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Article

Asymptotic Stability for the 2D Navier–Stokes Equations with
Multidelays on Lipschitz Domain

Ling-Rui Zhang 1, Xin-Guang Yang 1,* and Ke-Qin Su 2
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2 College of Information and Management Science, Henan Agricultural University, Zhengzhou 450046, China
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Abstract: This paper is concerned with the asymptotic stability derived for the two-dimensional
incompressible Navier–Stokes equations with multidelays on Lipschitz domain, which models the
control theory of 2D fluid flow. By a new retarded Gronwall inequality and estimates of stream
function for Stokes equations, the complete trajectories inside pullback attractors are asymptotically
stable via the restriction on the generalized Grashof number of fluid flow. The results in this presented
paper are some extension of the literature by Yang, Wang, Yan and Miranville in 2021, as well as also
the preprint by Su, Yang, Miranville and Yang in 2022

Keywords: Navier–Stokes equations; multidelays; Lipschitz domain

MSC: 35B40; 35B41; 35Q30; 76D03; 76D05

1. Introduction

The 2D incompressible Navier–Stokes equations govern the conservation law of fluid
flow for momentum and mass on a bounded domain with smooth boundary, which can be
described by

{
∂
∂t u− ν∆u + (u · ∇)u +∇p = F(t, x),
divu = 0,

(1)

where u and p are the velocity field and pressure for incompressible fluid flow such as
water, ν > 0 denotes the viscosity of fluid and F(t, x) is the external force.

A bounded domain Ω ⊂ Rd is said to be Lipschitz if ∂Ω can be covered by finite many
balls Bi = B(Qi, r0) with Qi ∈ ∂Ω, such that for any ball Bi there is a rectangular coordinate
system and a Lipschitz function Ψi : Rd−1 → R with

B(Qi, 3r0) ∩Ω = {(x1, x2, · · · , xd)|xd > Ψi(x1, x2, · · · , xd−1)} ∩Ω,

which can be seen in [1]. The 2D incompressible Navier–Stokes equations defined on the
Lipschitz domain have been studied in Brown, Perry and Shen [1], which presented the
well-posedness and finite fractal dimensional global attractor for an autonomous system,
which has been extended to a non-autonomous case in [2] and some related literature.

The delay on differential equations originates from the controller on boundary in
engineering, which can be described by evolutionary partial differential equations with
delayed term, and were first investigated for ordinary differential equations, such as in [3].
The Navier–Stokes equations with delay have also become interesting topics in the recent
two decades, which are important dominant physical models for fluid mechanics, such as
the wind tunnel model. The research on the well-posedness and dynamics of Navier–Stokes
equations with delay can be seen in [4–12] and the literature therein. For the Navier–Stokes
system with time-varying delay, the tempered pullback dynamics are obtained by energy

Mathematics 2022, 12, 4561. https://doi.org/10.3390/math10234561 https://www.mdpi.com/journal/mathematics1



Mathematics 2022, 12, 4561

equation approach to achieve compactness, such as in Caraballo and Real [5–7], García-
Luengo and Marín-Rubio [9] and Yang, Wang, Yan and Miranville [12]. Recently, Su,
Yang, Miranville and Yang [11] considered (2) and derived the well-posedness, regularity,
pullback dynamics and robustness. Since stability, observability and controllability are
crucial in the control theory and applications in engineering, the asymptotic stability of
complete trajectories is an important basis for the research on controllability and dynamic
systems. To the best of our knowledge, there are fewer results on the asymptotic stability
and reduction in trajectories inside pullback attractors of 2D incompressible Navier–Stokes
equations defined on Lipschitz domain which are non-smooth, this is our motivation for
this presented research.

This paper investigates the asymptotic stability of trajectories inside pullback attractors
for the two-dimensional incompressible Navier–Stokes equations with multidelays on
Lipschitz domain Ω ⊂ R2 with inhomogeneous boundary, which reads as





∂
∂t u− ν∆u + (u(t− ρ(t)) · ∇)u +∇p = f (t, u(t− ρ(t))) + g(t, x), (t, x) ∈ Ωτ ,
divu = 0, (t, x) ∈ Ωτ ,
u(t, x) = ϕ, ϕ · n = 0, (t, x) ∈ ∂Ωτ ,
u(τ, x) = u(τ), x ∈ Ω,
u(τ + θ, x) = φ(θ, x), (θ, x) ∈ Ωh,

(2)

where Ωτ = (τ,+∞) × Ω, ∂Ωτ = (τ,+∞) × ∂Ω, Ωh = [−h, 0] × Ω, τ ∈ R is the ini-
tial time and h > 0 is a positive constant. ν is the kinematic viscosity of the fluid,
u = (u1(t, x), u2(t, x)) is the unknown velocity field of the fluid, p denotes the unknown
pressure and ν is the kinematic viscosity of the fluid. The non-autonomous external forces
contain g(t, x) and continuous delay f (t, u(t− ρ(t))), where ρ(t) is the delay in [0, h]. The
function φ denotes the initial state in [−h, 0] with u(τ) = φ(0). The forcing boundary
condition ϕ ∈ L∞(∂Ω), where n is the outward unit normal to the boundary ∂Ω.

Originated from [13–16], based on the results in [11], the asymptotic stability of
trajectories inside pullback attractors for (2) are investigated in this presented paper with
features and difficulties as follows.

(I) The problem (2) contains an inhomogeneous boundary on a Lipschitz-like domain;
using the stream function ψ for the corresponding Stokes equations subject to the
same boundary condition, the inhomogeneous problem (2) can be transformed into an
equivalent homogeneous system (10). For the model (2), the delays on external force
f (·, ·) and convective term (u(·)∇)u(·) can be different as ρ1(t) and ρ2(t), which have
the same difficulty under some appropriate hypotheses in Section 2.2. For simplicity,
we assume they are the same as the case ρ1(t) = ρ2(t) = ρ(t).
Based on the global well-posedness of weak solutions and pullback attractors in [11],
the asymptotic stability of complete trajectories inside pullback attractor AMH of (18)
has been achieved by using a new retard Gronwall inequality and some estimates on
stream function for Stokes equations. Since there are two delays contained in (2), the
energy estimates cannot be obtained by using the technique as in [15,17] to achieve
the desired estimate for using differential Gronwall inequalities, which is the main
difficulty here. By introducing a new retard Gronwall inequality in [13], and using
the iteration technique, one sufficient condition (12) on generalized Grashof number
guarantees our asymptotic stability; see Theorem 5 in Section 2.4.

(II) The results in this presented paper are a further research of [15], which is a special
case of (2). The asymptotic stability of (2) is an extension of the recent work [11]. Our
work also implies the exponentially attracting property for the existence of invariant
manifold although the inertial manifolds for 2D Navier–Stokes equation is still open.

The outline is organized as follows. The main results are stated in Section 2 and proved
in the third part, which is based on the preliminary in Section 3.
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2. Main Results
2.1. Preliminary

Let E := {u|u ∈ (D(Ω))2, divu = 0}, H and V are the closure of E in (L2(Ω))2 and
(H1(Ω))2 topology, respectively; the norm and inner product of H is defined as

‖u‖2
H = (u, u), (u, v) =

2

∑
j=1

∫

Ω
uj(x)vj(x)dx

for u, v ∈ H, and for V as ‖u‖2 = ((u, u)) and

((u, v)) =
2

∑
i,j=1

∫

Ω

∂uj

∂xi

∂vj

∂xi
dx

for u, v ∈ V. It is easy to check that H and V are Hilbert spaces, V ↪→ H ≡ H′ ↪→ V′, and
the injections are dense and continuous. ‖ · ‖∗ and 〈·, ·〉 denote the norm in V′ and the dual
product between V and V′, respectively, and also H to itself.

Let PL be the Helmholz–Leray orthogonal projection in (L2(Ω))2 onto H, and A := −PL∆
the Stokes operator. The bilinear and trilinear operators are defined as B(u, v) := PL((u ·
∇)v), b(u, v, w) = 〈B(u, v), w〉, which satisfies b(u, v, v) = 0, b(u, v, w) = −b(u, w, v),
and hence

|b(u, v, w)| ≤ C‖u‖
1
2
H‖u‖

1
2 ‖v‖‖w‖

1
2
H‖w‖

1
2 , ∀ u, v, w ∈ V.

For any t ∈ (τ, T), we define u : (τ − h, T) → (L2(Ω))2, and the delayed functional
space as follows

CX = C([−h, 0]; X), ‖u‖CX = sup
θ∈[−h,0]

‖u(t + θ)‖X , X = H, V,

which are Banach spaces. Moreover, the p-power delayed integrable space can be de-
fined as Lp

X = Lp(−h, 0; X), 1 < p ≤ +∞, and the norm is similar as the general
Lebesgue space in delayed interval [−h, 0]. Moreover, the product space is defined well as
MH = H × (CH ∩ L2

V) with norm

‖(u(t), ut)‖2
MH

= ‖u(t)‖2
H + ‖ut‖2

CH
+ ‖ut‖2

L2
V

.

2.2. Hypotheses

For the well-posedness and pullback dynamics of (2), we force assumptions on ρ(t)
and f (·, ·) as follows.

(H-a) There exists m > 0 such that the external force g(·, ·) ∈ L2
loc(R, V′) satisfies

∫ t

−∞
ems‖g(s, ·)‖2

V′ds < ∞, ∀t ∈ R. (3)

(H-b) The function f (·, u) : [τ,+∞) → H is measurable for all u ∈ H, and f (t, ·) :
CH → H is continuous for all t ≥ τ. The delay ρ ∈ C1([0,+∞); [0, h]), and there exists a
positive constant ρ∗ < 1 such that | dρ

dt | ≤ ρ∗.
(H-c) There exist functions α, β : [τ,+∞) → [0,+∞), where α(·) ∈ L∞(τ, T) and

β(·) ∈ L1(τ, T) with lim sup
τ→−∞

1
t− τ

∫ t

τ
β(s)ds = β̃0 ∈ (0,+∞), such that | f (t, u)|2 ≤

α(t)|u|2 + β(t), ∀ t ≥ τ.
In addition, there exists a constant L(r) > 0 such that | f (t, w1)− f (t, w2)| ≤ L(r)γ1/2(t)

|w1 − w2| for ‖w1‖H ≤ r, ‖w2‖H ≤ r with γ̃(t) ∈ L∞(τ, T).

(H-d) ν− ‖α(t)‖L∞(τ,T)
νλ1(1−ρ∗) > 0.

3
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(H-e) Denoting

lim sup
τ→−∞

1
t− τ

∫ t

τ
α(r)dr = α0 ∈ [0,+∞), (4)

for arbitrary t ∈ R, then there exists some δ > 0 such that

eνλ1hα0

νλ1(1− ρ∗)
+

Ce
νλ1h

2 ‖ϕ‖L∞(∂Ω)

ν(1− ρ∗)
+ δ < νλ1. (5)

(H-f) Assume that

κδ(t, s) =
(

νλ1 −
Ce

νλ1h
2 ‖ϕ‖L∞(∂Ω)

ν(1− ρ∗)
− δ
)
(t− s)− eνλ1h

νλ1(1− ρ∗)

∫ t

s
α(r)dr, (6)

where

κδ(0, t)− κδ(0, s) = −κδ(t, s) (7)

and

κδ(0, r) ≤ κδ(0, t) +
(

νλ1 −
Ce

νλ1h
2 ‖ϕ‖L∞(∂Ω)

ν(1− ρ∗)
− δ
)

h (8)

if νλ1 −
Ce

νλ1h
2 ‖ϕ‖L∞(∂Ω)

ν(1−ρ∗) − δ > 0 for r ∈ [t− h, t].
The function β(·) satisfies the pullback tempered condition

∫ t

−∞
e−κδ(t,s)β(s)ds < +∞. (9)

2.3. Well-Posedness and Pullback Dynamics

The problem (2) can be transformed into the following equivalent homogeneous
system in abstract form





∂v
∂t + νAv + B(v(t− ρ(t)), v) + B(v(t− ρ(t)), ψ) + B(ψ, v)

= PL(g(t, x) + f (t, u(t− ρ(t))) + νF)− B(ψ), (t, x) ∈ Ωτ ,
divv = 0, (t, x) ∈ Ωτ ,
v = 0, (t, x) ∈ ∂Ωτ ,
v(τ, x) = v(τ), x ∈ Ω,
v(θ) = η(θ, x) = η(θ), (θ, x) ∈ Ωh.

(10)

Theorem 1. (Global weak solution) Let (v(τ), η) ∈ MH , and the hypotheses (H-a)-(H-d) hold.
Then, there exists at least one global weak solution v(t, x) to system (10) on [τ − h, T].

Proof. See, e.g., the details in Su, Yang, Miranville and Yang [11].

Theorem 2. (Uniqueness) Assume the hypotheses in Theorem 1 hold. Moreover, we assume that
for any r > 0, there exists a constant L(r) > 0 such that

| f (t, w1)− f (t, w2)| ≤ L(r)γ1/2(t)|w1 − w2|, ∀ t ≥ τ, ‖w1‖H ≤ r, ‖w2‖H ≤ r, (11)

where γ ∈ L∞(τ, T) : [τ, T)→ [0,+∞). Then, the global weak solution in Theorem 1 is unique,
which generates a continuous process {S(t, τ)} in MH .

Proof. See, e.g., the details in Su, Yang, Miranville and Yang [11].

4
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Remark 1. Originated from the idea to deal with uniform attractors in Chepyzhov and Vishik
[18], based on global well-posedness in the phase space MH , the global solution generates a process
S(t, τ) : MH → MH , which has the similar property of skew product flow as in [18].

The existence of a minimal family of pullback attractors for problem (18) can be stated
as follows.

Theorem 3. (Tempered pullback dynamics) Suppose that f : R×CH → H satisfies the hypotheses
(H-a)–(H-d); let the functions α(·) and β(·) satisfy (H-e)–(H-f). Then, for any (v(τ), η) ∈ MH , the
process (S(t, τ); MH) generated by the global weak solutions of problem (10) possesses a minimal
family of tempered pullback attractors Aκδ

in H × CH , for all κδ ∈ (0, κδ(t, τ)]. Moreover, if we
choose fixed κF

δ for fixed universe to achieve pullback attractors as AF
κF

δ

, then we have the relation

AF
κF

δ

⊂ Aκδ
⊂ Aκδ(t,τ) ⊂ D

H×CH
κδ(t,τ)

.

Proof. See, e.g., the details in Su, Yang, Miranville and Yang [11].

Theorem 4. Assume (v(τ), η) ∈ MH and ν
4 >

Ce
νλ1

2 h‖ϕ‖L∞(∂Ω)

ν(1−ρ∗) +
4e

νλ1
2 h‖α(t)‖L∞(τ,T)

ν(1−ρ∗) , the process
S(t, τ) : MH → MH generated by the system (10) possesses a minimal family of D-pullback
attractors A = {A(t)}t∈R in MH .

Proof. See, e.g., the details in Su, Yang, Miranville and Yang [11].

2.4. Asymptotic stability

Definition 1. The pullback attractors are asymptotically stable if the trajectories inside the at-
tractors reduce to a single orbit as τ → −∞, which also demonstrates the exponentially tracking
property.

Based on the global well-posedness and the existence of tempered and D-pullback
attractors for problems (2) and (18) in [11], we present our main result as the following
theorem.

Theorem 5. Assume the external force g ∈ L2
loc(R; V′) and the hypothesis (H-a)-(H-d) hold,

the initial data (u(τ), φ) ∈ MH . Then, the trajectories’ pullback attractor A = {A(t)}|t≥τ is

asymptotically stable if G(t) + K0 ≤ 2ν
7(1+γ)

, where G2(t) =
〈‖g‖2

V′ 〉|≤t

ν2λ1
is a generalized Grashof

number for the fluid flow, and

2
7(1 + γ)

K0 =
[C‖ϕ‖L∞(∂Ω)

ν
+

C
νλ1
‖α(t)‖L∞

]C|Ω|
νλ1
‖β‖L1(τ,T)

+
C|Ω|
νλ1

β̃0 +
C|Ω|‖ϕ‖2

L∞(∂Ω)

2νλ1
‖α(t)‖L∞(τ,T)

+
[C‖ϕ‖L∞(∂Ω)

ν2λ1
+

C
ν2λ2

1
‖α(t)‖L∞ + 1

][Cν|∂Ω|
ε
‖ϕ‖2

L∞(∂Ω) +
Cε‖ϕ‖4

L∞(∂Ω)|∂Ω|
ν

]
, (12)

where γ > 0 is defined by the retard Gronwall inequality determined by the parameters in our problem.

3. The Proof of Theorem 5
3.1. A Retarded Gronwall Inequality

Lemma 1. (See [13]) Considering the following retarded integral inequalities for

y(t) ≤ E(t, τ)‖yτ‖X +
∫ t

τ
K1(t, s)‖ys‖Xds +

∫ ∞

t
K2(t, s)‖ys‖Xds + ρ, ∀ t ≥ τ ≥ 0, (13)

5



Mathematics 2022, 12, 4561

where E, K1 and K2 are non-negative measurable functions on R2, and ρ ≥ 0 denotes a constant.
Let X be a Banach space with a spatial variable, then we use ‖ · ‖ to denote the norm of space
C([−h, 0]; X) for some h ≥ 0, y(t) ≥ 0 is a continuous function defined on C([−h, T]; X),
yt(s) = y(t + s) for s ∈ [−h, 0]. Let

L(E, K1, K2, ρ) = {y ∈ C([−h, T]; X)|y ≥ 0 and satisfies the inequality (13)},

and

κ(K1, K2) = sup
t≥τ

( ∫ t

τ
K1(t, s)ds +

∫ ∞

t
K2(t, s)ds

)

with κ(K1, K2) < +∞. Assume that limt→+∞ E(t + s, s) = 0 uniformly with respect to s ∈ R+,
and denote ϑ = sup

t≥s≥τ
E(t, s) and κ = κ(K1, K2), then we have the following estimates:

(1) If κ < 1, then for any R, ε > 0, there exists T̃ > 0 such that

‖yt‖X < µρ + ε, (14)

for t > T̃ and all bounded functions y ∈ L(E, K1, K2, ρ) with ‖y0‖ ≤ R, where µ = 1
1−κ .

(2) If κ < 1
1+ϑ , then there exist parameters M > 0 and λ > 0, which are independent on ρ

such that

‖yt‖X ≤ M‖y0‖Xe−λt + γρ, t ≥ τ (15)

for all bounded functions y ∈ L(E, K1, K2, ρ), where γ = µ+1
1−κc and c = max{ ϑ

1−κ , 1}.

3.2. The Stokes Problem on Lipschitz Domains

From [1], the stream function ψ solves the following Stokes system on the Lipschitz do-
main 



−∆u +∇q = 0, x ∈ Ω,
divu = 0, x ∈ Ω,
u = ϕ a.e. x ∈ ∂Ω in the sense of non-tangential convergence.

(16)

Assume that u = (u1, u2) is the solution to (16) with ϕ ∈ L∞(∂Ω) and ϕ · n = 0, then
we define the stream function ψ satisfying (16) and





‖ψ‖L∞(Ω) ≤ C‖ϕ‖L∞(∂Ω),
sup
x∈Ω
|ψ(x)|+ sup

x∈Ω
|∇ψ(x)|dist(x, ∂Ω) ≤ C‖ϕ‖L∞(∂Ω),

‖|∇ψ|dist(·, ∂Ω)
1− 1

p ‖Lp(Ω) ≤ C‖ϕ‖Lp(∂Ω), 2 ≤ p ≤ ∞.

In addition, the stream function ψ can be written as the following form ∆ψ = ∇(qηε) +
F, where suppF ⊂ {x ∈ Ω; C′1ε ≤ dist(x, ∂Ω) ≤ C′2ε} and |F| ≤ C

ε3/2 ‖ϕ‖L2(∂Ω). The above
estimate is based on the singular operator and Hardy’s inequality as

∫

Ω

|u(x)|2
[dist(x, ∂Ω)]2

dx ≤ C
∫

Ω
|∇u(x)|2dx, ∀u ∈ V. (17)

3.3. Proof of Main Results

Proof. By an equivalent system as (18) and stationary equation as (16), the trajectories in
pullback attractors of systems (2) and (18) are synchronous, which implies we only need to
consider the asymptotic stability of trajectories inside the pullback attractor for (18). The
proofs are divided into the following steps.

Step 1: Some estimates of differencing equations

6
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Setting v = u − ψ and (v(τ), η) ∈ H × (CH ∩ L2
V), then (2) can be transformed

into the following equivalent abstract functional evolutionary differential equations with
homogeneous boundary condition





∂v
∂t + νAv + B(v(t− ρ(t)), v) + B(v(t− ρ(t)), ψ) + B(ψ, v)

= PL( f (t, u(t− ρ(t))) + g(t, x) + νF)− B(ψ),
divv = 0,
v|∂Ω = 0,
v(τ, x) = v(τ),
v(θ) = η(θ), θ ∈ [τ − h, τ].

(18)

Let v(t) and ṽ(t) be two global solution orbits for problem (18) inside the D-pullback
attractor with initial data

v(τ + θ)|θ∈[−h,0] = η(θ), v|t=τ = v(τ),

ṽ(τ + θ)|θ∈[−h,0] = η̃(θ), ṽ|t=τ = ṽ(τ),

respectively.
By the procedure in achieving the D-pullback attractors in [11], the global weak

solution for (18) generates a continuous process S(t, τ) in MH = H × (CH ∩ L2
V) as

(v, vt) = S(t, τ)(v(τ), η) and (ṽ, ṽt) = S(t, τ)(ṽ(τ), η̃), (19)

which are also two trajectories inside the pullback attractors A = {A(t)}t∈R in MH , here,
vt = v(t + s) for s ∈ [−h, 0].

Denoting w = v(t)− ṽ(t) and wt = vt − ṽt by some simple computation, it is easy
to check that w satisfies the following initial and boundary value problem for functional
evolutionary partial differential equations as





∂w
∂t + νAw + B(w(t− ρ(t)), v) + B(ṽ(t− ρ(t)), w) + B(w(t− ρ(t)), ψ) + B(ψ, w)

= PL( f (v(t− ρ(t))) + ψ)− f (ṽ(t− ρ(t)) + ψ)),
divw = 0,
w|∂Ω = 0,
w(t = τ) = v(τ)− ṽ(τ),
w(τ + θ) = η(θ)− η̃(θ), θ ∈ [−h, 0].

(20)

Multiplying (20) by w at both sides, using Poincaré’s inequality, noting the property of
the trilinear operator (B(ṽ(t− ρ(t)), w), w) = 0 and (B(ψ, w), w) = 0, we derive that

1
2

d
dt
‖w‖2

H + ν‖w‖2 ≤
∣∣∣(B(w(t− ρ(t)), v) + B(w(t− ρ(t)), ψ), w)

∣∣∣

+
∣∣∣(PL( f (v(t− ρ(t)) + ψ)− f (ṽ(t− ρ(t)) + ψ)), w)

∣∣∣. (21)

Using the Hardy and Hölder inequalities, we have
∣∣∣(B(w(t− ρ(t)), v, w)

∣∣∣ ≤
∫

Ω
|(w(t− ρ(t))||∇w||v|dx

≤ 1
2
‖v‖2‖w(t)‖2 +

C
2
‖w(t− ρ(t))‖2

H (22)

and
∣∣∣(B(w(t− ρ(t), ψ), w)

∣∣∣ ≤ C‖ϕ‖L∞(∂Ω)

∫

dist(x,∂Ω)≤C′2ε

|w(t)||w(t− ρ(t))|
dist(x, ∂Ω)

dx

≤ ν

4
‖w‖2 +

C‖ϕ‖L∞(∂Ω)

ν
‖w(t− ρ(t))‖2

H (23)

7
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and

|( f (t, v(t− ρ(t)) + ψ)− f (t, ṽ(t− ρ(t)) + ψ), w)|

≤ ν

4
‖w(t)‖2 +

1
νλ1

L2(r)γ̃(t)‖w(t− ρ(t))‖2
H . (24)

We can use the Poincaré and Gronwall inequalities to achieve the hypothesis in Lemma
1 for the asymptotic stability of trajectories inside D-pullback attractors A in [11], provided
that

νλ1 − ‖v‖2
V > 0, (25)

then, we can obtain

‖w‖2
H ≤ e

∫ t
τ −(νλ1−‖v‖2

V)ds‖v(τ)− ṽ(τ)‖2
H +

+
[C

2
+

C‖ϕ‖L∞(∂Ω)

ν
+

1
νλ1

L2(r)‖γ̃‖L∞(τ,T)

] ∫ t

τ
e−
∫ t

s (νλ1−‖v‖2
V)dσ‖wt‖2

Hds. (26)

Denoting

E(t, τ) = e−
∫ t

τ (νλ1−‖v‖2
V)ds,

K1(t, s) =
[C

2
+

C‖ϕ‖L∞(∂Ω)

ν
+

1
νλ1

L2(r)‖γ̃(t)‖L∞

]
e−
∫ t

s (νλ1−‖v‖2
V)dσ,

Θ = sup
t≥s≥τ

E(t, s), κ(K1, 0) = sup
t≥τ

∫ t

τ
K1(t, s)ds,

noting the assumption and inequality in Lemma 1, choosing κ(K1, 0) < 1
1+Θ . In fact, since

v ∈ L∞(τ, T; H) ∩ L2(τ, T; V), we have

sup
t≥τ

∫ t

τ
K1(t, s)ds ≤ sup

t≥τ

M
(

C
2 +

C‖ϕ‖L∞(∂Ω)

ν + 1
νλ1

L2(r)‖γ̃(t)‖L∞

)

νλ1
[1− e−νλ1(t−τ)] (27)

and there exists a pullback time τ̄ << τ such that κ(K1, 0) < 1
2 , which implies the assump-

tion in Lemma 1 holds.
Hence, from Lemma 1, there exist M̄ > 0 and µ > 0, such that we can obtain the

following estimate

‖w(t− ρ(t))‖2
H ≤ M

[
‖v(τ)− ṽ(τ)‖2

H + ‖η(θ)− η̃(θ)‖2
L2

V

]
e−µ(t−τ). (28)

Substituting (28) into (21), we can conclude the following estimate

‖w‖2
H ≤ e

∫ t
τ −(νλ1−‖v‖2

V)ds‖v(τ)− ṽ(τ)‖2
H +

+M
[
‖v(τ)− ṽ(τ)‖2

H + ‖η(θ)− η̃(θ)‖2
L2

V

]
e−µ(t−τ)

×
[C

2
+

C‖ϕ‖L∞(∂Ω)

ν
+

1
νλ1

L2(r)‖γ̃(t)‖L∞

] ∫ t

τ
e−
∫ t

s (νλ1−‖v‖2
V)dσds. (29)

Step 2: The sufficient condition on asymptotic stability via generalized Grashof
number

Combining (28) with (29), considering the trajectories represented by (19) for fixing
initial data, and letting τ → −∞, we can then conclude that the trajectories inside pullback

8
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attractors reduce to a single one, which implies the asymptotic stability provided that
νλ1 > 〈‖v‖2

V〉≤t, where 〈h〉≤t is defined as

〈h〉≤t = lim sup
τ→−∞

1
t− τ

∫ t

τ
h(r)dr. (30)

Since v and ṽ are two global weak solutions for (18), we use Lemma 1 for a iteration
procedure and some delicate estimates to present a sufficient condition for asymptotic
stability of trajectories inside the pullback attractors by virtue of the uniform boundedness
of stream function.

Taking the inner product of (18) with u in H, this yields

1
2

d
dt
‖v‖2

H + ν‖v‖2

≤ |(PL( f (t, v(t− ρ(t)) + ψ) + νF), v)|+ |(B(ψ, ψ), v)|
+|(B(v(t− ρ(t)), ψ), v)|+ |〈g, v〉|. (31)

Using the Hardy and Hölder inequalities, by virtue of estimates for stream function in
Section 3.2 and ‖ϕ‖L2(∂Ω) ≤ C|∂Ω|1/2‖ϕ‖L∞(∂Ω) from [1], we obtain

|b(v(t− ρ(t)), ψ, v)| ≤ C‖ϕ‖L∞(∂Ω)

∫

dist(x,∂Ω)≤C′2ε

|v(t)||v(t− ρ(t))|
[dist(x, ∂Ω)]

dx

≤ ν

14
‖v‖2 +

C‖ϕ‖L∞(∂Ω)

ν
‖v(t− ρ(t))‖2

H , (32)

|(B(ψ, ψ), v)| ≤ C‖ϕ‖L∞(∂Ω)

∫

Ω

|v|
dist(x, ∂Ω)

|ψ|dx

≤ Cε1/2‖ϕ‖2
L∞(∂Ω)|∂Ω|1/2‖v‖

≤ ν

14
‖v‖2 +

Cε‖ϕ‖4
L∞(∂Ω)|∂Ω|

ν
(33)

and

ν|〈F, v〉| ≤ Cν√
ε
‖ϕ‖L2(∂Ω)‖v‖ ≤

ν

14
‖v‖2 +

Cν|∂Ω|
ε
‖ϕ‖2

L∞(∂Ω), (34)

|〈g, v〉| ≤ ν

14
‖v‖2 +

7/2
ν
‖g(t)‖2

V′ . (35)

By hypotheses (H-a)-(H-d), the estimates of stream function and the Minkowski
inequality, we can derive that

( f (t, v(t− ρ(t)) + ψ), v(t))

≤ α
1
2 (t)‖v(t− ρ(t))‖H‖v(t)‖H + α

1
2 (t)|ψ|‖v(t)‖H + β

1
2 (t)‖v(t)‖H

≤ C
νλ1

α(t)‖v(t− ρ(t))‖2
H +

ν

14
‖v(t)‖2 +

C|Ω|‖ϕ‖2
L∞(∂Ω)

2νλ1
α(t) +

C|Ω|
νλ1

β(t). (36)

Combining (31)–(36), we obtain

d
dt
‖v‖2 + ν‖v‖2

≤
[C‖ϕ‖L∞(∂Ω)

ν
+

C
νλ1
‖α(t)‖L∞

]
‖v(t− ρ(t))‖2

H +
C|Ω|‖ϕ‖2

L∞(∂Ω)

2νλ1
α(t) +

C|Ω|
νλ1

β(t)

+
Cν|∂Ω|

ε
‖ϕ‖2

L∞(∂Ω) +
Cε‖ϕ‖4

L∞(∂Ω)|∂Ω|
ν

+
7/2

ν
‖g(t)‖2

V′ . (37)

9
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By using the Poincaré inequality and Lemma 1, we can conclude that

‖v‖2
H ≤ e−νλ1(t−τ)‖v(τ)‖2

H +
C|Ω|‖ϕ‖2

L∞(∂Ω)

νλ1

∫ t

τ
e−νλ1(t−s)α(s)ds

+
C|Ω|
νλ1

∫ t

τ
e−νλ1(t−s)β(s)ds

+
[C‖ϕ‖L∞(∂Ω)

ν
+

C
νλ1
‖α(t)‖L∞

] ∫ t

τ
e−νλ1(t−s)‖v(s− ρ(s))‖2

Hds

+
1

νλ1

[Cν|∂Ω|
ε
‖ϕ‖2

L∞(∂Ω) +
Cε‖ϕ‖4

L∞(∂Ω)|∂Ω|
ν

]
(1− e−νλ1(t−τ))

+
7/2

ν

∫ t

τ
e−νλ1(t−s)‖g‖2

V′ds. (38)

Denoting

E(t, τ) = e−νλ1(t−τ),

K1(t, s) =
[C‖ϕ‖L∞(∂Ω)

ν
+

C
νλ1
‖α(t)‖L∞

]
e−νλ1(t−s),

ρ =
C|Ω|‖ϕ‖2

L∞(∂Ω)

νλ1

∫ t

τ
e−νλ1(t−s)α(s)ds +

C|Ω|
νλ1

∫ t

τ
e−νλ1(t−s)β(s)ds

+
1

νλ1

[Cν|∂Ω|
ε
‖ϕ‖2

L∞(∂Ω) +
Cε‖ϕ‖4

L∞(∂Ω)|∂Ω|
ν

]
(1− e−νλ1(t−τ))

+
7/2

ν

∫ t

τ
e−νλ1(t−s)‖g‖2

V′ds,

Θ = sup
t≥s≥τ

E(t, s), κ(K1, 0) = sup
t≥τ

∫ t

τ
K1(t, s)ds,

choosing a small enough τ̃ << τ such that κ(K1, 0) < 1
1+Θ , then by using Lemma 1, there

exist parameters M̂ > 0, γ > 0 and µ̂ > 0, such that we can obtain the estimate

‖v(t− ρ(t))‖2
H ≤ M̂

[
‖v(τ)‖2

H + ‖η‖2
L2

V

]
e−µ̃(t−τ) + γ

[7/2
ν

∫ t

τ
e−νλ1(t−s)‖g‖2

V′ s

+
C|Ω|‖ϕ‖2

L∞(∂Ω)

νλ1

∫ t

τ
e−νλ1(t−s)α(s)ds +

C|Ω|
νλ1

∫ t

τ
e−νλ1(t−s)β(s)ds

+
1

νλ1

(Cν|∂Ω|
ε
‖ϕ‖2

L∞(∂Ω) +
Cε‖ϕ‖4

L∞(∂Ω)|∂Ω|
ν

)
(1− e−νλ1(t−τ))

]
(39)

Substituting (39) into (38), integrating (37) over [τ, t], we can obtain

‖v‖2
H ≤ e−νλ1(t−τ)‖v(τ)‖2

H + C1

[
‖v(τ)‖2

H + ‖η‖2
L2

V

]
e−µ̃(t−τ)

+C2

[
‖g(t)‖2

L2(τ,T;V′) + ‖α(t)‖L∞(τ,T) + ‖β(t)‖L1(τ.T) + 1
]

(40)

and

10
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ν

t− τ

∫ t

τ
‖v(r)‖2

Vdr ≤
[C‖ϕ‖L∞(∂Ω)

ν
+

C
νλ1
‖α(t)‖L∞

]{
M̂
[
‖v(τ)‖2

H + ‖η‖2
L2

V

]
e−µ̃(t−τ)

+γ
[C|Ω|‖ϕ‖2

L∞(∂Ω)

νλ1

∫ t

τ
e−νλ1(t−s)α(s)ds +

C|Ω|
νλ1

∫ t

τ
e−νλ1(t−s)β(s)ds

+
1

νλ1

(Cν|∂Ω|
ε
‖ϕ‖2

L∞(∂Ω) +
Cε‖ϕ‖4

L∞(∂Ω)|∂Ω|
ν

)]}

+
C|Ω|‖ϕ‖2

L∞(∂Ω)

2νλ1
‖α(t)‖L∞(τ,T) +

C|Ω|
νλ1

β̃0

+
Cν|∂Ω|

ε
‖ϕ‖2

L∞(∂Ω) +
Cε‖ϕ‖4

L∞(∂Ω)|∂Ω|
ν

+
7(1 + γ)

2ν
‖g(t)‖2

V′ . (41)

Combining (37)–(41), we conclude the asymptotic stability holds, provided that

〈‖v‖2
V〉|≤t ≤

[C‖ϕ‖L∞(∂Ω)

ν
+

C
νλ1
‖α(t)‖L∞

]C|Ω|
ν2λ1

‖β‖L1(τ,T) +
C|Ω|
ν2λ1

β̃0

+
C|Ω|‖ϕ‖2

L∞(∂Ω)

ν2λ1
‖α(t)‖L∞(τ,T) +

7(1 + γ)

2ν2 〈‖g‖2
V′〉|≤t

+
[C‖ϕ‖L∞(∂Ω)

ν3λ1
+

C
ν3λ2

1
‖α(t)‖L∞ + 1

][Cν|∂Ω|
ε
‖ϕ‖2

L∞(∂Ω) +
Cε‖ϕ‖4

L∞(∂Ω)|∂Ω|
ν

]

≤ νλ1. (42)

If the generalized Grashof number is defined as G(t) =
( 〈‖g‖2

V′ 〉|≤t

ν2λ1

)1/2
, then we can

deduce a sufficient condition for the asymptotic stability of trajectories inside pullback
attractors as

G(t) + K0 ≤
2ν

7(1 + γ)
, (43)

which completes the proof for our work.

4. Conclusions and Further Research

Based on the well-posedness and pullback dynamics for 2D Navier–Stokes equations
with double time-varying delays defined on a Lipschitz-like domain in [11], this presented
work investigated the asymptotic stability of complete trajectories inside a pullback attractor
of problem (2), which is an extension of [11,12]. However, when the delay is infinite, the
dynamics and asymptotic stability are still open, which is our interest in the future.
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1. Introduction

In nonlinear mathematical physics, the derivation, solution and integrability of equa-
tions are important topics [1–14]. Generally, an evolution equation is called integrable in
the sense of Lax if it can be written as the compatibility condition between the related linear
spectral problem and the adjoint time evolution equation [2]. For example [5], the well-
known Korteweg-de Vries (KdV) equation ut + 6uux + uxxx = 0 has the Lax integrability
owing to the compatibility condition [8]:

[L, N − ∂t] ≡ L(N − ∂t)− (N − ∂t)L = 0, (1)

of a pair of given linear problems:

Lφ = λφ, L = ∂2
x + u, (2)

Lφ = λφ, N = −4∂3
x − 6u∂x − 3ux − ∂t, (3)

where the eigenfunction φ and the potential function u are dependent on the space variable
x and the time variable t, and the spectral parameter λ is a constant.

Since the isospectral AKNS matrix problem [2]:

φx = Mφ, M =

(−λ q
r λ

)
, φ =

(
φ1(x, t)
φ2(x, t)

)
, λ= ik,

dk
dt

= 0 (4)

and its adjoint time evolution equation:

φt = Nφ, N =

(
A B
C −A

)
(5)
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were proposed in 1974, a large number of important integrable equations [1–9] have been
derived from the compatibility condition of Equations (4) and (5):

Mt − Nx + [M, N] = 0, [M, N] ≡ MN − NM, (6)

such as the KdV equation, the modified KdV (mKdV) equation, the nonlinear Schrödinger
(NLS) equation, and the sine-Gordon equation. In Equations (4) and (5), q and r are two
smooth potential functions of x and t; A, B and C are three undetermined functions of
x, t, q, r and λ; and i is the imaginary unit. The findings of a large number of integrable
equations are due to the pioneering work of Lax’s scheme [1], including Equations (1)
and (6) and their generalizations [5–9]. The generalizations of Equations (4) and (5) can
be summarized as follows: (i) extending the isospectrum λ, which is independent of
t, to the nonisospectral case depending on t; (ii) embedding some coefficient functions
into the evolution equation satisfied by the nonisospectrum λ and/or the function A
for the derivation of time-varying nonisospectral equations or isospectral equations with
time-varying coefficient functions; (iii) coupling isospectral equations and nonisospectral
equations to mixed spectral equations; (iv) modifying local equations to nonlocal equations;
(v) extension of the equations with integer-order derivatives to fractional-order equations.

From the view of physics, the variable-coefficient equations and nonisospectral equa-
tions can be used to describe solitary waves in nonuniform media, and they have their own
advantages [8] in being more suitable for approaching the essence of nonlinear phenomena
than the constant-coefficient equations or isospectral equations. This work aims at general-
izing Equations (4) and (5) to other different forms by proposing that the spectral parameter
λ= ik and the undetermined function A satisfy the following time evolution equation:

i
dk
dt

=
1
2
[δ(t) + 2ikβ(t)], (7)

and assumption:

A = ∂−1(r, q)
(−B

C

)
− 1

2
[δ(t) + 2ikβ(t)]x− 1

2
α(t)(2ik)3 − 1

2
γ(t), (8)

respectively. Here α(t), β(t), γ(t) and δ(t) are time-varying integrable functions, and B
and C are supposed as:

(−B
C

)
= α(t)L2

(−q
r

)
+ β(t)

(−xq
xr

)
+ 2ikα(t)L

(−q
r

)
+ α(t)(2ik)2

(−q
r

)
, (9)

with

L = σ∂ + 2
(

q
−r

)
∂−1(r, q), ∂ =

∂

∂x
, ∂−1 =

1
2
(
∫ x

−∞
−
∫ +∞

x
)dx, σ =

(−1 0
0 1

)
. (10)

As a results, a novel system of integrable evolution equations:
(

q
r

)

t
=

(
α(t)qxxx − 6α(t)qrqx + β(t)q + β(t)xqx − δ(t)xq− γ(t)q
α(t)rxxx − 6α(t)qrrx + β(t)r + β(t)xrx + δ(t)xr + γ(t)r

)
, (11)

is derived in Section 2 for the first time. Equation (11) is a mixed spectral system and this,
due to Equation (7), contains two kinds of spectra. One is isospectrum under the case of
δ(t) + 2ikβ(t) = 0, and the other becomes nonisospectrum when δ(t) + 2ikβ(t) 6= 0. Thus,
we call such a parameter ik in Equation (7) a mixed spectrum. Meanwhile, Equation (11) is
called a mixed spectral system. Several special cases of Equation (11) and their correspond-
ing simplified forms of Equations (7) and (8) can be found in Section 3. In Section 4, the
inverse scattering method [2,3,9] combined with the mixed spectral parameter ik satisfying
Equation (7) is established to solve Equation (11), and implicit solutions are obtained.

14
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Considering the reflectionless potential, the explicit unified formulae are reduced from
the obtained implicit analytical solutions in Section 4. As a conclusion, we summarize the
results of this article in Section 5.

2. Derivation of Equation (11) by Lax’s Scheme

Substituting the matrices M and N in Equations (4) and (5) into Equation (6), we have:

− i
dk
dt
− Ax + qC− rB = 0, (12)

qt − Bx − 2ikB− 2qA = 0, (13)

rt − Cx + 2ikC + 2rA = 0. (14)

Then, the substitution of Equations (7) and (8) into Equations (12)–(14) shows that
Equation (12) holds automatically, and Equations (13) and (14) are converted as follows:
(

q
r

)

t
= L

(−B
C

)
− 2ik

(−B
C

)
+ [α(t)(2ik)3 + γ(t)]

(−q
r

)
+ [δ(t) + 2ikβ(t)]

(−xq
xr

)
. (15)

Further, we suppose that:

(−B
C

)
=

4

∑
i=1

(−bi
ci

)
(2ik)4−i, (16)

where bi and ci are all undetermined functions of x and t. Substituting Equation (16) into
Equation (15) and comparing the coefficients of the same powers of 2ik yields:

(2ik)0:
(

q
r

)

t
= L

(−b4
c4

)
+ δ(t)

(−xq
xr

)
+ γ(t)

(−q
r

)
, (17)

(2ik)1:
(−b4

c4

)
= L

(−b3
c3

)
+ β(t)

(−xq
xr

)
, (18)

(2ik)2:
(−b3

c3

)
= L

(−b2
c2

)
, (19)

(2ik)3:
(−b2

c2

)
= L

(−b1
c1

)
+ α

(−q
r

)
, (20)

(2ik)4:
(−b1

c1

)
= 0. (21)

Using Equations (18)–(21) we have:
(−b2

c2

)
= L

(−b1
c1

)
+ α(t)

(−q
r

)
= α(t)

(−q
r

)
, (22)

(−b3
c3

)
= L

(−b2
c2

)
= α(t)L

(−q
r

)
, (23)

(−b4
c4

)
= L

(−b3
c3

)
+ β(t)

(−xq
xr

)
= α(t)L2

(−q
r

)
+ β(t)

(−xq
xr

)
, (24)

and then Equation (17) gives:
(

q
r

)

t
= α(t)L3

(−q
r

)
+ β(t)L

(−xq
xr

)
+ δ(t)

(−xq
xr

)
+ γ(t)

(−q
r

)
. (25)

15
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Employing Equation (10), we easily find:

L
(−xq

xr

)
=

(
q + xqx
r + xrx

)
+ 2
(

q
−r

)
∂−1(−rxq + qxr) =

(
q + xqx
r + xrx

)
, (26)

L3
(−q

r

)
= L

(−qxx + 2q2r
rxx − 2qr2

)
=

(
qxxx − 6qrqx
rxxx − 6qrrx

)
, (27)

and finally arrive at Equation (11) by means of Equations (25)–(27).
It should be noted that Equation (11) or Equation (25) cannot be included in the known

mixed spectral AKNS hierarchy [7]:
(

q
r

)

t
= L2n+1

(−xq
xr

)
+ L2n

(−q
r

)
, (n = 0, 1, 2, · · · ). (28)

In fact, Equation (25) contains one sum of two nonisospectral terms:

L
(−xq

xr

)
=

(
q + xqx
r + xrx

)
,
(−xq

xr

)
, (29)

which cannot occur simultaneously in Equation (28). Similarly, Equation (28) cannot contain
the other sum of two isospectral terms:

L3
(−q

r

)
=

(
qxxx − 6qrqx
rxxx − 6qrrx

)
,
(−q

r

)
. (30)

In addition, all the four time-varying coefficient functions α(t), β(t), γ(t) and δ(t) are
absent in Equation (28).

3. Special Cases of Equation (11)

Proper selections of α(t), β(t), γ(t) and δ(t) can give some special cases of Equation (11),
including the known equations.

Special case 1. Constant-coefficient mixed spectral AKNS equations under the case of
α(t) = β(t) = γ(t) = δ(t) = 1:

(
q
r

)

t
=

(
qxxx − 6qrqx + q + xqx − xq− q
rxxx − 6qrrx + r + xrx − xr− r

)
, (31)

associated with:
i
dk
dt

=
1
2
+ ik, (32)

A = ∂−1(r, q)
(−B

C

)
− 1

2
(1 + 2ik)x− 1

2
(2ik)3 − 1

2
, (33)

(−B
C

)
= L2

(−q
r

)
+

(−xq
xr

)
+ 2ikL

(−q
r

)
+ (2ik)2

(−q
r

)
. (34)

Special case 2. Constant-coefficient isospectral AKNS equations [5] under the case of
α(t) = 1 and β(t) = γ(t) = δ(t) = 0:

(
q
r

)

t
=

(
qxxx − 6qrqx
rxxx − 6qrrx

)
, (35)

associated with:
i
dk
dt

= 0, (36)

16
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A = ∂−1(r, q)
(−B

C

)
− 1

2
(2ik)3,

(−B
C

)
= L2

(−q
r

)
+ 2ikL

(−q
r

)
+ (2ik)2

(−q
r

)
. (37)

Special case 3. Constant-coefficient nonisospectral AKNS equations [5] under the case of
α(t) = γ(t) = δ(t) = 0 and β(t) = 1:

(
q
r

)

t
=

(
q + xqx
r + xrx

)
, (38)

associated with:
i
dk
dt

= ik, (39)

A = ∂−1(r, q)
(−B

C

)
− ikx,

(−B
C

)
=

(−xq
xr

)
. (40)

Special case 4. Variable-coefficient mixed spectral KdV equation under the case of q = 1
and r = −u:

ut = α(t)uxxx + 6α(t)uux + β(t)u + β(t)xux − δ(t)xu− γ(t)u, (41)

associated with Equation (7) and:

A = ∂−1(−u, 1)
(−B

C

)
− 1

2
[δ(t) + 2ikβ(t)]x− 1

2
α(t)(2ik)3 − 1

2
γ(t), (42)

(−B
C

)
= α(t)L2

(−1
−u

)
+ β(t)

( −x
−xu

)
+ α(t)2ikL

(−1
−u

)
+ α(t)(2ik)2

(−1
−u

)
. (43)

Special case 5. Constant-coefficient isospectral KdV equation [5] under the case of q = 1
and r = −u, α(t) = 1 and β(t) = γ(t) = δ(t) = 0:

ut = uxxx + 6uux, (44)

associated with Equation (36) and:

A = ∂−1(−u, 1)
(−B

C

)
− 1

2
(2ik)3, (45)

(−B
C

)
= L2

(−1
−u

)
+ 2ikL

(−1
−u

)
+ (2ik)2

(−1
−u

)
. (46)

Special case 6. Constant-coefficient isospectral mKdV equation [5] under the case of q = v
and r = ∓v, α(t) = 1 and β(t) = γ(t) = δ(t) = 0:

vt = vxxx − 6v2vx, (47)

associated with Equation (36) and:

A = ∂−1(∓v, v)
(−B

C

)
− 1

2
(2ik)3, (48)

(−B
C

)
= L2

(−v
∓v

)
+ 2ikL

(−v
∓v

)
+ (2ik)2

(−v
∓v

)
. (49)
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Special case 7. Constant-coefficient isospectral sine-Gordon equation [5] under the case of
q = ux/2 and r = −ux/2, α(t) = 1 and β(t) = γ(t) = δ(t) = 0:

uxt = sin u, (50)

associated with Equation (36) and:

A = ∂−1
(
−1

2
ux,

1
2

ux

)(−B
C

)
− 1

2
(2ik)3, (51)

(−B
C

)
= L2

(− 1
2 ux
− 1

2 ux

)
+ 2ikL

(− 1
2 ux
− 1

2 ux

)
+ (2ik)2

(− 1
2 ux
− 1

2 ux

)
. (52)

Special case 8. Variable-coefficient nonisospectral mKdV equation [5] under the case of
q = v and r = ∓v, β(t) = 1 and α(t) = γ(t) = δ(t) = 0:

vt = v + xvx, (53)

associated with Equations (39) and (40).

Special case 9. Variable-coefficient nonisospectral mKdV equation [5] under the case of
q = 1 and r = −u, β(t) = γ(t) = 1 and α(t) = δ(t) = 0:

ut = xux, (54)

associated with Equations (39) and:

A = ∂−1(−u, 1)
(−B

C

)
− ikx− 1

2
,
(−B

C

)
=

( −x
−xu

)
. (55)

4. Implicit Solutions of Equation (11)

In what follows, we assume that the potentials q, r and their derivatives of each order
with respect to x and t are smooth functions, and when |x|→ ∞ , they all tend to 0.

Theorem 1. Let us assume that q(x, t) and r(x, t) evolve according to Equation (11). Then, the
time-dependences of scattering data:

{
Imk = 0, R(t, k) =

b(t, k)
a(t, k)

, κj(t), cj(t), j = 1, 2, · · · , n
}

, (56)

{
Imk = 0, R(t, k) =

b(t, k)
a(t, k)

, κ j(t), cj(t), j = 1, 2, · · · , n

}
, (57)

which correspond to the mixed spectral AKNS matrix problem:

φx = Mφ, M =

(−λ q
r λ

)
, φ =

(
φ1(x, t)
φ2(x, t)

)
, i

dk
dt

=
1
2
[δ(t) + 2ikβ(t)]. (58)

are as follows:

κj(t) = e
∫ t

0 β(τ)dτ

[
κj(0)−

i
2

∫ t

0
e
∫ τ

0 β(w)dwδ(τ)dτ

]
, (59)

cj(t) = cj(0)e
1
2
∫ t

0 [α(τ)(2ikj(τ))
3+β(τ)+γ(τ)]dτ , (60)

a(t, k) = a(0, k), b(t, k) = b(0, k)e
∫ t

0 [α(τ)(2iκj(τ))
3+γ(τ)]dτ , (61)
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κ j(t) = e
∫ t

0 β(τ)dτ

[
κ j(0)−

i
2

∫ t

0
e
∫ τ

0 β(w)dwδ(τ)dτ

]
, (62)

cj(t) = cj(0)e
− 1

2
∫ t

0 [α(2ikj(τ))
3
+β(τ)+γ(τ)]dτ , (63)

a(t, k) = a(0, k), b(t, k) = b(0, k)e−
∫ t

0 [α(τ)(2iκ j(τ))
3+γ(τ)]dτ , (64)

where cj(0), cj(0), R(0, k) = b(0, k)/a(0, k) and R(0, k) = b(0, k)/a(0, k) are the normaliza-
tion factors and reflection coefficients when q(x, 0) and r(x, 0) are potentials of the mixed
spectral AKNS matrix problem (59).

