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Abstract: This paper presents a comprehensive nonlinear analysis of an innovative stochastic epi-
demic model that accounts for both behavioral changes and physical discontinuities. Our research
begins with the formulation of a perturbed model, integrating two general incidence functions and
incorporating a Lévy measure to account for independent jump components. We start by confirming
the well-posed nature of the model, ensuring its mathematical soundness and feasibility for further
analysis. Following this, we establish a global threshold criterion that serves to distinguish between
the eradication and the persistence of an epidemic. This threshold is crucial for understanding the
long-term behavior of a disease within a population. To rigorously validate the accuracy of this
threshold, we conducted extensive numerical simulations using estimated data on Zoonotic Tubercu-
losis in Morocco. These simulations provide practical insights and reinforce the theoretical findings
of our study. A notable aspect of our approach is its significant advancement over previous works
in the literature. Our model not only offers a more comprehensive framework but also identifies
optimal conditions under which an epidemic can be controlled or eradicated.

Keywords: stochastic model; epidemic; behavioral change; jumps; tuberculosis

MSC: 34A12; 92D30; 37C10

1. Introduction

During epidemics, the implementation of intervention measures is paramount in
curbing the spread of infectious diseases and reducing their associated morbidity and
mortality [1]. These measures encompass a spectrum of interventions ranging from phar-
maceutical interventions like vaccination campaigns to non-pharmaceutical interventions
such as social distancing measures and the promotion of hygienic practices. While the
immediate goal of these interventions is to directly disrupt transmission chains, their
indirect impact on the behavior of the susceptible population is equally significant [2].
Behavioral changes induced by intervention measures have emerged as a pivotal aspect in
epidemic control strategies. The adoption of preventive behaviors, often prompted by the
implementation of intervention measures, can significantly influence the trajectory of an
outbreak [3]. For instance, the widespread adoption of mask-wearing during the COVID-19
pandemic and the consistent use of condoms to prevent sexually transmitted infections
(STIs) exemplify the behavioral responses elicited by public health interventions.

Mathematics 2024, 12, 1974. https://doi.org/10.3390/math12131974 https://www.mdpi.com/journal/mathematics1
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Recently, in [4], the authors presented a new mathematical model aimed at simulating
the dynamics of behavior changes within susceptible populations during epidemics. This
innovative model distinguishes between two classes of non-infected individuals: the
first comprises susceptible individuals who do not alter their behavior in response to
intervention measures, while the second encompasses those who proactively change their
behavior and adhere to the prescribed interventions. Central to this model is the recognition
of the heterogeneous nature of human behavior in the face of epidemic threats. While some
individuals may remain steadfast in their routines and habits, others may demonstrate a
heightened awareness of the risks posed by the outbreak and willingly adopt preventive
measures [5]. By categorizing susceptible individuals into distinct groups based on their
behavioral responses, the model provides a nuanced understanding of how intervention
measures influence population dynamics [6]. Key features include behavioral heterogeneity,
incorporating fixed- and adaptive-behavior individuals and evaluating various intervention
strategies such as public health campaigns, lockdowns, and vaccination drives to assess
their impact on both groups [7]. The model dynamically simulates interactions between
these groups and the infected population, considering the possibility of behavior change
over time, and offers insights into how varying compliance levels with interventions affect
epidemic control [8]. Real-world applications of this model include predicting outcomes
for diseases like influenza and COVID-19, helping policymakers design targeted strategies
to maximize compliance and effectiveness in mitigating infectious disease outbreaks [9].

In addition to incorporating heterogeneity in behavior changes, the authors of [4]
also comprehensively addressed the impact of stochastic perturbations within their mathe-
matical model. Stochastic perturbations refer to random fluctuations or disturbances that
can influence the dynamics of epidemic transmission, introducing variability and unpre-
dictability into the system. Therefore, the model under discussion is structured as follows:





dS1(t) =
(

r− β1S1(t)I(t)− (u + c)S1(t)
)

dt + κ1S1(t)dρ1(t),

dS2(t) =
(

cS1(t)− β2S2(t)I(t)− uS2(t)
)

dt + κ2S2(t)dρ2(t),

dI(t) =
((

β1S1(t)I(t) + β2S2(t)I(t)− (u + h1 + h2)I(t)
)

dt + κ3 I(t)dρ3(t),

dC(t) =
(

h1 I(t)− uC(t)
)

dt + κ4C(t)dρ4(t).

(1)

According to model (1), the variables are defined as follows:

• S1 denotes the susceptible individuals who maintain their behavior unchanged in
response to the epidemic.

• S2 represents the susceptible individuals who alter their behavior due to various
interventions, such as media campaigns or governmental measures.

• I signifies the count of infected individuals within the population.
• C stands for the individuals who have recovered from the infection and acquired

complete immunity.

In addition, the model parameters can be defined as follows:

• r represents the rate of population influx, encompassing births, immigration, or any
other form of population input.

• β1 and β2 indicate the transmission rates of the epidemic, reflecting the likelihood of
infection spread within the population.

• µ represents the natural death rate of the population.
• c signifies the rate at which susceptible individuals adjust their behavior and transition

to the second class.
• h1 denotes the recovery rate of infected individuals.
• h2 represents the mortality rate attributed to infection.

In incorporating the stochastic component into the model,
(
ρ1(t), ρ2(t), ρ3(t), ρ4(t)

)

represents a four-dimensional Brownian motion with specific intensities κ1, κ2, κ3, and

2
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κ4. A diagram depicting the flow dynamics among different classes is shown in Figure 1.
In [4], the authors investigated the long-term characteristics of the solution by establishing
adequate conditions for extinction and stationarity.
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Figure 1. Schematic diagram illustrating the SIR model’s behavioral change with white noises.

When discussing heterogeneity and variability, it is imperative to incorporate more
realistic and generalized hypotheses. The study outlined in [4] has certain limitations as
the authors employed a bilinear incidence rate and solely relied on white noise. However,
in reality, interactions between individuals often deviate from the mass action principle,
leading to nonlinear incidences that can assume various forms. In this study, we address
this limitation by considering a broader spectrum of incidence rates that encompass diverse
functions documented in the literature.

Stochastic epidemic models are crucial in biological mathematics because they capture
the inherent randomness in disease transmission and progression, offering a realistic repre-
sentation of epidemics. These models are particularly valuable in small populations where
stochastic effects can significantly alter outcomes, explaining the variability and uncertainty
in outbreak dynamics [10,11]. They incorporate complex biological processes and rare
events, enhancing our understanding of disease behavior and the impact of interventions.
In quantifying uncertainty and allowing for real-time data integration, stochastic models
facilitate adaptive and robust epidemic management strategies. Additionally, they provide
theoretical insights into disease dynamics and advance mathematical techniques, enriching
the broader field of biological mathematics.

Generally, white noise fails to adequately simulate reality, particularly when inter-
ventions are implemented. Interventions can trigger abrupt jumps in the population,
significantly altering the model dynamics [12]. Therefore, in this study, we extended
our analysis to incorporate multidimensional jump processes, providing a more nuanced
understanding of how interventions impact epidemic dynamics. By considering these
factors, we aimed to enhance the realism and applicability of the model, enabling a more
comprehensive exploration of epidemic dynamics in real-world scenarios [13,14]. Con-
sequently, the system under consideration evolves through an interconnected perturbed
formulation, presenting a holistic and sophisticated framework. The new formulation
captures the complexities of sudden changes in population behaviors and disease trans-
mission rates due to interventions such as vaccinations, quarantines, and public health
policies. By integrating multidimensional jump processes, the model can account for both
small fluctuations and significant shocks to the system, reflecting the stochastic nature of
real-world epidemic events more accurately [15,16]. In particular, the inclusion of jump
processes allows for the representation of non-continuous changes in state variables, which
are critical for modeling events like sudden outbreaks or the rapid implementation of con-

3
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trol measures. This approach provides a more flexible and detailed depiction of epidemic
dynamics, accommodating the unpredictable and often abrupt nature of real-world events.

Technically, our newly introduced stochastic system diverges from conventional mod-
els by eschewing clearly delineated endemic or disease-free states [17]. Furthermore, our
model exhibits independence in its stochastic component, adding a distinct dimension
to the analysis. This independence characteristic enhances the depth and complexity of
the analysis, providing unique insights into the system dynamics. Consequently, the con-
ventional method of assessing disease persistence or extinction through the analysis of
asymptotic behavior around these states falls short [18]. This underscores the imperative
for an innovative approach grounded in stochastic analysis, which is adept at capturing
the dynamic interactions among variables and uncertainties inherent in the system. This
paper addresses the aforementioned issues and focuses on specific long-term properties of
auxiliary equations. These properties play a crucial role in establishing the global threshold
of our model.

The structure of this paper is organized as follows. Section 2 introduces the model
formulation, accompanied by a detailed compilation of notations and hypotheses. In
Section 3, we present the theoretical results, beginning with the verification of the model’s
well-posedness and outlining the global threshold that differentiates between epidemic
extinction and persistence. Section 4 is devoted to conducting numerical simulations to
rigorously validate our theoretical findings. Finally, we conclude with a summary of our
key results and provide insights into potential future research directions in Section 5.

2. Model Formulation

In this section, we present the stochastic version of the behavioral model (1) with
general incidence rates. The incorporation of stochastic components into the model is
conducted by adding noise terms proportionally to each equation, ensuring that these
stochastic perturbations maintain the independence property. This stochastic framework
allows us to capture the inherent randomness and unpredictability in individual behaviors
and disease transmission dynamics that deterministic models may overlook. By introduc-
ing stochasticity, we can better understand the variability and potential fluctuations in
epidemic outcomes under different scenarios. Under this setting, we consider the following
stochastic model:





dS1(t) =
(

r− f1(S1(t), I(t))I(t)− (u + c)S1(t)
)

dt + κ1S1(t)dρ1(t) +
∫

R4\{0}
z1(ξ)S1(t−)φ̃1(dt, dξ),

dS2(t) =
(

cS1(t)− f2(S2(t), I(t))I(t)− uS2(t)
)

dt + κ2S2(t)dρ2(t) +
∫

R4\{0}
z2(ξ)S2(t−)φ̃2(dt, dξ),

dI(t) =
((

f1(S1(t), I(t)) + f2(S2(t), I(t))
)

I(t)− (u + h1 + h2)I(t)
)

dt

+ κ3 I(t)dρ3(t) +
∫

R4\{0}
z3(ξ)I(t−)φ̃3(dt, dξ),

dC(t) =
(

h1 I(t)− uC(t)
)

dt + κ4C(t)dρ4(t) +
∫

R4\{0}
z4(ξ)C(t−)φ̃4(dt, dξ).

(2)

where, f1 and f2 represent two general incidence rates that satisfy the following hypotheses:

• (A0): The functions f1 and f2 are uniformly continuous and ∃ m, m0 > 0 such that





m > ∂ f1

∂S1
(S1, I) > 0 > ∂ f1

∂I
(S1, I) > −m0,

m > ∂ f2

∂S2
(S2, I) > 0 > ∂ f2

∂I
(S2, I) > −m0.

(3)

The functions f1 and f2 represent two general incidence rates within the model, en-
capsulating the rates at which susceptible individuals become infected under varying
conditions. The function f1 corresponds to the incidence rate for the group of susceptible
individuals who do not alter their behavior in response to intervention measures. This

4
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rate reflects the direct transmission dynamics between the non-compliant susceptible in-
dividuals and the infected population. Conversely, f2 pertains to the incidence rate for
the group of susceptible individuals who proactively change their behavior and adhere
to intervention measures. This rate incorporates the effects of preventive actions, such
as social distancing, mask-wearing, and other protective behaviors that reduce the prob-
ability of infection. In model (2), ρk (k = 1, · · · , 4) denote four mutually independent
Brownian motions (BMs) of strengths κk > 0 (k = 1, · · · , 4) respectively. All these BMs are
essentially defined on a filtered probability triple (stochastic basis)

(
Ω,FΩ, (F{Ω,t})t>0,P

)

equipped with a filtration satisfying the usual criteria. φk (k = 1, · · · , 4) are four in-
dependent Poisson counting processes associated with four finite characteristic Lévy
measures Gk (k = 1, · · · , 4). φ̃k (k = 1, · · · , 4) are four different compensated random
measures such that φ̃k(dt, dξ) = φk(dt, dξ)− Gk(dξ)dt. Finally, zk : R4 \ {0} → R are the
jump size functions, which are postulated to be continuous on R4 \ {0}.

Prior to exploring the theoretical framework concerning our perturbed model repre-
sented by system (2), it is essential to introduce the following notations:

• α1 := max
k∈{1,··· ,4}

{∫

R4\{0}
z2

k(ξ)Gk(dξ)

}
.

• α2 := max
k∈{1,··· ,4}

{∫

R4\{0}

{
zk(ξ)− ln(1 + zk(ξ))

}
Gk(dξ)

}
.

• α3 := max
k∈{1,··· ,4}

{
κ2

k
}

.

• α4(ξ) := max
k∈{1,··· ,4}

{
zk(ξ)

}
= zε∗(ξ), where ε∗ indicates the index at which the maxi-

mum value is reached.
• α5(ξ) := min

k∈{1,··· ,4}

{
zk(ξ)

}
= zε(ξ), where ε indicates the index at which the minimum

value is reached.
• α6(ξ) := (1 + α4(ξ))

s − s× α4(ξ)− 1.
• α7(ξ) := (1 + α5(ξ))

s − s× α5(ξ)− 1.
• α8(ξ) := max{α6(ξ), α7(ξ)}.
• α9 :=

∫

R4\{0}
α8(ξ)1{α6(ξ)≥α7(ξ)}Gε∗(dξ) +

∫

R4\{0}
α8(ξ)1{α7(ξ)>α6(ξ)}Gε(dξ).

In addition, to maintain a meticulous balance between mathematical precision and
biological relevance within the envisioned model, we present the following technical
assumptions:

• (A1): zk(ξ) + 1 are positive ∀k ∈ {1, · · · , 4}, and max
i∈{1,2}

αi < ∞.

• (A2): ∃ s > 2 such that α10 = u− 0.5(s− 1)α3 − s−1α9 > 0.

Remark 1. Incidence rates account for the frequency and type of contacts between individuals,
which are critical for disease transmission. Different diseases spread through different types of
contact (e.g., respiratory droplets, direct physical contact), and general incidence rates help model
these specific pathways accurately.

Remark 2. To illuminate the significance of (A2), it is important to reference the insights provided
in [14] (Lemma 2.5). In this study, the authors elaborate on key perspectives that underpin the core
findings of our research. By building upon the framework established in this lemma, we establish
a robust link between the foundational concepts outlined therein and the overarching conclusions
drawn from our investigation.

Remark 3. Differing from the results detailed in [13], our research introduces more sophisticated
hypotheses and a nuanced framework. In particular, incorporating (A1) and (A2) enriches the
accuracy and complexity of our analysis. Within this section, we operate under the hypothesis that
all of the above assumptions are valid.

5
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3. Results
3.1. Evaluating the Mathematical Sufficiency of Stochastic System (2)

The main concern when examining an epidemic model is to ascertain if it has a unique
and positive global solution over time. In this subsection, we will clarify specific conditions
that ensure the existence of such a solution. We can represent the solution associated with
initial data s(0) =

(
S1(0), S2(0), I(0), C(0)

)
as s(t) =

(
S1(t), S2(t), I(t), C(t)

)
.

Theorem 1. Under (A0) and (A1), we assert that for any initial data s(0), there exists a unique
solution s(t) to system (2) for t > 0. This solution remains non-negative with near certainty for all
time instances t > 0.

Proof. In system (2), the coefficients involved demonstrate continuous differentiability
within their defined domains, meeting the local Lipschitz criterion. As a result, for any
initial solution s(0) within the positive real four-dimensional space (R4

+), there exists a
single maximal local solution s(t) defined for t within the interval (0, γe), where γe signifies
the explosion time [19]. At this point, our aim is to ascertain the global characteristic of this
solution, particularly to prove that γe = ∞ with near certainty. To achieve this, let us take
into account a suitably large natural number β0 ∈ N such that s(0) ∈ [β−1

0 , β0]. For every
integer β > β0, we define the stopping time γk as follows:

γk = inf
{

t ∈ (0, γe) | min
(
S1(t), S2(t), I(t), C(t)

)
6 β−1 or max

(
S1(t), S2(t), I(t), C(t)

)
> β

}
.

Let γ∞ be defined as the limit of γβ as β tends to infinity. It is clear that the sequence(
γβ

)
β>β0

is strictly increasing. Hence, the limit of γk as k tends to infinity equals the
supremum of γβ for β > β0. According to the theory presented in [20], which states that
the supremum of a sequence of stopping times is itself a stopping time, we conclude that
γ∞ is also a stopping time. Using the convention inf ∅ = ∞ throughout this paper, we can
assert straightforwardly that γ∞ 6 γe almost surely. Therefore, establishing γe = ∞ almost
surely directly depends on demonstrating that γ∞ = ∞ almost surely. This precisely forms
the objective we aim to achieve to conclude the proof. Now, let us assume that the assertion
γ∞ = ∞ almost surely is incorrect. This implies the existence of a positive value D > 0
such that P(γ∞ 6 D) > 0. Consequently, there exists a positive x > 0 such that

P
(
γβ 6 D

)
> x, ∀β > β0. (4)

Examine the C2 function F defined for s(t) ∈ R4
+ as follows:

F(s) =
(

S1 − q− q ln
(

S1q−1
))

+
(

S2 − q− q ln
(

S2q−1
))

+
(

I − 1− ln(I)
)
.

Here, q denotes a positive constant to be selected meticulously at a subsequent stage.
By employing Ito’s multidimensional formula for F(s(t)), we obtain expressions applicable
for all β > β0 and t ∈

(
0, γβ

)
:

dF(s(t)) = LF(s)dt + κ1(S1(t)− q)dρ1(t) + κ2(S2(t)− q)dρ2(t) + κ3(I(t)−1)dρ3(t)

+
2

∑
k=1

∫

R4\{0}

(
zk(ξ)Sk(t−)− q ln(1 + zk(ξ))

)
φ̃k(dt, dξ)

+
∫

R4\{0}

(
z3(ξ)I(t−)− ln(1 + z3(ξ))

)
φ̃3(dt, dξ),

where

6
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LF(s(t)) =
(

1− q
S1(t)

)(
r− f1(S1(t), I(t))I(t)− (u + c)S1(t)

)

+

(
1− q

S2(t)

)(
cS1(t)− f2(S2(t), I(t))I(t)− uS2(t)

)

+

(
1− 1

I(t)

)((
f1(S1(t), I(t)) + f2(S2(t), I(t))

)
I(t)− (u + h1 + h2)I(t)

)
+ 0.5

(
qκ2

1 + qκ2
2 + κ2

3

)

+ q
2

∑
k=1

∫

R4\{0}

(
zk(ξ)− ln(1 + zk(ξ))

)
fk(dξ) +

∫

R4\{0}

(
z3(ξ)− ln(1 + z3(ξ))

)
G3(dξ).

Then,

LF(s(t)) ≤
(

r− u(I(t) + S2(t) + S1(t))− (h1 + h2)I(t)
)
−
(

qr
S1(t)

− q(u + c)− q f1(S1(t), I(t))
S1(t)

I(t)
)

− q
(

cS1(t)
S2(t)

− u− f2(S2(t), I(t)))
S2(t)

I(t)
)
−
(

f1(S1(t), I(t)) + f2(S2(t), I(t))− (u + h1 + h2)
)
+ C̄.

Here, C̄ = 0.5
(
qκ2

1 + qκ2
2 + κ2

3
)
+ (2q + 1)α2. Then,

LF(s(t)) 6 (r + q(u + c) + qu + (u + h1 + h2) + C̄)

+

(
q
(

f1(S1(t), I(t))
S1(t)

+
f2(S2(t), I(t))

S2(t)

)
− (u + h1 + h2)

)
× I(t)

6 (Λ + (2q + 1)u + h + C̄)︸ ︷︷ ︸
,D̄

+
(

2mq︸︷︷︸
by (A0)

−(u + h1 + h2)
)
× I(t).

Let us choose m such that 2mq− (u + h1 + h2) < 0. Then, for each β > β0 and t ∈
(
0, γβ

)
,

we obtain

dF
(
s(t)

)
6 D̄ dt + κ1(S1(t)− q)dρ1(t) + κ2(S2(t)− q)dρ2(t) + κ3(I(t)−1)dρ3(t)

+
2

∑
k=1

∫

R4\{0}

(
zk(ξ)Sk(t−)− q ln(1 + zk(ξ))

)
φ̃k(dt, dξ)

+
∫

R4\{0}

(
z3(ξ)I(t−)− ln(1 + z3(ξ))

)
φ̃3(dt, dξ).

So,
E
(

F(s(D ∧ γβ)
)
6 F(s(0)) + D̄E(γk ∧ T) 6 F(s(0)) + D̄T. (5)

Since F(ε) ≥ 0 is true for all ε > 0, the following implication arises:

E
(

F(s(D ∧ γβ)
)
= E

(
F(s(D ∧ γβ)× 1{γβ6D}

)
+E

(
F(s(t ∧ γβ)× 1{γβ>D}

)

> E
(

F(s(γβ)× 1{γβ6D}
)

. (6)

We Observe that for any ω ∈ Ω that verifies γβ(ω) 6 D, there exists a component of
F
(
s(γβ)

)
equal to either β or β−1; thus,

E
(

F(s(γβ)× 1{γβ6D}
)
> P

(
γβ 6 D

)(
β− q− q ln

(
βq−1

))
∧
(

β−1 − q− q ln
(

β−1q−1
))
∧ (β− 1− ln(β))

∧
(

β−1 − 1− ln
(

β−1
))

. (7)

By amalgamating (5), (6), and (7) with (4), we deduce that

7
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F(s(0)) + D̄D > x
(

β− q− q ln
(

βq−1
))
∧
(

β−1 − q− q ln
(

β−1q−1
))
∧ (β− 1− ln(β)) ∧

(
β−1 − 1− ln

(
β−1

))
.

Letting β tend toward infinity leads to the contradiction F(s(0)) + D̄D = ∞, thus conclud-
ing the proof.

3.2. Threshold Analysis of Stochastic System (2)

When exploring a mathematical model depicting the spread of a particular epidemic,
our main focus is to determine whether the outbreak will eventually diminish or endure
indefinitely. In this subsection, our goal is to reveal conditions that are both sufficiently
rigorous and almost indispensable, shedding light on the asymptotic behavior of the
epidemic’s progression.

Before introducing the central theorem of this subsection, it is wise to begin a discourse
on pertinent lemmas concerning an auxiliary subsystem derived from the initial two equa-
tions of (2). This additional subsystem becomes relevant when the population of infectious
individuals is conspicuously absent from the context. Let us examine the following two
novel stochastic processes:





dS̄1(t) =
(

r− (u + c)S̄1(t)
)

dt + κ1S̄1(t)dρ1(t) +
∫

R4\{0}
z1(ξ)S̄1(t−)φ̃1(dt, dξ),

dS̄2(t) =
(

cS̄1(t)− uS̄2(t)
)

dt + κ2S̄2(t)dρ2(t) +
∫

R4\{0}
z2(ξ)S̄2(t−)φ̃2(dt, dξ),

(8)

with positive started data S̄1(0) = S1(0) and S̄2(0) = S2(0).

Lemma 1. Stochastic system (8) is well-posed; and if

(u + c)− 0.5κ2
1 −

∫

R4\{0}

(
z1(ξ)− ln(1 + z1(ξ))

)
G1(dξ) > 0, (9)

then for any two integrable functions ψ1 and ψ2, we have




P
(

lim
t→∞

1
t

∫ t

0
ψ1
(
S̄1(ε)

)
dε =

∫

(0,∞)
ψ1(ε)π1(dε)

)
= 1,

P
(

lim
t→∞

1
t

∫ t

0
ψ2
(
S̄2(ε)

)
dε =

∫

(0,∞)
ψ2(ε)π2(dε)

)
= 1,

(10)

where π1 and π2 are the single stationary distributions of S̄1 and S̄2, respectively.

Remark 4. For an in-depth understanding of the proof for the above result, refer to Lemma 2.2
in [21]. The importance of considering (9) is elucidated in Lemma 2.4 of [13].

Lemma 2. Assuming that condition (1) holds true, we deduce




P
(∫

(0,∞)
f1(S1, 0) π1(dS1) 6 m

∫

(0,∞)
S1 π1(dS1) =

r
u
< ∞

)
= 1,

P
(∫

(0,∞)
f2(S2, 0) π2(dS2) 6 m

∫

(0,∞)
S2 π2(dS2) =

cr
(u + c)u

< ∞
)
= 1.

Proof. Drawing from (A0), (10), and the ergodicity of processes S̄1 and S̄2, we can readily
deduce the outcome of this lemma.

When it comes to managing infectious diseases, a critical factor is determining a
stochastic threshold that effectively distinguishes between the precarious brink of extinction
and the resilient state of persistence for the infection. This threshold plays a crucial role,

8
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illuminating the complex dynamics that dictate the fate of the pathogen within a specific
population. In this regard, by setting

λ1 =
∫

(0,∞)
f1(S1, 0) π1(dS1) +

∫

(0,∞)
f2(S2, 0) π2(dS2),

λ2 = (u + h1 + h2) + 0.5κ2
3 +

∫

R4\{0}

(
z3(ξ)− ln(1 + z3(ξ))

)
G3(dξ),

we have the following main theorem.

Theorem 2. Consider s(t) as the solution to system (2) with initial data s(0) ∈ R4
+. Then, we

encounter two distinct real epidemic scenarios:

• The exponential extinction of the epidemic if λ1 < λ2.
• The stochastic continuation of the epidemic if λ1 > λ2.

Proof. Using Itô’s formula, we obtain the following equation:

d ln
(

I(t)
)
=

(
2

∑
k=1

fk
(
Sk(t), I(t)

)
− λ2

)
dt + κ3dρ3(t) +

∫

R4\{0}
ln(1 + z3(ξ))φ̃3(dt, dξ).

From (A0), system (8), and the stochastic comparison theorem, we obtain

d ln
(

I(t)
)
6
(

2

∑
k=1

fk
(
Sk(t), 0

)
− λ2

)
dt + κ3dρ3(t) +

∫

R4\{0}
ln(1 + z3(ξ))φ̃3(dt, dξ)

6
(

2

∑
k=1

fk
(
S̄k(t), 0

)
− λ2

)
dt + κ3dρ3(t) +

∫

R4\{0}
ln(1 + z3(ξ))φ̃3(dt, dξ).

After integrating and then dividing both sides of the last inequality by t, we obtain

1
t
(
ln
(

I(t)
)
− ln

(
I(0)

))
6 1

t

2

∑
k=1

∫ t

0
fk
(
S̄k(ε), 0

)
dε− λ2 +A1(t), (11)

where A1(t) =
κ3

t
ρ3(t) +

1
t

∫ t

0

∫

R4\{0}

(
ln(1 + z3u)

)
φ̃3(ds, dξ). In applying Kunita’s in-

equality [22] to the discontinuous stochastic processesA1 and leveraging Lemma 2.2 of [23],

it is straightforward to derive that P
(

lim
t→∞
A1(t) = 0

)
= 1. Consequently, from Lemma 1,

we deduce that

lim sup
t→∞

1
t

ln
(

I(t)
)
6 lim

t→∞

1
t

∫ t

0
f1
(
S̄1(ε), 0

)
dε+ lim

t→∞

1
t

∫ t

0
f2
(
S̄2(ε), 0

)
dε− λ2

=
∫

(0,∞)
f1(S1, 0) π1(dS1) +

∫

(0,∞)
f2(S2, 0) π2(dS2)− λ2

= λ1 − λ2.

In the concept of the exponential extinction of the epidemic [19], a crucial factor is the
value of λ1 − λ2. When this quantity is negative, it indicates a critical condition that leads
to the disappearance of the epidemic.

Now, we shift our focus to the second scenario. To do so, let us define s̃(t) = (S1, S2, I, S̄1, S̄2)
and introduce the following function:

F1(s̃(t)) =
m
u

((
2

∑
k=1

(S̄k − Sk)

)
− I

)
− ln(I).

9
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Leveraging Itô’s formula in conjunction with the dynamics described by systems (2) and (8),
we obtain

dF1(s̃(t)) = LF1(s̃(t))dt +
2

∑
k=1

mκk
u

(S̄k(t)− Sk(t))dρk(t)− κ3

(
1 +

m
u

I(t)
)

dρ3(t)

+
m
u

2

∑
k=1

∫

R4\{0}
zk(ξ)

(
S̄k(t−)− Sk(t−)

)
φ̃k(dt, dξ)− m

u

∫

R4\{0}
z3uI(t−)φ̃3(dt, dξ)

−
∫

R4\{0}
ln(1 + z3(ξ))φ̃3(dt, dξ), (12)

where

LF1(s̃(t)) = λ2 −
2

∑
k=1

fk
(
Sk(t), I(t)

)
−m

2

∑
k=1

(S̄k(t)− Sk(t)) +
m
u
(u + h1 + h2)I(t).

As a result, we have

LF1(s̃(t)) 6 λ2 −
2

∑
k=1

fk
(
S̄k(t), 0

)
+

2

∑
k=1

(
fk
(
Sk(t), 0

)
− fk

(
Sk(t), I(t)

))

+
2

∑
k=1

(
fk
(
S̄k(t), 0

)
− fk

(
Sk(t), 0

))
−m

2

∑
k=1

(S̄k(t)− Sk(t)) +
m
u
(u + h1 + h2)I(t).

Using (A0), we can easily obtain that

LF1(s̃(t)) 6 λ2 − λ1 +
2

∑
k=1

(∫

(0,∞)
fk(Sk, 0) πk(dSk)− fk

(
S̄k(t), 0

))

+
2

∑
k=1

(
fk
(
Sk(t), 0

)
− fk

(
Sk(t), I(t)

))
+

m
u
(u + h1 + h2)I(t).

From Equation (12), we have

dF1(s̃(t)) 6
(

λ2 − λ1 +
2

∑
k=1

(∫

(0,∞)
fk(Sk, 0) πk(dSk)− fk

(
S̄k(t), 0

))

+
2

∑
k=1

(
fk
(
Sk(t), 0

)
− fk

(
Sk(t), I(t)

))
+

m
u
(u + h1 + h2)I(t)

)
dt

+
2

∑
k=1

mκk
u

(S̄k(t)− Sk(t))dρk(t)− κ3

(
1 +

m
u

I(t)
)

dρ3(t)

+
m
u

2

∑
k=1

∫

R4\{0}
zk(ξ)

(
S̄k(t−)− Sk(t−)

)
φ̃k(dt, dξ)

− m
u

∫

R4\{0}
z3uI(t−)φ̃3(dt, dξ)−

∫

R4\{0}
ln(1 + z3(ξ))φ̃3(dt, dξ).

Upon integrating the last inequality and subsequently dividing both sides of the last
inequality by t, we obtain

10
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F1(s̃(t))
t

6 λ2 − λ1 +
2

∑
k=1

(∫

(0,∞)
fk(Sk, 0) πk(dSk)−

1
t

∫ t

0
fk
(
S̄k(s), 0

))
ds

+
2

∑
k=1

1
t

∫ t

0

(
fk
(
Sk(s), 0

)
− fk

(
Sk(s), I(s)

))
ds +

m(u + h1 + h2)

ut

∫ t

0
I(s)ds

+
2

∑
k=1

mκk
ut

∫ t

0
(S̄k(s)− Sk(s))dρk(s)−

κ3

t

∫ t

0

(
1 +

m
u

I(s)
)

dρ3(s)

+
m
ut

2

∑
k=1

∫ t

0

∫

R4\{0}
zk(ξ)

(
S̄k(s−)− Sk(s−)

)
φ̃k(ds, dξ) +

F1(s̃(0))
t

− m
ut

∫ t

0

∫

R4\{0}
z3uI(s−)φ̃3(ds, dξ)− 1

t

∫ t

0

∫

R4\{0}
ln(1 + z3(ξ))φ̃3(ds, dξ).

Using the properties of logarithm function, we obtain

m(u + h1 + h2)

ut

∫ t

0
I(s)ds > λ1 − λ2 +

m
ut

((
2

∑
k=1

(S̄k(t)− Sk(t))

)
− I(t)

)
− I(t)

t

−
2

∑
k=1

(∫

(0,∞)
fk(Sk, 0) πk(dSk)−

1
t

∫ t

0
fk
(
S̄k(s), 0

)
ds
)

−
2

∑
k=1

1
t

∫ t

0

(
fk
(
Sk(s), 0

)
− fk

(
Sk(s), I(s)

))
ds

−
2

∑
k=1

mκk
ut

∫ t

0
(S̄k(s)− Sk(s))dρk(s) +

κ3

t

∫ t

0

(
1 +

m
u

I(s)
)

dρ3(s)

− m
ut

2

∑
k=1

∫ t

0

∫

R4\{0}
zk(ξ)

(
S̄k(s−)− Sk(s−)

)
φ̃k(ds, dξ)− F1(s̃(0))

t

+
m
ut

∫ t

0

∫

R4\{0}
z3uI(s−)φ̃3(ds, dξ) +

1
t

∫ t

0

∫

R4\{0}
ln(1 + z3(ξ))φ̃3(ds, dξ).

From (A0), we derive

m(u + h1 + h2)

ut

∫ t

0
I(s)ds > λ1 − λ2 +

m
ut

((
2

∑
k=1

(S̄k(t)− Sk(t))

)
− I(t)

)
− I(t)

t

−
2

∑
k=1

(∫

(0,∞)
fk(Sk, 0) πk(dSk)−

1
t

∫ t

0
fk
(
S̄k(s), 0

)
ds
)
− 2m0

t

∫ t

0
I(s)ds

−
2

∑
k=1

mκk
ut

∫ t

0
(S̄k(s)− Sk(s))dρk(s) +

κ3

t

∫ t

0

(
1 +

m
u

I(s)
)

dρ3(s)

− m
ut

2

∑
k=1

∫ t

0

∫

R4\{0}
zk(ξ)

(
S̄k(s−)− Sk(s−)

)
φ̃k(ds, dξ)− F1(s̃(0))

t

+
m
ut

∫ t

0

∫

R4\{0}
z3uI(s−)φ̃3(ds, dξ) +

1
t

∫ t

0

∫

R4\{0}
ln(1 + z3(ξ))φ̃3(ds, dξ).

Consequently,

m(u + h1 + h2) + 2(u + c)m0

ut

∫ t

0
I(s)ds > λ1 − λ2 +A2(t) +A3(t) +A4(t),

11
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where

A2(t) =
m
ut

((
2

∑
k=1

(S̄k(t)− Sk(t))

)
− I(t)

)
− I(t)

t
,

A3(t) = −
2

∑
k=1

(∫

(0,∞)
fk(Sk, 0) πk(dSk)−

1
t

∫ t

0
fk
(
S̄k(s), 0

)
ds
)

,

A4(t) = −
2

∑
k=1

mκk
ut

∫ t

0
(S̄k(s)− Sk(s))dρk(s) +

κ3

t

∫ t

0

(
1 +

m
u

I(s)
)

dρ3(s)

− m
ut

2

∑
k=1

∫ t

0

∫

R4\{0}
zk(ξ)

(
S̄k(s−)− Sk(s−)

)
φ̃k(ds, dξ)− F1(s̃(0))

t

+
m
ut

∫ t

0

∫

R4\{0}
z3uI(s−)φ̃3(ds, dξ) +

1
t

∫ t

0

∫

R4\{0}
ln(1 + z3(ξ))φ̃3(ds, dξ).

Considering (A0) and leveraging Lemma 1, we can firmly establish thatP
(

lim
t→∞
A2(t) = 0

)
= 1.

Furthermore, the application of Lemma 2.2 from [23] enables a straightforward deduction that

P
(

lim
t→∞
A3(t) = 0

)
= 1 and P

(
lim
t→∞
A4(t) = 0

)
= 1. Then,

P
(

lim inf
t→∞

1
t

∫ t

0
I(s) ds > u(λ1 − λ2)

m(u + h1 + h2) + 2(u + c)m0

)
= 1.

In scenarios where λ1 exceeds λ2, the persistence of the epidemic in the future becomes
more pronounced. This concludes the demonstration of the theorem.

4. Numerical Application: Zoonotic Tuberculosis

In this section, we present a series of numerical demonstrations to corroborate the
conclusions outlined in our research, employing authentic data on Zoonotic Tuberculosis as
detailed in (Example 1, [24]). This dataset meticulously records reported instances within
Morocco, offering a detailed insight into the current scenario. The dataset encompasses a
range of parameters and initial conditions reflective of the epidemiological landscape of
Zoonotic Tuberculosis in the region. To ensure the robustness of our findings, we draw
upon deterministic parameters and initial data outlined in Table 1. These parameters were
carefully selected based on the latest epidemiological studies and statistical analyses perti-
nent to the spread and control of Zoonotic Tuberculosis. Our approach involves integrating
these parameters into our mathematical model to simulate various outbreak scenarios,
thereby enabling us to examine the potential efficacy of different intervention strategies.

Table 1. The numerical values corresponding to the deterministic parameters and initial data govern-
ing the dynamics of system (2).

Parameters Extinction Case Persistence Case Source

r 0.177 0.177 [24]
c 0.15 0.15 Estimated

β1 0.249 3.3 [24]
β2 1.3 2.3 [24]
u 0.167 0.167 [24]
h1 0.2 0.2 [24]
h2 0.01 0.01 [24]
m1 0.1 0.1 Estimated
m2 0.2 0.2 Estimated
m3 0.1 0.1 Estimated
m4 0.2 0.2 Estimated

S1(0) 2 2 Assumed
S2(0) 1 1 Assumed
I(0) 0.5 0.5 Assumed
C(0) 0.1 0.1 Assumed

12
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About the dual incidence functions g1 and g2, we consider the following general
nonlinear incidences:

f1(S1, I) =
β1S1

1 + m1S1 + m2 I
, f2(S2, I) =

β2S2

1 + m3S2 + m4 I
,

where m1, m2, m3, and m4 are four saturated coefficients. We begin our check by illustrating
the rigor of condition (9). We take κ = `2 = 0.3 and κ(ξ) = z2(ξ) = 0.08. In this case,
we obtain

(u + c)− 0.5κ2
1 −

∫

R4\{0}

(
z1(ξ)− ln(1 + z1(ξ))

)
G1(dξ) = 0.017 > 0.

According to Figure 2, we visually depict the existence of an ergodic stationary dis-
tribution for the stochastic processes (S̄1, S̄2). This graphical representation unmistakably
highlights the enduring nature of the processes over time.

Figure 2. Numerical simulation of the existence of a stationary distribution: histograms and joint
distribution under condition (9).

Firstly, we take specific values for the parameters κk (k ∈ {1, · · · , 4}), setting them
as 0.12, 0.11, 0.15, and 0.1, respectively. The jump intensities are defined using the func-
tion zk(ξ) = −ukξ

0.5+ξ2 , where k ∈ 1, · · · , 4 and ξ = 0.3. The corresponding values for uk

(k ∈ {1, · · · , 4}) are established as 0.02, 0.03, −0.0770, and 0.03, respectively. Here, we
obtain λ1 = 0.0592 and λ2 = 0.2061. As a result, we have verified that the prerequisite
outlined in Theorem 2 has been met and

lim sup
t→∞

1
t

ln
(

I(t)
)
= λ1 − λ2 = −0.1469 < 0.

To solidify this discovery through numerical analysis, we depict two distinct trajectory
types corresponding to system (2) in Figure 3. From this visualization, several observations
can be drawn. Initially, we note the extinction of Tuberculosis in both trajectories, yet the
solution involving jumps demonstrates a faster extinction compared to the solution with
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only white noise. Additionally, we observe that the incorporation of jumps helps in cap-
turing abrupt changes, particularly in behavioral shifts. At time t = 38, a significant jump
occurs within the educated class S2, leading to complete extinction in the infected class.

Now, let us explore the scenario of persistent Tuberculosis. In this experimental setup,
our focus is on κk (k ∈ 1, · · · , 4), with specific values assigned as 0.09, 0.09, 0.028, and 0.026,
respectively. The jump intensities are determined by the function zk(ξ) =

−ukξ
0.5+ξ2 , where

k spans from 1 to 4, and ξ is set at 0.24. The corresponding values for uk (k ∈ 1, · · · , 7)
are defined as 0.02, 0.03, 0.02, and 0.03, respectively. By utilizing the numerical values
provided in [24] and adjusting β1 to 3.3 and β2 to 2.3, we can readily confirm the validity
of our hypotheses, resulting in λ1 = 3.9876 and λ2 = 1.231. Consequently, in line with
the assertions of Theorem 2, we can confidently affirm that our model exhibits persistence
on average, a trend consistently reflected in the patterns illustrated in Figure 4. Notably,
the endemic equilibrium characterizing the deterministic version no longer functions as
the stable state for the stochastic model (2). Therefore, over an extended temporal span,
the influence of noise intensity becomes a significant factor, shaping the extent to which the
solution fluctuates around the deterministic equilibrium states.

Figure 3. Numerical simulation of system (2) with two trajectories: one characterized by white noise
and the other by jump diffusion.

Figure 4. Cont.
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Figure 4. Numerical simulation of system (2) with two trajectories: one characterized by white noise
and the other by jump diffusion.

5. Conclusions

The dynamic shift in behavior during an epidemic profoundly impacts infection
probabilities. Building upon the model introduced in [4], we significantly extended the
framework by incorporating general incidence functions and Lévy jumps. This extension
ensures the well-posedness of the model and allows us to devise an auxiliary system
that is pivotal in determining the global threshold distinguishing between extinction and
persistence. Our practical application, validated within the context of Zoonotic Tuberculosis,
underscores the pivotal role of Lévy jumps in accurately modeling epidemics, shedding
light on their intricate dynamics. Unlike prior works, our paper’s distinctiveness lies
in the innovative mathematical techniques employed, introducing a more sophisticated
set of hypotheses and a nuanced analytical framework. The inclusion of Assumptions 1
and 2 enhances the precision and depth of our analysis, emphasizing the importance of a
meticulous approach. Furthermore, our expanded assumption framework accommodates
a broader range of functions, using a non-standard analytical approach to delineate the
threshold between the eradication and continuation of infection.

These theoretical advancements hold significant implications for public health, pro-
viding crucial insights that can inform and improve epidemic management and mitigation
strategies. Understanding the impact of behavior shifts on infection probabilities allows
public health officials to design more effective interventions. For instance, targeted public
health campaigns can be developed to encourage behaviors that reduce transmission rates,
such as promoting vaccination, social distancing, and the use of personal protective equip-
ment. Additionally, the integration of Lévy jumps into epidemic models enables better
prediction and rapid response to sudden changes in infection rates, facilitating quicker
and more effective public health responses to emerging outbreaks. By identifying precise
thresholds for extinction and persistence, health authorities can allocate resources more
efficiently, prioritizing areas with the highest risk of sustained transmission. Our model
also assists policymakers in developing evidence-based policies that account for behavioral
dynamics and nonlinear transmission patterns, leading to more effective control measures.

Furthermore, the potential for broader applications of our theoretical framework is
vast. Future research should explore extending our model to various infectious diseases,
potentially creating a universal framework for epidemic modeling. This extension would
significantly enhance our ability to manage a wide range of public health challenges,
improving preparedness and response strategies. By integrating these findings into public
health strategies, we can enhance epidemic management, protect vulnerable populations,
and ultimately save lives. The implications of our work extend beyond the immediate
findings, offering a robust foundation for future innovations in epidemic modeling and
public health policy.
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Abstract: Under the effect of the Rosenblatt process, time-delay systems of nonlinear stochastic delay
differential equations are considered. Utilizing the delayed matrix functions and exact solutions for
these systems, the existence and Hyers–Ulam stability results are derived. First, depending on the
fixed point theory, the existence and uniqueness of solutions are proven. Next, sufficient criteria
for the Hyers–Ulam stability are established. Ultimately, to illustrate the importance of the results,
an example is provided.
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1. Introduction

Many researchers have paid significant attention to stochastic delay differential equa-
tions (SDDEs) and their applications because of their effective modeling in several scien-
tific and engineering fields, such as physics, economics, biology, fluid dynamics, finance,
medicine, and so forth (see, for instance, [1–9]). Recently, determining the exact solutions
of differential systems has been attempted. Specifically, many new results regarding how
to represent solutions for time-delay systems were obtained from the novel study [10,11],
which were applied to stability analysis and control problems (see, [12–17] and the refer-
ences therein).

The Wiener–Ito multiple integral of order q is defined as

Zq
H(`) = a(H, q)

∫

Rq

(∫ `

0

q
∏
j=1

(
ς−=j

)−
(

1
2+

1−H
q

)

+ dς

)
dG(=1) . . . dG

(
=q
)
, (1)

in terms of the standard Wiener process, (G(=))=∈R, where E
(

Zq
H(1)

)2
= 1 and =+ =

max(=, 0) are the conditions under which a(H, q) is a normalizing constant. The process(
Zq

H(`)
)
`≥0

, provided by (1), is called the Hermite process. The Hermite process is the

fractional Brownian motion (fBm) with a Hurst parameter of H ∈
(

1
2 , 1
)

for q = 1, while
it is not Gaussian for q = 2. Additionally, the Hermite process, denoted by (1) for q = 2,
is referred to as the Rosenblatt process. Most of the studies [18–20] involved fBm because
of its self-similarity, long-range dependence, and more straightforward calculus of the
Gaussian. But, fBm fails in the concrete case of having non-Gaussianity smooth-tongued in
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the models. In that situation, the Rosenblatt process is applicable. Non-Gaussian processes
like the Rosenblatt process have numerous intriguing characteristics such as stationarity of
the increments, long-range dependence, and self-similarity (for more details, see [21–29]).
Therefore, it seems interesting to study a new class of stochastic differential equations
driven by the Rosenblatt process.

On the other hand, studying the stability of (SDDEs) solutions is essential, and Hyers–
Ulam stability (HUS) is a crucial topic. In 1940, Ulam [30] created the first proposal that
functional equations are stable, during a lecture at Wisconsin University. In 1941, Hyers [31]
provided a solution to this problem, after which HUS was established. In addition to
providing a solid theoretical foundation for the well-posedness and HUS for SDDEs,
the study of HUS for SDDEs also provides a solid theoretical foundation for the approximate
solution of SDDEs. When it is rather difficult to acquire a precise solution for the system
with HUS, we may substitute an approximate solution for an accurate one, and the HUS
can, to a certain extent, ensure the dependability of the estimated solution.

Recently, many researchers have examined the HUS of diverse kinds of stochastic
differential equations (see, [32–35] and the references therein).

However, as far as we know, the standard literature has not dealt with the existence
and HUS of second-order nonlinear SDDEs driven by the Rosenblatt process. Therefore,
in this study, we try, for the first time, to analyze such a topic.

Our study focuses on determining the existence and HUS of the nonlinear SDDEs
driven by the Rosenblatt process, taking into account the previous research.

ℵ′′(`) +Dℵ(`− ζ) = }(`,ℵ(`)) + ∆(`,ℵ(`))dZH(`)
d` , ` ∈ ∓ := [0, v],

ℵ(`) ≡ ψ(`), ℵ′(`) ≡ ψ′(`), ` ∈ ∓1 := [−ζ, 0],
(2)

where ℵ(`) ∈ Rn represents the state vector, ζ > 0 denotes a delay, v > (m− 1)ζ,
m = 1, 2, . . . , ψ ∈ C([−ζ, 0],Rn), D ∈ Rn×n is any matrix, and } ∈ C(∓×Rn,Rn) is
a provided function. In the separable Hilbert space Rn, let ℵ(·) have value, and let the norm
be ‖·‖ and the inner product be 〈·, ·〉 with parameter H ∈

(
1
2 , 1
)

, ZH(`) is a Rosenblatt
process on an another real separable Hilbert space (A, ‖·‖A, 〈·, ·〉A). Furthermore, consider

∆ ∈ C
(
∓×Rn, L0

2
)
, where L0

2 = L2

(
Q

1
2A,Rn

)
.

The remaining sections of this paper are structured as follows: In Section 2, we present
some notations and necessary preliminaries. In Section 3, by utilizing Krasnoselskii’s fixed
point theorem, some sufficient conditions are established for the existence and uniqueness
of solutions to the system (2). In Section 4, we prove the Hyers–Ulam stability of (2)
via Grönwall’s inequality lemma approach. Finally, we provide a numerical example to
illustrate the effectiveness of the derived results.

2. Preliminaries

During the entire paper, consider (Σ,ð,P) to represent the complete probability space
with a probability measure P on Σ and a filtration {ð`| ` ∈ ∓} produced by
{ZH(s)| s ∈ [0, `]}. For some 1 < µ < ∞, consider the Hilbert space Lµ(Σ,ðv,Rn)
to express all ðv-measurable µth-integrable variables having values in Rn with norm
‖ℵ‖µ

Lµ = E‖ℵ(`)‖µ, where the expectation E is defined by Eℵ =
∫

Σ ℵdP. Assume that A
and B are two Banach spaces, Q ∈ Lb(A,A) indicates an operator on A that is self-adjoint
trace class and non-negative, and Lb(A,B) is the space of the bounded linear operators
from A to B. Let L0

2 = L2

(
Q

1
2A,B

)
be the space of all Q-Hilbert–Schmidt operators from

Q
1
2A into B, equipped with the norm

‖Ξ‖2
L0

2
=
∥∥∥ΞQ

1
2

∥∥∥
2
= Tr

(
ΞQΞT

)
.
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Provided a norm ‖Ξ‖Q =
(
sup`∈∓ E‖Ξ(`)‖µ)1/µ, letQ := C([−ζ, v], Lµ(Σ,ðv,P,Rn))

be the Banach space of all µth-integrable and ðv-adapted processes Ξ. A norm ‖·‖ on Rn

can be represented by the matrix norm

‖D‖ = max

{
n

∑
i=1
|di1|,

n

∑
i=1
|di2|, . . . ,

n

∑
i=1
|din|

}
,

where D : Rn −→ Rn. Furthermore, consider

C1(∓, Lµ(Σ,ðv,P,Rn))

=
{
ℵ ∈ C(∓, Lµ(Σ,ðv,P,Rn)) : ℵ′ ∈ C(∓, Lµ(Σ,ðv,P,Rn))

}
.

