clusters
(Figure 5). Clusters 5, 1, and 7 have the largest size, with the first predominantly in the cen-
tral part of the site, the second covered almost the entire northernmost part, and the third
was mainly found in the southernmost part. The remaining clusters exhibit a more scattered
presence: clusters 2 and 3 are sparsely distributed within the site, cluster 4 stretches across
a central strip, corresponding to a dry riverbed, and cluster 6 was mainly found in a small
area of the central part, around the remnants of the Royal Garden watercourses (Figure 5A).
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Table 4. Distribution of the endemic species with conservation interest among the different clusters.
For each cluster, the species were assigned frequency classes using Roman numerals I to V, except
for cluster 6, which contains three reliefs, in which Arabic numerals 1 to 3 were used. The average
coverage values are given in superscript. 1. hilly grasslands; 2. grasslands dominated by Stipa barbata
Desf.; 3. shrublands dominated by Alhagi maurorum Medik; 4. Grasslands dominated by Bellevalia
saviczii Woronow; 5. grasslands dominated by Glycyrrhiza glabra L.; 6. ruderal vegetation of the Royal
Garden watercourses; and 7. grasslands dominated by Hordeum murinum L.

Clusters

Species 1 2 3 4 5 6 7

Acantholimon serotinum Rech.f. & Schiman-Czeika I +

Astragalus cemerinus Beck II 1 I +

Astragalus fasciculifolius Boiss. subsp. fasciculifolius I 5

Centaurea balsamita subsp. kermanensis (Bornm.) Wagenitz I + II + II + I +

Cousinia gracilis Boiss. II +

Cousinia nekarmanica Rech.f. I +

Helichrysum leucocephalum Boiss. IV 2

Hertia angustifolia Kuntze II 1

Hyoscyamus kotschyanus Pojark. II + III + III +

Medicago persica (Boiss.) E.Small I + I + 2 + I +

Moltkia gypsacea Rech.f. & Aellen I +

Phlomis aucheri Boiss. II +

Phlomis persica Boiss. I + 2 +

Polygonum hyrcanicum Rech.f. I +

Zeravschania membranacea (Boiss.) Pimenov 1 +

Total 9 5 2 2 1 3 3

Species found exclusively in the specific cluster 5 2 0 1 0 1 1

3.3. Warming and Desiccation of the Area as Threats to Plant Biodiversity

The climatic data from 2006 to 2022 revealed an increasing trend in temperature
and a fluctuation in precipitation values, marked by a significant alteration in average
precipitation (222.8 mm), with variations from 120 mm to 314 mm. More recently, despite a
peak in average rainfall in 2019 (Figure 6a), the overall trend indicated a relevant decrease in
precipitation during traditionally rainy months, especially in Spring and in a more limited
way throughout the Fall season (Figure 6b–e). This decline is evident when comparing
the monthly rain-temperature chart for the last four years, and the lowest precipitation
amounts were recorded in 2008, 2017, and 2022.

Adding to the climatic challenges, the Polvar River, like all watercourses in the
province of Fars, has been experiencing a gradual desiccation influenced by a combi-
nation of increasing warming and other human interventions, such as the construction of
dams and the considerable exploitation for irrigation purposes, that further exacerbated
the dryness [67,68,70]. Since the mid-1990s, episodes of drought have become increasingly
frequent, significantly affecting the river’s flow [67,68,83]. Currently, this river is completely
dried up, marking a significant shift from its past status as a perennial river.
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Figure 5. Vegetation maps of the Pasargadae WHS elaborated with QGIS Software, showing: (A) the
distribution of the different clusters, and (B) the distribution of the species with conservation interest
that occurred within the clusters considering both the total amount and the presences exclusively
found in the specific cluster (in parenthesis).
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Figure 6. The chart of total rain and maximum temperature of three synoptic Fars stations (Persepolis,
Safashar, and Arsenjan): (a) the annual chart during 2006–2022; the monthly bioclimatic variation in
(b) 2019, (c) 2020, (d) 2021, and (e) 2022.

4. Discussion

This pioneering research on vegetation in archaeological sites of Iran contributes to the
knowledge of plant communities in archaeological areas, particularly in arid or semi-arid
environments, such as in Iran.

Previous studies on the flora of the Pasargadae site and its interaction with stone mon-
uments revealed the importance of understanding the microhabitat of plant colonization
on the remaining structures as a tool for controlling biodeterioration phenomena [17,49].
Additionally, the plant diversity of the site [6] and the distribution of the endemic species
with conservation interest emphasized the importance of conservation strategies that con-
sider both the natural and cultural values of the site [5,18,24,33,84]. This is particularly
important in the context of plant diversity, as the conservation of these sites can help to
ensure the protection of plant diversity [39,85].

In this contribution, we have expanded the syntaxonomical attribution of species
missing in Zohary [61] to their respective syntaxa, achieved through comparisons with
species groupings made by Khodagholi [62].

The presence of the class Astragaletea iranica Zohary 1973 is especially noteworthy, as
it is typically associated with mountainous environments. Its occurrence in this context
likely reflects dynamics related to ecological refuges [61].

The vegetation primarily influenced by human activity is predominantly represented
by the Secalinetea Orientalia Zohary 1973 class, one of the most prevalent vegetation classes
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in the Middle East. This class represents the weed communities commonly observed in non-
irrigated winter and summer crops. It often occupies abandoned fields that have become
partially overgrown by tragacanth astragals. Consequently, this community appears to
represent an early post-agricultural phase in the succession towards Artemisietea herbae-albae
iranica Zohary 1973 communities [61]. This class was more frequent within clusters 3, 4,
and 5. The Chenopodietea Oberd. (1957) class, notably prevalent in clusters 6 and 7, is
characterized by synanthropic vegetation dominated by annual and biennial nitrophilous
and semi-nitrophilous species thriving in ruderal and disturbed environments [86]. This
component is predominantly found within the site in areas closest to the most trafficked
visitor paths and subjected to trampling.

This also explains the similarity in species composition (Figures 3 and 4) and the
distribution of the endemic species with conservation interest among the different clusters.
Indeed, the highest number of species with conservation interest held by clusters 1 and 2
(Table 4) is in accord with findings made by several authors, namely that when grazing
is conducted in a non-intensive manner, it tends to promote greater biodiversity, and the
effects of such practices can persist for an extended period of time [87–92].

Additionally, the higher number of species with conservation interest observed in
clusters 1 and 2 can be attributed to the microhabitats formed by variations in bedrock and
erosion processes. These conditions reduce the competition of dominant species and foster
the growth of therophyte species that require environments with lower nutrient and water
availability [93,94].

Plant bioindication values have provided significant insights into historical human
activities and land-use practices, such as cultivation, corresponding to cluster 5, located
in the central and flat parts of the site (see also Figure 5). While the activities proposed by
bioindication lack certainty, the likelihood of their occurrence in the region is notably high,
particularly in light of the land use management pattern observed in several rangelands
of Iran [95]. The land use with extensive grazing has primarily impacted the hilly areas
(cluster 1), which are rockier and more sloped, making them less suitable for cultivation.
The clayey soils in cluster 4, which likely correspond to a dry riverbed, and the silty-
sandy alluvial deposits in areas of cluster 5, indicated fertile soils suitable for cultivation.
The ruderal communities in clusters 6 and 7 are instead due, respectively, to the limited
availability of soil for the rock outcrop in the remnant of the Royal Garden watercourses
and to the influences given from visitor trampling.

Furthermore, the study has highlighted the importance of vegetation maps as a tool
for managing different habitats within the site. These maps are instrumental in identifying
areas that require protection from anthropogenic pressures such as trampling and mowing,
as well as areas hosting invasive species that need to be managed [18,96]. In fact, human
activities, including livestock grazing, mowing, and the use of herbicides, also contribute
significantly to vegetation distribution [40,97], as seen in the differential coverage around
Cyrus the Great’s Tomb and the more natural northern hills. This distinction is crucial
for developing targeted conservation strategies that respect the site’s dual natural and
historical significance.

Integrating naturalistic and cultural values in conservation planning ensures not
only the preservation of biodiversity, but also the continuity of the landscape’s historical
narrative [98,99]. Additionally, for the valorization of the Royal Garden of Cyrus the
Great, great information could be obtained from vegetation surveys, and analyzing the
plant species within and around the presumed location of the lost garden can contribute
to the valorization scenario by respecting both ancient and current landscapes [96]. The
phytosociological syntaxa could also support the understanding of ancient (cereal and
pulse) crop husbandry regimes [100,101].

Finally, the observed recent shifts in precipitation and temperature patterns may have
profound implications for the conservation of biodiversity and cultural heritage. The
decrease in rainfall of recent years, particularly during critical growth phases, not only may
impact phenological patterns and distribution of plants [102–104], but also may threaten
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species that already have small ranges [105–108], increasing the risk of extinction for
many species [109–113]. This is especially concerning for the endemic and restricted-range
species found in the study area, which exhibit a heightened vulnerability to environmental
change [114]. Such species are vital not only for their intrinsic ecological value, but also
as indicators of historical land-use practices, which are part of the cultural narrative of
the site.

When looking at our previous floristic data collected in 2019 [6], we can now underline
some changes in the dominant species, and an anticipation of the flowering period, such
data underscores the increasing stresses induced by the warming and desiccation of the
area, posing challenges to the naturalistic value of the site. In general, the impact of climate
change in northern Fars will determine a reduction of precipitation in the future [71] and
an increase in the duration and severity of drought [115]. Based on the climate scenarios,
by 2025, the Fars region (in Tashk, Bakhtegan, and Maharlu lakes) will experience a
5.67–15.15% reduction in runoff [116,117].

5. Conclusions

This research has advanced our understanding of vegetation in Iran’s archaeological
sites, shedding light on plant communities and their interactions with human activity and
the natural environment, which have been relatively underexplored in the country. Through
vegetation analyses and classification within a syntaxonomic framework, the research has
yielded significant findings, particularly in identifying rich species compositions within
different vegetation classes. Notably, it highlighted the importance of understanding both
natural and human-induced influences on vegetation distribution, emphasizing the critical
role of human activities in shaping plant communities.

Furthermore, the bioclimatic analysis in recent years dramatically confirmed the im-
pact of climate change on vegetation patterns and biodiversity, underscoring the urgent
need for adaptive conservation strategies. The observed shifts in temperature patterns
and the increasing dryness conditions pose significant challenges to both plant diversity
and cultural heritage preservation, necessitating proactive measures to mitigate these
impacts within the broader context of cultural heritage preservation and sustainable man-
agement practices.

Moreover, the work emphasized the importance of integrating ecological and cultural
values in conservation planning. By considering both naturalistic and cultural aspects,
conservation efforts can ensure the preservation of biodiversity while safeguarding histori-
cal monuments.
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Abstract: Rapid urbanization and changing climatic procedures can activate the present surface urban
heat island (SUHI) effect. An SUHI was considered by temperature alterations among urban and rural
surroundings. The urban zones were frequently warmer than the rural regions because of population
pressure, urbanization, vegetation insufficiency, industrialization, and transportation systems. This
investigation analyses the Surface-UHI (SUHI) influence in Kolkata Municipal Corporation (KMC),
India. Growing land surface temperature (LST) may cause an SUHI and impact ecological conditions
in urban regions. The urban thermal field variation index (UTFVI) served as a qualitative and
quantitative barrier to the SUHI susceptibility. The maximum likelihood approach was used in
conjunction with supervised classification techniques to identify variations in land use and land cover
(LULC) over a chosen year. The outcomes designated a reduction of around 1354.86 Ha, 653.31 Ha,
2286.9 Ha, and 434.16 Ha for vegetation, bare land, grassland, and water bodies, correspondingly.
Temporarily, from the years 1991–2021, the built-up area increased by 4729.23 Ha. The highest LST
increased by around 7.72 ◦C, while the lowest LST increased by around 5.81 ◦C from 1991 to 2021. The
vegetation index and LST showed a negative link, according to the correlation analyses; however, the
built-up index showed an experimentally measured positive correlation. This inquiry will compel the
administration, urban planners, and stakeholders to observe humanistic activities and thus confirm
sustainable urban expansion.

Keywords: climate change; ecological disturbance; heat island; urban environment; remote sensing
and GIS

1. Introduction

With increasing industrialization, urbanization, and population growth, the biological
landscapes have been deformed into impermeable surfaces related to building structures,
apartments, roads, parking lots, and urban infrastructure [1,2]. It is established that land
surface imperviousness was a dangerous constituent influence on the quality of the urban
environment [3,4]. Consequently, a significant portion of Kolkata’s natural catchment
parts have been developed into urban areas. This urbanization process has altered the
physical features of the land’s surface, including soil moisture, heat transfer efficiency,
thermodynamic irradiance characteristics, and albedo. Variations in the land surface
temperature (LST) have the greatest ecological impact since they directly affect human
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comfort levels, air quality, building energy demand, convective, and latent heat transfer
procedures [5–8]. The LST has measured the surface temperature values of the Earth’s
crust, where reflectance values are observed through space-based observation. Many
investigators worldwide have used LST widely in LULC modification assessments to
ascertain environmental issues of a particular area [9–12].

Due to the dynamics of green spaces, water scarcity, soil moisture loss, low infiltration
rate, and erosion, the urban heat differential has a significant influence on how suscep-
tible an urban environment is [13–15]. Along with environmental degradation, human
activities and global climate conditions have significantly affected resident and global land
adjustment [16–18]. In the urban region, health subjects like lung cancer, asthma, skin
disorders, respiratory ailments, and other health-related challenges were also common [19].
Urban areas are also often the site of additional pollution-related issues as well as the
SUHI result [20–22]. The SUHI is an index to identify the heat island effects on the Earth’s
surface with the help of LST and some methods. This technique is applied to build a heat
island effects study and implement awareness and strategies. The SUHI causes pollutants
and lowers the air quality in the urban region, which has an impact on the surrounding
natural environment and local urban ecology. Due to SUHI stress, SUHIs not only impair
human health but also have the potential to increase death rates [23]. In urban areas
like Kolkata, the transportation and public industries contributed to air pollution [24]. In
this scenario, proper urban management and planning provided further advantages for
sustainable growth.

According to some investigation results, the single channel (SC) technique has the
lowest accuracy, and the split window (SW) algorithm has reasonable accuracy. Still,
LST, overturned from the radiative transfer equation-based technique applying band
10, has the highest inaccuracy with an RMSE lower than 1K [25]. By cross-referencing
and linking the Moderate Resolution Imaging Spectroradiometer (MODIS) with Geosta-
tionary Ocean Color Imager (GOCI)-derived NDVIs in addition to in situ NDVI dimen-
sions, the researcher evaluated the Landsat 8 OLI/TIRS-derived NDVI characteristics in
contrast to Landsat 7 ETM+ [26]. The reproductions of surface reflectance and Top of
Atmosphere (TOA) reflectance of broadleaf water and trees are shown for the Landsat
8 OLI/TIRS, MODIS, and Landsat 7 ETM+, to appraise the influence of bandpass alteration
on the NDVI calculation [27]. The NDVI is a space-based vegetation monitoring method
to identify the green space available on the Earth’s surface through different bands in
the satellite.

Another examination outcome designates how the stretched (or ‘universal’) triangle
can be applied to understand pixel outlines inside the triangle, and presents how the tem-
poral trajectories of opinions exclusively designate decorations of the LULC change [28].
Finally, we conclude the research with a succinct assessment of the limitations of the
method. According to some scientists, over the last 27 years, the built-up zone of Ismailia
has gradually increased. The areas with the highest surface radiant temperatures are the
barren land (37.34 ◦C in 1984 and 42.801 ◦C in 2011) and the built-up region (37.65 ◦C
in 1984 and 43.876 ◦C in 2011). Vegetated surfaces (28.73 ◦C in 1984 and 32.96 ◦C in
2011) have the lowest surface radiant temperatures [29]. The investigation revealed a
strong agreement between the real-time ground and satellite RS datasets, with correla-
tion coefficient (R2) values of 0.90 [30]. The 28-year period (1984–2011) saw significant
variations in LST in the Salt Lake Basin area, with an estimated 2 ◦C shift. This was
revealed using themed catalogue diagrams created from remotely sensed and modified
satellite imagery.

Urban regions progressively established the amenity’s expansion with high reduction
buildings. Those belongings were mostly additionally impactful for activating the SUHI
effects over the examining area. The UTFVI was also applied to calculate the ecological
diversification identified through LST datasets and the notified formulation. Kolkata
Municipal Corporation (KMC) progressively documented high green space losses because
of urban expansion. Those belongings are likewise triggering land subsidence-related
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difficulties with high groundwater shortages. Consequently, the SUHI examination and
green space examination are essential for improved urban planning. Current results also
showed that, during the summer, Delhi’s heavily populated metropolitan area has a greater
thermal inertia than the nearby rural areas [31]. The main research gap in this area is
in the details of SUHI analysis with ecological variation. Most of the studies applied a
ten-year gap of UHI analysis or only LULC-related analysis. In addition, this examination
applied a five-year gap-wise landforms analysis with surface temperature measurement
and heat island studies. The accuracy assessment of the classification maps and year-
wise change detection was also applied to identify the landform alteration in the KMC
area. Gradually, different geo-spatial indices with five-year information provide more
landform alteration-related evidence. The built-up land, water, soil moisture, bareness
analysis, and vegetation scenarios are useful for planning details, management, and novel
adaptation strategies toward sustainable urban development. The spatial fluctuation in
thermal inertia over the region is starting to make sense of the presence of the Cool Island
during the day. The primary goal of this study is to use statistical modelling and RS-
based datasets to determine the decadal LULC modification of Kolkata’s megacity. The
outcomes of this investigation include (a) imageries (LULC) classification from 1991 to
2021 with built-up expansion and vegetation losses; (b) the LST approximation for the
thermal condition measurement with SUHI and UTFVI alteration examination; (c) certain
geo-spatial indicators for ecological and the environmental impact assessment. These
examinations may help the local planners with forthcoming management planning and
adaptation strategies to shelter the megacity’s environment.

2. Materials and Methods
2.1. Study Area

The British Empire and the East India Company founded the imperial metropolis
of Kolkata. The British Indian Empire had its capital at the megacity of Kolkata until
1911 when it was moved to Delhi. To grow the second metropolis of the British Indian
Empire, this megacity was created quickly in the 19th century. This was addressed through
the fusion of Arabian tradition with Indian philosophy in cultural development. Kolkata
is also well known for its creative past, which spans from India to trade the union, and
Marxist Naxalite movements. Kolkata, also known as the “City of Palaces”, “Cultural
Capital of India”, “City of Joy”, and “The City of Processions”, has also been the residence
of prominent politicians and yogis. The pandemic that struck Kolkata in 1653 brought
with it challenges associated with hasty urbanization, and the city’s remnants serve as
a model for the urbanization initiatives of less developed countries. The monthly mean
temperatures are 19–30 ◦C (66–86 ◦F); the annual mean temperature is roughly 26.8 ◦C
(80.2 ◦F). The summer months of March through June are hot and muggy, with highs
in the low 30s; during periods of drought, the highest temperatures ever recorded were
higher than 40 ◦C (104 ◦F) in May and June (Figure 1). The highest known temperature is
around 43.9 ◦C (111.0 ◦F), and the lowest is around 5 ◦C (41 ◦F). The southwest summer
monsoon’s Bay of Bengal branch brought rainfall to Kolkata between June and September,
giving the city its highest annual precipitation total of roughly 1850 mm (73 in). The
provisional Census of India says that 4,496,694 people were living in this megacity in
2011; 2,356,766 of those people were female and 2,139,928 were male. Despite having a
megacity population of 4,496,694, Kolkata has an urban/metropolitan population of around
14,035,959, with 6,784,051 women and 7,251,908 men. The oldest disruptive mass transit
system in India is the Kolkata Metro, which was developed in 1984. Kolkata, a megacity,
has five long-distance lines.
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Figure 1. The location map of the case study.

2.2. Applied Datasets

The RS datasets are derived from the website USGS Earth Explorer (https://earthe
xplorer.usgs.gov/, accessed on 12 March 2023). For this analysis, six satellite datasets are
used (Path 138 and row 044). The Landsat 5 TM datasets from 1991, 1996, 2001, and 2006, as
well as the Landsat 8 OLI/TIRS datasets from 2016 and 2021, are used to classify the LULC
of the study region and SUHI study using LST and certain spectral indicators. Table 1 is
utilized for the gathering of the details of datasets (Table 1). Six satellite datasets are used
in this analysis (Path 138 and row 044). Classifying the LULC of the inquiry region and
SUHI study using LST and specific spectral indicators is done using Landsat 5 TM datasets
from 1991, 1996, 2001, and 2006, as well as the 2016 and 2021 Landsat 8 OLI/TIRS datasets.
Table 1 is used for dataset gathering and details.

Table 1. Details of satellite datasets.

Satellite Sensor Date of Acquisition Path/Row Website

Landsat 5 TM

6 March 1991

138/044 https://earthexplorer.usgs.gov/,
accessed on 12 March 2023

20 March 1996
17 March 2001
19 June 2006

Landsat 8 OLI/TIRS
11 April 2016
25 April 2021
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2.3. Image Pre-Processing and Classification

Satellite photos are initially pre-processed using RS software to perform topological,
geometric, and atmospheric adjustments. ArcGIS software version 10.8 is applied for
the layer stacking, masking, and ultimately the clipping of the region of interest under
inspection. The human involvement in the portion of land utilized for commercial activity
is known as the Land Use Change (LU). The term “Land Cover” (LC) refers to the physical
features of the Earth’s surface, including vegetation, soil, water bodies, and other actual
land shares [32]. The most effective approach for classifying images is through digital
image processing, or DIP (Figure 2). The supervised image classification approach and
a maximum likelihood algorithm are utilized for the pixel-based LULC classification.
There are five classes in this examining area. Using a maximum likelihood algorithm and
supervised classification technique, vegetation, built-up land, bare land, and grassland are
classified(Table 2).
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Table 2. LULC classes applied in this study classification.

Built-up land Residential area, commercial area, industrial area, transportation, roads, and
construction area.

Vegetation Evergreen forest, deciduous Forest Land, Mixed Forest Land,
Shrub/degraded vegetation.

Water Bodies River, Ponds, lakes, and open water bodies.
Bare land These types of classes are mainly playgrounds, open area, and many others.
Grass Land Many types of trees, Grass area, open vegetated area
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2.4. Accuracy Assessment and Kappa Statistic

Accuracy assessment comes in the post-classification stage. The urban areas consist
of a diverse range of features, such as residential areas, water bodies, roadways, green
spaces, and railroads [33]. Since this approach indicates the correctness of the classifi-
cation outcomes, the accuracy assessment has the biggest important influence after the
classification [34]. This method is used to associate both categorized and ground truth
datasets. Google Earth Pro and field surveys make up the ground truth datasets. The
accuracy of classification is assessed using the Non-parametric Kappa test. In addition to
being a diagonal element, the Kappa coefficient also forms the basis of the misperception
matrix [34]. Following this equation is the calculation of the Kappa coefficient (Table 3).

k =
N∑r

i=1 Xii − ∑r
i=1(Xi+X+i)

N2 − ∑r
i=1(Xi+X+i)

(1)

Table 3. The scale of Kappa coefficient.

SL. No Value of K Strength of Agreement

1 <0.20 Poor
2 0.21–0.40 Fair
3 0.41–0.60 Moderate
4 0.61–0.80 Good
5 0.81–1.00 Very Good

2.5. Geo-Spatial Indices
2.5.1. NDVI

Green space was the most significant feature of Earth’s surface because it regulates
temperature swings, surface runoff, infiltration rate, soil erosion losses, drought control,
and water level over the land’s surface [35,36]. Many areas were losing their green space
land due to urbanization, which also caused droughts, temperature fluctuations, and
increased evapotranspiration [6,37]. The land transformation also influenced the green
space situation. The monitoring of the vegetation state made considerable use of the
Landsat 5 TM and 8 OLI/TIRS datasets [38,39]. The NDVI, which can be expressed by
applying Equation (2), was used in the current investigation to assess the health status of
green spaces in Kolkata, West Bengal.

NDVI =
(ρNIR − ρR)

(ρNIR + ρR)
(2)

where R represents the red band of satellite datasets and NIR indicates the near-infrared
band of the Landsat imageries. The remaining LULC classifications are denoted by 0 to
−1 in the NDVI standards, while a region’s healthy green space is indicated by 0 to +1.

2.5.2. NDBI

Urban growth affects environmental deprivation and localized climatic change [40,41].
In the megacity of Kolkata, population density has a significant impact on both urban
development and the expansion of built-up territory. Urban planning is more important
for sustainable urban growth, although conditions are eliminated by excessive population
density [42,43]. The megacity of Kolkata has seen significant infrastructure growth in the
past. Such urban expansion was observed using the NDBI.

NDBI =
(ρSWIR1 − ρNIR)

(ρSWIR1 + ρNIR)
(3)
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In satellite imagery collections, the acronym SWIR refers to shortwave infrared bands,
while NIR denotes near-infrared bands. The NDBI guidelines range from −1 to +1. Positive
standards are built-up areas, while negative standards represent other LULC traits.

2.5.3. NDMI

Urbanization generally lowers relative humidity (RH) because of the higher tempera-
tures and less surface water that can evaporate, in addition to aggregating the temperature
over the megacity. The Landsat TM, ETM+, and OLI/TIRS near-infrared (NIR) and short-
wave infrared bands were used to calculate the NDMI (https://www.usgs.gov/core-scie
nce-systems/nli/landsat/normalized-difference-moisture-index, accessed on 12 March
2023). The NDMI can be determined by using Equation (4).

NDMI =
(ρNIR − ρSWIR1)

(ρNIR + ρSWIR1)
(4)

The areas with problems with water stress will be categorized using the normalized
differential moisture index standards. Typically, the NDMI norms fall between −1 and 1.

2.5.4. NDBal

The normalized difference bareness index is typically used to determine the exterior
hardness of the infertile ground. Applying the SWIR and thermal infrared (TIR) bands as
forecasted by Zhao and Chen yields the NDBaI [44].

NDBaI =
(ρSWIR1 − ρTIR)

(ρSWIR1 + ρTIR)
(5)

2.5.5. NDWI

With the NDWI applied to satellite imagery, open water landscapes were brought to
light, making a body of water “pop out” in contrast to the surrounding soil and vegeta-
tion [45].

NDWI =
(ρG − ρNIR)

(ρG + ρNIR)
(6)

2.6. LST Estimation

The thermal difference and the heat change of a region are prejudiced by the LST [46].
The megacity of Kolkata’s land surface temperature (LST) is monitored using the Landsat
5 TM (Band 6) and the Landsat 8 OLI/TIRS (Band 10). To monitor the LST, data from
Landsat OLI/TIRS for 2016 and 2021, as well as Landsat TM datasets for 1991, 1996,
2001, and 2006, are used. Landsat 8 has two thermal bands, namely 10 and 11. But band
11 was not treated in this evaluation because of the possibility that it will rise in the LST
approximation due to the satellite orbit’s tilt. As a result, only the Landsat band 10 is used
to approximate the LST imagery in the megacity of Kolkata. Las Vegas and Baghdad are
two different cities in the world whose temperature changes are calculated using the LST
of four decadal Earth observation datasets. The land surface temperature (Band 10) is
designed using Landsat TM (Band 6) and Landsat OLI/TIRS [47]. The process that follows
is utilized to advance the LST maps of certain research areas [48]. Thermal fluctuation is
greater in urban areas than in rural ones. The metropolitan areas that are green or blue have
a lower temperature than the surrounding areas. In the area under research, the location
and effect of temperature are displayed by the LST charge. The complete computing process
for Landsat 5 and 8 LST is defined in the literature. The SUHI remained resolute through
the LST. A shift in surface temperature was connected to a modification in LULC. Regular
updates are made to the SUHI requirements.
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2.7. UTFVI

The SUHI’s effects were often described using the UTFVI. The SUHI and UTFVI singu-
larities are the result of several factors influencing land surface temperature, psychometrics,
and light intensity, such as heat waves and Earth surface modification [49]. The formula
below was used to determine the UTFVI.

UTFVI =
(

Ts + Tmean

Tmean

)
(7)

where Ts signifies the LST in kelvin, and Tmean is used to display the mean LST in kelvin.
The UTFVI is categorized into six groups according to the reflected changes in the urban
thermal field: none, moderate, intermediate, strong, stronger, and strongest.

2.8. SUHI

The investigation of SUHI is significant for the study of urban heat balance. The SUHI
diagram is projected to regulate the heat variation in the Kolkata megacity area:

SUHI =
(

Ts + Tmean

SD

)
(8)

where Ts stands for the LST (K), T mean is the mean LST (K), and SD is the standard
deviation of the estimated LST map.

3. Results and Discussion

The three-colour bands’ composition (blue, green, and red) is applied for classification
based on six altered years of the Landsat 5 TM and Landsat 8 OLI/TIRS datasets. Between
KMC and environs regions, there has been a foremost LULC change in the aforementioned
30 years as an outcome of urban growth. At large, population growth is controlled, but
the built-up region is quickly improved, while water bodies, vegetation, and grassland are
deceptively reduced in maximum portions of the investigation region. The diminuendos of
LULCC are predictable from the year 1991 to 2021. The outcomes will be deliberated in the
subsequent subdivisions.

3.1. Areal Change of LULC

The supervised classification technique with a maximum likelihood algorithm is uti-
lized to recognize the LULCC outlines from the year 1991 to 2021. Five categories of LULC
are identified in LULC diagrams: built-up land, grassland, bare ground, vegetation, and
aquatic bodies. Due to the disastrous process of urbanization and population increase,
the entire region has displayed a water body, a decline in vegetation, bare ground, and
grassland. The percentages of the vegetation region are acknowledged as 21.82% (1991),
35.52% (1996), 7.40% (2001), 15.62% (2006), 26.07% (2016), and 14.52% (2021), correspond-
ingly (Table 4), over the investigation zone. The water body variations regions over the
years were 875.43 Ha (1991), 614.43 Ha (1996), 523.89 Ha (2001), 682.56 Ha (2006), 785.97 Ha
(2016), and 441.27 Ha (2021), correspondingly. Due to the urbanization of such areas, a
434.16 Ha water body region has shrunk throughout the last 30 years (Figure 3). According
to the land modification examination, many vegetated lands have changed into various
LULC features that can be experienced in terms of infiltration rate, soil moisture content,
and slope stability. The residential zone close to the industrial region has significantly
intensified in the KMC area. High temperatures and air pollution consistently plagued
the populated zones, and the SUHI result was also observed in this location (Table 4). The
grassland has shown a reduction from 27.63% (1991) to 22.63% (1996), 31.95% (2001), 29.97%
(2006), 9.13% (2016), and 15.31% (2021), and a total grassland of 2286.9 Ha has been reduced
in the past 30 years (Figure 4). The classified diagrams show enormous variations in the
built-up lands, which enlarged from 41.61% (1991) to 37.60% (1996), 55.19% (2001), 50.69%
(2006), 54.27% (2016), and 67.10% (2021), respectively (Table 5). Along with lowering the
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temperature, these built-up locations have also significantly lowered the rate of infiltration
and surface runoff escalation.

Table 4. Area calculation of the different years’ classification.

Class Name
Area in Ha

1991 1996 2001 2006 2016 2021

Water body 875.43 614.43 523.89 682.56 785.97 441.27
Vegetation 4050.27 6591.51 1374.03 2899.44 4837.77 2695.41
Grass Land 5127.93 4198.95 5928.21 5561.55 1694.25 2841.03

Built-up Land 7721.55 6978.15 10,241.73 9406.98 10071 12,450.78
Bare Land 779.04 171.18 486.36 3.69 1165.23 125.73

Class Name
Area in Percentage (%)

1991 1996 2001 2006 2016 2021

Water body 4.71 3.31 2.82 3.67 4.23 2.37
Vegetation 21.82 35.52 7.4 15.62 26.07 14.52
Grass Land 27.63 22.63 31.95 29.97 9.13 15.31

Built-up Land 41.61 37.6 55.19 50.69 54.27 67.1
Bare Land 4.19 0.92 2.62 0.01 6.28 0.67
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Table 5. Loss/Gain analysis of different periods.

Class Name
Area Increased/Decreased (Ha)

(1991–1996) (1996–2001) (2001–2006) (2006–2016) (2016–2021) (1991–2021)

Water body −261 −90.54 158.67 103.41 −344.7 −434.16
Vegetation 2541.24 −5217.48 1525.41 1938.33 −2142.36 −1354.86
Grass Land −928.98 1729.26 −366.66 −3867.3 1146.78 −2286.9

Built-up Land −743.4 3263.58 −834.75 664.02 2379.78 4729.23
Bare Land −607.86 315.18 −482.67 1161.54 −1039.5 −653.31

Notwithstanding the LULC elements listed above, the remaining LULC elements
also share a striking amount of dynamic similarity. Bare land (0.55), built-up (0.52), and
fallow land (0.56) dynamicity are close to each other in agricultural land dynamics. It is
discovered that homestead dynamics with a plantation are almost identical to those of
bare land (0.53). The similarity index values of 0.53 and 0.57, respectively, indicate that the
dynamics of built-up areas are nearly identical to those of homesteads with plantations and
water bodies [50]. Over the previous 20 years, there has been a 108.94 km2 spatial growth
due to the growing urban population. Moreover, 88.71 km2 in 1989, 144.64 km2 in 2006, and
197.65 km2 in 2010 make up the urban built-up area within and surrounding the city. These
modifications have raised the study region’s surface temperature. Biophysical parameter
analysis reveals a negative association between NDBI and NDWI, a negative correlation
between LST and NDVI, and a positive correlation between LST and NDBI [51]. Urban
built-up, open terrain, vegetation, agricultural land, and aquatic bodies are the five classes
into which the multi-temporal satellite data are classified using the supervised Maximum
Likelihood Classification technique. The findings showed that new road construction,
flyovers, settlement building, etc., caused the urban built-up area to gradually rise by
roughly 21.17% (239.097 km2) throughout the study period. Other geographical features
have gradually decreased, including open space, flora, agricultural land, and bodies of
water [52].
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A built-up zone was developed on 4729.23 hectares of natural land after the categorized
LULCC diagrams from 1991 to 2021 were examined. The differences in the bare land zone
are recorded as 4.19% (1991), 0.92% (1996), 2.62% (2001), 0.01% (2006), 6.28% (2016), and
0.67% (2021), and a total decrement of 653.31 Ha (1991–2021) of bare land is detected
above the investigation regions (Figure 5). The overall accuracy assessment outcomes
for LULC classification are 93% (1991), 95.59% (1996), 92.97% (2016), and 92.94% (2021),
respectively. Apart from that, the kappa statistics for the years 1991, 1996, 2016, and
2021 are obtained, respectively, and they are 0.91, 0.94, 0.91, and 0.91. Large-scale land
changes in Kolkata’s megacity have intentionally impacted the local ecology and natural
environmental conditions (Figure 6). The vegetation decrease and high thermal variation
have increased the SUHI effects in the investigation region [53].
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3.2. LST Variation

This area experienced wide variations in temperature in different areas due to the
growth of the cities. Due to human activity, the center sections are situated in areas with
significant temperature variations. Verifications of the Earth’s surface temperature varia-
tions and high points throughout 1991–2021 correspond with the spatial circulation of the
regions under examination. In various areas of the research site, open space and grasslands
are converted into developed areas. The temperature in any given area determines the type
of vegetation. The application of the known equation to remote sensing (RS) data from
Landsat 5 TM and 8 OLI thermal bands produced the spatio-temporal disseminations of
land surface temperature (LST) for the years 1991–2021. This diagram’s red hue indicated
the highest temperature, while the blue colour indicated the lowest temperature in real-time
(Figure 7). The LST varies in the following years: 1991, 20.62 ◦C to 30.83 ◦C with a mean
temperature of 25.72 ◦C; 1996, 22.97 ◦C to 31.26 ◦C with a mean temperature of 27.11 ◦C;
2001, 23.94 ◦C to 32.05 ◦C with a mean temperature of 27.99 ◦C; 2006, 23.97 ◦C to 33.05 ◦C
with a mean temperature of 27.995 ◦C; 2016, 24.67 ◦C to 35.59 ◦C with a mean temperature
of 30.13 ◦C; and 2021, 25.32 ◦C to 38.82 ◦C with a corresponding mean temperature of
32.07 ◦C. The annual differences in the hottest and lowest temperatures between 1991 and
2021 are around 5.81 ◦C and 7.72 ◦C, respectively. The annual temperature rose every year
between 1995 and 2020, and there was a notable rise in the mean land surface tempera-
ture (LST) due to the conversion of agricultural land and trees outside forests (TOF) to
built-up areas. Compared to the suburbs, the mean LST over Kolkata City was rather high.
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The average land surface temperature (LST) increased by 4.32 ◦C in the winter and by
approximately 8.43 ◦C in the summer between 1995 and 2020. Over built-up areas (7.06 ◦C),
agricultural land without crops (5.55 ◦C), and open land (5.54 ◦C), the rate of increase in
LST was found to be relatively high. Over TOF (4.66 ◦C) and water bodies, however, it was
quite low (3.68 ◦C) [54].
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3.3. Geo-Spatial Indices

The SUHI study is classified using RS-based dissimilar spectral indices. The NDWI,
NDBI, NDMI, NDVI, and NDBal are computed using the Landsat 5 TM and Landsat
8 OLI/TIRS bands (NDBaI). The urban zone grew over the years, according to the NDBI
graphic. The primary cause of the devastating fall in heat differential is likewise the decline
in the vegetated zone in such zones. This inquiry region’s altered flora is depicted in the
NDVI graphic. Many areas of this region had a healthy green space in 1991; however,
those areas were aware of the degradation of the green space due to population pressure
and urbanization. Because there are differences in land values in different areas of the
region under examination, the urban area has grown. The land value in KMC and its
surrounding areas is generally high, while there are occasional times of low land value
in other places. As a result, the societies were able to relocate to the nearby KMC and
benefit from the development and convenience of the Kolkata metropolitan area. The
south, west, and northeast regions of this study area have had substantial changes to the
green space during the past 20 years, according to the NDVI diagram of various years.
The locations of Rajarhat-Newtown, Khidirpur, Amta, Sonarpur-Rajpur municipality, and
Pujali have reduced the amount of green space. The SUHI influence on the area under
investigation is also produced via the Urban Thermal Field Variance Index (UTFVI) figure.
Urban expansion is causing a significant rate of value alteration in the RS technique-based
UTFVI. There were also significant thermal field variations between 1991 and 2021 in
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the areas surrounding Khidirpur, Kolkata port, Dharmotala, Sealdha station, and Netaji
Subhash Chandra Bose International Airport. Urbanization caused a 0.015 Urban Thermal
Field Variance to increase everywhere throughout those years. This study highlights how
urbanization has significantly impacted the area under investigation and shows a persistent
pattern of green space conversion into built-up areas during the investigation. As a result
of this change, there is less greenery and a rise in surface temperatures. Via NDVI, NDBI,
and LST studies, this study shows strong relationships and patterns, highlighting the
necessity for urban planners, environmentalists, and ecologists to give this issue their full
attention [55]. The regulatory amplitudes for the NDBI and albedo were highest because the
marginal effect values had the biggest range. When the BCR changed from 0.3 to roughly
0.5, there was an increase in the positive link between NDBI and BCR and LST. When it was
more than 60%, there was a substantial negative correlation between GS and LST. There
was some complexity in the correlations between LST, SVF, and NDVI, respectively. When
the NDVI values were greater than 0.6, the relationship between the NDVI and LST turned
negative. Otherwise, there was a generally positive correlation between the two variables.
After surpassing 0.8, the connection between SVF and LST turned positive. Between 0.2 and
0.8, it was negative [56].

To control the area of vegetation deterioration between 1991 and 2021, the NDVI was
computed (Figure 8). Due to the region under study’s ongoing urbanization and defor-
estation, the NDVI interpretations based on the various years demonstrated a significant
reduction in the green space region. The NDVI’s experiential interpretations from 1991 are
0.63 and −0.34, respectively, representing the highest and lowest interpretations. However,
the NDVI interpretations have reduced unexpectedly with the maximum value individ-
ually validated as 0.44, while the lowest reading is −0.10. Because there is less greenery
or grassland over KMC regions, the NDVI values in urban and industrial zones are often
low. the years 1991 to 2021. Everywhere 0.015 Urban Thermal Field Variance amplified
throughout those years due to urbanization.
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Satellite imagery was used to track this metropolitan megacity’s built-up expansion
over several years. To compute the built-up indicators for six distinct years, two bands
were used. According to the NDBI results, over the last 30 years, the greatest significance
rose from 0.38 (1991) to 0.49 (2021). This discovery indicates that the examined region’s
built-up land and urban expansion became appealing locations quickly (Figure 9). The
NDMI scale runs from −1 to +1, with the lowest requirements representing low water
content in green spaces and the highest criteria representing high water content. Stated
differently, a decrease in the NDMI will be indicative of water stress, whereas abnormally
high NDMI values may suggest waterlogging. The NDMI’s high requirements are 0.62
(1991), 0.52 (1996), 0.48 (2001), 0.40 (2006), 0.35 (2016), and 0.32 (2021). In some areas of the
region under examination, the NDMI’s standards have decreased. Over the last 30 years,
the overall NDMI norm of 0.3 has been lowered (Figure 10). The entire inspecting area’s
bareness level is categorized using the bareness index. The maximum standards varied
between 0.17 (1991) and 0.08 (2021), continually. The substantial built-up growth over
the examination zone caused the NDBal to be gradually reduced in the same manner
(Figure 11). The high standards of NDWI are 0.38 (1991), 0.23 (1996), 0.21 (2001), 0.20
(2006), 0.13 (2016), and 0.12 (2021). The NDWI standards reduced in certain portions of this
examining region. A total NDWI standard of 0.18 has been condensed in the past 30 years
(Figure 12).
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3.4. SUHI

The SUHI calculation is additionally significant for environmental situation supervi-
sion and preparation for a better future (Figure 13). In every corner of the world, people
migrated in the direction of the cities. In a similar vein, the rural–urban fringe area cur-
rently transforms into an urban area during designated times. The years 1991–2021 are
indicated by a high SUHI by the colour green to blue. Planning for smart cities is now
even more important for future environmental progress. The focus of this investigation is
to raise the necessary awareness among those who can lessen the challenges (Figure 14).
The SUHI measurements are further significant in support of urbanization examination
and estimation of the general environmental situation. Consequently, the SUHI dimension
and assessment of the thermal difference over the urbanized regions were additionally
vital. The global urbanization and changing climate influences of the KMC megacity, set-
tlement, and city sites are a cumulative phenomenon that is activating the environmental
variables and health problems. Those circumstances are essential for wide valuation and
organization; climatic circumstances affect the general Earth’s surface and increase the
risk of thermal variation. In addition, unplanned metropolises were frequently affected by
the SUHI variation because numerous countries were knowledgeable about unexpected
urbanization which activated the heat island influence over the sphere. The highest SUHI
values observed were 3.21 (1991), 3.49 (1996), 3.66 (2001), 3.90 (2006), 4.37 (2016), and 4.56
(2021), respectively. The SUHI increased by 1.25 over 30 years, while the affected areas were
Khidirpur port, Dharmotala, Kalighat, Sealdha, Sovabazar, and Ultadanga areas. Similarly,
for the ecological diversity assessment, UTFVI information was applied. The values of
UTFVI were 0.20 (1991), 0.21 (1996), 0.24 (2001), 0.26 (2006), 0.26 (2016), and 0.26 (2021),
respectively. Most of the KMC areas were affected by heat effects and thermal variation.
Therefore, that information is more helpful for decision-making and future management
and adaptation strategies. With the diversity and dynamic growth of built-up morphology
and urban surface cover, the traditional method of examining the temporal pattern of
LST to investigate UHI has lost some of its significance. Rather, the Local Climate Zones
(LCZ) system, which divides the city into areas according to building height, density, and
forms of land cover that interact differently with the microclimate, emerged as a strong
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substitute [57]. Meanwhile, urban surfaces act as large heat energy reservoirs due to their
high thermal inertia, which could have accelerated the heat flux from the Earth. In Kolkata,
the noon UHI effect is not as severe or strong because of the thermal characteristics of the
urban surface, which influence the daytime UHI impacts. However, because there is no direct
solar heating during the night, the situation is reversed and local-scale convection stops [58].
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3.5. Correlation Analysis

The association between the LST and LULC diagram is caused by the green space
region showing a slightly lower temperature than built-up land. The thermal difference is
different for diverse LULC features. The built-up area is hotter than the rest, and the water
body is colder. The association is projected to apply the ArcGIS software v10.8 and calculate
the situation in different years of this examining part. The built-up area is hotter than the
rest of the water body, which is quite cool and the R2 standards are 0.32, 0.36, 0.32, 0.22, 0.24,
and 0.20 in the years 1991, 1996, 2001, 2006, 2016, and 2021 correspondingly. Because of the
building degradation, the green space land, and the reasons for the significant temperature
difference on this site, there is an additional side correlation with LST and NDVI that
is negative. The relationship between LST and NDVI is 0.07, 0.13, 0.13, 0.03, 0.05, and
0.01 in the years 1991, 1996, 2001, 2006, 2016, and 2021, respectively. Because of the high
frequency of deforestation and the increase in LST over the examined region, the NDMI
standards demonstrated a negative connection with LST. The R2 standards are 0.32, 0.36,
0.32, 0.22, 0.24, and 0.20 in the years 1991, 1996, 2001, 2006, 2016, and 2021, respectively
(Figure 15). The correlation with LST and NDWI shows a positive relationship and the R2

values are 0.03, 0.06, 0.07, 0.004, 0.02, and 0.002 in the years 1991, 1996, 2001, 2006, 2016, and
2021 correspondingly. Additionally, there was a positive association with LST as a result of
the correlation with NDBal.