Proof of Theorem 1. Since φ(x, k) satisfies Equation (58), P(x, k) = φt(x, k)− Nφ(x, k) also
satisfies Equation (58) and then can be expressed by a pair of linearly independent basic
solutions φ(x, k) and φ̃(x, k) [5] of Equation (58):

P(x, k) = φt(x, k)− Nφ(x, k) = ζ(t, k)φ(x, k) + τ(t, k)φ̃(x, k), (65)

where ζ(t, k) and τ(t, k) are two undetermined functions.
Firstly, we start from the discrete spectrum k = κj (Imκj > 0). Because when x → +∞ ,

φ(x, k) decreases exponentially while φ̃(x, k) increases exponentially, τ(t, k) = 0. In this
case, Equation (65) becomes:

φt(x, κj(t))− Nφ(x, κj(t)) = ζ(t, κj(t))φ(x, κj(t)). (66)

Using (φ2(x, κj(t)), φ1(x, κj(t))) to multiply the left-hand side of Equation (66), we have:

[φ1(x, κj(t))φ2(x, κj(t))]t − [Cφ2
1(x, κj(t)) + Bφ2

2(x, κj(t))]= 2ζ(t, κj(t))φ1(x, κj(t))φ2(x, κj(t)). (67)

Integrating Equation (67) with respect to x from −∞ to +∞, and considering the
assumption [5]:

2
∫ ∞

−∞
c2

j (t)φ1(x, κj(t))φ2(x, κj(t))dx = 1 (68)

between the normalization function φ(x, κj(t)) and the normalization factor cj(t), we
can find:

ζ(t, κj(t)) = −c2
j (t)

∫ ∞

−∞
[Cφ2

1(x, κj(t)) + Bφ2
2(x, κj(t))]dx, (69)

which has the inner product form:

ζ(t, κj(t)) = −c2
j (t)((φ

2
2(x, κj(t)), φ2

1(x, κj(t)))
T

, (B, C)T), (70)

And then it has:

ζ(t, κj(t)) = −c2
j (t)((φ

2
2(x, κj(t)), φ2

1(x, κj(t)))
T

, (B, C)T) =
1
2

β(t), (71)

Here, the following results have been used:
∫ ∞

−∞
[q(x)φ2

2(x, κj(t)) + r(x)φ2
1(x, κj(t))]dx =

∫ ∞

−∞
[φ1(x, κj(t))φ2(x, κj(t))]

x
dx = 0, (72)

(
B
C

)
= β(t)

(
xq
xr

)
+ α(t)

4

∑
l=2

Ll−2
(

q
r

)
(2ik)4−l , (73)

(
(φ2

2(x, κj(t)), φ2
1(x, κj(t)))

T
,
(

xq
xr

))
=
∫ ∞

−∞
x(φ1(x, κj(t))φ2(x, κj(t)))xdx = − 1

2c2
j (t)

. (74)
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Thus, Equation (66) reads:

φt(x, κj(t))− Nφ(x, κj(t)) =
1
2

β(t)φ(x, κj(t)). (75)

Note the asymptotic properties when x → +∞ :

N →
(

n11 0
0 −n11

)
, n11 =

1
2
[δ(t) + β(t)2iκj(t)]x +

1
2

α(t)(2iκj(t))
3 +

1
2

γ(t), (76)

φ(x, κj(t))→ cj(t)
(

0
1

)
eiκj(t)x, (77)

φt →
dcj(t)

dt

(
0
1

)
eiκj(t)x + i

dκj(t)
dt

cj(t)x
(

0
1

)
eiκj(t)x, (78)

from Equation (75) we reach:

dκj(t)
dt

= − i
2
[δ(t) + 2iκj(t)β(t)], (79)

dcj(t)
dt

=

{[
1
2

α(t)(2iκj(t))
3 +

1
2

γ(t)
]
+

1
2

β(t)
}

cj(t). (80)

Directly solving Equations (79) and (80) yields Equations (59) and (60). By a similar
way, we also obtain:

dκ j(t)
dt

= − i
2
[δ(t) + 2iκ j(t)β(t)], (81)

dcj(t)
dt

= −
{[

1
2

α(t)(2iκ j(t))
3 +

1
2

γ(t)
]
+

1
2

β(t)
}

cj(t), (82)

and hence reach Equations (62) and (63).
Secondly, we deal with the real continuous spectrum k. Taking a solution ϕ(x, k) of

Equation (58), then we can see that Q(x, k) = ϕt(x, k) − Nϕ(x, k) solves Equation (58).
Therefore, there are two linearly independent fundamental solutions ϕ(x, k) and ϕ̃(x, k) of
Equation (58), so that:

ϕt(x, k)− Nϕ(x, k) = v(t, k)ϕ(x, k) + θ(t, k)ϕ(x, k), (83)

where v(t, k) and θ(t, k) are two functions to be determined. Setting x → −∞ and using
the asymptotic properties:

ϕt(x, k)→ −i
dk
dt

x
(

1
0

)
e−ikx , ϕ(x, k)→

(
1
0

)
e−ikx , ϕ(x, k)→

(
0
−1

)
eikx , (84)

we have:

i
dk(t)

dt
=

1
2
[δ(t) + 2iβ(t)k(t)], θ(t, k) = 0, v(t, k) =

1
2

α(t)(2ik(t))3 +
1
2

γ(t). (85)

Substituting the Jost relationship:

ϕ(x, k) = a(t, k)φ(x, k) + b(t, k)φ(x, k) (86)

into Equation (83) and using asymptotic properties:

φ(x, k)→
(

0
1

)
eikx , φ(x, k)→

(
1
0

)
e−ikx , (x → +∞) , (87)
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we easily derive from Equation (83):

da(t, k)
dt

= 0,
db(t, k)

dt
= [α(t)(2ik(t))3 + γ(t)]b(t, k). (88)

Similarly, we can also have:

da(t, k)
dt

= 0,
db(t, k)

dt
= −[α(t)(2ik(t))3 + γ(t)]b(t, k). (89)

Solving Equations (88) and (89) arrives at Equations (61) and (64). The proof is completed. �

Theorem 2. Based on the time-dependences of scattering data in Equations (56) and (57) corre-
sponding to the mixed spectral AKNS matrix problem (58), the implicit solutions of Equation (11)
can be expressed by:

q = −2K1(t, x, x), (90)

r =
K2x(t, x, x)
K1(t, x, x)

, (91)

where K(t, x, y) = (K1(t, x, y), K2(t, x, y))T satisfies the Gel’fand-Levitan-Marchenko (GLM)
integral equation:

K(t, x, y)−
(

1
0

)
F(t, x + y) +

(
0
1

)∫ ∞

x
F(t, z + x)F(t, z + y)dz+

∫ ∞

x
K(t, x, s)

∫ ∞

x
F(t, z + s)F(t, z + y)dzds = 0 (92)

with:

F(t, x) =
1

2π

∫ ∞

−∞
R(t, k)eikxdk +

n

∑
j=1

c2
j (t)e

iκj(t)x, (93)

F(t, x) =
1

2π

∫ ∞

−∞
R(t, k)e−ikxdk−

n

∑
j=1

c2
j (t)e

−iκ j(t)x, (94)

where R(t, k) = b(t, k)/a(t, k), R(t, k) = b(t, k)/a(t, k), κj(t), κ j(t), cj(t) and cj(t) are deter-
mined by Equations (59)–(64).

Proof of Theorem 2. Since the proof is similar to that in [5], we omit it here. However, it
is worth noting that the scattering data in Equations (93) and (94) are different. The proof
is finished. �

5. Reflectiveless Potential Solutions of Equation (11)

Theorem 3. In the case of the reflection potentials R(t, k) = R(t, k) = 0, explicit solutions of
Equation (11) can be formulated as follows:

q = 2tr(W−1(x, t)Λ(x, t)ΛT
(x, t)), (95)

r = −
∂

∂x tr(W−1(x, t)P(x, t) ∂
∂x PT(x, t))

tr(W−1(x, t)Λ(x, t)ΛT
(x, t))

, (96)

with:

W(x, t) = I + P(x, t)PT(x, t), P(x, t) =

(
cj(t)cj(t)

κj(t)− κ j(t)
ei(κj(t)−κ j(t))x

)

n×n

, (97)

Λ = (c1(t)e−iκ1(t)x, c2(t)e−iκ2(t)x, · · · , cn(t)e−iκn(t)x)
T

, (98)
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where tr(·) represents the trace of matrix, I is the n× n identity matrix, while κj(t), κ j(t), cj(t)
and cj(t) are determined by Equations (59), (60), (62) and (63).

Proof of Theorem 3. We use K(t, x, y) = (K1(t, x, y), K2(t, x, y))T to rewrite Equation (92) as:

K1(t, x, y)− Fd(t, x + y) +
∫ ∞

x
K1(t, x, s)

∫ ∞

x
Fd(t, z + s)Fd(t, z + y)dzds = 0, (99)

K2(t, x, y) +
∫ ∞

x
Fd(t, z + x)Fd(t, z + y)dz +

∫ ∞

x
K2(t, x, s)

∫ ∞

x
Fd(t, z + s)Fd(t, z + y)dzds = 0. (100)

Considering R(t, k) = R(t, k) = 0, we simplify Equations (93) and (94) as:

∫ ∞

x
Fd(t, s + z)Fd(t, z + y)dz = −

n

∑
j=1

n

∑
m=1

ic2
j (t)c

2
m(t)

k j − km
eikj(x+s)−ikm(x+y). (101)

We suppose that:

K1(x, y, t) =
n

∑
p=1

cp(t)gp(x, t)e−ikpy, (102)

K2(x, y, t) =
n

∑
p=1

cp(t)hp(x, t)e−ikpy, (103)

and substitute them into Equations (99) and (100), then the following equations are derived
for m = 1, 2, · · · , n:

gm(x, t) + cm(t)e−ikmx +
n

∑
j=1

n

∑
p=1

c2
j (t)cm(t)cp(t)

(k j − km)(k j − kp)
ei(2kj−km−kp)xgp(x, t) = 0, (104)

hm(x, t)−
n

∑
j=1

1
(k j − km)

c2
j (t)cm(t)ei(2kj−km)x+

n

∑
j=1

n

∑
p=1

c2
j (t)cm(t)cp(t)

(k j − km)(k j − kp)
ei(2kj−km−kp)xhp(x, t) = 0. (105)

Using the notations:

g(x, t) = (g1(x, t), g2(x, t), · · · , gn(x, t))T , (106)

h(x, t) = (h1(x, t), h2(x, t), · · · , hn(x, t))T , (107)

Λ = (c1(t)e−iκ1(t)x, c2(t)e−iκ2(t)x, · · · , cn(t)e−iκn(t)x)
T

, (108)

we can rewrite Equations (104) and (105) as:

W(x, t)g(x, t) = −Λ(x, t), (109)

W(x, t)h(x, t) = iP(x, t)Λ(x, t). (110)

When W−1(x, t) exists, Equations (109) and (110) give:

g(x, t) = −W−1(x, t)Λ(x, t), (111)

h(x, t) = iW−1(x, t)P(x, t)Λ(x, t). (112)

Substituting Equations (111) and (112) into Equations (102) and (103), we have:

K1(x, y, t) = −tr(W−1(x, t)Λ(x, t)ΛT
(y, t)), (113)

K2(x, y, t) = itr(W−1(x, t)E(x, t)Λ(x, t)ΛT
(y, t)). (114)
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We finally obtain Equations (95) and (96) by the substitution of Equations (113) and (114)
into Equations (90) and (91). The proof is finished. �

As two special cases of Equations (95) and (96), we first consider n = n = 1, then
Equations (95) and (96) become:

q =
2c2

1(t)e
−2iκ1(t)x

1 + c2
1(t)c

2
1(t)

(κ1(t)−κ1(t))
2 e2i(κ1(t)−κ1(t))x

, (115)

r =
2c2

1(t)e
2iκ1x

1 + c2
1(t)c

2
1(t)

(κ1(t)−κ1(t))
2 e2i(κ1(t)−κ1(t))x

, (116)

where:

κ1(t) = e
∫ t

0 β(τ)dτ

[
κ1(0)−

i
2

∫ t

0
e
∫ τ

0 β(w)dwδ(τ)dτ

]
, (117)

c2
1(t) = c2

1(0)e
∫ t

0 [α(t)(2ikj(τ))
3+β(τ)+γ(τ)]dt, (118)

κ1(t) = e
∫ t

0 β(τ)dτ

[
κ1(0)−

i
2

∫ t

0
e
∫ τ

0 β(w)dwδ(τ)dτ

]
, (119)

c2
1(t) = c2

1(0)e
−
∫ t

0 [α(t)(2ikj(τ))
3+β(τ)+γ(τ)]dt. (120)

Selecting κ1(0) = 0.5, α(t) = t − 1, β(t) = t, γ(t) = t2 + 1 and δ(t) = i, from
Equation (109) we have:

κ1(t) = e
t2
2

[
0.5 +

1
2

√
π

2
Erf
(

t√
2

)]
, (121)

where Erf(·) is the error function. We depict in Figure 1 the dynamical evolution of the
spectrum κ1. It can be seen from Figure 1 that the dynamical evolution of κ1 presents
nonlinear characteristics.
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ever, Figure 3 shows that the space–time dynamical evolution of solution (116) does not 
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Figure 1. Nonlinear dynamical evolution of the spectrum κ1 in Equation (121).

In Figures 2 and 3, the space–time dynamical evolutions of solutions (115) and (116)
are shown by setting κ1(0) = 0.5, κ1(0) = 0.3, c1(0) = 1, c1(0) = −2× 10−15, α(t) = t− 1,
β(t) = t, γ(t) = t2 + 1 and δ(t) = i. We can see from Figure 2 that the space–time dynamical
evolution of solution (115) has the characteristics of a bell-shaped soliton. However,
Figure 3 shows that the space–time dynamical evolution of solution (116) does not have the
characteristics of a soliton, but its amplitude increases infinitely with the increase in time.
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the dynamical evolution of 1κ  and 2κ  presents nonlinear characteristics. 

Figure 2. Space–time dynamical evolution of solution (115) with κ1(0) = 0.5, κ1(0) = 0.3, c1(0) = 1,
c1(0) = −2× 10−15, α(t) = t− 1, β(t) = t, γ(t) = t2 + 1 and δ(t) = i.
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Figure 3. Space–time dynamical evolution of solution (116) with κ1(0) = 0.5, κ1(0) = 0.3, c1(0) = 1,
c1(0) = −2× 10−15, α(t) = t− 1, β(t) = t, γ(t) = t2 + 1 and δ(t) = i.

For n = n = 2, we select κ1(0) = 0.5, κ2(0) = −1, α = t− 1, β = 1, γ = t + 1 and
δ(t) = i, then two cases of Equation (59) for j = 1 and j = 2 give:

κ1(t) = et
[

0.5 +
1
2
(1− cosh t + sinht)

]
, (122)

κ2(t) = et
[
−1 +

1
2
(1− cosh t + sinht)

]
. (123)

In Figures 4 and 5, we depict the dynamical evolution of the spectrum κ1 in Equation (122)
and κ2 in Equation (123), respectively. It can be seen from Figures 4 and 5 that the dynamical
evolution of κ1 and κ2 presents nonlinear characteristics.
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Figure 4. Nonlinear dynamical evolution of the spectrum κ1 in Equation (122).

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 16 
 

 

 
Figure 4. Nonlinear dynamical evolution of the spectrum 1κ  in Equation (122). 

 
Figure 5. Nonlinear dynamical evolution of the spectrum 2κ  in Equation (123). 

It can be seen from Figures 6 and 7 that the space–time dynamical evolution of solu-
tion determined by Equation (95) shows a multipoint feature. However, Figures 8 and 9 
show that in addition to the multipoint feature of the space–time dynamical evolution of 
the solution determined by Equation (96), its amplitude also shows a feature of increase 
with time. 

 
Figure 6. Space–time dynamical evolution of the solution determined by Equation (95) with 

1(0) 0.5κ = , 2 (0) 1κ = − , 1tα = − , 1β = , 1tγ = +  and ( )t iδ = . 

Figure 5. Nonlinear dynamical evolution of the spectrum κ2 in Equation (123).

It can be seen from Figures 6 and 7 that the space–time dynamical evolution of solution
determined by Equation (95) shows a multipoint feature. However, Figures 8 and 9 show
that in addition to the multipoint feature of the space–time dynamical evolution of the
solution determined by Equation (96), its amplitude also shows a feature of increase
with time.
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Figure 7. Profile at the position x = 0 of space–time of dynamical evolution of solution determined
by Equation (95) with κ1(0) = 0.5, κ2(0) = −1, α = t− 1, β = 1, γ = t + 1 and δ(t) = i.
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Figure 8. Space–time dynamical evolution of solution determined by solution (96) with κ1(0) = 0.5,
κ2(0) = −1, α = t− 1, β = 1, γ = t + 1 and δ(t) = i.

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 16 
 

 

 
Figure 7. Profile at the position 0x =  of space–time of dynamical evolution of solution deter-
mined by Equation (95) with 1(0) 0.5κ = , 2 (0) 1κ = − , 1tα = − , 1β = , 1tγ = +  and 

( )t iδ = . 

 
Figure 8. Space–time dynamical evolution of solution determined by solution (96) with 

1(0) 0.5κ = , 2 (0) 1κ = − , 1tα = − , 1β = , 1tγ = +  and ( )t iδ = . 

 
Figure 9. Profile at the position 0x =  of space–time of dynamical evolution of solution deter-
mined by Equation (96) with 1(0) 0.5κ = , 2 (0) 1κ = − , 1tα = − , 1β = , 1tγ = +  and 

( )t iδ = . 

  

2 1 1 2
t

2

4

6

8

q

2 1 1 2
t

1000

2000

3000

r

Figure 9. Profile at the position x = 0 of space–time of dynamical evolution of solution determined
by Equation (96) with κ1(0) = 0.5, κ2(0) = −1, α = t− 1, β = 1, γ = t + 1 and δ(t) = i.

6. Conclusions

In short, we have derived the mixed spectral integrable Equation (11), time-dependences
of scattering data (59)–(64), implicit solutions (90) and (91), and explicit reflectionless poten-
tial solutions (95) and (96). As far as we know, these obtained results are novel. Especially,
the spectra with error function and hyperbolic functions in Equations (113)–(115) are
new, by which the solutions (95) and (96) with n = n = 1 and n = n = 2 depicted in
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Figures 2, 3 and 6–9 are obtained. Compared with the mixed spectral AKNS hierarchy [7]
mentioned earlier in Equation (28) and the other results in [15–18], the work of this paper
has some differences. Specifically, Equation (11) or its operator form (25) are different from
the following equations [15–18]:

(
q
r

)

t
= L3

(−q
r

)
+

5

∑
n=0

Ln
(−xq

xr

)
, (124)

associated with [15]:

i
dk
dt

=
1
2

5

∑
n=0

(2ik)5, A = ∂−1(r, q)
(−B

C

)
− 1

2
(2ik)3 − 1

2

[
5

∑
n=0

(2ik)n

]
x; (125)

(
q
r

)

t
= L

(−q
r

)
+

3

∑
n=0

Ln
(−xq

xr

)
, (126)

associated with [16]:

i
dk
dt

=
1
2

3

∑
n=0

(2ik)n, A = ∂−1(r, q)
(−B

C

)
− 1

2
(2ik)3 − 1

2

[
3

∑
n=0

(2ik)n

]
x; (127)

(
q
r

)

t
= t
(−q

r

)
+

2

∑
n=0

Ln
(−xq

xr

)
, (128)

associated with [17]:

i
dk
dt

=
1
2

2

∑
n=0

(2ik)n, A = ∂−1(r, q)
(−B

C

)
− 1

2
t− 1

2

[
2

∑
n=0

(2ik)n

]
x; (129)

(
q
r

)

t
= α(t)L

(−q
r

)
+

2

∑
n=0

βn(t)Ln
(−xq

xr

)
, (130)

associated with [18]:

i
dk
dt

=
1
2

2

∑
n=0

βn(t)(2ik)n, A = ∂−1(r, q)
(−B

C

)
− ik− 1

2

[
2

∑
n=0

βn(t)(2ik)n

]
x. (131)

The construction of meaningful integrable evolution equations based on the AKNS
matrix problem (4) with some other different spectra and their exact solutions are worth
studying. This paper gives the feasibility of constructing mixed spectral integrable evolu-
tion equations which are solvable in the framework of the inverse scattering method with
time-varying spectrum. Therefore, we also conclude that Equation (11) constructed in this
paper is also integrable in the sense of inverse scattering.

Author Contributions: Methodology, S.Z.; software, B.X.; writing—original draft preparation, J.G.;
writing—review and editing, S.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the Liaoning BaiQianWan Talents Program of China
(LRS2020[78]), the Natural Science Foundation of Education Department of Liaoning Province of
China (LJ2020002), the National Natural Science Foundation of China (11547005) and the Natural
Science Foundation of Xinjiang Autonomous Region of China (2020D01B01).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

27



Mathematics 2022, 10, 3975

Data Availability Statement: The data in the manuscript are available from the corresponding author
upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lax, P.D. Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 1968, 21, 467–490. [CrossRef]
2. Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H. The inverse scattering transform-Fourier analysis for nonlinear problems.

Stud. Appl. Math. 1974, 53, 249–315. [CrossRef]
3. Ablowitz, M.J.; Clarkson, P.A. Solitons, Nonlinear Evolution Equations and Inverse Scattering; Cambridge University Press: Cam-

bridge, MA, USA, 1991.
4. Tu, G.Z. The trace identity—A powerful tool for constructing the Hamiltonian structure of integrable systems. J. Math. Phys. 1989,

30, 330–338. [CrossRef]
5. Chen, D.Y. Introduction of Soliton; Science Press: Beijing, China, 2006.
6. Ning, T.K.; Chen, D.Y.; Zhang, D.J. Soliton-like solutions for a nonisospectral KdV hierarchy. Chaos Soliton. Fract. 2004, 21, 395–401.

[CrossRef]
7. Ning, T.K.; Chen, D.Y.; Zhang, D.J. The exact solutions for the nonisospectral AKNS hierarchy through the inverse scattering

transform. Physica A 2004, 339, 248–266. [CrossRef]
8. Zhang, S.; Xu, B. Constructive Methods for Nonlinear Integrable Systems; Science Press: Beijing, China, 2022.
9. Gardner, C.S.; Greene, J.M.; Kruskal, M.D.; Miura, R.M. Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 1967,

19, 1095–1197. [CrossRef]
10. Hirota, R. Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 1973, 14, 805–809. [CrossRef]
11. Matveev, V.B.; Salle, M.A. Darboux Transformation and Soliton; Springer: Berlin/Heidelberg, Germany, 1991.
12. Wang, M.L. Exact solutions for a compound KdV—Burgers equation. Phys. Lett. A 1996, 213, 279–287. [CrossRef]
13. Fan, E.G. Travelling wave solutions in terms of special functions for nonlinear coupled evolution systems. Phys. Lett. A 2002,

300, 243–249. [CrossRef]
14. He, J.H.; Wu, X.H. Exp-function method for nonlinear wave equations. Chaos Soliton. Fract. 2006, 30, 700–708. [CrossRef]
15. Zhang, S.; You, C.H. Inverse scattering transform for new mixed spectral Ablowitz–Kaup–Newell–Segur equations. Therm. Sci.

2020, 24, 2437–2444. [CrossRef]
16. Xu, B.; Zhang, S. Integrability, exact solutions and nonlinear dynamics of a nonisospectral integral-differential system. Open Phys.

2019, 17, 299–306. [CrossRef]
17. Zhang, S.; Hong, S.Y. Lax integrability and soliton solutions for a nonisospectral integro-differential system. Complexity 2017,

2017, 9457078. [CrossRef]
18. Xu, B.; Zhang, S. Derivation and soliton dynamics of a new non-isospectral and variable-coefficient system. Therm. Sci. 2019,

23, S639–S646. [CrossRef]

28



Citation: Rani, A.; Shakeel, M.; Kbiri

Alaoui, M.; Zidan, A.M.; Shah, N.A.;

Junsawang, P. Application of the

Exp(−ϕ(ξ))-Expansion Method to

Find the Soliton Solutions in

Biomembranes and Nerves.

Mathematics 2022, 10, 3372. https://

doi.org/10.3390/math10183372

Academic Editors: Almudena

del Pilar Marquez Lozano and

Vladimir Iosifovich Semenov

Received: 10 August 2022

Accepted: 14 September 2022

Published: 16 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Application of the Exp(−ϕ(ξ))-Expansion Method to Find the
Soliton Solutions in Biomembranes and Nerves
Attia Rani 1,†, Muhammad Shakeel 1, Mohammed Kbiri Alaoui 2, Ahmed M. Zidan 2, Nehad Ali Shah 3,†

and Prem Junsawang 4,*

1 Department of Mathematics, University of Wah, Wah Cantt 47040, Pakistan
2 Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004,

Abha 61413, Saudi Arabia
3 Department of Mechanical Engineering, Sejong University, Seoul 05006, Korea
4 Department of Statistics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
* Correspondence: prem@kku.ac.th
† These authors contributed equally to this work and are co-first authors.

Abstract: Heimburg and Jackson devised a mathematical model known as the Heimburg model to
describe the transmission of electromechanical pulses in nerves, which is a significant step forward.
The major objective of this paper was to examine the dynamics of the Heimburg model by extracting
closed-form wave solutions. The proposed model was not studied by using analytical techniques.
For the first time, innovative analytical solutions were investigated using the exp(−ϕ(ξ))-expansion
method to illustrate the dynamic behavior of the electromechanical pulse in a nerve. This approach
generates a wide range of general and broad-spectral solutions with unknown parameters. For
the definitive value of these constraints, the well-known periodic- and kink-shaped solitons were
recovered. By giving different values to the parameters, the 3D, 2D, and contour forms that constantly
modulate in the form of an electromechanical pulse traveling through the axon in the nerve were
created. The discovered solutions are innovative, distinct, and useful and might be crucial in medicine
and biosciences.

Keywords: nonlinear partial differential equations; exp(−ϕ(ξ))-expansion method; Heimburg model;
traveling wave solutions

MSC: 83C15; 35A20; 35C05; 35C07; 35C08

1. Introduction

Nonlinear partial differential equations (NLPDEs) have recently proven to be a power-
ful tool in multidisciplinary studies [1–11]. Exact solutions to these equations are crucial in a
variety of physical phenomena, including fluid mechanics, control theory, hydrodynamics,
geochemistry, optics, plasma, and so on. So far, a number of innovative techniques for
obtaining traveling wave solutions of these equations have recently been developed. The
modified Jacobian elliptic function expansion technique was implemented to extract soliton
solutions for the modified Liouville equation and for the system of shallow water wave
equations by Zahran et al. [12]. The extended simple equation method was implemented
to obtain soliton solutions of a modified Benjamin–Bona–Mahony equation, shallow water
wave equations, and the nonlinear microtubules model by Khater [13]. Nonlinear evolution
equations (NLEEs) were examined using the tanh method by Wazwaz [14]. An extended
tanh method was applied to extract the exact soliton solutions of NLEEs by El-Wakil and
Abdou [15]. The KdV equation was examined using the sine–cosine method [16]. The ho-
mogeneous balance method was implemented to obtain the exact solutions of the Gardner
equation and the burger equation by Radha1 and Duraisamy [17]. Ren and Zhang [18] in-
vestigated the (2 + 1)-dimensional Nizhnik–Novikov–Veselov model using the F-expansion

Mathematics 2022, 10, 3372. https://doi.org/10.3390/math10183372 https://www.mdpi.com/journal/mathematics29
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method. The kink soliton solutions of the B-type Kadomtsev–Petviashvili equation were ex-
plored via the multiple exp-function method by Darvishi et al. [19]. Using the exp-function
method, the exact solutions of the (2 + 1)-dimensional nonlinear system of Schrödinger
equations were explored by Khani et al. [20] and so on [21–26].

Aside from these models, the Heimburg model of the nerve impulse is another im-
portant one. The soliton model is a mathematical model that represents mechanical pro-
cesses in biomembranes. The model assumes that the nerve axon, which is modeled as a
cylinder-shaped biomembrane, transits from the fluid to a gel structure at a suitable temper-
ature below normal temperature [27]. Lautrup et al. [28] analyzed the Heimburg–Jackson
model numerically, while Peets et al. [29] reported the solitonic solutions of the modified
Heimburg–Jackson model.

The main goal of this work was to use the exp(−ϕ(ξ))-expansion method to find
some exact traveling wave solutions of the Heimburg model. For the first time, innova-
tive analytical solutions were investigated using the exp(−ϕ(ξ))-expansion method to
demonstrate the dynamic behavior of the electromechanical pulse in a nerve. This method
is commonly used to find the various types of soliton solutions of nonlinear differential
equations (NLDEs). For example, the exp(−ϕ(ξ))-expansion method was implemented to
explore the exact solutions of the nonlinear double-chain model of DNA and a diffusive
predator–prey model by Mahmoud et al. [30], the exp(−φ(ζ))-expansion technique was
used for soliton solutions of the nonlinear Schrödinger system by Pankaj et al. [31].

The following is the structure of the paper: In Section 2, we summarize the nonlinear
Heimburg model. The Section 3 is about the methodology. In the Section 4, we analyze the
nonlinear Heimburg model using the exp(−ϕ(ξ))-expansion technique. The results are
discussed with the help of graphs in the Section 5. Finally, we draw some conclusions.

2. Heimburg Model Equation

The voltage variation across the nerve membrane is most frequently described as a
propagating version of the action potential [32–35]. This voltage difference, which manifests
as an electrical pulse going up the nerve axon, is caused by unequal distributions of positive
and negative ions on each side of the membrane. The nerve axon is viewed as an electrical
circuit in the Hodgkin–Huxley model [32–34], in which proteins are represented as resistors
and the membrane as capacitors. The membrane’s ion currents produce a voltage pulse that
travels along the nerve axon. Consider the nerve axon as a one-dimensional cylinder that
experiences lateral density excitations. The following equation governs sound propagation
in the absence of dispersion:

∂2∆ρA

∂τ2 =
∂

∂z

(
c2 ∂∆ρA

∂z

)
, (1)

where τ is the time, z is the position along the nerve axon, ∆ρA = ρA − ρA
0 is the difference

in nerve axon area density between the density of the gel state (ρA) and the density of
the fluid state (ρA

0 ), and c =
√

1/κA
s ρA is the sound velocity which depends on density. We

did not attempt to derive the aforementioned equation here because it is connected to the
hydrodynamic Euler equation.

The phases of gel and liquid are essentially incompressible. A minor increase in
pressure can lead to a considerable rise in density by changing liquid into gel at densities
close to the phase transition where the two phases coexist. The compression modulus is
significantly smaller close to this phase transition. As a result, we can approximate the
sound speed, c, as

c2 =
1

ρAκA
s

= c2
0 + α∆ρA + β

(
∆ρA

)2
, (2)

with α < 0 and β > 0. Additionally, the velocity of sound is frequency dependent [36].
This indicates that the system is dispersive, which is required for the formation of
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solitons. For unilamellar dipalmitoyl phosphatidylcholine (DPPC) vesicles, one gets
c0 = 176.6 m/s, α = −16.6c2

0/ρA
0 and β = 79.5c2

0/
(
ρA

0
)2 with ρA

0 = 4.035× 10−3 g/m2, assuming
a bulk temperature of T = 45 ◦C [37]. By introducing a dispersive term, we are able to

approximate the dispersive effects outlined above, −h ∂4∆ρA

∂z4 with h > 0, in Equation (1),
and we obtain

∂2∆ρA

∂τ2 =
∂

∂z

([
c2

0 + α∆ρA + β
(

∆ρA
)2
]

∂∆ρA

∂z

)
+ v

∂2

∂z2

(
∂∆ρA

∂τ

)
− h

∂4∆ρA

∂z4 . (3)

Equation (3) is known as the Heimburg model [27] with a damping term added to
the system. According to Heimburg and Jackson [37], the density change that causes the
nerve impulse and the mechanical responses that accompany it might be characterized by
Equation (3). It describes how an area density pulse ∆ρA propagates through the nerve
axon when damping is taken into consideration. The equation implies that nerve impulses
propagate through a nerve axon via contraction and viscous dissipation of lipid molecules,
with z being the position of the nerve impulse at time τ, and v and h denoting the friction
of the nerve axon and dispersion, respectively.

The axon’s lateral compressibility is accounted for by KA
s , while c2

0 = 1
KA

s ρA
0

,

α = − 1
KA

s (ρA
0 )

2 , and β = 1
KA

s (ρA
0 )

3 . Take the following dimensionless variables u, x, and t

which are given below:

u =
∆ρA

ρA
0

, x =
c0z√

h
, t =

c2
0τ√
h

. (4)

We obtain the following dimensionless density–wave equation Equation (3) with these
new variables:

∂2u
∂t2 =

∂

∂x

((
1 + pu + qu2

)∂u
∂x

)
− ∂4u

∂x4 + µ
∂3u

∂x2∂t
, (5)

where µ = v√
h

, q =
(ρA

0 )
2

c2
0

β, and p =
ρA

0
c2

0
α.

3. Analysis of method

Consider the general form of the NLPDE

Y(u, ux, ut, uxx, uxt, . . .) = 0, (6)

Here, Y is polynomial in u(x, t). The main steps of this method are outlined below:
Step1: Consider the transformation:

u(x, t) = v(ξ), ξ = x−ωt, (7)

where ω is the velocity of the density pulse. Equation (7) transforms Equation (6) into the
following form:

Z
(
v, v′, v′′ , v′′′ , . . .

)
= 0. (8)

Step 2: Assume that the solution of Equation (8) can be written as follows by a
polynomial in exp(−ϕ(ξ)).

v(ξ) = Am(exp(−ϕ(ξ)))m + Am−1(exp(−ϕ(ξ)))m−1 + . . . . (9)

In the above equation, Am and Am−1 are the constants such that Am 6= 0, and ϕ(ξ)
satisfies the following ODE:

ϕ′(ξ) = exp(−ϕ(ξ)) + Q exp(ϕ(ξ)) + P, (10)

where Q and P are arbitrary constants.
Step 3: To obtain integer m, we apply the homogeneous principle in Equation (8).
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There are the following five cases:
Case 1: When P2 − 4Q > 0 and Q 6= 0,

ϕ(ξ) = ln





1
2Q


−

√
P2 − 4Qtanh




√
P2 − 4Q

2
(ξ + a1)


−Q





. (11)

Case 2: When P2 − 4Q < 0 and Q 6= 0,

ϕ(ξ) = ln





1
2Q


−P +

√
4Q− P2tan




√
4Q− P2

2
(ξ + a1)







. (12)

Case 3: When P 6= 0 and Q = 0,

ϕ(ξ) = −ln
{

P
(exp(P(ξ + a1))− 1)

}
. (13)

Case 4: When P2 − 4Q = 0 and P 6= 0, Q 6= 0,

ϕ(ξ) = ln
{

2(P(ξ + a1)) + 2
P2(ξ + a1)

}
. (14)

Case 5: When P = 0 and Q = 0,

ϕ(ξ) = ln(ξ + a1), (15)

where a1 is the constant of integration.
Step 4: By inserting Equation (9) into (8) along with (10), Equation (8) converts into a

polynomial in exp(−ϕ(ξ)). We obtain a series of equations for Am, ω, P, and Q by setting
each coefficient of this polynomial to 0. From these equations, the unknown constants
Am, ω, P, and Q can be obtained using computational tools such as Maple, and the novel
soliton solutions of Equation (6) can be generated by utilizing these values in Equation (9).

4. Application of the Method

Utilizing the exp(−ϕ(ξ))-expansion method, we created exact traveling wave solu-
tions to the Heimburg model. By using Equation (7) in (5), we obtain:

ω2v′′ − α1
(
v′
)2 − 2β1v

(
v′
)2 − v′′ − α1vv′′ − β1v2v′′ + v′v + µωv′′′ = 0, (16)

where α1 = p and β1 = q. Balancing between the terms v′v and v2v′′ in Equation (14) yields
m = 1 as shown in Appendix A.

Hence, from Equation (9), we obtain:

v(ξ) = A0 + A1e−ϕ(ξ), (17)

where A0 and A1 are arbitrary constants. Putting Equation (17) into (16) with (10), Equation
(16) converts into the polynomial in exp(−ϕ(ξ)). By setting the coefficients of the polyno-
mial equal to 0, a set of equations for A0, A1, P, and Q is obtained as shown in Appendix A.
By solving these equations using computational software Maple 18, we obtain:

1st Solution Set:

P =
1√

6
√

β1

√
−2β1ω2(6− µ2) + 3α2

1 + 12β1(2Q− 1),

A0 =
µω√
6
√

β1
− α1

2β1
− 1

2β1

√
2β1ω2(6− µ2) + 3α2

1 + 12β1(2Q− 1),
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A1 = −
√

6√
β1

. (18)

By using these results in Equation (17), we obtain:

v(ξ) =
µω√
6
√

β1
− α1

2β1
− 1

2β1

√
2β1ω2(6− µ2) + 3α2

1 + 12β1(2Q− 1)−
√

6√
β1

e−ϕ(ξ), (19)

Case 1: For P2 − 4Q > 0 and Q 6= 0, we obtain:

v(ξ) = µω√
6
√

β1
− α1

2β1
− 1

2β1

√
2β1ω2(6− µ2) + 3α2

1 + 12β1(2Q− 1)

+ 2
√

6Q√
β1

(√
P2−4Qtanh

(√
P2−4Q

2 (ξ+a1)

)
+P
) . (20)

Case 2: For P2 − 4Q < 0 and Q 6= 0, we obtain:

v(ξ) = µω√
6
√

β1
− α1

2β1
− 1

2β1

√
2β1ω2(6− µ2) + 3α2

1 + 12β1(2Q− 1)−
2
√

6Q√
β1

(
−P+
√

4Q− P2tan
(√

4Q− P2
2 (ξ+a1)

)) . (21)

Case 3: For P 6= 0 and Q = 0, we obtain:

v(ξ) = µω√
6
√

β1
− α1

2β1
− 1

2β1

√
2β1ω2(6− µ2) + 3α2

1 + 12β1(2Q− 1)−
P
√

6√
β1(exp(P(ξ+a1))−1)

.
(22)

Case 4: For P2 − 4Q = 0 and P 6= 0, Q 6= 0, we obtain:

v(ξ) = µω√
6
√

β1
− α1

2β1
− 1

2β1

√
2β1ω2(6− µ2) + 3α2

1 + 12β1(2Q− 1)−
√

6 P2√
β1

P2(ξ+a1)
(2P(ξ+a1)+2 )

.
(23)

Case 5: For P = 0 and Q = 0, we obtain:

v(ξ) = µω√
6
√

β1
− α1

2β1
− 1

2β1

√
2β1ω2(6− µ2) + 3α2

1 + 12β1(2Q− 1)−
√

6√
β1(ξ+a1)

.
(24)

2nd Solution Set:

Q =
1

24β1

(
2β1ω2

(
µ2 − 6

)
+ 6β1

(
P2 + 2

)
− 3α2

1

)
,

A0 =
1

6β1

(√
6β1(µω− 3P)− 3α1

)
, A1 = −

√
6√
β1

. (25)

By using these results in Equation (17), we obtain:

v(ξ) =
1

6β1

(√
6β1(µω− 3P)− 3α1

)
−
√

6√
β1

e−ϕ(ξ), (26)

Case 1: For P2 − 4Q > 0 and Q 6= 0, we obtain:

v(ξ) =
1

6β1

(√
6β1(µω− 3P)− 3α1

)
+

2
√

6Q
√

β1

(√
P2 − 4Qtanh

(√
P2−4Q

2 (ξ + a1)

)
+ P

) . (27)

Case 2: For P2 − 4Q < 0 and Q 6= 0, we obtain:
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v(ξ) =
1

6β1

(√
6β1(µω− 3P)− 3α1

)
+

2
√

6Q
√

β1

(
−
√

4Q− P2tan
(√

4Q− P2

2 (ξ + a1)

)
+ P

) . (28)

Case 3: For P 6= 0 and Q = 0, we obtain:

v(ξ) =
1

6β1

(√
6β1(µω− 3P)− 3α1

)
− P

√
6√

β1(exp(P(ξ + a1))− 1)
. (29)

Case 4: For P2 − 4Q = 0 and P 6= 0, Q 6= 0, we obtain:

v(ξ) =
1

6β1

(√
6β1(µω− 3P)− 3α1

)
−
√

6 P2
√

β1

P2(ξ + a1)

(2P(ξ + a1) + 2 )
. (30)

Case 5: For P = 0 and Q = 0, we obtain:

v(ξ) =
1

6β1

(√
6β1(µω− 3P)− 3α1

)
−

√
6√

β1(ξ + a1)
. (31)

3rd Solution Set:

P = 1
6
√

β1

(
−2
√

6β1 A0 + 2Qω
√

β1 − α1
√

6
)

,

Q = 1
36β1

(
−2
√

6β
3
2
1ωµA0 + 4β1ω2µ2 −

√
6β1α1ωµ + 6β2

1 A2
0 − 18β1ω2 + 6α1β1 A0 − 3α2

1 + 18β1

)
, A1 = −

√
6√
β1

.
(32)

By using these results in Equation (17), we obtain:

v(ξ) = A0 −
√

6√
β1

e−ϕ(ξ), (33)

Case 1: For P2 − 4Q > 0 and Q 6= 0, we obtain:

v(ξ) = A0 +
2
√

6Q
√

β1

(√
P2 − 4Qtanh

(√
P2−4Q

2 (ξ + a1)

)
+ P

) . (34)

Case 2: For P2 − 4Q < 0 and Q 6= 0, we obtain:

v(ξ) = A0 −
2
√

6Q
√

β1

(
−P +

√
4Q− P2tan

(√
4Q− P2

2 (ξ + a1)

)) . (35)

Case 3: For P 6= 0 and Q = 0, we obtain:

v(ξ) = A0 −
P
√

6√
β1(exp(P(ξ + a1))− 1)

. (36)

Case 4: For P2 − 4Q = 0 and P 6= 0, Q 6= 0, we obtain:

v(ξ) = A0 −
√

6√
β1

P2(ξ + a1)

(2P(ξ + a1) + 2 )
. (37)

Case 5: For P = 0 and Q = 0, we obtain:

v(ξ) = A0 −
√

6√
β1(ξ + a1)

. (38)
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In all the above cases, ξ = x−ωt.
It is important to note that the acquired traveling wave solutions of the stated model

are diversified and that for certain values of the free parameters, new and more general
solutions are found. The accuracy of the obtained findings is also ensured by plugging
the obtained solutions into the given equation with the Maple 18 software. The key
benefit of the suggested approach is that, when we vary P and Q with some free param-
eters, it provides a number of new exact traveling wave solutions that are more general.
The exact solutions are crucial for understanding the underlying internal dynamics of
natural phenomena. The explicit solutions representing several forms of solitary wave
solutions are regulated in the typical nerve impulse shape based on the variation in the
physical parameters.

5. Results and Discussion

The 2D, 3D, and contour shapes of some of the collected results are revealed with
the help of Wolfram Mathematica. We discovered that set-1 comprises solutions (20)–(24).
These solutions have a large number of parameters. Because the parameters influence
the shape of the solution, we can generate a wide range of graphs by inputting arbitrary
values for the parameters. Using the graphs shown, we can determine the nature of
solitons. Furthermore, set-2 provides adequate new solutions (27)–(30), and set-3 comprises
solutions (34)–(38). Figures 1–4 show the 2D, 3D, and contour conspiracies of some of the
obtained findings. For the sake of clarity, the graphs of some of the discovered solutions
are provided here.
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Figure 1. Three-dimensional, two-dimensional, and contour conspiracies for solution (20) for
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The many types of graphs are created using the wave solution. When the free pa-
rameters associated with the solution are altered, the shape of the traveling wave changes.
From the Heimburg model equation, we acquire the number of exact solutions along with
unknown parameters.

The attained solutions (20) and (22) involve the parameters α1, β1, µ, ω, P, and a1. For
the values of α1 = −0.9, β1 = 2, µ = 1, ω = 2, P = 0.8, and a1 = 5, in solution (20), the kink-
shaped input is regulated and permanently stabilized in the typical pulse shape along the
nerve axon (Figure 1). Similarly, for α1 = −1.5, β1 = 2, µ = 1, ω = 1, Q = 1, and a1 = 1 in
solution (22), the kink-shaped input is regulated and permanently stabilized in the typical pulse
shape along the nerve axon (Figure 2). For α1 = −0.9, β1 = 2, ω = 2, P = 0.8, and a1 = 5, in
Equation (27), the kink-shaped input is obtained (Figure 3). For α1 = −4, β1 = 3, Q = 5.6,
and a1 = 5, in Equation (35), the periodic-shaped input is regulated in the typical pulse
shape (Figure 4). The 3D and contour plots are shown for −50 ≤ x, t ≤ 50, and the 2D
conspiracy is shown for −50 ≤ t ≤ 50, x = 1, in Figures 1 and 3; the 3D and contour plots
are shown for −30 ≤ x, t ≤ 3, and the 2D conspiracy is shown for −30 ≤ t ≤ 30, x = 1, in
Figure 2; the 3D and contour plots are shown for −2 ≤ x, t ≤ 2, and the 2D conspiracy is
shown for −2 ≤ t ≤ 2, x = 1, in Figure 4.

The Heimburg model’s nonlinear dynamic nature is shown in Figures 1–4. Different
varieties of traveling waves are described in the inferred graphical renderings. Numerous
novel exact solutions, including periodic kink, and singular-kink soliton solutions are
discovered. The graphical presentation shows that the four distinct profiles constantly
modulate in the form of an electromechanical pulse traveling through the axon in the
nerve [27]. The findings demonstrate that the implemented technique is reliable, proficient,
and dominant when it comes to analyzing different kinds of NLPDEs.
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6. Conclusions

Not just in neurophysiology but also in mathematical physics, the process by which the
nerve impulse is generated and propagated across the axon has been a critical challenge. We
discovered the exact traveling wave solutions of the Heimburg model of neuroscience which
is one of the most intriguing topics in modern bio-physics since the nerve is the foundation
of life. The exp(−ϕ(ξ))-expansion method was utilized to analyze the Heimburg model in
this research article. Traveling wave solutions were explored using the above-mentioned
model. This method yields traveling wave solutions with arbitrary parameters expressed
as kink, singular-kink, and periodic-wave solutions. The graphical presentation shows that
the four distinct profiles constantly modulate into the pulse pattern as they travel through
the axon. It is worth noting that the findings of this study are revealed for the first time, in
comparison to earlier investigations. The accuracy of the results was tested using Maple
18 and putting the obtained findings into the original equation. The solutions provided
are novel, distinctive, and practical and might be essential in the fields of medicine and
biosciences. In other words, the analytical expression of solitary solutions may be useful for
the precise determination of the control pulse’s magnitude. Additional research is required
on the fascinating challenge of wave propagation in biomembranes. A thorough analysis of
the dissipative effects and coupling with the action potential will be discussed in the next
work.
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Appendix A

Balancing between the terms v′v and v2v′′ in Equation (14) yields

m + 4 = 2m + m + 2,

m = 1.

Putting Equation (15) into (14) with (8), Equation (14) converts into the polynomial in
exp(−ϕ(ξ)). By setting the coefficients of the polynomial equal to 0, a set of equations for
A0, A1, P, and Q is obtained as follows:

2β1 A0 A1Q2 + Q2ωP2 + β1PQA2
0 + 2Q3ω + α1 A1Q2 + α1PQA0 −QP3 −ω2PQ−
8Q2P + PQ = 0,

2β1 A2
1Q2 + 6β1 A0 A1PQ + QωP3 + β1P2 A2

0 + 8Q2ωP + 3α1 A1PQ + 2β1QA2
0+

α1P2 A0 − P4 −ω2P2 + 2α1QA0 − 22QP2 − 2ω2Q− 16Q2 + P2 + 2Q = 0,

5β1 A2
1PQ + 4β1 A0 A1P2 + 8β1 A0 A1Q + 7QωP2 + 2α1 A1P2 + 3β1PA2

0 + 8Q2ω+

4α1 A1Q + 3α1PA0 − 15P3 − 3Pω2 − 60PQ + 3P = 0,
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3β1 A2
1P2 + 62β1 A2

1Q + 10β1 A0 A1P + 12PQω + 5α1 A1P + 2β1 A2
0 + 2α1 A0−

50P2 − 2ω2 − 40Q + 2 = 0,

7β1 A2
1P + 6β1 A0 A1 + 6Qω + 3α1 A1 − 60P = 0,

4β1 A2
1 − 24 = 0. (A1)
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Abstract: In this paper, a generalized nonlinear Schrödinger (gNLS) equation with time-varying
coefficients is analytically studied using its Lax representation and the associated Riemann-Hilbert
(RH) problem equipped with a symmetric scattering matrix in the Hermitian sense. First, Lax
representation and the associated RH problem of the considered gNLS equation are established so
that solution of the gNLS equation can be transformed into the associated RH problem. Secondly,
using the solvability of unique solution of the established RH problem, time evolution laws of the
scattering data reconstructing potential of the gNLS equation are determined. Finally, based on the
determined time evolution laws of scattering data, the long-time asymptotic solution and N-soliton
solution of the gNLS equation are obtained. In addition, some local spatial structures of the obtained
one-soliton solution and two-soliton solution are shown in the figures. This paper shows that the
RH method can be extended to nonlinear evolution models with variable coefficients, and the curve
propagation of the obtained N-soliton solution in inhomogeneous media is controlled by the selection
of variable–coefficient functions contained in the models.

Keywords: gNLS equation with time-varying coefficients; Lax representation; RH problem; scattering
data; long-time asymptotic solution; N-soliton solution

MSC: 37K40; 37K10; 35Q15; 35C08

1. Introduction

Nonlinear problems are full of challenges, and these have attracted the extensive
attention of researchers. One of the important achievements of nonlinear mathematical
physics in recent decades is the discovery of certain nonlinear partial differential equations
(PDEs) with important applications and analytical solutions. For example, the classical
NLS equation has practical applications in many fields [1], including optics, oceanography,
biology, economics and so on. There are many effective methods for solving nonlinear
PDEs analytically, such as inverse scattering method [2], Darboux transformation [3], Hirota
bilinear method [4] and other methods [5–14].