Finally, we assume the initial values

‖ψ‖µ
C = sup

s∈∓1

E‖ψ(s)‖µ and
∥∥ψ′
∥∥µ

C = sup
s∈∓1

E
∥∥ψ′(s)

∥∥µ.

Some of the basic definitions and lemmas employed in this study are discussed.

Definition 1 ([13]). Let the n × n identity matrix and null matrix be symbolized by I and Θ,
respectively. Then, for ι = 0, 1, 2, . . . , the delayed matrix functions Hζ(D`) and Mζ(D`) are
defined, respectively, by

Hζ(D`) :=





Θ, −∞ < ` < −ζ,
I, − ζ ≤ ` < 0,
I−D `2

2! , 0 ≤ ` < ζ,
...

...

I−D `2

2! +D2 (`−ζ)4

4!

+ · · ·+ (−1)ιDι (`−(ι−1)ζ)2ι

(2ι)! , (ι− 1)ζ ≤ ` < ιζ,

(3)

and

Mζ(D`) :=





Θ, −∞ < ` < −ζ,
I(`+ ζ), −ζ ≤ ` < 0,
I(`+ ζ)−D `3

3! , 0 ≤ ` < ζ,
...

...

I(`+ ζ)−D `3

3! +D2 (`−ζ)5

5!

+ · · ·+ (−1)ιDι (`−(ι−1)ζ)2ι+1

(2ι+1)! , (ι− 1)ζ ≤ ` < ιζ,

(4)

Lemma 1 ([13]). The solution of (2) can be expressed in the following form:

ℵ(`) = Hζ(D(`− ζ))ψ(0) +Mζ(D(`− ζ))ψ′(0)

−D
∫ 0

−ζ
Mζ(D(`− 2ζ − ς))ψ(ς)dς

+
∫ `

0
Mζ(D(`− ζ − ς))}(ς,ℵ(ς))dς

+
∫ `

0
Mζ(D(`− ζ − ς))∆(ς,ℵ(ς))dZH(ς).

Lemma 2 ([29]). If σ : ∓ −→L0
2 satisfies

∫ v

0
‖σ(ς)‖2

L0
2
dς < ∞,
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then

E
∥∥∥∥
∫ `

0
σ(ς)dZH(ς)

∥∥∥∥
2

≤ 2H`2H−1
∫ `

0
‖σ(ς)‖2

L0
2
dς.

Lemma 3 ([36]). For Λ : ∓ −→L0
2, such that

∫ `

0
‖Λ(ς)‖µ

L0
2
dς < ∞,

and applying Hölder’s inequality and the Kahane–Khintchine inequality, there is a constant τµ,
such that

E
∥∥∥∥
∫ `

0
Λ(ς)dZH(ς)

∥∥∥∥
µ

≤ τµ

{
E
∥∥∥∥
∫ `

0
Λ(ς)dZH(ς)

∥∥∥∥
2
}µ/2

≤ τµ

{
2H`2H−1

∫ `

0
‖Λ(ς)‖2

L0
2
dς

}µ/2

≤ τµ

(
2H`2H−1

)µ/2(∫ `

0
dς

)µ/2−1 ∫ `

0

(
‖Λ(ς)‖2

L0
2

)µ/2
dς

= τµ(2H)µ/2`µH−1
∫ `

0
‖Λ(ς)‖µ

L0
2
dς.

Definition 2 ([37]). When considering a specific constant κ > 0, and a function Π ∈ C(∓,Rn)
fulfilling

E
∥∥Π′′(`) +DΠ(`− ζ)− }(`, Π(`))−∆(`, Π(`))dZH(`)

∥∥µ ≤ κ, ` ∈ [0, v], (5)

implies that there exist a solution ℵ ∈ C(∓,Rn) of (2) and a number W > 0 such that

E‖Π(`)− ℵ(`)‖µ ≤Wκ, for all ` ∈ [0, v].

The system (2) is Hyers–Ulam stable on [0, v].

Remark 1 ([37]). A function Π ∈ C(∓,Rn) is a solution of the inequality (5) if and only if there
exists a function E ∈ C(∓,Rn), such that

(i) E‖E(`)‖µ ≤ κ, ` ∈ ∓.
(ii) Π′′(`) = −DΠ(`− ζ) + ∆(`, Π(`))dZH(`) + }(`, Π(`)) + E(`), ` ∈ ∓.

Definition 3 ([38]). The Mittag–Leffler function, containing two parameters, is defined as

Eα,ε(`) =
∞

∑
ι=0

`ι

Γ(αι + ε)
, α, ε > 0, ` ∈ C.

If ε = 1, then

Eα,1(`) = Eα(`) =
∞

∑
ι=0

`ι

Γ(αι + 1)
, α > 0.

Lemma 4 ([15]). For any ` ∈ [(ι− 1)ζ, ιζ], ι = 1, 2, . . . , we obtain

∥∥Hζ(D(`))
∥∥ ≤ E2

(
‖D‖`2

)
,

and ∥∥Mζ(D(`))
∥∥ ≤ (`+ ζ)E2,2

(
‖D‖(`+ ζ)2

)
.
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Lemma 5. (Grönwall’s inequality, [39]). Let }(`) and ℘(`) be nonnegative, continuous functions
on 0 ≤ ` ≤ T, for which the inequality

}(`) ≤ η +
∫ `

0
℘(s)}(s)ds, for ` ∈ [0, T],

holds, where η ≥ 0 is a constant. Then,

}(`) ≤ η exp
(∫ `

0
℘(s)ds

)
, for ` ∈ [0, T].

Lemma 6. (Krasnoselskii’s fixed point theorem, [40]). Assume thatJ is a closed, bounded, and non-
empty convex subset of a Banach space U . If O1 and O2 are mappings from J into U , such that

(i) O1`+ O2ℵ ∈ J for every pair `, ℵ ∈ J ,
(ii) O2 is a contraction mapping,
(iii) O1 is continuous and compact,

then there is = ∈ J , such that = = O1=+ O2=.

3. Main Results

In this section, we present and prove the existence, uniqueness, and Hyers–Ulam
stability results of (2). To prove our main results, the assumptions listed below are assumed:

(G1): There exist a function ∆ : ∓×Rn −→ L0
2 that is continuous, and a constant

U∆ ∈ Lr2(∓,R+) and r2 > 1, such that

E‖∆(`,ℵ1)−∆(`,ℵ2)‖µ

L0
2
≤ U∆(`)E‖ℵ1 − ℵ2‖µ, for all ` ∈ ∓, ℵ1,ℵ2 ∈ Rn.

Let µ ∈ [2, ∞) and sup`∈∓ E‖∆(`, 0)‖µ

L0
2
= W∆ < ∞.

(G2): There exist a function } : ∓ × Rn −→ L0
2 that is continuous, and a constant

U} ∈ Lr2(∓,R+) and r2 > 1, such that

E‖}(`,ℵ1)− }(`,ℵ2)‖µ ≤ U}(`)E‖ℵ1 − ℵ2‖µ, E‖}(`,ℵ)‖µ ≤ U}(`)
(
1 + E‖ℵ‖µ),

for all ` ∈ ∓, ℵ1,ℵ2 ∈ Rn.
Using Krasnoselskii’s fixed point theorem, we now prove the existence and unique-

ness results.

Theorem 1. If (G1)–(G2) holds, then there exists a unique mild solution of the nonlinear stochas-
tic system (2), provided that

2µ−1W2 + W3 < 1, (6)

where

W2 :=
τµ(2H)µ/2v

µ(H+1)− 1
r2

(µr1 + 1)
1
r1

(
E2,2

(
‖D‖v2

))µ
‖U∆‖Lr2 (∓,R+),

and

W3 :=
v

µ+ 1
r1

(µr1 + 1)
1
r1

(
E2,2

(
‖D‖v2

))µ
‖U}‖Lr2 (∓,R+),

for 1
r1
+ 1

r2
= 1, r1, r2 > 1.

Proof. We deal with the set

T$ =

{
ℵ ∈ Q : ‖ℵ‖µ

Q = sup
`∈∓

E‖ℵ(`)‖µ ≤ $

}
,
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for each positive number $. Let ` ∈ ∓. Applying Lemma 1, we then transform problem (2)
into a fixed point problem and define an operator F : Q −→ Q by

(Fℵ)(`) = Hζ(D(`− ζ))ψ(0) +Mζ(D(`− ζ))ψ′(0)

−D
∫ 0

−ζ
Mζ(D(`− 2ζ − ς))ψ(ς)dς

+
∫ `

0
Mζ(D(`− ζ − ς))}(ς,ℵ(ς))dς

+
∫ `

0
Mζ(D(`− ζ − ς))∆(ς,ℵ(ς))dZH(ς),

for ` ∈ ∓. Decomposing the operator F, the operators L1 and L2 can be described on T$,
as provided below:

(L1ℵ)(`) = Hζ(D(`− ζ))ψ(0) +Mζ(D(`− ζ))ψ′(0)

−D
∫ 0

−ζ
Mζ(D(`− 2ζ − ς))ψ(ς)dς (7)

+
∫ `

0
Mζ(D(`− ζ − ς))}(ς,ℵ(ς))dς,

(L2ℵ)(`) =
∫ `

0
Mζ(D(`− ζ − ς))∆(ς,ℵ(ς))dZH(ς). (8)

At this point, we observe that T$ is a convex set, closed and bounded of Q. Consequently,
our proof consists of three essential steps:

Step 1. We show the existence of $ > 0, such that L1ℵ+ L2= ∈ T$ for all ℵ, = ∈ T$.
For each ` ∈ ∓ and ℵ, = ∈ T$, and using (7) and (8), we obtain

‖L1ℵ+ L2=‖µ
Q

= sup
`∈∓

E‖(L1ℵ+ L2=)(`)‖µ

≤ 5µ−1
[∥∥Hζ(D(`− ζ))

∥∥µE‖ψ(0)‖µ +
∥∥Mζ(D(`− ζ))

∥∥µE
∥∥ψ′(0)

∥∥µ

+‖D‖µE
∥∥∥∥
∫ 0

−ζ
Mζ(D(`− 2ζ − ς))ψ(ς)dς

∥∥∥∥
µ

(9)

+E
∥∥∥∥
∫ `

0
Mζ(D(`− ζ − ς))}(ς,ℵ(ς))dς

∥∥∥∥
µ

+E
∥∥∥∥
∫ `

0
Mζ(D(`− ζ − ς))∆(ς,=(ς))dZH(ς)

∥∥∥∥
µ
]

= ∑5
n=1In.

From Lemma 4, we have

I1 = 5µ−1∥∥Hζ(D(`− ζ))
∥∥µE‖ψ(0)‖µ

≤ 5µ−1
(
E2

(
‖D‖(`− ζ)2

))µ
E‖ψ‖µ

C,

I2 = 5µ−1∥∥Mζ(D(`− ζ))
∥∥µE

∥∥ψ′(0)
∥∥µ

≤ 5µ−1
(
`E2,2

(
‖D‖`2

))µ
E
∥∥ψ′
∥∥µ

C,
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I3 = 5µ−1‖D‖µE
∥∥∥∥
∫ 0

−ζ
Mζ(D(`− 2ζ − ς))ψ(ς)dς

∥∥∥∥
µ

≤ 5µ−1‖D‖µζµ−1E‖ψ‖µ
C

∫ 0

−ζ

∥∥Mζ(D(`− 2ζ − ς))
∥∥µdς

≤ 5µ−1‖D‖µζµ
(
`E2,2

(
‖D‖`2

))µ
E‖ψ‖µ

C,

I4 = 5µ−1E
∥∥∥∥
∫ `

0
Mζ(D(`− ζ − ς))∆(ς,=(ς))dZH(ς)

∥∥∥∥
µ

= 5µ−1E

{∥∥∥∥
∫ `

0
Mζ(D(`− ζ − ς))∆(ς,=(ς))dZH(ς)

∥∥∥∥
2
}µ/2

.

Applying Lemmas 2 and 3, we obtain

I4 ≤ 5µ−1τµ

{
E
∥∥∥∥
∫ `

0
Mζ(D(`− ζ − ς))∆(ς,=(ς))dZH(ς)

∥∥∥∥
2
}µ/2

≤ 5µ−1τµ

{
2H`2H−1

∫ `

0
E
∥∥Mζ(D(`− ζ − ς))∆(ς,=(ς))

∥∥2
L0

2
dς

}µ/2

≤ 5µ−1τµ

(
2H`2H−1

)µ/2
{∫ `

0
E
∥∥Mζ(D(`− ζ − ς))∆(ς,=(ς))

∥∥2
L0

2
dς

}µ/2

≤ 5µ−1τµ

(
2H`2H−1

)µ/2

×





(∫ `

0

(
E
∥∥Mζ(D(`− ζ − ς))∆(ς,=(ς))

∥∥2
L0

2

)µ/2
dς

)2/µ(∫ `

0
dς

) µ−2
µ





µ/2

≤ 5µ−1τµ(2H)µ/2vµH−1
∫ `

0
E
∥∥Mζ(D(`− ζ − ς))∆(ς,=(ς))

∥∥µ

L0
2
dς.

Using Lemma 4 and (G1), we obtain

I4 ≤ 5µ−1τµ(2H)µ/2vµH−1
∫ `

0

(
(`− ς)E2,2

(
‖D‖(`− ς)2

))µ
E‖∆(ς,=(ς))‖µ

L0
2
dς

≤ 5µ−1τµ(2H)µ/2vµH−1

×2µ−1
{∫ `

0

(
(`− ς)E2,2

(
‖D‖(`− ς)2

))µ
E‖∆(ς,=(ς))−∆(ς, 0)‖µ

L0
2
dς

+
∫ `

0

(
(`− ς)E2,2

(
‖D‖(`− ς)2

))µ
E‖∆(ς, 0)‖µ

L0
2
dς

}

≤ (10)µ−1τµ(2H)µ/2vµH−1 (10)

×
{∫ `

0

(
(`− ς)E2,2

(
‖D‖(`− ς)2

))µ
U∆(ς)E‖=(ς)‖µdς

+W∆

∫ `

0

(
(`− ς)E2,2

(
‖D‖(`− ς)2

))µ
dς

}

≤ (10)µ−1τµ(2H)µ/2vµH−1
{
‖=‖µ

Q

∫ `

0

(
(`− ς)E2,2

(
‖D‖(`− ς)2

))µ
U∆(ς)dς

+
vµ+1W∆

µ + 1

(
E2,2

(
‖D‖v2

))µ
}

.
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Additionally, using Hölder inequality and (G1), we obtain

∫ `

0

(
(`− ς)E2,2

(
‖D‖(`− ς)2

))µ
U∆(ς)dς

≤
(∫ `

0

(
(`− ς)E2,2

(
‖D‖(`− ς)2

))µr1
dς

) 1
r1
(∫ `

0
Ur2

∆ (ς)dς

) 1
r2

(11)

≤
(
E2,2

(
‖D‖v2

))µ
(∫ `

0
(`− ς)µr1dς

) 1
r1
(∫ `

0
Ur2

∆ (ς)dς

) 1
r2

≤ v
µ+ 1

r1

(µr1 + 1)
1
r1

(
E2,2

(
‖D‖v2

))µ
‖U∆‖Lr2 (∓,R+).

Substituting (11) into (10), we obtain

I4 ≤ (10)µ−1τµ(2H)µ/2vµH−1

×





$v
µ+ 1

r1

(µr1 + 1)
1
r1

(
E2,2

(
‖D‖v2

))µ
‖U∆‖Lr2 (∓,R+) +

vµ+1W∆

µ + 1

(
E2,2

(
‖D‖v2

))µ





= (10)µ−1W2$ +
(10)µ−1τµ(2H)µ/2vµ(H+1)W∆

µ + 1

(
E2,2

(
‖D‖v2

))µ
.

Furthermore, using (11) and (G2), we obtain

I5 = 5µ−1E
∥∥∥∥
∫ `

0
Mζ(D(`− ζ − ς))}(ς,ℵ(ς))dς

∥∥∥∥
µ

≤ 5µ−1
∫ `

0

(
(`− ς)E2,2

(
‖D‖(`− ς)2

))µ
E‖}(ς,ℵ(ς))‖µdς

≤ 5µ−1
∫ `

0

(
(`− ς)E2,2

(
‖D‖(`− ς)2

))µ
U}(ς)

(
1 + E‖ℵ‖µ)dς

≤ 5µ−1(1 + $)v
µ+ 1

r1

(µr1 + 1)
1
r1

(
E2,2

(
‖D‖v2

))µ
‖U}‖Lr2 (∓,R+)

= 5µ−1(1 + $)W3.

From I1 to I5, (9) becomes

‖L1ℵ+ L2=‖µ
Q

≤ 5µ−1
{(

E2

(
‖D‖(`− ζ)2

))µ
E‖ψ‖µ

C

+
(
`E2,2

(
‖D‖`2

))µ
E
∥∥ψ′
∥∥µ

C

+‖D‖µζµ
(
`E2,2

(
‖D‖`2

))µ
E‖ψ‖µ

C

+2µ−1W2$ +
2µ−1τµ(2H)µ/2vµ(H+1)W∆

µ + 1

(
E2,2

(
‖D‖v2

))µ

+(1 + $)W3}
≤ 5µ−1

{
θ(v) + $

(
2µ−1W2 + W3

)
+ W3

}
,
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where

θ(`) =
(
E2

(
‖D‖(`− ζ)2

))µ
E‖ψ‖µ

C +
(
`E2,2

(
‖D‖`2

))µ
E
∥∥ψ′
∥∥µ

C

+‖D‖µζµ
(
`E2,2

(
‖D‖`2

))µ
E‖ψ‖µ

C

+
2µ−1τµ(2H)µ/2`µ(H+1)W∆

µ + 1

(
E2,2

(
‖D‖`2

))µ
.

As a result, from (6), we obtain L1ℵ+ L2= ∈ T$ for some $ sufficiency large.
Step 2. We show that L1 : T$ −→ Q is a contraction. For each ` ∈ ∓ and ℵ, = ∈ T$,

using (7) and (G2), we obtain

E‖(L1ℵ)(`)− (L1=)(`)‖µ

= E
∥∥∥∥
∫ `

0
Mζ(D(`− ζ − ς))[}(ς,ℵ(ς))− }(ς,=(ς))]dς

∥∥∥∥
µ

≤ E‖ℵ − =‖µ
Q

∫ `

0

(
(`− ς)E2,2

(
‖D‖(`− ς)2

))µ
U}(ς)dς

≤W3‖ℵ − =‖µ
Q.

As we can see from (6), noting W3 < 1, that L1 is a contraction mapping.
Step 3. We show that L2 : T$ −→ Q is a continuous compact operator. First, we verify

the continuity of L2. Consider ℵn ∈ T$ with ℵn −→ ℵ as n −→ ∞ in T$. Thus, using
Lebesgue’s dominated convergence theorem and (8), we obtain, for each ` ∈ ∓,

E‖(L2ℵn)(`)− (L2ℵ)(`)‖µ

≤ τµ(2H)µ/2vµH−1
∫ `

0

∥∥Mζ(D(`− ζ − ς))
∥∥µE‖∆(ς,ℵn(ς))−∆(ς,ℵ(ς))‖µ

L0
2
dς

≤ τµ(2H)µ/2vµH−1
∫ `

0

(
(`− ς)E2,2

(
‖D‖(`− ς)2

))µ
U∆(ς)

×‖ℵn − ℵ‖µ
Qdς −→ 0, as n −→ ∞.

This proves the continuity of L2 : T$ −→ Q. Thereafter, we show that L2 is uniformly
bounded on T$. For each ` ∈ ∓, ℵ ∈ T$, we have

‖L2ℵ‖µ
Q = sup

`∈∓
E‖(L2ℵ)(`)‖µ

≤ sup
`∈∓

{
E
∥∥∥∥
∫ `

0
Mζ(D(`− ζ − ς))∆(ς,ℵ(ς))dZH(ς)

∥∥∥∥
µ
}

≤ 2µ−1W2$ +
2µ−1τµ(2H)µ/2vµ(H+1)W∆

µ + 1

(
E2,2

(
‖D‖v2

))µ
,

this indicates that, on T$, L2 is uniformly bounded. Showing that L2 is equicontinuous is
still necessary. For each `2, `3 ∈ ∓, 0 < `2 < `3 ≤ v and ℵ ∈ T$, using (8), we obtain

(L2ℵ)(`3)− (L2ℵ)(`2)

=
∫ `3

0
Mζ(D(`3 − ζ − ς))∆(ς,ℵ(ς))dZH(ς)

−
∫ `2

0
Mζ(D(`2 − ζ − ς))∆(ς,ℵ(ς))dZH(ς)

= Ψ1 + Ψ2,
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where

Ψ1 =
∫ `3

`2

Mζ(D(`3 − ζ − ς))∆(ς,ℵ(ς))dZH(ς),

and

Ψ2 =
∫ `2

0

[
Mζ(D(`3 − ζ − ς))−Mζ(D(`2 − ζ − ς))

]
∆(ς,ℵ(ς))dZH(ς).

Thus

E‖(L2ℵ)(`3)− (L2ℵ)(`2)‖µ = E‖Ψ1 + Ψ2‖µ

≤ 2µ−1{E‖Ψ1‖µ + E‖Ψ2‖µ}. (12)

Now, we can check ‖Ψr‖ −→ 0 as `2 −→ `3, when r = 1, 2. For Ψ1, we obtain

E‖Ψ1‖µ = E
∥∥∥∥
∫ `3

`2

Mζ(D(`3 − ζ − ς))∆(ς,ℵ(ς))dZH(ς)

∥∥∥∥
µ

≤ τµ(2H)µ/2(`3 − `2)
µH−1

∫ `3

`2

E
∥∥Mζ(D(`− ζ − ς))∆(ς,ℵ(ς))

∥∥µ

L0
2
dς

≤ 2µ−1τµ(2H)µ/2(`3 − `2)
µH−1

×
{

$
∫ `3

`2

(
(`− ς)E2,2

(
‖D‖(`− ς)2

))µ
U∆(ς)dς

+
(`3 − `2)

µ+1W∆

µ + 1

(
E2,2

(
‖D‖(`3 − `2)

2
))µ

}
−→ 0, as `2 −→ `3.

For Ψ2, we obtain

E‖Ψ2‖µ

= E
∥∥∥∥
∫ `2

0

[
Mζ(D(`3 − ζ − ς))−Mζ(D(`2 − ζ − ς))

]
∆(ς,ℵ(ς))dZH(ς)

∥∥∥∥
µ

≤ τµ(2H)µ/2`
µH−1
2

×
∫ `2

0
E
∥∥[Mζ(D(`3 − ζ − ς))−Mζ(D(`2 − ζ − ς))

]
∆(ς,ℵ(ς))

∥∥µ

L0
2
dς

≤ 2µ−1τµ(2H)µ/2`
µH−1
2

×
{

$
∫ `2

0

∥∥Mζ(D(`3 − ζ − ς))−Mζ(D(`2 − ζ − ς))
∥∥µU∆(ς)dς

+W∆

∫ `2

0

∥∥Mζ(D(`3 − ζ − ς))−Mζ(D(`2 − ζ − ς))
∥∥µdς

}

≤ 2µ−1τµ(2H)µ/2`
µH−1
2

×
{

$‖U∆‖Lr2 (∓,R+)

×
(∫ `2

0

(∥∥Mζ(D(`3 − ζ − ς))−Mζ(D(`2 − ζ − ς))
∥∥µ
)r1
)1/r1

dς

+W∆

∫ `2

0

∥∥Mζ(D(`3 − ζ − ς))−Mζ(D(`2 − ζ − ς))
∥∥µdς

}
.

From (4), knowing thatMζ(D`) is uniformly continuous for ` ∈ ∓, we obtain
∥∥Mζ(D(`3 − ζ − ς))−Mζ(D(`2 − ζ − ς))

∥∥ −→ 0, as `2 −→ `3.

Therefore, we have ‖Ψr‖ −→ 0 as `2 −→ `3, when r = 1, 2, which leads, via (12), to

E‖(L2ℵ)(`3)− (L2ℵ)(`2)‖µ −→ 0, as `2 −→ `3,
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for all ℵ ∈ T$. Then, L2 is compact on T$ via the Arzelà-Ascoli theorem (see [40]). As a re-
sult, Fℵ = L1ℵ+L2ℵ has a fixed point ℵ in T$, in accordance with Lemma 6. Furthermore,
ℵ is also a solution of (2) and (L1ℵ+ L2ℵ)(v) = ℵ1. Therefore, (2) has a mild solution.
This completes the proof.

Next, we verify the Hyers–Ulam stability via Grönwall’s inequality lemma approach.

Theorem 2. If the assumptions of Theorem 1 are satisfied, then the system (2) has Ulam–Hyers
stability.

Proof. Assume that ℵ is the unique solution of (2) and Π ∈ C(∓,Rn) is a solution of the
inequality (5) with the aid of Theorem 1. Then

ℵ(`) = Hζ(D(`− ζ))ψ(0) +Mζ(D(`− ζ))ψ′(0)

−D
∫ 0

−ζ
Mζ(D(`− 2ζ − ς))ψ(ς)dς

+
∫ `

0
Mζ(D(`− ζ − ς))}(ς,ℵ(ς))dς

+
∫ `

0
Mζ(D(`− ζ − ς))∆(ς,ℵ(ς))dZH(ς).

Based on Remark 1, then

Π′′(`) = −DΠ(`− ζ) + ∆(`, Π(`))dZH(`) + }(`, Π(`)) + E(`), ` ∈ ∓,

can be expressed as

Π(`) = Hζ(D(`− ζ))ψ(0) +Mζ(D(`− ζ))ψ′(0)

−D
∫ 0

−ζ
Mζ(D(`− 2ζ − ς))ψ(ς)dς

+
∫ `

0
Mζ(D(`− ζ − ς))∆(ς, Π(ς))dZH(ς)

+
∫ `

0
Mζ(D(`− ζ − ς))}(`, Π(`))dς

+
∫ `

0
Mζ(D(`− ζ − ς))E(ς)dς.

In the same manner as in the proof of Theorem 1 and, as a consequence of (9), we have

E‖Π(`)− ℵ(`)‖µ

≤ 3µ−1

{
E
∥∥∥∥
∫ `

0
Mζ(D(`− ζ − ς))[∆(ς, Π(ς))−∆(ς,ℵ(ς))]dZH(ς)

∥∥∥∥
µ

+E
∥∥∥∥
∫ `

0
Mζ(D(`− ζ − ς))[}(`, Π(`))− }(`,ℵ(`))]dς

∥∥∥∥
µ

+E
∥∥∥∥
∫ `

0
Mζ(D(`− ζ − ς))E(ς)dς

∥∥∥∥
µ
}
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≤ 3µ−1
{

τµ(2H)µ/2vµH−1
∫ `

0

(
(`− ς)E2,2

(
‖D‖(`− ς)2

))µ
U∆(ς)

×E‖Π(ς)− ℵ(ς)‖µdς

+
∫ `

0

(
(`− ς)E2,2

(
‖D‖µ(`− ς)2

))µ
U}(ς)E‖Π(ς)− ℵ(ς)‖µdς

+
∫ `

0

(
(`− ς)E2,2

(
‖D‖(`− ς)2

))µ
E‖E(ς)‖µdς

}

≤
∫ `

0

(
(`− ς)E2,2

(
‖D‖(`− ς)2

))µ(
3µ−1τµ(2H)µ/2vµH−1U∆(ς) + 3µ−1U}(ς)

)

×E‖Π(ς)− ℵ(ς)‖µdς

+
3µ−1vµ+1κ

µ + 1

(
E2,2

(
‖D‖v2

))µ
.

Applying Grönwall’s inequality (Lemma 5), we obtain

E‖Π(`)− ℵ(`)‖µ ≤ 3µ−1vµ+1κ

µ + 1

(
E2,2

(
‖D‖v2

))µ
exp

(
3µ−1(W2 + W3)

)
,

which implies that
E‖Π(`)− ℵ(`)‖µ ≤Wκ,

where

W :=
3µ−1vµ+1

µ + 1

(
E2,2

(
‖D‖v2

))µ
exp

(
3µ−1(W2 + W3)

)
.

Therefore, there exists W, which satisfies Definition 2. This ends the proof.

4. An Example

Consider the following nonlinear stochastic delay system driven by the Rosenblatt
process:

ℵ′′(`) +Dℵ(`− 0.5) = }(`,ℵ(`)) + ∆(`,ℵ(`))dZH(`)
d` , for ` ∈ ∓ := [0, 1],

ℵ(`) ≡ ψ(`), ℵ′(`) ≡ ψ′(`) for − 0.5 ≤ ` ≤ 0,
(13)

where

ℵ(`) =
(ℵ1(`)

ℵ2(`)

)
, D =

(
1 0
0 0

)
,

and

}(`,ℵ(`)) =
(

(sin `)ℵ1(`)
(sin `)ℵ2(`)

)
, ∆(`,ℵ(`)) =

( √
`e−`
4 ℵ1(`)√
`e−`
4 ℵ2(`)

)
.

Next, by choosing µ = r1 = r2 = 2, we obtain

E‖∆(`,ℵ)−∆(`,=)‖2
L0

2
=

(√
`e−`

4

)2[
(ℵ1(`)−=1(`))

2 + (ℵ2(`)−=2(`))
2
]

=
`e−2`

16
E‖ℵ − =‖2

≤ 1
16

E‖ℵ − =‖2

for all ` ∈ ∓, and ℵ(`), =(`) ∈ R2. We set U∆(`) = 1/16, such that U∆ ∈ L2(∓,R+) in
(G1), we have

‖U∆‖L2(∓,R+) =

(∫ 1

0

[
1

16

]2
dς

) 1
2

= 0.0625.
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Thus, selecting H = 0.75 and τµ = 1.15, we get

W2 =
τµ(2H)µ/2v

µ(H+1)− 1
r2

(µr1 + 1)
1
r1

(
E2,2

(
‖D‖v2

))µ
‖U∆‖Lr2 (∓,R+) = 0.065.

Furthermore, we have

E‖}(`,ℵ)− }(`,=)‖2 = sin2 `
[
(ℵ1(`)−=1(`))

2 + (ℵ2(`)−=2(`))
2
]

= U}(`)E‖ℵ − =‖2.

We set U}(`) = sin2 `, such that U} ∈ L2(∓,R+) in (G2), we have

‖U}‖L2(∓,R+) =

(∫ 1

0
sin4 ςdς

) 1
2

= 0.35217.

Hence

W3 =
v

µ+ 1
r1

(µr1 + 1)
1
r1

(
E2,2

(
‖D‖v2

))µ
‖U}‖Lr2 (∓,R+) = 0.21752.

Finally, we calculate that

2µ−1W2 + W3 = 0.3475 < 1,

which follows that all the assumptions of Theorems 1 and 2 hold. Therefore, the system (13)
has a unique mild solution ℵ, and is Hyers–Ulam stable.

5. Conclusions

In this work, based on fixed point theory, we used the solutions of (2) to prove the
existence and uniqueness of solutions. After that, we derived the Hyers–Ulam stability
results using the delayed matrix functions and Grönwall’s inequality. Finally, we verified
the theoretical results by providing an example with a numerical simulation, which showed
that our results applied to not only all non-singular matrices, but also all singular and
arbitrary matrices, not necessarily squares. This is a novel study to prove the well-posedness
and Hyers–Ulam stability of (2) using the delayed matrix functions.

In this study, further studies will focus on the obtained results to ascertain the existence
and Hyers–Ulam stability of different types of stochastic delay systems, such as fractional
or impulsive fractional stochastic delay systems driven by the Rosenblatt process.
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Abstract: In this paper, the distributed interval estimation problem for networked Cyber-Physical
systems suffering from both disturbances and noise is investigated. In the distributed interval
observers, there are some connected interval observers built for the corresponding subsystems.
Then, due to the communication burden in Cyber-Physical systems, we consider the case where the
communication among distributed interval observers is switching topology. A novel approach that
combines L∞ methodology with reachable set analysis is proposed to design distributed interval
observers. Finally, the performance of the proposed distributed interval observers with switching
topology is verified through a simulation example.

Keywords: cyber-physical systems; distributed interval observers; reachable set analysis; switching
topology; L∞ technique

MSC: 93D05

1. Introduction

Cyber-Physical Systems (CPSs) are the combinations of physical procedures, high-
efficiency computation, communication, and effective control defined by [1]. Architec-
turally, from [2], a typical CPS can be divided into three layers, which are composed of the
sensing layer, the network layer, and the control layer. The development of distributed
sensing and networking technologies such as [3,4] has enabled omnipresent sensing and
computing capabilities. This has led to the implementation of CPSs in large-scale net-
works. CPSs are widely used in industrial informatics [5] manufacturing [6], healthcare [7],
electrical grids [8], and so on. State estimation and observer design are crucial research
areas in CPSs. Ref. [9] used a sliding mode observer and integrated the event-triggered
mechanism to estimate the state of CPSs from sensor measurements. Ref. [10] introduced
a security estimator combined with a Kalman filter to improve the practical performance
of state estimation for CPSs. Ref. [11] accomplished state estimation and resilient con-
trol of CPSs using finite time observer techniques and switching schemes. It should be
noted that the state estimation for CPSs with bounded disturbance and noise has not been
investigated sufficiently.

On the other hand, disturbances and noise always exist in real systems, and the interval
observer serves as a powerful estimator of upper and lower bounds for uncertain systems
with disturbances and noise. In [12], the concept, as well as the framework of interval
observer, were presented. Using the monotone system theory, Refs. [13,14] proposed the
approach of coordinate transformation that serves as an efficient strategy to reduce the strict
conditions for interval observer design. In recent years, the set-membership estimation
method was applied effectively in interval observer design. A two-step interval observer
design methodology that combines reachability analysis with robust observer was first
presented in [15]. In [15], the H∞ method and reachable set analysis are combined to design
interval observers that eliminate the effects of perturbations and noise on the system. At the
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same time, the L∞ (or L2) method is also a powerful, robust property, and it is widely used
in control and observation fields, such as [16–18]. It has been recently shown by [19–21]
that the reachability analysis estimation method can not only enhance the accuracy of
estimation but also increase the design freedom. Concurrently, in the context of distributed
systems, several recent studies have been conducted on distributed interval observers, such
as [22–24]. Ref. [22] designed distributed interval observers based on the monotone system
approach for multiagent systems. Ref. [23] considered a distributed interval observers de-
sign problem for a class of linear time-invariant systems with uncertainty. At the same time,
Ref. [24] improved distributed interval observers by using a set-membership estimation
approach. However, the topology of interval observer in the aforementioned work [22–24]
is fixed, and it is usually switching with respect to time in practice.

In light of the above discussion, for the problem of state estimation for uncertain CPSs,
we apply distributed interval observers to such systems. Since the state estimation of CPSs
with bounded disturbances and noise has not been investigated sufficiently, it is meaningful
to study the state estimation problem for uncertain CPSs. Each interval observer has two
types of observer gain: one is obtained by using the traditional observer design method,
and the other one is determined by employing neighborhood information. Considering
the practical communication problem of the network layer in CPSs, we suppose that the
communication among distributed interval observers is described by switching topology.
There are three main challenges: one is to design L∞ observers with optimal performance
for networked CPSs, another is to construct a reachable set analysis framework for CPSs,
which then gives upper and lower bounds on the state of the system, and the last is to solve
the switching topology problem among the observers. The contributions of this paper are
summarized in aspects below.

(1) A distributed interval observer methodology for CPSs is proposed. Compared with
the monotone system method, the estimation accuracy is greatly improved by using
the two-step method. The L∞ technique is used to deal with the effects of uncertainty
in observer design.

(2) The switching topology with average dwell time (ADT) among distributed interval
observers is taken into account and is more closely aligned with the actual system. It
can also reduce the communication burden of CPSs.

This paper is structured as follows, with the rest of the paper starting with the graph
theory, system model, and some basics presented in Section 2. In Section 3, the optimal
robust observer is designed using the L∞ technique. In order to complete the interval
estimation, a reachability analysis methodology is used to design the distributed interval
observer. In Section 4, the paper simulates a networked CPS with four Unmanned Aerial
Vehicles (UAV) models to illustrate the effectiveness of the distributed interval observer.
Finally, Section 5 concludes the paper.

Notation: For a matrix of real symmetry E ∈ RN×N , E � 0 demonstrates that E is
positive definite, while E ≺ 0 demonstrates that E is negative and He(E) = E + ET . The
maximal (minimum) eigenvalue of the matrix Q is denoted by λmax(Q)(λmin(Q)). The
norm L2 of the vector v is represented by ‖v‖2. In other words, ‖v‖2 =

√
vTv. Similarly,

the norm L∞ of the vector v is denoted by ‖v‖∞. The symbol ∗ means the term that can
arise due to symmetry in the symmetric matrices.

2. Preliminaries
2.1. Graph Theory

For a digraph G which has N vertices, A = [aij] ∈ RN×N is called the adjacency
matrix. The weight associated with the edge (i, j) ∈ S that connects node i to node j is
called aij, and A is provided by aij = 0. The length path from vertex i to vertex j is made
up of t + 1 distinct vertices with consecutive vertices adjacent to each other. If there is
a path connecting any two vertices of the graph G, the graph G is considered connected.
L = D −A is defined as Laplacian matrix of a graph G. D is referred to as a degree matrix
of G . The Laplacian matrix L of a connected graph has a single zero eigenvalue, and 1N
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is the associated eigenvector. Furthermore, 0 = λ1(G) ≤ · · · ≤ λN(G) if G is connected,
where λi(G) (i = 1, 2, · · · , N) is the eigenvalue of a Laplacian matrix L.

Lemma 1 ([25]). For a strongly connected graph G, denote ti(i = 1, 2, · · · , N) as the left eigenvec-
tor with a 0 eigenvalue, and T = diag{t1, t2, · · · · · · , tN}, then, we can obtain TL+ LTT ≥ 0.

Lemma 2 ([26]). Suppose that graph G is a strongly connected and balanced graph, and the algebraic

connectivity of G is defined by a(L) = min
tT x=0,x 6=0

xT(TL+LT T)x
2xT Tx where T = diag{t1, t2, · · · · · · , tN}.

Then, we can obtain a(L) = λmin(
He(L)

2 ).

2.2. System Model

For a networked CPS, consider a network with N subsystems. The following is the ith
subsystem with disturbances and noise:

xi(k + 1) = Axi(k) + Bui(k) + pi(k),

yi(k) = Cxi(k) + qi(k),
(1)

where xi(k) ∈ Rn is the state, ui(k) ∈ Rn is the control input, yi(k) ∈ Rm is the output,
pi(k) ∈ Rn is the disturbance, qi(k) ∈ Rm is the noise. A ∈ Rn×n , B ∈ Rn×n and C ∈ Rm×n

are constant matrices.
In the following, it is supposed that the communication topology of the subsystem is

strongly connected. The global dynamic system of (1) can be given:

x(k + 1) = Ax(k) + Bu(k) + p(k),

y(k) = Cx(k) + q(k),
(2)

where x = [xT
1 , · · · , xT

N ]
T , u = [uT

1 , · · · , uT
N ]

T , y = [yT
1 , · · · , yT

N ]
T , q = [qT

1 , · · · , qT
N ]

T ,
p = [pT

1 , · · · , pT
N ]

T , A = diag{A, · · · , A︸ ︷︷ ︸
N

}, B = diag{B, · · · , B︸ ︷︷ ︸
N

} and C = diag{C, · · · , C︸ ︷︷ ︸
N

}.

Since the information can be received by a single subsystem from its neighborhood, we
consider the case of switching topology of the observer system and then present φ(k), a step-
wise constant function that takes values from the finite collection S =

{
1, 2, · · · , N

}
.

The observer dynamics of ith subsystem are:

x̂i(k + 1) = Ax̂i(k) + Bui(k) + Li(yi(k)− Cx̂i(k)) + κφ(k)Mi

N

∑
j=1

aφ(k)
ij (x̂j(k)− x̂i(k)),

(3)
where κφ(k) is the coupled gain that needs to be designed and Mi and Li are observer gains

of the ith subsystem, and aφ(k)
ij represents the connectivity weight from subsystem i to

subsystem j at moment k.
By subtracting (1) from (3), we obtain the error dynamics of a single subsystem:

ei(k) = xi(k)− x̂i(k),

ei(k + 1) = (A− LiC)ei(k)− κφ(k)Mi

N

∑
j=1

aφ(k)
ij (x̂j(k)− x̂i(k)) + Didi(k),

(4)

with Di =
[
I −Li

]
and di(k) =

[
pi(k)
qi(k)

]
.

Then we can obtain the dynamic system of the global observer

x̂(k + 1) = Ax̂(k) + Bu(k) + Lφ(k)(y(k)− Cx̂(k))

+ κφ(k)Mφ(k)(Lφ(k) ⊗ IN)(x(k)− x̂(k)),
(5)

35



Mathematics 2024, 12, 163

with L = diag{L1, · · · , LN︸ ︷︷ ︸
N

} and M = diag{M1, · · · , MN︸ ︷︷ ︸
N

}.

The global error system e(k) = [eT
1 (k), · · · , eT

N(k)]
T is as follows

e(k + 1) = (A− Lφ(k)C− κφ(k)Mφ(k)(Lφ(k) ⊗ IN))e(k) + Dd(k), (6)

and the compact form of (6) can be writen as

e(k + 1) = Γφ(k)e(k) + Dd(k), (7)

where D = diag{D1, · · · , DN︸ ︷︷ ︸
N

} and Γφ(k) = A− Lφ(k)C− κφ(k)Mφ(k)(Lφ(k) ⊗ IN).

Definition 1 ([27]). If the following condition holds,

‖e(k)‖2 ≤ κ
√
‖d‖2

∞ + V(0)ωk, (8)

where κ > 0 and 0 < ω < 1, V(0) = eT(0)Pφ(k)e(0) and Pφ(k) � 0. Then the observer (5) is a
L∞ robust observer for system (2).

Definition 2 ([28]). Let Nψ(k1, k2) be the switching times of ψ(k) across the range [k1, k2). If

Nψ(k1, k2) ≤ N0 +
k2 − k1

τ̃
, (9)

for given τ̃ > 0 and N0 ≥ 0, τ̃ is the average dwell time (ADT) of the switching signal ψ(k). In
this paper, we let N0 = 0.

Definition 3 ([29]). The definition of an α-dimensional zonotope is as follow

Ω = ν⊕ HYα = ν + Hz, z ∈ Yα, (10)

where ν ∈ Rι represents a given vector, H ∈ Rι×α represents a given matrix, Yα is a unitary
box made up of α unitary intervals and Yα is a unitary interval. In the sequel, the zonotope Ω is
represented as 〈ν, H〉 for the sake of simplicity.

Lemma 3 ([30]). The following equation is satisfied for a zonotope defined in (10):

〈ν1, H1〉 ⊕ 〈ν2, H2〉 = 〈ν1 + ν2, [H1, H2]〉,
W � 〈ν, H〉 = 〈Wν, WH〉,

〈ν, H〉 ⊆ 〈ν, H〉,
where H1 and H2 represent the shape matrices of each of the zonotopes, and ν1 and ν2 are their
centers. H ∈ RN×N means a diagonal matrix with HM,M = ∑α

i=1 |HM,i|, M = 1, ..., ρ .

Remark 1. H can be expressed in the form shown below:

H =




∑α
i=1 |H1,i| · · · 0

...
. . .

...
0 · · · ∑α

i=1 |Hρ,i|


. (11)

If α > ρ, then 〈ν, H〉 ⊆ 〈ν, H〉 is applied to reduce the order of high order zonotopes.
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Remark 2. For zonotopes ΩM ⊂ RN , M = 1, ..., ρ, the Minkowski sum of them is

ρ⊕

M=1

ΩM = Ω1 ⊕Ω2 ⊕ · · · ⊕Ωρ. (12)

Definition 4 ([19]). For an α-order zonotope, there is an interval hull Ω that could contain Ω in
its entirety:

Ω ⊂ Box(Ω) = [a, b], (13)

with a = [a1, · · · , aα]T , b = [b1, · · · , bα]T and Box(·) stands for the interval hull. For any
zonotope, the interval hull is the smallest interval vector.

Lemma 4 ([29]). If Ω = 〈ν, H〉, the components of its interval hull are




ai = νi −
α

∑
j=0

∣∣Hij
∣∣, i = 1, . . . , ι,

bi = νi +
α

∑
j=0

∣∣Hij
∣∣, i = 1, . . . , ι.

(14)

Lemma 5 ([29]). Given zonotopes Ωi, i = 1, 2, . . . , m

Box(
ρ⊕

m=1

Ωm) =
ρ⊕

m=1

(Box(Ωm)). (15)

Lemma 6 ([31]). For the given symmetric matrix
[
A B
BT C

]
, the following inequalities are equiva-

lent:

(1)
[
A B
BT C

]
≺ 0,

(2) C ≺ 0;A−BA−1BT ≺ 0,
(3) A ≺ 0;C−BTC−1B ≺ 0.

Assumption 1. The initial state of the ith subsystem satisfies the following condition

xi(0) ≤ xi(0) ≤ xi(0). (16)

Assumption 2. The disturbances and output noise in system (6) are bounded, which are:

‖d(k)‖2 ≤ ‖d‖∞, (17)

where ‖d‖∞ is a constant.

Assumption 3. The initial state, disturbance and noise, and initial error are represented by x(0),
d(0) and e(0), which can be wrapped as in the equations below:

x(0) ∈〈ν0, H0〉 = X (0),

d(0) ∈〈0, Ed〉 = D(0),
e(0) ∈〈0, H0〉 = E(0),

(18)

where H0 is given matrix and Ed = diag{di}.

3. Main Results

In this part, we provide sufficient conditions for the observer with L∞ property for
CPS. Then, a reachability analysis methodology is used to design the distributed interval
observer.
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Theorem 1. Let η and θ be two given constants with 0 < η < 1 and θ > 1. If there exists a
constant χ and matrices Pn � 0 ∈ RN×N , Pm � 0 ∈ RN×N such that





min χ2,

subject to :



−ηPn ∗ ∗
0 −χ2 IN ∗

Pn A−WnC− κnQn(Ln ⊗ IN) PnD −Pn


 ≺ 0,

Pn ≺ θPm,
1
τ̃
+

lnη

lnθ
< 0,

κn >
1

a(Ln)
,

(19)

where Wn = PnLn, Qn = Pn Mn, n 6= m, ∀n, m ∈ S and τ̃ satisfying ADT. Then (5) is a robust
L∞ observer for system (3).

Proof. Please see the Appendix A.

Remark 3. In Theorem 1, the parameter κn depends on a(Ln). The algebraic connectivity a(Ln)
of a graph tends to increase with graph stability. As the stability of the graph increases, there will be
a greater range of options for κn.

Remark 4. In practice, the ADT τ̃ and the disturbance attenuation level χ2 stand for the perfor-

mance of the observer. Owing to the fact that the ADT
1
τ̃
+

lnη

lnθ
< 0 depends on η and θ, it is

necessary to select suitable values for η and θ to minimize the ADT τ̃.

After completing the design of the optimal L∞ observer, we need to construct the
interval observer by designing the interval hull that can completely wrap the system
disturbances, noise, and errors. The real-time error from (5) can be wrapped by the
zonotope as

e(k) ∈〈ν0, H(k)〉 = E(k). (20)

Then, we add the reachability analysis methodology to the distributed L∞ observer
designed in Theorem 1 and then give the following interval observer:

{
x = x̂ + e

x = x̂ + e
(21)

where e and e are the upper and lower bounds of e(k).

Theorem 2. An interval estimate of the system state is provided by (22), if Assumption 3 holds,
then the error e(k) has the following upper and lower bounds:

[
e(k), e(k)

]
= Box((

k−1

∏
n=0

Γn)E(0))⊕
k−1⊕

n=0
Box((

k−1

∏
m=1

Γm)Γ−1
n DD), (22)

where Box(E(0)) =
[
e(0), e(0)

]
.

Proof. Based on Assumption 3, we can obtain E(1),

E(1) = Γφ(0)E(0)⊕ DD. (23)
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When k = 1, then we can obtain

E(2) = Γφ(1)E(1)⊕ DD
= Γφ(1)Γφ(0)E(0)⊕ Γφ(1)DD ⊕ DD.

(24)

Iterating the above process yields

E(k + 1) = (
k−1

∏
n=0

Γn)E(0)⊕
k−1⊕

n=0
(

k−1

∏
m=1

Γm)Γ−1
n DD. (25)

Then the interval hull below describes the set E(k)

E(k) =
[
e(k), e(k)

]
= Box((

k−1

∏
n=0

Γn)E(0))⊕
k−1⊕

n=0
Box((

k−1

∏
m=1

Γm)Γ−1
n DD). (26)

The proof of Theorem 2 is now completed.
Based on Theorems 1 and 2, the design of a distributed interval observer with switching

topology can be implemented by Algorithm 1.