The dynamic relationship between LST and plant cover (NDVI) and built-up (NDBI)
area is also investigated, demonstrating how vegetation cools the city’s microclimate while
the built-up area plays a heating role. A top-down method for verifying the effect of
shifting land use on LST is offered: a microscale study with grids. The conversion of
natural and agricultural lands into built-up areas is one of the main causes of the significant
rise in urban hotspots in the city’s southern and central regions in 2019 [59]. In contrast to
NIR reflectance, which is only related to leaf structure and dry matter, SWIR reflectance
is related to both leaf structure and water content. Therefore, differences in leaf internal
structure are cancelled out by spectral indices employing the NIR and SWIR bands, which
increases the accuracy of vegetation water content detection. Reduced leaf water content
would limit transpiration, resulting in less water evaporating from the leaf surface, decreasing
cooling and raising leaf temperature [60,61]. Due to their capacity to detect the water content
of vegetation, the indices that use SWIR and LST have strong connections that could indicate
drought-like situations during heatwaves. It has been observed that surfaces with sparse
vegetation experience water stress during heatwaves; this could prevent or reverse the cooling
effect of vegetation since there is less water available for plant transpiration and drying out [62].
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0.03, 0.05, and 0.01 in the years 1991, 1996, 2001, 2006, 2016, and 2021, respectively. Because 

of the high frequency of deforestation and the increase in LST over the examined region, 

the NDMI standards demonstrated a negative connection with LST. The R2 standards are 

0.32, 0.36, 0.32, 0.22, 0.24, and 0.20 in the years 1991, 1996, 2001, 2006, 2016, and 2021, re-

spectively (Figure 15). The correlation with LST and NDWI shows a positive relationship 

and the R2 values are 0.03, 0.06, 0.07, 0.004, 0.02, and 0.002 in the years 1991, 1996, 2001, 

2006, 2016, and 2021 correspondingly. Additionally, there was a positive association with 

LST as a result of the correlation with NDBal. 

The dynamic relationship between LST and plant cover (NDVI) and built-up (NDBI) 

area is also investigated, demonstrating how vegetation cools the city’s microclimate 

while the built-up area plays a heating role. A top-down method for verifying the effect 

of shifting land use on LST is offered: a microscale study with grids. The conversion of 

natural and agricultural lands into built-up areas is one of the main causes of the signifi-

cant rise in urban hotspots in the city’s southern and central regions in 2019 [59]. In con-

trast to NIR reflectance, which is only related to leaf structure and dry matter, SWIR re-

flectance is related to both leaf structure and water content. Therefore, differences in leaf 

internal structure are cancelled out by spectral indices employing the NIR and SWIR 

bands, which increases the accuracy of vegetation water content detection. Reduced leaf 

water content would limit transpiration, resulting in less water evaporating from the leaf 

surface, decreasing cooling and raising leaf temperature [60,61]. Due to their capacity to 

detect the water content of vegetation, the indices that use SWIR and LST have strong 

connections that could indicate drought-like situations during heatwaves. It has been ob-

served that surfaces with sparse vegetation experience water stress during heatwaves; this 

could prevent or reverse the cooling effect of vegetation since there is less water available 

for plant transpiration and drying out [62]. 
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3.6. Limitations and Recommendation

Because the satellites were capturing the images from satellite orbit, there is a distinc-
tion between surface SUHI and atmospheric SUHI. Two other factors that were crucial to
examine in the upcoming research are timing and cloud cover. The massive space between
the satellite location and the urban area might decrease the sensor’s efficacy as there is
still a substantial inconsistency between the predicted and real air temperatures [63]. It is
possible that the 30 m resolution Landsat files will not be sufficient for accurately classifying
the picture. The land alteration investigation’s primary challenges are mixed pixels and
heterogeneous values, which will make the issues in the urban expansion study worse. The
upcoming research establishes the need for real surface temperatures, enhanced radiation
adaption and filtering models, and Earth observation satellite systems. Aside from that,
the study regions’ urban green space (UGS) analysis should be conducted to advance
sustainable urban design and management.

4. Conclusions

In this examination, a positive connection is found between LULC features and the
LST because of the urbanization growth, industrialization, and population. An increasing
LST trend is experiential from the years 1991 to 2021. The outcomes demonstrate that an
increase of 4729.23 Ha in built-up areas is observed in the examining region. Temporarily,
1354.86 Ha of vegetation land, 653.31 Ha of bare land, 2286.9 Ha of grassland, and 434.16 Ha
of water body region reduced from the year 1991 until 2021. Both the RS and GIS methods
contribute to the main benefit of the spatio-temporal urban sprawls trend with SUHI,
which, when applied as the main important impact on behalf of suitable urbanized and
transportation growth, as well as ecological organization difficulties like high LST in the
urbanized regions, produces SUHI; consistently, we can differentiate the UTFVI.

• The UHI and LULC results commend the significant strengthening in residential
regions, similar to the temperature of the urbanized regions in the last three periods,
as supplementary to added LULC features. The local thermal shape of the natural
surroundings appears to have been impacted by the urbanization process, according
to correlations found between LST and NDBI, NDVI, NDWI, NDMI, and NDBal.

• The significant positive link found between LST and NDBI suggests that rapid urban
growth has directly impacted the region under investigation’s temperature conditions.
Moreover, an inverse relationship between the decline in green space and the urban
thermal field is suggested by the negative correlation between LST and NDVI.
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• The primary regulating factor for SUHI and heat stress in Kolkata and the surrounding
area, according to this study, is surface area. Policymakers, administrators, urban
planners, and other interested parties can use this analysis for project management and
planning that will reduce thermal variance and land modification over the KMC regions.

Author Contributions: Conceptualization, N.G., B.H. and J.B.; methodology, N.G., B.H., A.H.M. and
T.M.T.L.; software, N.G. and B.H.; validation, B.H., J.B., M.F.A., A.H.M. and T.M.T.L.; formal analysis,
N.G., B.H., J.B., M.F.A., A.H.M. and T.M.T.L.; investigation, N.G., B.H., J.B., M.F.A., A.H.M. and
T.M.T.L.; resources, A.H.M. and T.M.T.L.; data curation, N.G., B.H., A.H.M. and M.F.A.; writing—
original draft preparation, N.G., B.H., J.B., A.H.M., M.F.A. and T.M.T.L.; writing—review and editing,
N.G., B.H., J.B., M.F.A., A.H.M. and T.M.T.L.; visualization, B.H., A.H.M. and T.M.T.L.; supervision,
J.B., B.H. and T.M.T.L.; project administration, A.H.M. and T.M.T.L.; funding acquisition, A.H.M. and
T.M.T.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data will be supplied upon request from the corresponding author.

Acknowledgments: The authors are thankful to the Vidyasagar University for this research opportu-
nity and truly thankful to the local government body for the field survey and data collection.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ishola, K.A.; Okogbue, E.C.; Adeyeri, O.E. Dynamics of Surface Urban Biophysical Compositions and Its Impact on Land Surface

Thermal Field. Model. Earth Syst. Environ. 2016, 2, 1–20. [CrossRef]
2. Atef, I.; Ahmed, W.; Abdel-Maguid, R.H. Modelling of Land Use Land Cover Changes Using Machine Learning and GIS

Techniques: A Case Study in El-Fayoum Governorate, Egypt. Environ. Monit. Assess. 2023, 195, 637. [CrossRef] [PubMed]
3. Armanuos, A.; Ahmed, K.; Sanusi Shiru, M.; Jamei, M. Impact of Increasing Pumping Discharge on Groundwater Level in the

Nile Delta Aquifer, Egypt. Knowl.-Based Eng. Sci. 2021, 2, 13–23. [CrossRef]
4. Zhang, S.; Omar, A.H.; Hashim, A.S.; Alam, T.; Khalifa, H.A.E.-W.; Elkotb, M.A. Enhancing Waste Management and Prediction of

Water Quality in the Sustainable Urban Environment Using Optimized Algorithm of Least Square Support Vector Machine and
Deep Learning Techniques. Urban Clim. 2023, 49, 101487. [CrossRef]

5. Voogt, J.A.; Oke, T.R. Thermal Remote Sensing of Urban Climates. Remote Sens. Environ. 2003, 86, 370–384. [CrossRef]
6. Lu, D.; Weng, Q. Use of Impervious Surface in Urban Land-Use Classification. Remote Sens. Environ. 2006, 102, 146–160. [CrossRef]
7. Sarrat, C.; Lemonsu, A.; Masson, V.; Guedalia, D. Impact of Urban Heat Island on Regional Atmospheric Pollution. Atmos.

Environ. 2006, 40, 1743–1758. [CrossRef]
8. Abd Alraheem, E.; Jaber, N.A.; Jamei, M.; Tangang, F. Assessment of Future Meteorological Drought under Representative

Concentration Pathways (RCP8. 5) Scenario: Case Study of Iraq. Knowl.-Based Eng. Sci. 2022, 3, 64–82.
9. Mundia, C.N.; James, M.M. Dynamism of Land Use Changes on Surface Temperature in Kenya: A Case Study of Nairobi City. Int.

J. Sci. Res. 2014, 3, 38–41.
10. Avdan, U.; Jovanovska, G. Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data. J.

Sens. 2016, 2016, 1480307. [CrossRef]
11. Cheruto, M.C.; Kauti, M.K.; Kisangau, D.P.; Kariuki, P.C. Assessment of Land Use and Land Cover Change Using GIS and Remote

Sensing Techniques: A Case Study of Makueni County, Kenya. J. Remote. Sens. GIS 2016, 5, 1000175. [CrossRef]
12. Meer, M.S.; Mishra, A.K. Land Use/Land Cover Changes over a District in Northern India Using Remote Sensing and GIS and

Their Impact on Society and Environment. J. Geol. Soc. India 2020, 95, 179–182. [CrossRef]
13. Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of Landscape Composition and Pattern on Land Surface Temperature: An Urban

Heat Island Study in the Megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [CrossRef] [PubMed]
14. Gohain, K.J.; Mohammad, P.; Goswami, A. Assessing the Impact of Land Use Land Cover Changes on Land Surface Temperature

over Pune City, India. Quat. Int. 2021, 575, 259–269. [CrossRef]
15. Mahmoud, A.A.; Mbengue, M.T.M.; Hussain, S.; Abdullahi, M.A.; Beddal, D.; Abba, S.I. Investigation for Flood Flow Quantifica-

tion of Porous Asphalt with Different Surface and Subsurface Thickness. Knowl.-Based Eng. Sci. 2023, 4, 78–89.
16. Zheng, B.; Myint, S.W.; Fan, C. Spatial Configuration of Anthropogenic Land Cover Impacts on Urban Warming. Landsc. Urban

Plan. 2014, 130, 104–111. [CrossRef]
17. Kumar, R.; Raj Gautam, H. Climate Change and Its Impact on Agricultural Productivity in India. J. Climatol. Weather Forecast.

2014, 2, 1000109. [CrossRef]

59



Sustainability 2024, 16, 3383

18. Saleem, M.; Iqbal, J.; Shah, M.H. Non-Carcinogenic and Carcinogenic Health Risk Assessment of Selected Metals in Soil around a
Natural Water Reservoir, Pakistan. Ecotoxicol. Environ. Saf. 2014, 108, 42–51. [CrossRef]

19. Chakraborty, T.; Hsu, A.; Manya, D.; Sheriff, G. A Spatially Explicit Surface Urban Heat Island Database for the United States:
Characterization, Uncertainties, and Possible Applications. ISPRS J. Photogramm. Remote Sens. 2020, 168, 74–88. [CrossRef]

20. Shahmohamadi, P.; Che-Ani, A.I.; Etessam, I.; Maulud, K.N.A.; Tawil, N.M. Healthy Environment: The Need to Mitigate Urban
Heat Island Effects on Human Health. Procedia Eng. 2011, 20, 61–70. [CrossRef]

21. Gupta, K.; Kumar, P.; Pathan, S.K.; Sharma, K.P. Urban Neighborhood Green Index—A Measure of Green Spaces in Urban Areas.
Landsc. Urban Plan. 2012, 105, 325–335. [CrossRef]

22. Veettil, B.K.; Grondona, A.E.B. Vegetation Changes and Formation of Small-Scale Urban Heat Islands in Three Populated Districts
of Kerala State, India. Acta Geophys. 2018, 66, 1063–1072. [CrossRef]

23. Hashim, B.M.; Sultan, M.A.; Attyia, M.N.; Al Maliki, A.A.; Al-Ansari, N. Change Detection and Impact of Climate Changes to
Iraqi Southern Marshes Using Landsat 2 Mss, Landsat 8 Oli and Sentinel 2 Msi Data and Gis Applications. Appl. Sci. 2019, 9, 2016.
[CrossRef]

24. Jamei, M.; Ali, M.; Jun, C.; Bateni, S.M.; Karbasi, M.; Farooque, A.A.; Yaseen, Z.M. Multi-Step Ahead Hourly Forecasting of Air
Quality Indices in Australia: Application of an Optimal Time-Varying Decomposition-Based Ensemble Deep Learning Algorithm.
Atmos. Pollut. Res. 2023, 14, 101752. [CrossRef]

25. Yu, X.; Guo, X.; Wu, Z. Land Surface Temperature Retrieval from Landsat 8 TIRS—Comparison between Radiative Transfer
Equation-Based Method, Split Window Algorithm and Single Channel Method. Remote Sens. 2014, 6, 9829–9852. [CrossRef]

26. Ke, Y.; Im, J.; Lee, J.; Gong, H.; Ryu, Y. Characteristics of Landsat 8 OLI-Derived NDVI by Comparison with Multiple Satellite
Sensors and In-Situ Observations. Remote Sens. Environ. 2015, 164, 298–313. [CrossRef]

27. Sekertekin, A.; Bonafoni, S. Land Surface Temperature Retrieval from Landsat 5, 7, and 8 over Rural Areas: Assessment of
Different Retrieval Algorithms and Emissivity Models and Toolbox Implementation. Remote Sens. 2020, 12, 294. [CrossRef]

28. Carlson, T. An Overview of the “Triangle Method” for Estimating Surface Evapotranspiration and Soil Moisture from Satellite
Imagery. Sensors 2007, 7, 1612–1629. [CrossRef]

29. Omran, E.-S.E. Detection of Land-Use and Surface Temperature Change at Different Resolutions. J. Geogr. Inf. Syst. 2012, 4,
189–203. [CrossRef]

30. Orhan, O.; Ekercin, S.; Dadaser-Celik, F. Use of Landsat Land Surface Temperature and Vegetation Indices for Monitoring Drought
in the Salt Lake Basin Area, Turkey. Sci. World J. 2014, 2014, 142939. [CrossRef]

31. Berwal, S.; Kumar, D.; Pandey, A.K.; Singh, V.P.; Kumar, R.; Kumar, K. Dynamics of Thermal Inertia over Highly Urban City: A
Case Study of Delhi. In Remote Sensing Technologies and Applications in Urban Environments; SPIE: Bellingham, WA, USA, 2016;
Volume 10008, pp. 108–114.

32. Kayet, N.; Pathak, K.; Chakrabarty, A.; Sahoo, S. Spatial Impact of Land Use/Land Cover Change on Surface Temperature
Distribution in Saranda Forest, Jharkhand. Model. Earth Syst. Environ. 2016, 2, 127. [CrossRef]

33. Jensen Mausel, P.; Dias, N.; Gonser, R.; Yang, C.; Everitt, J.; Fletcher, R. Spectral Analysis of Coastal Vegetation and Land Cover
Using AISA+ Hyperspectral Data. Geocarto Int. 2007, 22, 17–28. [CrossRef]

34. Cohen, J. Weighted Kappa: Nominal Scale Agreement Provision for Scaled Disagreement or Partial Credit. Psychol. Bull. 1968,
70, 213. [CrossRef] [PubMed]

35. Zoungrana, B.J.B.; Conrad, C.; Thiel, M.; Amekudzi, L.K.; Da, E.D. MODIS NDVI Trends and Fractional Land Cover Change for
Improved Assessments of Vegetation Degradation in Burkina Faso, West Africa. J. Arid Environ. 2018, 153, 66–75. [CrossRef]

36. Li, Q.; Zhang, T.; Yu, Y. Using Cloud Computing to Process Intensive Floating Car Data for Urban Traffic Surveillance. Int. J.
Geogr. Inf. Sci. 2011, 25, 1303–1322. [CrossRef]

37. Jin, Z.; Zhang, L.; Lv, J.; Sun, X. The Application of Geostatistical Analysis and Receptor Model for the Spatial Distribution and
Sources of Potentially Toxic Elements in Soils. Environ. Geochem. Health 2021, 43, 407–421. [CrossRef] [PubMed]

38. Sobrino, J.A.; Raissouni, N.; Li, Z.-L. A Comparative Study of Land Surface Emissivity Retrieval from NOAA Data. Remote Sens.
Environ. 2001, 75, 256–266. [CrossRef]

39. Guha, S.; Govil, H.; Dey, A.; Gill, N. Analytical Study of Land Surface Temperature with NDVI and NDBI Using Landsat 8 OLI
and TIRS Data in Florence and Naples City, Italy. Eur. J. Remote Sens. 2018, 51, 667–678. [CrossRef]

40. Singh, P.; Kikon, N.; Verma, P. Impact of Land Use Change and Urbanization on Urban Heat Island in Lucknow City, Central
India. A Remote Sensing Based Estimate. Sustain. Cities Soc. 2017, 32, 100–114. [CrossRef]

41. Kedia, S.; Bhakare, S.P.; Dwivedi, A.K.; Islam, S.; Kaginalkar, A. Estimates of Change in Surface Meteorology and Urban Heat
Island over Northwest India: Impact of Urbanization. Urban Clim. 2021, 36, 100782. [CrossRef]

42. Chandler, T.J. Urban Climatology and Urban Planning. Geogr. J. 1976, 142, 57. [CrossRef]
43. Estoque, R.C.; Murayama, Y. Monitoring Surface Urban Heat Island Formation in a Tropical Mountain City Using Landsat Data

(1987–2015). ISPRS J. Photogramm. Remote Sens. 2017, 133, 18–29. [CrossRef]
44. Zhao, H.; Chen, X. Use of Normalized Difference Bareness Index in Quickly Mapping Bare Areas from TM/ETM+. In Proceedings

of the International Geoscience and Remote Sensing Symposium, Seoul, Republic of Korea, 29 July 2005; Volume 3, p. 1666.
45. Guha, S.; Govil, H.; Besoya, M. An Investigation on Seasonal Variability between LST and NDWI in an Urban Environment Using

Landsat Satellite Data. Geomat. Nat. Hazards Risk 2020, 11, 1319–1345. [CrossRef]

60



Sustainability 2024, 16, 3383

46. Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land Surface Temperature Retrieval from LANDSAT TM 5. Remote Sens. Environ.
2004, 90, 434–440. [CrossRef]

47. Scarano, M.; Sobrino, J.A. On the Relationship between the Sky View Factor and the Land Surface Temperature Derived by
Landsat-8 Images in Bari, Italy. Int. J. Remote Sens. 2015, 36, 4820–4835. [CrossRef]

48. Mirzaei, P.A.; Haghighat, F. Approaches to Study Urban Heat Island—Abilities and Limitations. Build. Environ. 2010, 45,
2192–2201. [CrossRef]

49. Abir, F.A.; Ahmmed, S.; Sarker, S.H.; Fahim, A.U. Thermal and Ecological Assessment Based on Land Surface Temperature and
Quantifying Multivariate Controlling Factors in Bogura, Bangladesh. Heliyon 2021, 7, e08012. [CrossRef] [PubMed]

50. Ray, R.; Das, A.; Hasan, M.S.U.; Aldrees, A.; Islam, S.; Khan, M.A.; Lama, G.F.C. Quantitative Analysis of Land Use and Land
Cover Dynamics Using Geoinformatics Techniques: A Case Study on Kolkata Metropolitan Development Authority (KMDA) in
West Bengal, India. Remote Sens. 2023, 15, 959. [CrossRef]

51. Sharma, R.; Chakraborty, A.; Joshi, P.K. Geospatial Quantification and Analysis of Environmental Changes in Urbanizing City of
Kolkata (India). Environ. Monit. Assess. 2015, 187, 4206. [CrossRef]

52. Hasnine, M.; Rukhsana. Spatial and Temporal Analysis of Land Use and Land Cover Change in and around Kolkata City, India,
Using Geospatial Techniques. J. Indian Soc. Remote Sens. 2023, 51, 1037–1056. [CrossRef]

53. Das, P.; Vamsi, K.S.; Zhenke, Z. Decadal Variation of the Land Surface Temperatures (LST) and Urban Heat Island (UHI) over
Kolkata City Projected Using MODIS and ERA-Interim DataSets. Aerosol Sci. Eng. 2020, 4, 200–209. [CrossRef]

54. Biswas, S.; Ghosh, S. Estimation of Land Surface Temperature in Response to Land Use/Land Cover Transformation in Kolkata
City and Its Suburban Area, India. Int. J. Urban Sci. 2022, 26, 604–631. [CrossRef]

55. Ali, M.B.; Jamal, S.; Ahmad, M.; Saqib, M. Unriddle the Complex Associations among Urban Green Cover, Built-up Index, and
Surface Temperature Using Geospatial Approach: A Micro-Level Study of Kolkata Municipal Corporation for Sustainable City.
Theor. Appl. Climatol. 2024, 1–22. [CrossRef]

56. Lu, L.; Fu, P.; Dewan, A.; Li, Q. Contrasting Determinants of Land Surface Temperature in Three Megacities: Implications to Cool
Tropical Metropolitan Regions. Sustain. Cities Soc. 2023, 92, 104505. [CrossRef]

57. Bhowmick, D.; Mukherjee, K.; Dash, P.; Mondal, R. Use of “Local Climate Zones” for Detecting Urban Heat Island: A Case Study
of Kolkata Metropolitan Area, India. In IOP Conference Series: Earth and Environmental Science, Proceedings of the International
Conference on Geospatial Science for Digital Earth Observation (GSDEO-2021), Online, 26–27 March 2021; IOP Publishing: Bristol, UK,
2023; Volume 1164, p. 12007.

58. Khorat, S.; Das, D.; Khatun, R.; Aziz, S.M.; Anand, P.; Khan, A.; Santamouris, M.; Niyogi, D. Cool Roof Strategies for Urban
Thermal Resilience to Extreme Heatwaves in Tropical Cities. Energy Build. 2024, 302, 113751. [CrossRef]

59. Sharma, R.; Pradhan, L.; Kumari, M.; Bhattacharya, P. Assessing Urban Heat Islands and Thermal Comfort in Noida City Using
Geospatial Technology. Urban Clim. 2021, 35, 100751. [CrossRef]

60. Ceccato, P.; Flasse, S.; Tarantola, S.; Jacquemoud, S.; Grégoire, J.-M. Detecting Vegetation Leaf Water Content Using Reflectance in
the Optical Domain. Remote Sens. Environ. 2001, 77, 22–33. [CrossRef]

61. Yao, X.; Yu, K.; Zeng, X.; Lin, Y.; Ye, B.; Shen, X.; Liu, J. How Can Urban Parks Be Planned to Mitigate Urban Heat Island Effect in
“Furnace Cities”? An Accumulation Perspective. J. Clean. Prod. 2022, 330, 129852. [CrossRef]

62. Alexander, C. Normalised Difference Spectral Indices and Urban Land Cover as Indicators of Land Surface Temperature (LST).
Int. J. Appl. Earth Obs. Geoinf. 2020, 86, 102013. [CrossRef]

63. Mohamed, A.H.; Adwan, I.A.I.; Ahmeda, A.G.F.; Hrtemih, H.; Al-MSari, H. Identification of Affecting Factors on the Travel Time
Reliability for Bus Transportation. Knowl.-Based Eng. Sci. 2021, 2, 19–30. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

61



Citation: Xu, C.; Fu, H.; Yang, J.;

Wang, L.; Wang, Y. Land-Use-Based

Runoff Yield Method to Modify

Hydrological Model for Flood

Management: A Case in the Basin of

Simple Underlying Surface.

Sustainability 2022, 14, 10895. https://

doi.org/10.3390/su141710895

Academic Editors: Jun Qin and Hou

Jiang

Received: 5 August 2022

Accepted: 28 August 2022

Published: 31 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Land-Use-Based Runoff Yield Method to Modify Hydrological
Model for Flood Management: A Case in the Basin of Simple
Underlying Surface
Chaowei Xu , Hao Fu *, Jiashuai Yang, Lingyue Wang and Yizhen Wang

College of Urban and Environmental Sciences, Peking University, No.5 Yiheyuan Road, Haidian District,
Beijing 100871, China
* Correspondence: fuhao@pku.edu.cn; Tel.: +86-18101201990

Abstract: The study of runoff under the influence of human activities is a research hot spot in the
field of water science. Land-use change is one of the main forms of human activities and it is also the
major driver of changes to the runoff process. As for the relationship between land use and the runoff
process, runoff yield theories pointed out that the runoff yield capacity is spatially heterogeneous.
The present work hypothesizes that the distribution of the runoff yield can be divided by land use,
which is, areas with the same land-use type are similar in runoff yield, while areas of different land
uses are significantly different. To prove it, we proposed a land-use-based framework for runoff yield
calculations based on a conceptual rainfall–runoff model, the Xin’anjiang (XAJ) model. Based on the
framework, the modified land-use-based Xin’anjiang (L-XAJ) model was constructed by replacing the
yielding area (f/F) in the water storage capacity curve of the XAJ model with the area ratio of different
land-use types (L/F; L is the area of specific land-use types, F is the whole basin area). The L-XAJ
model was then applied to the typical cultivated–urban binary land-use-type basin (Taipingchi basin)
to evaluate its performance. Results showed great success of the L-XAJ model, which demonstrated
the area ratio of different land-use types can represent the corresponding yielding area in the XAJ
model. The L-XAJ model enhanced the physical meaning of the runoff generation in the XAJ model
and was expected to be used in the sustainable development of basin water resources.

Keywords: runoff generation; saturation-excess runoff generation theory; yielding area; conceptual
hydrological model; land-use-based Xin’anjiang model (L-XAJ); cultivated–urban binary land-use-
type basin; sustainable development of water resources

1. Introduction

The sustainable development of water resources has intimate associations with the
quality of human life in modern society [1–3]. A runoff yield calculation is one of the
key components in basin water resource management, which plays an important role in
hydrologic processes [4–8]. In the past few decades, runoff yield models, which were
used for hydrological forecasting and water resources management, have been providing
decision-making services for basin management and planning [5,9–13]. Saturation-excess
runoff generation theory pointed out that runoff occurs when the soil water content in the
unsaturated zone exceeds the field capacity [14]. Based on this theory, numerous rainfall–
runoff models have been developed and applied extensively around the world over the
past century, which proved the effectiveness of the theory [15–19].

The runoff yield is closely related to the underlying surface condition [20,21]. In a
basin, the characteristics of runoff yield are spatially differentiated. Different hydrological
models invariably construct a curve to describe this difference in the runoff yield, e.g.,
the water storage capacity curve of the XAJ model, which has demonstrated widespread
utility in most natural basins of humid and semi-humid regions [22,23]. However, intensive
human activities are changing the natural basin deeply [24], which has a profound impact
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on the runoff yield. The natural distribution of the runoff yield and the original runoff yield
mechanism are changed along with these drastic land-use changes [25–27]. Zhu et al. [28]
and Zheng et al. [29] have found that land-use change is the strongest contributor to a
change in the runoff process and may be directly responsible for more than 70%. Studies
also found that hydrological models tend to underperform more in artificial basins than in
natural basins [25]. Some scholars pointed out that it is mainly due to the land-use changes,
which influence the runoff yield [30–32].

The effect of land use on the runoff yield was widely discussed in hydrology [33–35].
The basic consensus is that land-use change is the most important factor affecting the runoff
yield [24,36–44]. Among them, lots of studies concentrated on the relationship between
different land-use changes and runoff yield (e.g., vegetation [45–48], urbanization [49,50],
agricultural activities [51–53]). In general, afforestation will reduce the runoff yield, while
deforestation, urbanization and overgrazing will increase the runoff yield; furthermore,
the effect of agricultural activities varies with tillage practices [54–59]. Moreover, relevant
studies indicated that the land-use structure and spatial layout (e.g., land-use distribu-
tion [60,61], land-use pattern and landscape features [62,63]) also have a deep impact on
the runoff yield, runoff patterns and the runoff processes. These studies suggest that the
land-use type is closely related to the runoff processes, which may be the key factor to
determine the runoff yield.

Although many studies concerned the relationship between land-use change and
runoff [64–66], few of them took land use as a parameter to integrate into conceptual
hydrological models. Inspired by previous scholars, this paper assumes that the distribution
of the runoff yield can be divided by the land-use form, i.e., areas with the same land-use
form are similar in their runoff yield, while areas of different land uses are significantly
different. As for the XAJ model, it can be expressed by replacing the yielding area with
the area ratio of land use in the basin. The main objective of this study is to construct a
land-use-based Xin’anjiang (L-XAJ) model with the relationship between the yielding area
(f/F) and the area of different land uses (L/F) for better runoff generation simulation in a
typical cultivated–urban binary land-use-type basin, thus providing a better tool for the
sustainable development of water resources at the basin scale. This research is expected
to be used for flood management and the sustainable development of water resources in
the basin. The remainder of this paper was organized as follows: Section 2 describes the
methods and study area, Section 3 summarizes the research results and discussions and,
lastly, the conclusions are drawn in Section 4.

2. Materials and Methods
2.1. Runoff Yield in XAJ Model

XAJ model is one of the most famous hydrological models in China, which is widely
used in humid and semi-humid areas [14]. XAJ model can be divided into four parts:
evapotranspiration, runoff generation, runoff sources partition and runoff concentration
(Figure 1). Runoff generation is one of the most important modules and the parabolic curve
is used to calculate the runoff yield, which can be represented by the following equation:

f
F
= 1 −

(
1 − W′m

W′mm

)B

(1)

where W′m is the storage capacity of a point in the basin (mm), f is the fraction of the basin
area for which the storage capacity is less than W′m, F is the whole basin area, W′mm is the
maximum value of W′m and B is the shape parameter of the storage capacity distribution.
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Figure 1. The framework of XAJ model. (Variables: P: precipitation; EM: potential evapotran-
spiration; E: actual evapotranspiration; RIM: runoff from the impervious area; RS: surface runoff;
RSS: interflow runoff; RG: groundwater runoff; TRS: outflows from the reservoirs of surface run-off
components; TRSS: outflows from the reservoirs of interflow run-off components; TRG: outflows
from the reservoirs of groundwater run-off components; QRS: surface runoff inflow to river network;
QRSS: interflow to river network; QRG: groundwater inflow to river network; s: water content in free
water store reservoir; FR: ratio of runoff-producing area; Upper layer, Lower layer and Deep layer
are the three soil layers for evapotranspiration; S: free water storage reservoir; UH: unit hydrograph;
WM: the average water storage capacity; W′m: the water storage capacity; W′mm: the maximum value
of W′m; EU, EL and ED are evaporation from the upper, lower and deepest layer, respectively; Q: the
discharge at the outlet of the basin; Parameters: the others are parameters and will be introduced in
Section 2.4).

Based on Equation (1), the average water storage capacity (WM) of the basin can
be obtained:

WM =
∫ 1

0
W′md(

f
F
) =

W′mm
1 + B

(2)

As shown in Figure 2a, there are two basic initial assumptions for the runoff generation
process: (1) the initial soil water content of the basin is W0 and the maximum field storage
capacity is A; (2) the area of a proportion of α0 over the basin is in saturation state and the
rainfall that falls on this area directly produces runoff, on the area of 1 − α0, it does not.
Hence, the initial state of the basin is:

A = W′mm ∗
[

1 −
(

1 − W0
WM

) 1
1+B
]

(3)

If rainfall is P and evapotranspiration is E, when evapotranspiration exceeds rainfall
(P − E < 0), runoff is not generated; when rainfall exceeds evapotranspiration (P − E > 0),
then runoff is generated.
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If P − E + A < W′mm for local runoff generation, the soil water storage is the LOSS part
in Figure 2a and the runoff yield R can be obtained by the following equation:

R = dPE −
∫ A+(P − E)

A (1 − α 0)dW′m
= P − E + WM(1 − A+P − E

W′mm
)

B+1
+W0 − WM

(4)

Otherwise, the runoff yield R can be obtained by the equation:

R = P − E − (WM − W0) (5)

The runoff generation process can be calculated by Equations (4) and (5). From
Equations (4) and (5), the rainfall–runoff relationship can be obtained as Figure 2b, which
indicates that runoff yield only is controlled by net rainfall P-E and soil moisture W0.

2.2. Runoff Yield in L-XAJ Model

The XAJ model provides an effective solution for runoff yield calculation but has no
clear physical meaning [67,68]. However, its parameters implicitly represent the influence
of underlying surface factors such as land use on runoff yield. To clarify the underlying
surface information of the model, we assumed that the distribution of runoff yield in a
basin can be divided by land-use form, i.e., areas with the same land-use form are similar
in runoff yield, while areas of different land uses are significantly different. L-XAJ model
calculates the runoff yield under each land-use type by specific water storage capacity
value, accumulates the runoff yield of all land-use types as the basin’s runoff yield and
then goes into the free water storage reservoir for the partition of runoff sources (Figure 3).

As shown in Figure 4, land-use pattern can be obtained from remote sensing images.
This is assuming that the land use of the rectangle can be divided into four regions, A, B,
C and D, which is grassland, forest, urban and grassland, respectively. Though the water
storage capacity is spatially heterogeneous in this rectangle, it can be roughly distinguished
as the four regions. The water storage capacity values of regions A and D, are roughly at
the same level; while the values of regions A, B and C are at different levels. So, we can use
a mean value a to represent the average water storage capacity of region A and D, a mean
value b for region B and a mean value c for region C; a, b and c are not equal to each other.
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Figure 4. Picture of different land-use types (examples of different land-use types with water storage
capacity: (A): grassland, (B): forest, (C): urban and (D): grassland).

In this framework, water storage capacity is indeed different at different points within
the same land-use type. It is difficult to calculate the water storage capacity of each point,
but its statistical law is presented in the water storage capacity curve of XAJ model. The
mean value of each land-use segment is used to represent its water storage capacity value.

To describe the land-use-based water storage capacity curve by clear mathematical for-
mulas, we assume that there are n different land-use types in a certain basin (Figure 5a) and
their area ratios over the basin are s1, s2. . . sn, respectively, as the abscissa in L-XAJ model
by αi, such as (α0, α1], (α1, α2] . . . (αn−1, αn], where α0 = 0, αi − αi−1 = si (1 ≤ i ≤ n)
(Figure 5b). The water storage capacity value of different land-use types are W1, W2 . . . Wn,
representing the average value of the water storage capacity of different land-use types as
the ordinate in L-XAJ model. As shown in Figure 6a, L-XAJ model is a monotone increasing
piecewise function and each segment of the function represents one kind of land-use type in
the basin, including urban, surface water bodies, grassland, crops, forest, etc. In application,
land-use types can be adjusted based on the true condition of different basins. The area
of i-th (1 ≤ i ≤ n) land-use type is αi − αi−1 = si and was reflected on the abscissa in
L-XAJ model. The water storage capacity value of the ith land-use type is Wi, reflecting
the ordinate in L-XAJ model, and the water storage capacity value within [αi−1, αi] is
always Wi. Therefore, the average water storage capacity of the ith land-use type WSi can
be obtained:

WSi= Wi × (αi − αi−1)= Wi × si (1 ≤ i ≤ n) (6)
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ship between storage capacity value and land-use types. (α1, α2, α3, α4, α5, α6 are the area ratio
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Sustainability 2022, 14, x FOR PEER REVIEW 7 of 24 
  

 

Figure 6. The construction of L-XAJ model (six land-use types for examples; (a) the lower water 

storage capacity values are located in smaller area and higher are in bigger area; (b) left: the basin 

state before rainfall for which soil moisture is W�; right: the runoff process when the net rainfall is 

P-E, set (α3, α4] is m-th land-use type and (α4, α5] is (m + 1)th land-use type). 

After the L-XAJ model is constructed, it is necessary to further analyze the rainfall–

runoff relationship and calculate the runoff yield under different rainfall conditions. As 

shown in Figure 6b, we assume that the basin soil moisture before rainfall is W�, which 

is distributed horizontally in L-XAJ model, the first m land-use types in the basin have 

reached the saturation state, while the m + 1 land-use type has not reached or has just 

reached it. In this case: 

A=
W�- ∑ Wi × (αi − αi-1)m

i=1

1 − αm
 (10)

If rainfall is P, evapotranspiration is E. When evapotranspiration exceeds rainfall (P 

− E < 0), runoff is not generated. When rainfall exceeds evapotranspiration (P − E > 0) then, 

if P − E + A > Wn, total runoff generation: 

R=P − E − �WMl-xaj − W�� (11)

Otherwise, for local runoff generation, the soil water storage is the horizontal fill part 

in Figure 6b and runoff yield R is: 

R=(P-E) − �(Wi − A)·(αi−αi-1)

b

i=a

− � (P − E)·(αi − αi-1)

n

i=b+1

 (12)

where a and b satisfy the constraints: 

Wa>A   P-E+A≥Wb (13)

where a takes the smallest integer value that satisfies Equation (13) and b takes the largest 

integer value. 

So, the runoff yield of L-XAJ model can be calculated by Equations (11) and (12) and 

the rainfall–runoff interactions can be studied. When set, the soil moisture content is Si (S0 

= 0) and at the same time, the soil moisture is just enough to make the land-use type i reach 

the storage-full state. In this condition, the rainfall–runoff relationship (Figure 7) is differ-

ent to XAJ model; it is segmented form, but there is continuity between adjacent segments. 

When W� = S0, the line is n segments with different slopes, which in turn are 1/αi (1 ≤ i ≤ 

n); when W� = S1, the line is n-1 segments with different slopes, which in turn are 1/αi (2 

≤ i ≤ n), and so on. When Si−1 < W� < Si, the segment is similar to the W� = Si−1, but the 

position will be changed. When W�  = WMl-xaj , then R = P − E and the line which is 

Figure 6. The construction of L-XAJ model (six land-use types for examples; (a) the lower water
storage capacity values are located in smaller area and higher are in bigger area; (b) left: the basin
state before rainfall for which soil moisture is W0; right: the runoff process when the net rainfall is
P-E, set (α3, α4] is m-th land-use type and (α4, α5] is (m + 1)th land-use type).

In addition, the average storage capacity, WMl−xaj, of L-XAJ model can be calculated
as follows:

WMl−xaj =
n

∑
i=1

WSi =
n

∑
i=1

Wi × (αi − αi−1) (1 ≤ i ≤ n) (7)

In the quantification, the shape of the L-XAJ model is determined by certain constraints.
In this paper, the total water storage capacity of the same basin should be the same.
Therefore, there are two constraints of XAJ model and L-XAJ model: (1) the maximum
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water storage capacity of the basin should be the same and (2) the average water storage
capacity also should be the same. So:

WM =
W′mm
1 + B

= WMl−xaj =
n

∑
i=1

Wi × (αi − αi−1) (8)

Additionally,
W′mm= Wn (9)

Here, W′mm and B are the parameters of XAJ model, which can be obtained by pa-
rameter calibration, n and αi are the land-use parameters, which can be obtained from the
land-use analysis of the basin, Wi is the water storage capacity value of ith land-use type
and Wn is the maximum water storage capacity value.

After the L-XAJ model is constructed, it is necessary to further analyze the rainfall–
runoff relationship and calculate the runoff yield under different rainfall conditions. As
shown in Figure 6b, we assume that the basin soil moisture before rainfall is W0, which
is distributed horizontally in L-XAJ model, the first m land-use types in the basin have
reached the saturation state, while the m + 1 land-use type has not reached or has just
reached it. In this case:

A =
W0 − ∑m

i=1 Wi × (αi − αi−1)

1 − αm
(10)

If rainfall is P, evapotranspiration is E. When evapotranspiration exceeds rainfall
(P − E < 0), runoff is not generated. When rainfall exceeds evapotranspiration (P − E > 0)
then, if P − E + A > Wn, total runoff generation:

R = P − E −
(

WMl−xaj − W0

)
(11)

Otherwise, for local runoff generation, the soil water storage is the horizontal fill part
in Figure 6b and runoff yield R is:

R =(P − E) −
b

∑
i=a

(Wi − A)·(αi − αi−1) −
n

∑
i=b+1

(P − E)·(αi − αi−1) (12)

where a and b satisfy the constraints:

Wa> A P − E + A ≥Wb (13)

where a takes the smallest integer value that satisfies Equation (13) and b takes the largest
integer value.

