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Monclús-Arasa, Maria Teresa Balado-Albiol and Josep Clua-Queralt et al.
Machine Learning Approaches to Predict Major Adverse Cardiovascular Events in Atrial
Fibrillation
Reprinted from: Technologies 2024, 12, 13, https://doi.org/10.3390/technologies12020013 . . . . 97
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1. Introduction

Biomedical technologies are the compound of engineering principles and technologies
used to diagnose, treat, monitor, and prevent illness. Advances in science and engineering
continuously improve them, and artificial intelligence (AI) is not getting behind. In the
last few years, artificial intelligence has grown faster and has the potential to revolutionize
the human experience [1]. With recent advances in generative models such as GPT-4 [2],
advancements in biomedical technologies are expected to be realized at a faster pace [3]. In
this manuscript, we aim to contribute to the growth of biomedical technologies boosted
by AI.

2. The Challenges of Modern Healthcare

Each era in the history of medicine has had its own challenges. Modern medicine
faces many challenges as well, such as economic constraints, a growing population, and
increased life expectancy, to name just a few. Moreover, there is an alarming increase in
cancer [4], cardiovascular [5], and neurodegenerative illnesses [6], many of which could be
controlled if they are diagnosed on time. On the other hand, advancements in many areas
of medicine have resulted in a high level of specialization [7]. Diagnosing rare illnesses
requires years of study. Furthermore, some diseases have only recently been discovered,
and it is documented that AI agents have diagnosed diseases that only a few specialists are
able to find [8,9]. Although this advancement is generally positive, it conveys the need for
costly equipment and the need to analyze complex data.

3. The Transition from Medicine 2.0 to Medicine 3.0

There is an increasing interest in going to the next medicine paradigm, known as
Medicine 3.0 [10]. Medicine 1.0 refers to the medicine that our ancestors used, which in
many cases worked, but they did not know how. In Medicine 2.0, the mechanics of the
treatments are better understood, but it is more oriented to reactive care when the illness is
already manifested. On the other hand, Medicine 3.0 is proactive, meaning it focuses more
on prevention and quality of life. It considers the patient as unique, so the care should be
done accordingly. We are transitioning from Medicine 2.0 to Medicine 3.0, but making this
possible will require all the high-tech we have at our disposal.

4. The Uses of AI in Prevention and Treatment

Artificial Intelligence provides methods for analyzing large quantities of data in short
periods of time. Since AI systems do not need to rest, they can support a large number
of patients at any time. They can help orient patients in deciding how to get medical

Technologies 2024, 12, 212. https://doi.org/10.3390/technologies12110212 https://www.mdpi.com/journal/technologies1
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services or make clear the steps to take to get the prescribed drugs. Internists can also use
the technologies to facilitate repetitive, time-consuming tasks such as requesting patient
data or writing summaries of cases [3]. Some of the tasks that AI agents can do include
classification, regression, prediction, counting, answers to prompts, generating images,
sounds, etc. These capabilities can be used for many biomedical technologies, includ-
ing medical imaging, diagnosis, administration of patient records, design of prosthetic,
enhanced vaccine development, acceleration of drug discovery, and so on.

5. Diagnosis and Preventive Care

AI has been enhancing the area of medical imaging, which is crucial for diagnosis.
The most well-known imaging techniques include magnetic resonance imaging, computed
tomography (CT), and X-rays, but there are other techniques such as ultrasound, PET, and
retinograph, to name a few. Different sources of data have also been explored, like signals
obtained from biosensors such as BCIs (brain-computer interfaces), text (e.g., Twitter), voice,
sounds of organs, wearable devices, etc.

6. Embedded Artificial Intelligence

Embedded artificial intelligence has emerged as a revolutionary innovation in health-
care and medicine, allowing the direct integration of AI algorithms into medical devices
and monitoring systems [11]. This technology facilitates real-time data processing, which is
crucial for applications requiring immediate responses, such as critical patient monitoring,
early detection of abnormalities, and personalized treatment delivery [12].

Medical devices equipped with embedded artificial intelligence can analyze physio-
logical data locally without transmitting information to remote servers, thereby reducing
latency and improving system efficiency [13]. For example, wearable devices can monitor
vital signs such as heart rate, blood pressure, and glucose levels, providing instant alerts to
the patient and medical staff in case abnormal values are detected [14].

Furthermore, embedded AI in point-of-care diagnostic systems has improved diagnos-
tic accuracy, especially in resource-limited settings [15]. These systems can assist healthcare
professionals in interpreting medical images using deep learning algorithms trained to
recognize patterns associated with various pathologies [16].

However, implementing embedded AI in medical devices presents significant chal-
lenges. Limitations in computational resources, such as processing and memory, require
the design of efficient algorithms optimized for specific hardware [17]. Standardization and
regulation are also critical aspects to consider. Medical devices with embedded AI must
comply with strict regulations to ensure their efficacy and safety. Ethical frameworks that
address issues related to automated decision-making and liability in the event of errors or
malfunctions need to be developed [18].

7. AI in Prosthetic

Artificial intelligence has revolutionized the field of prostheses, significantly improv-
ing the functionality and control of artificial limbs [19]. Advanced machine learning
algorithms allow modern prostheses to interpret biosignals and convert them into precise
movements, providing users with a more natural experience [20]. For example, brain-
machine interfaces allow prostheses to be controlled directly by EEG signals, increasing the
efficiency and usability of these devices [21]. Furthermore, AI facilitates the continuous
adaptation of the prosthesis to the user, learning and adjusting to individual movement
patterns to improve performance over time [22]. However, despite these advances, sensory
integration and haptic feedback challenges still need to be addressed to achieve a more
intuitive interaction between the user and the prosthesis [23].

8. Automate Administrative

Artificial intelligence can transform administrative tasks in the medical field. Functions
that could be automated include medical record management, appointment scheduling,
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billing, and patient tracking [3]. This automation will not only improve efficiency and
reduce errors but also allow healthcare professionals to spend more time on direct patient
care, thus optimizing the quality of medical care [24].

9. Accelerating Drug Discovery

There are a variety of difficulties throughout the entire drug discovery process: time,
prior validation, and robust financial and scientific investment. As an alternative method in
drug discovery and development, artificial intelligence allows more effective approaches,
overcoming obstacles of traditional methods [25–27]. When artificial intelligence is applied
correctly, there is a considerable advantage in laboratory methods, data generation, and
computational algorithms, enabling optimal decision-making even when working with
incomplete information [28,29]. However, there is significant concern regarding the ethical
implications of applying artificial intelligence in pharmacological research, particularly in
safeguarding data privacy and security, obtaining informed consent, and ensuring human
oversight in decision-making processes, where some authors indicate robust frameworks
and regulations are needed [27–31].

10. Surgical Robotics

AI-driven robotic surgery is reshaping the field of surgery by equipping surgeons with
real-time advanced data such as force feedback and tactile information, enhancing the iden-
tification of surgical margins, and even automating certain parts of surgical procedures [32].
In recent years, one of the main problems is the assistance in real-time during surgery [33],
as well as the importance of levels of autonomy and ethical and legal considerations related
to advances in surgical robotics with AI [34–36]. This remains an open and constantly
evolving topic.

11. Personalized Medicine

Also known as precision medicine, this approach to healthcare focuses on every pa-
tient’s specific characteristics [37]. Not all people are the same; therefore, treatment should
also be according to the individual’s needs. To accomplish this, personalized medicine
considers genetic data [38], medical records, environment, and lifestyle [39]. Advances in
biomedical technology and AI will be crucial in making personalized medicine possible.

12. Editorial Remarks

This Editorial refers to the Special Issue “The Future of Healthcare: Biomedical Tech-
nology and Integrated Artificial Intelligence,” which aims to showcase innovations using
artificial intelligence as a main topic for solving problems in biomedical technology through
developing technologies for health and quality of life. Twenty-eight manuscripts were
submitted for consideration. All were rigorously peer-reviewed by specialists in their
respective areas of expertise. Eleven papers were finally accepted for publication, eight of
which are original articles and three are reviews. The list of the final published articles is
presented next:

1. Alotaibi, R.; Abukhodair, F. Radiation dose tracking in computed tomography using
data visualization. Technologies 2023, 11, 74.

2. Aviles, M.; Rodríguez-Reséndiz, J.; Ibrahimi, D. Optimizing EMG classification
through metaheuristic algorithms. Technologies 2023, 11, 87.

3. Gonzalez-Moreno, M.; Monfort-Vinuesa, C.; Piñas-Mesa, A.; Rincon, E.Digital tech-
nologies to provide humanization in the education of the healthcare workforce: A
systematic review. Technologies 2023, 11, 88.

4. Ortiz-Feregrino, R.; Tovar-Arriaga, S.; Pedraza-Ortega, J.C.; Rodríguez-Reséndiz, J.
Segmentation of retinal blood vessels using focal attention convolution blocks in a
UNET. Technologies 2023, 11, 97.

5. de Leon-Sanchez, E.R.P.; Mendiola-Santibáñez, J.D.; Dominguez-Ramirez, O.A.; Herrera-
Navarro, A.M.; Vazquez-Cervantes, A.; Jimenez-Hernandez, H.; Senties-Madrid, H.
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Fuzzy logic system for classifying multiple sclerosis patients as high, medium, or low
responders to interferon-beta. Technologies 2023, 11, 109.

6. Cerón, A.V.; Domínguez, E.L.; Isidro, S.D.; Nieto, M.A.M.; De La Calleja, J.; Hernández,
S.E.P. Level of technological maturity of telemonitoring systems focused on patients
with chronic kidney disease undergoing peritoneal dialysis treatment: A systematic
literature review. Technologies 2023, 11, 129.

7. Moltó-Balado, P.; Reverté-Villarroya, S.; Alonso-Barberán, V.; Monclús-Arasa, C.;
Balado-Albiol, M.T.; Clua-Queralt, J.; Clua-Espuny, J.-L. Machine learning approaches
to predict Major Adverse Cardiovascular Events in atrial fibrillation. Technologies 2024,
12, 13.

8. Chandel, T.; Miranda, V.; Lowe, A.; Lee, T.C. Blood pressure measurement device ac-
curacy evaluation: Statistical considerations with an implementation in R. Technologies
2024, 12, 44.

9. Hasan, M.A.; Haque, F.; Sabuj, S.R.; Sarker, H.; Goni, M.O.F.; Rahman, F.; Rashid,
M.M. An end-to-end lightweight multi-scale CNN for the classification of lung and
colon cancer with XAI integration. Technologies 2024, 12, 56.

10. Avelar, M.C.; Almeida, P.; Faria, B.M.; Reis, L.P. Applications of brain wave classifica-
tion for controlling an intelligent wheelchair. Technologies 2024, 12, 80.

11. Kim, M.; Hong, S. Integrating artificial intelligence to biomedical science: New ap-
plications for innovative stem cell research and drug development. Technologies 2024,
12, 95.

The contributions of the listed articles are summarized in the following lines:

• The study presented in [40] highlights the urgent need to improve radiation dose
monitoring in patients undergoing CT scans due to the increase in their use and the
risks of overexposure, such as the increased risk of developing cancer. The main
challenge lies in the variability of factors influencing the dose received, such as patient
characteristics, equipment, and procedure. Current solutions are static, and integra-
tion difficulties are present due to the heterogeneity of hospital information systems,
limiting the accuracy of user queries. The study proposes a visual analysis approach
using Tableau software. It allows automated data cleaning and organization in an
interactive dashboard, with multiple simultaneous filters to facilitate its exploration
and manipulation. The results, evaluated by experts, show a significant improvement
in the radiation dose monitoring process, with a 100% success rate, increasing user
satisfaction and providing a better understanding of the analysis. The tool enables
individual and group monitoring of patients and procedures, supporting the justifica-
tion and optimization of these procedures through accurate and easy-to-interpret data.
The work contributes to a flexible, interactive, and effective solution for monitoring
radiation doses in CT, benefiting health providers, regulators, researchers, and patients
by facilitating decision-making, optimizing resources, and improving the quality of
radiation-related data.

• On the other hand [41] proposes a metaheuristic-based approach for hyperparameter
optimization in a multilayer perceptron (MLP) to improve electromyography signal
(EMG) classification, focusing on optimizing the number of neurons, learning rate,
epochs, and training batches using the Particle Swarm Optimization (PSO) and Gray
Wolf Optimizer (GWO) algorithms. The results show that optimizing these hyperpa-
rameters significantly improves the performance of the MLP, achieving an accuracy
of 93% in the validation phase. However, it is acknowledged that using a limited
database might have affected the performance, so future research with more extensive
databases and data augmentation techniques is suggested. The study highlights the
effectiveness of the PSO and GWO algorithms in hyperparameter optimization, avoid-
ing manual tuning and reducing model complexity. Although potential limitations,
such as stagnation in local optima, are identified, the proposed approach is a promis-
ing strategy to improve EMG signal classification, with potential application in other
signal processing problems.

4



Technologies 2024, 12, 212

• The article [42] analyses the lack of university educational programs combining hu-
manization in healthcare with digital technologies for health sciences students. A
systematic review of the literature identified six studies involving 295 students, mostly
nursing students, over the last ten years. Only one of the studies integrated digital
strategies to teach humanization skills, and another measured the level of human-
ization after training. The results highlight that, although humanization in care is
recognized as essential, no standardized and empirically validated university curricula
combine these skills with digital technology. The authors propose a training program
based on the HUMAS model, focused on developing skills such as sociability, emo-
tional understanding, and self-efficacy, using narrative methodologies, mindfulness,
and digital health technologies such as virtual reality. The importance of designing
programs that prepare future health professionals to incorporate humanistic skills in
their clinical practice is emphasized, especially in an increasingly digitalized medical
environment. Despite the potential benefits, the lack of studies with more diverse
groups, including medical students, and the scarcity of digital humanization strategies
stand out as critical limitations.

• The work [43] contributed to retinal vessel segmentation, which is essential in diag-
nosing several illnesses, such as hypertensive retinopathy, diabetic retinopathy, and
macular edema. Although there are many methods for segmentation, the authors
explore the use of visual transformers, which have been successful in other appli-
cations but have the disadvantage of large computational processing. To deal with
this constraint, the authors adapted the attention module of visual transformers and
integrated it into a convolutional neural network (CNN) based on UNET network,
achieving superior performance compared to other models.

• In [44], the authors introduce a fuzzy logic-based system, supported by the knowledge
of a neurology expert, to classify patients with relapsing-remitting multiple sclerosis
into three categories: high, medium, and low response to interferon-beta treatment.
The system showed 100% efficiency compared to a hierarchical clustering method,
which only achieved 52%. In addition, a predictive model was developed using
biomarkers associated with interferon-beta response to identify suitable candidates
for treatment, reaching a test accuracy of 80%. The predictive model includes data
normalization steps, principal component analysis compression, and an MLP learning
algorithm, which optimizes patient classification and reduces processing time. The
results suggest that this approach can help avoid ineffective therapies and improve
patient selection for this treatment. Despite its promising results, the study points
out limitations such as the small size of the test samples, which restricted cross-
validation iterations. The authors highlight the importance of continuing research
with other biomarkers and exploring more advanced predictive models, such as
evolutionary or deep learning algorithms, to improve performance in predicting
responses to treatment.

• The manuscript [45] analyzes fourteen works that propose telemonitoring systems
focused on patients with chronic kidney disease (CKD) undergoing peritoneal dialysis
(PD) to determine their Technology Readiness Level (TRL). From these works, eight
were classified within TRL 9, two within TRL 7, three within TRL 6, and one within
TRL 4. Also, the implementations of telemonitoring systems that reached the highest
level of TRL correspond to studies developed with the use of proprietary devices and
services of international companies specialized in telemedicine treatment of CKD with
some limitations regarding their status as proprietary systems incompatible with other
devices or systems. Their main limitation is that they are oriented only to treating
patients in automated peritoneal dialysis, which limits the care of patients undergoing
continuous ambulatory peritoneal dialysis. So, this paper contributes as a reference
for researchers and technologists focused on developing telemonitoring systems for
patients with CKD undergoing PD.
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• In [46], researchers implemented five machine learning techniques to obtain predictors
of major adverse cardiovascular events (MACE) in atrial fibrillation (AF) patients.
They used two-thirds of the data for training, employing diverse approaches and
optimizing to minimize prediction errors, while the remaining third was reserved for
testing and validation. The features influencing predictions included the Charlson
comorbidity index, diabetes mellitus, cancer, cognitive impairment, vascular disease,
chronic obstructive pulmonary disease, the Wells scales, and CHA2DS2-VASc, with
specific associations identified. The contribution of the manuscript is that the AdaBoost
model was the most effective in predicting MACE in patients with newly diagnosed
AF, with an accuracy of 99.99%, a recall of 100%, and an F1 score of 99.97%. Also, it
contributes to the optimization of treatment decisions concerning the burden of AF
according to the associated risks of thromboembolism and ischemic events.

• The article [47] proposes a methodology for evaluating the accuracy blood pressure
(BP) measurement, which expands the method developed by the Committee of the
US Association for the Advancement of Medical Instrumentation (AAMI) with the
purpose of reducing the sample size stipulated in the International Standard ISO
81060-2. This methodology is based on statistical consideration with an implementa-
tion in R and can be used for the early evaluation of experimental devices, showing
the potential effects of employing different sample sizes for validating a BP measure-
ment device. Furthermore, it compares previous studies that investigated novel BP
measurement methods with different sample sizes and assesses their adherence to the
current standard.

• The manuscript [48] present a deep CNN model for detecting lung and colon cancer
(LCC). The proposed model achieved an accuracy of 99.20% for the overall LCC class
classification and is appropriate for real-time applications, such as mobile or Internet
of Medical Things devices, because it has fewer computationally expensive parameters
(1.1 million) than existing models. Integrating explainable artificial intelligence (XAI)
algorithms, such as Grad-CAM and SHAP, enhances the model’s interpretability by
providing diverse and complementary insights into feature importance, enabling a
more comprehensive understanding of the model’s decision-making process.

• The work in [49] contributes to the development of a brain-computer interface (BCI)
designed to control a smart wheelchair through motor imagery. Two data sets were
used: the first from the IV BCI competition (A) and the second obtained in the labora-
tory with the Emotiv EPOC device (B). The results indicate that data set A, acquired
under controlled conditions and with mobile electrodes, presented a better perfor-
mance with an F1 score of 0.797 and a false positive rate of 0.150. On the other hand,
data set B, obtained with Emotiv EPOC, showed a lower performance due to problems
with the fixed placement of the electrodes and noise in the signal, although some
subjects achieved good scores. Various feature extraction techniques were evaluated
regarding the methodologies, highlighting the Filter Bank Common Spatial Pattern
method, whose second version produced the best results. Although the current results
are unsuitable for real-time applications, the study validates the concept and the
developed architecture, proposing for future work the improvement in noise removal,
the use of non-linear classifiers, and the expansion of the data set to increase the
generalization of the model.

• Finally, ref. [50] highlight that cultivating and differentiating stem cells, as well as
demonstrating their efficacy, is a time-intensive and complex process. Their review
explores the applications and advancements of AI technology in drug development,
regenerative medicine, and stem cell research. They specifically focus on CNN-based
models from the literature, which are used to analyze stem cell images, predict cell
types, and evaluate differentiation efficiency. This comprehensive review provides
valuable insights into the current state of the field and underscores the growing role
of AI in both present and future stem cell research.
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13. Conclusions

In this editorial article, we present an overview of biomedical technology and inte-
grated artificial intelligence. We state the importance of these multifaceted technologies
and articulate some topics that could be addressed to advance the field. We describe
published articles and summarize each contribution. As expected, we received articles from
diverse research fields and nationalities. Since health concerns us all, advancing biomedical
research and changing the paradigm from Medicine 2.0 to Medicine 3.0 will require the
scientific community’s work worldwide.
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Abstract: Artificial intelligence (AI) is rapidly advancing, aiming to mimic human cognitive abili-
ties, and is addressing complex medical challenges in the field of biological science. Over the past
decade, AI has experienced exponential growth and proven its effectiveness in processing massive
datasets and optimizing decision-making. The main content of this review paper emphasizes the
active utilization of AI in the field of stem cells. Stem cell therapies use diverse stem cells for drug
development, disease modeling, and medical treatment research. However, cultivating and differen-
tiating stem cells, along with demonstrating cell efficacy, require significant time and labor. In this
review paper, convolutional neural networks (CNNs) are widely used to overcome these limitations
by analyzing stem cell images, predicting cell types and differentiation efficiency, and enhancing
therapeutic outcomes. In the biomedical sciences field, AI algorithms are used to automatically screen
large compound databases, identify potential molecular structures and characteristics, and evaluate
the efficacy and safety of candidate drugs for specific diseases. Also, AI aids in predicting disease
occurrence by analyzing patients’ genetic data, medical images, and physiological signals, facilitating
early diagnosis. The stem cell field also actively utilizes AI. Artificial intelligence has the potential
to make significant advances in disease risk prediction, diagnosis, prognosis, and treatment and to
reshape the future of healthcare. This review summarizes the applications and advancements of AI
technology in fields such as drug development, regenerative medicine, and stem cell research.

Keywords: artificial intelligence; image analysis; drug discovery; stem cell therapy; convolutional
neural network

1. Introduction

In the fields of bioscience and healthcare, numerous companies and researchers are
dedicated to developing novel treatments, including new medicines through drug discov-
ery, new gene therapies, and new stem cell therapies, with the aim of accurately diagnosing
and treating diseases. However, these endeavors demand diverse technologies and spe-
cialized knowledge, and each area is constrained by significant time and cost limitations.
To overcome these challenges, approaches such as virtual screening (VS) and molecular
docking have been employed in drug development. Yet, these computational methods
exhibit inaccuracies and inefficiencies, contributing to an average cost of $2.8 billion and a
15-year timeline for drug discovery [1,2]. Additionally, the complexities of aspects such
as chemical structures and drug–protein interactions pose challenges, making it difficult
to handle big data manually [3]. Consequently, the need to develop new methods for
handling these time- and cost-intensive tasks has been recognized. Figure 1 illustrates the
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relationship between artificial intelligence (AI), deep learning (DL), and machine learning
(ML). Artificial intelligence is widely utilized across various industries. In bioscience, there
is a significant emphasis on overcoming the challenges of drug design and discovery [4],
where AI is employed in processes such as drug target prediction, bioavailability prediction,
and de novo drug design [5,6]. Major pharmaceutical companies, including Bayer, Roche,
and Pfizer, have initiated collaborations with information technology (IT) companies to
develop AI-based methodologies for drug design [1].
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Figure 1. Artificial Intelligence encompasses a broad spectrum, with Machine Learning being one of
its subsets. Within Machine Learning, the category of Deep Learning is a subset specifically within
the domain of Artificial Neural Networks.

A linkage between stem cell biology and AI research has firmly established itself
as a revolutionizing approach in biological studies, offering tremendous potential for
elucidating the characteristics of stem cells and their applications in the field of therapeutics.
Stem cells, with their remarkable abilities for self-renewal and differentiation into specific
cell types, play a central role in regenerative medicine and developmental biology [7,8].
Their extraordinary potential to regenerate damaged tissues and organs has positioned
them as key elements in exploring novel therapeutic interventions, ranging from cancer
treatments to those addressing neurodegenerative diseases [9–11].

While numerous researchers strive to develop successful and safe stem cell therapies,
experiments involving the stable cultivation of stem cells and induced differentiation into
desired cell types are extremely time-consuming and labor-intensive [12]. To overcome
these limitations, various global companies and research institutes are employing AI
technology to investigate the safe cultivation of stem cells and the efficient development
of stem cell therapies. Artificial intelligence possesses exceptional analytical and pattern
recognition capabilities for processing vast and complex datasets, enabling unprecedented
efficiency in exploring the intricacies of stem cell biology by analyzing and predicting
high-dimensional cellular imaging data [13].

Among the various algorithms contributing to stem cell research, convolutional neural
networks (CNNs) are seen as essential deep learning models for analyzing and identifying
image patterns. Recent advancements in CNNs allow researchers to not only discern the
types of stem and cancer cells from unlabeled images but also predict the efficiency of
differentiation into desired cell types and the level of genetic safety. The advancements in
artificial intelligence and deep learning present excellent opportunities for efficient drug de-
velopment and early disease diagnosis and will affect diverse research areas involving stem
cells. Ultimately, these technologies are poised to have a significant impact on humanity.
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This review paper will explore how AI technology is utilized in the field of stem cells;
introduce current cases of its application; and suggest future directions for AI development.
Additionally, it will briefly present ways AI is being applied in regenerative medicine and
drug development.

2. AI Technology in Regenerative Medicine

Stem cells are characterized as undifferentiated cells possessing the capability for both
self-renewal division and differentiation into various cell types within an organism [14,15].
Pluripotent stem cells (Figure 2), such as embryonic stem cells (ESCs), originate from the
inner cell mass of the blastocyst and have the potential to differentiate into all cell types of
the embryo and adult, excluding the embryo itself. However, their study has raised ethical
concerns due to embryo destruction [16]. Induced pluripotent stem cells (iPSCs), generated
from artificially reprogrammed adult somatic cells, share similar functional properties with
pluripotent stem cells [17], providing a valuable alternative to ESCs for drug development,
disease modeling, and regenerative medicine without significant ethical concern [15,18].
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Figure 2. Differentiation of Pluripotent Stem Cells. Pluripotent stem cells can be used to obtain desired
cells through differentiation. They have come to represent a crucial turning point in regenerative
medicine, with potential applications in disease treatment.

Regenerative medicine, involving advanced technologies such as stem-cell-based
therapies, gene therapy, and tissue engineering, aims to restore or replace damaged tis-
sues and organs [19,20]. Therefore, regenerative medicine holds significant promise for
patients afflicted with challenging diseases like heart conditions, diabetes, and neurological
disorders [21,22]. However, the development of regenerative therapies necessitates the
analysis of complex and extensive data, a task where the capabilities of AI technology can
be applied. The remainder of this section aims to explore the utilization of AI in the field of
regenerative medicine, discussing outcomes and proposing new research directions, while
specific examples of AI’s use in regenerative medicine are discussed in the next section.
This comprehensive perspective seeks to underscore the potential growth of AI in the field.

Cell-based therapy is a promising field in regenerative medicine that utilizes stem
cells to treat damaged tissues and organs. Stem cells are considered ideal candidates for
repairing damaged tissues and organs [23]. Cell therapy also holds the potential to address
chronic diseases without current treatment options [24]. However, there are drawbacks,
such as the time- and cost-intensive cultivation of stem cells in a stable manner and the
challenges of inducing specific cell differentiation. Moreover, despite ongoing clinical trials,
a fully developed cure through stem cell therapy is yet to be realized [25]. Many scientists
are turning to AI to analyze extensive datasets and assist in identifying optimal cells for
specific patients. One of the key advantages of employing AI in stem cell therapy is its
capability to predict the most effective cell types by analyzing patients’ genetic information
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and medical records. This not only aids in identifying conditions for the differentiation of
specific cells and optimizing cell cultures but also allows the prediction of cell types based
solely on cell morphology. In this context, various algorithms are utilized, and we aim to
explore the algorithms predominantly used and provide illustrative examples.

In DL, CNN is the most famous and commonly used algorithm. Its advantage is
that it automatically identifies the characteristics of the data without human intervention.
The CNN algorithm is widely applied in various fields such as computer vision, voice
processing, and facial recognition [26].

The CNN model structure commonly used in the field of biosciences is illustrated
in Figure 3. The main framework of the CNN structure consists of convolution layers,
max-pooling layers, and softmax layers [27]. Initially, the input data passes through a series
of convolution layers paired with max-pooling layers to extract features from the data.
Subsequently, the classification task is carried out through fully connected layers.

Technologies 2024, 12, x FOR PEER REVIEW 4 of 19 
 

 

and we aim to explore the algorithms predominantly used and provide illustrative exam-
ples. 

In DL, CNN is the most famous and commonly used algorithm. Its advantage is that 
it automatically identifies the characteristics of the data without human intervention. The 
CNN algorithm is widely applied in various fields such as computer vision, voice pro-
cessing, and facial recognition [26]. 

The CNN model structure commonly used in the field of biosciences is illustrated in 
Figure 3. The main framework of the CNN structure consists of convolution layers, max-
pooling layers, and softmax layers [27]. Initially, the input data passes through a series of 
convolution layers paired with max-pooling layers to extract features from the data. Sub-
sequently, the classification task is carried out through fully connected layers. 

 
Figure 3. The common convolutional neural network model used in biosciences. The CNN model 
consists of three convolutional layers extracting features from input images and three max-pooling 
layers reducing the feature map size followed by a fully connected layer for image classification. 
The number of convolutional layers and max pooling layers can be customized based on the model’s 
application. 

The convolution layers play a crucial role in generating feature maps of various sizes, 
which are then reduced through pooling layers before proceeding to the next layer. The 
fully connected layers and softmax function map the extracted features into a final output, 
such as classification. The initial layers serve to recognize the basic structures of the im-
ages, while neurons in deeper layers are specialized in identifying more complex struc-
tures [28,29]. 

2.1. Potential of CNNs in Cell-Image-Based Classification 
Microscopes are the most important tools in the field of medicine, allowing the close 

observation of cell shapes and the detection of abnormal cells. It is important in biology 
for researchers to maintain cell cultures safely and detect the desired cell morphologies; 
however, this is time-consuming and prone to errors. Deep learning can overcome these 
limitations by efficiently analyzing vast amounts of data. Molecular biology is one signif-
icant field where deep learning technology can be effectively applied as it deals with the 
unique shapes of each cell, proven through various experiments [30]. Figure 4 illustrates 
the capability of CNNs to discern subtle changes in cell morphology induced by a cell 
culture medium that are imperceptible to the human eye. Worth exploring is whether it is 
possible to classify the desired neuronal cells solely based on cell images by comparing 
them with the morphology of existing stem cells. Such cell-image-based classification aims 
to ascertain whether early cell differentiation can be recognized or if cell types can be 
identified in early differentiation. If it is successful, utilizing only the images of early dif-
ferentiating cells could significantly reduce the overall time and cost involved in differen-
tiation experiments. The results predicted by CNNs can be validated by staining stem cells 
and the desired differentiated cells and observing them through a confocal microscope 
while also assessing stem cell and differentiation-related gene expression through real-
time PCR experiments. 

Figure 3. The common convolutional neural network model used in biosciences. The CNN model
consists of three convolutional layers extracting features from input images and three max-pooling
layers reducing the feature map size followed by a fully connected layer for image classification. The
number of convolutional layers and max pooling layers can be customized based on the model’s ap-
plication.

The convolution layers play a crucial role in generating feature maps of various
sizes, which are then reduced through pooling layers before proceeding to the next layer.
The fully connected layers and softmax function map the extracted features into a final
output, such as classification. The initial layers serve to recognize the basic structures of
the images, while neurons in deeper layers are specialized in identifying more complex
structures [28,29].

2.1. Potential of CNNs in Cell-Image-Based Classification

Microscopes are the most important tools in the field of medicine, allowing the close
observation of cell shapes and the detection of abnormal cells. It is important in biology
for researchers to maintain cell cultures safely and detect the desired cell morphologies;
however, this is time-consuming and prone to errors. Deep learning can overcome these
limitations by efficiently analyzing vast amounts of data. Molecular biology is one signifi-
cant field where deep learning technology can be effectively applied as it deals with the
unique shapes of each cell, proven through various experiments [30]. Figure 4 illustrates the
capability of CNNs to discern subtle changes in cell morphology induced by a cell culture
medium that are imperceptible to the human eye. Worth exploring is whether it is possible
to classify the desired neuronal cells solely based on cell images by comparing them with
the morphology of existing stem cells. Such cell-image-based classification aims to ascertain
whether early cell differentiation can be recognized or if cell types can be identified in early
differentiation. If it is successful, utilizing only the images of early differentiating cells
could significantly reduce the overall time and cost involved in differentiation experiments.
The results predicted by CNNs can be validated by staining stem cells and the desired
differentiated cells and observing them through a confocal microscope while also assessing
stem cell and differentiation-related gene expression through real-time PCR experiments.
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Figure 4. The overall experimental process using CNNs for assessing cell differentiation. The
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between stem cells and early differentiating cells. The accuracy of CNN predictions can be confirmed
by staining both stem cells and differentiated cells, observing them with a confocal microscope, and
simultaneously evaluating gene expression related to stem cell differentiation using real-time PCR.

2.2. Applications of CNNs in Stem Cell Culture and Differentiation

Pluripotent stem cells play a significant role in regenerative medicine, disease model-
ing, and drug testing due to their capacity to differentiate into various cell types within
an organism [31,32]. Among the pluripotent stem cells, ESCs and iPSCs are two distinct
forms: ESCs are derived during the early phases of embryo development, while iPSCs
are generated by reprogramming genes, a process that reverses terminally differentiated
somatic cells into a pluripotent state [14,20]. iPSC-derived cells offer a targeted examination
of cellular physiology, rendering them valuable for activities such as drug screening, disease
analysis, and regenerative medicine. Furthermore, the utilization of mature endothelial
cells, derived from iPSCs via differentiation, holds potential for disease modeling and
organ development [33]. However, even with well-trained researchers adept at consistently
cultivating iPSCs and conducting differentiation experiments into desired cell types, sig-
nificant time and budget allocation are required for this research. Therefore, trained AI
is essential to effectively assist experimenters during the iPSC production phase. Table 1
presents examples of CNN applications in the field of biology and identifies the various cell
types and/or disease categories tested in each application. The rest of this section details
some of these studies and the major advancement in this field.

Table 1. Applications of CNNs in the stem cell field.

Cell Types Groups Algorithm Types Dataset Reference

Endothelial cells
CD31-stained cells

CNN 800 images [34]Unstained cells

Human Embryonic stem cells
(hESCs)

Cell cluster

CNN 83,000 images [35]

Debris
Unattached cells

Attached cells
Dynamically blebbing cells
Apoptically blebbing cells
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Table 1. Cont.

Cell Types Groups Algorithm Types Dataset Reference

Human-induced pluripotent
stem-cell-derived

cardiomyocytes (hiPS-CMs)

Normal hiPSC-CM images
CNN 18,000 images [36]Abnormal hiPSC-CM images

hiPSCs

Reprogramming hiPSCs groups
(4 classes)

CNN Total 4020 images [37]
Reprogrammed hiPSCs groups

(1 class)
Human CD34+ cells group

(1 class)

hiPSCs

Region with no cells
Region with differentiated cells

Region with possibly
reprogramming and

reprogrammed hiPSCs

CNN 555 images [38]

Cancer stem-like cells Single cells
(0, 2, 4, and 14 days) CNN 1710 single cells [39]

Mouse ESCs Retinal organoid
Non-retinal organoid CNN-ResNet50v2 1209 images [40]

Mesenchymal stem cells
(MSCs)

Species
Body weight

Tissue
Cell number and concentration

Defect area and depth
Type of cartilage damage

Artificial neural
network (ANN)

15 clinical trials
29 animal models

(1 goat, 6 pigs, 2 dogs,
9 rabbits, 9 rats, and

2 mice)

[41]

hiPS-CMs Cardiac cell images CNN 2500 quantitative
phase images [42]

A549, GM12878, MCF7 cells Transcription factors
(DNA binding motifs) CNN 53 transcription

factors [43]

Human keratinocyte stem cells Keratinocyte nuclei CNN 15,040 images [44]

Bone-marrow-derived
mesenchymal stem cells

(BMSCs)

10 ng/mL (BMP-12/GDF-7) for
12, 24, and 48 h

50 ng/mL (BMP-12/GDF-7) for
12, 24, and 48 h

CNN Immunofluorescence
staining images [45]

MSCs Single-cell RNA sequencing CNN RNA sequencing
dataset [46]

ESCs
Neuronal progenitor cells

(NPCs)
CG methylation CNN-epiNet CG methylation in

mouse oocytes [47]

Hematopoietic tumor cells
(HTCs)

Acute myeloid leukemia
Chronic myeloid leukemia
B-cell acute lymphoblastic

leukemia
Myeloma

CNN
Ten hematopoietic

tumor cell lines
imaging

[48]

Neural stem cells (NSCs) Differentiated at 1, 2, 4, and
6 days Google Inception

Imaging with bright
field and flow

cytometry
[49]

MSCs
High and low multilineage

differentiating stress-enduring
(MUSE) cell markers

CNN-DenseNet121 6120 cell images [50]
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Table 1. Cont.

Cell Types Groups Algorithm Types Dataset Reference

hMSCs

Control group
Osteogenic differentiation group
Adipogenic differentiation group

Osteogenic + Adipogenic
differentiation group

CNN-Resnet50

2336 images
(Images taken after 1,
2, 3, 5, 7, 10, and 13

days of
differentiation)

[51]

hiPSCs
Images during the

reprogramming process for 10
days

CNN 3000 images [52]

Rat rBMSCs Osteogenic differentiation at 0, 1,
4, and 7 days Osteogenic CNN 2916 single-cell

images [53]

Human nasal turbinate stem
cells (hNTSCs)

Multipotent cell images
Non-multipotent cell images CNN-DenseNet121

1254 multipotent cell
images

596 non-multipotent
cell images

[54]

Cancer stem cell (CSC) CSC in images of 1-day culture
CSC in images of 2-day culture CNN 2000 images [55]

hPSCs Early differentiation group
Late differentiation group CNN 1331 images [56]

hESCs High or low pluripotency status CNN 269 images of hPSC
colonies [57]

Hematopoietic stem cells
(HSCs)

Grade I–IV Acute
Graft-Versus-Host Disease

(aGVHD)
CNN

18,763 patients
between 16 and 80

years of age
[58]

Stem cells Colony groups Triplet-net CNN Colonies images [59]

Senescent MSCs Senescent cells
Non-senescent cells CNN

93,907 senescent cells
46,118 non-senescent

cells
[60]

The DNN model introduced by Christiansen et al. [61] can predict cell types and
the location of cell nuclei from microscopic images without conducting cell immunology
experiments. Segmentation based on CNNs can classify images pixel by pixel, assigning
each pixel to a particular object category. Additionally, the CNN model enables the detection
of object boundaries and categorization within boundary-delineated areas. Consequently,
semantic segmentation finds extensive application in fields like cell biology and medicine,
not only for identifying the cell’s position but also for determining its categories [30].

Kim et al. [31] investigated whether a CNN algorithm, Resnet50, could distinguish
subtle changes in the shapes of stem cells, including ESCs and iPSCs, under different
culture conditions. These conditions included a medium containing leukemia inhibitory
factor (LIF) to maintain pluripotency, a medium without LIF, and a medium with in-
sulin/transferrin/selenium (ITS) to induce differentiation. Data obtained from transmitted
light microscopy capturing changes in cell morphologies over a 24-h period were uti-
lized, and the algorithm demonstrated an accuracy of over 95% in identifying the culture
conditions and cell types solely based on cell morphology.

Edlund et al. [62] developed the LIVECell system, which can accurately classify
eight different types of cells using phase-contrast microscopy images. Even without molec-
ular labeling, this enables the visualization of not only cell types but also intracellular
components, along with their localization and types [63,64]. The process of stem cell
differentiation was also analyzed using AI by securing image data with a microscope.
The differentiation of C2C12 cells and hematopoietic stem cells was conducted with high
accuracy. Furthermore, the utilization of an RNN designed to analyze time-series data
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enabled accurate predictions of hematopoietic stem cell differentiation from microscopic
images [65,66].

The CNN model can be employed in unlabeled cell classification systems, as demon-
strated by Ugawa et al. [67], who created a ghost cell measurement system capable of
identifying undifferentiated human iPSCs, iPSC-derived differentiated cells, neuroendothe-
lial cells (NECs), and hepatic endothelial cells (HECs), and categorizing surrounding white
blood cell types. Additionally, CNNs are capable of categorizing cardiac tissue contractility,
molecular images, and cell morphologies [68–70].

Though theoretically straightforward, stem cell therapy becomes highly challenging
if the cells are not stable or homogeneous. Moreover, conventional testing methods may
incur more errors than accurate predictions [71]. Scientists believe that various artificial
intelligence techniques, such as ML-SVM and DL-CNN, can assist in addressing these
complexities and limitations, potentially serving as the key to perfecting the formula for
stem cell therapy [71]. Fan et al. [69] derived iPSCs from human urine cells and utilized a
CNN for colony recognition and a semi-supervised segmentation method, two essential
aspects of machine learning, to understand visual information from limited labeled data,
enabling the detection of colony positions and boundaries.

A vector-based CNN (V-CNN) model was utilized to identify iPSC colonies using
phase-contrast images [72]. The input data were healthy and unhealthy iPSC colonies, and
the training results of an SVM classifier model and the V-CNN model were compared.
The results showed that the V-CNN model could detect the quality of iPSC colonies with
an accuracy of 95.5%, while the SVM classifier exhibited an accuracy of 75.2%. Thus, the
V-CNN model greatly outperformed the SVM classifier.

A CNN model was also employed to precisely distinguish between stable PSCs and
those undergoing early differentiation [32]. Images were acquired at multiple time points
within the 24-h period following the onset of differentiation and used to train the CNN
model. The training results showed that the CNN model could identify differentiating PSCs
with high accuracy just 20 min after the onset of differentiation, distinguishing between
undifferentiated and differentiating cells with over 99% accuracy within 24 h.