Remark 5. According to Theorem 1, the robust L∞ observer is designed to reduce the effect of
outside disturbance and output noise. It is obvious that a bounded interval hull exists based on the
result of Theorem 1, which can include errors and disturbances. Then, using the given interval hull
E(0) as a starting point, Theorem 2 gives the interval hull E(k). We propose a reachable set analysis
technique by combining Theorem 1 with Theorem 2.

Algorithm 1: Algorithm for designing the distributed interval observer with
switching topology.

(1) Model CPSs with given disturbances and noise.
(2) Design distributed observers for subsystems.
(3) Select the appropriate κn according to the switching topology.
(4) Solve the LMI problem in Theorem 1 using the information of the bounds of

disturbances
and noise.

(5) Calculate the gains of the observers by Mn = P−1
n Qn, Ln = P−1

n Wn.
(6) Determine the ADT by given η and θ.
(7) Obtain the zonotopes of the initial value according to (18)
(8) Transform the zonotope at the moment k = n into an interval hull starting from

n = 0.
(9) Iterate the interval hull in step (6).
(10) Obtain the interval hull at the moment k = n + 1.
(11) The interval observer is obtained through (21).

Remark 6. If the modeling uncertainty is taken into consideration, the new model of this paper is
as follows:

xi(k + 1) = (A + ∆A(k))xi(k) + (B + ∆B(k))ui(k) + pi(k),

yi(k) = (C + ∆C(k))xi(k) + qi(k),

where ∆A(k), ∆B(k) and ∆C(k) represent the uncertainty of the system, respectively. Then, we may
use the norm-bounded condition on ∆A(k), ∆B(k) and ∆C(k) to design the L∞ interval observer.
However, it is not an easy task to construct the interval hull of the corresponding error system since
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the time-varying terms are contained. In the near future, we will deal with systems with model
uncertainty with the method proposed in this paper.

Remark 7. In Theorems 1 and 2, limited by the current knowledge of authors, this paper only gives
sufficient conditions for observer design. In the future, we will study the necessary conditions for
the design of interval observers, and in conjunction with this paper, we will give the necessary and
sufficient conditions for the design of interval observers.

4. Simulation

Among CPSs, UAVs have recently achieved widespread application. In this section,
we simulate through a networked CPSs with four UAVs.

Referring to [11], the dynamical system of each UAV is as follows
[

α̇i(t)
β̇i(t)

]
= A

[
αi(t)
βi(t)

]
+ Bui(k) + pi(k),

yi(k) = C
[

αi(t)
βi(t)

]
+ qi(k),

(27)

where the pitch rate and angle of attack of each UAV are indicated by βi(t) and αi(t). The
schematic of each UAV is shown in Figure 1, and the detailed derivation of the dynamics
model is omitted here.

Figure 1. Longitudinal axis system of UAV.

Table 1 displays the output noise and the external disturbance borrowed from [11],
and the partial matrix values are as follows:

A =

[
0.8825 0.0987
−0.8458 0.9122

]
, B =

[−0.0194 −0.0036
−1.9290 −0.3803

]
, C =

[
1 0.2

]
.

Table 1. The output noise and the external disturbance.

Subsystem Output Noise External Disturbance

1 0.1 cos(k) 0.2 + 0.1 cos(0.5k)
2 0.1 sin(k) 0.1 cos(0.1k)
3 0.01 cos(k) cos(0.2πk) + 0.3 sin(0.2πk)
4 0.05 sin(k) cos(0.3πk) + 0.1 sin(0.3πk)

For illustrative purposes, Figure 2 shows a switching communication topology G1,G2
and G3 with four UAVs. Figure 3 displays the change in the switching signal φ(k). Then,
from Figure 2, we can give the corresponding matrix Ln:

L1 =




1 −1 0 0
−1 3 −1 −1
0 −1 2 −1
0 −1 −1 2


,L2 =




1 −1 0 0
0 2 −1 −1
0 0 1 −1
−1 −1 0 2


,L3 =




1 0 0 −1
0 1 0 −1
0 0 1 −1
−1 −1 −1 3


.
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Figure 2. Three switching communication topology of UAVs.
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Figure 3. The change in the switching signal of distributed interval observers.

From Lemmas 1 and 2, we can obtain a(L1) = a(L2) = a(L3) = 1, then we have
κ > 1. In this simulation, κ1 = 1.8, κ2 = 2.3, κ3 = 3.2 are chosen. We can determine Ln and
Mn by solving (19), the observer gains for 1th subsystem are listed below

L1 =
[
47.8095 −46.2386

]
, L2 =

[
−9.5528 47.7273

]
, L3 =

[
17.8244 −11.9289

]
.

M1 =

[−41.7480 −36.5506
−1.8874 −6.9585

]
, M2 =

[
10.3302 8.4984
−79.5140 −71.1991

]
, M3 =

[−11.7589 −7.5478
−6.1219 −9.0834

]
.

The peak estimation error of Angle of Attack and Pitch Rate of 1th subsystem are
0.4184 and 0.7668, respectively. The disturbance attenuation level χ2 and ADT τ̃ are as
follows

χ2 = 0.4984, τ̃ ≤ 0.1763.

Below are the results of the numerical simulation. The states of the original systems
and the upper and lower observers are depicted in Figures 4 and 5. xij are the original
states of the subsystems. uij and vij reflect the bounds produced via the interval hull
technique used in this paper and the monotone system method in [32], where i denotes
the ith subsystem and j denotes the jth state. Figure 6 shows the error system for a single
subsystem, euij, and evij reflect the observation error through the method used in this paper
and the monotone system method in [32].
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Figure 4. Angle of attack and interval estimates of UAVs.
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Figure 5. Pitch rate and interval estimates of UAVs.

It is evident that the states of CPS are completely surrounded by those of the upper
and lower observers. From Figures 4–6, it can be seen that the distributed interval observer
designed in this paper has higher estimation accuracy compared to the traditional monotone
system approach in [32]. We design the optimal robust observer using the L∞ technique,
which reduces the design requirements of the observer, unlike the H∞ technique applied
in [24]. Different from [23] and most of the work, we consider for the first time the case of
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switching topology among distributed interval observers. Thus, the proposed distributed
interval observers design method for CPSs is effective and feasible.
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Figure 6. Observation error of angle of attack and pitch rate of UAVs.

Remark 8. For networked CPSs with perturbations and noise, we propose a class of distributed
interval observer design methods with switching topology that combine the design of L∞ observers
with interval hulls. This class of methods eliminates the need to consider the error system to be
Schur and, therefore, eliminates the need to use coordinate transformation methods, significantly
reducing the conservatism of the estimation. It can be seen from the observer form (3), sufficient
conditions (19), and the proof of Theorem 1. In addition, the estimation accuracy is better than that
in [32], as it can also be seen from (22).

5. Conclusions

In this paper, a distributed interval estimation method for uncertain CPSs is inves-
tigated. Due to the communication burden of networked CPSs, we consider the case of
switching topology among distributed interval observers. To improve the accuracy of the
estimation, a reachability analysis is introduced in conjunction with the L∞ technique. Fi-
nally, the validity of the main results of this paper is verified by one example. In the future,
we may focus our research on the distributed interval estimation of the attacked CPSs.
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Appendix A

Proof. Define A =

[−ηPn 0
0 −χ2 IN

]
, B =

[
Pn A−WnC− κnQn(Ln ⊗ IN)

PnD

]
, C = −Pn.

Using Lemma 6 and the fact that C ≺ 0, we can determine that

A−BA−1BT ≺ 0. (A1)

Substituting Qn = Pn Mn, Wn = PnLn into (5), we obtain

G =

[
ΓT

n PnΓn − ηPn ∗
DT PnΓn DT PnD− χ2 IN

]
≺ 0. (A2)

where Γn = A− LnC− κn Mn(Ln ⊗ IN). It follows from (A2) that

[
eT(k) dT(k)

]
[

ΓT
n PnΓn − ηPn ∗

DT PnΓn DT PnD− χ2 IN

][
e(k)
d(k)

]
≺ 0. (A3)

Thus, (A3) implies that

eT(k)(ΓT
n PnΓn − ηPn)e(k) + dT(k)(DT PnD− χ2 IN)d(k) + 2dT(k)DT PnΓne(k) < 0. (A4)

We then choose the following Lyapunov function

Vn(k) = eT(k)Pne(k). (A5)

Thus,

4Vn(k) =Vn(k + 1)−Vn(k)

=eT(k)(ΓT
n PnΓn − ηPn)e(k) + dT(k)(DT PnD− χ2 IN)d(k)

+ 2dT(k)DT PnΓne(k).

(A6)

Further simplification of (A6) yields

4Vn(k) < (η − 1)eT(k)Pne(k) + χ2dT(k)d(k), (A7)

which means
Vn(k + 1) < ηVn(k) + χ2dT(k)d(k). (A8)

Then consider the interval [kσ, k). Iterating (A8) yields

Vn(k) < ηk−kσ Vn(kσ) + χ2
k−kσ−1

∑
$=0

η$dT(k− 1− $)d(k− 1− $). (A9)

Suppose that φ(kσ−1) = m, using Pn ≺ θPm, then

Vn(k) <ηk−kσ Vn(kσ) + χ2
k−kσ−1

∑
$=0

η$dT(k− 1− $)d(k− 1− $)

<ηk−kσ+1θVm(kσ − 1) + ηk−kσ θχ2dT(kσ − 1)d(kσ − 1)

+ χ2
k−kσ−1

∑
$=0

ηldT(k− 1− $)d(k− 1− $).

(A10)
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Iterating (A10) yields the inequality below

Vn(k) < ηkθNφ(0,k)Vφ(0)(0) + χ2
k−kσ−1

∑
$=0

η$θNφ(k−$,k)dT(k− 1− $)d(k− 1− $). (A11)

In view of θ > 1 and Nφ(0, k) ≥ Nφ(k− $, k), we have

χ2
k−kσ−1

∑
$=0

η$θNφ(k−$,k)dT(k− 1− $)d(k− 1− $)

< χ2
k−kσ−1

∑
$=0

η$θNφ(0,k)dT(k− 1− $)d(k− 1− $).

(A12)

It follows from (A11) and (A12) that

Vn(k) < θNφ(0,k)[ηkVφ(0)(0) + χ2
k−kσ−1

∑
$=0

ηldT(k− 1− $)d(k− 1− $)]. (A13)

Due to Vn(k) ≥ λ‖e(k)‖2
2 , the error e(k) in (6) satisfies

‖e(k)‖2
2 ≤

1
λ(Pn)

Vn(k),

‖e(k)‖2
2 ≤

θNφ(0,k)

λ(Pn)
(ηkVφ(0)(0) + χ2

k−1

∑
$=0

η$‖d(k)‖2
∞).

(A14)

By Definition 1, the proof of Theorem 1 is completed.
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Abstract: This technique note proposes two classes of functional and disturbance observers for
positive systems with structural and non-structural disturbances, respectively. A positive functional
observer is first proposed for positive systems by introducing the estimation of disturbance to the
observer. By developing the disturbance observer technique, a positive disturbance observer is
designed to supply the estimation of disturbance in the functional observer. Then, a new unknown
input observer is constructed for positive systems. A matrix decomposition method is employed
to design the observer gains. All conditions are described in terms of linear programming. The
corresponding algorithms are addressed for computing the presented conditions. Finally, two
examples are provided to verify the effectiveness of the theoretical findings.

Keywords: functional observer; disturbance observer; positive systems; linear programming

MSC: 93C28

1. Introduction

Observer is a popular technology for estimating the system state when the state
is unmeasured [1,2]. For linear systems, linear matrix inequalities can be directly used
for dealing with the observer design [3]. The observer technique has also been widely
applied for nonlinear systems [4], time-varying systems [5,6], stochastic systems [7], hybrid
systems [8,9], etc. Disturbance is a key factor when describing a control system. It is also
inevitable for a system to receive some affection from disturbances. Generally speaking,
structural and non-structural disturbances are two wide classes of disturbances in practice.
For the observation problem of a system with disturbances, the first idea is to propose
an observer such that the corresponding error is bounded [10] or the corresponding error
system is robustly stable with respect to the disturbances [11]. It is clear that such observers
cannot estimate the system state accurately. The error between the state of the observer
and the state of the original system depends on the disturbance. The other idea is to
design an unknown input observer to eliminate the influence of the disturbance on the
observer [12,13]. For the observation of a system with structural disturbance, the strategy
is to design a disturbance observer [14] to supply the state observer. Specifically, it is
a state observer constructed by replacing the disturbance with the state of disturbance
observer [15].

Nonnegativity is a common property of many quantities in real systems. For exam-
ple, the density of material in physical systems, economic indicators in social systems,
the population of people and insect biologic systems, and the water storage capacity in
water systems are always nonnegative. Positive systems are naturally utilized to describe
such dynamic process with nonnegativity [16,17]. Some significant achievements have
also been presented in stability [18,19], observation [20], control synthesis [21,22], etc.
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Positive systems have many distinct features that are different from general systems. Co-
positive Lyapunov functions are more suitable for positive systems than the Lyapunov
functions with quadratic form [23,24]. Linear programming is more powerful for dealing
with the computation issues of positive systems than linear matrix inequalities [19,25,26].
Luenberger-type observer of positive systems and the corresponding interval observer
were proposed in [20] by virtue of linear programming. It is required that the observer
of positive systems is also positive since the negative value part of an observer cannot
estimate the nonnegative state of positive systems. State-bounded functional observers
of positive systems were also designed in [27–29]. In existing results on positive systems,
the gain performances-based observer is commonly used for dealing with the observation
of positive systems with disturbances [30,31]. However, few efforts are devoted to the
asymptotic observation of positive systems with disturbances. The disturbance observer
and unknown input observer are two new issues to positive systems [32,33]. Developing
the disturbance and unknown input observers of general systems to positive systems is
not an easy work. First, how to establish new frameworks on disturbance and unknown
input observers? As stated above, positive systems have distinct research approaches from
general systems. Therefore, existing observer frameworks cannot be easily developed
for positive systems. New linear observer frameworks are expected for positive systems.
Second, the positivity of the observer is a difficult issue. Due to the essential positivity of
positive systems, the observer of positive systems should also be positive [20,27–31]. This
issue is complex for investigating positive systems. For the simultaneous state and distur-
bance observer, how to reach the positivity requirement is key to the corresponding design.
The introduction of disturbance observer increases the difficulty of the design. Third, the
disturbance and unknown input observers are full new topics for positive systems. The
disturbance observer design of positive systems is distinct from the one of general systems.
How to connect the state observer and disturbance observer and how to transform the
corresponding conditions into linear form are two key issues.

This paper will design two kinds of observers: One is disturbance observer for positive
systems with structural disturbance and the other is unknown input observer for positive
systems with non-structural disturbance. First, a functional observer is designed for
positive systems, which uses the estimated disturbance to replace the original disturbance.
Meanwhile, a positive disturbance observer is proposed to estimate the disturbance. The
observer gain matrices are designed based on matrix decomposition technique. All the
presented conditions are computed via linear programming. Then, an unknown input
observer is proposed for positive systems with non-structural disturbance. A nonlinear
programming algorithm is proposed for computing the presented conditions. The rest of
the paper is organized as follows. Section 2 introduces the preliminaries, Section 3 presents
main design approaches, Section 4 gives two examples, and Section 5 concludes the paper.

Notations. Let < (or <+), <n (or <n
+ ), and <n×m be the sets of (nonnegative) real

numbers, n-dimensional (nonnegative) vectors and n × m matrices, respectively. For a
matrix A = [aij] ∈ <n×n, A � 0 (� 0) and A � 0 (≺ 0) mean that aij ≥ 0 (aij > 0) and
aij ≤ 0 (aij < 0) ∀i, j = 1, . . . , n. Similarly, A � B (A � B) means that aij ≥ bij (aij ≤ bij)
∀i, j = 1, . . . , n. A matrix is called Metzler if all its off-diagonal elements are nonnegative.
A matrix In denotes the n-dimensional identity matrix. Denote by 1n = (1, 1, . . . , 1︸ ︷︷ ︸

n

)>,

1(i)n = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0)>, and 1n×n is a matrix with all elements being 1.

2. Preliminaries

Consider the following continuous-time system:

ẋ(t) = Ax(t) + Bu(t) + Ew(t),
y(t) = Cx(t) + Dw(t),

(1)
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where x(t) ∈ <n, u(t) ∈ <m, w(t) ∈ <r
+, y(t) ∈ <s represent the system state, the input,

the disturbance, and the output, respectively. Suppose that A is Metzler and B � 0,
C � 0, D � 0, E � 0 in system (1).

Definition 1 ([16,17]). A system is said to be positive if all states and outputs are nonnegative for
any nonnegative initial conditions and nonnegative inputs and external disturbances.

Lemma 1 ([16,17]). System (1) is positive if and only if A is Metzler and B � 0, C � 0,
D � 0, E � 0.

Noting the assumptions on system (1), it is easy to derive that the system (1) is positive.

Lemma 2 ([16,17]). For a continuous-time positive system ẋ(t) = Ax(t), the following statements
are equivalent:

(i) The system is stable.
(ii) The system matrix A is Hurwitz.
(iii) There exists a vector v � 0 such that A>v ≺ 0.

Lemma 3 ([16,17]). For a positive system, the state is non-positive for any non-positive initial conditions.

Lemma 4 ([16,17]). Matrix A is Metzler if and only if there is a positive constant γ such that
A + γI � 0.

3. Main Results

We mainly consider the observer design of two classes of systems: One contains
structural disturbance and the other one refers to non-structural disturbance. For the
structural disturbance, simultaneous state and disturbance observers are designed. For the
non-structural disturbance, a new unknown input observer will be proposed.

3.1. Structural Disturbance

Assume that the disturbance is structural, that is, it is dependent on an exogenous system:

ξ̇(t) = Υξ(t),
w(t) = Γξ(t),

(2)

where ξ(t) ∈ <r
+ is the state of the exogenous system, Γ � 0, Γ ∈ <r×r, and Υ ∈ <r×r is

a Metzler matrix. By Lemma 1, the exogenous system is positive. Thus, the disturbance
observer design can be achieved by estimating the state ξ(t).

Define the linear functional:

η(t) = Tx(t), (3)

where η(t) ∈ <o is the state to be estimated and T � 0, T ∈ <o×n. This implies that a
functional observer with respect to the state will be designed later.

The state functional observer of system (1) is designed as:

˙̂η(t) = Gη̂(t) + TBu(t) + Mŵ(t) + Lcy(t), (4)

where η̂(t) ∈ <o is the observer state, ŵ(t) ∈ <r is the estimate of the disturbance signal
and ŵ(t) = Γξ̂(t), and G ∈ <o×o, M ∈ <o×r, Lc ∈ <o×s are the observer gains to be
designed. The disturbance observer is constructed as:

˙̂ξ(t) = Hξ̂(t) + Fη̂(t) + Ldy(t), (5)

where ξ̂(t) ∈ <r is the state of the disturbance observer and H ∈ <r×r, F ∈ <r×o, Ld ∈ <r×s

are the observer gains to be designed.
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Denote by the errors e(t) = η(t)− η̂(t) and σ(t) = ξ(t)− ξ̂(t). Then,

ė(t) = (TA− LcC)x(t)− Gη̂(t) + (TEΓ− LcDΓ)ξ(t)−MΓξ̂(t),
σ̇(t) = (Υ− LdDΓ)ξ(t)− Hξ̂(t)− Fη̂(t)− LdCx(t).

(6)

It is well known that it is impossible to estimate a nonnegative variable using a non-
positive variable. Therefore, the observer of positive systems is also positive. By Lemma 1,
the positivity of the disturbance observer (5) is reached by virtue of the conditions: (i) H is
Metzler, (ii) F � 0, and (iii) Ld � 0. In the literature [6,8], some equations were introduce to
transform the system (6) into an error system with variables e(t) and σ(t). For example, the
equations TA− LcC = GT, TB = Q, TEΓ− LcDΓ = MΓ, and Υ− LdDΓ = H are imposed
on the state error dynamic in (6). Noting the facts F � 0, Ld � 0, T � 0, and C � 0, the
relation FT + LdC = 0 does not hold. Thus, the term −Fη̂(t)− LdCx(t) in (6) can not be
transformed into the error term e(t). This implies that the positivity of (5) contradicts with
the stability of (6). The following theorem will solve the mentioned problems.

Theorem 1. If there exist constants δ1 > 0, δ2 > 0, δ3 > 0, α > 0, positive <o vectors
v1, z(i)g , zg, z(i)f , z f , and positive <r vector v2 such that

TA1>o v1 −∑o
i=1 1(i)o z(i)>c C−∑o

i=1 1(i)o z(i)>g T + δ1T = 0, (7a)

TE1>o v1 −∑o
i=1 1(i)o z(i)>c D � 0, (7b)

Υ1>r v2 −∑r
i=1 1(i)r z(i)>d DΓ + δ3 Ir � 0, (7c)

∑r
i=1 1(i)r z(i)>f T + ∑r

i=1 1(i)r z(i)>d C = 0, (7d)

and
∑o

i=1 1(i)o z(i)>g − δ1 Io + δ2 Io � 0, (8a)

zg − αv1 + z f ≺ 0, (8b)

Γ>E>T>v1 + Γ>D>zc + Υ>v2 − Γ>D>zd, (8c)

α1>o v1 ≤ δ1, (8d)

z(i)g � zg, i = 1, 2, . . . , o, (8e)

z(i)f � z f , i = 1, 2, . . . , r, (8f)

z(i)c � zc, z(i)d � zd, i = 1, 2, . . . , s, (8g)

hold, then under the observer gain matrices

G =
∑o

i=1 1(i)o z(i)>g −δ1 Io

1>o v1
, F =

∑r
i=1 1(i)r z(i)>f

1>r v2
, Lc =

∑o
i=1 1(i)o z(i)>c

1>o v1
, Ld =

∑r
i=1 1(i)r z(i)>d

1>r v2
,

M = TE− ∑o
i=1 1(i)o z(i)>c D

1>o v1
, H = Υ− ∑r

i=1 1(i)r z(i)>d DΓ
1>r v2

,
(9)

and the initial conditions satisfy e(0) � 0 and σ(0) � 0, the observers (4) and (5) are positive, and
the error system (6) is stable.

Proof. First, we prove the positivity of the observers (4) and (5). From (7a,d) and (9), we have

TA− LcC− GT = 0,
TE− LcD−M = 0,
Υ− LdDΓ− H = 0.

(10)
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Then, (6) can be transformed into
(

ė(t)
σ̇(t)

)
=

(
G MΓ
F H

)(
e(t)
σ(t)

)
. (11)

From (8a) and (7c), it follows that

∑o
i=1 1(i)o z(i)>g −δ1 Io

1>o v1
+ δ2

1>o v1
Io � 0,

Υ− ∑
p
i=1 1(i)p z(i)>d

1>p v2
+ δ3

1>p v2
Ir � 0.

(12)

Together with (9) gives that G + δ2
1>o v1

Io � 0 and H + δ3
1>p v2

Ip � 0, which imply that G and

H are Metzler by Lemma 4. By (7b), M � 0. It is also easy to know F � 0. By Lemma 1, the
system (12) is positive. Since e(0) � 0 and σ(0) � 0, then e(t) � 0 and σ(t) � 0. Thus, the
observers (4) and (5) are positive.

First, we have

G>v1 + F>v2 =
∑o

i=1 z(i)g 1(i)>o v1−δ1v1

1>o v1
+

∑
p
i=1 z(i)f 1(i)>p v2

1>p v2
. (13)

Together with (8e), (8f), and (8d) gives

G>v1 + F>v2 � zg −
δ1

1>o v1
v1 + z f � zg − αv1 + z f . (14)

By (8b), G>v1 + F>v2 ≺ 0. Then, it follows from (9) that

Γ>M>v1 + H>v2 = Γ>E>T>v1 + Γ>D> ∑o
i=1 z(i)c 1(i)>o v1

1>o v1
+ Υ>v2

− Γ>D> ∑
p
i=1 z(i)d 1(i)>p v2

1>p v2
.

(15)

By (8g) and

Γ>M>v1 + H>v2 � Γ>E>T>v1 + Γ>D>zc + Υ>v2 − Γ>D>zd ≺ 0. (16)

Then, (
G MΓ
F H

)>(v1
v2

)
≺ 0. (17)

By Lemma 2, the matrix
(

G MΓ
F H

)
is Hurwitz. Then, e(t) and σ(t) converge to zero with

t→ ∞, that is, η̂(t)→ Tx(t) and ξ̂(t)→ ξ(t).

Remark 1. In [20], the Luenberger observer of positive systems was proposed in terms of linear
programming. Following the linear programming technique in [20], Theorem 1 is the first attempt
to introduce simultaneous functional and disturbance observers for positive systems. Under the
designed observers (4) and (5), the error system (6) is positive and asymptotically stable. In existing
literature [30,31], L1/`1 gain stability was used for positive systems to assess the performance of
observer, which can only reduce the influence of disturbance to a bounded range and cannot achieve
accurate observation. Under the observer (5), the asymptotic stability of system (6) can be reached
rather than gain stability. Such kind of observer can be used in the systems with high precision or
high system performance, and has potential applications in practical systems.

In Theorem 1, two key conditions e(0) � 0 and σ(0) � 0 are imposed on the system (6).
Together with the fact that system (11) is positive, e(t) � 0 and σ(t) � 0 hold ∀t ≥ 0 by Lemma 3.
This implies that η(t) � η̂(t) and ξ(t) � ξ̂(t). Thus, the state observer (4) and the disturbance
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observer (5) are positive since η(t) � 0 and ξ(t) � 0. In most literature [20,27–31], the error
e(t) was required to be nonnegative. Under such a case, it is hard to guarantee the positivity
of the disturbance observer (5). To solve this problem, Theorem 1 changes the nonnegativity
condition as non-positivity condition. Such a strategy smooths the development of the positive
disturbance observer.

Remark 2. In [27–29], the functional observer of positive systems had been investigated. However,
few efforts are devoted to the simultaneous functional and disturbance observers of positive systems.
For positive systems with disturbances, the current observer design can only obtain the gain
performance-based state estimation [30,31]. Up to now, the disturbance observer issue is full open
in the field of positive systems. There are three difficulties for the issue. How to construct a new
framework on the error system of simultaneous functional and disturbance observers? How to
guarantee the positivity of the functional and disturbance observers? How to design the functional
and disturbance observers gains of positive systems via linear programming? Theorem 1 establishes
a new linear framework on the disturbance observer of positive systems.

3.2. Non-Structural Disturbance

In the last subsection, the disturbance is assumed to be structural. A dynamic system
is introduced to describe the disturbance. In this subsection, the dynamic disturbance
system is removed, that is, the disturbance is non-structural. This object of this subsection
is to propose an unknown input observer for system (1) with non-structural disturbance.

For the convenience of the design, we introduce an additional transformation:

η̂(t) = ζ(t) + Wy(t), (18)

where η̂(t) ∈ <o is the estimate of η(t), ζ(t) ∈ <o is an additional state, and W ∈ <o×s. It
is clear that the estimate state η̂(t) is dependent on the state ζ(t). Thus, one only needs to
design the dynamics of ζ(t). The corresponding dynamics is designed as:

ζ̇(t) = Gζ(t) + Qu(t) + Ly(t), (19)

where G ∈ <o×o, Q ∈ <o×m, L ∈ <o×s are the observer gains to be designed.
Firstly, consider the case: y(t) = Cx(t). Denote e(t) = η(t)− η̂(t). Then

ė(t) = Tẋ(t)− ζ̇(t)−Wẏ(t)
=
(
(T −WC)A− LC

)
x(t) +

(
(T −WC)B−Q

)
u(t)

+ (T −WC)Ew(t)− Gζ(t)
=
(
(T −WC)A− LC + GWC

)
x(t) +

(
(T −WC)B−Q

)
u(t)

+ (T −WC)Ew(t)− Gη̂(t).

(20)

Theorem 2. If there exist constants δ1 > 0, δ2 > 0, α > 0, <o vectors v � 0, z(i)g � 0, zg � 0, <r

vectors z(i)w , zw, <m vector z(i)q , and <s vector z(i)c such that

TA−∑o
i=1 1(i)o z(i)>w CA−∑o

i=1 1(i)o z(i)>c C + (∑o
i=1 1(i)o z(i)>g

−δ1 Io)∑o
i=1 1(i)o z(i)>w C−∑o

i=1 1(i)o z(i)>g T + δ1T = 0,
(21a)

TB−∑o
i=1 1(i)o z(i)>w CB−∑o

i=1 1(i)o z(i)>q = 0, (21b)

TE−∑o
i=1 1(i)o z(i)>w CE = 0, (21c)

∑o
i=1 1(i)o z(i)>g − δ1 Io + δ2 Io � 0, (21d)

zg1>o v− δ1v ≺ 0, (21e)

z(i)g � zg, i = 1, 2, . . . , o, (21f)
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hold, then under the observer gain matrices

W = ∑o
i=1 1(i)o z(i)>w , G = ∑o

i=1 1(i)o z(i)>g − δ1 Io,
Q = ∑o

i=1 1(i)o z(i)>q , L = ∑o
i=1 1(i)o z(i)>c ,

(22)

and the initial condition satisfying e(0) � 0, the observer state η̂(t) is nonnegative and the error
system (20) is stable.

Proof. By (21a) and (22), it follows that (T −WC)A− LC− GT = 0. Using (21b) and (22)
yields (T−WC)B−Q = 0. Using (21c) and (22) gives (T−WC)E = 0. Then, (20) becomes

ė(t) = Ge(t). (23)

By (21d), it holds that G + δ2 Io � 0, which follows that G is Metzler by Lemma 4. By
Lemma 2, the system (23) is positive. Since e(0) � 0, then e(t) � 0. That is to say,
η(t) � η̂(t). Owing to the nonnegative property of η(t), η̂(t) � 0. It is not hard to obtain

G>v = ∑o
i=1 z(i)g 1(i)>o v− δ1v. (24)

By (21f), (24) is transformed into

G>v � ∑o
i=1 zg1(i)>o v− δ1v = zg1>o v− δ1v. (25)

Using (21e), G>v ≺ 0. Then, e(t)→ 0 with t→ ∞.

Remark 3. The literature [19,20,25,27,28] had investigated the observer issues of positive systems.
In these literature, a commonly used approach is that the positivity of the observer is achieved
by imposing some conditions on the observer matrices. Take (18) and (19) for example. In order
to guarantee the positivity of the observer state η̂(t), two classes of conditions are required: The
first one is that G is Metzler, Q � 0, and L � 0, and the second one is W � 0. The first one is
to guarantee the positivity of (19) and the second one is to achieve the positivity of η̂(t). These
conditions are rigorous and hard to be guaranteed. In Theorem 2, a new design approach is presented.
The restrictions on W, Q, and L are removed. Moreover, a design framework on the observer gains
is constructed in (22). The conditions in (21) are solvable in terms of linear programming. These
increase the reliability of the design in Theorem 2.

Next, consider the case y(t) = Cx(t) + Dw(t). Then, the equation (20) can be rewritten
as

ė(t) =
(
(T −WC)A− LC + GWC

)
x(t) +

(
(T −WC)B−Q

)
u(t)

+
(
(T −WC)E− LD + GWD

)
w(t)− Gη̂(t)−WDẇ(t).

(26)

Theorem 3. If there exist constants δ1 > 0, δ2 > 0, α > 0, <o vectors v � 0, z(i)g � 0, zg � 0, <r

vectors z(i)w , zw, <m vector z(i)q , and <s vector z(i)c such that

∑o
i=1 1(i)o z(i)>w D = 0, (27a)

TA−∑o
i=1 1(i)o z(i)>w CA−∑o

i=1 1(i)o z(i)>c C + (∑o
i=1 1(i)o z(i)>g −

δ1 Io)∑o
i=1 1(i)o z(i)>w C−∑o

i=1 1(i)o z(i)>g T + δ1T = 0,
(27b)

TB−∑o
i=1 1(i)o z(i)>w CB−∑o

i=1 1(i)o z(i)>q = 0, (27c)

TE−∑o
i=1 1(i)o z(i)>w CE−∑o

i=1 1(i)o z(i)>c D = 0, (27d)

∑o
i=1 1(i)o z(i)>g − δ1 Io + δ2 Io � 0, (27e)
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zg1>o v− δ1v ≺ 0, (27f)

z(i)g � zg, i = 1, 2, . . . , o, (27g)

hold, then under the observer gain matrices (22) and the initial condition satisfying e(0) � 0, the
observer state η̂(t) is nonnegative and the error system (21) is stable.

Proof. From (27a) and (22), it is clear that WD = 0. By (27b) and (22), it follows that
(T −WC)A − LC − GT = 0. Using (27c) and (22) yields (T −WC)B − Q = 0. Using
(27d) and (22) gives (T −WC)E− LD + GWD = 0. Then, (26) becomes (23). By (21e), it
holds that G + δ2 Io � 0, which follows that G is Metzler by Lemma 4. By Lemma 2, the
system (23) is positive. Since e(0) � 0, then e(t) � 0. This implies, η(t) � η̂(t). Due to the
nonnegative property of η(t), η̂(t) � 0.

By (27f) and (27g), one can obtain G>v ≺ 0, which implies e(t)→ 0 with t→ ∞.

The conditions (27b) and (27f) are nonlinear. Then, the nonlinear programming toolbox
in Matlab can be directly used for dealing with the conditions.

Remark 4. As the early attempt on the observer design of positive systems with unknown input, the
literature [12,13] proposed the functional observer and the disturbance observer for positive systems,
respectively. However, there still exist some open issues to the observer design of positive systems.
First, existing results are concerned with the disturbance-free output, i.e., y(t) = Cx(t). Indeed,
the output will contain the disturbance when the dynamics of the system contains disturbance.
Therefore, it is unreasonable to ignore the disturbance in the output. Second, linear (nonlinear)
programming is more effective for dealing with the issues of positive systems than linear matrix
inequalities. In [13], linear matrix inequalities were employed for computing the corresponding
conditions. This will increase the complexity of the design. Linear programming has been verified
to be more suitable for positive systems [16,17,19,20,23–25,27]. Third, a unified is needed to the
observer gain design. In [12,13], the observer gains were computed based on some algorithms.
However, there are no unified framework on these gains. Thus, it limits the further extension of the
proposed design. To further present a unified observer design approach and overcome existing open
issues, Theorems 2 and 3 are presented. The presented framework has potential applications in the
related issues of positive systems.

4. Illustrative Examples

In recent years, urban water supply and water resources management have become a
hot topic with the rapid development of cities. In some large cities such as Paris, Barcelona,
Hangzhou, etc., the large water pipes are constructed to meet the city’s water demand
and facilitate water resource management. In literature [34,35], a state-space model with
disturbance was established for water systems, and corresponding control methods were
designed to achieve effective control of water systems and improve the management ability
of water resources. Considering the positivity of water flow in the water systems, the
literature [36] studied the robust model predictive controllers of the water system by using
positive system theory. The main physical quantities considered in the water system studied
in the literature [34–36] include the water capacity in the tank, the water flow operated by
the actuator (pump station or valve), and the flow generated by the disturbances (water
demands or rainwater flow). Based on the models described in the literature [34–36], a
virtual water tank of the water systems is as shown in Figure 1 and the state-space model
can be established under the form (1), where x(t) is the volume of all the tanks at the tth
time instant, u(t) is the manipulated flows through the actuators (pumps and valves), y(t)
is the outputs of sensors network, and w(t) represents the vector of the value of water
demands or rainwater flow. Here, we assume that the disturbance w(t) is generated by a
structural system (2) in Example 1, and the disturbance w(t) is non-structural in Example 2.
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Figure 1. The virtual tank.

Example 1. Consider system (1) with

A =



−2.50 0.35 0.30
0.52 −1.98 0.58
0.38 0.40 −2.28


, B =




0.88 0.56
0.59 0.90
0.66 0.55


,

C =




1.23 0.95
0.98 1.15
1.10 0.86



>

, D =

(
0.85 0.78
0.78 0.88

)
, E =




0.78 0.68
0.69 0.70
0.56 0.65


.

Give the structural disturbance system (2) with

Υ =

(−0.51 0.41
0.45 −0.52

)
, Γ =

(
1.10 0.10
0.10 0.13

)
.

By Theorem 1, one can obtain the corresponding gain matrices:

G =



−2.5497 0.2793 0.2142
0.3502 −2.1804 0.3714
0.3305 0.3018 −2.3818


, F =

(
0.0049 0.0043 0.0036
0.0052 0.0045 0.0038

)
,

Lc =




0.0400 0.0364
0.1416 0.1070
0.0929 0.0705


, Ld =

(−0.0031 −0.0026
−0.0035 −0.0025

)
.

Give u(t) = 200e−0.05t(| sin(0.2πt)| | cos(0.15πt)|
)>. Under different initial conditions, the

state trajectories of η(t) and the observed signal η̂(t) are shown in Figure 2. The corresponding
error signal e(t) = η(t)− η̂(t) is given in Figure 3. It can be observed from Figure 2 that all
observer states (η̂1(t),η̂2(t),η̂3(t)) remain in positive orthant when the conditions are satisfied in
Theorem 1. Moreover, it can be obtained that the observer errors e(t) asymptotically converge to
zero from Figure 3. Figures 2 and 3 show that the state and disturbance observers design for system
(1) with structural disturbance is effective.

In order to prove that the state observer obtained by Theorem 1 has a good performance,
another input u′(t) = 10,000e−0.05t(| sin(0.2πt)| | cos(0.15πt)|

)> is given and the simulation
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results obtained are shown in Figure 4. By comparing Figure 2 with Figure 4, it can be found
that the simultaneous state and disturbance observers designed in Theorem 1 are all effective for
different inputs.

Figure 2. The state trajectories of system (1).

Figure 3. The corresponding error trajectories of system (1).

Figure 4. The state trajectories of system (1) with input u′(t).

Example 2. Consider the system (1) with

A =



−13.08 5.08 5.30

5.62 −12.38 4.50
4.98 4.68 −11.98


, B =




0.38 0.56
0.39 0.60
0.46 0.35


,

C =




0.68 0.39
0.35 0.41
0.32 0.33



>

, E =




0.1950 0.1755
0.1800 0.1620
0.1400 0.1260


.

By Theorem 2, the gain matrices are:

G =

(−10.7958 0.0070
0.0115 −10.2686

)
, Q =

(
0.0099 0.1400
0.0050 0.0213

)
,

W =

(
6.2873 −5.2919
−1.4874 3.1204

)
, L =

(
1.3829 0.0125
0.9604 0.0256

)
.
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Give u(t) = 100e−0.05t| sin(0.2πt)| | cos(0.15πt)|> and w(t) = 75e−0.05t| cos(0.1πt)|
| sin(0.15πt)|>. Under differential initial conditions, the state trajectories of η(t) and the observed
signal η̂(t) are depicted in Figure 5. The corresponding error signal e(t) = η(t)− η̂(t) is shown in
Figure 6. It can be seen from Figure 5 that all observer states (η̂1(t),η̂2(t),η̂3(t)) remain in positive
orthant when the conditions are satisfied in Theorem 2. Besides, it can be obtained that the observer
errors e(t) asymptotically converge to zero from Figure 6. Figures 5 and 6 show that the unknown
input observer design for system (1) with non-structural disturbance is effective.

Different input and disturbance with u′(t) = 10,000e−0.05t(| sin(0.2πt)| | cos(0.15πt)|
)>

and w′(t) = 7500e−0.05t(| cos(0.1πt)| | sin(0.15πt)|
)> are re-selected for simulation. The simu-

lation results are shown in Figure 7. By comparing Figure 5 with Figure 7, it can be found that the
unknown input observer designed in Theorem 2 is effective for different input and disturbance.

Figure 5. The state trajectories of system (1).

Figure 6. The corresponding error trajectories of system (1).

Figure 7. The state trajectories of system (1) with input u′(t) and disturbance w′(t).

5. Conclusions

This paper proposes two classes of observers for positive systems with disturbance.
One is for the structural disturbance and the other one is the non-structural disturbance.
A novel designed approach without additional conditions on the observer gain matrices
is introduced, which removes the limitation of gain performance and thus improves the
accuracy of the observer. The observer frameworks proposed in this paper are universal
to positive systems with structural/non-structural disturbance and the proposed design
method can provide valuable reference for the control synthesis of positive systems. In
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addition, linear programming is used to solve the presented conditions, which greatly
reduces the computational complexity. In future work, it will be interesting to develop
symmetry observer [37] and sliding mode observer [38] to positive systems.
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Abstract: This paper studies the synchronization problem for a class of chaotic systems subject to
disturbances. The nonlinear functions contained in the master and slave systems are assumed to be
incremental quadratic constraints. Under some assumptions, a feedback law is designed so that the
error system behaves like the H∞ performance. Meanwhile, the detailed algorithm for computing
the incremental multiplier matrix is also given. Finally, one numerical example and one practical
example are simulated to show the effectiveness of the designed method.

Keywords: fractional-order; chaotic systems; robust synchronization

MSC: 93-10

1. Introduction

The chaotic system is a kind of nonlinear system, and the characteristics of the chaotic
system behave like the chaotic attractors . The definition of chaos was introduced by [1].
The investigation of the chaotic system has been paid much attention since it plays an
important role in areas such as image encryption [2], fault detection [3], neural networks [4],
communication security [5], and so on. In practice, the synchronization of master and slave
chaotic systems is very essential to secure communication. Thus, synchronization has been
studied extensively [6–8]. In [6], the authors used an active nonlinear controller to realize
the synchronization of two hybrid chaotic systems, while [7] studied the design of adaptive
controller for the purpose of the synchronization. Ref. [8] focused on the time-delay chaotic
system, and a feedback law was designed to realize the robust synchronization. There were
also other important works on synchronization for chaotic systems [9,10] herein.

On the other hand, the research on fractional-order systems is also a hot topic. The
fractional-order system first appeared in a pure mathematical problem [11]. In the context
of mathematics, Ref. [12] used the fractal-fractional mathematical model to describe the
situation of corona virus, and [13] studied a class of nonlinear delayed corona virus pan-
demic model, while in [14], an optimal control problem of a nonholonomic macroeconomic
system was investigated. Some researchers used the fractional-order system to describe
more general practical systems. In fact, a fractional-order differential equation can be more
accurate in describing complicated systems than integral-order differential equation. In the
aspect of the fractional-order system, there were many interesting works, such as [15–18].
Since it is very powerful in describing more general systems, the study of fractional-order
chaotic systems has always been a hot spot. Ref. [19] employed the active control method
to investigate the synchronization problem for fractional-order chaotic systems, while,
in [20], an adaptive impulsive controller was designed to achieve synchronization . The
robust observer design problem for fractional-order chaotic systems was addressed in [21].
Moreover, the stability conditions of a class of impulsive incommensurate chaotic systems
were analyzed in [22].

It should be noted that the nonlinear terms considered in the above-mentioned
works [19–22] are all Lipschitz. Recently, a more general nonlinearity, called incremental
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quadratic constraints (IQC), has attracted much attention. It is pointed out in the work [23]
that IQC is characterized by the incremental multiplier matrix (IMM) and can include
Lipschitz constraints and one-sided Lipschitz constraints. The work [24] presented an
observer design method for IQC systems, the results of [24] were extended to chaotic
systems, and the secure communication problem was studied in [25]. Ref. [26] designed the
controller for IQC systems with external disturbances. However, the robust synchronization
of fractional-order chaotic systems under the framework of IQC has been reported rarely.

In the light of the above discussion, this paper considers the synchronization problem
of fractional-order chaotic systems whose nonlinearity is described by IQC. The controller
is designed by using the output, and the fractional-order stability theory is employed to
derive sufficient conditions on robust synchronization. The remainder of the paper is as
follows: Section 2 formulates the problem and presents some necessary basics. Section 3
designs the feedback law so that the robust synchronization is achieved. Section 4 suggests
an algorithm to compute IMM. Section 5 simulates two examples to illustrate the validity
of the designed method.

2. Preliminaries and Problem Statements

Consider the following fractional-order chaotic system:
{

Dα
t x(t) = Ax(t) + G f (Hx(t)) + Dωx(t),

zx(t) = Cx(t),
(1)

where Dα
t is the α-order Caputo derivative with 0 < α < 1. A ∈ Rn×n, G ∈ Rn×m,

H ∈ Rl×n, D ∈ Rn×s, and C ∈ Rq×n are constant matrices. x(t) ∈ Rn is the system state,
ωx(t) ∈ Rs is the disturbance, and zx(t) ∈ Rq is the output. f (q) : Rl → Rm with q = Hx(t)
is the nonlinear function. For the purpose of simplification, the variable t is omitted when
necessary. Then, the master system Equation (1) is written as:

{
Da

t x = Ax + G f (Hx) + Dωx,
zx = Cx.

(2)

In the above system Equation (2), when the system matrices are given as:

A =



−10 10 0
28 −1 0
0 0 − 8

3


, G =




0 0
−1 0
0 1


, H =




1 0 0
0 1 0
0 0 1


,

f (Hx) =
[

x1x3
x1x2

]
, D =




1
0
0


, C =

[
1 0 0

]
.

The above fractional-order system behaves the chaos phenomenon. Figure 1 shows the
phase plane of the system when α = 0.98.
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Figure 1. The chaotic behavior of fractional-order chaotic system.

Then, the following slave system is presented:
{

Da
t y = Ay + G f (Hy) + Dωy + Bu,

zy = Cy,
(3)

where ωy is the disturbance, and u is the controller, which is designed as u = K(zy − zx).
Let e = y− x, the error system is derived as follows:

Da
t e = (A + BKC)e + G[ f (Hy)− f (Hx)] + D∆ω. (4)

where ∆ω = ωy −ωx.
Denote that Γ(α) =

∫ ∞
0 e−ttα−1dt. We firstly give the definitions of the fractional-order

integral and derivative. More details can be found in [27].

Remark 1. If the parameter errors exist in the system (1), i.e., A and B will be substituted by
A + ∆A(t) and B + ∆B(t). Then, we can use the norm-bounded conditions of ∆A(t) and ∆B(t)
to design the controller in (3).

Definition 1 ([27]). A fractional integral of the function z with order α > 0 is defined as follows:

Iα
t0

z(t) =
1

Γ(α)

∫ t

t0

(t− s)α−1z(s)ds.

Definition 2 ([27]). A Caputo fractional derivative of the function z with order 0 < α < 1 is
defined as follows:

Dα
t z(t) =

1
Γ(α)

∫ t

0
(t− s)−α d

ds
z(s)ds.

Definition 3 ([24]). For a nonlinear function ϕ(θ), if there exists a symmetric matrix W such that

[
θ1 − θ2

ϕ(θ1)− ϕ(θ2)

]T

W

[
θ1 − θ2

ϕ(θ1)− ϕ(θ2)

]
≥ 0, (5)

then ϕ(θ) is IQC, and W is called the IMM for ϕ(θ).

From [24], it is known that Lispchitz constraints or one-sided Lipschitz constraints are
a special case of IQC.

Definition 4 ([28]). The error system (4) behaves the H∞ performance, if
(1) ∆ω = 0, lim

t→∞
e(t) = 0;
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(2) ∆ω 6= 0; under the zero-initial condition, the following inequality holds:
∫ ∞

0
eT(s)e(s)ds < ς

∫ ∞

0
∆ωT(s)∆ω(s)ds,

where ς > 0 is the disturbance attenuation level.

Assumption 1. The nonlinear function f (q) in systems (2) and (3) satisfies IQC with IMM M, i.e.,

[
q2 − q1

f (q2)− f (q1)

]T

M

[
q2 − q1

Φ1(q2)−Φ1(q1)

]
≥ 0, (6)

and M has the blocked form as follows:

M =

[
M11 M12

M21 M22

]
, (7)

where M11 ∈ Rn×n and M22 ∈ Rs×s.

Lemma 1 ([29]). Let V(t) = xT(t)Px(t) be a continuously differentiable function, then Dα
t V(t)

satisfies:
Dα

t V(t) ≤ (Dα
t e(t))T Pe(t) + eT P(Dα

t e(t)). (8)

3. Main Results

We first state the following theorem, where sufficient conditions are given so that the
controller design is effective.

Theorem 1. Let Assumption 1 hold. If matrices P = PT > 0 and K exist such that




(A + BKC)T P + P(A + BKC) + I + HT M11H PG + HT M12 PD
GT P + M21H M22 0

DT P 0 −ςI


 < 0, (9)

where ς > 0 is the disturbance attenuation level, then the error system Equation (4) behaves like the
H∞ performance , i.e., the robust synchronization of systems Equations (2) and (3) is achieved.

Proof. Consider the following Lyapunov function candidate:

V = eT Pe. (10)

From Lemma 1, the fractional derivative of V is

Dα
t V ≤ (Dα

t eT)Pe + eT PDα
t e. (11)

Thus, along the error dynamics Equation (4), we have

Dα
t V ≤eT [(A + BKC)T P + P(A + BKC)]e + eT PD∆ω + ∆ωT DT Pe

eT PG[ f (Hy)− f (Hx)] + [ f (Hy)− f (Hx)]TGT Pe.
(12)

The proof is divided into two steps according to Definition 4.
(i) ∆ω(t) = 0. It follows from Equation (12) that

Dα
t V ≤eT [(A + BKC)T P + P(A + BKC)]e

eT PG[ f (Hy)− f (Hx)] + [ f (Hy)− f (Hx)]TGT Pe.
(13)
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Define that δ = f (Hy)− f (Hx), by using Assumption 1, we have

[
e
δ

]T[ HT 0
0 I

]
M
[

H 0
0 I

][
e
δ

]
≥ 0,

i.e., [
e
δ

]T[ HT M11H HT M12
M21H M22

][
e
δ

]
≥ 0. (14)

Denote that ξ = [eT δT ]T . Substituting Equation (14) into Equation (13) yields

Dα
t V ≤ ξTΛξ, (15)

where

Λ =

[
(A + BKC)T P + P(A + BKC) + HT M11H PG + HT M12

GT P + M21H M22

]
.