So, the runoff yield of L-XAJ model can be calculated by Equations (11) and (12)
and the rainfall–runoff interactions can be studied. When set, the soil moisture content is
Si (S0 = 0) and at the same time, the soil moisture is just enough to make the land-use type
i reach the storage-full state. In this condition, the rainfall–runoff relationship (Figure 7)
is different to XAJ model; it is segmented form, but there is continuity between adjacent
segments. When W0 = S0, the line is n segments with different slopes, which in turn are
1/αi (1 ≤ i ≤ n); when W0 = S1, the line is n − 1 segments with different slopes, which in
turn are 1/αi (2 ≤ i ≤ n), and so on. When Si−1 < W0 < Si, the segment is similar to the
W0 = Si−1, but the position will be changed. When W0 = WMl−xaj, then R = P − E and
the line which is straight line from the origin with slope is 1, which means all rainfall
generated runoff yield. So, the L-XAJ model satisfies the principle of the saturation-excess
runoff mechanism.
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2.3. Study Area and Data Set

In the piecewise-function-described L-XAJ model, the more diverse the land-use types
of the basin are, the more segments the curve is divided into and the more accurate it is
to describe the water storage capacity with a continuous curve. As a result, a basin with
simple land-use form and homogeneous soil is more suitable to verify the L-XAJ model.
Therefore, Taipingchi basin was chosen as the study area.
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Taipingchi basin, located in northeast China (Figure 8a), has an area of 1706 km2.
Two tributaries, the Wengke River and the Xinkai River, flow into the mainstream of
Taipingchi (Figure 8b). The elevation of the whole basin from the northwest to the southeast
gradually increases, from 178 m to 552 m, with gentle fluctuations (Figure 8a). The main
landform type in the basin is valley plains. Taipingchi basin is a typical human activity-
dominated basin. Almost all of the basin has been built into towns or reclaimed as farmland.
Urban and agricultural land account for above 95% of the total area of the basin (urban
about 10% and agricultural land about 85%). According to the L-XAJ model, we guess the
continuous water storage capacity curve would not be accurate enough to describe the real
situation accurately as possible and the XAJ model would not perform well in this basin.

The basin is dominated by a typical semi-arid and semi-humid climate. The average
annual temperature in the basin is about 4.9 ◦C. The annual average precipitation is
515.7 mm. Seventy percent of rainfall is in the summer from July to September. In the main
flood season, July and August are prone to short-term heavy rainfall, which can easily
lead to heavy flood disasters. The inter-annual variability of precipitation is large and the
distribution is extremely uneven during the year. The annual average evaporation in the
basin is about 947 mm.

The hydrological data mainly include the 21 flood events of 12 hydrological obser-
vation stations in the Taipingchi basin from 2009 to 2012 and 1 runoff observation station
(Figure 8b), including average rainfall and runoff data (∆t = 6 h).

Based on 30 m Landsat TM image data (the data set is provided by Geospatial
Data Cloud site, Computer Network Information Center, Chinese Academy of Sciences
(http://www.gscloud.cn, (accessed on 24 February 2022))) and in consideration of the
impact of land characteristics on runoff, the supervised classification method (by the maxi-
mum likelihood classification in ArcGIS) was adopted to classify the land-use types into
five categories: forest, crops, grassland, surface water bodies, and urban (Figure 9). See
Table 1 for statistical information.

2.4. Modeling Set

In this study, 21 flood events from 2009 to 2012 that took place in the Taipingchi
basin were used for model calibration and verification at a 6-h time step. Fifteen flood
events were chosen to calibrate the model parameters and six events to verify the model.
Calibration and optimization of XAJ model parameters were based on the parameter
estimation algorithm (PEST) with MATLAB environment [69]. Thirteen parameters related
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to evapotranspiration, runoff generation, runoff source partition and runoff routing (Table 2)
were calibrated. There are three main factors to consider in the calibration process: the
lower and upper boundaries [23], the objective function and termination condition. The
objective function can be updated as below:

OF =
n

∑
i=1

(Qs − Qo)
2 (14)

where OF is objective function, i is the time order, n is the time step, Qs is the simulated
discharge and Qo is the observed discharge.
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Table 1. Area of different land-uses during the studied years.

Land-Use Type
2009 2010 2011 2012

Area
(km2)

Ratio
(%)

Area
(km2)

Ratio
(%)

Area
(km2)

Ratio
(%)

Area
(km2)

Ratio
(%)

Urban 341.33 19 352.28 20 386.65 22 353.42 21
Crops 1308.77 77 1301.01 76 1267.46 74 1301.07 75

Grassland 4.64 1 4.01 1 3.52 1 3.11 1
Forest 23.4 1 21.7 1 21.6 1 21.71 1

Surface water
bodies 28.53 2 27.67 2 27.44 2 27.36 2
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Table 2. The Parameters of XAJ and the L-XAJ.

XAJ L-XAJ

Parameters Value Physical Meaning Parameters Value Physical Meaning

WUM 15.2 Averaged soil moisture storage
capacity of the upper layer W1 0 Urban land soil moisture

storage capacity

WLM 78.6 Averaged soil moisture storage
capacity of the lower layer W2 153.3 Cultivated land soil moisture

storage capacity

WDM 29.5 Averaged soil moisture storage
capacity of the deep layer Ra1 0.2 Area ratio of urban land

B 0.35 Exponential of the distribution
to tension water capacity Ra2 0.8 Area ratio of cultivated land

K 0.71 Conversion coefficient
of evaporation K - -

C 0.2 Coefficient of the deep layer C - -

IMP 0.02 Percentage of impervious and
saturated areas in the basin IMP - -

SM 32.5 Areal mean free water capacity
of the surface soil layer SM - -
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Table 2. Cont.

XAJ L-XAJ

Parameters Value Physical Meaning Parameters Value Physical Meaning

EX 1.02

Exponent of the free water
capacity curve influencing the
development of the
saturated area

EX - -

KG 0.06
Outflow coefficients of the free
water storage to
groundwater relationships

KG - -

KSS 0.11
Outflow coefficients of the free
water storage to
interflow relationships

KSS - -

KKG 0.98 Recession constants of the
groundwater storage KKG - -

KKSS 0.71 Recession constants of the lower
interflow storage KKSS - -

Note: represent the parameters of L-XAJ are the same as XAJ.

L-XAJ model and XAJ model are slightly different in the parameter calibration pro-
cess of runoff yield module: the WUM, WLM, WDM and B are the parameters by the
XAJ, however, these parameters are replaced by the area ratios of specific land-use type
(Ra1 and Ra2) and their corresponding water storage capacity values (W1 and W2) in
L-XAJ. The remaining parameters are the same in both XAJ and L-XAJ. See Table 2 for
parameter results.

2.5. Statistical Criteria

According to the accuracy standard for hydrological forecasting in China, the results
were evaluated by three statistical criteria including the Nash–Sutcliffe efficiency coefficient
(NSE), the flood volume error (FVE) and the flood peak error (FPE). The detailed equations
are expressed as follows:

NSE = 1 − ∑ (Q o − Qs)
2

∑ (Q o − Qo
)2 (15)

FVE =
∑ Qs − ∑ Qo

∑ Qo
×100% (16)

FPE =
MAX(Qs) −MAX(Q o)

MAX(Q o)
×100% (17)

where Qo is the observed discharge (m3/s), Qs is the simulated discharge (m3/s), Qo is the
mean value of the observed discharge (m3/s), MAX(Qs) is the simulated peak discharge
and MAX(Q o) is the observed peak discharge.

According to the accuracy standard, when NSE exceeds 0.9, it is considered to meet
standard A and when 0.7 ≤ NSE ≤ 0.9, it meets standard B.

3. Results and Discussions
3.1. Simulated Results and Global Analysis

Both the L-XAJ model and XAJ model were applied in the Taipingchi basin. From
2009 to 2012, a total of 21 flood events occurred in the Taipingchi basin and they were all
simulated by these two models. The performances of the two models were tested by the
statistical indicators (NSE, FVE, FPE) mentioned in Section 2.5, and showed in Table 3.

72



Sustainability 2022, 14, 10895

Table 3. Simulation results by the XAJ and L-XAJ model.

Period Flood
Event ID

Date
L-XAJ XAJ

PNSE FVE (%) FPE (%) NSE FVE (%) FPE (%)

1 28 May 2009 0.81 5.36 16.33 0.74 −4.55 −29.16 +
2 28 June 2009 0.92 −15.13 −19.38 0.80 −23.46 −25.92 +
3 16 July 2009 0.93 4.66 10.84 0.83 26.27 23.04 +
4 27 August 2009 0.84 −17.14 −10.73 0.74 −19.49 −23.56 +
5 3 May 2010 0.82 −18.23 −9.75 0.66 −27.99 −19.87 +
6 1 July 2010 0.84 −5.41 −11.15 0.71 −7.37 −24.68 +

Calibration 7 19 July 2010 0.87 −3.73 −13.15 0.85 −6.59 −16.68 #
8 4 August 2010 0.76 14.25 −5.30 0.75 18.92 5.25 #
9 10 October 2010 0.69 5.49 10.49 0.69 5.10 11.01 #

10 11 November 2010 0.84 4.17 6.53 0.68 6.54 10.69 +
11 18 May 2011 0.79 3.11 5.52 0.69 2.52 −12.39 +
12 29 May 2011 0.91 1.62 −12.19 0.82 −12.93 −17.57 +
13 30 June 2011 0.88 10.07 7.90 0.81 17.32 18.48 +
14 20 July 2011 0.89 −7.57 9.73 0.70 −9.45 26.95 +
15 30 July 2011 0.91 3.79 9.38 0.85 2.87 16.85 +

16 29 June 2012 0.88 −19.48 −17.83 0.80 25.28 20.26 +
17 22 July 2012 0.93 −3.32 −13.45 0.88 3.18 −18.04 +

Validation 18 18 August 2012 0.86 15.42 −8.02 0.64 24.97 16.41 +
19 27 August 2012 0.92 −9.47 19.09 0.91 −12.83 17.01 #
20 27 September 2012 0.88 9.74 7.42 0.62 18.20 28.31 +
21 10 November 2012 0.89 9.20 8.82 0.61 18.75 20.22 +

Note: P is a sign of whether L-XAJ is better than XAJ, + represents that L-XAJ is better than XAJ model and
# is not.

As shown in Table 3, the NSE of the L-XAJ model ranged from 0.69 to 0.93, with the
average being 0.86. Meanwhile, the NSE of the XAJ model ranged from 0.61 to 0.91, with
the average being 0.75. For the FVE and FPE, all 21 flood events of the L-XAJ model were
within 20% and the qualified rate was 100%. However, there were only 12 flood events
within 20% of the FPE in the XAJ model and the qualified rate only was 57.14%. The L-XAJ
model reduced the average FPE from 19.16% to 11.10% and the FVE from 14.03% to 8.87%.
Overall, only 10 flood events were simulated accurately in the XAJ model, while all flood
events were accurately simulated by the L-XAJ model; the simulation results of the L-XAJ
model were better than the XAJ model under all the three statistical criteria. This showed
that the L-XAJ model was successfully used in the Taipingchi basin.

The distributions of the FVE, FPE and NSE statistics for all simulations (both calibration
and validation events) were showed in Figure 10. The NSE of the L-XAJ model was higher
than the XAJ model (except 20101010) and the FPE and FVE distribution of the L-XAJ
model was lower than the XAJ model. This showed that the performance of the L-XAJ
model in the Taipingchi basin was comprehensively better than that of XAJ model.

Several rainfall–runoff processes were shown in Figure 11. The discharge process of
the XAJ model and the L-XAJ model were basically similar and there was only a certain
difference in the flood volume, indicating that the two models had the same runoff sources
partition and runoff concentration and differ only in the runoff generation. The discharge
processes of the two models were similar with the observed discharge (OBQ), indicating
that the two models can reflect the runoff process.

Focusing on the calibration period, as the parameters of the XAJ model were calibrated
by these 15 floods, it should be expected to perform well in this period. However, none of
the NSE achieved standard A and three flood events of FVE and four flood events of FPE
exceeded 20%, which indicates that the XAJ model is not accurate enough to reproduce
the rainfall–runoff process. This is in line with our prediction in Section 2.3. In contrast,
the L-XAJ model performed well during the calibration period, though its parameters
were calibrated by the XAJ model. The NSE of four flood events achieved standard A
and all the FVE and FPE are within 20%. The results indicated that the L-XAJ model
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could reflect the rainfall–runoff process more accurately; or more precisely, the land-use-
based water storage capacity curve is more accurate in illustrating the runoff yield in the
Taipingchi basin. Furthermore, it indicated that the land-use area ratio (L/F) is substantially
associated with the yielding area (f/F) of the XAJ model, which validates the hypothesis of
a corresponding relationship between the different land-use types and the yield area.
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Figure 10. Comparison of the simulation results with XAJ model and L-XAJ model (the number is the
order of the flood event, open circles are calibration events and filled circles are validation events).

As for the validation period, the NSE of the L-XAJ model had two flood events for
standard A and four for standard B in all of the six floods, while all the FVE and FPE were
within 20%. The validation results performed well.

Generally, the performance of the XAJ model in the Taipingchi basin is mediocre,
which indicated that the XAJ model would not perform well in a simple land-use basin. On
the other hand, the L-XAJ model outperformed in 17 of 21 floods, not only in the validation
period, but also in the calibration period. This indicated that the L-XAJ model is more
suitable for simulating the hydrological process of the Taipingchi basin than the XAJ model
or that the land-use-based water storage capacity curve can describe the runoff yield more
accurately than the original water storage capacity curve of the XAJ model.

3.2. Simulation Results in Different Yielding Area

During severe rainfall events or high-intensity rainfalls, the runoff yield is not synchro-
nized everywhere in the basin [70]. Generally, an impervious surface usually yields earlier
than the other areas; farmland with low vegetation usually has less interception than forests
with tall vegetation, so it yields earlier than the forest area. Under the same underlying
surface type, the higher the soil moisture is, the earlier the flow is produced. That is to say,
in different flood events, the actual yielding area and yielding process are different.
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On the other hand, a rainfall–runoff model ignoring the underlying surface would
perform differently from a model based on land-use form. This difference would be
changed by the yielding area and can be shown in Figure 12. As the urban area takes up
about 20% of the basin area and crops take up above 70%, the total yielding area (Figure 12a)
can be separated easily from each other, such as (0, 0.2) (Figure 12b), [0.2, 0.7] (Figure 12c)
and (0.7, 1] (Figure 12d). The larger the yielding area, the smaller difference of the NSE
between the XAJ model and L-XAJ model (Figure 12a): when the yielding area was small
(Figure 12b), the basin was relatively dry and the impact of 20% of the urban area on the
runoff generation was reflected in the L-XAJ model, which can make up for the artificially
intercepted rainfall, so the NSE is higher; when the yielding area increases (Figure 12c), the
basin was relatively humid and the level of 70% crops was reflected. At this stage, although
the NSE of L-XAJ has been improved relative to XAJ, the improvement effect is not as
obvious as the previous stage (dry stage). This is because the urban and crops worked
together on the runoff yield and the difference in the runoff calculation between XAJ and
L-XAJ is not as large as that in the dry stage (Figures 2a and 6b); when the basin was in a
near-saturated state (Figure 12d), there was almost no difference between the two models
and both are simulated well. These were expected due to the mechanism of land use on
runoff generation [71]. These results explained the effect of different land uses on rainfall
redistribution when the basin was in different stages. Hence, correspondence between the
yield area (in XAJ) and land-use type (in L-XAJ) is characterized.
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Figure 12. The NSE in partial yielding area ((a): all yield area; (b): 0 < yield area < 0.2;
(c) 0.2 ≤ yield area < 0.7; (d): yield area ≥ 0.7).

Figure 13 showed the FVE under different yielding areas. Under the control of the
urban area, the FVE of the XAJ model was very large and the flood volume was always
smaller than observed, while the L-XAJ model not. It was closely related to the influence
of the urban area on the runoff yield [72]. While under the control of the crops, the flood
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volume was always larger than observed, which was because crops had an impact on the
runoff yield [73]. The water storage capacity of crops in the Taipingchi basin was relatively
large, so the runoff yield in this part was low, but the XAJ model did not consider it.

Sustainability 2022, 14, x FOR PEER REVIEW 17 of 24 
 

 

Figure 12. The NSE in partial yielding area ((a): all yield area; (b):0 < yield area < 0.2; (c) 0.2 ≤ yield 

area < 0.7; (d): yield area ≥ 0.7). 

 

Figure 13. The relative error in different yielding area (different land-use types dominated, the num-

ber at the top are flood event ID). 

3.3. Simulation Results in Different Flood Types 

In order to study the sensitivity of the XAJ model and L-XAJ model to the flood mag-

nitude, 21 flood events were divided into three levels: large, medium and small, according 

to the peak discharge. There were three large flood events, seven medium flood events 

Figure 13. The relative error in different yielding area (different land-use types dominated, the
number at the top are flood event ID).

In conclusion, the land-use form influences the runoff process. It could be found that
the area of different land types and its storage capacity value correspond to the yielding
area of XAJ model. Hence, we verified that f/F corresponds to L/F and that the research
objectives that were discussed in the introduction of this paper were met.

3.3. Simulation Results in Different Flood Types

In order to study the sensitivity of the XAJ model and L-XAJ model to the flood
magnitude, 21 flood events were divided into three levels: large, medium and small,
according to the peak discharge. There were three large flood events, seven medium flood
events and eleven small flood events. The NSE and the FVE in different flood levels were
shown in Figure 14.

It could be seen from Figure 14a that the NSE of the L-XAJ model was greatly improved
compared with the XAJ model in small and medium floods, especially for small floods.
The major reason for this was that the runoff of small floods is more easily affected by
land use [71,74]. However, the third flood (circled in red in Figure 14a) had not been
improved. After analysis, this might be due to the yielding area which was around 0.2 and
the difference between the L-XAJ model and XAJ model was not significant.

The FVE of the different flood levels were shown in Figure 14b: for small floods, the
FVE was smaller, but compared to the XAJ model, the L-XAJ model had higher accuracy;
for medium floods, the FVE of the XAJ model was relatively large. This was because most
of the seven medium floods were at the beginning of each year or after the flood season. At
this time, for crop growth, many ponds had been artificially established in the basin to store
rainfall [75] (Figure 15), which had a significant impact on the runoff yield, however, the
runoff yield calculated by L-XAJ is more than that of XAJ at this stage (Figures 2a and 6b),
so the store rainfall can be partially offset in L-XAJ. How to consider the rainfall interception
in L-XAJ is the main direction of our in-depth research. For big floods, the larger accuracy
indicated a better performance of both models, which is in agreement with the relevant
literature [71].
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Figure 14. Comparison of NSE and FVE under different flood levels ((a): NSE; (b) FVE; the green
dotted line is the 20% error line and the blue is 10%).

To further analyze the performance of the L-XAJ model compared to XAJ, the im-
proved accuracy of the L-XAJ model relative to the XAJ model was analyzed and the
improved results were shown in Figure 16. For the NSE, compared with the XAJ model,
the L-XAJ model had a significant improvement of small and medium floods, but almost
no improvement for large floods. For the FPE and FVE, in small floods, the FVE increased
by 16.57% on average and the FPE by 44.76%; in medium floods, the FVE increased by
38.25% on average and the FPE by 43.42. In large floods, the FVE increased by 31.42% on
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average and the FPE by 2.66%. Therefore, it was further proved that the L-XAJ model can
significantly improve the performance of flood simulation.
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Figure 16. The improvement of L-XAJ model compared to XAJ model (the number of flood events:
small: 11, medium: 7, big: 3; NSE: (L-XAJ − XAJ)/XAJ*100%; FVE/FPE: (AV(XAJ) − AV(L-
XAJ))/AV(XAJ)*100%, AV: absolute value).

Based on the results in Section 3.2, this change can be easily explained: the runoff yield
usually occurs in part of the basin in small floods and medium floods, while the runoff
yield of big floods generally occurs in the entire basin.
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4. Conclusions

Effective basin water resource management is of significant importance for the basin’s
sustainable development. The main objective of this research is to study the relationship
between the yielding area (f/F) and the area of different land uses (L/F) for better basin
flood resource management. The L-XAJ model was constructed by integrating the land-use
information into the runoff generation of the XAJ model and the model is shown to improve
the performance of the runoff in a typical cultivated–urban binary land-use-type basin: the
Taipingchi basin. The major findings of this paper were summarized as follows:

(1) The distribution of the runoff yield can be divided by the land-use form, which is,
the areas with the same land-use form are similar in runoff yield, while areas of different
land uses are significantly different. In the XAJ model, particularly, that is to say, the
yielding area of the XAJ model, (f/F) is determined by the area ratio of different land-use
types (L/F) (Section 3.2).

(2) The L-XAJ model can be well used in a rainfall–runoff simulation (Table 3 and
Figure 10). It performed better than the XAJ model in a simple land-use-form basin (mean
NSE: 0.86 > 0.75, FVE: 8.87% < 14.03%, FPE: 11.10% < 19.06%).

(3) The L-XAJ model can well improve the simulation accuracy of small and medium
floods compared to large floods (Figure 16).

Although our preliminary test demonstrated the relationship between the runoff yield
and land use, we still know little about the calculation of the runoff yield for specific
areas. Ongoing research could focus on analyzing the effect of vegetation type, soil type,
topography and other remotely-sensed data on the runoff yield. How to establish an
index that integrates various factors to further enhance the physical meaning of the runoff
generation in the XAJ model to obtain better results is worthy of further study.

5. Patents

The patent “A method and system for determining runoff yield of artificial watershed”
(patent number: CN 202011611825.9) resulted from the work reported in this manuscript.
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Abstract: As multiple wind and solar photovoltaic farms are integrated into power systems, precise
scenario generation becomes challenging due to the interdependence of power generation and future
climate change. Future climate data derived from obsolete climate models, featuring diminished
accuracy, less-refined spatial resolution, and a limited range of climate scenarios compared to more
recent models, are still in use. In this paper, a morphing-based approach is proposed for generating
future scenarios, incorporating the interdependence of power generation among multiple wind and
photovoltaic farms using copula theory. The K-means method was employed for scenario generation.
The results of our study indicate that the average annual variations in dry-bulb temperature (DBT),
global horizontal irradiance (GHI), and wind speed (WS) are projected to increase by approximately
0.4 to 1.9 ◦C, 7.5 to 20.4 W/m2, and 0.3 to 1.7 m/s, respectively, in the forthcoming scenarios of the
four considered Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). It
seems that accumulated maximum wind electricity output (WEO) and solar electricity output (SEO)
will increase from 0.9% to 7.3% and 1.1% to 6.8%, respectively, in 2050.

Keywords: future scenario; weather morphing; climate change; cluster analysis; uncertainties

1. Introduction

The last few years have witnessed a swift expansion in renewable energy, with wind
and photovoltaic (PV) power emerging as highly promising sources and undergoing rapid
development [1–4]. Nevertheless, as the integration of renewable power grows, especially
with the escalating impact of global climate change, the inherent randomness of power
systems is on the rise. This scenario endangers the stability and dependability of power
grids that integrate wind and PV farms. Hence, performing stochastic power system
analysis is of great importance to ensure the safety and reliability of power systems.

Employing mathematical transformations, the morphing technique modifies exist-
ing weather conditions so that they conform to the anticipated parameters of a climate
variability context, as indicated by a general circulation model representing atmospheric,
oceanic, cryospheric, and land-surface physical processes [5]. Presupposing the perpetuity
of prevailing weather patterns in forthcoming periods, the morphing process preserves
indigenous climatic attributes through the metamorphosis of contemporary records. To
safeguard the precision of this methodology, it is imperative to synchronize the temporal
extent encompassed by contemporary records with the reference period for the envisaged
alterations [6]. Significantly, the morphing method minimizes the risk of developing poorly
designed power systems for specific locations, thus safeguarding a nation’s ability to
achieve its carbon neutrality targets [7].

In the face of uncertainties inherent in model predictions, worldwide and localized
climate simulations can furnish the requisite meteorological parameters for computations
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related to electricity generation in current as well as prospective scenarios [8]. This proven
methodology is optimal for assessing renewable energy resources and studying projections
of renewable energy in future scenarios. Nevertheless, only a limited number of studies
have examined the impact of climate change on renewable electricity production, with
even fewer utilizing the new CMIP6 data. Based on a pertinent evaluation conducted
by [9] within the context of the SSP5-8.5 framework, a 4% fluctuation in the mean annual
wind speed was observed. This alteration resulted in a diminished wind power capacity in
Northern China, accompanied by a corresponding augmentation of approximately 2% in
the southern region. An investigation into the ramifications of these emerging scenarios
for the interplay between wind power and solar photovoltaics (PV) in North America
revealed that SSP2-4.5 exhibits a marginal advantage in both wind and PV potential when
juxtaposed with SSP5-8.5 [10]. Delving into the realm of solar energy, we anticipate a
discernible shift in global solar PV potential, with fluctuations expected to fall within the
±10% spectrum. This forecast hinges on specific scenarios outlined in the SSP framework,
taking into account diverse regional influences. An exhaustive analysis has unequivocally
determined that the foreseen rise in cloud coverage is poised to curtail the availability of
solar radiation across the landscapes of Asia and Africa [11]. This aligns seamlessly with
empirical observations of diminishing solar exposure. Conversely, a surge in maximum
temperatures is poised to catalyze an amplification in solar PV output across the territories
of Europe and the eastern seaboard of America [12].

Furthermore, stochastic programming is emerging as a potentially powerful technique
for addressing uncertainties related to wind power. However, a key challenge in its
implementation lies in the selection of a well-weighted set of scenarios to effectively
represent the space of uncertainty. Typically, these methodologies involve fitting forecasted
wind power or forecast errors to specific distributions, and scenarios are subsequently
generated through the sampling of these derived distributions [13]. The forecast errors,
characterized using empirical distributions, are subjected to the inverse transformation
method to derive a comprehensive set of scenarios [14]. To enhance accuracy, a generalized
Gaussian mixture model was devised to fit forecast errors originating from a multitude
of wind farms, and the resulting distribution was then utilized to sample scenarios for
probabilistic wind ramp forecasting [15].

Extensively applied and recognized for its efficacy, the scenario generation method
plays a pivotal role in optimizing the operation of power systems involving stochastic
variables. By scrutinizing historical data linked to these unpredictable factors, this method
extrapolates archetypal scenarios. These representative scenarios form the basis for con-
ducting research on the optimal operation of a power system. Integral to this methodology
is the extraction of a discrete probability distribution closely mirroring the probability
distribution of the primary stochastic variable. This method’s effectiveness hinges on the
disparity level between the archetypal scenario and the original dataset.

An increasing number of studies have highlighted the importance of spatio-temporal
correlation in scenario generation. Typically, this correlation is represented through the use
of multivariate joint distributions. In numerous recent studies, the Multivariate Gaussian
distribution has been employed to capture correlations among wind power forecasts
made at different lead times [16]. However, modeling high-dimensional multivariate non-
Gaussian distributions can be challenging, and a commonly adopted approach involves the
use of copulas [17]. By applying marginal cumulative distribution functions to stochastic
variables, the original variables are transferred from their original space to a common
uniform domain. In this domain, correlations among the original variables can be further
characterized using copulas. The modeling of spatio-temporal correlations among clustered
wind farms using a copula approach has been used to develop a scenario generation
method [18].

Multiple renewable power plants are typically integrated, yet the potential impact
of climate change on future renewable electricity production is often underestimated in
contemporary power systems. Therefore, this paper puts forth an innovative method for
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generating future scenarios, taking into account the spatio-temporal correlations among
multiple renewable farms. Employing weather morphing, copula, and cluster analysis,
the innovative approach delineated herein begins by morphing the monthly alterations in
EC-Earth3 utilized within the CMIP6 project [19]. Subsequently, the generation of future
weather scenarios for each farm is carried out using C-vine copula methods. A k-means
method is then employed to cluster hourly profiles of weather data into reduced-number
clusters, and renewable power predictions are based on the most similar cluster using a
power generation model.

The remainder of this manuscript is structured as follows: Section 2 provides a com-
prehensive explanation of the newly developed morphing-based future scenario generation
method, encompassing cluster analysis and the copula method, elucidating the procedural
intricacies of the envisaged methodology for generating future scenarios. In Section 3, the
clustered scenario results detailing variations in wind speed, temperature, and incident
solar irradiance are presented, and then prognostications for the forthcoming power out-
put from wind and solar photovoltaic sources are delineated. In Section 4, it is revealed
that both morphing and scenario generation modeling approaches, along with K-means
clustering analysis of multiple scenarios, are deemed necessary to quantify the projected
range in the future. Lastly, Section 5 delves into the implications of the primary findings
and offers a summary of this study’s conclusions.

2. Materials and Methods
2.1. Weahter Morphing

Utilizing the EC-Earth3 general circulation models (GCMs), this methodology involves
the use of environmental variables to transform current local weather data into future
scenarios and timeframes. Notably, EC-Earth3 distinguishes itself from CMIP6 GCMs
by offering comprehensive data for all variables across the four shared socioeconomic
pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) as compared to alternative models.
Distinguished by heightened spatial precision, this model features an increased abundance
of spatial elements. It exhibits persistent alignment and minimal deviation in daily air
temperatures, encompassing both the extremes and averages.

The morphing procedure follows the general approach outlined in reference [20],
which is, in essence, based on the principles presented in Ref. [5]. Utilizing various GCM
variables, this process involves the ‘shifting’ and ‘stretching’ of multiple fields, such as
dry-bulb temperature, global horizontal irradiance, and wind speed. The morphing of
future dry-bulb temperature begins with the calculation of a scaling factor for each month,
determined through the following equations:

αtm =
∆Tmax

m − ∆Tmin
m

.
t
max
m −

.
t
min
m

(1)

t =
.
t + ∆Tm + αtm

( .
t−

.
tm

)
(2)

where ∆Tmax
m is the GCM change in the average daily maximum dry-bulb temperature,

∆Tmin
m is the GCM change in the average daily minimum dry-bulb temperature,

.
t
max
m is

the average daily maximum dry-bulb temperature,
.
t
min
m is the average daily minimum

dry-bulb temperature,
.
t is the present dry-bulb temperature, ∆Tm is the GCM change in

the mean dry-bulb temperature,
.
tm is the mean of the present dry-bulb temperature, and

αtm is the scaling factor for month m.
The morphing process for future global horizontal irradiance begins with the determi-

nation of the scaling factor for downward surface shortwave flux. This scaling factor can
be calculated using the provided equations:

αIm = 1 +
∆Rm

.
Im

(3)
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I = αIm ·
.
I (4)

where ∆Rm is the GCM change in the mean downward surface shortwave flux,
.
Im is the

average of present global horizontal irradiance, I is the future global horizontal irradiance,
and αIm is the scaling factor for downward surface shortwave flux for month m.

To generate future wind speed scenarios, the current wind speed is multiplied by the
relative mean change in wind speed from the Global Climate Model (GCM) for a specific
month. This relationship can be expressed using the following equation:

ws = αwm ·
.

ws (5)

where αwm is the GCM relative mean change in wind speed,
.

ws is the present wind speed,
and ws is the future wind speed for month m.

The morphing procedure draws on three primary statistical transformations: ‘shift’,
‘stretch’, and a combination derived from insights in the literature [5]. In the ‘shift’ operation,
the monthly projected change is added to the current variable, while the ‘stretch’ operation
involves scaling the present-day variable by multiplying it by the fraction of the monthly
projected change. Combining ‘shift’ and ‘stretch’ allows for adjustments to the mean and
variance of the present-day variable or exclusively to the variance. Specifically, the dry-bulb
temperature undergoes both ‘stretch’ and ‘shift’, global horizontal irradiance undergoes
‘shift’, and wind speed undergoes ‘stretch’.

Employing insights from the literature, the morphing methodology utilizes three
fundamental statistical transformations: ‘shift’, ‘stretch’, and a hybrid approach [5]. Within
the ‘shift’ procedure, the current variable assimilates the monthly predicted adjustment.
Conversely, the ‘stretch’ process entails adjusting the contemporary factor by multiplying
it by a fraction of the anticipated monthly shift. The amalgamation of ‘shift’ and ‘stretch’
enables adjustments to either the mean and variance of the present-day variable or exclu-
sively to the variance. Specifically, modifications include both ‘stretch’ and ‘shift’ for the
dry-bulb temperature, ‘shift’ for global horizontal irradiance, and ‘stretch’ for wind speed.

2.2. Copula Approach

Copulas function as connectors, establishing links between univariate marginal distri-
butions within multivariate distribution functions. This fundamental statistical principle,
elucidating interdependence and detailed in [21], establishes a critical connection between
copulas and the joint distribution of multiple random variables. As delineated in Sklar’s
theorem, assume X = [x1, x2, . . ., xn] denotes the random variables with margins F1 (x1), F2
(x2), . . ., Fn (xn). The joint distribution F(x1, x2, . . ., xn) can be articulated through a suitable
n-dimensional C-copula function, as follows:

F(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)) (6)

If F1 (x1), F2 (x2), . . ., Fn (xn) are continuous, then the C-copula function is unique.
The practical utility of Sklar’s theorem lies in its ability to conveniently disentangle

the dependence modeling of a set of random variables by individually considering their
marginal distributions and the copula. In the extensive body of work [22], various families
of copulas are explored, with prominent examples including the Normal Gaussian copula,
the Frank copula, and the Student-t copula.

In the realm of bivariate scenarios, numerous precise copula functions are at our dis-
posal. However, when extending to arbitrary dimensions, the options for suitable copula
families become significantly more limited. Traditional multivariate copulas such as the
multivariate Gaussian or Student-t, along with interchangeable Archimedean copulas, lack
the adaptability necessary for precisely modeling dependence among a larger set of vari-
ables. The vine, serving as a versatile graphical model for depicting multivariate copulas
through a series of bivariate copulas, emerges as a distinctive alternative. Its resilience to
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the aforementioned constraints positions it as a potent instrument for capturing multivari-
ate dependence. This article provides a concise examination of the C-vine, exemplifying a
prevalent form of regular vines.

In the structure of the C-vine tree, the relationships linked to a particular factor,
denoted as the primary root node, are represented through bivariate copulas for each pair.
Extending this to another variable, known as the secondary root node, pairwise associations
are also modeled. Typically, a root node is designated in each tree, and all pairwise
connections concerning this node are modeled, considering all preceding root nodes. This
structural characteristic results in C-vine trees exhibiting a star configuration [23]. Building
upon the C-vine framework, the decomposition of a multivariate density f (x1, · · · , xn) can
be expressed as follows:

f (x1, · · · , xn) = c( f (x1), f (x2), · · · , f (xn))×
n

∏
i=1

fi(xi) (7)

where fi(xi) is the density function of the marginal distribution of variables, and c( f (x1), f (x2),
· · · , f (xn)) is the copula density function, which can be calculated as follows:

c( f (x1), f (x2), · · · , f (xn)) =
∂nC(F(x1), F(x2), · · · , F(xn))

∂F((x1)∂F(x2) · · · ∂F(xn))
(8)

2.3. K-Means Clustering

K-means is as an extensively employed method for general clustering [24]. Within the
framework of K-means, clusters find representation through the centers of mass of their
constituent members. The clustering process entails iteratively assigning cluster affiliations
to each data vector based on proximity to the cluster center. Simultaneously, each cluster’s
center is computed as the centroid of its constituent data vectors. Despite the extensive
use of K-means clustering, a significant drawback lies in the requirement to anticipate the
cluster count based on previous experience. In overcoming this hurdle and determining the
best parameter for K-means across different scenarios, this study presents a density-centric
metric outlined in [25].

Assume that there is a data matrix P = {x1, x2, . . ., xn}, in which each data vector is
p-dimensional. ci is the center of cluster Ki. N(Ki) is the quantity of cluster Ki, and d(xi, xj)
is the Euclidean distance between xi and xj. The optimal parameter can be determined
as follows:

d(xi, xj) =

√
n

∑
k=1

(xk
i − xk

j )
2 (9)

ri =
1

N(Ki)
∑

x∈Ki

d(x, ci) (10)

cij =
ci + cj × ri/rj

1 + ri/rj
(11)

C(i) = N
(
K′i = { x|d(x, ci) ≤ ri}

)
(12)

B(i) =
1

K− 1

K

∑
j=1,j 6=i

N
(

K′j =
{

x
∣∣d
(
x, cij

)
≤
[(

ri + rj
)
/2
]})

(13)

DBI(i) =
K

∑
i=1

C(i)/
K

∑
i=1

B(i) (14)

Kb = Max{DBI(i)} (15)
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where ri is the cluster radius, Ki is the element, N(Ki) is the quantity of cluster Ki, d(x, ci) is
the Euclidean distance from datum x to the cluster center, ci is the center of cluster Ki, cij is
the midpoint between clusters, C(i) is the cluster center density, B(i) is the cluster margins
density, DBI is the ratio of cluster center density to cluster margin density, and Kb is the
optimal number of clusters.

Imagine an ideal clustering scenario where data vectors within a cluster are closely
grouped, while the space between two clusters exhibits significant dispersion. In other
words, the optimal clustering scheme in K-means aligns with maximizing the Davies–
Bouldin Index (DBI). Consequently, determining the optimal parameter within specified
parameter ranges involves a comparison of DBI values.

2.4. Energy Potential Calculations

In determining the electrical generation from each sustainable energy source, we
performed computations utilizing the latest technological advancements, securing pre-
cise assessments of power generation potential for each renewable source. This approach
emerges as the optimal method for scrutinizing the impact of varying climate change scenar-
ios on the potential for electricity generation, offering heightened precision in forecasting
electrical output. Furthermore, it is noteworthy that renewable wind farms typically oper-
ate for 20 to 25 years, while solar farms typically have lifespans exceeding 25 years. This
implies that newly installed renewable energy systems will remain operational through
2050. Concerning wind energy generation, onshore wind turbines typically have an av-
erage installed capacity of approximately 3.5 MW [26]. Utilizing a realistic power curve
representative of onshore turbines, such as Vestas V126-3.45 [MW] shown in Figure 1,
ensures accuracy in estimating power output. Wind speed data were obtained from the
model at a standard hub height of 100 m, a widely accepted parameter in wind resource
assessments [27–31].
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Solar PV panels exhibit a complex reaction to diverse environmental factors, including
DB, GHI, and WS. Their performance is notably impacted by distinct panel specifications,
where heightened incident irradiance does not uniformly result in amplified power output.
This discrepancy is attributed to factors such as temperature response coefficient, capacity
factor, and cell temperature. Precise determination of achievable maximum photovoltaic
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power output (PVO) requires meticulous attention to specific attributes. Calculating cell
temperature involves considering parameters and coefficients reflecting the thermal re-
sponse, derived from an advanced monocrystalline silicon solar panel. Subsequent PVO
calculation incorporates the prevailing market standard for average efficiency, which is
approximately 17% [32]. The values for solar irradiance, ambient temperature, and surface
wind speed are provided as follows:

Tcell = c1 + c2Ta + c3G + c4ws (16)

Ppv = Gηp[1 + µ(Tcell − Tr)] (17)

where Tcell is PV cell temperature; Ta is the ambient temperature; G is solar irradiance; c1,
c2, c3, and c4 are the distinctive attributes inherent to a monocrystalline silicon solar panel,
i.e., 4.3 ◦C, 0.943, 0.028 ◦C m2/W, and −1.528 ◦C s/m, respectively; ηp is monocrystalline
silicon solar panel efficiency; µ is the thermal efficiency factor associated with temperature
changes; Tr is the reference temperature; and Ppv is the solar PV power output.

2.5. Scenario Generation

The fundamental stages in the suggested methodology for scenario generation can be
described as follows.

Firstly, accurately project future changes in climate data. Subsequently, apply the
morphing method to three future weather elements—dry-bulb temperature (DBT), global
horizontal irradiance (GHI), and wind speed (WS)—for SSP1, SSP2, SSP3, and SSP5 in the
GCM EC-Earth3, using the ‘shift’ and ‘stretch’ approaches to align with the median year of
the 2050 timeframe.

Secondly, leverage the maximum likelihood estimate technique [33] to pinpoint the
most advantageous category and configurations for each pair-copula, progressing through
the following steps:

1. Transform the arbitrary continuous random variable into a uniform distribution
using a cumulative distribution function (CDF) transformation, resulting in a uniform
distribution in the interval [0, 1].

2. Identify the optimal pair-copula function by selecting the potential copula associated
with the minimum Euclidean distance. Quantify the Euclidean gap between the CDF of the
observed copula and each potential copula through the following calculation:

De =
n

∑
i=1

∣∣Cn(ui, υi)− Cp(ui, υi)
∣∣2 (18)

where De is the Euclidean distance, Cn is the CDF of the observed copula, and Cp is the
CDF of potential copula.

Thirdly, generate future weather scenarios for DBT, GHI, and WS to calculate re-
newable energy in terms of electricity power output. Apply the C-vine copula technique
employing the most effective pair-copula for generating simulated data. Assume w1, . . ., wn
are independent and uniform in the interval [0, 1]; the sample of x1, . . ., xn can be expressed
as follows: 




x1 = w1
x2 = F−1(w2|x1)
x3 = F−1(w3|x1, x2)
...
xn = F−1(wn|x1, · · · , xn−1)

(19)

where F(wn|x1, · · · , xn−1) is the distribution function under specified conditions, calculable
through Equation (6).
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In the fourth step, determine the optimal parameter for clustering data vectors by
comparing the DBI values across various parameters. Following this, classify data vectors
using K-means clustering with the identified optimal parameter.

Finally, compute the electricity production output for renewable energy under future
weather scenarios.

3. Results

To exemplify this methodology’s applications, a simulation was executed for three
adjacent wind and solar PV facilities located in Guangdong, China. Among the three
renewable energy power plants, the first one is a wind and solar power generation site
with a rated wind power generation capacity of 50 MW and a rated solar power generation
capacity of 70 MW. The second one is also a wind and solar power generation site, with
a rated wind power generation capacity of 60 MW and a rated solar power generation
capacity of 40 MW. The third one is a photovoltaic power generation site with a rated
solar power generation capacity of 40 MW. The simulation spans the current scenario and
envisions the future conditions in 2050, taking into account the approximate lifespan of
wind turbines and solar PV panels, ranging from 20 to 25 years. The objective was to
comprehend the variations in renewable energy electricity production output amidst future
climate changes in southern China. Conducted in alignment with the year 2050 for the
GCM EC-Earth3, the simulations encompass diverse scenarios, including SSP1, SSP2, SSP3,
and SSP5. Illustrated in Figure 2 is a visual representation that displays the average annual
values of chosen contemporary environmental factors and the corresponding fluctuations
during the 2050 timeframe, effectively highlighting the transformative output. Aligned
with global patterns, the outcomes of the morphing process for Guangdong province unveil
a progression in temperatures, wind speed, and solar irradiance in prospective scenarios,
surpassing the intensity observed in current climate conditions.
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Figure 2. Mean annual weather elements for 2023 and 2050 across four distinct SSPs: (a) DBT, (b) GHI,
and (c) WS.
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In Figure 2, DBT1, DBT2, and DBT3 represent the respective dry-bulb temperatures of
three solar photovoltaic fields, while GHI1, GHI2, and GHI3 correspond to their individual
solar irradiance levels. Additionally, WS1, WS2, and WS3 represent the respective wind
speeds at each site. SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 represent various Shared
Socioeconomic Pathways (SSPs) coupled with different radiative forcing levels, measured
in Watts per square meter (W/m2). These abbreviations correspond to scenarios used in the
Intergovernmental Panel on Climate Change (IPCC)’s Fifth Assessment Report to depict
different trajectories of societal development and greenhouse gas emissions. SSP1-2.6
represents a sustainable development pathway with low greenhouse gas emissions (with
the radiative forcing being equal to 2.6 W/m2). It is an optimistic scenario indicating
significant global emission reduction measures. SSP2-4.5 illustrates a moderate greenhouse
gas emission pathway (with the radiative forcing being equal to 4.5 W/m2). This represents
a scenario with intermediate levels of greenhouse gas reduction. SSP3-7.0 depicts an
unsustainable development pathway with high greenhouse gas emissions (in which the
radiative forcing is 7.0 W/m2). This is a pessimistic scenario, suggesting a lack of effective
global emission reduction measures. SSP5-8.5 represents a high-emission pathway with
very high greenhouse gas emissions (with the radiative forcing equaling 8.5 W/m2). This
extreme scenario signifies a failure to mitigate greenhouse gas emissions effectively in the
coming decades. These scenarios are utilized for studying possible trajectories of climate
change and global warming, providing distinct future paths for societal and economic
development.