When an inhomogeneous medium is considered, the variable–coefficient model is
usually closer to the essence of the phenomenon. Generally, solving variable–coefficient
equations is more difficult than solving constant-coefficient ones. In most cases, it is
necessary to embed appropriate coefficient functions in the solution process of the existing
analytical methods, see [15] for an ingenious work extending inverse scattering method
to deal with a variable–coefficient NLS equation. Owing to the fact that Schrödinger-
type equations are widely used in many fields and differential equations with variable–
coefficient functions often model dynamic processes in non-uniform media, this paper
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considers a model in nonlinear fiber optics, namely the following gNLS equation with
gain [16]:

iψz =
β(z)

2
φττ − γ(z)|ψ|2ψ + i

g(z)
2

ψ, (1)

where ψ = ψ(z, t); the three functions β(z), γ(z) and g(z) of propagation distance z
represent the group velocity dispersion parameter, nonlinearity parameter and distributed
gain function, respectively; |ψ| denotes the module of ψ; and i is the imaginary unit. For
convenience, we take the transformations:

ψ(z, τ) = u(x, t), β(z) = −β(t), γ(z) = β(t), g(z) = 2iα(t). (2)

Then, Equation (1) is converted to the gNLS equation with time-varying coefficients:

iut +
β(t)

2
uxx + β(t)|u|2u + α(t)u = 0. (3)

Here, α(t) and β(t) are assumed to be real integrable functions, while u and all its
partial derivatives with respect to x and t approach zero quickly enough as |x| → ∞ .

The analytical method adopted in this paper for Equation (3) is the RH method [17],
which was developed based on the IST [2]. The RH method is an analytical method that
does not need to solve the Gel’fand-Levitan-Marchenko integral equation and can also
analyze the long-time asymptotic behavior of the obtained implicit analytical solutions.
In recent years, the RH method has achieved many applications, such as [17–28]. One
of the important developments of RH method is Deift-Zhou’s nonlinear steepest descent
method [18].

The basic idea of the RH method is to establish the relationship between the solution
of nonlinear PDE to be solved and the solution of associated solvable RH problem using the
eigenfunction, then to solve the RH problem, and finally obtain the solution of nonlinear
PDE. In the literature, there are some results, such as [8,16,29–35], that have been obtained
for the gNLS Equation (3). However, as far as we know, there is still no research on the
RH problem of Equation (3), and the relevant work is worth exploring. Equation (3) is
integrable; the Lax presentation, which provides a basis of the study of the associated RH
problem is given in Section 2.

With the help of the given Lax presentation, the associated RH problem is estab-
lished in Section 3 to connect the solution of Equation (3) and that of the established
RH problem, and then the time evolution laws of scattering data in the RH problem are
determined. In Section 4, the long-time asymptotic solution and N-soliton solution of
Equation (3) are obtained. At the same time, some spatial structures of the obtained one-
soliton solution and two-soliton solution are shown by selecting several special cases of the
time-varying functions.

2. Lax Presentation and RH Problem

We introduce, in this section, the linear spectral problem in the matrix forms:

Fx + iξσ3F = φF, (4)

Ft + i[ξ2β(t)− 1
2

α(t)]σ3F = ϕF, (5)
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where ξ is the complex spectral parameter; F = F(x, t, ξ) is the eigenfunction in matrix
form; the notations σ3, φ and ϕ stand for

σ3 =

(
1 0
0 −1

)
, φ =

(
0 u
−u∗ 0

)
and

ϕ =




i
2 β(t)

∣∣∣u
∣∣∣
2 i

2 β(t)ux

i
2 β(t)u∗x − i

2 β(t)
∣∣∣u
∣∣∣
2


+ ξβ(t)φ;

(6)

and the symbol * is complex conjugate.
It is easy to check that the compatibility condition Fxt = Ftx is equivalent to Equation (3).

Therefore, we say that the gNLS Equation (3) has Lax integrability, and its Lax representa-
tions are Equations (4) and (5).

Considering the asymptotic condition of the previously assumed boundary value that
u and all its partial derivatives, with respect to x and t, approach zeros quickly as |x| → ∞ ,
we have the asymptotic Jost solution of Equations (4) and (5):

F → e−iϑ(x,t,ξ)σ3 , |x|→ ∞, (7)

with

ϑ(x, t, ξ) = ξx +
∫ t

0
[ξ2β(τ)− 1

2
α(τ)]dτ. (8)

By the transformation:
K(x, t, ξ)→ Feiϑ(x,t,ξ)σ3 , (9)

we transform Equations (4) and (5) into the following forms:

Kx + iξ[σ3, K] = φK, (10)

Kt + i[ξ2β(t)− 1
2

α(t)][σ3, ϕ] = ϕK, (11)

so that the eigenfunction K has the boundary condition:

K± → I , x → ±∞, (12)

where K± means the boundary conditions of K at the positive infinity and negative infinity
respectively, and I denotes the second-order identity matrix. In the case where the boundary
conditions (12) hold, the x-part of the Lax representation, that is, Equation (10) has the
solutions [17]:

K− = I +
∫ x

−∞
e−iξ(x−y)σ3 φ(y)K−(y, ξ)eiξ(x−y)σ3dy, (13)

K+ = I −
∫ ∞

x
e−iξ(x−y)σ3 φ(y)K+(y, ξ)eiξ(x−y)σ3dy, (14)

which enable the following relationships to be established:

K− = K+e−iξσ3 M(ξ)eiξσ3 , ξ ∈ R, (15)

by means of the scattering matrix:

M(ξ) =

(
m11(ξ) m12(ξ)
m21(ξ) m22(ξ)

)
. (16)
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Since the determinant detK± = 1 [17], which shows that the matrix K± is reversible,
we can see from Equation (15) that detM(ξ) = 1 and then obtain the inverse matrix of the
scattering matrix M(ξ):

M−1(ξ) =

(
m̂11(ξ) m̂12(ξ)
m̂21(ξ) m̂22(ξ)

)
=

(
m22(ξ) −m12(ξ)
−m21(ξ) m22(ξ)

)
. (17)

Due to KH
±(x, ξ∗) = K−1

± (x, ξ), with H standing for the Hermitian conjugate, one knows
that the symmetric relation MH(ξ∗) = M−1(ξ) leads to the equalities m∗11(ξ

∗) = m22(ξ) and
m∗12(ξ

∗) = −m21(ξ).

With the help of notations K± = ((K±)1, (K±)2) and K−1
± = ((K−1

± )1, (K−1
± )2)

T
, we

introduce the matrices:

φ+ = K−H1 + K+H2 = ((K−)1, (K+)2), (18)

φ− = H1K−1
− + H2K−1

+ =

(
(K−1
− )

1

(K−1
+ )

2

)
, (19)

where (K±)s and (K−1
± )

s
denote the vector in the s-th row and that in the s-th column of K±,

respectively, and H1 = diag(1, 0) and H2 = diag(0, 1) are two special diagonal matrices.
Clearly, φ+ and φ− enable Equation (10) and its adjoint equation to be true, that is to say:

φ+
x + iξ[σ3, φ+] = φφ+, (20)

φ−x + iξ[σ3, φ−] = φ−φ. (21)

The Taylor series of φ± gives:

φ± = I +
φ±1
ξ

+ O(ξ−2). (22)

We insert φ+ and φ− into Equations (20) and (21) and compare the coefficients of ξ−1, and
then one has

φ = i[σ3, K+
1 ] = −i[σ3, K−1 ]. (23)

Thus, solution u of the gNLS Equation (3) is converted to φ± by the following formula:

u = ±2i(φ±1 )12 = ±2i lim
λ→∞

(ξφ±)12, (24)

with (φ±1 )12 representing the element locations at the intersection of the first row and the
second column of φ±1 . Here, φ± will be determined by the matrix RH problem established
by Equations (18) and (19):

(i) φ±(x, ξ) are analytic in ξ ∈ C±;
(ii) φ−(x, ξ)φ+(x, ξ) = Ω(x, ξ) for ξ ∈ R;
(iii) φ±(x, ξ)→ I for ξ ∈ C± → ∞

(25)

where C+ and C− are the upper and lower half complex planes, respectively; R is the set of
real numbers; and Ω(x, λ) is the jump matrix:

Ω(x, ξ) = e−iξσ3

(
1 ŝ12(ξ)

s21(ξ) 1

)
eiξσ3 . (26)

3. Solvability of RH Problem and Time Evolution Laws for Scattering Data

The RH Problem (25) established above is solvable and always has a unique solution.
More detailed proof can be found in [17]; the difference is because the time evolution laws
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of the scattering data involved are different. In fact, from Equations (15), (18) and (19), we
can see that

detφ+ = m̂22(ξ) = m11(ξ), detφ− = m22(ξ) = m̂11(ξ), (27)

where the symmetry relation MH(ξ∗) = M−1(ξ) has been used.
When detφ±(λ) 6= 0, the RH problem (30) is regular. Then, Plemelj formula [36] can

be used to obtain a unique solution of Equation (25):

(φ+)
−1

(ξ) = I +
1

2iπ

∫ ∞

−∞

Ω̂(ξ)(φ+)
−1

(ξ)

s− ξ
ds, ξ ∈ C+, (28)

with

Ω̂(ξ) = I −Ω(ξ) = −e−iξσ3

(
0 m̂12(ξ)

m21(ξ) 0

)
eiξσ3 . (29)

In the case of detφ±(ξ) = 0, the relation MH(ξ∗) = M−1(ξ) makes the numbers of
the conjugate zeros of detφ+(ξ) = 0 and detφ−(ξ) = 0 must be equal. Thus, we suppose
that detφ+(ξ) = 0 has conjugate zeros ξ j, ξ2, · · · , ξN ∈ C+ and denote the conjugate zeros
of detφ−(ξ) = 0 as ξ j = ξ∗j ∈ C−(j = 1, 2, · · · , N). For the irregular case of the RH
Problem (25), we consider the systems of linear equations:

φ+(ξ j)vj(ξ j) = 0, (j = 1, 2, · · · , N), (30)

vj(ξ j)φ
−(ξ j) = 0, (j = 1, 2, · · · , N), (31)

where non-zero row vector vj(ξ j) and non-zero column vector vj(ξ j) are solutions of
Equations (30) and (31), respectively. The Hermitian conjugate of Equation (30), together
with the symmetry relation (φ+)

H
(ξ∗j ) = φ−(ξ j), gives

vH
j (ξ j)φ

−(ξ j) = 0. (32)

Then, Equations (31) and (32) lead to the symmetry relation vj(ξ j) = vH
j (ξ j). Based on

these preparations and theorem [37], the irregular RH Problem (25) with detφ±(ξ) = 0 can
be transformed into a regular one. Thus, we indirectly arrive at the proof that the irregular
RH Problem (25) has a unique solution, and therefore the solution of Equation (24) can be
determined as follows:

φ+
1 (ξ) =

N

∑
k=1

N

∑
j=1

vk(P−1)kjvj +
1

2iπ

∫ ∞

−∞
Q(s)Ω̂(s)Q−1(s)(φ̂+)

−1
(s)ds, (33)

with

(φ̂+)
−1

(ξ) = I +
1

2iπ

∫ ∞

−∞

Q(s)Ω̂(s)Q−1(s)(φ̂+)
−1

(s)
s− ξ

ds, ξ ∈ C+, (34)

Q(ξ) = I +
N

∑
k=1

N

∑
j=1

vk(P−1)kjvj

ξ − ξ j
, Q−1(ξ) = I −

N

∑
k=1

N

∑
j=1

vk(P−1)kjvj

ξ − ξk
, (35)

P = (pkj)N×N , pkj =
vkvj

ξk − ξ j
, (1 ≤ k, j ≤ N). (36)

The solvability of RH Problem (25) lays a theoretical foundation for the determination
of the corresponding scattering data.

Theorem 1. Let u(x, t) solve the gNLS Equation (3). Then, the scattering data:

{m21(ξ) , m21(ξ), m̂12(ξ), (ξ ∈ R); ξ j, ξ j, vj, vj, (j = 1, 2, · · · , N)}, (37)
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determined by the regular RH problem (30) have the time evolution laws:

m21(t, ξ) = m21(0, ξ)e2i
∫ t

0 [ξ2β(τ)− 1
2 α(τ)]dτ , (38)

m̂12(t, ξ) = m̂12(0, ξ)e−2i
∫ t

0 [ξ2β(τ)− 1
2 α(τ)]dτ , (39)

ξ j(t) = ξ j(0), ξ j(t) = ξ j(0), (40)

vj(x, t, ξ j) = e−i{ξ j(0)x+
∫ t

0 [ξ2
j (0)β(τ)− 1

2 α(τ)]dτ}σ3 vj(0, 0, ξ j(0)), (41)

vj(x, t, ξ j) = ei{ξ j(0)x+
∫ t

0 [ξ
2
j (0)β(τ)− 1

2 α(τ)]dτ}σ3 vj(0, 0, ξ j(0)). (42)

Proof of Theorem 1. It is necessary to rewrite Equation (15) as:

K−e−iξσ3 = K+e−iξσ3 M(ξ), ξ ∈ R. (43)

Differentiating the left side of Equation (48) with respect to t, we arrive at

K−,te−iξσ3 = −i[ξ2β(t)− 1
2

α(t)][σ3, K−]e−iξσ3 + ϕK−e−iξσ3 , (44)

by employing Equation (15). It is easy to see from Equation (44) that the left side of
Equation (43) solves Equation (11). We, therefore, know that the right side of Equation (43)
is a solution of Equation (11). Then, the substitution of the right side of Equation (43) into
Equation (11) together with the boundary condition (12) yields

dM(t, ξ)

dt
+ i[ξ2β(t)− 1

2
α(t)]K+e−iξσ3 [σ3, M(t, ξ)] = 0. (45)

Similarly, we easily see that K+e−iξσ3 = K−e−iξσ3 M−1(t, ξ) is also a solution of Equation (11).
Putting K−e−iξσ3 M−1(t, ξ) into Equation (11) and using the boundary condition (12) yields:

Considering Equations (16) and (17) and comparing the elements of Equations (45) and (46),
we gain

dM−1(t, ξ)

dt
+ i[ξ2β(t)− 1

2
α(t)]K+e−iξσ3 [σ3, M−1(t, ξ)] = 0 (46)

dm21(t, ξ)

dt
= 2i[ξ2β(t)− 1

2
α(t)]m21(t, ξ), (47)

dm̂12(t, ξ)

dt
= −2i[ξ2β(t)− 1

2
α(t)]m̂12(t, ξ), (48)

dm̂22(t, ξ)

dt
= 0,

dm22(t, ξ)

dt
= 0. (49)

Solving Equations (47) and (48), we reach Equations (38) and (39). Equation (27)
indicates that, if ξ j(t) and ξ j(t) are the zeros of detφ+(t, ξ) and detφ−(t, ξ), they are also
the zeros of m̂22(t, ξ) and m22(t, ξ). In view of Equation (49), one can see that ξ j(t) and ξ j(t)
are independent from t. This means that Equation (40) is true.

To prove Equations (41) and (42), it is necessary to differentiate Equation (30) with
respect to x and t, and then one has

φ+
x (x, t, ξ j)vj(x, t, ξ j) + φ+(x, t, ξ j)vj,x(x, t, ξ j) = 0, (j = 1, 2, · · · , N), (50)

φ+
t (x, t, ξ j)vj(x, t, ξ j) + φ+(x, t, ξ j)vj,t(x, t, ξ j) = 0, (j = 1, 2, · · · , N). (51)

46



Mathematics 2022, 10, 1043

Using Equations (11) and (18) yields

φ+
t (x, t, ξ j)vj(x, t, ξ j) = −i[ξ2β(t)− 1

2
α(t)][σ3, φ+(x, t, ξ j)] + ϕφ+. (52)

Substituting Equations (20) and (52) into Equations (50) and (51), we gain

φ+(x, t, ξ j)(vj,x(x, t, ξ j) + iξ jσ3vj(x, t, ξ j)) = 0, (j = 1, 2, · · · , N), (53)

φ+(x, t, ξ j)

{
vj,t(x, t, ξ j) + i[ξ2β(t)− 1

2
α(t)]σ3vj(x, t, ξ j)

}
= 0, (j = 1, 2, · · · , N), (54)

by the usage of Equation (30). Solving Equations (53) and (54), one can obtain Equation (41).
In a similar way, Equation (42) can be obtained using Equations (11), (21) and (31). �

4. Long-Time Asymptotic Solution and N-Soliton Solution

Based on Equations (38) and (39), the time evolution laws of the Jump matrix Ω̂(x, t, ξ)
can be determined as follows:

Ω̂(x, t, ξ) =

(
0 −m̂12(0, ξ)e−2iξϑ(x,t,ξ)σ3

m21(0, ξ)e2iξϑ(x,t,ξ)σ3 0

)
, (55)

where ϑ(x, t, ξ) is determined by Equation (8). Generally, with the above scattering data in
Equations (38)–(42), one can obtain solution of the gNLS Equation (3) theoretically. How-
ever, we still have difficulty in calculating the integral in Equation (33) for Ω̂(x, t, ξ) 6= 0. In
this case, the asymptotic solution of the gNLS Equation (3) when t→ ∞ can be derived
from Equation (24). For instance, if we let ξ̂ = ξt1/2γ and β(t) = t1/γ−1 for any 1 ≤ γ ∈ R,
the integral contained in Equation (38) tends to zero at a rate of t−1/γ. We, therefore, obtain
the following long-time asymptotic solution of the gNLS Equation (3):

u(x, t)→ 2i

(
N

∑
k=1

N

∑
j=1

vk(P−1)kjvj

)

12

, t→ ∞, (56)

where P and vk are calculated using Equations (36) and (41), while the calculation of vk can
restore to Equation (42) or the symmetry relation vj = vH

j .
In the reflectionless case, we next construct an N-soliton solution of the NLS Equation (3).

Setting m̂12(0, ξ) = 0 and m21(0, ξ) = 0, and then one has Ω̂(x, t, ξ) = 0. In this case,
Equation (33) is simplified as

φ+
1 (x, t) =

N

∑
k=1

N

∑
j=1

vk(P−1)kjvj. (57)

To determine P−1 in Equation (57), we further select the complex number cj and let
vj(0, 0, ξ j(0)) = (cj, 1). Then, Equations (41) and (42) give

vj(x, t, ξ j) =

(
cje

θj

e−θj

)
, (58)

vj(x, t, ξ j) = vH
j (x, t, ξ∗j ) = (c∗j e

θ∗
j , e
−θ∗

j ). (59)

where

θj = −iξ j(0)x− i
∫ t

0
[ξ2

j (0)β(τ)− 1
2

α(τ)]dτ, ξ j(0) ∈ C+, (60)
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Finally, with the help of Equations (24) and (58)–(60), one obtains the N-soliton solution
of NLS Equation (3):

u(x, t) = 2i

(
N

∑
k=1

N

∑
j=1

cke
θk−θ∗

j (P−1)kj

)

12

= −2i
detS
detP

. (61)

where θk and θ∗k can be determined by Equation (60),

S =




0 c1eθ1 · · · cNeθN

e−θ∗
1 p11 · · · p1N

· · · · · · · · · · · ·
e−θ∗

N pN1 · · · pNN


, P = (pkj)N×N , pkj =

c∗k cje
θj+θ∗

k + e−θj−θ∗
k

ξk(0)− ξ j(0)
. (62)

As a special case of Equation (61), N = 1 is selected, and then one has:

u(x, t) = −2i
−c1eθ1−θ∗1

c1c∗1eθ1+θ∗1 +e−θ1−θ∗1
ξ1(0)−ξ1(0)

. (63)

Further letting ξ1(0) = a + ib(a, b > 0 ∈ R) and c1 = e−2bδ0+iw0(d0, w0 ∈ R) yields
ξ1(0) = ξ∗1(0) = a− ib and c1c∗1 = e−2bδ0 . Thus, Equation (63) becomes

u(x, t) = 4b
e−2bδ0+iw0e−2iax−2i

∫ t
0 [(a2−b2)β(τ)− 1

2 α(τ)]dτ

e−4bδ0e−2bx−4ab
∫ t

0 β(τ)dτ−2bd0 + e2bx+4ab
∫ t

0 β(τ)dτ+2bd0
, (64)

which can be rewritten as:

u(x, t) = 4b
e−2iax−2i

∫ t
0 [(a2−b2)β(τ)− 1

2 α(τ)]dτ+iw0

e−2bx−4ab
∫ t

0 β(τ)dτ−2bδ0 + e2bx+4ab
∫ t

0 β(τ)dτ+2bδ0
. (65)

Finally, the one-soliton solution of the gNLS Equation (3) can be obtained as follows:

u(x, t) = 2be−2iηsec h[2b(x + 2a
∫ t

0
β(τ)dτ − δ0)], (66)

where

η = ax +
∫ t

0
[(a2 − b2)β(τ)− 1

2
α(τ)]dτ − 1

2
w0. (67)

In Figures 1–4, four spatial structures of the one-soliton solution (66) are shown by
selecting the same parameters a = 1, b = 0.1, δ0 = 6 and w0 = 0.5, however, with different
time-varying coefficients: α(t) = sin(t2) and β(t) = 1 + sec h(t) in Figure 1; α(t) = t2

and β(t) = 1 + sin(1 + 0.4t) in Figure 2; α(t) = tanh(t) and β(t) = 1 + cos(t) in Figure 3;
and α(t) = tanh(t) and β(t) = 1 in Figure 4. Figures 1–4 show that the four bell one-
solitons propagating along the negative x-axis have different velocities: variable velocities
in Figures 1–3 and uniform velocity in Figure 4. Form Equation (67), we can see that β(t)
and α(t) determine the frequency of the soliton vibration.
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Figure 1. Spatial structure of the one-soliton solution (66) with α(t) = sin(t2) and β(t) = 1+ sec h(t).

Figure 2. Spatial structure of the one-soliton solution (66) with α(t) = t2 and β(t) = 1+ sin(1+ 0.4t).

Figure 3. Spatial structure of the one-soliton solution (66) with α(t) = tanh(t) and β(t) = 1 + cos(t).
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Figure 4. Spatial structure of the one-soliton solution (66) with α(t) = tanh(t) and β(t) = 1.

When N ≥ 2, solution (61) cannot be written as a hyperbolic function like Equation (66).
For the selection of N = 2, Equation (61) gives

u(x, t) = −2i
c1eθ1−θ∗2 p12 + c2eθ2−θ∗1 p21 − c2eθ2−θ∗2 p11 − c1eθ1−θ∗1 p22

p11 p22 − p12 p21
, (68)

with

p11 =
c∗1c1eθ∗1+θ1 + e−θ∗1−θ1

ξ1(0)− ξ1(0)
, p12 =

c∗1c2eθ∗1+θ2 + e−θ∗1−θ2

ξ1(0)− ξ2(0)
, (69)

p21 =
c∗2c1eθ∗2+θ1 + e−θ∗2−θ1

ξ2(0)− ξ1(0)
, p22 =

c∗2c2eθ∗2+θ2 + e−θ∗2−θ2

ξ2(0)− ξ2(0)
, (70)

where θ1 and θ2 are determined by Equation (65), ξ1(0) = ξ∗1(0) and ξ2(0) = ξ∗2(0). In
Figures 5–7, a collision between bell two-solitons determined by solution (68) is shown
by setting the parameters c1 = 1, c2 = 1, ξ1(0) = 0.3 + 0.3i, ξ2(0) = 0.4 + 0.4i, α(t) = t
and β(t) = tanh(0.2t). It can be seen from Figures 5–7 that, after interaction, two solitons
moving in the opposite directions along the x-axis move away from each other in the
original opposite direction. This is different from the interaction between two solitons with
the variable coefficient α(t) = t and the constant coefficient β(t) = 1, which continue to
move forward after passing through each other as shown in Figures 8–10.

Figure 5. Spatial structure of the two-soliton solution (68) with α(t) = t and β(t) = tanh(0.3t).
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Figure 6. Contour of the two-soliton solution (68) with α(t) = t and β(t) = tanh(0.3t).

Figure 7. Interaction of the two-soliton solution (68) with α(t) = t and β(t) = tanh(0.3t): (a) t = −10,
(b) t = 0 and (c) t = 10.
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Figure 8. Spatial structure of the two-soliton solution (68) with α(t) = t and β(t) = 1.

Figure 9. Contour of the two-soliton solution (68) with α(t) = t and β(t) = 1.
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Figure 10. Interaction of the two-soliton solution (68) with α(t) = t and β(t) = 1: (a) t = −10,
(b) t = 0 and (c) t = 10.

5. Conclusions

Taking the gNLS Equation (3) as an example, this paper presented a positive answer
to the feasibility of extending the RH method [17] to nonlinear evolution equations with
variable coefficients. Due to the derived Lax representation in Equations (4) and (5) and
their transformation forms (10) and (11) with unit boundary values at infinity of spatial
independent variables, the solution of the gNLS Equation (3) is transformed into the
associated RH problem (30) via Equation (29).

Based on the solvability of the RH Problem (25), we determined the time evolution
laws (38)–(42) of the corresponding scattering data, recovered the potential function using
the RH method [17] and, finally, obtained the solution (56) with the long-time asymptotic
behavior and the N-soliton solution (61). It can be seen from Figures 1–4 that four bell
one-solitons propagating from the positive x-axis to the negative x-axis possess different
velocities, which make their peaks form different motion trajectories, including the kink
trajectory in Figure 1, periodic kink trajectory in Figure 2, straight turning trajectory in
Figure 3 and straight-line trajectory in Figure 4. This is due to the different selections of the
time-varying coefficient function β(t).

Whether the propagation trajectory of the bell soliton peak determined by the one-
soliton solution (66) shows a straight line or curve depends on the time-varying coefficient
β(t). For the multiple soliton solution (61) with N > 1, there will be similar peak curve
trajectory characteristics. In fact, for the one-soliton solution (66), this point can be verified
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mathematically. Specifically, from Equation (66), we determined the modulus of the one-
soliton solution (66):

|u| = 2bsec h[2b(x + 2a
∫ t

0
β(τ)dτ − d0)], (71)

which is a bell soliton solution. The peak coordinates (x, t) of the bell soliton determined
by Equation (71) satisfy the equation:

x + 2a
∫ t

0
β(τ)dτ − d0 = 0. (72)

Clearly, the parameter controlling the peak trajectory of the above bell one-soliton
is the propagation velocity

.
x = −2aβ(t). Therefore, selecting β(t) = 1 as a constant is

the reason why the peak trajectory of the bell one-soliton in Figure 4 is a straight line. In
addition, it should be pointed out that, when α(t) = 0 and β(t) = 2, the gNLS Equation (3)
becomes the classical NLS equation, and the results obtained in this paper can degenerate
into the known ones [17]. Recently, some novel solutions [33–35] of NLS-type equations
with variable coefficients have been obtained. A comparison shows that both the long-
time asymptotic solution (63) and the N-soliton solution (61) are different from those
in [8,16,29–35].
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Abstract: In this paper, the Painlevé integrable property of the (1 + 1)-dimensional generalized Broer–
Kaup (gBK) equations is first proven. Then, the Bäcklund transformations for the gBK equations
are derived by using the Painlevé truncation. Based on a special case of the derived Bäcklund
transformations, the gBK equations are linearized into the heat conduction equation. Inspired by the
derived Bäcklund transformations, the gBK equations are reduced into the Burgers equation. Starting
from the linear heat conduction equation, two forms of N-soliton solutions and rational solutions
with a singularity condition of the gBK equations are constructed. In addition, the rational solutions
with two singularity conditions of the gBK equation are obtained by considering the non-uniqueness
and generality of a resonance function embedded into the Painlevé test. In order to understand
the nonlinear dynamic evolution dominated by the gBK equations, some of the obtained exact
solutions, including one-soliton solutions, two-soliton solutions, three-soliton solutions, and two
pairs of rational solutions, are shown by three-dimensional images. This paper shows that when the
Painlevé test deals with the coupled nonlinear equations, the highest negative power of the coupled
variables should be comprehensively considered in the leading term analysis rather than the formal
balance between the highest-order derivative term and the highest-order nonlinear term.

Keywords: Painlevé integrable property; Painlevé test; leading term analysis; (1 + 1)-dimensional
gBK equations; Bäcklund transformations; exact solutions

1. Introduction

Painlevé analysis is an important method for testing Painlevé integrable property [1–7]
of nonlinear partial differential equations (PDEs). If a given nonlinear PDE passes through
the Painlevé test, then we say it has Painlevé property [1]. More specifically, Painlevé
property or Painlevé integrability for nonlinear PDEs means that the solutions of the given
PDE must be “single-valued” in the neighborhood of a movable singularity manifold
(non-characteristic). The so-called WTC method of Painlevé analysis proposed by Weiss,
Tabor, and Carnevale [2] is an effective approach for Painlevé test of nonlinear PDEs. As
pointed out in [4], the celebrated BK equations can be used to describe the propagation
with double directions of long waves located in shallow water. In 2013, Zhang, Han, and
Tam [8] derived the following (1 + 1)-dimensional gBK equations:

vt = vxx − 2vvx − 4wx (1)

wt = −wxx − 2(wv)x − 2vx (2)

In soliton theory, besides the Painlevé analysis method [1–3], there are many alternative
methods [9–17] for solving nonlinear PDEs. Generally, each of these methods has its
advantages and disadvantages. Both the inverse scattering method [9] and the Darboux
transformation [11] depends on the Lax pair of the solved equations; however, constructing
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the Lax pair sometimes is more difficult than solving the equation itself or even impossible.
One of the key steps of the Hirota’s bilinear method [10] is finding an effective dependent
variable transformation, which is often inseparable from attempts or known solutions. Most
of other methods, such as [12–16], are relatively direct, but the hypothetical forms of ansatz
solution limit the type of the constructing solutions. The Painlevé analysis method [1–3]
can give the relative unified form of the solution of the equation to the greatest extent
and can construct various formal solutions from this unified form as needed. It is worth
mentioning that one of the advantages of the Painlevé analysis method [1–3] is to provide a
useful tool for the reduction or linearization of nonlinear PDEs. The Lax integrability and
multiple soliton solutions of Equations (1) and (2) were obtained in [8,18,19]. As far as we
know, the Painlevé test of Equations (1) and (2) has not been reported. In this paper, we
extend the WTC method [2] to prove the Painlevé property of Equations (1) and (2). At
the same time, the Bäcklund transformations, two reductions, and some exact solutions of
Equations (1) and (2) have been obtained by using the Painlevé truncation technique. This
is due to our consideration of balancing vxx − 4wx and 2vvx rather than the highest-order
derivative term vxx and the highest-order nonlinear term 2vvx in form for Equation (1) in
the process of using the Painlevé test to deal with the leading term analysis.

2. Painlevé Test and Painlevé Integrability

Employing the WTC method [2] of Painlevé analysis, we suppose that

v = φ−α
∞

∑
j=0

vjφ
j, v0 6= 0, (3)

w = φ−β
∞

∑
j=0

wjφ
j, w0 6= 0, (4)

where φ, vj, and wj are functions of x and t, α, and β are non-negative integers. Considering
the leading term analysis, we take

v ∼ v0φ−α (5)

w ∼ w0φ−β (6)

and therefore have

vx ∼ −αv0φ−α−1φx, vxx ∼ α(α + 1)v0φ−α−2φ2
x, (7)

wx ∼ −βw0φ−β−1φx, wxx ∼ β(β + 1)w0φ−β−2φ2
x. (8)

Using Equations (5)–(8) to balance the following terms of Equations (1) and (2),

vxx − 2vvx − 4wx = 0, (9)

− wxx − 2(wv)x = 0, (10)

We arrive at
α = 1, v0 = φx, (11)

β = 2, w0 = −1
2

φ2
x. (12)

Thus, Equations (3) and (4) can be rewritten as

v =
∞

∑
j=0

vjφ
j−1, (13)

w =
∞

∑
j=0

wjφ
j−2. (14)
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Substituting Equations (13) and (14) into Equations (1) and (2), collecting the same
power coefficients of φ, and then setting all the coefficients as zeros, we have

φ−3 :2φx(v2
0 + 4w0 + v0φx) = 0, (15)

φ−2 :4w1φx − 2φxv0,x − 4w0,x + v0(φt + 2v1φx − 2v0,x − φxx) = 0, (16)

φj−1 :vj+2[j(j + 1)φ2
x − 2jv0φx]− 4jwj+2φx = Fj+2,1, (j = 0, 1, 2, · · · ), (17)

φ−4 :6w0φx(v0 − φx) = 0, (18)

φ−3 :2[v0(2w1φx − w0,x) + φx(−w1φx + 2w0,x) + w0(φt + 2v1φx − v0,x + φxx)] = 0, (19)

φj−2 :vj+2[−2(j− 1)w0φx]− 2(j− 1)wj+2(jφ2
x + v0φx) = Fj+2,2, (j = 0, 1, 2, · · · ), (20)

where Fj+2,1 and Fj+2,2 are functions of v0, w0, v1, w1, v2, w2, · · · ,vj+1, wj+1, φ and their
partial derivatives with respect to x and t. It is easy to see that Equations (15) and (18) give
the same v0 and w0 as Equations (11) and (12). From Equation (16), one has

v1 = −φt + φxx

2φx
, w1 =

1
2

φxx. (21)

In view of Equations (11), (12), (17), and (20), we drive the determinants of the
coefficients of vj and wj(j = 2, 3, 4, · · · )

∣∣∣∣
(j− 2)(j− 3)φ2

x −4(j− 2)φx
(j− 3)φ3

x −2(j− 3)(j− 1)φ2
x

∣∣∣∣ = −2(j− 2)(j− 3)(j2 − 4j + 1)φ4
x. (22)

Equation (22) hints that j = 2, 3 are the resonance points. Accordingly, v2 and w3 or v3
and w2 may be the corresponding resonance functions. Fortunately, when we select v2
and w3 as the resonance functions and set v2 = 0 and w3 = 0, Equation (20) gives

w2 =
φxx(φt + φxx)− φx(4φx + φxt + φxxx)

4φ2
x

. (23)

Further set vj = 0(j ≥ 3) and wj = 0(j ≥ 4); then, Equations (3) and (4) can be
truncated. This shows that the (1 + 1)-dimensional gBK Equations (1) and (2) pass the
Painlevé test and hence possess the Painlevé integrability.

3. Bäcklund Transformations and Two Reductions

For the (1 + 1)-dimensional gBK Equations (1) and (2), the following Bäcklund trans-
formations hold:

Theorem 1. The (1 + 1)-dimensional gBK Equations (1) and (2) have the Bäcklund transformations:

v =
φx

φ
+ v1 (24)

w = − φ2
x

2φ2 +
φxx

2φ
+

1
2

v1,x − 1, (25)

where φ and v1 satisfy the following equations:

φt + 2v1φx + φxx = 0, (26)

v1,t + 2v1v1,x + v1,xx = 0. (27)

58



Mathematics 2022, 10, 486

Proof of Theorem 1. Setting vj = 0(j ≥ 2) and wj = 0(j ≥ 3), we can truncate
Equations (3) and (4) as

v = v0φ−1 + v1 (28)

w = w0φ−2 + w1φ−1 + w2 (29)

Substituting Equations (28) and (29), together with v0, w0, and w1 in Equations (11),
(12), and (21) into Equations (1) and (2), then collecting the same power coefficients of φ
and setting all the coefficients as zeros, we can arrive at Equation (26). At the same time,
with the help of Equation (26), we have

v1,t + 2v1v1,x + 4w2,x − v1,xx = 0 (30)

w2 =
1
2

v1,x − 1. (31)

Inserting Equation (31) into Equation (30), we reach Equation (27). Using Equations (11),
(12), (21), and (31), we finally convert Equations (28) and (29) into Equations (24) and (25). �

Corollary 1. Under the transformations:

v =
φx

φ
(32)

w = − φ2
x

2φ2 +
φxx

2φ
− 1, (33)

the (1 + 1)-dimensional gBK Equations (1) and (2) can be reduced to the linear heat conduction equation:

φt + φxx = 0 (34)

Proof of Corollary 1. Obviously, when v1 = 0, Equations (26) and (27) degenerate into
Equation (34). Meanwhile, Equations (24) and (25) become Equations (32) and (33). �

Inspired by Equation (27) derived from the substitution of Equations (31) into Equation (30),
we get the following Theorem 2.

Theorem 2. Suppose that

w =
1
2

vx − 1 (35)

the (1 + 1)-dimensional gBK Equations (1) and (2) can be reduced to the Burgers equation:

vt + 2vvx + vxx = 0 (36)

Proof of Theorem 2. On the one hand, we can reduce Equation (1) into Equation (36) by
using Equation (35). On the other hand, the substitution of Equation (35) into Equation (2) gives

(vt + 2vvx + vxx)x = 0 (37)

Since when Equation (36) is true, Equation (37) naturally holds, we then conclude that
Equation (35) can transform Equations (1) and (2) into Equation (36). �
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4. Soliton Solutions and Rational Solutions

To construct exact solutions of the (1 + 1)-dimensional gBK Equations (1) and (2), we
consider Equations (32)–(34) and suppose that

φ = 1 + ek1(x+c1t+d1) (38)

where k1, c1, and d1 are constants. Then, Equation (34) dictates

c1 = −k1 (39)

Thus, we obtain one-soliton solutions of Equations (1) and (2):

v =
k1ek1(x−k1t+d1)

1 + ek1(x−k1t+d1)
(40)

w = − k2
1e2k1(x−k1t+d1)

2(1 + ek1(x−k1t+d1))
2 +

k2
1ek1(x−k1t+d1)

2(1 + ek1(x−k1t+d1))
− 1. (41)

Considering the linearity of Equation (34), we know that

φ = 1 +
N

∑
i=1

eki(x−kit+di), ci = −ki(i = 1, 2, · · · , N) (42)

still solves Equation (34). Thus, we obtain N-soliton solutions of Equations (1) and (2):

v =

N
∑

i=1
kieki(x−kit+di)

1 +
N
∑

i=1
eki(x−kit+di)

=

[
ln

(
1 +

N

∑
i=1

eki(x−kit+di)

)]

x

, (43)

w = −

(
N
∑

i=1
kieki(x−ki t+di)

)2

2
(

1 +
N
∑

i=1
eki(x−ki t+di)

)2 +

N
∑

i=1
k2

i eki(x−ki t+di)

2
(

1 +
N
∑

i=1
eki(x−ki t+di)

) − 1 =
1
2

[
ln

(
1 +

N

∑
i=1

eki(x−ki t+di)

)]

xx

− 1 (44)

We note here that the more general N-soliton solutions,

v =

{
ln

[(
1 +

N

∑
i=1

ekix+ki(2A−ki)t+ξ0
i

)
/eA(x+At)+η0

]}

x

, (45)

w =
1
2

{
ln

[(
1 +

N

∑
i=1

ekix+ki(2A−ki)t+ξ0
i

)
eA(x+At)+η0

]}

xx

− 1, (46)

which include Equations (43) and (44) as special cases, have been obtained in our previous
work [19]. In order to construct other formal N-soliton solutions of Equations (1) and (2),
we assume that

φ =

(
1 +

N

∑
i=1

eki(x+cit+di)

)
ep(x+qt+r), (47)

where ki, ci, di, p, q, and r are all constants. Then, the substitution of Equation (47) into
Equation (34) determines the relations:

ci = −ki − 2p, q = −p. (48)
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We therefore gain the formal N-soliton solutions of Equations (1) and (2):

v = ln

[(
1 +

N

∑
i=1

eki [x−(ki−2p)t+di ]

)
ep(x−pt+r)

]

x

, (49)

w =
1
2

{
ln

[(
1 +

N

∑
i=1

eki [x−(ki−2p)t+di ]

)
ep(x−pt+r)

]}

xx

− 1. (50)

Here, it should be noted when Equation (50) is equivalent to Equation (46), then
Equation (49) is different from Equation (45). Besides, we easily see that Equations (43) and (44)
are special cases of Equations (49) and (50). The equivalent forms of Equations (49) and (50)
are also helpful for the comparison, which reads

v =

N
∑

i=1
kieki [x−(ki−2p)t+di ]

1 +
N
∑

i=1
eki [x−(ki−2p)t+di ]

+ p (51)

w = −

[
N
∑

i=1
kieki [x−(ki−2p)t+di ]

]2

2
[

1 +
N
∑

i=1
eki [x−(ki−2p)t+di ]

]2 +

N
∑

i=1
k2

i eki [x−(ki−2p)t+di ]

2
[

1 +
N
∑

i=1
eki [x−(ki−2p)t+di ]

] − 1. (52)

In Figure 1, the one-soliton solutions determined by Equations (51) and (52) are shown
by setting k1 = −1, d1 = 0, and p = −0.6. It can be seen from Figure 1 that the one-soliton
solution determined by Equation (51) possesses kink structure, and the one-soliton solution
determined by Equation (52) has bell structure.
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The interaction of three kink-soliton solution determined by Equation (51) and the
interaction of three bell-soliton solution determined by Equation (52) are shown in Figure 3;
there, the parameters are selected as k1 = −1, k2 = −1.5, k3 = 0.8, d1 = 0, d2 = 0, d3 = 0,
and p = −0.6.

Mathematics 2022, 10, x FOR PEER REVIEW 8 of 11 
 

 

The interaction of three kink-soliton solution determined by Equation (51) and the 

interaction of three bell-soliton solution determined by Equation (52) are shown in Figure 

3; there, the parameters are selected as 
1 1k  , 

2 1.5k   , 
3 0.8k  , 

1 0d  , 
2 0d  , 

3 0d  , and 0.6p   . 

  
(a) (b) 

Figure 3. Three-soliton solutions determined by Equations (51) and (52) with the parameters 

1 1k  , 
2 2k   , 

3 0.8k  , 
1 0d  , 

2 0d  , 
3 0d  , and 0.6p   : (a) Kink three-soliton so-

lution; (b) bell three-soliton solution. 

In addition to the soliton solutions obtained above, some other types of exact solu-

tions of Equations (1) and (2) can also be obtained. For example, if we choose Equation 

(26) in the form 

( )k x ct d     (53) 

where k , c , and d  are all constants, then one has 

0v k , 
1

1

2
v c , 2

0

1

2
w k  , 

1 0w  , 
2 1w   . (54) 

The rational solutions of Equations (1) and (2) are then obtained as follows: 

(

1

) 2

k
c

k x ct
v

d


 
 , (55) 

2

2
1

2[ ( ) ]

k

k x ct
w

d
 

 
 . (56) 

In Figure 4, the rational solutions (55) and (56) are shown by selecting 1c  , 2k  

, and 3d  . A direct computation shows that the singularities in Figure 4 occur at each 

point on the straight line 2( ) 3 0x t   . 

Figure 3. Three-soliton solutions determined by Equations (51) and (52) with the parameters k1 = −1,
k2 = −2, k3 = 0.8, d1 = 0, d2 = 0, d3 = 0, and p = −0.6: (a) Kink three-soliton solution; (b) bell
three-soliton solution.

In addition to the soliton solutions obtained above, some other types of exact solutions
of Equations (1) and (2) can also be obtained. For example, if we choose Equation (26) in
the form

φ = k(x− ct) + d (53)

where k, c, and d are all constants, then one has

v0 = k, v1 =
1
2

c, w0 = −1
2

k2, w1 = 0, w2 = −1. (54)

The rational solutions of Equations (1) and (2) are then obtained as follows:

v =
k

k(x− ct) + d
+

1
2

c, (55)
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w = − k2

2[k(x− ct) + d]2
− 1. (56)

In Figure 4, the rational solutions (55) and (56) are shown by selecting c = 1, k = −2,
and d = 3. A direct computation shows that the singularities in Figure 4 occur at each point
on the straight line 2(x− t)− 3 = 0.
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The above results obtained benefit from the correct selection of the resonance coeffi-
cient functions for v2 and w3 in Equations (17) and (20). In fact, if we keep the generality
of v2, the equation v2v2,x = 0 will appear in the operation of the above Painlevé test. When
v2 = 0 is selected, then the rational solutions (55) and (56) can be obtained by employing
Equation (53). To avoid repetition, we omit them here. However, when we select v2,x = 0
together with Equation (53), the similar operations give

v2 =
1

2kt− s
(57)

where s is an arbitrary constant and hence produces the general rational solutions of
Equations (1) and (2):

v =
k

k(x− ct) + d
+

k(x− ct) + d
2kt− s

+
1
2

c (58)

w = − k2

2[k(x− ct) + d]2
+

k
2(2kt− s)

− 1 (59)

which causes singularities to occur in two straight lines, k(x− ct) + d = 0 and 2kt− s = 0,
in the case of k 6= 0. See Figure 5 for the rational solutions (58) and (59) with the parameters
c = 1, k = −2, d = 3, and s = −2.
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5. Conclusions

We have proved the Painlevé integrable property of the (1 + 1)-dimensional gBK
Equations (1) and (2). This is due to the key step adopted in this paper to balance
Equations (9) and (10) rather than the equation

vxx − 2vvx = 0 (60)

and Equation (10) in the process of using the Painlevé test to deal with the leading term anal-
ysis. If the leading terms of Equations (60) and (10) are balanced, then α = 1 and v0 = −φx
are derived from Equation (60) by similar computations using Equations (5) and (6). Sub-
stituting α = 1 and v0 = −φx into Equation (10) and balancing the leading terms yields
β = −1 or β = −2. This contradicts the prior assumption that β is a nonnegative integer.
Although the derivative of vxx is one order higher than that of wx in form, the highest
negative power of φ is balanced, and vxx ∼ 2v0φ2

xφ−3 and wx ∼ −2w0φxφ−3 are the same
power as discussed in this paper. For other coupled nonlinear PDEs, this should be noted
in the leading term analysis. Of course, this noteworthy point will not appear in a single
model. We think this point is very important and will directly affect whether the Painlevé
test can be passed if the equation under consideration has Painlevé property. To the best of
our knowledge, it has not been reported in the literature.

Based on the Painlevé truncation, the Bäcklund transformations (24)–(27) and exact
solutions of Equations (1) and (2) have been obtained, including the N-soliton solutions (43)
and (44), (49) and (50), rational solutions (55) and (56), and (58) and (59). These obtained
soliton solutions and rational solutions may provide useful information for explaining some
relevant nonlinear physical phenomena. This shows the importance of the Bäcklund trans-
formations (24)–(27) in constructing exact solutions to a great extent. Using the Bäcklund
transformations (24)–(27) to construct other types of exact solutions of Equations (1) and (2)
is worthy of study. Besides, the gBK Equations (1) and (2) are reduced into two simple
forms by the aid of the benefits of the Bäcklund transformations (24)–(27). One reduced
form gives the linear heat conduction Equation (34), and the other ones arrive at the Burgers
Equation (36). Compared with the bilinear forms (2.8a) and (2.8b) [19], which are nonlinear,
of Equations (1) and (2), the linear heat conduction Equation (34) in this paper is much
simpler. Based on the bilinear forms (2.8a) and (2.8b) [19], the perturbation truncation
technique of the Hirtoa’s bilinear method [10] can obtain the truncated expansion with
any finite terms consisting of the solutions to construct. However, the Painlevé truncation,
as did in this paper for Equations (1) and (2), will generally stop at the resonance point,
and the number of expansion terms of the solution is small. It is difficult for the Painlevé
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analysis method [1–3] to construct the formal solutions of Equations (1) and (2) with any
number of expansion terms, and the convergence of the infinite term series expansion
solution (3) or (4) is far from being solved.
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Abstract: The paper deals with a nonlinear second-order one-dimensional evolutionary equation
related to applications and describes various diffusion, filtration, convection, and other processes. The
particular cases of this equation are the well-known porous medium equation and its generalizations.
We construct solutions that describe perturbations propagating over a zero background with a finite
velocity. Such effects are known to be atypical for parabolic equations and appear as a consequence
of the degeneration of the equation at the points where the desired function vanishes. Previously, we
have constructed it, but here the case of power nonlinearity is considered. It allows for conducting
a more detailed analysis. We prove a new theorem for the existence of solutions of this type in
the class of piecewise analytical functions, which generalizes and specifies the earlier statements.
We find and study exact solutions having the diffusion wave type, the construction of which is
reduced to the second-order Cauchy problem for an ordinary differential equation (ODE) that
inherits singularities from the original formulation. Statements that ensure the existence of global
continuously differentiable solutions are proved for the Cauchy problems. The properties of the
constructed solutions are studied by the methods of the qualitative theory of differential equations.
Phase portraits are obtained, and quantitative estimates are determined by constructing and analyzing
finite difference schemes. The most significant result is that we have shown that all the special cases
for incomplete equations take place for the complete equation, and other configurations of diffusion
waves do not arise.

Keywords: nonlinear partial differential equation; porous medium equation; diffusion wave; exis-
tence theorem; analytical solution; power series; majorant method; exact solution

MSC: 35K57

1. Introduction

This article continues our study of one special class of solutions to a second-order
nonlinear evolutionary equation [1]. We consider the equation having the following
general form:

Tt = (Φ1(T))xx + (Φ2(T))x + Φ3(T). (1)

Here t, x are independent variables: t is time, x is a spatial variable, T(t, x) is an
unknown function, and Φi, i = 1, 2, 3 are the specified functions. From a physical point
of view, the function Φ1 describes diffusion processes (diffusion term), Φ2 corresponds to
convection processes (convection term), and Φ3 is a source or a sink.

Equation (1) is parabolic if Φ′1(T) ≥ 0. Solutions that hold the parabolic type of the
equation are usually studied. However, for the completeness of the study, negative case
can also be considered.

A detailed bibliography overview is given in our first article devoted to the problem
considered [1]. Let us briefly recollect some essential points. First, we should mention
classical monographs that significantly influenced developing the theory of nonlinear
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parabolic equations [2–4]. Second, we point out the articles in which, apparently, the
authors presented diffusion wave-type solutions for the first time [5,6]. Let us especially
note book [7], which presents the mathematical theory of the porous medium equation and
thorough state-of-art.

Recall that the case where Φ1 is a power function, and Φ2 = Φ3 ≡ 0 is the porous
medium Equation [7]. It is rich in applications and describes the filtration of an ideal
gas in porous formations [6], the radiant (nonlinear) thermal conductivity [5], as well as
population dynamics processes [8].

If Φ1 and Φ3 are power functions, and Φ2 ≡ 0, then (1) becomes the generalized
porous medium Equation [7] or the nonlinear heat equation with a source [9]. This equation
describes the same processes as the porous medium equation, but allows us to consider the
inflow or outflow of matter or heat.