Recently, an interesting paper focused on discerning morphological distinctions be-
tween cells derived from Parkinson’s disease patients and healthy individuals [73]. Parkin-
son’s disease has a variety of causes and progression patterns, with significant differences
among patients. The team divided patients’ cells into five classes, comprising a group of
healthy control neurons and four different disease subtype neuron groups. Then, the group
trained the model using microscopy image data from all groups obtained after multidimen-
sional fluorescent labeling. This model achieved an accuracy of 82% using tabular data
based on the fluorescent cell imagery, while utilizing the microscopy images themselves
as the input data resulted in an accuracy of 95%. The model demonstrated consistent
accuracy across all Parkinson’s disease subtypes used in the experiment, suggesting that
beyond diagnosis and drug discovery, AI technology could be used to directly identify the
pathological mechanisms of Parkinson’s disease.

3. AI Technology in Medical Image Analysis and New Drug Development
3.1. Image Analysis

Medical imaging, crucial for clinical diagnosis and disease treatment, plays a pivotal
role in healthcare by generating visual data of the human body. Artificial intelligence has
emerged as a leading technology for the analysis of medical imaging and big data [74].

In the realm of medical imaging analysis for disease diagnosis, CNN stands out as
the most successful and commonly used deep learning model. This model’s widespread
adoption in medical image research is primarily attributed to its remarkable performance,
made possible by its utilization of graphics processing units (GPUs). Numerous studies
have actively employed CNNs to predict and diagnose various diseases, including research
projects utilizing MRI images to predict Alzheimer’s disease, analyzing CT images to
identify pancreatic cancer, and focusing on the early diagnosis of breast cancer [75–77].
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The application of CNNs plays a crucial role in predicting and treating a diverse range
of diseases. They facilitate efficient diagnosis and the prescription of treatments by ana-
lyzing image data through segmentation and classification tasks, enabling clinicians to
make effective diagnostic and treatment decisions based on a detailed analysis of visual
information [28]. Table 2 elucidates instances of CNN utilization within the biomedical
domain, serving as exemplary cases for research and clinical applications.

Table 2. Applications of CNNs in the biomedical field.

Disease Types Groups Algorithm Types Dataset Reference

Alzheimer’s Disease
(AD)

AD

Deep 3D CNN AD Neuroimaging Initiative MRI
images [78]

Mild Cognitive
Impairment (MCI)
Negative Control

Abnormal breast
Normal breast

CNN
209 normal mammogram images

[79]Abnormal breast 113 abnormal mammogram
images

Spinal Muscular
Atrophy (SMA)

SMA subjects
CNN Cell images [80]Healthy subjects

Parkinson MR Imaging CNN-Alexnet MR imaging [81]

Skin lesion Dermoscopy images CNN 2750 skin lesion imaging [82]

Amyotrophic Lateral
Sclerosis (ALS)

ALS subjects
CNN-VGG16 iPSC cell image [83]Healthy subjects

Lumbar degenerative
disease Negative group Deep CNN MRS and CT medical imaging [84]

Osteoporosis Positive group

Diabetes Diabetes group Functional Link CNN Diabetes data [85]

Parkinson
Healthy group Deep CNN

Primary fibroblast from
91 Parkinson’s disease patients

and healthy controls

[86]Parkinson’s disease
patients

Ovarian tumors
Benign tumors Quantum

CNN-Resnet
Benign and malignant tumor

images [87]Malignant tumors

SARS-CoV-2
Non-COVID-19

Deep CNN
Normal pneumonia

[88]Common Pneumonia COVID-19 cases
COVID-19 (Chest CT and X-ray)

Brain tumor Brain tumor images CNN-Resnet Brain MRI images [89]

Schizophrenia Schizophrenia patients
CNN Electroencephalographic data [90]Healthy groups

Oxygenation in the
brains of infants Infant brain groups Hybrid CNN 23,000 Near-Infrared Optical

Tomography images [91]

Abnormal heart sound Heart sound signals Parallel CNN 3240 heart sound signals [92]

Benign vocal cord
tumor

Cysts
Granulomas
Leukoplakia

Nodules and polyps

CNN 2183 laryngoscopic images [93]

3.2. New Drug Development

In the field of drug discovery, AI utilizes both supervised and unsupervised learn-
ing [94]. Supervised learning involves training data using labeled information, where
there are explicitly defined answers. Conversely, unsupervised learning clusters unlabeled
data based on similar features to predict outcomes for new data [95]. Supervised learning
techniques can be further categorized into classification and regression algorithms, while
unsupervised learning techniques are divided into clustering and dimensionality reduc-
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tion algorithms. Each AI technique is detailed extensively in Chen et al. [1], and Table 3
categorizes the use of AI algorithms according to different types of drug development
introduced later.

Table 3. Comparison of major AI techniques used in drug development.

Category Algorithm Application Reference

Supervised learning

SVM Drug screening
Drug target interaction
Drug–drug interaction

[96]

RF [97]

Decision tree Drug–drug interaction
Adverse drug reactions [98]

Unsupervised learning K-means clustering Drug toxicity [99]

PCR QSAR [100]

Deep learning

CNN
Physiochemical property
Drug target interaction
Drug–drug interaction

[101,102]

DNN Drug screening [103]

RNN De novo drug design
Drug target interaction [104,105]

GAN Molecule discovery [106]

Reinforcement learning

Q-learning
De novo drug design

Virtual screening [107,108]Deep Q-network

DAN

SVM: Support vector machine; RF: Random forest; PCR: principal-component analysis; CNN: Convolutional
neural network; RNN: recurrent neural network; GAN: generative adversarial network; DAN: Deep Adversar-
ial Networks.

3.2.1. Drug Screening

The traditional drug development process involves synthesizing and testing a large
number of compounds to distinguish potential drug candidates, often taking over 10 years
and costing an average of around $28 billion. Moreover, despite substantial investments,
nine out of ten drug candidates fail in Phase II clinical trials and the regulatory ap-
proval process [109]. In response, powerful AI-based tools have emerged that can an-
alyze large compound datasets to predict which treatments will work best for specific
diseases. Databases such as ChEMBL, ChemDB, the Collection of Open Natural Products
(COCONUT), the Drug–Gene Interaction Database (DGIdb), DrugBank, the Drug Target
Commons (DTC), and the Intelligent Network Pharmacology Platform Unique for Tradi-
tional Chinese Medicine (INPUT) freely provide diverse information, including molecule
names, molecular structures, structural characteristics, bioactive molecules, chemical com-
pounds, bioactivity, and genetic data [110–116].

In drug screening, AI is employed to predict the toxicity, biological activity, and
physicochemical properties of prospective novel drugs (Figure 5). The utilized algorithms
encompass nearest-neighbor classifiers, random forest (RF), extreme learning machines,
support vector machines (SVMs), and deep neural networks (DNNs). These computational
methods are applied in VS with a focus on synthetic feasibility, offering predictions of
in vivo activity and toxicity [117,118]. While these predictions demonstrate high accuracy,
the cost of screening potential drug candidates from a vast array of natural compounds
remains expensive. Several pharmaceutical companies, including Bayer, Roche, and Pfizer
collaborate with IT companies to advance the development of diverse therapeutics solutions.
The following subsections delve into the facets of integrating AI into VS [119].

19



Technologies 2024, 12, 95

Technologies 2024, 12, x FOR PEER REVIEW 10 of 19 
 

 

computational methods are applied in VS with a focus on synthetic feasibility, offering 
predictions of in vivo activity and toxicity [117,118]. While these predictions demonstrate 
high accuracy, the cost of screening potential drug candidates from a vast array of natural 
compounds remains expensive. Several pharmaceutical companies, including Bayer, 
Roche, and Pfizer collaborate with IT companies to advance the development of diverse 
therapeutics solutions. The following subsections delve into the facets of integrating AI 
into VS [119]. 

 
Figure 5. Overview of the drug screening process. By using AI technology to analyze the molecular 
structure of specific drugs, it is possible to predict drug usage. Created with BioRender.com. 

Drug Toxicity Prediction 
It is essential to predict the toxicity of drug molecules. Various advanced artificial 

intelligence techniques are used to identify substances that may have harmful effects on 
humans. Multiple computational methods were utilized to assess the toxicity of 12,707 
environmental compounds and drugs in the Tox21 Challenge [120]. An ML algorithm 
named “DeepTox” is an ensemble model designed for predicting compound toxicity that 
combines multiple DNNs [121]. It encodes molecular shapes using 0D to 3D molecular 
structure models as the inputs for the DNNs. Comparative results based on the Tox21 
dataset indicate that DeepTox, with 2500 toxicophore features, outperforms its competi-
tors in toxicity prediction [121,122]. 

Drug Biological Activity Prediction 
Predictions of the biological activity of prospective drugs are widely utilized in areas 

such as anticancer, antiviral, and antimicrobial drug development, playing a significant 
role in pharmaceutical discovery [123,124]. The efficacy of drug molecules is determined 
by their affinity for a target protein or receptor. However, novel drug molecules can also 
exhibit toxicity due to unintended interactions with target and nontarget proteins or re-
ceptors. Therefore, predicting drug–target binding affinity (DTBA) is crucial. Initially, ar-
tificial intelligence can be used to measure the binding affinity of a drug by considering 
the features or similarities between the drug and its target. Subsequently, recognizing the 
chemical components of the drug and its target is essential for determining feature vectors 
[125]. Various strategies, including ML and DL approaches such as KronRLS, SimBoost, 
DeepDTA, and PADME, have been employed to determine DTBA. 

For example, Shen et al. [126] employed AutoMolDesigner to automatically design 
new antibiotics by considering compounds’ structures and properties, addressing chal-
lenges such as antibiotic scarcity, inhibitory effects, and antibiotic resistance. This open-
source tool has proven valuable for researchers seeking to develop novel antibiotics [126]. 

Physiochemical Property Prediction  
The diverse nature of drug physicochemical properties, which includes solubility, 

partition coefficient (logP), degree of ionization, and intrinsic permeability, necessitates 
an indirect yet essential understanding of drug action [127]. In particular, the solubility of 
a drug has a significant impact on its pharmaceutical efficacy, influencing both the phar-
macokinetic properties and the formulation of the drug [128]. Considerable investment 
has been made in developing AI-based solubility prediction models that leverage large 
datasets of physicochemical properties generated during compound optimization during 
training with DL models such as DNN or CNN [120]. 
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Drug Toxicity Prediction

It is essential to predict the toxicity of drug molecules. Various advanced artificial
intelligence techniques are used to identify substances that may have harmful effects on
humans. Multiple computational methods were utilized to assess the toxicity of 12,707 en-
vironmental compounds and drugs in the Tox21 Challenge [120]. An ML algorithm named
“DeepTox” is an ensemble model designed for predicting compound toxicity that combines
multiple DNNs [121]. It encodes molecular shapes using 0D to 3D molecular structure
models as the inputs for the DNNs. Comparative results based on the Tox21 dataset indi-
cate that DeepTox, with 2500 toxicophore features, outperforms its competitors in toxicity
prediction [121,122].

Drug Biological Activity Prediction

Predictions of the biological activity of prospective drugs are widely utilized in areas
such as anticancer, antiviral, and antimicrobial drug development, playing a significant
role in pharmaceutical discovery [123,124]. The efficacy of drug molecules is determined
by their affinity for a target protein or receptor. However, novel drug molecules can
also exhibit toxicity due to unintended interactions with target and nontarget proteins or
receptors. Therefore, predicting drug–target binding affinity (DTBA) is crucial. Initially,
artificial intelligence can be used to measure the binding affinity of a drug by considering
the features or similarities between the drug and its target. Subsequently, recognizing
the chemical components of the drug and its target is essential for determining feature
vectors [125]. Various strategies, including ML and DL approaches such as KronRLS,
SimBoost, DeepDTA, and PADME, have been employed to determine DTBA.

For example, Shen et al. [126] employed AutoMolDesigner to automatically design new
antibiotics by considering compounds’ structures and properties, addressing challenges
such as antibiotic scarcity, inhibitory effects, and antibiotic resistance. This open-source
tool has proven valuable for researchers seeking to develop novel antibiotics [126].

Physiochemical Property Prediction

The diverse nature of drug physicochemical properties, which includes solubility,
partition coefficient (logP), degree of ionization, and intrinsic permeability, necessitates
an indirect yet essential understanding of drug action [127]. In particular, the solubility
of a drug has a significant impact on its pharmaceutical efficacy, influencing both the
pharmacokinetic properties and the formulation of the drug [128]. Considerable investment
has been made in developing AI-based solubility prediction models that leverage large
datasets of physicochemical properties generated during compound optimization during
training with DL models such as DNN or CNN [120].

Panapitiya et al. [129] compared various deep learning architectures, including fully
connected neural networks, recurrent neural networks (RNNs), graph neural networks,
and SchNet, presenting the strengths and weaknesses of each model. Fully connected
neural networks, leveraging molecular descriptors, demonstrated the best performance in
solubility prediction.

3.2.2. Key Areas for Drug Discovery

The pursuit of drug discovery involves the identification of active compounds that
exhibit therapeutic effects for specific diseases. This subsection aims to elucidate the
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fundamental elements necessary for drug discovery, highlighting the utilization of AI
in key areas such as de novo drug design, target structure prediction, and drug–target
interaction (DTI) prediction. Figure 6 illustrates the application of AI technology in drug
discovery, as previously discussed.
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De Novo Drug Design

Artificial intelligence can aid in designing new molecules optimized for specific thera-
peutic applications, significantly improving the drug discovery process. Computer-aided
drug design methods (CADD) that utilize computers to develop drugs have recently be-
come prominent [130]. De novo drug design, a technique for generating novel molecular
structures, has garnered significant attention, and various artificial neural network models,
such as the reinforcement-learning-based ReLeaSE, the encoder–decoder-based ChemVAE,
the GAN-based GraphINVENT, and the RNN-based MolRNN, have been applied in de
novo drug design [131–134]. Molecular representation plays a pivotal role in de novo drug
design, with inputs for deep learning algorithms derived from simplified molecular-input
line-entry system (SMILES), fingerprint, molecular-graph, and 3D geometry data [107,135].
Furthermore, when the structure of a receptor is known, molecular docking information
is used, and in cases where the receptor’s structure is unknown, quantitative structure–
activity relationship (QSAR) and pharmacophore modeling can be employed to predict the
3D structure of the receptor. More recently, deep learning technology has also been applied
to various aspects of drug discovery and development [136,137].

Drug Target Prediction

Drug target prediction has, to date, deciphered the structures of approximately
100,000 proteins, but this accounts for only a small fraction of the known protein uni-
verse [138]. However, succeeding in drug development with AI still requires addressing
challenges such as difficulties in understanding protein tertiary structures. Predicting the
3D structure of proteins, which may consist of thousands of amino acids, demands signifi-
cant time and resources [95]. To more efficiently predict protein structures, DeepMind has
developed the neural-network-based tool AlphaFold, which can predict the 3D structure of
proteins from amino acid sequences [138,139].
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Predicting Drug–Drug Interactions

Drug target interaction (DTI) prediction, assessing the interactions between com-
pounds and protein targets in an organism, is widely utilized through deep learning and
is an essential process in drug development [140]. Prediction methods for DTI using bi-
ological data can be categorized into five approaches: ligand-based methods, docking
simulations, genetic-algorithm-based methods, text-mining-based methods, and network-
based methods [141].

Initially, the encoding of compounds and proteins is carried out using their respective
features. Subsequently, the input for the deep learning methods involves the use of the
feature embeddings of both compounds and proteins. Models based on deep confidence
neural networks, CNNs, and multi-layer perceptrons are commonly employed for DTI
prediction [125,142,143].

In in silico drug development, accurately predicting drug–protein interactions is a cru-
cial step. This is essential for understanding the success of treatments and the efficacy and
effects of drugs [128]. However, large-scale predictions for countless unknown interactions
can involve complex processes. Therefore, semi-supervised learning techniques, primar-
ily utilizing technologies that integrate compound structures, drug–protein interaction
network data, and genome sequence data are commonly used [144].

Dhakal et al. [145] discussed that protein–ligand binding sites, ligand binding affinity,
and binding structures can be predicted using various machine learning and deep learn-
ing techniques. Particularly noteworthy is the discussion on addressing data imbalance
issues, where methods like multiple random undersampling and classifier ensembles are
introduced to balance sample distributions and reduce information loss. Furthermore,
the prediction accuracy is improved by leveraging successful prior research that used
convolutional and recurrent neural network architectures to predict and interpret protein
structures. The introduction of techniques such as the RF method for enhancing the predic-
tion of ligand binding affinities and the utilization of various algorithms (RF, SVM, neural
networks) is also highlighted.

Yaseen et al. [146] focused on predicting drug–target interactions based on text, utiliz-
ing data from drug databases and the drug–drug interaction corpus (DDI corpus). Both
the CNN model and SVM used in this study demonstrated high performance, achieving
excellent accuracy even when using an ensemble model. The study employed CNN mod-
els and machine-learning-based classifier SVMs. Both the single CNN and SVM models
demonstrated high performances, achieving excellent accuracy even when using an en-
semble model. Specifically, the single CNN model showed an F1-score of 0.82, and the
ensemble model achieved an impressive 96.72% approved accuracy. The SVM model, in the
machine-learning-based implementation, faced challenges due to the availability of nega-
tive DTI data but yielded good results in terms of area under the ROC curve (AUC) values.
The paper also discusses techniques for addressing class imbalance issues and introduces
threshold moving in ensemble models. Suggested future directions include integrating
pre-trained embedding layers and position embeddings for improved performance.

4. Discussion

Over the past few years, the integration of AI technology into stem cell therapy,
regenerative medicine, and drug development has made significant progress. Artificial
intelligence has played a crucial role in recognizing and analyzing vast amounts of data
that would be extremely challenging for humans, contributing greatly to the advancement
of these fields [147]. However, there are many technological challenges to address before
fully realizing the potential of AI in this field.

One of the limitations of AI technology in the fields of stem cell therapy, regenerative
medicine, and drug development is the need for large-scale and high-quality data [124].
However, obtaining vast amounts of data is difficult for small patient populations, such as
those with rare diseases [148].
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In the field of stem cell research, experiments involving the stable culture of stem
cells and their differentiation into desired cell types are time-consuming and costly, with
inconsistent outcomes. These limitations can be addressed by incorporating AI technology.
AI can analyze cell images to predict cell states and improve cell quality. These advantages
can overcome the existing challenges of stem cell therapies, making them more effective [8].
In addition, the use of AI technology could ultimately bring about a paradigm shift in
tests for development of the therapeutic stem cells, which require accurate and systematic
technology in both preclinical and clinical trials.

The stem cells developed for patient treatment currently require substantial time
and support. Continuous collaboration among researchers, healthcare providers, and
AI developers is essential to continually advance AI technology in the field and achieve
more effective personalized treatment solutions [149]. With the increasing availability of
high-quality data, the opportunity to fine-tune and customize AI algorithms specifically
for regenerative purposes will expand. The machine learning methods used on cells
derived from patients with specific diseases have demonstrated high accuracy in predicting
disease states, suggesting that the accurate classification capabilities of AI technology could
revolutionize disease diagnosis, drug discovery, and the identification of pathological
mechanisms in the future [73].

Furthermore, while many AI-based models are being developed, most of them lack
freely available web servers or source codes. Even if some smart tools are developed, they
are often only available commercially, restricting their application. Therefore, there is a
need to develop open tools or packages that can serve as essential resources for applying
these models in drug discovery and development [1].

In the field of drug development, it will be possible to predict drug side effects and
develop personalized medications for individual diseases using vast amounts of data.
Furthermore, the drug development process can be accelerated if collaboration among
industry, academia, and regulatory agencies is established to collect, analyze, and validate
large datasets.

However, AI algorithms must understand biological complexity to predict drug–target
interactions, and the ability to interpret AI models is essential. In drug development,
there are considerations for drug safety, efficacy, and ethical issues, requiring substantial
investment in technology, infrastructure, and expertise. Despite these challenges, AI
continues to advance and offers tremendous potential. As this field progresses and these
obstacles are overcome, AI is expected to revolutionize the drug discovery process, leading
to faster, more cost-effective, and personalized treatments, ultimately improving patient
outcomes [148]. Therefore, the realization of AI’s potential may pave the way for a new era
in tackling intractable diseases, ultimately contributing to the advancement of medicine
and societal well-being.
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Abstract: The independence and autonomy of both elderly and disabled people have been a growing
concern in today’s society. Therefore, wheelchairs have proven to be fundamental for the movement
of these people with physical disabilities in the lower limbs, paralysis, or other type of restrictive
diseases. Various adapted sensors can be employed in order to facilitate the wheelchair’s driving
experience. This work develops the proof concept of a brain–computer interface (BCI), whose ultimate
final goal will be to control an intelligent wheelchair. An event-related (de)synchronization neuro-
mechanism will be used, since it corresponds to a synchronization, or desynchronization, in the mu
and beta brain rhythms, during the execution, preparation, or imagination of motor actions. Two
datasets were used for algorithm development: one from the IV competition of BCIs (A), acquired
through twenty-two Ag/AgCl electrodes and encompassing motor imagery of the right and left
hands, and feet; and the other (B) was obtained in the laboratory using an Emotiv EPOC headset, also
with the same motor imaginary. Regarding feature extraction, several approaches were tested: namely,
two versions of the signal’s power spectral density, followed by a filter bank version; the use of
respective frequency coefficients; and, finally, two versions of the known method filter bank common
spatial pattern (FBCSP). Concerning the results from the second version of FBCSP, dataset A presented
an F1-score of 0.797 and a rather low false positive rate of 0.150. Moreover, the correspondent average
kappa score reached the value of 0.693, which is in the same order of magnitude as 0.57, obtained
by the competition. Regarding dataset B, the average value of the F1-score was 0.651, followed by a
kappa score of 0.447, and a false positive rate of 0.471. However, it should be noted that some subjects
from this dataset presented F1-scores of 0.747 and 0.911, suggesting that the movement imagery (MI)
aptness of different users may influence their performance. In conclusion, it is possible to obtain
promising results, using an architecture for a real-time application.

Keywords: brain–computer interface; intelligent wheelchair; Emotiv EPOC headset

1. Introduction

Independence and autonomy in mobility are two of the most important conditions for
determining the quality of life of people with disabilities or with low mobility capacities [1].
Limited mobility could have origin in a broad range of situations, from accidents to disease
to the ageing process. Currently, several mobility-related technologies are designed to
achieve independent mobility, in particular powered orthosis, prosthetic devices, and
exoskeletons. Notwithstanding these devices, wheeled mobility devices remain among the
most used assistive devices [2]. According to the World Health Organization (WHO) [3],
approximately 10% of the world’s population, or around 740 million people, suffer from
disabilities, and, among those people, almost 10% require a wheelchair. Therefore, it is
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estimated that about 1% of the total population needs wheelchairs, which translates into
74 million people worldwide [4].

The importance of providing multifaceted wheelchairs that can be adapted to the
most diverse conditions of their users is thus emphasised. Different interfaces are being
developed, enabling us to overcome existing barriers of use. In particular, special attention
has been dedicated to voice control techniques, joysticks, and tongue or head movements.
However, hand gesture recognition and brain–computer interface (BCI) systems are proving
to be interesting methods of wheelchair control due to their accessible price and non-
invasiveness. Therefore, BCIs seem the best option to bridge the users’ will and the
wheelchair, as they provide a direct pathway between the “mind” and the external world,
just by interpreting the user’s brain activity patterns into corresponding commands [5],
and, thus, not requiring neuro-muscular control capabilities whatsoever. Furthermore,
people desire to be in charge of their motion as much as possible, even if they have lost
most of their voluntary muscle control; therefore, BCIs are an exceptional option [6]. Brain–
computer interfaces provide control and communication between human intention and
physical devices by translating the pattern of brain activity into commands [6]. The flow of
a BCI consists of the acquisition of the information from the brain, followed by the data
processing, and ending in the output of a control command [7]. Thus, usually, a BCI can be
conceptually divided into signal acquisition, pre-processing, and feature extraction and
classification; the last three are the interpretation of the first one.

This paper is structured into six sections, beginning with this introduction. The
second section addresses the background and state of the art concerning brain–computer
interfaces (BCIs) for acquiring and classifying brain activity. Section 3 details the methods
and materials employed in the experimental work. In Section 4, the results obtained from
various approaches, including a real-time application, are presented. A discussion of the
findings is presented in Section 5, followed by conclusions and suggestions for future work.

2. Background and State of the Art of BCI Brain Activity Acquisition Methods

Understanding the acquisition methods for brain activity is crucial for the development
of effective brain–computer interfaces (BCIs). There are several methods available, but
the most commonly used and well-established method is electroencephalography (EEG).
EEG is favoured for its low cost, convenience, standardized electrode placement, and well-
documented acquisition techniques. Additionally, EEG offers known filtering methods to
address noise and ocular artefacts, making it an attractive option for BCI applications.

2.1. Signal Acquisition

There are several methods to acquire brain activity that can be fed into a BCI; however,
the most used acquisition method is EEG, as it is low-cost and convenient to use. Other
factors that make it such an attractive tool are the standardisation of electrode placement,
plentiful and well-documented information on acquisition techniques, and being a well-
established method with known filtering [8]. Table 1, adapted from [7], compares the
different types of methods used to acquire signals for BCI use.

Table 1. Properties of brain activity acquisition methods.

EEG MEG NIRS fMRI ECoG MEA fTCD

Deployment Non-invasive Non-invasive Non-invasive Non-invasive Invasive Invasive Non-invasive

Measured Activity Electrical Magnetic Hemodynamic Hemodynamic Electrical Electrical Hemodynamic

Temporal Resolution Good Good Low Low High High High

Spatial Resolution Low Low Low Good Good High Low

Portability High Low High Low High High High

Cost Low High Low High High High
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I. Magnetoencephalography (MEG) is a neuro-imaging technique, which uses the
magnetic fields created by the natural currents that flow in the brain to map the brain
activity. To do that, it uses magnetometers. The cerebral cortex’s sites, which are activated
by a stimulus, can be found from the detected magnetic field distribution [9].

II. Near-infrared spectroscopy (NIRS) is a spectroscopic method that uses the near-
infrared (NIR) region of the electromagnetic spectrum (from 780 nm to 2500 nm). NIR
light can penetrate human tissues; however, it suffers a relatively high attenuation due to
the main chromophore haemoglobin (the oxygen transport red blood cell protein), which
is presented in the blood. Therefore, when a specific area of the brain is activated, the
localised blood volume in that area changes quickly and, if optical imaging is used, it is
possible to measure the location and activity of specific regions of the brain. This is due to
the continuous tracking of the haemoglobin levels through the determination of optical
absorption coefficients [10].

III. Functional magnetic resonance imaging (fMRI), through variations associated with
blood flow, can measure brain activity. This technique relies on the fact that cerebral blood
flow and neuronal activation are coupled; thus, when an area of the brain is in use, the
blood flow to that region also increases [11].

IV. Electrocorticography (ECoG) is a type of electrophysiological monitoring that
records activity mainly from the cortical pyramidal cells (neurons). For that, it requires the
electrodes to be placed directly on the exposed surface of the brain so that the recorded
activity comes directly from the cerebral cortex [12].

V. Micro-electrode arrays (MEAs) are devices that contain multiple microelectrodes;
the number can vary from ten to thousands, through which the neural signals are obtained.
These arrays function as neural interfaces that connect neurons to electronic circuitry [13].

VI. Functional transcranial Doppler (fTCD) is a technique that uses ultrasound Doppler
to measure the velocity of blood flow in the main cerebral arteries during local neural
activity [14]. Changes in the velocity of the blood flow are correlated to changes in cerebral
oxygen uptake, enabling fTCD to measure brain activity [15].

However, the robustness of all existing BCI systems is not satisfactory due to the
non-stationary nature of non-invasive EEG signals. If a BCI system is unstable, other
techniques should be further developed to improve the overall driving performance [6].
Usually, these concerns improve feature extraction and classification as the other option
would fall on trading to an invasive approach. Although the range of existent commercial
headsets is quite good, most of them lack in the number of available electrodes as they
are more turned to improve the user’s focus and to help to relax, or be used for gaming.
Furthermore, the ones that present better characteristics are the Emotiv EPOC, Emotiv Flex,
and the Open BCI [16]. Although the last two do not restrict the electrodes’ configuration
as Emotiv EPOC does, they are more expensive and complex. As for the open BCI one, it
does not offer the same freedom of measurement and comfort as Emotiv ones, as these are
wireless with a 12 h, for EPOC, and 9 h, for Flex, lasting battery [17]. The cost of an Emotiv
is approximately USD 1000, and Open BCI can cost more than USD 2000 [16]. Hereupon,
authors nowadays do not use commercial EEG headsets to obtain the signals that will feed
the BCI; they prefer assembling their own EEG set through an amplifier and electrodes, as
seen in Table 2.

Table 2. EEG headsets used in the literature.

Article EEG Headset Principle Article EEG Headset Principle

[18] 12 Ag/Cl electrodes ERP—P300 [19] NuAmps and 12 electrodes ERP—P300

[20] NuAmps and 15 electrodes ERP—P300 [21] gTec EEG (16 electrodes and
g.USBamp amplifier) ERP—P300

[22] 16-channel electrode cap ERP—P300 [23] Biopac MP150 EEG system ERP—P300

[24] gTec EEG (12 electrodes and
g.USBamp amplifier) ERP—P300 [25] Neuroscan (15 electrodes’ cap) ERP—P300
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Table 2. Cont.

Article EEG Headset Principle Article EEG Headset Principle

[26] BioSemi ActiveTwo system
32 channels SSVEP [27] g.USBamp amplifier with

g.Butterfly active electrodes SSVEP

[28] 8 gold electrodes connected to
the g.USBamp amplifier SSVEP [29] gTec EEG with g.USBamp

amplifier SSVEP

[30] EEG Cap and g.USBamp
amplifier SSVEP [31] BrainNet-36 with 12 channels SSVEP

[32] BrainNet BNT-36 with
3 channels SSVEP [33] 6 channels EEG cap SSVEP

[34] NeuroSky mindset ERD/ERS [35] Grass Telefactor EEG Twin3
Machine ERD/ERS

[36] G-TEC system with 5 Ag/AgCl
electrodes ERD/ERS [37] 8 channels EEG cap ERD/ERS

[38] 5 bipolar EEG channels and a
g.tec amplifier ERD/ERS [39] ActiveTwo 64-channel EEG

system ERD/ERS

[40] Emotiv EPOC ERD/ERS [41] Emotiv EPOC ERD/ERS

[42] Emotiv EPOC ERD/ERS [43] Emotiv EPOC ERD/ERS

[44] EEG Cap—15 electrodes ERD/ERS and
SSVEP [45] Gtec Amplifier (15 channels) ERD/ERS and

SSVEP

[46] g.BSamp amplifier (5 channels) ERD/ERS and
SSVEP [47] NuAmps device (15 channels) ERD/ERS and

ERP—P300

[48,49] NeuroSky ERP—P300; Eye
Blinking (EMG) [5] SYMPTOM amplifier with 10

electrodes
ERP—P300 and

SSVEP

ERP—event-related potential; ERS—event-related synchronization; SSVEP—steady-state visual evoked potential.

However, these are usually not wireless options. Nevertheless, there is still a significant
group who use Emotiv EPOC, as this one offers a wider range of electrodes when compared
with other commercial options, allowing obtaining of the signals from different brain lobes.
It is possible to find several public EEG datasets related to motor imagery [50]. These
datasets involve recordings of brain activity while subjects imagine performing specific
motor tasks, such as moving a limb or making a particular gesture. These datasets are
essential for studying motor control, brain–computer interfaces (BCIs), and rehabilitation.
These datasets cover a wide range of tasks and experimental paradigms. With varying
numbers of subjects, electrode configurations, and recording parameters, each dataset
offers insights into different aspects of brain function and behaviour. From collections like
the largest SCP data of motor imagery, with extensive EEG recordings spanning multiple
sessions and participants, to focused datasets like the imagination of right-hand thumb
movement, capturing specific motor imagery tasks, these datasets [50] serve as valuable
resources for exploring the neural correlates of motor control, emotion processing, error
monitoring, and other cognitive processes.

2.2. Signal Processing

The signal-processing module is divided into different parts [51]. The steps vary
depending on whether the stage is training or testing; however, the training steps are
broader than the testing ones, and, hence, these will be the ones to be discussed. The first
step is to pre-process the signal, and it is further subdivided into band-pass and spatial
filtering; afterwards, the features are extracted and selected. Finally, the classification is
carried out, and the performance is evaluated. To perform this, techniques of machine
learning must be applied, and thus the brief explanation of this concept.

Machine learning (ML) is based on data analytics that automates analytical model
building. By using algorithms that iteratively learn from data, the computer can find
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hidden insights without being explicitly programmed where to look. This approach is
used when the problem is complex and can be described by many variables. It creates an
unknown target function that models the input into the desired output [52]. The learning
algorithm receives a set of labelled examples (inputs with corresponding outputs) and
learns by comparing its predicted output with correct outputs to find errors, modifying the
model accordingly. The resulting model can predict future events. When exposed to new
data, the model can adapt itself. In theory, if the algorithm works properly, the larger the
amount of data there are, the better are the predictions. However, they are limited by bias
in the algorithm and in the data, which can produce systematically skewed predictions.
Therefore, the complexity of the learning algorithm is critical and should be balanced with
the complexity of the data [52].

2.2.1. Pre-Processing

The EEG signal, per se, is very noisy, which is due to several aspects such as the low
signal-to-noise ratio—as it is collected from the individual’s scalp surface, the low spatial
resolution, and other sources such as artefacts or interfering frequencies [53]. Artefact
removal involves cancelling or correcting the artefacts without distorting the signal of
interest and can be implemented in both the temporal and spatial domains [54]. Usually, the
pre-processing concerns two types of filtering, in the frequency and the spatial domain [51]:
band-pass filtering consists of removing some frequencies, or frequency bands, from the
signal [53], outputting the frequency range of interest; and spatial filtering, which consists
of combining the original sensor signals, usually linearly, which can result in a signal with a
higher signal-to-noise ratio than that of individual sensors [51]. It combines the electrodes,
which leads to more discriminating signals [54]. According to Pejas [55], approaches
that rely on spatial filtering not only provide more true positives but also allow more
flexibility when choosing the electrode placement. Spatial filters that linearly combine
signals acquired from different EEG channels can extract and enhance the desired brain
activity; thus, usually, it is enough to place the electrodes somewhere in the desired area
and not in the exact location.

2.2.2. Feature Extraction and Classification

There are different types of features according to the domain from where they are
extracted: time, frequency, or spatial. Different methods are used to extract the features
from the EEG signal and further classify them so that the control commands can be obtained.
Table 3, partly adapted from [56], presents a group of techniques used by different authors.
It comprises several examples referring to the different principles: ERPs, SSVEP, ERD/ERS,
and Hybrid.

Table 3. Summary of different authors’ BCIs regarding the used EEG headset, the neuro-mechanism,
the extracted features, the classification methods, the outputted commands, and accuracy.

Article EEG Headset Principle Features Classifier Control Accuracy

[18] 12 Ag/Cl electrodes ERP—P300
Signal averaging and

standard
deviation

2 class Bayesian L/R/F/B
(45◦ or 90◦)/S 95%

[19] NuAmps and 12 electrodes ERP—P300 Data vectors of
concatenated epochs BLDA (Bayesian) 9 destinations 89.6%

[20] NuAmps and 15 electrodes ERP—P300 Raw signal SVM
7 locations, an
‘application

button’ and lock
90%

[21] gTec EEG (16 electrodes
and g.USBamp amplifier) ERP—P300 Moving average

technique LDA 15 locations, L/R and
validate selection 94%

[22] 16-channel electrode cap ERP—P300 Signal averaging Linear classifier 6 for the IW
(not specified) 92%

[23] Biopac MP150 EEG system ERP—P300 Signal averaging Linear classifier F/B/L/R —
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Table 3. Cont.

Article EEG Headset Principle Features Classifier Control Accuracy

[24] gTec EEG (12 electrodes
and g.USBamp amplifier) ERP—P300 Optimal statistical

spatial filter Binary Bayesian F/B/L/R
(45◦ or 90◦/S 88%

[25] Neuroscan (15 electrodes’
cap) ERP—P300 Signal averaging SVM

37 locations, validate
or delete selection,

stop and show extra
locations

—

[26] BioSemi ActiveTwo system
32 channels SSVEP Peaks in the

frequency magnitude — L/R >95%

[27] g.USBamp amplifier with
g.Butterfly active electrodes SSVEP Frequency band

power (PSD) SVM L/R/F/S 95%

[28] 8 gold electrodes connected
to the g.USBamp amplifier SSVEP — LDA L/R/B/F/S 90%

[29] gTec EEG with g.USBamp
amplifier SSVEP Frequency band

power (PSD)

Threshold
method

not specified
L/R/B/F 93.6%

[30] EEG Cap and g.USBamp
amplifier SSVEP CCA Bayesian F/L/R/turn on/off 87%

[31] BrainNet-36 with
12 channels SSVEP Frequency band

power (PSD) Decision trees L/R/F/S Qualitative
evaluation

[32] BrainNet BNT-36 with
3 channels SSVEP Frequency band

power (PSD)
Statistical
maximum L/R/F/B 95%

[33] 6 channels EEG cap SSVEP FFT and CCA CCA coefficient L/R/F/B/S >90%

[34] NeuroSky mindset ERD/ERS Frequency band
power (PSD) NN Game 91%

[35] Grass Telefactor EEG
Twin3 Machine ERD/ERS Coefficients from the

wavelets
Radial basis
function NN L/R/F/B/rest 100%

[36] G-TEC system with
5 Ag/AgCl electrodes ERD/ERS

Common spatial
frequency subspace

decomposition
(CSFSD)

SVM L/R/F 91–95%

[37] 8 channels EEG cap ERD/ERS

Mean, zero-crossing
and energy from
different levels of

the DWT

ANN L/R/F/S 91%

[38] 5 bipolar EEG channels and
a g.tec amplifier ERD/ERS

Logarithmic
frequency band

power
LDA L/R 75%

[39] ActiveTwo 64-channel
EEG system ERD/ERS

Frequency band
power (PSD)

and CSP
SVM Exoskeleton control

LH/LF/RH/RF 84%

[40] Emotiv EPOC ERD/ERS
PCA and average

power of the
wavelets’ sub-bands

NN w/BP L/R/F/B 91%

[42] Emotiv EPOC ERD/ERS —– Emotiv program L/R/F/S 70%

[56] Emotiv EPOC ERD/ERS Frequency
components SVM L/R/F/B/S 100%

[56] Emotiv EPOC ERD/ERS Frequency
components NN L/R/F/B/S 100%

[56] Emotiv EPOC ERD/ERS Frequency
components Bayesian L/R/F/B/S 94%

[56] Emotiv EPOC ERD/ERS Frequency
components Decision trees L/R/F/B/S 74%

[42] Emotiv EPOC ERD/ERS Frequency band
power (PSD) LDA L/R 70%

[43] Emotiv EPOC ERD/ERS Metrics from the
EEG signal Decision trees L/R 82%
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Table 3. Cont.

Article EEG Headset Principle Features Classifier Control Accuracy

[57] Emotiv EPOC ERD/ERS CSP SVM L/R 60%

[58] Emotiv EPOC ERD/ERS — LDA L/R 60%

[59] Emotiv EPOC ERD/ERS

PSD, Hjort
parameters, CWT and

DWT—PCA for
feature reduction

K-NN L/R 86–92%

[60] Emotiv EPOC ERD/ERS Energy distribution
from the DWT SVM L/R/T/N 97%

[61] Emotiv EPOC ERD/ERS CSP LDA L/R 68%

[61] Emotiv EPOC ERD/ERS CSP SVM L/R 68%

[61] Emotiv EPOC ERD/ERS CSP Nu-SVC RBF
Kernel L/R 68%

[44] EEG Cap—15 electrodes
ERD/ERS—
(L/R) and

SSVEP

CSP (ERD/ERS); CCA
(SSVEP)

SVM (ERD/ERS);
Canonical
correlation
coefficient
(SSVEP)

L/R/A/DA, maintain
an uniform velocity

and turn on/off
—

[45] Gtec Amplifier (15 channels)
ERD/ERS—

(L/R) SSVEP-
(Des)accelerate

CSP (ERD/ERS); CCA
(SSVEP) SVM L/R/A/DA —

[46] g.BSamp amplifier
(5 channels)

ERD/ERS and
SSVEP

Frequency band
power (PSD) LDA L/R 81%

[47,48] NuAmps device
(15 channels)

ERD/ERS and
ERP—P300 CSP LDA L/R/A/DA 100%

[48,49] NeuroSky
ERP—P300 and

Eye Blinking
(EMG)

Changes in the level Threshold L/R/F/B/S —

[5] SYMPTOM amplifier with
10 electrodes

ERP—P300 and
SSVEP

PCA (ERP); PSD
(SSVEP) LDA ERP—9 destinations

SSVEP—confirm 99%

L—left; R—right; F—forward; B—backward; S—stop; A—accelerate; DA—decelerate; H—hand; F—foot;
T—tongue; N—no imaging.