Figure 2 illustrates the distribution of three meteorological elements in different tem-
poral and spatial scenarios. In the forthcoming scenarios of the four considered Shared
Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), the average annual
variations in dry-bulb temperature (DBT), global horizontal irradiance (GHI), and wind
speed (WS) are projected to increase by approximately 0.4 to 1.9 ◦C, 7.5 to 20.4 W/m2, and
0.3 to 1.7 m/s, respectively.

The variation in DBT is depicted in Figure 2a, and the results show the following: In
2023, the annual average is 23.3 ◦C, the summer average is 28.7 ◦C, the winter average is
15.9 ◦C, the maximum for the year is 38 ◦C, and the minimum is 3 ◦C. By 2050, the annual
average is projected to range between 23.7 and 25.2 ◦C, the summer average will range
between 29.2 and 31.1 ◦C, and the winter average will range between 15.6 and 19.2 ◦C,
with the maximum for the year reaching 39.1 ◦C and the minimum being 3.7 ◦C. Across
various scenarios, there is an approximate increase in the annual average temperature
of 0.4–1.9 ◦C, with growth rates ranging from approximately 1.5% to 8.3%. The summer
average temperature is expected to rise by about 0.9–2.3 ◦C, with growth rates of around
1.5–8.3%. The winter average temperature is projected to increase by about 0.1–3.1 ◦C,
with growth rates ranging from approximately 0.6% to 19.5%. In the SSP5 scenario, the
maximum increases in annual average and summer average temperatures are observed,
reaching 1.9 ◦C and 2.3 ◦C, respectively. The magnitude of winter temperature rise is
larger than that of summer, and the number of days with high temperatures in summer is
gradually increasing.

The GHI variation is illustrated in Figure 2b, and the results indicate the following: In
2023, the annual average is 234 W/m2, the summer average is 296.5 W/m2, and the winter
average is 212.7 W/m2, with the annual maximum reaching 1308 W/m2. By 2050, the
annual average is projected to range between 241.5 and 254.4 W/m2, the summer average
will range between 351.3 and 490.1 W/m2, and the winter average will range between
140.2 and 324.9 W/m2, with the annual maximum reaching 1380 W/m2 in the summer.
Across various scenarios, there is an approximate annual increase of 7.5–20.4 W/m2, with
an average growth rate of about 6%. The summer average increase is approximately
124.2 W/m2, with a growth rate of around 42%, while the winter average increase is about
20 W/m2, with a growth rate of approximately 9.4%. In the SSP1 scenario, the maximum
increase in the summer average occurs, reaching 124.2 W/m2, with a larger magnitude
of increase in the summer compared to that in the winter, and the peak value occurs in
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August. The maximum cumulative increase in the summer is approximately 11.2 kWh/m2,
with a maximum growth rate of about 48%, while the maximum cumulative increase in the
winter is approximately 3.5 kW/m2, with a maximum growth rate of about 19.7%.

The WS variation is shown in Figure 2c, and the results show the following: In 2023,
the annual average is 3.7 m/s, the summer average is 4.9 m/s, and the winter average
is 5.1 m/s, with the annual maximum reaching 15.2 m/s. By 2050, the annual average is
projected to range between 4 and 5.4 m/s, the summer average will range between 3.4
and 5.5 m/s, and the winter average will range between 4.4 and 7 m/s, with the annual
maximum reaching 29.8 m/s. Across various scenarios, there is an approximate annual
increase of 0.3–1.7 m/s, with an average growth rate exceeding 8%. The maximum increase
in the summer is approximately 0.6 m/s, with a maximum growth rate of about 13.1%,
while the maximum increase in the winter is approximately 2.7 m/s, with an average
growth rate of no less than 53%. In the SSP2 scenario, the maximum increases in the
annual average and winter average occur, reaching 1.7 m/s and 2.7 m/s, respectively. The
magnitude of the winter increase is larger than that of the summer, and the number of days
with strong winds in the summer is gradually increasing.

These climate data fluctuations will directly impact the efficiency of renewable energy
power generation in future scenarios and, consequently, their annual power generation
output.

The optimal copula parameters have been determined for each future scenario of
the three adjacent wind and solar PV farms, resulting in the generation of 600 clusters of
random scenarios under the four future climate scenarios, as depicted in Figure 3.

As shown in Figure 3, GHI_2050_AVG, DBT_2050_AVG, and WS_2050_AVG represent
the annual average hourly meteorological elements GHI, DBT, and WS under four SSP
scenarios in the year 2050. The light-blue area represents the annual average hourly
standard deviation of the three meteorological elements for 600 random scenario clusters
under each SSP scenario. The results indicate the following ranges: SSP1-2.6 scenario—
1.9–3.3 ◦C for DBT, 0–141.9 W/m2 for GHI, and 0.2–1.3 m/s for WS; SSP2-4.5 scenario—
1.0–3.3 ◦C for DBT, 0–144.2 W/m2 for GHI, and 0.2–1.1 m/s for WS; SSP3-7.0 scenario—
1.3–3.0 ◦C for DBT, 0–127.3 W/m2 for GHI, and 0.2–1.2 m/s for WS; and SSP5-8.5 scenario—
1.8–3.4 ◦C for DBT, 0–131.2 W/m2 for GHI, and 0.3–1.1 m/s for WS.
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The meteorological element scenario characteristic curves under the SSP1-2.6 scenario
are shown in Figure 3a. The results indicate that GHI ranges from 0 to 1337.4 W/m2,
with peaks in the range of 88.8–1337.4 W/m2, reached at around 1 p.m. DBT fluctuates
within the range of 4.8–39.0 ◦C, with a peak occurring at around 2 p.m. and the valley
occurring around midnight at 00:00. WS fluctuates between 0 and 29.3 m/s, with a peak
occurring around 10 p.m., consistent with the future meteorological prediction model’s
range and characteristics.

Under the SSP2-4.5 scenario, the meteorological element scenario characteristic curves,
presented in Figure 3b, indicate the following: GHI spans from 0 to 1261.2 W/m2, with
peaks within the range of 62.2–1261.2 W/m2, occurring at around noon; DBT fluctuates
between 5.1 and 38.8 ◦C, with peak moments at around 4 p.m. and troughs at around
5 a.m.; WS fluctuates between 0 and 30.3 m/s, with peak moments around 2 p.m. These
results align with the projected range and variation features of future meteorological
prediction models.

As for the SSP3-7.0 scenario, the meteorological element scenario characteristic curves,
depicted in Figure 3c, reveal the following: GHI ranges from 0 to 1316.8 W/m2, with peaks
within the range of 87–1316.8 W/m2, occurring between 2 and 3 p.m.; DBT fluctuates
between 5.2 and 3 8.9◦ C, with peak moments at around 4 p.m. and troughs at around
3 a.m.; WS fluctuates between 0 and 26.9 m/s, with peak moments at around 1 p.m.
These results align with the expected range and variation features of future meteorological
prediction models.

The meteorological element scenario characteristic curves under the SSP5-8.5 scenario,
as depicted in Figure 3d, reveal the following: GHI ranges from 0 to 1308 W/m2, with
peaks between 82.6 and 1308 W/m2, occurring at around 1 p.m.; DBT fluctuates between
5.9 and 38.9 ◦C, with peaks at around 4 p.m. and valleys at around 6 a.m.; WS fluctuates
between 0 and 28.1 m/s, with peaks at around 2 p.m. These results are in accordance with
the range and variation characteristics of future meteorological prediction models.

According to Equations (9)–(15), within the range of 2 to 10 for K clusters in K-means
clustering, the maximum DBI values for the corresponding number of K classifications at
24 typical daily time points were calculated. The maximum DBI values for each hourly
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interval are highlighted with grey boxes. The results, shown in Figure 4a, indicate that
the maximum K classification is 4 at 4 a.m. and 4 p.m.; in Figure 4b, it is 6 at 5 p.m.; in
Figure 4c, it is 8 at 10 a.m.; and in Figure 4d, it is 7 at 11 a.m. Thus, among the 24 sets of
hourly DBI values, the corresponding maximum K classification is 8.
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In the quest to pinpoint the optimal parameter for K-means clustering, the parameter
range for clustering was established within the interval of 2 to 10. The determination
of the optimal parameter was achieved through a thorough comparison of DBI values.
Presented in Figure 4 are the simulation results that elucidate the correlation between DBI
and clustering parameters. The graph in Figure 4 distinctly shows that the DBI attains its
peak value of 8 at 10 a.m., while the maximum DBI values of the remaining 23 hours are
between 2 and 7, indicating that the most effective parameter for this specific case study is
8 for each of the four hourly meteorological factors of DBT, GHI, and WS. Utilizing this
optimal parameter, the measured data should be condensed into eight clusters for each
renewable power plant, as shown in Figure 5.

As shown in Figure 5, the annual average hourly standard deviations of the three
elements GHI, DBT, and WS for 24 typical scenario clusters after being clustered under the
four SSP scenarios are as follows: SSP1-2.6 scenario—1.5–3.5 ◦C for DBT, 0–137.2 W/m2 for
GHI, and 1.9–3.9 m/s for WS; SSP2-4.5 scenario—1.0–3.5 ◦C for DBT, 0–138.3 W/m2 for
GHI, and 1.7–3.7 m/s for WS; SSP3-7.0 scenario—1.4–2.7 ◦C for DBT, 0–134.3 W/m2 for
GHI, and 1.7–4.1 m/s for WS; and SSP5-8.5 scenario—1.7–3.8 ◦C for DBT, 0–133.0 W/m2

for GHI, and 2.0–3.9 m/s for WS. The typical scenario clusters after clustering better reflect
the hourly random fluctuation characteristics of the GHI, DBT, and WS elements compared
to those before clustering.

99



Sustainability 2024, 16, 2762Sustainability 2024, 16, x FOR PEER REVIEW 18 of 23 
 

   
 (a)  

   
 (b)  

   
 (c)  

   
 (d)  

Figure 5. The results of cluster analysis, wherein the parameter K is set to 8, covering four future 
scenarios: (a) SSP1-2.6, (b) SSP2-4.5, (c) SSP3-7.0, and (d) SSP5-8.5. 

As shown in Figure 5, the annual average hourly standard deviations of the three 
elements GHI, DBT, and WS for 24 typical scenario clusters after being clustered under 
the four SSP scenarios are as follows: SSP1-2.6 scenario—1.5–3.5 °C for DBT, 0–137.2 W/m2 
for GHI, and 1.9–3.9 m/s for WS; SSP2-4.5 scenario—1.0–3.5 °C for DBT, 0–138.3 W/m2 for 
GHI, and 1.7–3.7 m/s for WS; SSP3-7.0 scenario—1.4–2.7 °C for DBT, 0–134.3 W/m2 for 
GHI, and 1.7–4.1 m/s for WS; and SSP5-8.5 scenario—1.7–3.8 °C for DBT, 0–133.0 W/m2 for 
GHI, and 2.0–3.9 m/s for WS. The typical scenario clusters after clustering beĴer reflect the 
hourly random fluctuation characteristics of the GHI, DBT, and WS elements compared 
to those before clustering. 

Figure 5. The results of cluster analysis, wherein the parameter K is set to 8, covering four future
scenarios: (a) SSP1-2.6, (b) SSP2-4.5, (c) SSP3-7.0, and (d) SSP5-8.5.

Under the SSP1-2.6 scenario, the typical feature curves of meteorological elements
after reduction are depicted in Figure 5a. The results indicate that GHI ranges from 0 to
1316.6 W/m2, with peaks occurring between 153.9 and 1316.6 W/m2, reaching a maximum
at around 1 p.m. DBT fluctuates within the range of 5.5–36.7 ◦C, with peaks at around
4:00 PM and valleys at around 1 a.m. WS fluctuates between 0 and 29.1 m/s, with peaks
at around 10 p.m. For the SSP2-4.5 scenario, the typical feature curves of meteorological
elements after reduction are shown in Figure 5b. GHI ranges from 0 to 1190.3 W/m2,
with peaks between 142 and 1190.3 W/m2, occurring between 1 p.m. and 2 p.m. DBT
fluctuates between 8.2 and 36.5 ◦C, with peaks at around 3–4 p.m. and valleys at around
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4 a.m. WS fluctuates between 0 and 30.3 m/s, with peaks at around 2 p.m. Under the
SSP3-7.0 scenario, the typical feature curves of meteorological elements after reduction
are illustrated in Figure 5c. GHI ranges from 0 to 1256.1 W/m2, with peaks between 144.6
and 1256.1 W/m2, occurring between 1 p.m. and 2 p.m. DBT fluctuates between 6.6 and
37.2 ◦C, with peaks at around 4 p.m. and valleys at around 3 a.m. WS fluctuates between
0 and 26.5 m/s, with peaks at around 1 p.m. In the SSP5-8.5 scenario, the typical feature
curves of meteorological elements after reduction are presented in Figure 5d. GHI ranges
from 0 to 1236.5 W/m2, with peaks between 143.1 and 1236.5 W/m2, occurring between
1 p.m. and 2 p.m. DBT fluctuates between 7 and 37.6 ◦C, with peaks at around 3–4 p.m.
and valleys at around 1 a.m. WS fluctuates between 0 and 26.9 m/s, with peaks at around
1 p.m.

GHI exhibits strong regularity, and the reduced typical scenes generally present an
“envelope” shape. There are some differences in peak values between typical scenes, but the
high peak periods are consistently between 1 and 2 p.m. DBT shows certain regularity, and
the overall reduced scenes also exhibit an “envelope” shape. There are some differences in
peak values between typical scenes, but the high peak periods are consistently between
3 and 4 p.m. WS demonstrates strong randomness, and the overall reduced scenes also
exhibit an “envelope” shape. There are some differences in peak values between typical
scenes, and the high peak periods may occur between 1 and 10 p.m.

Therefore, the daily cumulative maximum electricity energy output for renewable
energy was calculated across eight representative future scenarios, as detailed in Table 1. A
comparative analysis was conducted with the existing standard scenario in 2023.

Table 1. Differences in typical daily accumulated maximum wind electricity output (WEO) and solar
electricity output (SEO) between 2023 and the future climate change scenarios (SSP1-2.6, SSP2-4.5,
SSP3-7.0, and SSP5-8.5) for the three contiguous renewable energy farms, involving two wind and
solar PV farms along with one solar PV farm.

Farm Electricity Energy 2023 SSP1 SSP2 SSP3 SSP5

1
WEO1 [kWh] 46,1349.2 473,796.5 478,072.1 495,245.9 491,962.5
SEO1 [kWh] 556,597.8 578,999.0 594,298.1 550,116.4 562,506.8

2
WEO2 [kWh] 750,435.0 785,459.7 796,404.4 775,946.3 756,890.0
SEO2 [kWh] 421,665.7 436,951.8 440,305.0 423,951.9 432,780.3

3 SEO3 [kWh] 349,954.1 368,499.0 354,377.2 334,422.0 342,274.7

Sum [kWh] 2,540,001.9 2,643,706.1 2,663,456.8 2,579,682.5 2,586,414.3

The accumulated daily differences in WEO between current and future scenarios
follow a pattern akin to that depicted in Figure 2, with minor modifications in spatial
allocation attributed to the non-linear power curves inherent in wind turbines. Remarkably,
Wind and Solar PV Farm 1 witness the most substantial increases in WEO, particularly
in the SSP3-7.0 and SSP5-8.5 future scenarios, ranging from 7.3% for SSP3-7.0 to over
6.6% for SSP5-8.5. While Farm 2 experiences marginal increases in four of the future
scenarios, the most notable increment is 6.1% for SSP2-4.5, accompanied by minor upticks
of 0.9% for SSP5-8.5. Both scenarios exhibit variations in comparison to the current state,
showcasing significant alterations in their day-to-day variability, with a particular emphasis
on offshore locations.

The alterations in accumulated SEO are considerably lower compared to those for
WEO, a result primarily attributed to two factors.

In comparison to WEO, the levels of change in accumulated SEO are significantly
lower, primarily due to two main reasons. In the first place, GHI exhibits fluctuations of
approximately 5% to 10% across the entire domain, and the changes in GHI are not as
pronounced as those in WS. Secondly, wind turbines generally exhibit higher efficiency in
capturing available resources and converting them into electrical energy. Consequently,
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even in areas displaying similar percentage changes in incident solar irradiance and wind
speed, this variation will lead to a lower change in SEO compared to WEO.

Significant variations endure in the scrutinized scenarios regarding their daily fluctua-
tion and broader trends. SSP1-2.6 and SSP2-4.5 foresee upticks of 3.6% to 5.3% and 1.3%
to 6.8%, while SSP3-7.0 indicates a decline ranging from −1.2% to −4.4%. Conversely, in
SSP5-8.5, there is a positive prediction for SEO, presenting relatively modest values of 1.1%
to 2.6%. The alterations in cumulative SEO parallel the fluctuations in solar irradiance
across diverse climate scenarios. The anticipated augmentations in cloud coverage and
heightened wind speed notably influence solar PV panel output, leading to diminished
output in SSP5-8.5 or slight increases in more advantageous conditions under SSP2-4.5.

4. Discussion

Future climate change could have both positive and negative implications for the
electricity production sector. The envisaged rise in wind speed has the capacity to elevate
wind power generation, while increased solar irradiance may bolster solar PV power gener-
ation. Nevertheless, both encounter obstacles resulting in diminished electricity production.
Renewable power plants, notably, could experience deviations in their standard output
during peak periods due to anticipated fluctuations in intra-annual resource variability. In
the realm of stochastic power system analysis, the holistic assessment of these advantages
and drawbacks must align with energy demand. For example, a decline in winter electricity
production may not present an issue if energy demand diminishes owing to climate-change-
induced reductions in heating requirements or substantial shifts in energy consumption
patterns facilitated by diverse tariff systems or scheduling mechanisms. Lastly, significant
differences exist between the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, under-
scoring the uncertainty in future assessments of renewable power production. To quantify
the projected range in WEO and SEO, both morphing and scenario generation modeling
approaches, coupled with K-means clustering analysis of various scenarios, are essential.
While the SSP3-7.0 scenario favors wind power production, it concurrently reveals greater
declines in accumulated SEO. In contrast, the SSP2-4.5 scenario exhibits a less intense but
consistently increasing trend, suggesting a potentially safer pathway.

5. Conclusions

This paper introduces a future scenario generation approach utilizing the morphing
method and analysis in conjunction with copula and K-means clustering techniques. The
future weather elements, including DBT, GHI, and WS, were morphed for the SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios in the 2050 timeframe using the GCM EC-Earth3.
Existing copula techniques based on the C-vine method were then applied to generate
600 scenarios for the three future weather elements. Subsequently, based on K-means
clustering with optimal parameters, future scenarios were condensed into eight typical
daily clusters. Finally, the renewable energy electricity production output in future weather
scenarios was calculated. The collective outcomes suggest the feasibility of crafting a future
scenario that is both intricate and comprehensive, accounting for the interdependence
among various wind and solar PVOs. The results of our study indicate that the average
annual variations in DBT, GHI, and WS are projected to increase by approximately 0.4 to
1.9 ◦C, 7.5 to 20.4 W/m2, and 0.3 to 1.7 m/s, respectively, in the four future scenarios, i.e.,
SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. Climate data fluctuations will directly impact
the efficiency of renewable energy power generation in future scenarios and, consequently,
their annual power generation output. It seems that accumulated maximum WEO and SEO
will increase 0.9% to 7.3% and 1.1% to 6.8%, respectively, in 2050.

An inclusive approach to future electricity production under varying climate scenarios
can yield a spectrum of potential electricity production options, aiding in the selection
of the optimal renewable mix for stochastic power system analysis. This not only fosters
confidence in climate change scenario analyses but also ensures a well-considered and
effective strategy for sustainable development. Subsequent research should encompass all
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primary sources of renewable energy production alongside detailed energy consumption
projections at a high hourly temporal resolution. This methodology allows for more
accurate estimates of supply and demand patterns in climate change scenarios, providing
valuable insights with which to mitigate uncertainty in renewable electricity production
assessments. Moreover, applying this methodology to multiple climate change scenarios
can generate a range of typical future clusters.
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Nomenclature
DBT Dry-bulb temperature CDF Cumulative distribution function
GHI Global horizontal irradiance SSPs Shared socioeconomic pathways
WS Wind speed GCM General circulation model
PV Photovoltaic PVO Photovoltaic power output
DBI Davies–Bouldin Index WEO Wind electricity output

SEO Solar electricity output
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Abstract: As an important facility for effectively controlling water pollution discharge and recycling
waste water resources, accurate sewage treatment plant extraction is very important for protecting
quality, function, and sustainable development of the water environment. However, due to the
presence of rectangular and circular treatment facilities in sewage treatment plants, the shapes
are diverse and the scales are different, resulting in the poor performance of conventional object
detection algorithms. This paper proposes a multi-attention network (MANet) for sewage treatment
plants using remote sensing images. MANet consists of three major components: a light backbone
used to obtain multi-scale features, a channel and spatial attention module that realizes the feature
representation of the channel dimension and spatial dimension, and a scale attention module to
obtain scale-aware features. The results from the extensive experiments performed on the sewage
treatment plant dataset suggest that our proposed MANet exhibits a superior performance compared
with other competing methods. Meanwhile, we used a well-trained model to predict the sewage
treatment plant from the GF-2 data for the Beijing area. By comparing the results with the data of
manually obtained sewage treatment plants, our method can achieve an accuracy of 80.1% while
maintaining the recall rate at a high level (90.4%).

Keywords: deep learning; sewage treatment plant detection; Beijing area; attention module; remote
sensing images

1. Introduction

Wastewater treatment contributes to the achievement of 11 of the 17 Sustainable
Development Goals that have currently been adopted globally [1]. As the main carrier
of wastewater treatment, sewage treatment plants are important assistants for effectively
curbing sewage discharge and recycling wastewater in industrial society, and they are
increasingly important for water quality protection and the sustainable development of
man and nature [2]. They are especially important in world-class cities such as Beijing,
where a large amount of industrial sewage and domestic wastewater are produced every
day; if they were directly discharged without being treated by the sewage treatment plant,
they would cause a huge disaster to the natural environment and further affect people’s
lives, which is not conducive to the sustainable development of man and nature [3,4].
Realizing the automatic extraction of large-scale sewage treatment plants will provide basic
data support for people to study the details of sewage treatment plants and provide further
technical support for the realization of the Sustainable Development Goals.

The contributions made by sewage treatment plants are significant, but there are also
negative problems. Due to the need to collect sewage for purification, the surrounding
environment has a high level of pollutants, which has an adverse impact on the surrounding
ecological environment and on people’s lives [5,6]. Under the current conditions, we
cannot immediately obtain the distribution information of sewage treatment plants in a
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certain area—especially on a large scale, such as the provincial or national level—or the
sewage treatment plants that are built by some factories. In this study, we attempted to
realize the automatic identification of large-scale sewage treatment plants through technical
research, obtain their spatial location information and quantity information, and make this
information easier for people or managers to obtain. Based on the relevant information of
sewage treatment plants, they can provide a reference for the selection of the living location
of the relevant population or allow people to further enhance the protection awareness of
water resources with better understanding. In addition, the information can also provide a
reference for city managers for optimizing the layout of sewage treatment plants and for
the scientific construction of cities [7].

The goal of our technical research is to conduct a realization of large-scale sewage
treatment plant extraction based on big data and computer vision methods. The con-
volutional neural network [8], designed by simulating the function of human neurons,
has strong feature fitting and learning capabilities for input data through the stacking
of network depths and the setting of nonlinear activation functions. Compared with the
fully connected neural network, a convolutional neural network that extracts data features
by setting the size of the convolution kernel area has a higher computing efficiency for
image data; with the assistance of graphics computing hardware, it is the best choice for
processing large image data [9]. The deep learning object detection algorithm based on the
convolutional neural network has been rapidly developed after recent in-depth research;
many classic algorithms have been sequentially proposed, such as Faster RCNN [10],
SSD [11], RetinaNet [12], YOLO series [13–16], etc., and successfully applied in many fields
of computer vision. A study of the feasibility detection algorithm that is based on the
deep learning object detection algorithm and combined with the sewage treatment plant’s
characteristics will greatly improve the recognition efficiency and automation level of
sewage treatment plants.

As a long-distance detection technology, remote sensing has the characteristics of
wide monitoring ranges, short periods, and low costs [17]. It can be used as a technical
means to objectively obtain sewage treatment plant distributions. In recent years, with
the launch of a large number of satellites, it is very convenient to obtain large-scale, high-
resolution, and short-period optical remote sensing image data. Using optical remote
sensing data to carry out high-precision, high-frequency monitoring of sewage treatment
plant times, extraction has become possible [18,19]. Different from natural images, optical
remote sensing satellite images that are captured from the top-down view of the Earth
contain rich and complicated ground object information. Directly transferring the object
detection algorithm applied to natural images to optical remote sensing images will reduce
the model’s accuracy. As a building facility, sewage treatment plants contain modules
such as circular and rectangular purification pools for filtering sewage, and the overall
characteristics are consistent. However, there are also local differences in the scale and
shape characteristics; furthermore, because there are many ground objects with similar
characteristics, the characteristics cause certain challenges in detecting sewage treatment
plants. There are a lot of studies on the detection difficulties caused by the multi-scale
and large shape differences of objects similar to sewage treatment plants in optical satellite
remote sensing images [20–23].

In view of the multi-scale characteristics of remote sensing ground objects, multi-scale
information fusion modules are commonly designed for feature extraction. For example,
the FPN [24] (feature pyramid network) can account for both deep and shallow features
to preserve the multi-scale information of the object [25,26]. On the basis of multi-scale
detection, Yan et al. [27] balanced the training weights of differently scaled objects for
the loss function and strengthened the robustness of the algorithm to different scales. In
addition, the attention mechanism introduced by the transformer model [28] has been
proven to have a good effect in multi-scale object detection. Zhu et al. [29] used the
transformer model to improve the prediction network of YOLOv5 and combine the self-
attention mechanism to achieve multi-scale object detection. In view of the characteristics
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of the large differences in the shapes of remote sensing ground objects, the main method
used adjusts the type and quantity of the anchor frames in the detection stage to adapt to
different shapes of the same objects or multiple types of objects [25,30,31]. For example,
reset the scale of the anchor box, the aspect ratio parameters, or increase the angle variable,
etc., and use a deformable convolutional network [32–34] to adapt to the target shape.
The disadvantage of these methods is that the increase in anchor frame parameters and
addition of deformable convolution will add a large number of parameters to the network,
increase the difficulty of the model training, and lead to unfavorable model convergence.
The detection model based on key points can overcome the problem of large changes in the
object’s shape to a certain extent, but the detection accuracy is basically the same as that of
the anchor frame method; there is still large room for improvement and optimization.

However, sewage treatment plant characteristics in remote sensing images are different
from other ground objects, and the above work still cannot directly meet the detection
needs of sewage treatment plants. In this paper, starting from the detection of sewage
treatment plants in remote sensing images in Beijing, a MANet sewage treatment plant
detection network is proposed to solve the problems of the large differences in the shape
and scale of sewage treatment plants, as well as their inconsistent local features. MANet
integrates the channel and spatial attention in the feature extraction module and innovates
a scale attention algorithm for network feature optimization, which better solves for the
detection difficulties of sewage treatment plants and greatly improves the interpretation
of sewage treatment plant target precision. The main contributions of this paper are as
follows:

(1) We introduced a lightweight channel and spatial attention module (CSAM) to im-
prove the feature expression ability of the extracted target in the spatial and channel
dimensions;

(2) We innovated a novel scale attention modeule (SAM) algorithm to improve the feature
learning ability of the network at different levels for targets with large-scale changes;

(3) We added the above two attention modules based on RetinaNet, proposed a MANet
sewage treatment plant detection network, and achieved better results in the dataset
test. In the actual scene, based on GF-2 remote sensing images, the sewage treatment
plant detection in the Beijing area was realized. The results show that our method can
achieve an accuracy of 80.1% while maintaining the recall rate at a high level (90.4%).

2. Methodology

In this section, we introduce the architecture of our proposed approach, MANet
(Section 2.1), the backbone for the feature extraction (Section 2.2), the channel and spatial
attention module (Section 2.3), and the scale attention module (Section 2.4).

2.1. Model Overview

The attention mechanism in deep learning approaches imitates the human visual
system. When a human being observes an object, they first quickly scan the entire area,
select the target from the area, and invest more visual resources to obtain more detailed
information; however, the neural network needs to scan each pixel when scanning an image.
The attention module is used to ensure that the CNN learns and pays more attention to key
features instead of learning useless background information. In the object detection task,
the useful information refers to the target’s location and category information on the image,
which essentially uses the C× H ×W feature map as an input and provides 1× H ×W
as the output attention map. This attention map is then element-wise multiplied with the
input feature map to obtain a more refined and salient output. In general, the attention
mechanism is mainly applied to the spatial dimension or the channel dimension and is
integrated in the residual structure of the network.

Sewage treatment plants have different shapes, including rectangular and circular
treatment devices. Targets usually appear in completely different shapes, rotations, and
positions, and the spatial variation of targets needs to be considered. At the same time,
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sewage treatment plants have different scales, ranging from large to small. The scale
variation of the targets needs to be considered. Due to the complexity of sewage treatment
plants’ characteristics, the traditional deep learning object detection model has missed
detection and falsely detected plants in sewage treatment plant recognition [35]. By ana-
lyzing the characteristics of sewage treatment plants using high-resolution remote sensing
images and aiming to resolve the detection difficulties of sewage treatment plants, we
designed MANet. Its overall architecture is shown in Figure 1. It mainly includes three
parts: (1) the feature extraction part, which contains a backbone for obtaining multi-scale
feature maps; (2) CSAM, which includes the spatial attention module and channel attention
module, which learns the best features of the target from the two dimensions of the space
and channel; and (3) SAM, which is only processed in the feature layer dimension, which
learns the relative importance of multiple semantic layers and enhances features at the
appropriate level according to the scale of the object.

Figure 1. The framework of our proposed approach.

2.2. Feature Extraction

This part uses the structure of the ResNet+Feature Pyramid Network (FPN) to extract
low-resolution features from images (input RGB images, size H ×W × 3) and obtain multi-
scale feature maps ( H

S × W
S × C) through different stage steps (S4, 8, 16, and 32). In order

to reduce the weight, this paper chooses a relatively simple ResNet-50+FPN structure.
The basic structural unit of ResNet-50 is the residual structure. As shown in Figure 1, the
entire network is divided into five blocks, namely conv1, conv2-x, conv3-x, conv4-x, and
conv5-x. The convolution kernel size of conv1 is set to 7× 7, the step size is set to 2, and the
expansion is set to 3; then, the maximum pooling is performed. The pooled convolution
kernel size is set to 3× 3, the step size is set to 2, and the expansion setting is 0. There are
three convolution blocks in the conv2-x part, where the convolution kernel sizes are set
to 1× 1, 3× 3, and 1× 1, respectively. The three parts of conv3-x, conv4-x, and conv5-x
are similar to the structure of conv2-x; the difference is that the number of convolution
blocks is different. The conv3-x part has four convolution blocks, the conv4-x part has
six convolution blocks, and the conv5-x part has three convolution blocks. Finally, the
multi-scale features are obtained after the blocks calculate the image data.

The structure of a light FPN typically consists of the following components: (1) top-
down pathway: this pathway starts from the high-level semantic feature maps obtained
from the backbone network and passes them through up-sampling operations to obtain
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feature maps at lower scales; (2) bottom-up pathway: this pathway starts from the low-level
feature maps obtained from the backbone network and passes them through up-sampling
operations to obtain feature maps at higher scales; (3) fusion layer: the feature maps from
the top-down and bottom-up pathways are combined using element-wise summation or
concatenation to obtain the final feature maps at each scale. By combining the features
from multiple scales, the FPN can capture both the fine-grained details and the high-level
context of the input image, leading to improved performance in object detection tasks.

2.3. Channel and Spatial Attention Module

In addition to the variable scale of sewage treatment plants mentioned in this paper, the
characteristics of different shapes and colors make it difficult for the network to distinguish
between them. Therefore, we introduce a CSAM to further optimize the features and cause
these feature pairs to be more distinguishable. It is a very lightweight module that does
not incur excessive memory and computational overhead. As shown in Figure 2, CSAM
consists of two sub-modules, a channel attention module, and a spatial attention module to
help strengthen the useful information in extracted features.

Figure 2. The structure of the channel and spatial attention module, CSAM. (a) Modules included in
the CSAM. (b) Structural details of the channel attention module. (c) Structural details of the spatial
attention module.

The channel attention module is a channel-based attention module in the convolutional
neural networks that aims to capture the long-term contextual information of channel
directions through channel attention maps. To efficiently compute channel attention,
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we aggregate the spatial information of the feature maps using two pooling operations
(average pooling and max pooling) to generate two 2D feature maps F1 ∈ Rc and F2 ∈ Rc.
These two feature maps represent the average pooled features and max pooled features
in the channel, respectively. The channel attention module can be calculated using the
following formula:

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (1)

where σ denotes the sigmoid function.
The spatial attention module is a module that is applied to spatial attention in the

convolutional neural network. It uses the spatial relationship of features to generate a
spatial attention map and concentrates on mining target location information. To com-
pute the spatial attention, we aggregate the channel information of feature maps through
two pooling operations (average pooling and max pooling) to generate two 2D feature
maps F1 ∈ RH×W and F2 ∈ RH×W . These two feature maps represent the average pooled
feature and maximum pooled feature in the channel, respectively, and they are concate-
nated and convolved by a standard convolutional layer to generate a two-dimensional
spatial attention map Attns ∈ RH×W . This attention map shows how much the model
pays attention to the position. The spatial attention module can be calculated using the
following formula:

Ms(F) = σ( f ([AvgPool(F)]; MaxPool(F))) (2)

where σ denotes the sigmoid function and f represents a convolution operation.

2.4. Scale Attention Module

The object scale difference is related to the features of different levels. Improving the
representation learning ability of different feature levels is conducive to improving the
detection accuracy of target detection. However, the features at different levels are usually
extracted from different depths of the network, which results in an obvious semantic gap,
and it is not optimal to directly fuse feature layers at different levels. To solve this problem,
we introduce a SAM to dynamically fuse the features of different scales based on semantics.
The structure diagram of SAM is shown in Figure 3.

Figure 3. Structural details of the scale attention module, SAM.

We first sample features at different scales to H
4 × W

4 and connect them together to form

Flevel ∈ RL×C× H
4 ×W

4 , where L is 4 and C is 256. Next, we use the scale attention module
to obtain the scale attention feature map. Then, the scale attention module is composed
of average pooling, 1× 1 convolution, and relu. Finally, we use a sigmoid normalization
to obtain the final scale attention feature map Attnlevel ∈ RL×1×1×1. The scale attention
calculation formula is as follows:

M(F) = σ( f (AvgPool(∑ F))) (3)

where σ denotes the sigmoid function and f represents a 1× 1 convolution operation.
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3. Experimental Results and Discussion

We performed related experiments to evaluate the proposed MANet architecture’s
effectiveness. In this section, we introduce the selected study area; the used experimental
data, experimental setting, and evaluation metrics; the comparative experiment used
to verify the performance of MANet; the ablation experiment to compare the effects of
multiple attention modules; and, finally, the detection results of MANet in the actual
sewage treatment plant scene.

3.1. Study Area and Experimental Data

We chose Beijing as the study area. Beijing is located in the northern part of the North
China Plain, which is adjacent to Tianjin. It is located at 115.7°–117.4° east longitude and
39.4°–41.6° north latitude with a total area of 16,410.54 square kilometers. The climate is
a typical northern temperate semi-humid continental monsoon climate. As a world-class
city, Beijing has a dense population and a large number of factories engaged in production;
thus, it requires sewage treatment plants with better operation layouts. Realizing the
extraction of sewage treatment plants in this area, in addition to obtaining the number and
location information of sewage treatment plants, will provide a reference for the subsequent
development and construction planning of emerging cities. Figure 4 is a regional image
of Beijing.

Figure 4. Beijing area.
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In order to ensure the clarity of the sewage treatment plant in the remote sensing
image, we use the 2 m resolution GF-2 satellite image data domestically produced in China
to create a sample dataset of the sewage treatment plant. As shown in Figure 5, we use a
sewage treatment plant containing circular and rectangular sedimentation tank structures
as detection targets for the sample labeling. Considering the size of the sewage treatment
plant target in the 2 m remote sensing image, we use a resolution of 1536× 1536 for slice
production. After manual labeling, 3000 samples of sewage treatment plants were obtained,
and the dataset was divided into training and validation sets according to the ratio of 10:1.

Figure 5. Sewage treatment plant in remote sensing images.
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3.2. Experiment Setting and Evaluation Metrics

The method proposed in this paper and the related experiments were all run on the
Ubuntu 16.04.7 LTS operating system using an NVIDIA GeForce RTX 3090 GPU with
a 24GB memory size. All of the algorithm model experiments were carried out on the
PyTorch deep learning framework, and the relevant parameters of the model were kept
consistent during the training and testing processes. The input size and batch size were set
to 1024× 1024× 3 and 8, respectively. The total number of iterations for all experiments
was 12 epochs, and all backbones were pre-trained on the ImageNet-1K dataset. The
experiment used the stochastic gradient descent (SGD) optimizer, and the original learning
rate parameter of network training was set to 0.01. The momentum parameter used to
accelerate and stabilize the optimal solution of the function was set to 0.9. The weight
decay parameter, which is conducive to the network convergence and fitting data, was set
to 0.0001.

Regarding the evaluation metrics of the experiments, we adopt a confusion matrix,
which is often used to evaluate object detection results. The confusion matrix’s composition
is shown in Table 1. Among them, TP indicates that the target is a sewage treatment plant
and is correctly predicted; TN indicates that the target is not a sewage treatment plant and
is correctly predicted; FP indicates that the target is not a sewage treatment plant but is
predicted to be one; and FN indicates that the target is a sewage treatment plant but is
predicted to not be one.

Table 1. Confusion matrix.

Ground Truth

True False

Predicted Label
True TP FP

(True Positive) (False Positive)

False FN TN
(False Negative) (True Negative)

Based on the confusion matrix, we further use precision AP (average precision) and
recall AR (average recall) to evaluate the detection results. The relevant calculation formulae
are as follows:

AP =
TP

TP + FP
(4)

AR =
TP

TP + FN
(5)

where AP indicates the proportion of correctly predicted sewage treatment plants in the
detection results and AR indicates the proportion of correctly predicted sewage treatment
plants in the validation set. When its threshold is set to 0.5, AP50 indicates the proportion
of correctly predicted sewage treatment plants in the detection results.

3.3. Experimental Results

MANet uses RetinaNet as the baseline network and integrates CSAM and SAM mod-
ules based on the ResNet-50+FPN structure. We selected some advanced and representative
object detection algorithms to conduct comparative experiments using MANet and used
AP and AP50 to evaluate the experimental results. Then, the effectiveness of CSAM and
SAM was verified through ablation experiments, and the effects of different modules on
MANet performance were analyzed.
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3.3.1. Comparison of Model Performance

To evaluate the performance of MANet, we selected four of the most advanced and
mature object detection methods (RetinaNet, Cascade RCNN [36], ATSS [37], and Faster
RCNN) to conduct the experiments and compare the results in the same environment and
settings. The experimental settings are in Section 3.2. The AP and AP50 curves obtained
from the experimental results of the five networks are shown in Figure 6.

(a) (b)

Figure 6. Comparative experimental results of MANet and related networks; (a) AP results;
(b) AP50 results.

As shown in Figure 6, the proposed MANet method achieved higher precision than the
other four methods. MANet can obtain the highest AP value of 64.6%, which is significantly
higher than the baseline network RetinaNet’s value of 54.48%. The AP values of Cascade
RCNN and ATSS are closer to MANet but are still below the AP curve of MANet. When the
threshold is 0.5, the AP50 value of MANet is still the highest at up to 93.62%, and the AP50
value is basically ahead of the other four networks during the training process. It can be
seen that MANet has obvious advantages in the task of detecting sewage treatment plant
targets, can more effectively learn the remote sensing image features of sewage treatment
plants, and can achieve higher recognition capabilities.

3.3.2. Ablation Studies

In order to verify the effectiveness of CSAM and SAM for MANet to identify sewage
treatment plant targets, we conducted ablation experiments on CSAM and SAM. The
experiment used RetinaNet as the baseline network, which is based on the ResNet-50+FPN
structure, and used the control variable method to experiment with CSAM or SAM. CSAM
was disassembled into a channel attention module (Channel-AM) and a spatial attention
module (Spatial-AM) for the experiments. The experimental results were evaluated using
the AP and AP50 values, and the training time was also involved in the comparison.

Table 2 shows the results of the ablation experiments. Analyzing the experimental
results reveals that both of the proposed CSAM and SAM models can improve the net-
work’s performance and that the AP values are increased by 4.02% and 6.01%, respectively,
compared with the baseline network. When the two models work together, the AP value
increases by 10.12%, the AP value reaches 64.6%, and the AP50 can reach 93.62%. These
results show that both the CSAM and SAM modules can efficiently extract the sewage treat-
ment plant’s features and have strong robustness regarding the shape and scale changes of
the sewage treatment plant. In particular, SAM’s processing of differently scaled features
at different levels contributes more to the performance of the model. Compared with
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the baseline, the channel attention module and spatial attention module of CSAM have
improved by 1.8% and 2.22%, respectively, indicating that CSAM has improved the ability
to learn the features of sewage treatment plants in the channel and space dimensions.

Table 2. Ablation experiment results of CSAM and SAM.

Baseline-RetinaNet Channel-AM Spatial-AM Scale-AM AP (%) AP50 (%) Time/h

X 54.48 88.78 7.97
X X 56.28 89.65 8.14
X X 56.70 89.85 8.18
X X 60.49 91.68 8.54
X X X 58.50 90.72 8.35
X X X X 64.60 93.62 8.92

3.4. Extraction Results of Beijing Sewage Treatment Plant

We used the model obtained by training MANet to detect the sewage treatment plant
on the 2 m GF-2 remote sensing image of Beijing, compared the detection results with
the actual number of the manual statistics, and used the confusion matrix to evaluate the
detection results. The model is set at thresholds of 0.5, 0.6, 0.7, 0.8, and 0.9 when detecting
sewage treatment plants, and the results are shown in Table 3.

Table 3. Assessment of detection results of sewage treatment plant in the Beijing area.

Threshold Actual Amount Predicted Amount TP FP FN AP (%) AR (%)

0.5

151

210 149 61 2 70.9 97.7
0.6 203 146 57 5 71.6 95.4
0.7 180 140 40 11 77.3 92.4
0.8 170 137 33 14 80.1 90.4
0.9 160 130 30 21 81.5 85.4

The detection results in Table 3 highlight that the AP of the detection results increases
with the increase in the threshold, while the AR decreases. When the threshold is 0.5, the
number of detections of sewage treatment plants is the largest, reaching 149; however, the
false positive detections are serious. Additionally, the AP is the lowest at 70.9%, and the AR
can reach 97.7%. When the threshold is 0.9, the predicted number of the sewage treatment
plant is the lowest, but the AP is the highest at a value of 81.5%; the AR is 85.4%. Overall,
the network has a good detection effect.

According to the sewage treatment plant detection results, we obtained the location
information of the sewage treatment plants and created a distribution map of them for
the Beijing area in a TIF image. As shown in Figure 7, the red dots represent the detected
targets of the sewage treatment plants. From the picture, we can learn more about the
sewage treatment plant distribution in Beijing, which can provide a reference for the site
selection of sewage treatment plants and help future urban construction.

To further demonstrate the detection effect, we selected some sewage treatment plant
targets from the detection results to assist in the description, as shown in Figure 8. It can be
seen that MANet can more effectively overcome the problems of the varying shapes and
scales of sewage treatment plants and inconsistent local features, has good generalization
performance, and can accurately realize the detection of sewage treatment plants.