In view of Equation (9), by using the matrix theory, we have

[
(A + BKC)T P + P(A + BKC) + I + HT M11H PG + HT M12

GT P + M21H M22

]
< 0.

Thus, Γ < 0. From Equation (15), we can deduce that Dα
t V < 0, which means that

lim
t→∞

e(t) = 0.

(ii) ∆ω(t) 6= 0. Let

J =
∫ ∞

0
eT(t)e(t) dt−

∫ ∞

0
ςωT(t)ω(t) dt

=
∫ ∞

0
[eT(t)e(t)− ςωT(t)ω(t)] dt.

(16)

Recall that
I1
0 Dα

t V(e) = I1−α
0 Iα

0 Dα
t V(e), (17)

then
I1
0 Dα

t V(e) = I1−α
0 (V(e(t))−V(e(0))). (18)

By using the zero-initial condition e(0) = 0, one gets

I1
0 Dα

t V(e) = I1−α
0 (V(e(t))). (19)

Since V(e(t)) ≥ 0, we have I.
1−α
0 (V(e(t))) ≥ 0, i.e., I.

1
0Dα

t V(e) ≥ 0, which implies that

∫ ∞

0
Dt

αV(t)dt ≥ 0. (20)

Thus, it follows from Equations (16) and (20) that

J ≤
∫ ∞

0
[eT(t)e(t)− ςωT(t)ω(t) + Dt

αV(t)] dt. (21)

Denote that S = eTe− ςωTω + Dt
αV, together with Equation (12), we have

S =eTe− ςωTω + eT [(A + BKC)T P + P(A + BKC)]e

+ δTGT Pe + eT PGδ + ∆ωT DT Pe + eT PD∆ω.
(22)

Define that ζ = [eT δT ∆ωT ]T . Substituting Equation (14) into Equation (22) yields

S ≤ ζTΘζ, (23)
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where

Θ =




(A + BKC)T P + P(A + BKC) + I + HT M11H PG + HT M12 PD
GT P + M21H M22 0

DT P 0 −ςI


.

It follows from Equations (9), (19) and (23) that

J ≤
∫ ∞

0
S(t) dt < 0, (24)

which implies ∫ ∞

0
eT(t)e(t)dt−

∫ ∞

0
ςωT(t)ω(t)dt < 0, (25)

i.e., ∫ ∞

0
eT(t)e(t)dt < ς

∫ ∞

0
ωT(t)ω(t)dt. (26)

Combining (i) with (ii), the proof is completed.

Remark 2. The condition Equation (9) cannot be solved by the Matlab LMI toolbox since it is not
a standard LMI. Here, one solution is suggested to deal with the matrix inequality Equation (9). Let
PBK = Z; then Equation (9) is equivalent to




AT P + PA + ZC + CTZT + I + HT M11H PG + HT M12 PD
GT P + M21H M22 0

DT P 0 −ςI


 < 0. (27)

Thus, we can use the Matlab LMI toolbox to solve the matrix P from Equation (27). Then, if
rank(PB) = rank(PB Z), then K = (PB)†Z, where (PB)† is the Moore inverse matrix of PB.

4. The Determination of IMM M

In Equation (27), the matrix M is essential to the solutions P and K. Thus, we will
give a detailed algorithm to compute M in this section. Generally, the nonlinear function
f (q) in system Equations (2) and (3) is supposed to be continuously differentiable, and it is
characterized by a known set Ω of matrices. For any q1, q2 ∈ Rl , there is a matrix Υ in Ω
such that f (q1)− f (q2) = Υ(q1 − q2). Ω is a known polytope of matrices with vertices Υ1,
Υ2, ..., Υn denoted by Ω = co{Υ1, Υ2, ..., Υn}. By using IQC, one gets

[
I

Υi

]T

M
[

I
Υi

]
≥ 0, i ∈ I[1, N]. (28)

In view of the decomposition form of M, Equation (28) becomes

M11 + M12Υi + ΥT
i MT

12 + ΥT
i M22Υi ≥ 0, i ∈ I[1, N].

By using the Shur complements, we have

[
M11 + M12Υi + ΥT

i MT
12 ΥT

i M22
M22Υi −M22

]
≥ 0, i ∈ I[1, N]. (29)
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By solving Equation (29), the solution M may be found. However, it is not easy to determine
Yi. In the sequel, we provide a method with to compute these vertex matrices Υi of f (q) in
systems Equations (2) and (3). Since f (q) is continuously differentiable, then

∂ f (q)
∂q

=

[
q3 0 q1
q2 q1 0

]
=

[
x3 0 x1
x2 x1 0

]

= x1

[
0 0 1
0 1 0

]
+ x2

[
0 0 0
1 0 0

]
+ x3

[
1 0 0
0 0 0

]
.

Thus, the vertices of the polytope Ω can be described by

Υ1 = τ

[
0 0 1
0 1 0

]
, Υ2 = τ

[
0 0 0
1 0 0

]
, Υ3 = τ

[
1 0 0
0 0 0

]
,

Υ4 = −τ

[
0 0 1
0 1 0

]
, Υ5 = −τ

[
0 0 0
1 0 0

]
, Υ6 = −τ

[
1 0 0
0 0 0

]
,

By using the bounded condition in [30], we solve Equation (29) and have

M11 =




10.1989 0 0
0 7.9306 0
0 0 7.4134


, M12 =



−0.952 0

0 −1.4586
0 0


,

M22 =

[−4.0588 0
0 −4.0836

]
. (30)

Remark 3. By the definition of IQC, we know that the matrix M may have infinite solutions. To
some extent, the computation of M is not an easy task. The detailed procedure depends on the
parameter τ. Owing to the technique proposed in [30], the detailed computation process of τ is
omitted here.

5. Numerical Simulation

Example 1. Consider the system Equation (2) with the matrix parameters:

A =



−10 10 0
28 −1 0
0 0 − 8

3


, G =




0 0
−1 0
0 1


, H =




1 0 0
0 1 0
0 0 1


,

f (Hx) =
[

x1x3
x1x2

]
, D =




1
0
0


, C =

[
1 0 0

]
.

By using the results of the fractional order system, if α ≥ 0.98, the system Equation (2) behaves like
chaotic attractors . Therefore, α is setting as 0.98 in the simulation. We solve IMM for f (Hx), and
M is given as shown in Equation (30). The disturbances ωx and ωy are as follows:

ωx = ωy =

{
300 sin(10t), 0 ≤ t ≤ 3s,
0, t > 3s.

The initial values of x and y are chosen as

xT(0) =
[
5 −3 6

]
, yT(0) =

[
−5 6 −3

]
.
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First, we deal with nonlinearity through the IMM algorithm in Section 4, and the matrix M is
as follows:

M =




10.1989 0 0 −0.9520 0
0 7.9306 0 0 −1.4586
0 0 7.4134 0 0

−0.9520 0 0 −4.0588 0
0 −1.4586 0 0 −4.0836




.

We let ∫ ∞

0
eT(t)e(t)dt < 5

∫ ∞

0
ωT(t)ω(t)dt,

when ∆ω(t) 6= 0. Substituting M into Equation (27) yields

P =




6.0584 −0.5478 0.1606
−0.5478 2.0698 0.4468
0.1606 0.4468 2.6717


,

which can be seen that P is positive definite. Furthermore, we have

Z =




67.2326
−124.5635
−10.4750


.

It is obvious that rank(PB) = rank(PB Z), i.e., K = (PB)†Z, where (PB)† is the Moore inverse
matrix of PB. Hence, the controller gain can be obtained

K =




5.5223
−59.9667

5.7749


.

During the simulation, we denote that

x =




x1
x2
x3


, y =




y1
y2
y3


, e =




e1
e2
e3


.

In Figure 2, the trajectories of each state of system Equation (2) and system Equation (3) are shown.
In Figure 3, the trajectories of error dynamics e(t) are shown. It can be seen that the trajectories of
errors exhibit bounded convergence under the influence of disturbances ωx and ωy in the first 3 s.
However, after 3 s, when the disturbances disappears, the error will gradually converge to zero. It is
consistent with the theoretical results. Thus, the proposed method is valid in this paper.
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(a)

(b)

(c)

Figure 2. The trajectories of x(t) and y(t), (a) the trajectories of x1 and y1, (b) the trajectories of x2

and y2, and (c) the trajectories of x3 and y3.
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(a)

(b)

(c)

Figure 3. The trajectory of tracking error e(t), (a) The trajectory of tracking error e1, (b) the trajectory
of tracking error e2, and (c) the trajectory of tracking error e3.

Example 2. Fractional-order Lorentz systems can be used to describe a class of circuit systems.
In Figure 4, the three state variables x, y, and z are implemented by three channels, respectively,
and some of these calculus operations are replaced by operational amplifiers and analog multipliers.
The resistors in Figure 4 are Ri = 10 kΩ; i = 1, 2, 8, 9, 12, 13, 15, 16, 18, 19, 21, 22; R4 = 1 kΩ;
R5 = 1.55 MΩ; R6 = 62 MΩ; R7 = 2.5 kΩ; R10 = 3.57 kΩ; Rj = 100 kΩ; j = 11, 14, 20; and
R17 = 37.5 kΩ; R3 is adjustable, and the capacitors are C1 = 0.73 µF, C2 = 0.52 µF, C3 = 1.1 µF,
C4 = C5 = 1 nF . By adjusting R3, different chaotic phenomena can be obtained.
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Figure 4. Analog circuit of the fractional-order Lorenz system.

From [31], by analyzing the circuit system in Figure 4, we obtain the following state-space
dynamics: {

Dα
t x(t) = Ax(t) + G f (Hx(t)) + Dωx(t),

zx(t) = Cx(t),

where

A =



−10 10 0
28 −1 0
0 0 − 8

3


, G =




0 0
−1 0
0 1


, H =




1 0 0
0 1 0
0 0 1


,

f (Hx) =
[

x1x3
x1x2

]
, D =




1 0 0
0 1 0
0 0 0


, C =

[
1 0 0

]
.

The disturbance is chosen as:

wx = wy =








10sin(10t)
20sin(10t)

0


, 0 ≤ t ≤ 10s,

0, t > 10s.

Then, the control gain K is obtained by solving Equation (27)

K =



−3.6982
−53.0802

4.1746


,

and

P =




1.7077 −0.5876 0.1182
−0.5876 1.0806 0.3321
0.1182 0.3321 2.4589


, Z =




25.3700
−53.7972
−7.8021


.
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The state trajectories of three variables in the circuit system are depicted in Figure 5, and the
trajectories of the tracking errors between the master–slave circuit systems are shown in Figure 6.
The simulation results are consistent with the theoretical results.

(a)

(b)

(c)

Figure 5. The trajectories of x(t) and y(t), (a) the trajectories of x1 and y1, (b), the trajectories of x2

and y2, and (c) the trajectories of x3 and y3.
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(a)

(b)

(c)

Figure 6. The trajectory of tracking error e(t), (a) the trajectory of tracking error e1, (b) the trajectory
of tracking error e2, and (c) the trajectory of tracking error e3.

Remark 4. In [18], the sliding mode control problem for fractional-order systems was considered.
Unlike [18], the synchronization problem for fractional-order chaotic systems is concerned in this
paper. Moreover, compared with [19–22], the nonlinearity in this paper satisfies IQC, and it is a
more gerenal description.

6. Conclusions

The robust synchronization problem of nonlinear fractional-order chaotic systems
was investigated in this paper. Under the framework of IQC, the nonlinear function was
described by using the IMM and state variables. The detailed computation method for
IMM was also presented when the nonlinearity in chaotic system was concerned. Under the
sufficient conditions, the controller was designed so that the error system behaved like the
H∞ performance. At last, two examples were given to verify the validity of the proposed
method. In future work, we will focus on the adaptive control or another advanced control
for fractional-order chaotic systems.
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26. Xu, X.; Açıkmeşe, B.; Corless, M.J. Observer-Based Controllers for Incrementally Quadratic Nonlinear Systems With Disturbances.

IEEE Trans. Autom. Control. 2021, 66, 1129–1143. [CrossRef]
27. Podlubny, I. Fractional Derivatives and Integrals. In Fractional Differential Equations: An Introduction to Fractional Derivatives;

Elsevier: Amsterdam, The Netherlands, 1998; pp. 41–80.

73



Mathematics 2022, 10, 4639

28. Xiang, W.; Xiao, J.; Iqbal, M.N. Robust observer design for nonlinear uncertain switched systems under asynchronous switching.
Nonlinear Anal. Hybrid Syst. 2012, 6, 754–773. [CrossRef]

29. Zhang, H.; Huang, J.; He, S. Fractional-Order Interval Observer for Multiagent Nonlinear Systems. Fractal Fract. 2022, 6, 355. [CrossRef]
30. Li, D.; Lu, J.; Wu, X.; Chen, G. Estimating the bounds for the Lorenz family of chaotic systems. Chaos Solitons Fractals 2005,

23, 529–534. [CrossRef]
31. Jia, H.; Tao, Q.; Chen, Z. Analysis and circuit design of a fractional-order Lorenz system with different fractional orders. Syst. Sci.

Control Eng. Open Access J. 2014, 2, 745–750. [CrossRef]

74



Citation: Xu, J.; Huang, J. An

Overview of Recent Advances in the

Event-Triggered Consensus of

Multi-Agent Systems with Actuator

Saturations. Mathematics 2022, 10,

3879. https://doi.org/10.3390/

math10203879

Academic Editor: António Lopes

Received: 28 September 2022

Accepted: 15 October 2022

Published: 19 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Review

An Overview of Recent Advances in the Event-Triggered
Consensus of Multi-Agent Systems with Actuator Saturations
Jing Xu and Jun Huang *

School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215031, China
* Correspondence: cauchyhot@163.com

Abstract: The event-triggered consensus of multi-agent systems received extensive attention in
academia and industry perspectives since it ensures all agents eventually converge to a stable state
while reducing the utilization of network communication resources effectively. However, the practical
limitation of the actuator could lead to a saturation phenomenon, which may degrade the systems
or even induce instability. This paper plans to offer a detailed review of some recent results in the
event-triggered consensus of multi-agent systems subject to actuator saturation. First, the multi-
agent system model with actuator saturation constraints is given, and the basic framework of the
event-triggering mechanism is introduced. Second, representative results reported in recent valuable
papers are reviewed based on methods for dealing with saturated terms, including low-gain feedback,
sector-bounded conditions, and convex hull representations. Finally, some challenging topics worthy
of research efforts are dicussed for future research.

Keywords: event-triggered consensus; multi-agent systems; actuator saturation; low-gain feedback;
sector-bounded condition; convex hull representation
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1. Introduction

The investigation on multi-agent systems (MASs) received great attention due to
its wide range of application scenarios, including robot team control [1–3], unmanned
aerial vehicle formation control [4,5], sensor network control [6–8], power grid control [9],
etc. The consensus problem is one of the most popular issues among researchers, which
intended to make all agents of MASs converge to the expected state. A key issue about
consensus control of MASs is how to design an appropriate control protocol such that the
consensus of MASs can be achieved. However, due to large-scale agent actions and the
complexity of information exchange in MASs, it is really difficult or even unrealistic to adopt
a conventional simple centralized control strategy. In order to investigate the consensus
problem of MASs, academia prefers to employ a distributed control method that uses the
information exchange between neighboring agents in a shared information network. Over
the past decade, some distributed control methods have been presented [10–15].

According to the traditional consensus control protocol, it is widely assumed that
control signals can be transmitted to agents in MASs continuously. However, the afore-
mentioned assumption is harsh because it requires the network of the MASs to provide
sufficient communication resources, which is difficult in practical environments, especially
considering that agents are powered by limited energy devices, such as batteries. Moreover,
the communication resources and bandwidth of the MASs are limited at a certain time.
Therefore, a suitable distributed control protocol not only needs to ensure the control
performance of the system but also needs to consider the limitation of communication
resources. One formerly adopted method is time-triggered control (TTC), where the ac-
tion of information sampling is triggered by preset sampling periodic intervals [16–19].
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However, subsequent research studies have found that this method not only consumes
excessive communication resources but also behaves poorly in the presence of external
interference in systems [20]. On the other hand, if control protocols require frequent infor-
mation updates, it may lead to detrimental results in the system, such as communication
congestion and increased packet loss. It is well-known that communication congestion
will deteriorate related performance indicators, such as severe time-delay phenomenon
and reduced throughput, thus inevitably destroying the stability, reliability, and rapidity
of the system. Therefore, it is of great theoretical and practical significance to design a
distributed control protocol that can not only satisfy the control performance to the greatest
extent but also simultaneously reduce the communication frequency in the system as much
as possible.

The adoption of the event-triggered control (ETC) provides an effective solution to the
above problems [21]; since then, it has been a focus of attention from the researchers [22,23].
Distinct from the TTC, the controller update is implemented if the predefined event-
triggered mechanism (ETM) is violated, which helps save communication resources [24].
Essentially, the triggered instant of ETC depends on the state change inside the system,
while the triggered instant of TTC depends on the time period pre-defined by the designer,
which cannot reflect the internal laws of the system. For example, if the system has a
stable trend, i.e., the system state changes are quite small, the ETC can significantly reduce
the update frequency of information and economize communication resources compared
with TTC [24]. Benefiting from this advantage, research studies related to ETC attracted
tremendous attention in the last decade. The research on ETC are quite mature, particularly
on fault detection approaches, the influence of disturbances, modeling errors, and various
uncertainties in the real systems. The event-triggered consensus problem of a fuzzy-basis-
dependent event generator and an asynchronous filter of fuzzy Markovian jump systems
was investgated in [25]. Djordjevic [26] considered the data-driven optimal controller
of hydraulic servo actuators with completely unknown dynamics. An event-triggered
observation scheme was considered for a perturbed nonlinear dynamical system in [27].
Moreover, [28] investigated the adaptive neural network fixed-time tracking control issue.
In addition to the above results, a number of meaningful results emerged [20,29–37].

It can be seen from the above discussion that ETC has obvious practical significance,
i.e., to reduce the utilization of system communication network resources. While it is
obvious that ETC is aimed at the optimization of the control input, another practical
issue concerning the control input also deserves special attention, namely the saturation
phenomenon of the actuator. In practical situations, the amplitude and frequency of
the controller output current and voltage are limited, and the motor output torque and
rotational speed are limited. A large number of engineering practices have shown that
ignoring the constraints of the saturation phenomenon will degrade the performance of the
system and even lead to catastrophic consequences. One of the most famous examples is
the crash of Plane YF-22 [38]. Therefore, the saturation treatment of the system is a issue
worthy of great efforts, and a series of important results emerged. Among the current
methods, the sector-bounded condition, low-gain feedback, and convex hull representation
are the most popular methods. Da Silva et al. [39] proposed the sector-bounded condition,
and the stability analysis of system is successfully transformed into the solution of linear
matrix inequalities (LMIs) by introducing the sector inequality. Lin [40] proved that by
solving the parametric algebraic Riccati equation (ARE), the low-gain feedback method can
retain the control input within the saturation threshold, i.e., the system does not exhibit the
saturation. As a novel result, Hu [41] introduced the convex hull theory to the treatment of
saturation terms. Since then, a large number of meaningful research results on saturation
control emerged in academia; see [42–50].

It is widely acknowledged that research studies of event-triggered consensus control
protocols for MASs with actuator saturation are more challenging compared to the ones for
a single system. The difficulties of research studies mainly come from the following aspects.
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(i) The distributed control protocol and ETM contain complex information coupling, i.e.,
the state information of individual agents and their neighbors in the communication network.

(ii) Distinct from the low-gain feedback method, the sector-bounded condition and
convex hull representation focus on semi-global stabilization, so there is an effective vector
space domain called the domain of attraction (DOA), and the processing of saturation terms
is reasonable only in this domain. Due to the introduction of the ETM, which makes the
control input more complex, the estimation of DOA will be more complicated and difficult
than the situation without ETM.

(iii) Difficulty in ruling out Zeno phenomenon, which means an infinite number of
triggered events for a limited period of time: When it comes to saturated systems under ETC,
some existing studies use the sector-bounded condition method to simplify the estimation
problem of the DOA [51,52], whlie few studies focus on convex hull representation, which
is a less conservative approach. The estimation problem of the DOA will be analyzed in
detail below.

On the basis of the review papers [23,53–55], we review the event-triggered consensus
problem of saturated MASs in recent years. Based on the different methods dealing with
saturation, the design problem of feasible event-triggered consensus control protocols
for MAS subjects relative to actuator saturation is analyzed. The structure of this paper
is organized as follows. Section 2 provides the description of common MASs actuator
saturation and the introduction of the working mechanisms of ETC. Based on three methods
dealing with saturation, i.e., sector-bounded condition, low-gain feedback, and convex hull
representation, this paper reviews the design problems of control strategies with reference
values in recent years and analyzes their respective advantages and disadvantages in
Section 3. Section 4 reviews one simulation example and its comparative experiments to
specify performance evaluation indicators. Section 5 summarizes challenging topics about
related fields in the future. The conclusion of this paper is provided in Section 6.

Throughout the paper, the following symbols will be used. I[1, N] represents the set
of consecutive integers {1, 2, · · · , N}, and sign(·) means the symbol function. ⊗ is the
Kronecker product. For matrix A, A > 0 (≥ 0) represents a semi-positive definite matrix,
and A < 0 (≤ 0) represents a semi-negative definite matrix.

2. System Description and Preliminaries

In this section, we first provide a description of the common model of MAS that is
subject to actuator saturation, along with the distributed control protocol. Next, a general
framework of the distributed ETM is proposed.

2.1. Multi-Agent Systems with Actuator Saturation

In order to summarize the existing theoretical results in a unified manner, we provide
the following system description based on [56]. Two types of MASs are provided: leaderless
one and leader–follower one, respectively.

ẋi(t) = Axi(t) + BUsat(ui(t)), i ∈ I[1, N]. (1)
{

ẋ0(t) = Ax0(t),

ẋi(t) = Axi(t) + BUsat(ui(t)), i ∈ I[1, N].
(2)

MAS (1) represents leaderless one, and (2) represents leader–follower one. N rep-
resents the number of agents in MAS (2), and the nunber of agents in the MAS (1) is
N + 1 because of the existence of one leader agent. x0(t) indicates the state of the leader
agent, xi(t) ∈ Rn represents the state of the follower agent, and ui(t) ∈ Rm is the con-
trol input of the ith agent. A ∈ Rn×n and B ∈ Rn×m are given matrices related to the
systems. It is assumed that matrices (A, B) are stabilizable. The saturation function
Usat(ui(t)) ∈ Rm is described by Usat(ui(t)) = [Usat(ui1(t)), · · · , Usat(uim(t))]T, where
Usat(uip(t)) = sign(uip)min{|uip(t)|, u0}, p ∈ I[1, m], and u0 is the saturation threshold.
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The communication network of the MASs can be represented by a directed or undi-
rected graph G = (V , E , A ), where V = {v1, v2, · · · , vN} stands for the set of vertex,
which represents N agents (for example, v1 stands for the 1th agent in the MAS), and
E ⊆ V × V represents the set of edges. In graph G , edge εij = (vi, vj) represents the
fact that agent vj can receive information from agent vi. Therefore, vertex vl is called a
neighbor of agent vi and Ni = {vj ∈ V : εij ∈ E } is called the neighbourhood of the agent
vi. The weighting adjacency matrix is defined by A = [aij] ∈ RN×N , which represents
the existence and strength of inter-agent communications. Thus, it is defined that aij > 0
if εij ∈ E and aij = 0 if εij /∈ E . We define a degree matrix D = diag[dii] ∈ RN×N with
dii = ∑N

j=1 aij. Afterall, the Laplacian matrix L of the araph G is given by L = D −A.
The above graph theory describes a leaderless MAS. When MAS has a leader, an

additional matrix needs to be defined by B = diag[bi] ∈ RN×N , where bi > 0 means that
agent vi is able to receive information from leader agent v0; otherwise, bi = 0. We define
the Laplacian matrix of graph G with the leader agent byH = L+ B.

It is said that MAS (1) with actuator saturation has achieved consensus if all agents’
states converge to the same value under control protocol ui(t) and initial conditions xi(0) ∈
X ⊂ Rn, i.e., limt→∞ ‖xi(t)− xj(t)‖ = 0. Set X as the DOA mentioned above. As for the
leader–follower MAS (2), the consensus requires all follower agents to be consistent with
the leader agent eventually, i.e., limt→∞ ‖xi − x0‖ = 0.

Compared with the common linear MASs studied before, the difference between
MASs (1), (2) and the linear ones is that there exists the limitation of actuator saturation
Usat(ui(t)), which also makes the system nonlinear. Therefore, the lemmas required to deal
with the saturation term are presented below.

Lemma 1 ([57]). Define the dead zone function Φ(s) = Usat(s)− s, where s ∈ Rm. Then, for any
diagonal positive definite matrix T ∈ Rm×m, the following inequality holds:

ΦT(s)T(Φ(s) + w) ≤ 0,

if vectors s and w belong to the set S(s, w, u0) = {s ∈ Rm, w ∈ Rm : ‖s− w‖∞ ≤ u0}.

Lemma 2 ([58]). If all eigenvalues of matrix A are in the closed left-half s-plane, then for any
ε ∈ (0, 1], there exists a unique matrix P(ε) > 0 such that the following ARE is satisfied:

AT P(ε) + P(ε)A− P(ε)BBT P(ε) + εIN = 0,

and limε→0 = 0.

Lemma 3 ([59]). If there exist matrices F, H∈Rm×n, then the saturation term can be represented
by the following:

Usat(Fx) ∈ co
{

DrFx + D−r Hx
}

, k ∈ I[1, 2m],

where x ∈ L (H, u0), co{·} is the convex hull of a set, and Dr is a diagonal matrix with diagonal
elements being either 1 or 0, D−r = I − Dr. L (H, u0) = {x ∈ Rn : ‖Hx‖∞ ≤ u0}.

Lemmas 1–3 are the basis for using the three saturation-processing methods, i.e.,
sector-bounded condition, low-gain feedback, and convex hull representation, respectively.
For details, please refer to the papers in Section 1, and they will also be analyzed in the
next section.

In order to achieve the consensus of MAS, the following common control protocol is
proposed [56]:

ui(t) = K ∑
j∈Ni

aij(xi(t)− xj(t)) + bi(xi(t)− x0(t)), (3)

where K is the gain matrix to be designed. Moreover, we have bi 6= 0 if MASs have a leader
agent, and bi = 0 otherwise.
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In the application of the control protocol (3), the control protocol needs to continuously
acquire all required agents’ states, which will cause a large consumption of communication
resources. To solve this problem, ETC is proposed and widely used because it can effectively
save communication resources since it avoids continuous updates of the controller. Next,
we introduce its basic framework and mechanism.

Remark 1. Different from the event-triggered consensus problem reviewed in [23], this paper
considers the limitation of actuator saturation additionally, so the content of this paper can be
regarded as a broader and general result. According to the commonly used saturation-processing
methods mentioned above, this paper specifically discusses the processing methods for the event-
triggered consensus problem in the presence of saturation phenomena.

2.2. The Framework of Event-Triggered Mechanism

Figure 1 shows the basic working principle of ETC roughly, and it can be seen that the
difference from traditional MASs is the introduction of event-triggered detectors (marked
by dotted lines). As a key component of ETC, the detector is responsible for collecting
measurement information from the sensor, and then it judges whether the triggered mecha-
nism is violated according to the pre-designed ETM. If the triggered mechanism is violated,
the trigger is switched on, allowing the information of the sensor to be transmitted to
the controller of the agent i, along with the update of the information of the controller i.
Moreover, the real-time information will be transmitted to the neighbors of agent i through
the communication network. It should be noted that the communication between the
sensor and the detector may be continuous, i.e., the ETM is continuously monitored for
violations, which also causes a certain degree of waste of communication resources. There-
fore, inspired by the principle of TTC, researchers propose to conduct the communication
between sensors and detectors in time segments (see Section 3 for details).

Sensor i

Agent i

Actuator i

Controller i

Event

Detector i Communication

Network
Neighbour

Agents

Trigger

Figure 1. The framework of ETM.

In order to ensure that ETC can work effectively under MASs with actuator saturation,
the following issues need to be considered:

(1) Design of ETM: When it comes to the event-triggered strategy, the design problem
of ETM is of great importanance, which is related to the scheduling of communication
resources and the update of the controller. However, the design of the ETM must also take
into account the practical implementation, i.e., being practically executable. This leads to a
contradiction between the mechanism’s design and practical application. If the designed
ETM is sophisticated, the controller is effective, but a sophisticated ETM may consume
numerous communication and computing resources, becoming a real burden and vice
versa. Therefore, the design of ETM is an art of achieving a balance between mechanism
and reality. Thus far, the ETC widely used in the literature can be mainly divided into three
types according to information utilization in the communication network: (i) centralized:
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all agents’ measurement information is required [60]; (ii) decentralized: only its own
measurement information is required [61–63]; (iii) distributed: measurement information
of itself and the neighbours is required [64–66]. Decentralized and distributed ETC are
adopted by the mainstream because they cover less agents than centralized ones.

(2) Saturation Phenomenon: When the limitation of actuator saturation exists in
systems, there are certain difficulties in designing the ETM. The first one is the estimation
of DOA. When it comes to the sector-bounded condition and convex hull representation
methods, the stability analysis of the system is constrained in a limited space, namely
DOA. The DOA estimation problem has mature solutions in research studies without ETM.
However, after ETM is introduced, the control input becomes more complicated, which
adds difficulty in the estimation problem of DOA. Second, the saturation of the actuator
means that there is a threshold for the control input, and it is also questionable whether the
ETM can be successfully implemented within this limitation.

(3) Interval Between Events: Compared with traditional continuous control methods,
the largest difference with respect to ETC is that it decides to update the controller according
to whether the triggered mechanism is violated. It needs to ensure the elimination of the
Zeno phenomenon; otherwise, it will degenerate into continuous control. However, this
is not simple, and the difficulty comes from theoretical analyses and external information
interferences. In addition, the interval between triggered events is often uncontrollable and
may cause valuable information to be ignored generally.

The above issues deserve great attention when discussing event-triggered consensus
in MASs with actuator saturation. Thus far, a majority of the literature studied control
strategies in this field, which will be briefly reviewed in the next section.

3. Main Results

As discussed in Section 2, a key problem of the event-triggered consensus for MASs
with actuator saturation lies in designing the control protocol, ETM, and handling the
saturation terms. The mainstream saturation treatment methods include low-gain feed-
back, sector-bounded condition, and convex hull representation. In this section, we will
review some interesting research results based on different approaches in dealing with
saturation terms.

3.1. Low-Gain Feedback

The main idea of low-gain feedback is that, for any given bounded set S in the state
space, there exists a linear feedback control that makes all system trajectories starting
from S converge to the origin. The low-gain feedback method mainly uses a family of
parameterized gain matrices P(ε) to design linear feedback controllers by solving the ARE
(Lemma 2). The ε in matrix P(ε) is called a low-gain parameter. As low-gain parameter
ε tends to zero, P(ε) also tends to the zero matrix. Achieving semi-global stabilization
with low-gain feedback means that for any given bounded set S , no matter how large it is,
a low-gain parameter value ε always exists such that all control signals on S are within
the saturation threshold. That is, the low-gain feedback can make the saturated system
maintain the behavior of the unsaturated system in set S . The advantage of the low-gain
feedback compared with other methods lies in the fact that it can discard the saturation
constraint in theoretical analysis, which reduces the complexity for the system’s analysis
and design, especially when ETM is introduced. Therefore, it has received extensive
attention from researchers in the studies of event-triggered consensus for saturated MASs.

In [67], the following ARE is adopted,

AT P(ε) + P(ε)A− βP(ε)BBT P(ε) + εIN = 0. (4)

With the help of ARE (4), the actuator does not exhibit saturation, i.e., Usat(ui(t)) = ui(t).
For t ∈ [ti

k, ti
k+1), the control protocol and ETM are given by the following:
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Σ1 =





ETM : ‖ fi(t)‖ ≤ ϑ‖qi(t)‖,
Protocol : ui(t) = K ∑j∈Ni

aij(xj(ti
k)− xi(ti

k))

+bi(x0(ti
k)− xi(ti

k)), t ∈ [ti
k, ti

k+1),
(5)

where ti
k is the kth-triggered instant of agent i, ξi(t) = xi(t)− x0(t), qi(t) = ∑j∈Ni

aij(ξ j(t)
−ξi(t)) − biξi(t), fi(t) = qi(ti

k) − qi(t); ϑ is the triggered threshold; K = BT P(ε) is the
control gain matrix to be designed. If the trigger function in (5) is violated, this means
that the event is triggered. It can be explained that the difference between measurement
error fi(t) in the system at the current instant and combined measurement qi(t) exceeds the
threshold, so the controller needs to update the acquisition of the system state to stabilize
the system. Furthermore, the proposed ETM has demonstrated that it can reduce the update
frequency of the controller effectively and avoid the Zeno phenomenon successfully.

Although control strategy Σ1 has considerable advantages, it also has certain disad-
vantages, which are given as follows.

(D1) Continuous Monitoring on ETM: According to the definition of qi(t) in ETM
(5), it can be seen that the control strategy needs to continuously monitor the state of
agent i itself and its neighbors, which will lead to the substantial consumption of network
communication resources and is inconsistent with the intention of ETC.

(D2) Excessive Sampling: From the control protocol in strategy (5), it is found that
the information required for the control input of a single agent needs to be updated under
the same clock sequence. That is to say that the information collection of the neighbor
agent needs to be implemented in its own clock sequence, along with its neighbors’ clock
additionally, which increases the consumption burden on a single agent and the entire MAS.

(D3) System Limitations: If the low-gain feedback method is adopted in the studies
of saturated systems, the ARE of the system needs to be addressed first. From the AREs
discussed above, it can be found that the involved systems are the simple linear systems
only with additional saturation constraints. Therefore, this method may have some limita-
tions, when the system studied has more complex characteristics, such as the presence of
external nonlinear disturbances, unfixed communication topologies, and perturbed internal
parameters of the systems.

In order to overcome the above disadvantages, researchers have made great efforts
into improving (5). Considering the disadvantage of D1, [67] proposed a self-triggered
ETM on the basis of (5) as follows:

Σ2 =





ETM : ‖ei(t)‖ ≤ g̃(ti
ki

, tj
kj
),

Protocol : ui(t) = K ∑j∈Ni
aij(xj(t

j
kj
)− xi(ti

ki
))

+bi(x0(ti
ki
)− xi(ti

ki
)), t ∈ [ti

ki
, ti

ki+1),

(6)

where ei(t) = ξi(ti
ki
)− ξi(t) is the measurement error, αi > 0 is the triggered threshold, and

function g̃(ti
ki

, tj
kj
) is defined as follows:

g̃(ti
ki

, tj
kj
) = αi

∥∥∥∥∥ ∑
j∈Ni

aij(ξ j(t
j
kj
)− ξi(ti

ki
)) + biξi(ti

ki
)

∥∥∥∥∥.

Compared with (5), the most meaningful change in (6) is that it overcomes disadvan-
tage D1. Specifically, the ETM and protocol in control strategy (6) only need to sample its
information at the triggered instant (ti

ki
and tj

kj
) of the desired agents. Instead of continuous

sampling in (5), it can reduce the utilization of communication resources, in line with the in-
tention of the ETC. However, this control strategy still has its limitation. For a certain agent,
its control update depends on both its own triggered instant and the neighbors’ triggered
instant, while the control update only depends on the agent’s own triggered instant in (5).
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Therefore, as the number of neighbors of the agent increases, its control update interval
may become shorter and shorter, even leading to the Zeno phenomenon [65,68].

It is worth mentioning that when discussing event-triggered strategies, the existing
literature often studies the case where information sampling and actuator update are
implemented synchronously [65,69,70], i.e., there does not exist time delay between this
two actions. However, this type of delay phenomenon is widespread in the field of practical
engineering, which is called update delay. ETC is sensitive to time delays, and ignoring the
delay may degrade the control quality or even destroy the stability of the system. Therefore,
it is of great practical significance to consider this time delay when designing ETC strategies.
Inspired by the topics discussed above, Wang et al. [58] proposed one fully distributed
ETC scheme with the consideration of update delays, and the control strategy is given
as follows:

AT P(ε) + P(ε)A− 4
(N − 1)N

P(ε)BBT P(ε) + εIN = 0. (7)

Σ3 =





ETM :
2‖Mi(t)‖ − 1

2‖ωi(t)‖ − γe−θt ≤ 0, t ∈ [ri
k, ri

k+1)

2‖mi(t)‖ − 1
2‖ωi(t)‖ − γe−θt ≤ 0, t ∈ [ti

k, ti
k+1)

Protocol :
ui(t) = K ∑j∈Ni

aij(xj(ti
k−1)− xi(ti

k−1)),
t ∈ [ti

k, ri
k)

ui(t) = K ∑j∈Ni
aij(xj(ti

k)− xi(ti
k)),

t ∈ [ri
k, ti

k+1),

(8)

where N is the number of agents, ti
k and ri

k represent updating sequences and sampling

sequences, respectively. Define Ei(t) = xi(t)− xi(ti
k−1), Ej

i (t) = xj(t)− xj(ti
k−1), ωi(t) =

∑j∈Ni
aijK(xi(t)− xj(t)), Mi(t) = ωi(t)−ωi(ti

k−1), and Mi(t) = ωi(t)−ωi(ti
k). By solving

the ARE (7), the gain matrix is obtained by K = BT P(ε).
Note that the control protocol in (8) is different from that in (6). The control input

ui(t) in (8) only updates according to its corresponding triggered instant sequence for
a certain agent i and does not depend the sequence of other agents, which will greatly
reduce the consumption of resources in the network of MASs. That is to say that the
aforementioned shortcoming D2 is overcome. However, it also has limitations with respect
to D1. The ETM in (8) requires continuous information sampling of agent i and its neighbors,
which may cause the burden of communication. Moreover, meticulous differentiation
of the time sequencecs may lead to shorter triggered intervals, reducing the quality of
control performance.

The ETMs discussed above have one thing in common, that is, the coefficients of
their triggered functions are all fixed constants. In [71], a dynamic strategy is proposed
as follows:

Σ4 =





ETM : gi(t) ≤ µiθi(t),
Protocol : ui(t) = K ∑j∈Ni

cij(t)(x̄i(t)− x̄j(t)),
t ∈ [ti

k, ti
k+1).

(9)

Define x̄i(t) = eA(t−ti
k)x(ti

k) as the measurement of xi(t) between the triggered interval,
and the measurement error is defined by ei(t) = x̄i(t)− xi(t). Furthermore, the parameters
and functions of this dynamic control strategy can be described by the following equations:
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ċij(t) = aij(x̄i(t)− x̄j(t))TΓ(x̄i(t)− x̄j(t)),

θ̇i(t) = −πiθi(t)−ωigi(t), θi(0) = 0,

gi(t) = ∑
j∈Ni

(1 + βcij(t))aijeT
i (t)Γei(t)

− 1
4 ∑

j∈Ni

aij(x̄i(t)− x̄j(t))TΓ(x̄i(t)− x̄j(t)),

where πi > 0, µi > 0, ωi > 0, and β satisfy ωiβ > 1.
The following linear matrix inequality (LMI) is introduced.

AP−1(ε) + P−1(ε)AT + (ρ + ε)P−1(ε)P−1(ε)

+ ρAAT − BBT < 0.
(10)

By solving the LMI (10), feedback matrices are obtained by K = BT P(ε), Γ = P(ε)BBT P(ε).
Compared with the control gain matrix scheme (5), (6), and (8) based on solving ARE

above, this control strategy provides greater flexibility because it only needs to solve matrix
inequalities (10) instead of AREs (4) and (7). The design of gain matrix dose not rely on
the solution of a parametric ARE. Another difference is that the parameters in control
strategy (10) are dynamically changed rather than fixed ones aforementioned. The dynamic
ETM adopted by strategy (10) can ensure that the interval time between triggered events
is longer than that one of the fixed-parameter ETM, which is beneficial for the saving of
communication resources.

In addition to the low-gain feedback-based event-triggered consensus studies dis-
cussed above, there are many interesting results that have not been discussed in detail.
Xu [72] studied the bipartite consensus problem for high-order MAS subject to actuator
saturation. The centralized and distributed event-triggering strategies for saturated MASs
are both presented in [73]. Thus, it is concluded that the distributed control strategy can
effectively reduce the number of triggered instants and the update frequency of the system,
which saved the utilization of communication resources.

Remark 2. The low-gain feedback method has significant advantages in the analysis of the system
and the design of the control protocol because it can reduce saturation constraints. However, it
depends on the solution of ARE, so it has higher requirements on studied systems; that is to say that
the analyzed system needs to be relatively simple. If the system has more complex characteristics,
such as external nonlinear interference, or the communication topology of the system is time-
varying, the low-gain feedback method may fail. Therefore, other saturation processing methods will
be introduced next, which can be applied to more complex systems.

3.2. Sector-Bounded Condition

The sector-bounded condition is the most widely and frequently used saturation
treatment method in the study of event-triggered consensus problems for MASs with
actuator saturation. The system with saturation limition is difficult to analyze by using
common Lyapunov stability theory, so the saturation term needs to be dealt with in advance.
The sector-bounded condition provides an effective solution for transforming the stability
analysis of the system into solvable LMIs. Its main idea is to convert the saturation term
Usat(ui(t)) into a dead-band function Φ(Usat(ui(t))) = Usat(ui(t))− ui(t) so that sector
inequalities can be used (see Lemma 1). Unlike the low-gain feedback method discussed
above, this method can be used in a wider range of systems because it does not avoid
the saturation term, but processes it directly. In addition, unlike the low-gain feedback
method, the sector-bounded condition and convex hull representation have their applicable
range, namely DOA. The estimation of DOA is a common problem in the use of these
two types of methods. The method widely adopted by researchers is to use the level set
of the Lyapunov function to estimate the range of DOA. Compared with the convex hull
representation, the sector-bounded condition has unique advantages in DOA estimation.
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Because of the higher flexibility of the sector inequality, it is widely used in event-triggered
related research studies.

Unlike the systems studied above, Yin [52] investigated the MAS that is additionally
accompanied by a nonlinear term, and the system can be described as follows:

{
ẋ0(t) = Ax0(t) + f (x0(t)),

ẋi(t) = Axi(t) + BUsat(ui(t)) + f (xi(t)), i ∈ I[1, N],
(11)

where f (xi(t)) represents the nonlinear function that satisfies the following Lipschitz
condition.

Definition 1 ([74]). The nonlinear function f (·): Rn → Rn satisfies the Lipschitz condition if
there exists l ∈ R+ such that

‖ f (x)− f (y)‖ ≤ l‖x− y‖, x, y ∈ Rn,

and l is the Lipschitz constant.

As a novel research achievement, [52] proposed an adaptive dynamic ETM as follows:

Σ5 =





ETM : eT
i (t)Ωiei(t) ≤ µi(t)yT

i (t)Ωiyi(t),
Protocol : ui(t) = −K ∑j∈Ni

aij(x̃i(t)− x̃j(t))
+bi(x̃i(t)− x0(t)), t ∈ [ti

k, ti
k+1),

(12)

where x̃i(t) = x(ti
k) is the detection value of agent i for t ∈ [ti

k, ti
k+1). yi(t) = xi(t) −

x0(t), ỹi(t) = x̃i(t)− x0(t) if agent i can receive information from the leader. Otherwise,
yi(t) = xi(t)− xji (t), ỹi(t) = x̃i(t)− x̃ji (t), ji is any neighbor of agent i, ei(t) = yi(t)−
ỹi(t), Ωi is the undetermined coefficient matrix, and µi(t) is determined by the following
differential equation.

µ̇i(t) = −diµ
2
i (t)e

T
i (t)Ωiei(t).

Different from the ETMs discussed above, this triggered mechanism uses dynamic
parameters instead of fixed ones. Unlike the ETMs proposed in [58,70], the triggered
parameters µi(t) will dynamically adjust as the system’s state changes instead of being
fixed, which gives the triggered mechanism more flexibility. In addition, most triggered
functions above take the form of multiplying a vector norm and a constant coefficient, and
the constant coefficient is generally preset. This mechanism adopts the form of multiplying
a vector and a coefficient matrix Ωi, and the coefficient matrix Ωi is designed together
with the control protocol, which increases the flexibility of the control protocol design and
expands the solvable range.

After completing the design of the control protocol and the ETM, it is necessary to
consider the problem of DOA range estimation. The author of [52] provides a typical
demonstration of DOA estimation.

Define δi(t) = xi(t)− x0(t), and the following variables, δ(t) = [δT
1 (t), δT

2 (t), · · · , δT
N(t)]

T,
e(t) = [eT

1 (t), eT
2 (t), · · · , eT

N(t)]
T , u(t) = [uT

1 (t), uT
2 (t), · · · , uT

N(t)]
T .

The Lyapunov function is defined as follows:

V(t) = δT(t)(IN ⊗ P)δ(t),

along with the level set E(P, η) ,
{

δ(t) ∈ RNn : V(t) ≤ η
}

.
The control input u can be rewritten as follows:

u(t) = −(H⊗ K)(δ(t) + e(t)),
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where H is the Laplace matrix mentioned in Section 2, and K is the gain matrix to be
designed. We set w(t) = u(t) + Gδ(t), and G is a suitable dimensional matrix; we obtain
the following set:

ϕ(G, u0) =
{

δ(t) ∈ RNn :
∣∣∣G(j)δ(t)

∣∣∣ ≤ u0

}
,

where G(j) represents the jth row of matrix G. Lemma 1 ensures that if δ(t) belongs to set
ϕ(G, u0), then the following sector inequality holds.

ΦT(u(t))T(Φ(u(t)) + u(t) + Gδ(t)) ≤ 0.

Set ϕ(G, u0) is the required DOA, but it is difficult to directly measure ϕ(G, u0), so the
level set of Lyapunov function E(P, η) is used for indirect estimation. As [52] stated, if the
following inequality is satisfied, then it can be proved that E(P, η) is enclosed in ϕ(G, u0).




IN ⊗ P GT
(j)

G(j)
u2

0
η


 ≥ 0.

Thus far, the issues related to ETC based on the sector-bounded condition have been
fully considered, including the design of ETM, the control protocol, and the estimation of
DOA, which are also three issues that must be considered in the research studies based on
this method. An interesting point can be found from the above discussion, the construction
of w(t) has flexibility, and the researchers design w(t) = u(t) + Gδ(t). The introduction
of Gδ(t) enables the range estimation of DOA to be concatenated with E(P, η). So even
in the context of ETC, where the input is more complex, the utilization of sector-bounded
conditions is not affected. This is different from the convex hull representation, which will
be shown in the next subsection.

When studying the consensus problem of saturated MASs by a sector-bounded con-
dition, the systems studied can be more complicated than those of low-gain feedback
methods. The above discussion focused on MASs with nonlinear disturbances, while
Dai [75] studied the event-triggered consensus problem of a class of saturated MASs with
Markovian switching topologies. A novel ETM was adopted in [75], and the feature of
which is that the inspection of events is not continuous but depends on a time-interval. The
novel control strategy can be described as follows:

Σ6 =





ETM : eT
i (t

i
k + lh)Ωiei(ti

k + lh)
≤ δizT

i (t
i
k + lh)Ωizi(ti

k + lh),
Protocol : ui(t) = −K ∑j∈Ni

aij(xi(ti
k)− xj(t

j
k′)

+vi(ti
k)− vj(t

j
k′)), t ∈ [ti

kh, ti
k+1h),

(13)

where h is the sampling period, ti
k is the kth sequence at the sampling instant of agent i,

ti
k + lh represents the current sampling instant, δi is the triggered threshold, Ωi is consistent

with the one in (12), and tj
k′ = max

{
t : t ∈

{
tj
k, k = 0, 1, · · ·

}
, t ≤ ti

k + lh
}

.
The relevant variables are defined as follows.

eT
i (t

i
k + lh) = [exT

i (ti
k + lh), evT

i (ti
k + lh)], zT

i (t
i
k + lh) = [zxT

i (ti
k + lh), zvT

i (ti
k + lh)],

ex
i (t

i
k + lh) = xi(ti

k)− xi(ti
k + lh), ev

i (t
i
k + lh) = vi(ti

k)− vi(ti
k + lh),

zx
i (t

i
k + lh) = ∑

j∈Ni

aij(xi(ti
k)− xj(t

j
k′)), zv

i (t
i
k + lh) = ∑

j∈Ni

aij(vi(ti
k)− vj(t

j
k′)).

Different from the event-based triggered mechanisms (Σ1 − Σ5) discussed above, this
type of mechanism is a type of sampled-data-based ETM. It is worth mentioning that this
type of triggered mechanism only judges the violation of ETM at the sampling interval,
and the sampling interval is h, which leads to an interesting conclusion that this type of
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mechanism can naturally avoid the Zeno phenomenon. A number of improved ETMs have
been proposed above for the disadvantage D1, but these improvements have limitations,
and such a sampled-data-based ETM overcomes this disadvantage and completely avoids
the continuous monitoring of the ETM. Therefore, there is no doubt that this type of
triggered mechanism can save communication resources and computing costs effectively.

Although this type of sampled-data-based ETM has its advantages, such as avoiding
continuous monitoring of ETM and ruling out the Zeno phenomenon, it still has certain
limitations. Firstly, the existence of sampling interval h greatly reduces the update fre-
quency of the controller, but the long interval may lead to ignoring useful information,
especially when the system has large oscillations. Secondly, existing research studies
on this type of triggered mechanism assume that all agents follow the same clock se-
quence, so when the scale of MAS is quite large, this type of mechanism may be difficult to
implement practically.