The ERD/ERS neuro-mechanism is a widely used one and has been producing notice-
able results. This corresponds to a change in the power of specific frequency bands since
the user is imagining or visualising a certain motor movement. The best combination is
obtained with SVMs or NN as classifiers. Authors such as Abiyev et al. [57] and Khare
et al. [35] achieved an impressive accuracy of 100%. The extracted features were all in the
frequency domain, mostly from the frequency coefficients, band power, or spatial filtering.
SSVEP BCIs can originate ace outcomes regardless of the classifier. This is probably due to
the neuro-mechanism itself, as it is linked to a specific frequency, facilitating the extraction
of the feature vector. However, contrarily to the ERD/ERS BCIs, these require some sort
of hardware, usually flashing buttons (each one at a unique frequency rate), which will
act as the stimulus for the user. The latter will focus on the button, which represents the
desired direction; hence, proportionally amplifying the EEG signal band corresponding
to the button frequency. The extracted features fall in the frequency domain and regard
the power in specific frequency bands (corresponding to the respective button). ERPs are
short amplitude deflections in the brain signal that are timestamped to an event. They are
identified by the triggering event, direction of deflection, observed location, and latency [7].
That is why these BCIs usually use temporal features, whereas ERD and SSVEP BCIs em-
ploy frequency features [6]. Concerning the used classifier, the BCI performance does not
seem to depend upon this choice. Regarding hybrid BCIs, it can be deduced that methods
that aim to decompose the signal are preferentially used to extract the features. Concerning
the classification, the used classifiers are mainly SVMs and LDA. It is possible to conclude
that, depending on the chosen neuro-mechanism, the type of extracted features will differ.
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However, for the classifiers, the same cannot be applied, although it is possible to infer that
some classifiers have a better performance than others have, namely, SVMs, NN, and LDA.

A BCI provides control and communication between human intention and physical
devices by translating the pattern of the brain activity into commands. The goal is to
use this as a way of controlling an IW, which will eventually lead to an increase in the
quality of life of people with disorders and limitations. A BCI has different main blocks:
signal acquisition, signal processing, and the application of the output commands. The
first one aims to collect the brain signals to feed them to the signal processing unit. There
are several ways of achieving this, with EEG being the most common, affordable, and
well-documented way. To make it even more accessible and portable for the patient, the
EEG headset should be wireless; hence, the Emotiv EPOC is the chosen one.

Moreover, the aim is to use the Emotiv EPOC headset as a way to record the user’s
brain activity, as it is rapidly installed and portable. Although many authors have already
proposed several solutions, none of them meet the required criteria to be commercialised,
either by the lack of portability or the lack of accuracy. Therefore, the final goal would be to
have a portable, comfortable, affordable, and reliable solution for an end-user consumer, so
that the system would ideally be prepared for an out-of-the-laboratory application. Thus,
this work contributes to the conceptualisation of the BCI system, regarding its architecture
and algorithms.

3. Materials and Methods

A motor imagery (MI) neuro-mechanism is proposed, as it allows the user to focus on
the path instead of focusing on the user interface, as the last two are stimulus-dependent
neuro-mechanisms. Figure 1 presents the overall scheme of the BCI architecture along with
its constituent parts.
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Figure 1. Scheme of the BCI architecture and its parts.

Three classes for the commands are used, namely left (0), right (1), and neutral (2).
The first two correspond to changes in the direction, whereas the last one implies that the
subject wishes to maintain the same direction. This choice relies on the fact that the left and
right are the basic commands to control a moving device and, since the system is working
in a continuum, the necessity of a neutral class to maintain the direction of movement arises.
According to Tang et al. [39], some subjects present a better ability to distinguish between
the feet and hands, rather than the left hand from the right one. Consequently, three
different runs are tested, where the subject can substitute one of the hands for the thought
of feet. More specifically, the subject may have a better performance while differentiating
the left hand from the feet, and it may be advantageous to use the thought of the feet to
turn to the right.

Moreover, the experiments are divided into two main parts: the validation of the
concept and the corresponding execution or testing. Regarding the first part, two datasets
are used, dataset 2a from the BCI competition IV (dataset A) [62] and another one acquired

37



Technologies 2024, 12, 80

in our laboratory using the Emotiv EPOC headset (dataset B). Concerning the execution of
the algorithm, a real-time acquisition from the headset is attempted and evaluated.

3.1. Datasets

Dataset A contains a four-class MI for different body parts: the left and right hand
(LH/RH), feet (F), and tongue. This dataset corresponds to dataset 2a of the BCI competition
IV and comprises 2 sessions of 288 trials from 9 different subjects. In each session, there
were 6 smaller sessions of 48 trials, each separated by breaks. It also encompasses an
evaluation dataset with the same characteristics as the previously described one. For this
work, the tongue MI was discarded, as it was not of interest.

The acquisition protocol for each trial can be seen in Figure 2 and it is a sequence
composed of a fixation cross (2 s), followed by an arrow representing the desired MI (1.5 s),
a period of blank screen for the subject to imagine the asked cue (2.75 s), and it finishes
with a break (~2 s). Furthermore, there is a sound alerting for the beginning and ending of
the MI period (4 s).
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Figure 2. Acquisition protocol for dataset A.

The signals were obtained using 22 Ag/AgCl electrodes, which were positioned
following the 10/20 system shown in Figure 3a. These were placed mostly at the central
part of the cortex, where the sensorimotor part is located.
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Figure 3. Electrodes’ placement, according to the 10/20 system, for both datasets: (a) dataset A;
(b) dataset B.

The acquisition protocol for dataset B was approximately the same as for dataset A,
with two differences inspired by Tang et al. [39], Dharmasena et al. [42], and Stock and
Balbinot [63]. More specifically, in the MI cue, the arrows were displayed on the screen
for the whole period, as shown in the diagram presented in Figure 4. Furthermore, the
indication of the start of a cue was not used to simplify the process. There were three
different cues: right hand (right arrow), left hand (left arrow), and foot (down arrow). The
set of sessions comprised 360 trials, 120 for each MI.
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Figure 4. Acquisition protocol for dataset B.

In total, signals from nine different healthy subjects were acquired, where subjects 4
and 6 are left-handed, while the others are right-handed. All subjects are below 25 years
old, except subject 5, who is 51. During acquisition, the subjects were seated comfortably in
a chair, in a quiet room, with their hands on the top of the table while looking at the screen;
they were also asked to keep their movements, such as eye gazing, sniffing, or coughing, to
a minimum. All the procedures were performed under the ethical standards of the 1964
Helsinki Declaration.

The electrode placement can be seen in Figure 3b. Although none of these match the
placement for dataset 2a, they still cover part of the central, parietal, and frontal locations
of the cortex, which are known for contributing to the MI [14]. However, it is expected that
the results will not be as satisfactory, as the centre of the cortex is not covered [61]. It is also
important to state that the recorded points may also depend on the format of the subject’s
head, as electrode placement on narrower heads will not be the same as for wider ones,
because the electrodes in the headset are fixed.

3.2. Data Processing

The two datasets were divided into training and test as follows:

• Dataset A: the training data supplied by the BCI Competition IV were used as a train
and the evaluation one as a test. The duration of the epochs was two seconds, as
explained in [62].

• Dataset B: 100 trials of each MI were used as training data, and the remaining 20
were used as tests. Usually, each subject would do a 20-trial session, which results in
5 sessions for training and 1 session for testing. For each visual cue and motor imagery
moment, as these had a duration of 5 s, two epochs of two seconds each were extracted,
allowing to double the data, ending up with 240 epochs, in total, for each class.

• A subject-oriented approach was followed, requiring the model to undergo training
specific to each subject before being tested. However, it should be noted that the
sessions utilised for testing differed from those used for training purposes.

3.2.1. Pre-Processing and Feature Extraction

Filtering the EEG signal is already enough to remove noise and ocular artefacts, which
are the most common. The first comprises high frequencies, which are discarded, as these
are not included in the bands of interest. Moreover, ocular artefacts mainly appear in the
theta band, which, once again, is not a band of interest for the MI paradigm. Thus, for
every feature extraction approach, presented in the next section, a filtering step is always
applied to eliminate these artefacts. The main methods for feature extraction regarding the
MI paradigm are spatial filtering using the common spatial pattern (CSP) approach and the
use of the signal’s frequency band or the frequency coefficients as features. The different
approaches were tested, but with some variations. The next steps, feature selection and
classification, were the same for all the approaches.

1. Filter Bank Common Spatial Pattern I

As dataset A is from a competition, the first approach was to develop an algorithm
based on the winning method, denoted the filter bank common spatial pattern (FBCSP),
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as described in [62]. The goal is to maximise the best band for each user, which results in
dividing the alpha and beta bands into nine sub-bands, from 4 Hz to 40 Hz. Although Ang
et al. [62] use a Chebyshev II filter, in this work a Butterworth filter of order five and zero
phase was applied. This choice lies in the facts that this filter is known for being the flattest
in the passing band, the zero phase provides zero group distortion, and the order five is a
nice compromise with respect to speed. The FBCSP algorithm applies the CSP procedure
to each sub-band of the signal. The algorithm generates a linear filter, which is used to
extract features that best discriminate between classes, by maximising the ratio between
their covariance matrices [64].

2. Filter Bank Common Spatial Pattern II

This approach follows the same principles as the first approach but, after obtaining a
spatial filter, the average power of Z is computed and used as features.

3. Power Spectral Density

The signal is filtered using a Butterworth filter, for the reasons previously enunciated,
from 4 to 35 Hz to comprise the alpha and beta bands. Afterwards, epochs of two seconds
are obtained and normalised. The latter consists of centring each channel to have zero mean.
For that, the mean of each epoch for each channel is calculated and then subtracted [57].
Afterwards, the Welch method, with a Hanning window, is applied to obtain the power
spectral density for each epoch, which is used as the features vector. The Welch method con-
sists of dividing the signal into overlapping segments, which are further windowed. Then,
the signal periodogram, which is an estimate of the signal spectral density, is calculated,
resorting to the discrete Fourier transform. Windowing the segments, for example with
the Hanning window, allows for mitigating spectral leakage. This is because the Fourier
transform assumes that the signal is periodic, and non-periodic signals lead to sudden
transitions that have a broad frequency response [65]. Different methods for choosing the
most significant features were tested, namely a method based on a mutual information
criterion, the ANOVA F test, and the extra trees classifier, to compute the features’ impor-
tance. The first measures the dependency between two random variables and relies on
non-parametric methods based on entropy estimation, such as from K-nearest neighbours,
to improve the selection. The second assesses the amount of variability between each class
mean, in the context of the variation within the different classes, to determine whether
the mean differences are statistically significant or not. Finally, the extra trees classifier
is used to compute the importance of the features, allowing the irrelevant ones to be dis-
carded. For either of the methods, only the K best features are selected. This is performed
by a 10-fold cross-validation, using 5–70% of the features. The 70% limit is imposed to
prevent overfitting.

3.2.2. Classification

The classifiers were trained to differentiate between three different classes. Due to
slower computational time and the fact that they might generate overfitting, non-linear
classifiers were not used as a first approach [56]. Thus, four classifiers were trained:
Gaussian Naive Bayes (GNB), linear discriminant analysis (LDA), linear support vector
machines (LSVMs), and logistic regression (LR). Using these four classifiers, different
combinations were tested, as represented in Table 4.
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Table 4. Testing a combination of classifiers.

Number of
Classifiers Type Number of

Classifiers

1
Non-probabilistic

2—Ensemble

Voting Hard

Probabilistic—F1 Voting Soft

2
Non-probabilistic AdaBoost

Probabilistic—F1

When using a single classifier to predict the result, there are two main approaches:
predict a class or predict the probability of belonging to each class. In the latter approach,
the ideal value for the probability threshold can be obtained through different metrics.
The F1-score was the chosen one, as it considers both the precision and the recall of the
classifier. When using two classifiers to predict the final command, different approaches
were applied, which are further explained:

• Two classifiers: if both classifiers predict that the class is 0, then the class is 0; the same
is applied for classes 1 and 2. However, if they do not agree with the classification,
then the trial is classified as 2 in order to decrease the number of false positives, which
in this case are the trials miss-classified as MI to the left or right;

• Two classifiers with variable probability: the idea behind this approach is the same
as before; however, the output of each classifier is a probability and not a class label.
Thus, a threshold is estimated for each one of the classifiers to output a label, and then
the same method is applied, as explained for the two classifiers;

• Ensemble methods: these methods are already developed and are widely used to
combine the different predictions so that a more generalised and robust model can
be obtained. These methods can be divided into two main groups: averaging and
boosting. Regarding the first one, the different classifiers are built independently
and only after that are their outputs combined to reduce the variance. Concerning
the boosting methods, the classifiers are built sequentially so that the next classifier
can try to decrease the bias of the combined. Voting classifier: this combines the
predictions of the different classifiers and outputs a final prediction as the result of a
majority vote. This majority vote can be hard or soft. Hard: each classifier predicts
the class, and the final prediction is the one that most of them predicted. The final
prediction can be obtained using a weighted averaging procedure if the classifiers
have different weights. Soft: each classifier has a weight and predicts the probability
of each class, and then the final prediction is obtained using a weighted averaging
procedure. AdaBoost: considers several initial classifiers, called weak learners, and
combines their predictions through a weighted majority vote. This process is repeated,
and at each iteration/boost the data are modified. Each sample starts with a weight,
and if it is incorrectly classified its weight increases for the classifier to notice it more;
on the other hand, correctly classified samples have their weights reduced. After
several iterations, the overall classifier, or strong learner, is expected to be better than
the individual ones.

To further improve results, several non-linear classifiers were also tested. These include
the K-nearest neighbours (K-NNs), kernel support vector machines (KSVMs), decision trees
(DTs), neural networks (NNs), and, finally, random forest (RF). Similarly to linear classifiers,
the same combinations of classifiers were tested as well. As these classifiers require more
data to obviate overfitting, for each trial of MI, which had a duration of five seconds, more
epochs were extracted. For each trial, two epochs of two seconds were extracted. The
first second of the signal was not used, as a preventive way, since the image of the arrow
could act as a stimulus for the pretended direction. Hereupon, this time is sufficient for
the person to assimilate which MI must do. Nevertheless, the approach of doubling the
number of epochs ended up also being used for the linear and statistical classifiers. This
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was to ensure that both methods used the same amount of data. Table 5 summarises all the
optimised hyper-parameters for the respective classifiers, as well as a brief description of
their function. The optimisation process was carried out using a grid search with a 5-fold
cross-validation decided by the F1-score.

Table 5. Optimised hyper-parameters for the different classifiers.

Supervised
Classifier Hyper-Parameter Grid Search Space Description

LR C logspace −4 to 6, step
size 1

Regularisation parameter, which has a significant effect on
the generalisation performance of the classifier

K-NN n_neighbors 1 to 50, step size 10 Number of neighbours to use

SVM

Kernel rbf—Gaussian kernel
function

Function used to compute the kernel matrix for
classification

gamma logspace −3 to 6, step
size 1

Regularisation parameter used in RBF kernel, which has
significant impact on the performance of the kernel

C logspace −3 to 7, step
size 1

Regularisation parameter, which has a significant effect on
the generalisation performance of the classifier

DT

max_depth 1 to 20, step size 2
The maximum depth of the tree. If none, then nodes are

expanded until all leaves are pure or until all leaves
contain less than min_samples_split samples.

min_samples_split 10 to 500, step size 20 Minimum number of samples required to split a node

min_samples_leaf 1 to 10, step size 2 Minimum number of samples required in a newly created
leaf after the split

NN

hidden_layers 5 to 55, step 10 The i element represents the number of neurons in the i
hidden layer

activation relu—rectified linear
unit function Activation function for the hidden layer

solver
adam—stochastic

gradient-based
optimiser

The solver for weight optimisation

learning_rate constant Learning rate schedule for weight updates. If ‘constant’,
the learning rate is given by learning_rate_init

learning_rate_init logspace −4 to 4, step 1 The initial learning rate used. It controls the step size in
updating the weights.

alpha logspace −4 to 4, step 1 L2 penalty (regularisation term) parameter.

RF

n_estimators 10 to 100, step 20 Number of trees in the forest

max_depth None or 2 to 10, step
size 2

The maximum depth of the tree. If none, then nodes are
expanded until all leaves are pure or until all leaves

contain less than min_samples_split samples.

min_samples_split 10 to 500, step size 20 The minimum number of samples required to split a node

min_samples_leaf 1 to 10, step size 2 The minimum number of samples required in a newly
created leaf after the split

LR—logistic regression; K-NN—K-nearest neighbour; SVM—support vector machine; DT—decision tree;
NN—neural networks; RF—random forest.

3.2.3. Evaluation

To evaluate the results from the different approaches on the two datasets, the F1-score,
the kappa score, and the false positive (FP) rate were used. The F1-score is the average
of the precision and recall, and it reaches its best value at 1 (perfect precision and recall)
and worst at 0. The kappa score expresses the level of agreement between two annotators.
Although it is not usually used to compare a prediction with a ground truth, it was the only
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metric provided by the IV BCI Competition. A kappa value between −1 and 0 denotes a
random classifier, while a value near 1 means a perfect one. Concerning the FP rate, a new
metric was developed, since it is more important, for the final application, to penalise the
FPs from classes 0 and 1, than from class 2. Nevertheless, a high rate of true positives is
still desirable, independently of the class. Thus, the false positive rate was used for this
evaluation. For an FP rate higher than 1, the classifier produces more false positives than
true positives; hence, a rate smaller than 1 is desirable. For each subject, the best run out of
the three was obtained based on the F1-score. Then, for that run, the respective kappa score
and FP rate are also presented. Furthermore, for all the approaches, the feature selector
was the extra trees. Table 6 contains the used linear and statistical classifiers (0–3), and the
non-linear classifiers (4–8).

Table 6. Labels of the classifiers.

Number Name

0 Gaussian Naive Bayes (GNB)

1 Linear discriminant analysis (LDA)

2 Linear support vector machines (LSVMs)

3 Logistic regression (LR)

4 K-nearest neighbours (K-NNs)

5 Kernel support vector machines (KSVMs)

6 Decision trees (DTs)

7 Neural networks (NNs)

8 Random forest (RF)

The first step consisted of only applying the linear and statistical classifiers. After-
wards, with the intent of improving even more the performance of the approach that
presented the best results, the non-linear classifiers, along with the first set of classifiers,
were only applied to the correspondent approach. This is because these classifiers take
longer to run and optimise.

3.3. Hardware and Software

Python version 3 was the programming language used for the experimental work
related to signal processing and classification, along with Numpy, Pandas, Seaborn, and
Scikit-Learn libraries. For real-time testing, an interface was required to deliver the raw data
acquired by the headset to Python. Given that the headset is an Emotiv EPOC, the pyemotiv
Python library was applied. This library interfaces with the Emotiv EPOC research SDK,
provided by the distributor, enabling the output of raw EEG data for the experimental
setup [17].

4. Results

This section presents the results obtained from the different approaches previously
explained, as well as the outcomes of a real-time application.

4.1. Filter Bank Common Spatial Pattern I—FBCSP I

In this approach, only the linear and statistical classifiers are used to build the different
classifier combinations, since the obtained results were not the best.

4.1.1. FBCSP I Approach Using Dataset A

Table 7 presents the obtained F1-score for the different combinations, using only linear
or statistical classifiers. The row “Best” corresponds to the best score for each subject. Most
subjects presented a preferable run, regardless of the combinations, except for subject 1,
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who chose, at least once, one of the three runs. The highest F1-score, on average, was
obtained by the ensemble voting hard, which can be explained as it corresponds to the
major vote between the two best classifiers; thus, by combining their predictions, it comes
out as more accurate.

Table 7. F1-score, kappa, and FP rate for dataset A and FBCSP I, using the first set of classifiers.

Average 1 2 3 4 5 6 7 8 9

F1-score 1 Classifier 0.729 0.763 0.560 0.906 0.708 0.615 0.601 0.903 0.774 0.733
Prob. F1 0.729 0.797 0.663 0.883 0.714 0.603 0.575 0.896 0.662 0.768
2 Classifiers 0.712 0.782 0.496 0.920 0.679 0.610 0.546 0.848 0.776 0.751
Prob. F1 0.738 0.792 0.623 0.932 0.689 0.634 0.567 0.874 0.768 0.760
Soft 0.730 0.843 0.597 0.950 0.692 0.563 0.592 0.848 0.749 0.735
Hard 0.748 0.801 0.632 0.928 0.719 0.647 0.615 0.869 0.759 0.758
Ada 0.682 0.694 0.588 0.856 0.616 0.551 0.509 0.894 0.676 0.750
Best 0.765 0.843 0.663 0.950 0.719 0.647 0.615 0.903 0.776 0.768

Kappa 1 Classifier 0.587 0.632 0.333 0.854 0.556 0.410 0.396 0.847 0.660 0.597
Prob. F1 0.573 0.694 0.493 0.819 0.556 0.299 0.354 0.840 0.472 0.632
2 Classifiers 0.583 0.653 0.236 0.875 0.500 0.403 0.546 0.764 0.660 0.611
Prob. F1 0.590 0.674 0.438 0.896 0.535 0.382 0.347 0.792 0.646 0.604
Soft 0.586 0.764 0.389 0.924 0.521 0.347 0.354 0.771 0.618 0.590
Hard 0.607 0.701 0.361 0.889 0.569 0.472 0.417 0.785 0.639 0.632
Ada 0.535 0.542 0.493 0.785 0.424 0.326 0.264 0.840 0.514 0.625
Best 0.656 0.764 0.493 0.924 0.569 0.472 0.546 0.847 0.660 0.632
Winner 0.570 0.680 0.420 0.750 0.480 0.400 0.270 0.770 0.750 0.610

FP rate 1 Classifier 0.295 0.206 0.475 0.092 0.355 0.565 0.527 0.031 0.228 0.177
Prob. F1 0.271 0.134 0.294 0.111 0.178 0.878 0.423 0.123 0.200 0.098
2 Classifiers 0.264 0.090 0.613 0.071 0.250 0.415 0.607 0.066 0.144 0.119
Prob. F1 0.195 0.095 0.415 0.045 0.282 0.165 0.516 0.027 0.145 0.063
Soft 0.334 0.126 0.578 0.044 0.361 0.582 0.699 0.098 0.280 0.242
Hard 0.271 0.145 0.734 0.060 0.188 0.414 0.500 0.038 0.189 0.172
Ada 0.386 0.307 0.685 0.157 0.474 0.571 0.755 0.109 0.260 0.154
Best 0.159 0.090 0.294 0.044 0.178 0.165 0.423 0.027 0.144 0.063

Table 7 presents the respective kappa score, corroborating with the ensemble voting
hard being the best combination. The kappa score from the winner of the IV BCI competition
is also presented. However, the competition involved the classification of four classes:
left hand, right hand, foot, and tongue; as for this work, there are only three classes: left,
right, and neutral. Thereafter, the results from the competition are here exposed just as a
qualitative comparison. Hereupon, the obtained kappa value of 0.604 is in the same order
of magnitude as the result from the competition, 0.57, and thus higher than 0.5, which
surely reflects the no randomness of the classifiers. Moreover, the FP rate had its lowest
value, on average, for the one probabilistic classifier, whose threshold was decided based
on the maximisation of the F1-score. This result is logical, as, by maximising the F1-score,
there is an implicit maximisation of the precision and the recall, thus minimising the FP
rate. However, the lowest FP rate was expected to belong to the ensemble voting hard
because it was the combination with the highest F1-score. These different approaches
correspond to different combinations of several classifiers. Table 8 presents the best ones
for the different approaches and subjects. It can be concluded that the best algorithms
correspond to the Gaussian Naive Bayesian classifier (0), linear discriminant analysis (1)
and logistic regression (3), which was not presumed, as the LR was seldom mentioned
during the literature review. Concerning the linear SVM (2), it was never picked, suggesting
that it is not a good classifier for this dataset, using these features, as it is not capable of
accurately distinguishing the three classes.
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Table 8. Best classifiers, from the first set, for each combination for dataset A and FBCSP I.

1 2 3 4 5 6 7 8 9

1 Classifier 0 0 3 3 3 3 3 3 3
Prob. F1 0 3 3 3 3 0 0 1 3
2 Classifiers 3 0 3 1 3 1 1 3 0 1 3 0 0 1 3 0 3 1
Prob. F1 0 1 3 1 0 3 3 1 0 3 0 3 3 0 1 3 1 0
Soft 0 3 3 1 3 1 3 0 3 1 0 3 0 3 3 0 1 3
Hard 3 0 0 1 0 3 3 0 3 0 3 0 3 0 1 3 3 1

0—Gaussian Naïve Bayesian; 1—linear discriminant analysis; 3—logistic regression.

4.1.2. FBCSP I Approach Using Dataset B

Similarly to what was presented for dataset A, Table 9 introduces the F1-score for the
best run in each approach. Contrary to A, several subjects picked all three runs at least once
as their best. Only subjects 5, 6, and 7 picked one or two. This already suggests that the
extracted features were not very strongly indicative of the class. Once again, the best F1-
score was obtained by the ensemble voting hard approach, followed by the two classifiers.
However, since the F1-score varies from 0 to 1, the obtained result is not satisfactory as it
stays in the bottom half of the spectrum. Similarly, for the kappa score, the value of 0.218
is closer to 0 than to 1, indicating that the classifier is closer to random than to perfect, as
presumed. The FP rate is quite high, reaching almost 1, that is to say, the number of FP is
almost the same as TP, thus manifesting that this approach is not adequate for the ultimate
goal of controlling an IW. A very low FP rate is mandatory to maintain the safety of the IW
driver. Nevertheless, subjects 3 and 1 presented a better performance than the others did,
presenting scores equivalent to dataset A, which corroborates that people have different
aptness regarding MI [40]. Nevertheless, it is also important to consider inter-individual
differences, such as distinct brainwave patterns, cognitive abilities, and learning speeds,
among others. This major difference between subjects may also be due to the positioning
of the headset, as the electrodes are fixed, which may lead to more coverage of the motor
cortex in some subjects than in others.

Table 10 contains the chosen classifiers for the different methods. Similarly to A, LR
(3) and LDA (1) presented the best performance. However, the Gaussian Naive Bayes (0)
did not perform well enough to be chosen. Once again, the linear SVM (2) was not picked.

Table 9. F1-score, kappa, and FP rate for dataset B and FBCSP I, using the first set of classifiers.

Average 1 2 3 4 5 6 7 8 9

F1-score 1 Classifier 0.444 0.507 0.386 0.636 0.400 0.375 0.405 0.456 0.390 0.439
Prob. F1 0.438 0.470 0.416 0.662 0.316 0.492 0.334 0.437 0.361 0.452
2 Classifiers 0.448 0.442 0.456 0.622 0.391 0.419 0.361 0.442 0.404 0.496
Prob. F1 0.427 0.427 0.353 0.640 0.444 0.403 0.333 0.442 0.303 0.496
Soft 0.435 0.485 0.358 0.592 0.430 0.455 0.401 0.406 0.330 0.453
Hard 0.484 0.597 0.401 0.626 0.410 0.547 0.386 0.470 0.483 0.440
Ada 0.428 0.417 0.375 0.625 0.392 0.433 0.383 0.358 0.375 0.492
Best 0.507 0.597 0.456 0.662 0.444 0.547 0.405 0.470 0.483 0.496

Kappa 1 Classifier 0.160 0.262 0.075 0.450 0.075 0.063 0.100 0.175 0.075 0.162
Prob. F1 0.150 0.175 0.000 0.488 0.075 0.250 0.012 0.125 0.050 0.175
2 Classifiers 0.133 0.162 0.188 0.438 0.037 0.125 0.050 0.000 0.137 0.063
Prob. F1 0.121 0.137 −0.012 0.438 0.037 0.150 0.000 0.137 −0.038 0.238
Soft 0.146 0.225 0.037 0.387 0.137 0.175 0.113 0.075 −0.012 0.175
Hard 0.218 0.387 0.100 0.438 0.088 0.325 0.063 0.200 0.200 0.162
Ada 0.142 0.125 0.063 0.438 0.088 0.150 0.075 0.037 0.063 0.238
Best 0.253 0.387 0.188 0.488 0.137 0.325 0.113 0.200 0.200 0.238
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Table 9. Cont.

Average 1 2 3 4 5 6 7 8 9

FP rate 1 Classifier 0.908 0.672 1.239 0.355 1.370 0.867 0.646 0.852 1.435 0.736
Prob. F1 1.202 1.056 2.000 0.380 1.587 0.767 1.610 1.240 1.273 0.907
2 Classifiers 0.796 0.811 0.727 0.373 0.744 0.680 0.955 1.250 1.000 0.622
Prob. F1 0.888 0.804 1.949 0.240 0.209 0.596 0.975 1.176 1.486 0.559
Soft 0.918 0.793 1.116 0.451 1.059 0.611 0.857 1.043 1.590 0.741
Hard 0.730 0.521 1.125 0.440 0.511 0.439 1.156 0.839 0.821 0.717
Ada 0.916 0.720 1.222 0.373 1.426 0.692 1.065 1.302 1.000 0.441
Best 0.543 0.521 0.727 0.240 0.209 0.439 0.646 0.839 0.821 0.441

Table 10. Best classifiers, from the first set, for each combination for dataset B and FBCSP I.

Classifiers 1 2 3 4 5 6 7 8 9

1 Classifier 3 1 3 3 3 3 1 3 3
Prob. F1 1 3 3 3 3 3 3 3 3
2 Classifiers 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 1 3
Prob. F1 3 1 3 1 3 1 0 3 3 1 3 1 3 1 3 1 3 1
Soft 3 1 3 1 1 3 3 1 3 1 1 3 1 3 1 3 3 1
Hard 3 1 1 3 3 1 3 1 3 1 3 1 3 1 3 1 1 3

0—Gaussian Naïve Bayesian; 1—linear discriminant analysis; 3—logistic regression.

4.2. Filter Bank Common Spatial Pattern II—FBCSP II

Next, we describe the implementation of the FBCSP II approach using dataset A,
providing detailed analysis and results of the classification performance. Following that,
we examine the application of the same approach using dataset B, shedding light on its
efficacy and comparative performance metrics.

4.2.1. FBCSP II Approach Using Dataset A

Table 11 presents the F1-score for dataset A, regarding the use of only linear or
statistical classifiers. Most of the subjects present a preference concerning the run; for
others, such as 3 and 5, it is not clear, as the three runs were chosen as the best one, at least
once. Globally, the different classifier combinations presented resulted more or less in the
same ranking and behaved as expected. The best F1-score was obtained, once again, for
the ensemble voting hard approach, followed by the one classifier approach, which was
not prospected, as it is intuitive that the output of two classifiers would be more accurate
than just one. The worst score corresponds to the AdaBoost, thus clearly excluding it as a
recommended approach.

The best kappa was from the ensemble voting hard approach, 0.693, which is higher
than the one from the previous approach, 0.607, and in the same order of magnitude as 0.57,
the kappa score of the competition’s winner. It was already prospected that both the two
classifier approaches would present a lower FP rate because they prevent the FP for classes
0 and 1. This is also one of the reasons why their F1-score is slightly lower than for the other
approaches. AdaBoost presented the lower F1-score and kappa, and therefore presented
the highest FP rate. It can be concluded (Table 12) that the best algorithms correspond
once again to linear discriminant analysis (1) and logistic regression (3). The Gaussian
Naive Bayesian classifier (0) was chosen a few times; however, it was almost always the
second-best classifier, whereas the linear SVM (2) was never picked. Therefore, it is possible
to conclude that the latter is not a good classifier for this dataset using these features, as it
is not capable of accurately distinguishing the three classes.
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Table 11. F1-score, kappa, and FP rate for dataset A and FBCSP II, using the first set of classifiers.

Average 1 2 3 4 5 6 7 8 9

F1-score 1 Classifier 0.793 0.856 0.697 0.950 0.838 0.606 0.668 0.898 0.782 0.846
Prob. F1 0.792 0.854 0.643 0.928 0.849 0.629 0.663 0.923 0.788 0.855
2 Classifiers 0.785 0.840 0.643 0.933 0.840 0.604 0.686 0.859 0.842 0.817
Prob. F1 0.783 0.840 0.643 0.930 0.840 0.644 0.686 0.859 0.793 0.817
Soft 0.787 0.878 0.682 0.921 0.825 0.662 0.608 0.888 0.805 0.818
Hard 0.797 0.829 0.698 0.949 0.833 0.618 0.679 0.924 0.774 0.871
Ada 0.724 0.801 0.620 0.894 0.769 0.616 0.542 0.819 0.745 0.713
Best 0.818 0.878 0.698 0.950 0.849 0.662 0.686 0.924 0.842 0.871

Kappa 1 Classifier 0.683 0.785 0.535 0.924 0.757 0.382 0.500 0.833 0.667 0.764
Prob. F1 0.685 0.764 0.465 0.928 0.764 0.431 0.479 0.882 0.674 0.778
2 Classifiers 0.596 0.681 0.361 0.896 0.611 0.292 0.382 0.639 0.764 0.743
Prob. F1 0.658 0.757 0.458 0.889 0.750 0.396 0.521 0.757 0.681 0.715
Soft 0.623 0.757 0.472 0.875 0.736 0.493 0.306 0.826 0.701 0.438
Hard 0.693 0.743 0.542 0.924 0.750 0.424 0.514 0.882 0.653 0.806
Ada 0.586 0.701 0.431 0.840 0.653 0.424 0.313 0.729 0.618 0.569
Best 0.720 0.785 0.542 0.928 0.764 0.493 0.521 0.882 0.764 0.806
Winner 0.570 0.680 0.420 0.750 0.480 0.400 0.270 0.770 0.750 0.610

FP rate 1 Classifier 0.218 0.108 0.383 0.029 0.127 0.646 0.347 0.016 0.238 0.071
Prob. F1 0.161 0.038 0.317 0.040 0.066 0.403 0.255 0.025 0.237 0.065
2 Classifiers 0.192 0.153 0.532 0.035 0.131 0.395 0.276 0.024 0.132 0.050
Prob. F1 0.150 0.083 0.370 0.080 0.067 0.186 0.279 0.011 0.194 0.080
Soft 0.238 0.127 0.529 0.081 0.152 0.336 0.581 0.042 0.197 0.097
Hard 0.195 0.145 0.340 0.044 0.156 0.429 0.295 0.020 0.247 0.080
Ada 0.260 0.116 0.463 0.109 0.229 0.474 0.624 0.068 0.118 0.136
Best 0.121 0.038 0.317 0.029 0.066 0.186 0.255 0.011 0.132 0.050

Table 12. Best classifiers, from the first set, for each combination for dataset A and FBCSPII.

Classifiers 1 2 3 4 5 6 7 8 9

1 Classifier 3 3 3 3 3 3 3 3 3
Prob. F1 3 3 1 3 3 3 3 3 3
2 Classifiers 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
Prob. F1 3 0 3 1 1 3 3 1 3 1 3 1 3 1 3 1 3 1
Soft 0 3 3 0 3 1 3 0 3 0 3 1 3 1 3 0 3 0
Hard 3 0 3 1 3 1 3 0 3 0 3 1 3 1 3 0 3 1

0—Gaussian Naïve Bayesian; 1—linear discriminant analysis; 3—logistic regression.

Due to their promising results, the use of non-linear classifiers was also tested. How-
ever, the results, contrary to what was expected, did not improve; instead, they stayed
roughly the same. Furthermore, the best combination was not the ensemble voting hard
but the two classifiers, which reflected in a lower FP rate. Regarding the kappa score, its
average value is very close to the one previously obtained for the first group of classifiers.

4.2.2. FBCSP II Approach Using Dataset B

Similarly to what was presented for dataset A, Table 13 introduces the F1-score for the
best run in each approach. Most of the subjects presented a preference regarding a run or
two. The best classifier was the AdaBoost, with an average F1-score of 0.504, immediately
followed by the ensemble voting soft, with a score of 0.497. Moreover, the highest F1-score
value was lower than for A but higher than for the previous approach, 0.484. Once again,
it is important to emphasise that subject 1 and subject 3 presented scores equivalent to
dataset A.
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Table 13. F1-score, kappa, and FP rate for dataset B and FBCSP II, using the first set of classifiers.

Average 1 2 3 4 5 6 7 8 9

F1-score 1 Classifier 0.461 0.612 0.451 0.712 0.438 0.515 0.479 0.472 0.000 0.471
Prob. F1 0.478 0.556 0.431 0.710 0.394 0.506 0.467 0.456 0.316 0.463
2 Classifiers 0.454 0.606 0.435 0.697 0.431 0.527 0.471 0.468 0.000 0.455
Prob. F1 0.457 0.605 0.433 0.700 0.437 0.506 0.490 0.456 0.000 0.489
Soft 0.497 0.624 0.425 0.716 0.414 0.526 0.481 0.481 0.337 0.471
Hard 0.486 0.612 0.433 0.705 0.408 0.515 0.422 0.472 0.332 0.471
Ada 0.504 0.517 0.417 0.742 0.475 0.500 0.508 0.467 0.342 0.567
Best 0.524 0.624 0.451 0.742 0.475 0.527 0.508 0.481 0.342 0.567

Kappa 1 Classifier 0.243 0.400 0.175 0.550 0.137 0.275 0.225 0.200 0.000 0.225
Prob. F1 0.200 0.262 0.100 0.513 0.088 0.225 0.200 0.188 0.000 0.225
2 Classifiers 0.232 0.387 0.150 0.513 0.125 0.288 0.213 0.200 0.012 0.200
Prob. F1 0.233 0.375 0.150 0.513 0.137 0.225 0.238 0.188 0.025 0.250
Soft 0.244 0.425 0.137 0.563 0.113 0.288 0.225 0.213 0.013 0.225
Hard 0.224 0.400 0.150 0.538 0.100 0.275 0.125 0.200 0.000 0.225
Ada 0.256 0.275 0.125 0.613 0.213 0.250 0.262 0.200 0.012 0.350
Best 0.285 0.425 0.175 0.613 0.213 0.288 0.262 0.213 0.025 0.350

FP rate 1 Classifier 0.515 0.306 0.741 0.167 0.51 0.597 0.69 0.804 0.05 0.776
Prob. F1 0.459 0.361 0.563 0.136 0.511 0.241 0.804 0.727 0.15 0.638
2 Classifiers 0.49 0.296 0.731 0.148 0.5 0.524 0.667 0.714 0.024 0.804
Prob. F1 0.444 0.373 0.563 0.173 0.549 0.241 0.695 0.618 0.071 0.717
Soft 0.544 0.311 0.882 0.188 0.592 0.556 0.724 0.772 0.098 0.776
Hard 0.561 0.306 0.827 0.169 0.646 0.597 0.8 0.804 0.125 0.776
Ada 0.513 0.468 0.68 0.124 0.404 0.55 0.77 0.804 0.293 0.529
Best 0.385 0.296 0.563 0.124 0.404 0.241 0.667 0.618 0.024 0.529

Furthermore, the best value for the average kappa score, 0.256, is both lower than the
one for dataset A and also lower than the value of the competition; however, it is higher
than the value of 0.218 from FBCSP I. Nevertheless, is still not a desirable value as it is
too close to 0. As presumed from the previous scores, the FP rate is higher for dataset
B than for dataset A. The lowest value, 0.444, was obtained with the one probabilistic
classifier approach. The FP rate for the best approach, AdaBoost, was 0.513, which is
high but still lower than the best for approach FBCSP I, 0.730. Concerning the selected
classifiers, it is clear, from Table 14, that LDA and LR were preferred over the other two.
Moreover, the Gaussian Naive Bayes classifier was not chosen as the best one for either of
the combinations. Despite what was concluded from dataset A, the linear SVM was picked
for this one, even if only once, which endorses that LDA and LR are the most suitable
classifiers for this approach.

Table 14. Best classifiers, from the first set, for each combination for dataset B and FBCP II.

S1 S2 S3 S4 S5 S6 S7 S8 S9

1 Classifier 3 1 2 3 1 3 1 1 3
Prob. F1 3 1 3 3 3 3 1 1 3
2 Classifiers 3 1 1 3 3 1 3 1 1 3 3 1 1 3 1 3 3 1
Prob. F1 3 1 1 3 3 1 3 1 3 1 3 1 1 3 1 3 3 1
Soft 3 1 1 3 3 1 3 1 1 3 3 1 1 3 1 3 3 1
Hard 3 1 1 3 3 1 3 1 1 3 1 3 1 3 1 3 3 1

1—Linear discriminant analysis; 2—linear support vector machines; 3—logistic regression.

Because the formerly exposed results were not satisfactory, in the sense that they are
not acceptable for a real application, further approaches demanded to be tested. Moreover,
as FBCSP II was better than FBCSP I, non-linear classifiers were added to the previous
classifiers to be trained and tried out. Table 15 contains the F1-score from this method. As
expected, the results improved compared with the linear and statistical classifiers approach.
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Two combinations obtained the same average F1-score, the one classifier, and the ensemble
voting hard, which was not foreseen as it was presumed that two classifiers would predict
a more accurate result rather than just one.