3.5. Discussion

In this study, we designed a multi-attention network MANet containing multiple
modules for the characteristics of large scale changes, large shape differences, and complex
semantic information of sewage treatment plants as derived from remote sensing images.
The CSAM of the network improves its ability to extract target features from the spatial
and channel dimensions, and the SAM processes feature maps of different scales from
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the scale dimension to reduce the impact of target scale changes. Based on this, MANet
was constructed and a deep learning model was trained. The performance of the model
was verified in experiments. Finally, the extraction of sewage treatment plants in Beijing
was realized based on 2 m GF-2 satellite remote sensing images. The accurate and fast
extraction of sewage treatment plants in a large area fully demonstrates the advantages of
deep learning methods in the interpretation of remote sensing image objects.

Figure 7. Distribution map of the detection results of Beijing sewage treatment plants.

During the research, we found that the number of samples restricted the accuracy of
the model to a certain extent; however, the most fundamental problem was that there were
not many sewage treatment plants in reality. Therefore, under the premise of ensuring the
generalization performance of the model, we have performed data enhancement on the
samples to increase the number of samples. Based on the characteristics of the circular and
rectangular sedimentation tank structures contained in the sewage treatment plant, we first
focused on the method of sample labeling. On the basis of the original labeling, mark the
modules inside the sewage treatment plants and establish a mathematical model for the
spatial distance between the modules to judge the target of the sewage treatment plants. In
addition, based on the extraction results of the sewage treatment plants, how to fully mine
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its information according to the key structure of the object, such as further estimating the
sewage treatment capacity of the sewage treatment plant based on the target recognition
network, may require the designing of a more powerful network.

Figure 8. Detection results of sewage treatment plants.

4. Conclusions

Sewage treatment plants in remote sensing images have the characteristics of varying
shapes and scales and inconsistent local features. It is difficult to detect sewage treatment
plants using traditional deep learning object detection algorithms. In this study, we pro-
posed a novel and effective sewage treatment plant detection network, MANet, which has
obvious advantages compared with other advanced object detection algorithms. Based on
the model trained by MANet, we realized the detection of the sewage treatment plant on
the 2 m resolution GF-2 satellite remote sensing image in the Beijing area and obtained a
distribution location map. The conclusions are drawn as follows:

(1) We introduced a lightweight CSAM using channel attention and spatial attention,
which can efficiently improve the feature learning ability of MANet in spatial and
channel dimensions;

(2) A novel SAM was proposed, which can improve the feature learning ability of MANet at
different levels when extracting sewage treatment plant targets with large-scale changes;

(3) Based on the addition of CSAM and SAM to the RetinaNet model, a sewage treatment
plant detection network called MANet was proposed, and better results were achieved
in the dataset experiments. In the actual scene, based on GF-2 remote sensing images,
sewage treatment plant detection for the Beijing area was realized. The results show
that our method can achieve an accuracy of 80.1% while maintaining the recall rate at
a high level (90.4%).
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Abstract: Aquaculture has important economic and environmental benefits. With the development
of remote sensing and deep learning technology, coastline aquaculture extraction has achieved
rapid, automated, and high-precision production. However, some problems still exist in extracting
large-scale aquaculture based on high-resolution remote sensing images: (1) the generalization of
large-scale models caused by the diversity of remote sensing in breeding areas; (2) the confusion
of breeding target identification caused by the complex background interference of land and sea;
(3) the boundary of the breeding area is difficult to extract accurately. In this paper, we built a
comprehensive sample database based on the spatial distribution of aquaculture, and expanded the
sample database by using confusing land objects as negative samples. A multi-scale-fusion superpixel
segmentation optimization module is designed to solve the problem of inaccurate boundaries, and a
coastal aquaculture network is proposed. Based on the coastline aquaculture dataset that we labelled
and produced ourselves, we extracted cage culture areas and raft culture areas near the coastline
of mainland China based on high-resolution remote sensing images. The overall accuracy reached
94.64% and achieved a state-of-the-art performance.

Keywords: deep learning; negative samples; superpixel optimization; Gaofen-2; semantic segmentation

1. Introduction

Seafood is an essential source of nutrition for humans. According to statistics from
the Food and Agriculture Organization of the United Nations, the total global seafood
production in 2018 was about 179 million tons around the world, of which about 156 million
tons were for direct human consumption [1]. China has a vast territory, and its long coastline
covers tropical, subtropical, and temperate climate zones [2]. It has unique natural and
geographical conditions for aquaculture. The development of aquaculture has created
many jobs for people in coastal areas. However, while creating economic benefits, it also
brings a series of environmental problems, such as water pollution caused by a large
amount of breeding bait and chemical fertilizers [3], eutrophication caused by cultured
crop metabolites [4], antibiotic abuse [5], and the impact of the uncontrolled expansion of
breeding areas on coastal wetland systems and marine traffic [6]. Therefore, the aquaculture
industry’s enormous economic value and environmental benefits make it necessary to
conduct periodic and rapid supervision and statistics on the aquaculture industry. Limited
by the growth cycle of marine organisms [7] and the ecological complexity of water areas [8],
traditional field surveys have great difficulties and limitations. The monitoring work of
aquaculture must be completed on time and needs to be repeated year on year. Therefore,
improving the monitoring capability of aquaculture is of great significance for improving
the quality and efficiency of fisheries, improving the supply capacity of aquatic products,
and promoting the green development of offshore ecology.

The satellite remote sensing technology developed in the 20th century has provided
a large amount of satellite image data to assist in monitoring ground objects due to its
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wide imaging area and fast data collection cycle [9]. Compared with manual field surveys,
it has provided huge benefits. Early studies mainly used related methods such as visual
interpretation and geographical information systems to explore breeding areas’ spatial
and temporal changes from a macro perspective [10–13]. Methods such as the water body
index [14–16] and object-oriented classification [17–20] use prior knowledge to separate
water from land, and use the similarity characteristics of different regions to improve the
interpretation accuracy from a higher level.

The deep-seated value in massive remote sensing data has also been exploited thanks
to improved computing power and developed deep learning algorithms [21]. Deep learning
algorithms are currently the most widely used automatic information extraction method.
Automatic information extraction refers to the automatic extraction of feature information
in image data by machines using deep learning methods. Automatic information extraction
by deep learning algorithms has gradually replaced manual visual interpretation methods.
The deep learning method automatically encodes and extracts image features by stacking
many convolutional neural networks without manually designing feature extractors based
on expert knowledge [22]. It has better feature extraction capabilities and large-scale gener-
alization capabilities. Semantic segmentation technology in computer vision corresponds
to coastal aquaculture information extraction. Semantic segmentation algorithms based on
deep learning are mainly divided into four types: encoder–decoder, backbone, hybrid, and
transformer. The encoder–decoder network extracts features of different scales through
multiple pooling and upsampling [23,24]. The backbone network extracts features of differ-
ent scales through parallel feature modules [25,26]. The hybrid network fully combines the
advantages of the encoder–decoder and backbone types to improve the ability to extract
features of different scales [27]. The transformer network uses the self-attention mechanism
to suggest the global correlation of features [28]. It avoids the problem of limited receptive
fields of local features at different scales.

The convolutional neural network is the most commonly used method in deep learn-
ing. The following discusses some studies that used deep learning methods to extract
aquaculture features: Liu et al. [29] used Landsat 8 images to extract the main coastal
aquaculture areas within 40 km of the shore. Cheng et al. [30] used UNet and dilated
convolution to expand the receptive field, solved the problem that the breeding area was
easily gridded, and optimized the issue of misidentifying floating objects and sediments
on the water surface. Su et al. [31] used the RaftNet to optimize the extraction accuracy
of turbid seawater and made the model adaptable to different scales of raft culture areas.
However, the extraction of breeding areas often has blurred and glued edges, usually
caused by the complexity of the ocean background. The edge enhancement method has a
certain optimization effect for extracting aquaculture areas. Ottinger et al. [32] proposed
that a fine edge detection method using enhanced linear structure can improve the accuracy
of breeding area monitoring. Cui et al. [33] used the UPSNet with the PSE structure to adapt
to multi-scale feature maps to extract complex environments and improve the edge blurring
and adhesion that often occur in raft culture extraction. Fu et al. [34] extracted aquaculture
areas with an automatic labelling method based on convolutional neural networks. They
used multi-layer cascaded networks to aggregate multi-scale information captured by
dilated convolutions. Furthermore, the channel attention mechanism and spatial attention
mechanism modules are used to refine the feature layer to obtain better extraction results,
but the network model extraction speed is slow. Cui et al. [35] extracted the raft aquaculture
in the Lianyungang based on a fully convolutional neural network. Still, their network
could only identify a single raft aquaculture area under a simple seawater background.
Lin et al. [36] proposed a method for extracting ocean, land, and ships based on a fully
convolutional network. A multi-scale convolutional neural network adapts to the differ-
ences in scales of land and sea ships. The idea is also applicable to extraction in aquaculture
areas. Feng et al. [37] designed a homogeneous convolutional neural network to extract
small-scale aquaculture rafts in the image, sea and land were separated while extracting
and obtaining better results on the Gaofen-1 image. Ferriby et al. [38] used a Laplacian

121



Sustainability 2023, 15, 5332

5× 5 convolution filter to improve the edge of fish pond extraction results, but it made
many pixels appear grey. Zhang et al. [39] proposed a segmentation network NSCT method
combined with non-subsampling contour transformation, which can enhance the main
contour features of raft culture in the ocean. The SE2Net [40] embedded the self-attention
mechanism module in the network and introduced the Laplacian operator to enhance edge
information. The simple edge enhancement algorithm has a certain effect on the edge ex-
traction of the breeding area. Still, it cannot solve the problem of a large number of broken
edges in a high-detail area. As a result, the breeding area is discontinuous and broken due
to the influence of ocean currents, clouds, etc. The extracted results are challenging to form
a completely large area from the blurred and disconnected areas.

For aquaculture extraction using remote sensing images, it is necessary to overcome
the environmental complexity and species diversity of target objects and adapt to the
characteristics of the spatial and temporal differences in the remote sensing images in the
study area. Extracting large-scale aquaculture based on high-resolution remote sensing
images still has the following problems.

• Remote sensing diversity of breeding areas. There are differences in the types of
aquaculture in different regions. Cage and raft cultures are different in size, colour,
shape, and scale. As a result, the model’s generalization ability faces significant
challenges in large-scale research areas, and the spatial distribution of samples is an
essential research factor.

• The complex background interference of land and sea. Although the background of
aquaculture is relatively simple in the ocean, there will be complex sea–land interlacing
in offshore aquaculture areas. In addition, cages and rafts will also appear in tidal
flats and ponds on land. The diversity and comprehensiveness of samples is also a
key research factor to avoid aquaculture sea–land interference.

• The boundaries of breeding areas are difficult to accurately extract. Because seawa-
ter may randomly submerge the edges of cage and raft cultures, the boundaries are not
completely straight, and irregular edges will appear. Therefore, affected by complex
imaging factors, it is not easy to extract the precise boundaries of breeding areas.

In response to the above problems, we propose a coastal aquaculture network (CANet)
to effectively extract large-scale aquaculture areas. The main contributions of this paper are
as follows:

• We constructed the sample database from the perspective of the balance of spatial
distribution. Considering the differences in the size, colour, and shape of aquaculture
areas in diverse regions, representative samples covering each region are labelled. In
this way, the model has a good large-scale generalization ability in all areas.

• We expanded the sample database by taking confused land objects as negative samples.
For the complex background conditions of land, the target of the land prone to
misdetection by the model is labelled as the negative sample. Then, the interference
of confusing land objects with aquaculture extraction from land areas is solved.

• We designed a multi-scale-fusion superpixel segmentation optimization module.
Considering the problem of inaccurate boundaries of extraction results, we take full
advantage of the sensitivity of superpixel segmentation to edge features and the
abstraction of features by semantic segmentation networks. In this way, the network
effectively optimized the accuracy of boundary identification and improved the overall
accuracy of aquaculture extraction.
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• Based on 640 scenes of Gaofen-2 satellite images, we extracted cage and raft culture
areas near the coastline in mainland China, covering a range of 30 km outward from
the coastline. The overall accuracy was satisfactory, and it can support the breeding
area and quantity statistics. Compared with other mainstream methods, our proposed
CANet achieved state-of-the-art performance.

2. Materials and Methods

In this section, we first propose an overall framework for the deep learning-based aqua-
culture extraction workflow. The overall workflow includes data acquisition, preprocessing,
sample production and iteration, model training and iteration, and product production.
Among these, sample production and negative sample iteration are key contributors to the
overall workflow. Then, for model training, based on the DeepLabV3+ network, we design
a multi-scale feature superpixel optimization method and build a CANet model. CANet is
a key contribution to the method design of deep learning models.

2.1. Study Area

The seashore in eastern China stretches from the mouth of the Yalu River in the
north to the mouth of the Kunlun River in the south, with a total coastline of more than
18,000 km [41]. Hangzhou Bay roughly bounds the coast of China. To the north of Hangzhou
Bay, the coastline passes through several uplift and subsidence zones, presenting an inter-
laced pattern of rising mountainous harbour coasts and descending plain coasts. To the
south of Hangzhou Bay, the coastline continues the same uplift zone, and has relatively
consistent characteristics. The average elevation of the coastline is below 500 m, with a
temperate marine monsoon climate, a subtropical marine monsoon climate, and a tropical
monsoon climate [42,43]. Most coasts are sea erosion coasts, characterized by steep twists
and turns and dangerous terrain. For millions of years, complex geological structures, ocean
currents, biological effects, and climate conditions have formed many coastal landforms,
such as bays and estuaries, providing a sufficient breeding ground for aquaculture [44].

There are more than 200 bays of various sizes in China, with more than 150 bays
with an area larger than 10 km2. Affected by factors such as regional structure, the bays
are distributed along the coastal sections with relatively solid dynamics and zigzagging
coastlines. Among them, the Zhejiang and Fujian coastal bays have the largest number of
distributions, followed by Shandong and Guangdong. Next are Liaoning, Guangxi, and
Hainan. The remaining coastal bays of Hebei, Tianjin, Jiangsu, and Shanghai are relatively
small in size. We selected the coastlines of the coastal provinces in mainland China as the
research area. The selected coastal bays were Liaoning, Hebei, Tianjin, Shandong, Jiangsu,
Shanghai, Zhejiang, Fujian, Guangdong, Guangxi, and Hainan from north to south.

2.2. Data Source

We extracted aquaculture based on Gaofen-2 satellite images. The data was sourced
from the China Centre for Resources Satellite Data and Application (https://data.cresda.
cn/#/2dMap, accessed on 15 March 2023). The Gaofen-2 satellite is equipped with a
panchromatic camera with a resolution of 0.8 m and a multispectral camera with a resolution
of 3.2 m, with an imaging width of 45 km. The study selected 640 scenes of Gaofen-2 images
from 2019 covering the waters outside the coastline and about 30 km in the estuary. The
selection of images was determined by the growth cycle of farmed crops and the difficulty
of obtaining images. The distribution of marine animal cages does not change with the
seasons. However, the optimum temperature for marine plant growth is usually below
19 ◦C, so the date of the selected image should be near the crops vigorous growth period. In
addition, due to the influence of the downdraft in the coastal zone, the coastal area is often
covered by thick clouds throughout the year, especially the southern area during summer,
resulting in fewer available images in summer. The temporal resolution of Gaofen-2 is
limited, making it very difficult to obtain high-quality, low-cloud images that completely
cover the entire coastline in a short period. Therefore, the proportion of selected images
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distributed from October to March is relatively large, while the number from June to
September is relatively small. The seawater temperature used for mariculture varies very
little throughout the year, and aquaculture can be carried out all year round. There is no
significant change in the aquaculture area between summer and winter, so using images
from other months is acceptable. Even so, some areas are still completely covered by clouds.
These area were supplemented or replaced with images from the same period in 2018 and
2020. Furthermore, there is an overlap between the images as clouds cover obscured many
images. However, these unobstructed images are still usable.

2.3. Overall Framework

We first selected the high-resolution image data according to the growth cycle of
marine animals and plants, image quality, and cloud cover to obtain the original image
set. In the data preprocessing stage, the original image underwent three steps of de-
hazing/colour restoration, fusion, and registration to obtain a high-quality image set.
Then, a small number of representative images were selected from the high-quality image
set, and combined with prior knowledge and feature analysis, visual interpretation was
performed to obtain the primary samples. The next step was to build a computer vision-
based network model and use the primary samples to train a primary model and evaluate
its accuracy. Next, the primary model was used to predict images of the surrounding area
of the primary sample, and obtain corresponding prediction results. We performed human
visual judgment on the prediction results. The correct prediction results were added to
the sample set. The results with certain flaws were added to the sample set after being
manually labelled and modified. The results of the wrong predictions were added to the
sample set as a negative sample to expand the sample set. We used the new sample set to
retrain the model and again predict images of the surrounding area of the sample set, to
realize multiple rounds of sample and model iteration. Finally, we obtained a larger sample
set and a more stable advanced model. We used the advanced models to predict images of
the whole study area and evaluate the accuracy of the prediction results. Since the accuracy
of the model can be improved with multiple iterations of the sample set, we can set an
accuracy expectation value according to the task requirements, computing resources, and
time conditions. If the accuracy evaluation does not meet expectations, we can optimize
the model structure and training strategy to retrain the sample set. If the accuracy meets
expectations, we can obtain three major achievements: the cage and raft culture dataset,
coastline aquaculture area extraction products, and the coastline aquaculture area automatic
extraction model. The overall framework of this study is shown in Figure 1.

2.4. Dataset
2.4.1. Data Processing

The raw Gaofen-2 images must undergo a processing series before they can be used.
Seawater showed low radiation intensity in the image. The image’s original information
needs to be enhanced, especially to identify breeding areas in marine areas. The images
covered a large span of time and space. Data processing ensured that the processed data
had decent consistency.

First, the raw images generally have a bluish cast. Second, due to the weather, mist
exists in many images. In addition, the blue band of some images is missing or damaged,
which distorts image colour. Before the images can be input into the neural network,
we must precisely register the raw images between multiple periods in the same area
between different scenes. It is also necessary to ensure that the images are rich in colour,
moderate in saturation, and have good visibility to facilitate visual interpretation and
machine learning. The image is then de-hazed, and its colour restored in the form of batch
processing, and the resolution of its multispectral bands is improved by image fusion from
the panchromatic band.
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Figure 1. The overall framework of coastal aquaculture extraction.

2.4.2. Samples

The production of samples needs to consider the remote sensing diversity of the
breeding area and the complex background interference of the land and sea. The species
of cultured organisms located in different regions are different for aquaculture cages. The
scale and materials of the breeding cages vary in scale, size, colour, and shape, and various
forms and distribution patterns appeared in the remote sensing images. Marine plants
in the images will show their unique seasonal growth cycles for aquaculture rafts. This
makes breeding areas in different phases in the same area display periodic changes in
colour, texture, and structure, and the original biological characteristics will disappear after
harvesting. Therefore, we need to consider the representativeness and comprehensiveness
of the sample from the distribution of geographical factors.
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We selected sea areas with an average water depth of 2∼15 m and an average annual
seawater velocity of less than 3 m/s, including tropical, subtropical, and temperate climate
zones in the range of 18◦ N ∼ 45◦ N latitude. This was combined with the fishery statistics
in each province’s aquaculture production and large-scale marine pasture areas, after
removing important marine transportation hubs such as ports. The original primary
samples were labelled by human visual interpretation. All samples consisted of a remote
sensing image and corresponding ground truth label. As shown in Table 1, most of the
selected areas were bays, where the seawater depth is moderate, the flow rate is slow, and
the area is well-lit, which is suitable for aquaculture. These areas represent the differences
in breeding areas between the north and south, and cover multiple dimensional and climate
zones, ensuring the comprehensiveness and diversity of the samples. In addition, assuming
sufficient images for the same area, we tried to obtain multi-phase images for samples
where possible. In this way, the differences caused by the remote sensing data in terms
of time and irradiation conditions can be resolved. Therefore, we also considered the
differences in the images caused by different lighting and seasonal factors and images of
different quality when selecting samples.

Table 1. The latitude, average water depth, climate, and average annual sunshine hours of the bays
used for sample labelling.

Area Latitude Average
Water Depth Climate Average Annual

Sunshine Hours

Jinzhou Bay in Liaoning 39◦ N 3∼9 m temperate monsoon climate 2200∼3000
Sanggou Bay & Allen Bay in Shandong 37◦ N 5∼10 m temperate marine monsoon climate 2200∼3000

Haizhou Bay in Jiangsu 34◦ N 5∼10 m temperate monsoon climate 2200∼3000
Sansha Bay in Fujian 26◦ N >10 m subtropical monsoon climate 2200∼3000

Zhenhai Bay in Guangdong 21◦ N 5∼7 m subtropical monsoon climate 2200∼3000
Leizhou Bay in Guangdong 20◦ N 5∼7 m tropical monsoon climate 1400∼2000

Qinzhou Bay in Guangxi 20◦ N 2∼18 m subtropical marine monsoon climate 2400∼2600
South Bay in Hainan 18◦ N 2∼10 m tropical marine monsoon climate 2400∼2600

Although the marine environment will change due to waves, sea winds, ships, marine
life, etc., it can still be considered a relatively simple background compared to the complex
surface environment on land. Ground objects present the phenomena of same object with
a different spectrum and different object with the same spectrum in remote sensing data.
There will be a large number of images containing ground objects that are easily confused
with aquaculture targets. However, the terrestrial environment cannot be completely
discarded when extracting the aquaculture area because many aquaculture cages and
rafts are distributed in tidal flats and ponds on land. Therefore, in the land area and
complex background area of the coastline, we labelled some ground features with similar
characteristics or as easily confused features. We used these as negative samples to assist in
model training, thereby reducing the model’s false detection rate and improving model
accuracy. Figure 2 shows some examples of the sample database.

Figure 2. Sample database visualization for (a) cage culture, (b) raft culture, and (c) background.
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2.5. Coastal Aquaculture Network
2.5.1. Baseline

To maximize the advantages of the encoder–decoder and backbone networks simul-
taneously, we choose the hybrid network DeepLabV3+ [27] as the baseline network ar-
chitecture. The DeepLabV3+ network adopts the encoder–decoder structure to fuse the
multi-scale information of the network to meet the feature extraction requirements of
breeding areas of different sizes. However, encoder–decoder networks usually use pooling
operations to increase receptive fields and aggregate features. This leads to the problem
of a decrease in the resolution of the features. Although the upsampling is restored to
the decoder’s original size, the features’ details is still irreversibly lost, resulting in de-
creased accuracy. DeepLabV3+ adopts a dilated convolution operation commonly used in
backbone networks to increase the receptive field while avoiding the reduction in feature
resolution and the loss of feature information. Keeping the feature resolution unchanged
causes difficulties in feature aggregation. To solve this problem, DeepLabV3+ adopts a
multi-scale feature pyramid structure, encoding the features with dilated convolutions with
different dilation rates, and fuses the multi-scale information of the features. In addition,
the encoder adopts a depth-wise separable convolution to improve the speed of network
feature extraction.

2.5.2. Superpixel Optimization

In the multi-scale feature pyramid structure of DeepLabV3+, five parallel feature
aggregation encoding operations are performed on the feature map. These operations
include 1× 1 convolution, dilated convolutions at rates of 6, 12, and 18, and global pooling
operations. The encoded features, in addition to fusion and upsampling according to the
original DeepLabV3+ network, also construct five feature copies. After the five feature
copies are fused, the simple linear iterative clustering (SLIC) algorithm [45] is used for the
unsupervised segmentation of high-level features.

In the superpixel segmentation module of the network, the feature maps are converted
into approximate, compact, and uniform superpixel blocks for aggregation. The specific
implementation process of the SLIC algorithm is as follows:

After dimensionality reduction, the feature map is treated as an RGB colour space
image and converted to a CIELab colour space. The LAB colour space consists of three
components. L represents the brightness value of a pixel. The value ranges from 0 to 100,
where 0 represents pure black, and 100 represents pure white. A represents the relative
value between green and red. The value ranges from −128 to 127, where negative values
represent the green range and positive values represent the red range. B represents the
relative value between yellow and blue. The value ranges from−128 to 127, where negative
values represent the blue range, and positive values represent the yellow range. Then,
we can obtain a wider colour gamut from the input feature map. Finally, we can use
a five-dimensional vector composed of L, a, b, x, y to represent each pixel of the feature
map [45]. Among these, L, A, and B correspond to the three components in the colour
space, and x and y correspond to the relative coordinates of the pixel in the feature map.

The superpixel centre is first determined. The N number of superpixel blocks is
specified, and n reference points are generated in the map according to the proportion
of the feature map. If the number of pixels in the entire image is M, the size of the pre-
segmented superpixel blocks in the image is M/N pixels, and the side length of each
superpixel block is S =

√
M/N. The gradient of all pixels in the surrounding 3× 3 range

is calculated with the superpixel reference point as the centre. The centre of the superpixel
is then moved to the minimum gradient value in the range, which is the centre point of the
superpixel. The formula of the gradient is defined as:

G(x, y) = (V(x + 1, y)−V(x− 1, y)2 + (V(x, y + 1)−V(x, y− 1)2 (1)

Vi = [Li, ai, bi, xi, yi]
T (2)
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A class label is then assigned to each pixel within the 2S range of the superpixel
centre point. For each pixel, the colour distance Dc and space distance Ds between the
pixel and the centre point is calculated:

Dc =
√
(Li − Lj)2 + (ai − aj)2 + (bi − bj)2 (3)

Ds =
√
(xi − xj)2 + (yi − yj)2 (4)

D =

√
(

Dc

Nc
)2 + (

Ds

Ns
)2 (5)

where Nc is the maximum colour distance, representing the gap between two colours. In
this study, Nc takes a fixed constant of 15. Ns represents the maximum intra-class space
distance, and the value of Ns in this study is the side length S of the superpixel. Multiple
centre points around the pixel will search each pixel. When distance D between the point
and a certain centre point is minimum, the centre point will be the cluster centre of the
superpixel block.

The integrity of superpixel blocks is subsequently optimized. The above steps are
then iterated through until the cluster centre of each superpixel remains constant. If a
superpixel size is too small, it will merge into other adjacent superpixel blocks in this area.
Figure 3 shows the results when a different number of superpixel blocks are set in an image.

Figure 3. The visualized results when a different number of superpixel blocks are set in an im-
age. (a) Remote sensing image. (b) Superpixel blocks set as 64. (c) Superpixel blocks set as 128.
(d) Superpixel blocks set as 256.

2.5.3. Network Architecture

The semantic segmentation results obtained based on the baseline network have
completely classified semantic information, but the boundary accuracy is relatively poor.
The result of superpixel segmentation based on high-level features has accurate boundary
information. However, due to the limitations of unsupervised segmentation, no semantic
information is gathered. Therefore, each superpixel block cannot be automatically classified.
We use the semantic information of semantic segmentation to vote on superpixel blocks.
The dominant class in each superpixel block is used as the classification category of the
whole superpixel block. After this, we obtain precise optimization of the classification
boundary details. We call this network architecture a coastal aquaculture network (CANet).
Figure 4 shows the network detail diagram of CANet.
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Figure 4. The network detail diagram of the coastal aquaculture network.

2.5.4. Loss Function

To calculate the loss value of the CANet, as the learning motivation of the network,
it is necessary to normalize the model’s output with the softmax function and use cross-
entropy as the loss function. The cross-entropy formula for multi-classification problems is
as follows:

L = −
n

∑
i=1

y(i) · log ŷ(i) (6)

ŷ = P(ŷ = i|x) = eX(i)

∑n
j=0 eX(j)

(7)

For the above formula, ŷ is the conditional probability when the pixel label is a certain
category. Single-category information uses one-hot encoding as the label input, and the
input vector is normalized and exponentially transformed using the softmax function.
Then we obtain the predicted probability of each category. The probability values are all
non-negative and the sum to 1.

2.6. Training Settings

We experimentally verified CANet based on the PyTorch deep learning framework [46].
We used the ResNet-101 [47] pre-trained model to initialize the network encoder, the initial
learning rate was set to 0.001, and a warm-up strategy was used to optimize the learning
rate. AdamW [48] was used as the optimizer for training, the weight decay was set to
0.0001, and the momentum was set to 0.9. We used four NVIDIA TITAN Xp GPUs and set
the batch size to 32.

2.7. Evaluation Metrics

We used the F1 score to evaluate the extraction accuracy of cages, rafts, and the
background, and used the mean F1 score and mean intersection over union (IoU) values
to evaluate the overall accuracy. The F1 score can balance the missed and false detection
of extracted results with the accuracy of the image, and the IoU is a more intuitive and
universal metric.
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The formula for the F1 score is as follows:

F1 = 2 · Precision · Recall
Precision + Recall

(8)

where

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

where TP is the number of pixels that are classified as breeding areas and are correct, FP is
the number of pixels that are classified as breeding areas but are incorrect, and FN is the
number of pixels that are not classified as breeding areas but are actually breeding areas.
It is known that TP + FP is the total number of pixels classified as breeding areas, and
TP + FN is the actual number of pixels that cover the breeding area.

The formula for the IoU is as follows:

IoU =
TP

TP + FP + FN
(11)

The mean F1 score and mean IoU represent the average F1 score and IoU for each
category, respectively.

3. Experimental Results
3.1. Ablation Study

To evaluate the performance of the negative sample technology, superpixel optimiza-
tion module, and CANet, we gradually added various modules and methods proposed
in this paper to the baseline network DeepLabV3+ and conducted experiments on the
coastline aquaculture dataset produced in this paper. First, we used the baseline network
DeepLabV3+ for training using it as a benchmark for comparison. Then the negative
sample technology was added based on the baseline to test the effect of the negative sample
technology on aquaculture extraction. Next, a superpixel optimization module was added
based on the baseline to check the module’s ability to extract aquaculture details. Finally,
based on the baseline, the negative sample technology and superpixel optimization module
were added to verify the aquaculture extraction performance of the proposed CANet.

It can be seen from Table 2 that when using the baseline network, the overall accu-
racy mean F1 is 91.98%. When adding confusing negative samples as target resistance in
the sample database, the overall accuracy rose to 93.22%. The single-category accuracy
of aquaculture cages and rafts also increased by over 1%. After adding the superpixel
optimization module to the baseline network, the overall accuracy reached 92.94%. The
superpixel optimization module optimizes the extraction result details, so the accuracy im-
provement is smaller than the negative sample technology. After adding negative samples
and superpixel optimization modules simultaneously, the overall accuracy reached 94.64%.
Additionally, the accuracy of breeding cages and raft identification further improved. The
quantitative accuracy comparison shows that the proposed CANet can significantly im-
prove the accuracy of aquaculture extraction with the assistance of thee negative sample
technology and superpixel optimization module.
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Table 2. Quantitative comparison of the accuracy of ablation learning in different modules of the
CANet. “Baseline” represents the baseline DeepLabV3+; “+ns” represents the negative sample
technology; “+sp” represents the superpixel optimization module; “+ns+sp” represents our proposed
CANet with the negative sample technology and superpixel optimization module. Bold values
indicate best precision.

Methods Background Cage Culture Raft Culture Mean F1 Mean IoU

baseline 92.71 90.72 92.51 91.98 88.66
+ns 93.91 91.91 93.85 93.22 89.86
+sp 93.39 91.76 93.66 92.94 89.78

+ns+sp 95.49 92.55 95.87 94.64 90.91

Figure 5 is the visualization result obtained using the above four methods to perform
model inference on the sample dataset, used to intuitively evaluate the performance of the
negative sample technology and superpixel optimization module. In the first row, due to
the significant colour difference and small distance between one breeding cage and the
other cages, the result of the baseline network connects the two cages together; thus, a false
detection occurs. After adding the negative sample technology, using negative samples
for adversarial learning effectively distinguished the background area. In the second row,
false detections occurred in the culture cages on the left, and were effectively resolved
by adding the negative sample technology. After introducing superpixel optimization,
the edge details of the contour of the culture raft on the right were more accurate and
richer. In the third row, small false detections are present for slender culture cages after
introducing the negative sample technique. However, using the superpixel optimization
module reduced false detection. In the fourth row, the boundary of the culture cage label
is relatively smooth, but in the remote sensing image the boundary is relatively rough. In
this complex situation, both the baseline network and negative sample technology have
a large number of missing detections. Combining the superpixel optimization module
and negative sample technology can effectively solve the problem of missed detection and
ensure that the boundary is more in line with the original image. In summary, CANet,
which integrates negative sample technology and the superpixel optimization module,
performs excellently in coastal aquaculture extraction tasks.

3.2. Comparing Methods

We selected some mainstream semantic segmentation networks for comparison to
verify whether our proposed CANet network can achieve state-of-the-art performance.
The following introduces the mainstream models used for comparison: UNet [23], a classic
encoder–decoder network using a symmetrical U-shape structure and skip-layer connec-
tions to fuse deep semantic information with shallow spatial information. DeepLabV3 [49],
a classic backbone network using different dilation convolution rates to solve multi-scale
information extraction problems. FPN [50] uses a feature pyramid structure to fuse the
semantic information of features of different scales. PAN [51] uses the attention mechanism
to accurately filter effective feature information. PSPNet [26] uses the spatial pooling
pyramid structure to solve multi-scale feature aggregation problems. Our proposed CANet
integrates the negative sample technique and superpixel optimization module.

It can be seen from Table 3 that PSPNet has the highest overall accuracy compared
with the other mainstream networks, and the mean F1 reaches 93.28%, while the proposed
CANet reaches 94.64%. The background category CANet exceeds PSPNet by about 1.2%,
the culture cage category exceeds PAN by about 0.4%, and the culture raft exceeds PSPNet
by about 1.4%. This shows that the proposed CANet surpasses the other mainstream
semantic segmentation networks from the perspective of quantitative comparison and
reaches state-of-the-art performance.
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Figure 5. Visual comparison of the results of ablation learning of the different modules of the CANet.
(a) Remote sensing image. (b) Label for coastal aquaculture. Results of (c) the baseline DeepLabV3+,
(d) baseline with the negative sample technology, (e) baseline with the superpixel optimization
module, and (f) baseline with the negative sample technology and superpixel optimization module
(proposed CANet).

Table 3. Quantitative comparison of the accuracy between our proposed CANet and other mainstream
networks. Bold values indicate best precision.

Methods Background Cage Culture Raft Culture Mean F1 Mean IoU

UNet 92.38 89.66 92.71 91.58 86.77
DeepLabV3 92.77 89.55 92.97 91.76 86.82

FPN 93.09 86.19 94.08 91.12 85.88
PAN 93.66 92.17 92.66 92.83 87.92

PSPNet 94.21 91.15 94.47 93.28 88.43
CANet 95.49 92.55 95.87 94.64 90.91

Figure 6 compares the visualization results of CANet and other mainstream semantic
segmentation networks for aquaculture extraction. In the first row, the FPN produces
many false detections, and the other mainstream networks possess false concatenations
and small false detections, while the CANet performs better. In the second row, almost all
the other mainstream networks have certain false detections, while the extraction results of
the proposed CANet are more accurate. In the third row, there are many missed detections
in the FPN. PSPNet mistakenly connects breeding cages into one piece, while the result
of proposed CANet is closest to the ground truth of the label. In the fourth row, the
aquaculture cages and background in the original image are very complicated. Other
mainstream networks struggle to effectively extract the aquaculture cages. PSPNet can
extract a few, but there are still many missed detections. However, CANet can effectively
extract all breeding cages, and the edge is more in line with the actual image. In summary,
our proposed CANet achieved the best performance.
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Figure 6. Visual comparison of the results between our proposed CANet and the other mainstream
networks. (a) Remote sensing images. (b) Labels for coastal aquaculture. The results of (c) UNet,
(d) DeepLabV3, (e) FPN, (f) PAN, (g) PSPNet, and (h) our proposed CANet.

3.3. Large-Scale Mapping and Statistics

We use the trained CANet model with the best performance to automatically extract
aquaculture from Gaofen-2 satellite data covering 640 coastal scenes of mainland China.
After this, we obtained a regional distribution map of the cage and raft cultures within
30 km of the coast, as shown in Figure 7. Based on the coastal aquaculture map, we
calculated statistics to obtain the area of breeding areas and the number of breeding targets
in each province, as shown in Table 4.

Table 4. The area of aquaculture areas and the number of aquaculture targets in each province.

Province
Aquaculture Area (km2) Number of Aquaculture Targets

Cage Raft Total Cage Raft Total

Liaoning 3.99 671.20 675.19 947 51,285 52,232
Hebei & Tianjin 0.07 0.01 0.08 92 37 129

Shandong 6.79 564.16 570.95 2906 59,643 62,549
Jiangsu 2.29 653.93 656.21 2018 88,045 90,063

Zhejiang & Shanghai 1.89 54.78 56.67 1708 9552 11,260
Fujian 54.46 462.28 516.74 21,990 79,348 101,338

Guangdong 42.41 189.43 231.84 46,301 115,965 162,266
Guangxi 24.61 18.21 42.82 21,992 15,466 37,458
Hainan 3.13 0.73 3.86 2590 577 3167

3.4. Discussion

In this study, samples were created based on the panchromatic-fused Gaofen-2 images,
and a rapid extraction method for two major marine aquaculture areas near the coast
was explored based on high-resolution images. Compared with the Sentinel image, the
Gaofen-2 images have a higher spatial resolution. The method improved the edge extrac-
tion and accuracy of the breeding area to varying degrees, providing a new benchmark
method for the fast and high-precision extraction of small areas. Zhangzidao island, lo-
cated in Liaoning Province, has been previously investigated for fraudulent aquaculture
operations. The investigation used the Beidou navigation system to analyse the fishing
operations of its fishing boats for several years. The actual production of aquaculture in
Zhangzidao island can be evaluated with the help of single-phase high-resolution images
using the method proposed in this work. Regarding data processing and interpretation
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efficiency, the advantages of using deep learning methods to extract aquaculture areas
rapidly are demonstrated.

Figure 7. The coastal aquaculture mapping of the coastline in mainland China.

However, optical remote sensing images still have limitations [9]. Due to the charac-
teristics of its sensors, the Gaofen-2 images have limited visibility to water bodies. The
temporal resolution also results in a large amount of cloud coverage. For areas of turbulent
sea, images may be jagged or contain disconnected phenomena in marine plant breeding
areas [33], which will cause errors in the extraction results. Our superpixel optimization
method can solve the impact of small-area disconnected problems. However, low-latitude
regions with abundant clouds and rain often face problems of cloud coverage, making it
difficult to obtain large-area images of the same time phase. Therefore, although the extrac-
tion of aquaculture areas by this method can maintain good accuracy, the actual extraction
results will somewhat differ from human field survey data. Human field survey data de-
pends on the date of data collection, whereas the automatic extraction algorithm depends
on the imaging date. Although aquaculture in different periods does not change based on
time or seasons, small changes cannot be avoided due to the influence of tides. Moreover,
the model’s accuracy could not reach 100%, so there are slight difference between the auto-
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matically extracted aquaculture area and human field surveys. The proposed CANet model
avoids the influence of location and time on the extraction results as much as possible
by labelling samples of different locations and dates, achieving strong and robust gener-
alization capabilities. Compared with other deep learning-based aquaculture extraction
research [30,31,33–37], our method adopts the negative sample technique and multi-scale
superpixel optimization method, which has a stronger generalization ability and robustness
across time and location. Therefore, using the proposed CANet achieves good extraction
results in large-scale aquaculture extraction, providing technical support for the automation
of fishery resource censuses and the sustainable development of marine resources.

4. Conclusions

In this work, we proposed a convolutional neural network for coastal aquatic ex-
traction from high-resolution remote sensing images. We constructed a sample database
balancing spatial distribution and solving the model generalization problem for large-scale
aquaculture extraction. We expanded the sample database by using confused land features
as negative samples, thus solving the interference of confusing land features on aquaculture
extraction. We designed a multi-scale-fusion superpixel segmentation optimization module
based on the baseline DeepLabV3+, and designed the CANet network architecture. CANet
effectively optimizes boundary identification and improves the overall accuracy of aquacul-
ture extraction. Based on CANet, we extracted cage and raft culture areas near the coastline
of mainland China with an overall accuracy of 94.64%, reaching state-of-the-art perfor-
mance. The results obtained in this work can provide scientific, technical, and data support
for the spatial planning and regulation of China’s coastal fisheries. In future research, we
will aim to introduce more intensive time-series images to explore the relationship and
laws between aquaculture and seawater flow, climate, economy, and other factors.
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Abstract: Since the material yard is a crucial place for storing coal, ore, and other raw materials,
accurate access to its location is of great significance to the construction of resource-based ports,
environmental supervision, and investment and operating costs. Its extraction is difficult owing to
its small size, variable shape, and dense distribution. In this paper, the SPPA-Net target detection
network was proposed to extract the material yard. Firstly, a Dual-Channel-Spatial-Mix Block (DCSM-
Block) was designed based on the Faster R-CNN framework to enhance the feature extraction ability
of the location and spatial information of the material yard. Secondly, the Feature Pyramid Network
(FPN) was introduced to improve the detection of material yards with different scales. Thirdly,
a spatial pyramid pooling self-attention module (SPP-SA) was established to increase the global
semantic information between material yards and curtail false detection and missed detection. Finally,
the domestic GF-2 satellite data was adopted to conduct extraction experiments on the material yard
of the port. The results demonstrated that the detection accuracy of the material yard reached 88.7%
when the recall rate was 90.1%. Therefore, this study provided a new method for the supervision and
environmental supervision of resource-based port material yards.

Keywords: material yard detection; deep learning; attention mechanism

1. Introduction

Ports, as a hub of maritime logistics, undertake the function of the temporary storage
of coal, ore, grain, and other raw materials. After entering ports, these raw materials
will be transferred to the material yard for temporary stacking and then transported to
other destinations by train or ship [1]. In 2018, the Ministry of Transport announced The
Action Plan for Further Promoting Green Port Construction (2018–2022) [2], which was
proposed to integrate the concept of green development into the construction of ports.
However, the ports themselves and the surrounding environment are seriously influenced
due to the considerable amount of dust generated in the daily construction process of
open-air material yards of ports. Given the above reasons, the detection of port material
yards can not only assist in the planning of their development but also facilitate the timely
and effective supervision of open material yards in ports by environmental protection
departments in various regions.

Compared with the two port targets (ships and oil storage tanks), material yards are
characterized by small targets, dense distribution, and variable scale. The shape of ships
and storage tanks is fixed, while the shape and size of material yards usually change with
the stacking process of the workers. Some have an excessively large scale, while some have
an excessively small scale. Some are rectangular, some are elliptical, and some are irregular.
These factors lead to the difficulty in detecting material yard targets.
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In recent years, deep learning, as a sample-driven data analysis method, has been
extensively used in the field of remote sensing. The deep convolutional neural network
(CNN) considerably improves the recognition accuracy of the image. It does not require
tedious manual design while being able to autonomously perceive the feature information
in the image and present better universality and expansibility. There are two main types
of object detection methods based on deep learning: (1) single-stage target detection
algorithms, including SSD [3], YOLO series [4–7], and RetinaNet [8]; (2) two-stage target
detection algorithms, such as R-CNN [9], Fast R-CNN [10], and Faster R-CNN [11]. The
composition of the two-stage target detection algorithms mainly consists of the feature
extraction network and the region recommendation network in the first stage, as well as
the classifier and regressor in the second stage. Feature extraction networks are employed
to extract the feature information of the target. The commonly used feature extraction
networks comprise VGGNet [12], GoogleNet [13], and ResNet [14]. ResNet tackles the
phenomenon of the exploding gradient or vanishing gradient of the network with the
increase in the number of layers to a certain extent [14]. The region proposal network is
the core of two-stage target detection algorithms, and this is the fundamental difference
from one-stage algorithms. Its role is to generate a series of candidate boxes that may
contain targets and roughly screen the original image. The effect of dense detection can
be achieved by laying a large number of candidate boxes on the original image. There is
no region proposal network in the one-stage algorithm, but feature extraction is directly
performed on the image to predict the location and classification of the target object.
Therefore, the accuracy of the two-stage algorithm is higher than that of the one-stage
algorithm. An attention mechanism [15] is needed to effectively extract image features. It is
the embodiment of selective attention in the field of computer vision. It assigns different
weights to the feature maps, and the positions with more weights represent more attention.
Among the current attention mechanisms, channel attention [16], spatial attention [17–19],
channel-attention attention [20,21] and self-attention [22] have been widely used.