Assuming Φ3 ≡ 0, and Φ1 and Φ2 are nonzero leads Equation (1) to the convection-
diffusion Equation [10,11]. Several mathematical models of fluid mechanics, which simul-
taneously describe the diffusion and convective [12] mechanisms of energy and matter
transfer, are reduced to such an equation. The phonon transport within silicon structures,
which is subjected to internal heat generation, can also be explored [13,14]. In [15], the
authors proposed the equation considered as a suitable governing equation for the gas flow
through a Graphene Oxide membrane. A mathematical model describing the flow of a
mixture of ideal gases in a highly porous electrode for fuel cell engineering is proposed
in [16]. Its particular case is the well-known Burgers equation [7].

Finally, Equation (1), if Φ2(c) is a linear function, which describes the non-stationary
thermal conductivity in a medium moving at a constant speed, when the thermal conduc-
tivity coefficient and the reaction rate are arbitrary functions of the temperature [17].

Note that the problem is also being studied in the case of several spatial variables, and
solutions of different types are constructed. In [18,19], the author considers the anisotropic
case and construct weak solutions. In [20], the authors present weak supersolutions for
different functional spaces. Analytical travelling waves for the nonlinear convection-
diffusion equation are studied in [21], including the use of Lie symmetry [22]. Various
models of a similar but more general form are used, for example, in the study of diffusion
processes in metallurgy [23], as well as the thermal fields located in the permafrost area [24].
The list could be continued, so the study of Equation (1) is still relevant.

In this paper, we deal with the problem of constructing and studying diffusion-wave-
type solutions in the case of power functions Φi. The existence and uniqueness theorem is
proved. It, unlike the known ones, allows us to set the boundary condition at a moving
point. In addition, exact solutions are found and investigated in detail in one particular
case. Their construction is reduced to the integration of the Cauchy problem for an ordinary
differential equation.

In contrast to similar solutions that we dealt with in [1], this study is more systematic.
Firstly, here these Cauchy problems are investigated in a general formulation. Secondly,
we do not limit ourselves to considering cases when equations can be integrated explicitly
but perform their qualitative analysis and constructed phase portraits, which allowed us to
investigate the behavior of solutions. We also construct finite difference schemes and prove
their convergence, which, in particular, makes it possible to construct accurate estimates
for the solutions obtained.

2. Problem Formulation

If the functions Φ1(T), Φ2(T) are differentiable, Equation (1) can be written as:

Tt = (Φ′1(T)Tx)x + Φ′2(T)Tx + Φ3(T). (2)

We assume that Φi(T), i = 1, 2, 3 are power functions:

Φ′1(T) = λ1Tσ1 , Φ′2(T) = λ2Tσ2 , Φ3(T) = λ1Tσ3 ,
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where σi, i = 1, 2, 3 are positive constants, σ1 + σ3 > 1, λi, i = 1, 2, 3 are constants, and
λ1 > 0.

The substitution u = Φ′1(T) = λ1Tσ1 and effortless transformations lead Equation (2)
to the form:

ut = uuxx +
1
σ

u2
x + Auθux + Buβ. (3)

Here σ = σ1 > 0, θ = σ1/σ2 > 0, β = σ3/σ1 + 1 − 1/σ1 > 0, A = λ2λ−1/σ
1 ,

B = λ3λ1/σ−1/σ3
1 . Obviously, Equation (3) has the trivial solution u ≡ 0.

Let us set for Equation (3) the boundary conditions:

u(t, x)|x=a(t) = f (t), f (0) = 0, f ′(0) ≥ 0. (4)

Previously, the same conditions for the porous medium Equation [25] were consid-
ered. In this paper, we prove the solvability of problem (3) and (4) in the class of analyt-
ical functions. Moreover, we show that if there exists a sufficiently smooth solution to
problem (3) and (4), then together with the trivial one, it forms a diffusion wave.

3. Main Theorem

Let us formulate and prove the existence and uniqueness theorem. Here and further,
an analytical solution means a solution in the class of analytical functions, i.e., it coincides
in a neighborhood with its Taylor expansion.

Recall that the diffusion wave-type solution means a piecewise smooth solution to
Equation (1), consisting of a trivial u ≡ 0 part and a nontrivial u = u(t, x) ≥ 0 one,
continuously joined on some line in the plane of variables t, x. This line is called the
wave front.

Theorem 1. Let the functions a(t) and f (t) be analytical in some neighborhood of t = 0; f ′(0) ≥ 0;
[a′(0)]2 + f ′(0) > 0; and let θ and β be natural (positive integer) numbers. Then problem (3)
and (4) has a nonzero analytical solution of diffusion-wave type in some neighborhood of the point
(t = 0, x = 0), which is unique if the direction of the diffusion-wave front moving is chosen.

Proof. Let us give a brief scheme of the further reasoning. First, we construct the solu-
tion in the form of a power series. Then we reduce problem (3) and (4), which is not a
Cauchy–Kovalevskaya type, to the standard form by the consequence of non-degenerate
substitutions. This standard form is subject to the Cauchy–Kovalevskaya theorem.

To simplify the boundary conditions, we make the substitution t1 = t, r = x− a(t).
It is easy to show that the Jacobian of the substitution is nonzero. As a result, we get
the problem:

ut − a′(t)ur = uurr +
1
σ

u2
r + Auθur + Buβ, (5)

u(t, r)|r=0 = f (t). (6)

Here and to further simplify the notation, the first independent variable retains t
without index 1.

We construct the solution to problem (5) and (6) as the series:

u(t, r) =
∞

∑
k,m=0

uk,m
tkrm

k!m!
, uk,m =

∂k+mu
∂tk∂rm

∣∣∣∣∣
t=r=0

. (7)

This method develops the method of special series, which was proposed and widely
used in the scientific school of A.F. Sidorov [26,27].

Since the construction essentially coincides [28] (see also [25]), we try to avoid repeti-
tions, focusing on new points in the proof and emerging difficulties.

Since the functions a(t), f (t) are analytical, they allow the expansions:
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f (t) =
∞

∑
n=0

fn
tn

n!
, a(t) =

∞

∑
n=0

an
tn

n!
.

Boundary condition (6) implies the equalities un,0 = fn, and f0 = 0. The remaining
coefficients of (7) are determined by recursive induction on the total order of differentiation
n = k + m.

First, we establish the induction base by considering the case k + m = 1. As it has
been shown, u1,0 = f1. Assume, that t = r = 0 in (5). Then it is possible to consider the
equation obtained as quadratic with respect to u0,1 and find its roots:

u±0,1 =
σ

2

(
−a1 ±

√
a2

1 + 4 f1

)
.

Since f ′(0) ≥ 0, [a′(0)]2 + f ′(0) > 0, both roots are real.
The direction of the diffusion wave moving depends on the choice of the sign of u0,1.

The value u−0,1 corresponds to a diffusion wave whose front lies to the right of the line
x = a(t) in the plane of variables t, x. A diffusion wave whose front is located to the left
of the line x = a(t) corresponds to u+

0,1. These cases can be considered separately, or one
can be chosen based on additional reasons. Looking ahead, we note that the procedure for
constructing a solution is similar in both cases.

If the sign is chosen, then the series (7) is constructed uniquely.
We differentiate (5) k times with respect to r, n− k times by t, and set t = r = 0. After

collecting terms, we arrive at the equality:

bn−kun−k−1,k+2 + ckun−k,k+1 + un−k+1,k = Rn−k,k, (8)

where:

bn−k = −(n− k) f1, ck = −
(

k +
2
σ

)
u0,1 − a1.

We do not show here the explicit form of Rn−k,k since it is cumbersome. Their form
for the particular case A = B = 0 can be found in [25], where it is presented since the
convergence proof technique used there requires direct estimates. Here, we use another
technique for constructing the majorant problem based on the hodograph transformation.
In this regard, it is enough to point out that Rn−k,k depend on the derivatives of the
unknown function of order at most n, which are known by the induction hypothesis. The
condition θ, β ∈ N ensures infinite differentiability of Equation (5).

Changing in (8) k from 0 to n and taking into account that un+1,0 = fn, and b0 = 0, we
obtain the following system of linear algebraic equations:




c0 bn 0 . . . 0 0 0
1 c1 bn−1 . . . 0 0 0

. . . . . .
0 0 0 . . . 1 cn−1 b1
0 0 0 . . . 0 1 cn



×




un,1
un−1,2

. . .
u1,n

u0,n+1




=




R∗n,0
Rn−1,1

. . .
R1,n−1

R0,n




. (9)

Here R∗n,0 = Rn,0 − fn+1. You can see that the matrix An of system (9) is tridiagonal of
order n + 1, and the condition of diagonal dominance is not satisfied. Let us prove that its
determinant is nonzero.

Indeed, it is necessary to consider three cases: (1) f1 = 0; (2) f1 > 0, u0,1 = u+
0,1;

(3) f1 > 0, u0,1 = u−0,1.
1. Let f1 = 0. Then bk = 0 for all k, i.e., the matrix An is triangular two-diagonal and

its determinant is equal to the product of the elements of the main diagonal:

det An =
n

∏
i=0

ci.
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Two subcases are possible here: (a) u0,1 = u+
0,1 = 0, then ck = −a1 for all k;

(b) u0,1 = u−0,1 = −a1σ, then ck = (kσ + 1)a1. For the both subcases det An 6= 0 since
a1 6= 0.

2. Let f1 > 0, u0,1 = u+
0,1. Then bk < 0 for k ≥ 1 and ck > 0 for all k, i.e., all elements

on the main diagonal and subdiagonal are positive, and all elements of the superdiagonal
are negative. Hence, all the principal minors of the matrix An are positive, which means its
non-degeneracy.

3. Let f1 > 0, u0,1 = u−0,1. Then bk < 0 for k ≥ 1 and ck < 0 for all k. Let us introduce
an auxiliary numeric sequence ∆n,k as follows:

∆n,0 = 1, ∆n,1 = c0 < 0, ∆n,k = ck−1∆n,k−1 − bn−k+2∆n,k−2, k = 2, 3, . . . , n.

It can be shown by induction on k that ∆n,k consists of two positive terms for even
k and two negative ones for odd k. Hence we have that ∆n,k 6= 0 for all admissible n
and k. On the other hand, it is easy to show that ∆n,n = det An by induction on n. Thus,
det An 6= 0, moreover, det An > 0 for even n and det An < 0 for odd n.

Thus, we have proved that system (9) is non-degenerate, and the coefficients of
series (7) are uniquely determined if one of the two possible values of u±0,1 is chosen. This
finishes the first step of the proof.

We refuse the direct estimates applied in [25] in the proof of convergence. Here we
use an alternative methodology, which reduces the problem to a special form previously
considered in [1,28].

Since u0,0 = 0, u2
0,1 + u2

1,0 6= 0, then if series (7) converges, there exists a line r = g(t)
in the plane t, r, on which the unknown function vanishes:

u|r=g(t) = 0, g(0) = 0.

In problem (5) and (6), which is equivalent to the original one, let us make the substi-
tution t2 = t, s = r− g(t). We arrive at the problem that consists of one equation and two
boundary conditions:

ut − [a′(t) + g′(t)]us = uuss +
1
σ

u2
s + Auθus + Buβ, (10)

u(t, s)|s=−g(t) = f (t), u(t, s)|s=0 = 0. (11)

To simplify the notation, the first independent variable retains t without index 2.
The function g(t) is still unknown, and it will be determined simultaneously with the

construction of the function u. Thus, we obtain one of the problems with a free boundary.
The most famous of them for parabolic equations is the Stefan problem [29,30].

The following substitution changes the roles of the unknown function u and the indepen-
dent variable s, i.e., it is a variant of the hodograph transformation. Equation (10) becomes:

usuu = Buβs3
u + [st + a′(t) + g′(t) + Auθ ]s2

u +
1
σ

su. (12)

Conditions (11) take the form:

s(t, u)|u= f (t) = −g(t), s(t, u)|u=0 = 0. (13)

Let us differentiate the first condition of (13) and substitute the resulting expression
[st + su f ′(t)]|u= f (t) = −g′(t) into Equation (12). We obtain that:

usuu = Buβs3
u +

{
st + a′(t)− [st + su f ′(t)]|u= f (t) + Auθ

}
s2

u +
1
σ

su. (14)
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The positive trait of Equation (14) is that it no longer contains the unknown function
g(t). The boundary condition for (14) takes the form:

s(t, u)|u=0 = 0. (15)

Having constructed a solution to problem (14) and (15) which, recall, does not contain
the function g(t), we can find g(t) from the first condition of (13). Thus, we have decom-
posed problem (10) and (11), which includes two unknown functions into two separate
tasks. They contain one unknown function and can be solved sequentially.

As a result of the substitutions performed, we have obtained the problem with the
known diffusion front, which was previously considered in [1]. As already noted, the
detailed proof of the similar theorem for the porous medium equation with two spatial
variables is given in [28]. In this regard, we will be brief so as to not overload the paper.

Completing the series of substitutions, let us introduce the variable y = u− f , which
allows us to make the surface u = f as a new coordinate plane. Next, the unknown function
is represented as s(u, y) = us1(y) + u2Z(u, y), where s1 is the known analytical function,
and Z = Z(u, y) is a new unknown function. Note that in this case, the second boundary
condition of (13) is satisfied automatically, and the problem is reduced to one equation of
the form:

Ψ0(y)Z|y=0 + Ψ1(y)u(Zu|y=0) + Ψ2(y)u2(Zuu|y=0)

+B0Z + B1uSu + u2Zuu = h0 + uh1 + u2h2 + u3h3.
(16)

Here B0 = 2(1 + 1/σ), B1 = (4 + 1/σ) are constants; Ψi, i = 0, 1, 2 and hj, j = 0, 1, 2, 3
are analytical functions of their variables. Moreover, h0 = h0(u, y), and the remaining
hj depend on independent variables and derivatives of the function Z with respect to u
of order at most j − 1. The functions Ψi(y) are positive for y = 0. Thus, Equation (16)
obeys Lemma 2 from [28]. Therefore, it is solvable in the class of analytical functions. The
construction of the majorant problem and the proof of the existence of its analytical solution
are also carried out similarly.

Remark 1. We have constructed an analytical solution to problem (3) and (4) and simultaneously
determined the line x = a(t) + g(t), which is the diffusion wave front. The non-negative part of
the specified solution u = u+ and the trivial solution u ≡ 0, which are joined on the diffusion front,
give the required diffusion wave.

Remark 2. A particular case of problem (3) and (4), when f (t) ≡ 0, is a problem about the moving
of a diffusion wave with a given diffusion front, which obeys the theorem proved in [1].

4. Exact Solutions

Theorem 1 ensures the existence and uniqueness of the solution to the problem of
diffusion wave initiating and, remarkably, gives an algorithm for its construction in the
form of a double series. Unfortunately, it is local, and, as attempts to use such constructions
for a numerical modeling show [31], the radius of convergence of the series is usually small.
Thus, the theorem does not allow us to study the global properties of diffusion waves.
Besides, the requirement that the parameters β and θ in Equation (3) are natural numbers
significantly limits the generality. In general, these problems are far from being solved, as
well as for most other nonlinear degenerate partial differential equations. Therefore, we
investigate the properties of diffusion-wave type solutions to Equation (3) for an arbitrary
β > 0 and θ > 0 in the particular case. Exact solutions of parabolic equations are widely
used in solving applied problems: From modeling the well clogging process [32] to the
description of bubble dynamics [33].
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4.1. Reduction to Ordinary Differential Equations (ODEs)

Consider for Equation (3) the boundary condition:

u(t, x)|x=a(t) = 0, (17)

which, as already noted, is a particular case of (4) when f ≡ 0. Problem (3) and (17) is the
problem of the diffusion wave moving with a given front.

Note that problem (3) and (17) has the trivial solution u ≡ 0. However, in this case, the
uniqueness of the solution is violated, and a nonzero solution can also exist. Its existence in
the class of analytical functions follows from Theorem 1.

Current and further sections are devoted to finding and studying non-trivial exact
solutions to problem (3) and (17), the constructing of which is reduced to the integration of
Cauchy problems for ODEs. Previously, we studied this problem in detail for the nonlinear
heat equation [34] and for the nonlinear heat equation with a source [35] and found new
classes of diffusion-wave type solutions. Those problems corresponded to the case A = 0.
Here let us consider the case when A 6= 0.

Following [1], we look for solutions to Equation (3) having the form:

u = ψ(t)v(x− a(t)). (18)

Solution (18) is a generalized traveling wave, which becomes a simple traveling wave
if a(t) is a linear function. Substituting (18) into Equation (3), we obtain:

vv′′ +
1
σ
(v′)2 + Aψθ−1(t)vθv′ + Bψβ−2(t)vβ +

a′(t)
ψ(t)

v′ − ψ′(t)
ψ2(t)

v = 0. (19)

In order for (19) to become an ODE with respect to v(z), z = x− a(t), it is necessary
and sufficient to satisfy the conditions:

a′(t)
ψ(t)

= const,
ψ′(t)
ψ2(t)

= const, ψθ−1(t) = const, ψβ−2(t) = const. (20)

Here the first two conditions form a first-order ODE system. The third and fourth
conditions are additional compatibility conditions that can be satisfied, for example, by
choosing θ and β.

Let us consider two possible cases.
1. Let ψ(t) = ψ = const. Without losing the generality of consideration, we can

set ψ = 1. Then a(t) = µt + η, where µ, η are constants, and (19) takes the form of the
following ODE:

vv′′ +
1
σ
(v′)2 + (Avθ + µ)v′ + Bvβ = 0. (21)

We assume that in this case η = 0, µ > 0, which also does not reduce the generality
of consideration.

2. Let now ψ(t) 6= const. Then from the first two equations of (20) we have that
ψ(t) = ω/(µt + η), a(t) = ω ln(µt + η), where µ, η, and ω are nonzero constants, η > 0.
You can see that the necessary and sufficient conditions to satisfy the third and fourth
equalities of (20) are θ = 1, β = 2. Then (19) takes the form of the following ODE:

vv′′ +
1
σ
(v′)2 + (Av + µ)v′ + Bv2 +

µ

ω
v = 0. (22)

We can bring (21) and (22) to the general form:

vv′′ +
1
σ
(v′)2 + (Avθ + µ)v′ + Bvβ + Cv = 0. (23)
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4.2. Cauchy Conditions for ODEs

It is easy to see that condition (17) becomes v(0) = 0 for a solution having the form
(18). Then, obviously, Equation (23) has the trivial solution v ≡ 0. Assuming v = 0 in (23),
we obtain the quadratic equation with respect to v1 = v′(0):

1
σ

v2
1 + µv1 = 0, (24)

which has roots v1 = 0 and v1 = −µσ. Accordingly, we will consider Equation (23) with
the Cauchy conditions of two types:

v(0) = 0, v′(0) = 0; (25)

v(0) = 0, v′(0) = −µσ. (26)

The trivial solution corresponds to conditions (25). However, as it is shown below,
there may also exist a non-trivial solution that is not analytical, i.e., it cannot be represented
as a Taylor series.

Theorem 1 implies that problem (23) and (26) for positive integer values of θ and β has
the unique analytic solution in the form of a convergent series in powers of z. Unfortunately,
the theorem does not hold for non-integer values of these constants.

Note that Equation (23), although it is an ODE, stays still complex to study. First, it is
nonlinear. Second, the Cauchy problems inherit singularities from the original statements,
which does not allow for using standard methods and theorems of ODE theory. Thus, the
general case is quite complex and cannot be explored within the framework of a single
article. Therefore, we consider here one of the particular cases. On the one hand, this case
is significant and has interesting properties. On the other hand, it gives a clear idea of the
difficulties encountered in studying the properties of the obtained classes of exact solutions
and what techniques can be applied to overcome them.

5. Traveling Wave. Qualitative Analysis

In this section, we consider the exact solutions having the form of traveling waves,
which, as shown above, are described by Equation (21) with Cauchy conditions (25) or (26).
We study them using the methods of ODE theory, including qualitative analysis with the
construction of a phase portrait and some quantitative estimates.

5.1. Transition to Phase Variables

Using the fact that the equation does not explicitly depend on z, we proceed to the
phase plane. Let us introduce a new independent variable w and an unknown function p:

w = vθ , p = v′. (27)

The substitution is non-degenerate if θ ≥ 1. Equation (21) takes the form:

θwp
dp
dw

+
p2

σ
+ Awp + µp + Bwβ/θ = 0. (28)

Let θ = β ≥ 1, i.e., in the third and fourth terms of Equation (21) v has the same degree.
Due to the linear change of variables, we can reduce the number of constants. Let,

w = w̃Ã, Ã =
µ

A
; p = p̃B̃, B̃ =

µ

β
.

Then Equation (28) takes the form (∼ is omitted for simplicity):

wp
dp
dw

+
p2

γ
+ wp + p + αw = 0, (29)
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where γ = σθ > 0, α = B/µ > 0. Note that Equation (29) is similar to (39) from [1],
however, the appearance of the term pw in (29) significantly complicates the study.

For (29), let us consider solutions corresponding to the initial condition given at w = 0.
Since θ > 0, nontrivial solutions of this kind generate solutions to the original problem
having the diffusion-wave type. Looking ahead, we note that some of them may not have
physical meaning.

If we substitute w = 0 into Equation (29), we obtain the algebraic relation p2(0)/γ +
p(0) = 0, which is an analogue of equality (24). You can make sure that it has roots
(1) p(0) = 0 and (2) p(0) = −γ, which correspond to conditions (26) and (25), respectively.
Now let us consider Equation (29) with Cauchy conditions (1) and (2) in more detail.

5.2. Singular Points

First, we study the singular points of Equation (29). Since it is autonomous, let us turn
to the phase plane (v, v′ = w). We use the classic technique proposed in [36] (see, also [34]).
The following dynamic system corresponds to Equation (29):

dw
dζ

= wp,
dp
dζ

= − p2

γ
− p− pw− αw, (30)

where dz = w dζ.
Consider now the equilibrium states (singular points) of system (30). There are two

equilibrium states (0,−γ) and (0, 0).
Let us introduce the following notation:

R(w, p) = wp, Q(w, p) = −p2/γ− p− pw− αw,

M(v, w) =

(
Rw Rp
Qw Qp

)
=

(
p w

−p− α −2p/γ− w− 1

)
,

∆(w, p) = det M(w, p) = −2p2

γ
− p + αw,

δ(w, p) = Tr M(w, p) =
(γ− 2)

γ
p− w− 1.

Let us define the type of each singular point.
1. Consider the point (0,−γ). Since ∆(0,−γ) = −γ 6= 0, it is a simple equilibrium

point. From det(M− λE)|w=0,p=−γ = (λ + γ)(λ− 1), it follows that λ1 = −γ and λ2 = 1
are the roots of the characteristic equation. Therefore, the point (0,−γ) is the topological
saddle since ∆ < 0, λ1, λ2 ∈ R and λ1λ2 < 0.

2. Consider the point (0, 0). Since ∆(0, 0) = 0, this is a compound equilibrium
point. Here δ(0, 0) = −1 6= 0, and the equation that is obtained from system (30) by the
elimination of the independent variable ζ can be written as:

wpdw− [lp− p2/γ− wp− αw] dw = 0,

where l = −1. We represent the solution to the equation:

−lp + p2/γ + pw + αw = 0

as a series in powers of w, which we substitute into pw. As a result, we have:

p = φ(w) = −αw + . . . , ξ(w) = (wp)|p=φ(w) = −αw2 + . . .

Since the lowest power of w in the expansion ξ(w) equals two, the point (0, 0) is a
saddle-node with one nodal and two saddle sectors. The nodal sector is stable because
l < 0. Moreover, if α < 0, then the trajectories of the nodal sector tend to (0, 0) when
ζ → −∞ on the left of the Op axis. If α > 0, as in the considered case, the trajectories of the
nodal sector tend to (0, 0) when ζ → +∞ on the right of the Op axis.
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5.3. Phase Portrait

Let us construct and explore the phase portrait of system (30) for γ, α > 0. Note that
in all the considered cases:

1. The phase trajectories change the direction of motion when passing through the
Ow axis, as well as when crossing the quadric p2/γ + p + pw + αw = 0, which, in
particular, singular points belong;

2. Both singular points have vertical semi-separatrices, since they are located on the
Op axis.

Let us first determine the properties of the second-order curve:

p2/γ + p + pw + αw = 0.

Bringing it to its canonical form, we obtain:

(
p +

γw
2

+
γ

2

)2
− γ2

4

(
w + 1− 2α

γ

)2
= α(γ− α). (31)

It is easy to see that for α = γ, we have a pair of intersecting straight lines
p1(w) = −γw− γ + α, p2(w) ≡ −α. If α 6= γ, then we obtain hyperbolas with the same
asymptotes p = p1(w) and p = p2(w) and different positions of the branches depending
on the sign of the difference γ− α.

Let us consider all possible cases. Note here that in all cases, there are three semi-
separatrices. The first is a monotonically decreasing curve coming to the singular point
(0, 0) and located in the second quadrant (bold curve S1 in Figure 1–3). The second and
third are vertical semi-separatrices lying on the Op axis.

Case γ = α. Figure 1 shows the phase portrait of system (30) for this case. As already
noted, the quadric (31) degenerates into two intersecting lines (dashed and green lines).
Besides the separatrices mentioned above, there is also a separatrix that coincides with the
line p = −γ (green line). The nodal sector is bounded by the Op axis and the straight line
p = −γ.

p

w

0

1
S

2
S

3
S -g

Figure 1. Phase portrait for γ = α.

Case γ > α. Figure 2 shows the phase portrait of system (30). You can see that half-
hyperbolas (31) are located in the right upper and left lower quarters, into which the lines
p1(w) = −γw− γ + α, p2(w) ≡ −α divide the coordinate plane (dashed curves). Here we
have two additional separatrices S2 and S3 coming into the point (0,−γ) (purple curves).
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Both S2 and S3 are monotonically decreasing functions; S2 tends to −∞ when ζ → +∞;
S3 tends to p = −α when ζ → −∞. The nodal sector is bounded by the Op axis and the
semi-separatrix S2 located in the fourth quadrant.
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2
S

3
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-g

Figure 2. Phase portrait for γ > α.

Case γ < α. Here half-hyperbolas (31) are located in the left upper and right lower
quarters, into which the lines p1(w) = −γw− γ + α, p2(w) ≡ −α divide the coordinate
plane (see Figure 3). Again, in addition to the same separatrices for all cases, we have two
semi-separatrices going out the point (0,−γ) (blue curves). The separatrix S2 first increases
to the intersection with the Ow axis, then decreases and asymptotically tends to the Op axis
when ζ → +∞, bounding the nodal sector. The separatrix S3 is a monotonically increasing
function and tends to the line p = −α when ζ → −∞.
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Figure 3. Phase portrait for γ < α.

The properties of separatrices that do not coincide with the Op axis and the interpreta-
tion of the results from the original problem point of view will be discussed below.
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6. Zero Initial Condition

Let us first consider the case when the initial condition for Equation (29) has the form:

p(0) = 0. (32)

Previously, this case has not been considered. The only exception is paper [34], where
we showed the existence of a semi-separatrix lying in the second quadrant and passing
through the origin for the porous medium equation. However, the properties of the
corresponding solution were not studied.

Obviously, in this case, the classical existence theorems are inapplicable due to degen-
eracy. Therefore, we attempt to eliminate the singularity.

6.1. Solution in the Form of a Series

Following [35], we try to construct an analytical solution to problem (29) and (32) as
the series:

p(w) =
∞

∑
k=0

pk
k!

zk, pk = p(k)(0). (33)

Let us construct the coefficients for (33) using the following recurrent procedure.
From (32) we have p0 = p(0) = 0. To find p1, we differentiate Equation (29) with respect
to w, set w = 0, p(0) = 0, and obtain that p1 = p′(0) = −α < 0. Similarly, we get
p2 = 2α(1− α− α/γ). Thus, the induction base is found.

Assume that p0, p1, . . . , pk−1, k ≥ 3 are determined. To find pk, we differentiate
Equation (29) k times with respect to w and set w = 0. Then we arrive at the equality:

k
k−1

∑
i=0

Ci
k−1 pi pk−i +

1
γ

k

∑
i=0

Ci
k pi pk−i + kpk−1 + pk = 0, (34)

where Ci
k = k!/[i!(k− i)!], k ≥ i. Resolving (34) with respect to pk and taking into account

p0 = 0, p1 = −α, we have that:

pk = k
(

αk +
2α

γ
− 1
)

pk−1 − k
k−2

∑
i=2

Ci
k−1 pi pk−i −

1
γ

k−2

∑
i=2

Ci
k pi pk−i. (35)

You can see that all terms on the right-hand side of (35) are known by the induc-
tion hypothesis. Thus, all the coefficients of series (33) are uniquely determined by the
formul obtained.

Now we study the properties of the constructed series. To do this, consider:

p2 = 2α

[
1− α(1 + γ)

γ

]
.

If α = γ/(1 + γ) we have p2 = 0. Then, it is easy to show by induction on k that
p3 = p4 = . . . = pk = . . . = 0. This means that the series breaks off, and the solution has
the form p = −αw.

If α > γ/(1 + γ), then p2 < 0, and we can make sure that pk < 0, k = 3, . . . Therefore,
from (35) we have that:

pk < k
(

αk +
2α

γ
− 1
)

pk−1 < 0.

Hence we get that:

lim
k→∞

|pk|(k− 1)!
|pk−1|k!

> lim
k→∞

k(k− 1)!
k!

(
αk +

2α

γ
− 1
)
= +∞.

Thus, we have proved the divergence of series (33) and the validity of the following
proposition.
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Proposition 1. Problem (29) and (32) has:

1. The analytical solution p = −αw, if α = γ/(1 + γ);
2. The solution having the form of a formal power series that converges only at the point w = 0,

if α > γ/(1 + γ).

Note that for 0 < α < γ/(1 + γ) the terms in formula (35) have, generally speaking,
different signs, and the question of the convergence or divergence of series (33) is much
more challenging. Nevertheless, the results of numerical calculations allow us to make a
reasonable assumption that the series diverges.

Remark 3. There are also simpler examples based on a similar idea. Indeed, consider the Cauchy problem:

xyy′ − y + x + 1 = 0, y(0) = 1.

We can easily make sure that in this case y′(0) = 1, y′′(0) = 2, and y(k)(0) ≥ k2y(k−1)(0) > 0,
k ≥ 2, which means the divergence of the Maclaurin series for the function y(x) at x 6= 0.

6.2. Euler Polygonal Approximations

As you know, the absence of an analytical solution to the Cauchy problem does not
mean that it is impossible to construct a smooth (classical) solution. The simplest example is
the problem y′ =

√
x, y(0) = 0, which has a unique continuously differentiable solution for

x ≥ 0. In this section, we show that problem (29) and (32) has a similar property for w ≤ 0,
especially since the results of qualitative analysis evidence the existence of such a solution.

We use the classical Euler method. Therefore, it is necessary to construct a finite
difference approximation of Equation (29). Calculations have shown that explicit difference
schemes, in this case, turn out to be unstable. Therefore, we consider an implicit one, which
at an arbitrary point wk, k ≥ 1 has the form:

wk pk
pk − pk−1
wk − wk−1

+
1
γ

p2
k + pk + wk pk + αwk = 0. (36)

From Cauchy condition (32) we have that p0 = p(0) = 0. For convenience, we use
a finite difference approximation with a constant step h, i.e., wk = kh. Then (36) takes
the form (

k +
1
γ

)
p2

k + (1 + kh− kpk−1)pk + αkh = 0. (37)

The roots of Equation (37) are:

pk =
−1− kh + kpk−1

2(k + 1/γ)
±
√

(−1− kh + kpk−1)2

4(k + 1/γ)2 − αkh
k + 1/γ

.

We choose the root that corresponds to + sign, otherwise p1 → −γ/(1 + γ) if h→ 0,
i.e., there is a discontinuity of the first kind at zero. So, we have the recurrent sequence:

p0 = 0, pk =
−1− kh + kpk−1

2(k + 1/γ)
+

√
(−1− kh + kpk−1)2

4(k + 1/γ)2 − αkh
k + 1/γ

, k = 1, 2, . . . (38)

For h > 0, the radical expression in (38) rapidly becomes negative as k increases, i.e.,
the scheme is not applicable in this case. This fact goes with the results of the qualitative
analysis, which showed that if α 6= γ/(γ + 1) problem (29) and (32) for w > 0 does not
have a solution.

We investigate the properties of the sequence pk for w < 0, i.e., when h < 0. To do this,
we formulate the following auxiliary lemma.

Lemma 1. Let x > y, A ≥ B > 0. Then x +
√

x2 + A− y−
√

y2 + B > 0.
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Proof. If y ≥ 0, then the lemma is obvious. Let −y > 0, y2 > x2. Since A ≥ B, the
inequality holds:

x +
√

x2 + A− y−
√

y2 + B ≥ x +
√

x2 + A− y−
√

y2 + A.

To prove the Lemma, it is enough to show that the right-hand side is greater than
zero. We use the rule of contraries. Let x +

√
x2 + A− y−

√
y2 + A < 0, then x − y <√

y2 + A−
√

x2 + A. Since x > y, we can square this inequality and collect the terms:

xy + A >
√
(y2 + A)(x2 + A).

If we square this inequality one more time and collect the terms, we obtain the inequality:

2xy > y2 + x2,

which is wrong. The contradiction proves the Lemma.

Now we formulate and prove the lemma about the properties of the sequence pk.

Lemma 2. Let h < 0, α > 0, γ > 0. Then the sequence pk is monotonically increasing with
respect to k, and the estimate holds:

pk ≥ −kh min
{

α,
γ

γ + 1

}
, k = 0, 1, 2 . . . (39)

Proof. We carry out the proof by induction on k. Assume for certainty that α ≤ γ/(γ+ 1) =
1/(1 + 1/γ). Then,

p1 − p0 = p1 ≥ −
(h + 1)α

2
+

√
(h + 1)2α2

4
− hα2 = − (h + 1)α

2
+

√
(1− h)2α2

4
= −αh,

and the induction base is determined.
Let 0 = p0 < p1 < . . . < pk. Consider the difference pk+1 − pk. Using (38), we can

rewrite it as:

pk+1 − pk =
−1− (k + 1)h + (k + 1)pk

2(k + 1 + 1/γ)
− −1− kh + kpk−1

2(k + 1/γ)
+

√
(−1− (k + 1)h + (k + 1)pk)2

4(k + 1 + 1/γ)2 − α(k + 1)h
k + 1 + 1/γ

−
√

(−1− kh + kpk−1)2

4(k + 1/γ)2 − αkh
k + 1/γ

.

Consider the first difference on the right side:

−1− (k + 1)h + (k + 1)pk
2(k + 1 + 1/γ)

− −1− kh + kpk−1
2(k + 1/γ)

=

(k + 1)(k + 1/γ)(pk − pk−1) + pk−1/γ + 1− h/γ

2(k + 1 + 1/γ)(k + 1/γ)
> 0.

It is valid since all terms and factors are positive both in the numerator and in the
denominator by the Lemma condition and the assumption of induction. It is easy to make
sure that the inequality holds:

− α(k + 1)h
k + 1 + 1/γ

> − αkh
k + 1/γ

> 0.

Thus, we can apply Lemma 1 to the difference of the roots, which ensures that it is
positive. Therefore, we obtain that pk+1 − pk > 0. The monotonic increase of the sequence
pk is proved.
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Let us turn to justify estimate (39). We carry out the proof again by induction on k.
The induction base was determined earlier. Let pi ≥ −iαh, i = 1, 2 . . . , k− 1. Then,

pk ≥ −
1 + kh + k(k− 1)αh

2(k− 1 + 1/α)
+

√
(1 + kh + k(k− 1)αh)2

4(k− 1 + 1/α)2 − kαh
k− 1 + 1/α

= − khα

2
− 1

2(k− 1 + 1/α)
+

√[
1

2(k− 1 + 1/α)
− khα

2

]2
= −khα.

The case α ≥ γ/(γ + 1) is treated similarly.

Remark 4. In the case α = γ/(γ + 1), the double unstrict inequality (39) becomes an equality,
and we get the previously found linear solution p = −αw.

With the help of the lemmas, we now prove the main theorem of this section. Let us
introduce the notation:

αm = min
{

α,
γ

γ + 1

}
, αM = max

{
α,

γ

γ + 1

}
.

Theorem 2. Problem (29) and (32) for w ≤ 0 has a decreasing continuously differentiable solution
p = p(w) satisfying the inequality:

αmw ≤ p(w) ≤ αMw ≤ 0. (40)

Proof. To prove the existence of the solution with the desired properties, we consider and
estimate the difference:

∆pk = pk − pk−1 =
−1− kh + kpk−1

2(k + 1/γ)
+

√
(−1− kh + kpk−1)2

4(k + 1/γ)2 − αkh
k + 1/γ

− pk−1 =

− 1
2(k + 1/γ)

+
k(pk−1 − h)
2(k + 1/γ)

+

√[
− 1

2(k + 1/γ)
+

k(pk−1 − h)
2(k + 1/γ)

]2

+
−αkh

k + 1/γ
− pk−1.

It follows from Lemma 2 that ∆pk > 0.
Let first, as in the proof of Lemma 2, α ≤ γ/(γ + 1). Then by Lemma 2, the following

chain of inequalities holds:

k(pk−1 − h)
k + 1/γ

≥ −αkh(k− 1 + 1/α)

k + 1/γ
≥ −αkh(k− 1 + 1 + 1/γ)

k + 1/γ
= −αkh > 0.

Hence we get that:

∆pk ≤ −
1

2(k + 1/γ)
+

k(pk−1 − h)
2(k + 1/γ)

+

√[
− 1

2(k + 1/γ)
+

k(pk−1 − h)
2(k + 1/γ)

]2

+
k(pk−1 − h)
(k + 1/γ)2

−pk−1 = − 1
2(k + 1/γ)

+
k(pk−1 − h)
2(k + 1/γ)

+

√[
1

2(k + 1/γ)
+

k(pk−1 − h)
2(k + 1/γ)

]2

− pk−1

=
k(pk−1 − h)

k + 1/γ
− pk−1 = − pk−1

kγ + 1
− h ≤ − γh

γ + 1
.

The case α ≥ γ/(γ + 1) is treated similarly and gives the estimate 0 < ∆pk ≤ −αh.
Thus, it has been shown that:

0 < ∆pk ≤ −max
{

α,
γ

γ + 1

}
h, k = 1, 2, . . . (41)
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It follows from (41) that the constructed difference scheme is stable. According to the
Lax equivalence theorem, since it also has the approximation property (by construction), it
is convergent. This means that the sequence of Euler polygonal lines with vertices at the
points (kh, pk) converges to a continuously differentiable solution to problem (29) and (32)
if k → ∞, h → 0. Moreover, the estimates show that the solution exists for all w ≤ 0
and decreases.

Inequality (41) also gives the upper estimate from (40). The lower estimate (40) follows
from Lemma 2.

Remark 5. As the results of the qualitative analysis show, if w > 0, Problem (29) and (32) is
solvable only for α = γ/(γ + 1). This explains the divergence of series (33) for α 6= γ/(γ + 1).

7. Nonzero Initial Condition

Let us now consider the second case when the initial condition for Equation (29) is
p(0) = −γ, i.e., the problem:

wp
dp
dw

+
p2

γ
+ wp + p + αw = 0, p(0) = −γ. (42)

Looking ahead, we note that this case leads to results that can be clearly interpreted
from the point of view of Problem (3) and (17).

7.1. Solution in the Form of a Series

Let us show that the solution to problem (42) can be found as a power series that
converges in a small neighborhood of zero. We construct the series having form (33).

From the boundary condition, we have p0 = p(0) = −γ. To find p1, we differentiate
Equation (42) with respect to w, set w = 0, p(0) = −γ, and obtain that p1 = (α−γ)/(γ+ 1).
Similarly, we get:

p2 =
2α(α− γ)

γ(γ + 1)(2γ + 1)
.

Thus, the induction base is found.
Assume that p0, p1, . . . , pk−1, k ≥ 3 are determined. To find pk, we differentiate

Equation (42) k times with respect to w and set w = 0. Then we arrive at the equality
(34). Resolving with respect to pk gives:

pk =
1

γk + 1

[
k−1

∑
i=1

Ci
k

(
k− i +

1
γ

)
pi pk−i + kpk−1

]
. (43)

You can see that all terms on the right-hand side of (43) are known by the induction
hypothesis. Thus, all the coefficients of series (33) are uniquely determined by formula (43).
If γ = α, then pi = 0, i = 1, 2, . . ., i.e., the series breaks off and p ≡ −γ = −α.

The local convergence of series (43) follows from Theorem 1 (see also Theorem 1 in [1]).
We have not yet estimated the radius of convergence, but the results of previous studies
allow us to make a reasonable assumption that it is small [37]. Thus, we have justified the
following proposition.

Proposition 2. Problem (42) has an analytical solution having the form of the locally convergent
series (33), whose coefficients are determined by formula (43). The series breaks off if α = γ, and the
solution is p = −γ.

7.2. Euler Polygonal Approximations

The constructed series locally converges in some neighborhood of the point (0,−γ).
To find the global properties of the solution to problem (42), as above, we use the Euler
method. Consider the following finite difference approximation of (42):
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wk pk−1
pk − pk−1

h
+

1
γ

pk pk−1 + pk−1(1 + wk) + αwk = 0,

where wk = kh. Then we yield the recurrent formula:

pk =
1

1 + 1/(kγ)

(
pk−1 − h− 1

k
− αh

pk−1

)
. (44)

From the Cauchy condition, we have p0 = −γ.

Lemma 3. The following formula is valid:

pk+1 = −γ− (k + 1)γh
γ + 1

− αh
k+1

∑
j=1

1

pj−1
k+1
∏
i=j

[1 + 1/(iγ)]
. (45)

The lemma is proved by induction on k. The proof is simple and based on direct sub-
stitutions.

Lemma 3 is the basis for proving the properties of the difference scheme, which are
given below.

Proposition 3. Sequence (45) for h > 0, γ > α is decreasing, and 0 < (γ− α)h/(γ + 1) ≤
pk−1 − pk < (α/γ + γ)h/(γ + 1), lim

k→∞
(pk−1 − pk) = γh/(γ + 1).

Proof. We carry out the proof by induction on k. Indeed,

p0 − p1 = −γ + γ +
(γ− α)h

γ + 1
=

(γ− α)h
γ + 1

> 0.

Thus, the induction base is found. Let −γ = p0 > p1 > . . . > pk−1, then

pk−1 − pk =
γh

γ + 1
+ αh

k

∑
j=1

1

pj−1
k

∏
i=j

[1 + 1/(iγ)]
− αh

k−1

∑
j=1

1

pj−1
k−1
∏
i=j

[1 + 1/(iγ)]
=

=
γh

γ + 1
− αh

kγ

k−1

∑
j=1

1

pj−1
k

∏
i=j

[1 + 1/(iγ)]
+

αh
pk−1[1 + 1/(γk)]

≥

≥ γh
γ + 1

− αh
kγpk−1

kγ

γ + 1
=

γh
γ + 1

+
αγh

(γ + 1)pk−1
≥ γh

γ + 1
− αγh

(γ + 1)γ
=

(γ− α)h
γ + 1

> 0.

On the other hand, the last estimates show that:

pk−1 − pk <
γh

γ + 1
− αh

kγ

k−1

∑
j=1

1

pj−1
k

∏
i=j

[1 + 1/(iγ)]

if we cast out the negative term. Hence, we have that:

pk−1 − pk <
γh

γ + 1
− αh

kγp0

k−1

∑
j=1

1
k

∏
i=j

[1 + 1/(iγ)]
=

γh
γ + 1

+
αh
kγ2

k
1 + 1/γ

=
γ + α/γ

γ + 1
h < h.
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Proposition 4. Sequence (45) for h > 0, γ < α is increasing, and 0 < (α − γ)h/(γ + 1) ≤
pk − pk−1. Moreover, there exists k∗ < γ(γ + 1)/[(α− γ)h] such that pk∗ ≥ 0.

Proof. The inequality pk − pk−1 ≥ (α− γ)h/(γ + 1) > 0 is proved similarly to Proposi-
tion 3. The difference is that due to the change of the sign of γ− α, the sign of the difference
estimate ∆pk = pk − pk−1 changes, starting from ∆p1. Hence, in particular, it follows
that pk ≥ −γ + (α− γ)kh/(γ + 1). The right side of the last inequality equals to zero for
k∗ = γ(γ + 1)/[(α− γ)h]. If the resulting value is not an integer, then it is necessary to
round it with excess, and then we obtain pk∗ > 0.

Proposition 5. Sequence (45) for h < 0, γ > α is increasing, and for h < 0, γ < α is decreasing,
and in both cases lim

k→∞
pk = −α.

Proof. The increase and decrease of the sequence pn for h < 0 are proved similarly to
Propositions 3 and 4, respectively. On the other hand, since the signs in front of pk−1 and
1/pk−1 on the right side of (44) in this case are the same, the limit is not equal to infinity.
Obviously, the limiting value p∞ satisfies the following equation, which is obtained if we
tend k→ ∞ in (44):

p∞ = p∞ − h− αh
p∞

.

It is easy to see that the solution is p∞ = −α.

Theorem 3. Problem (44) has a continuously differentiable solution, which monotonically tends to
−α when w→ −∞. For w > 0, three cases are possible:

1. If γ > α, then the solution is monotonically decreasing, and the estimate holds:

−γ− α/γ + γ

γ + 1
w < p ≤ −γ− γ− α

γ + 1
w;

2. If γ > α, then the solution monotonically increases and at some point w = w∗ < γ(γ +
1)/(α− γ) vanishes;

3. If γ = α, then the solution is the constant p ≡ −γ = −α.

The theorem statement follows from Propositions 3–5 by the reasoning similar to those
we carried out in the proof of Theorem 2.

8. Discussion

This section is devoted to interpreting the results obtained in the previous sections from
the point of view of the corresponding diffusion waves properties. Recall that Equation (29)
has been obtained from Equation (21) by changing variables. Equation (21), in turn, follows
from Equation (3) if the diffusion-wave front x = a(t) is a linear function.

The results for problem (29) and (32) appear to be non-physical. At any rate, we cannot
interpret the negative values of w (for which the solution was constructed) from the point
of view of applications. The same situation occurs to the «left branches» of the solution to
problem (42).

However, the «right branches» of solutions (42), along which w ≥ 0, allow a clear
physical interpretation.

We have the function p = p∗(w), which is the solution to problem 42 for w ≥ 0.
Returning to the space of variables z, w, we obtain that:

z =

w∫

0

dζ

p∗(ζ)
. (46)

As shown above, there are three different cases in which the function p(w) behaves
differently. Let us consider them separately.
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Case γ = α. Here p∗(w) ≡ −γ, whence we have that v = −γz, i.e., u = −σµ(x− µt)
for µσ = B/A (see Figure 4). Previously, we constructed a similar solution for the porous
medium Equation [1]. In this case, the diffusion wave has the form of a plane in the space
of variables t, x, and u.

v

z

v

t

x

x t= m

Figure 4. Solution v(z) = −γz and diffusion wave u = −σµ(x− µt).

Case γ > α. Then p = p∗(w) is infinitely decreasing, and it is bounded upper and
below by two straight lines. Hence we have that the function w(z) = vθ(z) located between
two exponents with negative powers when z→ ∞. Returning to the plane of variables v, z,
we obtain a monotone infinitely decreasing function, which is defined for all z ∈ [0,−∞).
The diffusion wave is a cylindrical surface in the space of variables t, x, u, and the unknown
function increases with exponential velocity along the generatrix of the cylinder with
distance from the wave front (Figure 5).

v

z

v

t

x

x t= m

Figure 5. Solution v(z) and the diffusion wave.

Case γ < α. The study has shown that the function p(w) first increases, and there is
a point w∗ > 0 such that p(w∗) = 0, lim

w→w∗−0
p′(w) = +∞. The point can be determined

numerically, since the problem does not have singularities on the interval [0, w∗). Consider
the problem:

dw
dp

= − wp
p2

γ + wp + p + αw
= 0, w(0) = w∗, (47)

where w is an unknown function, and p is an independent variable. It follows from the
results of the qualitative analysis that the solution to problem (47) is decreasing on the ray
[0,+∞), and lim

p→+∞
w(p) = +0. Returning to the plane of variables v, z, we get the solution

v = v∗(x). From the original problem point of view, there exists a solution u = v∗(x− µt),
which is a solitary wave (soliton) (see Figure 6).

v

z

u

t

x

Figure 6. Solution v(z) and the soliton.
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Summing up, we note that for different values of the coefficients γ = σθ > 0,
α = B/µ > 0, we obtained the same basic configurations of diffusion waves that we
described earlier (see [1]) for incomplete variants of Equations (3):

• A linear heat wave for the porous medium equation;
• An infinitely increasing wave with a nonzero second derivative with distance from

the wave front for the convection–diffusion equation;
• A diffusion wave in the form of a soliton for the generalized porous medium equation

(the heat equation with source).

Parameter γ characterizes the diffusion and convection terms, and parameter α char-
acterizes the source and velocity of the wave front. It seems pretty natural that if γ > α,
then the diffusion wave for the complete Equation (3) behaves similarly to the case with-
out a source but with a convection term (the convection-diffusion equation). The case
γ < α corresponds to the case without convection term but with a source (the generalized
porous medium equation). Finally, if the parameters are equal, the diffusion wave behaves
similarly to the case when there is neither a source nor a convection term (the porous
medium equation).

9. Conclusions

For a second-order one-dimensional singular evolutionary equation with power non-
linearities, we studied diffusion-wave-type solutions propagating along a zero background
with a finite velocity. Such properties of solutions usually appear for hyperbolic equations
and are atypical for parabolic ones. Apparently, their occurrence is associated with the
degeneracy mentioned above, which, in turn, is caused by vanishing the term multiplying
the highest (second) derivative. Besides being a fascinating mathematical object, such
solutions are also valuable for applications. They allow us to describe nonlinear filtration
and diffusion processes with a finite velocity of perturbation propagation by parabolic
models. Such models are considered better described physical processes at a distance from
the degeneracy line.

This paper is the second step in a large research cycle started in [1]. We have considered
an equation with power nonlinearities, a specification of the general equation discussed
earlier. The choice of the type of functions was related to the fact that such nonlinearities
usually arise in applications. Due to this, we have been able to get more profound results.
Thus, in the existence and uniqueness theorem, we have chosen a more complex type
of boundary conditions, raising a diffusion wave. As a result, both the technique of
constructing the solution and the procedure for proving the convergence of series have
become significantly more complicated. Besides, we have studied in detail one of the
particular but quite natural cases, where the degree of the convection term coincides with
the degree of the source. We have performed both a qualitative analysis of ODEs with the
construction of phase portraits and obtained quantitative estimates for the solutions.

The most significant result is that we have shown that all the special cases for incom-
plete equations take place for the complete equation, and other configurations of diffusion
waves do not arise. In addition, a nontrivial solution to the Cauchy problem with zero
initial conditions has been found. Although this solution has no physical interpretation
since it is negative, its presence is an interesting and non-obvious mathematical fact.