On the basis of (12), [52] proposed an adaptive sampled-data-based ETM as follows.

Σ7 =





ETM :
αT

i (t
i
kh + lih)Ωiαi(ti

kh + lih)
≤ µi(t)yT

i (t
i
kh + lih)Ωiyi(ti

kh + lih),
Protocol :
ui(t) = −K ∑j∈Ni

aij(xi(ti
kh)− xj(t

j
kj

h)

+bi(xi(ti
kh)− x0(mh))), t ∈ [ti

kh, ti
k+1h).

(14)

The adaptive coefficient µi(t) is determined by the following:

µi(ti
kh + lih)− µi(ti

kh + lih− h) = −dihµi(ti
kh + lih)

µi(ti
kh + lih− h)αT

i (t
i
kh + lih)Ωiαi(ti

kh + lih),

where αi(ti
kh + lih) = xi(ti

kh + lih)− xi(ti
kh), yi(ti

kh + lih) = xi(ti
kh + lih)− x0(ti

kh + lih), if
agent i can receive information from the leader. Otherwise, yi(ti

kh + lih) = xi(ti
kh + lih)−

xji (t
ji
kji

h + lih), and ji is any neighbor of agent i. Define lih = mh − ti
kh, m is an integer

satisfying ti
k ≤ m < ti

k+1, and k ji = arg min
p∈Z+ :t

ji h
p ≤h

{
t− tji

ph
}

.

Compared with the ETM in (13), this control strategy uses dynamically changing
parameters instead of preset fixed ones, which avoids some difficulties in choosing suitable
initial values. Each agent has its specific triggered clock sequence lih and a not uniformly
fixed one lh in (13). This overcomes the second limitation mentioned above and provides
favorable conditions for implementation in the context of large-scale MASs. In addition, it
can be seen that the adaptive parameter µi(t) in (12) depends on the differential equation,
while that in (14) depends on the difference equation, which is more conducive to the
implementation and operation.

Recently, the event-triggered consensus problem of saturated MASs based on the sector-
bounded condition received extensive attention from the academic community [76–78]. Based
on this flexible saturation-processing method, researchers are no longer limited by the
limitations of simple systems with low-gain feedback and turn to more complex systems.
The event-triggered consensus problem for one type of second-order MAS subject to
actuator saturation and input time delay was investgated in [76], and Ref. [77] focused on
the bipartite-tracking consensus problem of nonlinear MASs with cooperative–competitive
interactions. Furthermore, [78] dealt with the leaderless consensus problem for saturated
MASs with a directed communication topology.

Remark 3. It is worth noting that most of the systems studied in the above mentioned references
are linear systems or simple Lipschitz nonlinear systems, and there is still an open topic to study the
event-triggered consensus problem for more general nonlinear systems, such as one-side Lipschitz or
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incremental quadratic constraints. The proper treatment of nonlinear systems is a challenge in this
field; thus, the research in this direction is worthy of future efforts.

3.3. Convex Hull Representation

Compared with the two saturation processing methods introduced above, the convex
hull representation method is less studied. However, the convex hull representation method
is less conservative than the sector-bounded condition since it introduces a convex hull to
analyze the saturation term and it is not necessary to introduce additional sector inequality
conditions in the analysis. The convex hull representation method is the least conservative
in terms of the design of the control protocol. As stated in Lemma 3, the convex hull
representation transforms the saturation term into a linear superposition by introducing
auxiliary matrices H. The utilization of the convex hull representation method to study
systems with actuator saturation has been welcomed by more and more researchers, but
in the context of event-triggered controls, such studies are still scarce. The main reason is
that, similarly to the sector-bounded condition, the convex hull representation method also
needs to provide an estimation of DOA. Distinct from the flexible selection object of the
former method, the DOA estimation of the convex hull representation method is directly
related to auxiliary matrix H. Although researchers have given many mature methods
for estimating the DOA of the convex hull representation method, the complexity of the
control input creates a huge challenge with respect to the estimation problem of DOA when
the ETC is introduced.

As an outstanding achievement, [79] presented a output–feedback control strategy,
and the MAS can be described as follows:





ẋ0(t) = Ax0(t) + f (x0(t)),

y0(t) = Cx0(t),

ẋi(t) = Axi(t) + BUsat(ui(t)) + f (xi(t)),

yi(t) = Cxi(t), i ∈ I[1, N],

(15)

where yi(t) is the measurement output of agent i, and the rest of the parameters are the
same as MAS (11). The output feedback control strategy is given as follows.

Σ8 =





ETM :
ti
k+1 = ti

k + max
{

τi
k, ci
}

,
τi

k = min
t

{
t− ti

k :
∥∥δ̃i(t)

∥∥ ≥ γ‖Xi(t)‖
}

,

Protocol :
ui(t) = Kzi(ti

k), t ∈ [ti
k, ti

k+1)

żi(t) = (A + G)zi(t) + Ḡei(ti
k) + BUsat(Kzi(ti

k)).

(16)

Define consensus error x̃i(t) = xi(t)− x0(t), current output consensus error ei(t) =
∑j∈Ni

aij(yj(t)− yi(t)) + bi(y0(t)− yi(t)), measurement error si(t) = ei(ti
k)− ei(t), mea-

surement error of zi(t) as wi(t) = zi(ti
k)− zi(t), ri(t) = x̃i(t)− zi(t), and matrix G and Ḡ

are matrices that satisfy certain properties (see Lemma 2 in [79]). Let δi(t) = [zT
i (t), rT

i (t)]
T ,

δ̃T
i = [sT

i (t), wT
i (t)]

T , XT
i (t) = [eT

i (t), zT
i (t)]

T , δ(t) = [δT
1 (t), δT

1 (t), · · · , δT
1 (t)]

T ,
x̃ = [x̃T

1 (t), x̃T
2 (t), · · · , x̃T

N(t)]
T .

There are some advantages about strategy (16). Firstly, agent i samples information
zi(t) and ei(t) to update the control protocol in (16) only at triggered instant ti

k. Second, the
next trigger instant ti

k+1 depends on triggered variable Xi(t), which consists of ei(ti
k) and

zi(ti
k). This can avoid continuous communication between neighbors in the MAS network

and save communication resources. Moreover, unlike the event-based ETMs above, the
event interval of this ETM not only relies on whether the event is triggered but also takes ci
as the lower limit; that is, if the interval between two events is less than ci, the event will
not be triggered even if the ETM is satisfied. Therefore, the triggered interval of the ETM is
at least greater than ci, which can effectively avoid the Zeno phenomenon. Finally, in the
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actual background, the state of the agent may not be fully acquired, so the control protocol
using output-feedback instead of state-feedback can effectively avoid the difficulty of state
acquisition and save information sampling consumption.

As discussed in (12), after completing the design of ETM and control protocol, the
convex hull representation method also needs to deal with the estimation problem of DOA.
Define the set L (H, u0) =

{
δ(t) ∈ R2Nn : |(l1 ⊗ hm)δ(t)| ≤ Nu0

}
, where hm denotes the

mth row of the auxiliary matrix H and l1 = (1, 0, 1, 0, · · · , 1, 0) ∈ R2Nn. It is well known that
the premise of using the above convex hull representation method is to satisfy condition∣∣hmzi(ti

k)
∣∣ ≤ u0, and it is ensured by |hmzi(t)| ≤ u0. Taking the context of MASs into

consideration, premise |hmzi(t)| ≤ u0 can be expressed as |(l1 ⊗ hm)δ(t)| ≤ Nu0. Therefore,
the overall premise of using the convex hull representation method to solve the design of
the ETM and control protocol is to provide an estimation for set L (H, u0). Similarly to the
DOA discussion of the sector-bounded condition above, the direct solution of set L (H, u0)
has computational difficulties, so the indirect estimation method using the level set of the
Lyapunov function is adopted. The Lyapunov function is chosen as follows:

V(t) = δT(t)Pδ(t),

and the level set is E(P, η) =
{

δ(t) ∈ RNn : δT(t)Pδ(t) ≤ η
}

. It is worth noting that
vector δ(t) corresponding to level set E(P, η) is a composite vector composed of zi(t)
and ri(t), and it is difficult to describe DOA in detail. Therefore, a subset Ω(Q, $) ={

x̃(t) ∈ RNn : x̃T(t)Qx̃(t) ≤ $
}

of level set E(P, η) is defined, and it can be seen that vector
x̃(t) of subset Ω(Q, $) has a specific meaning, that is, the state difference between the leader
agent and the follower agent. Using the result in [80], the optimal estimation of DOA can
be obtained by solving the formulated problem (see Theorem 1 in [79]). The outstanding
contribution of [79] is that it not only provides a method for estimating DOA but also gives
an optimization problem on this basis, that is, maximizing the estimation of DOA, which is
not presented in previous results.

In recent years, some researchers also studied the event-triggered consensus problem
for MASs with actuator saturation using the convex hull representation method, and some
interesting results have been proposed. The problem of event-triggered stabilization for
positive systems subject to actuator saturation was investgated in [47]. However, the
studied system was limited to a single system, and conclusions were not generalized to
MASs. Moreover, a self-triggered consensus control strategy for nonlinear MASs with
sensor saturation was proposed in [81].

Remark 4. The convex hull representation method can effectively reduce the conservatism when
dealing with saturated terms, but this method also has its drawbacks. First, as discussed above,
this method is more cumbersome than the sector-bounded condition in terms of estimating DOA,
which is more popular among researchers, especially in the context of ETC. Second, it can be seen
from Lemma 3 that using the convex hull representation method to design the control protocol will
increase the computation burden of LMI, which is directly related to input dimension m. In detail,
the computational complexity of the convex hull representation method is 2m, so the computational
burden grows exponentially, which also suggests that the method may not be suitable for systems
with large inputs. Therefore, this method is rarely adopted in the study of event-triggered consensus
for MASs with actuator saturation. The existence of few related studies shows that this is a topic
that requires further exploration.

Remark 5. In Section 3, we review some representative studies about the event-triggered consensus
for satarated MASs in detail. In order to show the advantages and disadvantages of each research
result more intuitively, we provide Table 1 to facilitate readers’ better understanding. In Table 1, the
important feature of the control strategies reviewed in this paper is listed. As observed from the table,
although research studies have been conducted extensively on the event-triggered consensus problem
for MASs with actuator saturation, there are still some important issues worthy of consideration in
the future.
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Table 1. Advantages and disadvantages of control strategies.

Strategies Methods
Advantages & Disadvantages

D1 D2 D3 Analysis of Zeno Phenomenon Estimation of DOA

Σ1

Low-gain feedback

# ! # Complicated Not needed
Σ2 ! # # Complicated Not needed
Σ3 # ! # Complicated Not needed
Σ4 ! ! # Complicated Not needed

Σ5 # # ! Simple Simple
Σ6 Sector-bounded condition ! # ! Not needed Simple
Σ7 ! # ! Not needed Simple

Σ8 Convex hull representation # ! ! Complicated Complicated

If the strategy can overcome the disadvantage, it is marked by!; otherwise, it is marked by#.

4. Simulation

In this section, we will review one simulation example and its comparative experi-
ments in [52] to specify the performance evaluation indicators that should be paid attention
to in the event-triggered consensus problem for saturated MASs. It mainly includes per-
formance indicators related to ETC, such as the number of triggered instants and average
interval time between events.

Consider the MAS (11) with four followers and one leader, and the agents are de-
termined by a vertical taking-off and landing (VTOL) aircraft model in [52], where the
following is the case.

A =




−0.0366 0.0271 0.0188 −0.4555
0.0482 −1.01 0.0024 −4.0208
0.1002 0.3681 −0.707 1.420

0 0 1 0


, B =




0.4422 0.1761
3.5446 −7.5922
−5.52 4.49

0 0


,

f (xi(t)) = [0 0 0 − 0.1sin(xi3(t))]T .

The meaning of the state variable is as follows: xi1—horizontal velocity; xi2—vertical
velocity; xi3—pitch rate; xi4—pitch angle.

Figure 2 shows the communication topology graph between agents, and the numbers
represent the agents labeled 0–5. On the basis of control strategies Σ5 (12) and Σ7 (14), ETMs
are designed by event-based triggered mechanisms and sampled-data-based mechanisms,
respectively. Effects of the control protocols are shown in the following figures.

0

1

4 3

2

Figure 2. The communication topology graph.

The tracking errors and control input under Σ5 are shown in Figures 3 and 4. It can be
seen from the figure that the tracking error of the system finally tends to zero, indicating that
the consensus of the MAS (11) is achieved. At the same time, the control input is different
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from the traditional continuous one, and the update of the control input is intermittent
rather than continuous, which depends on the predefined ETM. Moreover, the tracking
errors and control input under Σ7 are shown in Figures 5 and 6.

Figure 1: Communication Topology
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Figure 2: Consensus errors of agents for Case 1
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Figure 3. The tracking errors under Σ5 .

A
c

0 1 2 3 4 5 6
0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

Times(s)

T
ri
g

g
e

r 
p

a
ra

m
e

te
rs

Figure 3: Trigger parameters µ
i
(t) for Case 1

0 1 2 3 4 5 6
- 0.6

- 0.5

- 0.4

- 0.3

- 0.2

- 0.1

0

0.1

0.2

0.3

0.4

Times(s)

c
o

n
tr

o
l

Figure 4: Control responses for Case 1
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Figure 4. The control input under Σ5 .
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Figure 5: Consensus errors of agents for Case 2
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Figure 6: Trigger parameters µi(t) for Case 2
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Figure 5. The tracking errors under Σ7 .
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Figure 6. The control input under Σ7 .

However, appropriate control performances often require the utilization of commu-
nication resources. It can be seen from Figures 4 and 6 that the control input is updated
intermittently. In the context of ETC, the number of triggered instants and the average
interval time between triggered events are important performance indicators to measure
the ETM, so we will provide a quantitative experiment next.

According to the data in Tables 2 and 3, compared with Σ5, control strategy Σ7 can
reduce the number of triggered instants by about 86.12% and prolong the average interval
time between events by about 87.25%. The data prove that control strategy Σ7 has significant
advantages in saving communication resources. Compared with event-based triggered
mechanisms, the important feature of sampled-data-based mechanisms is that it checks
the ETM according to sampling period h. However, the selection of h is also sensitive. If
the selection of h is large, the update of control input may be slow, leading to the failure of
the ETM; if the selection of h is small, the update of control input will be frequent, and the
significance of ETC will be lost, resulting in a huge waste of communication resources.

Table 2. The number of triggered instants.

Agent 1 Agent 2 Agent 3 Agent 4 Total

Σ5 1349 1388 920 1040 4697
Σ7 199 197 124 132 652

Table 3. Average interval time between triggered events.

Agent 1 Agent 2 Agent 3 Agent 4

Σ5 4.4× 10−3 s 4.3× 10−3 s 6.5× 10−3 s 5.8× 10−3 s
Σ7 0.0302 s 0.0305 s 0.0484 s 0.0455 s

5. Prospects for Future Research

A detailed review of event-triggered consensus has been provided in the previous
section. Although some control problems have been studied in detail, there are still
limitations on mechanistic studies and system limitations, which also brings potential room
for improvements to existing research studies. Next, some challenging but meaningful
topics will be raised.

(1) Diversified event-triggered mechanisms: Most triggered mechanisms involved in
this paper are limited to two types of triggered mechanisms: event-based and sampled-
data-based ETMs. In fact, with the development of resaerch studies on ETC, various
novel ETMs have been proposed in academia, such as model-based schemes [82–85] and
self-triggered sampling schemes [86–89]. Under the background that research studies on
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actuator saturation have been developed in recent years, it is a topic worthy of researchers’
efforts to study the issue of event-triggered consensus problem of MASs with actuator
saturation by using novel ETMs.

(2) Complex conditions about the MASs: In existing studies, most studied systems
are described by simple dynamical models in order to simplify the difficulty of theoretical
analysis. However, in practice (robots, unmanned aerial vehicle, and complex industrial
process), such simple dynamics cannot fully describe the characteristics of the system, and
many important factors may be ignored. A notable example is stochastic processes. In
practice, stochastic processes can manifest in many aspects, such as stochastic external
noise, stochastic measurement errors, and stochastic communication topologies. These
stochastic phenomena pose a huge challenge to the event-triggered consensus for MASs
due to its uncertainty. To the best of the authors’ knowledge, investigations on this issue
under the premise of stochastic phenomena are still lacking.

(3) Optimal problems for the estimation of DOA: When the phenomenon of actuator
saturation is involved in MASs, the estimation problem of the DOA is an unavoidable topic,
especially when dealing with saturated items using the sector-bounded condition or convex
hull representation methods. In the context of ETC, estimating the DOA of the MASs is
a difficult task, and it is even more difficult to provide its optimization problem based
on the estimation of the DOA, i.e., to maximize the estimation of the DOA. As pointed
out in Table 3, most resaerch studies only consider the estimation problem of DOA and
do not give a method to maximize the estimation, so this area is also an area worthy of
future research.

(4) Event-triggered consensus for the MASs in finite time: Notably, most studies
currently focus on the asymptotic consensus of MASs. However, in practical engineering,
the convergence speed of the system is a key indicator to measure the control effect, and
it is generally expected that the consensus of MASs can be achieved in a short and finite
time [90]. However, this contradicts the mechanism of ETC. Since the purpose of ETC is to
reduce the sampling of information and the frequency of the controller update and finally
decrease the utilization of communication resources, but this will inevitably slow down the
convergence speed of the system. So it will be a difficult but promising topic for designing
a suitable control strategy, which can not only reduce the utilization of communication
resources but also ensure a fast convergence effect.

6. Conclusions

This paper mainly reviews recent studeis on the issue of event-triggered consensus
for MASs with actuator saturation, classifies them according to the saturation-processing
methods used, and summarizes their advantages and disadvantages, as well as room for
improvement. It is worth noting that ETC and actuator saturation are aimed at different
aspects of the control input. ETC is intended to enable the control input to still meet
the performance requirements at a lower cost, while the saturation phenomenon focuses
on solving the practical limitation of the control input. The studies on event-triggered
consensus for MASs with actuator saturation have brought out certain results, and it is
interesting to witness more in the future.

7. Discussion

Recent studies on the issue of event-triggered consensus for MASs with actuator
saturation are discussed in this paper, and our future research in this area will focus on
novel ETMs and the optimal estimation of DOA.
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Abstract: The non-degenerate Chenciner bifurcation of a discrete dynamical system is studied
using a transformation of parameters which must be regular at the origin of the parameters (the
condition CH.1 of the well-known treatise of Kuznetsov). The article studies a complementary
case, where the transformation is no longer regular at the origin, representing a degeneration. Four
different bifurcation diagrams appear in that degenerated case, compared to only two in the non-
degenerated one. Degeneracy may cause volatility in economics systems modeled by discrete
Chenciner dynamical systems.
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1. Introduction

Continuous and discrete-time dynamical systems can be used for modeling many
applications in the surrounding world [1–3]. Discrete dynamical systems may appear in
“practical applications when a phenomenon cannot be observed continuously in time” [4],
but in certain moments of time [5]. Additionally, they can be obtained from dynamic
systems with continuous time by discretizing time, that is, if we only take certain values
for time [6] or as return maps that are return applications defined by the intersections of
the system flows with certain “surfaces transversal to the flows” [4].

From a computational point of view, the use of dynamical systems with discrete time
is more efficient in modeling because it can capture complex behaviors that cannot be easily
captured otherwise [7–9]. Among the most “important topics in the qualitative theory” [10]
of continuous and discrete dynamic systems is the analysis of bifurcations (see [11]).

One of the topics of interest in discrete dynamical systems is represented by the
Chenciner bifurcation. Using the notations of the fundamental book of Kuznetsov, [12],
page 405, a discrete Chenciner bifurcation happens when r(0) = 1, Re(b1(0)) = 0 and
L2(0) 6= 0.

A parametric transformation (α1, α2)→ (β1, β2) is needed in the regular case where
the functions

β1(α) =
p

∑
i+j=1

aijα
i
1α

j
2 + O(|αp+1|)

β2(α) =
q

∑
i+j=1

bijα
i
1α

j
2 + O(|αq+1|), p, q ≥ 1,

a10 =
∂β1

∂α1
|α=0; a01 =

∂β1

∂α2
|α=0; b10 =

∂β2

∂α1
|α=0; b01 =

∂β2

∂α2
|α=0 (1)

and so on, see [12], page 405. That transformation must be regular at the origin in order to
have a non-degenerated Chenciner bifurcation.
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The non-degenerate Chenciner bifurcation was firstly studied in the papers [6,13,14].
More recently this bifurcation appears in many papers from different areas of research,
in “biology, physics, economy, informatics” [15] as well as multidisciplinary and applied
sciences [12,16–30]. For example, in [31], the Chenciner bifurcation was observed when a
potential mechanism from bifurcation analyses was used for studying the occurrence of
modulated oscillations in synchronous machine nonlinear dynamics, being reported for
the first time in power engineering for this bifurcation. Other authors have analyzed the
normal forms to provide the parameter conditions for the Chenciner bifurcation [32] or the
conditions to obtain a Chenciner bifurcation in macroeconomics [33].

Rational expectations are the foundation of modern finance. However, in principle,
the efficient market hypothesis cannot help accurately predict future prices. There is ample
empirical evidence that developments in financial time series, in the form of “stylized facts”,
cannot be explained by fundamentals alone, and markets appear to have specific internal
dynamics. Among the so-called “stylized facts” is volatility clustering. It appears that if
changes in asset prices are unpredictable, the magnitude of those changes is predictable;
Thus, “large changes tend to be followed by large changes” [19] (either increasing or
decreasing), while“ small changes tend to be followed by small changes” [19]. That is why
it is found that asset price fluctuations present “episodes of high volatility” [19] (with large
price changes), which alternate irregularly with “episodes of low volatility” [19] (with small
price changes).

In economics, in a series of empirical studies, the used model is useful only for a
statistical description of the data [34]. However, these models cannot explain the clustering
of volatility that is recorded in many financial time series. Typically, such models assume
that volatility clustering is generated by factors external to the analyzed system.

Some structural explanations of volatility clustering are provided by “multi-agent systems”
[19], where financial markets have been approached as “complex evolutionary systems” [19].
In such systems, two large categories of traders have been identified: fundamentalists (who
state that prices are oriented toward the value of their fundamental rational expectations,
generated by future dividends) and technical analysts (who, starting from the past prices,
and based on some established models, try to project them in the future). Such systems
show an irregular transition between low volatility situations (during which prices tend
toward the fundamental price and then the market is dominated by fundamentalists)
and high volatility situations (during which “prices move away from the fundamental
price” [19] and then the market is dominated by technical analysts) [19]. In these conditions,
the grouping of volatility can have endogenous explanations, that is, it could be caused and
even amplified by the process of the heterogeneity of trading, but also by the interaction
between agents, as well as by the phenomenon of adaptive learning.

The evolutionary model proposed by A. Gaunersdorfer, C.H. Hommes and F.O.O.
Wagener presents the “coexistence of a stable state and a stable limit cycle” [19]. When such
a system is subject to dynamic noise, there is an irregular switching between fundamental
equilibrium fluctuations close to rational expectations (in which “the market is dominated
by fundamentalists) and large-amplitude price fluctuations” [19] (in which the market is
dominated by technical analysts). “The coexistence of a stable equilibrium state and a
stable limit cycle ” [19] is explained mathematically by means of the discrete Chenciner
bifurcation. This is not caused by a particular specification of the model, but “is a generic
feature for nonlinear systems with two or more parameters” [19].

The discrete degenerated Chenciner bifurcation is produced when the above men-
tioned regularity of the β transformation is not fulfilled. That results in a much more
difficult scenario. A first type of such a degenerated Chenciner discrete dynamical was
solved in [4]. Two other types of possible degeneration were studied in [10,15]. Each of
those cases has a quite different method of solving. In the present article, we study another
case of a possible degeneration. So, why bother with such particular cases, each having
a specific kind of approach? An Edmund Hillary type of answer would be, “because
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they exist”, and also one may see the complexity of nature’s singularities reflected by
mathematics.

In [4], the bifurcation diagrams were discovered in a general case, where the functions
β1(α) and β2(α) both have linear terms different from zero that satisfy the degeneracy
condition a10b01− a01b10 = 0, or a10 = a01 = 0, see (1). In that case, 32 bifurcation diagrams
were obtained. A parallel approach to that of [4] is studied in [35] by using another regular
transformation of parameters, where the product a10a01b10b01 6= 0. In the article [15], the
functions β1(α) and β2(α) have a10 = 0; a01 = 0; b10 = 0; b01 = 0, obtaining four bifurcation
diagrams. Ref. [10] studied the case when a20 = a11 = a02 = 0 and b10 6= 0, b01 6= 0 or
a20 = a11 = a02 = 0 and b10 = 0, b01 = 0, obtaining 18 different bifurcation diagrams. The
stability of the fixed point O for |α| that is sufficiently small and, respectively, “the existence
of closed invariant curves in the” [4] truncated normal form in all the cases was treated
before [10,15,35].

A possible application of the degenerated Chenciner bifurcation was presented in [15],
but one could analyze in all previous mentioned Chenciner papers what happens when
degeneration occurs. For example, the volatility of the economics systems based on discrete
Chenciner bifurcation may be interpreted as a variant of input data implying the degenera-
tion of the bifurcation. One possible cause of that may be the presence of a noise, rendering
a sequence of different degenerated and non-degenerated variants of the initial system in
case the coefficients aij have small values.

The purpose of this article is to investigate the behavior of the dynamical system
when β1(α) or β2(α) has a zero linear part a10 = a01 = 0 or b10 = b01 = 0, see (1), and the
second function has at least a term of order one different from zero. This aspect has not
been analyzed before. As it is not possible to choose new coordinates β1, β2, the idea is to
use only the initial parameters (α1, α2). This leads to the modifications of the structure of
the sets of points B1,2 and C, thus obtaining concurrent lines at the origin, similar to the
situation analyzed in other articles [10,15], but different from the cases studied in [4,35].
We want to specify how many bifurcation diagrams are obtained, many or few. The first
case studied, when ∆1 > 0, is the most important and complex of the two and requires
different methods of approach (the second is when ∆1 < 0).

The starting hypothesis in this study is that in the case of a degeneracy, a larger
number of bifurcation diagrams is needed than in a non-degeneracy setting. The objective
of this article is to verify the mentioned hypothesis in a degeneracy case that does not
involve resonance.

The work is structured in six sections; after the Introduction (Section 1 and
Appendices A and B), Section 2 presents the analysis of degenerate Chenciner bifurca-
tion that “means the existence and stability of equilibrium points and invariant closed
curves” [4] for this form of degeneracy, known as non-transversality, i.e., the “transforma-
tion of parameters is not regular at (0, 0)” [35]. In Section 3, it is described the existence
of bifurcations curves and their dynamics in the parametric plane (α1, α2) in Theorem 1.
Section 4 shows the bifurcation diagrams for this type of degeneracy of Chenciner bifur-
cation when the smooth function β1(α) is of order two. These bifurcation diagrams are
different from the bifurcation diagrams from the non-degenerate framework. In Section 5,
several numerical simulations using Matlab check the theoretical results from the previous
section. Section 6 indicates the relevant discussions and conclusions of the paper.

2. Materials and Methods

Since Chenciner bifurcation happens for the discrete dynamical system, we consider

xn+1 = f (xn, α) (2)

where xn ∈ R2, n ∈ N, α = (α1, α2) ∈ R2 and f is a smooth function of class Cr with r ≥ 2.
In order to avoid indices, the Equation (2) is sometimes written in the form

x 7−→ f (x, α) (3)
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or x̃ = f (x, α).
A bifurcation as in (A4) which satisfies r(0) = 1 and Re(b1(0)) = 0 but L2(0) 6= 0 is

known as “the Chenciner bifurcation (or generalized Neimark–Sacker bifurcation)” [4]. It
follows from β1(0) = 0 that

L2(0) =
1
2

(
Im2(b1(0)) + 2Re(b2(0))

)
.

When the transformation of parameters

(α1, α2) 7−→ (β1(α), β2(α)) (4)

is regular at (0, 0), then the dynamics system of (A4) can be put in a simpler form. “This
is the non-degenerated Chenciner bifurcation” [15] as it is studied in [12]. However, “the
degenerate case when the change of parameters is not regular at (0, 0) is not any” [15]
longer considered there. The purpose of the present article is to study an aspect of the
degenerate Chenciner bifurcation. Since it is not possible to choose new coordinates β1, β2,
the idea is to work only using the initial parameters (α1, α2).

3. Bifurcation Curves

Analysis of degenerated Chenciner bifurcation is performed in Appendix B and [4]. Since
the smooth functions β1,2(α) can be written as β1(α) = a10α1 + a01α2 + ∑i+j≥2 aijα

i
1α

j
2 and

β2(α) = b10α1 + b01α2 +∑i+j≥2 bijα
i
1α

j
2, the transformation (4) is not regular at (0, 0) and, thus,

“the Chenciner bifurcation is degenerate” [4], if and only if ∂β1
∂α1

∂β2
∂α2
|α=0 − ∂β1

∂α2

∂β2
∂α1

∣∣∣
α=0

= 0, that is,

a10b01 − a01b10 = 0. (5)

Remark 1. In [4], we studied “the case when (5) is satisfied with non-zero terms” [15], that is
a10b01a01b10 6= 0. In this work, we assume “that the linear part of β1(α) nullifies, while β2(α) has
at least one linear term” [15]. Thus, “the degeneracy condition (5) remains valid while the functions
β1,2(α) become

β1(α) = aα2
2 + bα1α2 + cα2

1 +
p1

∑
i+j=3

aijα
i
1α

j
2 + O

(
|α|p1+1

)
(6)

and

β2(α) = pα1 + qα2 +
q1

∑
i+j=2

bijα
i
1α

j
2 + O

(
|α|q1+1

)
(7)

for some p1 ≥ 3 and q1 ≥ 2, where abcq 6= 0” [15]. We denote by a = a02, b = a11 and
c = a20, respectively, p = b10 and q = b01.

Denote also by B1,2 and C the following sets of points in R2

B1,2 =
{
(α1, α2) ∈ R2, β1,2(α) = 0, |α| < ε

}
(8)

and
C =

{
(α1, α2) ∈ R2, ∆(α) = 0, |α| < ε

}
(9)

for some ε > 0 that is sufficiently small. The expression ∆(α) = β2
2(α) − 4β1(α)L2(α)

becomes

∆(α) = hα2
2(1 + O(|α|)) + kα1α2(1 + O(|α|)) + lα2

1(1 + O(|α|)) (10)
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where h = q2 − 4aL0, k = 2pq− 4bL0 and l = p2 − 4cL0. Assume hkl 6= 0. When p = 0 and
h 6= 0, this condition is satisfied in general since bcL0 6= 0. Notice that

∆2 = k2 − 4hl = 16L2
0

(
b2 − 4ac

)
+ 16L0

(
ap2 − bpq + cq2

)
. (11)

In the following, we prove a theorem that was only stated in [15]. The structure of
the set of points B1,2 and C represents the main result in order to obtain the bifurcation
diagrams; see also Remark 2. Recalling that a = a02, b = a11, c = a20, p = b10, q = b01, h =
q2 − 4aL0, k = 2pq− 4bL0, l = p2 − 4cL0 and ∆1 = b2 − 4ac, ∆2 = k2 − 4hl, the following
theorem is stated:

Theorem 1. 1. The set B2 is a smooth curve of the form

α2 = d1α1 + d2α2
1 + O

(
α3

1

)
, (12)

d1 = − p
q , d2 = − 1

q
(
b02 + d2

1b20 + d1b11
)
, tangent to the line pα1 + qα2 = 0.

2. If ∆1 = b2 − 4ac > 0, the set B1 is a reunion of two smooth curves of the form

α2 = e1,2α1(1 + O(α1)), (13)

where e1 = −b−√∆1
2a and e2 = −b+

√
∆1

2a . If ∆1 < 0, then sign(β1(α)) = sign(a) for |α| < ε.
3. If ∆2 = k2 − 4hl > 0, the set C is a reunion of two smooth curves of the form

α2 = m1,2α1(1 + O(α1)), (14)

where m1 = −k−√∆2
2h and m2 = −k+

√
∆2

2h . If ∆2 < 0, then sign(β1(α)) = sign(h) for
|α| < ε.

Proof. 1. Consider the function β2 : V0 ⊂ R2 → R given by (7), where V0 =
{

α ∈ R2, |α| < ε
}

for ε > 0 sufficiently small. Then β2(0, 0) = 0 and ∂β2
∂α2

(0, 0) = q 6= 0. Thus, from the implicit
function theorem (IFT) applied to β2, there exists a unique curve α2 = α2(α1), which
satisfies β2(α1, α2(α1)) = 0 for |α1| that is small enough and can be written in the form (12).
Notice that d1 can be 0.

2. One further writes β1(α) in the form
β1(α) = aα2

2(1 + O(|α|)) + bα1α2(1 + O(|α|)) + cα2
1(1 + O(|α|)). Then β1(α) = 0

becomes

aα2
2 + bα1α2(1 + O(|α|)) + cα2

1(1 + O(|α|)) = 0. (15)

Solving for α2 in (15), one obtains α2 = e1,2α1(1 + O(|α|)), where ∆1 = b2 − 4ac and

e1,2 = −b±√∆1
2a , when ∆1 > 0. Denote further by

F(α1, α2) = α2 − e1,2α1(1 + O(|α|)),

where F : V0 ⊂ R2 → R. Since F(0, 0) = 0 and ∂F
∂α2

(0, 0) = 1 6= 0, the IFT yields the
conclusion. When ∆1 < 0, it does not exist α 6= 0 with |α| < ε such that β1(α) = 0.
Thus, β1(α) keeps a constant sign on V0, which is given, for example, by β1(α2, 0) =
aα2

2(1 + O(|α|)). This yields the conclusion. For 3, one proceeds similarly to 2.

Theorem 1 was only stated in [15], but the proof is also given here because it is used
in the present article. In this theorem, the structure of the sets of points B1,2 and C is
established, i.e., what kind of curves appear in the three situations from points 1,2 and 3;
Theorem 1 provides the necessary theoretical basis for drawing bifurcation diagrams.
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4. Bifurcation Diagrams

Assume β1,2(α) and ∆(α) have nonzero coefficients in their lowest terms, that is,
abcq 6= 0 and hkl 6= 0. Thus, “the three bifurcation curves are well-defined when |α| is
sufficiently small ” [4]. B2 is a unique curve, while each of B1 and “C is a reunion of two
curves” [15].

Remark 2. Figure A1 presents generic phase portraits “corresponding to different regions of the
bifurcation diagrams, including the phase portraits on the bifurcation curves defined by ∆(α) =
0,” [4] respectively, β1(α) = 0. We summarize in Table A1 the correspondence between ∆, β1,2, L0
and “the generic phase portraits, respectively, different regions from bifurcation diagrams. When
β1,2(α) = 0, then α = 0” [4].

The sign of a 2-nd degree polynomial of two real variables is discussed below.
Let us consider a polynomial

∆(α1, α2) = aα2
2 + bα1α2 + cα2

1, a, b, c ∈ R∗.

Considering its associated one-variable-polynomial δ(m) = am2 + bm + c, the signs
of ∆(α1, α2) and δ(m) are the same, for all the pairs (α1, α2), which are solutions of the
equation, α2 = mα1.

We use the convention that

m1 =

{ −b−√∆1
2a , if a > 0

−b+
√

∆1
2a , if a < 0

and the corresponding formula for m2.
The sign of ∆(α1, α2) is shown in Figure 1a for a > 0, and in Figure 1b for a < 0, where

(di) : α2 = miα1, for i = 1, 2.
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d1 
(b)

Figure 1. The sign of ∆(α1, α2) when (a) a > 0; (b) a < 0.

4.1. Bifurcation Diagrams When the First Discriminant Is Strictly Positive

Bifurcation diagrams for ∆1 > 0 are given in this subsection.
Firstly, we suppose that ∆2 > 0, and we consider the polynomials of R∗[T] : β1(T) =

aT2 + bT + c, δ(T) = hT2 + kT + l, having the distinct real roots e1, e2, respectively,
m1, m2.

There will be considered the following cases of root ordering:

I : e1 < e2 < m1 < m2,
II : e1 < m1 < e2 < m2,
III : e1 < m1 < m2 < e2,
IV : m1 < e1 < e2 < m2,
V : m1 < e1 < m2 < e2.

There is only one more case, m1 < m2 < e1 < e2, which will not be taken into account,
since it is a rotated case of I.
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That ordering will be applied to the associated polynomials of β1(α1, α2), ∆(α1, α2),
that is β1(T), δ(T); see Section 4.

Theorem 2. The polynomials β1(T) and δ(T) have the following properties:

1. δ(e1) + δ(e2) > 0
2. β1(m1) · β1(m2) ≥ 0

Proof. 1. δ(e1) + δ(e2) = he2
1 + ke1 + l + he2

2 + ke2 + l by Viete relations
δ(e1) + δ(e2) = 1

a2 (b2h− 2ach− abk + 2a2l), and by using the relations (11), δ(e1) +

δ(e2) = 1
a2q2 [2a2( p

q )
2 − 2ab p

q + b2 − 2ac], which is positive since the polynomial P(T) =

2a2T2 − 2abT + b2 − 2ac > 0, (∀)T ∈ R.
Indeed, the reduced discriminant of P is ∆

′
= −a2∆1 < 0.

2. β1(m1) · β1(m2) = a2m2
1m2

2 + abm1m2(m1 + m2) + ac(m2
1 + m2

2) + b2m1m2 +

bc(m1 +m2) + c2 by using Viete relations β1(m1) · β1(m2) =
1
h2 (a2l2− abkl + ack2− 2achl +

b2hl − bchk + c2h2).
Using (11), one concludes that

β1(m1)β1(m2) =
1

h2q4

[
a2
(

p
q

)4
− 2ab

(
p
q

)3
+ (2ac + b2)

(
p
q

)2
− 2bc p

q + c2
]
=

= a2

q4h2

(
p
q −

b+
√

∆1
2a

)2
·
(

p
q −

b−√∆1
2a

)2
.

Corollary 1. The cases II and V do not fulfill condition (2) of Theorem 2, and therefore they are
eliminated.

Considering the possible sub-cases of I, III, and IV, depending on the signs of a, h, one remarks
that the numbers of sub-cases is halved by condition (1) of Theorem 2.

The left sub-cases are graphically represented in Figures 2–4.
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Figure 2. Graphical representation of ∆1,2. Case I (e1 < e2 < m1 < m2) when (a) a > 0, h > 0;
(b) a < 0, h > 0.
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Figure 3. Graphical representation of ∆1,2. Case III ( e1 < m1 < m2 < e2): (a) a > 0, h > 0;
(b) a < 0, h > 0.
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Figure 4. Graphical representation of ∆1,2. Case IV ( m1 < e1 < e2 < m2): (a) a < 0, h < 0;
(b) a > 0, h < 0.

Theoretically, for any of the previous sub-cases, one must consider two possibilities,
depending on the sign of the L0. However, the following theorem assigns a determined
sign for any case.

Theorem 3. The sign of β(m1) + β(m2) equals that one of L0.

Proof. We calculate β(m1) + β(m2) = a(m2
1 + m2

2) + b(m1 + m2) + 2c =
= 1

h2 (ak2 − ahl − bhk + 2ch2).
By using the relation (11): β(m1) + β(m2) =

1
4hL0

(2h2 p2 − 2hlq2 − 2hkpq + k2q2).
Hence, the sign of β(m1) + β(m2) is that of the expression in T:
L0(2h2T2 − 2hkT + k2 − 2hl).
The reduced discriminant of the last parenthesis is ∆

′
= −4h2∆2 < 0. Therefore,

sign(β(m1) + β(m2)) = sign(L0).

Corollary 2. By the previous theorem, one may specify the sign of L0 in the following cases:

1. I a, III b, IV b have L0 > 0,
2. I b, III a, IV a have L0 < 0.

We may further reduce the sub-cases by the following theorems:

Theorem 4. Denoting M = ap2 − bpq + cq2, N = hp2 − kpq + lq2, it results that N =
−4L0M.

Proof. N = hp2 − kpq + lq2 equals, by (11), (q2 − 4aL0)p2 − (2pq − 4bL0)pq + (p2 −
4cL0)q2 = −4L0M.

Corollary 3. In cases I a, III b, and IV b, M and N have different signs, and for the rest of the
sub-cases, they have the same sign.

Theorem 5. The sum M + N has no definite sign.

Proof. M + N = (a + h)p2 − (b + k)pq + (c + l)q2, and by (11), M + N = (1− 4L0)(ap2 −
bpq + cq2). L0 is fixed, so 1− 4L0 has a fixed sign. The second parenthesis has no fixed sign
for all p, q ∈ R, since ∆1 > 0.

Corollary 4. If M, N have the same sign, then M + N has a definite sign for all p, q ∈ R. If
M, N do not have the same sign, then M + N do not have a definite sign for all p, q ∈ R. Hence,
by Theorem 5 and Corollary 3, we may eliminate the cases I b, III a, and IV a. The remaining cases
are I a, III b, and IV b.
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By Corollary 4, the cases for the graphical representation of the lines B1, B2, C are
as follows:

I a1 : a > 0, h > 0, L0 > 0, M < 0, N > 0.
I a2 : a > 0, h > 0, L0 > 0, M > 0, N < 0.

III b1: a < 0, h > 0, L0 > 0, M < 0, N > 0.
III b2: a < 0, h > 0, L0 > 0, M > 0, N < 0.
IV b1: a > 0, h < 0, L0 > 0, M > 0, N < 0.
IV b2: a > 0, h < o, L0 > 0, M < 0, N > 0.

The bifurcation diagrams of cases I a1, III b1, and IV b2 are the same, represented
in Figure 5a, and the bifurcation diagrams of cases I a2, III b2, and IV b1 are the same
represented in Figure 5b.
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Figure 5. Bifurcation diagrams when ∆1 > 0 and (a) when case I a1, III b1, or IV b2 holds; (b) when
case I a2, III b2 or IV b1 holds. The numbers represent the corresponding phase portraits.

Remark 3. The case ∆1 > 0, ∆2 < 0 is solved by Theorem 1, Section 3 since if ∆2 < 0, then
signβ1(α) = sign(h) for all |α| < ε. That is, the single straight line which remains is B1, and this
case is trivial.

4.2. Bifurcation Diagrams When the First Discriminant Is Strictly Negative

Bifurcation diagrams for ∆1 < 0 are given in this subsection.

Remark 4. If ∆1 < 0 and aL0 < 0 then ∆(α) > 0. We will show that the single bifurcation curve
is β2(α) = 0 in this case.

We observe that h = q2− 4aL0 and by aL0 < 0 we have that h > 0. Taking into account
Theorem 1, (3), we have that sign(β1(α)) = sign(a) and sign(∆(α)) = sign(h).

There are more two trivial bifurcation diagrams which are not taken into account due
to their triviality:

Remark 5. (a) If ∆1 < 0, a > 0 and L0 < 0 then the bifurcation diagrams contain only region
3.

(b) If ∆1 < 0, a < 0 and L0 > 0, then the bifurcation diagrams contain only region 1.

Proof of Remark 4. Using aL0 < 0 results in h = q2 − 4aL0 > 0. Taking into account that
∆1 < 0, we obtain ∆1h < 0. Because

∆3 = b2q2 − 4aL0∆1 − 4acq2 = q2(b2 − 4ac)− 4aL0∆1 = ∆1(q2 − 4aL0) = ∆1h

it follows that ∆3 < 0. However,

∆2 = k2 − 4hl = 16L2
0(b

2 − 4ac) + 16L0(ap2 − bpq + cq2) =

= 16L0[l0(b2 − 4ac) + ap2 − bpq + cq2] = 16L0[L0∆1 + ap2 − bpq + cq2] =
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= 16L0(ap2 − bpq + cq2 + L0∆1)

and by aL0 < 0, we have that ∆2 < 0.
Using Theorem 1, (3) and that ∆2 < 0, h > 0, we have sign(∆(α)) = sign(h) > 0.

Case 4.2.1 When ∆1 < 0, aL0 > 0 and h > 0.
We see that ∆3 = ∆1h < 0, and from aL0 > 0, it follows that ∆2 > 0. Thus, the

equation ∆(α) = 0 has two real distinct roots, m1,2 = −k±√∆2
2h . We notice that m1 < m2.

We consider the expression P = (m1 +
p
q )(m2 +

p
q ).

By calculus, we obtain P = 1
h

(
p2

q2 h− k p
q + l

)
. We replace further in the previous expression

h by q2− 4aL0, k by 2pq− 4bL0, and l by p2− 4cL0, and we have P = − 4L0
hq2

(
ap2 − pqb + cq2).

Now using that aL0 > 0, h > 0 and ∆1 < 0, we will find that P < 0. In this situation
we have only the following two systems:

{
m1 +

p
q > 0

m2 +
p
q < 0

or

{
m1 +

p
q < 0

m2 +
p
q > 0 .

By solving these systems, we find only the solution m1 < − p
q < m2 because m1 < m2.

In the previous case, two sub-cases arise:

Remark 6. (a) If a > 0, L0 > 0 and − p
q ∈ (m1, m2), then the following bifurcation diagram

appears in Figure 6a:
(b) If a < 0, L0 < 0 and − p

q ∈ (m1, m2), then the following bifurcation diagram appears in
Figure 6b:
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Figure 6. Bifurcation diagrams corresponding to the case: (a) a > 0, L0 > 0, − p
q ∈ (m1, m2);

(b) a < 0, L0 < 0, − p
q ∈ (m1, m2).

Case 4.2.2 If ∆1 < 0, aL0 > 0, and h < 0, then ∆3 > 0 and the equation ∆2 = 0 has
two real and distinct roots:

p1,2 =
bq±√∆3

2a
=

bq±√h∆1

2a
.

Taking into account that h < 0, aL0 > 0 and ∆1 < 0. We obtain this time that P > 0.
Now we compute also the sum, S, thus

S = m1 + m2 + 2 p
q = − k

h + 2p
q = 4L0(bq−2ap)

qh .
From here, two cases arise.
When {

P > 0
S > 0

or
{

P > 0
S < 0.

first sub-case,
{

P > 0
S > 0

, is equivalent to
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L0

(
b− 2a p

q

)
< 0, and in this point we also have two possibilities:

(a)

{
L0 > 0
b− 2a p

q < 0 or (b)

{
L0 < 0
b− 2a p

q > 0.

In case (a), from L0 > 0 we obtain a > 0 and then b
2a < p

q .

In case (b), from L0 < 0 we have a < 0 and further b
2a < p

q .
This means that {

m1 +
p
q > 0

m2 +
p
q > 0

and using that m2 < m1, we obtain − p
q < m2 < m1.

Now, the second sub-case becomes L0

(
b− 2a p

q

)
> 0, and in this point, we also have

two possibilities:

(a)

{
L0 > 0
b− 2a p

q > 0 or (b)

{
L0 < 0
b− 2a p

q < 0.

In case (a), from L0 > 0 we obtain a > 0 and then b
2a > p

q .

In case (b), from L0 < 0 we have a < 0 and further b
2a > p

q .

Therefore, now we have instead,

{
m1 +

p
q < 0

m2 +
p
q < 0

and using that m2 < m1, we obtain

− p
q > m1 > m2.

Here, it does not appear to be the case that m2 < − p
q < m1.

Case 4.2.2 I If p ∈ (p1, p2), then ∆2 < 0 and from here, using that h < 0, we obtain
∆(α) < 0.

There are other two more trivial bifurcation diagrams which were not taken into
account due to their triviality.

Remark 7. (a) If a > 0, L0 > 0 and p ∈ (p1, p2) then the bifurcation diagram contain only the
region 2 in the whole plane of coordinates, α1Oα2.
Using that sign(β(α)) = sign(a) = +, sign(∆(α)) = −, L0 > 0 and taking into account
that β(α) can have any sign, we see in Table A1 that for this configuration of signs will appear
only the region 2.

(b) If a < 0, L0 < 0, p ∈ (p1, p2) then the bifurcation diagram will contain only region 4 in the
whole plane of coordinate α1Oα2.
By the same reason, using that sign(β1(α)) = sign(a) = −, sign(∆(α)) = −, L0 < 0 and
taking into account that β(α) can have any sign, we see in Table A1 that for this configuration
of signs, it will appear only in region 4.

4.2.2 II If p ∈ (−∞, p1)∪ (p2, ∞), then ∆2 > 0. However, h < 0 and therefore ∆(α) has
two distinct real roots m1 and m2.

sign(∆(α)) =
{

+, m ∈ (m1, m2);
−, m ∈ (−∞, m1) ∪ (m2, ∞).

Because − p
q is not between m2 and m1, we see that sign(∆(α)) = −.

Remark 8. In this case, the bifurcation diagrams are as in the case 4.2.1, Figure 6a,b, and only the
conditions are different, not the dispersion of the regions.
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5. Numerical Simulations

In order to numerically illustrate “the existence of closed invariant curves” [4] in
some of the studied cases, the Matlab software was used. In the particular case when the
two-dimensional map is given in polar coordinates by

ρn+1 = ρn + β1(α)ρn + β2(α)ρ
3
n − ρ5

n and ϕn+1 = ϕn + θ0,

|α| being sufficiently small and L0 = −1, θ0 = 0.2, we choose

β1(α) = α2
1 − α1α2 + α2

2, β2(α) = −α1 − 3α2, α1 = 0.1, α2 = −0.1.