Several target detection algorithms based on deep learning have been proposed to
handle small, densely distributed, and multi-scale remote sensing image targets. For
example, Lu et al. [23] utilized the hybrid attention mechanism of spatial attention and
channel attention mechanism in parallel to effectively suppress the background noise of the
image and strengthen the feature extraction ability. The mAP of small ground targets such
as vehicles and ships reached 52.6%. Hua et al. [24], Ying et al. [25], and Zhu et al. [26]
added self-attention mechanisms to different network structures to improve the extraction
accuracy of small densely distributed targets. Huang Zhipeng et al. [27] enhanced the
Faster R-CNN by sending the feature maps generated in different stages of the feature
extraction network into the RPN to obtain the feature information of targets with different
sizes. Its accuracy was boosted by 5% compared with the original Faster R-CNN. Lin
Zhijie et al. [28] further improved the Faster R-CNN based on Huang Zhipeng et al. and
employed the feature maps generated by the last three stages of the feature extraction
network to construct a feature pyramid, contributing to reinforcing the detection ability of
multi-scale targets. Its mAP on the PASCAL VOC 2007 and 2008 datasets reached 74.8%.
Li et al. [29] improved the feature pyramid and proposed a saliency-based pyramid
combining the feature pyramid and the saliency algorithm, which augmented the ability to
reduce background noise. The mAP of the aerial image data set reached 72.96%. Zhong
et al. [30] added the structure of the feature pyramid and self-attention mechanism to
YOLOv3 to strengthen the detection ability of multi-scale and densely distributed targets,
and the mAP reached 87.41% on the UCAS-AOD dataset.

Although the improved methods mentioned above have improved the detection
accuracy of different targets, material fields with different shapes and complex background
information will cause the problem of missed detection and false detection under the
conditions of multi-scale and densely distributed remote sensing images. Therefore, an
SPPA-Net target detection algorithm was proposed in this paper for the detection of port
material yards based on the domestic GF-2 satellite remote sensing image. This method
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adopts the Faster R-CNN and the ResNet-50 as the basic framework and the feature
extraction network, respectively. Firstly, the dual hybrid attention module was proposed in
this paper to increase the effectiveness of the channel and spatial information extraction
in the feature extraction stage. Secondly, the feature pyramid structure was introduced,
and then the spatial pyramid pooling self-attention module proposed in this paper was
integrated to enrich the semantic information of the feature map for subsequent network
detection. Finally, the target detection data set of self-built port material yards was adopted
to train the algorithm. The experimental results suggested that the proposed method
effectively extracted the material field target, with a recall rate and accuracy rate of 90.1%
and 88.7%, respectively.

The main contributions of this paper are as follows:

(1) A deep learning target detection algorithm was constructed for port stockyard targets,
and the algorithm was used to verify with self-built port material yard datasets;

(2) The Dual-Channel-Spatial-Mix Block was proposed, to improve the feature extraction
ability of densely arranged and multi-scale stockyard targets;

(3) The spatial pyramid pooling attention module was designed to globally model the
features of each position in the feature map for obtaining more abstract global features.

2. Principles and Methods
2.1. Sppa-Net

The frame foundation of the SPPA-Net is the Faster R-CNN, as shown in Figure 1,
which consists of four parts: feature extraction network, Region Proposal Networks (RPN),
ROI Pooling layer, and parallel classifiers and regressors. The algorithm flow is detailed, as
follows. First, the image is input into the feature extraction network to obtain the feature
map; second, the feature map is input into the RPN to acquire a candidate box that may be
the target; third, the matrix of the feature map of the image area where the candidate box is
located is scaled to a 7 × 7 feature map through the ROI Pooling layer; finally, the scaled
feature map matrix is input into the classifier and regressor to generate the predicted results.

Figure 1. The overall framework of the SPPA-Net.

In this paper, the ResNet-50 was selected as the feature extraction network, which
consists of five stages. Specifically, stage 1 is composed of convolution and maximum
pooling, and the remaining stages are stacked by residual structures. The region proposal
network consists of a fully convolutional network. The classifier and regressor comprise a
fully connected layer.

In this paper, the feature extraction network was improved from the following aspects
to enhance the extraction ability of densely distributed, multi-scale, and small targets.
(1) The dual hybrid attention mechanism module proposed in this paper was added after
each residual structure of the ResNet-50; (2) the feature pyramid was constructed using the
feature map generated by the ResNet-50 in each stage, and a spatial pooling self-attention
mechanism was added after the feature map output by the feature pyramid. The detailed
structure is illustrated in Figure 2.
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Figure 2. Improved feature extraction network.

2.2. Improved Feature Extraction Network
2.2.1. Double-Mixed Attention Mechanism

The shape of various material yards is noticeably different. Moreover, the number of
material yards, the types of materials stacked, and the arrangement of materials significantly
vary in different scenarios. Hence, a dual-mixed attention mechanism was proposed in this
paper to improve the network’s ability to extract features of material yards.

Mixed attention is composed of channel attention and spatial attention. Generally,
there are two ways of combination: series and parallel. On this basis, a dual-mixed attention
module was constructed. The structure of the DCSM-Block is exhibited in Figure 3. It
consists of two horizontal attention modules and two spatial attention modules, which are
combined in series and parallel simultaneously.

Figure 3. Structure of Dual-Channel-Spatial-Mix Block.

After entering the DCSM-Block, the feature map F with a size of W×H×C entered the
upper and lower lines, as presented in Figure 3. On the upper line, the feature map F will
first enter the channel attention module to perform feature extraction on the channel
dimension information, and finally obtain the feature map Fc with different channel
weight information. Then, Fc will be sent to the spatial attention module. The spatial
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attention module will perform further feature extraction on the feature map Fc with
channel information, so as to obtain the position feature information of the target to be
detected, and finally generate a feature map Fs_c with both the target position information
and channel information. The specific process is as follows:

Mc = σ(MLP(MaxPool(F)) + MLP(AvgPool(F))), (1)

Fc = F⊗Mc, (2)

Ms_c = σ( f 7×7(AvgPool(Fc); MaxPool(Fc)) = σ( f 7×7(Fc_pool)), (3)

Fs_c = Fc⊗Ms_c, (4)

where Mc represents the channel attention map; ⊗ represents the dot multiply operator;
σ represents the Sigmiod function; MLP represents the multi-layer perceptron; MaxPool
represents the global maximum pooling; AvgPool represents the global average pooling;
Ms_c represents the spatial attention map with channel information; f 7 × 7 represents 7 × 7
convolution layer.

On the lower line, the spatial attention module and the channel attention module
performed the same operation on the feature map F as on the upper line. Firstly, the feature
map F generated the feature map Fs with spatial information through the spatial attention
module. Secondly, the feature map Fs entered the channel attention module to generate a
feature map Fc_s with channel and spatial information. Finally, the feature maps F, Fc, Fs,
Fsc , and Fcs were multiplied to obtain the feature map F’, so as to further strengthen the
feature information of the space and channel.

F′ = F⊗Fc⊗Fs⊗Fs_c⊗Fc_s, (5)

In this paper, DCSM-Block was added after each residual structure of ResNet-50
to increase the content of critical parts of the feature map and curtail the features of
useless information.

2.2.2. Spatial Pyramid Pooling Self-Attention Module

In ResNet-50, a feature map with a gradually decreasing size and a gradually increas-
ing number of channels was generated. The feature map of the early stage contained
the feature information of the small target. Nevertheless, the feature information of the
small target in the feature map generated in the later stage was ignored, while the feature
information of the large target was retained. Therefore, a feature pyramid structure based
on the feature maps generated by ResNet-50 at each stage was constructed for the semantic
information of small targets to strengthen the extraction ability of small-size material yards.
Although the feature pyramid structure can significantly improve the detection effect of
small targets in material yards, it does not wrestle from the non-target false detection of
the network. Therefore, in this paper, spatial pyramid pooling was introduced into the
self-attention mechanism, and this improved self-attention mechanism was added after the
feature map output by the feature pyramid to make up for the shortcomings of the local
perception of convolutional neural networks.

The core content of the self-attention module, as displayed in Figure 4a, is to calculate
the relationship between the pixels in the feature map and to achieve global context
modeling. Different from the spatial attention mechanism, the self-attention mechanism
not only assigns weights to each pixel in the feature map using a single-layer convolution
structure but also maps the original feature image into three vector branches (Query, Key,
and Value). The self-attention mechanism is different from the one-dimensional vector in
natural language processing, though it can effectively model the relationship between each
pixel in the feature map. Images are the basic input in computer vision, and the generated
one-dimensional vector is too long in the process of vectorization, resulting in a serious
waste of computing resources. With the feature map size of 200 × 200 input as an example,
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the red box in Figure 4a will generate dimensions of (40,000, 40,000), which will take up a
lot of computing resources. This not only puts forward higher requirements for hardware
but also makes it impossible to train in batches ascribed to the large occupation of memory,
reducing the speed of model convergence.

Figure 4. Comparison between self-attention and spatial pyramid pooling self-attention module:
(a) Self-attention module. (b) Spatial pyramid pooling self-attention module. (SPP represents Spatial
pyramid pooling; the red rectangular box represents the change in the dimension of the feature matrix
in the self-attention module; the blue rectangle represents the dimension change of the feature matrix
of the spatial pyramid pooling self-attention module).

Aiming at the above problems of self-attention, the dimension was lowered in this
paper without losing feature information by improving the two branches of Key and
Value to reduce the amount of computation and memory usage, so as to grapple with
the above complications of the self-attention module. As suggested in Figure 4b, the
1 × 1 convolutional layers of the Key and Value branches were replaced by the spatial
pyramid pooling layers, and then the feature maps were extracted at different resolutions
through pooling windows of different sizes to form a one-dimensional feature vector.
Compared with the 1 × 1 convolution in the original self-attention module, it is easier
for the spatial pyramid pooling network to extract the global semantic information of the
feature map, and the feature dimension obtained was much smaller than the result after
1 × 1 convolution processing. Compared with the self-attention module, the spatial pyramid
pooling self-attention module has significantly reduced the amount of computation. From
the experimental results, the precision rate and recall rate have been significantly improved.

3. Results and Discussion
3.1. Dataset

In this paper, GF-2 satellite remote sensing images of Tianjin Port and Tangshan Port
were used to prepare the data set. The specific workflow is displayed in Figure 5. Firstly,
ArcGIS software was employed to remove the non-port area and thus obtain the overall
remote sensing images of the two ports. Secondly, Python was adopted to write a script to
cut the original remote sensing image into slices of the same size, and the size of the slices
was 1024 × 1024. Finally, the number of slices in the Tangshan port area and the Tianjin
port area was 1872 and 9828, respectively.
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Figure 5. Material yard sample preparation.

The slices containing material field targets were selected from the slices of the Tianjin
Port and Tangshan Port with manual interpretation as the data set. Finally, 1362 images
were obtained, and the number of material fields was 10,191. Deep learning should use
labeled training data to train the algorithm. In this paper, LabelMe software was utilized to
mark the sample pictures, and polygons were adopted to mark the material yard to obtain
accurate edge information. Each sample image corresponded to a tag file. Finally, the tag
files were summarized using Python to generate training files and verification files.

Through the above steps, 1362 material yard data sets with a size of 1024 × 1024
were obtained, among which 1225 and 137 were used as the training set and the test set,
respectively, at a ratio of 9:1.

3.2. Environment Configuration and Training Methods

The environment hardware device used in this training is an NVIDIA graphics card,
with a model of Titan XP and a memory size of 12196MiB. The software involves CUDA
(version 11.2), Python (version 3.7), and PyTorch (deep learning framework 1.10). Random
data enhancement was firstly performed on the read training samples to expand the train-
ing samples. The main data enhancement methods include random cropping, flipping,
brightness transformation, and contrast transformation. Finally, the data enhanced was
made into variables in PyTorch for gradient calculation of backpropagation. The hyperpa-
rameters of the network are comprised of the optimizer, Lr config, and epoch. The details
are shown in Table 1.

Table 1. Hyper-parameters setting.

The Hyperparameters Parameters Setting

optimizer

Type SGD
Learning base 0.02
Momentum 0.9

Weight decay 0.0001

Lr config

Policy Step
Warmup Linear

Warmup iters 500
Warmup ratio 0.001

Step 8
epoch 120,000

The metrics including Precision(P), Recall (R), and mAP were adopted to evaluate the
network performance constructed in this paper, expressed as:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

mAP =
∫ 1

0
P(R)dR (8)

where TP (True Positives) represents the number of actual material yard targets correctly
identified as material yards, FP (False Positives) indicates the number of the actual back-
grounds but are mistakenly identified as material yards, and FN (False Negatives) denotes
the number of actual material yard targets but are mistakenly classified as the background.
Precision reflects the correct proportion of all material yard targets predicted by the model.
Recall implies what proportion of all material yard targets is predicted by the model.
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In addition, mAP (mean Average Precision) signifies the average accuracy rate, which
comprehensively evaluates the accuracy and recall rates of the model. The calculation method is
to calculate the accuracy and recall rates under different IOU thresholds, and then draw a curve
with abscissa and ordinate. Finally, the area enclosed by the curve and abscissa and ordinate is
calculated, where the IOU threshold is from 0.5 to 0.95, increasing every 0.05.

3.3. Ablation Experimental Results and Analysis

In this paper, ablation experiments were conducted to verify the effectiveness of
the mixed attention mechanism and the FPN structure with the improved self-attention
mechanism. Firstly, the Faster R-CNN network was used as the baseline network, with
the mixed attention mechanism DCSM-Block and the FPN with SPP-SA module (SPP-SA
FPN) being added, respectively. As shown in Table 2, the results revealed that the mAP
score and recall rate were significantly increased by 3.2% and 5.2%, respectively, with the
superposition and improvement of the two modules.

Table 2. Precision, Recall and mAP after superposition of DCSM and SPP-SA FPN modules.

DCSM SPP-SA FPN Precision Recall mAP

- - 0.860 0.824 0.881
X - 0.888 0.845 0.897
X X 0.887 0.901 0.913

Note: - represents that the module was not added to the experiment; Xrepresents the module was added to
the experiment.

In Figure 6(1), the original Faster R-CNN falsely detected targets similar in color to
the material yard; in Figure 6(2)–(5), the Faster R-CNN had a significant missed detection
when the material yard was arranged too densely and the shape was changed. After the
Faster R-CNN of the DCSM-Block was added, the false detection and missed detection
rates of the material yard were significantly reduced, and the accuracy and recall rates
were improved by 3.2% and 2.1%, respectively. This was in that the DCSM-Block module
enhanced the ability of the backbone network to extract the characteristics of the material
field and focused the attention of the algorithm on faceted objects of the material yard.

Figure 6. Results after superposition of DCSM and SPP-SA FPN modules: (a) Faster R-CNN. (b) Faster
R-CNN + DCSM Block. (c) Faster R-CNN + DCSM module + SPP-SA FPN module.
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After the addition of SPP-SA FPN, the accuracy slightly decreased compared with the
DCSM-Block, the recall rate was significantly improved by 5.6%, and the detection ability
of small-area material yards was further improved, as illustrated in Figure 6(2)–(5). The
reason for this phenomenon is that the self-attention mechanism boosted the network’s
perception of global information and reinforced the classification ability of the algorithm
while weakening the positioning ability of the algorithm, leading to a decrease in the
accuracy of the model and an increase in the recall rate.

3.4. Comparative Experimental Results and Analysis

SSD300, SSD512, YOLOv7, RetinaNet, Faster R-CNN, and the proposed method were
compared to verify the effectiveness of the algorithm. The experimental results are listed in
Table 3. The proposed algorithm achieved the highest recall rate and mAP (0.901 and 0.913),
respectively. SSD512 reached the highest precision and parameter (0.907 and 46.04 M).

Table 3. Comparison of Precision, Recall, mAP and Parameters of different algorithms.

Algorithms Precision Recall mAP Parameters

SSD300 0.906 0.701 0.857 34.31 M
SSD512 0.907 0.785 0.906 46.04 M

YOLOv7 0.890 0.816 0.905 37.20 M
RetinaNet 0.782 0.707 0.740 37.74 M

Faster R-CNN 0.860 0.824 0.881 41.12 M
Ours 0.887 0.901 0.913 41.53 M

The specific test results are demonstrated in Figure 7, from which the following
findings can be obtained.

(1) These six methods can extract large and rectangular material fields. However, there
are some material fields with irregular shapes in Figure 7(3). Except for the method in
this paper, a certain degree of missed detection occurred, among which RetinaNet was the
most significant. This suggested that the DCSM-Block in this paper effectively extracted
the feature information of the material field, reduced the useless feature information, and
thus enhanced the network’s ability to extract the characteristics of the material field.

(2) Concerning small and densely-distributed material yards, as illustrated in Figure 7(2)
and (4), the most severe missed detection of RetinaNet and SSD300 also missed a large area of
the material yard. In SSD512 and YOLOv7, the phenomenon of missed detection of large-area
stockyards occurred less, while small-area stockyards when the distance between stockyards
was close was not detected. Additionally, YOLOv7 caused the false detection of targets, whose
color was similar to that of the material field. The method in this paper demonstrated superiority
in this respect. As the FPN structure was constructed in this paper and the SPP-SA module was
added after the feature map, it improved the global perception ability, effectively enhanced the
extraction ability of multi-scale and small-area material fields, and compensated for the local
perception of the convolutional neural network.

146



Sustainability 2022, 14, 16413

Figure 7. Comparison of different algorithms: (a) RetinaNet. (b) SSD300. (c) SSD512. (d) YOLOv7.
(e) Faster R-CNN. (f) Ours.

4. Conclusions

In this paper, the SPPA-Net algorithm was proposed to detect material yard targets.
Based on the original Faster R-CNN, ResNet-50 was selected as the feature extraction
network, and a dual mixed attention module was embedded to enhance the extraction
of the material field features. Subsequently, the feature pyramid was constructed using
the feature maps generated by the ResNet-50 at each stage. The spatial pyramid pooling
self-attention module was embedded to globally model the features of each position in
the feature map, so as to compensate for the limitations of the local perception of the
convolutional neural networks and expand the universality of the network. Compared
with the original attention mechanism, the computational complexity was reduced by
19 times. Finally, a material field data set was established with the GF-2 satellite. The
experiment revealed that the proposed method enabled fast and efficient extraction of the
material fields within ports with high accuracy. Compared with other methods, this paper
effectively improved the extraction of densely distributed and variable-scale stockyard
targets, while curtailing the probability of false detection and missed detection. The recall
rate reached 90.1%, and the accuracy rate reached 88.7%. In this paper, the single objective of
the material yard was only employed to verify the effectiveness of the proposed algorithm.
In future research, target detection will be performed on important targets in other ports,
such as ships, containers, oil storage tanks and wharves, so as to further demonstrate the
performance of the method proposed in this paper.

Author Contributions: Conceptualization, R.X.; Methodology, R.X. and Z.H.; Data curation, K.L.;
Investigation, R.X.; Resources, X.Z.; Visualization, R.X.; Writing—original draft, R.X. and X.Z.;

147



Sustainability 2022, 14, 16413

Review and editing, X.Z., Z.C. and M.C. All authors have read and agreed to the published version
of the manuscript.

Funding: The work was supported by the National Key Research and Development Program of
China (Grant No. 2021YFB3901202).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, Q.; Wang, S.; Zhen, L. Yard truck retrofitting and deployment for hazardous material transportation in green ports. Ann.

Oper. Res. 2022, in press. [CrossRef]
2. Xi, Y. The Action Plan for Further Promoting Green Port Construction. China Logist. Purch. 2018, 2, 33–34. 10.16079/j.cnki.issn1671-

6663.2018.08.005. [CrossRef]
3. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of

the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37.
4. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
5. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
6. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
7. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.
8. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the the IEEE International

Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.
9. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

10. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December
2015; pp. 1440–1448.

11. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. arXiv 2015,
arXiv:1506.01497.

12. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
13. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

14. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

15. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
arXiv 2017, arXiv:1706.03762.

16. Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks.
In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19
June 2020; pp. 11531–11539. [CrossRef]

17. Xu, Y.; Zhang, Y.; Yu, C.; Ji, C.; Yue, T.; Li, H. Residual Spatial Attention Kernel Generation Network for Hyperspectral Image
Classification with Small Sample Size. IEEE Trans. Geosci. Remote Sens. 2022, 60, 3175494. [CrossRef]

18. Praveen, B.; Menon, V. Dual-Branch-AttentionNet: A Novel Deep-Learning-Based Spatial-Spectral Attention Methodology for
Hyperspectral Data Analysis. Remote Sens. 2022, 14, 3644. [CrossRef]

19. Peñaloza, B.; Ogmen, H. Effects of spatial attention on spatial and temporal acuity: A computational account. Attention, Percept.
Psychophys. 2022, 84, 1886–1900. [CrossRef] [PubMed]

20. Song, C.H.; Han, H.J.; Avrithis, Y. All the attention you need: Global-local, spatial-channel attention for image retrieval. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 4–8 January 2022;
pp. 2754–2763.

21. Liu, T.; Luo, R.; Xu, L.; Feng, D.; Cao, L.; Liu, S.; Guo, J. Spatial Channel Attention for Deep Convolutional Neural Networks.
Mathematics 2022, 10, 1750. [CrossRef]

22. Cao, F.; Lu, X. Self-attention technology in image segmentation. In Proceedings of the International Conference on Intelligent
Traffic Systems and Smart City (ITSSC 2021), Nanjing, China, 28–30 October 2022; Volume 12165, pp. 271–276.

148



Sustainability 2022, 14, 16413

23. Lu, X.; Ji, J.; Xing, Z.; Miao, Q. Attention and feature fusion SSD for remote sensing object detection. IEEE Trans. Instrum. Meas.
2021, 70, 1–9. [CrossRef]

24. Hua, X.; Wang, X.; Rui, T.; Zhang, H.; Wang, D. A fast self-attention cascaded network for object detection in large scene remote
sensing images. Appl. Soft Comput. 2020, 94, 106495. [CrossRef]

25. Ying, X.; Wang, Q.; Li, X.; Yu, M.; Jiang, H.; Gao, J.; Liu, Z.; Yu, R. Multi-attention object detection model in remote sensing images
based on multi-scale. IEEE Access 2019, 7, 94508–94519. [CrossRef]

26. Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection
on drone-captured scenarios. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC,
Canada, 10–17 October 2021; pp. 2778–2788.

27. Huang, J.; Shi, Y.; Gao, Y. Multi-Scale Faster-RCNN Algorithm for Small Object Detection. Comput. Res. Dev. 2019, 56, 319–327.
28. Lin, Z.; Luo, Z.; Zhao, L.; Lu, D. Multi-scale convolution target detection algorithm with feature pyramid. J. Zhejiang Univ. 2019,

53, 533–540.
29. Li, C.; Luo, B.; Hong, H.; Su, X.; Wang, Y.; Liu, J.; Wang, C.; Zhang, J.; Wei, L. Object detection based on global-local saliency

constraint in aerial images. Remote Sens. 2020, 12, 1435. [CrossRef]
30. Li, Z.; Wang, H.; Zhong, H.; Dai, Y. Self-attention module and FPN-based remote sensing image target detection. Arab. J. Geosci.

2021, 14, 1–18. [CrossRef]

149



Citation: Yang, X.; Bai, Y.; Chen, P.;

Li, C.; Lu, K.; Chen, Z. A Prior

Semantic Network for Large-Scale

Landcover Change of Landsat

Imagery. Sustainability 2022, 14, 13167.

https://doi.org/10.3390/

su142013167

Academic Editor: Mohammad

Valipour

Received: 12 September 2022

Accepted: 10 October 2022

Published: 13 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

A Prior Semantic Network for Large-Scale Landcover Change of
Landsat Imagery
Xuan Yang 1 , Yongqing Bai 2 , Pan Chen 1,3 , Cong Li 2 , Kaixuan Lu 2 and Zhengchao Chen 2,*

1 Key Laboratory of Digital Earth Science, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100094, China

2 Airborne Remote Sensing Center, Aerospace Information Research Institute, Chinese Academy of Sciences,
Beijing 100094, China

3 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: chenzc@aircas.ac.cn; Tel.: +86-10-82178775

Abstract: Landcover change can reflect changes in the natural environment and the impact of
human activities. Remotely sensed big data with large-scale and multi-temporal key characteristics
provide the data support for landcover change information extraction. The development of deep
learning provides technical method support for information extraction from remotely sensed big
data. However, the current mainstream deep learning change detection methods only establish the
changing relationship between two phases of images. They cannot directly extract the ground object
categories before and after the change. It is easily affected by pseudo-changes caused by the color
difference of multi-temporal images, resulting in many false detections. In this paper, we propose
a prior semantic network and a difference enhancement block module to establish prior guidance
and constraints on changing features to solve the pseudo-change problem. We propose a semantic-
change integrated single-task network, which can simultaneously extract multi-temporal landcover
classification and landcover change. On the self-made, large-scale multi-temporal Landsat dataset,
we have performed multi-temporal landcover change information extraction, reaching an overall
accuracy of 83.1% and achieving state-of-the-art performance. Finally, we thoroughly analyzed the
landcover change results in the study area from 2005 to 2020.

Keywords: landcover change; deep learning; prior constraint; difference enhancement; single-task
network; Landsat; multi-temporal

1. Introduction

Landcover classification from remote sensing images is a significant application in
remote sensing [1]. The classification of and changes in landcover can be obtained by
using multi-temporal images. Landcover change can intuitively show the dynamic changes
of the land surface, which has significant application value in land resource monitoring,
ecological protection, urban expansion, returning farmland to forest, etc. [2–6]. However,
the multi-temporal landcover classification also has more requirements on the amount of
remote sensing data. With the development of remote sensing technology, remote sensing
data is developing towards remotely sensed big data [7,8]. Remotely sensed big data
with 4V characteristics volume, variety, velocity, and veracity provide massive data for
remote sensing information extraction [9,10]. Traditional information extraction methods
need to artificially design feature extractors according to data characteristics, such as
index-based methods (NDVI, NDWI, NDBI, etc.) [11–13], texture-based methods (edge
detection, keypoint extraction, etc.) [14–16], or statistical-based methods (support vector
machines, random forests, etc.) [17–19]. When these methods face massive data, due to
the limitations of artificial design, it is not easy to design a model that perfectly fits all the
data. Therefore, the generalization ability of the model is limited, and the model may not
be able to fit the new data. The emergence of deep learning technology has solved the
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data explosion problem of remotely sensed big data. Deep learning allows the network
to independently exploit and learn effective features through deep convolutional neural
networks (DCNNs) [20]. The DCNN has a stronger fitting ability to massive data and
better generalization ability. At the same time, the deep learning method can quickly
and accurately produce large-scale products, significantly saving time, human resources,
and financial resources. Therefore, the deep learning method has gradually become the
mainstream remote sensing information extraction method [21].

The traditional methods of landcover change detection are mainly based on two
ideas [22–26]. The first is to set a change threshold based on the difference between the
two images to detect the changing area. This method is largely limited by the quality of
image processing. Differences in the colors of the two images are caused by differences
in the imaging season and atmospheric conditions. As a result, pseudo-changes may
appear in areas that have not changed between the two images. The second is to first
classify the landcover of the two phases of images, then make the difference between the
two phases of classification results to obtain the changed areas. This method is subject
to the landcover classification accuracy for each phase of images. It may also be affected
by the color difference between the images of the two phases. There may be errors in
the classification results of the two phases, which will also cause pseudo-changes. These
pseudo-changes and errors will cause changes in the ground objects to be inconsistent with
the real natural scenes. The change detection methods based on deep learning establish a
complex correlation between the two images by building a complex DCNN. The network
learns the changing area’s features through supervised learning, eliminates the pseudo-
changing area’s interference, and finally obtains a more accurate landcover change result.

Change detection methods based on deep learning have made significant develop-
ment [27]. FC-EF [28] stacks two-phase images into multi-channel images, inputs images
into a fully convolutional neural network, and outputs the changed regions. FC-Siam-
conc [28] uses two encoders to extract the features of the two-phase images, respectively. It
stacks each stage’s features, transfers them to the decoder for feature fusion, and outputs
the changed regions. FC-Siam-diff [28] is similar to FC-Siam-conc. The only difference
is that the two encoder feature fusion methods are replaced from stacking to difference
operation. Similar to FC-EF, CDNet [29] stacks two-phase images into multi-channel images
as input. It is a classic encoder–decoder architecture. Based on the dual encoder network,
DSIFN [30] adds channel attention and spatial attention mechanisms to improve the detec-
tion accuracy of changing regions. UNet++MSOF [31] and DDCNN [32] stack two-phase
images as input. The backbone of them adopts the densely connected UNet++ [33] network.
These change detection methods can only find the changing area, which can be regarded
as a changed/unchanged binary classification problem. For multi-class landcover change
detection, the above methods cannot exploit semantic information in the changing area and
often need to use additional semantic segmentation networks to supplement the semantic
categories. Semantic segmentation in deep learning is pixel-level classification in remote
sensing. Since the change detection of landcover requires pixel-by-pixel labels of multi-
temporal registered images, there are few practical applications of large-scale landcover
change detection based on deep learning methods. However, many studies still indirectly
implement the change trend analysis after landcover classification of the multi-temporal
images [34]. This paper is completely based on the deep learning method to detect the
landcover changes of the multi-temporal images. The category information before and
after the change in the ground objects can also be accurately classified.

We call change detection with semantic information before and after the change as
semantic change detection. Landcover change is a semantic change detection task. In this
paper, we propose a prior semantic network that integrates the difference enhancement
block module and compresses the multi-task network into the single-task network, which
implements high-precision Landcover change mapping and change details analysis.

In summary, the main contributions of this paper are as follows:
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• We propose a prior semantic network architecture. Based on the two-phase data,
the third-phase data and labels are introduced as prior constraint knowledge. It
can solve the problem of pseudo changes caused by differences in color distribution
and greatly improve the stability and robustness of change detection and semantic
classification.

• We propose a difference enhancement block module, which weights the differences be-
tween the two branches, enhances true changes with large differences, and suppresses
pseudo-changes with small differences.

• We compress the multi-task network, which is relatively independent of change detec-
tion and semantic segmentation, into a single-task network, which can simultaneously
obtain the area of landcover change and the category of ground objects before and
after the change in the network output.

• Extensive experiments on our self-made, large-scale, multi-temporal Landsat dataset
achieve state-of-the-art performance. Through our proposed network, multi-temporal
landcover change detection and specific change trend analysis were carried out for
the large-scale study area from 2005 to 2020.

2. Methodology

This chapter mainly introduces the prior semantic network, the difference enhance-
ment block module, and the single-task semantic change integration. We take the two-
encoder Siamese UNet as the benchmark network. First, based on Siamese UNet, we add
an additional encoder branch as a prior semantic knowledge constraint to build a prior
semantic network. Then, the change feature fusion module in the prior semantic network
is replaced with a difference enhancement block module to build PSNet-DBB. Finally, we
combine the semantic segmentation and change detection multi-task decoders in PSNet
into a single-task decoder to build PSNet-ST.

As shown in Figure 1, although the deep learning method can overcome the pseudo-
change problem caused by color difference to a certain extent, the semantic information
extraction is still unstable. The changing amplitude jitters seriously, and the change in
the ground object category does not conform to the actual situation. The pseudo-changes
may make it impossible to correctly obtain the change trend of the landcover and lose
the practical application value. The current deep learning change detection network only
extracts relevant information from the two-phase images, which is greatly affected by
the color distribution of the images themselves. Based on the two-phase images, we can
introduce another phase of images. The classification labels corresponding to the images
of the new phase are also input into the network as auxiliary reference data for semantic
information. It can improve the stability of the original two-phase image semantic infor-
mation extraction, thereby improving the accuracy of landcover changes and ensuring the
accuracy of changing trends. Therefore, we propose a prior semantic network architecture
to achieve change detection under the constraints of additional reference branches.

Currently, in the mainstream change detection network using dual encoders, the fea-
ture fusion of the two branches is mainly performed through concatenation and difference
operations. The concatenation operation simply stacks the features without enhancing
the changing features. The difference operation expresses the feature difference of the
two branches, but it causes the decoder to only have the change features and lose the
semantic features. Therefore, we propose a difference enhancement block module, which
enhances the features after the feature map difference is weighted to the original feature
map as a weight. The module can amplify the obvious change features and suppress the
features with very small differences. The reason for this is that such small changes are
likely pseudo-changes caused by color differences. The module can also keep the original
semantic classification information.
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Figure 1. Color differences makes the landcover change results unstable and inconsistent.

2.1. Prior Semantic Network

UNet is currently the most widely used fully convolutional neural network [35] and is
often used as a baseline network in semantic segmentation and change detection. UNet is
an encoder–decoder network with simple architecture, fast running speed, and low GPU
memory overhead. We also choose UNet as the quasi-baseline network and ResNet-50 as
the encoder. However, UNet has only one encoder branch. Two images must be stacked
at the input end if the network is used for change detection. The network principle is
similar to FC-EF. Therefore, we first add an encoder branch based on UNet, which is also
ResNet-50 [36]. The weights of the two encoders are shared to build a Siamese UNet, named
SiamUNet. Encoder weight sharing ensures that the feature positions in the two encoder
branches are the same so that they are comparable to compute feature differences. The two
branches of SiamUNet are fused by a concatenation operation to learn differential features.
The network principle is similar to FC-Siam-conc. SiamUNet is the baseline network in this
work, and the modules and structures proposed in this paper are gradually added based
on the baseline network.

The two encoders of the dual-branch SiamUNet input image data of the T1 and T2
phases, respectively, and then detect the changing area between the T1 and T2 phases.
We introduce an additional time-phase T0 of image and label data as prior semantic
information, which is input into the network. Since the T0 phase requires label data as
the additional input, the number of input channels is one more than that of the T1 and T2
phases. We add a new encoder branch, also ResNet-50, to extract T0 phase features. This
branch does not share weights with the T1 and T2 phase branches. We named this branch
the prior branch and named the T1 and T2 phase branches as the pre-change branch and
post-change branch, respectively.

Unlike the direct fusion of the pre-change branch and post-change branch in SiamUNet,
we first directly fuse the prior branch with the pre-change branch. The network builds a
complex function map between T0 and T1 images by stacking many convolution operations
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and eliminates the effects of color differences by itself. The network will pay attention
to the change feature information between the T0 and T1 images. With the help of the
prior semantic information in the T0 label, the network will automatically establish more
accurate semantic information for the T1 phase. The network will learn the differential
features before and after the change in ground objects. This differential feature can be
regarded as a change mapping feature. The network deduces the ground object category at
T1 through T0 prior knowledge and change mapping features in changing areas. It will
directly bring the prior semantics of T0 into T1 if there is no change between before and
after. We obtain T1 features with T0 prior knowledge, named prior pre-change features.
In the same way, we also fuse the prior branch with the post-change branch and establish
the change feature association between T0 and T2 and the semantic information of the T2
phase. We obtain the T2 feature with T0 prior knowledge, named prior post-change feature.

Unlike SiamUNet, which can only learn T1 and T2 change features, prior pre-change
and prior post-change features can learn the change features and use semantic information
to assist in optimizing the change features. It is because the two change features contain the
category semantic information of the ground objects, which can eliminate the interference
caused by the pseudo-change phenomenon caused by the color difference in the image.
In the decoder stage, the prior pre-change and prior post-change features are fused to
calculate the changing area. This part of the decoder is called the change task decoder.
In addition, the prior pre-change and prior post-change features independently calculate the
semantic segmentation results. These two decoders are called segmentation task decoders.
The entire network architecture is named the prior semantic network (PSNet), which can
implement change detection and semantic segmentation at the same time. It is a multi-task
network. The schematic diagram of the network architecture of PSNet is shown in Figure 2.

Figure 2. Schematic diagram of prior semantic network (PSNet).

In the training stage, the images and labels of the T0 phase are stacked into the N + 1
band data and input to the prior branch. T1-phase images are input to the pre-change
branch as N-band data. T2-phase images are input to the post-change branch as N-band
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data. The pre-change branch shares weights with the post-change branch. The binary
change label is used for the loss calculation at the end of the decoder of the change task,
and the landcover classification labels of the T1 and T2 phases are respectively used for the
loss calculation at the end of the decoder of the two shared weight segmentation tasks. All
three loss values guide the backpropagation and gradient update of the network. In the
inference stage, we only need to input the images and labels of the T0 phase and the images
of the T1 and T2 phases. The changing area of T1 and T2 can be calculated, as well as the
respective landcover classification results of T1 and T2.

2.2. Difference Enhancement Block Module

When calculating the changing area for the feature fusion of prior pre-change and
prior post-change, if the common difference absolute value method is used to calculate
the feature difference, a slight difference in the feature will be regarded as a change. This
results in errors and pseudo-changes in the results. Because the features only contain
differences, the decoder can only implement the change detection task. At this time, only
a multi-decoder multi-task network architecture can be used for the semantic change
detection task.

Therefore, we use the concatenation method to fuse the two features containing
semantic segmentation information and keep all the feature information completely. At the
same time, the square of the difference between the two features is calculated as the
weight feature. Then, the fused features containing semantic segmentation information
are weighted by the weight feature, which amplifies the changed features and suppresses
the pseudo-changed features with minor changes. After the feature difference is squared,
when the value is greater than 1, the feature difference weight will be amplified. When the
value is less than 1, the feature difference weight will be reduced.

As shown in Figure 3, we first concatenate the prior pre-change and prior post-change
features to obtain the fused features. Then we used 1× 1 convolution to reduce the number
of channels of the fused features by half, the same as the number of channels before fusion.
Batch normalization [37] and sigmoid are used to normalize and activate features. Then we
calculate the difference square of the prior pre-change and prior post-change features to
obtain the difference weight feature. Next, the difference weight feature is weighted to the
fusion feature to obtain the difference-enhanced fused feature. Finally, 1× 1 convolution,
batch normalization, and rectified linear unit (ReLU) are used to reintegrate, normalize,
and activate the fused features to obtain the final difference-enhanced feature. We name it
the difference enhancement block (DEB) module.

Figure 3. Schematic diagram of difference enhancement block (DEB) module.

We denote the convolution operation as:

Wn(x) = Wn×n � x + b, (1)

where � represents the convolution operator, Wn×n represents the n× n convolutional
kernel, b represents the vector of bias, and x represents the input data.
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This section will perform the batch normalization operation after each convolution
operation. To simplify the expression, Wn(x) not only represents the convolution layer but
also includes the batch normalization layer. Therefore, the DEB module can be expressed as:

fDEB(xpre, xpost) = fReLU(W1
2(( fsigmoid(W

1
1(xpre ⊕ xpost)))⊗ (xpost − xpre)

2)), (2)

where ⊕ represents the concatenation operator; ⊗ represents the dot multiply operator;
fsigmoid represents the sigmoid function; fReLU represents the ReLU function; W1

1 and W2
1

represents the first and second 1× 1 convolution layer, respectively; xpre represents the
prior pre-change feature; and xpost represents the prior post-change feature.

We use the DEB module to replace the prior pre-change and prior post-change feature
fusion modules in PSNet to build the PSNet-DEB network.

2.3. Single-Task Architecture for Semantic Change

There is certain independence between multiple decoders, which will prevent the fea-
tures between multi-branches in the decoding stage from directly assisting and optimizing
each other in the learning process. As a result, there will be minor contradictions between
the semantic segmentation results and the change detection results. For example, the se-
mantic segmentation results of the two phases have not changed, but the change detection
results are considered to have changed. The single integrated decoder simultaneously
implements semantic segmentation and change detection at the end of the network, which
can optimize learning from each other and avoid conflicting problems.

The DEB module in Section 2.2 can highlight the change feature information while
keeping the complete semantic segmentation information, which provides a theoretical
basis for building a single decoder to directly implement the semantic change task. We
remove the two segmentation-task decoders in PSNet-DEB and keep only one change-task
decoder. However, we change the output of the change-task decoder from binary-value
change to the form of multi-value classification. We choose a number to describe the
changing state between every two categories. For example, we label the first class change
to the third class as 13, the fourth class change to the second class as 42, and the fifth class
remains unchanged as 55. We rename the upgraded decoder as the semantic change decoder
and build the PSNet-ST network. The schematic diagram of the network architecture of
PSNet-ST is shown in Figure 4.

In the training stage, the input data form of PSNet-ST is the same as the multi-task
PSNet. We use the joint label, which can describe the semantic change information, to com-
pute the loss value and guide the network’s backpropagation and gradient updates. In the
inference stage, we only need to input the images and labels of the T0 phase and the images
of the T1 and T2 phases. Then, we can calculate the categories of the ground object before
and after the change from T1 to T2 and deduce the changing area.
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Figure 4. Schematic diagram of single-task prior semantic network (PSNet-ST).

3. Experimental Results
3.1. Datasets

We can easily download multi-temporal Landsat imagery, which can be used to study
landcover classification and change. However, no public Landsat dataset currently contains
both semantic segmentation and change detection labels. Therefore, to test our proposed
method’s performance on semantic change detection through experiments, we made a
multi-temporal semantic change detection Landsat dataset.

We selected part of central and southern China as the study area, covering an area
of 360,000 km2, located between 110.933◦ E∼116.622◦ E and 28.444◦ N∼34.133◦ N. We
downloaded images of five time phases in 2000, 2005, 2010, 2015, and 2020. Each phase
needs 26 images to cover the whole research area. The data path is between 121∼126,
and the data row is between 36∼40. Among them, the images of 2000, 2005, and 2010 use
Landsat-5 data, equipped with a thematic mapper (TM) sensor, including seven bands.
Except for the thermal infrared band with a spatial resolution of 120 m, the other bands have
a spatial resolution of 30 m. The images of 2015 and 2020 use Landsat-8 data, equipped with
the operational land imager (OLI) sensor, including nine bands. Except for the panchromatic
band, which has a spatial resolution of 15 m, the other bands have a spatial resolution
of 30 m. All downloaded images are at the L1TP level. We only used six bands of data,
including blue, green, red, near-infrared, shortwave infrared 1, and shortwave infrared
2. We then mosaicked the downloaded images by year and cropped them according to
the latitude and longitude of the study area, removing redundant images outside the
study area. Finally, we obtained 20,480 × 20,480 pixels of Landsat image in five phases.
The spatial resolution is 30 m.

As shown in Figure 5, to train the semantic change model, we annotated the im-
ages from 2000, 2005, and 2010 at the pixel level, including seven categories: woodland,
grassland, wetland, waterbody, cultivated land, artificial surface, and bare land. The 2015
and 2020 images shown in Figure 6 are not labeled, and the landcover classification and
change results will be inferred through the deep learning method. All labels were visually
interpreted in ArcGIS software by a team of 10. Controversial ground objects that cannot
be identified on the image are labeled by high-resolution remote sensing images or field
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surveys. All samples were randomly cross-checked three times, and disputed samples were
uniformly determined. Although there is a certain possibility of error in manual labeling,
we try our best to minimize it and make the label’s accuracy as close to 100% as possible.
High-resolution imagery is the primary reference for the edge of ground objects prone to
mislabeling. Using the labels on the high-resolution images to downsample to the medium
resolution can eliminate the label errors at the edge of the ground objects. To verify the
model’s accuracy more accurately, we randomly selected 1000 points for each category of
the ground object in the study area. Then, we obtained the ground truth corresponding to
the 2020 images through a field survey and high-resolution image reference.