Table 15. F1-score, kappa, and FP rate for dataset B and FBCSP II, using both sets of classifiers.

Average 1 2 3 4 5 6 7 8 9

F1-score 1 Classifier 0.651 0.747 0.595 0.911 0.604 0.660 0.706 0.604 0.517 0.515
Prob. F1 0.648 0.718 0.631 0.912 0.628 0.667 0.737 0.642 0.450 0.447
2 Classifiers 0.588 0.712 0.586 0.773 0.582 0.601 0.613 0.545 0.460 0.418
Prob. F1 0.599 0.712 0.560 0.771 0.619 0.650 0.658 0.623 0.374 0.418
Soft 0.646 0.758 0.626 0.892 0.589 0.644 0.678 0.622 0.485 0.519
Hard 0.651 0.747 0.595 0.911 0.604 0.660 0.706 0.604 0.517 0.515
Ada 0.668 0.758 0.631 0.912 0.628 0.667 0.737 0.642 0.517 0.519
Best 0.651 0.747 0.595 0.911 0.604 0.660 0.706 0.604 0.517 0.515

Kappa 1 Classifier 0.426 0.463 0.375 0.863 0.387 0.488 0.525 0.387 0.125 0.225
Prob. F1 0.433 0.625 0.175 0.863 0.425 0.488 0.563 0.463 0.100 0.200
2 Classifiers 0.359 0.550 0.313 0.625 0.400 0.390 0.413 0.325 0.050 0.162
Prob. F1 0.413 0.575 0.325 0.638 0.413 0.475 0.488 0.438 0.175 0.188
Soft 0.447 0.625 0.450 0.838 0.375 0.463 0.450 0.425 0.150 0.250
Hard 0.443 0.600 0.375 0.863 0.387 0.488 0.538 0.387 0.125 0.225
Ada 0.478 0.625 0.450 0.863 0.425 0.488 0.563 0.463 0.175 0.250
Best 0.426 0.463 0.375 0.863 0.387 0.488 0.525 0.387 0.125 0.225

FP rate 1 Classifier 0.471 0.519 0.314 0.101 0.690 0.468 0.422 0.648 0.080 1.000
Prob. F1 0.411 0.322 0.111 0.101 0.595 0.506 0.400 0.506 0.125 1.036
2 Classifiers 0.314 0.190 0.200 0.078 0.486 0.178 0.288 0.561 0.068 0.774
Prob. F1 0.399 0.370 0.364 0.110 0.534 0.397 0.466 0.440 0.071 0.836
Soft 0.471 0.300 0.461 0.121 0.700 0.506 0.500 0.581 0.135 0.933
Hard 0.471 0.519 0.314 0.101 0.690 0.468 0.422 0.648 0.080 1.000
Ada 0.290 0.190 0.111 0.078 0.486 0.178 0.288 0.440 0.068 0.774
Best 0.471 0.519 0.314 0.101 0.690 0.468 0.422 0.648 0.080 1.000

Regarding the kappa score, it was higher for the ensemble voting hard, which is better
than the score for just the linear and statistical classifiers, but still lower than for dataset
A, which corroborates with that previously stated about the headset used to acquire these
signals. The FP rate was lower than previously, as was anticipated due to the rise of the F1-
score. Despite these results, it is still important to mention that subjects 1, 3, and 6 produced
results comparable to the ones from dataset A, even if with slightly higher FP rates than
the ones from dataset A. Table 16 presents the chosen classifier(s) for each combination.
These encompass mainly the kernel SVMs, followed by the neural networks. In some cases,
the K-NN is chosen as the second-best classifier. None of the linear or statistical classifiers
were chosen, which indicates that this dataset requires more complex models to predict
better results.

Table 16. Best classifiers, from both sets, for each combination for dataset B and FBCSP II.

Individual (I) I1 I2 I3 I4 I5 I6 I7 I8 I9

1 Classifier 5 5 5 5 5 5 5 5 5
Prob. F1 5 5 5 5 5 5 5 5 5
2 Classifiers 5 7 5 7 5 4 5 7 5 7 5 7 5 7 5 7 5 7
Prob. F1 5 7 5 4 5 4 5 7 5 7 5 7 5 7 5 4 5 7
Soft 5 7 5 4 5 4 5 8 5 7 5 7 5 7 5 4 5 4
Hard 5 7 5 7 5 4 5 7 5 7 5 7 5 7 5 4 5 7

4—K-nearest neighbours; 5—kernel support vector machines; 7—neural networks; 8—random forest.
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4.3. Power Spectral Density

The next subsections present the findings and insights from the analysis of results
obtained using power spectral density.

4.3.1. Power Spectral Density Approach Using Dataset A

As mentioned before, since the best results with linear classifiers were not obtained
with the PSD approach, non-linear strategies were not employed. Moreover, as no single
linear classifier produced satisfactory results on its own, combinations thereof were not
evaluated either. The obtained F1-score was 0.510, which is much lower than the F1-score
of 0.793 for the combination of one classifier and FBCSP II. Moreover, the FP rate is also
much higher than the one for FBCSP II, thus endorsing the idea that this approach is not
the best for this dataset.

4.3.2. Power Spectral Density Approach Using Dataset B

Similarly to dataset A, only the one classifier approach was tested due to unsatisfactory
results. However, the difference between this and the FBCSP II was not as large as the one
for dataset A. The average F1-score, 0.443, was quite similar to the one for dataset A, 0.510,
which did not happen for the other approaches. However, the kappa score and the FP rate
were worse. The latter presents a high value of 0.844, which lies close to 1, that is to say,
there is almost more FP than TP, which is not the goal.

4.4. Real-Time Application

The subject with the best performance for dataset B was chosen to perform the real-
time testing. The subject was asked to sit still and maintain movements to a minimum,
similar to the training phase. An external person experimented and asked the subject to
imagine a certain MI. Every 2 s an epoch was sent to the system and a class was predicted.
The person conducting the experiment waited for ten predictions to appear before asking
for the next one, as a way of allowing the system to stabilise. Again, due to stabilisation, the
first three outputs after a new MI were discarded. As subject 3 was the one who presented
the best results, the steps described previously were applied in a real-time scenario, leading
to the results in Table 17. The final system consisted of applying the FBCSP II approach,
which produced the best score. Then, 70% of the features were extracted and fed to an
ensemble voting hard classifier built with the major vote between the kernel SVM and the
K-NN, where the vote percentage was 2 to 1, respectively.

Table 17. Cues and respective outputs from subject 3’s real-time applications.

MI Output Majority % MI Output Majority %

N 2 1 1 2 2 2 0 0 2 2 2 60% R 1 2 1 1 1 1 1 1 1 1 1 90%

R 1 1 0 1 2 1 1 0 0 1 1 60% N 2 2 2 2 1 2 0 0 2 2 2 70%

N 2 0 2 2 2 2 2 0 0 2 2 70% L 2 1 1 1 1 1 0 0 1 0 1 30%

L 0 0 0 1 0 0 1 1 2 2 0 50% N 2 2 2 0 2 2 2 2 2 2 2 90%

L 0 1 0 0 0 1 0 1 2 2 0 50% R 1 0 1 1 1 0 1 1 1 2 1 70%

N 2 0 2 2 0 2 2 2 0 2 2 70% N 2 2 2 2 2 2 2 2 2 2 2 100%

R 1 0 1 2 1 1 2 1 1 0 1 60% L 0 0 2 0 2 0 2 0 2 2 0 50%

L 0 0 2 0 0 0 1 1 0 1 0 60% N 2 1 2 2 2 1 2 2 2 2 2 80%

N 2 2 2 1 2 2 1 2 0 2 2 70% R 1 2 1 2 1 2 0 2 0 2 2 30%

R 1 1 1 1 0 0 2 1 1 1 1 70% N 2 2 2 2 2 2 2 2 2 2 2 100%

N 0 2 2 0 2 2 0 0 2 2 2 60% L 0 0 0 1 0 0 0 0 2 2 0 70%

Overall, the results were satisfactory and as anticipated from the performance pre-
viously analysed. From twenty-two cues, there were only two cues incorrectly classified,
represented in red, one for the left and another for the right. The left one was misclassified
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as right, which is a problem since, if it was an IW, it would go in the opposite direction.
The right cue was classified as neutral. Despite being misclassified, it is not the worst since
a hypothetical IW would have maintained the same direction. Nevertheless, none of the
neutral cues were incorrectly classified. Although some limitations related to the accuracy,
these results show that the system is evolving towards the right direction, suggesting that a
new headset and a refinement of the algorithm would deliver promising results.

5. Discussion

Overall, dataset A, independently of the approach, produced better results than dataset
B. The only exception might be for the PSD approaches, where the average F1-score value
for both datasets was very similar. There are several possibilities for this discrepancy in the
results, such as dataset A was obtained using a stable headset, with movable electrodes. This
leads to the electrodes always assuming the same known position throughout the different
sessions. Moreover, the results were obtained by professionals in a carefully controlled
environment. Dataset B was collected using an Emotiv EPOC. There are several problems
regarding the EPOC, such as it has fixed electrodes. This leads to the absolute position
being different for all the subjects, and even varies from session to session. Moreover, it did
not fit everyone’s head, and four subjects did not make it into this dataset due to limitations
in positioning the electrodes correctly. Some sensors were starting to be oxidised, which led
to noisy acquisitions, which hampered the already difficult EEG processing, as the signal is
very sensitive. The Emotiv EPOC does not cover the motor cortex, which is critical for the
tasks in this study. While the literature suggests it can work for parietal and frontal areas,
its performance is not optimal for motor cortex tasks. Nevertheless, the Emotiv EPOC was
chosen for its balance of cost, ease of use, and functionality, offering a reasonable number
of electrodes, wireless operation, extended battery life, and affordability. Due to the fact
that the process of training is very time-consuming and this work was merely a proof
of concept, only the subject with the best performance for dataset B was chosen for the
real-time testing.

Comparing the different approaches, it was already expected that the best method
would be related to the CSP, as it was the winning method of the competition. This
suggests that spatial methods perform better than the others do, which may be related to
the elimination of existent artefacts in the bands of interest. However, it was interesting
that FBCSP II produced slightly better scores than FBCSP I, implying that feeding the
whole spatial filtered signal to the feature selector works better than feeding a transformed
version of the signal filtered by just the columns of the spatial filter. Although the results
from the competition are merely qualitative, the results from FBCSP II also indicate that
using the extra tree classifier to obtain the features’ importance and the ensemble voting
hard, employing the LR and the GNB, or LDA, to classify the epochs, represents a valuable
update. This led to a final average kappa score of 0.69, which is 20% higher than the winner
value of 0.57. Despite the 20% not being a real quantitative evaluation, the value of 0.69
already suggests that the algorithm is considerably better than a random classifier and can
correctly classify the epochs, presenting an F1-score of 0.797 and the smallest FP rate of all
the tested approaches, 0.150. Similarly, dataset B also presented better results for the FBCSP
II than for the FBCSP I. Moreover, contrarily to dataset A, dataset B improved its results by
allowing the use of non-linear classifiers. Fakhruzzaman et al. [66] and Muñoz et al. [61]
used the Emotiv EPOC headset and the CSP method as a features extractor. Fakhruzzaman
et al. [66] obtained an average accuracy of 60%, whereas Muñoz et al. [61] obtained an
average accuracy of 67.5% using the LDA classifier, 68.3% using the SVM, and 96.7% using
Nu-SVC RBF kernel. Overall, the result of 65% from dataset B regarding the FBCSP II
approach with the ensemble voting hard classifier falls within the mean values presented
by these authors, except for the last method of Muñoz et al. [61]. The latter is greatly
higher than the others are, suggesting that this classifier is indicated for this type of feature,
and should be considered for further implementation in future work. Furthermore, it is
important to state that the signals in dataset B had constraints in AF3 and AF4 electrodes,
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which may be important electrodes according to Lin and Lo [60] and Muñoz et al. [61],
thus decreasing the obtained accuracy and the F1-score. The average accuracy of other
authors using the EPOC and the magnitude of frequency components or the power spectral
density (square of the magnitude) as features was 74–100% for Abiyev et al. [57], 70%
for Hurtado-Rincon et al. [59], and 86–92% for Lin and Lo [60], and Siribunyaphat and
Punsawad [67]. More recent works [49,68,69] have also achieved important F1-scores, using
different EEG headsets. This reflects a promising area to explore for controlling intelligent
wheelchairs.

6. Conclusions and Future Work

The goal of this work was being able to decode MI intentions from the users, using
an Emotiv EPOC as the headset to extract the EEG signals. The intentions were left, right,
and neutral, which would be further translated into control commands for an intelligent
wheelchair. This headset has higher constraints in terms of accessing data in a less controlled
environment; however, overall, this work allowed the development of a proof of concept
for future projects and a thorough study regarding the different algorithms. Although the
real-time results are still not suitable for the actual application, they validate the concept
and the developed architecture to connect the different parts of the system. For future work,
utilising a broader and more diverse dataset may contribute to enhancing the model’s
generality. Another interesting future work could be applying different methods for noise
removal, such as independent component analysis. Additionally, conducting long-term
usage and testing across diverse environments will be essential for assessing system stability
and applicability.
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Abstract: To effectively treat lung and colon cancer and save lives, early and accurate identification is
essential. Conventional diagnosis takes a long time and requires the manual expertise of radiologists.
The rising number of new cancer cases makes it challenging to process massive volumes of data
quickly. Different machine learning approaches to the classification and detection of lung and
colon cancer have been proposed by multiple research studies. However, when it comes to self-
learning classification and detection tasks, deep learning (DL) excels. This paper suggests a novel
DL convolutional neural network (CNN) model for detecting lung and colon cancer. The proposed
model is lightweight and multi-scale since it uses only 1.1 million parameters, making it appropriate
for real-time applications as it provides an end-to-end solution. By incorporating features extracted at
multiple scales, the model can effectively capture both local and global patterns within the input data.
The explainability tools such as gradient-weighted class activation mapping and Shapley additive
explanation can identify potential problems by highlighting the specific input data areas that have an
impact on the model’s choice. The experimental findings demonstrate that for lung and colon cancer
detection, the proposed model was outperformed by the competition and accuracy rates of 99.20%
have been achieved for multi-class (containing five classes) predictions.

Keywords: convolutional neural network; cancer classification; deep learning; explainable artificial
intelligence; Gradio; gradient-weighted class activation mapping; lightweight; Shapley additive
explanation

1. Introduction

Cancer is a health condition that is characterized by the unregulated growth of ab-
normal cells that can develop in any tissue or organ inside the body. The World Health
Organization says that it was the second most common cause of death in the world in 2020,
with about 10 million deaths [1]. Compared to other cancer types, colorectal cancer accounts
for 1.80 million new cases and 783 thousand fatalities, whereas lung cancer contributes
to 1.76 million new cases and 1.76 million fatalities. The two varieties of lung cancer that
spread and grow quickly are small-cell lung cancer (SCLC) and non-small-cell lung cancer
(NSCLC) [2,3]. Cells with neuroendocrine characteristics cause SCLC, which accounts
for 15% of all instances of lung cancer and remains a hazardous form of the disease. The
three pathologic types of NSCLC, including immense cell carcinoma, adenocarcinoma, and
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squamous cell carcinoma, account for 85% of all cases [4]. The most common cause of death
is colorectal cancer, which accounts for 10.7% of all instances [1].

To examine the therapy possibilities in the early stages of the disease, a more precise
diagnosis of various cancer subtypes is required. For lung cancer, radiography, computed
tomography (CT) imaging, flexible sigmoidoscopy, and CT colonoscopy are among the
non-invasive diagnostic techniques [4]. Histopathology is one simple test that can be
required to effectively diagnose the disease and improve the quality of treatment. However,
non-invasive techniques may not always produce effective classifications of these cancers.
Additionally, pathologists may grow exhausted from manually grading histological images.
Additionally, expert pathologists are required for the precise classification of lung and colon
cancer (LCC) subtypes; manual grading may be prone to mistakes. To lessen the workload
on pathologists, automated image processing techniques for LCC subtype screening are
necessary [5].

There are a lot of different methods for diagnosing cancer symptoms. The amount of
data kept in archives is increasing daily because of technical improvements [5]. The rising
accessibility of healthcare data offers researchers opportunities to enhance current methods
for more in-depth clinical analysis [6]. Artificial intelligence (AI) techniques like machine
learning (ML) and DL are the foundation of automatic diagnosis approaches. Researchers
have solved numerous health challenges and applications using a variety of traditional
machine learning techniques [7,8]. The traditional method for utilizing ML to retrieve and
categorize photos in the medical area is solely dependent on manually constructed features
created through the feature engineering process. All kinds of characteristics must be used
to automatically classify LCC. Filtering and segmentation algorithms can retrieve intensity
values and texture descriptors, which are examples of low-level features that are important
aspects of an image. Additionally, low-level characteristics can be extracted automatically
from LCC images using feature extraction methods, including Haralick characteristics and
local binary patterns (LBPs). They function as a base for representations of higher-level
features [9].

The characteristics of the surrounding tissue, as well as the tumor’s location, size,
and shape, are important classification criteria for LCC. Both low-level and high-level
features must be considered for automatic tumor categorization to be accurate and reliable.
The basic characteristics of images are captured by low-level features, while high-level
features offer general and meaningful data [10]. Thus, due to its capacity to deal with these
drawbacks and its powerful discrimination capabilities, DL has gained popularity for use
in medical testing [11]. These features can be automatically extracted using DL techniques,
and they are necessary to organize treatments and make correct diagnoses. Combining
these features is required to obtain high accuracy. Convolutional neural network (CNN) is
a well-known DL architecture that is frequently employed in this context [12]. Through
their numerous deep layers, CNN models may identify high-level features in raw data.
In this manner, CNNs can successfully analyze complicated and challenging data. These
models have an increasing number of parameters, along with substantial complexity [13].
The complexity and depth of the CNN architecture are what make the models so successful.

Based on the CNN model, explainable artificial intelligence (XAI) is a useful tool in
the medical industry that increases the transparency of automatically generated prediction
models. It speeds up the creation of predictive models, utilizing expertise in the field
and helping to produce results that are understandable to humans [14,15]. There are
several ways to show the most active areas and to make a model more explicable. A
few examples of these techniques include utilizing XAI algorithms, Shapley Additive
Explanation (SHAP), and gradient-weighted class activation mapping (Grad-CAM) [16] for
the model’s explanatory categorization [17].

It is not easy to process LCC datasets using conventional methods as there are various
challenges, such as the following:

� Most of these techniques have substantial computing costs and require a lot of labeled
training data.
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� Overfitting can happen when the model works well with training data but poorly with
new, untested data.

� Risk of poor performance brought on by inaccurate or biased training data.
� DL models’ decision-making process is not explainable.

To avoid overfitting or inaccurate diagnosis, it is essential to use DL models that
have been thoroughly tested and proven on large, diverse datasets. It is also critical to
use techniques like cross-validation (CV) to account for any possible biases in the data
used for training to guarantee the model’s wider applicability. The overall objective of the
proposed method is to be improved by offering precise and early diagnoses that allow for
quick and efficient treatment. This paper focuses on categorizing lung and colon cancer
subtypes using histopathological images from a dataset named LC25000, which is publicly
available on Kaggle. There are a total of five classes in the dataset, which are benign lung
tissue, lung adenocarcinomas, lung squamous cell carcinoma, benign colon tissue, and
colon adenocarcinomas.

Compared to DL models, the suggested model is less complex and very lightweight,
with only eight layers, which makes it appropriate for real-time applications and mobile
applications. The originality of the proposed work can be summed up as follows:

• A novel lightweight multi-scale (LW-MS) end-to-end CNN model for the identification
of LCC is introduced. The proposed model has 1.1 million trainable parameters and is
superior to other models in this field, which need deeper layers to achieve acceptable
detection accuracy. This reduces processing time and model complexity, making the
system suitable for real-time applications.

• To increase the accuracy and efficiency of multi-class predictions, predictions from
multiple layers are concatenated to produce a range of feature maps that function at
different resolutions.

• XAI techniques have been integrated into the proposed LW-MS CNN model with
its performance metrics analysis. This aspect has frequently been neglected in
prior studies.

• A web application system has been developed with the purpose of aiding pathologists
and doctors in the diagnosis of histological pictures and offering substantiation for
their scientific findings.

The remainder of the article is organized as follows. Section 2 includes a review of
the literature on the most current DL advancements related to LCC detection. Section 3
discusses the proposed method in detail. Section 4 presents and thoroughly discusses
the experimental setup and achieved results. Section 5 summarizes the proposed model’s
findings and discusses the model. Finally, Section 6 concludes the research and suggests
potential future research directions.

2. Related Works

To classify images of lung tissues from histopathology, a computer-aided system
(CAD) method was developed by Nishio et al. [18]. They extracted visual characteristics
from two datasets using homology-based processing of images (HI) and traditional texture
analysis (TA), and then they assessed the effectiveness of eight ML algorithms. In both
datasets, the HI-equipped CAD system outperformed the TA system. They concluded that
for CAD systems, HI was significantly more advantageous than TA and that this could lead
to the development of an accurate CAD system. Similarly, Mangal et al. [19] developed a
CAD system by looking at digital pathology images and using CNN to identify lung and
colon cancer. In comparison to deep CNN models that employ TL trained on a similar
collection and classical ML models, their experimental results on the LC25000 showed a
decent accuracy of 96.61% for the colon and 97.89% for the lung, which were acquired by
the CNN using the most recent feature descriptions. Shandilya et al. [20] have created a
CAD technique to categorize lung tissue histology pictures. They employed a dataset of
histological pictures of lung tissue that was made publicly available for the development
and validation of CAD. Multi-scale processing was used to extract image features. Seven

58



Technologies 2024, 12, 56

CNN models that had been hyper-tuned before were used in a comparative analysis to
predict lung cancer, with ResNet101 achieving the greatest overall accuracy at 98.67%.
Masud et al. [21] used DL on histopathology pictures to present a categorization system
for five different types of lung and colon tissues. First, image sharpening was applied to
pathological example images. A CNN model that was manually tweaked was trained using
these features. This model’s accuracy performance was reported to be 96.33%.

Similarly, Hatuwal et al. [22] stated a CNN-based technique for classifying histological
images to diagnose cancer. They built and trained a neural network with a specific shape.
The accuracy in training and validation were reported to be 96.11% and 97.20%, respectively.
Similar to this, three CNN models were introduced by Tasnim et al. [23] to assess colon cell
imaging data. To calculate the learning rate, the models were developed and put to the test
at various epochs. It was demonstrated that the maximum pooling layer has an accuracy
of 97.49%, while the average pooling layer has an accuracy of 95.48%. MobileNetV2
outperforms the previous two versions, with a 99.67% accuracy rate and a 1.24% loss rate.
However, Sikder et al. [24] have suggested a novel technique for separating, recognizing,
classifying, and spotting various malignant cell types in RGB and MRI images. They
merged a CNN model with a SegNet method that employs anatomical changes that were
better than the regular SegNet model to shorten training times and enhance segmentation
results. The proposed method identified cancer cells from several cancer datasets with an
average accuracy rate of 93%. They were able to overcome the drawbacks of using different
cancer detection methods for MRI and histopathology data.

A CNN model for predicting colon cancer developed by Qasim et al. [25] is notable
for its speed and accuracy, with few parameters. They used two separate strategies in
their model and then 256 feature maps were created by each. By increasing the number
of features at different levels, they were able to increase the accuracy and sensitivity. The
same dataset was used to develop and train the VGG16, which was used to evaluate
the effectiveness of the suggested strategy. The proposed model’s achieved accuracy is
99.6%, while the VGG16’s is 96.2%. The results suggest that it was effective in detecting
colon cancer. To classify different forms of lung and colon cancer, Talukder et al. [1] have
introduced a combination of ensemble attribute-obtaining techniques. Ensemble learning
for image filtering and the deep feature extraction method were combined. The proposed
hybrid model reportedly had a 99.05% accuracy rate in identifying the possibility of cancer.
Hanan et al. [26] have presented the Marine Predator Algorithm with DL (MPADL-LC3)
method for classifying lung and colon cancer. This method leveraged MobileNet to generate
feature vectors and used CLAHE-based contrast enhancement as a preprocessing step.
They introduced MPA as a hyper-parameter optimizer, and a deep belief network was
applied for classification. With a maximum accuracy of 99.27%, the comparison research
emphasized the improved results of the MPADL-LC3 approach.

Attallah et al. [27] have created a lightweight DL method. To achieve feature reduction
and provide a more comprehensive representation of the data, the architecture uses various
transformation techniques. In that sense, the SqueezeNet, ShuffleNet, and MobileNet algo-
rithms are fed with HSI. Thus, the features extracted from the model are decreased by using
PCA models and the fast Walsh–Hadamard transform (FHWT). It obtained 99.6% accuracy.
Al-Jabbar et al. [28] have suggested a method that combines ANN with fusion features
and CNN models. The ANN achieved an accuracy of 99.64% with VGG-19 fusion features
and handcrafted features. By analyzing the LC2500 dataset, Sameh et al. [29] have built a
unique deep network for LCC fine-tuning using pre-trained ResNet101. Hyper-parameter
optimizations were used to make these improvements. They obtained 99.84%, 99.85%,
99.84%, 99.96%, and 99.94% scores for their model’s precision, recall, F1-score, specificity,
and accuracy, respectively. Imran et al. [30] have proposed a deep CNN model for the
automated detection and characterization of colon cancer, in which textured images are
trained in high resolution without being converted into low-resolution images by changing
the classification of binary data in the resultant activation layer to the sigmoid function.
They achieved 99.80% recall, 99.87% F1-score, 99.80% accuracy, and 100% precision. Two
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methods were presented by Kumar et al. [3]. Six approaches for extracting handcrafted
aspects based on color, texture, shape, and structure are provided in one method. They also
employed seven frameworks for DL that extract features from deep data from histopathol-
ogy pictures, with the idea of transfer learning. However, compared to manually created
features, deep CNN network features show a considerable boost in classifier performance.
The LCC tissue was recognized by the Random Forest classifier, with DenseNet-121 re-
trieving deep features with an accuracy and recall of 98.60%, precision of 98.63%, F1 score
of 0.985, and receiver operating characteristic curve (ROC)—area under the ROC Curve
(AUC) of 1.

Even though numerous research works show the outstanding accuracy in limited-class
and binary classification scenarios, their performance steadily deteriorates as the number
of classes rises. This phenomenon results from the growing difficulty of differentiating
between many diseases with precisely various characteristics. This restriction makes the
models less useful in actual clinical settings where patients may present with a range of lung
diseases. Consequently, to perform a multi-class classification of lung and colon diseases
with high accuracy and confidence for real-life scenarios, a customized and reliable deep
learning framework is needed. In this study, a LW-MS CNN with 1.1 million parameters
has been proposed to produce a more promising outcome than the state-of-the-art (SOTA)
models. Nevertheless, Grad-CAM and SHAP have been used for showing the effectiveness
of the model by detecting ROI despite all the challenges. Also, to the best of the authors’
knowledge, only a small number of studies have so far demonstrated these explainable AI
methods to show interpretability.

3. Proposed Method

This section discusses the proposed method in depth. This section also covers the
datasets used in this research. Furthermore, a detailed discussion of each step of the
suggested process, including how the images have been pre-processed, and clear insight
into the lightweight multi-scale convolutional cancer network (LW-MS-CCN) is included.
Moreover, this section discusses the explainable AI methods used in this paper. Figure 1
outlines the suggested framework for detecting LCC from histopathological images.
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3.1. Dataset Description

The publicly accessible dataset LC25000 [31] was used for this research. For this
dataset, a Leica microscope LM190 HD camera coupled to an Olympus BX41 microscope
was used to collect each subtype of LCC, taking 250 color photos, 1250 total photos in total,
and without any data augmentation. Next, the 250 samples for every subtype of cancer
were multiplied via augmentation techniques, like left and right rotations and horizontal
and vertical flips, to create 5000 images. Consequently, upon data augmentation, there were
already 25,000 typical histopathology photos in the dataset, with 10,000 images showing
colon cancer and 15,000 showing lung cancer. Three cell labels, including adenocarcinomas,
squamous cell carcinoma, and benign tissue, were present in the lung cancer dataset.
Adenocarcinomas and benign tissue are two examples of the two cell labels found in the
colon cancer dataset. Prior to applying data augmentation, the photos were resized from
their original 1024 × 768 resolution to 768 × 768.

Images of lung, colon, and both types of cancer were used in this work. Hence, there
were 25,000 photos in total—10,000 for colon tissue and 15,000 for lung tissue for both the
colon and the lung. The distribution of the cancerous dataset is presented in Table 1.

Table 1. Number of images in each class.

Classes No. of Images

Benign lung tissue 5000

Lung adenocarcinomas 5000

Lung squamous cell carcinoma 5000

Benign colon tissue 5000

Colon adenocarcinomas 5000

3.2. Data Pre-Processing

For medical image analysis, image preprocessing is essential, since the classification
performance varies depending on how well the image has been preprocessed [32]. To train
the model, the input image was reduced to 180 × 180. To work with image intensity values,
the resized image was converted into bgr2rgb, and then the images were converted into a
NumPy array. After that, a technique called scaling was used to normalize image intensity
values between 0 and 1. By dividing the image array by 255, the image was scaled to reduce
computing complexity. Finally, the image label has been added, which is a crucial step
because it enables us to recognize cancerous images.

3.3. Lightweight Multi-Scale Convolution Cancer Network

A compact, straightforward, and yet efficient model has been created. The LW-MS-
CCN has a single input layer that is 180 × 180 × 3 in size. Globalmaxpooling2D was
utilized after each convolutional layer to pick out the most crucial details from each feature
map, make them smaller, combine them, and then use this combined information to
understand the image better. Globalmaxpooling2D obtains critical values using the max
operation. One method to address overfitting difficulties is the dropout layer [33]. Figure 2
shows the design of the LW-MS-CCN model proposed in this method. The dataset was
divided according to an 80/20 rule: 80% of the data were used for training and 20% were
utilized for testing. There are 12 convolution layers in the backbone CNN. To avoid high
dimensionality, using more filters in higher layers was avoided when designing the custom
CNN. It can automatically extract characteristics from input images without requiring
human interaction [34]. The model’s capacity to extract discriminative features from
data by utilizing a lightweight CNN as its foundation, convolutional layers as the head
for feature extraction across many scales, and filter size optimizations histopathological
pictures was improved.
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Several convolutional layers are stacked and added to the top of the backbone model to
form the CNN head. These convolutional layers are added to the model head, allowing the
architecture to be tailored for the extraction of features at various scales. Deeper layers in
the CNN head learn more complicated and abstract characteristics, whereas the CNN layers
closer to the input learn low-level features like edges and textures. This is essential for
classification, since unpredictability in the picture can have unusual appearances. Through
multi-scale feature mapping, the model’s overall accuracy in classification is improved,
making it more resilient and able to recognize unpredictability of different sizes.

The network starts with “Layer 1”, which consists of two convolutional layers, both
using a 3 × 3 kernel size and a 180 × 180 input size. The first layer has 7 filters, and
the second layer has 9 filters. After each convolutional layer, a max pool layer with a
2 × 2 kernel size is applied. In this research, filters of 2 × 2 size were used to apply max
pooling. The maximum value is chosen for each window as the pooling window advances
over the feature maps. The spatial dimensions of the feature map are cut in half by utilizing
a pooling window of 2 × 2 and a stride of 2 [35]. In order to achieve translation invariance
and resilience against minute spatial alterations, max pooling is successful in capturing the
most important characteristics within local areas. Next, “Layer 2” has two convolutional
layers, where the input size is reduced to 90 × 90. The first layer in this layer has 16 filters,
and the second layer has 32 filters. Again, after each convolutional layer, a max pool layer
is used. “Layer 3” further reduces the input size to 45 × 45 and contains two convolutional
layers with 256 filters each. After each convolution, max pool is applied. “Layer 4” consists
of three convolutional layers, which results in a reduction in the input size to 22 × 22. The
initial two layers are equipped with 32 filters each, while the third layer is equipped with
64 filters. “Layer 5” consists of two convolutional layers with an input size of 11 × 11. The
starting layer is equipped with 64 filters, while the subsequent layer also employs 64 filters.
Finally, “Layer 6” includes two convolutional layers with an input size of 5 × 5. Both layers
have 128 filters. Max pool is used after each convolution. In summary, the custom CNN
architecture is built with a consistent pattern of 3 × 3 convolutional layers, followed by
2 × 2 max pool layers, progressively reducing the input size and increasing the number of
filters in deeper layers.

This design aims to capture and learn hierarchical features from the input image data,
ultimately leading to more accurate predictions for the given classification task. From
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Table 2 and Figure 2, it can be seen that the max_pooling2d_5 (last max pooling layer of
CNN block) is connected to conv2d_11 (head of multi-scale CNN). conv2d_11, conv2d_12,
and conv2d_13 are all the layers connected together in a concatenate layer, which enables
the network to simultaneously use data from several scales. After that, flatten layer is used
to convert all the features into 1D vector. Then, as the flattened characteristics move through
dense layers, high-level abstraction and pattern detection are made easier. After using
dropout regularization to reduce overfitting, a final dense layer with softmax activation is
used to produce class probabilities. The model can learn rich representations of the input
data across multiple levels of abstraction according to the multi-scale CNN design, which
efficiently combines features from different scales.

Table 2. An overview of the proposed model that includes the number of parameters and information
about each layer.

Layer (Type) Output Shape Params Connected to

Input 1 (None, 180, 180, 3) 0

conv2d (None, 180, 180, 7) 196 Input 1

conv2d_1 (None, 180, 180, 9) 576 conv2d

max_pooling2d (None, 90, 90, 9) 0 conv2d_1

conv2d_2 (None, 90, 90, 16) 1312 max_pooling2d

conv2d_3 (None, 90, 90, 32) 4640 conv2d_2

max_pooling2d_1 (None, 45, 45, 32) 0 conv2d_3

conv2d_4 (None, 45, 45, 32) 9248 max_pooling2d_1

conv2d_5 (None, 45, 45, 64) 18,496 conv2d_4

max_pooling2d_2 (None, 22, 22, 64) 0 conv2d_5

conv2d_6 (None, 22, 22, 64) 36,928 max_pooling2d_2

conv2d_7 (None, 22, 22, 64) 36,928 conv2d_6

max_pooling2d_3 (None, 11, 11, 64) 0 conv2d_7

conv2d_8 (None, 11, 11, 64) 36,928 max_pooling2d_3

conv2d_9 (None, 11, 11, 128) 73,856 conv2d_8

max_pooling2d_4 (None, 5, 5, 128) 0 conv2d_9

conv2d_10 (None, 5, 5, 128) 147,584 max_pooling2d_4

conv2d_11 (None, 5, 5, 128) 147,584 conv2d_10

max_pooling2d_5 (None, 2, 2, 128) 0 conv2d_11

conv2d_11 (None, 2, 2, 32) 32,896 max_pooling2d_5

conv2d_12 (None, 2, 2, 64) 18,496 conv2d_11

conv2d_13 (None, 2, 2, 128) 73,856 conv2d_12

concatenate (None, 2, 2, 224) 0 conv2d_13, conv2d_12,
conv2d_11

flatten (None, 896) 0 concatenate

dense (None, 512) 459,264 flatten

dropout (None, 512) 0 dense

dense_1 (None, 5) 2565 dropout

Total params 11,05,353

Trainable params 11,05,353

Non-trainable params 0
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Table 2 provides an overview of the proposed LW-MS-CCN model architecture, de-
tailing the number of parameters and information about each layer. The model comprises
a series of convolutional and pooling layers, culminating in fully connected layers. The
total number of parameters is 1,105,353, all of which are trainable. Table 3 outlines the
hyper-parameters utilized in training the LW-MS-CCN model. Selecting hyper-parameters
for a CNN involves a combination of domain knowledge, empirical experimentation, and
sometimes trial and error. For classification problems with multiple classes, a categorical
cross-entropy technique is commonly used. The ‘sparse’ variant is used when the labels are
integers rather than one-hot encoded. A small learning rate, like 0.0001, is often chosen
to ensure stable convergence. Learning rates are often tuned through experimentation,
and techniques like learning rate schedules or adaptive learning rate methods may be em-
ployed. Too few epochs may result in under fitting, while too many may lead to overfitting.
The optimal number of epochs is determined through training on a validation set, and
techniques like early stopping may be used to prevent overfitting. Smaller batch sizes
often lead to faster convergence, and larger batch sizes can provide a regularizing effect
and speed up training. Batch sizes are selected based on computational constraints and
experimentation to find a balance between speed and model performance. Shuffling the
training data every epoch helps prevent the model from memorizing the order of examples
and improves generalization. These hyper-parameters contribute to the effective learning
and convergence of the LW-MS-CCN model, ensuring its successful application to the
given task.

Table 3. Hyper-parameters of the proposed LW-MS-CCN model.

Parameters Value

Loss function Sparse-categorical-cross-entropy

Initial learning rate 0.0001

No. of epochs 100

Batch size 16

Shuffle Every epoch

3.4. XAI

XAI describes the ability of an AI system to provide understandable and interpretable
explanations for its decisions and actions, enhancing transparency and trustworthiness [36].
XAI in medical imaging helps bridge the gap between AI technology and medical practi-
tioners, making AI-assisted diagnosis and treatment more trustworthy, understandable,
and reliable. In XAI, the “black-box” concept refers to AI models that make decisions
without providing clear or understandable reasons, while the “white-box” concept pertains
to AI models that are transparent and provide interpretable explanations for their decisions,
making their internal workings accessible and comprehensible to humans [37]. The XAI
methods that have been used in this paper are explained below.

3.4.1. Grad-CAM

Grad-CAM is a visualization method used in DL for understanding model decisions,
especially in computer vision tasks. The approach utilizes the gradients of the target class
with respect to the final convolutional layer to generate a heatmap. The final convolutional
layers are chosen for their balance between spatial information and high-level semantics,
allowing for the visualization of class-specific details in the input image [17,38].

By emphasizing regions where the model focuses its attention to create distinctive
patterns, Grad-CAM leverages the rich information in the final layer. The algorithm
computes gradients of the class score with respect to feature maps, performs weighted
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combinations, and generates a heatmap, effectively highlighting key areas in the input
image that contribute to the target class prediction [39].

LCAM
c = ∑

i
∑

j
wk

c Aij
k (1)

where LCAM
c is the localization map for class c in GradCAM. wk

c is the weight associated
with the k-th feature map for class c. Aij

k is the activation of the k-th feature map at a spatial
location (i, j). ∑i ∑j is double summation over spatial dimensions. This equation represents
the GradCAM formulation for obtaining a class-specific localization map by combining the
feature weights

(
wk

c

)
with the activations

(
Aij

k

)
from different spatial locations.

3.4.2. SHAP Visualization

SHAP aims to explain predictions in ML models by calculating the contribution of
each feature to a given prediction instance. It utilizes coalitional game theory to derive
Shapley values, representing the fair contributions of individual features to the prediction.
In this technique, the feature values of a data instance act as players in a coalition, and
Shapley values help distribute the prediction fairly among these features. Players can be
single feature values or collections of feature values, such as super-pixels in images. SHAP
introduces a novel approach by presenting Shapley values as a linear model and linking
them with the values of local interpretable model-agnostic explanations. This additive
feature attribution model provides a comprehensive explanation of the prediction [16].

g
(
z′
)
= φ0 + ∑M

j=1 φjz′j (2)

where g is the explanation model, z′ ∈
{

0, 1}M is the coalition vector, M is the maximum
coalition size, and φj ∈ R is the feature attribution for a feature j; the Shapley values. The
expression is a linear combination of input features z′j weighted by coefficients φj, and the
result is adjusted by an intercept term φ0.

4. Result Analysis

In this section, all the experimental setups and results of this research will be described
in detail.

4.1. Experimental Setup

The experimental setup of the proposed system is described in this subsection. Table 4
accommodates the system specifications upon which the proposed work has been based.
All coding operations have been performed in Google Colab, which has a backend of Keras
with TensorFlow, and the disk space for it is 78.2 GB. The GPU used was a Nvidia Tesla T4
with a RAM size of 15 GB. In this study, the operating system was Windows 11, and for
visualization in web environments, Gradio Library was used.

4.2. Performance Metrics of the Proposed Framework

The confusion matrix is a technique for assessing how well ML categorization works.
The terms TP (true positive) and TN (true negative) accurately reflect expected positive
values. TP represents a correctly predicted positive value, FP (false positive) represents a
false positive value, and FN (false negative) represents a false negative value. They are
highly helpful in determining the ROC curve, F1-score, accuracy, recall, and precision.

The most obvious performance statistic is accuracy, which is directly proportional to
the number of properly predicted observations over the total number of observations [40,41].

Accuracy =
TP + TN

TP + FP + TN + FN
(3)
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Table 4. System specifications of the proposed framework.