Further research in this direction in the short term, in our opinion, should be associated
with the development of a practical computational technique for diffusion waves construc-
tion. In this context, the boundary element approach, which we have been developing
in recent years in collaboration with colleagues, looks promising. It is also advisable to
consider other special cases, for example, to construct and study generalized self-similar
solutions to the considered problem.

In the long term, it would be helpful to increase the dimensionality and consider
cases where an unknown function depends on two or three spatial variables, as well as
consider systems of partial differential equations. In the end, the final stage of the research
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cycle should be the application of the developed model-algorithmic apparatus for solving
applied problems related to modeling diffusion processes occurring in Lake Baikal.
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Abstract: The aim of this article is to investigate the effect of mass and heat transfer on unsteady
squeeze flow of viscous fluid under the influence of variable magnetic field. The flow is observed in a
rotating channel. The unsteady equations of mass and momentum conservation are coupled with the
variable magnetic field and energy equations. By using some appropriate similarity transformations,
the partial differential equations obtained are then converted into a system of ordinary differential
equations and are solved by Homotopy Analysis Method (HAM). The influence of the natural pa-
rameters are investigated for the velocity field components, magnetic field components, heat and
mass transfer. A direct effect of the squeeze Reynold number is observed on both concentration and
temperature. Moreover, increasing the magnetic Reynold number shows an increase in the fluid tem-
perature, but in the case of concentration, an inverse relation is observed. Furthermore, a decreasing
effect of the Dufour number is observed on both concentration and temperature distribution. Besides,
in case of the Soret number, a direct effect is observed on concentration, but an inverse effect can be
seen on temperature distribution. Different effects are shown through graphs in this study and an
error analysis is also presented through tables and graphs.

Keywords: unsteady squeeze flow; viscous fluid; heat transfer; mass transfer; Dufour effect; Soret
effect; HAM

1. Introduction

The flow of a fluid squeezed between two parallel plates approaching one another is
called a squeeze flow. The unsteady squeezing flow between two rotating plates is regarded
as one of the most important study areas due to its extensive applications in science and
technology. Among these are hydrodynamic lubrication, polymer technology, biomechanics
and aerodynamic heating. The interaction of conducting fluids with electromagnetic fields is
widely known as Magento-Hydro Dynamics (MHD). The use of an MHD fluid as a lubricant
in industrial applications is appealing because it prevents the unanticipated variation of
lubricant viscosity with temperature under such high working conditions, and thus, it has
gained the interest of many researchers, as the unsteady squeezing flow between parallel
plates was considered for viscous MHD fluid by Siddiqui et al. [1]. Further, Erik Sweet [2]
investigated the analytical solution for a viscous fluid flow between moving parallel plates
in an unstable MHD flow. They used the homotopy analysis method to find the solution,
which indicated that the magnetic field’s strength has a significant impact on the flow.
Later on, Murty et al. [3] observed the electrically conducting fluid in a two-phase MHD
convective flow under the action of a constant transverse magnetic field through an inclined
channel in a rotating system. Onyango et al. [4] discussed an unsteady MHD flow of
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viscous fluid between two parallel plates under a constant pressure gradient. Khan et al. [5]
observed the flow of a viscous fluid between compressing parallel plates under the influence
of a varying magnetic field. They investigated the entropy generation due to magnetic
fields, fluid friction and heat transfer in a two-dimensional flow problem. Muhammad
et al. [6] discussed the squeezing MHD flow between two parallel plates using Jeffrey fluid.
MHD fluid flow between two parallel plates was investigated by Verma et al. [7]. Later
on, Hayat et al. [8] analytically treated the squeeze flow of MHD nano fluids between two
parallel plates. Moreover, T. Linga Raju [9] discussed the MHD two fluid flow of ionized
gases and investigated the effect of hall current on temperature distribution. The effect of
magnetohydrodynamics on a fluid film was then observed by E A Hamza [10]; he studied
the squeezed flow between two surfaces while rotation was added to the surfaces. Unsteady
Couette flow was then studied by Das et al. [11], where the flow was unsteady and the
MHD effect was added. The flow was observed in a rotating system.

A viscous fluid flow between rotating parallel plates with varying but constant an-
gular velocities was investigated by Parter et al. [12]. In addition, [13] also made some
observations about the flow of viscous fluid between two parallel rotating plates. Further
on, [14] K.R. Rajagopal also studied second ordered fluid flowing in a rotating system, and
later on, the MHD double diffusive flow of nanofluids was studied by Tripathi et al. [15],
where the flow was observed in a rotating channel with viscous dissipation and hall effect.

The MHD flow of viscous fluids in a rotating frame was also studied in cylindrical
coordinates as was discussed by Hughes et al. [16]. They examined the lubrication flow of
such viscous fluids between rotating parallel disks. In addition, Elshekh et al. [17] observed
the flow of fluid film squeezed between rotating parallel disks where an external magnetic
field was applied. The influence of a changing magnetic field on the unsteady squeezing
flow of viscous fluids between rotating discs was also examined by Shah et al. [18]. The
squeezing unsteady flow of MHD fluid between two disks was also discussed by Ganji
et al. [19], who observed the flow with suction or injection involved. Between squeezing
discs moving at various velocities, the effects of MFD viscosity and magnetic-field-based
(MFD) thermosolutal convection of the fluid dynamics are examined by Khan et al. [20].

The unsteady squeeze flow of viscous fluids has been studied in three-dimensional
rotating systems by several researchers. Recently, Munawar et al. [21] studied the squeeze
flow of viscous fluids in a three-dimensional rotating system. The flow was considered
between parallel plates with the lower stretching plate kept porous. Further on, Alzahrani
et al. [22] numerically treated the squeezed flow of viscous fluid between rotating parallel
plates in a three-dimensional system and examined the effect of Dufour and Soret numbers.
Similar work has been done on third grade nanofluids in a three-dimensional rotating
system where the thermophoresis effect and Brownian motion was observed by Shah
et al. [23]. In addition, the thin film flow of Darcy Forchheimer hydromagnetic nanofuid
between rotating parllel disks in a three-dimensional system was discussed by Riasat
et al. [24]. They examined the importance of the magnetic Reynold number in such a
system. Moreover, Fiza et al [25] examined the flow of Jeffrey fluid in a three-dimensional
rotating system.

Srinivas et al. [26] studied the impact of heat transfer on the flow of MHD fluid
through a pipe whose walls are expanding or contracting. The simultaneous effect of
induced magnetic forces and buoyancy forces on heat transfer was investigated by Sparrow
et al. [27]. Furthermore, Khaled et al. [28] discussed the flow of fluid and its heat transfer
over a horizontal surface, placed in a free stream, externally squeezed. The effect of
Radiation on MHD fluid and its mass transfer was studied by Hayat et al. [29], who
observed the flow on a stretching sheet which was kept porous. Mahmood et al. [30]
analyzed the flow of viscous fluid over a permeable sensor surface with the squeeze effect
and also observed the heat transfer effect for such a flow phenomenon. In addition, the
Hiemenz flow over a stretching surface was examined by Tsai et al. [31], where the medium
was porous. The heat and mass transfer was studied theoretically for Dufour’s and Soret
effect. The Heat and Mass transfer of a viscous fluid between squeezing plates was further
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observed by Mustafa et al. [32]. Furthermore, Yasmin et al. [33] studied non-Newtonian
micropolar fluids in a magnetohydrodynamics flow on a curved sheet with stretching
effect and discussed the mass and heat transfer for such fluids. Heat and mass transfer in a
three-dimensional flow of nanofluids in a rotating system was examined by Sheikholeslami
et al. [34]. Noeiaghdam et al. studied the numerical analysis of a natural convection-driven
flow of a non-Newtonian power-law fluid in a trapezoidal enclosure with a U-Shaped
constructal [35–39].

The above existing literature shows that no study has been conducted so far on the
three-dimensional squeeze flow of viscous fluids between two parallel rotating plates
under the influence of the variable magnetic field. Additionally, the effect of variable
magnetic field on mass transfer in Cartesian coordinates is new work in this area. Hence,
the suggested work is the best approach toward such problems and is a way of motivation
for researchers bringing a new idea of studying the flow between unsteady rotating parallel
plates.

2. Modeling and Formulation of the Physical Problem

We consider an incompressible viscous fluid flow between two squeezing plates,
separated by a distance D(t) = l(1 − βt)1/2, where l is the spacing between plates at time
t = 0 and β is the expansion and contraction parameter whose values lies between (0, 1)
for squeezing phenomenon, as shown in Figure 1. With an angular velocity of Ωu, the
upper plate rotates whereas the lower plate is moving with angular velocity Ωl . The effect
of variable magnetic field M is added externally which produces the induced magnetic
field B with the following components: Bx, By and Bz.

Figure 1. Geometry of the flow problem.

The system of coordinates selected is Cartesian coordinates. The origin is fixed at the
center of the lower plate, in which the x-axis is taken along the horizontal axis and the
z-axis is perpendicular to the two plates (along the vertical axis). The rotation of plates is
along the y-axis. The flow between the plates occurs due to the rotatory motion of plates
and the motion of upper plate towards the lower plate, i.e., the squeezing effect. The effect
of gravity on fluid is negligible. Now, we will observe the velocity profile of the given
fluid, the effect of magnetic field on the velocity of fluid, and the heat and mass transfer
for these viscous fluids in a three-dimensional system. Thus, the vector form of continuity,
momentum, magnetic field, energy and concentration equations are given by:

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0, (1)
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Navier–Stokes equation x-component:

ρ

[
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

]
= −∂P

∂x
+ µ

[
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

]
+

1
µ2

[
Bz

∂Bx

∂z
− Bz

∂Bz

∂x
− By

∂By

∂x
+ By

∂Bx

∂y

]
,

(2)

Navier–Stokes equation y-component:

ρ

[
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

]
= −∂p

∂y
+ µ

[
∂2v
∂x2 +

∂2v
∂y2 +

∂2v
∂z2

]
+

1
µ2

[
Bx

∂By

∂x
− Bx

∂Bx

∂y
− Bz

∂Bz

∂y
+ Bz

∂By

∂z

]
,

(3)

Navier–Stokes equation z-component:

ρ

[
∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

]
= −∂p

∂z
+ µ

[
∂2w
∂x2 +

∂2w
∂y2 +

∂2w
∂z2

]
+

1
µ2

[
By

∂Bz

∂y
− By

∂By

∂z
− Bx

∂Bx

∂z
+ Bx

∂Bz

∂x

]
,

(4)

Magnetic field equation x-component:

∂Bx

∂t
=

[
u

∂By

∂y
+ By

∂u
∂y

− v
∂Bx

∂y
− Bx

∂v
∂y

− w
∂Bx

∂z
− Bx

∂w
∂z

+ u
∂Bz

∂z
+ Bz

∂u
∂z

]
+

1
δµ2

[
∂2Bx

∂x2 +
∂2Bx

∂y2 +
∂2Bx

∂z2

]
,

(5)

Magnetic field equation y-component:

∂By

∂t
=

[
v

∂Bz

∂z
+ Bz

∂v
∂z

− w
∂By

∂z
− By

∂w
∂z

− u
∂By

∂x
− By

∂u
∂x

+ v
∂Bx

∂x
+ Bx

∂v
∂x

]
+

1
δµ2

[
∂2By

∂x2 +
∂2By

∂y2 +
∂2By

∂z2

]
,

(6)

Magnetic field equation z-component:

∂Bz

∂t
=

[
w

∂Bx

∂x
+ Bx

∂w
∂x

− u
∂Bz

∂x
− Bz

∂u
∂x

− v
∂Bz

∂y
− Bz

∂v
∂y

+ w
∂By

∂y
+ By

∂w
∂y

]
+

1
δµ2

[
∂2Bz

∂x2 +
∂2Bz

∂y2 +
∂2Bz

∂z2

]
,

(7)

Heat transfer equation:

ρ

[
∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

]
=

κ

Cp

[
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

]
+

1
Cp

∇qr +
Dκt

CsCp

[
∂2C
∂x2 +

∂2C
∂y2 +

∂2C
∂z2

]
,

(8)

and similarly, the equation for mass transfer is given by

ρ

[
∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

+ w
∂C
∂z

]
= D

[
∂2C
∂x2 +

∂2C
∂y2 +

∂2C
∂z2

]
+

Dκt

CsTm

[
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

]
.

(9)
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where ρ is density of fluid, µ2 is permittivity of free space, µ is viscosity, P is pressure, V
is velocity of fluid, B is magnetic field, T is temperature, C is concentration, κt is thermal
diffusion ratio, D is diffusion coefficient, Cp is specific heat at constant pressure, κ is
conductivity and ∇qr is the radiative heat flux, given as,

∇qr =
16σsT3

u
3κa

∂2T
∂z2 (10)

Here, κa and σs are the mean absorption coefficient and Stefan-Boltzmann constant,
respectively. The boundary conditions for the above fluid flow are given as follows, at

lower plate where z = 0, u = 0, v =
Ωl x

1 − βt
, w = 0, Bx = By = Bz = 0, T = Tl , C = Cl .

Moreover, observe the conditions at upper plate where z = D(t), u = 0, v =
Ωux

1 − βt
,

w =
dD(t)

dt
, Bx = 0 By =

xN0

1 − βt
, Bz =

−βM0

(1 − βt)1/2 , T = Tu, C = Cu. where D(t) =

l(−βt)1/2. Now, using the following transformation to convert the above partial differential

equations to ordinary differential equations (ODEs), u =
βx

(1 − βt)
f ′(η), v =

Ωl x
(1 − βt)

g(η),

w =
−βl

(1 − βt)1/2 f (η), Bx =
βxM0

l(1 − βt)
m′(η), By =

xN0

(1 − βt)
n(η), Bz =

−βM0

(1 − βt)1/2 m(η),

θ =
T − Tu

Tl − Tu
, ϕ =

C − Cu

Cl − Cu
, η =

z
l(1 − βt)1/2 .

After non-dimensionlizing the above equations and setting boundary conditions, they
will be converted to the following ODEs,

f
′′′′

= Sz

[
3 f

′′
+ (η − 2 f ) f

′′′ − 2 f
′
f
′′]
+

2Sz M2
x

[
2Rm

(
mm

′
+ ηmm

′′ − f mm
′′
+ m2 f

′′)− m
′
m

′′]
,

(11)

g
′′
= Sz

[
2g + ηg

′
+ 2 f

′
g − 2g

′
f
]
− 2Sz Mx My

[
m

′
n − n

′
m
]
, (12)

m
′′
= Rm

[
m + ηm

′ − 2m
′
f + 2 f

′
m
]
, (13)

n
′′
= Rm

[
2n + ηn

′ − 2n
′
f + 2 f

′
n − 2

(
Mx

My

)(
g
′
m − m

′
g
)]

, (14)

θ
′′
(3 + 4Rd) + 3DuPrnϕ

′′
+ 3SzPrn

(
f θ

′ − ηθ
′)

= 0, (15)

ϕ
′′
+ SrtSchθ

′′
+ SzSch

(
2 f ϕ

′ − ηϕ
′)

= 0. (16)

where Sz =
βl2

2ν
denotes the squeezing Reynold number, Mx =

M0

l
√

ρµ2
represents the

magnetic field strength along x-axis , My =
N0

Ωl
√

ρµ2
is the magnetic field strength along

x-axis, Rm = SzBt is given by Rm =

(
βl2

2ν

)
(νσµ2), Rd =

4σsT3
u

KaK
is the radiation parameter,

Du =
DKTK(Cl − Cu)

CsνCp(Tl − Tu)ν
is Dufour number and Prn =

νCp

K
is Prandtl number. The boundary

conditions become the following forms, f (0) = 0, f ′(0) = 0, g(0) = 1, m(0) = 0, n(0) = 0,

θ(0) = 1, ϕ(0) = 1. f (1) =
1
2

, f ′(1) = 0, g(1) =
Ωu

Ωl
= S, m(1) = 1, n(1) = 1, θ(1) = 0,

ϕ(1) = 0.
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3. Method of Solution

An analytical technique is used to find the solution of the Equations (11)–(16), known
as the Homotopy Analysis Method. We will express the functions f , g, m, n, θ and ϕ (where
f , g, m, n, θ and ϕ are the functions of η), and ηq∗ , q∗ ≥ 0 are used as a set of base functions,

fn =
∞

∑
q∗=0

aq∗ηq∗ (17)

gn =
∞

∑
q∗=0

bq∗ηq∗ (18)

mn =
∞

∑
q∗=0

cq∗ηq∗ (19)

nn =
∞

∑
q∗=0

dq∗ηq∗ (20)

θn =
∞

∑
q∗=0

fq∗ηq∗ (21)

ϕn =
∞

∑
q∗=0

gq∗ηq∗ (22)

where the constant co-efficients aq∗ , bq∗ , cq∗ , dq∗ , fq∗ and gq∗ are to be determined. Initial
approximations are chosen as follows:

f0 = 1.5 ∗ η2 − η3; (23)

g0 = (S − 1) ∗ η + 1; (24)

m0 = η (25)

n0 = η (26)

θ0 = 1 − η (27)

ϕ0 = 1 − η (28)

then, the auxiliary operators are chosen,

£ f =
∂4

∂η4 , £g =
∂2

∂η2 , £θ =
∂2

∂η2 ,

£m =
∂2

∂η2 , £n =
∂2

∂η2 , £ϕ =
∂2

∂η2

(29)

with the following properties,

£ f (q∗1∗η3 + q∗2∗η2 + q∗3∗η + q∗4∗) = 0 (30)

£g(q∗5∗η + q∗6∗) = 0 (31)

£m(q∗7∗η + q∗8∗) = 0 (32)

£n(q∗9∗η + q∗10∗) = 0 (33)

£θ(q∗11∗η + q∗12∗) = 0 (34)

£θ(q∗13∗η + q∗14∗) = 0 (35)
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where q∗1∗ , q∗2∗ , q∗3∗ , q∗4∗ , q∗5∗ , q∗6∗ , q∗7∗ , q∗8∗ , q∗9∗ , q∗10∗ , q∗11∗ , q∗12∗ , q∗13∗ and q∗14∗ are arbitrary
constants.

We can obtain the Zeroth order deformation as:

(1 − s)£g[g(η; s)− g0(η)] = sh̄gℵg[ f (η; s), g(η; s),
m(η; s), n(η; s)]

(36)

(1 − s)£m[m(η; s)− m0(η)] = sh̄mℵm[ f (η; s), m(η; s)] (37)

(1 − s)£n[n(η; s)− n0(η)] = sh̄nℵn[ f (η; s), g(η; s),
m(η; s), n(η; s)]

(38)

(1 − s)£θ [n(η; s)− θ0(η)] = sh̄θℵθ [ f (η; s), θ(η; s), ϕ(η; s)] (39)

(1 − s)£ϕ[n(η; s)− ϕ0(η)] = sh̄ϕℵϕ[ f (η; s), θ(η; s), ϕ(η; s)] (40)

From Equations (14)–(19), the nonlinear operators are defined as,

ℵ f [ f (η; s), m(η; s)] = ∂4 f (η;s)
∂η4 − Sz

(
3 ∂2 f (η;s)

∂η2 + (η − 2 f )

∂3 f (η;s)
∂η3 − 2 ∂ f (η;s)

∂η
∂2 f (η;s)

∂η2

)
− 2Sz M2

z

(
M ∂3 M(η;s)

∂η3 −
∂M(η;s)

∂η
∂2 M(η;s)

∂η2

)
(41)

ℵg[ f (η; s), g(η; s), m(η; s), n(η; s)] = ∂2g(η;s)
∂η2 −

Sz

(
2g + η

∂g(η;s)
∂η + 2 ∂ f (η;s)

∂η g − 2 ∂g(η;s)
∂η f

)
−

2Sz Mz My

(
∂m(η;s)

∂η n − m ∂n(η;s)
∂η

) (42)

ℵm[ f (η; s), m(η; s)] = ∂2m(η;s)
∂η2 − Rm

(
m + η

∂m(η;s)
∂η

−2
(

f ∂m(η;s)
∂η − m ∂ f (η;s)

∂η

)) (43)

ℵn[ f (η; s), g(η; s), m(η; s), n(η; s)] = ∂2n(η;s)
∂η2 − R

(
2n+

η
∂n(η;s)

∂η − 2
(

∂n(η;s)
∂η f − n ∂ f (η;s)

∂η

)
+

2 ∂Mz
∂My

(
∂g(η;s)

∂η m − g ∂m(η;s)
∂η

))
(44)

ℵθ [ f (η; s), θ(η; s), ϕ(η; s)] = ∂2θ(η;s)
∂η2

(
3 + 4Rd

)
+

3DuPrn
∂2ϕ(η;s)

∂η2 + 3SzPrn

(
2 f ∂θ(η;s)

∂η − η
∂θ(η;s)

∂η

) (45)

ℵϕ[ f (η; s), θ(η; s), ϕ(η; s)] = ∂2ϕ(η;s)
∂η2 + SrtSch

∂2θ(η;s)
∂η2

+SzSch

(
2 f ∂ϕ(η;s)

∂η − η
∂ϕ(η;s)

∂η

) (46)

where s is a fixed parameter, nonlinear parameters are ℵ f , ℵg, ℵm and ℵn, while h̄ f ,h̄g, h̄m,
h̄n, h̄θ and h̄ϕ are the nonzero auxiliary parameters.

For s = 0 and s = 1, we have
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f (η, 0) = fo, f (η, 1) = f (η)

g(η, 0) = go, g(η, 1) = g(η)

m(η, 0) = mo, m(η, 1) = m(η)

n(η, 0) = no, n(η, 1) = n(η)

θ(η, 0) = θo, θ(η, 1) = θ(η)

ϕ(η, 0) = ϕo, ϕ(η, 1) = ϕ(η)

(47)

so as s varies from 0 to 1, the exact solutions f (η), g(η), n(η), n(η), θ(η) and ϕ(η) can be
obtained from initial guesses.

For these functions, the Taylor’s series are given by:

f (η; s) = f0 +
∞

∑
n=1

sn fn(η) (48)

g(η; s) = g0 +
∞

∑
n=1

sngn(η) (49)

m(η; s) = m0 +
∞

∑
n=1

snmn(η) (50)

n(η; s) = n0 +
∞

∑
n=1

snnn(η) (51)

θ(η; s) = θ0 +
∞

∑
n=1

snθn(η) (52)

ϕ(η; s) = ϕ0 +
∞

∑
n=1

snϕn(η) (53)

fn(η) =
1
n!

∂n f (η; s)
∂ηn

∣∣∣∣
s=0

, gn(η) =
1
n!

∂ng(η; s)
∂ηn

∣∣∣∣
s=0

mn(η) =
1
n!

∂nm(η; s)
∂ηn

∣∣∣∣
s=0

, nn(η) =
1
n!

∂nn(η; s)
∂ηn

∣∣∣∣
s=0

θn(η) =
1
n!

∂nθ(η; s)
∂ηn

∣∣∣∣
s=0

, ϕn(η) =
1
n!

∂nϕ(η; s)
∂ηn

∣∣∣∣
s=0

(54)

It can be noted that in the above series, convergence strongly depends upon h̄ f , h̄g,
h̄m, h̄n, h̄θ and h̄ϕ.

Assuming that these nonzero auxiliary parameters are chosen so that equations con-
verge at s = 1, we thus obtain

f (η) = f0 +
∞

∑
n=1

fn(η) (55)

g(η) = g0 +
∞

∑
n=1

gn(η) (56)

m(η) = m0 +
∞

∑
n=1

mn(η) (57)

n(η) = n0 +
∞

∑
n=1

nn(η) (58)

θ(η) = θ0 +
∞

∑
n=1

θn(η) (59)
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ϕ(η) = ϕ0 +
∞

∑
n=1

θn(η) (60)

Differentiating n-times Equations (40)–(45) with respect to s and putting s = 0, we
have

£ f [ fn(η)− χn fn−1(η)] = h̄ f R f ,n(η) (61)

£g[gn(η)− χngn−1(η)] = h̄gRg,n(η) (62)

£m[mn(η)− χnmn−1(η)] = h̄mRm,n(η) (63)

£n[nn(η)− χnnn−1(η)] = h̄nRn,n(η) (64)

£θ [θn(η)− χnθn−1(η)] = h̄θ Rθ,n(η) (65)

£ϕ[ϕn(η)− χnϕn−1(η)] = h̄ϕRϕ,n(η) (66)

with the given boundary conditions,

fn(0) = 0, f ′n(0) = 0, gn(0) = 1, mn(0) = 0, nn(0) = 0,

θn(0) = 1, ϕn(0) = 1

fn(1) = 0.5, f ′n(1) = 0, gn(1) = S, mn(1) = 1, nn(1) = 1,

θn(1) = 0, ϕn(1) = 0

(67)

R f ,n(η) = f ′′′′n−1(η)− Sz

(
3 f ′′n−1(η) + (η) f ′′′n−1(η)−

2 f ′n−1(η) f ′′n−1(η)− 2 ∑n−1
j=0 f j(η) f ′′′n−j−1(η)

)
+ 2Sz M2

z
(

2Rm ∑n−1
j=0 mj(η)

[
m′

n−j−1(η) + ηm′′
n−j−1(η)+

mn−j−1(η) f ′′n−j−1(η)

]
− m′

n−1(η)m
′′
n−1(η)

)

(68)

Rg,n(η) = g′′n−1(η)− Sz

(
2gn−1(η) + (η)g′n−1(η) + 2

n−1

∑
j=0

[
gj(η) f ′n−j−1(η)− f j(η)g′n−j−1(η)

]
+ 2Sz Mz My

n−1

∑
j=0

(
nj(η)m′

n−j−1(η)− nj(η)m
′
n−j−1(η)

)
(69)

Rm,n(η) = m′′
n−1(η)− Rm

[
mn−1(η) + (η)m′

n−1(η)+

2
n−1

∑
j=0

(
mj(η) f ′n−j−1(η)− f j(η)m′

n−j−1(η)

)] (70)

Rn,n(η) = n′′
n−1(η)− Rm

[
2nn−1(η) + (η)n′

n−1(η)+

2
n−1

∑
j=0

(
nj(η) f ′n−j−1(η)− f j(η)n′

n−j−1(η)

)

− 2
Mz

My

(
mj(η)g′n−j−1(η)− gj(η)m′

n−j−1(η)

)]
(71)

Rθ,n(η) = θ′′n−1(η)(3 + 4Rd) + 3DuPrnϕ′′
n−1(η)+

3SzPrn

n−1

∑
j=0

(
2 f j(η)θ

′
n−j−1(η)− ηθ′n−j−1(η)

)
(72)
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Rϕ,n(η) = ϕ′′
n−1(η) + SrtSchθ′′n−1(η)+

SzSch

n−1

∑
j=0

(
2 f j(η)ϕ

′
n−j−1(η)− ηϕ′

n−j−1(η)

)
(73)

and χn =

{
1, i f n > 1, and 0, i f n = 1.

Finally, the general solution can be written as

fn(η) =
∫ η

0

∫ η

0

∫ η

0

∫ η

0
h̄ f R f ,n(z)dzdzdzdz+

χn fn−1 + K1∗η3 + K2∗η2 + K3∗η + K4∗

(74)

gn(η) =
∫ η

0

∫ η

0
h̄gRg,n(z)dzdz + χngn−1 + q∗5∗η + q∗6∗ (75)

mn(η) =
∫ η

0

∫ η

0
h̄mRm,n(z)dzdz + χnmn−1 + q∗7∗η + q∗8∗ (76)

nn(η) =
∫ η

0

∫ η

0
h̄nRn,n(z)dzdz + χnnn−1 + q∗9∗η + q∗10∗ (77)

θn(η) =
∫ η

0

∫ η

0
h̄θ Rθ,n(z)dzdz + χnθn−1 + q∗11∗η + q∗12∗ (78)

ϕn(η) =
∫ η

0

∫ η

0
h̄ϕRϕ,n(z)dzdz + χnϕn−1 + q∗13∗η + q∗14∗ (79)

thus, for f (η), g(η), m(η), n(η), θ(η) and ϕ(η), the exact solution becomes

f (η) ≈
n

∑
m=0

fm(η)

g(η) ≈
n

∑
m=0

gm(η)

m(η) ≈
n

∑
m=0

mm(η)

n(η) ≈
n

∑
m=0

nm(η)

θ(η) ≈
n

∑
m=0

θm(η)

ϕ(η) ≈
n

∑
m=0

ϕm(η)

(80)

4. Optimal Convergence Control Parameter

It should be noted that the nonzero auxiliary parameters h̄ f , h̄g, h̄m, h̄n, h̄θ and h̄ϕ are
contained in the series solutions (59)–(64), through which the rate of the homotopy series
solutions and convergence region can be determined. The average residual error was used
to obtain the optimal values of h̄ f , h̄g, h̄m, h̄n, h̄θ and h̄ϕ:

ε
f
n =

1
L + 1

L

∑
j=0

[
ℵ f ∗

( n

∑
i=0

f ∗ (η),
n

∑
i=0

m ∗ (η)
)

m=jδm

]2

dη (81)

εm
n =

1
L + 1

L

∑
j=0

[
ℵm ∗

( n

∑
i=0

f ∗ (η),
n

∑
i=0

m ∗ (η)
)

m=jδm

]2

dη (82)
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ε
g
n =

1
L + 1

L

∑
j=0

[
ℵg ∗

( n

∑
i=0

f ∗ (η),
n

∑
i=0

g ∗ (η),
n

∑
i=0

m ∗ (η),

n

∑
i=0

n ∗ (η)
)

m=jδm

]2

dη

(83)

εn
n =

1
L + 1

L

∑
j=0

[
ℵn ∗

( n

∑
i=0

f ∗ (η),
n

∑
i=0

g ∗ (η),
n

∑
i=0

m ∗ (η),

n

∑
i=0

n ∗ (η)
)

m=jδm

]2

dη

(84)

εθ
n =

1
L + 1

L

∑
j=0

[
ℵθ ∗

( n

∑
i=0

f ∗ (η),
n

∑
i=0

θ ∗ (η),

n

∑
i=0

ϕ ∗ (η)
)

m=jδm

]2

dη

(85)

ε
ϕ
n =

1
L + 1

L

∑
j=0

[
ℵϕ ∗

( n

∑
i=0

∗ f (η),
n

∑
i=0

θ ∗ (η),

n

∑
i=0

ϕ ∗ (η)
)

m=jδm

]2

dη

(86)

Additionally,
εt

n = ε
f
n + ε

g
n + εm

n + εn
n + εθ

n + ε
ϕ
n (87)

where the total squared residual error is εt
n. By applying Mathematica package BVPh

2.0 [40], we can minimize total average squared residual error. To acquire the local optimal
convergence control parameters, the command Minimize was used.

5. Results and Analysis

Taking 10−40 as a maximum residual error, the problem is solved with the HAM BVPh
2.0 package. An investigation is made using 40th-order approximations. The provision of
error analysis supports the authentication of results for many relevant physical parameters
in Figure 2 and from the results given in Table 1.

Table 2 is provided to determine the equations’ inaccuracy from momentum, magnetic
field, energy and transportation equations. An increase in the order of approximation can
be seen, and the solution obtained from these equations converges to exact analysis.

Figure 2. Total residual error with Sz = −0.25, Mx = 1, My = 3, Rm = 0.5, S = 1, Rd = 1, D = 0.5,
Prn = 0.05, Srt = −0.25 and Sch = 0.5.

The total residual error is visually shown in Figure 2 and numerically in Table 1 for
different orders of approximation. It is seen that at the 30th order of approximation, the
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solution converges and the error nearly disappears. Table 2 illustrates the best convergence
control parameter values for several approximation orders. From Table 3, we can observe
the estimated values of velocity, magnetic field, concentration and temperature for different
values of η. It also shows the solution is accurate by verification through the given boundary
conditions of the problem (since the boundary conditions can be verified by observing
the obtained numerical values at different points). The convergence of HAM solution for
skin friction, magnetic flux, heat flux and mass flux for different orders of approximation
is given in Table 4. It can be observed that the solution is convergent for fifth order of
approximation. The analysis is carried out up to the 40th order of approximation.

Table 1. Estimating the total residual error for different orders of approximation.

m ε
f
m ε

g
m εm

m εn
m εθ

m ε
ϕ
m

1 0.03811 0.00475 0.00066 0.00088 8.4×10−9 1.0×10−7

5 1.5 × 10−9 1.0 × 10−9 7.6 × 10−12 2.1 × 10−8 1.5 × 10−15 3.3 × 10−17

10 1.0 × 10−18 9.5 × 10−16 2.8 × 10−21 2.7 × 10−14 4.6 × 10−21 1.2 × 10−23

15 5.9 × 10−28 1.0 × 10−21 1.2 × 10−30 4.1 × 10−20 1.0 × 10−26 3.0 × 10−29

20 2.8 × 10−30 1.3 × 10−27 2.8 × 10−33 6.5 × 10−26 2.4 × 10−32 1.0 × 10−33

25 2.8 × 10−30 1.8 × 10−32 4.5 × 10−33 1.6 × 10−31 6.0 × 10−35 6.8 × 10−34

30 2.9 × 10−30 1.2 × 10−32 3.0 × 10−33 1.5 × 10−32 6.2 × 10−35 6.8 × 10−34

35 2.9 × 10−30 1.2 × 10−32 3.0 × 10−33 1.5 × 10−32 6.2 × 10−35 6.8 × 10−34

40 2.9 × 10−30 1.2 × 10−32 3.0 × 10−33 1.5 × 10−32 6.2 × 10−35 6.8 × 10−34

Table 2. Optimal values of convergence control parameters in comparison of different orders of approximation.

Order h f hg hm hn hθ hϕ εt
m

2 −1.0151 −1.0459 −0.8810 −0.7341 −0.1047 −0.1040 0.00203
3 −0.9471 −1.1027 −0.9423 −0.8706 −0.1110 −1.0261 4.90 × 10−6

4 −0.9678 −1.0804 −0.9360 −0.8889 −0.1053 −0.9786 4.94 × 10−8

5 −0.9290 −1.0601 −0.9433 −0.9223 −0.1140 −1.0579 2.20 × 10−10

6 −0.9583 −1.0441 −0.9435 −0.9342 −0.1369 −1.0050 2.87 × 10−12

7 −1.1097 −1.0693 −0.8652 −0.9240 −0.1172 −1.0967 3.26 × 10−12

Table 3. Estimated values for velocity, magnetic field components, temperature and concentration in
correspondance with different values of η.

η f (η) g(η) m(η) n(η) θ(η) ϕ(η)

0 0 1 0 0 1 1
0.1 0.013945 1.038790 0.083334 0.090262 0.899994 0.899811
0.2 0.051898 1.070930 0.167626 0.179204 0.799991 0.799707
0.3 0.107937 1.095050 0.253977 0.268342 0.699991 0.699719
0.4 0.176060 1.110120 0.343567 0.359189 0.599995 0.599833
0.5 0.250219 1.115470 0.437564 0.453152 0.500000 0.500005
0.6 0.324349 1.110810 0.537016 0.551440 0.400006 0.400177
0.7 0.392389 1.096270 0.642747 0.654974 0.300009 0.300290
0.8 0.448305 1.072300 0.755239 0.764292 0.200010 0.200299
0.9 0.486125 1.039810 0.874512 0.879464 0.100006 0.100192
1 0.5 1 1 1 0 0
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Table 4. The convergence of HAM solution for skin friction, magnetic flux, heat flux and mass flux.

m f ′′(η) −g′(η) −m′(η) −n′(η) −θ′(η) −ϕ′(η)

1 2.9631400 −0.3922459 0.8311292 −0.9204676 1.0000650 1.0020067
5 2.9804441 −0.4157942 −0.8318657 −0.9141364 1.0000668 1.0020675

10 2.9804441 −0.4157877 −0.8318658 −0.9141418 1.0000668 1.002067
15 2.9804441 −0.4157877 −0.8318658 −0.9141418 1.0000668 1.002067
20 2.9804441 −0.4157877 −0.8318658 −0.9141418 1.0000668 1.002067
25 2.9804441 −0.4157877 −0.8318658 −0.9141418 1.0000668 1.002067
30 2.9804441 −0.4157877 −0.8318658 −0.9141418 1.0000668 1.002067
35 2.9804441 −0.4157877 −0.8318658 −0.9141418 1.0000668 1.002067
40 2.9804441 −0.4157877 −0.8318658 −0.9141418 1.0000668 1.002067

In Tables 5–13, the numerical results for skin friction, magnetic flux, heat flux and mass
flux are investigated. It is noted that increasing the squeeze parameter Sz decreases f

′′
(0),

−n
′
(0) −θ

′
(0) and −ϕ

′
(0), while oppositely −g

′
(0) and −m

′
(0) increases with increasing

Sz. Increasing the values of My shows a certain increasing effect on both −g
′
(0) and −n

′
(0)

while the effect on f
′′
(0), −m

′
(0), −θ

′
(0) and −ϕ

′
(0) is negligible, as can be seen through

Table 6. Similarly, for increasing Mx there is a gradual increase in the values of f
′′
(0),

−g
′
(0) and −m

′
(0) while the values of −n

′
(0), −θ

′
(0) and −ϕ

′
(0) show gradual decreases,

as shown in Table 7.

Table 5. Effect of Sz on skin friction, magnetic flux, heat flux and mass flux.

Sz f ′′(η) −g′(η) −m′(η) −n′(η) −θ′(η) −ϕ′(η)

−0.01 2.999403 −0.017073 −0.831885 −0.569941 0.999976 0.999247
−0.25 2.985167 −0.467599 −0.831912 −0.553833 0.999397 0.981150
−0.75 2.956173 −1.768705 −0.831980 −0.505905 0.998187 0.943287
−1.25 2.928189 −4.069057 −0.832065 −0.418285 0.996968 0.905179

Table 6. Effect of My on skin friction, magnetic flux, heat flux and mass flux.

My f ′′(η) −g′(η) −m′(η) −n′(η) −θ′(η) −ϕ′(η)

1 2.985167 −0.457030 −0.831912 −0.121005 0.999397 0.981150
3 2.985167 −0.467600 −0.831912 −0.553832 0.999397 0.981150
5 2.985167 −0.478166 −0.831912 −0.640398 0.999397 0.981150
7 2.985167 −0.488735 −0.831912 −0.677498 0.999397 0.981150

Table 7. Effect of Mz on skin friction, magnetic flux, heat flux and mass flux.

Mz f ′′(η) −g′(η) −m′(η) −n′(η) −θ′(η) −ϕ′(η)

1 2.980444 −0.415788 −0.831866 −0.914141 0.999398 0.981167
1.5 2.985167 −0.435894 −0.831912 −0.986660 0.999397 0.981150
2 2.991858 −0.466561 −0.831978 −1.060309 0.999397 0.981125

2.5 3.000600 −0.508235 −0.832064 −1.135544 0.999396 0.981093

Further, Table 8 depicts the impact of magnetic Reynold number on skin friction
showing that with increase in the values of Rm, the values of −g

′
(0) increases gradually,

but on the other hand, f
′′
(0), −m

′
(0), −n

′
(0) and −ϕ

′
(0) decreases, and the effect on

−θ
′
(0) is negligible. Similarly, from Table 9, it can be seen that the Dufour number has

a direct effect on both −θ
′
(0) and −ϕ

′
(0). The effect of Radiation Parameter Rd can be

depicted through Table 10, showing that −θ
′
(0) and −ϕ

′
(0) increases with increasing Rd,

while on the other hand, the effect on f
′′
(0), −g

′
(0), −m

′
(0) and −n

′
(0) is negligible.

Table 11 depicts the impact of Prandtl number on skin friction, showing that with
increase in the values of Prn, the values of −θ

′
(0) and −ϕ

′
(0) decrease gradually. The
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effect of Srt number from Table 12 depicts that −θ
′
(0) decreases while −ϕ

′
(0) increases by

increasing the values of Srt. The effect of Schmidt number Sch can be seen through Table 13.
It can be observed that the Sch number has a direct effect −θ

′
(0) and inverse effect on −ϕ

′
(0).

Furthermore, Figures 3–5 represent the error profile for velocity ( f (η) and g(η)) and
magnetic field components, -i.e., m(η) and n(η), as well as temperature and concentration,
i.e., θ(η) and ϕ(η), respectively. A three-dimensional profile for the velocity, magnetic field,
concentration and temperature distribution is also represented in Figures 6–8, showing that the
flow variables satisfy the given boundary conditions. The impacts of several related flow
parameters on velocity and magnetic field components are visually depicted.

Figure 3. Error profile for f (η) and g(η) with Sz = −0.25, Mx = 1, My = 3, Rm = 0.5, S = 1, Rd = 1, D = 0.5, Prn = 0.05,
Srt = −0.25 and Sch = 0.5.

Figure 4. Error profile for m(η) and n(η) with Sz = −0.25, Mx = 1, My = 3, Rm = 0.5, S = 1, Rd = 1, D = 0.5, Prn = 0.05,
Srt = −0.25 and Sch = 0.5.

Figure 5. Error profile for θ(η) and ϕ(η) with Sz = −0.25, Mx = 1, My = 3, Rm = 0.5, S = 1, Rd = 1, D = 0.5, Prn = 0.05,
Srt = −0.25 and Sch = 0.5.
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Table 8. Effect of Rm on skin friction, magnetic flux, heat flux and mass flux.

Rm f ′′(η) −g′(η) −m′(η) −n′(η) −θ′(η) −ϕ′(η)

0.1 2.976998 −0.408251 −0.962689 −0.921462 0.998762 0.981100
0.5 2.977633 −0.414660 −0.831838 −0.663347 0.998762 0.981098
1 2.977560 −0.419649 −0.701154 −0.433268 0.998762 0.981097

1.5 2.976902 −0.422670 −0.597416 −0.271630 0.998762 0.981099

Table 9. Effect of Du on skin friction, magnetic flux, heat flux and mass flux.

Du f ′′(η) −g′(η) −m′(η) −n′(η) −θ′(η) −ϕ′(η)

0.1 2.985167 −0.467599 −0.831912 −0.553833 0.999236 0.981129
0.75 2.985167 −0.467599 −0.831912 −0.553833 0.999498 0.981162
1.25 2.985167 −0.467599 −0.831912 −0.553833 0.999699 0.981188
1.75 2.985167 −0.467599 −0.831912 −0.553833 0.999900 0.981213

Table 10. Effect of Rd on skin friction, magnetic flux, heat flux and mass flux.

Rd f ′′(η) −g′(η) −m′(η) −n′(η) −θ′(η) −ϕ′(η)

0.1 2.977633 −0.414660 −0.831838 −0.663347 0.998762 0.981098
0.5 2.977633 −0.414660 −0.831838 −0.663347 0.999158 0.981147
1 2.977633 −0.414660 −0.831838 −0.663347 0.999398 0.981177

1.5 2.977633 −0.414660 −0.831838 −0.663347 0.999532 0.981194

Table 11. Effect of Prn on skin friction, magnetic flux, heat flux and mass flux.

Prn f ′′(η) −g′(η) −m′(η) −n′(η) −θ′(η) −ϕ′(η)

0.05 2.977633 −0.414660 −0.831838 −0.663347 0.999532 0.981194
0.1 2.977633 −0.414660 −0.831838 −0.663347 0.999064 0.981135
0.25 2.977633 −0.414660 −0.831838 −0.663347 0.997668 0.980960
0.5 2.977633 −0.414660 −0.831838 −0.663347 0.995361 0.980671

Table 12. Effect of Srt on skin friction, magnetic flux, heat flux and mass flux.

Srt f ′′(η) −g′(η) −m′(η) −n′(η) −θ′(η) −ϕ′(η)

0.1 3.000040 −0.222019 −0.831954 −0.622051 0.999758 0.992499
0.5 3.000040 −0.222019 −0.831954 −0.622051 0.999758 0.992548
1 3.000040 −0.222019 −0.831954 −0.622051 0.999758 0.992609

1.5 3.000040 −0.222019 −0.831954 −0.622051 0.999757 0.992670

Table 13. Effect of Sch on skin friction, magnetic flux, heat flux and mass flux.

Sch f ′′(η) −g′(η) −m′(η) −n′(η) −θ′(η) −ϕ′(η)

0.5 2.985167 −0.478167 −0.831912 −0.640398 0.999397 0.981150
1 2.985167 −0.478167 −0.831912 −0.640398 0.999598 0.962350

1.5 2.985167 −0.478167 −0.831912 −0.640398 0.999799 0.943600
2 2.985167 −0.478167 −0.831912 −0.640398 1.000000 0.924901
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Figure 6. 3D graph for f (η) and g(η) with Sz = −0.25, Mx = 1, My = 3, Rm = 0.5, S = 1, Rd = 1, D = 0.5, Prn = 0.05,
Srt = −0.25 and Sch = 0.5.

Figure 7. 3D graph for m(η) and n(η) with Sz = −0.25, Mx = 1, My = 3, Rm = 0.5, S = 1, Rd = 1, D = 0.5, Prn = 0.05,
Srt = −0.25 and Sch = 0.5.

Figure 8. 3D graph for θ(η) and ϕ(η) with Sz = −0.25, Mx = 1, My = 3, Rm = 0.5, S = 1, Rd = 1, D = 0.5, Prn = 0.05,
Srt = −0.25 and Sch = 0.5.
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6. Discussion

In this section, the effects of different involved flow parameters are discussed graphi-
cally on velocity and magnetic field components. The effect of squeezing Reynold numbers
can be seen in Figures 9–12. It is observed that for fix values of the other parameters,
i.e., Mx, My, Rm, S, Rd, D, Prn, Srt and Sch, it is clear that increasing the squeeze Reynold
number (moving upper disc towards lower disc with increasing order pattern) has a direct
effect on the velocity components in both the y- and z-direction. On the other hand, in
the x-direction, the velocity increases initially but shows a decreasing effect as η → 1,
where, as in the case of magnetic field, the increase in squeeze Reynold number results
in a decrease in magnetic field component along the z-direction, while a direct relation is
observed for the y-component of the magnetic field, i.e., increasing the squeeze number
causes an increase in the magnetic field along the y-direction. On both concentration and
temperature distribution, the direct effect of the squeeze number is observed.

Figure 9. Impact of squeeze Reynold number Sz on f (η) and f ′(η), keeping Mz = −3.25, My = 7, Rm = −2, S = 1,Rd = 0.5,
Du = 0.1, Prn = 2, Srt = 0.2 and Sch = 1.

Figure 10. Observing the effect of squeeze Reynold number Sz on g(η) and n(η) with Mz = −1, My = 0.5, Rm = −0.75,
S = 1, Rd = 0.5, Du = 0.1, Prn = 5, Srt = 0.2 and Sch = 1.
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Figure 11. Impact of squeeze Reynold number Sz on m(η), keeping Mz = −1.5, My = 0.5, Rm = −1,
S = 1, Rd = 0.5, Du = 0.1, Prn = 2, Srt = 0.2 and Sch = 1.

Figure 12. Observing the effect of squeeze Reynold number Sz on θ(η) and ϕ(η) with Mz = −1, My = 0.5, Rm = −0.75,
S = 1, Rd = 0.5, Du = 0.1, Prn = 5, Srt = 0.2 and Sch = 1.

The magnetic field strength Mz is the magnetic field’s dimensionless axial strength. For
additional parameters with fixed values, from Figures 13–16, it can be seen that increasing
Mz generates a decrease in the velocity component f (η), whereas decreasing the magnetic
field strength along the x-component causes a rise in the velocity g(η). The initial velocity
along the x-component decreases with increasing magnetic field intensity for the velocity
component f ′(η) but starts to increase as η → 1. The figure also shows how Mz has an
increasing influence on the magnetic field component m(η)and n(η). When discussing
temperature distribution, increasing Mz causes θ(η) to increase as well, whereas decreasing
ϕ(η) causes phi(η) to drop. Figures 17 and 18 show the effect of magnetic field intensity
My, which is the strength of the magnetic field in the y-direction. It is discovered that as
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the magnetic field intensity increases, both velocity g(η) and the magnetic field component
n(η) drop, indicating an inverse relationship in both cases. To observe the effect of magnetic
Reynold number Rm, Figures 19–22 illustrate the relations, showing that an increases in the
magnetic Reynold number causes a decrease in the velocity component f (η) with fixed
values of other parameters, but increases in the velocity component g(η) with fixed values
of other parameters results in an increase in the value of shear force due to distribution
of body force in a non-uniform manner. Body force accelerates near the relative core wall
layer because Lorentz force is small near the squeezed plate (because of the current being
almost parallel to the magnetic field).

Figure 13. Observing the effect of magnetic strength parameter Mz on f (η) and f ′(η) with Sz = 2, My = 3, Rm = 1, S = 1,
Rd = 1, Du = 0.1, Prn = 1, Srt = 0.2 and Sch = 1.

Figure 14. Observing the effect of magnetic strength parameter Mz on g(η) and n(η) with Sz = −0.25, My = 3, Rm = 1,
S = 1, Rd = 0.5, Du = 0.1, Prn = 1, Srt = 2 and Sch = 0.5.
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Figure 15. Observing the effect of magnetic strength parameter Mz on m(η) with Sz = −0.25, My = 3,
Rm = 1, S = 1, Rd = 1, Du = 0.1, Prn = 1, Srt = 2 and Sch = 0.5.

Figure 16. Observing the effect of magnetic strength parameter Mz on θ(η) and ϕ(η) with Sz = −1.5, My = 1, Rm = −1,
S = 1, Rd = −1, Du = 0.1, Prn = −1, Srt = −2 and Sch = −0.5.
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Figure 17. Observing the effect of magnetic strength parameter My on g(η) with Sz = −0.5, Mz =

−0.5, Rm = −2, S = 1, Rd = 0.5, Du = 0.1, Prn = 5, Srt = 0.2 and Sch = 1.

Figure 18. Observing the effect of magnetic strength parameter My on n(η) with Sz = −0.5, Mz =

−1.5, Rm = −1, S = 1, Rd = −1, Du = 2, Prn = −0.1, Srt = −0.2 and Sch = −1.
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Figure 19. Observing the effect of magnetic Reynold number Rm on f (η) and f ′(η) with Sz = −1.5, Mz = −1.5, My = 3,
S = 1, Rd = −1, Du = 5, Prn = 1, Srt = 3 and Sch = 1.

Figure 20. Observing the effect of magnetic Reynold number Rm on g(η) and m(η) with Sz = −1.5, Mz = −0.75, My = 1,
S = 1, Rd = −1, Du = 0.1, Prn = −1, Srt = −2 and Sch = −0.5.

For the x-component of velocity initially, a decrease in the velocity is located but
starts increasing as η → 1 maximum value of f ′(η) is observed at the center. In the case
of magnetic field component m(η), with Rm = 0.1, an almost linear profile is observed,
whereas when increasing the value of Rm, the profile becomes parabolic. It is also shown
that in increasing Rm, the profile for m(η) decreases. However, a direct relationship is
observed in the case of magnetic field component n(η), i.e., when increasing the values of
Rm, the profile of n(η) also increases. Similarly, for larger values of Rm, the profile becomes
more parabolic. Moreover, observing the effect of Rm on θ(η) and ϕ(η), it can be seen that
increasing the magnetic Reynold number has a direct effect on temperature distribution
θ(η), while an inverse relation is observed in the case of concentration ϕ(η).
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Figure 21. Observing the effect of magnetic Reynold number Rm on n(η) with Sz = −1.5, Mz = 0.5,
My = 1, S = 1, Rd = 1, Du = 0.1, Prn = 1, Srt = 2 and Sch = 0.5.