Figure 5. Raw false color composite images and the corresponding classification labels in 2000, 2005,
and 2010: (a) images; (b) labels.
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Figure 6. Raw false color composite images in (a) 2015 and (b) 2020.

3.2. Implementation Details
3.2.1. Data Preprocessing

The PSNet network proposed in this paper requires two samples for change detection
and one for prior knowledge input. Therefore, we take the sample in 2000 as prior knowl-
edge and the samples in 2005 and 2010 as the data for actual semantic change detection.
Since only two samples are needed for the published mainstream change detection network,
we use samples in 2005 and 2010 for training to make the evaluation data the same.

We use the sliding window to crop each image with 20,480 × 20,480 pixels into
1600 small tiles with 512 × 512 pixels without overlapping. To evaluate the model’s
generalization ability more objectively, we keep a large proportion of the data out of
training. Therefore, we divide the dataset into a training set, validation set, and test set
according to the ratio of 4:1:5. That is, 640 tiles are used for training the model, 160 tiles
are used to validate intermediate model accuracy during the training stage to pick the best
model, and 800 tiles do not participate in the training stage and are only used for prediction
and accuracy evaluation.

As shown in Figure 7, in addition to keeping semantic segmentation labels, the label
data obtain binary change detection samples by comparing two-phase samples with dif-
ferent values. We adopt the form of joint labels to make semantic change labels. We use a
two-digit number to denote each pixel’s categories before and after changes. The first digit
is the category number before the change, and the second is the category number after the
change. When the two digits are the same, there is no change. The category numbers in
semantic change map are shown in Table 1. The columns indicate the categories before the
change, and the rows indicate the categories after the change.

Table 1. The category number of semantic changes in joint label. The columns indicate the categories
before the change, and the rows indicate the categories after the change.

Woodland #1 Grassland #2 Wetland #3 Waterbody #4 Cultivated
Land #5

Artificial
Surface #6 Bare Land #7

Woodland #1 11 12 13 14 15 16 17
Grassland #2 21 22 23 24 25 26 27
Wetland #3 31 32 33 34 35 36 37

Waterbody #4 41 42 43 44 45 46 47
Cultivated land #5 51 52 53 54 55 56 57
Artificial surface #6 61 62 63 64 65 66 67

Bare land #7 71 72 73 74 75 76 77
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Figure 7. Examples of binary change detection samples and semantic change detection samples:
(a) Label in 2005. (b) Label in 2010. (c) Binary change map, calculated from the difference between
the two-phase labels. (d) Semantic change map, where the joint label was obtained by merging the
two-phase label category numbers. (Colored randomly for visual display).

To ensure a more reasonable distribution of data input to the model, we normalize the
input data first. The data normalization is defined as:

I′ =
I −mean

stddev
, (3)

where I′ represents the normalized image data, I represents the original input image data,
mean represents the mean value of each band in the image data, and stddev represents the
standard deviation value of each band in the image data.

3.2.2. Training Settings

We use the PyTorch deep learning framework [38] to implement the PSNet pro-
posed in this paper and other mainstream change detection networks published. We
used four NVIDIA RTX 3090 GPUs with 24 GB memory to train the model. Data augmenta-
tion operations include random horizontal flips, random vertical flips, and random rotation.
The optimizer is AdamW [39], and the batch size is set to 32. The initial learning rate is
1× 10−5 and gradually increases to 1× 10−3 during the first 10 epochs. Then, the learning
rate is automatically adjusted using the model validation accuracy. When the accuracy
has not improved for 20 consecutive epochs, the learning rate is multiplied by the drop
coefficient of 0.3. When the learning rate drops to 1× 10−7, the training process ends.

The formula of the early learning rate increasing stage is:

lr = lr0 · (
lr∗

lr0
)

t
k·e , (4)

where lr represents the real-time learning rate, lr0 represents the initial learning rate, lr∗

represents the maximum learning rate, t represents the real-time training iterations, k
represents the number of iterations per epoch, and e represents the number of training
epochs when the learning rate reaches the maximum value.

The formula of the later learning rate automatic decreasing stage is:

lr′ = α · lr, (5)

where lr′ represents the decreased learning rate, lr represents the learning rate before
decreasing, and α represents the drop coefficient.

The cross entropy loss can optimize the model by pixel level. Lovász-softmax [40]
loss can optimize the model by region level and from intra-class and inter-class differences.
Therefore, we choose cross-entropy loss and Lovász-softmax loss as loss functions to train
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the network. The binarized version corresponding to the two losses is selected in the binary
change detection task. The task loss is calculated as follows:

L = Lce + LLovász (6)

For the single-task semantic change network PSNet-ST, Equation (6) is the final
loss value. For multi-task PSNet, multiple branch losses need to be added according
to Equation (7):

LMT = Lchange + LT1 + LT2 (7)

3.2.3. Evaluation Metrics

We mainly adopt three evaluation metrics: overall accuracy (OA), intersection over
union (IoU), and F1 score. OA represents the proportion of correctly classified pixels among
all pixels. IoU is used to evaluate the accuracy of a certain class, where intersection refers
to the number of correctly classified pixels, and union refers to the sum of the number
of correctly classified and misclassified pixels. The F1 score is also used to evaluate the
accuracy of a certain class, taking into account both precision and recall.

We denote all pixels according to the following rules: TP means the label is true
and the prediction is true. FP means the label is false and the prediction is true. FN means
the label is true and the prediction is false. TN means the label is false and the prediction
is false.

The formula for OA is as follows:

OA =
TP + TN

TP + FP + FN + TN
(8)

The formula for IoU is as follows:

IoU =
TP

TP + FP + FN
(9)

F1 score is calculated by precision and recall:

F1 = 2 · precision · recall
precision + recall

, (10)

where precision and recall are calculated by TP, FP, and FN:

precision =
TP

TP + FP
, (11)

recall =
TP

TP + FN
. (12)

For multi-task PSNet, the binary change detection accuracy is evaluated with IoU and
F1 scores. The semantic segmentation task evaluates single-class accuracy using the F1
score and overall accuracy using mean F1 score (mF1) and OA. Semantic change detection
accuracy for single-task PSNet-ST using F1 score was used to evaluate the accuracy of
each change.

3.3. Comparing Methods for Binary Change Detection

Since other published mainstream change detection networks can only implement
binary change detection, to verify the effect of the prior semantic branch and DEB module
proposed in this paper, we use the PSNet series for binary change detection tasks for a fair
comparison. Table 2 shows the quantitative accuracy comparison of mainstream change
detection networks and the PSNet series used in this paper. It can be seen that the F1
score of the mainstream change detection network can only reach 44.81%. The accuracy of
most networks can exceed 30%, and the accuracy of FC-Siam-diff and DDCNN is lower.
The baseline SiamUNet built based on the idea of UNet and Siamese encoder in this paper
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can reach 49.06%. A prior branch is added to the baseline, and the images and labels of
the prior reference phase are used for additional constraints. The accuracy of the PSNet
can reach 62.79%. It can be seen that prior knowledge is very effective in improving
accuracy. Based on PSNet, we replace the multi-branch encoder feature fusion module with
the DEB module proposed in this paper. The DEB module performs filtering, weighting,
and optimizing the changing features. The PSNet-DEB network achieves 68.62% accuracy.
Therefore, using feature differences to weight, optimize and fuse the features has a certain
effect on improving accuracy. Finally, based on PSNet-DEB, the semantic segmentation
and change detection decoder are combined to build PSNet-ST. The single-task decoder is
used to directly learn the categories of ground objects before and after the change. Since
the two tasks can be optimized for each other after the decoder is integrated, the accuracy
of change detection is greatly improved, reaching 80.91%.

Table 2. The quantitative binary change detection accuracy comparison between the PSNet series
network and other mainstream change detection networks.

Methods IoU F1

FC-EF 21.81 32.25
FC-Siam-diff 13.36 16.61
FC-Siam-conc 22.01 32.60

DSIFN 29.16 44.81
DDCNN 16.99 23.49
CDNet 25.08 37.95

UNet++MSOF 23.44 35.11

SiamUNet 31.77 49.06
PSNet 44.01 62.79

PSNet-DEB 51.87 68.62
PSNet-ST 65.75 80.91

We visualize the change detection results of the mainstream change detection network
and the PSNet series network proposed in this paper. Figure 8 shows comparison charts
of the change detection results. In the first group, it can be seen that the errors of the
three methods, FC-Siam-diff, DDCNN, and UNet++MSOF, are very obvious, and the
change detection fails. The error of the CDNet result is also more conspicuous. FC-EF,
FC-Siam-conc, and DSIFN missed changes in waterbodies. SiamUNet can detect changes in
waterbodies, but there are many false detections. After adding prior knowledge constraints,
PSNet can reduce some false detections. After using the DEB module, the waterbody
changes detected by PSNet-DEB are more accurate. However, many small changes are
missed since DEB modules inhibit small changes, and multi-task decoders cannot directly
assist each other in the learning stage. For the single-task network PSNet-ST after multi-
decoder integration, the change results of waterbody are very accurate, and other small
changing objects can also be detected smoothly.

In the second group, the errors of FC-Siam-diff, UNet++MSOF, and DDCNN are very
obvious. It can be seen from the images that there is no major change in the two phases of
the ground objects. However, due to the impact of imaging conditions and seasonal factors,
the cultivated land shows completely different colors in the images of the two phases. It
also brings more significant challenges to change detection. Without the constraints of
prior knowledge, baseline SiamUNet, like other mainstream networks, has many false
detections. While the prior knowledge assists PSNet in reducing the false detection rate,
the DEB module further eliminates small patches with false detections. After the PSNet-ST
integrated decoders, the changes in the waterbody can be correctly detected, and the very
small changes that have been eliminated in PSNet-DEB can also be successfully detected.
More comparisons can be found in Appendix A.1.
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Figure 8. Comparison of the binary change detection results between PSNet and other methods:
(a) Images in 2005. (b) Images in 2010. (c) Labels in 2005. (d) Labels in 2010. (e) Binary change
labels. Inference result of (f) the FC-EF, (g) the FC-Siam-diff, (h) the FC-Siam-conc, (i) the DSIFN,
(j) the DDCNN, (k) the CDNet, (l) UNet++MSOF, (m) the SiamUNet, (n) our proposed PSNet, (o) our
proposed PSNet-DEB, and (p) our proposed PSNet-ST.

To sum up, FC-Siam-diff and DDCNN almost completely fail for change detection
on 30 m resolution Landsat images. FC-EF and FC-Siam-conc mainly show more missed
detections, while DSIFN, CDNet, and UNet++MSOF show more false detections. In our
proposed method, the effect of adding one phase image as prior knowledge is pronounced.
Although some false detections exist, the detected change contours are gradually ap-
proaching the labels. The DEB module can suppress a large number of false detections.
However, semantic segmentation and change detection tasks are independent of each
other. The semantic segmentation results cannot be used to optimize the change detection
results. Therefore, there will be over-suppression, and small change areas will be missed.
After the semantic segmentation and change detection tasks are combined into a single task,
the features are optimized for each other. The advantages of the prior semantic information
and the DEB module are integrated, and the shortcomings are overcome. The best change
detection performance is achieved.
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3.4. Comparing Methods for Semantic Change Detection

Since other mainstream change detection networks cannot achieve change detection
tasks with semantic information, we only compare the baseline SiamUNet, PSNet, PSNet-
DEB, and PSNet-ST networks. SiamUNet has no prior knowledge constraints, and the
two decoders for semantic segmentation and change detection tasks are independent and
belong to a multi-task network. PSNet has prior knowledge constraints, the two decoders of
semantic segmentation and change detection tasks are separated, and it is also a multi-task
network. PSNet-DEB is basically the same as PSNet, except that the DEB module replaces
the multi-branch feature fusion module, and the feature difference is used for feature
weighting enhancement. PSNet-ST has prior knowledge constraints and the DEB module
for feature optimization. The single decoder implements the simultaneous extraction of the
ground object categories of the two phases. Therefore, semantic segmentation and change
detection tasks can be performed simultaneously, which belongs to a single-task network.

Table 3 shows the quantitative accuracy comparison of landcover classification be-
tween SiamUNet and PSNet series networks. The OA of baseline SiamUNet is 83.45%,
and the accuracy of grassland, artificial surface, and bare land is relatively low. After adding
prior knowledge constraints, the OA of PSNet reaches 92.77%, and the accuracy of each cat-
egory is significantly improved. After the DEB module is integrated with the multi-decoder,
the accuracy is further improved. The OA of the final single-task network PSNet-ST can
reach 94.26%. Table 4 shows the accuracy comparison of SiamUNet and PSNet series
network with ground truth in 2020. All methods showed a downward trend in accuracy.
Without prior knowledge constraints, SiamUNet has the most severe drop in accuracy.
The PSNet series network has only a slight decrease in accuracy, which shows that with
the prior knowledge constraints, the network’s generalization ability has been significantly
improved. The OA of the best-performance network PSNet-ST can reach 92.99%, which
means that out of 7000 ground truth points, 6509 points are correctly classified.

Table 3. The quantitative landcover classification accuracy comparison between the SiamUNet and
the PSNet series network.

Method Woodland Grassland Wetland Waterbody Cultivated
Land

Artificial
Surface Bare Land Mean F1 OA

SiamUNet 87.46 38.18 70.30 78.22 86.47 56.62 33.20 64.35 83.45
PSNet 90.32 77.62 75.27 88.88 94.07 83.10 70.66 82.84 92.77

PSNet-DEB 94.64 77.11 82.94 89.12 94.99 83.71 74.55 85.29 93.21
PSNet-ST 96.23 82.49 90.88 91.51 95.33 86.04 77.49 88.56 94.26

Table 4. The quantitative accuracy comparison with ground truth in 2020 between the SiamUNet
and the PSNet series network.

Method Woodland Grassland Wetland Waterbody Cultivated
Land

Artificial
Surface Bare Land Mean F1 OA

SiamUNet 63.24 13.89 54.37 61.41 70.15 32.83 16.92 44.69 63.57
PSNet 84.34 72.43 70.79 83.57 88.29 78.49 65.77 77.67 88.81

PSNet-DEB 89.66 72.57 78.19 84.55 89.54 78.26 69.63 80.34 91.20
PSNet-ST 91.82 78.39 85.90 86.10 90.94 81.15 72.29 83.80 92.99

For the quantitative accuracy evaluation of semantic change detection, we construct
a matrix indicating the mutual conversion to describe the change accuracy between any
two categories. As shown in Table 5, the column represents the object category before
the change, and the Mean Out column represents the mean F1 score calculated based on
the category before the change. The row represents the object category after the change,
and the Mean In row represents the mean F1 score calculated based on the category after
the change. Diagonal elements indicate that the ground object has not changed. Table 5,
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shows the semantic change detection accuracy between any two categories in the results
of SiamUNet, and the overall mean F1 score is 63.1%. Table 6 shows the semantic change
detection accuracy between any two categories in the results of PSNet, and the overall
mean F1 score is 73.25%. Table 7 shows the semantic change detection accuracy between
any two categories in the results of PSNet-DEB, and the overall mean F1 score is 79.07%.
Table 8 shows the semantic change detection accuracy between any two categories in the
results of PSNet-ST, and the overall mean F1 score is 83.10%. It can be seen that prior
constraint knowledge, DEB module, and single-task integration can significantly improve
the semantic change detection task.

Table 5. The semantic change detection accuracy of SiamUNet. (Metric: F1 score).

Woodland Grassland Wetland Waterbody Cultivated
Land

Artificial
Surface Bare Land Mean Out

Woodland 87.21 62.42 59.17 62.85 65.29 65.90 61.66 66.36
Grassland 62.35 38.25 89.92 59.67 61.64 59.46 59.84 61.59
Wetland 59.05 59.00 70.55 67.81 63.75 60.31 61.00 63.07

Waterbody 62.62 60.07 61.82 78.51 65.63 65.18 61.13 65.00
Cultivated Land 64.82 61.73 63.83 67.23 85.68 74.80 63.13 68.75
Artificial Surface 59.66 59.00 59.41 61.98 64.39 55.08 59.84 59.91

Bare Land 60.76 59.09 59.79 62.52 60.34 66.54 34.33 57.62
Mean In 65.21 57.08 66.36 65.79 66.67 63.89 57.28 63.18

Table 6. The semantic change detection accuracy of PSNet. (Metric: F1 score).

Woodland Grassland Wetland Waterbody Cultivated
Land

Artificial
Surface Bare Land Mean Out

Woodland 97.00 71.22 69.05 71.50 72.11 71.52 72.56 74.99
Grassland 73.85 83.29 69.10 70.65 72.60 70.71 71.15 73.05
Wetland 69.20 69.03 65.05 72.64 70.66 69.84 70.07 69.50

Waterbody 71.69 69.77 70.34 92.21 72.88 72.49 72.10 74.50
Cultivated Land 72.12 70.95 69.24 74.14 96.01 77.34 71.60 75.91
Artificial Surface 70.55 69.83 69.19 70.97 71.83 85.73 70.18 72.61

Bare Land 71.17 70.80 69.28 71.53 70.23 71.06 81.07 72.16
Mean In 75.08 72.13 68.75 74.81 75.19 74.10 72.68 73.25

Table 7. The semantic change detection accuracy of PSNet-DEB. (Metric: F1 score).

Woodland Grassland Wetland Waterbody Cultivated
Land

Artificial
Surface Bare Land Mean Out

Woodland 96.35 90.12 60.00 86.54 75.69 82.13 86.39 82.46
Grassland 86.68 83.32 60.00 75.97 86.42 73.72 60.00 75.16
Wetland 81.52 60.00 92.88 84.28 84.47 75.01 60.00 76.88

Waterbody 87.45 75.83 86.74 92.07 80.02 85.03 80.83 84.00
Cultivated Land 76.76 87.13 84.76 86.35 95.15 86.40 81.49 85.43
Artificial Surface 85.03 77.41 83.61 85.99 75.95 83.75 60.00 78.82

Bare Land 82.68 60.00 60.00 82.05 77.72 60.00 72.52 70.71
Mean In 85.21 76.26 75.43 84.75 82.20 78.01 71.61 79.07
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Table 8. The semantic change detection accuracy of PSNet-ST. (Metric: F1 score).

Woodland Grassland Wetland Waterbody Cultivated
Land

Artificial
Surface Bare Land Mean Out

Woodland 97.28 82.52 80.70 81.68 82.46 81.43 82.28 84.05
Grassland 82.66 87.58 79.15 81.92 82.31 80.20 82.14 82.28
Wetland 84.26 81.17 89.37 81.50 82.50 83.58 79.70 83.15

Waterbody 82.25 80.86 80.58 94.14 82.68 83.74 81.20 83.64
Cultivated Land 82.53 81.83 80.85 84.38 96.46 87.50 81.96 85.07
Artificial Surface 81.29 79.85 79.99 80.88 81.81 87.67 82.33 81.97

Bare Land 81.47 81.63 79.17 81.64 80.94 82.42 83.59 81.55
Mean In 84.53 82.20 81.40 83.73 84.16 83.79 81.89 83.10

We visualize the semantic change detection results of baseline SiamUNet and the
PSNet series networks proposed in this paper. Figure 9 is a comparison chart of the
semantic change detection results. In each set of examples, the first line is the landcover
classification results in the pre-change phase. The second line is the classification results
before the change in the changing area. The third line is the classification results after the
change in the changing area. The fourth line is the landcover classification results in the
post-change phase.

In the first group, the main change is that the cultivated land becomes the waterbody,
with some other minor changes. SiamUNet’s landcover classification results are not detailed
enough, and small objects are missed. Due to false detections in the change detection, there
are errors in the changing area that the before-and-after phases do not in fact change. PSNet
has fewer false detections with the help of prior knowledge constraints. However, due
to the impact of multi-task independent decoders, the change detection result contradicts
the result of semantic segmentation. That is, the change detection branch believes there
has been a change, and the semantic segmentation branch believes the ground objects in
the before-and-after phases are the same. Smaller fragmented changes are missed from
the PSNet-DEB results. PSNet-ST has excellent landcover classification results and change
results. After integrating the multi-task decoder into a single-task decoder, the inconsistency
between the two results has been eliminated.

In the second group, similar to the first group, the classification results of SiamUNet’s
landcover are not detailed enough, the change detection error is obvious, and a large
number of unchanged ground objects are placed in the changing area. With the help of
prior knowledge constraints, PSNet has fewer false detections, and the changing area is
still too large. The result of PSNet-DEB is close to the label, but the bare land’s change
in the middle of the image is fragmented and missed. PSNet-ST completely extracts the
undetected bare land in PSNet-DEB. It can all be extracted, whether it is a large or a small
change. The landcover classification results of the two phases are also very accurate. More
comparisons can be found in Appendix A.2.

In summary, the prior semantic knowledge constraints, DEB module, and single-
task integrated decoder strategy proposed in this paper have achieved state-of-the-art
performance in Landsat’s semantic change detection task.
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Figure 9. Comparison of the semantic change detection results between the SiamUNet and PSNet
series networks: (a) Images. (b) Labels. Inference result of (c) the SiamUNet, (d) our proposed PSNet,
(e) our proposed PSNet-DEB, and (f) our proposed PSNet-ST.

4. Discussion

In this section, based on the best-performing PSNet-ST model in Section 3, we perform
semantic change detection on the four-phase images of the study area in 2005, 2010, 2015,
and 2020 and obtain large-scale landcover change results. In addition, the samples in 2000
are used as prior knowledge to assist and constrain the other two phases of data for training
and prediction. In addition to this section, more details on these results can be found in
Appendix B.
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To count the process state of the mutual changes between the ground objects, we
adopted a category transition matrix to represent the mutual change areas. As shown in
Table 9, the column represents the area of a certain category becoming other categories.
The Total Out column represents the total area of a certain category turning into other
categories, which can be regarded as the transfer-out. The row represents the area of each
other category turned into a certain category. The Total In row represents the total area
of other categories turned into a certain category, which can be regarded as the transfer-
in. The Total Change row represents the overall area change of each category, which is
calculated by combining the transferred-out and transferred-in areas of the category.

4.1. Analysis of Landcover Change from 2005 to 2010

The landcover change in the whole study area from 2005 to 2010 is shown in Figure 10.
The figure shows the landcover classification results in 2005, the landcover classification
results in 2010, and the two-phase corresponding ground object classes in the changing area.
Equivalent to the ground objects in Figure 10e becomes the ground objects in Figure 10f.
Table 9 is the category transition matrix of the two-phase landcover changes. It can be
seen that from 2005 to 2010 in the study area, the woodland, grassland, and bare land
changed very little. The wetland area becomes smaller, and the water body area increases.
The cultivated land area decreased more, while the artificial surface area increased more.
A more specific analysis shows a mutual exchange between woodland and cultivated land.
It is caused by the interaction between returning farmland to forest and cutting down trees
for reclamation. As the main feature of greening, the woodland area remains unchanged.
There is less exchange between grassland and cultivated land, as deserted arable land
grows weeds, which can also be reclaimed for cultivation. There is a mutual exchange
between wetlands and waterbodies. This is due to the similarities between wetlands
and waterbodies. Shallow tidal flats submerged by water will be classified as wetlands.
Affected by the imaging season, there will be a mutual conversion between wetlands and
waterbodies. There is also a small exchange between waterbodies and cultivated land. This
is because when there is more water storage in paddy fields, it looks similar to waterbodies.
Since urban development is on a trend of continuous expansion, artificial surfaces occupy
more cultivated land. The cultivated land around the city is changed to artificial surfaces.
With urbanization, the rural population and the area of cultivated land decrease, and the
migration of the rural population to cities will make urban expansion a usual trend. Some
villages were demolished to build new reservoirs. However, some of the demolished village
lands were planted with trees and converted into woodland. At the same time, some urban
artificial surfaces have been re-planned as forest parks. Therefore, in five years, many
artificial surfaces have been converted into waterbodies and woodland. More changes’
details can be found in Appendix B.1.

Table 9. Landcover change statistics from 2005 to 2010. (Unit: square kilometers).

Woodland Grassland Wetland Waterbody Cultivated
Land

Artificial
Surface Bare Land Total Out

Woodland 118,172.30 425.12 7.38 266.38 3978.30 402.38 51.21 5130.78
Grassland 423.47 3633.26 0.49 14.13 210.93 11.00 3.84 663.87
Wetland 14.87 1.96 2281.03 403.33 74.09 22.80 1.55 518.59

Waterbody 286.05 11.38 129.09 25,023.67 1560.86 349.48 20.33 2357.17
Cultivated Land 4105.40 206.11 56.00 1637.30 181,559.61 4757.88 57.84 10,820.53
Artificial Surface 294.72 7.63 14.76 248.93 3081.54 22,843.81 19.37 3666.94

Bare Land 55.41 2.34 0.10 34.79 63.18 24.71 635.28 180.52
Total In 5179.92 654.53 207.83 2604.85 8968.90 5568.25 154.14 23,338.41

Total Change 49.13 −9.34 −310.76 247.68 −1851.63 1901.31 −26.38 -

168



Sustainability 2022, 14, 13167

Figure 10. The landcover change map from 2005 to 2010: (a) Image in 2005. (b) Classification result in
2005. (c) Image in 2010. (d) Classification result in 2010. (e) Semantic change map in 2005. (f) Semantic
change map in 2010.

4.2. Analysis of Landcover Change from 2010 to 2015

The landcover change in the whole study area from 2010 to 2015 is shown in Figure 11.
The figure shows the landcover classification results in 2010, the landcover classification
results in 2015, and the two-phase corresponding ground object classes in the changing area.
The ground objects in Figure 11e become equivalent to the ground objects in Figure 11f.
Table 10 is the category transition matrix of the two-phase landcover changes. It can be seen
that from 2010 to 2015, the changes in grassland, wetland, and bare land were very small in
the study area. The changes in woodlands and waterbodies are also not obvious enough.
The area of cultivated land decreased more, while the artificial surface area increased more.
A more specific analysis shows a mutual exchange between woodland and cultivated land.
The mutual exchange between the waterbody and the cultivated land is also similar to
the last five years because when there is more water in a paddy field, it looks similar to a
waterbody. Cultivated land continues to be transformed into artificial surface, indicating
that urbanization further devours the surrounding cultivated land. Compared with the last
five-year changes, the area of cultivated land has decreased more, and the artificial surface
area has also increased. This shows that the economy has developed faster in the past five
years. The speed of urbanization has also accelerated. More details on these changes can be
found in Appendix B.2.
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Table 10. Landcover change statistics from 2010 to 2015. (Unit: square kilometers).

Woodland Grassland Wetland Waterbody Cultivated
Land

Artificial
Surface Bare Land Total Out

Woodland 122,209.50 89.21 0.31 57.79 847.25 122.75 25.41 1142.71
Grassland 157.05 4061.13 0.20 5.83 59.67 3.28 0.62 226.66
Wetland 9.91 0.53 2419.57 39.37 10.83 8.63 0.03 69.29

Waterbody 81.57 3.66 27.43 26,873.41 486.73 147.75 7.97 755.11
Cultivated Land 965.14 55.31 15.53 462.25 186,001.79 3004.00 24.49 4526.72
Artificial Surface 42.62 1.60 1.87 28.02 374.65 27,957.45 5.84 454.60

Bare Land 2.51 0.34 0.03 1.41 2.29 7.56 775.28 14.14
Total In 1258.79 150.64 45.37 594.68 1781.42 3293.97 64.36 7189.22

Total Change 116.08 −76.02 −23.92 −160.43 −2745.30 2839.37 50.22 -

Figure 11. The landcover change map from 2010 to 2015: (a) Image in 2010. (b) Classification result in
2010. (c) Image in 2015. (d) Classification result in 2015. (e) Semantic change map in 2010. (f) Semantic
change map in 2015.

4.3. Analysis of Landcover Change from 2015 to 2020

The landcover change in the whole study area from 2015 to 2020 is shown in Figure 12.
The figure shows the landcover classification results in 2015, the landcover classification
results in 2020, and the two-phase corresponding ground object classes in the changing area.
The ground objects in Figure 12e become equivalent to the ground objects in Figure 12f.
Table 11 is the category transition matrix of the two-phase landcover changes. It can be
seen that from 2015 to 2020 in the study area, except for cultivated land and artificial
surface, the area changes of other categories are very small. The area of cultivated land was
significantly reduced, and the artificial surface area was significantly increased. In a more
specific analysis, there is a small interchange between woodland and cultivated land. This
is because there will be a small dynamic balance change at the boundaries. In addition,
a small part of the woodland has been turned into artificial surface. The reason for this is
the encroachment of some forest land by urban development. Wetlands are relatively stable,
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indicating that wetland protection policies have achieved practical results. The exchange
of cultivated land and wetlands is also due to the similarity between paddy fields and
waterbodies. A large area of cultivated land has become artificial surface, and the change is
larger than in the previous ten years. It shows that the city expanded very rapidly from
2015 to 2020, occupying a large amount of cultivated land around the city, reflecting the
acceleration of urbanization and the rapid development of the economic level. More details
on these changes can be found in Appendix B.3.

Table 11. Landcover change statistics from 2015 to 2020. (Unit: square kilometers).

Woodland Grassland Wetland Waterbody Cultivated
Land

Artificial
Surface Bare Land Total Out

Woodland 122,767.65 39.60 0.20 47.50 456.40 139.46 17.48 700.65
Grassland 119.15 4060.60 0.04 3.76 25.92 1.97 0.31 151.16
Wetland 5.78 0.14 2412.62 27.13 8.30 10.89 0.07 52.32

Waterbody 52.21 2.34 18.14 26,887.04 353.20 150.39 4.76 581.04
Cultivated Land 572.89 46.89 7.24 424.72 183,451.63 3264.78 15.06 4331.58
Artificial Surface 16.90 1.46 0.78 18.02 189.90 31,021.68 2.67 229.74

Bare Land 1.12 0.24 0.02 1.05 1.00 5.39 830.81 8.83
Total In 768.05 90.68 26.42 522.20 1034.73 3572.89 40.36 6055.33

Total Change 67.40 −60.49 −25.90 −58.85 −3296.85 3343.15 31.53 -

Figure 12. The landcover change map from 2015 to 2020: (a) Image in 2015. (b) Classification result in
2015. (c) Image in 2020. (d) Classification result in 2020. (e) Semantic change map in 2015. (f) Semantic
change map in 2020.

4.4. Implications and Limitations

The PSNet proposed in this paper solves three critical problems encountered by the
multi-temporal Landsat landcover changes. The first problem is the pseudo-changes
caused by differences in color distribution. The second problem is the enhancement and
suppression of true and false changes. The third problem is that multi-task networks
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cannot jointly optimize and constrain each other when performing change detection and
semantic segmentation.

For the study of landcover changes, independent semantic segmentation of multi-
temporal images is a mainstream method. This method is very sensitive to color differences
between multi-temporal images, resulting in many pseudo-change errors in the results.
However, the current method of remote sensing multi-temporal image change detection
can only focus on the binary information of change and unchanged. It cannot obtain
information on the mutual change process between categories. Therefore, a new idea is
proposed to design a two-in-one single-task network for semantic segmentation and change
detection to solve these three critical problems.

We add an additional encoder branch to the mainstream Siamese network for remote
sensing change detection. The original two Siamese branches extract the image features of
the two phases, respectively. Then, the data and labels of the third phase are introduced
into the newly added additional encoder, which is used as prior knowledge to guide and
constrain the feature learning of the original two Siamese branches. Under the constraints
of prior knowledge, the two Siamese encoders are simplified from learning complete
texture features to only learning their change information relative to the prior image. In the
region that has not changed, the label of the a priori phase is directly brought in. Since the
network learns two-phase change thresholds based on samples, this dramatically reduces
the problem of pseudo-changes caused by color differences. At this time, PSNet adds two
additional decoders to implement the multi-task semantic change.

In the Landsat image with a resolution of 30 m, most of the changed features are
very small, maybe only one pixel wide. As a result, the distinction between true changes
and false changes is not high enough. We redesigned the commonly used difference or
concatenation operation and used the difference square to amplify the true change and
reduce the false change. The optimized features are then weighted onto feature maps
with complete semantic information. This way, pseudo-change errors that are difficult to
eliminate can be suppressed. The kept complete semantic features can lay the foundation
for the subsequent semantic change two-in-one single-task network.

When using multiple decoder branches to implement the tasks of change detection and
semantic segmentation, only the features of the shallow encoder will be fused. However,
the decoders are still relatively independent. Therefore, the multi-branch features at the end
of the network cannot constrain each other for optimization, information cannot be shared,
and even contradictory errors may occur. We combine multiple decoders into a single
decoder that converts two-phase semantic segmentation samples into a single semantic
change sample with joint labels. With the help of feature learning enhancement and
change feature optimization of the prior knowledge branch and DEB module, the single-
task network directly implements semantic change detection in one step and can learn
complex change states. While improving the efficiency of multi-task learning, the single-
task network also solves the risk of conflicting multiple decoders, significantly improving
the accuracy and reliability of semantic change detection.

The change detection method with complete semantic information provides powerful
support for multi-temporal landcover changes. The mutual change information extracted
by PSNet provides data support for analyzing landcover classification and change. Based
on the landcover change data, it is possible to further discover and explore phenomena,
such as returning farmland to forests, wetland ecological protection, and urban expansion,
and mine information, such as the status quo of social and economic development and
policy decision making and planning. The PSNet proposed in this paper can quickly
extract and analyze the landcover change information in large-scale and multi-temporal
dimensions and has significant application value. Based on PSNet, we also conduct a
detailed analysis of the large-scale multi-temporal Landsat landcover changes from 2005 to
2020. Urban expansion and the devouring of cultivated land are the most critical keywords
obtained in the land cover change analysis.
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Compared with mainstream semantic segmentation and change detection networks,
the PSNet proposed in this paper provides a new problem-solving idea. The idea is the
introduction of prior knowledge constraints, which significantly improves the accuracy and
has more practical application value. However, this also brings certain limitations. When
performing semantic change detection on two-phase images, the third-phase images and
labels must be sacrificed. That is to say, at least three registered multi-temporal samples are
required for model training. However, the more time phases there are, the more difficult
it is to label samples. Therefore, while PSNet achieves higher accuracy, the workload of
manual interpretation in the early stage is also higher than other mainstream algorithms.
In future research, we will explore unpaired labels as prior knowledge to improve network
accuracy, which may avoid manual labeling work in additional phases and reduce the
workload and difficulty of preparatory work. We will also apply our proposed PSNet to
single-band images and high-resolution images.

5. Conclusions

In this paper, we propose a prior semantic network for the Landsat semantic change
task. Based on the dual-branch Siamese network, we add a prior knowledge encoder
branch to solve the problem of pseudo-changes caused by color distribution differences.
We design a difference enhancement block module to replace the common difference
or concatenation operation and solve the problem of the enhancement and suppression
of true and false changes. We propose a single-task PSNet, which combines multiple
decoders into one decoder, solving the problem that features cannot be jointly optimized
and mutually constrained in multi-task networks. Our proposed method achieves state-
of-the-art performance on large-scale multi-temporal Landsat landcover change datasets,
far exceeding other change detection and semantic segmentation networks. Based on
PSNet, we conducted a specific analysis and discussion on the landcover changes in an
area of central and southern China. The acceleration of urbanization construction and
the acceleration of economic development are the two keywords we have found from
the results of landcover changes over 15 years. This work has a particular value for
sustainable development goals. In future research, we will study constraint learning on
unpaired samples and generalize PSNet to more multi-temporal remote sensing data of
different resolutions.

Author Contributions: X.Y. wrote the manuscript, designed the methodology, and conducted ex-
periments; Y.B. and P.C. validated and analyzed the results; C.L. and K.L. preprocessed the data of
the study area and made the datasets; Z.C. supervised the study and reviewed the manuscript. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Strategic Priority Research Program of the Chinese
Academy of Sciences under Grant No. XDA23100304.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank the editors and anonymous reviewers for their valuable
comments, which greatly improved the quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

173



Sustainability 2022, 14, 13167

Abbreviations
The following abbreviations are used in this manuscript:

DCNN deep convolutional neural network
DEB difference enhancement block
F1 F1 score
mF1 mean F1 score
FN false negative
FP false positive
IoU intersection over union
MT multi-task
NDBI normalized difference built-up index
NDVI normalized difference vegetation index
NDWI normalized difference water index
OA overall accuracy
OLI operational land imager
PSNet prior semantic network
ReLU rectified linear unit
SiamUNet Siamese UNet
ST single-task
TM thematic mapper
TN true negative
TP true positive

Appendix A. More Comparisons for Experiments

Appendix A.1. More Comparisons for Binary Change Detection

Figure A1 is a comparison chart of the change detection results. In the first group,
FC-Siam-diff and DDCNN cannot detect the changing regions normally. FC-EF and FC-
Siam-conc have missed many obvious detections, while DSIFN, CDNet, and UNet++MSOF
have many false detections. Baseline SiamUNet also has false detections, but they are
relatively less. PSNet, assisted by prior knowledge, further reduces the false detection rate.
The DEB module is over-filtered. The change detection results of the integrated decoder
of PSNet-ST have the highest agreement with the label and the best performance. In the
second group, none of FC-Siam-diff, DDCNN, DSIFN, CDNet, or UNet++MSOF can detect
the change correctly. Although FC-EF and FC-Siam-conc have no obvious false detections,
the phenomenon of missed detection is serious. Due to the absence of prior knowledge
constraints, baseline SiamUNet performs similarly to mainstream networks. Most areas
of the city are falsely detected as changing areas. PSNet dramatically reduces the false
detection rate. With the help of the DEB module, the change detection results are very close
to the ground truth labels, but there are some cases of missed detections. PSNet-ST with the
integrated decoder can combine the advantages of PSNet and PSNet-DEB, and its change
detection performance is the best.
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Figure A1. Comparison of the binary change detection results between PSNet and other methods:
(a) Images in 2005. (b) Images in 2010. (c) Labels in 2005. (d) Labels in 2010. (e) Binary change
labels. Inference result of (f) the FC-EF, (g) the FC-Siam-diff, (h) the FC-Siam-conc, (i) the DSIFN,
(j) the DDCNN, (k) the CDNet, (l) UNet++MSOF, (m) the SiamUNet, (n) our proposed PSNet, (o) our
proposed PSNet-DEB, and (p) our proposed PSNet-ST.

Appendix A.2. More Comparisons for Semantic Change Detection

Figure A2 is a comparison chart of the semantic change detection results. The main
change is that cultivated land becomes the artificial surface as the city expands. The results
of SiamUNet extracted many unchanged artificial surfaces as changed regions. The results
of PSNet take a small part of the cultivated land as the changing area, but due to the
effect of prior knowledge, the false detection rate has been greatly reduced. The results of
PSNet-DEB and PSNet-ST are both close to the labels, and the semantic change results of
PSNet-ST are more refined and detailed. It also reflects mutual assistance and guidance
advantages after combining semantic segmentation and change detection tasks.
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Figure A2. Comparison of the semantic change detection results between the SiamUNet and PSNet
series networks. (a) Images. (b) Labels. Inference result of (c) the SiamUNet, (d) our proposed PSNet,
(e) our proposed PSNet-DEB, and (f) our proposed PSNet-ST.

Appendix B. Detailed Discussion for Landcover Change

Since the changing area of the adjacent two-phase images only accounts for about
6% of the total study area, most change patches are very small. The whole study area is
divided into four small blocks of 10,240 × 10,240 pixels displayed separately. As shown in
Figure A3, each small block is numbered 1-1, 1-2, 2-1, and 2-2. The actual area covered by
each small image is 90,000 km2.

Figure A3. Geographical distribution diagram of four small blocks in study area. IDs 1-1, 1-2, 2-1,
and 2-2.
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Appendix B.1. Detailed Analysis of Landcover Change from 2005 to 2010

To show the geographical distribution of the changes’ details, Figure A4 shows the
large-scale details in block 1-1 of the study area. It can be seen that two large cultivated land
became waterbodies. From the image, these two areas show the increase in the reservoir
area or the newly built reservoir. A piece of the artificial surface has been turned into
cultivated land and wetlands because this area is planned as a wetland ecological protection
area. The other obvious changes are the transformation of cultivated land into artificial
surface. This change is basically distributed around towns and cities. The change range
is not large, and the distribution is scattered, which aligns with the urban development
trend. Figure A5 shows the large-scale details in block 1-2 of the study area. It can be seen
that there is a piece of woodland that has been turned into cultivated land, where excessive
deforestation has occurred. There is an exchange phenomenon between a waterbody and
a wetland. This is because the location is a reservoir and a wetland protection area. Part
of the water area is shallow, and the difference is not obvious enough. Figure A6 shows
the large-scale details in block 2-1 of the study area. It can be seen that a large piece of
wetland has become a waterbody. This area is the Dongting Lake area. In the season
when the water volume is large, the depth of the wetland becomes deeper, and it looks
like a waterbody. Most of Dongting Lake is shallow, so wetlands dominate the waterbody.
Exchanges between wetlands and waterbodies occur in different seasons. In addition,
the most obvious change is the expansion of the city and the annexation of the surrounding
cultivated land. Figure A7 shows the large-scale details in block 2-2 of the study area. It
can be seen that there is an area in which the artificial surface has occupied a large amount
of cultivated land. This area is Wuhan City, which shows that the development speed of
the city is very fast. Another small piece of waterbody became a wetland. This area is
located around Poyang Lake. It is normal for a waterbody to turn into a wetland during
the dry season.

Figure A4. The landcover change map in block 1-1 from 2005 to 2010. (a) Image in 2005.
(b) Classification result in 2005. (c) Image in 2010. (d) Classification result in 2010. (e) Semantic
change map in 2005. (f) Semantic change map in 2010.
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Figure A5. The landcover change map in block 1-2 from 2005 to 2010. (a) Image in 2005.
(b) Classification result in 2005. (c) Image in 2010. (d) Classification result in 2010. (e) Semantic
change map in 2005. (f) Semantic change map in 2010.

Figure A6. The landcover change map in block 2-1 from 2005 to 2010. (a) Image in 2005.
(b) Classification result in 2005. (c) Image in 2010. (d) Classification result in 2010. (e) Semantic
change map in 2005. (f) Semantic change map in 2010.
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Figure A7. The landcover change map in block 2-2 from 2005 to 2010. (a) Image in 2005.
(b) Classification result in 2005. (c) Image in 2010. (d) Classification result in 2010. (e) Semantic
change map in 2005. (f) Semantic change map in 2010.

Appendix B.2. Detailed Analysis of Landcover Change from 2010 to 2015

To show the geographical distribution of the changes’ details, Figure A8 shows the
large-scale details in block 1-1 of the study area. It can be seen that a large amount of
cultivated land has become artificial surface, and the speed of urbanization has been
greatly accelerated. A few small pieces of cultivated land have become waterbodies, mainly
because the water storage capacity of the reservoir has increased, and the original cultivated
land has been adjusted for the reservoir. Figure A9 shows the large-scale details in block
1-2 of the study area. It can be seen that the most noticeable change is that the artificial
surface has encroached on a large amount of surrounding cultivated land, which also
reflects the speed of urbanization. Figure A10 shows the large-scale details in block 2-1
of the study area. Changes in this area are small. Since there are no megacities, there
is an increase in artificial surfaces, but not very significant. In addition, there is a small
increase in the waterbody, indicating that the water volume has increased in this changing
region. Figure A11 shows the large-scale details in block 2-2 of the study area. It can be
seen that the urban scale of Wuhan, a large city, is still expanding rapidly. On the whole,
the changes in natural features from 2010 to 2015 were small, and the artificial surface
expanded significantly. It shows that the urban development in the past five years is the
main factor in landcover change.
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Figure A8. The landcover change map in block 1-1 from 2010 to 2015. (a) Image in 2010.
(b) Classification result in 2010. (c) Image in 2015. (d) Classification result in 2015. (e) Semantic
change map in 2010. (f) Semantic change map in 2015.