Figure 7a,b shows the phase portraits 3 and 1 obtained when the conditions of
Remark 5a,b are satisfied, respectively. In Figure 7a, the magenta orbit starting from
(ρ1, ϕ1) = (0.7, 0) approximates the invariant closed curve (invariant circle) from Theo-
rem 1 [4], being obtained for N = 400 steps starting from the outside of the circle. The
blue orbit starts from (ρ2, ϕ2) = (0.06, 0) and it is also obtained for N = 400, which ap-
proximates the invariant circle starting from the inside and staying inside the circle. The
red orbit starts in (ρ3, ϕ3) = (0.4, 0), approximates the invariant circle from the inside,
and is obtained for N = 400 steps. The green orbit starts from (ρ4, ϕ4) = (0.59, 0), from
the outside of the invariant circle and approximates it. This is how the phase 3 portrait
appears here, the conditions in Remark 5a, Case 4.2 being satisfied (∆1 = −3 < 0, a =
1 > 0, L0 = −1 < 0). For the invariant circle, the radius is ρn =

√
y2 = 0.547; in our case,

having β1(α) = 0.03, β2(α) = 0, 2 > 0, ∆(α) > 0, L0 = −1, we are also in the conditions
of Theorem 1 (2) (b) [4]. We consider the particular case where the two-dimensional map is
given in polar coordinates by

ρn+1 = ρn + β1(α)ρn + β2(α)ρ
3
n + ρ5

n and ϕn+1 = ϕn + θ0,

|α| being sufficiently small, θ0 = 0.1, α1 = 0.1, α2 = −0.1,

β1(α) = −α2
1 − α1α2 − α2

2, β2(α) = −α1 − 3α2, L0 = 1, .

It is observed that L0 > 0, a = −1 < 0, ∆1 < 0, so the conditions in Remark 5b are sat-
isfied, and then the bifurcation diagram contains only phase portrait 1 (corresponding to re-
gion 1). We choose 3 orbits starting from the points (ρ1, ϕ1) = (0.2035223739, 0), (ρ2, ϕ2) =
(0.181, 0) and (ρ3, ϕ3) = (0.187, 0) of the colors magenta, red and blue, respectively, and
which have N = 850, N = 4000 and N = 4000 steps, respectively; see Figure 7b. The
magenta orbit moves away from the invariant circle and may escape to infinity, while the
red orbit tends toward the origin (0, 0), and the blue orbit likewise tends toward the origin.
In addition, the radius of the invariant circle will be ρn =

√
y1 = 0.2035 (the conditions of

Theorem 1 (2), (a) being satisfied) (L0 > 0, β1(α) = −0.01 < 0, β2(α) = 0.2 > 0).

Figure 7. Numerical simulation for the map (A7) and (A8) with: (a) β1(α) = α2
1−α1α2 + α2

2, β2(α) =

−α1−3α2 and L0 = −1, α1 = 0.1, α2 = −0.1; (b) β1(α) = −α2
1−α1α2−α2

2, β2(α) = −α1−3α2 and
L0 = 1, α1 = 0.1, α2 = −0.1.
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For Figure 6a, we wanted to check on a particular case where the appearance of regions
2, 6, and 8 corresponds to phase portraits 2, 6, and 8. We consider the map given in polar
coordinates by

ρn+1 = ρn + β1(α)ρn + β2(α)ρ
3
n + ρ5

n and ϕn+1 = ϕn + θ0,

|α| being small enough L0 = 1, θ0 = 0.1. We took β1(α) = α2
1 + α1α2 + α2

2, β2(α) =
α1 + 3α2, α1 = 0.1, α2 = −0.1 and we notice that the conditions are checked (a > 0, L0 > 0,
h > 0, −p/q ∈ (m1, m2), m1 = −1, m2 = 0.6 and α1

α2
= m1) to be on one of the straight lines

that form the curve (C) in Figure 6a, the point (α1, α2) being in quadrant IV, so it is region 6.
For the orbits of blue, red, magenta and yellow colors from Figure 8a, starting at points
(ρ1, ϕ1) = (0.023, 0), (ρ2, ϕ2) = (0.35, 0), (ρ3, ϕ3) = (0.38, 0) and (ρ4, ϕ4) = (0.078, 0),
respectively, we consider N = 4000, N = 141, N = 54 and N = 4000 steps, respectively.
It can be seen that the blue orbit approximates the invariant circle, the red orbit tends to
infinity (if we increase the number of steps to N = 142 and N = 58 for the red and magenta
curves, we obtain Figure 8b), the magenta orbit, like the red one, tends at infinity moving
away from the invariant circle, and the yellow orbit, like the blue one, approximates (tends
to) the invariant circle. This proves that we have phase portrait 6, so region 6 (as in the
figure) is in accordance with the theoretical results. More than that, ρn =

√
y1 = 0.3162, is

the radius of the invariant circle, and because ∆(α) = 0, the equation y2 − 0.2y + 0.01 = 0
has a double root.

Figure 8. Numerical simulation for the map (A7) and (A8) with (a) β1(α) = α2
1 + α1α2 + α2

2, β2(α) =

α1 + 3α2 and L0 = 1, α1 = 0.1, α2 = −0.1; (b) like (a), but the step number is increased, and N = 142
and N = 58 for red orbit and magenta orbit, respectively.

However, with α1 = 0.1 and α2 = 0.1, the point (α1, α2) is in quadrant I, α1
α2

will be
different from m1 and m2, and in Figure 6a, region 2 will appear. For the orbits of blue,
green and brown colors starting from points (ρ1, ϕ1) = (0.087, 0), (ρ2, ϕ2) = (0.06, 0) and
(ρ3, ϕ3) = (0.04, 0), respectively, the numbers of steps are considered N = 35, N = 45 and
N = 60, respectively. The 3 orbits tend to infinity corresponding to phase 2 portrait (region
2); see Figure 9a. If we take N = 39, N = 50 and N = 64 instead of the previous 3 values,
we obtain Figure 9b, and it is observed that the last values increase a lot. Then, choosing
α1 = −0.01, α2 = −0.5, the pair (α1, α2) is in quadrant III, and α1

α2
will be different from m1

and m2.

109



Mathematics 2022, 10, 3782

Figure 9. Numerical simulation for the map (A7) and (A8) with: (a) β1(α) = α2
1 + α1α2 + α2

2, β2(α) =

α1 + 3α2 and L0 = 1, α1 = 0.1, α2 = 0.1; (b) like to (a) but the step number is increased to N = 39,
N = 50 and N = 64, respectively, for blue orbit, green orbit and brown orbit.

The six orbits start in Figure 10 from din (ρ1, ϕ1) = (0.087, 0), (ρ2, ϕ2) = (0.78, 0),
(ρ3, ϕ3) = (0.35, 0), (ρ4, ϕ4) = (1.14724966464545445, 0), (ρ5, ϕ5) = (0.023, 0) and (ρ6, ϕ6) =
(1.127, 0) having the colors yellow, magenta, red, green, blue and cherry, respectively, with
steps N = 400, N = 54, N = 141, N = 15, N = 400 and N = 400, respectively. The
cyan-colored orbit is the outer invariant circle. The cherry and magenta orbits approximate
the inner invariant circle from the outside, and the blue, yellow and red orbits approximate
the inner invariant circle from the inside. The green orbit moves away from the outer
invariant circle tending to infinity, thus observing that the orbits move away from the outer
circle and tend toward the inner invariant circle. We thus have the portrait of phase 8,
region 8. The radii of the two invariant circles are known from Theorem 1 [4].

Figure 10. Numerical simulation for the map (A7) and (A8) with β1(α) = α2
1 + α1α2 + α2

2, β2(α) =

α1 + 3α2 and L0 = 1, α1 = −0.01, α2 = −0.5.

6. Discussions and Conclusions
6.1. Discussions

In this study, the truncated normal form of the Chenciner bifurcation was analyzed
in a degeneracy case, where the degeneracy condition is given by a10b01 − a01b10 = 0 and
a10 = a01 = 0 or b10 = b01 = 0, as an answer to the problem open in [4,35].

In this article, all eight regions corresponding to the eight phase portraits (see Figure A1)
appear in the bifurcation diagrams, unlike [15] or [10], where all of these are not present.
In [15], only regions 1–4 appear in the bifurcation diagrams. If in a previous study [15]
only two alternating regions appeared, in this article, more alternating regions (4 and
3 regions, respectively) appear in the bifurcation diagrams. This situation indicates a
more complex structure of bifurcation diagrams. By modifying the structure of the sets of
points B1,2 and C, concurrent lines at the origin are obtained in the bifurcation diagrams,
as in some recent studies [10,15], and different from other previous works [4,35]. When
∆1 > 0 (Section 4.1) the analysis of the six cases obtained leads to the first two diagrams in
Figure 5a,b. When ∆1 < 0 (Section 4.2) Figure 6 presents the last two nontrivial bifurcation

110



Mathematics 2022, 10, 3782

diagrams. However, in this last case, there are additionally four trivial situations when the
bifurcation diagrams contain only one region in the whole plane (see Remarks 5a,b and
7a,b) and therefore do not require the creation of an additional representation.

The obtained theoretical results could be verified by means of the Matlab program,
which allowed the realization of several representative simulations.

The Chenciner bifurcation in this case acts similar to an “organizing center” of dynamic
behavior, generating “global dynamic phenomena such as the creation or disappearance of
stable limit cycles” [19]. Near a Chenciner bifurcation point, “there is an open region in the
parameter space where a stable equilibrium state and a stable limit cycle coexist” [19].

6.2. Conclusions

The advantage of using Chenciner degenerate bifurcation for modeling economics
volatility versus chaotic behavior is that the transition to chaos amplifies itself and requires
several iterations, but the volatility may be transitory. The case studied in this article has
the advantage that it leads to the reduction of the large number of bifurcation diagrams that
appeared in [4,10]. Thus, the hypothesis that was made is confirmed: if the degeneracy is
not so large, we have a small number of bifurcation diagrams. The limitations of the present
procedure is that it is applicable to degenerated cases, which seldom represent cases that
have importance in special situations. Moreover, the more restrictive method leading to a
new parameter change as in [35] is not necessary for this study. The results obtained for
“the truncated normal form give an approximate description of the complicated bifurcation
structure, near a generic Chenciner bifurcation” [4]. As in the case of the Neumark–Sacker
bifurcation and in the case of the degenerate Chenciner bifurcations, it is observed that
the normal form thus obtained captures “only the appearance of a closed invariant curve
but does not describe the structure of the orbit on this curve” [12]. The article completes
the studies started in another reference material on the degenerate Chenciner bifurcation
[4] and not addressed in other cases of degeneracy [10,15]. In the mentioned articles,
the functions β1 and β2 do not contain any terms of the first degree [15], one of the two
functions does not contain terms of the first or second degree, and the other may or may
not contain terms of the first degree [10].

A number of four different bifurcation diagrams were obtained instead of “two as in
the non-degenerate Chenciner case” [15]. The first two bifurcation diagrams were obtained
in Case 4.1 when ∆1 > 0, and the last two bifurcation diagrams were generated in Case 4.2
when ∆1 < 0. Several subcases that appeared (discussed) in Case 4.1 could be removed.

So, the conclusion is that eight different bifurcation diagrams were recorded, four of
them being trivial.

In the case studied now, the linear part of β1 cancels, and β2 has at least one linear
term. Compared to the mentioned articles [4,10], much fewer bifurcation diagrams appear.
Thus, eight bifurcations diagrams result (if we also consider the four trivial ones from
Remark 5 and Remark 7), and only four non-trivial ones are recorded, which are different
from those previously highlighted [15].

The obtained results “can be used in bifurcation theory” [15] as a field of dynamic
systems, but could also be exploited in other fields of activity, where the evolution of some
processes and phenomena is in the form of discrete dynamic systems (economy, biology,
ecology, medicine and computers).
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Appendix A. Chenciner Bifurcation

The discrete-time system 2 may be written in complex coordinates as

z→ z.δ(α) + g(z, z, α), (A1)

where δ and g are smooth functions of their arguments, given by

δ(α) = eiθ(α).r(α) and g(z, z, α) = ∑
i+l≥2

gil(α)zizl

i!l!
,

also r(0) = 1, θ(0) = θ0 and gil are smooth functions with complex values.
Following the same steps as in [12], it will turn (A1) into

w→ w.
(

eiθ(α).r(α) + ww.a1(α) + w2w2.a2(α)
)
+ O(|w|6) =

= w.eiθ(α)
(

r(α) + ww.b1(α) + w2w2.b2(α)
)
+ O(|w|6), (A2)

where bj(α) = e−iθ(α).aj(α), j = 1, 2.
It should be noted that the following smoothly reversible complex coordinate change

was used:

z = w + ∑
2≤i+l≤5

hil(α)wiwl

i!l!
, (A3)

with h21(α) = h32(α) = 0.
If β1(α), β2(α) denote r(α)− 1 and Re(b1(α)), respectively, and polar coordinates are

used, then relation (A2) will be
{

ρn+1 =
(
1 + β1(α) + β2(α)ρ

2
n + L2(α)ρ

4
n
)
ρn + ρnO

(
ρ6

n
)

ϕn+1 = ϕn + θ(α) +
(

Im(b1(α))
1+β1(α)

+ O(ρn, α)
)

ρ2
n

, (A4)

It is called Chenciner bifurcation, a state of system (A4) that satisfies the conditions
r(0) = 1, Re(b1(0)) = 0 and L2(0) 6= 0.

Out of β1(0) = 0, it results that

L2(0) =
Im2(b1(0)) + 2.Re(b2(0))

2
.

When the mapping
(α1, α2)→ (β1(α), β2(α)) (A5)

is regular in (0, 0), then the functions β1 and β2 become the new parameters of the system
(A4). This is the non-degenerate Chenciner bifurcation.

It is known from [12], relation (13) page 4, that
{

β1(α) = ∑
p
i+l=1 ailα

i
1αl

2 + O(|α|p+1)

β2(α) = ∑
q
i+l=1 bilα

i
1αl

2 + O(|α|q+1)
, (A6)

for p ≥ 1, q ≥ 1 and a10 = ∂β1
∂α1
|α=0, a01 = ∂β1

∂α2
|α=0, b10 = ∂β2

∂α1
|α=0, b01 = ∂β2

∂α2
|α=0 and so on.
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If the transformation (A5) is not regular in (0, 0), the Chenciner bifurcation is degener-
ate, i.e., if and only if a10.b01 − a01.b10 = 0.

Next, the higher-order terms of the ρ-map (of the application) (A4) will be eliminated,
obtaining the truncated form

ρn+1 = (1 + β1(α) + ρ2
nβ2(α) + ρ4

n.L2(α)).ρn. (A7)

The ϕ-map application of system (A4) describes a rotation of an angle depending on α
and ρ, and can be approximated by its truncated form

ϕn+1 = ϕn + θ(α). (A8)

It will be assumed that 0 < θ(0) = θ0 < π, and the system analyzed in this paper is
(A7) and (A8). This system is also called the truncated normal form of the system (A2).

Appendix B. Degenerate Chenciner Bifurcation

Equation (A7) defines a one-dimensional dynamic system, which is independent of
equation (A8)(ϕ-map) and will be studied separately. The system (A7) (ρ-map) has the
fixed point ρ = 0, for any α which corresponds to the fixed point O(0, 0) in the normal
forms (A7) and (A8). Each positive and non-zero fixed point of the ρ-map (8) corresponds
to a closed invariant curve in the system, (A7) and (A8). We specify that we denote by
O(|α|n), n ≥ 1 a series with real coefficients cij having the form, ∑i+j≥n cijα

i
1α

j
2. It can be

easily shown that sign(L2(α)) = sign(L0) for |α| =
√

α2
1 + α2

2 that is chosen to be small
enough, bearing in mind that L2(α) can be chosen as L2(α) = (1 + O(|α|)).L0 and L0 6= 0.

The following theorem describes the stability of the point O for |α| that is small enough,
and it was demonstrated in [4].

Theorem A1. “The fixed point O is(linearly) stable if β1(α) < 0 and unstable if β1(α) > 0,for
any value of α with |α| small enough. On the bifurcation curve β1(α) = 0, O is (nonlinear) stable if
β2(α) < 0 and unstable if β2(α) > 0, when |α| is small enough. When α = 0, O is (non-linearly)
stable if L0 < 0 and unstable if L0 > 0.” [4]

The fixed points of (A7) are the solutions of the equation L2(α).y2 + β2(α).y + β1(α) =
0 where the variable y = ρ2

n. The discriminant of the equation will be denoted by ∆(α) =

β2
2(α) − 4.L2(α).β1(α), and the roots will be y1 =

√
∆(α)−β2(α)

2.L2(α)
and y2 = −

√
∆(α)+β2(α)

2.L2(α)

“when they exist as real number” [4]. The following theorem studies the existence of closed
invariant curves in the truncated normal form (A7) and (A8) and is given in [4].

Theorem A2. 1. ” When ∆(α) < 0 for all |α| sufficiently small, the system (A7) and (A8) has
no invariant circles.

2. When ∆(α) > 0 for all |α| sufficiently small, the system (A7) and (A8) has
(a) One invariant unstable circle ρn =

√
y1 if L0 > 0 and β1(α) < 0;

(b) One invariant stable circle ρn =
√

y2 if L0 < 0 and β1(α) > 0;
(c) Two invariant circles, ρn =

√
y1 unstable and ρn =

√
y2 stable, if L0 > 0, β1(α) >

0, β2(α) < 0 or L0 < 0, β1(α) < 0, β2(α) > 0; in addition, y1 < y2 if L0 < 0 and y2 < y1
if L0 > 0;

(d) No invariant circles if L0 > 0, β1(α) > 0, β2(α) > 0 or L0 < 0, β1(α) < 0,
β2(α) < 0.

3. On the bifurcation curve ∆(α) = 0, the system (A7) and (A8) has one invariant unstable
circle ρn =

√
y1 for all L0 6= 0. Moreover, if L0 < 0, the invariant circle is stable from the

exterior and unstable from the interior, and vice versa if L0 > 0.
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4. When β1(α) = 0, the system (A7) and (A8) has one invariant circle ρn =
√
− β2(α)

L0

whenever L0β2(α) < 0. It is stable if L0 < 0 and β2(α) > 0, respectively, unstable if L0 > 0
and β2(α) < 0 “ [4,15,35].

Table A1. Correspondence between ∆, β1,2, L0 and the generic phase portraits [4].

∆(α) L0 β1(α) β2(α) Region

+ + + + 2
+ − − − 4
+ + − ±, 0 1
+ − + ±, 0 3
+ − − + 7
+ + + − 8
− + + ±, 0 2
− − − ±, 0 4
0 + + + 2
0 − − − 4
0 − − + 5
0 + + − 6
0 + 0 0 2
0 − 0 0 4
+ − 0 + 3
+ − 0 − 4
+ + 0 − 1
+ + 0 + 2

Corresponding to the studies we previously carried out [4,15], the following phase
portraits are highlighted below. In this case, the phase portraits for the curves of bifurcation
when ∆(α) = 0 are shown in Figure A1.
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Figure A1. Generic portraits phase when θ0 > 0. The numbers represent the phase portraits [4].

The red invariant circles are unstable, the green invariant circle are stable, and the blue
curves represent arbitrary orbits in Figure A1.
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Abstract: This paper considers the stability and stabilization of two-dimensional (2D) fractional-
order systems described by state-space model based on the discrimination system of polynomials.
Necessary and sufficient conditions of stability and stabilization are established. We change the
criterion for checking the stability of linear discrete-time 2D fractional-order systems into an easy
checking criterion whether some polynomials are positive. We use the discrimination system of
polynomials to check the new conditions. For the stabilization problem, we get a stable gain matrix
region. The unstable system with the gain parameters of the stable gain matrix region is stable. We
give the method of stability analysis and stabilization for the general 2D fractional-order system. An
example shows the validity of the proposed stability and stabilization methods.

Keywords: 2D fractional-order systems; stability; stabilization; the discrimination system for polynomials

MSC: 93D09; 93D15

1. Introduction

In recent years, 2D systems have increasingly attracted attention and become more
important in the theory and practice field with broad applications, such as for river pol-
lution models, photogrammetric data, batch processing, iterative learning control, and
multi-dimensional digital filtering [1]. This paper focuses on the two models introduced by
Roesser in [2] and Fornasini and Marchesini in [3,4], which are popular with people for their
concise description. Although there are fruitful methods concerning stability and stabiliza-
tion of 2D systems which have been proposed, they mostly focus on integer-order systems.
Integer-order 2D systems can’t accurately describe many practical systems, such as circuit
components, electro-magnetic systems, heat transfer processes, or viscoelastic systems. On
the contrary, they are well characterized by the fractional-order 2D systems [5,6]. Many
results have been given about the stability analysis of fractional-order systems in [7–11].
Specifically, the methods based on Lyapunov functions were derived in [7–9] for analyzing
stability of fractional one-dimensional (1D) systems. Yang and Hou in [10,11] studied the
fractional-order systems with perturbation via cylindrical algebraic decomposition method.
These methods for studying fractional systems mostly focus on 1D systems.

Kaczorek in [12] firstly proposed the concept of fractional-order 2D discrete systems.
For 2D fractional systems, some results have been investigated in [13–18]. Specifically, for
the fractional-orders continuous 2D systems represented by the FM (Fornasini–Marchesini)
second model, the general solution formula was obtained based on 2D Laplace transform
in [13]. Ref. [14] proposed an asymptotic stability criterion of fractional 2D non-linear
continuous-time system based on they Lyapunov function method. In [15], the concept,
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the practical stability of positive fractional 2D linear systems, was proposed by Tadeusz
Kaczorek. The 2D fractional system described by FM first type was derived. However,
the dimensions of input and output vectors increase when the system variable decreases.
Tadeusz Kaczorek in [16] showed the result of the asymptotic stability for positive fractional
2D linear system. Refs. [17,18] studied the stabilization issue of 2D fractional systems, they
proposed the practical stability of the positive fractional 2D system. Specifically, in [17],
Tadeusz Kaczorek introduced a class of fractional 2D system presented by Roesser model.
The sufficient criteria of the positivity and stabilization were established. Laila Dami et al.
studied the issues of positivity stabilization for the uncertain 2D fractional discrete-time
systems in [18]. These papers have well studied the stability and stabilization problem for
the positive fractional 2D linear systems. The problem of the stability and stabilization of
the general 2D linear discrete systems with fractional order is still an open problem to be
solved. Fractional-order 2D systems have attracted increasing interest, due to the fact that
many real-world physical systems are well characterized by fractional-order 2D systems.

In this paper, we introduce the issues of stability and stabilization for 2D linear
discrete systems with fractional orders. Firstly, based on the existing method, the fractional-
order 2D system is transformed into an integral-order system. Secondly, based on the
Hurwitz Theorem, we equivalently convert the existing stability condition into a new easily
checked condition. Then, we use the discriminant theory of polynomials in [19] to solve
the represented condition. We extend the stability results in this paper to the problem of
stabilization. The key contributions related to this paper are shown as follows:

(1) We change checking whether the fractional 2D linear discrete system is stable into
checking whether the polynomials are positive based on Hurwitz Theorems. Thus, the
processing of stability analysis is changed into a mathematical problem whether some
polynomials are definitely positive, which can be easily checked. It simplifies the existing
methods based on Lyapunov functions in [7–9] and has low complexity.

(2) Based on the results proposed by Kaczorek in [15–18], we give a more general
method of stability and stabilization for 2D linear fractional-order discrete systems not only
for the positive systems.

(3) For the stabilization, because the condition is necessary and sufficient, we can get a
complete solution of gain matrixes called the stable gain matrix region of the considered
unstable system. The unstable system with the gain parameters of the stable gain matrix
region is stabilizable.

The organization is as follows: Section 2 shows problem formulation and fractional
2D system representation. In Section 3, we give the results of stability analysis and an
algorithm for obtaining the stable gain matrix region. In Section 4, an example is given to
analyze the stability and get the stable gain matrix region to show the effectiveness of the
proposed methods. Section 5 shows the conclusions.

Notations. C and R stand for the set of complex numbers and real numbers, respec-
tively. The symbols Re(x) is the real part of x. C+ , {x ∈ C : Re(x) > 0}. I and 0 stand for
identity matrix and zero block of appropriate sizes, respectively. j denotes an imaginary unit.
det(Φ) denotes determinant of a matrix Φ. D , {z ∈ C | |z| ≤ 1},P , {z ∈ C | |z| = 1},
Ū , {(z1, z2) : z1, z2 ∈ C | |z1| ≤ 1, |z2| ≤ 1}. f (τ) = κnτn + κn−1τn−1 + . . . + κ0(κ0 > 0)
is a real coefficient polynomial, where κi is real. The n× n Hurwitz matrix of f (τ) denotes

M f =




κn−1 κn−3 κn−5 · · · 0
κn κn−2 κn−4 · · · 0
0 κn−1 κn−3 · · · 0
0 κn κn−2 · · · 0

. . . . . . . . . · · · . . .
0 0 0 · · · κ0




,

4( f )k, k = 1, 2 . . . , n, represent the kth principal minor determinant of M f , respectively.
y(τ) is a complex coefficient polynomial and satisfies y(jτ) = $nτn + $n−1τn−1 + . . . +
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$0 + j(κnτn + κn−1τn−1 + . . . + κ0), κn 6= 0, where κi and $i are real. The 2n× 2n Hurwitz
matrix of y(τ) denotes

My =




κn κn−1 κn−2 · · · 0
$n $n−1 $n−2 · · · 0
0 κn κn−1 · · · 0
0 $n $n−1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · κ0
0 0 0 · · · $0




,

4(y)2k, k = 1, 2 . . . , n, represent the 2kth principal minor determinant of My, respectively.

2. Problem Formulation and Fractional-Order 2D System Representation

The aim of this section is to get a fractional 2D linear discrete system represented by
integral-order 2D model. We show the process obtained fractional 2D system represented by
Roesser model. The transformation from Roesser model to FM second model is introduced
for further discussing the stability and stabilization problems. Focus on the following
fractional 2D linear system represented as the state-space equations.

[
∆h

αxi+1,j
∆v

βxi,j+1

]
=

[
A11 A12
A21 A22

][
xh(i, j)
xv(i, j)

]
+

[
B1
B2

]
uij, (1)

yij =
[
C1 C2

][xh(i, j)
xv(i, j)

]
+ Duij, i, j ∈ Z+, (2)

where xh
ij ∈ Rn1 , xv

ij ∈ Rn2 , uij ∈ Rm, yij ∈ Rp are horizontal state vector, vertical state vec-
tor, input vector and output vector at the point (i, j), respectively. And A11 ∈ Rn1×n1 , A12 ∈
Rn1×n2 , A21 ∈ Rn2×n1 , A22 ∈ Rn2×n2 , B1 ∈ Rn1×m, B2 ∈ Rn2×m, C1 ∈ Rp×n1 , C2 ∈ Rp×n2 , D ∈
Rp×m, n = n1 + n2.

The boundary conditions are defined by

xh
0j, j ∈ Z+ and xv

i0, i ∈ Z+ (3)

For further getting the Roesser model representing the 2D fractional system, we recall
the definitions, horizontal and vertical fractional differences described by the 2D functions,
and Lemma 1.

Definition 1 ([17]). The α− order horizontal fractional difference of a 2D function xij, i, j ∈ Z+

is defined by

∆h
αxij =

i

∑
k=0

cα(k)xi−k,j, (4)

where α ∈ R, n− 1 < α < n ∈ N = 1, 2, . . . and

cα(k, l) =





1 f or k = 0

(−1)k k!
α(α− 1) . . . (α− k + 1)

k > 0
(5)

Definition 2 ([17]). The β− order vertical fractional difference of a 2D function xij, i, j ∈ Z+ is
defined by

∆v
βxij =

j

∑
l=0

cβ(k)xi,j−l , (6)
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where β ∈ R, n− 1 < β < n ∈ N = 1, 2, . . . and

cβ(l) =





1 f or l = 0

(−1)l l!
β(β− 1) . . . (β− l + 1)

l > 0
(7)

Remark 1. We have mentioned that many real-world physical systems are well characterized by a
fractional-order model. And the physical systems are generally continuous. We present a definition
of fractional derivative and integral by Grünwald-Letnikov as follow:

GL
t0
Dα

t f (t) ≈ 1
hα

[(t−t0)/h]

∑
j=0

ωj f (t− jh)

Forthe purpose of easy calculation, the continuous physical models are usually discretized. Defini-
tions 1 and 2 can be obtained by determining the step size of the fractional order equation. The size
of h determines the accuracy of the model. The smaller h is, the closer the model is to the real system.
We can select h according to the requirement of precision in practical production. And the fractional
order system with different step h can be converted into different integer order system. The system
is built as a 2D fractional-order model then convert to a 2D integer-order model instead of directly
building a 2D integer-order model, which has a more accurate result.

Lemma 1 ([17]). If n− 1 < α < n ∈ N(n− 1 < β < n), then

∞

∑
k=0

cα(k) = 0 (resp.
∞

∑
k=0

cβ(k) = 0). (8)

According to Definitions 1 and 2, system (1) can be rewritten as follows
[

xh(i + 1, j)
xv(i, j + 1)

]
=

[
A11 A12
A21 A22

][
xh(i, j)
xv(i, j)

]
+

[
B1
B2

]
uij

−
[

∑i+1
k=2 cα(k)xi−k+1,j

∑
j+1
l=2 cβ(k)xi,j−l+1

]
,

(9)

where n = n1 + n2, A11 = A11 + αIn1 and A22 = A22 + βIn2 . 2D fractional system (1) has
been rewritten as the integer-order 2D system with delays.

From Equations (5) and (7), we can get that cα(0) = cβ(0) = 1, cα(1) = −α and
cβ(1) = −β. Based on these equations and Lemma 1 we have

∞

∑
k=2

cα(k) = α− 1 and
∞

∑
k=2

cβ(k) = β− 1 (10)

We firstly analyze the stability of 2D fractional system. Let the input vector uij = 0.
We consider the open-loop system

[
xh(i + 1, j)
xv(i, j + 1)

]
=

[
A11 A12
A21 A22

][
xh(i, j)
xv(i, j)

]
−
[

∑i+1
k=2 cα(k)xh

i−k+1,j

∑
j+1
k=2 cβ(l)xv

i,j−l+1

]
. (11)

From [17], the system (11) is asymptotically stable if and only if the following 2D system

[
xh(i + 1, j)
xv(i, j + 1)

]
=

([
A11 A12
A21 A22

]
−

∞

∑
k=2

[
In1 cα(k) 0

0 In2 cβ(k)

])
·
[

xh(i, j)
xv(i, j)

]
(12)
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is asymptotically stable.
According to (10), A11 = A11 + In1 α and A22 = A22 + In2 β, the system (12) is repre-

sented as the following form

[
xh(i + 1, j)
xv(i, j + 1)

]
=

[
A11 + In1 A12

A21 A22 + In2

][
xh(i, j)
xv(i, j)

]
(13)

Remark 2. For the purposes of analyzing stability of the fractional-order 2D model, we convert the
fractional order model into the integer-order model.

Due to the above discussion, if the 2D system (13) is asymptotically stable, the 2D
fractional system (1) with uij = 0 is asymptotically stable. System (13) is a typical Roesser
model. The considered stability issue of fractional-order 2D systems is changed into
considering the stability of 2D integral-order Roesser model.

Let x(i, j) = [xhT(i, j) xvT(i, j)]T and the matrices

A1 =

[
A11 + In1 A12

0 0

]
, A2 =

[
0 0

A21 A22 + In2

]

System (13) can be represented as the following FM second model:

x(i + 1, j + 1) = A1x(i, j + 1) + A2x(i + 1, j), (14)

where x(i + 1, j + 1) denotes the state vector at (i + 1, j + 1).
Thus, we can analyze the stability of system (14) to know the stability of fractional-

order 2D system (1).
For better presenting and understanding the following content in this paper, we give

some definitions and recall a lemma and the lemma of Hurwitz stable of the real coefficient
polynomial and the complex coefficient polynomial, respectively.

Definition 3. The gain matrix K is called the stable gain matrix of the closed-loop 2D fractional-
order system if the closed-loop 2D fractional-order system with the stable gain matrix is stabilizable.

Definition 4. The set of the stable gain matrixes of the closed-loop 2D fractional-order system is
called the stable gain matrix region of the closed-loop 2D fractional-order system.

Lemma 2 ([20]). System (14) is asymptotically stable if and only if
{

H(z1, 0) 6= 0, z1 ∈ D
H(z1, z2) 6= 0, z1 ∈ P, z2 ∈ D (15)

where H(z1, z2) = det(In − z1 A1 − z2 A2).

Remark 3. Condition (15) is not numerically tractable [21]. Next, Condition (15) is transformed
into new conditions that can be easily implemented.

Lemma 3 ([22]). The necessary and sufficient condition for the roots’ real part of real coefficient
polynomial f (τ) to be negative is4( f )k > 0, k = 1, 2 . . . , n.

Lemma 4 ([22]). If4(y)2k 6= 0 , the necessary and sufficient condition for the roots’ real part of
complex coefficient polynomial y(τ) to be negative is4(y)2k > 0, k = 1, 2 . . . , n.

3. Stability and Stabilization Analysis
3.1. Stability Analysis

This subsection is to obtain new tractable conditions based on traditional condition (15).
By linear fraction transformation, the stability conditions of 2D system is equivalent to
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the issue whether the polynomials are Hurwitz stable shown in Theorem 1. We use the
criterion of Lemmas 3 and 4 to deal with the new derived conditions of Theorem 1. And
we can get the tractable conditions of Theorem 2.

Theorem 1. System (1) with uij = 0 is asymptotically stable if and only if these criteria are satisfied,

(1) H(−1, 0) 6= 0, L1(γ, 0) 6= 0, γ ∈ C+

(2) H(−1,−1) 6= 0, L2(−1, γ) 6= 0, γ ∈ C+

(3) W(s,−1) 6= 0, L3(s, γ) 6= 0, s ∈ R, γ ∈ C+

where W(s, z2) = (1− js)mH( 1+js
1−js , z2),

L1(γ, 0) = (1 + γ)m H( 1−γ
1+γ , 0),

L2(−1, γ) = (1 + γ)m H(−1, 1−γ
1+γ ),

L3(s, γ) = (1 + γ)nW(s, 1−γ
1+γ ).

Proof. Substitute z1 = 1+js
1−js to H(z1, z2) of condition (15). We can get

W(s, z2) = (1− js)mH(
1 + js
1− js

, z2), (16)

where m stands for the degree of H(z1, z2) in z1. We can easily obtain that condition (15) of
Lemma 2 is equivalent to





H(z1, 0) 6= 0, z1 ∈ D
H(−1, z2) 6= 0, z2 ∈ D
W(s, z2) 6= 0, s ∈ R, z2 ∈ D

(17)

Substitute z1 = 1−γ
1+γ to H(z1, 0). Substitute z2 = 1−γ

1+γ to H(−1, z2) and W(s, z2),
respectively. We can obtain





L1(γ, 0) = (1 + γ)m H( 1−γ
1+γ , 0),

L2(−1, γ) = (1 + γ)m H(−1, 1−γ
1+γ ),

L3(s, γ) = (1 + γ)nW(s, 1−γ
1+γ )

(18)

By the above transformations, condition (17) is equivalent to




H(−1, 0) 6= 0, L1(γ, 0) 6= 0, γ ∈ C+

H(−1,−1) 6= 0, L2(−1, γ) 6= 0, γ ∈ C+

H(s,−1) 6= 0, L3(s, γ) 6= 0, s ∈ R, γ ∈ C+
(19)

Condition (15) is equivalently converted into Condition (19). The 2D system (14) is
asymptotically stable if and only if the condition (19) is satisfied. The fractional 2D linear
discrete system (1) with uij = 0 can be represented by integral-order 2D model (14) in
Section 2. So system (1) with uij = 0 is asymptotically stable if and only if the Condition (19)
is satisfied. The proof is complete.

The conditions of Theorem 1 can be represented by the criterion of Lemmas 3 and 4.
We show it as follows.

Theorem 2. System (1) with uij = 0 is asymptotically stable if and only if these conditions
are satisfied,

(1) H(−1, 0) 6= 0,4(L1)k > 0, k = 1, 2 . . . , n,

(2) H(−1,−1) 6= 0,4(L2)k > 0, k = 1, 2 . . . , n,

(3) W(s,−1) 6= 0,4(L3)2k > 0, k = 1, 2 . . . , n, s ∈ R.
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Proof. In Theorem 1, L1(γ, 0), L2(−1, γ) are real coefficient polynomial in γ. L1(γ, 0) 6=
0, γ ∈ C+ and L2(−1, γ) 6= 0, γ ∈ C+, the roots’ real part of L1 and L2 are negative, are
the criterion of Lemma 3,4(L1)k > 0 of Hurwitz matrix ML1 and4(L2)k > 0 of Hurwitz
matrix ML2 .

L3(s, γ) 6= 0, s ∈ R, γ ∈ C+, the roots’ real part of L3(s, γ) to be negative, is the
criterion of Lemma 4, the 2kth principal minor determinants4(L3)2k > 0 of the Hurwitz
matrix ML3 . According to the above, we rewrite the conditions of Theorem 1 and show
them in Theorem 2. The proof is complete.

In this section, we firstly transform the traditional stability conditions in [20] into
Theorem 1 by the linear fraction transformation. Then the obtained conditions of Theorem 1
are the criterions whether the polynomials are Hurwitz stable. These new criterions are
represented as Theorem 2 by using the conditions of Lemmas 3 and 4 in [22]. In next
subsection, we focus on the stabilization problem applying the similar process of the above
proposed method of checking stability.

3.2. Stabilization

This section is to design a state feedback to stabilize the system and get the stable gain
matrix region. Consider the system (1) with the following state-feedback

uij = [K1K2]

[
xh(i, j)
xv(i, j)

]
, (20)

where K = [K1 K2] ∈ Rm×n, Kj ∈ Rm×nj , j = 1, 2 is a gain matrix.
A gain matrix K need to be solved to ensure that the closed-loop system is stabilizable

via state feedback. Specifically, K need to be fond to ensure that the following system
[

xh(i + 1, j)
xv(i, j + 1)

]
=

[
A11 + B1K1 A12 + B1K2
A21 + B2K1 A22 + B2K2

][
xh(i, j)
xv(i, j)

]

−
[

∑i+1
k=2 cα(k)xh

i−k+1,j

∑
j+1
k=2 cβ(l)xv

i,j−l+1

] (21)

is asymptotically stable.
Same as the operations of stability analysis, we can easily get the results that the

system (21) is asymptotically stable if and only if the following 2D system
[

xh(i + 1, j)
xv(i, j + 1)

]
=

([
A11 + B1K1 A12 + B1K2
A21 + B2K1 A22 + B2K2

]

−
∞

∑
k=2

[
In1 cα(k) 0

0 In2 cβ(k)

])[
xh(i, j)
xv(i, j)

] (22)

is asymptotically stable.
According to the Equation (10), A11 = A11 + In1 α and A22 = A22 + In2 β, system (22)

can be represented as follows:
[

xh(i + 1, j)
xv(i, j + 1)

]
=

[
A11 + In1 + B1K1 A12 + B1K2

A21 + B2K1 A22 + In2 + B2K2

]
·
[

xh(i, j)
xv(i, j)

]
(23)

Denote

Ã1 =

[
A11 + In1 + B1K1 A12 + B1K2

0 0

]
,

Ã2 =

[
0 0

A21 + B2K1 A22 + In2 + B2K2

]
.
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We have a new 2D system in form of FM second model with matrices Ã1 and Ã2
as follow:

x(i + 1, j + 1) = Ã1x(i, j + 1) + Ã2x(i + 1, j), (24)

The proposed method of stability can be applied to consider the stabilization of
system (1) with the state-feedback (20). We represent Theorem 2 as follows:

Proposition 1. The closed-loop 2D fractional-order system (21) is stabilizable if and only if these
conditions are satisfied,

(1) H̃(−1, 0) 6= 0, ∆(L̃1(γ))k > 0, k = 1, 2 . . . , n,

(2) H̃(−1,−1) 6= 0, ∆(L̃2(γ))k > 0, k = 1, 2 . . . , n,

(3) W̃(s,−1) 6= 0, ∆(L̃3(jγ))2k > 0, k = 1, 2 . . . , n, s ∈ R.

where H̃(z1, z2) = det(In − z1 Ã1 − z2 Ã2),
W̃(s, z2) = (1− js)m H̃( 1+js

1−js , z2),

L̃1(γ, 0) = (1 + γ)m H̃( 1−γ
1+γ , 0),

L̃2(−1, γ) = (1 + γ)n H̃(−1, 1−γ
1+γ ),

L̃3(s, γ) = (1 + γ)nH̃(s, 1−γ
1+γ ), (z1, z2) ∈ U, s ∈ R, z2 ∈ D, γ ∈ C+, m and n respectively stand

for the degree of H̃(z1, z2)in z1 and z2.

Proof. The proof is same as Theorem 2.

For obtaining the stable gain matrix region of the closed-loop 2D fractional-order
system, we give the following Algorithm 1.

Algorithm 1 2DF Stabilization.

Input: The characteristic equation H̃(z1, z2) of a closed-loop 2D fractional-order system.
Output: The stable gain matrix region.

Step 1. Let the gain matrix as K.
Step 2. Calculate H̃(z1, z2) of the closed-loop 2D fractional-order system.
Step 3. Solve the inequalities of Proposition 1 based on the discrimination system of
polynomials.
Step 3.1. Get the stable gain matrix region of K by solving H̃(−1, 0) 6= 0,4(L̃1)k > 0, k =

1, 2 . . . , n.
Step 3.2. Get the stable gain matrix region of K by solving H̃(−1,−1) 6= 0,4(L̃2)k >

0, k = 1, 2 . . . , n.
Step 3.3. Calculate L̃3(s, γ), then get L3(jγ) = $nγn + $n−1γn−1 + . . . + $0

+j(κnγn + κn−1γn−1 + . . . + κ0), where $i and κi, i = 0, . . . n are real coefficient poly-
nomials in s. Solve W̃(s,−1) 6= 0, and4(L3)2k > 0, k = 1, 2 . . . , n, s ∈ R to the
stable gain matrix region of K.
Step 4. From step 3, obtain the final results of the stable gain matrix region of K.

4. Example

In this section, we show a numerical example that the fractional-order 2D system has
generality from [17] to show the efficiency of the methods of stability and stabilization in this

paper. We focus on the 2D fractional system (1) with α = 0.4, β = 0.5 and
(

A11 A12
A21 A22

)
=

(−1.1255 0.8
0.149 0.24

)
, B1 = −19, B2 = −10

We show the steps of analyzing stability and stabilization processes of fractional 2D
systems as follows.

First, we analyze the stability of the considered system.
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Step 1. Change the 2D fractional system (1) with uij = 0 into the 2D system (14). Based
on the given parameters, we firstly get the polynomial

H(z1, z2) = 1− 31
25

z2 −
1
5

z1 −
49

125
z1z2

Step 2. Check whether the inequalities of Theorem 2 hold using Maple.
Step 2.1. We have H(−1, 0) = 6

5 6= 0
Calculate L1(γ, 0), as follows

L1(γ, 0) =
6
5

γ +
4
5

We have4(L1)2 = 24
25 > 0. This conditions of Theorem 2 is satisfied from system (1)

with the given parameters.
Step 2.2. We have H(−1,−1) = 256

125 6= 0. Calculate L2(−1, γ), as follows

L2(−1, γ) =
256
125

γ +
44

125

We have4(L2)2 = 11,264
15,625 > 0.

Step 2.3. We have W(s,−1) = − 256
125 js + 304

125 6= 0.
Calculate L3(s, γ), as follows

L3(s, γ) =
304
125

γ− 104
125

+ j(−256
125

sγ− 44
125

s)

L3(s, jγ) =
256
125

sγ− 104
125

+ j(− 44
125

s +
304
125

γ)

We have 4(L3)2 = 88s2 − 247. It’s easy to know that 4(L3)2 isn’t satisfied the
condition ∆(L3(jγ))2 > 0, k = 1, 2 . . . , n. of Theorem 2.

Step 3. This fractional-order 2D system is unstable.

Remark 4. As shown in the example, we know this considered fractional-order 2D system is
unstable. The result is in agreement with the literature [17]. While we needn’t stabilise the
considered system based on the precondition that the system is positive as in the other methods.
We extend the existing valuable methods of fractional-order 2D systems in the control theory. The
stability condition of the general fractional-order 2D systems instead of the positive fractional-order
2D systems is given.

Now, we consider the stabilization of the system and obtain the stable gain matrix
region according to as follows:

Step 1. Let K = [k1 k2].
Step 2.Based on the given parameters of the fractional 2D system, we firstly get the

polynomial

H̃(z1, z2) =1− 31
25

z2 + 10k2z2 −
1
5

z1 −
49

125
z1z2

+
66
5

k2z1z2 + 19k1z1 −
389
25

z1k1z2

Step 3. Solve the inequalities of Proposition 1 by Maple.
Step 3.1. Calculate the polynomial L̃1(γ, 0), as follows

L̃1(γ, 0) = (
6
5
− 19k1)γ + 19k1 +

4
5
6= 0, γ ∈ C+.

Then, from

4(L̃1)2 = (19k1 −
6
5
)(19k1 +

4
5
) < 0,
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we can get

− 4
95

< k1 <
6

95
. (25)

From
H̃(−1, 0) =

6
5
− 19k1 6= 0,

we can get

k1 6=
6

95
. (26)

Step 3.2. Calculate the polynomial L̃2(−1, γ), as follows

L̃2(−1, γ) =(−864
25

k1 +
16
5

k2 +
256
125

)γ− (
86
25

k1 −
16
5

k2)

+
44
125
6= 0, γ ∈ C+.

Then, we can get

4(L̃2)2 = (
864
25

k1 −
16
5

k2 −
256
125

)(
86
25

k1 +
16
5

k2 −
44

125
) > 0, (27)

we can get

H̃(−1,−1) =
256
125

+
16
5

k2 −
864
25

k1 6= 0. (28)

Step 3.3. We have

W̃(s,−1) = (
864
25

k1 −
16
5

k2 −
256
125

)js +
864
25

k1 −
116

5
k2

+
304
125
6= 0, s ∈ R,

From the above condition, we can get

864
25

k1 −
16
5

k2 −
256
125
6= 0. (29)

We have
L̃3(s, jγ) =− 4320k1sγ− 400k2sγ− 256sγ− 430k1

− 2900k2 + 104 + j(−430k1s− 4320k1γ

− 400k2x + 2900k2γ + 44s− 304γ)

6= 0, s ∈ R, γ ∈ C+.

Then we can obtain the inequalities4(L̃3(s, jγ))2k > 0, k = 1, 2, s ∈ R to get uncertain
parameters k1 and k2 of K as follows:

4(L̃3(s, jγ))2 =232,200k2
1s2 + 194, 500k1k2s2 − 20,000k2

2s2

− 37,520k1s2 − 10,600k2s2 + 232,200k2
1

+ 1,410,125k1k2− 1,051,250k2
2 + 1408s2

− 39,820k1 + 147,900k2 − 3952 > 0, s ∈ R.

In order for4(L̃3(s, jγ))2 > 0, s ∈ R to be established, we have
{

(215k1 + 200k2 − 22)(270k1 − 25k2 − 16) > 0
(215k1 + 1450k2 − 52)(1080k1 − 725k2 + 76) > 0

(30)
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Step 4. From (25)–(30), we can find that when





215k1 + 200k2 − 22 < 0
270k1 − 25k2 − 16 < 0
215k1 + 1450k2 − 52 > 0
1080k1 − 725k2 + 76 > 0

(31)

all the conditions of Proposition 1 are established. Thus, the closed-loop system (21) with
the gain parameters of the stable gain matrix region (31) is stable.

From the above discussion, through solving the conditions of Proposition 1 for getting
K, we obtain the stable gain matrix region (31) which is shown as Figure 1:

Figure 1. The stable gain matrix region.

For better showing the validity of the method in this paper, we give some simulations.
Figures 2 and 3 show the state space responses of system (1). We can find that the state
responses of the open-loop system (21) in Figures 2 and 3 is divergent and not stable.

According to the solution (31), let K = [0.01 0.08], and the state responses of the
closed-loop system (21) are shown in Figures 4 and 5. As i and j get bigger, the state space
response x1(i, j) and x2(i, j) go to 0. The system (1) is stable after stabilization. Similarly,
let K = [0 0.05] from the region (31), and the state responses of the closed-loop system (21)
are shown in Figures 6 and 7. The system (1) is stable after stabilization. It is noted that as
long as the gain matrix K is selected in the stable gain matrix region shown in Figure 1, the
closed-loop system (21) is stable.

Figure 2. Open-loop state space response of x1(i, j).
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Figure 3. Open-loop state space response of x2(i, j).

Remark 5. For better presenting the responses of the closed-loop system, we change the direction of
i and j in the Figures 4–7.

Figure 4. Closed-loop state space response of x1(i, j) when K = [0.01 0.08].

Figure 5. Closed-loop state space response of x2(i, j) when K = [0.01 0.08].
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Figure 6. Closed-loop state space response of x1(i, j) when K = [0 0.05].

Figure 7. Closed-loop state space response of x2(i, j) when K = [0 0.05].

Remark 6. We obtain a stable gain matrix region. All the gain matrixes of the stable gain matrix
region can stabilize the system. Further, the closed-loop system (21) with state-feedback can be
regarded as a 2D fractional-order system with uncertain parameters. Our method not only extends
the existing methods only for positive systems, but can also solve the robust stability problem of
fractional 2D systems that has not been solved by other researchers. It can obtain all the parameters
that ensure the system is robust and stable, which will be discussed in the future.