Figure 22. Observing the effect of magnetic Reynold number Rm on θ(η) and ϕ(η) with Sz = −1.5, Mz = −1.5, My = 3,
S = 1, Rd = −1, Du = 5, Prn = 1, Srt = 3 and Sch = 1.

Figure 23 illustrates the effect of the Dufour number on concentration and temperature
distributions, showing that in both, cases Du has a direct effect on θ(η) and ϕ(η). Similarly,
from Figure 24, it can be observed that the Prandtl number Prn has a direct relation with
θ(η), as increasing Prn increases the temperature θ(η), whereas an inverse relation is
observed in the case of ϕ(η), i.e., increasing Prn, ϕ(η) shows a decreasing effect. Figure 25
depicts the Soret effect on temperature and concentration: it can be seen that in increasing
the Soret number, heat transfer increases but mass transfer decreases. On the other hand, the
opposite case is seen in the case of radiation parameter Rd in Figure 26, i.e., increasing Rd,
θ(η) increases while ϕ(η) decreases. Further, for the Schmidt number, an inverse relation
is observed for θ(η), whereas a direct relation can be seen for ϕ(η), as seen from Figure 27.
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Figure 23. Observing the effect of squeeze Dufour number Du on θ(η) and ϕ(η) with Sz = −1.5, Mz = −1.5, My = 3,
Rm = −0.5, S = 1, Rd = −1, Prn = −1.5, Srt = 0.2 and Sch = −1.

Figure 24. Observing the effect of Prandtl number Prn on θ(η) and ϕ(η) with Sz = 1.5, Mz = 1.5, My = 3, Rm = 1, S = 1,
Rd = 2, Du = 1, Srt = 2 and Sch = 1.
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Figure 25. Observing the effect of Soret number Srt on θ(η) and ϕ(η) with Sz = −1.5, Mz = −1.5, My = 3, Rm = 0.5, S = 1,
Rd = −1, Du = 0.1, Prn = 5 and Sch = 1.

Figure 26. Observing the effect of radiation parameter Rd on θ(η) and ϕ(η) with Sz = −1.5, Mz = −1.5, My = 3, Rm = −0.5,
S = 1, Du = 2, Prn = 1.5, Srt = 2 and Sch = −1.
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Figure 27. Observing the effect of Schmidt number Sch on θ(η) and ϕ(η) with Sz = −1.5, Mz = −1.5, My = 3, Rm = −0.5,
S = 1, Rd = −0.5, Du = 5, Prn = 1, and Srt = 2.

7. Conclusions

Heat and mass transfer for 3D squeezing MHD flow of viscous fluids is studied in this
chapter; flow is considered between two plates rotating at the same angular velocities. The
influence of a varying magnetic field is introduced, and the phenomenon is represented
using linked governing equations, such as continuity, Navier–Stokes, magnetic field energy,
and transport equations. They are then translated to ordinary differential equations using
the similarity transformation and solved using the analytical technique (HAM) in Mathe-
matica package BVPh 2.0. The influence of varied parameters on velocity, magnetic field,
concentration and temperature distribution was observed by graphs and tables. Below are
some conclusions made from the above analysis:

• It is determined that increasing the squeeze effect on the upper plate generates an
increase in flow velocity along the y- and z-axis, while the velocity along the x-axis
initially increases but then decreases in the upper domain as (η → 1).

• It was also found that increasing the squeeze Reynold number of the magnetic field
component reduced the magnetic field’s effect along the z-component while increasing
the effect along the y-component.

• While squeeze number has a direct effect on both concentration and temperature
distribution, an increase in squeeze Reynold number causes an increase in both
temperature and mass transfer.

• Moreover, raising the magnetic field strength parameter Mz, which is the strength of
the magnetic field along the z-axis, results in a drop in fluid velocity along the z-axis,
yet velocity along the y-axis shows a gradual increase by increasing Mz. However,
along the x-axis, firstly a decrease in the velocity component is observed, but as η → 1,
the velocity begins to increase.

• The magnetic field strength parameter Mz has a direct relationship with the magnetic
field component along the z-axis, i.e., increasing the value of Mz has a increasing effect
on the value of magnetic field along the z-component. A direct relationship can also
be detected along the y-axis.

• Further, for a temperature distribution, increasing Mz shows that θ(η) increases, but
ϕ decreases by increasing Mz.

• Further, it is concluded that raising the y-component of the magnetic field strength
parameter causes a decrease in the velocity of the fluid along the y-axis and the effect
of the magnetic field along the y-axis.
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• It is concluded that increasing the magnetic Reynold number Rm causes a decrease in
flow velocity along the z-axis. On the other hand, raising Rm has an increasing effect
on velocity along y. The flow velocity along the x-axis initially shows a diminishing
pattern, but when η → 1 increases, the effect increases.

• It is also observed that for the magnetic field, increasing the magnetic Reynold number
shows a decrease in the value of the magnetic field along the z-axis, whereas an
increasing effect is observed along the y-axis.

• Furthermore, it is also concluded that increasing the magnetic Reynold number shows
an increase in the heat transfer, where a decrease in the mass transfer is observed.

• The effect of the Dufour number on concentration and temperature distribution is also
observed, and it is concluded that in both cases, Du has a direct effect on mass and
temperature distribution, as increasing the Dufour number increases both mass and
heat transfer.

• It is also concluded that an increase in the value of the Prandtl number causes an
increase in the value of θ(η), but a decrease in the value of ϕ(η) is observed.

• For the Soret number, it can be seen that in increasing the Soret number, heat transfer
increases but mass transfer decreases. Thus, it has a direct effect on θ(η) and an
inverse effect on ϕ(η).

• It is further concluded that opposite behavior is observed in case of the radiation
parameter’s effect on temperature distribution, i.e., in increasing its value, θ(η) de-
creases, while in case of mass transfer, ϕ(η) increases with an increase in the value of
the radiation parameter.

• For the Schmidt number, it is concluded that with an increasing Schmidt number, both
heat and mass transfer values increase.
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Nomenclature
V Fluid velocity
B Magnetic field
l Distance between disks at t = 0
µ Fluid’s dynamic viscosity
σ Electric conductivity
µ2 Permeability of free space
ν Fluid’s kinematic viscosity
ρ Fluid density
Sz Squeezing number
P Fluid pressure
θ Dimensionless temperature
ϕ Dimensionless concentration
D Diffusion coefficient
κ Thermal conductivity
T Fluid temperature
C fluid concentration
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Rm Magnetic Reynold number
S Squeezing number
Mz Magnetic strength parameter along z-axis
My Magnetic strength parameter along y-axis
Pr Prandtl number
Sc Schmidt number
Du Dufour number
Srt Soret number
Rd Radiation parameter
Cp Specific heat at constant pressure
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Abstract: This paper studies a non-linear viscoelastic wave equation, with non-linear damping and
source terms, from the point of view of the Lie groups theory. Firstly, we apply Lie’s symmetries
method to the partial differential equation to classify the Lie point symmetries. Afterwards, we reduce
the partial differential equation to some ordinary differential equations, by using the symmetries.
Therefore, new analytical solutions are found from the ordinary differential equations. Finally, we
derive low-order conservation laws, depending on the form of the damping and source terms, and
discuss their physical meaning.
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1. Introduction

Lately, many viscoelastic wave equations have been considered in the literature. The
single viscoelastic wave equation of the form

utt − ∆ u +
∫ 1

0
h(t− s)∆ u(x, s)ds + f (ut) = g(u)

in Ω× (0, ∞), where Ω is a bounded domain of RN (N ≥ 1) with initial and boundary
conditions, has been extensively studied. Several results concerning non-existence and
blow-up solutions in finite time have been proved [1–8].

Furthermore, the non-linear viscoelastic wave equation with damping and source terms

utt − ∆ u + f (ut) = g(u), x ∈ Ω, t > 0, (1)

has also been very studied obtaining similar results [9,10]. As in the single viscoelastic
wave equation, it is well-known that the damping term f (ut) assures global existence in
the absence of the source term (g(u) = 0). The interaction between the damping term and
the source term makes the problem more interesting.

Moreover, Messaoudi [11] considered the non-linear viscoelastic wave equation with
damping and source terms

utt − ∆ u + a|ut|m−2ut = b|u|p−2u, x ∈ Ω, t > 0.

For this equation, Georgiev and Todorova [12] and Messaoudi [13] analyzed blow-up
solutions in different situations.

In general, many authors showed interest in these viscoelastic wave equations. How-
ever, in this paper, we focus on studying the viscoelastic wave Equation (1) but from
a point of view of the Lie groups theory. In fact, we have published a previous work
analyzing this model [14]. Moreover, in this paper we present new results for the model. It
is found a complete classification of Lie point symmetries with its associated reductions,
new soliton-type solutions, and a complete classification of multipliers and conservation
laws with a discussion of their physical meaning.
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The resolution of non-linear partial differential equations (PDEs) is a very important
field of research in applied mathematics. Symmetry reductions and analytical solutions
have many applications in the context of differential equations. For instance, analytical
solutions arising from symmetry methods can be used to study properties, such as asymp-
totic and blow-up behavior. A large amount of literature has been published about the
application of the Lie transformation group theory to construct solutions of non-linear
PDEs [15–20]. For example, the Fisher equation was studied in [21] to find new analytical
solutions. In [22], a (2 + 1)-dimensional Zakharov-Kuznetsov equation was also investi-
gated using Lie symmetry analysis. The authors of [23] analyzed a system of dispersive
evolution equations to obtain new exact solutions too. The symmetries leaving the equation
invariant can reduce the number of independent variables, transforming the PDEs into
ordinary differential equations (ODEs), which one generally easier to solve.

Additionally, there is a similar one-dimensional equation called the “good” Boussinesq
equation considering ∆2. This change would transform the original second-order PDE (1)
to a 4-th order PDE, complicating it but of interest. Nevertheless, there have been a few
numerical works of this equation in recent years, such as applying a Fourier pseudo-spectral
method [24], and a 2-nd order operator splitting numerical scheme for the Equation [25].
The stability and convergence estimates have been presented in these works.

Conservation laws analyze which physical properties of a PDE do not change in the
course of time. In particular, local conservation laws are continuity equations yielding
conserved quantities of physical importance for all solutions of a given equation. For any
PDE, a complete classification of conservation laws can be determined by the multiplier
method [26,27]. In [28], the authors obtained the conservation laws and discussed the phys-
ical meaning of the corresponding conserved quantities. A classification of conservation
laws of a generalized quasilinear KdV equation was provided in [29] too. Moreover, a
(1 + 1)-dimensional coupled modified KdV-type system was studied in [30], constructing
its conservation laws also using the multiplier method.

To sum up, the aim of this work is to do a complete Lie group classification of
Equation (1). Afterwards, we present the reductions obtained from the different symme-
tries, transforming the PDE into ODEs. Moreover, we obtain traveling wave solutions by
comparing Equation (1) and similar equations studied previously [31–33]. Finally, we give
a complete classification of the conservation laws admitted by Equation (1).

The structure of the paper is as follows: In Section 2, we study the Lie point symme-
tries of Equation (1), and in Section 3, we obtain the symmetry reductions, the symmetry
variables, and the reduced ODEs. Next, in Section 4, we construct traveling wave solu-
tions using the reduced equations. Then, in Section 5, we present a classification of the
conservation laws and the multipliers of Equation (1). Finally, in Section 6, we give some
conclusions of the work.

2. Lie Point Symmetries

The idea of the Lie groups theory of symmetry analysis of differential equations relies
on the invariance of the equation under a transformation of independent and dependent
variables. This transformation sets up a local group of point transformations yielding to a
diffeomorphism on the space of independent and dependent variables, so the solutions of
the original equation map to other solutions. Any transformation of the independent and
dependent variables leads to a transformation of the derivatives [34].

The application of the Lie groups theory to differential equations is completely al-
gorithmic. However, it usually involves many tedious calculations. Nevertheless, we
make use of powerful softwares, such as Maple and the needed calculations are done
rapidly. Applying the classical Lie method to search for symmetries provides a set of
different expressions for the unknown functions f (ut) and g(u), for which the equation
admits symmetries.

In this section, let us briefly describe the classical Lie method and its application to
Equation (1), obtaining the symmetry reductions, the symmetry variables and the reduced
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equations. For details, this method is described in excellent textbooks, such as [17,19] and
references therein.

It is consider the one-parameter Lie group of infinitesimal transformations in (x, t, u)
given by

x∗ = x + εξ(x, t, u) +O(ε2),

t∗ = t + ετ(x, t, u) +O(ε2), (2)

u∗ = u + εη(x, t, u) +O(ε2),

where ε is the group parameter.
The infinitesimal point symmetries constitute the infinitesimal generator

v = ξ(x, t, u)∂x + τ(x, t, u)∂t + η(x, t, u)∂u. (3)

Each infinitesimal generator (Equation (3)) is associated with a transformation, deter-
mined by solving the system of ODEs

∂x̂
∂ε

= ξ(x̂, t̂, û),
∂t̂
∂ε

= τ(x̂, t̂, û),
∂û
∂ε

= η(x̂, t̂, û),

satisfying the initial conditions

x̂|ε=0 = x, t̂|ε=0 = t, û|ε=0 = u,

where ε is the group parameter.
We point out that (3) is a point symmetry of Equation (1) if the 2-nd order prolongation

of (3) leaves invariant Equation (1). This leads to an overdetermined linear system of
determining equations for the infinitesimals ξ(x, t, u), τ(x, t, u) and η(x, t, u), generated by
applying the symmetry invariance condition

pr(2)v(utt − uxx + f (ut)− g(u)) = 0, when utt − uxx + f (ut)− g(u) = 0, (4)

Here pr(2)v represents the second order prolongation of the vector field v, defined by

pr(2)v = v + ηx
∂

∂ux
+ ηt

∂

∂ut
+ ηxx

∂

∂uxx
+ ηxt

∂

∂uxt
+ ηtt

∂

∂utt
,

where the coefficients are given by

ηx = Dxη − utDxτ − uxDxξ,

ηt = Dtη − utDtτ − uxDtξ,

ηxx = Dx(ηx)− uxtDxτ − uxxDxξ,

ηxt = Dt(ηx)− uxtDxτ − uxxDtξ,

ηtt = Dt(ηt)− uttDtτ − uxtDtξ,

with Dx and Dt the total derivatives of x and t, respectively.
The symmetry determining Equation (4) splits with respect to the t-derivatives and x-

derivatives of u, getting an over-determined linear system of equations for the infinitesimals.
Here Maple is used for defining the determining equations and then, the commands
“rifsimp”, “dsolve” and “pdsolve” are used to solve the system. The command “rifsimp”
gives a tree containing all solution cases. For each solution case, we use the commands
“dsolve” and “pdsolve” to obtain solutions for the over-determined system. Therefore, we
proceed to show the classification of all solution cases in Theorem 1.
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Theorem 1. The Lie point symmetries admitted by the non-linear viscoelastic wave Equation (1)
for f (ut) and g(u) arbitrary functions, are generated by the transformations

v1 = ∂x,

(x̂, t̂, û)1 = (x + ε, t, u), space translation,

v2 = ∂t,

(x̂, t̂, û)2 = (x, t + ε, u), time translation.

For some particular functions of f (ut) and g(u), the non-linear viscoelastic wave Equation (1)
admits additional Lie point symmetries, given below.

1. For f (ut) = −e−nut
n + f1 and g(u) =

(
(g0 u + g1)

( 2
n − 1

)) n
2−n − f1, with n 6= 0, 1, 2

and g0, g1, f1 arbitrary constants,

v1
3 = g0

(
n− 1
n− 2

)
x∂x + g0

(
n− 1
n− 2

)
t∂t + (g0u + g1)∂u,

(x̂, t̂, û)1
3 = (xe

g0 (n−1)ε
n−2 , te

g0 (n−1)ε
n−2 , eg0 εu + eg0 ε

∫ ε

0
g1 e−g0 z1 dz1), scaling and shift.

2. For f (ut) = au2
t and g(u) = k ecu, with c 6= 0 and a, k arbitrary constants,

v2
3 = −1

2
cx∂x −

1
2

ct∂t + ∂u,

(x̂, t̂, û)2
3 = (xe−1/2 cε, te−1/2 cε, ε + u), scaling in t and x combined.

3. For f (ut) = k and g(u) = (au + b)n − k, with n 6= 1, c 6= 0 and a, b, k arbitrary constants,

v3
3 =

1
2

a(n− 1)x∂x +
1
2

a(n− 1)t∂t + (au + b)∂u,

(x̂, t̂, û)3
3 = (e1/2 ak3 (n−1)εx +

∫ ε

0
k1 e−1/2 ak3 (n−1)z1 dz1e1/2 ak3 (n−1)ε,

e1/2 ak3 (n−1)εt +
∫ ε

0
k2 e−1/2 ak3 (n−1)z1 dz1e1/2 ak3 (n−1)ε,

e−ak3 εu +
∫ ε

0
−bk3 eak3 z1 dz1e−ak3 ε), scaling and shift.

4. For f (ut) = au
4
3
t and g(u) = (cu + k)2, with c 6= 0 and a, k arbitrary constants,

v4
3 = −1

2
c x∂x −

1
2

c t∂t + (c u + k)∂u,

(x̂, t̂, û)4
3 = (xe−1/2 cε, te−1/2 cε, ecεu +

∫ ε

0
ke−cz1 dz1ecε), scaling and shift.

3. Symmetry Reductions

The symmetry variables are found by solving the invariant surface condition

Φ ≡ ξ(x, t, u)ux + τ(x, t, u)ut − η(x, t, u) = 0.

For Equation (1), a PDE with two independent variables, a single group reduction
transforms the PDE into different ODEs.

Reduction 1. For the generator λv1 + v2, we obtain the traveling wave reduction

z = x− λt, u(x, t) = h(z), (5)
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where h(z) satisfies
(λ2 − 1)h′′ + f (−λ h′)− g(h) = 0. (6)

Reduction 2. For the generator v1
3, we obtain the symmetry reduction

z = x
t , u = x

n−2
n−1 h(z)− g1

g0
,

where h(z) satisfies

z
3 n2+2 n

n2−3 n+2

(
−z

1
n−1

)3 n ((
g0

n
n−2 (2− n)

n
n−2 (n− 1)2 ef2 n z4

−g0
n

n−2 (2− n)
n

n−2 (n− 1)2 ef2 n z2
)

h
n

n−2+
2

n−2 h′′

+
(

2 g0
n

n−2 (2− n)
n

n−2 (n− 1)2 ef2 n z3

−2 g0
n

n−2 (2− n)
n

n−2 (n− 2) (n− 1) ef2 n z
)

h
n

n−2+
2

n−2 h′

+
(

ef2 n
(

n
n

n−2
(
n2 − 2 n + 1

))
h

2
n−2

+
(

g0
n

n−2 (2− n)
n

n−2 n− 2 g0
n

n−2 (2− n)
n

n−2
)

h
2 n

n−2

))

−
(

g0
n

n−2 (2− n)
n

n−2 (n− 1)2 z
2 n3

n2−3 n+2

)
h

n
n−2+

2
n−2 (h′)n = 0.

Reduction 3. For the generator v2
3, the similarity variable and similarity solution are

z = x
t , u = − 2

c ln t + h(z),

where h(z) satisfies
(
c2z2 − c2)h′′ +

(
a z2c2)(h′)2 +

(
4 z c a + 2 z c2)h′ + k ehcc2 + 4 a + 2 c = 0.

Reduction 4. For the generator v3
3, the invariant solution is

z =
x
t

, u =
1
c

(
t−

2
n−1 h(z)− b

)
,

where h(z) satisfies
(
n2z2 − 2nz2 − n2 + z2 + 2n

)
h′′ − h′′h +

(
2n2z− 2za

)
h′

+
(
an2 − 2an + a

)
(hn) + (2n + 2)h = 0.

Reduction 5. For the generator v4
3, the invariant solution is

z =
x
t

, u =
1
c

(
t−2h(z)− k

)
,

where h(z) satisfies

(
z2 − 1

)
h′′ +

(
− 3
√
−h′z−2 h

c az + 6z
)

h′ + c h2 +

(
−2 3
√
−h′z−2 h

c a + 6
)

h = 0.

4. Traveling Wave Solutions

In this section we are studying Equation (6) in order to find traveling wave solutions
of Equation (1). The other ordinary differential equations obtained are not considered
because they are non-autonomous differential equations.

The procedure followed compares Equation (6) with a similar equation, studied before
by Kudryashov, whose general solution appears in [31].
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The second-order Equation (6) is expressed as

h′′ =
1

1− λ2 f (−λh′) +
1

1− λ2 g(h). (7)

Kudryashov obtained in [31] the general solution of a second-order ODE, given by

h′′ =
1
λ

(
µh′ +

1
2

h2 −ωh− c0

)
, (8)

where c0 is an arbitrary constant and λ, µ, ω satisfies ω = 6µ2

25λ . The expression of its general
solution is given in terms of the Weierstrass elliptic function, considering g2 = 0 and
g3 = c1,

h(z) = ωk +
6α2

25β
− exp

{
2zα

5β

}
P
(

c2 −
5β

α
√

12β
exp

{
zα

5β

}
, 0, c1

)
,

with c1, c2 arbitrary constants.
Equations (7) and (8) are equal if

f (−λh′) = 1−λ2

λ µh′,
g(h) = 1

λ

(
1
2 h2 −ωh− c0

)
.

Consequently, the solutions of Equations (7) and (8) are equivalent for the previous
expressions of f (−λh′) and g(h).

Lastly, the following analytical solution of the original PDE (1) is given by undoing
the change of variables (5):

u(x, t) = ω +
6α2

25β
− exp

{
2(x− λt)α

5β

}
P
(

c2 −
5β

α
√

12β
exp

{
(x− λt)α

5β

}
, 0, c1

)
. (9)

Figure 1. Solution (9), for λ = α = β = c1 = c2 = 1.

Solution (9) is a soliton-type traveling wave solution (see Figure 1).

122



Mathematics 2021, 9, 2131

In addition, by the same procedure, the authors of [32] obtained the general solution
of a second-order ODE of the form

h′′ =
2b(βq− p)− α

b(β2 + 1)
h′ +

m1n1

b(β2 + 1)
h2 − b(p2 + q2) + a

b(β2 + 1)
h.

In the same way, we can derive the general solution for this equation, for

f (−λh′) = 2b(βq−p)−α

b(β2+1) (1− λ2)h′,

g(h) = m1n1
b(β2+1) (1− λ2)h2 − b(p2+q2)+a

b(β2+1) (1− λ2)h.

Furthermore, we can find another solution by using the Jacobi elliptic function method.
Let us assume that Equation (6) has a solution of the form

h = α Hβ(z),

where α and β are parameters to be determined. Here, H(z) is a solution of the
Jacobi equation

(H′)2 = r + p H2 + q H4, (10)

with r, p and q constants.
Here H has the expression of an exponential or polynomial function. If H is a solution

of Equation (10), then we can distinguish three cases: (i) H is the Jacobi elliptic sine function
sn(z, m); (ii) H is the Jacobi elliptic cosine function, cn(z, m); (iii) H is the Jacobi elliptic
function of the third kind dn(z, m). However, we focus on the first case.

If H(z) = sn(z, m),
h(z) = p snq(z|m) (11)

is a solution of Equation (6). Substituting Equation(11) into Equation (6), we obtain the
expressions of f (−λh′), g(h), and the parameters that make Equation(11) a solution of
Equation (6).

This procedure was applied by Bruzón and Gandarias [33] to a similar equation,
obtaining an exact solution. In the same way, an exact solution of Equation (1) is

u(x, t) = p snq(x− λ t|m). (12)

Figure 2. Solution (12) for λ = p = q = 1 and m = 0.5.
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Solution (12) is shown in Figure 2. Specifically, the solution is a stable non-linear
non-harmonic oscillatory periodic wave.

5. Conservation Laws

The notion of a conservation law is a mathematical formulation of the familiar physical
laws of conservation of energy, conservation of momentum and so on. This concept
plays an important role in the analysis of basic properties of the solutions. For example,
the invariance of a variational principle under a group of time translations implies the
conservation of energy for the solutions of the associated Euler-Lagrange equations, and the
invariance under a group of spatial translations implies conservation of momentum [19].

Anco and Bluman presented a direct conservation law method for PDEs expressed
in normal form. A PDE is in normal form if it can be expressed in a solved form for some
leading derivative of u, such that all the other terms in the equation contain neither the
leading derivative nor its differential consequences [26].

A local conservation law of the non-linear viscoelastic wave Equation (1) satisfies the
space-time divergence expression

DtT + DxX = (utt − uxx + f (ut)− g(u))Q, (13)

named the characteristic equation, where T is the conserved density and X the conserved
flux. The vector (T, X) is called the conserved current.

The general expression of a low-order multiplier Q, written in terms of u and deriva-
tives of u, depends on those variables that, by derivatives, can lead to a leading derivative
of Equation (1). For example, utt can be derived by the derivative of ut with respect to t,
and uxx by the derivative of ux with respect to x.

Therefore, it is defined
Q(t, x, u, ut, ux)

as the general expression for a low-order multiplier for the non-linear viscoelastic wave
Equation (1).

However, all low-order multipliers are found by solving the determining equation

Eu((utt − uxx + f (ut)− g(u))Q) = 0, (14)

where Eu is the Euler operator with respect to u [19], defined by

Eu = ∂u − Dx∂ux − Dt∂ut + DxDt∂uxt + D2
x∂uxx + · · · .

Hence, splitting the determining Equation (14) with respect to uxx, utt, utx, we obtain
an overdetermined linear system for Q, f (ut), g(u).

Thus, a complete classification of multipliers is found by solving the system with the
same algorithmic method used for the determining equation for infinitesimal symmetries.
The classification of multipliers is shown in Theorem 2. Then, for each multiplier we
determine the corresponding conserved density T and flux X, by integrating directly the
characteristic Equation (13). For this classification we apply the same Maple commands
used for the Lie symmetries classification, “rifsimp”, “dsolve”, and “pdsolve”. Theorem 3
shows the results obtained.

Theorem 2. All the multipliers admitted by the non-linear viscoelastic wave Equation (1), with
f (ut) 6= 0, are given below.

1. For f (ut) = f0 and g(u) arbitrary function, the multipliers are

Q1 = ut, Q2 = ux.
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2. For f (ut) = f0 and g(u) = g1 eg0u − f0, besides Q1 and Q2, the multiplier is

Q3 = tut + xux +
2
g0

.

3. For f (ut) = f0ut + f1 and g(u) an arbitrary function, the multiplier is

Q4 = ux e f0t.

4. For f (ut) = −g0 − 1
ut f0+ f1

and g(u) = g0, the multiplier is

Q5 = f0utux + f1ux.

5. For f (ut) = − 4 f0
ut+ f1

+ f2 and g(u) = 4 f0
f1
− f2, the multiplier is

Q6 = ut + f1.

Theorem 3. All the non-trivial low-order conservation laws admitted by the non-linear viscoelastic
wave Equation (1), with f (ut) 6= 0, are given below.

1. For f (ut) = f0, g(u) arbitrary function and Q1 = ut, the conservation law is

T1 =
1
2

ux
2 +

1
2

ut
2 +

∫
g(u) + f0 du, (15)

X1 = −utux.

2. For f (ut) = f0, g(u) arbitrary function and Q2 = ux, the conservation law is

T2 = utux, (16)

X2 = −1
2

ux
2 − 1

2
ut

2 +
∫

g(u) + f0 du.

3. For f (ut) = f0, g(u) = g1 eg0u − f0 and Q3 = tut + xux +
2
g0

, the conservation law is

T3 =
1

2g0
2 teug0 g1 +

(
tut

2 + tux
2 + 2 uxxut

)
g0 + 4 ut,

X3 =
1

2g0
2 xeug0 g1 +

(
−2 tutux − xut

2 − ux
2x
)

g0 − 4 ux.

4. For f (ut) = f0ut + f1, g(u) an arbitrary function and Q4 = ux e f0t, the conservation law is

T4 = uxe f0 tut,

X4 =
∫

e f0 t(g(u) + f1)du +
1
2

(
−ut

2 − ux
2
)

e f0 t.

5. For f (ut) = −g0 − 1
ut f0+ f1

, g(u) = g0 and Q5 = f0utux + f1ux, the conservation law is

T5 =
1
6

f0 ux
3 +

1
2

f0 ut
2ux + f1 uxut,

X5 = −1
2

f0 utux
2 − 1

2
ux

2 f1 −
1
6

f0 ut
3 − u − 1

2
ut

2 f1.

6. For f (ut) = − 4 f0
ut+ f1

+ f2, g(u) = 4 f0
f1
− f2 and Q6 = ut + f1, the conservation law is

T6 =
1
2

ux
2 +

1
2

ut
2 + f1 ut + 4

f0 u
f1

,

X6 = (−ut − f1)ux.
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Next, we study the meaning of some of these conservation laws. Every conservation
law yields a corresponding conserved integral

C[u] =
∫

Ω
T dx,

where Ω is the domain of solutions u(x, t).
For Equation (1), with f (ut) constant and g(u) non-linear function, conservation law

(15) yields conservation of an energy quantity

E [u] =
∫

Ω

1
2

ux
2 +

1
2

ut
2 +

∫
g(u) + f0 du dx,

which represents the total energy for solution u(x, t).
Conservation law (16) yields the conserved quantity

M[u] =
∫

Ω
utux dx,

which is a momentum quantity.

6. Conclusions

In this paper, we have obtained a complete Lie group classification for the viscoelastic
wave Equation (1) in the presence of damping and source terms, for different expressions
of the functions f and g. Then, we have constructed the corresponding reduced equations.
These reductions make easier the resolution of the viscoelastic wave Equation (1) in order
to obtain solutions of physical interest, such as solitons. Moreover, we have obtained
these traveling wave solutions from the reduced equations by the comparison between
Equation (1) and comparable equations studied before by other authors. Furthermore, Lie
point symmetries are not the only ones that can be studied. Another symmetries such as
contact or potential symmetries can be studied in the future. Finally, we have derived the
non-trivial low-order conservation laws by using the multiplier method.
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Abstract: The current paper considers the enhanced Kudryashov’s technique to retrieve solitons
with a governing model having cubic-quintic-septic-nonic and quadrupled structures of self-phase
modulation. The results prove that it is redundant to extend the self-phase modulation beyond
cubic-quintic nonlinearity or dual-power law of nonlinearity.
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1. Introduction

Optical soliton is one of the most important topics of study in nonlinear fiber optics
during the present times [1–5]. The dynamics of such solitons is typically described by
the nonlinear Schrödinger’s equation (NLSE) [6–9] with a singleton form of self-phase
modulation (SPM) [10–13] that emerges from the nonlinear refractive index structure of an
optical fiber [14–20]. This typically appears with cubic nonlinear structure AKA Kerr law
of nonlinearity [21–25] and its generalization to power-law of nonlinear medium [26–31].
The third form of singleton SPM that leads to optical Gaussons, as opposed to optical
solitons, is with logarithmic law of nonlinearity [32]. Apart from these three forms with
single nonlinear term, the lesser known structures of SPM, sparingly visible, are saturable
law and exponential form. The remaining forms of SPM typically contain two or more
nonlinear structures that are applicable in various forms of materials such a LiNbO3 crystals.
These are cubic-quintic nonlinearity, AKA parabolic form of SPM and its generalization to
dual-power form of SPM. Several other forms of refractive index structures have emerged,
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such as quadratic-cubic (QC) form, generalized QC form, anti-cubic (AC) type, and
generalized AC form of nonlinearity. The current paper draws attention to the possible
extension of parabolic and dual power-laws of nonlinearity to cubic-quintic-septic-nonic
(CQSN) form and its generalization to quadrupled power-law of nonlinearity (QPL) and
beyond. Although the case of CQS law along with its generalization to triple power-law
has been meaningfully addressed in the past [33,34], this paper carries out the analysis
and proves that it is redundant to extend beyond CQS or triple-power law of nonlinear
structure. This analysis has been carried out with chromatic dispersion (CD). The detailed
analysis follows through with both forms of nonlinear refractive index structures.

Governing Model

iqt + aqxx + F
(
|q|2
)

q = 0, (1)

where the first term stems from temporal evolution, where i =
√
−1, whilst F comes from

SPM. x depicts spatial variable, whereas a describes CD. t imply to temporal variable, while
q(x, t) denotes the wave profile.

2. The Enhanced Kudryashov’s Technique

Consider a governing equation [35–37]

F(u, ux, ut, uxt, uxx, ...) = 0, (2)

where u = u(x, t) is dependent variable, whereas x and t are independent variables.
Step-1: Equation (2) reduces to

P(U,−kvU′, kU′, k2U′′, ...) = 0, (3)

by using the restriction
ξ = k(x− vt), u(x, t) = U(ξ), (4)

where v and k are constants.
Step-2: Equation (3) holds the solution structure

U(ξ) = λ0 +
N

∑
l=1

∑
i+j=l

λijQi(ξ)Rj(ξ), (5)

where N stems from the balancing procedure in Equation (3), while R(ξ) and Q(ξ) satisfy
the ancillary equations

R′(ξ)2
= R(ξ)2(1− χR(ξ)2), (6)

and
Q′(ξ) = Q(ξ)(ηQ(ξ)− 1), (7)

along with the explicit solutions

R(ξ) =
4c

4c2eξ + χe−ξ
, (8)

and
Q(ξ) =

1
η + beξ

. (9)

Here χ,λ0, η, λij(i, j = 0, 1, ..., N), a and b stand for constants.
Step-3: Putting (5) together with (6) and (7) into (3) leaves us with a system of equations

that enables us the much-needed constant parameters in (4)–(9).
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3. Optical Solitons

The current section employs the integration tool to retrieve optical solitons to the
model having CQSN and QPL nonlinearity structures of SPM.

3.1. CQSN Nonlinearity

In this case, the model shapes up as

iqt + aqxx +
(

b1|q|2 + b2|q|4 + b3|q|6 + b4|q|8
)

q = 0. (10)

It must be noted that bj (1 ≤ j ≤ 4) stem from χ(j) for (1 ≤ j ≤ 4) nonlinearities.
Although χ(1) and χ(2) are substantial for LiNbO3 crystals, χ(3) and χ(4) are negligibly small
and miniscule. The current paper includes these nonlinearities to study the corresponding
NLSE and check on its integrability aspect for the first time. The drawn conclusions will be
interesting. It will be observed that these negligible nonlinear contributions must be set to
zero for integrability purposes. This would lead to consistency between the Physics and
Mathematics of the problem [38]. We consider the solution structure

q(x, t) = U(ξ)eiφ(x,t), (11)

with
ξ = k(x− vt), (12)

and
φ(x, t) = −κx + ωt + θ. (13)

Here, U(ξ) comes from the amplitude component, where ξ is the wave variable and v
is the velocity. Additionally, φ(x, t) stems from the phase component, where θ is the phase
constant, ω is the angular frequency and κ is the wave number.

Putting (11) into (10) provides us the simplest equations

ak2U′′ −U
(

aκ2 + ω
)
+ b4U9 + b3U7 + b2U5 + b1U3 = 0, (14)

and
− kU′(2aκ + v) = 0. (15)

Equation (15) enables us the soliton velocity

v = −2aκ. (16)

Using the constraint
U(ξ) = V(ξ)

1
4 , (17)

Equation (14) stands as

4ak2VV′′ − 3ak2V′2 − 16V2
(

aκ2 + ω
)
+ 16b1V

5
2 + 16b3V

7
2 + 16b4V4 + 16b2V3 = 0. (18)

Setting b1 = b3 = 0 reduces Equation (18) to

4ak2VV′′ − 3ak2V′2 − 16V2
(

aκ2 + ω
)
+ 16b4V4 + 16b2V3 = 0. (19)

It must be noted that in Equation (18), b1 and b3 were set to zero simply for Equation (18)
to be rendered integrable since these would Free (18) from all terms carrying fractional
exponents of V. Thus, only b2 and b4 sustain to permit integrability of (18). This is equivalent
to studying the governing model with only two non-zero terms, namely b2 and b4 terms. This
is equivalent to saying that the governing NLSE is integrable with cubic—quintic nonlinear
form of refractive index that is present in LiNbO3 crystals. Thus, extending the SPM beyond
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χ(5) nonlinearity is redundant [14,38]. By the implementation of balancing procedure in
Equation (19), the solution structure (5) stands as

V(ξ) = λ0 + λ01R(ξ) + λ10Q(ξ). (20)

Substituting (20) along with (6) and (7) into (19) gives way to the results:
Result-1:

λ0 =
6
(
aκ2 + w

)

b2
, λ01 = 0, λ10 = −6η

(
aκ2 + ω

)

b2
, k = ±4

√
aκ2 + ω

a
, b4 = − 5b2

2
36(aκ2 + ω)

. (21)

Plugging (21) along with (9) into (20) provides us

q(x, t) =

{
6(ω + aκ2)

b2

b exp
[
± 4
√

ω+aκ2

a (x− vt)
]

η + b exp
[
± 4
√

ω+aκ2

a (x− vt)
]
} 1

4

ei(−κx+ωt+θ). (22)

Setting a(aκ2 + ω) > 0 and η = ±b collapses Equation (22) to the dark and singular
solitons

q(x, t) =

{
3(ω + aκ2)

b2

(
1± tanh

[
2

√
ω + aκ2

a
(x− vt)

])} 1
4

ei(−κx+ωt+θ), (23)

and

q(x, t) =

{
3(ω + aκ2)

b2

(
1± coth

[
2

√
ω + aκ2

a
(x− vt)

])} 1
4

ei(−κx+ωt+θ). (24)

Result-2:

λ0 = λ01 = 0, k = ±4

√
aκ2 + ω

a
, λ10 =

6η
(
aκ2 + ω

)

b2
, b4 = − 5b2

2
36(aκ2 + ω)

. (25)

Inserting (25) along with (9) into (20) enables us

q(x, t) =

{
6(ω + aκ2)

b2

η

η + b exp
[
± 4
√

ω+aκ2

a (x− vt)
]
} 1

4

ei(−κx+ωt+θ). (26)

Taking a(aκ2 + ω) > 0 and η = ±b turns Equation (26) into the dark and singular
solitons

q(x, t) =

{
3(ω + aκ2)

b2

(
1∓ tanh

[
2

√
ω + aκ2

a
(x− vt)

])} 1
4

ei(−κx+ωt+θ), (27)

and

q(x, t) =

{
3(ω + aκ2)

b2

(
1∓ coth

[
2

√
ω + aκ2

a
(x− vt)

])} 1
4

ei(−κx+ωt+θ). (28)
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Result-3:

λ0 = 0, λ10 = 0, k = ±4

√
aκ2 + ω

a
, b2 = 0, λ01 =

√
5χ(aκ2 + ω)

b4
. (29)

Putting (29) along with (8) into (20) leaves us with

q(x, t) =

{
4
√

5

√
aκ2χ + wχ

b4

c

4c2 exp
[
± 4
√

ω+aκ2

a (x− vt)
]
+ χ exp

[
∓ 4
√

ω+aκ2

a (x− vt)
]
}1/4

×ei(−κx+ωt+θ). (30)

Setting a(aκ2 + ω) > 0 and χ = ±4c2 changes Equation (30) to the bright and singular
solitons

q(x, t) =

{
±
√

5(ω + aκ2)

b4
sech

[
4

√
ω + aκ2

a
(x− vt)

]} 1
4

ei(−κx+ωt+θ), (31)

and

q(x, t) =

{
±
√

5(ω + aκ2)

b4
csch

[
4

√
ω + aκ2

a
(x− vt)

]} 1
4

ei(−κx+ωt+θ). (32)

3.2. QPL Nonlinearity

In this case, the model sticks out as

iqt + aqxx +
(

b1|q|2n + b2|q|4n + b3|q|6n + b4|q|8n
)

q = 0, (33)

where bj (j = 1− 4) come from QPL nonlinearity. Putting (11) into (33) paves way to the
auxiliary equations

ak2U′′ −U
(

aκ2 + ω
)
+ b4U8n+1 + b3U6n+1 + b2U4n+1 + b1U2n+1 = 0, (34)

and
− kU′(2aκ + v) = 0. (35)

Equation (35) leaves us with the soliton velocity

v = −2aκ. (36)

Using the restriction
U(ξ) = V(ξ)

1
4n , (37)

Equation (34) reads as

4ak2nVV′′ + ak2(1− 4n)V′2 − 16n2V2
(

aκ2 + ω
)
+ 16b1n2V

5
2 + 16b3n2V

7
2 + 16b4n2V4 + 16b2n2V3 = 0. (38)

Taking b1 = b3 = 0 simplifies Equation (38) to

4ak2nVV′′ + ak2(1− 4n)V′2 − 16n2V2
(

aκ2 + ω
)
+ 16b4n2V4 + 16b2n2V3 = 0. (39)

By the implementation of balancing technique in Equation (39), the formal solution (5)
turns into

V(ξ) = λ0 + λ01R(ξ) + λ10Q(ξ). (40)

Substituting (40) along with (6) and (7) into (39) leaves us with the results:
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Result-1:

λ0 =
2(2n + 1)

(
aκ2 + w

)

b2
, λ01 = 0, λ10 = −2(2n + 1)η

(
aκ2 + ω

)

b2
,

k = ±4n

√
aκ2 + ω

a
, b4 = − (4n + 1)b2

2
4(2n + 102)(aκ2 + ω)

. (41)

Plugging (41) along with (9) into (40) provides us

q(x, t) =

{
2(1 + 2n)(ω + aκ2)

b2

b exp
[
± 4n

√
ω+aκ2

a (x− vt)
]

η + b exp
[
± 4
√

ω+aκ2

a (x− vt)
]
} 1

4n

ei(−κx+ωt+θ). (42)

Taking a(aκ2 + ω) > 0 and η = ±b, the dark and singular solitons stand as

q(x, t) =

{
(1 + 2n)

(
ω + aκ2)

b2

(
1± tanh

[
2n

√
ω + aκ2

a
(x− vt)

])} 1
4n

ei(−κx+ωt+θ), (43)

and

q(x, t) =

{
(1 + 2n)

(
ω + aκ2)

b2

(
1± coth

[
2n

√
ω + aκ2

a
(x− vt)

])} 1
4n

ei(−κx+ωt+θ). (44)

Result-2:

λ0 = λ01 = 0, k = ±4n

√
aκ2 + ω

a
, λ10 =

2(2n + 1)η
(
aκ2 + ω

)

b2
, b4 = − (4n + 1)b2

2
4(2n + 1)2(aκ2 + ω)

. (45)

Inserting (45) along with (9) into (40) enables us

q(x, t) =

{
2(1 + 2n)(ω + aκ2)

b2

η

η + b exp
[
± 4n

√
ω+aκ2

a (x− vt)
]
} 1

4n

ei(−κx+ωt+θ). (46)

Setting a(aκ2 + ω) > 0 and η = ±b, the dark and singular solitons stick out as

q(x, t) =

{
(1 + 2n)

(
ω + aκ2)

b2

(
1∓ tanh

[
2n

√
ω + aκ2

a
(x− vt)

])} 1
4n

ei(−κx+ωt+θ), (47)

and

q(x, t) =

{
(1 + 2n)

(
ω + aκ2)

b2

(
1∓ coth

[
2n

√
ω + aκ2

a
(x− vt)

])} 1
4n

ei(−κx+ωt+θ). (48)

Result-3:

λ0 = 0, λ10 = 0, k = ±4n

√
aκ2 + ω

a
, b2 = 0, λ01 =

√
(4n + 1)χ(aκ2 + ω)

b4
. (49)

Putting (49) along with (8) into (40) paves way to
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q(x, t) =

{√
aκ2χ + ωχ

b4

4
√
(4n + 1)c

4c2 exp
[
± 4n

√
ω+aκ2

a (x− vt)
]
+ χ exp

[
∓ 4n

√
ω+aκ2

a (x− vt)
]
} 1

4n

×ei(−κx+ωt+θ). (50)

Setting a(aκ2 + ω) > 0 and χ = ±4c2, the bright and singular solitons evolve as

q(x, t) =

{
±
√

(1 + 4n)(ω + aκ2)

b4
sech

[
4n

√
ω + aκ2

a
(x− vt)

]} 1
4n

ei(−κx+ωt+θ), (51)

and

q(x, t) =

{
±
√

(1 + 4n)(ω + aκ2)

b4
csch

[
4n

√
ω + aκ2

a
(x− vt)

]} 1
4n

ei(−κx+ωt+θ). (52)

4. An Observation

This paper simply shows that the NLSE with CD for CQSN or QPL nonlinearity,
it is redundant to extend the nonlinear structure of SPM beyond the quintic form or its
corresponding generalization in the QPL nonlinear structure. The results fall back to
the case of QC or dual-power law of nonlinearity structure, respectively. In both forms
of SPM structures, one is compelled to choose b1 = b3 = 0 thus collapsing the NLSE
given by (10) or (33) to the form of parabolic law of nonlinearity or dual-power law of
nonlinearity respectively. The respective exponents of the coefficients of b2 and b4 can be
renamed from (4, 8) and (4n, 8n) to (2, 4) and (2n, 4n), respectively, so that the results for
the soliton structure collapse and conform to the pre-existing results known earlier [39].
The extension to CQS and triple-power forms of SPM is also studied in [40].

5. Conclusions

The current paper derives 1-soliton solutions to the model with CD having CQSN and
QPL nonlinearity structures of SPM. In both cases it was established that the extension
beyond septic form of nonlinearity and its generalized form is redundant. It is only with
dual-power and parabolic forms of nonlinear refractive index structure the model would
make sense. Any extension that is beyond septic or its generalized form would collapse
to parabolic dual-power laws. This true with CD being the source of dispersion terms.
Additional form(s) of dispersion sources have not been examined yet. This is, thus, an open
problem and will be later investigated. The results are yet to be released and are currently
awaited. This would subsequently lead to a very interesting structure of the results.
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Abstract: The price V of a contingent claim in finance, insurance and economics is defined as an
expectation of a stochastic expression. If the underlying uncertainty is modeled as a strong Markov
process X, the Feynman–Kac theorem suggests that V is the unique solution of a boundary problem
for a parabolic equation. In the case of PDO with constant symbols, simple probabilistic tools
explained in this paper can be used to explicitly calculate expectations under very weak conditions on
the process and study the regularity of the solution. Assuming that the Feynman–Kac theorem holds,
and a more general boundary problem can be localized, the local results can be used to study the
existence and regularity of solutions, and derive efficient numerical methods. In the paper, difficulties
for the realization of this program are analyzed, several outstanding problems are listed, and several
closely efficient methods are outlined.
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1. Introduction
1.1. Expectations and Boundary Problems

The prices (values) of contingent claims in finance, insurance and economics are
defined as expectations of certain stochastic expressions. In many cases, the underlying
uncertainty is modeled as a strong Markov process X (with killing) on Rn or its subset
D, with the infinitesimal generator L. Let V(t, x) denote the price of an option or other
contingent claim in the market at time t and Xt = x. The Feynman–Kac theorem suggests
that V is the unique solution of a boundary problem for the parabolic equation:

(∂t + L)V(t, x) + g(t, x) = 0. (1)

In the case of diffusion models, L is a differential operator of order 2; in jump-diffusion
models, L is an integro-differential operator, and hence, a pseudo-differential operator
(PDO). We use the representation of L as a PDO because this facilitates the study of
the regularity of solutions, and naturally leads to the construction of efficient numerical
methods for option pricing. The function g represents the stream of payoffs {g(t, Xt)}t≥0
that the owner of the contingent claim is entitled to. The value function V satisfies (1) in the
open region U in the time-state space, where the derivative security remains alive. As the
process (t, Xt) leaves U, the owner of the contingent claim is entitled to an instantaneous
payoff G(τUc , XτUc ), where τUc is the hitting time of Uc =: D \U by {(t, Xt)}.
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The solution of the boundary problem can be used to calculate the expectation, and
the properties of the expectation can be used to formulate appropriate boundary and
regularity conditions. Unfortunately, this scheme is very difficult to realize in almost
all cases, including many popular diffusion models, and the majority of the results in
the literature are obtained assuming (without proof) that the boundary problem for the
expectation has the unique solution. Furthermore, it is assumed (also without proof) that
the expectation defines a sufficiently regular function so that Ito’s formula can be applied;
then, the solution of the boundary problem is the expectation. The necessity of proving
these crucial assumptions is brushed under the carpet. Even in many diffusion models,
the proof of the Feynman–Kac theorem is lacking. See [1,2] for details; one of the main
reason is a complicated degeneration of L at the boundary of the state space, which makes
it difficult to apply standard tools for the analysis of degenerate elliptic operators. If
L degenerates at the boundary of a half-space, then general tools [3–5] can be applied,
with some modifications, but in the case of degeneration at two and more transversal
hyperplanes, the study of the regularity of solutions is more difficult. Furthermore, even
if a weak regularity of the solution of the boundary problem is established, the proof of
the Feynman–Kac theorem remains quite non-trivial. In the case of jump-diffusion models,
additional subtleties emerge, even in the simplest case of Lévy models (the infinitesimal
generator is a PDO with the constant symbol). In the majority of empirical studies, when
Lévy models are calibrated to the real data, L is of the form ∂t + 〈µ, ∂x〉 − a(Dx), where a(D)
is an elliptic PDO of order ν ∈ (0, 1), with the symbol analytic in a tube domain. Hence,
the operator of the boundary problem (1) becomes a parabolic operator of the standard
form, with an elliptic stationary part, only after an appropriate change of variables in the
(t, x)-space. This peculiarity leads to several non-standard properties of solutions, which
we analyze in this paper. If one has in view applications of the general theory of fractional
differential equations to finance, the class of operators of this kind deserves to be regarded
as a model class rather than standard fractional differential operators ∂t − |∆|ν, where
|∆|ν is the fractional Laplacian. (Note that |∆|ν, ν 6= 2, cannot be used in the standard
popular models in finance, economics and insurance.) An additional important feature
of the infinitesimal generators of Lévy models used in finance is the existence of analytic
continuation not only to tube domains but to conesas well. This observation is the basis of
efficient numerical methods that evaluate integrals in pricing formulas, which we outline in
this paper. These methods can be used in other situations, for instance, to evaluate special
functions and stable distributions [6–9].

1.2. Black–Scholes Model and Diffusion Models

In the Black–Scholes model, the only source of uncertainty is the stock price St = eXt ,
where Xt is the Brownian motion (BM) on R, with drift. The infinitesimal generator L is the
second-order elliptic differential operator. If the market with several stocks and/or several
sources of uncertainty is considered, e.g., volatility and/or stochastic interest rate, then the
underlying process X is of a more complicated nature.