Features Specifications

Programming Language Python (version-3.10.12)

Environment Google Colab

Backend Keras with TensorFlow

Disk Space 78.2 GB

GPU RAM 15 GB

GPU Nvidia Tesla T4

System RAM 12.72 GB

Operating System windows 11

Input LCC Images

Input Size 180 × 180

Web Development Tool Gradio Library

Precision is defined as the proportion of accurately anticipated positive values to all
positively predicted values. It is shown as follows:

Precision =
TP

TP + FP
(4)

Recall [42] is defined as the ratio of all the actual values to the values that were
positively predicted and successfully made. It is demonstrated as follows:

Recall =
TP

TP + FN
(5)

The harmonic mean of a classification problem’s precision and recall scores is known
as the F1-score [43]. The F1-score is shown as follows:

F1− score =
2× precision× recall

precision× recall
(6)

ROC curves are two-dimensional graphs that are used for evaluating and understand-
ing classifier performance [44]. Classifiers are graded and chosen according to particular
user requirements, which are often associated with changeable error costs and accuracy
expectations [45,46]. The sensitivity or specificity interchanges in a classifier for all possible
classification thresholds are displayed in detail on the ROC graphs. The AUC measures the
degree of distinction, whereas the ROC is a likelihood curve. It demonstrates a model’s
ability to discriminate across various groups. Plotting the false positive rate on the x-axis
corresponds to the genuine positive rate on the y-axis. An AUC near 1 suggests that the
expected model performs well in terms of class label separability, whereas an AUC near
0 denotes a poorly anticipated model. Actually, the word “lousy” means that the effect is
being reflected [47]. It is a method for demonstrating the effectiveness of a classification [48].
The best classifiers are those with greater ROC curves [49].

AUC =
1
2

(
TP

TP + FN
+

TN
TN + FP

)
(7)

Specificity is a metric that evaluates the ability of a model to correctly detect true
negatives within each available class. The mathematical expression can be expressed as
follows [48].

Specificity =
TN

TN + FP
(8)
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The XAI performance metrics include normalized root mean square error (nRMSE),
which is a standardized form of the root mean square error (RMSE). The metric calculates
the mean size of the discrepancies between projected and actual values, which is then
adjusted based on the data’s range. It offers a standardized way to quantify errors, allowing
for meaningful comparisons across diverse datasets. The structural similarity index (SSIM)
is a perceptual model that takes into account brightness, contrast, and structure. The
normalized index quantifies the degree of structural similarity between two images. The
values go from −1 to 1, with a value of 1 denoting photo that are identical. The multi-
scale structural similarity index (MS-SSIM) is an extension of SSIM that takes into account
changes in image resolution by using multiple scales. It offers a more adaptable assessment
of structural similarity by taking into account variations in image viewing conditions.
Using the k-fold CV technique, k, smaller sets are created from a training set. The plan
is to train a model on each of the k “folds” and then validate it using the remaining data.
Using k-fold CV, the average of the values computed in the loop is then included as an
evaluation metric. For LCC detection experiments, k-fold CV with a value of k = 5 has
been used. Five distinct folds are created from the dataset, and each is used as a testing
component while the dataset is being folded. The dataset is divided into 80% for training
and the remaining 20% for testing in a k-fold.

4.3. Performance Evaluations

In this section, the performance of the proposed model on the LC25000 dataset is
demonstrated. The performance is evaluated with different performance metrics as well as
by using XAI like Grad-CAM and SHAP to evaluate the proposed model based on which
portion of the image the decision is made on and what predicting the class is.

Performance Evaluation of Lung and Colon Cancer

Table 5 shows the fold-wise outcomes for each class using the LW-MS-CCN network.
The results consistently demonstrate the validity and robustness of the model at all folds.
Notably, Fold 4 comes out with superior accuracy and specificity when looking at the aver-
age findings over all five folds. Thus, for emphasis, the improved performance measures
in Fold 4 have been bolded. This highlights how important Fold 4 is for demonstrating
the potential of the model. This emphasizes the significance of Fold 4 in showcasing the
model’s capabilities.

In Figure 3, the confusion matrix of the LW-MS-CCN model on (a) Fold 1, (b) Fold 2,
(c) Fold 3, (d) Fold 4, and (e) Fold 5 for lung and colon cancer classifications is shown, and
the insightful analysis of the confusion matrices reveals noteworthy findings regarding the
performance of different folds. More precisely, the analysis of the confusion matrix for Fold
4, as shown in Figure 3d, reveals that this fold has performed exceptionally well in terms
of its ability to make accurate predictions. The focus of the observation is on the model’s
capacity to reduce false positive values, indicating a high level of precision in its predictions.
When the true label is Col_Ade, the LW-CNN model correctly predicted Col_Ade instances
1021 times. Furthermore, within the same category, it exhibited 1000 accurate predictions for
Col_Ben. More precisely, the LW-CNN model correctly identified 985 instances of Lun_Ben
where the real label was Lun_Ben. Furthermore, within the same category, it accurately
predicted 985 instances of Lun_Ade when the true label was also Lun_Ade. Once again,
when the actual label was “Lun_Squ”, and the model correctly predicted the “Lun_Squ”
class 1001 times. The model produced inaccurate predictions on four occasions where the
actual label was “Lun_Ade”, and it incorrectly predicted “Lun_Squ”. The emphasis on Fold
4 as the top performer was based on the comparison of false positive rates across different
folds. The lower incidence of false positives in Fold 4, as evidenced in the confusion
matrix, signifies a superior ability of the model to avoid incorrect positive predictions.
This characteristic is particularly crucial in medical applications, where minimizing false
positives is essential for ensuring the accuracy and reliability of diagnostic outcomes.
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Overall, the findings from the confusion matrix in Figure 3d highlight the commendable
performance of Fold 4, making it a standout in terms of predictive accuracy and reliability.

Table 5. Performance metrics analysis of LW-MS-CCN model for each class of the LCC dataset.

Fold
Number Class Accuracy (%) Precision

(%) Recall (%) F1-Score (%) Specificity (%) AUC

Fold = 1

Col_Ade 99.92 99.71 99.90 99.80 99.37 100

Col_Ben 99.92 99.90 99.70 99.80 99.68 100

Lun_Ben 99.98 100 99.90 99.95 99.57 100

Lun_Ade 99.24 97.69 98.48 98.09 100 100

Lun_Squ 99.26 98.50 97.81 98.15 100 100

Average 99.66 99.16 99.16 98.16 99.72 100

Fold = 2

Col_Ade 99.80 99.42 99.61 99.51 99.40 100

Col_Ben 99.86 99.80 99.50 99.65 99.81 100

Lun_Ben 99.94 99.80 99.90 99.85 99.71 100

Lun_Ade 99.08 97.52 97.72 97.62 97.89 100

Lun_Squ 99.16 98.01 97.82 97.91 99.61 100

Average 99.57 98.91 98.91 98.91 99.68 100

Fold = 3

Col_Ade 99.84 99.58 99.58 99.58 99.68 100

Col_Ben 99.90 99.80 99.71 99.75 99.57 100

Lun_Ben 99.94 99.80 99.90 99.85 99.79 100

Lun_Ade 99.10 97.89 97.59 97.74 100 100

Lun_Squ 99.14 97.78 98.06 97.92 100 100

Average 99.58 98.97 98.97 98.97 99.81 100

Fold = 4

Col_Ade 99.82 100 99.80 99.80 100 100

Col_Ben 99.94 99.70 99.60 99.80 100 100

Lun_Ben 99.98 99.90 99.90 99.95 100 100

Lun_Ade 99.37 98.69 99.50 98.09 99.60 100

Lun_Squ 99.45 98.89 98.89 98.15 100 100

Average 99.71 99.39 99.54 99.16 99.92 100

Fold = 5

Col_Ade 99.75 99.42 99.58 99.40 99.80 100

Col_Ben 99.80 99.75 99.71 99.30 100 100

Lun_Ben 99.90 99.66 99.90 99.40 100 100

Lun_Ade 99.50 97.77 97.59 98.55 98.98 100

Lun_Squ 99.30 97.90 98.06 98.92 98.67 100

Average 99.65 98.90 97.77 99.11 99.49 100

Figure 4 shows the ROC curve that was achieved for each fold, and this shows that
Fold 4 has achieved AUC 1 for each class, showing the best result. The other folds have
also achieved great results in the ROC curves. Figure 5 shows the training and testing
accuracy curve and Figure 6 shows the training and testing loss for all the folds. Figure 5d
shows the accuracy curve for Fold 4, and it shows least fluctuations in the curve, making
it also best training and test accuracy result. Seeing the curves, the performance of the
proposed model on the dataset can be visualized. The consistent and stable natures of the
Fold 4 accuracy curve and loss curve suggest a robust and reliable performance, signifying
its strong generalization capability to classify correctly LCC even further. In Figure 6d,
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the loss curve is depicted for Fold 4. This time, the loss is reduced, with the least sudden
fluctuations. The curve proves the proposed model’s capability to reduce loss with time
and increase accuracy with time.
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4.4. XAI Visualization

The applied explainable DL algorithm Grad-CAM, which is explained in previous sec-
tions, can be observed to retrieve the information after the final convolution and transform
it into a heatmap. This map displays the regions in which the verdict was concentrated to
reach its decision. This heatmap is superimposed on the original image to help the medical
practitioner recognize the regions that affect the outcome. Before using the softmax tech-
nique (activating the class with the greatest value and inhibiting the others), the numerical
result of the classifier is also taken from the system’s final layer.

The size of the original image is 180 × 180 pixels, whereas the resolution of the
heatmap is 5 × 5 pixels (because of the final convolution layer before maximum pooling).
As a result, the heatmap image needs to be over scaled before being overlaid on the original.
This results in some portions of the heatmap not fitting completely with the original due to
the decimals produced during this process of resolution improvement; nevertheless, when
observing them, it is clear which parts of the image it refers to. When it comes to model
prediction in Figure 7, the red color on the maps denotes greater attention paid to those
locations, while the blue color denotes that less attention was paid to those regions. Each
image belongs to a different class, so the red color as well as the blue color heatmap in each
image are situated in different positions of that image.
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This not only aids in model interpretability but also empowers healthcare practitioners
to make informed decisions with additional information based on XAI-assisted analysis.
By providing visual justification for the model’s predictions, trust in the explainability and
accuracy of the proposed model is the aim, ultimately facilitating its integration into clinical
workflows for improved patient care.

Grad-CAM focuses on identifying the “class-discriminative” regions in the image,
which are the areas that are most relevant to the predicted class. The visualization produced
by Grad-CAM is specific to the model’s prediction for a particular class. The SHAP results
for each group explanation are set against a clear gray background. Here, the Shapley
value represents the contribution of that feature to the model’s prediction. SHAP provides
a comprehensive explanation for individual predictions by quantifying the impact of each
feature on the output.

In order for the model to determine the SHAP values for a particular set of instances,
a SHAP explanation has to be first created. A customized SHAP partition explainer
specifically made for deep learning models was made by using the SHAP—partition
explainer function. For each instance in the dataset, the SHAP values show how much
each pixel contributes to the model’s output. The SHAP data are arranged in matrices,
where columns stand for features and rows for instances. The features that push the
prediction towards the positive class are shown by positive values, and those that push
towards the negative class are indicated by negative values. Figure 8 shows an image
plot of all five classes, generated by using the SHAP values. The plot shows the original
image, with blue and red highlights in specific areas. Positive contributions to the class
prediction are indicated by red areas, and negative contributions are indicated by blue
areas. Blue zones reduce the likelihood of guessing a class, but red regions increase it. In
Figure 8, a lower SHAP value to the left indicates a lower prediction value, while a higher
SHAP value to the right indicates a greater prediction value. It can be seen in Figure 8
that for the Colon_Adenocarcinoma class, the prominence of red areas (positive SHAP
values) in the plot signifies a tendency toward the prediction of the Colon_Adenocarcinoma
class, indicating the correct prediction. In the second row, it has red pixels both in the
Colon_Adenocarcinoma and the Colon_Bengin_Tissue classes, which is confusing. For
Colon_Bengin_Tissue, all the pixels are red, whereas in Colon_Adenocarcinoma there are
still some negative SHAP value. So, it is clear that the second row is Colon_Bengin_Tissue.
The last row does not properly explain this, which is a limitation of the model.

Table 6 shows a full breakdown of how well the three explainability methods, Grad-
CAM, and SHAP perform compared to a standard measure. The reference (Ref.) value
column shows the optimal score for each parameter. This score is used to generate heatmaps
that provide a clear and balanced representation of the data. It can be highlighted that a
smaller value of nRMSE is preferable, and that higher values for SSIM and MS-SSIM indicate
better similarity, with a value of 1 representing perfect similarity. Lower nRMSE values
mean that the model is more accurate, and SHAP has the lowest number at 0.0678 ± 0.0245.
Higher SSIM and MS-SSIM numbers indicate better structural similarity, and SHAP does
very well in both, showing that it is good at capturing image features and is better than
other methods.

Table 6. Performance metrics analysis of XAI methods.

Metric Ref. Value Grad-CAM SHAP

nRMSE 0.0 0.0789 ± 0.0156 0.0678 ± 0.0245

SSIM 1.0 0.6198 ± 0.0259 0.7541 ± 0.0455

MS-SSIM 1.0 0.8934 ± 0.0754 0.8874 ± 0.0921
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4.5. Web Application

In the context of LCC detection, the interpretability of the DL model is crucial for
both medical professionals and patients. Gradio provides an intuitive and interactive
platform that allows users, including non-technical stakeholders in the medical field, to
comprehend and trust the predictions of the model. Gradio’s user-friendly interfaces make
it possible for oncologists, radiologists, and other healthcare professionals to interact with
and understand the model without needing extensive technical expertise. Gradio simplifies
the communication process between the model and the web interface. When a user interacts
with the Gradio interface, the input data, the LCC image, are sent to the model. The model
processes the input and generates predictions. Gradio receives the model’s output and
updates the web interface to display the results in a user-friendly format, which here is
in text format, showing the predicted class. Utilizing Gradio’s image input components
allows for users to upload medical images for analysis, displaying the model’s output and
indicating the predicted class or probabilities for different cancer types.
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In Figure 9, the web-application visualization can be seen, wherein the input images
are classified correctly by the proposed model. So, in this way, from a user point of
view, real-time prediction can be realized by the proposed model. The web application
visualization demonstrates the accurate classification of input images by the proposed
model, providing real-time predictions for different classes. Specifically:

(a) For colon adenocarcinomas, the proposed model correctly identifies and predicts this
category.

(b) In the case of benign colon tissue, the proposed model accurately classifies the input
images as such.

(c) Similarly, for benign lung tissue, the proposed model correctly predicts and catego-
rizes the images.

(d) When it comes to lung adenocarcinomas, the proposed model reliably classifies the
input images with precision.

(e) Finally, for lung squamous cell carcinoma, the proposed model consistently provides
accurate real-time predictions.
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duced the computational complexity. Masud M. et al. [21] have used traditional ML clas-
sifiers and achieved 96.33% accuracy, which is relatively low compared to other SOTA 
methods, whereas 99.20% accuracy was achieved in this paper. Hatuwal B. K. et al. [22] 
have also used a custom CNN, but it was only used for lung cancer. They achieved an 
accuracy of 97.20%. The hybrid ensemble learning technique was used by Talukder M. A. 
et al. [1], and it achieved 99.30% accuracy. Bukhari et al. [51] have used the pre-trained 
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This web application, aided by Gradio, showcases the effectiveness of the proposed
model from the user’s perspective, ensuring reliable and precise predictions across vari-
ous classes.

5. Discussion

To produce both quantitative as well as qualitative analyses, the suggested model
was contrasted with other methods found in the literature. Table 7 indicates how well the
proposed method performed on the lung and colon disease datasets.
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Hasan et al. [3] have used custom CNN and PCA, and they achieved 99.80% accuracy
for colon cancer only. XAI and end-to-end solutions were not used by the authors. On
the other hand, this research paper provides the best solution for multi-class classification,
provides an end-to-end pipeline solution, and uses explainable AI for visualization. Kumar
et al. [30] have used DenseNet121 for feature extraction and an RF ML classifier to predict
the actual class techniques. Mehmood S. et al. [50] have performed image enhancement
and used AlexNet for training the data, achieving 98.40% accuracy. They used too many
parameters. On the contrary, this research used 0.9 million parameters, which reduced
the computational complexity. Masud M. et al. [21] have used traditional ML classifiers
and achieved 96.33% accuracy, which is relatively low compared to other SOTA methods,
whereas 99.20% accuracy was achieved in this paper. Hatuwal B. K. et al. [22] have also
used a custom CNN, but it was only used for lung cancer. They achieved an accuracy of
97.20%. The hybrid ensemble learning technique was used by Talukder M. A. et al. [1], and
it achieved 99.30% accuracy. Bukhari et al. [51] have used the pre-trained model ResNet50,
which indicates that having more parameters also increases the computational complexity.
The accuracy is also very low, at 93.13%. Balasundaram et al. [38] have made AdenoCanNet
and AdenoCanSVM. They achieved 99% accuracy. The above-mentioned methods require
different algorithms to detect ROI, but the model in this research article can detect ROI
with the help of XAI. In comparison to [52], the proposed LW-MS CNN demonstrates
superior efficiency with a parameter count of only 1.1 million, a substantial reduction
from the 4.1 million parameters in the reference model. A model with fewer parameters
requires less computational resources during training and inference. By incorporating
convolutional layers with varying receptive field sizes, the model can capture both local
and global features present in the input data. This multi-scale approach facilitates the
detection of subtle abnormalities and distinctive characteristics across different scales,
enhancing the model’s sensitivity and discriminative power. Consequently, the model
can provide a more comprehensive representation of the underlying pathology, leading
to improved accuracy in cancer detection. This is especially beneficial for scenarios with
limited computational power, such as edge devices or mobile applications. Training a
model with fewer parameters is generally faster than training a larger model. This allows
for quicker experimentation, faster model iteration, and reduced training time. Models with
fewer parameters are less prone to overfitting, especially when dealing with limited data.
The reduced parameter count makes the proposed model more suitable for deployment in
resource-constrained environments, where memory and computation resources are limited.

Table 7. Comparison between the proposed model and other previous models.

References Cancer Type Methods XAI Accuracy Precision Recall F1-Score

[34] Lung and colon Feature
extraction Yes 95.60% 95.8% 96.00% 95.90%

[21] Lung and colon CNN No 96.33% 96.39% 96.37% 96.38%

[22] Lung CNN No 97.20% 97.33% 97.33% 97.33%

[19] Lung CNN No 97.89% - - -

[19] Colon CNN No 96.61% - - -

[52] Colon CNN No 99.50% 99.00% 100% 99.49%

[38] Lung and colon CNN No 99.00% - - -

[53] Colon CNN No 99.21% 99.18% 98.23% 98.70%

[53] Lung CNN No 98.30% 97.84% 98.16% 97.99%

Proposed Lung and colon LW-MS-CCN Yes 99.20% 99.16% 99.36% 99.16%

The achievements and limitations of the proposed model can be highlighted as follows:
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• The proposed model achieved an accuracy of 99.20% for the overall LCC class clas-
sification (five classes), indicating that it can detect LCC with greater accuracy than
similar DL models.

• The suggested model is more appropriate for real-time applications, such as mobile
or Internet of Medical Things (IoMT) devices, because it has fewer computationally
expensive parameters (1.1 million) compared to existing DL models.

• The multi-scale aspect of the proposed model plays a pivotal role in extracting features
at different hierarchical levels, thereby enriching its ability to discern intricate patterns
inherent in LCC images.

• When compared to existing DL models, the suggested model is an end-to-end model
since it can complete feature extraction and classification in a single pipeline. This
reduces the system’s complexity.

• The CV technique was employed to train and evaluate the suggested model, with the
aim of reducing overfitting and enhancing the model’s generalizability by applying it
to three combinations of the LC25000 dataset.

• The integration of XAI algorithms, such as Grad-CAM and SHAP, enhances the
model’s interpretability by providing diverse and complementary insights into feature
importance, enabling a more comprehensive understanding of the model’s decision-
making process.

Limitations:

� The proposed model has undergone testing on an LCC dataset using cross-validation
methods. However, it has not yet undergone complete validation for application in
real clinical scenarios. Additional clinical trials are necessary to validate the reliability
and precision of the model in real-life scenarios.

� Despite the advancements in DL, the diagnosis of LCC still poses a difficult problem
that requires a careful assessment of several parameters, such as the disease’s location,
shape, size, and the improvements observed following contrast enhancement. The sug-
gested model may not comprehensively consider all of these parameters, suggesting a
requirement for more enhancements to improve its accuracy in identifying LCC.

� Future work will focus on enhancing the model to minimize the margin of error in XAI.

In the realm of medical image analysis, the LW-MS CNN presents several advantages
worthy of discussion. Firstly, its ability to efficiently process and analyze medical images
while maintaining a relatively low computational footprint makes it highly suitable for
real-time applications, offering timely diagnoses critical for patient care. Additionally,
the incorporation of multi-scale features enables the model to capture intricate details
across various levels of granularity, enhancing its sensitivity to the subtle abnormalities
characteristic of LCC. This multi-scale architecture facilitates a more holistic understanding
of the pathology present in the images, thereby potentially improving diagnostic accu-
racy. Moreover, the lightweight design of the model, with a modest parameter count of
1.1 million, not only ensures rapid inference but also makes it more accessible for deploy-
ment on resource-constrained environments, such as edge devices or low-power computing
platforms. These combined attributes render the lightweight multi-scale CNN an attractive
solution for addressing the pressing need for early and accurate cancer detection, ultimately
contributing to improved patient outcomes and healthcare delivery. Finally, the suggested
approach has the potential to increase the effectiveness and precision of LCC identification,
particularly in real-world applications where computational power and speed are crucial
considerations as well as to analyze the region of interest areas.

6. Conclusions

A novel end-to-end DL-based lung and colon detection model that is interpretable is
proposed in this research. The proposed model demonstrates a high degree of accuracy in
identifying the most prevalent types of cancer in the five-class classification of both LCC
subtypes. The LW-MS CNN design of the suggested model, with 1.1 million trainable
parameters, enables real-time applications, cutting down on processing time and boosting
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system effectiveness. The proposed model has less trainable parameters than other SOTA
models, which indicates that the training and testing time are also less than in other
SOTA models. Additionally, the CV strategy was utilized to address the overfitting issue
and guarantee the generalizability of the model, providing an accuracy of 99.20% for the
classification of LCC. Medical practitioners can use an inventive end-to-end application that
was created to make use of the proposed model, which will provide precise forecasts and
support decision making. As a result, the proposed model’s capability to identify the type
of LCC rapidly and accurately can help neurosurgeons and medical professionals make
fast and correct clinical decisions about patients with LCC. In this study, interpretability
approaches including Grad-CAM, and SHAP improve the understandability, dependability,
and adaptability of lightweight CNN models to increase their efficacy. These methods
assist users, developers, and data scientists in understanding model behavior, resolving
problems, and improving the models’ effectiveness and fairness.

However, more research is required to properly comprehend the potential and lim-
itations of DL in LCC detection in the IoMT and to overcome the challenges of practical
application. To prevent overfitting or incorrect diagnosis, it is crucial to utilize strong and
proven DL models that have been trained on substantial and varied datasets. To ensure the
generalizability of the model, it is also crucial to consider potential biases in the training
data and to apply methods like CV. The proposed model can be used in clinics for the
automated diagnosis of LCC. The model could have improved performance with more
advanced image pre-processing and dataset segmentation, even though the architecture
provides greater accuracy. Additionally, segmentation techniques improve performance
results, and the region of interest of segmentation methods can be compared with the use
of interpretability methods. The datasets on LCC that were recently made public will be
investigated in the future to conduct an ablation study of the suggested model, aiming to
demonstrate its reliability. In further study endeavors, it is important to contemplate the
inclusion of comparisons with vision transformers to provide a more thorough perspective
on the progressions within this domain.
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Abstract: Inaccuracies from devices for non-invasive blood pressure measurements have been well
reported with clinical consequences. International standards, such as ISO 81060-2 and the seminal
AAMI/ANSI SP10, define protocols and acceptance criteria for these devices. Prior to applying these
standards, a sample size of N >= 85 is mandatory, that is, the number of distinct subcjects used to
calculate device inaccuracies. Often, it is not possible to gather such a large sample. Many studies
apply these standards with a smaller sample. The objective of the paper is to introduce a methodology
that broadens the method first developed by the AAMI Sphygmomanometer Committee for accepting
a blood pressure measurement device. We study changes in the acceptance region for various sample
sizes using the sampling distribution for proportions and introduce a methodology for estimating
the exact probability of the acceptance of a device. This enables the comparison of the accuracies of
existing device development techniques even if they were studied with a smaller sample size. The
study is useful in assisting BP measurement device manufacturers. To assist clinicians, we present a
newly developed “bpAcc” package in R to evaluate acceptance statistics for various sample sizes.

Keywords: blood pressure; ANSI/AAMI–SP10 standards; blood pressure measurement device;
probability of acceptance

1. Introduction

Blood pressure (BP) is extensively used to assist health monitoring and diagnosis
in healthcare settings. However, inaccuracies in BP measurement can result in misjudg-
ments, potentially leading to severe consequences [1]. The clinical gold standard for BP
measurement is BP measurement performed using arterial cannulation [2]; however, ar-
terial cannulation is invasive and time-consuming and can only be performed by skilled
personnel. It is also linked with cases of ischemia, lesions of nerves or vessels, embolism,
and other complications [3]. In regular cases, BP is measured non-invasively [4], which
yields measurement inaccuracies. Even slight measurement inaccuracies can result in
misclassifying millions of individuals [5]. Hence, a precise measurement of blood pressure
holds significant importance in public health. Underestimating true BP by merely 5 mmHg
or less can have significant clinical consequences as several studies have inferred incorrect
tagging of more than 20 million Americans as pre-hypertensive when, in fact, they are
suffering from hypertension. Untreated hypertension can lead to a 25% increased risk of
fatal strokes and fatal myocardial infarctions [1]. Conversely, if there is an overestimation of
true BP by 5 mmHg, nearly 30 million Americans may receive inappropriate treatment with
antihypertensive medications. This could result in exposure to potential side effects of the
drugs, psychological distress due to misdiagnosis, and unnecessary financial liability [5]. In
healthcare domains such as intensive care, accurate BP measurement is even more crucial.
As a result, regulating BP measurement devices is a critical matter, and suitable processes
must be used for clinical investigations to validate BP devices.
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National regulators have made significant efforts towards global harmonization of the
standards for medical devices. When designing a blood pressure (BP) measurement device,
manufacturers must adhere to standardized protocols, ensuring that the device’s inaccuracy
falls within an acceptable range, typically expressed as mean error ± standard deviation
of BP errors for non-invasive techniques. Even when within acceptable limits, continuous
efforts are made to improve the accuracy using improved methods by adding parameters
associated with blood pressure [6–8]. This pursuit aims to provide healthcare professionals
with more reliable BP readings, reducing the likelihood of errors and supporting informed
decision-making. The International Organization for Standardization (ISO), established
in 1947, defines standards that are accepted worldwide. It comprises representatives
from various national standards organizations. The ISO 81060-2:2018 standard defines the
criterion for the clinical investigation of automated, non-invasive sphygmomanometers [9]
and has been approved for use currently and recognized in whole or part by many national
regulators. It supersedes region-specific standards such as EN 1060-4:2004 [10] and has
been adopted in law, in contrast to validation protocols such as those recommended by the
British Hypertension Society [11] and the European Society of Hypertension [12].

ISO 81060-2:2018 stipulates criteria for determining the acceptable accuracy of sphyg-
momanometers that originated from the initial work of the Committee of US Association
for the Advancement of Medical Instrumentation (AAMI) in creating the American Stan-
dard for manual, electronic, or automated sphygmomanometers known as SP10 [13]. The
standard also specifies safety, labeling, and performance requirements designed to ensure
the safety and effectiveness of the device. ISO 81060-2, like SP10, mandates a minimum
sample size (N) of 85 participants to be used to evaluate the BP device inaccuracy [9].
In addition to N >= 85, the standard requires the BP errors to be within −10 mmHg to
10 mmHg, also known as the tolerable error limit, and the estimated probability of tolerable
error (p̂) to be at least 85%. In practice, it is found that accuracy requirements are difficult
to achieve, and process requirements are costly. Manufacturers attempt to adhere to this
standard. However, only a small fraction of manufacturers can do so [14]. A study reports
that less than 20% of the devices accessible today conform to an established guideline [2].

While compliance with this standard is appropriate for devices that are to be marketed,
there are purposes other than regulation of medical devices for which studies involving
fewer participants can still yield useful information. For instance, early evaluation of
experimental devices would benefit from an earlier checkpoint, as it is often difficult for
clinicians to gather 85 participants [15–17]. Currently, to our knowledge, there is no official
method for evaluating studies with fewer participants. As a result, various research works
in this field adopted potentially incorrect pass/fail criteria of the standard apparently
without recognizing the difference between their research methods and those assumed
by the standard. This paper aims to inform researchers and BP device manufacturers
about the potential effects of employing different sample sizes for the validation of a BP
measurement device.

We also offer recommendations to adjust the appropriate acceptance range (upper
limit of acceptable standard deviation for a certain mean error) required for any study to
adhere to criteria similar to the SP10 requirements. In addition to the different acceptance
limits for different sample sizes, this paper provides a brief comparison of previous studies
that investigated novel BP measurement methods with different sample sizes, and also
assesses their adherence to the current standard.

2. SP10 Statistical Considerations
2.1. SP10 Acceptance Criteria

Multiple techniques are used for automated, non-invasive BP measurement. Most
researchers/clinicians use an inflatable cuff to hinder the flow of blood in the upper arm.
As the cuff is deflated, various methods can be employed to estimate the systolic and
diastolic blood pressure (SBP; DBP) [18]. The error in estimation is the difference between
the values obtained from the test device and the value obtained using a reference method,
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which is normally specified as auscultation by trained observers [19]. Acceptance criteria
evolved from SP10′s inception in 1987 to reflect a more defined statistical treatment that is
currently adopted in ISO 81060-2.

Initially, the standard required that manufacturers should maintain the mean of errors
within ±5 mmHg with a standard deviation no greater than 8 mmHg [20]. However, these
static values did not consider the relation between the mean and standard deviation of
errors. For the same standard deviation, p̂ will be different if the sample mean is 0 mmHg
and if the sample mean is 5 mmHg. Hence, SP10′s criteria (reproduced as Table A1 in
Appendix A) was introduced to span different values of the sample mean and the upper
limit of standard deviation such that 85% of the errors are within the tolerable error range,
where p̂ = 0.85. These values of acceptable standard deviation for a given sample mean
represent the acceptance limit. For instance, for a mean error of 2 mmHg, the standard
deviation must be less than or equal to 6.65 mmHg to accept the device. But this estimated
probability of tolerable error (p̂) is itself an estimate.

How far off it is from the true value depends on the sample size. As per SP10, a sample
size of N = 85 yields a 90% chance or confidence that p̂ will not differ by more than about
0.07 from its true probability of tolerable error (p) [20], given by

p̂− p = 1.645× K, (1)

where K =
√

1
2π(N−1) and N is the sample size. We will refer to this difference as the

“90% confidence between p and p̂”. In Equation (1), K is the standard deviation of the
distribution of probability of tolerable error which is assumed to be asymptotically normal
according to the SP10 standard, where the mean of the distribution is p̂. Thus, for the device
to be acceptable, p̂ must be at least 85% for N = 85, because then one can be confident that
p is at least 78%, as per the standard.

2.2. Brief Review of the Problem
2.2.1. Acceptance Criteria

According to SP10, Table A1 can be used with any number of participants, but it
only considers the acceptance limit that is suitable for N ≥ 85. However, studies with
fewer participants than the minimum of 85 specified by SP10 are not uncommon. For
instance, one study proposes a novel BP estimation method based on Pulse Arrival Time
(PAT) to estimate SBP and DBP [16]. Using 32 subjects, they report the BP error limit,
mean error ± SD. These limits are 0.12 ± 6.15 (SBP, mmHg) and 1.31 ± 5.36 (DBP, mmHg).
Another study validates a wireless BP monitor using 33 participants [6]. The estimated BP
errors were −0.7 ± 6.9 mmHg for SBP and −1 ± 5.1 mmHg for DBP. A new calibration
procedure that accounts for the Sympathetic Nervous System (SNS) on BP-PTT (Pulse
Transit Time) was also proposed to estimate BP values using 10 subjects [21]. All these
studies attain the p̂ =0.85 criteria mentioned in SP10, but the sample size is less than 85.
For smaller sample sizes, there is little guidance on how the acceptance limit should change
such that one can be 95% certain that the true probability is at least 78%, which is recognized
as the threshold for acceptability by SP10. While these studies are potentially valuable, it
would be inappropriate to interpret results by making a comparison to the criteria in the
standard which is just fixed for N = 85.

At present, the 90% confidence between p̂ and p which is evaluated using Equation
(1) only considers the sample size of a specific study. Using this 90% difference value, the
standard makes some assumptions about the p̂ such that p ≥ 0.78. However, variations
in the 90% difference are not only due to changes in sample size but also to the value of
p̂, obtained from the reported sample mean and standard deviation from the BP device.
To tackle this issue, we propose a methodology that provides a more flexible approach to
evaluating the 90% confidence between p̂ and p with respect to the sample size, sample
mean, and standard deviation from a statistical point of view. With this approach, the value
of p̂ can be evaluated for different sample sizes, which we can use to study the changes in
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the acceptance limit of different sample sizes such that the devices under test adhere to the
SP10 criteria.

2.2.2. Probability of Acceptance (PA)

As a result of the acceptance limit varying with sample size, the probability of accep-
tance, which essentially gives the probability of meeting the SP10 criterion for a particular
sample mean, standard deviation, and sample size, will fluctuate. In this regard, this
research also provides a mechanism for a more relevant comparison of the mean and stan-
dard deviation of the data from studies with varying sample sizes. To effectively compare
studies with smaller sample sizes and distinguish the methodology (e.g., techniques and
mathematical methods) being used to develop the BP measurement devices, a more robust
statistical treatment is required to re-evaluate the literature less subjectively as per the
international standards. We present aspects behind the computation of the probability of
acceptance, denoted by PA.

There are two key outcomes from this work. First, we study the changes in the
acceptance limit for different sample sizes such that they adhere to the standards when the
sample size is less than N = 85. Secondly, we provide a methodology for evaluating the
probability of acceptance PA, allowing comparison of different studies with varying sample
sizes, assessing the accuracy of different methods and techniques being tested to build
BP measurement devices. This work has a companion R package called “bpAcc” which
implements the methodology introduced in this paper. This enables manufacturers and
researchers to better judge their compliance with the accuracy criteria of ISO 81060-2 using
a smaller sample size and more appropriately compare studies performed using different
sample sizes.

3. Methodology

This section outlines the theoretical details of this research starting from the protocols
currently in use by the SP10 standard. The parameters utilized in this section are also
outlined in Table A2 within Appendix C.

3.1. Brief Review of the Statistical Components of SP10
3.1.1. Average Error and Tolerable Error

For each of the N participants, k = 3 pairs of blood pressure measurements are obtained:
one measurement, δ

j
k1

, produced by the usual auscultatory reference method, and the other,

δ
j
k2

, produced by the device being assessed. The difference, ε
j
k = δ

j
k2
− δ

j
k1

, is called an error,

and the average error for the jth participant is

δj = ∑3
k=1

ε
j
k

3
, j = 1, . . . , N (2)

Statistically, we assume the average errors δj produced by the device D follow a θ-
parameterized distribution F = F (θ). The maximum average error accepted, also known as
the tolerable error, is denoted by ∆. The tolerable error is set to ∆ = 10 mmHg in this work,
following the SP10 standard. Hence, the probability of tolerable error is given by

P (|δj|≤ 10; θ) = F (10; θ) − F (−10; θ). (3)

The errors produced by any device are deemed acceptable if p is a minimum of γp,
i.e.,

p = P
(∣∣∣δj

∣∣∣≤ 10; θ
)
≥ γp, 0 ≤ γp ≤ 1 (4)

Fundamentally, we assume the errors δj follow a normal distribution with parameters
θ =

(
µp, σp

)T , µp ∈ R, σp > 0. µp and σp are the mean and standard deviation of the errors
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produced by the device readings and will be referred to as true mean error (or true bias)
and true standard deviation, respectively.

3.1.2. σγP Acceptance Curve

Our interest focuses on σγp
MAX , a bivariate function of (µp, γp) given by

σγp
MAX = σγp

(
µp, γP

)
= max

{
σp;P

(∣∣∣δj
∣∣∣≤ 10; θ =

(
µp, σp

)T
)
≥ γP

}
, (5)

for µp∈ (−10, 10) and fixed γP ∈ (0, 1). The curve is called the σγP acceptance curve, or
simply the acceptance curve. For every µp, σγp

MAX is given by the maximum sample
standard deviation producing a probability of tolerable error of at least γP. Figure 1 shows
σγP acceptance curves represented by σMAX for γP ∈ {0.75, 0.80, 0.85, 0.90, 0.95}, and µp in
(10, 10).
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3.1.3. ANSI/AAMISP10 Acceptance Criterion

As per the SP10 standard [20], a device D will be deemed acceptable if the estimated
probability of tolerable error p̂ is at least γp = 0.85, and the sample size is 85 subjects. From
Equation (5), we define the σAAMI acceptance curve as

σAAMI = σ0.85
MAX

{
σp;P

(∣∣∣δj
∣∣∣ ≤ 10; θ =

(
µp, σp

)T
)
≥ 0.85

}
, (6)

with µp ∈ (−10, 10), θ =
(
µp, σp

)T . Since σγP acceptance curves narrow down as shown in
Figure 1 as γP decreases, without loss of generality, we assume that the σAAMI acceptance
curve is obtained at γp = 0.85, which is as follows:

σAAMI = max
{

σp;P
(∣∣∣δj

∣∣∣ ≤ 10; θ
)
≥ 0.85

}
=
{

σp;P
(∣∣∣δj

∣∣∣ ≤ 10; θ
)
= 0.85

}
. (7)

The σAAMI acceptance curve is the thick black line and is given by the solution to

P
(∣∣∣δj

∣∣∣≤ ∆; θ =
(
µp, σp

)T
)
= 0.85. (8)
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with ∆ = 10, and µ0ε(−10, 10).
However, in practice, only size-limited samples of BP measurements are available

for testing the device D. In the following, we will introduce the statistical assumptions
required in this work. Let Sι =

{
δ1

ι , ..., δn
ι

}
be a size-n sample of BP average errors δι with

δι ∼ N
(
µp, σp

)
. The Sι-sample mean, and Sι-sample standard deviation are denoted by xι

and sι, respectively. We will remove the superscripts 1, . . ., n for simplicity.
Crucially, we replace µp with xι in Equation (8). Then, the highest permissible value

for sι rendering the device σ0.85-acceptable, denoted by σAAMI
0.85 , is the function of xι given by

σAAMI
0.85 = σAAMI

0.85 (xι) =
{

σp;P(|δι|≤ 10; xι ) = 0.85
}

. (9)

As a result, the device D is deemed acceptable under the SP10 acceptance criterion if
and only if sι ≤ σAAMI

0.85 (xι).
The values σAAMI

0.85 for fixed xι are obtained by directly applying the bisection method
to Equation (7) as a function of σp. Table 1 gives σAAMI

0.85 to selected values of µp = xι. The
pairs (xι, σAAMI

0.85 ) mentioned in the table are the values displayed in Figure 1 as red dots.

Table 1. The upper limit of SD for selected values of xι.

xι 0 ±1 ±1.5 ±2.87 ±3.96 ±5.12
σAAMI

0.85 6.947 6.874 6.782 6.311 5.664 4.696

xι ±5.93 ±6.67 ±7.15 ±7.88 ±8.9 ±9.99
σAAMI

0.85 3.927 3.213 2.75 2.045 1.061 0.01

3.2. Sampling Distribution of Sampling Proportions

SP10′s confidence limits for p, or true probability of tolerable error, rely on approxi-
mations of the Gaussian density using Taylor expansions around the mean and standard
deviation [20], providing a biased, standard error depending just on N of the form 1

2π(N−1)

and 95% confidence limits given by p̂± 1.645×
√

1
2π(N−1) .

In this paper, as opposed to [20], we adopt a statistical standpoint to address the uncer-
tainty attached to p̂. Consider the binomial random variable, say Y, given by the number of
errors falling in the interval [−10, 10]. The probability of “occurrence” or errors falling in
[−10, 10], denoted with p, is central to this paper. Essentially, we estimate p via maximum
likelihood estimation (MLE) using the sampling distribution of proportions which results
from the theoretical probability distribution of random-sampled proportions of fixed-size
N from the population of errors. The MLE of p is given by Y

N . This method represents our
main modeling framework allowing us to estimate p and compute probabilities associated
with any sample. This framework has been implemented in the package “bpAcc” in R
software, R version 4.2.0 [22].