5. Conclusions

This paper has discussed the stability and stabilization problems of fractional-order 2D
systems that are common in practice but rarely studied. The stability check process and the
algorithm for obtaining the stable gain matrix region have been shown in the example. The
method proposed in this paper can be widely used. Compared with the existing method, it
is not necessary to stabilise the considered system based on the condition that the system
must be positive. And the stabilization method can obtain multiple parameters of control
gain to stabilize the fractional-order 2D system. The proposed methods in this paper have
low computational complexity, and so are simpler and easier to use.
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Abstract: Chenciner bifurcation appears for some two-dimensional systems with discrete time having
two independent variables. Investigated here is a special case of degeneration where the implicit
function theorem cannot be used around the origin, so a new approach is necessary. In this scenario,
there are many more bifurcation diagrams than in the two non-degenerated cases. Several numerical
simulations are presented.

Keywords: degeneracy; bifurcation; Chenciner; discrete systems

MSC: 37L10; 37G10

1. Introduction

The discrete dynamical systems have an increasing role in informatics [1], computer
and machine learning, and other interdisciplinary fields [2–4]. A new mathematical model
was recently proposed in [5] for the dynamics of three types of phytoplankton of the Sea
of Azov under the condition of salinity increase. Other examples of applied dynamical
discrete systems, besides continuous ones, are given in [6–9]. Presented among them is a
discrete-time epidemic model applied to the study of the COVID-19 virus [8]. The theory
of discrete dynamical systems may be applied in many branches of engineering such as
suspension bridges, ball bearings, and nanotechnology. The study of impact oscillators is
an important source of nonlinearity in mechanical system theory [10–13]. When the impact
has zero velocity, the so-called grazing impacts appear. The near-grazing systems can be
described by discrete dynamical systems, and an application for harmonic oscillators is
presented in [12]. The dynamics of the other two types of discrete dynamical systems, a
discrete predator-prey model with group defense and nonlinear harvesting in prey and
a modified Nicholson-Bailey model, were investigated, and the conditions for classical
Neimark-Sacker bifurcation were given in [14,15].

Economy is another important domain of application [16]. Traditionally, economic
agents are considered to have rational expectations [17], which assume that prices follow
the fundamental economic value. Experiments have shown that economic agents [18] do
not make rational predictions but follow empirical rules. Thus, sometimes these rules
can lead them to the fundamental landmark, but other times they can be coordinated on
destabilizing strategies to follow the trends. The consequences are market “bubbles” and
even collapses. A “bubble” represents a strong over evaluation [19] and the duration of
an asset compared to its fundamental economic value. Big “bubbles” and sudden market
crashes are difficult to harmonize with the standard model of agents representing rational
expectations. Some authors, for example [20], have devised a simple behavioral heuristic
switching model that explains the path-dependent coordination of the individual forecast,
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as well as the aggregate behavior of the market. The paper analyzes the coexistence of a
locally stable fundamental equilibrium state and a stable quasi-periodic orbit, created by
the Chenciner bifurcation. In relation to the initial states, the economic agents will orient
their individual expectations either on a stable fundamental equilibrium trajectory or on
persistent price fluctuations in the vicinity of the fundamental equilibrium state.

The generalized Neimark-Sacker bifurcations or Chenciner bifurcations of discrete dy-
namical systems have been discovered in 1985 in [21–23], in the framework of the study of
elliptic bifurcations of fixed points. Later, in 1990 in [24] this bifurcation was characterized
better than before. The non-degenerate Chenciner bifurcation is one of the eleven types
retrieved in the generic two-parameter discrete-time dynamical systems, according to clas-
sification from [25]. There is no other bifurcation of codimension 2 in generic discrete-time
systems. The non-degeneracy condition, so called “cubic non-degeneracy”, is not fulfilled in
this case of the generalized Neimark-Sacker bifurcations.

In recent years, the study of degenerated discrete Chenciner bifurcation began, as seen
in [26]. The singularities are always difficult to study in comparison to the regular cases.
The purpose of this article is to examine the Chenciner bifurcation which doesn’t check
the condition (CH.1) [25] (p. 405). That is the degenerated Chenciner bifurcation. The two
types of bifurcation diagrams existing in the non-degenerated variant, as seen in [25], are
replaced by 32 types of bifurcation diagrams in a particular degenerated discrete Chenciner
dynamical system; see [26].

The article is composed of four sections. The first section is the Introduction, where the
non-degenerate Chenciner bifurcations are presented using the truncated normal form of
the system (A4) and polar coordinates, and some new applications in various domains are
mentioned. Section two of this paper describes the results given in [26,27] concerning the
existence of bifurcation curves and their dynamics in the parametric plane (α1, α2) in the
cases where a10b01a01b10 6= 0 and the linear parts of β1(α) and β2(α) nullify, respectively,
and when a10 = 0, b01 = 0, a01 = 0 and b10 = 0. The third section is the main part of the
paper, where the degeneracy case of the Chenciner bifurcation written in the truncated
normal form was studied when a20 = a11 = a02 = 0 and, for b10 and b01, two situations have
been studied: b10 6= 0, b01 6= 0 or b10 = b01 = 0. In addition, some numerical simulations are
presented using Matlab for checking the theoretical results. The discussions and conclusions
are presented in the fourth section of the paper.

2. Methods

The study of the non-degenerated discrete Chenciner bifurcation begins by a defect
of a coordinate change (α1, α2)→ (β1, β2). The degeneration taken into account is a non-
regularity of the coordinate change in the origin, which loses its quality of coordinate
change. The method introduced [26] is to consider the same expression for β1, β2 but as
functions of α1, α2 and not as new coordinates.

The steps of the method used in previous papers for finding the truncated normal
form of generalized Neimark-Sacker bifurcation for analyzing the behavior of such general
two-dimensional discrete dynamical systems in order to obtain the bifurcation diagrams
are given in Appendix A. The Chenciner bifurcations imply that the center manifold for the
Poincare map is two-dimensional. In [26], a new degeneration for generalized Neimark-
Sacher bifurcations was introduced; therefore, the classical Chenciner bifurcations are
called non-degenerate Chenciner bifurcations. This study has been continued in [27,28]
and also in the present paper. In the degenerated case, there are two different approaches:
the first is to work with the initial parameters α1, α2 in the polar form, (A6) of our system,
and the second, in [28], is considered another regular transformation of parameters, when
the product a10a01b10b01 6= 0.

The following two results, Theorems A1 and A2, which have been established in [26],
play a key role in the next section and will be restated in Appendix B. Theorem A1 estab-
lishes the stability of the fix point O function of the sign of β1(α), and then, in Theorem A2,
the existence of invariant circles is discussed as a function of the sign of ∆(α). From here,
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the generic phase portraits corresponding to different regions of the bifurcation diagrams
were obtained in Figure 1 from [26] and in Appendix B, Figure A1. Table 1 from [26] gives
the regions in the parametric plane defined by ∆(α), β1(α), β2(α), and L0. These phase por-
traits remain the same, but the bifurcation diagrams are different from the non-degenerate
Chenciner bifurcation case in [25]. These kinds of studies represent important topics in the
qualitative theory of discrete-time dynamical systems.

Now, we will write the smooth functions β1,2(α) as β1(α) = a10α1 + a01α2 +∑i+j≥2 aijα
i
1α

j
2

and β2(α) = b10α1 + b01α2 + ∑i+j≥2 bijα
i
1α

j
2 for our further goals. We recall that the trans-

formation (A7) is not regular at (0, 0). That means the Chenciner bifurcation becomes
degenerate, iff

a10b01 − a01b10 = 0. (1)

The case when the linear part of β1(α) nullifies and β2(α) has at least one linear
term was mentioned in [27] together with Theorem 2 of [27], which is an important result
concerning the existence, and also the relative positions in the parametric plane, (α1, α2) of
the bifurcation curves, function of the sign of β1(α).

Recently, in [27], the dynamics of the system in the form (A10) and (A11) was described
and studied in the case when all these coefficients a10 = 0, b01 = 0, a01 = 0 and b10 = 0, and
the bifurcation diagrams obtained are different from previous situations form [26,28].

In this paper, the degeneracy condition (1) will be satisfied and the terms of degree
one and two are zero in the case of β1(α). Therefore, the functions β1,2(α) become

β1(α) = aα3
2 + bα1α2

2 + cα2
1α2 + dα3

1 +
p1

∑
i+j=4

aijα
i
1α

j
2 + O

(
|α|p1+1

)
(2)

and

β2(α) = kα1 + hα2 +
q1

∑
i+j=2

bijα
i
1α

j
2 + O

(
|α|q1+1

)
(3)

for some p1 ≥ 4. a = a03, b = a12, c = a21, d = a30, respectively, and q1 ≥ 2, h = b10,
k = b01.

The set B1,2 and C will be denoted by

B1,2 =
{
(α1, α2) ∈ R2, β1,2(α) = 0, |α| < ε

}
(4)

and
C =

{
(α1, α2) ∈ R2, ∆(α) = 0, |α| < ε

}
(5)

for some ε > 0 that is sufficiently small, and then the new ∆(α) is

∆(α) = β2
2(α)− 4β1(α)L2(α). (6)

3. Results

In this section, the degree of the truncated version of the first bifurcation curve, β1, is
Degβ1 = 3, and for the second bifurcation curve, β2, two cases will be studied: when the
Degβ2 = 1 and when the Degβ2 = 2 in the truncated version.

3.1. Degree of the Second Bifurcation Curve Is One in the Truncated Version

Firstly, we focus on the case when Deg β2 = 1 in the truncated version. In expression
of β1(α), we denote the coefficients a03, a12, a21, and a30 by a, b, c, and d, respectively, and
in expression of β2(α), we denote the coefficients b01 and b10 by h and k, respectively.

β1(α1, α2) = aα3
2 + bα2

2α1 + cα2α2
1 + dα3

1 + O(|α|4),
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where a, b, c, d ∈ R∗.
β2(α1, α2) = hα2 + kα1 + O(|α|2),

where h, k ∈ R∗.
Then

∆(α) = [β2(α)]
2 − 4L2(α)β1(α), (7)

where α = (α1, α2).
In the truncated version, we have:

β1(α) = aα3
2 + bα2

2α1 + cα2α2
1 + dα3

1

β2(α) = hα2 + kα1

∆(α) = [β2(α)]
2 (8)

Discussed below is the sign of first bifurcation curve in the truncated version.
In order to establish the sign of β1(α), the following is used:

Remark 1. The sign of the polynomial

β1(T) = aT3 + bT2 + cT + d ∈ R∗[T],

is the same as the sign of β1(α1, α2), for every α1, α2 ∈ R, such that α2 = Tα1.

In order to establish the sign of β1(T), we denote, as usual for the third degree equation:

p =
c
a
− b2

3a2 , q =
2b3

27a3 −
bc

3a2 +
d
a

,

and the polynomial becomes:

β1(T) = a(T3 + pT + q).

The roots of β1(T) are the solutions of the equation

T3 + pT + q = 0.

For the classification of the β1(T)− roots, we use the notation

r =
( q

2

)2
+
( p

3

)3

which is called “the cubic discriminant”.

1. For p > 0, q 6= 0, there is one real root e1, and two complex conjugated ones;
2. For p < 0, q = 0, there is a triple root e1;
3. For p < 0, r > 0, there is one real root e1, and two complex conjugated ones;
4. For p < 0, r = 0, there are three real roots, one simple e1, and two common;
5. For p < 0, r < 0, there are three real different roots e1 < e2 < e3.

Lemma 1. The following statements are true:

1. If p < 0 and r < 0, then

sign[β1(T)] = sign[a(T − e1)(T − e2)(T − e3)],

see Table 1.
2. If p > 0 or (p < 0 and r ≥ 0), then

sign[β1(T)] = sign[a(T − e1)],
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see Table 2.

Table 1. The sign of β1(T) when there are three roots e1, e2, e3.

T (−∞, e1) e1 (e1, e2) e2 (e2, e3) e3 (e2, ∞)

signβ1(T) sign(−a) 0 sign(a) 0 sign(-a) 0 sign(a)

Table 2. The sign of β1(T) when there is one root e1.

T (−∞, e1) e1 (e1, ∞)

signβ1(T) sign(-a) 0 sign(a)

The case when p and r are strictly negative are rendered below.
From Appendix A, θ0 = θ(0) and L0 = L2(0) 6= 0. The case p < 0, r < 0 involves four

cases to analyze, impossing that hk > 0.

1. L0 > 0, k > 0
2. L0 > 0, k < 0
3. L0 < 0, k > 0
4. L0 < 0, k < 0.

The bifurcation diagrams are respectively given in Figures 1–4.
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Figure 1. Bifurcation diagrams when p < 0, r < 0, and hk > 0: (a) L0 > 0, k > 0; (b) L0 > 0, k < 0.
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Figure 2. Bifurcation diagrams when p < 0, r < 0, and hk > 0: (a) L0 < 0, k > 0; (b) L0 < 0, k < 0.

Remark 2. When β2(α) = 0, then the sign of ∆(α) is given by the relation (7), instead of (8).

The case when p is strictly positive or (p is strictly negative and r is positive) will be
studied below.

In the case p > 0 or (p < 0 and r ≥ 0), from Lemma 1 (2), it results that
sign[β1(T)] = sign[a(T − e1)], see Table 2, where e1 is the unique real root of β1(α) = 0.
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From β2(α) = hα2 + kα1, it results that m2 = − k
h . In our case, ∆(α) = [β2(α)]

2. We impose
that hk > 0.

Therefore we will have the following two bifurcation diagrams presented in Figure 3.

Remark 3. In the case p > 0 or (p < 0 and r ≥ 0), we will obtain only two distinct figures; that
means the following Figure 3a,b:

1. if a > 0, k > 0, L0 > 0 or a > 0, k < 0, L0 > 0 or a < 0, k > 0, L0 > 0 or
a < 0, k < 0, L0 > 0, we get Figure 3a;

2. if a > 0, k > 0, L0 < 0 or a > 0, k < 0, L0 < 0 or a < 0, k > 0, L0 < 0 or
a < 0, k < 0, L0 < 0, we get Figure 3b.
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Figure 3. Bifurcation diagrams when p > 0 or (p < 0 and r > 0) and hk > 0: (a) a > 0, k > 0, L0 > 0
or a > 0, k < 0, L0 > 0 or a < 0, k > 0, L0 > 0 or a < 0, k < 0, L0 > 0; (b) a > 0, k > 0, L0 < 0 or
a > 0, k < 0, L0 < 0 or a < 0, k > 0, L0 < 0 or a < 0, k < 0, L0 < 0.

3.2. Degree of the Second Bifurcation Curve Is Two

If Deg β2 = 2, then its first three coefficients will be denoted as below.

β1(α1, α2) = aα3
2 + bα2

2α1 + cα2α2
1 + dα3

1 + O(|α|4),

β2(α1, α2) = hα2
2 + kα1α2 + lα2

1 + O(|α|3),
where h, k, l ∈ R∗.

∆(α1, α2) = (hα2
2 + kα1α2 + lα2

1)
2 − 4L2(α)[aα3

2 + bα2
2α1 + cα2α2

1 + dα3
1 + O(|α|4)]

= −4L0(aα3
2 + bα2

2α1 + cα2α2
1 + dα3

1) + O(|α|4).
Truncated, that is:

β1(α) = aα3
2 + bα2

2α1 + cα2α2
1 + dα3

1

β2(α) = hα2
2 + kα1α2 + lα2

1,

having ∆2 = k2 − 4hl, ∆(α) = −4L0β1(α).
The sign of β1 was previously analyzed.
The case when p and r are strictly negative and ∆2 is strictly positive are considered

below.
In the case p < 0, r < 0, ∆2 > 0, the polynomial β1(T). This has the real roots

e1 < e2 < e3 (and the polynomial β2(T) has the real roots m1 < m2).
There are three cases that must be considered:

I e1 < m1 < m2 < e2 < e3;
II e1 < m1 < e2 < m2 < e3;
III e1 < m1 < e2 < e3 < m2.

In each of those cases, there are four sub-cases depending on the signs of h and L0.
The bifurcation diagrams are given below, in Figures 4–7.
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Figure 4. Bifurcation diagrams in the Case I when p < 0, r < 0, and ∆2 > 0: (a) L0 > 0, h > 0;
(b) L0 < 0, h > 0.
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Figure 5. Bifurcation diagrams in the Case I when p < 0, r < 0, and ∆2 > 0: (a) L0 > 0, h < 0;
(b) L0 < 0, h < 0.
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Figure 6. Bifurcation diagrams in the Case II and III when p < 0, r < 0, and ∆2 > 0: (a) L0 > 0, h > 0
or h < 0, L0 > 0; (b) L0 < 0, h > 0 or L0 < 0, h < 0 or h > 0, L0 < 0.
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Figure 7. Bifurcation diagrams in the Case II and III when p < 0, r < 0, and ∆2 > 0: (a) L0 > 0, h < 0
or h > 0, L0 > 0; (b) h < 0, L0 < 0.
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The case when p, r, and ∆2 are strictly negative is presented in the following.
In the case p < 0, r < 0, ∆2 < 0, we see that β1(T) has the real roots e1 < e2 < e3 and

β2(T) has no real roots (∆2 < 0); therefore, sign β2(α) = sign(h).
We know that sign δ(α) = −sign(L0)sign β1(α).
According to Lemma 1, (1), when p < 0 and r < 0, the sign β1(T) = sign[a(T −

e1)(T − e2)(T − e3)]; see Table 1.
From the information presented above, we obtain the following:

Remark 4. When p < 0, r < 0, ∆2 < 0, the bifurcation diagrams are given in the following:

(1) If a > 0, h > 0, L0 > 0 or a < 0, h > 0, L0 > 0, then we get the Figure 8a.
(2) If a > 0, h > 0, L0 < 0 or a < 0, h > 0, L0 < 0, then we get the Figure 8b.
(3) If a > 0, h < 0, L0 > 0 or a < 0, h < 0, L0 > 0, then we get the Figure 9a.
(4) If a > 0, h < 0, L0 < 0 or a < 0, h < 0, L0 < 0, then we get the Figure 9b.
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Figure 8. Bifurcation diagrams when p < 0, r < 0, and ∆2 < 0: (a) a > 0, h > 0, L0 > 0 or
a < 0, h > 0, L0 > 0; (b) a > 0, h > 0, L0 < 0 or a < 0, h > 0, L0 < 0.
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Figure 9. Bifurcation diagrams when p < 0, r < 0, and ∆2 < 0: (a) a > 0, h < 0, L0 > 0 or
a < 0, h < 0, L0 > 0; (b) a > 0, h < 0, L0 < 0 or a < 0, h < 0, L0 < 0.

The case when p is strictly positive or (p is strictly negative and r is positive) will be
investigated next.

In the case when p > 0 or (p < 0 and r ≥ 0), from Lemma 1, (2) we have,

sign β1(T) = sign[a(T − e1)],

see Table 2.
(a) There is one real root e1 and two complex conjugates roots of β1(T) when r > 0;
(b) When p < 0 and r = 0, there are three real roots, one simple e1 and two common;
(c) Then p > 0, q 6= 0, there is one real root e1 and two complex conjugates;
(d) If p > 0, q = 0, there is a triple root e1.
From (a)–(d), we see that, in all these cases, β1(T) = 0 has a single real root e1 and

then sign β1(T) = sign[a(T − e1)].
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∆(α) = −4L0β1(α) and then sign∆(α) = −sign(L0)sign[β1(α)].
For the sign of β2(α), we have two cases:

1. ∆2 < 0 implies sign β2(α) = sign(h);
2. ∆2 > 0, then there is m1, m2, two distinct real roots of β2(α) = 0 and

sign β2(α) =

{
sign(h), if m ∈ (−∞, m1) ∪ (m2, ∞)
−sign(h), if m ∈ (m1, m2).

Remark 5. When p > 0 or (p < 0 and r ≥ 0) and ∆2 < 0, then only two cases will appear:

1. If a > 0, L0 > 0, h > 0 or a < 0, L0 > 0, h > 0, see Figure 10a;
2. If a > 0, L0 < 0, h > 0 or a < 0, L0 < 0, h > 0, see Figure 10b;
3. If a > 0, L0 > 0, h < 0 or a < 0, L0 > 0, h < 0, see Figure 11a;
4. If a > 0, L0 < 0, h < 0 or a < 0, L0 < 0, h < 0, see Figure 11b.
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Figure 10. Bifurcation diagrams when p > 0 or (p < 0 and r > 0): (a) a > 0, L0 > 0, h > 0 or
a < 0, L0 > 0, h > 0; (b) a > 0, L0 < 0, h > 0 or a < 0, L0 < 0, h > 0.
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Figure 11. Bifurcation diagrams when p > 0 or (p < 0 and r > 0): (a) a > 0, L0 > 0, h < 0 or
a < 0, L0 > 0, h < 0; (b) a > 0, L0 < 0, h < 0 or a < 0, L0 < 0, h < 0.

When ∆2 > 0, we have e1, m1, m2, so we write the following situations: e1 < m1 < m2,
m1 < e1 < m2, and m1 < m2 < e1. We notice that, in the case m1 < m2 < e1, the bifurcations
diagrams will be obtained by a rotation from the bifurcation diagrams obtained in the case
e1 < m1 < m2 because e1 is not in the interval (m1, m2). In addition, we will draw below
only β1 because the two lines of β2 do not produce the changing of the region of bifurcation
in this case.

Remark 6. When ∆2 > 0 and p > 0 or (p < 0 and r ≥ 0), then the bifurcation diagrams will be
obtained as in previous remark, as follows:

1. If e1 < m1 < m2 and a > 0, L0 > 0, h > 0 or a < 0, L0 > 0, h > 0 or if m1 < e1 < m2
and a > 0, L0 > 0, h < 0 or a < 0, L0 > 0, h < 0, then will obtain Figure 10a.
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2. If e1 < m1 < m2 and a > 0, L0 < 0, h > 0 or a < 0, L0 < 0, h > 0 or if m1 < e1 < m2
and a > 0, L0 < 0, h < 0 or a < 0, L0 < 0, h < 0, then will obtain Figure 10b.

3. If e1 < m1 < m2 and a > 0, L0 > 0, h < 0 or a < 0, L0 > 0, h < 0 or if m1 < e1 < m2
and a > 0, L0 > 0, h < 0 or a < 0, L0 > 0, h > 0, then will obtain Figure 11a.

4. If e1 < m1 < m2 and a > 0, L0 < 0, h < 0 or a < 0, L0 < 0, h > 0 or if m1 < e1 < m2
and a > 0, L0 < 0, h > 0 or a < 0, L0 < 0, h < 0, then will obtain Figure 11b.

3.3. Numerical Simulations

Some numerical examples are given below in order to illustrate the theoretical ap-
proach. Matlab simulations are presented for the regions in Figure 11b, but first we have
to check the conditions of Remark 5, i.e., p > 0, ∆2 < 0, and a > 0, L0 < 0, h < 0 for the
example given below. Considering β1(α) = 2α3

1 + α2 + α2
1α2, β2(α) = −(α2

1 + α1α2 + α2
2),

with |α| being sufficiently small and θ0 = 0.1, L0 = −1, we notice that a = 1, b = 0, c = 1,
d = 2, h = −1, k = −2, l = −1, and p = 1 > 0, ∆2 < 0, a > 0, h < 0. We find different
orbits (xn, yn), where xn = ρn sin ϕn, xn = ρn cos ϕn, when n = 1, . . . , N, N being a fixed
number. Then the two-dimensional map, in polar coordinates, becomes,

ρn+1 = ρn + ρnβ1(α) + ρ3
nβ2(α)− ρ5

n, ϕn+1 = ϕn + θ0. (9)

It is obvious that the Chenciner bifurcation is degenerated here.
Figures 12a,b and 13a give the generic portrait phase 3, and Figure 13b gives the generic

portrait phase 4.
First consider α1 = 0.1, α2 = 0.1, N = 2000, and (ρ1, ϕ1) = (0.3, 0) (for green curve),

(ρ1, ϕ1) = (0.01, 0) (for blue curve), and (ρ1, ϕ1) = (0.03, 0) (for red curve), respectively;
the discrete orbits can be seen in Figures 12a,b and 13a. The orbits for blue, red, and green
curves tend to an invariant stable closed curve. Moreover, in Figure 14a, the red, blue, and
green sequence of points represent the ρn sequence corresponding to the previous three
orbits, respectively, when N = 2000 in (nOρn) axis. We can notice that the results from
Figures 12 and 13a are checked because ρn tends to the same constant number when n tends
to infinity, and then the orbits will be on the same circle. In Figure 14b, the red, blue,
and green sequence of points represent the ρn sequence corresponding to previous three
orbits, respectively, when N = 2000 in (nOρn) axis. This time, these sequences tend to
zero, so the three orbits tend to origin and the result from Figure 13b is checked. Here,
α1 = 0.5, α2 = −0.513, N = 2000 are taken, and the start points are the same as in
Figure 13b. It can be observed that the orbit tends to the origin, therefore region 4 will
appear; see Figure 13b.

Figure 12. Numerical simulation for the map (9) when β1(α) = 2α3
1 + α3

2 + α2
1α2, β2(α) = −α2

1 −
α1α2 − α2

2, with α1 = 0.1, α2 = 0.1: (a) blue orbit starts from (ρ1, ϕ1) = (0.01, 0); (b) red orbit starts
from (ρ1, ϕ1) = (0.03, 0).
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Figure 13. Numerical simulation for the map (9) when β1(α) = 2α3
1 + α3

2 + α2
1α2, β2(α) = −α2

1 −
α1α2 − α2

2: (a) the three orbits are represented here with (ρ1, ϕ1) = (0.01, 0), (ρ1, ϕ1) = (0.03, 0) and
(ρ1, ϕ1) = (0.3, 0), respectively, and α1 = 0.1, α2 = 0.1; (b) the three orbits are represented here
with (ρ1, ϕ1) = (0.183, 0), (ρ1, ϕ1) = (0.16, 0) and (ρ1, ϕ1) = (0.14, 0), respectively, and α1 = 0.5,
α2 = −0.513.

Figure 14. The discrete sequence ρn given by the map (9) in the plane (nOρn) when β1(α) =

2α3
1 + α3

2 + α2
1α2, β2(α) = −α2

1 − α1α2 − α2
2: (a) when (ρ1, ϕ1) = (0.01, 0), (ρ1, ϕ1) = (0.03, 0),

(ρ1, ϕ1) = (0.284, 0) and a1 = 0.1, a2 = 0.1; (b) when starting points are as in Figure 13b.

Now choosing β1(α) = α3
1 + 2α3

2− α1α2
2− α2

1α2 , β2(α) = −α1− 3α2, α1 = 0.1, α2 = −0.1,
and (ρ1, ϕ1) = (0.06), N = 700, the orbit (green color) tends to origin and will depart from the in-
ner invariant curve (magenta color). However, when (ρ1, ϕ1) = (0.187, 0), the orbit (blue color)
will tend from interior to the outer invariant curve (red color). When (ρ1, ϕ1) = (0.3, 0), the
orbit (in red) will tend from exterior to the outer invariant curve. Thus, here, in Figure 15a,
appears the phase portrait for the region 7, see Appendix A, and this is confirmed also
from theoretical conditions from Figure 2b. In Figure 15b, the sequence ρn in (nOρn) axis
is shown for green orbit from Figure 15a, where N = 6000, observing that this sequence
tends to zero when n tends to infinity. In Figure 16a, the sequence xn is given in the axis
(nOxn), for N = 15,000, and also tends to zero.

In Figure16b is considered the case when (α1, α2) = (0.9,−0.9) are on β1(α) = 0.
Here β1(α) = 2α3

1 + α3
2 + α2

1α2, β2(α) = −α2
1 − α1α2 − α2

2, θ0 = 0.1. Now β1(α1, α2) = 0,
but ∆2 < 0 and (ρ1, ϕ1) = (0.187, 0) for red orbit, (ρ1, ϕ1) = (0.16, 0) for blue orbit, and
(ρ1, ϕ1) = (0.14, 0) for green orbit, respectively, which tend to the origin. Therefore, the
region 4 corresponds to the phase portrait, see Figure 11b, this being the third and last case
analyzed for Figure 11b.
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Figure 15. Numerical simulations for the map (9) when β1(α) = α3
1 + 2α3

2 − α1α2
2 − α2

1α2,
β2(α) = −α1 − 3α2 and (α1, α2) = (0.1,−0.1): (a) four orbits corresponding to (ρ1, ϕ1) = (0.06, 0)
(the orbit in red), (ρ1, ϕ1) = (0.187, 0) (the orbit in blue), (ρ1, ϕ1) = (0.0716, 0) (the orbit in magenta),
(ρ1, ϕ1) = (0.06) (the orbit in green); (b) the sequence ρn in the plane (nOρn) corresponding to the
green orbit, when N = 6000 from (a).

Figure 16. Numerical simulations for the map (9): (a) sequence xn in the plane (nOρ)

from Figure 15b; (b) numerical simulations for the map (9) when β1(α) = 2α3
1 + α3

2 + α2
1α2,

β2(α) = −α2
1 − α1α2 − α2

2, (α1, α2) = (0.9,−0.9) and (ρ1, ϕ1) = (0.183, 0) (red orbit),
(ρ1, ϕ1) = (0.16, 0) (blue orbit), (ρ1, ϕ1) = (0.14, 0), (green orbit), respectively.

Moreover, in Figure 17a,b appear the phase portraits 2 and 1 from Figure 11a, when
p > 0, a > 0, L0 > 0, h < 0 for the map,

ρn+1 = ρn + ρnβ1(α) + ρ3
nβ2(α) + ρ5

n, ϕn+1 = ϕn + θ0, (10)

i.e., L0 = 1. Here we take θ0 = 0.1, β1(α) = 2α3
1 + α3

2 + α2
1α2, β2(α) = −α2

1 − α2
2 − α1α2,

and α1 = 0.1, α2 = 0.1 for Figure 17a. The starting points of the three orbits corre-
spond to (ρ1, ϕ1) = (0.2, 0) for the red color, (ρ1, ϕ1) = (0.16, 0) for the blue color, and
(ρ1, ϕ1) = (0.11, 0) for the green color, respectively, and N = 100 step for the red orbit and
N = 150 step for the blue and green orbits. The orbits depart from the origin and escape to
infinity. This situation corresponds to phase portrait 2.

When α1 = 0.1, α2 = −0.112, and the same starting points are taken for the red and
green orbits, but θ0 = 0.003, N = 1500 for the blue and green orbits, and, for the blue orbit,
(ρ1, ϕ1) = (0.1711, 0), N = 200, and θ0 = 0.1, then the red orbit departs from the invariant
circle, which is the blue orbit, and the green orbit departs from the invariant circle and
tends to origin. That corresponds to the phase portrait 1, and this happens in region 1 from
Figure 11a.
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Figure 17. Numerical simulations for the map (10) when β1(α) = 2α3
1 + α3

2 + α2
1α2,

β2(α) = −α2
1 − α1α2 − α2

2: (a) when (α1, α2) = (0.1, 0.1), three orbits having (ρ1, ϕ1) = (0.2, 0)
(red color), (ρ1, ϕ1) = (0.16, 0) (blue color), and (ρ1, ϕ1) = (0.11, 0) (green color) are given, corre-
sponding this case to region 2 from Figure 11a; (b) when (α1, α2) = (0.1,−0.112) and the three
starting points of the orbits correspond to (ρ1, ϕ1) = (0.2, 0) (red orbit), (ρ1, ϕ1) = (0.1711, 0) (blue
orbit), (ρ1, ϕ1) = (0.11, 0), (green orbit), respectively, we obtain the phase portrait corresponding to
region 1 from Figure 11a.

4. Discussions and Conclusions

This paper contributes to the enrichment of the literature related to the Chenciner
bifurcation. This study may be useful in biology, medicine, and economics, where discrete
Chenciner bifurcation occurs.

The degeneracy case of the Chenciner bifurcation written in the truncated normal
form, which was analyzed here, takes place when a20 = a11 = a02 = 0, and for b10 and b01,
we have two situations: b10 6= 0, b01 6= 0 or b10 = b01 = 0. This is a further degeneration
of β1. It appears here a symmetry and an asymmetry of some regions from bifurcation
diagrams in this case studied.

The proposed approach is different from that of [28], being similar to that of [26,27],
solving the problem in a more general framework than in [28]. This paper continues the
study realized in [26,27], which is shortly described in Appendixes A and B, by considering
the following new assumption a10 = a01 = a20 = a11 = a02 = 0. A different method is
necessary than that used in [26], based on the sign of ∆ and ∆2 when degree of β1(α) is
three and degree of β2(α) is one or two.

This article highlights 18 different bifurcation diagrams, which is more than the two
obtained in the case of non-degeneration [25]. Those 18 different bifurcation diagrams
come from the first case, Case 3.1, when Degβ1(α) = 3 and Degβ2(α) = 1, here having
six bifurcation diagrams, and from the second case, Case 3.2, when Degβ1(α) = 3 and
Degβ2(α) = 2, where 12 different bifurcation diagrams appear. The study we conducted
in this article confirms the hypothesis. Therefore, in a case of degeneration that does not
involve resonance, there is an increase in the number of bifurcation diagrams. This study
answers a part of the open problem from [26], and a new open problem would be to study
the behavior of the system when Degβ1(α) = 3 and Degβ2(α) = 3 in the truncated form.

There are more cases of possible degeneration of Chenciner bifurcation, and each of
them requires a special characteristic method of solving, especially developed for each case.
Matlab simulations verify the theoretical conclusions.
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Appendix A. Chenciner Bifurcations

Below is written the normal form of Neimark-Sacker bifurcation with cubic degeneracy,
i.e., Chenciner bifurcation for the system (A1). A discrete dynamical system:“

xn+1 = f (xn, α) (A1)

with α = (α1, α2) ∈ R2, xn ∈ R2, n ∈ N, f ∈ Cr, and r ≥ 2 can be written as

x 7−→ f (x, α) (A2)

”Ref. [26]. By using the same methods as in [25–27], (A2) becomes

z 7−→ µ(α)z + g(z, z̄, α), (A3)

and“

w 7−→
(

r(α)eiθ(α) + a1(α)ww̄ + a2(α)w2w̄2
)

w + O
(
|w|6

)
(A4)

=
(

r(α) + b1(α)ww̄ + b2(α)w2w̄2
)

weiθ(α) + O
(
|w|6

)

respectively, taking into account that g can be written as

g(z, z̄, α) = ∑
k+l≥2

1
k!l!

gkl(α)zk z̄l ,

where µ, g, gkl(α) are smooth functions, bk(α) = ak(α)e−iθ(α), k = 1, 2. , µ(α) = r(α)eiθ(α),
r(0) = 1, and θ(0) = θ0” [26]. The following notations were used:

β1(α) = r(α)− 1 and β2(α) = Re(b1(α)) (A5)

in [26,27] and (A4) was“
{

ρn+1 = ρn
(
1 + β1(α) + β2(α)ρ

2
n + L2(α)ρ

4
n
)
+ ρnO

(
ρ6

n
)

ϕn+1 = ϕn + θ(α) + ρ2
n

(
Im(b1(α))
β1(α)+1 + O(ρn, α)

) , (A6)

L2(α) =
Im2(b1(α))+2(1+β1(α))Re(b2(α))

2(β1(α)+1) ” [26–28]).
When r(0) = 1, Re(b1(0)) = 0, but L2(0) 6= 0 in (A6), the generalized Neimark–Sacker

bifurcation appears and the transformation of parameters

(α1, α2) 7−→ (β1(α), β2(α)) (A7)

is regular at (0, 0). These types of bifurcations have been studied in [25], and there they
are called Chenciner bifurcations. It is easy to see from above that, for β1(0) = 0, we have
L2(0) = 1

2
(

Im2(b1(0)) + 2Re(b2(0))
)
. The idea is “to change these coordinates and to work

only using the initial parameters (α1, α2) in the form (A6)” [26].
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It is known from [26], relation (13), page 4 that

β1(α) =
p

∑
i+j=1

aijα
i
1α

j
2 + O(|α|p+1), β2(α) =

q

∑
i+j=1

bijα
i
1α

j
2 + O(|α|q+1) (A8)

for p, q ≥ 1, a10 = ∂β1
∂α1
|α=0, a01 = ∂β1

∂α2
|α=0, b01 = ∂β2

∂α2
|α=0, b10 = ∂β2

∂α1
|α=0, and so on.

The transformation (A7) is not regular at (0, 0), i.e., the Chenciner bifurcation degener-
ates, if and only if

a10b01 − a01b10 = 0. (A9)

Knowing the “truncated form of the ρ-map of (A6),

ρn+1 = ρn

(
1 + β1(α) + β2(α)ρ

2
n + L2(α)ρ

4
n

)
, (A10)

the ϕ-map of the system (A6) describes a rotation by an angle depending on α and ρ and
can be approximated by,

ϕn+1 = ϕn + θ(α), (A11)

being assumed that 0 < θ(0) < π” [26]. The truncated normal form of (A4) is (A10) and (A11).

Appendix B. Literature Review

It is known that “the one dimensional dynamic system for the ρ-map (A10) has a
fixed point in origin for all values of α, which corresponds to the fixed point O(0, 0) in the
system (A10) and (A11), and that a positive nonzero fixed point of the one-dimensional
ρ-map (A10), corresponds to a closed invariant curve in the truncated two-dimensional
map (A10)–(A11)” [26].

On the other hand, sign(L2(α)) = sign(L0) for |α| =
√

α2
1 + α2

2 sufficiently small

because L2(α) = L0(1 + O(|α|)) and L0 6= 0. It is considered O
(
|α|n

)
for n ≥ 1 to be the

series, O
(
|α|n

)
= ∑i+j≥n cijα

i
1α

j
2.

Theorem A1. The fixed point O is (linearly) stable if β1(α) < 0 and unstable if β1(α) > 0, for
all values α with |α| sufficiently small. On the bifurcation curve β1(α) = 0, O is (non-linearly)
stable if β2(α) < 0 and unstable if β2(α) > 0, when |α| is sufficiently small. At α = 0, O is
(non-linearly) stable if L0 < 0 and unstable if L0 > 0 [26].

The positive nonzero fixed points of (A10) are solutions of the following equation:

L2(α)y2 + β2(α)y + β1(α) = 0 (A12)

where y = ρ2
n. The roots of (A12) will be denoted by y1 = 1

2L2

(√
∆− β2

)
and

y2 = − 1
2L2

(√
∆ + β2

)
when these roots are real, and ∆(α) = β2

2(α)− 4β1(α)L2(α) [26].

Theorem A2. “(1) When ∆(α) < 0 for all |α| sufficiently small, the system (A10) and (A11) has
no invariant circles.

(2) When ∆(α) > 0 for all |α| sufficiently small, the system (A10) and (A11) has:

(a) one invariant unstable circle ρn =
√

y1 if L0 > 0 and β1(α) < 0;
(b) one invariant stable circle ρn =

√
y2 if L0 < 0 and β1(α) > 0;

(c) two invariant circles, ρn =
√

y1 unstable and ρn =
√

y2 stable, if L0 > 0, β1(α) > 0,
β2(α) < 0 or L0 < 0, β1(α) < 0, β2(α) > 0; in addition, y1 < y2 if L0 < 0 and y2 < y1 if
L0 > 0;

(d) no invariant circles if L0 > 0, β1(α) > 0, β2(α) > 0 or L0 < 0, β1(α) < 0, β2(α) < 0.
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(3) On the bifurcation curve ∆(α) = 0, the system (A10) and (A11) has one invariant unstable
circle ρn =

√
y1 for all L0 6= 0. Moreover, if L0 < 0, the invariant circle is stable from the exterior

and unstable from the interior, while if L0 > 0 it is vice versa.

(4) When β1(α) = 0, the system (A10) and (A11) has one invariant circle ρn =
√
− β2(α)

L0

whenever L0β2(α) < 0. It is stable if L0 < 0 and β2(α) > 0, respectively, unstable if L0 > 0 and
β2(α) < 0” [26–28].

Corresponding to the studies we have carried out previously [26,27], the following
phase portraits can be highlighted below. In this case, the phase portraits for the curves of
bifurcation when ∆(α) = 0 are shown.
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Figure A1. Generic portraits phase when θ0 > 0.
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Abstract: This paper deals with a static/dynamic event-triggered asynchronous filter of nonlinear
switched positive systems with output quantization. The nonlinear function is located in a sector.
Both static and dynamic event-triggering conditions are established based on the 1-norm form. By
virtue of the event-triggering mechanism, the error system is transformed into an interval uncertain
system. An event-triggered asynchronous filter is designed by employing a matrix decomposition
approach. The positivity and L1-gain stability of the error system are guaranteed by means of linear
copositive Lyapunov functions and a linear programming approach. Finally, two examples are given
to verify the effectiveness of the design.

Keywords: switched nonlinear positive systems; event-triggered filter; asynchronous switching;
linear programming

1. Introduction

As an important class of hybrid systems, switched positive systems composing of a
series of positive subsystems and a switching rule to coordinate the operation of subsystems
have attracted extensive attention [1,2]. Compared with the general (non-positive) switched
systems [3–5], switched positive systems are more suitable to accurately model a kind of
practical system consisting of nonnegative quantities, such as communication networks [6],
chemical engineering [7], and water systems [8]. In [9,10], the stability and stabilization of
switched positive systems were investigated based on linear copositive Lyapunov functions.

The study [11] dealt with the issue of L1-gain characterization for switched positive
systems by virtue of copositive Lyapunov function and linear programming approach. The
L1-gain analysis and control synthesis of switched positive systems was investigated in [12]
using multiple linear copositive Lyapunov functions incorporated with the average dwell
time approach. More results on a switched positive systems can be found in [13–15]. The
above literature mainly investigated linear switched positive systems. In fact, nonlinear
processes exist in most practical systems. A linear model cannot describe the nonlinear
processes accurately.

Modeling such systems via nonlinear switched systems will have less error than linear
switched systems. In [16], the distributed filter was proposed for nonlinear switched posi-
tive systems with stochastic nonlinearities and missing measurements based on switched
Lyapunov function and linear programming. A sector nonlinearity was first introduced to
ensure the positivity of nonlinear switched positive systems in [17,18], where the considered
nonlinear functions are located in a sector.

A robust fault detection filter was designed for nonlinear switched systems with
time-varying delay based on the average dwell time approach and the Lyapunov functional
technique [19]. In [20], the issue of H∞ filter of nonlinear switched systems with stable
and unstable subsystems was solved by means of the mode-dependent average dwell time
technique. Further results about nonlinear switched systems can refer to [21–25].
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The filter design for switched systems in the literature mentioned above is mainly
based on synchronous switching. It should be pointed out that it takes time to identify
which subsystem is activated and which matched filter is activated. The transmission
time delay of the switching signal or the impact of the external factors may result in
asynchronous switching between the filters and the switched systems [26,27]. Therefore,
an asynchronous filter is more practical than a synchronous one.

An asynchronous `1 positive filter of switched positive systems with modal-dwell-
time was proposed in [28]. Using the average dwell time and linear matrix inequality, the
study [29] was concerned with the H∞ filtering problem of linear switched systems with
asynchronous switching. An L1-gain filter of switched positive systems was investigated
by introducing a clock-dependent Lyapunov function [30]. In addition, the issue of quanti-
zation was considered in [27], which can deal with the failure phenomenon of elements.
The quantization can also guarantee the safety of information transmission [31–33].

The study [31] was concerned with feedback stabilization problems for linear time-
invariant control systems with saturating quantized measurements. In [32], the authors
investigated a design method of a time-varying quantizer to stabilize switched systems with
quantized output and switching delays based on a dwell-time assumption and level sets
of a common Lyapunov function. Using the sojourn probability-based switching law and
parameterized Lyapunov functional, the literature [33] addressed the issue of quantized
H∞ filtering for switched linear parameter-varying systems with both sojourn probabilities
and unreliable communication channels. How can we establish an asynchronous filter
framework of nonlinear switched positive systems and solve the signal quantization based
on a linear approach? These questions motivate the current investigation.

Up to now, many related results on event-triggering mechanism have been reported
in [34–38]. Event-triggered communication mechanism provides a more effective and
practical method for solving the control issues than time-triggered sample to reduce unnec-
essary signal transmission. The study [39] investigated the event-triggered L1-gain filter of
switched positive systems subject to state saturation using linear programming and linear
copositive Lyapunov function.

In [40], an event-triggered filter of positive systems was designed by adopting a matrix
decomposition approach and linear copositive Lyapunov functions. An event-triggered
filter of switched positive systems subject to state saturation was investigated by resorting
to linear programming and average dwell time technology [41]. More recently, a dynamic
event-triggered mechanism, which was developed from the static one, has been presented
in [42,43]. In [44], the issue of recursive distributed filtering was investigated for nonlinear
time-varying systems under a dynamic event-triggered mechanism.

With the help of the mathematical induction and Lyapunov theorem, the study [45]
presented a dynamic event-triggered control scheme for linear time-invariant systems. The
study [46] dealt with the stability of linear stochastic systems based on the dynamic event-
triggered mechanism with an impulsive switched system approach. To the best of authors’
knowledge, there have been no research achievements regarding the asynchronous filter
design of nonlinear switched positive systems under a static/dynamic event-triggering
mechanism. Therefore, applying static and dynamic event-triggering communication
mechanisms to the asynchronous filter design of switched nonlinear positive systems is
one motivation of this work.

In this paper, we focus on the event-triggered L1-gain asynchronous filter of nonlinear
switched positive systems with output quantization. Static and dynamic event-triggering
schemes based on 1-norm inequality are constructed for the considered systems, respec-
tively. The filter gain matrices are designed by using the matrix decomposition technique
to guarantee the positivity and L1-gain stability of the underlying systems. The outline of
the paper is as follows: Section 2 provides the problem formulation; Section 3 presents the
main results; Two examples are given in Section 4; and Section 5 concludes this paper.
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Notation 1. Let Rn (or Rn
+ ) and Rn×m be sets of n-dimensional vectors (or, nonnegative) and

n×m matrices, respectively. The symbols N and N+ denote the sets of nonnegative and positive
integers, respectively. For a matrix A = [aij], A � 0 (� 0) indicates that aij ≥ 0 (aij > 0),
∀i, j = 1, · · · , n, where aij is the element in the ith row and jth column of A. A> stands for the
transpose of matrix A.

For v ∈ Rn, v(ı) is the ıth element of the vector. v � 0 (� 0) means v(ı) � (� 0),
∀ı = 1, · · · , n. The 1-norm of x = (x1, x2, . . . , xn) is defined by ‖x‖1 = ∑n

ı=1 |xı|, and

the `1 norm of the vector is ∑∞
k=0 ‖x(k)‖1. Define 1n = (1, . . . , 1︸ ︷︷ ︸

n

)> ∈ Rn and 1(ı)n =

(0, . . . , 0, 1︸ ︷︷ ︸
ı

, 0, . . . , 0︸ ︷︷ ︸
n−ı

)>. A matrix I denotes the identity matrix with appropriate dimensions,

and 1n×n ∈ Rn×n is a matrix with all the elements being 1. The logic operator a ∨ b means
that a is valid or b is valid.

2. Preliminaries

Consider the discrete-time nonlinear switched system:

x(k + 1) = Aσ(k) f (x(k)) + Bσ(k)g(ω(k)),
y(k) = Cσ(k)h(x(k)) + Dσ(k)l(ω(k)),
z(k) = Eσ(k)p(x(k)) + Fσ(k)q(ω(k)),

(1)

where x(k) = (x1(k), . . . , xn(k))> ∈ Rn, y(k) ∈ Rm, ω(k) ∈ Rm
+, and z(k) ∈ Rs are the

system state, measurable output, disturbance, and output to be estimated, respectively. The
nonlinear functions satisfy that

f (x) = ( f1(x1), . . . , fn(xn))>, h(x) = (h1(x1), . . . , hn(xn))>,
p(x) = (p1(x1), . . . , pn(xn))>, g(ω) = (g1(ω1), . . . , gm(ωm))>,
l(ω) = (l1(ω1), . . . , lm(ωm))>, q(ω) = (q1(ω1), . . . , qm(ωm))>.

The function σ(k) denotes the switching law taking values at a finite set S = {1, 2, . . . , N},
N ∈ N+, where N represents the number of subsystems. Assume that the ith subsystem is
invoked when σ(k) = i.

Assumption 1. The system matrices satisfy that Ai � 0, Bi � 0, Ci � 0, Di � 0, Ei � 0, and
Fi � 0 for each i ∈ S.

Assumption 2. The nonlinear functions f (x), g(ω), h(x), l(ω), p(x), and q(ω) are located in
some sector fields with

v1x2
i ≤ fi(xi)xi ≤ v2x2

i , v3x2
i ≤ hi(xi)xi ≤ v4x2

i , v5x2
i ≤ pi(xi)xi ≤ v6x2

i , (2)

ε1ω2
ι ≤ gι(ωι)ωι ≤ ε2ω2

ι , ε3ω2
ι ≤ lι(ωι)ωι ≤ ε4ω2

ι , ε5ω2
ι ≤ qι(ωι)ωι ≤ ε6ω2

ι , (3)

where i = 1, 2, · · · , n, ι = 1, 2, · · · , m, 0 < v1 ≤ v2, 0 < v3 ≤ v4, 0 < v5 ≤ v6, 0 < ε1 ≤
ε2, 0 < ε3 ≤ ε4, 0 < ε5 ≤ ε6, and fi(0) = 0.

Some preliminaries about positive systems are introduced.

Definition 1 ([1,2]). A system is said to be positive if all its states and outputs are nonnegative for
any nonnegative initial conditions and nonnegative inputs.