Typically, the region U where (1) holds is of the form {(t, x) | t ∈ (0, T), x ∈ U(t)},
where U(t) are open subsets of D. If X is a diffusion, XτUc is at the boundary of U, and
then V satisfies the terminal condition:

V(T, x) = G(T, x), x ∈ U(T), (2)

and the boundary condition:

V(t, x) = G(t, x), x ∈ ∂U(t). (3)

If U is unbounded, appropriate restrictions on the rate of growth of V at infinity are
imposed. Boundary problems of this sort arise for the majority of contingent claims in
finance and insurance, and for numerous value functions in economics, e.g., real options
and stochastic games. In some important cases such as lookback or Asian options, the
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underlying process is not Markovian; hence, pricing is more involved. In this paper, we
consider boundary problems of the form (1), (2), (3), including free boundary problems.
In applications, the approximate pricing of contingent claims of a complicated structure
is reduced to a sequence of embedded options, equivalently, to a sequence of boundary
problems of the form (1), (2), (3). Hence, this study of the regularity of the solutions of the
latter is important for studying other types of contingent claims as well. Efficient numerical
procedures for the solutions of standard boundary problems can be (and are) used as
building blocks to solve more complicated problems.

In the Black–Scholes model, a simple affine change of variables reduces (1) to the
backward parabolic equation Vt + Vxx − rV = 0; hence, the host of standard well-known
methods can be used to price numerous contingent claims. Black and Scholes informally
derived (1), constructing the perfect continuously changing hedging portfolio; later, Merton
gave essentially equivalent proof constructing the perfect continuously changing replicating
portfolio. Both proofs contain fundamental mathematical errors but can be made accurate
for wide classes of diffusion models. Unfortunately, both proofs fail for jump-diffusion
models—the statements and proofs of several popular imperfect substitutes for perfect
hedging and replication are also incorrect (see [10]), and the reason for the failure is
fundamental rather than technical.

1.3. The Case of Jump-Diffusions

In the Merton–Black–Scholes theory, the pricing equation is derived from the absence
of frictions and no-arbitrage assumption. The no-arbitrage assumption means that it is
impossible to construct a portfolio of securities traded in the market such that, at the
expiration date, the value of the portfolio is non-negative with probability 1, and posi-
tive with positive probability. Leaving aside an important theoretical background from
economics and finance, and the technical conditions necessary to make the statements
mathematically accurate, the absence of frictions and the no-arbitrage assumption imply
that the discounted prices of all securities traded in the market must be local martingales
under a probability measure Q on the filtered probability space where the process X lives.
The crucial point is that Q 6= P, where P is the historic or physical probability measure
estimated using the time series for the prices of securities already traded on the market.
The pricing measure Q may not assign non-zero probabilities to events of zero measure
under P and vice versa; hence, Q must be equivalent to P. This explains the name for
Q: an equivalent martingale measure (EMM; another name is risk-neutral measure). The
discounting can be taken into account as the killing of the Markov process, and L = LQ in
(1) is the infinitesimal generator of the process with killing, under Q. Then, {V(t, Xt)}, the
discounted price process, is a local martingale if for any t < τUc and stopping time τ ≥ t
s.t. τ ≤ τUc , EQ[V(τ, Xτ) | Xt = x] = V(t, x).

The boundary problem (1), (2), (3) is used to calculate the prices of new securities. In
(sufficiently regular) diffusion models, there exists a unique EMM; hence, one can calculate
the price of any contingent claim. In financial markets and insurance, a great variety of
contingent claims are constructed and sold, and the implicit assumption is that one can
theoretically calculate the price of new securities.

The three conditions are as follows: (1) a perfect hedge is possible; (2) perfect repli-
cation is possible; (3) there exists a unique EMM are equivalent (naturally, under subtle
technical conditions)—and markets satisfying these conditions are called complete markets.
The Feynman–Kac theorem gives the representation of the price as the expectation of the
payoff stream under Q:

V(t, x) = EQ
[∫ τUc

t
g(s, Xs)ds + G(τUc , VτUc )

]
. (4)

If X is a jump process or jump-diffusion process, then the hedging/replicating argu-
ment is not applicable. Fortunately, according to the general economic theory, if the market
does not admit arbitrage, there exists an EMM such that the price of each contingent claim
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is given by (4) (an accurate mathematical statement imposes additional subtle conditions on
X); an EMM is not unique, and one may choose an EMM one believes in. In real financial
markets and numerous empirical studies, the measures calibrated to prices of the underly-
ing financial instruments and options are not only different; quite often, the measures are
not equivalent. Several examples can be found in the well-known empirical study in [11]:
prices of certain stocks are calibrated to processes of infinite variation, whereas the prices of
options—to processes of finite variation, which contradicts the well-known conditions on
equivalent probability measures in [12] (the authors of [11] did not notice this discrepancy
of their calibration results). One of the important reasons for discrepancies of this kind is
the inaccuracy of popular numerical methods used for pricing and calibration. Inaccurate
methods are constructed and used because crucial qualitative properties of jump-diffusion
models and prices V(t, x) in these models are not taken into account. Examples of errors of
popular methods, including the analysis of implications for risk management, can be found
in [2,13–20]. The aims of this paper are to list and explain the irregularity of V(t, x) (and
the free boundary, in the case of options of American type) in several standard situations,
and explain how to design efficient numerical methods that work well in wide classes of
jump-diffusion models.

In incomplete markets and the jump-diffusion models which are models of incomplete
markets, one cannot use the hedging or replication argument to derive the equation for
contingent claims. However, one can start by choosing an EMM and defining the price by
(4). In many cases of interest, the representation (4) and the Fourier/Laplace transform
technique suffice to express the price in the form of an integral, and an efficient numerical
procedure for the evaluation of the designed integral. In some popular classes of models,
the derivation of pricing formulas is based on (1), although the rigorous justification is
lacking. Informally, one can use Dynkin’s formula:

V(t, x) = EQ
[∫ τUc

t
(−∂s − L)V(s, Xs)ds + G(τUc , VτUc )

]
(5)

to conclude that (1) must hold. Thus, (1) is the backward Kolmogorov equation. In [21,22],
the formal derivation of (1) is given for Lévy processes satisfying the (ACP)-condition
(absolute continuity of potential measures) in the infinite time horizon case (stationary
problem) and the (ACT)-condition (absolute continuity of transition measures) in the non-
stationary case—in ([12], Section 41), one can find equivalent conditions for the (ACP)-
and (ACT)-conditions; the equation is understood in the sense of generalized functions. A
similar proof can be given for wider classes of strong Markov processes satisfying the same
conditions. However, the author is unaware of a published proof in the general setting.
See [1,2] for a review of partial results, and [23–25] for proofs in several special cases.

The next important complication in the case of jump-diffusion processes is the form of
the boundary condition which becomes non-local:

V(t, x) = G(t, x), x ∈ U(t)c. (6)

Note that the standard boundary problems for fractional differential equations are
local although the form of the conditions is non-standard. The non-standard boundary
conditions are formally invented in order for the Cauchy problem to be well defined. In
the literature, one can find discussions about a proper choice of the boundary conditions.
On the contrary, the non-local boundary condition (6) is a part of the definition of the value
function, and cannot be replaced for convenience with a local condition.

One can use the boundary problem (1), (2), (6) as follows:

(1) To prove the existence and uniqueness of the solution in the class of sufficiently regular
functions; sufficiently regular means that Dynkin’s formula (5) is valid;

(2) Applying (5) to conclude that V equals the RHS of (4).

Unfortunately, this scheme is very difficult to realize in many models, including many
popular diffusion models, and the majority of the results in the literature are obtained
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assuming without proof that the boundary problem has the unique solution, and the
solution is sufficiently regular so that Ito’s formula (or, more generally, Dynkin’s formula)
can be applied; then, the solution satisfies (4) and (5), hence, the problem of calculation of
the expectation (4) is solved. The necessity of proving this crucial assumption is brushed
under the carpet.

The main difficulty for the proof stems from the irregularity of the value function
V, which makes general theorems of Feynman–Kac type available in the literature not
applicable; the irregularity of V is the artifact of the properties of the infinitesimal generators.
However, for several classes of contingent claims and types of models, V given by (4) can
be explicitly calculated using the Fourier/Laplace technique. In the case of Lévy processes
(in terms of PDO, the case of operators with constant symbols), and problems of several
basic types (boundary problems with flat boundaries), either no or very weak conditions
on the process are needed. The result is an integral depending on (t, x) as a parameter,
in one or more dimensions. An explicit analytical expression can be used to study the
regularity of solutions; in a number of important case, the integral can be efficiently and
quickly calculated. Since the study of the regularity of solutions of boundary problems can
be localized (see [26]), the author hopes that the results for operators with constant symbols
and boundary problems with flat boundaries can be used to prove the correspondence
between the stochastic expressions and boundary problems with curved boundaries, and
operators with state- and time-dependent symbols.

1.4. Structure of This Paper

Lévy models are considered in Section 2, and the pricing of European options using
the Fourier transform technique (solution of the Cauchy problem) and efficient numerical
realizations are in Section 3. To price barrier options (boundary problems for parabolic
operators), the Laplace transform, Wiener–Hopf factorization and maturity randomization
(method of lines) are needed (Section 4). Explicit formulas involve multi-dimensional
integrals, and efficient numerical calculations based on contour deformations become
more involved. In Section 5, we analyze the peculiarities of the early exercise boundary
and the prices of American options (solutions of free boundary problems), and present a
general stable scheme based on the method of lines. The proof of convergence is based on
the probabilistic interpretation of the operator form of the Wiener–Hopf factorization. In
Section 6, we explain how the methods of Sections 4 and 5 are modified to price options in
regime-switching models (solve systems of boundary problems), and how to approximate
more complicated stochastic volatility models and models with stochastic interest rates
with regime-switching models. In Section 7, we outline the structure of several exactly
solvable models with non-constant symbols and list several outstanding problems for these
classes of models, which seem to be non-trivial and interesting from the point of view of
the theory of boundary problems for PDE and PDO. Finally, in Section 8, we summarize
the results presented in this paper, review several other groups of methods and, wherever
possible, outline the relative advantages of different methods.

2. Lévy Models or PDO with Constant Symbols
2.1. Lévy Processes

Let X be the Lévy process on the filtered probability space (Ω;F ; {Ft}t≥0;Q).
E = EQ denotes the expectation operator under Q. We use the definition in [21,27] of
the characteristic exponent ψ(ξ) = ψQ(ξ) of a Lévy process X on Rn, under Q, which is
marginally different from the definition in [12]. Namely, ψ is definable from:

E[ei〈ξ,Xt〉] = e−tψ(ξ), ξ ∈ Rn, t ≥ 0, (7)

where 〈a, b〉 = ∑n
j=1 ajbj. This definition of the characteristic exponent implies that the in-

finitesimal generator LX of X is the pseudo-differential operator (pdo)−ψ(D); equivalently,
LX acts of oscillating exponents are as follows: LXei〈x,ξ〉 = −ψ(ξ)eixξ .
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Denote D = {x | |x| ≤ 1}. The following theorem (Lévy–Khintchine theorem) can be
found in many monographs, e.g., ([12], Thm. 8.1).

Theorem 1. (i) Let X be a Lévy process on Rn. Then, its characteristic exponent admits the repre-
sentation:

ψ(ξ) =
1
2
〈Aξ, ξ〉 − i〈γ, ξ〉+

∫

Rn
(1− ei〈x,ξ〉 + i〈x, ξ〉1D(x))F(dx), (8)

where A is a symmetric non-negative-definite n× n matrix, γ ∈ Rn, and F(dx) is a measure on
Rn satisfying:

F({0}) = 0,
∫

Rn
(|x|2 ∧ 1)F(dx) < ∞. (9)

(ii) The representation (8) is unique;
(iii) Conversely, if A is a symmetric non-negative-definite n× n matrix, γ ∈ Rn, and F is a

measure on Rn satisfying (9), then there exists a Lévy process X with the characteristic exponent (7).

The triple (A, F, γ) is called the generating triplet of X. The A and F are called the
Gaussian covariance matrix and Lévy measure of X. When F = 0, X is Gaussian, and if A = 0,
X is called purely non-Gaussian.

Essentially, the term −i〈x, ξ〉1D(x) in (8) is needed to ensure the convergence of the
integral, and hence different functions can be (and are) used instead of c(x) := 1D(x), for
instance, c(x) = 1/(1 + |x|2); the A and F are independent of the choice of c. If F satisfies
the condition:

F({0}) = 0,
∫

Rn
(|x| ∧ 1)F(dx) < ∞, (10)

which is stronger than (9), then (8) can be simplified:

ψ(ξ) =
1
2
〈Aξ, ξ〉 − i〈γ0, ξ〉+

∫

Rn
(1− ei〈x,ξ〉)F(dx), (11)

where γ0 = γ−
∫
Rn x1D(x)F(dx).

If the sample paths of a Lévy process have bounded variation on every compact time
interval a. s., we say that the Lévy process has bounded variation. A Lévy process has
bounded variation if and only if A = 0 and (10) holds (see, e.g., [28], p. 15).

2.2. Examples of Lévy Processes on R
Example 1. The Lévy density of a (pure jump) one-dimensional stable Lévy process X of index
α ∈ (0, 2) is of the form

F(dy) = |y|−α−1(c+1(0,+∞)(y) + c−1(−∞,0)(y))dy, (12)

where c± ≥ 0 and c+ + c− > 0. If α 6= 1, then, substituting (12) into the Lévy–Khintchine
formula with σ2 = 0, one easily derives ψst(ξ) = −iµξ + ψ0

st(α, C+, ξ), where µ can be expressed
in terms of α, c± and b:

ψ0
st(α, C+, ξ) = C+ξα1(0,+∞)(ξ) + C−(−ξ)α1(−∞,0)(ξ), (13)

C− = C+, and C+ = C+(α, c+, c−) = −c+Γ(−α)e−iπα/2 − c−Γ(−α)eiπα/2. See [9]. For
somewhat different (naturally, equivalent) formulas, see [29] and ([12], Thm.14.15). In the case
α = 1, the formula for ψ0 is different (see [9]):

ψ0(ξ) = σ|ξ|(1 + i(2β/π) sign ξ ln |ξ|), (14)

where σ = (c++ c−)π/2, β = (c+− c−)/(c++ c−). This is a version of Zolotarev’s parametriza-
tions [30] for stable processes of index 1. See [9,12] for further references. Note that the symbol of
the infinitesimal generator L is non-smooth at zero.
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The tails of the probability distributions of stable Lévy processes exhibit slow polyno-
mial decay. Hence, the second moment of the distribution of Xt is infinite. In real financial
markets, the distributions have finite second moments, which makes stable processes
unsuitable. The simplest way to ensure that the second moment is finite is to consider
processes with exponentially decaying tails; the symbols of L are analytic in a strip. These
equivalent properties were used as the basis for the definition of a general class of Regular
Lévy processes of exponential type (RLPE) [21,22]. Below, we list several popular sub-classes
of RLPE. The reader can easily observe that, in all these examples, the characteristic expo-
nent ψ(ξ) = −iµξ + ψ0(ξ) admits analytic continuation to the union of a strip and cone
C around R, and Re ψ0(ξ) → +∞ as ξ → ∞ in a sub-cone C+ ⊂ C. In [31], the defini-
tion of the general class of processes enjoying these properties was given. The suggested
name SINH-regular processes reflects the fact that the integrals in pricing formulas can be
efficiently calculated using changes of variables of the form:

ξ = χω1,b,ω(y) = iω1 + b sinh(iω + y) (15)

(sinh-acceleration). Lévy processes used in quantitative finance are SINH-regular processes.

Example 2. KoBoL processes. Modifying the Lévy density (12):

F(dy) = (c+y−ν+−1eλ−y1(0,+∞)(y) + c−(−y)−ν−−1eλ+y1(−∞,0)(y))dy, (16)

where ν± ∈ (0, 2), c± ≥ 0, c+ + c− > 0 and λ− < 0 < λ+, we obtain a class of Lévy processes
with exponentially decaying tails. In the case ν− 6= 1, ν+ 6= 1, the characteristic exponent of the
KoBoL process is of the form ψ(ξ) = −iµξ + ψ0(ξ), where:

ψ0(ξ) = c−Γ(−ν−)[λ
ν−
+ − (λ+ + iξ)ν− ] + c+Γ(−ν+)[(−λ−)ν+ − (−λ− − iξ)ν+ ]; (17)

if either ν+ = 1 or ν− = 1, then the formula for ψ0 is different. See [21,27]. In particular, if
ν+ = ν− = 1, then:

ψ0(ξ) = c+((−λ−) ln(−λ−)− (−λ− − iξ) ln(−λ− − iξ))

+c−(λ+ ln λ+ − (λ+ + iξ) ln(λ+ + iξ)). (18)

In the symmetric case ν− = ν+ ∈ (0, 2) \ {1},−λ− = λ+, c+ = c−, the class of processes
with the Lévy density (16) was introduced by Koponen [32], who derived a rather inconvenient
formula for the characteristic exponent (different from (17)) and suggested a somewhat misleading
name truncated Lévy processes. The generalization (16) was introduced in [27], where the character-
istic exponent was calculated and several option pricing problems were solved; the name Koponen’s
family of truncated Lévy processes was used. Starting with [21], the name KoBoL processes is used.
In [11], a subclass of KoBoL with ν− = ν+ 6= 1 and c+ = c− was called CGMY model and labels
for the parameters of the KoBoL model were changed.

Rosinski [33] suggested the name exponentially tilted stable Lévy processes and gave a general
definition of a class which is a subclass of the class RLPE.

Example 3. Normal inverse Gaussian (NIG) processes, and the generalization: normal tempered
stable (NTS) processes are constructed in [34,35], respectively. The characteristic exponent is
given by

ψ0(ξ) = δ[(α2 + (ξ + iβ)2)ν/2 − (α2 − β2)ν/2], (19)

where ν ∈ (0, 2), δ > 0, |β| < α; NIG obtains with ν = 1.

Example 4. Variance Gamma processes (VGPs) were introduced to finance in [36]. The character-
istic exponent can be written in the form:

ψ0(ξ) = c[ln(α2 − (β + iξ)2)− ln(α2 − β2)], (20)
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where α > |β| ≥ 0, c > 0.

Example 5. In the Merton model [37], the characteristic exponent is given by

ψ0(ξ) =
σ2

2
ξ2 + λ ·

(
1− eimξ− s2

2 ξ2)
, (21)

where σ, s, λ > 0 and µ, m ∈ R.

Example 6. The hyper-exponential jump-diffusion processes (HEJD model) were introduced
in [38,39] and studied in detail in [38,40]). The characteristic exponent is of the form:

ψ0(ξ) =
σ2

2
ξ2 + λ+ ·

n+

∑
j=1

ip+j ξ

iξ − α+j
+ λ− ·

n−

∑
k=1

ip−k ξ

iξ + α−k
, (22)

where n± are positive integers and α±j , λ±, p±j > 0 satisfy ∑n±
j=1 p±j = 1. A double-exponential

jump diffusion model introduced to finance in [41] (and well known for decades) can be obtained as
a special case of hyper-exponential jump-diffusion models by taking n+ = n− = 1.

Example 7. Other classes of Lévy processes with rational characteristic exponents and non-trivial
BM components [21,38,40,42,43].

Example 8. The characteristic exponents of the processes of the β-class constructed in [44] are of
the form:

ψ0(ξ) =
σ2

2
ξ2 +

c1

β1

{
B(α1, 1− γ1)− B(α1 −

iξ
β1

, 1− γ1)

}
(23)

+
c2

β2

{
B(α2, 1− γ2)− B(α2 +

iξ
β2

, 1− γ2)

}
,

where cj ≥ 0, αj, β j > 0 and γj ∈ (0, 3) \ {1, 2}, and B(x, y) is the Beta-function. Evidently, all
poles of ψ0 are on iR+ \ 0.

Example 9. The Lévy density and characteristic exponent of the meromorphic Lévy processes
introduced in [45] are defined by almost the same formulas as in the HEJD model. The difference
is that the sums are infinite. A natural condition α±j → +∞ as j → +∞ is imposed, and the
requirement that an infinite sum defines a Lévy density is equivalent to ∑j≥0 p±j (α

±
j )
−2 < +∞.

The formula for ψ0 is (22) with the infinite numbers of terms; the poles of ψ(ξ) are on iR \ 0.

Remark 1. If one-factor Lévy models are calibrated to prices of stocks and indices in financial
markets, then, in the majority of cases, KoBoL processes of order ν ∈ (0, 1), without the diffusion
component (or very small diffusion component) give the best fit. Typically, processes with a jump
part of finite activity such as the Merton model, HEJD model and other models with rational
characteristic exponents do not calibrate well to the real data but one may try to use simple models
to approximate involved ones. There are publications where HEJD are used to approximate KoBoL
dynamics. However, it is evident that the approximations of operators of order ν ∈ (0, 1) by
operators of order 2 cannot work well near the boundary. The reader can find examples in [46] which
illustrate this point. A very flexible multi-parameter β-family and meromorphic processes can be
used to approximate KoBoL processes, but these approximations are much less efficient than direct
calculations in the KoBoL model.

For applications to qualitative problems in economics, processes with rational characteristic
exponents are more suitable due to the triviality of the Wiener–Hopf factorization. See, e.g., [47–52].
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2.3. Examples of Lévy Processes on Rn

Example 10. In the notation used in this paper, the characterization of non-trivial stable Lévy processes
on Rn of index α ∈ (0, 2) ([12], Thm. 14.10) is as follows. There exist µ ∈ Rn and a finite non-zero
measure Gst(dφ) on the unit sphere Sn−1 := {ξ ∈ Rn | |ξ| = 1} such that if α 6= 1, then:

ψ(ξ) = −i〈µ, ξ〉+
∫

Sn−1

|〈ξ, φ〉|α
(

1 + i tan
απ

2
sign 〈ξ, φ〉

)
Gst(dφ) (24)

is the characteristic exponent of a stable Lévy process of index α, and if α = 1, then:

ψ(ξ) = −i〈µ, ξ〉+
∫

Sn−1

|〈ξ, φ〉|
(

1− i
2
π

tan
απ

2
〈ξ, φ〉 ln |〈ξ, φ〉|

)
Gst(dφ) (25)

Conversely, for any µ ∈ Rn and a finite non-zero measure Gst(dφ) on Sn−1, (24) and (25)
define the characteristic exponents of a stable Lévy process of index α 6= 1 and α = 1, respectively.

A straightforward multi-dimensional analog of RLPE class was introduced in ([21],
Sect. 9.1.4). The characteristic exponent of an RLPE admits analytic continuation to a tube
domain U containing Rn, and stabilizes to a positively homogeneous function as ξ → ∞
remaining in U. As in the 1D-case, we impose conditions on ψ0 in the representation:

ψ(ξ) = −i〈µ, ξ〉+ ψ0(ξ), (26)

where µ ∈ Rn.

Example 11. Consider the multi-factor KoBoL family of pure jump Lévy processes constructed in
([21], Section 9.1.1). Let α ∈ (0, 2), and let G(dx) be a finite non-zero measure and λ a positive
continuous function on the unit sphere Sn−1. Then:

F(dx) = ρ−α−1 exp(−λ(φ)ρ)dρ G(dφ) (27)

is a Lévy measure. If α ∈ (0, 2), α 6= 1, the characteristic exponent is:

ψ0(ξ) = Γ(−α)
∫

Sn−1

[λ(φ)α − (λ(φ)− i〈ξ, φ〉)α]G(dφ) (28)

and if α = 1:

ψ0(ξ) =
∫

Sn−1

[λ(φ) ln λ(φ)− (λ(φ)− i〈ξ, φ〉) ln(λ(φ)− i〈ξ, φ〉)]G(dφ). (29)

Passing to the limit λ ↓ 0 in (28) and (29), one can easily derive alternative representa-
tions of the characteristic exponents of stable Lévy processes.

Example 12. The class of multi-factor normal tempered stable (NTS) Lévy processes constructed
in ([21], Section 9.1.2) can be defined by

ψ0(ξ) = δ
{
[(α2 + 〈A(ξ − iβ), (ξ − iβ)〉]ν/2 − [α2 − 〈Aβ, β〉]ν/2

}
, (30)

where δ, α > 0, A is a positive-definite matrix, β ∈ Rn, α2 − 〈Aβ, β〉 > 0.

The following is a straightforward definition of the class of SINH-regular processes
in [31], in the simplest form.
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Definition 1. We say that X is a SINH-regular process of order (ν, ν′) if the characteristic exponent
is of the form ψ0 admits analytic continuation to a domain of the form U = iD + C, where D is an
open set containing {0}, and C is an open cone C around Rn s.t.:

|ψ0(ξ)| ≤ C(1 + |ξ|)ν, ξ ∈ U , (31)

where C is independent of ξ, and there exists U+ ⊂ U , of the same form: U+ = iD+ + C+, s.t.:

Re ψ0(ξ) ≥ c|ξ|ν′ − C, ξ ∈ U+, (32)

where C, c > 0 are independent of ξ.

2.4. General Remarks

1. Stable Lévy processes can be characterized as the limiting case of SINH-regular pro-
cesses when the tube domain iD +Rn of analyticity shrinks to {0}; the conditions are
valid in C only. The calculation of expectations in stable Lévy models can be efficiently
performed by either modifying the sinh-acceleration technique or approximating
stable Lévy processes with SINH-regular ones [8,9].

2. The definition in [31] allows for U+ to be adjacent to R, and Definition 1 can be
generalized in a similar fashion.

3. In [31], the bounds (31) and (32) are formulated for ψ rather than ψ0. One can easily
derive the bounds for ψ using the bounds for ψ0.

4. It is easy to see that NTS processes are SINH-regular but a multi-factor KoBoL X is
SINH-regular only if X is a mixture of independent KoBoL in 1D.

5. VGP and their multi-factor generalizations are SINH-regular if we replace the weight
|ξ|ν with ln(2 + |ξ|).

6. As in [31], more general weight functions can be used. It can be shown that, in the
case of pure jump processes, ψ0(ξ) = o(|ξ|2) as (C 3)ξ → ∞; hence, one can use the
upper bound with ν = 2 in all cases.

7. If ν = ν′, then ψ0 is an elliptic symbol. If ν′ < ν, then, typically, ν− ν′ < 1, hence, ψ0

is hypo-elliptic.
8. If in the representation (26), µ 6= 0, and ν < 1, then the principal symbol of ψ(ξ) is

−i〈µ, ξ〉, which leads to the irregularity of the Wiener–Hopf factors and the solutions
of the boundary problems.

9. In the case of Cauchy problems in the whole space, the drift can be eliminated by
the change of variables x = x′ − tµ, and the same change of variables is implicit in
efficient numerical methods for the Fourier inversion methods based on the conformal
deformation of lines and hyperplanes of integration. Formally, the same change of
variables can be applied in the case of more general boundary problems but the change
makes a flat boundary (typical in pricing problems for standard barrier options) non-
flat. When the boundary is flat, explicit pricing formulas can be derived and the study
of the (ir)regularity of the solutions simplified.

3. Pricing European Options in Lévy Models and Cauchy Problems in RnRnRn for
Operators with Constant Symbols
3.1. Exact Formulas

Let r ≥ 0 be the constant riskless rate, X a Lévy process in Rn under an EMM Q chosen
for pricing, and G(XT) the payoff of the contingent claim at maturity date T. The price
V(t, x) of the claim at time t and Xt = x is given by

V(t, x) = EQ
[
e−r(T−t)G(XT) | Xt = x

]
. (33)
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Assume that the characteristic exponent ψ of X is analytic in a tube domain iD +Rn,
where D is an open set containing {0}, and the Fourier transform:

Ĝ(ξ) = (2π)−n
∫

Rn
e−i〈x,ξ〉G(x)dx (34)

is analytic in a tube domain iD′ + Rn, where D′ ∩ D is an non-empty open set. Let the
product e−(T−t)ψ(ξ)Ĝ(ξ) be in L1(iω +Rn) for ω ∈ D′ ∩ D. Decomposing G in the Fourier
integral, substituting into (33), and using Fubini’s theorem to justify the change of the order
of integration and taking expectation, we obtain, for any ω ∈ D ∩ D′:

V(x, t) = (2π)−n
∫

Im ξ=ω
ei〈x,ξ〉−(T−t)(r+ψ(ξ))Ĝ(ξ)dξ. (35)

The evident representation (35) was derived in [21,53,54]. Using the PDO notation,
V(t, x) = e−(T−t)(r+ψ(Dx))G(x), where the operator on the RHS acts in appropriate spaces
with exponential weights. It is easy to verify that V is a solution of the Cauchy problem

(∂t − ψ(Dx)− r)V(t, x) = 0, t < T, x ∈ Rn, (36)

subject to V(T, x) = G(x), x ∈ Rn, and appropriate bounds on V as x → ±∞. Equation (36)
is understood in the sense of generalized functions, and under certain regularity conditions,
the solution is unique. See [53,54] and ([21], Chapt. 15) for details. Thus, in this case, the
equivalence of the pricing problem and the Cauchy problem is established.

3.2. Efficient Numerical Realizations in 1D Case

In [21,53,54], the integral on the RHS is numerically realized using the trapezoid rule or
Simpson rule, and the standard real-analytical error bounds are used to give prescriptions
for the choice of the numerical scheme to satisfy a given error tolerance ε > 0. Since the
integrand is analytic in a strip around the line of integration, it is significantly more efficient
to use the simplified trapezoid rule, the reason being that the error of the infinite trapezoid
rule decays as exp[−2πd/ζ], where d is the half-width of the strip of analyticity around
the line of integration, and ζ is the step. See, e.g., Thm. 3.2.1 in [55]. Thus, if the strip of
analyticity is not too narrow, it is relatively easy to satisfy a very small error tolerance for
the discretization error. Note that popular variations of this straightforward approach such
as the Carr–Madan method [56] and COS method [57–59] introduce additional errors which
are difficult to control, and lead to systematic errors in practically important situations.
See [2,13,14,16–20,31] for the analysis of errors of the Carr–Madan method and COS.

In many cases of interest, the integrand slowly decays at infinity, and a very large
number of terms of the truncated sum (simplified trapezoid rule) are needed to satisfy
even a moderate error tolerance. However, in the case of standard European options, and
in the case of piece-wise polynomial approximations of complicated payoffs [16,46,60],
Ĝ is meromorphic with a finite number of simple poles; in [20], approximations with an
infinite number of poles appear. If X is SINH-regular of order (ν, ν′) with ν′ > 0, one
can use an appropriate conformal deformation and the corresponding change of variables
to reduce calculations to the case of an integrand which is analytic in a strip around the
line of integration and decays at infinity faster than exponentially. The complexity of
the numerical scheme based on the sinh-acceleration (15) is of the order of E ln E, where
E = ln(1/ε); in the case of VGP with µ = 0, of the order of O(E2). See [31] for details. Note
that the parameter ω in (15) is chosen so that the oscillating factor ei(x+(T−t)µ)ξ becomes a
quickly decaying one. The idea is similar to the idea of the saddle point method. However,
simpler universal families of conformal deformations are easier to use, especially when the
deformations of several lines of integration are needed, and the deformations must be in a
certain agreement [10,61].
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3.3. Stable Lévy Processes and Fractional Differential Operators

In the case of stable Lévy processes, the expectation can be finite only if G is bounded
or increases at a sufficiently small polynomial rate at infinity. However, if Ĝ is analytic in an
open cone C around R \ {0}, then the evaluation of probability distribution functions and
expectations can be reduced to the evaluation of integrals over (0,+∞), and an exponential
change of variables ξ = eiω+y, where ω ∈ [−π/2, π/2] is used to efficiently evaluate
integrals. In some cases, other conformal deformations are more efficient (see [9]). The
same families of conformal deformations can be used to evaluate the solutions of the
Cauchy problem for the fractional-parabolic equations of the form:

(∂t − |Dx|α)V(t, x) = 0, t < T, x ∈ R,

where α > 0, and more general ones.

3.4. Calculation of Probability Distributions and Expectations (Prices) in Multi-Factor Lévy
Models and Solution of the Cauchy Problems in Rn

When n is moderate, X is SINH-regular, and G can be approximated by a function
whose Fourier transform Ĝ is analytic in the union of a tube domain and cone UG ⊂ iD + C,
and can be efficiently calculated; then one can construct appropriate conformal deforma-
tions of the form (15) for each variable. The complexity of the scheme is O((E ln E)n), which
is not large if, e.g., n = 2, 3, 4. For exchange or basket options with payoffs (ex1 − ex2 − K)+,
(ex1 + ex2 − K)+, Ĝ can be explicitly calculated in terms of the Beta function, and the val-
ues of the latter can be efficiently calculated using the same sinh-acceleration technique
(see [6,7]).

4. Barrier Options in Lévy Models, and Boundary Problems for PDO with
Constant Symbols

We consider in detail the 1D case, and in the end, outline extensions to the multi-factor
case. We start with the basic notation and facts of the Wiener–Hopf factorization, and then
formulate the results for barrier options.

4.1. Main Notation

• X: a Lévy process on R;
• (Ω,F , {F}t≥0): the filtered measure space generated by X;
• M: the set of all stopping times with respect to the filtration {F}t≥0;
• Q: an EMM chosen for pricing;
• ψ(ξ) = −iµξ + ψ0(ξ): the characteristic exponent of X;
• h, h± ∈ R, h− < h+: barriers;
• τ−h and τ+

h : first entrance time by X into (−∞, h] and [h,+∞), respectively;
• q > 0: the discount rate;
• The (expected) present value of the perpetual stream g(Xt) which is lost at time τ−h :

V−(g; q; h; x) = Ex

[∫ τ−h

0
e−qtg(Xt)dt

]
;

• The (expected) present value of the perpetual stream g(Xt) which is lost at time τ+
h :

V+(g; q; h; x) = Ex

[∫ τ+h

0
e−qtg(Xt)dt

]
;

• the (expected present) value of the perpetual stream g(Xt) which is lost at τ+
h+
∧ τ−h− :

V(g; q; h−, h+; x) = Ex

[∫ τ+h ∧τ−h−

0
e−qtg(Xt)dt

]
;
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• Tq: exponentially distributed random variable of mean 1/q, independent of X;
• X̄t = sup0≤s≤t Xs and Xt = inf0≤s≤t Xs—the supremum and infimum processes

(defined pathwise, a.s.);
• Normalized EPV operators (normalized resolvents) under X, X̄, and X calculate the

(normalized) expected present value of the streams under X, X̄ and X:

(Eqg)(x) := EQ[g(XTq)] := qEQ
[∫ +∞

0
e−qtg(Xt)dt | X0 = x

]

(E+q g)(x) := EQ[g(X̄Tq)] := qEQ
[∫ +∞

0
e−qtg(X̄t)dt | X0 = X̄0 = x

]

(E−q g)(x) := EQ[g(XTq)] := qEQ
[∫ +∞

0
e−qtg(Xt)dt | X0 = X0 = x

]
;

• Wiener–Hopf factors: φ+
q (ξ) = EQ[eiX̄Tq ], φ−q (ξ) = EQ[eiXTq ]

Basic facts:

(1) φ+
q (ξ) (resp., φ−q (ξ)) admits (uniformly bounded) analytic continuation to the upper

(resp., lower) half-plane.
(2) The EPV operators act in L∞(R). If supp g ⊂ (−∞, h], then supp E+q g ⊂ (−∞, h]. If

supp g ⊂ [h,+∞), then supp E−q g ⊂ [h,+∞).
(3) Eq = q(q + ψ(D))−1, E+q = φ+

q (D), E−q = φ−q (D). If there exist µ− ≤ 0 ≤ µ+,
µ− < µ+, such that:

EQ[eβXTq ] < ∞, β ∈ [−µ−,−µ+], (37)

then:

(a) ψ admits (uniformly bounded) analytic continuation to the strip S[µ− ,µ+ ] :=
{ξ | Im ξ ∈ [µ−, µ+]} (meaning: analytic in the interior and continuous up to
the boundary);

(b) φ+
q (ξ) admits analytic continuation to the half-plane {Im ξ ≥ µ−};

(c) φ−q (ξ) admits analytic continuation to the half-plane {Im ξ ≤ µ+};
(d) the action of the EPV operators extends to L∞ and Sobolev spaces with expo-

nential weights.

The properties (a)–(d) are used to study the asymptotics of prices of barrier op-
tions (solutions of the boundary problems) at the boundary [21,62,63], and develop ef-
ficient numerical methods for pricing barrier options, credit default swaps (CDSs) and
lookbacks [10,61,64,65].

4.2. Wiener–Hopf Factorization

We use three equivalent versions of the Wiener–Hopf factorization

E[eiξXTq ] = E[eiξX̄Tq ]E[eiξXTq ], ξ ∈ R; (38)
q

q + ψ(ξ)
= φ+

q (ξ)φ−q (ξ), ξ ∈ R; (39)

Eq = E−q E+q = E+q E−q . (40)

Equation (39) is a special case of the initial form of the Wiener–Hopf factorization used
in complex analysis since [66]; (40), with the interpretation of the EPV operators as PDO,
is used in analysis (see, e.g., [26]). In both cases, the derivation is possible under certain
regularity conditions on ψ. The probabilistic versions (38) and (40), hence, (39), hold for
any Lévy process. In probability, the straightforward and short proof of (38) is based on

Lemma 1 ([67], Lemma 2.1, and [68], p. 81). Let X and Tq be as above. Then:

(a) the random variables X̄Tq and XTq − X̄Tq are independent; and
(b) the random variables XTq and XTq − X̄Tq are identical in law.
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Equation (40) is a special case of the next lemma derived in [21,22,49] under unneces-
sary restrictions on the process, and in [46], for any Lévy process. The proof below (in a
shortened form) is borrowed from [46].

Theorem 2. Let X be a Lévy process. Then, for any g ∈ L∞(R) and h ∈ R,

V−(g; q; h; ·) = q−1E−q 1(h,+∞)E+q g, (41)

V+(g; q; h; ·) = q−1E+q 1(−∞,h)E−q g. (42)

Proof. Let X, X̄ and X start at 0. Then: Eq g(x) = E[g(x + XTq)],

E+g(x) = E[g(x + X̄Tq)], E−g(x) = E[g(x + XTq)],

and, by definition:

V−(g; q; h; x) := E
[∫ τ−h

0
e−qtg(x + Xt)dt

]

= E
[∫ ∞

0
1x+Xt>he−qtg(x + Xt)dt

]

= q−1E[g(x + XT)1x+XT>h].

Applying Lemma 1, we continue:

V−(q; h; x) = q−1E[g(x + XT + XT − XT)1x+XT>h]

= q−1E[1x+XT>hE+q g(x + XT)]

= q−1E−q 1(h,+∞)E+q g(x).

This proves (41). Proof of (42) is by symmetry.

Remark 2. If (37) is satisfied, one can allow for exponentially increasing measurable g(x) if:

|g(x)| ≤ C(e−µ′−x + e−µ′+x), (43)

where µ− ≤ µ′− ≤ µ′+ ≤ µ+, and

q + ψ(−iµ′±) > 0. (44)

For the proof of Theorem 2 in this case, it suffices to consider a non-negative measurable
function g. We approximate g with the sequence gn(x) = min{g(x), n}, apply Theorem 2 to gn
and justify passage to the limit using the dominated convergence theorem.

The boundary problem for V−(q; x; h), in the PDO notation, is

(q + ψ(Dx))V−(g; q; h; x) = g(x), x > h, (45)

subject to V−(g; q; h; x) = 0, x ≤ h. Under certain regularity conditions on ψ and g, the
standard analytical technique [26] can be applied, and the existence and uniqueness of
solutions in a class of bounded sufficiently regular functions proved. In [21], we derived

V−(g; q; h; ·) = q−1φ−q (D)1(h,+∞)φ
+
q (D)g, (46)

which is identical to (41); the (ACP)-condition was used. Thus, under a weak regularity con-
dition, the expectation of the stochastic integral is the unique solution of the corresponding
boundary problem, and vice versa.
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The following theorem is a trivial corollary of Theorem 2 and (40).

Theorem 3. Let X be a Lévy process satisfying (37), and let G admit the representation
G = q−1Eqg, where g is a measurable function satisfying (43) and (44).

Then:

(a) (E−q )−1G := E+q g and (E+q )−1G := E−q g are measurable functions satisfying (43);
(b) For any h ∈ R:

V−,inst(G; q; x; h) := EQ
[
e−qτ−h G(Xτ−h

) | X0 = x
]
= (E−q 1(−∞,h](E−q )−1G)(x),

V+,inst(G; q; x; h) := EQ
[
e−qτ+h G(Xτ+h

) | X0 = x
]
= (E+q 1(−∞,h](E+q )−1G)(x).

4.3. Single Barrier Options

Let X be a Lévy process on R under an EMM Q chosen for pricing, r ≥ 0 the riskless
rate, and h the barrier. We consider the case of the down-and-out option, which expires
if X enters (−∞, h] before the maturity date T. If the barrier is not breached, the payoff
is G(XT). Applying Fubini’s theorem and (41), we calculate the Laplace transform of the
price Vn.t.d.(G; h; T, x) with respect to T:

Ṽn.t.(G; h; q, x) =
∫ +∞

0
e−qTVn.t.d.(G; h; T, x)dT

= e−rTq−1EQ
[
1XTq>hG(XTq) | X0 = x

]

= e−rTq−1(E−q 1(h,+∞)E+q G)(x).

Applying the inverse Laplace transform and using (41) and (46), we obtain, for any
σ > 0:

Vn.t.(G; h; T; x) =
e−rT

2πi

∫

Re q=σ
eqTq−1(E−q 1(h,+∞)E+q G)(x)dq (47)

=
e−rT

2πi

∫

Re q=σ
eqTq−1(φ−q (D)1(h,+∞)φ

+
q (D)G)(x)dq. (48)

The representation (47) is derived in [46] for arbitrary Lévy process. In [21,22], (48), is
derived solving the corresponding boundary problem

(∂t + L− q)V(t, x) = 0, x > h, t < T, (49)

V(T, x) = G(x), (50)

V(t, x) = Gb(x), x ≤ h, t < T, (51)

under certain regularity condition on V; X satisfies the (ACT)-condition—the ambiguity
of the specification of the payoff at (T, x), x ≤ h, is irrelevant because Lévy processes are
stochastically continuous, and, therefore, Q[τ−h = T] = 0. Thus, under weak regularity
conditions (the condition on the process is stronger than in the time-independent case),
the expectation of the stochastic expression defining the price is the unique solution of the
corresponding boundary problem, and vice versa.

In [21,22,46,61,64], more general classes of single-barrier options, with payoff streams
during the lifetime of the option, and non-zero payoffs Gb(Xτ−h

) at time τ−h < T are
considered and pricing formulas derived. In [10], similar general formulas are derived
when the payoff Gb depends on t and x.

4.4. Numerical Realizations

If Gb depends on t and x, the explicit formula is a quadruple integral, the explicit
form of (48) is a triple integral, and in addition, one needs to evaluate the Wiener–Hopf
factors for all dual variables arising in the pricing formula. Thus, efficient calculations are
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difficult. When one uses the Gaver–Stehfest algorithm (see, e.g., [10,61,64]), only a positive
q appears, but the coefficients in the approximate Laplace inversion formula are very large.
In the result, in many cases of interest, high precision arithmetic is necessary to ensure
the stability of results not to mention their accuracy (see [61,64] for examples). One can
avoid large coefficients using the method of lines. In the probabilistic interpretation, time to
maturity is approximated by a sum of exponentially distributed random variables, which
results in a sequence of time-independent problems (maturity randomization or Carr’s
randomization) (see [46,69] for efficient numerical realizations of this idea in applications
to single and double barrier options, respectively). Appropriate conformal deformations
of the lines of integration lead to faster and more accurate numerical algorithms [10,61].
We illustrate the choice of deformations with the simplest example of the no-touch digital
option Vn.t.(1; h; T; x) (the payoff at maturity is 1). Then, E+q G = φ+

q (D)G = 1, and (47)–(48)
simplify. Assuming that (37) holds, we take a sufficiently small ω0 < 0, and write (48) as

Vn.t.(1; h; T; x) =
e−rT

(2π)2i

∫

Re q=σ
eqTq−1

∫

Im ξ=ω0

ei(x−h)ξ φ−q (ξ)

−iξ
dξ dq. (52)

The set of admissible ω0 < 0 is determined by the properties of the Wiener–Hopf fac-
tors; general formulas for the latter are well known. For efficient numerical realizations, the
characteristic exponent should admit an analytic continuation to a strip {Im ξ ∈ (λ−, λ+)},
λ− < 0 < λ+, around the real axis [21]. Then, (see [21,64]), for any q > 0:

(I) There exist σ−(q) < 0 < σ+(q) such that:

q + ψ(η) 6∈ (−∞, 0], Im η ∈ (σ−(q), σ+(q)); (53)

(II) The Wiener–Hopf factor φ+
q (ξ) admits analytic continuation to the half-plane {Im ξ >

σ−(q)}, and can be calculated as follows—for any ω− ∈ (σ−(q), min{Im ξ, σ+(q)}):

φ+
q (ξ) = exp

[
1

2πi

∫

Im η=ω−

ξ ln(q + ψ(η))

η(ξ − η)
dη

]
; (54)

(III) The Wiener–Hopf factor φ−q (ξ) admits analytic continuation to the half-plane {Im ξ <
σ+(q)}, and can be calculated as follows—for any ω+ ∈ (max{Im ξ, σ−(q)}, σ+(q)):

φ−q (ξ) = exp
[
− 1

2πi

∫

Im η=ω+

ξ ln(q + ψ(η))

η(ξ − η)
dη

]
. (55)

Analytic continuation with respect to q, ξ is possible, and conformal deformation of
the contours of integration are possible as well.

Assume that X is SINH-regular. Then, a numerical realization of (52) is designed choos-
ing deformations L(1), L(2) and L(3) of the lines of integration {Im ξ = ω0},
{Re q = σ} in (52) and the line of integration {Im η = ω+} in (55). We use deforma-
tions of the form L(1) = χω1,b,ω(R), L(2) = χω′1,b′ ,ω′(R), where the function χω1,b,ω is

defined by (15), and L(3) = χL;σ,bl ,ωl
(R), where χL;σ,bl ,ωl

is defined by

χL;σ,bl ,ωl
(y) = σ + ibl sinh(iωl + y). (56)

Since x − h > 0, the oscillating factor ei(x−h)ξ quickly decays if we choose ω > 0;
hence, the wings of the contour point upward. The contour L(2) must be above L(1) so that
ξ − η is separated from 0 for all ξ ∈ L(1) and η ∈ L(2). In particular, ω′ ≥ ω. The upper
bound on ω′ is implied by the requirement that L(2) be in the domain of analyticity of ψ.
Finally, L(3) must be chosen so that q + ψ(η) 6∈ (−∞, 0] for all η ∈ L(2) and q ∈ L(3).
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4.5. Double Barrier Options

The following procedure is borrowed from [69]. Consider knock-out double-barrier
options with barriers h− < h+; the option expires worthless if X leaves (h−, h+) before
maturity date T; if Xt ∈ (h−, h+) until T, the option payoff at maturity is G(XT). Assuming
the constant riskless rate, the option value at time 0 is:

Vk.o.(G; h−, h+; T, x) = e−rTEQ
[

1τ−h−∧τ+h+
>TG(XT)

]
, (57)

and the corresponding boundary problem is:

(∂τ + ψ(Dx) + r)V(τ, x) = 0, τ > 0, x ∈ (h−, h+), (58)

V(0, x) = 1(h− ,h+)(x)G(x), (59)

V(τ, x) = 0, τ ≥ 0, x 6∈ (h−, h+). (60)

As in the case of single barrier options, the Laplace transform (maturity randomization)
reduces the calculation of the expectation on the RHS of (57) to the evaluation of the
perpetual stream

Wk.o.(G; h−, h+; q, x) = EQ
[∫ τ−h−∧τ+h+

0
e−qtG(Xt)dt

]
, (61)

which is abandoned at time τ−h− ∧ τ+
h+

. In [69], Wk.o.(G; h−, h+; q, x) was evaluated as
follows:

Wk.o.(G; h−, h+; q, x) = G0(x)− G1
+(x)− G1

−(x) + G2
+(x) + G2

−(x)− G3
+(x)− G3

−(x) + · · · (62)

where:
G0
+(x) = G0(x)

∣∣
[h+ ,+∞)

, G0
−(x) = G0(x)

∣∣
(−∞,h− ]

,

Gn
+(x) = E−q

(
1(−∞,h− ](x) ·

(
(E−q )−1Gn−1

−
)
(x)
)

∀ n ≥ 1,

Gn
−(x) = E+q

(
1[h+ ,+∞)(x) ·

(
(E+q )−1Gn−1

+

)
(x)
)

∀ n ≥ 1.

In the case of HEJD, the series can be explicitly calculated [70,71]. For general Lévy
processes, [69] uses a general numerical method based on the piece-wise linear interpolation
of functions Gn

±, fast convolution and the refined version of the fast Fourier transform (FFT)
technique developed earlier in [46]. It is demonstrated that the standard version of FFT
and fractional FFT are either inaccurate or inefficient for many classes of Lévy processes.

In [64], the calculations are in the dual space and fractional-parabolic deformations of
the contours of integration are used; the more efficient sinh-acceleration technique can be
applied in the same vein.

Under additional regularity conditions on ψ, it is possible to prove that the boundary
problem (58)–(60) has a unique solution in the class of bounded functions continuous on
[0,+∞)× (h−, h+). Then, if X satisfies the (ACT)-condition, the expectation given by (57)
is this unique solution.

4.6. Regularity of Solutions of Boundary Problems

Assume that ψ0 is an elliptic symbol of order ν ∈ (0, 2), hence, X is a pure jump
process. Then, it is easy to prove (see [21]) that:

(a) If ν ∈ (1, 2) or ν ∈ (0, 1] and µ = 0, then φ±q are elliptic symbols of order κ± = −ν/2;
(b) If ν = 1, then φ±q are elliptic symbols of order κ±q , where κ± ∈ (−1, 0) depend on µ,

and κ+q + κ−q = −1;
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(c) If ν ∈ (0, 1) and µ > 0, then φ+
q (ξ) = (q− iµξ)−1(1 + α+q (ξ)) and φ−q (ξ) = 1 + α−q (ξ),

where α±q are of order −1 + ν + ε, for any ε > 0. Hence, κ+q := ord φ+
q = −1, and

κ−q := ord φ−q = 0;
(d) If ν ∈ (0, 1) and µ < 0, then φ−q (ξ) = (q− iµξ)−1(1 + α−q (ξ)) and φ+

q (ξ) = 1 + α+q (ξ),
where α±q are of order −1 + ν + ε, for any ε > 0. Hence, κ+q := ord φ+

q = 0, and
κ−q := ord φ−q = −1.