The distribution of p, or proportion’s sampling distribution, is asymptotically normal,
based on the Central Limit Theorem, requiring a reasonably large sample size for estimation
accuracy. Specifically, it requires Np̂ ≥ 5 and N(1 − p̂) ≥ 5. Under such conditions, the
distribution of p is approximately normal with mean p̂ and standard deviation

sd =

√
p̂(1− p̂)

N
. (10)

With the proposed approach, the 90% confidence between p̂ and p is given by

p− p̂ = 1.645×
√

p̂(1− p̂)
N

(11)

To comply with the SP10 standards, the 90% confidence between p̂ and p should be
such that p ≥ 0.78. In this way, one can evaluate an updated value of p̂ for any sample
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size (N) using Equation (12). This results in changes in the acceptance limits for different
sample sizes which will be discussed in Section 5.

p̂− 1.645×
√

p̂(1− p̂)
N

= 0.78 (12)

3.3. Evaluation of the Probability of Acceptance (PA)
3.3.1. Evaluating the Probability

According to the standard, there is 95% certainty that p ≥ 0.78 with a sample size of
N = 85, where 95% is the threshold for the probability of acceptance. This will serve as the
benchmark for our proposed methodology, given by

PA = 1−∅

(
0.78, p̂,

√
p̂(1− p̂)

N

)
, (13)

where ∅ is the cumulative density function of the normal distribution. Fundamentally,
Equation (13) compares the probability of acceptance for previously published studies
with reported mean and standard deviation for the BP errors under different sample sizes.
For cases where PA ≥ 0.95, the device meets the SP10 standard. Currently, the acceptance
region provided for N = 85 is used to validate devices that have used smaller sample sizes;
however, with the proposed approach, we can now provide more insights on whether those
devices are complying with the SP10 standards with fewer sample sizes or not.

For inference purposes, the proposed framework relies on reasonably large sample
sizes, i.e., N ≥ 39 such that Np̂ ≥ 5 and N(1 − p̂) ≥ 5. However, the results provided by
the simulation study described in Section 3.3.2 have shown closer approximations even
for small sample sizes (N < 39), as shown in Table 2. For instance, µP = 2 and σP = 5.5 are
used to check for cases of samples that are less than 39 to compare the value of PA. The
selection of sample size for comparing the values of PA in Table 2 is informed by some of
the previous studies that have utilized smaller sample sizes to assess device inaccuracy
through various evaluation methods [23–25].

Table 2. Simulated PA and PA obtained from normal approximation using proposed method vs. the
method currently in use in the SP10 standard, for small sample sizes, with µP = 2 and σP = 5.5.

N = 10 N = 15 N = 20 N = 25

Simulated PA 0.95 0.964 0.974 0.982
PA using proposed

framework 0.931 0.965 0.982 0.99

PA using SP10 method 0.84 0.893 0.926 0.948

3.3.2. Simulation Study

The simulation study conducted to evaluate the probability of acceptance compares
the results obtained with the proposed framework. We investigated a simple situation in
which N random numbers from a normal distribution with a known mean and standard
deviation were generated. The proportion of errors that fall within the tolerable error range
is calculated, yielding the estimated probability of tolerable error, p̂. The simulations are
conducted for sim.count = 20,000 errors, and the proportion of p̂ ≥ 0.78 is evaluated to
determine the value of PA. To obtain the probability values shown in Table 2, an R code has
been provided in Appendix B.

To obtain an estimate of the proportion of instances that have p̂≥ 0.78, this process was
repeated 50 times. The proportion obtained in each of these repetitions is comparable with a
maximum difference of 0.004. For mean = 2, standard deviation = 5.5, and sample size = 25,
the median of these repetitions was 9.982. Future simulations would yield similar medians
of proportions with only minute differences. We can demonstrate through simulations that
our modeling framework is a better approximation than the present technique for N < 39.
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4. Software Implementation

The concept of the acceptance region and the probability of acceptance have been
implemented in the package “bpAcc” for the R statistical software. The function for
evaluating the acceptance region for different sample sizes is AcceptR(), which directly
computes Equation (6). Here, γP = p̂ is evaluated for a given sample size, N, using
Equation (12). The function PAccept() gives the probability of acceptance for a study that
has reported a sample mean error and SD for a sample size to validate a BP measurement
device. This function directly evaluates Equation (13). Arguments for both the functions
from the package are provided in Tables 3 and 4. The Comprehensive R Archive Network
contains concise documentation on user guidance, providing detailed descriptions of
package functions and examples. Users can access this documentation when downloading
the package in R.

Table 3. Arguments for AcceptR() from the R package bpAcc.

Argument Comments

N Sι—sample size.

distribution Distribution the errors are pulled from. Default is “normal”, i.e.,
normally distributed δk

ι errors.

criteria The underlying standard criteria for testing and data analysis.
The default is “SP10:2006”.

Table 4. Arguments for PAccept() from the R package bpAcc.

Argument Comments

N Sι—sample size.

Xbar, sd Sample mean and sample standard deviation of δk
ι -error

distribution.

distribution Distribution the errors are pulled from. Default is “normal”, i.e.,
normally distributed δk

ι errors.

criteria The underlying standard criteria for testing and data analysis.
The default is “SP10:2006”.

4.1. AcceptR() Function

Figure 2 provides an upper limit on the sample standard deviation to make sure that
p̂ is at least 87.47% for N = 33. If the sample mean error is between two values in the table,
linear interpolation is implemented. As an example, if the sample mean is −0.7 mmHg,
this is (−0.7 + 0.5)/(−1 + 0.5) = 0.40 = 40% of the distance between −1.0 and −0.5, so one
uses 0.40 × 6.45 + (1 − 0.40) × 6.50 = 6.48. The sample standard deviation would have to
be 6.48 or less to accept the device.
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4.2. PAccept() Fuction 
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ferent methods can be compared by evaluating 𝑃 which gives the probability of a device 
meeting the standards using the “PAccept()” function. Usually, different sample sizes are 
used to evaluate the device. This function can be directly used to determine how far exist-
ing studies or devices are from the acceptable standard. 

For instance, when two methods to develop a device are compared, where Method 1 
provides a device inaccuracy with sample mean error ± SD = 4 ± 5.1 and Method 2 pro-
vides sample mean error ± SD = 3 ± 6.2 for N = 33, to validate which method provides 
better accuracy and is acceptable as per the standards, the R code chunk provided in Fig-
ure 3 is used. 

> ## n = 33, xbar = -0.7, sd = 6.9 

> AcceptR(n = 33) 

---------------------------------------------------- 

 For 33 samples, 87.47% of errors must be within -10 mmHg to 10 

mmHg.  

-----------------------------------------------------------------     

xbar       sd 

    0.0     6.522419 

    0.5     6.503214 

    1.0     6.445114 

    1.5     6.346654 

    2.0     6.205400 

    2.5     6.018054 

    3.0     5.780903 

    3.5     5.491068 

    4.0     5.149097 

    4.5     4.762372 

    5.0     4.345659 

Figure 2. Sample output from AcceptR() for sample size N = 33.

4.2. PAccept() Fuction

During the initial research and development phase of a BP measurement device,
different methods can be compared by evaluating PA which gives the probability of a
device meeting the standards using the “PAccept()” function. Usually, different sample
sizes are used to evaluate the device. This function can be directly used to determine how
far existing studies or devices are from the acceptable standard.

For instance, when two methods to develop a device are compared, where Method 1
provides a device inaccuracy with sample mean error± SD = 4± 5.1 and Method 2 provides
sample mean error ± SD = 3 ± 6.2 for N = 33, to validate which method provides better
accuracy and is acceptable as per the standards, the R code chunk provided in Figure 3
is used.
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5. Applications 
5.1. Acceptance Region for Different Sample Sizes 

Using the proposed methodology, we can obtain the value of �̂� such that the stand-
ard criteria are also met using Equation (12). This adjusted value of �̂� for a given N is 
termed as the revised estimated probability of tolerable error or revised �̂� as illustrated in 
Figure 4. The figure indicates the changes in the revised �̂� for different sample sizes. This 
implies that there will be different acceptance regions per sample size as opposed to a 
single acceptance region in the SP10 standard [20], which is illustrated in Figure 5. The 
figure shows the acceptance region for a range of sample sizes between 5 and 85, each 
showing the upper limit of SD for a given mean error that must be followed such that the 
true probability is at least 0.78 95% of the time to adhere to the SP10 standards. 

> ## n = 33, xbar = 4, sd = 5.1 

> PAccept(xbar=4,sd=5.1,N=33) 

--------------------------------------------------- 

The probability of acceptance as per SP10 is 

0.9557126 

The device is meeting the SP10 criteria. 

--------------------------------------------------- 

 

> ## n = 33, xbar = 3, sd = 6.2 

> PAccept(xbar=3,sd=6.2,N=33) 

 

---------------------------------------------------- 

The probability of acceptance as per SP10 is 0.8801012 

 The device is not meeting the SP10 criteria. 

---------------------------------------------------- 

Figure 3. Sample output from PAccept() for two different cases with different device inaccuracies.

5. Applications
5.1. Acceptance Region for Different Sample Sizes

Using the proposed methodology, we can obtain the value of p̂ such that the standard
criteria are also met using Equation (12). This adjusted value of p̂ for a given N is termed
as the revised estimated probability of tolerable error or revised p̂ as illustrated in Figure 4.
The figure indicates the changes in the revised p̂ for different sample sizes. This implies that
there will be different acceptance regions per sample size as opposed to a single acceptance
region in the SP10 standard [20], which is illustrated in Figure 5. The figure shows the
acceptance region for a range of sample sizes between 5 and 85, each showing the upper
limit of SD for a given mean error that must be followed such that the true probability is at
least 0.78 95% of the time to adhere to the SP10 standards.
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Figure 5. Changes in the acceptance region (upper limit of SD for a given sample mean, x) as per
SP10 for different sample sizes.

5.2. BP Technologies: Comparison of Different Methods

Since the acceptance region varies for different sample sizes based on the revised p̂,
the value of PA will also vary for any reported mean error and SD. The PA values can be
directly evaluated using Equation (13). Tables 5 and 6 provide a list of different studies
that have reported device inaccuracy based on their development techniques or research
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methods. The techniques or methods outlined in the tables represent only a subset of
the diverse range of technologies employed in the development of blood pressure (BP)
measurement devices. While the table highlights specific studies utilizing various methods,
it is important to recognize that numerous other technologies and approaches are also
being explored within the field of device development. The device inaccuracy in both
the tables signifies the error (x ± SD) associated with the BP device. These BP estimation
errors are measured in mmHg. The proposed methods allow us to evaluate the probability
of acceptance of devices reported by these studies and hence also provide a comparison
between different BP development techniques/methods. For instance, a study conducted
to develop a BP device using an oscillometric method has reported a mean of BP errors x as
−0.7 and SD as 6.9 for a sample size of 33 [6]. The SP10 standard states that 85 samples
should be used, and for x = −0.7 mean BP error, the SD should not be more than 6.95. Even
though the SD reported by the study with 33 samples is less than 6.95, it would be incorrect
to interpret this as compliance with the SP10 criteria because the smaller sample size will
also influence the acceptability. By evaluating PA, we can analyze that effect. For this study,
PA ~ 0.87, which is less than the threshold of acceptability upon which SP10 is based, i.e.,
PA ≥ 0.95. Hence, the device does not meet the criteria of acceptability.

Table 5. Comparison statistics of the previous clinical studies that have reported device inaccuracy
based on SBP values.

Study Method/Techniques Sample Size Device Inaccuracy
(x ± SD)

Probability, PA
(p ≥ 0.78 )

[6] Oscillometry 33 −0.7 ± 6.9 0.873
[21] PTT 10 1.04 ± 6.88 0.730
[7] PTT-PPG 33 1.17 ± 5.72 0.997
[23] Standing 25 −0.462 ± 8 0.539
[16] PAT 32 0.12 ± 6.15 0.984
[26] PTT 33 −0.06 ± 6.63 0.934
[24] PTT-linear

20
0 ± 6.73 0.859

PTT-nonlinear 0 ± 5.56 0.995
[15] ML 45 4.53 ± 2.68 0.999

Table 6. Comparison statistics of the previous clinical studies that have reported device inaccuracy
based on DBP values.

Study Method/Techniques Sample Size Device Inaccuracy
(x ± SD)

Probability, PA
(p ≥ 0.78 )

[21] PTT 10 −2.16 ± 6.60 0.732
[7] PTT-PPG 33 0.40 ± 7.11 0.825
[25] PTT-IPG 15 −0.5 ± 5.07 0.999
[27] PWV- 15 −0.06 ± 5.46 0.991
[6] Oscillometry 33 −1.0 ± 5.1 0.999
[16] PAT 32 1.31 ± 5.36 0.999
[26] PTT 33 −0.25 ± 5.63 0.999

6. Discussion and Conclusions

International standards such as ISO 86010-2 serve an important purpose in providing
clarity to consumers, manufacturers, and regulators that medical devices (at least with
respect to the scope of the standard) are safe and effective. With this purpose, standards
provide clear pass/fail criteria, which reflect the level of a device’s performance and
acceptability. In this regard, the pass/fail criteria set out in ISO 86010-2:2018, inherited
from SP10, are broadly recognized and represent an implicit definition of what constitutes
acceptable errors in blood pressure measurement. In SP10, the mathematical translation
of this definition into pass/fail criteria utilizes an approximate approach that results in
formulas for confidence intervals that are functions only of the sample size, disregarding
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the sampling errors in the form of estimated probability of tolerable error. In this work, we
have proposed a method using a solid statistical theory to determine confidence intervals.
The proportion’s sampling distribution is a more accurate statistical approach for studying
the random errors producing p since it additionally takes the mean and the standard
deviation of measurement errors into consideration.

By detailing the expected changes in device acceptability, the paper contributes valu-
able knowledge to the existing research in this field. This work also provides an adjusted
acceptance limit of BP errors based on the same definition of acceptable performance
underlying the SP10 standard for studies that use a sample size of less than 85. The ad-
justed limits are expected to be useful in the initial validation of BP technologies. Device
manufacturers can use these adjusted acceptance limits to estimate compliance with the
standards using smaller sample sizes, reducing the cost of development and/or allowing
faster iterative development.

An important use case for this research is the ability to compare reported results,
for example, when there are several technologies/methods/algorithms being used for
estimating BP, and the individual reports utilize different sample sizes, as shown in Table 5.
In each case, the reported device inaccuracy (x and SD) appears to be within the SP10
criteria. However, the sample sizes are significantly smaller. Using the methods presented
here, the calculation of the probability of acceptance, PA, allows a quantitative comparison
of the existing literature and also to the SP10 criteria. For most of the presented studies, it
is apparent that the reported results do not reach an equivalent level of confidence to SP10.
PA allows direct comparison of results with different means and standard deviations, for
example, a study with a high mean and low SD [15] and a study with a much lower mean
and higher SD [26]. Many hypertension societies now offer clinicians a comprehensive list
of blood pressure measurement devices, facilitating informed decision-making for clinical
trials. Currently, the list can only assess whether the device is recommended or not based
on its performance, utilizing the acceptance range specified in the standards [28]. With the
introduction of the proposed method, clinicians can now more appropriately compare the
reported inaccuracies across varying sample sizes. This functionality empowers clinicians
when evaluating devices for their specific research needs.

We demonstrate that no more than 70 samples are required to maintain the 85%
estimated probability of tolerable error, as opposed to the N = 85 stated in the standards, as
illustrated in Figure 4. There are cases where being able to correctly interpret the results of
a study with a smaller sample would be beneficial, for example, with a population subset
with only infants. Our framework still makes a statistical assumption of reasonably large
sample sizes, ideally N ≥ 39. Although the proposed method is optimized for at least
39 samples, it is instructive to see how the framework performs for fewer samples. For this,
we performed a simulation study in which we varied the mean and the standard deviation
of the error distribution. We experimented with high variance but not exceeding the SP10
mandate for the standard deviation, that is, σ ≤ 6.9. The approximations with the proposed
framework demonstrated closer results compared to the approximations with the existing
framework. Table 2 presents one such result, while additional scenarios are elaborated in
detail in Appendix D. The results become more distant for both frameworks as the sample
size decreases. We witness this relation because with smaller sample sizes, the tendency
of the sampling distribution to approximate normal distribution decreases. These results
are further confirmation that caution should be applied when using smaller sample sizes,
particularly when N < 39. To extend the proposed framework for less than 39 samples,
further research is required.

This study presents a formal statistical evaluation of the device’s conformity with
international standards, primarily through the evaluation of the probability of acceptance
PA depending on the mean error, the standard deviation of the error, and the sample
size. While evaluating a device’s inaccuracy, international standards also mandate that the
device follows guidelines in regard to selecting the cuff size, providing the subject with
a resting period prior to measurement, etc. Any deviation from these protocols has the
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potential to introduce bias, though the specific impact remains inconclusive as most studies
do not explicitly state whether these protocols were adhered to. Additionally, to ensure
enough samples in varied categories, including covering high and low blood pressure
groups, ranges, and distributions of arm sizes, a minimum device sample size of N = 85 is
necessary. In such cases, a smaller sample size will not be representative of the population.

With significant modifications for the standard SP10, we introduce a mathematical
framework to accommodate different underlying definitions of acceptable error and confi-
dence. This is of relevance to those developing new BP measurement technologies which
are often tested initially in smaller samples, such as cuffless, wearable BP measurement
devices that perform continuous readings to gather trends for a long period of time. These
technologies help in assessing real-time fluctuations which might be useful for clinical trials
that aim to gather longitudinal data on blood pressure trends and responses to interventions.

Finally, to assist in the calculations presented, this paper also introduces the compan-
ion R package “bpAcc”, an implementation of this methodology involving functions to
directly compute the acceptance limit and PA without having to deal with the mathematical
complexities. At present, our framework has the infrastructure to afford normally dis-
tributed errors, as stated by the argument “distribution” from “PAccept()” and “AcceptR()”.
Future work includes upgrading both functions to handle errors other than normal. Initial
steps have been taken in this direction with both functions being currently trained and
tested using the one-parameter (λ, or degrees of freedom) Student-t distribution. We are
focused on selecting real-valued distributions with practical benefits for clinicians and
manufacturers, rather than a theory-based selection of choices. Essentially, more data are
useful, but experiments are often expensive. We aim to provide choices spanning various
sample sizes by providing statistical infrastructure to maximize the user’s ability to identify
faulty devices (e.g., Type I error) for BP measurement. Over time, both functions will be
enhanced with further arguments to handle, e.g., criteria other than “SP10:2006”.
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Appendix A

Table A1. This is Table F.1 in [20]. It shows the upper limit on the sample standard deviation to yield
at least 85% estimated probability of tolerable error.

Sample Mean Error Standard Deviation

0 6.95
±0.5 6.93
±1.0 6.87
±1.5 6.78
±2 6.65
±2.5 6.93
±3.0 6.87
±3.5 6.78
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Table A1. Cont.

Sample Mean Error Standard Deviation

±4 6.65
±4.5 6.93
±5.0 6.87

Appendix B

This section contains Algorithm 1 that is useful to generate the probability values
present in Table 2. The algorithm is used to evaluate the probability of acceptance using the
simulation study.

Algorithm 1

1. function simulate (µ, σ, n)
2. δ := 10
3. Set p̂ as the probability of tolerable error using (µ, σ, δ)
4. κ := 20000
5. Set P, Γ, Υ to ϕ
6. ε := −10
7. E := 10
8. for i = 1 to κ do
9. Set Θ as a randomly normalized array using (n, µ, σ)
10. κ := 0
11. for each θ in Θ do
12. if θ > ε and θ < E then
13. κ := κ + 1
14. end if
15. end for
16. κ := κ / n
17. Insert κ in P
18. Insert mean(Θ) in Γ
19. Insert stddev(Θ) in Υ
20. end for
21. Ω := 0
22. for each ρ in P do
23. if ρ > 0.78 then
24. Ω := Ω + 1
25. end if
26. end for
27. Ω := Ω / κ

28. return Ω
29. end function

Appendix C

Table A2. List of parameters used in Section 3 with their description.

Parameter Description

ε
j
k

BP error for the jth participant, which is the difference between the test
device measurement, δ

j
k2

, and the reference device, δ
j
k1

δj Average of the errors for three measurements for the jth participant

∆ Tolerable error, i.e., errors within −10 mmHg and 10 mmHg

p̂ Estimated probability of tolerable error
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Table A2. Cont.

Parameter Description

p True probability of tolerable error

γp Maximum value of the probability of a tolerable error

θ Parameterized distribution for BP errors

µp, σp True mean and true standard deviation, respectively

σMAX Maximum standard deviation for a certain value of mean and γP

σAAMI Maximum standard deviation for a certain value of mean as per SP10
where γP = 0.85

xι,sι Sample mean and sample standard deviation of BP errors, respectively

∅ Cumulative density function of the standard normal distribution

Appendix D

Table A3. Simulated PA and PA obtained from normal approximation using proposed method vs.
the method currently in use in the SP10 standard, for small sample sizes, with µP = 0 and σP = 6.9.

N = 10 N = 15 N = 20 N = 25

Simulated PA 0.83 0.83 0.84 0.85
PA using proposed

framework 0.74 0.79 0.82 0.85

PA using SP10 method 0.71 0.75 0.79 0.81

Table A4. Simulated PA and PA obtained from normal approximation using proposed method vs.
the method currently in use in the SP10 standard, for small sample sizes, with µP = 2.5 and σP = 6.9.

N = 10 N = 15 N = 20 N = 25

Simulated PA 0.75 0.74 0.74 0.74
PA using proposed

framework 0.65 0.68 0.71 0.73

PA using SP10 method 0.64 0.67 0.69 0.72

Table A5. Simulated PA and PA obtained from normal approximation using proposed method vs.
the method currently in use in the SP10 standard, for small sample sizes, with µP = 5 and σP = 6.9.

N = 10 N = 15 N = 20 N = 25

Simulated PA 0.52 0.46 0.42 0.38
PA using proposed

framework 0.42 0.40 0.38 0.37

PA using SP10 method 0.41 0.39 0.37 0.36
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Abstract: The increasing prevalence of atrial fibrillation (AF) and its association with Major Adverse
Cardiovascular Events (MACE) presents challenges in early identification and treatment. Although
existing risk factors, biomarkers, genetic variants, and imaging parameters predict MACE, emerging
factors may be more decisive. Artificial intelligence and machine learning techniques (ML) offer a
promising avenue for more effective AF evolution prediction. Five ML models were developed to
obtain predictors of MACE in AF patients. Two-thirds of the data were used for training, employing
diverse approaches and optimizing to minimize prediction errors, while the remaining third was
reserved for testing and validation. AdaBoost emerged as the top-performing model (accuracy:
0.9999; recall: 1; F1 score: 0.9997). Noteworthy features influencing predictions included the Charlson
Comorbidity Index (CCI), diabetes mellitus, cancer, the Wells scale, and CHA2DS2-VASc, with specific
associations identified. Elevated MACE risk was observed, with a CCI score exceeding 2.67 ± 1.31
(p < 0.001), CHA2DS2-VASc score of 4.62 ± 1.02 (p < 0.001), and an intermediate-risk Wells scale
classification. Overall, the AdaBoost ML offers an alternative predictive approach to facilitate the
early identification of MACE risk in the assessment of patients with AF.

Keywords: atrial fibrillation; major adverse cardiovascular events (MACE); machine learning; artifi-
cial intelligence

1. Introduction

Despite being the most prevalent cardiac arrhythmia, the early identification, diag-
nosis, and treatment of atrial fibrillation (AF) remain challenging. AF affects millions
of individuals globally and is linked to a heightened risk of stroke, heart failure, and
mortality [1–4]. These medical conditions collectively fall under the term Major Adverse
Cardiovascular Events (MACE) and are subject to extensive research [5]. The diagnosis of
AF is associated with a fourfold increase in heart failure incidence and an eightfold increase
in MACE occurrence [6].

Risk factors for MACE in AF patients have been identified as age, gender, hypertension,
diabetes (known as “traditional”), biomarkers, genetic variants, imaging parameters, and
left atrial function [7–10]. In recent years, there has been growing interest in identifying new
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predictors of MACE in AF patients [11] beyond traditional ones such as obesity, chronic
obstructive pulmonary disease (COPD), or chronic renal failure [7,8,12]; this novel approach
is associated with a reduced risk of MACE, including mortality and thromboembolism [13].

Several proposals for stroke risk assessment in AF have been developed, such as
CHA2DS2-VASc [14], the Framingham score [15], Anticoagulation and Risk Factors in Atrial
Fibrillation (ATRIA) [16], Cohorts for Heart and Aging Research in Genomic Epidemiology
for Atrial Fibrillation (CHARGE-AF) [17,18], and Atrial Fibrillation Research In CATalonia
(AFRICAT) [19]. However, there are still challenges and limitations with clinical risk scores
that restrict their applicability to certain populations. Moreover, the discriminatory ability
of clinical risk scores in predicting stroke risk for an individual is at best moderate [20]. For
MACE risk specifically, some studies [21,22] have proposed additional scoring systems or
modifications to existing scores to better predict cardiovascular events in patients with AF.
Leveraging artificial intelligence (AI) and machine learning (ML) techniques on electronic
health record (EHR) data offers a potential avenue to further refine these risk prediction
models. However, it is important to note that the extent of performance improvement
achieved through AI and ML approaches can vary [23,24].

Therefore, more comprehensive risk prediction models incorporating a wider range
of predictors or with more prognostic value are needed. Such models can be achieved
using ML algorithms, which offer a promising approach in AF patients [2], as they can
integrate large amounts of data from multiple sources and identify complex patterns and
correlations that may not be evident using traditional statistical methods.

The heterogeneous mechanisms and risk factors associated with AF make it necessary
to target personalized treatment approaches, requiring extensive patient data to identify spe-
cific patterns. AI algorithms are particularly suitable for handling high-dimensional data,
predicting outcomes, and ultimately optimizing strategies for patient management [25].
Recent advances in ML have resulted in great success and have also been utilized to analyze
electrocardiogram (ECG) data and predict the future occurrence of arrhythmias. Future
Innovations in Novel Detection for Atrial Fibrillation (FIND-AF), an extensively scalable
ML algorithm, is capable of analyzing routinely collected primary care data to identify
individuals with an elevated risk of short-term AF [26]. Other studies have demonstrated
the utility of machine learning-based models in AF for real-time identification of a variety
of rhythms using 12-lead or single-lead ECG recordings, as well as for diagnosis, outcome
prediction, disease characterization, and treatment assessment [2,27–33]. However, they
do not address the discrimination of cardioembolic from noncardioembolic stroke among
individuals with AF with high accuracy and surpassing traditional risk scores. These
methods provide precise and efficient algorithms for data analysis, improving prediction
accuracy, pattern identification, and task automation. If patients at higher risk of MACE
could be identified, treatment strategies could be developed to potentially reduce incidence
and associated complications.

The primary objectives of this study encompassed the identification of noteworthy
clinical indicators associated with MACE in patients with new AF. It further aimed to assess
the prognostic impact of these predictors within a community cohort, aged 65–95 years,
tracked from 2015 to 2021.

2. Materials and Methods
2.1. Study Design

This was an observational study, and the data were retrospectively collected where
possible, or manually collected otherwise. The specific codes of the International Classifica-
tion of Diseases (ICD-10) were used. The project encompassed the broader demographic of
individuals aged 65–95 years (n = 40,297) who did not have AF as part of their inclusion
criteria and was conducted within the Primary Care facilities of Terres de l’Ebre, located in
Catalonia, Spain, during the period spanning from 1 January 2015 to 31 December 2021.

The data were available from the electronic medical datasets (E-CAP and SAP) man-
aged by the Catalan Health Institute (ICS), which collect information from primary care
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centers and hospitals in the health region anonymously and without contact with the cases
included, as follows:

1. The Health Plan [33] outlines healthcare priorities in the “Terres de l’Ebre” Healthcare
Region (Catalonia, Spain) from 2021 to 2025.

2. The HC3 Patient Episode Dataset provides clinical information of care on inpatient
and outpatient care in Catalan hospitals.

3. The clinical database of 11 primary care teams includes comprehensive health data
for 97.7% of residents, covering symptoms, tests, diagnoses, comorbidities, prescribed
medication, and referrals.

4. The Integrated System of Electronic Prescription (SIRE) captures information on
prescribed medications.

5. The Statistics Institute of Catalonia includes demographic information [34–36].

The datasets generated, used, and analyzed during the current study are available
from the corresponding author on reasonable request.

2.2. Eligibility Criteria

All patients over 65 years of age from Terres de l’Ebre (N 55,459) without AF or MACE
in their clinical history were considered, and the following criteria were defined:

1. Outcomes: AF patients who had a MACE.
2. Inclusion criteria: Subjects aged 65–95 years who met the inclusion criteria: high

risk-AF (according to the risk model and belonging to Q4) [19], active clinical history
in any of the health centers of the territory with information accessible through the
shared history (HC3), without previous AF or MACE, residing in the territory, and
attached to any of the Primary Care Teams (EAP) of the territory.

3. Exclusion criteria: under 65 years of age or over 95 years of age, living outside
Terres de l’Ebre, a previous diagnosis of AF, treatment with anticoagulants, impaired
cognitive status, Barthel score < 55 points, or pacemaker or defibrillator wearer. Non-
availability or loss of accessibility to the information necessary for the study was
considered a reason for exclusion.

2.3. Data and Preprocessing

The overall composition of the dataset for MACE prediction is given in Table 1 Numeri-
cal calculations and data analysis were performed using Python library version 3. Code and
models used for the analysis are available online (https://github.com/vmalonsobarberan/
MACE) (accessed on 15 December 2023).

Table 1. Comparison of the performance of different models.

Machine
Learning

Model
Accuracy Precision Recall F1 Score Sensitivity Specificity PPV NPV AUC

Random Forest 96.78% 0.8456 0.9263 0.8841 0.9885 0.8456 0.9741 0.9263 96.78%
Extra Trees 98.82% 0.9641 0.9554 0.9597 0.9923 0.9641 0.9938 0.9554 98.82%
AdaBoost 99.99% 0.9994 1 0.9997 1 0.9994 0.9999 1 99.99%
XGBoost 99.95% 1 0.9971 0.9985 0.9995 1 1 0.997 99.95%

LightGBM 99.96% 1 0.9977 0.9988 0.9996 1 1 0.9977 99.96%

2.4. Model Development

To develop ML models for estimation, we took features of the individuals with newly
diagnosed AF who developed MACE, following the eligibility criteria. ML model develop-
ment was performed using the SKLearn and TensorFlow libraries due to their versatility
and ease of programming. For each fold, hyperparameters were tuned on training data
using a randomized search after the determination of a candidate hyperparameter set.
Evaluation of validation data was performed using the metrics described in the next section.
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Five different ML models were implemented based on the following algorithms: Random
Forest, Extra Trees, AdaBoost, XGBoost, and LightGBM. They were trained on all the
features (variables) used in the study to predict the development of MACE within one year
as well as to predict the development of AF.

A fundamental part of the study, prior to the construction of the learning models,
consisted of “Feature Engineering”, which consists of the analysis and selection of the
variables, as well as the processing of the data they contain. To this end, those that only
contribute noise and/or are correlated with others that have a greater influence on the
objective we aimed to predict were eliminated.

The performance of MACE prediction was quantified using the following metrics:
precision, recall, accuracy, and F1 score (combination of precision and recall). Two thirds of
the data (36,973) were randomly selected for training and model building using different
approaches and optimized to reduce the prediction error. The remaining 1/3 (18,486) was
used for testing and validation. The models underwent testing using this separate test data
to assess their performance on data that had not been utilized during the training phase.
This evaluation aimed to determine whether the models could effectively generalize and
make accurate predictions on unseen data.

2.5. Model Performance Analysis

Several metrics were used to evaluate the algorithms, including prediction robustness,
completeness, sensitivity, specificity, precision, recall, accuracy, and F1 score (combination of
precision and recall). Evaluation of these metrics allowed us to adjust the hyperparameters
of the model to improve the most desirable aspect of the model. The model with the highest
and most robust performance was chosen after evaluating the performance of the different
models using the mean value of the area under the ROC curve. The assessment of our
models included consideration of the standard deviation of the results to evaluate their
stability, along with an analysis of sensitivity, specificity, and accuracy. After fitting and
evaluating different models, the best model was selected, and the hyperparameters were
adjusted to obtain the optimal results.

2.6. Model Interpretability

The Shapley Additive exPlanations (SHAP) method was used to analyze which factors
were the most important and to what extent they contribute to the model’s predictions.
An individual automatic explainability model was also created to allow an analysis to be
made for each individual patient. The latter allows, after analyzing a patient’s variables, to
explain how likely a patient with AF is to have a MACE and which factors contribute to
this prediction and to what extent.

2.7. Statistical Analysis

The traditional statistical analysis of the baseline data was previously documented [6].

3. Results
3.1. Study Population Patient Characteristics

The study encompassed a cohort of 2574 individuals devoid of prior MACE incidents,
with a mean age of 81.22 ± 7.91 years and a gender distribution of 52.01% women. A
detailed analysis of baseline characteristics, as outlined previously [6], revealed notable
distinctions among the study groups. Notably, women who experienced MACE exhibited
a higher mean age (82.23 ± 7.59 years, compared to 80.53 ± 8.05 years for males, p < 0.001)
and a higher prevalence of cardiovascular risk factors and comorbidities. Refer to Table 2
for a comprehensive overview of the selected variables instrumental in model construction.
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Table 2. Distribution of AF patients according to the presence of MACE.

Variables No MACE (%) MACE (%) p All

All 1527 59.32% 1047 40.68% 2574
Woman 785 51.41% 558 53.30% 0.356 1343
Age average 80.53 ± 8.05 82.23 ± 7.59 <0.001 81.22 ± 7.91
Hypertension, arterial 1112 72.82% 833 79.56% <0.001 1945
Diabetes mellitus 406 26.59% 363 34.67% <0.001 769
Dyslipemia 692 45.32% 524 50.05% 0.020 1216
Vascular disease 59 3.86% 286 27.32% <0.001 345
Dementia/cognitive
impairment 174 11.39% 136 12.99% <0.001 310

Liver disease 6 0.39% 4 0.38% 1.000 10
Renal failure 339 22.20% 337 32.19% <0.001 676
Cancer 516 33.79% 340 32.47% 0.496 856
Thyroid disease 109 7.14% 106 10.12% 0.018 215
OSAHS 1 60 3.93% 66 6.30% 0.007 126
COPD 2 225 14.73% 222 21.20% <0.001 447
Inflammatory disease
(Crohn’s and Colitis) 9 0.59% 7 0.67% 0.804 16

Deep vein thrombosis 20 1.31% 17 1.62% 0.506 37
Weight (kg) 77.47 ± 5.7 78.03 ± 16.51 0.038 77.69 ± 16.04
BMI 3 29.32 ± 5.28 29.75 ± 5.51 0.041 29.49 ± 5.38
Heart rate/min 76.05 ± 1847 75.71 ± 18.47 0.625 75.91 ± 18.47
Cholesterol mg/dL 184.23 ± 38.07 164.98 ± 38.14 <0.001 176.4 ± 39.24
ProBNP (pg/mL) 1550 3301.75 ± 2882.7 0.625 2951.4 ± 2616.52
Dimer D (ng/mL) 1753.59 ± 2714.47 1319.72 ± 2954.13 0.337 1532.56 ± 2838.47
Glomerular filtration rate
(mL/min/1.73 m2) 66.11 ± 19.8 59.85 ± 20.74 <0.001 63.48 ± 20.43

Serum albumin (g/dL) 4.94 ± 5.43 5.04 ± 14.85 0.835 4.98 ± 10.68
Lymphocytes (×103/µL) 2.12 ± 1.11 2.02 ± 1.62 0.072 2.08 ± 1.34
Statins 505 33.07% 607 57.98% <0.001 945
Anticoagulation 1207 79.04% 787 75.16% 0.021 1994
Antivitamin-K 613 40.14% 331 31.61% <0.001 944
NOAC 4 595 38.96% 458 43.74% 0.015 1053
Anti-aggregants 67 4.38% 74 7.06% 0.003 141
Pfeiffer score ± SD 2.91 ± 3.1 2.61 ± 2.8 0.218 2.75 ± 2.94
CHA2DS2-VASc ± SD 3.26 ± 0.95 4.62 ± 1.02 <0.001 3.81 ± 1.20
CCI 5 ± SD 1.24 ± 1.19 2.67 ± 1.31 <0.001 1.82 ± 1.43
CONUT score ± SD 1.31 ± 0.54 1.48 ± 0.61 <0.001 1.38 ± 0.58
Wells score ± SD 1.35 ± 0.48 1.33 ± 0.47 0.415 1.34 ± 0.47
COVID-19 150 9.82% 110 10.51% 0.573 260
Death 1279 83.76% 777 74.21% <0.001 2056

1. OSAHS: obstructive sleep apnea-hypopnea syndrome; 2. COPD: chronic obstructive pulmonary disease; 3. BMI:
Body Mass Index; 4. NOAC: new oral anticoagulants; 5. CCI: Charlson Comorbidity Index.

3.2. Machine Learning Model
3.2.1. Comparison between the Different Models

In the comparative analysis of various pre-trained models, AdaBoost emerged as the
top-performing model, showcasing exceptional metrics, with an accuracy of 0.9999, recall
of 1, and an F1 score of 0.9997. This marked superiority was evident, making AdaBoost the
optimal choice, balancing both sensitivity and specificity (Figure 1).

Following closely behind, XGBoost (accuracy: 0.9995; recall: 0.9971; F1: 0.9985) and
LightGBM (accuracy: 0.9996; recall: 0.9977; F1: 0.9988) emerged as the second-best models
in our evaluation (Table 1). Notably, Random Forest and Extra Trees, while achieving
commendable Area Under the Curve values (Figure 2), did not match the performance
levels achieved by AdaBoost.
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The confusion matrices of the different models and cross-validation were calculated.
Each model has a confusion matrix. The models were ranked by true positive rates (Table 2).

3.2.2. Predictors by Outcomes

Figure 3 shows the main prognostic factors for MACE in AF patients. From most to
least important were an elevated CCI, cancer, diabetes mellitus, COPD/asthma/bronchitis,
cognitive impairment, vascular disease, high values of the CHA2DS2-VASc, and Wells scale.
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3.2.3. Model Interpretation

Figure 4 encapsulates a comprehensive overview of the feature contributions within
the optimal model, AdaBoost. The SHAP (SHapley Additive exPlanations) summary
chart delineates the significance of various characteristics, with the following five features
emerging as the most influential: CCI, diabetes mellitus, cancer, Wells scale, and CHA2DS2-
VASc. This SHAP summary chart not only identifies the primary features impacting the
prediction but also quantifies their respective magnitudes through the SHAP values. The
figures provide valuable insights into the relative importance of each feature, aiding in a
nuanced understanding of the predictive dynamics within the AdaBoost model.
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Figure 4. SHAP summary plot of optimum model. (A) The warm SHAP plot shows the distribution
of SHAP values for each characteristic. (B) Bar chart according to feature importance.

Figure 5, the SHAP bar plot, serves as a visual representation elucidating the overall
significance of each feature in predicting the occurrence of MACE. The height of the
bars directly correlates with the importance of each feature to the model—higher bars
denote greater importance. This graphical representation offers a clear and straightforward
depiction of the overall magnitude and relevance of individual features in influencing
the predictive outcome of MACE within the model. The visual emphasis on bar height
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facilitates an immediate understanding of the relative contributions of different features,
enhancing the interpretability of the model’s decision-making process.
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The analysis delved into the influence of specific diseases, as outlined in the model,
as predictors of MACE in AF patients. A CCI score exceeding 2.67 ± 1.31 (p < 0.001), a
CHA2DS2-VASc score of 4.62 ± 1.02 (p < 0.001), and an intermediate-risk classification in
the Wells scale were all observed to significantly elevate the risk of MACE. These findings
underscore the nuanced interplay of individual patient characteristics, providing valuable
insights into the factors contributing to the heightened risk of MACE in AF patients.

In Figure 6, the force chart dynamically illustrates the contributions of each feature in
directing the model prediction from the base value to the ultimate result. The length of the
colored bars within the chart serves as a visual indicator of the magnitude of each feature’s
contribution. This graphical representation offers a dynamic and insightful portrayal
of how individual features influence the model’s predictions, emphasizing the varying
degrees of impact that contribute to the final outcome. The length of each bar provides a
quick and intuitive assessment of the relative importance of each feature in shaping the
model’s decision-making process.
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4. Discussion

The study identified AdaBoost as the best-performing model for MACE prediction
in AF patients. Additionally, the CCI, concurrent cancer diagnosis, diabetes mellitus, and
Wells and CHA2DS2-VASc scores emerged as primary predictors of MACE among patients
newly diagnosed with AF. In a previous investigation [6], subsequent adjustments for age,
gender, body mass index, cardiovascular risk factors, antiplatelets, and anticoagulants
revealed that only the CHA2DS2-VASc, CCI, and CONUT scores remained as independent
prognostic factors for MACE in individuals with a recent diagnosis of AF [6].

The various potential benefits of the results can be described in the different sections
included in the flowchart for the approach and treatment of AF [14] as risk stratification,
the prevention of thromboembolism among patients with silent AF and stroke without a
previous diagnosis of AF, and for specific comorbidities such as chronic coronary disease,
peripheral artery disease, heart failure, chronic kidney disease, and cognitive impairment.
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AF almost quintuples the risk of MACE [6], especially ischemic stroke and heart failure.
The 23.5% with known AF were not receiving oral anticoagulant therapy [37]. The AF
was associated with more severity, disability, and a 20% increase in stroke-related costs.
The clinical benefits of appropriate anticoagulation are widely recognized, and clinicians
should be aware of the importance of anticoagulation therapies in stroke prophylaxis,
the occurrence of stroke, and the downstream economic burden on an increasingly aging
population [38]. Patients with AF may benefit from evaluating factors such as the AdaBoost
model. This information can assist in making informed decisions about treatment.