Remark 1. There indeed exist some systems whose states and outputs are nonnegative for some
non-positive initial conditions and inputs. The nonnegativity of these systems only holds for some
of initial conditions and inputs rather than any nonnegative initial conditions and inputs. In
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this paper, the definition of positive system means that the states and outputs are nonnegative for
any nonnegative initial conditions and inputs. The definition follows the notions in [1,2]. Such
a definition is to guarantee the essential nonnegativity of a system for any nonnegative initial
conditions and inputs. Thus, the nonnegative initial conditions are required.

Lemma 1 ([1,2]). A system x(k + 1) = Ax(k) is positive if and only if A � 0.

Lemma 2 ([1,2]). Given a matrix A � 0, the following conditions are equivalent:
(i) The matrix A is a Schur matrix.
(ii) There exists some vector v � 0 such that (A− I)v ≺ 0.

Definition 2 ([3]). For a switching signal σ(k) and 0 ≤ k1 ≤ k2, denote the number of the
switching of σ(k) by Nσ(k2, k1). If there exist N0 ≥ 0 and τa > 0 such that

Nσ(k2, k1) ≤ N0 + (k2 − k1)/τa,

then τa is an average dwell time of the switching signal σ(k).

Definition 3 ([41]). The system (1) is said to be `1-gain stable if the following statements hold:
(i) For ω(k) = 0, the system (1) is asymptotically stable.
(ii) Under zero-initial conditions, the following inequality holds for ω(k) 6= 0,

∑∞
k=0 e−h̄k‖e(k)‖1 ≤ γ ∑∞

k=0 ‖ω(k)‖1,

where γ > 0 is the `1-gain value and h̄ > 0.

3. Main Results

This section first explores the positivity of system (1). Then, a nonlinear asynchronous
filter is designed under static event-triggering mechanism for system (1) with output
quantization. Finally, a dynamic event-triggering filter for system (1) is proposed.

3.1. Positivity

Lemma 3. Under Assumption 2, system (1) is positive if and only if Assumption 1 holds.

Proof. Necessity. Let x(0) = 0. Then, x(1) = Big(ω(0)) for some i ∈ S. By Assumption 2,
g(ω(0)) � 0 for any ω(0) � 0. Since x(1) � 0 for any g(ω(0)) � 0, then Bi � 0.

Now, we prove that Ai � 0 via reductio ad absurdum. Let g(ω(k)) = 0. Suppose
there exists an element a(ı)i < 0, then we find

xı(k + 1) = ∑n
j=1,j 6=(a(ıj)i f j(xj(k)) + a(ı)i f (x(k))). (4)

It is possible that xı(k + 1) < 0 if a(ı)i takes a small value enough, which yields a
contradiction with the positivity of system (1). Thus, Ai � 0.

Sufficiency. Denote by z the set of indices that satisfies xı(k) = 0 for ı ∈ z. Then, for
some i ∈ S

xı(k + 1) = ∑j/∈Ω a(ıj)i f j(xj(k)) + ∑m
ι=1 b(ıι)i gι(ωι(k)), ı ∈ z, (5)

where a(ı)i is the ıth row th column element of Ai and b(ıι)i is the ıth row ιth column element
of Bi. Note the condition (2), it follows that f j(xj(k)) ≥ 0 for k ∈ [0,+∞). By Assumption

1, a(ı)i ≥ 0 and b(ıι)i ≥ 0. From (3), we have g(ω(k)) � 0, l(ω(k)) � 0, and q(ω(k)) � 0
for ω(k) ∈ Rm

+. So, we have xı(k + 1) ≥ 0 for g(ω(k)) � 0. By (2a), we have h(x(k)) � 0
and p(x(k)) � 0 for x(k) � 0. Together these with Ci � 0, Di � 0, Ei � 0, and Fi � 0 give
y(k) � 0 and z(k) � 0.
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The proof of Lemma 3 follows the proof of the positivity in [1,2]. The sector conditions
in Assumption 2 are key to the positivity of system (1).

3.2. Static Event-Triggering Case

This subsection aims to design an event-triggered nonlinear asynchronous filter for
a switched nonlinear positive system (1). A more general case is investigated, where the
nonlinear function is unknown. This implies that the nonlinear function f (x(k)) cannot
be used for the filter design. Thus, a nonlinear function f̂ (x) is introduced to estimate the
unknown nonlinear function f (x). Then, the corresponding filter design is more difficult
compared with the former filter design.

First, we introduce an event-triggering mechanism to detect and manage the trans-
mission of output variables. Define ey(k) = ỹ(k)− y(k), where ỹ(k) = y(k℘), y(k℘) is the
output of event generator at the event-triggering instant k℘,℘ ∈ N. The measurement
output will be released only when the following event-triggering condition is satisfied:

‖ey(k)‖1 > β‖y(k)‖1, (6)

where k ∈ [k℘, k℘+1) and β ∈ [0, 1) is the event-triggering coefficient.
To further reduce the design cost and increase the practicability of the filter, we

introduce a quantization technique to measure the output signal. Figure 1 is the event-
triggered nonlinear quantization filter framework of switched nonlinear positive systems.
The model of the quantized output signal is given as:

ȳ(k) = Ū (ỹ(k)) =
(
Ū1(ỹ1(k)), Ū2(ỹ2(k)), · · · , Ūm(ỹm(k))

)>,

where ȳ(k) ∈ Rm denotes the quantized signal of the event generator’s output signal
ỹ(k) and Ū (ỹ(k)) is the logarithmic quantizer. Moreover, the subquantizer Ūc(ỹc(k))
(1 ≤ c ≤ m) is characterized by the set of quantization levels:

Physical plant

(Nonlinear switched 

positive systems)

Event 

generator
Sensor

Quantizer

NetworkZOHNonlinear filters

-

+

z(k)

zf(k)

e(k)

ω(k)

y(k)

y(k)
_

y(k)~

y(k)
_

Figure 1. The event-triggered nonlinear filter with output quantization.

uc = {φc|φc = κcφc0},
where 0 < κc < 1, φc0 > 0, φc denotes the quantization level corresponding to a segment
of cth component of the output signal ỹ(k). Then, the subquantizer Ūc(ỹc(k)) is defined
as follows:

Ūc(ỹc(k)) =





φc,
1

1 + εc
φc < ỹc(k) ≤

1
1− εc

φc,

0, ỹc(k) = 0,

ỹc(k), 0 < ỹc(k) <
1

1 + εc
φc, ỹc(k) >

1
1− εc

φc,

(7)
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where εc =
1−κc
1+κc

. For any quantization error, the following sector-bound expression can
be obtained:

Ū (ỹ(k))− ỹ(k) = ∆(k)ỹ(k),

where ∆(k) = diag{∆1(k), ∆2(k), · · · , ∆m(k)} and |∆c(k)| ≤ εc. Then, the output quantiza-
tion signal based on the event-triggering strategy received by the filter can be described as:
ȳ(k) = (I + ∆(k))ỹ(k).

A nonlinear asynchronous filter with output quantization is constructed as follows:

x f (k + 1) = A f σf (k) f̂ (x f (k)) + B f σf (k)ȳ(k),
z f (k) = E f σf (k)p(x f (k)) + Ff σf (k)ȳ(k),

(8)

where f̂ (x f (k)) = ( f̂1(x1), . . . , f̂n(xn))> satisfies ϑ1x2
i ≤ f̂i(xi)xi ≤ ϑ2x2

i with ϑ2 > ϑ1 > 0;
x f (k) is the state of the filter; z f (k) is the estimation of z(k); σf (k) is switching law of the
filter taking values in S = {1, 2, . . . , N}; The matrices A f σf (k), B f σf (k), E f σf (k), and Ff σf (k)
are to be determined.

Remark 2. Consider the interval [kr, kr+1), r = 0, 1, · · · , where the asynchronous phenomenon
occurs in [kr, kr + ∆r) and the synchronous switching arises in [kr + ∆r, kr+1). This indicates that
the ith subsystem and the jth filter are active in k ∈ [kr, kr + ∆r), and then the ith filter is active in
[kr + ∆r, kr+1).

Remark 3. The filter (8) is a switched system, and the matrices of the filter depend on the system
modes. In this paper, the filter is assumed to be switched asynchronously with the subsystems,
which means that the switching instant of the filter lags behind the system (1) by ∆r, where ∆0 = 0,
∆r < kr+1− kr, r = 1, 2, · · · , and kr is the switching time instant. Therefore, σf (kr) = σ(kr)+∆r.

Let x̃(k) = (x>(k) x>f (k)− x>(k))> and e(k) = z f (k)− z(k). Based on system (1) and
filter (8), the following error system is obtained: For k ∈ [kr, kr + ∆r),

x̃(k + 1) =
(

Ai f (x(k)) + Big(ω(k))
A f j f̂ (x f (k)) + B f j(I + ∆(k))(Cih(x(k)) + Dil(ω(k)) + ey(k))− Ai f (x(k))− Big(ω(k))

)
,

e(k) = E f j p(x f (k)) + Ff j(I + ∆(k))(Cih(x(k)) + Dil(ω(k)) + ey(k))− Ei p(x(k))− Fiq(ω(k)),
(9)

and for k ∈ [kr + ∆r, kr+1),

x̃(k + 1) =
(

Ai f (x(k)) + Big(ω(k))
A f i f̂ (x f (k)) + B f i(I + ∆(k))(Cih(x(k)) + Dil(ω(k)) + ey(k))− Ai f (x(k))− Big(ω(k))

)
,

e(k) = E f i p(x f (k)) + Ff i(I + ∆(k))(Cih(x(k)) + Dil(ω(k)) + ey(k))− Ei p(x(k))− Fiq(ω(k)).
(10)

Let Λ = diag{ε1, ε2, · · · , εm}. Thus, we have 0 � L � I + ∆(k) � J, where L = I −Λ
and J = I + Λ. Based on Assumption 2, we have that, for k ∈ [kr, kr + ∆r),

x̃(k + 1) � Ã1ij x̃(k) + B̃1ijω(k) + D̃1jey(k),
e(k) � Ẽ1ij x̃(k) + F̃1ijω(k) + Ff jLey(k),

(11)

and
x̃(k + 1) � Ã2ij x̃(k) + B̃2ijω(k) + D̃2jey(k),

e(k) � Ẽ2ij x̃(k) + F̃2ijω(k) + Ff j Jey(k),
(12)
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where

Ã1ij =

(
v1 Ai 0

ϑ1 A f j + v3B f jLCi −v2 Ai ϑ1 A f j

)
,

Ã2ij =

(
v2 Ai 0

ϑ2 A f j + v4B f j JCi −v1 Ai ϑ2 A f j

)
,

Ẽ1ij =
(
v5E f j + v3Ff jLCi −v6Ei v5E f j

)
,

Ẽ2ij =
(
v6E f j + v4Ff j JCi −v5Ei v6E f j

)
,

B̃1ij =

(
ε1Bi

ε3B f jLDi − ε2Bi

)
, B̃2ij =

(
ε2Bi

ε4B f j JDi − ε1Bi

)
,

F̃1ij =
(
ε3Ff jLDi − ε6Fi

)
, F̃2ij =

(
ε4Ff j JDi − ε5Fi

)
,

D̃1j =

(
0

B f jL

)
, D̃2j =

(
0

B f j J

)
,

and for k ∈ [kr + ∆r, kr+1),

x̃(k + 1) � Ã1i x̃(k) + B̃1iω(k) + D̃1iey(k),
e(k) � Ẽ1i x̃(k) + F̃1iω(k) + Ff iLey(k),

(13)

and
x̃(k + 1) � Ã2i x̃(k) + B̃2iω(k) + D̃2iey(k),

e(k) � Ẽ2i x̃(k) + F̃2iω(k) + Ff i Jey(k),
(14)

where

Ã1i =

(
v1 Ai 0

ϑ1 A f i + v3B f iLCi −v2 Ai ϑ1 A f i

)
,

Ã2i =

(
v2 Ai 0

ϑ2 A f i + v4B f i JCi −v1 Ai ϑ2 A f i

)
,

Ẽ1i =
(
v5E f i + v3Ff iLCi −v6Ei v5E f i

)
,

Ẽ2i =
(
v6E f i + v4Ff i JCi −v5Ei v6E f i

)
,

B̃1i =

(
ε1Bi

ε3B f iLDi − ε2Bi

)
, B̃2i =

(
ε2Bi

ε4B f i JDi − ε1Bi

)
,

F̃1i =
(
ε3Ff iLDi − ε6Fi

)
, F̃2i =

(
ε4Ff i JDi − ε5Fi

)
,

D̃1i =

(
0

B f iL

)
,D̃2i =

(
0

B f i J

)
.

Theorem 1. If there exist constants 0 < v1 ≤ v2, 0 < v3 ≤ v4, 0 < v5 ≤ v6, 0 < ε1 ≤ ε2,
0 < ε3 ≤ ε4, 0 < ε5 ≤ ε6, 0 < ϑ1 ≤ ϑ2, γ > 0, λ > 1, 0 ≤ β < 1, 0 < µ1 < 1, µ2 > 1, Rn

vectors ζi � 0, ζ(i,j) � 0, ϕi � 0, ϕ(i,j) � 0, ξi � 0, ξiı � 0, ξ j � 0, ξ jı � 0, ρi � 0, and Rm

vectors δi � 0, δiı � 0, δj � 0, δjı � 0, θi � 0 such that

ϑ1 ∑n
ı=1 1(ı)n ξ>iı + v3 ∑n

ı=1 1(ı)n δ>iı LMCi −v21>n ϕi Ai � 0, (15)

ε3 ∑n
ı=1 1(ı)n δ>iı LMDi − ε21>n ϕiBi � 0, (16)

v5 ∑s
=1 1()

s ρ>i + v3 ∑s
=1 1()

s θ>i LMCi −v6Ei � 0, (17)

ε3 ∑s
=1 1()

s θ>i LMDi − ε6Fi � 0, (18)

ϑ1 ∑n
ı=1 1(ı)n ξ>jı + v3 ∑n

ı=1 1(ı)n δ>jı LMCi −v21>n ϕj Ai � 0, (19)

ε3 ∑n
ı=1 1(ı)n δ>jı LMDi − ε21>n ϕjBi � 0, (20)

v5 ∑s
=1 1()

s ρ>j + v3 ∑s
=1 1()

s θ>j LMCi −v6Ei � 0, (21)

ε3 ∑s
=1 1()

s θ>j LMDi − ε6Fi � 0, (22)

153



Mathematics 2022, 10, 599

v2 A>i ζi + ϑ2ξi + v4C>i HJδi −v1 A>i ϕi − µ1ζi + (v6 ∑s
=1 1()

s ρ>i
+v4 ∑s

=1 1()
s θ>i JHCi −v5Ei)

>1s � 0,
(23)

v6(∑s
=1 1()

s ρ>i )
>1s + ϑ2ξi − µ1 ϕi � 0, (24)

ε2B>i ζi + ε4D>i HJδi − ε1B>i ϕi + ε4D>i HJ(∑s
=1 1()

s θ>i )
>1s − ε5F>i 1s − γ1m � 0, (25)

v2 A>i ζ(i,j) + ϑ2ξ j + v4C>i HJδj −v1 A>i ϕ(i,j) − µ2ζ(i,j) + (v6 ∑s
=1 1()

s ρ>j
+v4 ∑s

=1 1()
s θ>j JHCi −v5Ei)

>1s � 0,
(26)

v6(∑s
=1 1()

s ρ>j )
>1s + ϑ2ξ j − µ2 ϕ(i,j) � 0, (27)

ε2B>i ζ(i,j) + ε4D>i HJδj − ε1B>i ϕ(i,j) + ε4D>i HJ(∑s
=1 1()

s θ>j )
>1s

−ε5F>i 1s − γ1m � 0,
(28)

ζi � λζ(i,j), ζi � λζ(j,i), ζ(i,j) � λζi, ζ(j,i) � λζi,
ϕi � λϕ(i,j), ϕi � λϕ(j,i), ϕ(i,j) � λϕi, ϕ(j,i) � λϕi,

(29)

ξiı � ξi, δiı � δi, ξ jı � ξ j, δjı � δj, (30)

hold ∀i, j ∈ S, i 6= j, ı = 1, 2, · · · , n and  = 1, 2, · · · , s, then the error systems (9) and (10) are
positive and stable with filter gain matrices

A f i =
∑n

ı=1 1(ı)n ξ>iı
1>n ϕi

, B f i =
∑n

ı=1 1(ı)n δ>iı
1>n ϕi

, (31)

E f i =
s

∑
=1

1()
s ρ>i , Ff i =

s

∑
=1

1()
s θ>i , (32)

and the switching law satisfying

Γ−(k0,k)
Γ+(k0,k) ≥

ln µ2−ln µ1
ln µ∗1−ln µ1

, µ∗1 ∈ (µ1, 1), (33)

τa ≥ τ∗a = − 2 ln λ+(ln µ2−ln µ1)∆max
ln µ∗1

, (34)

where M = I − β1m×m, H = I + β1m×m, and ∆max denotes the maximum of time lag ∆r.

Proof. First, the positivity of the error systems (9) and (10) are considered. For x(k0) � 0,
the output satisfies y(k0) � 0. Using event-triggering condition (6) gives

‖ey(k0)‖1 ≤ β1>my(k0), (35)

which gives that
− β1m×my(k0) � ey(k0) � β1m×my(k0). (36)

For k ∈ [kr, kr + ∆r), it follows from (11) and (36) that

x̃(k0 + 1) � Ã1ij x̃(k0) + B̃1ijω(k0),
e(k0) � Ẽ1ij x̃(k0) + F̃1ijω(k0),

(37)

where

Ã1ij =

(
v1 Ai 0

ϑ1 A f j + v3B f jLMCi −v2 Ai ϑ1 A f j

)
, B̃1ij =

(
ε1Bi

ε3B f jLMDi − ε2Bi

)
,

Ẽ1ij =
(
v5E f j + v3Ff jLMCi −v6Ei v5E f j

)
, F̃1ij =

(
ε3Ff jLMDi − ε6Fi

)
.
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For k ∈ [kr + ∆r, kr+1),

x̃(k0 + 1) � Ã1i x̃(k0) + B̃1iω(k0),
e(k0) � Ẽ1i x̃(k0) + F̃1iω(k0),

(38)

where

Ã1i =

(
v1 Ai 0

ϑ1 A f i + v3B f iLMCi −v2 Ai ϑ1 A f i

)
, B̃1i =

(
ε1Bi

ε3B f iLMDi − ε2Bi

)
,

Ẽ1i =
(
v5E f i + v3Ff iLMCi −v6Ei v5E f i

)
, F̃1i =

(
ε3Ff iLMDi − ε6Fi

)
.

Using (15), (16), (19) and (20) gives

ϑ1 ∑n
ı=1 1(ı)n ξ>iı
1>n ϕi

+
v3 ∑n

ı=1 1(ı)n δ>iı
1>n ϕi

LMCi −v2 Ai � 0, (39)

ε3 ∑n
ı=1 1(ı)n δ>iı
1>n ϕi

LMDi − ε2Bi � 0, (40)

ϑ1 ∑n
ı=1 1(ı)n ξ>jı
1>n ϕj

+
v3 ∑n

ı=1 1(ı)n δ>jı
1>n ϕj

LMCi −v2 Ai � 0, (41)

ε3 ∑n
ı=1 1(ı)n δ>jı
1>n ϕj

LMDi − ε2Bi � 0. (42)

Together with (17), (18), (21), (22), (31), and (32), we have

ϑ1 A f i + v3B f iLMCi −v2 Ai � 0, (43)

ε3B f iLMDi − ε2Bi � 0, (44)

v5E f i + v3Ff iLMCi −v6Ei � 0, (45)

ε3Ff iLMDi − ε6Fi � 0, (46)

ϑ1 A f j + v3B f jLMCi −v2 Ai � 0, (47)

ε3B f jLMDi − ε2Bi � 0, (48)

v5E f j + v3Ff jLMCi −v6Ei � 0, (49)

ε3Ff jLMDi − ε6Fi � 0. (50)

Due to ξiı � 0, δiı � 0, ρi � 0, and θi � 0, this yields A f i � 0, B f i � 0, E f i � 0, and
Ff i � 0. Thus, we have Ã1i � 0, B̃1i � 0, Ẽ1i � 0, and F̃1i � 0. Similarly, we can obtain
Ã1ij � 0, B̃1ij � 0, Ẽ1ij � 0, and F̃1ij � 0. By (37), (38), and Lemma 1, we have x̃(k0 + 1) � 0
and e(k0) � 0. Using recursive derivation gives x̃(k) � 0 and e(k) � 0, that is to say, the
error systems (9) and (10) are positive.

Next, we will analyze the `1-gain stability of the considered error systems. Construct
a piecewise multiple copositive Lyapunov function candidate:

Vi(k) =

{
x̃>(k)vi, ∀k ∈ [kr−1 + ∆r−1, kr),

x̃>(k)v(i,j), ∀k ∈ [kr, kr + ∆r),
(51)

where vi = (ζ>i ϕ>i )
> and v(i,j) = (ζ>(i,j) ϕ>(i,j))

>. From (12) and (36), for k ∈ [kr, kr + ∆r), it
follows that

x̃(k + 1) � Ã1ij x̃(k) + B̃1ijω(k),
e(k) � Ẽ1ij x̃(k) + F̃1ijω(k),

(52)
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where

Ã1ij =

(
v2 Ai 0

ϑ2 A f j + v4B f j JHCi −v1 Ai ϑ2 A f j

)
, B̃1ij =

(
ε2Bi

ε4B f j JHDi − ε1Bi

)
,

Ẽ1ij =
(
v6E f j + v4Ff j JHCi −v5Ei v6E f j

)
, F̃1ij =

(
ε4Ff j JHDi − ε5Fi

)
.

For k ∈ [kr + ∆r, kr+1), we have

x̃(k + 1) � Ã1i x̃(k) + B̃1iω(k),
e(k) � Ẽ1i x̃(k) + F̃1iω(k),

(53)

where

Ã1i =

(
v2 Ai 0

ϑ2 A f i + v4B f i JHCi −v1 Ai ϑ2 A f i

)
, B̃1i =

(
ε2Bi

ε4B f i JHDi − ε1Bi

)
,

Ẽ1i =
(
v6E f i + v4Ff i JHCi −v5Ei v6E f i

)
, F̃1i =

(
ε4Ff i JHDi − ε5Fi

)
.

From the upper bound systems (52) and (53), the forward difference of (51) along the
trajectories satisfies

∆Vi(k) ≤
{

x̃>(k)Υ1 + ω>(k)Θ1, ∀k ∈ [kr−1 + ∆r−1, kr),

x̃>(k)Υ2 + ω>(k)Θ2, ∀k ∈ [kr, kr + ∆r),
(54)

where

Υ1 = Ã
>
1ivi − vi =

(
v2 A>i ζi + (ϑ2 A>f i + v4C>i HJB>f i −v1 A>i )ϕi − ζi

ϑ2 A>f i ϕi − ϕi

)
,

Υ2 = Ã
>
1ijv(i,j) − v(i,j) =

(
v2 A>i ζ(i,j) + (ϑ2 A>f j + v4C>i HJB>f j −v1 A>i )ϕ(i,j) − ζ(i,j)

ϑ2 A>f j ϕ(i,j) − ϕ(i,j)

)
,

Θ1 = B̃
>
1ivi =

(
ε2B>i ζi + (ε4D>i HJB>f i − ε1B>i )ϕi

)
,

Θ2 = B̃
>
1ijv(i,j) =

(
ε2B>i ζ(i,j) + (ε4D>i HJB>f j − ε1B>i )ϕ(i,j)

)
.

Using (30) and (31), it derives that

A f i �
∑n

ı=1 1(ı)n ξ>i
1>n ϕi

=
1nξ>i
1>n ϕi

, B f i �
∑n

ı=1 1(ı)n δ>i
1>n ϕi

=
1nδ>i
1>n ϕi

.

Together with the fact ϕi � 0 gives

A>f i ϕi �
ξi1>n
1>n ϕi

ϕi = ξi, B>f i ϕi �
δi1>n
1>n ϕi

ϕi = δi. (55)

Similarly,

A>f j ϕ(i,j) �
ξ j1>n

1>n ϕ(i,j)
ϕ(i,j) = ξ j, B>f j ϕ(i,j) �

δj1>n
1>n ϕ(i,j)

ϕ(i,j) = δj. (56)

Define Ξ(k) = γ‖ω(k)‖1 − ‖e(k)‖1. From (23)–(28), (54), (55), and (56), we can obtain

Vi(k) ≤
{

µ1Vi(k− 1) + Ξ(k− 1), ∀k ∈ [kr−1 + ∆r−1, kr),

µ2V(i,j)(k− 1) + Ξ(k− 1), ∀k ∈ [kr, kr + ∆r).
(57)

Thus,
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Vi(k) ≤





µ
k−kr−1−∆r−1
1 Vi(kr−1 + ∆r−1) + ∑k−1

ς=kr−1+∆r−1
µ

k−1−ς
1 Ξ(ς), ∀k ∈ [kr−1 + ∆r−1, kr),

µk−kr
2 V(i,j)(kr) + ∑k−1

ς=kr
µ

k−1−ς
2 Ξ(ς), ∀k ∈ [kr, kr + ∆r).

(58)

Noting the condition (29), then

Vi(k) ≤





λµ
k−kr−1−∆r−1
1 Vi(kr−1 + ∆r−1) + ∑k−1

ς=kr−1+∆r−1
µ

k−1−ς
1 Ξ(ς), ∀k ∈ [kr−1, kr−1 + ∆r−1),

λµk−kr
2 V(i,j)(kr) + ∑k−1

ς=kr
µ

k−1−ς
2 Ξ(ς), ∀k ∈ [kr−1 + ∆r−1, kr).

(59)

For T ∈ [kNσ(T,k0)
+ ∆Nσ(T,k0)

, kNσ(T,k0)+1), repeating (58) and (59) follows that:

Vσ(kℵ+1)
(T) ≤ µ

T−kℵ−∆ℵ
1 Vσ(kℵ+1)

(kℵ + ∆ℵ) + ∑T−1
ς=kℵ+∆ℵ

µ
T−1−ς
1 Ξ(ς)

≤ λµ
T−kℵ−∆ℵ
1 µ

∆ℵ
2 Vσ(kℵ+∆ℵ)(kℵ) + ∑T−1

ς=kℵ+∆ℵ
µ

T−1−ς
1 Ξ(ς)

+ λµ
T−kℵ−∆ℵ
1 ∑kℵ+∆ℵ−1

ς=kℵ
µ

kℵ+∆ℵ−1−ς
2

≤ λ2µ
T−kℵ−1−∆ℵ−∆ℵ−1
1 µ

∆ℵ
2 Vσ(kℵ−1)

(kℵ−1 + ∆ℵ−1) + ∑T−1
ς=kℵ+∆ℵ

µ
T−1−ς
1 Ξ(ς)

+ λµ
T−kℵ−∆ℵ
1 ∑kℵ+∆ℵ−1

ς=kℵ
µ

kℵ+∆ℵ−1−ς
2

+ λ2µ
∆ℵ
2 ∑kℵ−1

ς=kℵ−1+∆ℵ−1
µ

T−1−∆ℵ−ς
1 Ξ(ς)

= λ2e(T−kℵ−1−∆ℵ−∆ℵ−1) ln µ1 e∆ℵ ln µ2 Vσ(kℵ−1)
(kℵ−1 + ∆ℵ−1) + ∑T−1

ς=kℵ+∆ℵ
e(T−1−ς) ln µ1 Ξ(ς)

+ λe(T−kℵ−∆ℵ) ln µ1 ∑kℵ+∆ℵ−1
ς=kℵ

e(kℵ+∆ℵ−1−ς) ln µ2

+ λ2e∆ℵ ln µ2 ∑kℵ−1
ς=kℵ−1+∆ℵ−1

e(T−1−∆ℵ−ς) ln µ1 Ξ(ς)

≤ · · ·
≤ e2ℵ ln λe(T−k0−ℵ∆max) ln µ1 eℵ∆max ln µ2 Vσ(k0)

(k0)

+ ∑T−1
ς=k0

e2Nσ(T,ς) ln λeNσ(T−1,ς)∆max ln µ2 e(T−1−Nσ(T−1,ς)∆max−ς) ln µ1 Ξ(ς),

(60)

where ℵ = Nσ(T, k0) and ∆max = max{∆1, ∆2, . . . , ∆ℵ}. Under zero initial conditions,
we have

0 ≤ ∑T−1
ς=k0

e2Nσ(T,ς) ln λeNσ(T−1,ς)∆max ln µ2 e(T−1−Nσ(T−1,ς)∆max−ς) ln µ1 Ξ(ς), (61)

that is,

∑T−1
ς=k0

e2Nσ(T,ς) ln λeNσ(T−1,ς)∆max ln µ2 e(T−1−Nσ(T−1,ς)∆max−ς) ln µ1‖e(ς)‖1

≤ γ ∑T−1
ς=k0

e2Nσ(T,ς) ln λeNσ(T−1,ς)∆max ln µ2 e(T−1−Nσ(T−1,ς)∆max−ς) ln µ1‖ω(ς)‖1.
(62)

Multiplying both sides of the inequality (62) with e(ln µ1−ln µ2)Nσ(T,k0)∆max−2Nσ(T,k0) ln λ

gives
∑T−1

ς=k0
e(T−1−ς) ln µ1+(ln µ1−ln µ2)Nσ(ς,0)∆max−2Nσ(ς,0) ln λ‖e(ς)‖1

≤ γ ∑T−1
ς=k0

e(T−1−ς) ln µ1+(ln µ1−ln µ2)Nσ(ς,0)∆max−2Nσ(ς,0) ln λ‖ω(ς)‖1.
(63)

From Definition 2 and (34), it is clear that

Nσ(ς, k0) ≤ N0 +
(ς−k0) ln µ∗1

2 ln λ+(ln µ2−ln µ1)∆max
. (64)

Then, (63) can be transformed into

∑T−1
ς=k0

e
(T−1−ς) ln µ1−[2 ln λ+(ln µ2−ln µ1)∆max](N0+

(ς−k0) ln µ∗1
2 ln λ+(ln µ2−ln µ1)∆max

)‖e(ς)‖1

≤ γ ∑T−1
ς=k0

e
(T−1−ς) ln µ1−[2 ln λ+(ln µ2−ln µ1)∆max](N0+

(ς−k0) ln µ∗1
2 ln λ+(ln µ2−ln µ1)∆max

)‖ω(ς)‖1.
(65)
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The above inequality can be further written as

∑T−1
ς=k0

e(T−1) ln µ1−k0 ln µ∗1 e(ln µ∗1−ln µ1)ς‖e(ς)‖1

≤ γ ∑T−1
ς=k0

e(T−1) ln µ1−k0 ln µ∗1 e(ln µ∗1−ln µ1)ς‖ω(ς)‖1.
(66)

From (66), we can obtain

∑T−1
ς=k0

e−(ln µ∗1−ln µ1)ς‖e(ς)‖1 ≤ γ ∑T−1
ς=k0
‖ω(ς)‖1. (67)

Summing from 0 to ∞ for both sides of (67), it yields that

∑∞
k=0 e−h̄k‖e(k)‖1 ≤ γ ∑∞

k=0 ‖ω(k)‖1, (68)

where h̄ = ln µ∗1 − ln µ1. By Definition 3, the error systems (9) and (10) satisfy the `1-gain
performance index (68).

Remark 4. Generally, the signal can be quantized during the actual transmission process due
to various reasons, such as energy consumption issues, intermittent sensor fault, limited digital
communication resource, and so on. It is necessary to incorporate the quantization technique
with event-triggering mechanism to generate the quantized output. Theorem 1 first introduces the
quantization technique to the filter design of positive systems, where a sector restriction is adopted
to analyze and mitigate the quantization effect [47–49]. Currently, few efforts have been devoted to
positive systems, though the quantization approach is effective and practical for dealing with many
practical problems. It is interesting to develop the quantization approach in Theorem 1 for other
issues of positive systems.

3.3. Dynamic Event-Triggering Case

In this section, we propose a dynamic event-triggering mechanism as an alternative
of the static event-triggering mechanism for system (1). Define the sampling error of the
event generator as ey(k) = ỹ(k)− y(k), where ỹ(k) = y(k℘), y(k℘) is the output signal of
the event generator at the event-triggering instant k℘,℘ ∈ N. Following this, the output
will be released by the following dynamic event-triggering condition:

‖ey(k)‖1 > β‖y(k)‖1 +
1
ψ

η(k) ∨ η(k) > ‖y(k)‖1, (69)

where β and ψ are given positive constants, and η(k) is an internal dynamic variable
satisfying

η(k + 1) = $η(k) + β‖y(k)‖1 − ‖ey(k)‖1, (70)

with η(k0) = η0 as the initial value and $ ∈ (0, 1) as a given constant.

Theorem 2. If there exist constants 0 < v1 ≤ v2, 0 < v3 ≤ v4, 0 < v5 ≤ v6, 0 < ε1 ≤ ε2,
0 < ε3 ≤ ε4, 0 < ε5 ≤ ε6, 0 < ϑ1 ≤ ϑ2, ψ > 0, γ > 0, λ > 1, 0 ≤ β < 1, 0 < µ1 < 1, µ2 > 1,
Rn vectors ζi � 0, ζ(i,j) � 0, ϕi � 0, ϕ(i,j) � 0, ξi � 0, ξiı � 0, ξ j � 0, ξ jı � 0, ρi � 0, and Rm

vectors δi � 0, δiı � 0, δj � 0, δjı � 0, θi � 0 such that

ϑ1 ∑n
ı=1 1(ı)n ξ>iı + v3 ∑n

ı=1 1(ı)n δ>iı LΨCi −v21>n ϕi Ai � 0, (71)

ε3 ∑n
ı=1 1(ı)n δ>iı LΨDi − ε21>n ϕiBi � 0, (72)

v5 ∑s
=1 1()

s ρ>i + v3 ∑s
=1 1()

s θ>i LΨCi −v6Ei � 0, (73)

ε3 ∑s
=1 1()

s θ>i LΨDi − ε6Fi � 0, (74)

ϑ1 ∑n
ı=1 1(ı)n ξ>jı + v3 ∑n

ı=1 1(ı)n δ>jı LΨCi −v21>n ϕj Ai � 0, (75)
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ε3 ∑n
ı=1 1(ı)n δ>jı LΨDi − ε21>n ϕjBi � 0, (76)

v5 ∑s
=1 1()

s ρ>j + v3 ∑s
=1 1()

s θ>j LΨCi −v6Ei � 0, (77)

ε3 ∑s
=1 1()

s θ>j LΨDi − ε6Fi � 0, (78)

v2 A>i ζi + ϑ2ξi + v4C>i ΦJδi −v1 A>i ϕi − µ1ζi + (v6 ∑s
=1 1()

s ρ>i
+v4 ∑s

=1 1()
s θ>i JΦCi −v5Ei)

>1s+βv4C>i 1m � 0,
(79)

v6(∑s
=1 1()

s ρ>i )
>1s + ϑ2ξi − µ1 ϕi � 0, (80)

ε2B>i ζi+βε4D>i 1m + ε4D>i ΦJδi − ε1B>i ϕi + ε4D>i ΦJ(∑s
=1 1()

s θ>i )
>1s

−ε5F>i 1s − γ1m � 0,
(81)

v2 A>i ζ(i,j) + ϑ2ξ j + v4C>i ΦJδj −v1 A>i ϕ(i,j) − µ2ζ(i,j) + (v6 ∑s
=1 1()

s ρ>j
+v4 ∑s

=1 1()
s θ>j JΦCi −v5Ei)

>1s+βv4C>i 1m � 0,
(82)

v6(∑s
=1 1()

s ρ>j )
>1s + ϑ2ξ j − µ2 ϕ(i,j) � 0, (83)

ε2B>i ζ(i,j)+βε4D>i 1m + ε4D>i ΦJδj − ε1B>i ϕ(i,j) + ε4D>i ΦJ(∑s
=1 1()

s θ>j )
>1s

−ε5F>i 1s − γ1m � 0,
(84)

ζi � λζ(i,j), ζi � λζ(j,i), ζ(i,j) � λζi, ζ(j,i) � λζi,
ϕi � λϕ(i,j), ϕi � λϕ(j,i), ϕ(i,j) � λϕi, ϕ(j,i) � λϕi,

(85)

ξiı � ξi, δiı � δi, ξ jı � ξ j, δjı � δj, (86)

hold ∀i, j ∈ S, i 6= j, ı = 1, 2, · · · , n and  = 1, 2, · · · , s, then the error systems (9) and (10) are
positive and stable with filter gain matrices (31) and (32) and the switching law satisfying

Γ−(k0,k)
Γ+(k0,k) ≥

ln µ2−ln µ1
ln µ∗1−ln µ1

, µ∗1 ∈ (µ1, 1), (87)

τa ≥ τ∗a = − 2 ln λ+(ln µ2−ln µ1)∆max
ln µ∗1

, (88)

where Ψ = I − (β + 1
ψ )1m×m, Φ = I + (β + 1

ψ )1m×m, and ∆max denotes the maximum of time
lag ∆r.

Proof. First, the positivity of the error systems (9) and (10) are considered. For x(k0) � 0,
the output satisfies y(k0) � 0. We can obtain from the dynamic event-triggering condition
(69) and (70) that

‖ey(k0)‖1 ≤ β‖y(k0)‖1 +
1
ψ

η(k0) ≤ (β +
1
ψ
)1>my(k0), (89)

which leads to

− (β +
1
ψ
)1m×my(k0) � ey(k0) � (β +

1
ψ
)1m×my(k0). (90)

From (11), (13), and (90), it is clear that, for k ∈ [kr, kr + ∆r),

x̃(k0 + 1) � Ã2ij x̃(k0) + B̃2ijω(k0),
e(k0) � Ẽ2ij x̃(k0) + F̃2ijω(k0),

(91)
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where

Ã2ij =

(
v1 Ai 0

ϑ1 A f j + v3B f jLΨCi −v2 Ai ϑ1 A f j

)
, B̃2ij =

(
ε1Bi

ε3B f jLΨDi − ε2Bi

)
,

Ẽ2ij =
(
v5E f j + v3Ff jLΨCi −v6Ei v5E f j

)
, F̃2ij =

(
ε3Ff jLΨDi − ε6Fi

)
.

and for k ∈ [kr + ∆r, kr+1),

x̃(k0 + 1) � Ã2i x̃(k0) + B̃2iω(k0),
e(k0) � Ẽ2i x̃(k0) + F̃2iω(k0),

(92)

where

Ã2i =

(
v1 Ai 0

ϑ1 A f i + v3B f iLΨCi −v2 Ai ϑ1 A f i

)
, B̃2i =

(
ε1Bi

ε3B f iLΨDi − ε2Bi

)
,

Ẽ2i =
(
v5E f i + v3Ff iLΨCi −v6Ei v5E f i

)
, F̃2i =

(
ε3Ff iLΨDi − ε6Fi

)
.

Using a similar method in Theorem 1 gives that the error systems (9) and (10) are positive.
From (12) and (90), for k ∈ [kr, kr + ∆r), we have

x̃(k + 1) � Ã2ij x̃(k) + B̃2ijω(k),
e(k) � Ẽ2ij x̃(k) + F̃2ijω(k),

(93)

where

Ã2ij =

(
v2 Ai 0

ϑ2 A f j + v4B f j JΦCi −v1 Ai ϑ2 A f j

)
, B̃2ij =

(
ε2Bi

ε4B f j JΦDi − ε1Bi

)
,

Ẽ2ij =
(
v6E f j + v4Ff j JΦCi −v5Ei v6E f j

)
, F̃2ij =

(
ε4Ff j JΦDi − ε5Fi

)
.

For k ∈ [kr + ∆r, kr+1), we have

x̃(k + 1) � Ã2i x̃(k) + B̃2iω(k),
e(k) � Ẽ2i x̃(k) + F̃2iω(k),

(94)

where

Ã2i =

(
v2 Ai 0

ϑ2 A f i + v4B f i JΦCi −v1 Ai ϑ2 A f i

)
, B̃2i =

(
ε2Bi

ε4B f i JΦDi − ε1Bi

)
,

Ẽ2i =
(
v6E f i + v4Ff i JΦCi −v5Ei v6E f i

)
, F̃2i =

(
ε4Ff i JΦDi − ε5Fi

)
.

Choose a linear copositive Lyapunov function:

Vi(k) =

{
x̃>(k)vi + η(k), ∀k ∈ [kr−1 + ∆r−1, kr),

x̃>(k)v(i,j) + η(k), ∀k ∈ [kr, kr + ∆r).

Combining (93) and (94), we find

∆Vi(k) ≤
{

x̃>(k)Ω1 + ω>(k)Γ1+($− 1)η(k), ∀k ∈ [kr−1 + ∆r−1, kr),

x̃>(k)Ω2 + ω>(k)Γ2+($− 1)η(k), ∀k ∈ [kr, kr + ∆r),

where
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Ω1 = Ã
>
2ivi − vi =

(
v2 A>i ζi + (ϑ2 A>f i + v4C>i ΦJB>f i −v1 A>i )ϕi+βv4C>i 1m − ζi

ϑ2 A>f i ϕi − ϕi

)
,

Ω2 = Ã
>
2ijv(i,j) − v(i,j) =

(
v2 A>i ζ(i,j) + (ϑ2 A>f j + v4C>i ΦJB>f j −v1 A>i )ϕ(i,j)+βv4C>i 1m − ζ(i,j)

ϑ2 A>f j ϕ(i,j) − ϕ(i,j)

)
,

Γ1 = B̃
>
2ivi = ε2B>i ζi+βε4D>i 1m + (ε4D>i ΦJB>f i − ε1B>i )ϕi,

Γ2 = B̃
>
2ijv(i,j) = ε2B>i ζ(i,j)+βε4D>i 1m + (ε4D>i ΦJB>f j − ε1B>i )ϕ(i,j).

Using a similar method to Theorem 1, it is not difficult to obtain (68) under average
dwell time (88), which means that the error systems (9) and (10) are `1-gain stable with
performance γ.

Remark 5. Compared with the existing results on static event-triggering strategies of positive
systems [39–41], the dynamic strategy proposed in Theorem 2 is more flexible and releases fewer
data. For the dynamic event-triggered issues of general systems [42–46], it is clear that dynamic
event-triggering conditions cannot be directly used for positive systems. Therefore, we proposed a
dynamic event-triggering condition (69), and the lower bound of the error systems can be obtained
from an interval system. Based on this point, the dynamic event-triggering condition can be applied
to other issues of positive systems, such as output feedback control, observer design, etc.

4. Illustrative Examples

Two examples are provided to verify the effectiveness of the proposed design.

Example 1. Consider the system (1) with two subsystems:

A1 =




0.1503 0.1452 0.0231
0.2046 0.1729 0.1967
0.1050 0.2130 0.1714


, B1 =




0.0519 0.2034
0.1107 0.0257
0.0173 0.1322


, C1 =

(
0.3 0.3 0.2
0.4 0.1 0.1

)
,

D1 =

(
0.3 0.2
0.2 0.4

)
, E1 =

(
0.1 0.2 0.2

)
, F1 =

(
0.3 0.6

)
,

A2 =




0.2214 0.0496 0.1183
0.1426 0.1651 0.1742
0.1357 0.2073 0.0137


, B2 =




0.2641 0.2026
0.1273 0.1797
0.2065 0.1842


, C2 =

(
0.2 0.4 0.2
0.2 0.3 0.1

)
,

D2 =

(
0.2 0.3
0.1 0.2

)
, E2 =

(
0.1 0.2 0.2

)
, F2 =

(
0.4 0.5

)
,

where fi(xi(k)) = 2e−0.2kxi(k), f̂i(xi(k)) = e−kx f i(k), hi(xi(k)) = xi(k)+
xi(k)

x2
i (k)+1

, pi(xi(k)) =

xi(k) +
xi(k)

x2
i (k)+5

, the disturbance signal is ωι(k) =
(

0.4
(k+1)2/3 0.4e−0.1k

)>
, and the nonlinear

disturbance is given as gι(ωι(k)) = 0.3e−0.03kωι(k), lι(ωι(k)) = ωι(k), qι(ωι(k)) = 0.75ωι(k).
Then, v1 = 0.20, v2 = 0.30, v3 = 0.30, v4 = 0.50, v5 = 0.20, v6 = 0.30, ε1 = 0.10, ε2 = 0.20,
ε3 = 1, ε4 = 1, ε5 = 0.30, ε6 = 0.50. Choose µ1 = 0.69, µ∗1 = 0.80, µ2 = 1.30, β = 0.15, and
λ = 1.20. By Theorem 1, the filter gain matrices are:

A f 1 =




0.3132 0.1982 0.2287
0.2897 0.2154 0.2727
0.2698 0.2372 0.2524


, B f 1 =




0.5950 0.0317
0.5807 0.0258
0.5845 0.0259


, E f 1 =




0.0013
0.0014
0.0190



>

, Ff 1 =

(
1.2703
0.9366

)>
,

A f 2 =




0.1622 0.0921 0.2278
0.1468 0.0894 0.2468
0.1493 0.0946 0.2309


, B f 2 =




1.3793 1.5699
1.5275 1.4030
1.5288 1.3936


, E f 2 =




0.0055
0.0046
0.0126



>

, Ff 2 =

(
1.4756
0.6147

)>
,

and the `1-gain value is γ = 0.9644 and average dwell time switching satisfies τa ≥ 4.4728.
Figures 2 and 3 denote the event-triggered output signal ỹ(k) and the quantified output signal
ȳ(k) for nonlinear switched positive systems. The simulations of the output signal ỹ(k) and ȳ(k)
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under different initial conditions are shown in Figure 4. Figure 5 provides the simulations of the
output z(k) and the estimated output z f (k) under the asynchronous switching signal. Figure 6
shows the event-triggering release interval. The simulations of z(k) and z f (k) under different initial
conditions are given in Figure 7.
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Figure 2. Event-triggered output signal ỹ1(k) and quantified output signal ȳ1(k).
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Figure 3. Event-triggered output signal ỹ2(k) and quantified output signal ȳ2(k).
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Figure 4. The simulations of ỹ(k) and ȳ(k) under different initial conditions.
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Figure 5. The simulations of z(k) and z f (k) with an asynchronous switching signal.
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Figure 6. The event-triggering release instants and release intervals.
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Figure 7. The simulations of z(k) and z f (k) under different initial conditions.

Example 2. Consider the system (1) with two subsystems:

A1 =




0.0894 0.1462 0.2763
0.1945 0.1573 0.2645
0.1497 0.0154 0.1637


, B1 =




0.1361 0.1104
0.1476 0.0632
0.0248 0.1353


, C1 =

(
0.2 0.2 0.3
0.3 0.2 0.1

)
,

D1 =

(
0.3 0.2
0.2 0.4

)
, E1 =

(
0.1 0.1 0.2

)
, F1 =

(
0.4 0.5

)
,

A2 =




0.1523 0.0496 0.1346
0.1817 0.1977 0.0412
0.1264 0.0741 0.1255


, B2 =




0.1450 0.2144
0.2145 0.1562
0.1855 0.1786


, C2 =

(
0.3 0.1 0.1
0.1 0.3 0.2

)
,

D2 =

(
0.3 0.3
0.2 0.1

)
, E2 =

(
0.2 0.1 0.2

)
, F2 =

(
0.3 0.3

)
.
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Choose the same parameters as in Example 1. Furthermore, under dynamic event-triggering
condition (41) and (42), we give η0 = 0.60, $ = 0.50. By Theorem 2, the filter gain matrices can
be obtained:

A f 1 =




0.2388 0.2588 0.3569
0.2685 0.2962 0.3488
0.2454 0.2393 0.3122


, B f 1 =




0.2952 0.0460
0.2951 0.0451
0.3005 0.0550


, E f 1 =




0.0039
0.0034
0.1127



>

, Ff 1 =

(
1.3585
0.8493

)>
,

A f 2 =




0.1447 0.1751 0.2787
0.1513 0.1986 0.2497
0.1386 0.1620 0.2379


, B f 2 =




0.6693 0.7391
0.9234 0.6583
0.8987 0.6241


, E f 2 =




0.0660
0.0385
0.1896



>

, Ff 2 =

(
0.8772
0.5213

)>
,

and the `1-gain value is γ = 1.0796 and average dwell time switching satisfies τa ≥ 4.4728. The
dynamic event-triggered output signal ỹ(k) and the quantified output signal ȳ(k) are given in
Figures 8 and 9. Figure 10 shows the simulation results of the output z(k) and the estimated output
z f (k) under the asynchronous switching signal. Figure 11 shows the dynamic event-triggering
release interval. The simulation results of z(k) and z f (k) under different initial conditions are
shown in Figure 12.
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Figure 8. The dynamic event-triggered output signal ỹ1(k) and quantified output signal ȳ1(k).
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Figure 9. The dynamic event-triggered output signal ỹ2(k) and quantified output signal ȳ2(k).
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Figure 10. The simulations of z(k) and z f (k) with asynchronous switching signal.
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Figure 11. The dynamic event-triggering release instants and release intervals.
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Figure 12. The simulations of z(k) and z f (k) under different initial conditions.

5. Conclusions

In this paper, we investigated an event-triggered asynchronous filter of nonlinear
switched positive systems with output quantization. Based on static and dynamic event-
triggering mechanisms, an asynchronous filter was proposed using the matrix decom-
position technique. The positivity and L1-gain stability of the underlying systems were
guaranteed by using a linear copositive Lyapunov function and linear programming ap-
proach. Then, the issue of output quantization is solved under a quantizer.
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