Straightforward calculations based on (a)–(d) show (see [21,62,63]) that the prices of
down-and-out barrier options—hence, solutions of the corresponding boundary problems—
are not smooth (and in the case of (c), discontinuous) at the barrier; the leading term of
asymptotics as x ↓ h is calculated. In [63], the asymptotics of the derivatives of the price
V(t, x) (sensitivities) is calculated as well.

In cases (a), (b), (c), V(τ, x) ∼ c(τ)(x− h)κ−q , and Vx(τ, x)→ +∞ as x ↓ h. In case (d),
Vx is continuous up to the boundary but Vxx is unbounded.

The case of the BM with embedded jumps was not explicitly studied but the study
can be performed in a similar vein. If the jump component is of order ν ∈ [1, 2), then the
solution is continuous up to the boundary but Vx is discontinuous; if ν ∈ (0, 1), then Vx is
continuous but Vxx is unbounded.

The case of the double-barrier options was not studied but since the study of the
regularity at the boundary is easily localized (see [26]), one can easily prove that, for
instance, in case (c), the solution is discontinuous at h− but smooth at h+; Vx is unbounded
as x → h−, and Vxx is unbounded as x → h+.

4.7. The Case of Time-Dependent Boundaries

The regularity of solutions is an open problem. In this section, we formulate several
natural hypotheses. Assuming that the boundary (or two boundaries) are piece-wise
smooth, one can try to study the regularity of solutions localizing the problem. In the
case of processes of order ν ∈ [1, 2), the operator A(Dt, Dx) is quasi-elliptic (the symbol
Â(η, ξ) = iη − iµξ + ψ0(ξ) satisfies |Â(η, ξ)| ≥ c(|η| + |ξ|ν) − C, for (η, ξ) ∈ R2), and
elliptic if ν = 1; hence, localization can be performed as in the elliptic case [26]. If ν ∈ (1, 2),
one expects that, if t is fixed and (t, x) tends to a point (t, x0) on a smooth part of the
boundaries, the solution behaves as c(t)|x − x0|ν/2. If ν = 1, then the study becomes
complicated. One expects that the asymptotics at the boundary can be naturally described
in the coordinates x = x′ + f (t), which makes the boundary locally flat: x′ = h′. For
each point t in a small neighborhood of t0, the asymptotics of the price V(t, x′) in the
new coordinate system is of the form c(t)|x′|κ±(t), where κ±(t) ∈ (0, 1) (“-” for the lower
boundary and “+” for the upper boundary) continuously depend on t and are defined by
the “drift” µ′(t, h′) in the new coordinate system and ψ0 as in case (b) above.

If ν ∈ (0, 1), then the localization itself becomes more difficult because the principal
symbol −iη− iµξ is hyperbolic. Assuming that the localization is possible, one expects that
the solution is smooth up to the boundary (or discontinuous at the boundary) when the
vector field −∂τ + µ∂x is transversal to the boundary and points to (or from, respectively)
the boundary.

4.8. Multi-Factor Case

Consider first a boundary problem in (0,+∞)× Rn−1
x′ × (0,+∞). In the analytical

setting, one makes the Fourier transform with respect to x′ and solves the family of problems
on {τ > 0, xn > 0} using the results above. However, then the dependence of the Wiener–
Hopf factors on ξ ′ does not allow for the interpretation of the Wiener–Hopf factors as
the symbols of the EPV operators, and one is forced to impose additional potentially
unnecessary conditions in order to justify the results.

A natural alternative is to represent the payoff functions as sums of functions sup-
ported on direct products of the half-axis. Then, after an appropriate change of variables,
each new problem is a problem on (0,+∞)n+1. Then, we make the Laplace transform
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with respect to τ and xj, j = 1, 2, . . . , n− 1, and solve the resulting family of problem on
(0,+∞) depending on q ∈ (0,+∞)n exactly as in the case of Lévy processes on R. The
characteristic exponent of the one-dimensional process is ψ(−iq, ξn), and the resulting
analytical expression admits analytic continuation to {q ∈ Cn | Re qj > 0} (and wider
regions, if the process is sufficiently regular).

In this way, one can derive explicit formulas for single barrier options, and the repre-
sentation of the price of double-barrier options with flat parallel barriers. In the application
to credit risk models (counterparty risk), important variations are problems with bound-
aries xj = hj, j = n, n− 1, when n = 2, and even j = n, n− 1, n− 2, when n = 3. The case
n = 2 can be solved modifying in the straightforward fashion the iterative procedure used
in the case of two parallel flat boundaries. The proof and design of efficient numerical
procedures become more involved but, at the theoretical level, the tools remain essentially
the same. The case n = 3 becomes messier still but an iteration procedure can be designed,
and convergence to the price proved as in the case of two boundaries.

The case of curved boundaries is similar to the case n = 1, and naturally, the results
are at the level of hypotheses so far.

5. American Options and Free Boundary Problems
5.1. Basic Example

The European options can be exercised only at expiry: if ST = eXT ≥ K, then it is
optimal to exercise the European call option and receive eXT − K; otherwise the option
expires and is worthless, and the payoff is 0. An American option can be exercised at any
moment until the expiry date, T. If the process X is Markovian, it is natural to expect that
there is a subset B of the half-space {(t, x) | t ≤ T} such that the option is exercised the first
time (t, Xt) ∈ B. B is called the exercise region and the part of the boundary ∂B that is in
the open half-plane {(t, x) | t < T} is called the early exercise boundary. In the simplest
cases of the American option put and call options, the early exercise regions are connected,
and of the form {(t, x) | x ≤ h∗(t), t < T} and {(t, x) | x ≥ h∗(t), t < T}, respectively.

In the Brownian motion case, the early exercise boundary and option value can be
found by solving the corresponding free boundary problem. In addition to the terminal
condition at t = T, one adds the value matching and smooth pasting condition at the early
exercise boundary. Let r ≥ 0 be the riskless rate, δ ≥ 0 the dividend rate, and Xt be a Lévy
process under the risk-neutral measure chosen for pricing, with the infinitesimal generator
L. For the American put option in the one-factor model, the free boundary problem is of
the form

(∂t + L− r + δ)V(t, x) = 0, x > h(t), t < T, (63)

V(T, x) = (K− ex)+, (64)

V(t, x) = K− ex, x = h∗(t), t < T, (65)

Vx(t, x) = −ex, x = h∗(t), t < T, (66)

and V is sought in the class of continuous bounded functions, which are of the class
C1,2 above the early exercise boundary, with the first derivative Vx continuous up to the
boundary (these regularity conditions for the American option price are well known and
proven). On the RHS of (65), we write K− ex instead of (K− ex)+ because it is non-optimal
to exercise the option unless the payoff is non-negative. The free boundary problem
for the American call option is similar. The equivalence of the pricing problems for the
American put and call options and the corresponding free boundary problems is proven in
the Brownian motion case and for Brownian motion with embedded compound Poisson
process. For general Lévy processes, the equivalence is an open problem. Note that for
processes with jumps, the value matching condition (65) becomes non-local:

V(t, x) = K− ex, x ≤ h∗(t), t < T, (67)
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and the smooth pasting condition may fail. We will not use the smooth pasting condition.
Instead, we look for the boundary which maximizes the solution of the problem (63),
(64), (67).

5.2. Behavior of the Early Exercise Boundary near Maturity

The next subtle point is the limit h∗(T−) := limt→T h∗(t). Designing numerical
methods, one is tempted to assume that, as t→ T, the region in the state space Ut where the
American option with the payoff g(Xt) remains alive, tends to {x | g(x) ≥ 0}. In the case
of the put option above, this assumption translates into the condition h∗(T− 0) = ln K: the
limit of the early exercise boundary at maturity (in the S-coordinate) is equal to the strike.
This statement is correct if r > 0 and δ = 0. If the stock pays dividends, then it is possible
that h∗(T−) < ln K; in the case r = 0, simple general no-arbitrage considerations spelled
out by Merton prove that it is non-optimal to exercise the American put before maturity.
Essentially the same no-arbitrage argument proves that it is non-optimal to exercise the
American call on non-dividend paying stock before maturity. Starting with [72,73], the
behavior of the critical stock price near maturity for American options in diffusion models
has been studied in a number of publications (see the bibliography in [74]). It is proved, in
particular, that if the stock pays dividends, then, depending on the parameters σ2, r, δ, the
limit of the early exercise boundary for the American call in the Black–Scholes model is
above the strike.

In [21,40], it is proven that in the presence of positive jumps, the early exercise boundary
for the American put without dividends is separated from the strike by a margin. In [21],
the result is obtained for KoBoL, NTS and NIG models using the Wiener–Hopf factorization
technique. In [40], the proof is based on the calculation of θ(t, x) := Vt(t, x) of out-of-the-
money options, at expiry (in the case of the put, in the region x > ln K, in the case of the
call, in the region x < ln K). It was proved that, in the presence of jumps, θcall(T−, x) < 0
for x < ln K (in the diffusion case, θcall(T−, x) = 0 for x < ln K). Using this result and
the put-call parity, it is proven that it is not optimal to exercise the American put without
dividends up to expiry in the region where rK < −θcall(T−, x). It is demonstrated that
for parameters’ values documented in empirical studies of financial markets, the margin
is several percent of the strike or even more than a dozen percent. Hence, a numerical
method is based on the condition h∗(T−) = ln K is expected to produce rather inaccurate
results. In [24], a similar formula for θ of out-of-the-money options in one-factor Lévy
driven quadratic term structure models (QTSMs) is presented but without the proof.

In [74], the results in [24,40] are generalized for wide classes of multi-factor Markov
models with jumps, and the proofs are simplified. First, consider a European option with
the (effective) payoff g+(XT) = max{0, g(XT)}; for a European call on a stock with the
price process eXt , and strike K, g(x) = ex − K. Let F(x, dy) be the density of jumps of the
underlying Markov process Xt and denote by U−(g) := {x | g(x) < 0} the out-of-the-
money region. Denote by V(g+; x, τ) the option price at time τ > 0 to expiry and XT−τ = x,
and by C(g+; x) the limit of the −θ of the option, at expiry:

C(g+; x) = lim
τ→+0

V(g+; x, τ)

τ
. (68)

For wide classes of payoffs and jump-diffusion models, the limit exists for x ∈ U−(g),
and it is given by

C(g+; x) =
∫

g+(x + y)F(x, dy), (69)

for almost all x ∈ U−(g) (see [74]). If (69) is applied to digital options, one modifies
the definition of the payoff: g(x) = 1 in the in-the-money region, and g(x) < 0 in the
out-of-the-money region.

Let U+(g) = U−(−g) be the in-the-money region of the option, and Ωτ be the optimal
non-exercise region for the American option, in the x−space, at time τ to expiry. Clearly,
Ωτ ⊃ U−(g), hence, ∪τ>0Ωτ ⊃ U−(g). However, it may be the case that it is non-optimal
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to exercise the option up to expiry even if x is in the in-the-money region U+(g). Let L be
the infinitesimal generator of X. Define: ΩJ = {x ∈ U+(g) | Lg(x) + C((−g)+, x) > 0}.
The following two theorems from [74] give the “lower bound” for the limit of the no-
exercise region at maturity and approximate formulas for the option price close to maturity,
which can be used at the first step of backward induction procedures for pricing American
options, in wide classes of Markov models.

Theorem 4 ([74], Thm. 2.2). Ω+0 ⊃ ΩJ ∪U−(g).

Theorem 5 ([74], Thm. 2.3). Let Lg(x) + C((−g)+, x) 6= 0. Then, as τ → 0:

1. For x in the out-of-the-money region, U−(g):

Vam(g+; x, τ) ∼ τC(g+; x); (70)

2. For x in the in-the-money region U+(g):

Vam(g+; x, τ) ∼ g(x) + τ(Lg(x) + C((−g)+; x))+. (71)

5.3. Perpetual American Options in One-Factor Models or Stationary Free Boundary Problems
on R

The solution of the optimal stopping problem in Lévy models with infinite time
horizon (equivalently, stationary free boundary problems) is the main block for the solution
of the problems with finite time horizon using maturity randomization (equivalently,
method of lines), in regime-switching models, and the approximation of more general
Markov models with regime-switching Lévy models.

The first simple but crucial trick which makes it possible to give simple proofs and
design efficient procedures is the reduction in the option to acquire an instantaneous payoff
G(Xt) to the option to abandon the stream −g(Xt). If q is the discount rate, then we assume
that G = q−1Eqg, where g satisfies (43) and (44). This implies that G is sufficiently regular,
does not increase too quickly at infinity, and the discount rate is not too small. In the case
of options with finite time horizon, using sufficiently small time intervals in the method of
lines, the latter condition can be satisfied in all cases. In the case of the American put with
the infinite time horizon, on the non-dividend paying stock, the representation G = q−1Eqg
is impossible but a representation G = q−1(E−q )−1g is possible and suffices for the proof.

Assuming that G = q−1Eqg, for any stopping time τ:

Ex[e−qτG(Xτ)
]
= q−1Eqg(x) + Vex(−g; τ; x),

where:

Vex( f ; τ; x) = Ex
[∫ +∞

τ
e−qt f (Xt)dt

]
.

Hence, an optimal time to exercise the American option with the payoff function G is
an optimal time to abandon the stream {−g(Xt)}t≥0, and vice versa.

Theorem 6. Let the following conditions hold:

(i) X is a Lévy process with the non-trivial infimum process;
(ii) g is a non-decreasing stream that changes sign;
(iiii) Bounds (37), (43) and (44) hold.

Then:

(a) There exists h such that:

E+q g(x) ≤ 0, x ≤ h, and E+q g(x) ≥ 0, x ≥ h. (72)

(b) τ−h , the entry time into (−∞, h], is an optimal exit time in classM.
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(c) The option value can be represented as the EPV of the stream g(Xt)−U(Xt), where U is a
non-decreasing function vanishing above h.

(d) If g is not monotone but (i) holds, then τ−h is an optimal exit time in the class of stopping
times of the threshold type.

Proof. (a,d) are immediate from the representation

Vex(g; τ−h ; x) = q−1E−q 1(h,+∞)E+q g(x).

The expectation operator E−q being positive, Vex(g; τ−h ; x) is maximized when the
function 1(h,+∞)E+q g is maximized. Hence, all negative values of E+q g must be set to 0.

(b,c) are directly derived (see [21,49,75]) verifying the conditions of the following
general lemma; the proof is much shorter and simpler than purely probabilistic proofs.
However, we need to assume that X satisfies the (ACP)-property.

Lemma 2 ([21,49,75]). Let τB be the first entrance time into a Borel set B. Let B be a Borel set
such that:

Wex(g; τB; ·) := (q− L)Vex(g; τB; ·) is universally measurable (73)

Wex(g; τB; f ; x) = g(x), x ∈ R \ B, a.e. (74)

Wex(g; τB; x) ≥ g(x), x ∈ B, a.e. (75)

Wex(g; τB; x) ≥ 0, ∀ x. (76)

Then, τB maximizes Vex(g; τB; ·) in the classM.

Proof. Let τ be a stopping time. Then, using Dynkin’s formula and (74)–(76), we obtain:

Vex(g; τB; x) = Ex
[∫ τ

0
e−qt(q− L)Vex(g; τB; Xt)dt

]

+Ex[e−qτVex(g; τB; Xτ)
]

≥ Ex
[∫ τ

0
e−qtg(Xt)dt

]
.

With τ = τB, we obtain the equality, which means that τB is optimal.

Remark 3. In [51], we proved optimality in the class of all stopping times for a wide class of
non-monotone payoffs, under the assumption that the jump density is completely monotone. In [52],
the results are applied to solve a game-theoretical problem. In [76], the American options with
lookback features are studied in cases when the exercise region is discontinuous.

5.4. Good and Bad News Principles and the Failure of the Smooth Pasting Condition

In [77], for special cases, and in [47,49,78] in the general case, the following inter-
pretation of the stopping rule (b) and its mirror reflection for the option to abandon a
non-increasing stream were given:

GOOD NEWS PRINCIPLE. Abandon an increasing stream (exit) when the EPV of the
stream under the supremum process becomes negative.

BAD NEWS PRINCIPLE. Acquire an increasing stream (entry) when the EPV of the
stream under the infimum process becomes positive.

FAILURE OF THE SMOOTH PASTING CONDITION [21,75]. If φ−q (ξ) ∼ c > 0 as ξ → ±∞,
E+q g is smooth at h, E+q g(h) = 0, and (E+q g)′(h) > 0, then h is the optimal exit boundary
but the value function has a kink at h. For the option to abandon a non-increasing stream,
replace φ−q , E−q with φ+

q , E+q .
In terms of atoms of the pdf of X̄Tq and XTq , the failure of the smooth pasting condition

was reformulated and proven in [79].
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5.5. American Options with Finite Time Horizon or Non-Stationary Boundary Problems on R
We have an optimal stopping problem: for t < T, find:

V(t, x) = sup
τ∈M,τ≤T

EQ
t

[
e−r(τ−t)G(Xτ) | Xt = x

]
. (77)

Carr’s randomization [80] or method of lines approximates V(t, x) with a sequence
of perpetual American options. The maturity period is divided into N subintervals,
using points 0 = t0 < t1 < · · · < tN = T. Each sub-period [ts, ts+1] is replaced
with an exponentially distributed random maturity period Ts with mean ∆s = ts+1 − ts,
s = 0, 1, . . . , N − 1. The random variables Ts, s = 0, . . . , N − 1 and the process X are as-
sumed to be independent. Typically, one takes ∆s = T/N for all s. If no optimization
decision is involved, then we can say that the deterministic maturity date T is replaced
with T′ = T0 + T1 + · · ·+ TN−1. If all Ts ∼ Exp N/T, then T′ is Erlang-distributed. The
same idea can be applied to price barrier and lookback options, with flat boundaries. When
optimizing decisions are involved, an accurate formulation of the approximate optimal
stopping problem becomes more involved: a time-consistent exercise rule must take into
account realizations of Ts := T0 + T1 + · · ·+ Ts, s = 0, 1, . . ., hence, the rule must be up-
dated after the arrival of each Ts. The convergence of Carr’s randomization procedure
for American options in wide classes of Lévy models is proven in [81]. The paper [80]
solves the sequence in the BM model using explicit formulas for the boundary problem for
second-order differential operators; this technique cannot be applied to other Lévy models.
Furthermore, ref. [80] formulates an equivalent form of maturity randomization as the
approximation of the American option with a finite-time horizon by the American option
with the Erlang-distributed maturity date, and stated that Richardson’s extrapolation can
be applied. Both statements are false for American options but hold for barrier options.
The convergence of Carr’s randomization approximation is proven in [71] for wide classes
of Markov processes (additional conditions on the process are necessary), and Richardson’s
extrapolation of arbitrary order is justified in [63] for the value function and its derivatives.

The proof of optimality of the solution of the sequence and pricing procedure simplify
if, at each step, the option is reduced to the option to abandon a stream. Then, the conditions
of the basic theorems for perpetual options can be easily verified for each option in the
sequence. This is the idea of the solution in [21,38,40,49]. For simplicity, consider equidistant
dates, and set ∆ = T/N, q = 1/∆ + r.

The backward induction procedure is as follows.

1. Set V0 = G+ (the payoff at maturity).
2. In the cycle s = 1, 2, . . . , N, find Vs as the solution to the optimal stopping problem:

Vs(x) = sup
τ∈M

EQ
[

e−qτG(Xτ) +
1
∆

∫ τ

0
dt e−qtVs−1(Xt) | X0 = x

]
. (78)

3. VN is Carr’s randomization approximation to time-0 option price.

The reduction to the sequence of exit problems is as follows.
Set Ws = Vs −G, and notice that the maximization of Vs is equivalent to the maximiza-

tion of Ws. To reformulate the optimal stopping problem in terms of Ws, we find function
gq such that:

G(x) = q−1EQ
[∫ +∞

0
e−qtgq(Xt)dt | X0 = x

]
.

For the put, gq(x) = qK− (q + ψ(−i))ex, where ψ is the characteristic exponent of the
Lévy process X. We have:

−G(x) +EQ[e−qτG(Xτ)
]
= −EQ,x

[∫ τ

0
e−qtgq(Xt)dt | X0 = x

]
,
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therefore, the optimal stopping problem in terms of Ws is:

Ws(x) = sup
τ∈M

EQ
[∫ τ

0
e−qt( f (Xt) +

1
∆

Ws−1(Xt))dt | X0 = x
]

, (79)

where f (x) = −gq(x) + (1/∆)G(x). Assuming that r + ψ(−i) ≥ 0, the function:

f (x) = −(qK− (q + ψ(−i))ex) +
1
∆
(K− ex) = −rK + (r + ψ(−i))ex

is non-decreasing (the case of the put option). The function W0 = (−G)+ is also non-
decreasing. Using Theorem 6, we find Carr’s randomization approximation h1 to the early
exercise boundary, and prove that W1 is non-decreasing and vanishes below h1.

In the cycle s = 1, 2, . . . , N − 1, using Theorem 6 and the induction assumptions: Ws
is non-decreasing and vanishes below hs, we find the approximation to the early exercise
boundary hs+1 and Ws+1 and prove that Ws+1 is non-decreasing and vanishes below hs+1.
Finally, Vs = Ws + G, s = 1, 2, . . . , N. See ([49], Chapt. 13) for details.

5.6. Shape of the Early Exercise Boundary and Smooth Pasting Condition

Assume that X is the process of finite variation, with non-zero drift µ. Then, one can
conjecture that far from maturity, the early exercise boundary is almost flat; hence, the
smooth pasting condition fails if the vector field ∂t + 〈µ, ∂x〉 is transversal to the boundary
and points from the boundary. One can also conjecture that the smooth pasting condition
fails everywhere but this is far from evident in view of the fact that the behavior of the early
exercise boundary at maturity can be very irregular, especially in the multi-factor case. One
cannot exclude cases when, at some parts of the free boundary, the vector field ∂t + 〈µ, ∂x〉
is transversal to the boundary and points toward the boundary. At these parts, the smooth
pasting condition would hold.

6. Barrier Options and American Options in Regime-Switching Lévy Models and
Systems of Pseudo-Differential Equations, Approximation of Stochastic Volatility
Models and Models with Stochastic Interest Rate

LetM be a finite state Markov chain with transition rates λjk, j, k = 1, 2, . . . , M. Set
Λj = ∑k 6=j λjk. For each j, let X(j) be a Lévy process on R with the characteristic exponent
ψj and infinitesimal generator Lj under a measure Qj. The riskless rate qj, instantaneous
payoffs Gj, streams of payoffs gj and early exercise boundary hj depend on the state. In
the case of barrier options, hj are given, and in the case of American options, hj are chosen,
solving the optimal stopping problem. The infinitesimal generator of the model is a matrix
PDO L = −ψ(D), where:

ψ(ξ) = diag (ψj(ξ) + Λj)
M
j=1 − [λjk]j 6=k).

If there are no barriers, then, evidently, one can solve the Cauchy problem as in
the scalar case; the only difference is that the matrix exponential exp[−(T − t)(ψ(ξ) +
diag [qj]

M
j=1]) appears, and the choice of appropriate contour deformations is more involved.

Similarly, in the case of h1 = · · · = hM, one can use the matrix form of the Wiener–Hopf
factorization, and repeat the calculations (in the PDO form) which we used in the no-regime
switching case. However, if M is large, then even these theoretically straightforward and
simple methods are very difficult for efficient numerical realization. Furthermore, the
straightforward methods outlined above are not applicable if the boundaries are different
in different states. This is the case when stochastic volatility models and models with
stochastic interest rates are approximated by Markov modulated Lévy models and/or
American options are priced.

The idea of the approximation is as follows [82–86]. The action of the infinitesimal
generator of the Markov process is discretized—replaced by the infinitesimal generator
Ldisc of the Markov chain with an infinite number of states, and then truncated. At the
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boundary of the truncated discretized state space, it is necessary to impose appropriate
conditions so that the truncated operator is the infinitesimal generator of a Markov chain,
without killing. Hence, Dirichlet boundary conditions may not be used. Instead, in order
to avoid killing, a kind of reflection condition must be imposed: transition rates from each
point at the boundary to points in the truncated discretized state space must change. If LM
is a diffusion, the discretization and boundary conditions are straightforward; in the case
of processes with jumps, constructions are more involved.

In a number of publications [50,82–87], we used the following simple iteration proce-
dure, which we outline below in the case of down-and-out options: the option is exercised
in state j when X(j) breaches the barrier hj from above. Numerical examples demonstrated
the stability of the procedure even for M > 2000 [86].

A problem with finite time horizon is reduced to a sequence of boundary problems
with infinite time horizon using the method of lines (Carr’s randomization). The regularity
conditions are as follows. For each j:

(i) X(j)
t satisfies the (ACP)-property (needed in the case of American options only);

(ii) gj is measurable, non-negative, and does not grow too fast at infinity;
(iiii) (qj + Λj − Lj)Gj is continuous, monotone, and does not grow too fast at infinity.
(iv) In each state, the rate of growth is controlled by conditions (37), (43), with qj + Λj in

place of qj.

Note that the general results for American options are obtained for non-negative gj.
However, we have optimal stopping results in the non-regime switching case when the
payoff function g may assume negative values. The same technique can be used in regime-
switching models, hence, the procedure can be generalized to the case of non-monotone
payoff functions, under certain conditions on the payoffs and processes. The case of barrier
options with payoff functions that change sign can be reduced to the case of non-negative
payoff functions using the linearity of the expectation operator.

At each step of the backward induction, we use the following block:

I. Reduce the pricing problem to the problem of evaluation of a perpetual stream (in
different states, the payoff streams are different).

II. Assuming that the value functions in each state but state j are known, calculate the
state-j option value.

III. In the case of American options, calculate the approximation to the early exercise
boundary in state j.

IV. Using this conditional result as a guide, construct an iteration scheme for all states,
and prove that the value functions converge to some limits.

The algorithm for perpetual American options (used as a block at each time step in
the backward induction procedure) is as follows.

I. Choose the grid ~x (it might be necessary to use different grids in different states).
II. In the cycle j = 1, . . . , M, calculate the initial approximation Vj,0 to the option value:

Vj,0(~x) = EQj

[∫ τ−j

0
e−(qj+Λj)tgj(Xt)dt | X0 = ~x

]

III. In the cycle ` = 0, 1, . . . , for each j = 1, 2 . . . , M, calculate:

Vj,`+1(~x) = EQj

[∫ τ−j

0
e−(qj+Λj)t

(
gj(Xt) + ∑

k 6=j
λjkVk,`(Xt)

)
dt | X0 = ~x

]

Stop when ‖V·,`+1 −V·,`‖ ≤ ε, where ε is the error tolerance.

The limit as `→ ∞ exists because the sequence of option values in each state is increasing
(the non-negativity of gj is needed for the proof).
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7. Affine and Quadratic Term Structure Models
7.1. Affine Processes

Affine processes are used in models with stochastic volatility and stochastic interest
rates. The adjective affine is explained by two almost equivalent properties:

(1) The characteristic function of the transition density is of the form of an exponential
function of an affine function of factors of the models with the coefficients depending
on time to maturity τ = T − t and spectral parameter ξ:

E[ei〈ξ,XT〉 | Xt = x] = exp[〈A(τ, ξ), x〉+ B(τ, ξ)], (80)

where 〈a, b〉 = ∑j ajbj [88]. If the stochastic interest rate rt is modeled as an affine
function of the factors of the model, the state space must be enlarged as in the
probabilistic version of the Feynman–Kac formula, and an additional factor
Yt =

∫ t
0 rsds IS added. The extended model remains affine, and the representation (80)

becomes possible.
(2) The coefficients of the stochastic differential equation (SDE) defining the process are

affine functions of the state variable.

Property (1) allows one to calculate expectations V(t, x) = E[G(XT) | Xt = x] as
in the case of Lévy models. However, given SDE, it is necessary to (1) prove that the
representation of the form (80) exists; and (2) calculate the matrix function A(τ, x) and
vector-function B(τ, x).

The formal proof is straightforward [89]. Assuming that the Feynman–Kac theorem holds,
write down the Cauchy problem

(∂t + L)V(t, x) = 0, t < T, x ∈ D0, (81)

V(T, x) = ei〈ξ,x〉, (82)

and where D0 and L are the interior of the state space D of the process and infinitesimal
generator, respectively, substitute anzatz (80) into (81)–(82) and reduce the calculation
of (A, B) to the solution of the generalized system of Riccati equations associated with
the model. The proof in the general case is unknown (see [2] for the discussion and
bibliography).

An incomplete list of outstanding problems for affine models, which can be regarded
as mathematical problems for a general well-defined class of PDO, is as follows (each of
the problems is solved for particular models or certain subclasses of affine models but
the complete answers, in full generality, are unknown—for a short overview of the extant
results, see [2]):

I. Prove the equivalence of (1) and (2) in the general case or for as wide a class of SDE
with affine coefficients as possible. The difficulty stems, in particular, from the fact that
the state space is of the form (R+)m ×Rn−m, the infinitesimal generator degenerates
at the boundary and the term of order 0 (“electric potential”) is an bounded affine
function;

II. Prove the Feynman–Kac theorem for the (backward) Cauchy problem and more
general boundary problems.

III. Derive general conditions for the explosion of the solution of the boundary problem
(81) and (82) as t→ T.

IV. Study the domain of analyticity of the characteristic function (80) and its behavior at
infinity, hence, the applicability of the conformal deformation technique. For partial
results, see [2,15].

V. Derive conditions on the parameters of affine interest rate models which ensure that
the solution of (81) and (82) with ξ = 0 (price of the discount bond) is bounded by 1.
For partial results, see [23,25].
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VI. Study the asymptotics of the solution of the (backward) Cauchy problem with the
terminal condition V(T, x) = G(x), as T → +∞. For partial results based on the
eigenfunction expansion technique, see [90–93]. The main block is the generalized
eigenfunction expansion of the essentially non-self-adjoint quadratic Hamiltonian.
This is a special case of the same procedure in quadratic term structure models [91].

7.2. Wishart Models

Factors are naturally organized as a matrix rather than vector. One may regard Wishart
models as square root models where the positive scalar stochastic factor is replaced by a
positive-definite matrix. See [94,95] for a list of references. The outstanding problems are
the same as for affine models.

7.3. Quadratic Term Structure Models (QTSM)

In the pure diffusion case, the infinitesimal generator of QTSM is of the form:

L = 〈κ(θ − x), ∂x〉+
1
2
〈A∂x, ∂x〉+ 〈Bx, x〉+ 〈d, x〉+ d0, (83)

where κ is an anti-stable matrix with real entries, matrix A is positive definite, B is semi-
definite (both with real entries), θ, d ∈ Rn, d0 ∈ R. The characteristic function is an
exponential of a quadratic function of x, with the coefficients depending on time to maturity
τ and the spectral parameter ξ and can be calculated solving the associated system of
generalized Riccati equations. The generalized eigenfunction expansion can be calculated
as well [90,91]. It is interesting that, for the parameters of QTSM documented in real
financial markets, L is essentially non-self-adjoint, hence, not diagonalizable.

If the diffusion part of the infinitesimal generator is replaced with a PDO, then the
exact calculation of the characteristic function and generalized eigenfunction expansion is
not known. For asymptotic approximations, see [24,92].

7.4. Systems of Affine and Quadratic Term Structure Models

To the best of my knowledge, there are no general results in this direction, although in
view of a huge body of publications in quantitative finance, one expects that some special
cases have been considered.

8. Conclusions

In this paper, non-standard features of several basic problems arising in finance,
insurance and economics are explained, and a group of related efficient methods (analytical
and numerical) are outlined. The objective is to calculate the prices of contingent claims.
In the general economic framework, the price V of a contingent claim is the expectation
of a certain stochastic expression. In the case of Markov models, V is a function of time
and the spot value x = Xt of the underlying source of uncertainty. The formal application
of Dynkin’s formula leads to a boundary problem for an integro-differential (pseudo-
differential) equation of the form ∂t + LX , where LX is the infinitesimal generator of X (we
allow for processes with killing/birth, hence, in the case of the Lévy model and the constant
interest rate r, LX = −ψ(Dx)− r, where ψ(ξ) is the characteristic exponent of X). However,
in the majority of cases of interest, the rigorous proof of the theorem of Feynman–Kac type
is lacking. In the paper, several basic situations where proofs are available are considered
in more detail; more general results are only outlined.

The following general features of the boundary problems discussed in this paper may
be of general interest to specialists in PDE and PDO.

1. In models with jumps, boundary conditions are non-local, whereas the standard
boundary and co-boundary problems for PDE, PDO and fractional differential equa-
tions are local. See, e.g., [3,4,96,97]. Therefore, (1) one of the standard approaches to
boundary problems, namely reduction to the boundary, cannot be used to reduce the
dimension of the problem; (2) numerical methods which do not take the non-locality
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of the boundary conditions into account properly produce sizable errors; if the time
horizon is large, the relative errors are, typically, very large.

2. In popular pure diffusion models such as the Heston model, the operator degenerates
at the boundary. The degeneration is sufficiently regular so that the generalization
of the Boutet de Monvel calculus for degenerate elliptic operators [3] is applicable
in a number of situations (interestingly, the infinitesimal generator in the Heston
model is one of the basic examples in [3]). Formally, one can apply this calculus to
boundary problems in models with jumps provided that the characteristic exponent
of the jump part is a rational function. However, such an application would require
the approximation of non-local boundary conditions by local ones. For a reduction to
the boundary in applications to the Heston model and other basic diffusion models,
see [98] and the bibliography therein.

3. The degeneration and non-locality of the infinitesimal generators are the sources of
fundamental difficulties for a rigorous proof of the Feynman–Kac theorem. One must
establish certain regularity conditions of the solution for the proof. For applications of
Dynkin’s formula, conditions are weaker than for applications of Ito’s formula, and,
in some cases, general regularity results [3,5] can be used. However, the author is
unaware of any general proof.

4. In the case of Lévy models (PDO with constant symbols) and problems with flat
boundaries, the probabilistic version of the Wiener–Hopf factorization technique can
be used to derive an explicit formula for the price in the form of oscillatory integrals,
and the analytic form of the same technique used to derive the same formula for
the unique solution of the corresponding boundary problem thereby proving the
Feynman–Kac theorem. In the case of problems with a curved boundary, the general
regularity results and the proof of the Feynman–Kac theorem are unknown.

5. The proof and study of regularity are especially non-trivial if the infinitesimal operator
L = −ψ(Dx) of a Lévy model is an elliptic PDO of order ν ∈ (0, 1). Models of this kind
are documented in the majority of empirical studies (if Lévy models are calibrated
to the real data). We outlined approaches to study general boundary problems with
operators of the form ∂t − ψ(Dx)− r.

6. In popular Lévy models, the solutions of the boundary problems are irregular at the
boundary, hence numerical methods that (implicitly or explicitly) assume that the
solution is more smooth than it is inevitably produce large errors.

7. If the infinitesimal operator of a Lévy model is an elliptic PDO of order ν ∈ (0, 1),
then the smooth pasting principle for free boundary may fail.

8. In many cases, the free boundary is discontinuous at the terminal date, which implies
that a numerical method that assumes the continuity is bound to be inaccurate.

In the paper, proofs of facts 4–8 and several related efficient numerical methods for
the solution are outlined. The main blocks are as follows.

1. The interpretation of operators in the operator form from the Wiener–Hopf factoriza-
tion as expectation operators under supremum and infimum processes, and explicit
formulas for solutions of basic boundary problems under very mild restrictions on
operators and boundary conditions, in the case of flat boundaries.

2. The interpretation allows one to prove the convergence of general algorithms for
pricing options:

(a) With finite time horizon (stationary boundary problems) using maturity ran-
domization (method of lines);

(b) In regime-switching models;
(c) Approximations of models with a stochastic interest rate and stochastic volatil-

ity by regime-switching models (systems of boundary problems);
(d) Options with non-monotone and discontinuous payoffs, with applications to

game-theoretical problems.
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3. In the interest of brevity, the refined version of the fast Fourier transform (FFT) and
inverse Fourier transform (iFFT) introduced in [46,69] to price single and barrier
options in Lévy models is not described in the paper. The refined version can be
used to accurately evaluate options of various kinds. The advantage of refined FFT
and iFFT as compared to existing versions, including the fractional FFT, stems from
the flexibility of choices of grids of different length in the dual and state spaces, in
each block of the numerical procedure. The final result is calculated using an almost
optimal number of the standard FFT and iFFT blocks of the same (smaller) size.

4. Instead, in the paper, we describe very fast and accurate methods for the numerical
evaluation of integrals, in dimensions 1–4, based on the conformal deformation tech-
nique. The main idea is close to the idea of the saddle point method but the families of
the contour deformations that we use allow one to relatively easily construct deforma-
tions with respect to several variables. The joint deformation of several contours above
can be regarded as a further step in the realization of a general program of study
of the efficiency of combinations of one-dimensional inverse transforms for high-
dimensional inversions outlined in [99,100] with additional twists: the calculation of
the Wiener–Hopf factors, which is necessary to price lookback and barrier options. The
authors of [99,100] consider three main different one-dimensional algorithms for the
numerical realization of the Bromwich integral (i) Fourier series expansions with the
Euler summation; (ii) combinations of Gaver functionals; and (iii) deformation of the
contour in the Bromwich integral, and discuss various methods of multi-dimensional
inversion based on combinations of these three basic blocks. Our results imply that,
for the purposes of multi-dimensional inversion, the class of deformations must be
enlarged. In particular, in some practically important situations, deformations close to
the steepest descent such as Talbot’s deformation q = rθ(cot θ + i),−π < θ < π [101]
are not applicable, and one must resort to seemingly less efficient deformations.
Note that the general conformal deformation technique that we develop is especially
efficient in the case of highly oscillatory integrals.

We are grateful to the anonymous referee for the suggestion to include a short review
of other methods. Naturally, essentially all methods developed to solve boundary problems
for PDE and PDO can be used to price contingent claims, and many of these methods (if
not all—the literature is huge) are used. We list and explain sources and types of errors of
several groups of methods.

1. “THE HILBERT TRANSFORM METHOD” is used in backward induction procedures
to price options of several types. Calculations are in the dual space. At each time
step, operators of the form F1(−∞,h)F−1 and F1(h,+∞)F−1 are expressed in terms
of the Hilbert transform, and the latter is realized using the fast Hilbert transform.
See [102–104] and the bibliographies therein. In these papers and other papers where
the fast Hilbert transform is used, the grids of the same length in the state and dual
spaces are used, which is presented as an advantage of the fast Hilbert transform
approach. However, in many cases, the choice of grids of equal size leads to either
very large errors or unnecessarily long grids and a large CPU time. See [46] for
details and the explanation on how to use grids of various length in order to efficiently
control discretization and truncation errors. Efficient methods of the numerical Fourier
inversion described in the paper can be adjusted to the Hilbert transform. See [10]
for an efficient numerical realization of operators F1(−∞,h)F−1 and F1(h,+∞)F−1,
applicable when these operators are applied only once. For an efficient numerical
realization of operators generalizing the Hilbert transform, which is applicable in
backward induction procedures (double spiral method), see [105].

2. VARIATIONS OF THE STRAIGHTFORWARD APPLICATION OF THE FOURIER AND IN-
VERSE FOURIER TRANSFORM to European options, equivalently, the solution of Cauchy
problems for parabolic PDO on the real line, namely, COS method and Carr–Madan
method mentioned in Section 3.2, introduce additional unnecessary errors. The so-
called Lewis–Lipton formula is the standard Fourier inversion formula with the
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prefixed line of integration. The choice of the line is non-optimal in the majority of
cases; the conformal deformation method is much faster and more accurate. See [2]
for numerical examples.

3. IN THE CONV METHOD [106,107], at each step of backward induction, an extremely
inefficient interpolation procedure for the approximation of the value function at each
time step is applied. In probabilistic terms, continuous distributions are approximated
by discrete distributions supported on a uniform grid, a dual grid is chosen, and the
calculations at each time step are reduced to the composition of FFT, multiplication by
the array of values of the characteristic function, and iFFT. The procedure is simple
but the errors are large. See [46] for the detailed analysis.

4. THE COS METHOD is applicable (and has been applied) to price options of various
kind. The essence of the method is an approximation of the kernel of the transition
operator by a linear combination of cosines (hence the name). I find it difficult to
find a sound mathematical argument in favor of this approximation. On the contrary,
it is possible to indicate additional sources of errors and produce examples which
demonstrate the inefficiency of COS. In backward induction procedures, the errors of
COS accumulate very quickly, and pricing barrier options with even a moderate time
horizon (0.5Y) is, essentially, impossible. See numerical examples in [2,13,14,16–20,31].

5. IN THE PROJ METHOD, the transition density of a random variable (equivalently,
the kernel of the transition operator) is projected on a B-spline basis. See [20] for the
bibliography, the discussion about the relative efficiency of COS, PROJ, the method
in [46] which does not use an approximation of the transition kernel, and for an
efficient procedure for the calculation of the projection coefficients using the sinh-
acceleration. Note that the error of the approximation of the transition kernel is in the
H2-norm; hence, if the transition density has large derivatives or is non-smooth at the
origin, which is the case of the VG model and Lévy models of order ν close to 0, then
the errors of PRPJ can be very large.

6. APPROXIMATIONS OF VALUE FUNCTIONS AT EACH TIME STEP AND FILTERING.
In [16,20,46,69] (see also the bibliographies therein), the value function at each time
step is approximated by piece-wise polynomials. In view of the irregularity of value
functions near the boundary discussed in the paper, such an approximation introduces
an error which can be controlled. See [16,60]. The approximation can be interpreted
as a spectral filter, which is used in a number of publications to increase the speed
of convergence. In [108], ad hoc spectral filters are used to increase the convergence
of the integrals: “When Fourier techniques are employed to specific option pricing
cases from computational finance with non-smooth functions, the so-called Gibbs
phenomenon may become apparent. This seriously impacts the efficiency and accu-
racy of the pricing. For example, the Variance Gamma asset price process gives rise to
algebraically decaying Fourier coefficients, resulting in a slowly converging Fourier
series. We apply spectral filters to achieve faster convergence. Filtering is carried out
in Fourier space; the series coefficients are pre-multiplied by a decreasing filter, which
does not add significant computational cost. Tests with different filters show how
the algebraic index of convergence is improved.” The quoted statement is correct.
However, spectral filters are designed to regularize the results. The regularization of
value functions results in serious errors in regions of paramount importance for risk
management: near barrier and strike, close to maturity and for long dated options.
For instance, close to the barrier or default boundary, the value can be overvalued
or undervalued manifold. This remark is applicable to the applications of spectral
filtering in [109] as well. Note that the conformal deformation technique allows
one to eliminate the Gibbs phenomenon without sacrificing accuracy, and at a small
CPU cost.

7. APPROXIMATION OF SMALL JUMPS COMPONENT BY A DIFFUSION. Cont and
Volchkova [110] approximated the small jump component by a diffusion. In the
result, a PDO of order ν < 2 is replaced with the sum Lε = ε∂2

x + µ∂x + LJ , where
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ε > 0 is small, µ ∈ R and LJ is an integral operator with the kernel of class L1; for
an accurate approximation, the peak of the kernel has to be very high. After that, a
standard implicit–explicit finite difference scheme is used to price barrier options. It
is evident that if the infinitesimal generator L is a PDO of order ν < 2, hence, the
derivative of the solution can be unbounded near the boundary, an approximation
of L by Lε must lead to sizable errors near the boundary because the solution of the
boundary problem becomes smooth up to the boundary. Numerous numerical exam-
ples in [111] have demonstrated the inaccuracy of the Cont–Voltchkova method. Note
that the methods in [111] resemble but are less efficient than the method in [46,69].

8. THE APPROXIMATION OF KOBOL AND OTHER PROCESSES OF INFINITE ACTIVITY

BY HEJD MODEL. In [38,40], the author constructed an HEJD model (without a
special label attached) whilst keeping in mind to try such an approximation. For
pricing American and barrier options, the advantage of HEJD is a simple explicit
formula for the Wiener–Hopf factors in the case of positive values of the spectral
parameter, derived in [38,40]. Unfortunately, for wide regions in the parameter
space and large values of the spectral parameter which arise if a small time step
in a backward induction procedure is used, an accurate approximation requires
the use of HEJD with very large parameter values and high precision arithmetic is
necessary. The reason is the same as in the case of the Cont–Voltchkova method. Due
to this inefficiency, the author did not mention approximation of KoBoL by HEJD.
Later, such an approximation was used in a number of publications, e.g., [112,113].
For a typical set of parameter values of KoBoL and moderate maturities, such an
approximation can be very inaccurate at the distance of up to several percent of
barrier. See [46] for numerical examples that illustrate the inefficiency of HEJD
approximation. The problem of a large spectral parameter can be partially resolved
using Richardson’s extrapolation. In applications to pricing barrier options, the
convergence of Richardson’s extrapolation of arbitrary order is proven in [63]. Note
that the technique of conformal deformations [10] is more efficient than approximation
by HEJD, even in cases when the approximation is reasonably accurate.

9. APPROXIMATION OF UNDERLYING JUMP-DIFFUSIONS WITH CONTINUOUS TIME MARKOV

CHAINS. In [82–84,86], in the models with stochastic interest rates and/or stochastic
volatility, the dynamics of additional factors is approximated by continuous time
Markov chains. In the PDE language, a part of the infinitesimal generator is dis-
cretized; the result is a regime-switching Lévy model. At the first (discretization)
step, a Markov chain with the infinite number of states (infinite grid) appears; at
the second step, the infinite grid is truncated, and transition rates in a vicinity of the
“boundary” of the truncated grid are adjusted so that the Markov chain remains the
Markov chain without killing. Thus, the Dirichlet condition must be avoided. In
the diffusion case, the adjustment can be interpreted as the discretization of the high
contact condition ∂2

yV = 0; in the jump-diffusion case, the “discretized boundary
condition” is non-local and more involved. Later, in a number of publications starting
with [114], the approximation-by-continuous time Markov chain was used for more
general Markov processes in 1D. In some publications, even the dynamics of Lévy fac-
tors was approximated by a continuous time Markov chain. Such an approximation is
rather inefficient, especially if the tails decay slowly, and/or in the presence of barriers.
Furthermore, in related publications, the discretized Dirichlet condition is used, which
leads to significant errors of backward induction procedures with many steps.

10. EIGENFUNCTION EXPANSION APPROACH. In the case of diffusion models on the
real line, there is a significant body of results obtained by V. Linetsky and their
students (see, e.g., [115] and the bibliography therein). In [90,91,116], the generalized
eigenfunction expansion is derived for solutions of the Cauchy problems in multi-
factor models.

11. ASYMPTOTIC METHODS. Due to the irregularity of solutions near the boundary, the
asymptotic formulas are reasonably accurate only in a rather small vicinity of the
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boundary [62]: hence, they are rather useless for numerical purposes (although useful
for the qualitative analysis). The same is true for asymptotics near maturity (in terms
of time to maturity, short time asymptotics). The conformal deformation method can
be used to calculate solutions close to maturity with high accuracy. For long time
asymptotics, efficient methods can be derived using the eigenfunction expansion
technique [92]. Note that there is a large body of the literature devoted to the study of
the asymptotics of implied volatility close to maturity and far from maturity.

12. FAST GAUSS TRANSFORM [117,118] can be efficiently used in certain diffusion models,
and models with jumps of a special structure.

13. For applications of finite elements to option pricing, see [119].
14. APPROXIMATIONS BASED ON PURELY PROBABILISTIC METHODS. The literature is

huge. A typical feature is that the convergence of a method is proven without error
bounds. A typical example is the Cont–Voltchkova method [110]. The proof of
convergence is given; however, as the numerical examples in [111] demonstrate, in
many cases, it is necessary to use extremely fine and long grids to satisfy the error
tolerance of the order of one percent, at a very large CPU cost.

15. MONTE-CARLO SIMULATIONS. The version of the Monte Carlo simulations that is
closest to the methods of the present paper is based on the evaluation of the cumulative
probability distribution function (cpdf) on an appropriate grid and interpolation.
In applications to finance, the idea was used for the first time in [120]. Note that
in [120] FFT and in a number of papers since FFT is used. As numerical examples
in [31] demonstrate, the evaluation of the cpdf of Lévy processes using FFT leads to
inaccurate results. The conformal deformations technique allows one to design much
more accurate Monte-Carlo simulation procedures [9,31].
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19. Innocentis, M.; Levendorskiĭ, S. Calibration Heston Model for Credit Risk. Risk 2017, 90–95. Available online: https:
//www.risk.net/risk-management/credit-risk/5330021/calibrating-heston-for-credit-risk (accessed on 20 January 2022).
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40. Levendorskiĭ, S. Pricing of the American put under Lévy processes. Int. J. Theor. Appl. Financ. 2004, 7, 303–335. [CrossRef]
41. Kou, S. A jump-diffusion model for option pricing. Manag. Sci. 2002, 48, 1086–1101. [CrossRef]
42. Asmussen, S. Ruin Probabilities; Number 2 in Advanced Series on Statistical Science and Applied Probability; World Scientific:

River Edge, NJ, USA, 2000.
43. Asmussen, S.; Avram, F.; Pistorius, M. Russian and American put options under exponential phase-type Lévy models. Stoch.

Process. Their Appl. 2004, 109, 79–111. [CrossRef]
44. Kuznetsov, A. Wiener-Hopf factorization and distribution of extrema for a family of Lévy processes. Ann. Appl. Prob. 2010,

20, 1801–1830. [CrossRef]
45. Kuznetsov, A.; Kyprianou, A.; Pardo, J. Meromorphic Lévy processes and their fluctuation identities. Ann. Appl. Probab. 2012,

22, 1101–1135. [CrossRef]

169



Mathematics 2022, 10, 1028
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52. Boyarchenko, S.; Levendorskiĭ, S. Preemption games under Lévy uncertainty. Games Econ. Behav. 2014, 88, 354–380. [CrossRef]
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63. Levendorskiĭ, S. Convergence of Carr’s Randomization Approximation Near Barrier. SIAM FM 2011, 2, 79–111.
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65. Levendorskiĭ, S. Ultra-Fast Pricing Barrier Options and CDSs. Int. J. Theor. Appl. Financ. 2017, 20, 1750033. [CrossRef]
66. Wiener, N.; Hopf, E. Über eine Klasse singulärer Integralgleichungen. Sitzungsberichte Der Preuss. Ischen Akad. Der Wiss.-Math.-

Phys. Kl. 1931, 30, 696–706.
67. Greenwood, P.; Pitman, J. Fluctuation identities for Lévy processes and splitting at the maximum. Adv. Appl. Probab. 1980,

12, 57–90. [CrossRef]
68. Rogers, L.; Williams, D. Diffusions, Markov Processes, and Martingales. Volume 1. Foundations, 2nd ed.; John Wiley & Sons, Ltd.:

Chichester, UK, 1994.
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114. Mijatovič, A.; Pistotius, M. Continuously monitored barrier options under Markov processes. Math. Financ. 2013, 23, 1–13.
[CrossRef]

115. Li, L.; Linetsky, V. Optimal stopping and early exercise: An eigenfunction expansion approach. Oper. Res. 2013, 61, 625–646.
[CrossRef]
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