The decision to prescribe oral anticoagulants for preventing MACE in patients with
intermediate annual risk of thromboembolic events, as determined by classic risk scores
like CHA2DS2-VASc or an equivalent, and who are uncertain about the benefits of anti-
coagulation, may require additional discussion. This is due to the diverse magnitude of
risk associated with each factor across different populations. Managing specific patient
groups, particularly those with risk factors for MACE, can improve risk discrimination by
incorporating additional factors, as seen with the AdaBoost model.

Moreover, it addresses the optimization of treatment decisions concerning the burden
of AF in relation to the associated risks of thromboembolism and ischemic stroke. This
involves assessing the need for anticoagulant treatment decisions in individuals experi-
encing either paroxysmal or persistent AF because of the predictive significance of the AF
burden [39,40]. A pioneering aspect of this approach involves the comprehensive analy-
sis of large patient cohorts and the integration of diverse data sources, including blood
biomarkers, electrical signals, and medical images [41]. The significance of this research
extends into the domain of Personalized Risk Assessment, providing a promising approach
for the early non-invasive detection of AF. This extends to optimizing treatment approaches
and anticipating long-term clinical trajectories.

The algorithm emphasizes the CCI as the primary predictor, a widely utilized tool in
the medical field for predicting the risk of mortality linked to chronic health conditions.
It encompasses various factors such as heart disease, diabetes, and cancer and assigns
specific weights to each based on their impact on mortality. The cumulative score is then
employed to estimate an individual’s overall health status and prognosis. A higher CCI
score correlates with an elevated risk of adverse outcomes or mortality. Remarkably, until
now, the CCI has not been previously associated with the risk of thromboembolism in
patients recently diagnosed with AF. Notably, there have been instances where the use of
anticoagulant therapy was linked to a lower CCI score [42]. While the CCI has undergone
extensive validation and widespread use in predicting outcomes across various medical
contexts, its application in specific situations, such as predicting outcomes in patients with
AF [6], may not have been as comprehensively explored.

The presence of cancer emerges as the second-ranking predictor of MACE. While the
algorithm does not specify the type of cancer, numerous studies have explored the connec-
tion between cancer and thromboembolism in patients with AF. Some of these studies not
only identify cancer as a significant predictor of MACE, encompassing thromboembolic
events [43], but also suggest that the onset of new AF is associated with an elevated risk of
developing cancer [44,45]. These findings underscore the intricate interplay between AF,
cancer, and thromboembolic complications, as well as the importance of considering both
conditions in clinical assessment and management [46].

The Wells score has not been widely recognized as a prognostic factor for thromboem-
bolism among patients with AF; it is typically used to assess the likelihood of deep vein
thrombosis and pulmonary embolism. AF and venous thromboembolism share several
common risk factors. Moreover, the presence of AF may be linked to a higher risk of
developing VTE, and individuals with a high risk of experiencing VTE may also face an
elevated risk of developing AF [47]. This bidirectional association highlights the potential
interplay between these two conditions, suggesting that they may influence each other’s
occurrence and progression. Further research is warranted to fully understand the com-
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plex relationship between AF and VTE and its implications for clinical management and
preventive strategies.

Diabetes mellitus and peripheral artery disease play an important role as a predictor
of MACE [7,48]. Although they are also variables included in the CHA2DS2-VASc and CCI
scales, they alone are also an important variable for the development of MACE, and the
significance of CHA2DS2-VASc is widely recognized among patients with nonvalvular AF
receiving oral anticoagulants [6,14,49,50]. In a recent study [51], machine learning models
demonstrated satisfactory performance in forecasting MACE among patients with Type 2
diabetes mellitus. Notably, these models exhibited a higher accuracy in predicting strokes
than myocardial infarction and heart failure.

Eventually, the study shed light on the significant role of COPD in the development of
MACE among patients with AF, in alignment with existing evidence [8,12,50,52]. Prolonged
P-wave duration acts as a potent precursor to AF, a condition that may be triggered by
obstructive sleep apnea [53]. The presence of COPD in AF patients may contribute to an
increased risk of MACE, emphasizing the importance of considering and managing this
comorbidity when evaluating cardiovascular outcomes in this patient population.

While simpler models, such as logistic regression and decision trees, are more straight-
forward to interpret, they frequently exhibit inferior predictive performance compared to
more sophisticated algorithms, including ensembles of decision trees like XGBoost and
random forests [54]. Harnessing ML [53] algorithms facilitates the early identification of
subtle indicators of thromboembolism risk from intricate datasets, thereby uncovering
latent relationships among the risk factors associated with AF. The LightGBM model re-
vealed associations between ischemic stroke and various peripheral blood biomarkers (such
as creatinine, glycated hemoglobin, and monocytes) not considered by CHA2DS2-VASc
and demonstrated significance in predicting ischemic stroke among AF patients [55,56].
These algorithms not only facilitate the analysis and correction of potential confounding
factors but also serve as powerful tools to identify and mitigate bias in the AI system. Con-
tinuous monitoring using ML algorithms offers ongoing assessment of thromboembolic
risk among AF patients, contributing to the tracking of disease progression, monitoring
treatment response, and promptly detecting any sudden changes in health status. Ad-
ditionally, by enhancing follow-up through the prediction of patient-specific risks, these
algorithms can prioritize follow-up visits and interventions, ultimately leading to improved
patient outcomes.

Using the Deep Learning methodology, the results were slightly inferior to those
achieved with Machine Learning (accuracy of 0.9678). The primary reason for this dis-
crepancy may be the fact that neural networks demand a substantial amount of data to
effectively learn. They are characterized by an abundance of parameters that require tun-
ing, allowing them to grasp intricate, high-dimensional patterns. However, this proves
to be a disadvantage when the dataset is limited. In instances of small datasets, these
models become prone to overfitting, essentially ‘memorizing’ the training data rather than
‘learning’ the underlying pattern. Consequently, this results in suboptimal generalization
performance when applied to unseen data.

The strengths of the study include the models of prediction, the high-quality datasets,
and strict adherence to data privacy regulations, as well as clinical context and domain
knowledge, making it easy to interpret the reasons behind their predictions. In summary,
incorporating machine learning algorithms into the clinical management of individuals at
high risk of AF and those with AF yields potential benefits, including personalized risk
assessment, data-driven decision support, and improved patient care. However, further
validation in independent studies is required.

Some limitations should be considered, as external validation is essential before
effectively adopting and integrating AI systems into patient care. One crucial factor that
largely determines the efficiency and accuracy of these models is the quantity of data
available. For small datasets, like in our case, traditional machine learning models tend to
outperform their deep learning counterparts, contrary to popular belief. AI models trained
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on specific datasets might not generalize well to different populations or healthcare settings,
and overfitting could limit their applicability. Additionally, it is important to note that
correlation does not necessarily imply causation. Establishing causal relationships between
risk factors for AF and thromboembolism requires further research and experimentation.
By addressing these limitations and maintaining responsible and effective AI use, we can
enhance our understanding beyond not only the early detection of AF but also the risk
associated with the incidence of MACE, providing opportunities to intervene in modifiable
risk factors, and including aspects such as monitoring methods, detection technologies,
and biomarkers linked to the association between AF and thromboembolism, ultimately
leading to enhanced patient care outcomes.

Artificial intelligence-based clinical decision support systems may improve the out-
comes among patients who have AF, but the efficacy of the tool in the real world is
seldom reported. Future research could explore additional advantages, such as personal-
ized risk assessment. By analyzing extensive datasets, including social determinants of
health [18,57,58], biomarkers [59], multimodality imaging parameters [60,61], and nutri-
tional status associated with AF risk [57,62], a comprehensive assessment can be made.
This integration facilitates a more comprehensive and personalized risk assessment for
each individual, allowing the identification of distinctive patterns and factors specific to
the patient. This approach leads to more accurate risk predictions compared to traditional
statistical models [6,23,63] and, consequently, may improve treatment decision making.

5. Conclusions

The application of Machine Learning, employing multiple models, indicates that
the AdaBoost model is the most effective in predicting MACE in patients with newly
diagnosed AF, with an accuracy of 0.9999, recall of 1, and an F1 score of 0.9997. The
primary prognostic factors identified included an elevated Charlson Comorbidity Index,
cancer, diabetes mellitus, COPD, cognitive impairment, vascular disease, and high values
on the CHA2DS2-VASc and Wells scale. This finding contributes to the optimization of
treatment decisions concerning the burden of AF in relation to the associated risks of
thromboembolism and ischemic events.
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Abstract: In the field of eHealth, several works have proposed telemonitoring systems focused on
patients with chronic kidney disease (CKD) undergoing peritoneal dialysis (PD) treatment. Neverthe-
less, no secondary study presents a comparative analysis of these works regarding the technology
readiness level (TRL) framework. The TRL scale goes from 1 to 9, with 1 being the lowest level of
readiness and 9 being the highest. This paper analyzes works that propose telemonitoring systems
focused on patients with CKD undergoing PD treatment to determine their TRL. We also analyzed
the requirements and parameters that the systems of the selected works provide to the users to
perform telemonitoring of the patient’s treatment undergoing PD. Fourteen works were relevant to
the present study. Of these works, eight were classified within TRL 9, two were categorized within
TRL 7, three were identified within TRL 6, and one within TRL 4. The works reported with the
highest TRL partially cover the requirements for appropriate telemonitoring of patients based on
the specialized literature; in addition, those works are focused on the treatment of patients in the
automated peritoneal dialysis (APD) modality, which limits the care of patients undergoing the
continuous ambulatory peritoneal dialysis (CAPD) modality.

Keywords: chronic kidney disease; peritoneal dialysis; technology readiness level; telemonitoring
system

1. Introduction

eHealth is the term coined as the set of information and communication technologies
(ICT) used as a tool in the health field [1]. For the World Health Organization (WHO), this
concept of eHealth is related to the safe and cost-effective use of ICT in different settings [1].
In the eHealth context, the telemedicine paradigm has emerged [2] and is defined as
the remote assistance of medical services. Its implementation requires information and
communication technologies, as well as human resources specialized in implementing such
systems [2]. There are several concepts associated with telemedicine [3]:

• Remote patient monitoring or control allows patients with chronic and degenerative
diseases to be monitored from their homes, work environments, etc.

• Storage or forwarding technology stores clinical data and information to be forwarded
to another clinical facility for interpretation, e.g., examination or X-ray imaging.
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• Interactive telemedicine allows doctors and patients to be connected in real time
through video conferencing [4]. Telemedicine consists of health professionals using
ICT to diagnose, treat, and prevent diseases.

• The telemonitoring or remote monitoring of biomedical parameters seeks the patient’s
participation in managing their disease, promoting prevention and self-care.

In the telemonitoring field, several works [5–20] have proposed systems focused on
telemonitoring patients with chronic and degenerative diseases, such as diabetes mellitus,
heart failure, chronic obstructive pulmonary disease, and chronic kidney disease (CKD).
CKD is a condition in which the kidneys are damaged and cannot filter blood as well as
they should. Because of this, excess fluid and waste from blood remain in the body and
may cause other health problems. When the loss of the kidney’s ability to filter blood in
chronic kidney disease is severe, kidney function must be replaced either by hemodialysis,
dialysis peritoneal treatment, or kidney transplantation. This refers to a chronic renal
disease stage 5 (CRDS5). CRDS5 generates multiple health complications to patients, such
as hypertension, anemia, cardiovascular complications, chronic kidney-disease-related min-
eral bone disorder, salt and water retention, metabolic acidosis, and electrolyte disorders,
as well as uremic symptoms. Therefore, CKD is considered catastrophic because of high
morbidity and mortality rates and poor quality of life [21,22]. Compared to hemodialysis
treatment, peritoneal dialysis (PD) treatment has several potential advantages, such as
the fact that it is a technique that is easy to learn and apply, it has greater feasibility of
use in remote communities and lower costs, and fewer specialized health personnel are
required. In addition, PD treatment allows greater survival in the first years, permission
to patients to travel, fewer dietary restrictions, and better preservation of residual renal
function. Moreover, it is reported that patients have greater satisfaction with PD treatment
and better quality of life, and the treatment can be performed by patients themselves at
home, among others [23]. In this context, some works [24,25] have reviewed the specialized
literature on different aspects of telemonitoring systems oriented to patients with CKD on
PD. However, no work has been undertaken that presents a systematic review regarding
the level of technological maturity of such telemonitoring systems from the perspective
of the technology readiness level (TRL) [26]. TRL measures how far a technology has
progressed along its development path from basic research (TRL 1) to mature technologies
ready for commercialization (TRL 9). The TRL [26] is a method developed by the National
Aeronautics and Space Administration (NASA) in the 1970s as a tool that measures the
degree of maturity of a technology. Among the main advantages of using technology
maturity levels in ICT projects related to telemonitoring systems are the following: they
generate a standardized analysis of the project’s status, they allow the identification and
management of risks in projects, and they help to classify the proposed work in terms of
research, development, and innovation, which contributes to decision-making in terms of
funding and project transition between technology maturity levels [26–28]. Therefore, this
paper analyzes works that propose telemonitoring systems focused on patients with CKD
undergoing PD treatment to determine their level of technological maturity based on the
NASA TRL framework. The results of our work show the main contributions, gaps, and
opportunities of the proposed work concerning the TRL framework, which motivated the
discussion of important future research directions.

2. Materials and Methods

The approach used in our systematic literature review (SLR) embraced the strategies
and rules depicted by Kitchenham et al. [29] and Ali et al. [30]. In the first instance, the
research questions were defined to identify the purpose of the review and the interest
under study.

• Q1: What kinds of services and parameters are used in telemonitoring systems focused
on patients with CKD on PD proposed in the specialized literature? This question
is motivated by identifying the functional requirements and desirable parameters to
monitor in a system-oriented telemonitoring of CKD on PD.
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• Q2: Is it possible to identify the level of technological maturity of telemonitoring
systems for patients with CKD on PD proposed in the specialized literature? This
question aims to analyze the level of technological development achieved in these
types of solutions by adopting a measurement framework used worldwide.

• Q3: How has the publication rate of studies related to telemonitoring systems for
patients with CKD on PD proposed in the literature changed over time? This question
aims to examine the period and frequency of publication of such works.

• Q4: Can we identify opportunity areas and challenges still pending in the telemon-
itoring systems for patients with CKD on PD implemented to date? This question
aims to identify gaps in care that remain open in this treatment area to contribute to
its solution.

2.1. Search Strategy

As a comprehensive search strategy, each research question was formulated as indi-
vidual search terms, highlighting:

• Peritoneal dialysis;
• Telemonitoring system;
• Telehealth;
• Telemedicine;
• CKD;
• Telenephrology.

In the same way, some synonyms, abbreviations, and alternative spellings of the terms
described were used. The search strategy was developed using these terms in com-bination
with the logical operators AND and OR to generate more specific search sequences to query
in the search engines. As can be seen in Table 1, the scope of the search query was defined
based on three topics:

1. Telemonitoring via a device or service;
2. Applications or the scope of the software of such applications;
3. Type of disability or chronic illness targeted by the applications.

Table 1. Context and example search query.

Context Quantity

Telemonitoring (telemonitoring OR “telemonitoring system” OR tele-monitoring
OR “tele monitoring”) AND

Application (apps or software or device(s) or application(s) or service(s)) AND
Disease (CKD OR “chronic kidney disease” OR “peritoneal dialysis”)

The electronic database sources used in this SLR included those relevant to our re-
search’s aim. Thus, the SLR was based on the following digital databases: Springer, Elsevier,
EBSCO, SCOPUS, Cochrane Library, MEDLINE via PubMed, IEEE Xplore, and Google
Scholar. The selection of studies is described in Section 2.4.

2.2. Inclusion Criteria

The purpose of the selection criteria is to identify primary studies that directly respond
to the research questions [29]. In our case, each study found was evaluated using the
following inclusion criteria (Cr_In):

• Cr_In1: Systems focused on telemonitoring of CKD patients on PD treatment were
considered for the study.

• Cr_In2: The study includes evaluations of the described systems considering end
users in clearly identified scenarios (real or simulated).

• Cr_In3: The article was published in an indexed, refereed, peer-reviewed journal or
conference proceedings in the specialty.
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• Cr_In4: We considered studies with experimental or research-oriented designs, i.e.,
randomized control trials (RCTs), non-RCTs, and pre- and post-experimental studies.

• Cr_In5: Studies include eHealth interventions with digital information or any commu-
nication technology component using any type of device.

2.3. Exclusion Criteria

The exclusion criteria (Cr_Ex) used in our SLR were as follows:

• Cr_Ex1: The study is not written in English or Spanish.
• Cr_Ex2: The article was published before 2014.
• Cr_Ex3: The study considers systems focused on the telemonitoring of patients with

CKD but treated exclusively by hemodialysis.

2.4. Selection of Studies

We obtained 91 articles from PubMed, 36 articles from IEEE Xplore, 31 from Cochrane
Library, 100 from Google Scholar, and 40 from EBSCO. The sum of these results produced
298 articles. After removing duplicate articles and those written in languages other than
English and Spanish, 223 articles remained. Later, the title, keywords, and abstracts of
these 223 articles were reviewed and 20 articles were selected. Those articles were read and
checked in detail, and only 14 articles were included in the review because 6 articles did
not meet the Cr_In2, Cr_In4, and Cr_In5 criteria. Figure 1 shows this process using the
guidelines defined by Kitchenham et al. [29] and Ali et al. [30].
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Studies from different publication sources focused on implementing various types of
systems aimed at patients with CKD on PD. From 10 different publication sources (journals),
14 articles relevant to the present study were found [7–20]. Based on the research scopes
covered by those journals, the studies were divided into three main categories: computer
science, health, and technology. Twelve studies were published in journals with a health
focus [8,9,11–20], one in a journal with an informatics focus [10], and one in a journal with
a technology focus [7], as shown in Table 2. According to the type of study in question,
these publications provided the most relevant and necessary information for the analysis
of each telemonitoring system, demonstrating that relevant research efforts are being made
in this area.
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Table 2. Publication sources of selected studies.

Reference Name of the Conference/Journal Research Domain

[7] PLos One Technology
[8] American Journal of Nephrology Health
[9] BMC Nephrology Health
[10] Applied Clinical Informatics Informatics
[11] Brazilian Journal of Nephrology Health
[12] Peritoneal Dialysis International Health
[13] BMC Nephrology Health

[14] Blood Putification: Official Journal of the
International Society of Hemofiltration Health

[15] Peritoneal Dialysis International Health

[16] Journal of Nephrology: Official Journal of the
Italian Society of Nephrology Health

[17] Blood Putification: Official Journal of the
International Society of Hemofiltration Health

[18] Peritoneal Dialysis International Health

[19]
Nefrología Latinoamericana: Official Journal

of the Sociedad Latinoamericana de
Nefrología e Hipertensión

Health

[20] Peritoneal Dialysis International Health

2.5. Risk of Bias Control

We considered various digital databases to ensure a comprehensive search, achieve
higher sensitivity levels, and reduce publication bias of sources [31]. The inclusion of
papers published only in indexed, refereed, and peer-reviewed journals or conferences
ensures a certain degree of conceptual and methodological rigor at the scientific level [32].
In our case, we did not include papers published before 2014 because the technologies used
in the proposed systems before this year are obsolete today. The inclusion of two pairs of
evaluators during the selection process of relevant works, and of a third evaluator in case
of disagreement, substantially reduced the bias of the evaluators that could have arisen
from the subjective nature of applying the inclusion and exclusion criteria. In our work,
the inclusion criteria Cr_In2, Cr_In4, and Cr_In5 were defined because we were interested
in determining the actual levels of implementation, use, acceptance, and effectiveness of
technologies used in the remote monitoring of people with CKD.

2.6. Requirements and Parameters to Be Monitored in PD Treatment

We also assessed selected works in terms of requirements and parameters to be monitored
in PD treatment based on the study proposed by Nayat et al. [33]. This study states that a
telemonitoring system focused on peritoneal dialysis must meet the following requirements:

• Allow the user flexibility in movements and activities. Some of the systems analyzed
provide total flexibility at any time to patients in terms of movements and activities,
while other systems provide such flexibility only “out of treatment time”, i.e., while
the treatment is being developed, it restricts the patient movements and activities.

• Allow bidirectional communications through image capture or high-definition video.
Some systems fully complied with this item, allowing bidirectional communication in
“real-time” between the patient and medical staff; however, others only allowed an
“asynchronous” communication between actors or some kind of restricted communi-
cation, such as audio transmissions.

• Provide intuitive and straightforward alarm systems. The systems that met this
criterion have implemented various alarm systems.

• Incorporate modifiable and customizable mechanisms. Flexibility is analyzed in
terms of modification, adaptation, and customization of various functional aspects
(“customizable concerning treatment”).
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• Generate useful reports. The systems that complied with this feature have incorporated
several mechanisms to generate reports or treatment reports.

• Are nonintrusive and portable. In general, in the analyzed studies, some systems com-
plied with both aspects, being nonintrusive and having portability in their operation.
Only a couple of systems complied only with being “nonintrusive” in their operation
but omitted portability.

On the other hand, the parameters of PD exchanges to be monitored must be the
following [33]: filling and draining volumes, filling and draining times, blood pressure,
pulse, oxygen saturation, weight or bioimpedance, time/duration of treatment stay, number
of exchanges, dialysis prescription, symptoms during therapy, alarms and patient response
to alarms, and activity during the day.

These characteristics allow a system to provide a required level of virtual assistance,
leading to greater patient satisfaction, improved comfort, and eventually, higher acceptance
levels of peritoneal dialysis as a preferred form of renal replacement therapy [33].

3. Results

Our SLR aimed to find as many primary studies as possible that respond to the
research questions. The results obtained for each question are as follows:

RQ1. Telemonitoring requirements and parameters used in telemonitoring systems focused
on patients with CKD on PD.

For each of the 14 selected studies, Tables 3 and 4 present the analysis result considering
the characteristics previously described and supported by Nayak et al. [33]. In Table 3, the
first column (from left to right) lists each of the studies analyzed, the following six columns
describe the requirements for PD telemonitoring in each system, and the last column shows
the peritoneal dialysis modality to which each system is oriented (continuous ambulatory
peritoneal dialysis—CAPD, automated peritoneal dialysis—APD, or both modalities). In
Table 4, the first column (from left to right) lists each of the works analyzed; the following
12 columns describe the consideration or not of each parameter to be monitored in PD.

Table 3. Requirements for telemonitoring of PD [33].

Studies Included R1 R2 R3 R4 R5 R6 PSZ DP Modality

[7] X X X X X X 24 APD/CAPD
[8] X X 7 7 7 X 112 CAPD
[9] X X 7 X X X 7 APD/CAPD

[10] X X X X 7 X 300 CAPD
[11] X X X X X X 7 APD/CAPD
[12] X X 7 7 X X 69 CAPD
[13] X X 7 7 X X 7 CAPD
[14] X X X X X X 6 APD/CAPD
[15] X X X X X X 100 APD
[16] X X X X X X 35 APD
[17] X X X X X X 1023 APD
[18] X X X X X X 65 APD
[19] X X X X X X 396 APD
[20] X X X X X X 1 APD

Where R1: Allows user flexibility in movement and activities, R2: Two-way communications with high-definition
video or image capture, R3: Simple and intuitive alarm systems with a high degree of specificity, R4: Modifiable
and customizable, R5: Generate useful reports, R6: Nonintrusive and portable, and PSZ: Patient sample size.

Table 4. Parameters of PD exchanges to be monitored [33].

Studies Included P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

[7] X X X X X X X X X X X 7

[8] 7 7 X X 7 7 X 7 X X 7 7

[9] X X X X 7 X X X X 7 X 7

[10] 7 7 X 7 7 X X 7 X 7 X 7
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Table 4. Cont.

Studies Included P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

[11] X X X 7 X X X 7 7 7 X 7

[12] 7 7 X 7 X 7 7 7 X X 7 X
[13] 7 7 7 7 7 7 7 X X X 7 7

[14] X X 7 7 7 7 7 X X 7 7 7

[15] X X X X X X X X X X X 7

[16] X X X X X X X X X X X 7

[17] X X X X X X X X X X X 7

[18] X X X X X X X X X X X 7

[19] X X X X X X X X X X X 7

[20] X X X X X X X X X X X 7

Where P1: Fill and drain volumes, P2: Fill and drain times, P3: Blood pressure, P4: Pulse, P5: Oxygen saturation,
P6: Weight or bioimpedance, P7: Time/duration of treatment dwell, P8: Number of exchanges, P9: Prescription of
dialysis, P10: Symptoms during therapy, P11: Alarms and patient response to alarms, and P12: Activity during
the day.

The results in Tables 3 and 4 show that the requirements and parameters described by
Nayak et al. [33] are partially considered in all the selected studies. Regarding the require-
ments for telemonitoring of people with CKD on PD, only three studies [7,11,14] cover
entirely all the requirements proposed by Nayak et al. [33]. Concerning the parameters
to be monitored in peritoneal dialysis treatments, seven studies [7,15–20] considered 11
of the 12 parameters proposed by Nayak et al. [33] (see Table 4). The results also show
that several of the studies privilege the implementation of requirements, such as ensuring
flexibility in patient movements and activities [7–20], allowing bidirectional communication
among patients and medical teams [7–20], and granting portability and nonintrusiveness
to the systems [7–20], rather than the consideration of other requirements also described
by Nayak et al. [33] (see Table 3). In the selected studies, we found implementations using
proprietary systems from Baxter Healthcare Corporation [15–20]. These implementations
mostly consider the characteristics defined by Nayak et al. [33]; however, they are oriented
only to peritoneal dialysis treatment under the APD modality, excluding patients in the
CAPD modality (see Table 3).

RQ2. Degree of technological development of telemonitoring systems for patients with
CKD on PD proposed in the specialized literature

Given the detailed analysis executed for each paper, it was also possible to identify
the distinctive characteristics of the levels of technology maturity described by Ibáñez
de Aldecoa [34]. In addition, as a complement to the process of identifying the levels of
technological development in which the analyzed projects are located, the Guide for the
Diagnosis of the Level of Technological Maturity implemented by the National Council
of Humanities, Science, and Technology (CONAHCyT) of Mexico in various calls for
proposals were used to systemically present the process of technological development and
innovation [35]. The results of the ranking process were as follows (see Table 5):

• Eight telemonitoring systems described within the selected studies [8,10,15–20] were
identified within level 9 of implemented technology maturity;

• Two selected telemonitoring systems [7,14] were identified within the maturity level 7
of the implemented technology;

• Three selected telemonitoring systems [9,12,13] were identified within the maturity
level 6 of the implemented technology;

• One selected system [11] was identified within the maturity level 4 of the imple-
mented technology.
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Table 5. Classification of selected studies.

Studies
Included TRL-1 TRL-2 TRL-3 TRL-4 TRL-5 TRL-6 TRL-7 TRL-8 TRL-9

[7] X
[8] X
[9] X

[10] X
[11] X
[12] X
[13] X
[14] X
[15] X
[16] X
[17] X
[18] X
[19] X
[20] X

RQ3. Changes over time in the publication rate of studies related to telemonitoring systems
for patients with CKD on PD.

Concerning the publication date, the frequency of publication has changed over time.
In 2014, three articles were published [12–14]. One study was published in 2015 [11] and
one in 2019 [18]. In 2017, two studies were registered [9,10]. Four articles were published
in 2018 [7,8,19,20]. Finally in 2020, three studies were published [15–17]. Twelve studies
were published in journals with a health research scope [8,9,11–20], one in a journal with an
informatics research scope [10], and one in a journal with a technology research scope [7].
Approximately 30% of the studies published in health research journals were published in
Peritoneal Dialysis International. On the other hand, it is noted that there is limited research
on telemonitoring systems focused on patients in peritoneal dialysis treatment from a
technological perspective.

RQ4. Areas of opportunity and pending challenges of telemonitoring systems focused on
patients with CKD on PD proposed in the specialized literature.

After the analysis, it was also possible to identify some opportunity areas, such as:

1. Most studies limit their treatment approach to peritoneal dialysis care modalities,
either APD or CAPD, which restrict patient care and treatment options (see Table 3).

2. It is important to consider the advantages of certification in the early stages of develop-
ment. This concept provides compliance with regulations applicable to telemonitoring
systems oriented to health care. Thus, some of the selected systems declare such reg-
istration neither from the beginning of the process nor any description during the
system design, which limits the possibility of obtaining a greater assessment of their
degree of technological development.

3. The telemonitoring systems proposed are still in the process of evaluating and vali-
dating their usefulness from the patient perspective with CKD on PD.

In general, it is also possible to observe the need to promote the development of
new implementations of telemonitoring systems, both software and hardware, specifically
oriented to the treatment of patients with CKD on PD. Within the studies analyzed, four
of them [7,9,11,14] refer to implementations of software systems, two studies [8,10] refer
to implementations of hardware devices for monitoring, six studies [15–20] deal with
implementations of systems that work together, both software and hardware, and two
studies [12,13] refer to implementations of support systems via telephone, through a scheme
of periodic interviews with patients.

4. Discussion

The telemonitoring systems focused on patients with CKD ongoing PD must have
the ability to have bidirectional, fast, and real-time communication to help solve treatment
problems, according to the study presented by Nayak et al. [33]. Nevertheless, it is ob-
served that in many of the systems analyzed (7 of the 14), the communication between
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the patient and the medical staff is asynchronous and not necessarily in real time, which
could hinder the rapid detection and attention of incidents present in PD treatment. In
addition, the telemonitoring systems must obtain and analyze the treatment information
in an automatized form. However, the review shows that many analyzed systems require
the manual recording of biometric data or additional compatible devices to capture this
information. Another point to highlight is that many analyzed systems do not consider
the main parameters that need to be monitored in a system focused on peritoneal dialysis
treatment. For example, the parameter that is generally not considered in the selected
studies is related to monitoring patient activity during the day (a parameter considered
only in the description of the system referred to by Juan Li et al. [12]). It was also observed
that it is necessary to consider, within the selected systems, the nutritional intake of the
patients, since accurate monitoring of the nutritional parameters can help to prevent and/or
treat early the deterioration of the nutritional status, body composition, and functional
capacity of the patients [36,37].

On the other hand, we have identified that all the systems with the highest
level [8,10,15–20] (8 of the 14 studies), according to the TRL framework, correspond to imple-
mentations made with the use of proprietary systems of international companies specialized
in telemedicine treatment of CKD such as Baxter (www.baxter.com, accessed on 1 July 2023),
eQOL (https://eqol.ca, accessed on 1 July 2023), and GlobalMed (www.globalmed.com,
accessed on 1 July 2023). It is important to note that despite the advantages of the propri-
etary systems described, there are also limitations in their use, derived from their status as
proprietary systems, such as incompatibility with other devices or systems developed by
different companies, difficulty in the migration of patient information between systems,
and user dependency in general regarding cost, information, and functionalities. In addi-
tion, it was observed that all the implementations that make use of proprietary systems of
the company Baxter [15–20] are focused on the care of patients with chronic CKD treated
by peritoneal dialysis under the APD modality, which limits the care of patients who
are under the CAPD modality. Regarding the two selected telemonitoring systems [7,14],
which were identified within the maturity level 7 of the implemented technology, it was
observed that they do not declare the beginning of the process related to the registration
of the certifications required in these types of systems for their commercialization, which
limits their classification in a higher level; however, the effort shown in the development
of these systems is remarkable because of their level of development through a process of
independent research and open architecture.

Finally, and based on the results obtained, we identify the following findings of the
telemonitoring systems for patients with CKD on PD:

• The telemonitoring systems proposed are still in the process of validating their efficacy
and effectiveness in the patient’s treatment with CKD on PD.

• There is an orientation to discuss usability, functionality, and cost–benefit.
• There is an evident need to provide telemonitoring treatment options for both APD

and CAPD peritoneal dialysis patients.
• The requirements and parameters that a PD system must monitor have already been

defined and accepted as a reference in the literature, but many of the implementations
analyzed do not consider them or comply with them in a limited way.

• Aspects such as the use, management, and ownership of personal data become relevant
concerning telemonitoring systems for patients since these systems imply having the
ability to capture treatment information and can even integrate clinical records of
each patient. In the case of Mexico, there are various regulations in this regard whose
observance must be met, such as the Mexican Official Standard NOM-004-SSA3-2012,
which confirms the criteria of ownership and confidentiality (among others) for the
management of information and the clinical record itself.

• The telemonitoring systems proposed must comply with specific standards and re-
quirements that vary from country to country, which increases the complexity of the
technological development of this type of system.
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5. Conclusions

This paper presented a systematic literature review of telemonitoring systems focused
on patients with CKD undergoing PD based on the TRL framework. The results of this
SLR describe the main contributions and limitations of selected works concerning the TRL
framework. The implementations of telemonitoring systems that reached the highest level
of technological maturity correspond to studies developed with the use of proprietary
devices and services of international companies specialized in telemedicine treatment of
CKD with some limitations regarding their status as proprietary systems incompatible with
other devices or systems. Their main limitation is that they are oriented only to treating
patients in the APD modality, which limits the care of patients undergoing the CAPD
modality. The level of technological maturity is highly relevant for telemonitoring systems.
Therefore, this work can serve as a reference point for researchers and technologists focused
on developing telemonitoring systems for patients with CKD undergoing PD. Future work
will extend to analyzing the level of technological maturity of cyber–physical systems
aimed at telemonitoring CKD patients undergoing PD.
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Abstract: Interferon-beta is one of the most widely prescribed disease-modifying therapies for
multiple sclerosis patients. However, this treatment is only partially effective, and a significant
proportion of patients do not respond to this drug. This paper proposes an alternative fuzzy logic
system, based on the opinion of a neurology expert, to classify relapsing–remitting multiple sclerosis
patients as high, medium, or low responders to interferon-beta. Also, a pipeline prediction model
trained with biomarkers associated with interferon-beta responses is proposed, for predicting whether
patients are potential candidates to be treated with this drug, in order to avoid ineffective therapies.
The classification results showed that the fuzzy system presented 100% efficiency, compared to an
unsupervised hierarchical clustering method (52%). So, the performance of the prediction model
was evaluated, and 0.8 testing accuracy was achieved. Hence, a pipeline model, including data
standardization, data compression, and a learning algorithm, could be a useful tool for getting
reliable predictions about responses to interferon-beta.

Keywords: fuzzy logic system; pipeline prediction model; multiple sclerosis

1. Introduction

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous sys-
tem (CNS) [1]. Although MS can take several different forms, the most common type is
relapsing–remitting MS (RRMS), characterized by alternating periods of remission and
intensification of symptoms [2]. The etiology of MS can include several factors, such as
genetic susceptibility and viral infections [3–5], which activate the immune system, generat-
ing immune dysregulation, and producing an immune attack against the myelin covering
of the CNS [6]. Studies have shown that susceptibility to MS is genetically dependent,
but the specific gene factors remain largely unknown. It is known that peripheral self-
antigen-specific immune cells are activated during the antigen presentation process, and
that they enter the CNS through the disrupted blood-–brain barrier (BBB) [7]. The route of
entry depends on the phenotype and activation state of the T cells. T cells play important
roles in cellular immunity [8]. T cells are divided into helper T cells (Th) and regulatory T
cells (Treg).

The autoimmune etiology of MS has been the target of the therapeutic approach to
patients. Treatment of MS can be divided into treatment of MS symptoms, treatment of MS
relapse, and treatment modifying disease progression. The main target of MS treatment
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is delaying the disease progression [9]. Interferon-beta (IFN-β) is one of the most widely
prescribed disease-modifying therapies for RRMS patients. IFN-β has multiple pathways
of action on the immune system. IFN-β inhibits the activated proliferation of T cells,
and prevents the migration of activated immune cells through the BBB. Also, this drug
inhibits the production of pro-inflammatory cytokines (e.g., IL-2, IL-12, IFN-γ), induces an
increase in anti-inflammatory cytokines (e.g., IL-4, IL-5, IL-10 and TGF-β), and promotes
re-myelination in CNS [10,11]. IFN-β can also prevent the differentiation of inflammatory
Th1/Th17 cells, and it can change the phenotype of Th cells from inflammatory Th1 to
anti-inflammatory Th2 cells. Studies have shown that IFN-β can significantly improve the
clinical symptoms of patients, reduce the annual recurrence rate, and delay the progress
of the disease [12]. However, IFN-β is only partially efficient, and a significant proportion
of MS patients do not respond to this treatment, with the proportion of non-responders
ranging from 20 to 50% [13]. Hence, in this paper, a pipeline model based on potential
biomarkers associated with the response to IFN-β is proposed, to predict whether MS
patients are potential candidates to be treated with this drug. Studies have researched
the effect of gene polymorphisms on therapeutic responses to IFN-β, which can affect the
efficacy of this therapy. Bustamante et al. [14] analyzed the relationship between single-
nucleotide polymorphisms (SNPs) disposed in type I IFN-induced genes, genes becoming
the toll-like receptor (TLR) pathway, and genes encoding neurotransmitter receptors, and
the response to IFN-β treatment in MS patients. Martinez et al. [15] evaluated the effect
of polymorphisms in some genes (CD46, CD58, FHIT, IRF5, GAPVD1, GPC5, GRBRB3,
MxA, PELI3, and ZNF697) on responses to IFN-β treatment among RRMS patients. From
seven selected SNPs, PELI3 and GABRR3 polymorphisms were exposed, to be related to
IFN-β responses.

Genome-wide research is generated in large numbers of data, and there is a need
for soft computing methods (SCMs)—such as artificial neural networks, fuzzy systems,
evolutionary algorithms, or metaheuristic and swarm intelligence algorithms—that can
deal with this amount of data [16]. Studies of fuzzy systems have only focused on MS
diagnosis. Ayangbekun & Jimoh [17] designed a fuzzy inference system for diagnosing
five brain diseases: Alzheimer’s, Creutzfeldt–Jakob, Huntington’s, MS, and Parkinson’s.
Hosseini et al. [18] developed a clinical decision support system (CDSS), to help specialists
diagnose MS with a relapsing–remitting phenotype. Matinfar et al. [19] proposed an expert
system for MS diagnosis, based on clinical symptoms and demographic characteristics.
However, it is necessary to design new expert systems that can classify the possible re-
sponses to treatments in MS patients. Other studies have applied machine learning (ML)
techniques to diagnose early MS. Goyal et al. [20] trained a random forest (RF) model with
the serum level of eight cytokines (IL-1β, IL-2, IL-4, IL-8, IL-10, IL-13, IFN-γ, and TNF-α) in
MS patients, to detect predictors for disease. Chen et al. [21] implemented a support vector
machine (SVM) model, using gene expression profiles to identify potential biomarkers
for MS diagnosis. CXCR4, ITGAM, ACTB, RHOA, RPS27A, UBA52, and RPL8 genes
were detected. Among the studies that suggest genetics can predict the pharmacological
response to a treatment, Fagone et al. [22] trained an uncorrelated reduced centroid (UCRC)
algorithm to identify a subset of genes that could predict the responses to natalizumab
in RRMS patients. A specific gene expression profile of CD4+ T cells could characterize
the responsiveness.

Although the studies presented above have shown the efficiency of IFN-β at improving
the clinical symptoms of MS patients, a proportion of patients did not respond to this
treatment. Genome-wide analytical studies have been conducted, in order to identify
genetic factors associated with the responses to IFN-β treatment. Gurevich et al. [23]
identified a subgroup of secondary progressive MS (SPMS) patients presenting a gene
expression signature similar to that of RRMS patients who are clinical responders to IFN-
β treatment. SPMS patients were classified using unsupervised hierarchical clustering,
according to IFN-inducible gene expression profiling identified in RRMS clinical responders
to treatment. Although, the hierarchical clustering method is easy to implement, it rarely
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provides the best solution, due to lots of arbitrary decisions. Clarelli et al. [24] detected
genetic factors that affect the long-term response to IFN-β. The found pathways associated
with inflammatory processes and presynaptic membrane, i.e., the genes related to the
glutamatergic system (GRM3 and GRIK2), play a potential role in the response to IFN-β.
Jin et al. [25] implemented a feature selection method based on differentially correlated
edges (DCE), to identify the most relevant genes associated with the response to IFN-β
treatment in RRMS patients. Of the 23 identified genes, 7 had a confidence score > 2:
CXCL9, IL2RA, CXCR3, AKT1, CSF2, IL2RB, and GCA. Because the analyzed data were
unlabeled, the responder category was restricted to patients whose first relapse time was
more than five years (60 months), resulting in nine responders and nine non-responders.
So, seven patients were excluded from the analysis. Hence, we attempt to address some of
the issues above in this research. The main contributions of this paper are as follows:

• An alternative fuzzy system based on expert knowledge, with linguistic rules to
classify RRMS patients as high, medium, or low responders to IFN-β treatment.