Figure A9. The landcover change map in block 1-2 from 2010 to 2015. (a) Image in 2010.
(b) Classification result in 2010. (c) Image in 2015. (d) Classification result in 2015. (e) Semantic
change map in 2010. (f) Semantic change map in 2015.
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Figure A10. The landcover change map in block 2-1 from 2010 to 2015. (a) Image in 2010.
(b) Classification result in 2010. (c) Image in 2015. (d) Classification result in 2015. (e) Semantic
change map in 2010. (f) Semantic change map in 2015.

Figure A11. The landcover change map in block 2-2 from 2010 to 2015. (a) Image in 2010.
(b) Classification result in 2010. (c) Image in 2015. (d) Classification result in 2015. (e) Semantic
change map in 2010. (f) Semantic change map in 2015.
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Appendix B.3. Detailed Analysis of Landcover Change from 2015 to 2020

To show the geographical distribution of the changes’ details, Figure A12 shows the
large-scale details in block 1-1 of the study area. It can be seen that there are mainly two
changes. One is that the cultivated land around the town has become artificial surface,
representing the expansion of the city. The other is that part of the cultivated land around
the waterbody is swallowed up. This is because the water storage capacity of the reservoir
increased, so the area of the waterbody expanded. Figures A13–A15 show the large-scale
details in blocks 1-2, 2-1, and 2-2 of the study area, respectively. The changes are basically
similar to block 1-1, and the urban expansion is pronounced. It shows that the leading
development tone from 2015 to 2020 is urbanization construction, and the soil occupied
during urban growth is basically cultivated land. It is also because, in most cases, towns are
surrounded by cultivated land in the countryside. If the city is surrounded by woodland,
the corresponding woodland will be converted into artificial surface. This trend exists
in the study area, but it is much smaller than the area of cultivated land converted into
artificial surface.

Figure A12. The landcover change map in block 1-1 from 2015 to 2020. (a) Image in 2015.
(b) Classification result in 2015. (c) Image in 2020. (d) Classification result in 2020. (e) Semantic
change map in 2015. (f) Semantic change map in 2020.
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Figure A13. The landcover change map in block 1-2 from 2015 to 2020. (a) Image in 2015.
(b) Classification result in 2015. (c) Image in 2020. (d) Classification result in 2020. (e) Semantic
change map in 2015. (f) Semantic change map in 2020.

Figure A14. The landcover change map in block 2-1 from 2015 to 2020. (a) Image in 2015.
(b) Classification result in 2015. (c) Image in 2020. (d) Classification result in 2020. (e) Semantic
change map in 2015. (f) Semantic change map in 2020.
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Figure A15. The landcover change map in block 2-2 from 2015 to 2020. (a) Image in 2015.
(b) Classification result in 2015. (c) Image in 2020. (d) Classification result in 2020. (e) Semantic
change map in 2015. (f) Semantic change map in 2020.

Appendix B.4. Analysis of Landcover Change in Fifteen Years

From Sections 4.1–4.3, it can be found that in the study area, from 2005 to 2020,
the most obvious change is that a large amount of cultivated land has become artificial
surface. The reduced area of cultivated land is approximately equal to the increased area
of artificial surface, which is in line with the fact that the surrounding cultivated land is
occupied during urban expansion. In the early days, the waterbody area increased more,
which was related to the construction of water conservancy projects such as reservoirs in
the area. The changes in other categories are not obvious.

We have accumulated the changes in the past 15 years, and the specific changes in
landcover are shown in Table A1. The changing area within the study area amounted to
28,985.68 km2. The woodland increased by 232.62 km2 and has a small dynamic balance
changed with grassland, waterbody, cultivated land, and artificial surface. Among them,
the mutual change with cultivated land is the most because there are cases of returning
farmland to forest and cutting down trees for reclamation in this area. Grassland has
decreased by 145.85 km2 and has a small dynamic balance changed with woodland and
cultivated land. Affected by the season, the grass on the ground will appear in the im-
age after the trees have fallen, and the grass will be blocked when the leaves are dense.
Therefore, there will be changes in the dynamic balance between woodland and grassland.
Similarly, weeds may grow when cultivated land is idle, and cultivated land can be re-
stored after weeding. Therefore, there will be exchanges between grassland and cultivated
land. Wetlands decreased by 360.58 km2, mainly turning into waterbodies. When the
water storage capacity of wetlands increases, wetlands may become lakes or reservoirs.
In addition, there is a small amount of mutual change between wetlands and woodland,
cultivated land, and artificial surfaces. This is because wetlands are relatively fragile and
may become other categories if they are not well protected. The waterbody area increased
by 28.4 km2. It is very small. However, in the past 15 years, the waterbody has been in
a state of dynamic change. The mutual change between waterbody and woodland areas
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indicates that the newly added reservoir in this area will submerge some woodland. At the
same time, trees will become the main features in some dry water areas. The exchange
between waterbodies and cultivated land can also reflect the cultivated land being sub-
merged and newly reclaimed cultivated land brought about by the construction of new
reservoirs and the drying up of waters. There are also minor changes in the waterbody and
artificial surface because the small villages and towns will be relocated when the reservoir
is newly built. The cultivated land decreased by 7893.78 km2, mainly because the artificial
surface gradually swallowed it up in urbanization. There is basically a state of balanced
exchange between cultivated land and other categories. The artificial surface has increased
by 8083.83 km2. The speed of urbanization also reflects the outstanding economic level
in the past 15 years. The newly added artificial surface area has reached one-third of the
unchanged artificial surface area. In other words, the urban area has increased by about
34.1% in 15 years. The bare land area increased by 55.37 km2, with relatively little change
between categories. Bare land accounts for a small proportion, and due to conditions such
as imaging seasons and human factors such as urban planning and construction, bare land
will appear or disappear briefly.

Table A1. Landcover change statistics in the past 15 years. (Unit: square kilometers).

Woodland Grassland Wetland Waterbody Cultivated
Land

Artificial
Surface Bare Land Total Out

Woodland 117,813.68 381.17 3.10 270.82 4112.36 643.07 78.87 5489.40
Grassland 508.33 3532.18 0.25 16.03 219.32 16.59 4.44 764.95
Wetland 26.53 1.02 2232.25 424.07 71.03 43.02 1.70 567.38

Waterbody 330.94 9.09 135.38 24,587.92 1692.60 598.83 26.08 2792.92
Cultivated Land 4549.51 218.68 55.46 1870.65 176,007.48 9600.65 77.70 16,372.67
Artificial Surface 262.49 6.79 12.50 208.82 2334.08 23,665.93 20.13 2844.81

Bare Land 44.21 2.34 0.11 30.93 49.48 26.48 662.25 153.55
Total In 5722.02 619.10 206.79 2821.32 8478.88 10,928.64 208.92 28,985.68

Total Change 232.62 −145.85 −360.58 28.40 −7893.78 8083.83 55.37 -

Figure A16 shows the change details in the study area from 2005 to 2020. It can be seen
that the transformation of cultivated land into artificial surface is the most critical change,
and it is mainly distributed around towns and cities. It is consistent with the law of urban
expansion. At the same time, due to the newly built reservoirs and other water conservancy
projects in this area and the protection policy of Dongting Lake, some cases of cultivated
land turning into waterbodies can also be found in the figure. Combining the data and
figures for landcover changes from 2005 to 2020, we can conclude that urbanization is the
core keyword in the study area. Urbanization has an apparent relationship with social
and economic development. The speed of urban expansion is becoming faster and faster,
and we should pay attention to the occupation of cultivated land in the process of expansion
because cultivated land is directly related to food. Wetlands and waterbodies are directly
related to the ecological environment. How to protect wetlands is a significant issue that
decision-making departments cannot ignore. As the main features of greening, woodland
and grassland also need to be protected and increased as much as possible to achieve
sustainable development goals.
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Figure A16. The landcover change map in the past 15 years. (a) Image in 2005. (b) Classification
result in 2005. (c) Image in 2020. (d) Classification result in 2020. (e) Semantic change map in 2005.
(f) Semantic change map in 2020.
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Abstract: The Hetao Plain and Xing’an League are the major cultivated areas and main grain-
producing areas in Inner Mongolia, and their crop planting structure significantly affects the grain
output and economic development in Northern China. Timely and accurate identification, extraction,
and analysis of typical crops in Xing’an League and Hetao Plain can provide scientific guidance and
decision support for crop planting structure research and food security in ecological barrier areas
in Northern China. The pixel samples and the neighborhood information were fused to generate a
spectral spatial dataset based on single-phase Sentinel-2 images. Skcnn_Tabnet, a typical crop remote
sensing classification model, was built at the pixel scale by adding the channel attention mechanism,
and the corn, sunflower, and rice in the Hetao Plain were quickly identified and studied. The results
of this study suggest that the model exhibits high crop recognition ability, and the overall accuracy
of the three crops is 0.9270, which is 0.1121, 0.1004, and 0.0874 higher than the Deeplabv3+, UNet,
and RF methods, respectively. This study confirms the feasibility of the deep learning model in the
application research of large-scale crop classification and mapping and provides a technical reference
for achieving the automatic national crop census.

Keywords: crop identification; multispectral remote sensing; Sentinel-2; deep learning; attention
mechanism

1. Introduction

Food security lays a solid basis for national security. As the COVID-19 pandemic
rages through the whole world, the international situation is severe and complex, and food
security is at stake. During China’s “two sessions” in 2022, General Secretary Xi Jinping
once again mentioned that “food security is the bottom-line task of comprehensively
boosting rural revitalization, and it is imperative to keep the red line of 1.8 billion mu
of arable land”. As a vital granary in Northern China, Inner Mongolia has an area of
6.713 million hectares of arable land [1], and the per capita arable land area is 0.24 hectares,
ranking first in China [2]. Accordingly, research on the extraction and monitoring methods
of grain crops in Inner Mongolia, accurate and timely crop type mapping plays a vital role
in crop yield estimation, soil management, and food supply. Furthermore, it is of critical
significance to ensure national food security and prevent the tendency of “non-grain” [3].

In the past few decades, remote sensing has gradually become an effective tool for
crop identification due to its wide range and strong timeliness. With the enhancement
of earth observation ability, much research on crop remote sensing identification have
been spawned. Ibrahim et al. [4] used phenological and spectroscopic temporal metrics
obtained from Sentinel-2 images for crop type mapping and cropping system mapping
with an overall accuracy of 84%. You et al. [5] based on the long sequence Sentinel-2
image of the GEE platform and the Random Forest (RF) algorithm, produced three typical
crops in Northeast China for years of classification products. In brief, the existing research
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methods for crop classification and extraction primarily comprise a hierarchical decision
tree based on spectral features [6–8], threshold segmentation method based on time series
normalized difference vegetation index (NDVI) [9–11], as well as feature index-based RF
method [12–15], etc. The existing research scope is small and concentrated [16,17], and
the data source requires multi-temporal images of the entire crop growth period [18,19].
However, continuous multi-temporal images during the crop growth cycle are often missing
due to factors (e.g., cloud cover and rainy weather). In addition, data processing operations
(e.g., registration and fusion of multi-source and multi-temporal image data) have certain
technical thresholds, thus significantly affecting the accuracy of crop classification.

With the rapid development of remote sensing technology and the continuous expan-
sion of application fields, users have increasing requirements for the efficiency and accuracy
of crop mapping. Conventional crop identification methods are difficult to solve the data
redundancy problem caused by remote sensing of big data. Deep learning has provided a
novel idea for crop remote sensing identification for its powerful image feature extraction
ability. To be specific, semantic segmentation technology [20] is capable of analyzing the
deep semantic information of images and conducting pixel-level supervised classifica-
tion [21] quickly, which has been favored by many scholars. For instance, Du et al. [22]
extracted rice from Arkansas using a semantic segmentation model U-net based on time-
series Landsat imagery and the Cropland Data Layer (CDL). Rice could be identified in
the heading stage with an overall accuracy of 0.86. Der et al. [23] used drones to obtain
high spatial resolution drone images in experimental farms. As well, the SegNet seman-
tic segmentation network was used for crop extraction through the texture gap between
different crops. The study achieved an overall classification accuracy of 89.44%. Wang
et al. [24] adopted the optimized DeepLabV3+ network to efficiently identify glaciers, lakes,
grasslands, and bare land on Sentinel-2 remote sensing images at the source of the Yangtze
River, with mAP of 0.639, mIoU of 0.778, and Kappa of 0.825. Since semantic segmentation
requires pixel-level sample labels, the production cost is high and the efficiency is difficult
to meet the requirements. Thus, reducing the complexity of sample production and using
more advanced deep learning methods to achieve rapid and accurate crop extraction is also
an urgent problem to be studied.

As an essential ecological barrier in Northern China, Inner Mongolia is vast and
sparsely populated. The cultivated land is concentrated in the Hetao Plain in the middle
and the Xing’an League in the east, among which sunflower, maize, and rice account for the
largest proportions, meeting the needs of crop monitoring based on remote sensing big data.
Accordingly, the Hetao Plain and the southwestern part of the Xing’an League were selected
as the study area in this study, and single-phase Sentinel-2 images and a small number
of samples were employed for automatic identification and analysis of sunflower, maize,
and rice based on the optimized Tabnet model. The aim is at solving the difficult problem
of capturing optical images in the crop growth cycle, maximizing the timeliness of crop
mapping, verifying the applicability of deep learning models in large-scale crop remote
sensing identification applications, and providing technical references for the automation
of national crop censuses.

2. Materials and Methods
2.1. Study Area

Xing’an League (Figure 1) is located in the transition zone between the Greater Xing’an
Mountains and Songnen Plain in the Northeastern part of Inner Mongolia (42◦25′–47◦65′ N,
119◦47′–123◦62′ E), with 909,490 hectares of arable land, taking up 13% of the total arable
land in the autonomous region [1]. The region exhibits a complex topography, with
dense hills in the northwest, flat and thick soil in the southern plain, and sufficient water
resources, thus providing convenience for water diversion and irrigation and agricultural
machinery operations [25]. The area abounds with rice, maize, and sunflower, and is a vital
agricultural production base in Inner Mongolia. Rice is sown in mid-April and harvested
at the end of September. Sunflowers are sown in late May, bloom in early July, and harvest
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in mid-September. Corn is sown in mid-May and matures in mid-to-late September. Two
counties in the southwest of Xing’an League (Horqin Right Wing Middle Banner and
Tuquan County) were selected as the typical experimental areas to build a crop remote
sensing classification model.

Figure 1. Study area overview map. The location of Inner Mongolia Autonomous Region of China,
the study area in Inner Mongolia with two agroecological zones (Xing’an League (a) and Hetao
Plain (b)).

The Hetao Plain, a typical cultivated area in central Inner Mongolia, was selected for
model application to verify the applicability of the model. The Hetao Plain is located in the
south of Bayannaoer City, Inner Mongolia Autonomous Region of China (40◦1′–40◦4′ N,
106◦1′–109◦4′ E), which belongs to a typical continental monsoon climate, with hot and
dry summers and cold winters, the annual rainfall is less than 250 mm, while the potential
evaporation is 2011 to 2300 mm per year [26]. Although the region has an arid climate, the
Yellow River that flows through the region provides valuable water resources for agricul-
tural development. The total arable land area of the region is nearly 733,000 hectares [25],
mainly planted with sunflower, maize, and rice. Sunflower and maize have the same
phenological period, and they are both sown in May and harvested in September-October.
In general, rice is one-season rice, sown in mid-May, and harvested at the end of September.

2.2. Data and Samples
2.2.1. Remote Sensing Data and Processing

This study was primarily based on Sentinel-2 L1C images for crop classification,
and the data originated from the European Space Agency (ESA) Copernicus Data Center
(https://scihub.copernicus.eu/, accessed on 20 April 2022).

Sentinel-2 comprises two satellites equipped with a Multispectral Imager (MSI) with a
revisit period of 5 days and 13 bands (Table 1), including four 10 m resolution bands, six
20 m resolution bands, as well as three 60 m resolution bands. The Sen2Cor (http://step.
esa.int/main/third-party-plugins-2/sen2cor/, accessed on 25 April 2022) plugin released
by ESA was adopted to analyze the Sentinel-2 L1C raw images for radiometric calibration
and atmospheric correction processing since the L1C-level data are not atmospherically
corrected. Furthermore, the low-resolution band was resampled to 10 m resolution to
acquire the image data for deep learning classification.
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Table 1. Detailed information of 13 spectral bands of Sentinel-2.

Bands Name Central Wavelength
(nm)

Band Width
(nm)

Spatial
Resolution (m)

1 Coastal aerosol 442.7 21 60
2 Blue 492.4 66 10
3 Green 559.8 36 10
4 Red 664.6 31 10
5 Vegetation red edge 704.1 15 20
6 Vegetation red edge 740.5 15 20
7 Vegetation red edge 782.8 20 20
8 NIR 1 832.8 106 10

8A Narrow NIR 864.7 21 20
9 Water vapor 945.1 20 60
10 SWIR 2 Cirrus 1373.5 31 60
11 SWIR 1613.7 91 20
12 SWIR 2202.4 175 20

1 Near-infrared band. 2 Shortwave-infrared band.

2.2.2. Samples

Real and reliable samples lay a basis for ensuring the accuracy of deep learning
model training and classification results. From July 20 to August 30, 2019, a crop planting
structure survey was carried out in the Xing’an League research area. A total of 60 corn
sampling points, 25 rice sampling points, and 41 sunflower sampling points were acquired
using the handheld Global Positioning System (GPS) (GARMIN ETREX 32 X). To avoid the
appearance of mixed pixels, the area of the sampling points was greater than 100 m × 100 m.
The spatial distribution of sampling points (Figure 3) suggests that sunflowers are largely
distributed in the northeastern part of the study area, summer maize is mainly distributed
in the southern part of the study area, and rice is distributed in the east along the river.

The optimal classification window was determined from 20 July to 25 August, 2019
in accordance with the phenological characteristics and NDVI index of local sunflower,
corn, and rice. Sentinel-2 L1C images with a cloud cover of less than 5% in the study area
were selected and downloaded, including five scenes in the Xing’an League study area
(T51TVL, T51TVK, T51TUL, T51TUK, T51TUM) and four scenes in the Hetao Plain study
area (T48TXK, T48TXL, T49TBF, T49TCF). In view of the problems of uneven distribution
and offset of samples collected in the field, the data collected in the field were superim-
posed and displayed with Sentinel-2 images of the same period in this study. False color
synthesis (band8, band11, and band4) of specific band combinations is used to enhance the
discrimination between different target features, so as to carry out sample correction. In
order to show clearer details, we use small tiles of 256 × 256 pixels for visual analysis of
the image. Figure 2 presents the texture and color characteristics of sunflower, maize, and
rice on false color images in the Xing’an League study area.

Figure 2. Crop characteristics on false color synthesis Sentinel-2 images (band8, band11, and band4,
the stretch type is standard deviations). We use small tiles of 256 × 256 pixels, and the size of the
yellow box is 64 × 64.

191



Sustainability 2022, 14, 12789

The detection and classification performance of a deep learning model is largely
dependent on the type and quantity of training samples. The richer the types and number
of samples, the better the performance of the model and the better the generalization
performance will be [27]. In this study, the regions with the same features were visually
interpreted, and the Region of Interest (ROI) was delineated to expand the samples based
on the texture, color, and other features of existing samples on false color Sentinel-2 images.
At the same time, the detailed information on the GF-1 images was used as auxiliary data,
so that the boundary of the ROI falls within a pure crop field. To avoid the interference of
the surrounding complex environment on the crop recognition effect, negative samples (e.g.,
water bodies and other crops) were added (Figure 3). In addition, manual plotting does
not require pixel-level sample labeling, but only the interior of typical crop planting areas,
and necessary negative samples are labeled with vector polygons. The expanded sample
distribution was more uniform, which is beneficial to increase the stability of the model.

Figure 3. Sample spatial distribution. Original Sample represents samples collected in the field.
Supplementary Sample represents hand-plotted samples based on visual interpretation of cro features.

The number of ROIs and pixel points of a wide variety of samples is listed in Table 2.

Table 2. The number of selected regions of interest (ROI) and number of pixels.

Type Number of ROIs Number of Pixels

Maize 471 209,720
Sunflower 326 153,489

Rice 207 130,193
Waters 29 56,079

Other Crops 20 47,701

2.2.3. Auxiliary Data

This study selects Google Earth images (spatial resolution of 1 m) as the direct verifica-
tion data for the crop identification results in this study. Moreover, the 2019 Inner Mongolia
Autonomous Region Statistical Yearbook (http://tj.nmg.gov.cn, accessed on 20 April 2022)
was collected, which included data on the sown area and crop yield of a wide variety of
crops at the county scale, which was used to indirectly verify the reliability of this study.
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2.3. Methods and Models

The main ideas of this research mainly include the following three aspects: (1) The
dataset was constructed, including sample data extraction, cleaning, and equalization, and
the integration of neighborhood information into the sample; (2) Based on the divided
dataset, a classification model was built for three crops of maize, sunflower, and rice; (3) The
applicability of the crop extraction model was verified, the model was transferred to the
Hetao Plain to identify crops in the same period, the crop distribution map of the Hetao
Plain of 2019 was generated pixel by pixel, and Google Earth high-resolution images and
statistical yearbook data were adopted to verify crop identification precision.

2.3.1. Sample Data Cleaning and Division

To reduce the labeling cost, the sketched samples are polygon vectors, inconsistent
with the pixel-level samples required by the model. Thus, in this study, the ROI and the
image corresponded one by one through the sample vector polygon and the geographic
coordinates of the image. The ray method [28] was adopted to judge whether the pixel
is in the vector polygon; if so, the value of each band of the pixel and the corresponding
sample label value were recorded. Since there may be mixed pixels in remote sensing
images, quartile box plots (Figure 4) were drawn in this study for three crops (maize, rice,
sunflower) and water bodies to ensure the purity of the samples.

Figure 4. Spectral features of sunflower (a), rice (b), maize (c), and water (d). The x-axis represents
bands. The y-axis represents the reflectance of each band.

To increase the separability among crops, the reasonable range of spectral values of
the respective band of crop samples was obtained, and abnormal samples (As long as one
of the IQR values of all bands is out of range, it will be discarded.) beyond this range were
deleted to reduce the classification complexity of the feature space. The specific operations
are elucidated as follows.
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The quartiles of each band of all samples were calculated, including the upper quantile
Q1, the median Q2, and the lower quantile Q3. The center points were sorted by the
numerical magnitude of each band to obtain the positions of the quartiles:





Q1 = n+1
4

Q2 = n+1
2

Q3 = 3(n+1)
4

(1)

where n denotes the number of samples. The next step calculates the interquartile range:

IQR = Q3 −Q1 (2)

Subsequently, the reasonable range of each band of the sample is written as:

[Q1 − 1.5IQR ∼ Q3 + 1.5IQR] (3)

For model training, sample imbalance will negatively affect the training effect. To
obtain the optimal model for crop identification, this study counts the number of samples
to obtain the proportion of different crop samples. Proportional replication was performed
for samples with a small proportion, and the samples were balanced before training.

To monitor the training situation of the model and verify the accuracy of the model,
the sample dataset was randomly divided into a training set and a verification set according
to 7:3. The training set was used to train the network, and the validation set was adopted
to monitor training and evaluate model performance.

2.3.2. Sample Neighborhood Information Acquisition

Xing’an League is located in the transition zone between the Greater Xing’an Moun-
tains and the Songnen Plain. The cultivated land is fragmented and the fields are scattered.
Crop identification faces many interference factors. The existing crop remote sensing
recognition algorithms often only employ the grayscale information of pixels without
considering the spatial information. Often due to the effect of factors such as noise, partial
volume effects, and artifacts, the classification results are inaccurate, and the “salt and
pepper phenomenon” occurs.

Existing research suggested that the high correlation between pixels and their neigh-
bors is an essential feature of images [29]. If the neighboring pixels around a pixel are
assumed to belong to the same class, the pixel also belongs to this class. Integrating neigh-
borhood information in the classification process can increase the separability between
crops for areas with complex crop types and large differences in coverage. Accordingly, in
this study, the spectral value and positional relationship of each pixel in the sample vector
polygon and its k × k neighborhood of k2 pixels in total were saved as text in the order
from top to bottom and from left to right. A sample dataset rich in grayscale and spatial
information was generated, the anti-noise ability of image segmentation was enhanced,
and the effect of crop recognition was effectively improved.

2.3.3. Crop Classification Model Construction

To solve the problem of low accuracy and poor timeliness in large-area crop recogni-
tion, this study proposes a crop recognition strategy Skcnn_Tabnet, which uses the tabular
network Tabnet as a classifier. By adding the channel attention module to the Tabnet net-
work in the feature extraction stage, the network can pay attention to the spectral features
of crops, while placing more stress on the structure and texture of crops. With the use of
the soft feature selection mechanism of the Tabnet network, the crop extraction model has
a stronger generalization ability and a more reasonable classification effect at the feature
classification stage. Moreover, the Convolutional Neural Network (CNN) was used to
extract features of different scales, and they were fused with the features extracted by the
Tabnet network. The universality of the network was enhanced on remote sensing images
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of different scales. Compared with conventional machine learning, the complex feature
selection module was omitted, resulting in end-to-end training.

Tabnet was originally used to classify tabular data [30]. Based on the performance
of decision trees, the network constructed a process with a hyperplane decision manifold
similar to decision trees by determining the feature contribution coefficients in the decision-
making process. Compared with conventional methods based on Deep Neural Networks
(DNN), Tabnet has powerful soft feature selection capabilities in addition to controlling
sparsity through sequential attention. For instance, in hyperspectral remote sensing crop
classification, Tabnet considers multiple spectral features instead of only focusing on
several important red-edge band features. Tabnet’s soft feature selection mechanism can
avoid complex problems (e.g., “same substance, different spectrum, same spectrum foreign
matter”) to a certain extent. The basic encoder structure of Tabnet is presented in Figure 5:

Figure 5. Structure of the Tabnet encoder.BN stands for batch normalization. FC stands for
fully connected.

The improvement in this study is mainly to add channel attention to the Attentive
transformer module (Figure 6). After the EntMax module, a channel attention module
composed of a Maximum Pooling layer (MaxPool), a convolutional layer (Conv2d), and a
Fully Connected layer (FC) was added respectively. Where the first convolution is used for
channel compression, and the second convolution expanded the channel to input channel C.
The sigmoid function was used to map the weights of the C channels between 0 and 1.
The channel attention feature map was obtained after multiplying the input feature map
with the weights. Lastly, the FC layer generates channel attention feature maps, which
were used as input to prior scales to update the abstract features generated by the FC and
BN layers within the Attentive transformer. The addition of channel attention reduces
the limitations of local perception of convolutional neural networks to a certain extent.
Extending single channel to multi-channel optimizes feature extraction and facilitates the
improvement of model efficiency and accuracy, which is suitable for hyperspectral remote
sensing crop extraction with complex spectral features.
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Figure 6. Improved attentive transformer module. Conv2d stands for 2D convolution. EntMax
stands for entmax normalization.

2.3.4. Accuracy Evaluation

A total of 30% of the sample data were adopted to examine the classification accuracy
of crop types. Four precision evaluation indicators could be obtained: F1 score, overall
classification accuracy (OA), precision rate (Precision), and recall rate (Recall). They were
adopted to evaluate the precision and compare the classification performance between
different models. The specific calculation method is expressed in Equation (4):

OA =
∑n

i=1 pi,i

∑n
j=1 ∑n

i=1 pi,j
(4)

where pi,i represents the pixel that is classified into the i-th crop and belongs to the i-th crop;
pi,j denotes the pixel that belongs to the i-th crop and is classified into the j-th crop. OA more
effectively represents the overall classification accuracy. By comparing with the sample
labels, the total number of correct extractions of crop classification pixels-true positive (TP),
total wrong extraction-false positive (FP) and total missing points-false negative (FN), Thus,
the precision and recall rates of a wide variety of crops are calculated as:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

The F1 score is an indicator adopted in statistics to measure the accuracy of the
classification model. This indicator considers the precision and recall of the classification
model simultaneously. It is a harmonious evaluation of the precision and recall. The F1
score is expressed as follows:

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(7)

3. Experiments and Results
3.1. Neighborhood Size Determination

The neighborhood information of an image has been found as a vital feature for crop
recognition. Moreover, the choice of neighborhood size takes on a critical significance
to the recognition effect. Excessive neighborhood information will reduce the effect of
the central pixel, which may negatively affect the extraction of small fields and boundary
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points. If the neighborhood information is too small, it cannot be ensured that sufficient
features are extracted. During the model building process, the neighborhood information
of 3 × 3 pixels, 5 × 5 pixels and 7 × 7 pixels was adopted for the test based on the MLP
network, and the model accuracy and the test effect were compared to select the most
suitable neighborhood size. Lastly, the optimal neighborhood size was determined as
5 × 5 pixels (Figure 7).

Figure 7. The segmentation effect of different neighborhood sizes based on the MLP network. The
region refers to the neighborhood size. The image is 512 × 512 pixels, and is composited with false
color of band8, band11, and band4.

The test results showed a considerable number of broken spots before the neighbor-
hood information was added. When the neighborhood size was set to 3 × 3 pixels, the salt
and pepper phenomenon was improved, whereas the boundary was still not significant.
When the neighborhood size was set to 7 × 7 pixels, numerous sunflowers were mistakenly
detected as maize, and the field boundary also showed a corrosion phenomenon. Only
when the neighborhood size was 5 × 5 pixels, the sunflowers and maize were accurately
distinguished, and the boundary information was effectively extracted.

3.2. Experiments

Three classification algorithms, including the common crop identification algorithm,
RF, and two mainstream deep learning segmentation algorithms (UNet and Deeplabv3+),
were selected in this study based on the same Sentinel-2 image data in the Xing’an League
area to more comprehensively evaluate the performance of Skcnn_Tabnet. Model training
was conducted, and the corresponding crop extraction results were predicted. RF is a
classification method based on multi-decision tree voting proposed by Breiman [31]. Chen
et al. [32] proposed the Deeplabv3+ method, which is a hybrid architecture based on
a backbone network and codec, preserving the resolution of feature maps using atrous
convolution and extracting features at different scales based on ASPP (atrous spatial
pyramid pooling) module. The UNet method was proposed by Ronneberger et al. [33].
UNet is capable of retaining the features of the respective level in the encoder, up-sampling
the feature map of the same size as the original image level by level in the decoder, and
fusing it with the low-level features of the corresponding level in the encoder.

The software and hardware environment, parameter configuration, loss function, and
optimization mechanism of the four network models in this study are consistent. The
setting of the respective optimal parameter underwent several parameter adjustments and
trials and had errors to ensure the reliability of the experiment. Lastly, the learning rates
of the three deep learning models were determined based on the WarmUp strategy and
the adaptive learning rate strategy. The initial learning rate was 1e-4 at the WarmUp stage,
which was increased to 1e-3 after 10 epochs. At the adaptation stage, when the accuracy
of the validation set no longer was increased for 10 consecutive epochs, the learning rate
was multiplied by a factor of 0.3. The maximum training epoch was 300 epochs. The
loss function was the sum of cross entropy and Lovasz Loss, and the optimizer employed
Adam. The key parameter number of estimators for RF was set to 300 with a max depth
of 25. To make the accuracy more objective, we randomly trained each model ten times.
We computed the average accuracy of each model as the metric of the final accuracy
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comparison. We also presented the performance variation range (Absolute deviation)
with ±.

The best overall accuracy and single-class accuracy of the extraction results corre-
sponding to the four network models were calculated based on pixels in accordance with
the accuracy evaluation method proposed in Section 2.3.4 (Table 3).

Table 3. Accuracy comparison of classification results of four different methods.

Method Accuracy
Category Maize Sunflower Rice Waters Others Average

Deeplabv3+
IOU 0.7258 (±0.028) 0.6092 (±0.037) 0.7254 (±0.030) 0.9141 (±0.021) 0.4172 (±0.044) 0.6783

F1 score 0.8462 (±0.039) 0.7541 (±0.026) 0.8368 (±0.029) 0.9543 (±0.035) 0.5834 (±0.026) 0.7949
Overall

accuracy 0.8149 (±0.031)

UNet
IOU 0.7650 (±0.043) 0.6476 (±0.046) 0.7461 (±0.027) 0.9226 (±0.033) 0.4477 (±0.038) 0.7058

F1 score 0.8663 (± 0.029) 0.7827 (± 0.032) 0.8534 (± 0.050) 0.9586 (± 0.027) 0.6176 (±0.033) 0.8157
Overall

accuracy 0.8266 (± 0.038)

RF
F1 score 0.7684 (±0.051) 0.6798 (±0.060) 0.7503 (±0.026) 0.9244 (±0.031) 0.6706 (±0.042) 0.7587
Overall

accuracy 0.8396 (±0.043)

Skcnn_Tabnet
IOU 0.9063 (±0.026) 0.8432 (±0.027) 0.8738 (±0.037) 0.9822 (±0.036) 0.6951 (±0.029) 0.8601

F1 score 0.9428 (±0.034) 0.9103 (±0.029) 0.9289 (±0.026) 0.9878 (±0.031) 0.7562 (±0.028) 0.9052
Overall

accuracy 0.9270 (±0.026)

Deeplabv3+ optimizes the segmentation effect of objects of different scales by introduc-
ing ASPP convolution. However, the overall accuracy is low due to the low classification
accuracy of sunflower and other categories. UNet retains more detailed information by
fusing context information. Both the single-class accuracy and the overall accuracy of crop
recognition have been increased to a certain extent. The accuracy scores of the classification
results of Skcnn_Tabnet suggest that the soft feature selection mechanism and channel at-
tention of the Skcnn_Tabnet network can significantly increase the accuracy of crop remote
sensing classification results. The overall accuracy of these classification results reaches
0.9270, which is 0.1121, 0.1004, and 0.0874 higher than Deeplabv3+, UNet, and RF methods,
respectively. For the single class, the average IoU and F1 Scores of Skcnn_Tabnet for five
types of ground objects are 0.1818 and 0.1103 higher than Deeplabv3+, and 0.1543 and
0.0895 higher than UNet. The above analyses reveal that the Skcnn_Tabnet network is
highly promising in the field of crop remote sensing classification.

Four sets of local images in Xing’an League are selected in this study from the perspec-
tives of multi-type mixed distribution, field size, and complex terrain to further evaluate
and analyze the detailed characteristics of crop remote sensing classification results. The
local results of the four network models in crop remote sensing classification (Figure 8)
were compared and studied based on the standard false-color sentinel-2 images and re-
ferring to auxiliary data (e.g., Google Earth images). In order to show clearer details, we
use small tiles of 512 × 512 pixels for visual analysis of the results. The first group of
constituencies has a variety of crop types (e.g., sunflower, maize, and rice), and maize is
primarily distributed in contiguous patches. The Skcnn_Tabnet method outperforms the
other three methods to extract small plots of rice and sunflower mixed in the maize planting
area. Deeplabv3+ and UNet misclassify rice as sunflower, whereas Skcnn_Tabnet is capable
of accurately identifying rice. The second group of constituencies is relatively neat and
has clear boundaries, mainly rice. The other three methods exhibit different degrees of
corrosion in extracting field boundaries, and the field roads are wrongly divided into rice.
In addition, the extraction effect of the detailed features of the field boundaries is signifi-
cantly lower than that of Skcnn_Tabnet. The third group of constituencies is mountainous
areas exhibiting complex topographies, of which a small amount of cultivated land and
small water bodies are distributed in the valleys. The classification results showed that
Deeplabv3+ misclassified numerous mountain shadows into sunflowers and maize, and
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the small water bodies between the valleys were not extracted. UNet and RF methods
misclassified small water bodies as rice. The fourth group of constituencies is dominated
by strip-shaped fields, in which some river water bodies and rice along the banks are also
included. Except for the Skcnn_Tabnet classification results closest to the original images,
the other three methods have significant errors in extracting field and water boundaries.
The other three methods all misclassified a small number of unplanted or harvested fields
as maize, and the details (e.g., the inner ridge of the field) are not as finely indicated as the
Skcnn_Tabnet method.

Figure 8. Some examples of the results on the Sentinel-2 data. Comparison between our skcnn_tabnet
and other methods. The image is 512× 512 pixels, and is composited with false color of band8, band11,
and band4. (a) Multi-Type mixed distribution. (b) Neatly distributed area of fields. (c) Mountainous
areas. (d) Strip distribution area of fields.

In general, the cultivated land in the target area is complex, with sunflowers and corn
staggered, and numerous small fields exist in the form of broken spots. The other three
methods cannot effectively extract small fields. Notably, sunflowers in many corn fields
were misclassified by the UNet model. Moreover, Skcnn_Tabnet is capable of extracting
small fragmented fields. The reason for this finding is the addition of channel attention
to the network, making the network more sensitive to the feature differences between
corn and sunflower. Thus, the accuracy of crop remote sensing classification results is
increased. In addition, the decoders in Deeplabv3+ and UNet networks lose boundary
detail information during the upsampling process. As a result, the extraction results were
gradually over-smoothed, and the tiny roads in some fields were corroded or misclassified
as sunflowers. Skcnn_Tabnet is capable of extracting slender roads and ridges due to the
soft feature selection mechanism and multi-scale feature extraction of the Tabnet network.
The adaptive receptive field of the model is achieved, thus effectively increasing the overall
classification accuracy.
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3.3. Accuracy Verification

Five main grain-producing areas and counties (Dengkou County, Hangjinhou Banner,
Linhe District, Wuyuan County, and Wulateqian Banner) in the Hetao Plain were selected
for the crop extraction experiments in the same phenological period and verify the effect, so
as to verify the application ability of Skcnn_Tabnet in large-scale space. The distribution and
area of sunflower, maize, and rice in the Hetao area in 2019 were examined and compared
with the spatial distribution of the crop statistical area. The extraction results are presented
in Figure 9.

Figure 9. Distribution map of crop types in the Hetao Plain in 2019.

In general, sunflowers are planted in a large area, spread over the entire study area,
primarily in connected plots, and some are cross-planted with corn. The corn planting
areas are concentrated largely in the northern part of the Hetao Plain, the central part of
the Linhe District, and the coast of Wuliangsuhai Lake. The rice planting area is small and
relatively scattered in the Yellow River and its tributaries, lakes, and other water-rich basins
(e.g., Shuanghe Town in Linhe District, Dengkou County, Fuxing Town in Wuyuan County,
as well as other counties and cities). The planting areas of the three crops in the Hetao area
were obtained as 1734.76 km2 for corn, 2743.38 km2 for sunflower, and 118.53 km2 for rice by
calculating the pixel points of each crop in ArcGIS. To further verify the extraction accuracy,
the data were found in this study (e.g., the 2019 Inner Mongolia Statistical Yearbook
and the 2019 Bayannaoer City Statistical Yearbook (http://tjj.bynr.gov.cn, accessed on
15 June 2022)), thus indirectly verifying the validity of this study. The comparison result
suggests that the regional proportions of rice and corn planting areas and statistical areas
extracted by the Skcnn_Tabnet model are nearly the same. The sunflower area is 386.52 km2

more than the statistical area, and the relative error is slightly larger.
The survey suggests that Northeast China has implemented a policy of adjusting the

planting area and structure of crops over the past few years, thus encouraging different
crop rotation and interplanting patterns [34]. There are a considerable number of sunflower-
soybean intercropping and intercropping patterns in Linhe District, Wuyuan County, and
Wulateqian Banner. Considerable sunflowers may be misclassified as soybeans since the
phenological and spectral characteristics of sunflowers and soybeans in the Hetao area are
highly similar, thus reducing the accuracy of remote sensing classification.

4. Discussion

This study was based on single-phase Sentinel-2 images and a small number of
samples. The optimal crop identification model was transferred to the Hetao Plain to
identify crops in the same period. The crop distribution map of the Hetao Plain in 2019
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was generated pixel by pixel. In addition, the statistical yearbook data verification suggests
that the overall verification accuracy of the crop identification model in the Hetao area
has reached 85%. In this paper, the single-phase Sentinel-2 image was used instead of the
long-time series images, which provided a method reference for crop recognition, especially
under long-term rainy weather in Southern China. For example, the flood disaster in
Henan Province in 2020 caused a large area of crop disasters, and the compensation work of
affected farmers often needs to be combined with remote sensing data statistics. However,
the long-time rainy weather made it difficult to obtain the available long-time series remote
sensing images. In this case, the advantages of the proposed method were reflected, which
only needed remote sensing data of a single-phase to realize crop recognition. In terms of
crop growth analysis, we often judged crop growth according to changes in NDVI data.
However, it did not distinguish which crops were growing. This study can identify the
crop species and grasp the growth situation of various crops. In agricultural insurance
claims, this method can assist agricultural insurance companies to ensure the rationality
and fairness of insurance claims by providing objective and real crop growth situations
and area data.

Compared to the method that generates “training samples” based on historical in-
formation [35], our method uses the current year sample and its extended samples to
ensure that the trained crop extraction model is more accurate. Due to the differences in
inter-annual environment, inter-annual spectral curves of the same crop can be inconsistent.
Applying the sample data of the classified years to this link can avoid the influence of the dif-
ferences in the spectral curves. Compared with methods that only use spectral curves [36],
our method considers both spectral information and neighborhood information, which
can increase the discrimination of crops with similar spectral curves. We compared this
paper with the research of You’s team [5], which produced three typical crop classification
products in Northeast China based on GEE platform long-sequence Sentinel-2 images. In
this study, the same recognition effect can be achieved without long sequence images, thus
increasing crop recognition efficiency. Moreover, the effect of cloudy and rainy weather on
the research was eliminated. During the production of the Dong Crop Map, 22,171 samples
were used in Northeast China for model training and testing in 2019. Its classification
process is highly complex and comprises a feature selection process, RF classifier training
for the respective agroclimatic region, and then the identification of the farmland and the
identification of the crops within the field. Although the overall validation accuracy of this
study is slightly lower than the former (87%), 126 samples collected in the wild were only
used, and one model was only trained to achieve multi-classification, which makes the
classification process more concise, thus confirming the feasibility of the method proposed
in this study for large-scale crop identification applications. This study provides a technical
reference for achieving the automatic national crop census and the sustainable development
of cultivated land resources.

5. Conclusions

Based on single-phase Sentinel-2 images and a small number of samples, this study
applies the improved Skcnn_Tabnet network to crop classification mapping for the first
time, and compared the crop mapping results of three different network models. The
results show that: (1) The Skcnn_Tabnet method after adding channel attention has the
optimal effect in the application of crop classification and extraction in the cultivated land
area of Inner Mongolia. In this study, RF, DeepLabv3+, and Unet all have F1 less than
85%, whereas Skcnn_Tabnet’s F1 score and ACC accuracy are higher than 90%. (2) Crop
recognition based on single-phase Sentinel-2 images confirmed that adding 5 × 5 pixels
neighborhood information based on the spectral information can significantly increase the
overall crop classification effect. (3) A small amount of training data was employed in this
study for large-area crop recognition, verifying the spatial scalability and robustness of
the Skcnn_Tabnet model. The result suggests that the county-level spatial scale exhibits
high applicability in the Hetao area. The crop planting area obtained by the model is well
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consistent with the statistical data, which reveals that the classification method proposed
in this study can meet the requirements of refined crop extraction in large areas. The
research results achieved in this study can provide scientific, technical, and data support
for the pattern of cultivated land resources and the optimization of agricultural structure in
the floodplain.
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