• A pipeline prediction model, including a data preprocessing technique, a transforma-
tion technique for data compression, and a learning algorithm for making predictions
on new data. The prediction model is trained with biomarkers associated with the
IFN-β response for predicting whether MS patients are potential candidates to be
treated with this drug, in order to avoid ineffective therapies.

2. Materials and Methods

The strategy followed in this research is described in the flowchart of Figure 1, which
divides the proposal into four stages.

2.1 Data collection
• GSE24427 experiment

2.2 Fuzzy logic system
• RRMS patients clasification

2.3 Pipeline prediction model
• Data preprocesing 

(Standardization)
• Data compression (Principal 

component analysis, PCA)
• Prediction algorithm (Multi-

layer Perceptron, MLP)

High-responder 
to IFN-β

2.4 Performance evaluation
• k iterations cross-validation (CV)

Low-responder 
to IFN-β

Medium-responder 
to IFN-β

Figure 1. Proposed methodology. The gene data, demographic, and clinical characteristics are
collected. Then, the RRMS patients are classified by the fuzzy logic system. A pipeline prediction
model is implemented, including data standardization, PCA for data compression, and an MLP
algorithm for making predictions. Finally, the k-iterations CV is implemented, for evaluating the
model prediction performance.
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2.1. Data Collection

The dataset was collected from the GSE24427 expression profiling by array experiment,
available in the public repository of genomic data GEO [26]. Through the GPL96 [HG-
U133A] platform (Affymetrix Human Genome U133A Array), the genome-wide expression
profiles of peripheral blood mononuclear cells from 25 RRMS patients were obtained.
Patients were treated with subcutaneous IFN-beta-1b (Betaferon, Bayer Healthcare) at the
standard dose (250 µg every other day). Patient blood samples were drawn before first-
dose, second-dose, 1st-month, 12th-month, and 24th-month IFN-β injection. The expression
summary values were analyzed by GEO2R, an interactive web tool that allows viewing
of a specific gene expression through the profile graph tab. On the one hand, the GPL96
platform enabled us to see demographic and clinical characteristics of RRMS patients,
which were used as input variables for the proposed fuzzy system, and these are presented
in Table 1.

Table 1. Demographic and clinical characteristics.

Sample Gender Age EDSS 1 1st Month EDSS 1 24th Month

1 Female 63 4 5.5
2 Male 45 1 1
3 Female 25 1 1
4 Female 27 4 3.5
5 Female 51 3 2.5
6 Female 41 2 4.5
7 Female 44 4 3
8 Male 30 1.5 2
9 Female 26 4 3.5

10 Male 42 1 1
11 Male 29 2 2.5
12 Female 28 1.5 2.5
13 Female 48 1 1
14 Female 47 3.5 3
15 Female 42 2 3
16 Female 50 3.5 3.5
17 Male 37 1.5 4.5
18 Female 43 2 2
19 Male 54 3 2
20 Male 40 1 1
21 Female 48 2 2
22 Female 38 2 3
23 Male 18 1.5 2
24 Female 24 1 1
25 Male 38 1 1

1 Expanded disability status scale.

On the other hand, through the GPL96 platform, the expression values of 15 biomark-
ers associated with the response to IFN-β—IL-2, IL-12, IFN-γ, TNF-α, IL-4, IL-10, TGF-β,
CD46, CD58, FHIT, IRF5, GAPVD1, GPC5, GRM3, and GRIK2—were collected and inte-
grated into an Excel spreadsheet, for training the proposed pipeline prediction model. For
example, the IL-2 and IL-4 cytokines expression values are displayed in Figures 2 and 3.
The database is the same as the one used by Jin et al. [25]. However, the biomarkers are a
little different.
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Figure 2. IL-2 cytokine. The expression values of 25 RRMS patients corresponding to five doses:
before first-dose, second-dose, 1st-month, 12th-month, and 24th-month IFN-β injection.
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Figure 3. IL-4 cytokine. The expression values seem more scattered than IL-2 cytokine.

2.2. Fuzzy Logic System

Fuzzy systems are structures based on fuzzy sets and fuzzy logic theories for pro-
cessing inaccurate information [27]. Their main property includes symbolic knowledge
representation in a form of fuzzy conditional (if-then) rules. The typical structure of a fuzzy
system is described in Figure 4.
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Fuzzyfier Defuzzyfier

Knowledge
base

Aproximate
reasoning

Numeric
inputs

Numeric
output

Figure 4. Fuzzy system structure. The fuzzyfier transforms the values of input variables into an
N-dimensional fuzzy set A (linguistic values of the output variable) defined on the universe X, by
means of approximate reasoning (inference engine) using expert knowledge, which is represented as
a set of fuzzy conditional rules (knowledge base). The result of the approximate reasoning is a fuzzy
set B(y). The defuzzyfier computes a representative numerical output y0 from the result of fuzzy set
B(y) defined on the universe Y.

The fuzzyfier can be defined as the membership function µA(x) of the fuzzy set A.
Demographic and clinical characteristics of RRMS patients are used as input variables
for the fuzzyfier. The numerical output y0 is computed using the center of gravity (COG)
method [28], as in Equation (1):

y0 =
∑n

i=1 yiµB(yi)

∑n
i=1 µB(yi),

(1)

where µB(y) represents the membership function of fuzzy set B(y). The proposed fuzzy
system is designed through the Fuzzy Logic Designer App of MATLAB R2023a software.
The structure of the proposed fuzzy system is based on the Mamdani-–Assilan fuzzy system
(MAFS) [29], which includes a set of conditional fuzzy rules, in the form of Equation (2),
that can be determined by a human expert:

R = {Ri}N
i=1 = {i f andN

n=1 (Xn is L(i)
An
), then Y is L(i)

B }I
i=1, (2)

where I is the number of rules, Xn represents the input linguistic variables, Y is the
output linguistic variable, and LAn and LB are the linguistic values, defined by fuzzy
sets AN , and B on universes XN and Y, respectively. In this paper, the input linguistic
variables describing the demographic characteristics—including gender and age—and the
clinical characteristics—including expanded disability status scale (EDSS) 1st month and
24th month—are defined: N1 = “mean gender”; N2 = “mean age”; N3 = “mean EDSS
1st month”; N4 = “mean EDSS 24th month”. The sets of possible linguistic values are
collections of different labels describing the gender, age, EDSS 1st month, and EDSS 24th
month: LA1 = {“female”, “male”}; LA2 = {“pediatric”, “adult”, “elderly”}; LA3 = {“low”,
“medium”, “high”}; LA4 = {“low”, “medium”, “high”}, and response to IFN-β: LB = {“low”,

“medium”, “high”}. To each one of the labels, the fuzzy sets A(i)
N are assigned, defined on

the universe XN , which represents the range of possible values. The whole description of
the defined linguistic variables is presented in Table 2.

For example, the graphics of the membership functions µ
A(1)

2
(age), µ

A(1)
4

(EDSS 24th month), and µB(Response to IFN − β) of the fuzzy sets A(1)
2 , A(1)

4 , and B(y)
are displayed in Figures 5–7, respectively.
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Table 2. Linguistic variables description.

Membership Function Fuzzy Set Universe of Discourse Parameters and Type

µ
A(1)

1
(gender) A(1)

1 X1: [0 a 1] Female: [−0.75; −0.083;
0.083; 0.75] Trapezoidal
Male: [0.25; 0.916; 1.083;

1.75] Trapezoidal

µ
A(1)

2
(age) A(1)

2 X2: [0 a 100] years Pediatric: [−37.5; −4.167;
4.167; 37.5] Trapezoidal

Adult: [8.333; 50; 91.666]
Triangular

Elderly: [62.5; 95.83; 104.2;
137.5] Trapezoidal

µ
A(1)

3
(EDSS 1 1st month) A(1)

3 X3: [0 a 10] units Low: [−3.75; −0.416; 1.0;
5.0] Trapezoidal

Medium: [1.0; 5.0; 9.0]
Triangular

High: [5.0; 9.0; 10.42; 13.75]
Trapezoidal

µ
A(1)

4
(EDSS 1 24th month) A(1)

4 X4: [0 a 10] units Low: [−3.75; −0.416; 1.0;
5.0] Trapezoidal

Medium: [1.0; 5.0; 9.0]
Triangular

High: [5.0; 9.0; 10.42; 13.75]
Trapezoidal

µB(Response to IFNb) B(y) Y: [0 a 1] units Low: [−0.375; −0.04167; 0.1,
0.5] Trapezoidal

Medium: [0.1; 0.5; 0.9]
Triangular

High: [0.5; 0.9; 1.042; 1.375]
Trapezoidal

1 Expanded disability status scale.
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Figure 5. Set of linguistic values, which are three labels describing the “age” input variable, corre-

sponding to fuzzy set A(1)
2 .
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Figure 6. Set of linguistic values, which are three labels describing the “EDSS 24th month” input

variable, corresponding to fuzzy set A(1)
4 .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Output	Variable	"Response	to	IFNb"

0

0.5

1

D
eg
re
e	
of
	M
em
be
rs
hi
p

Membership	Function	Plot

Low Medium High

Figure 7. Set of linguistic values, which are three labels describing the “Response to IFN-β” output
variable, corresponding to fuzzy set B(y).

The fuzzy conditional rules (knowledge base) are meant to decide the influence of
the input variables on responses to IFN-β treatment. Tables 3 and 4 display the 36 defined
rules, according to the opinion of a neurology expert:

Table 3. Fuzzy rules definition (first part).

# Rule

1 If gender is female and age is adult, and if EDSS 1st month is low and EDSS 24th
month is low, then response to IFNb is medium.

2 If gender is female and age is adult, and if EDSS 1st month is medium and EDSS
24th month is medium, then response to IFNb is medium.
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Table 3. Cont.

# Rule

3 If gender is female and age is adult, and if EDSS 1st month is high and EDSS 24th
month is high, then response to IFNb is medium.

4 If gender is female and age is elderly, and if EDSS 1st month is low and EDSS after
24th month is low, then response to IFNb is medium.

5 If gender is female and age is elderly, and if EDSS 1st month is medium and EDSS
24th month is medium, then response to IFNb is medium.

6 If gender is female and age is elderly, and if EDSS 1st month is high and EDSS 24th
month is high, then response to IFNb is medium.

7 If gender is male and age is adult, and if EDSS 1st month is low and EDSS 24th
month is low, then response to IFNb is medium.

8 If gender is male and age is adult, and if EDSS 1st month is medium and EDSS 24th
month is medium, then response to IFNb is medium.

9 If gender is male and age is adult, and if EDSS 1st month is high and EDSS 24th
month is high, then response to IFNb is medium.

10 If gender is male and age is elderly, and if EDSS 1st month is low and EDSS 24th
month is low, then response to IFNb is medium.

11 If gender is male and age is elderly, and if EDSS 1st month is medium and EDSS
24th month is medium, then response to IFNb is medium.

12 If gender is male and age is elderly, and if EDSS 1st month is high and EDSS 24th
month is high, then response to IFNb is medium.

13 If gender is female and age is adult, and if EDSS 1st month is low and EDSS 24th
month is medium, then response to IFNb is low.

14 If gender is female and age is adult, and if EDSS 1st month is low and EDSS 24th
month is high, then response to IFNb is low.

15 If gender is female and age is adult, and if EDSS 1st month is medium and EDSS
24th month is high, then response to IFNb is low.

16 If gender is female and age is elderly, and if EDSS 1st month is low and EDSS 24th
month is medium, then response to IFNb is low.

17 If gender is female and age is elderly, and if EDSS 1st month is low and EDSS 24th
month is high, then response to IFNb is low.

18 If gender is female and age is elderly, and if EDSS 1st month is medium and EDSS
24th month is high, then response to IFNb is low.

Table 4. Fuzzy rules definition (second part).

# Rule

19 If gender is male and age is adult, and if EDSS 1st month is low and EDSS 24th
month is medium, then response to IFNb is low.

20 If gender is male and age is adult, and if EDSS 1st month is low and EDSS 24th
month is high, then response to IFNb is low.

21 If gender is male and age is adult, and if EDSS 1st month is medium and EDSS 24th
month is high, then response to IFNb is low.

22 If gender is male and age is elderly, and if EDSS 1st month is low and EDSS 24th
month is medium, then response to IFNb is low.

23 If gender is male and age is elderly, and if EDSS 1st month is low and EDSS 24th
month is high, then response to IFNb is low.

24 If gender is male and age is elderly, and if EDSS 1st month is medium and EDSS
24th month is high, then response to IFNb is low.

25 If gender is female and age is adult, and if EDSS 1st month is high and EDSS 24th
month is medium, then response to IFNb is high.

26 If gender is female and age is adult, and if EDSS 1st month is high and EDSS 24th
month is low, then response to IFNb is high.

27 If gender is female and age is adult, and if EDSS 1st month is medium and EDSS
24th month is low, then response to IFNb is high.

28 If gender is female and age is elderly, and if EDSS 1st month is high and EDSS 24th
month is medium, then response to IFNb is high.
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Table 4. Cont.

# Rule

29 If gender is female and age is elderly, and if EDSS 1st month is high and EDSS 24th
month is low, then response to IFNb is high.

30 If gender is female and age is elderly, and if EDSS 1st month is medium and EDSS
24th month is low, then response to IFNb is high.

31 If gender is male and age is adult, and if EDSS 1st month is high and EDSS 24th
month is medium, then response to IFNb is high.

32 If gender is male and age is adult, and if EDSS 1st month is high and EDSS 24th
month is low, then response to IFNb is high.

33 If gender is male and age is adult, and if EDSS 1st month is medium and EDSS 24th
month is low, then response to IFNb is high.

34 If gender is male and age is elderly, and if EDSS 1st month is high and EDSS 24th
month is medium, then response to IFNb is high.

35 If gender is male and age is elderly, and if EDSS 1st month is high and EDSS 24th
month is low, then response to IFNb is high.

36 If gender is male and age is elderly, and if EDSS 1st month is medium and EDSS
24th month is low, then response to IFNb is high.

2.3. Pipeline Prediction Model

A pipeline is a tool for setting a learning model, including a data preprocessing
technique (for instance standardization for feature scaling), a transformation technique
(such as PCA for data compression), and a learning algorithm (like MLP) for making
predictions on new data. The structure of the proposed pipeline is shown in Figure 8.

Training set Test set

Scaling (Standard Scaler)

Pipeline

Dimentionality reduction (PCA)

Learning algorithm (MLP)

Response to IFN-β

80% 20%

Prediction model

Class labels

Figure 8. Structure of proposed pipeline model, including feature scaling, data compression, and
prediction algorithm.

PCA is a technique of dimensionality reduction, which transforms data from a high-
dimensional space to a space of lower dimensions. The dimension reduction is achieved
by selecting the principal components (directions of maximum variance) as a basis set
for the new space [30]. Applications of PCA include analysis of genome data and gene
expression levels. For extracting the principal components, the data are standardized; then,
the covariance matrix is built, to store the pairwise covariances between features. For
example, the covariance between two features xj and xk can be computed by Equation (3):

σjk =
1
n

n

∑
i=1

(x(i)j − µj)(x(i)k − µk), (3)

where µj and µk are the representative samples of the j and k features, respectively (µk,
µj = 0, because of the standardization). The eigenvectors of the covariance matrix represent
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the principal components, and the eigenvalues define the magnitude of the eigenvectors,
so the eigenvalues have to be ordered by decreasing the magnitude [31]. The ratio of an
explained variance of an eigenvalue λj is the fraction of the eigenvalue and the total sum of
the eigenvalues, as shown by Equation (4):

λj

∑d
j=1 λj

(4)

MLP is a supervised learning algorithm that uses the backpropagation technique
for learning. The structure of MLP consists of an input layer of neurons that receive the
X = x1, x2, . . . , xm sample inputs, one or more hidden layers of neurons that convert the
values from the previous layer to a weighted linear summation, w1x1 + w2x2 + . . . + wmxm,
followed by a non-linear activation function that is used to learn the weights, and then
the output layer that predicts the class label of the samples [32]. During the learning
stage, MLP compares the true class labels to the continuous output values of the non-
linear activation function, to compute the prediction error and update the weights. The
hyperparameters of MLP are arbitrarily set as follows: solver = ’sgd’, activation = ’tanh’,
and learning_rate_init = 0.01.

2.4. Performance Evaluation

One of the key steps in building an ML or deep learning (DL) model is estimating
its performance with new data. A model can suffer underfitting (high bias) if the model
is too simple, or can suffer overfitting (high variance) if the model is too complex for the
subjacent training data [31]. In order to get an acceptable bias–variance rate, the k-iterations
cross-validation (CV) technique is implemented, which can obtain reliable estimates of the
model’s generalization performance.

In the k-iterations CV, the training dataset is randomly split into k iterations without
replacement, where k− 1 iterations are used for model training, and 1 iteration is used
for performance evaluation. This process is repeated k times, to obtain k models and
performance estimates. Then, the average performance of the models is computed by
Equation (5), based on the independent iterations, to obtain a performance estimate:

E =
1
k

k

∑
i=1

Ei (5)

Typically, the k-iterations CV is used for model fitting, to find the optimal values of the
hyperparameters that produce satisfactory generalization performance. Also, the confusion
matrix (CM) is computed, which reports the count of the predictions of a classifier [33]:
true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN).

3. Results

For this paper, a fuzzy logic system based on MAFS was implemented, to classify
RRMS patients as high, medium, or low responders to IFN-β treatment. Also, for compari-
son purposes, a hierarchical clustering technique was implemented, to classify the same
patients. After the dataset outputs were labeled, the gene features were used as training
inputs for the proposed pipeline prediction model.

3.1. Fuzzy Logic System

At fuzzification stage, the membership values were computed for each one of the
input variables. Tables 5 and 6 display the computed values of each membership function
for all the samples.
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Table 5. Fuzzification results (gender and age).

Sample µFemale(Gender) µMale(Gender) µPediatric(Age) µAdult(Age) µElderly(Age)

1 1 0 0 0.687 0.015
2 0 1 0 0.88 0
3 1 0 0.375 0.4 0
4 1 0 0.315 0.448 0
5 1 0 0 0.975 0
6 1 0 0 0.784 0
7 1 0 0 0.856 0
8 0 1 0.225 0.479 0
9 1 0 0.345 0.424 0

10 0 1 0 0.808 0
11 0 1 0.255 0.496 0
12 1 0 0.258 0.472 0
13 1 0 0 0.952 0
14 1 0 0 0.928 0
15 1 0 0 0.808 0
16 1 0 0 1 0
17 0 1 0.015 0.688 0
18 1 0 0 0.832 0
19 0 1 0 0.903 0
20 0 1 0 0.76 0
21 1 0 0 0.952 0
22 1 0 0 0.712 0
23 0 1 0.585 0.232 0
24 1 0 0.405 0.376 0
25 0 1 0 0.712 0

Table 6. Fuzzification results (EDSS 1st month and EDSS 24th month).

Sample µLow(EDSS 1) µMed(EDSS 1) µHigh(EDSS 1) µLow(EDSS 2) µMed(EDSS 2) µHigh(EDSS 2)

1 0.25 0.75 0.0 0.0 0.875 0.125
2 1.0 0.0 0.0 1.0 0.0 0.0
3 1.0 0.0 0.0 1.0 0.0 0.0
4 0.25 0.75 0.0 0.375 0.625 0.0
5 0.5 0.5 0.0 0.625 0.375 0.0
6 0.75 0.25 0.0 0.125 0.875 0.0
7 0.25 0.75 0.0 0.5 0.5 0.0
8 0.875 0.125 0.0 0.75 0.25 0.0
9 0.25 0.75 0.0 0.25 0.75 0.0

10 1.0 0.0 0.0 1.0 0.0 0.0
11 0.75 0.25 0.0 0.625 0.375 0.0
12 0.875 0.125 0.0 0.625 0.375 0
13 1.0 0.0 0.0 1.0 0.0 0.0
14 0.375 0.625 0.0 0.5 0.5 0.0
15 0.75 0.25 0.0 0.5 0.5 0.0
16 0.375 0.625 0.0 0.375 0.625 0.0
17 0.875 0.125 0.0 0.125 0.875 0.0
18 0.75 0.25 0.0 0.75 0.25 0.0
19 0.5 0.5 0.0 0.75 0.25 0.0
20 1.0 0.0 0.0 1.0 0.0 0.0
21 0.75 0.25 0.0 0.75 0.25 0.0
22 0.75 0.25 0.0 0.5 0.5 0.0
23 0.875 0.125 0 0.75 0.25 0.0
24 1.0 0.0 0.0 1.0 0.0 0.0
25 1.0 0.0 0.0 1.0 0.0 0.0

1 1st month. 2 24th month.
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At the approximate reasoning stage, each one of the 36 inference rules from the
knowledge base were evaluated with the obtained membership values from Tables 5 and 6.
For example, considering the input values of #7 sample (gender: “female”, age: “44”, EDSS
1st month: “4”, and EDSS 24th month: “3”), the inference engine results are shown in
Table 7. In this case, only four rules—1, 2, 13, and 27—had an inference result different to
zero. Figure 9 displays the evaluation graph of previous inference rules.

Table 7. Inference results for #7 sample.

# Rule Inference Engine

1
If gender is “female” and age is “adult”, and if EDSS 1st
month is “low” and EDSS 24th month is “low”, then the

response to IFNb is “medium”.
min(1.0, 0.856, 0.25, 0.5) = 0.25

2
If gender is “female” and age is “adult”, and if EDSS 1st
month is “medium” and EDSS 24th month is “medium”,

then the response to IFNb is “medium”.
min(1.0, 0.856, 0.75, 0.5) = 0.5

13
If gender is “female” and age is “adult”, and if EDSS 1st
month is “low” and EDSS 24th month is “medium”, then

the response to IFNb is “low”.
min(1.0, 0.856, 0.25, 0.5) = 0.25

27
If gender is “female” and age is “adult”, and if EDSS 1st
month is “medium” and EDSS 24th month is “low”, then

the response to IFNb is “high”.
min(1.0, 0.856, 0.75, 0.5) = 0.5

0                              1

Input values [0 44 4 3]

Gender = 0 Age = 44 EDSS 1st month = 4 EDSS 24th month = 3 Response to IFNb = 0.554

AND
(min)

AND
(min)

1

2

AND
(min)

AND
(min)

13

27

Figure 9. Evaluation graph of the 1, 2, 13, and 27 inference rules. The result graph consists of the
combination of the four rules’ inference values.

At defuzzification stage, the numerical outputs were computed, substituting the
inference engine results into Equation (1), based on the inference result graphs. For example,
for the inference results of #7 sample according to the result graph of Figure 10, the
numerical output was computed as follows:

y0 =
0 ∗ 0.25 + 0.1 ∗ 0.25 + 0.2 ∗ 0.25 + 0.3 ∗ 0.5 + 0.4 ∗ 0.5 + · · ·+ 0.9 ∗ 0.5 + 1 ∗ 0.5

0.25 + 0.25 + 0.25 + 0.5 + 0.5 + · · ·+ 0.5 + 0.5
(6)

y0 =
2.675
4.75

= 0.563 ≈ 0.554 (7)
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The small difference in calculation was due to the fuzzy system implementation in
Matlab software providing more accurate results than by hand.

Low Medium High
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Figure 10. Inference result graph of #7 sample, which includes the values of the “Low”, “Medium”,
and “High” linguistic labels.

Finally, a classification of high, medium, and low responders to the IFN-β drug was
carried out, by three different methods: (1) opinion of a neurology expert, (2) proposed
fuzzy system, and (3) agglomerative clustering model. The results are displayed in Table 8.

Table 8. Classification of response to IFN-β. The resulting numerical values of defuzzification less
than 0.5 are considered as low responder (LR), those equal to 0.5 as medium responder (MR), and
those greater than 0.5 as high responder (HR). For comparison purposes, the input data of Table 1
were preprocessed by the StandardScaler technique, and they were used to train a prediction model
of agglomerative clustering (n_clusters = 3).

Sample Expert Opinion Fuzzy System
(Deffuzification)

Agglomerative
Clustering

1 LR 0.459⇒ LR HR
2 MR 0.5⇒MR LR
3 MR 0.5⇒MR MR
4 HR 0.529⇒ HR HR
5 HR 0.527⇒ HR HR
6 LR 0.337⇒ LR HR
7 HR 0.554⇒ HR HR
8 LR 0.474⇒ LR LR
9 HR 0.53⇒ HR HR

10 MR 0.5⇒MR LR
11 LR 0.472⇒ LR LR
12 LR 0.445⇒ LR MR
13 MR 0.5⇒MR MR
14 HR 0.527⇒ HR HR
15 LR 0.446⇒ LR MR
16 MR 0.5⇒MR HR
17 LR 0.302⇒ LR HR
18 MR 0.5⇒MR MR
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Table 8. Cont.

Sample Expert Opinion Fuzzy System
(Deffuzification)

Agglomerative
Clustering

19 HR 0.554⇒ HR LR
20 MR 0.5⇒MR LR
21 MR 0.5⇒MR MR
22 LR 0.446⇒ LR MR
23 LR 0.463⇒ LR LR
24 MR 0.5⇒MR MR
25 MR 0.5⇒MR LR

As Table 6 shows, 100% of the outputs were correctly labeled by the proposed fuzzy
system, while 52% were correctly labeled by agglomerative clustering according to an
expert opinion.

3.2. Pipeline Prediction Model

Once the dataset output labels had been classified, the pipeline prediction model was
implemented, for making predictions on new data. First, the gene expression values were
scaled by the StandardScaler technique. Then, the PCA technique was used, to reduce the
dimensionality of the gene dataset by compressing it into a new subspace, so that only
the subset of the eigenvectors (principal components) that contained more information
(maximum variance) were selected. Figure 11 shows the results of the explained variance
ratio of the eigenvalues.
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Figure 11. Explained variance ratio. The first principal component by itself accounts for almost
20% of the total variance. Furthermore, the first two combined principal components represent
approximately 40% of the variance.

Figure 12 shows the graph used to determine the optimal value of the number of
principal components (n_components) for the PCA technique to achieve the high testing
accuracy of the MLP prediction algorithm.
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Figure 12. Optimal value of n_components. The value of the n_components is arbitrarily set to 13,
for attaining a 0.8 average testing accuracy.

3.3. Performance Evaluation

In this paper, the k = 8-iterations CV technique was implemented for evaluating the
prediction model performance. Table 9 presents the CV accuracy results for each fold. The
maximun CV accuracy was achieved at the 7th and 8th folds, and the average estimate
performance was 0.521 +/− 0.327.

Table 9. K-iterations cross-validation results.

Fold CV Accuracy

1 0.333
2 0.667
3 0.333
4 0.333
5 0.500
6 0.000
7 1.000
8 1.000

The input data (1875 samples) were divided into 80% X_train (1500 samples) and 20%
X_test (375 samples), according to Pareto analysis [34], in order to avoid overfitting. In
addition, the output labels (25 samples) were divided into 80% y_train (20 samples) and
20% y_test (5 samples), for validation. The CM was computed with test and predicted data,
and the results are shown in Figure 13.

The CM results represents one high-responder patient who was correctly predicted
as a high responder, one low-responder patient who was correctly predicted as a low
responder, one low-responder patient who was wrongly predicted as a medium responder,
and two medium-responder patients who were correctly predicted as medium responders.
Based on previous results, the prediction model achieved 0.8 testing accuracy.
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Figure 13. Confusion matrix results: (0) high responder to IFN-β, (1) low responder to IFN-β, and (2)
medium responder to IFN-β.

4. Discussion

While binary logic generates only two output types—[0, 1]—fuzzy inference engines
use approximate reasoning based on generalized rules of inference. Hence, fuzzy systems
are convenient methods for decision support, due to their ability to process inaccurate
information. For this paper, an alternative fuzzy system based on expert knowledge was
implemented, for decision support in classification of the response to IFN-β treatment of
RRMS patients. Demographic and clinical characteristics were used as input variables to the
fuzzy system. As shown in Table 8, the classification of the proposed fuzzy system achieved
better results than the agglomerative clustering, because the latter did not consider the
intrinsic properties of the data, it simply used the distance between the data points to group
them into clusters. A software issue in the fuzzy system design was to set a small number
of input variables: the greater the number of variables, the greater the data processing time.

It is important to mention that at the beginning of the fuzzy system design, a proposal
of fuzzy rules definition was reviewed by the expert neurologist, who considered only two
output linguistic labels: “low” and “high” responder to IFN-β. Under these conditions, 88%
efficiency was obtained in the results. After validating the results, the expert recommended
adding an extra label—“medium”—to classify MS patients who had the same EDSS level at
the beginning as at the end of treatment. After redefining the fuzzy rules, 100% efficiency
was achieved.

Once the dataset output labels were classified by the fuzzy system, a pipeline predic-
tion model was implemented, including data standardization, data compression through
the PCA technique, and an MLP learning algorithm. The pipeline model was trained with
15 biomarkers associated with the response to IFN-β for predicting whether RRMS patients
were potential candidates to be treated with this drug. As shown in Figure 12, by setting
13 principal components for PCA, 0.8 testing accuracy was achieved. The use of the PCA
technique for data compression provides some advantages: (1) the reduced dimension has
the property of keeping most of the useful information, while reducing noise and other
undesirable data, (2) the time and memory used in the data processing are smaller, (3) it
provides a way to understand and visualize the structure of complex datasets. The use of
the k-iterations CV technique helps to obtain a good bias–variance rate. The highest CV
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accuracy was achieved at the 7th and 8th folds, as shown in Table 9. One disadvantage in
evaluating the prediction model performance was that the test samples size was too small.
Therefore, the number of iterations for the CV technique was limited to eight.

ML algorithms can find natural patterns in the data, and they are a useful alternative
in the field of bio-informatics. These algorithms have been implemented to improve the
MS diagnosis [20,21] and to help specialists to predict the response to drug treatments in
MS patients [22,25]. Table 10 presents a comparison of the performance results of some ML
applications in MS study.

Table 10. Performance results comparison of ML applications in MS study.

Author Prediction ML Technique Accuracy

Fagone et al. [22] Response to
Natalizumab UCRC 0.892

Goyal et al. [20] MS diagnostic RF 0.909
Jin et al. [25] Response to IFN-β SVM 0.809

Chen et al. [21] MS diagnostic SVM 0.930
Actual Paper Response to IFN-β MLP 0.521 +/− 0.327 1

1 Average estimate performance achieved by k=8-iterations cross-validation.

The results obtained in this paper could be a reference for future works, using other
genes related to the response to IFN-β treatment, as training data. Also, new prediction
models, such as evolutionary or DL algorithms, could be designed, to improve model per-
formance.

5. Conclusions

In general, IFN-β treatment effectively reduces the rate of relapse and delays the
progression of neurological disability in MS patients. However, a percentage of patients do
not respond, or partially respond to this drug. In this paper, the proposed fuzzy system,
based on the opinion of an expert, demonstrated high efficiency in decision support, and
it could be a useful tool in labeling classes, such as classification of the response to IFN-
β therapy.

Although genome research is complex, there are ML methods—for instance, the
proposed pipeline model—that can effectively deal the gene data for obtaining reliable
predictions, to guide specialists in the selection of MS patients who may obtain the greatest
benefit from IFN-β treatment. Biomarkers—in particular IL-2, IL-12, IFN-γ, TNF-α, IL-
4, IL-10, TGF-β, CD46, CD58, FHIT, IRF5, GAPVD1, GPC5, GRM3, and GRIK2—can be
convenient predictive variables for improving the comprehension of the influence of IFN-β
therapy in MS patients.
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Abstract: Retinal vein segmentation is a crucial task that helps in the early detection of health
problems, making it an essential area of research. With recent advancements in artificial intelligence,
we can now develop highly reliable and efficient models for this task. CNN has been the traditional
choice for image analysis tasks. However, the emergence of visual transformers with their unique
attention mechanism has proved to be a game-changer. However, visual transformers require a large
amount of data and computational power, making them unsuitable for tasks with limited data and
resources. To deal with this constraint, we adapted the attention module of visual transformers and
integrated it into a CNN-based UNET network, achieving superior performance compared to other
models. The model achieved a 0.89 recall, 0.98 AUC, 0.97 accuracy, and 0.97 sensitivity on various
datasets, including HRF, Drive, LES-AV, CHASE-DB1, Aria-A, Aria-D, Aria-C, IOSTAR, STARE and
DRGAHIS. Moreover, the model can recognize blood vessels accurately, regardless of camera type
or the original image resolution, ensuring that it generalizes well. This breakthrough in retinal vein
segmentation could improve the early diagnosis of several health conditions.

Keywords: retinal blood vessels; artificial intelligence; convolutional neural networks; attention
module; segmentation

1. Introduction

AI plays a prominent role in various fields, including programming-assistance tools
such as OpenIA Copilot [1], protein prediction using Deep Mind and the model in [2],
congenital disease prediction [3], and lesion segmentation in medical imaging, as demonstrated
by recent research in X-ray imaging for COVID-19 [4]. These examples illustrate how AI can
achieve metrics comparable to an expert’s, making it a promising solution for automating
daily tasks that intelligent algorithms can efficiently tackle.

In recent years, deep learning (DL), a subfield of machine learning (ML), has experienced
significant growth within the AI domain. This expansion is well-founded because DL models
do not require direct guidance from an expert nor the manual modification of complex
hyperparameters to achieve suitable performance. Instead, many previously labeled examples
are sufficient to initiate the learning process. This attribute of neural networks enables the
exploration of complex domains, such as medicine, without requiring the presence of a
domain expert at all times.

In our study, we employed CNN models [5] and attention modules based on those
incorporated by visual transformers [6] to segment retinal blood vessels. The retina,
a delicate layer at the back of the eye, plays a crucial role in our vision, as its connections
go directly to the brain [7]. The segmentation of retinal blood vessels can aid in detecting
degenerative diseases such as diabetic retinopathy [7], cardiovascular problems [8], and
many other congenital conditions. Unfortunately, these diseases have a high prevalence
worldwide [9].
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The UNET model has emerged as a popular choice among developers and researchers
for addressing segmentation challenges across diverse domains, for example, segmenting
lesions caused by diabetic retinopathy [10], the segmentation of brain tumors using a
modified model [11,12], and the segmentation of other skin lesions [13]. However, its
versatility continues. The model can also segment images taken by UAVs and perform
activities such as those described in [14]. These models are built upon the UNET architecture,
which is highly regarded for its adaptability and straightforward customization capabilities,
rendering it an ideal candidate for exploring novel concepts. Adaptations of the model
include adding convolutions and supplementary connections, as demonstrated in [13], and
incorporating comprehensive attention blocks, as showcased in the referenced article, to
mentioned a few.

Most object prediction, segmentation, and classification models that use images
as inputs are primarily based on CNNs [5]. Meanwhile, transformers [15], a type of
architecture mainly used in NLP, are now improving the existing metrics by their distinct
way of “paying attention”. As a result, image-based transformer models [16] have emerged
and are proving to achieve comparable, or at times better, results than traditional CNNs.
However, these models come with two significant challenges: the requirement of big
training data and the intensive computational power they consume during training. Some
techniques, such as transfer learning (TL) [17], are used when the dataset is limited. The
source and target datasets should have similar domains to maximize TL benefits.

Another commonly used approach is to take the attention mechanism of transformers
as an independent module that provides some of the benefits of transformers without
requiring a vast amount of training data. The approach that can be seen in [18] combines
MHSA with convolutions to generate a bottleneck transformer (BT) that can be viewed as
an attention module. This type of implementation using transformers and convolutions
is the basis of this work, along with a focus inspired by the focal transformer presented
by [19]; this allowed us to improve state-of-the-art metrics using the U-Net network as a
backbone and adding modules that we call a “Focal Attention Convolution Block” (FACB).

This study’s proposed FACB offers a distinctive characteristic of seamless integration
into any CNN as an additional module. This integration does not require altering the
backbone of the underlying models, making it similar to a plug-and-play component. This
approach provides the advantages of the attention mechanisms seen in vision transformers
without necessitating extensive modifications to the base model.

The FACB consists of two main parts. Firstly, the initial stage of the FACB captures
information from the input data at various levels, which we refer to as windows. These
windows can have different dimensions, such as small, medium, or large, and can be
singular or multiple. Ultimately, the output of these windows is concatenated, providing
information from different regions of the input data. This concatenated information is
then passed to the second block of the FACB, which comprises several attention modules
operating in parallel to process the input information. The versatility and compatibility
of the FACB with matrix operations enable its implementation at any stage within a
CNN architecture. This flexibility allows researchers to seamlessly incorporate the FACB
module into existing CNNs, enhancing the network’s capabilities without significant
structural changes.

The remainder of this paper is organized as follows. Section 2 presents the proposed
method’s main idea, the databases used, the preprocessing, data augmentation, and details
about the FACB and its use in the UNET model. Section 3 presents a comparative table
with the state of the art and images of the inference of the proposed model. Finally, the
discussion and conclusions are presented in Sections 4 and 5, respectively.

In recent years, there have been significant advancements in the field of medical
imaging, particularly in the area of retinal segmentation. Retinal segmentation is the
process of identifying and separating different structures within the retina, which can be
critical for diagnosing and treating a variety of eye diseases.
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The automated segmentation of blood vessels has long been a challenging task in
computer vision and artificial intelligence research. Among various AI approaches, ML
models have proven effective in segmenting and classifying these structures. There has been
a growing adoption of DL models in recent years in this domain [20]. DL models offer a
significant advantage in generalizing across diverse domains [21]. Talking specifically about
DL, vision transformers [22] are becoming important in the area but the ideal conditions
to apply these models are seldom present. Instead of using a complete transformer, we
can take the part that pays attention. Attention modules in a convolutional network allow
for capturing local and global spatial relationships in images more efficiently. Unlike full
transformers, which require computing all interactions between pair elements, attention
modules in a convolutional network can selectively focus on relevant regions and reduce
computational complexity. This is especially beneficial for images, where visual information
is highly structured and spatial relationships between pixels play a crucial role. Attention
modules in a convolutional network also enable the better interpretation and visualization
of results by providing attention maps highlighting the image’s most important regions.
In addition, attention modules can be easily incorporated into existing convolutional
network architectures, facilitating their implementation and leveraging both approaches’
benefits. Attention modules in a convolutional network offer an efficient and effective
way to model spatial relationships in images, transcending computational limitations and
taking advantage of the intrinsic visual structure of images.

Khanal, A. et al. [23] proposed a stochastic training scheme for deep neural networks
that robustly balances precision and recall. Their method yielded a better balance of
precision and recall relative to state-of-the-art techniques, resulting in higher F1 scores.
However, their method can be misleading for unbalanced datasets. Gegundez-Arias, et al. [24]
present a new method for vascular tree segmentation. The method outperforms other
U-Net-based methodologies in terms of accuracy, requiring fewer hyperparameters and
lower computational complexity. However, the major limitation of the practical integration
is the limited number of examples available for network training. Galdran, A. et al. [25]
reflect on the need to construct algorithmically complex methodologies for retinal vessel
segmentation. It suggests that minimalistic models, adequately trained, can attain results
that do not significantly differ from more complex approaches. The authors suggest that
research should switch to modern high-resolution datasets rather than rely on old datasets.

In the work of Tang, P. et al. [26], the main contributions include a novel ensemble
model based on multiproportional red and green channels that outperform other existing
methods concerning two primary performance metrics (segmentation accuracy and AUC)
and the first instance of the red channel providing performance gains. In the work of Ma, Y.
et al. [27], WA-Net was developed to improve the segmentation accuracy of retinal blood
vessels. Cross-training between datasets was performed to verify the model’s generalization
performance, and the results showed that WA-Net extracts more detailed blood vessels and
has a superior performance. However, there are still some limitations, such as the need for
more effective data augmentation and a long computational time due to the introduction of
weight normalization.

Tuyet, V.T.H. et al. [28] proposed a method for retinal vessel segmentation using
three periods: a salient edge map in the retinal vessel image, feature extraction using
CNN in a salient map, and segmentation based on the pixel level of the Sobel operator in
saliency. The Jaccard index value of the proposed method was found to be higher than other
approaches. Therefore, the number of layers or operators for the salient region map can
be improved in the future. Park, K.-B. et al. [29] proposed M-GAN, which outperformed
previous studies with respect to accuracy, IoU, F1 score, and MCC. It derived balanced
precision and recall together through the FN loss function. The proposed method with an
adversarial discriminator showed better segmentation performance than a method without
a discriminator.

Compared to state-of-the-art methods, the proposed method of Zhuo, Z. et al. [30]
achieved extremely competitive performances on the DRIVE and STARE datasets. The
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results of cross-training show that the method has strong robustness and is faster than
other CNN-based algorithms. However, the proposed method does not have a network
structure that reduces the number of parameters while guaranteeing effective segmentation.
Zhuo, Z. et al. [31] present a novel retinal vessel segmentation architecture that combines a
U-Net with generative adversarial networks and a weighted feature matching loss. This
architecture was evaluated on three retinal segmentation datasets (DRIVE, CHASE-DB1,
and STARE). It showed improved performance compared to previous methods, with higher
confidence scores, F1 score, sensitivity, specificity, accuracy, AUC-ROC, mean-IOU, and
SSIM. However, the model suffers from a high false-positive rate.

2. Materials and Methods

Demonstrating the generalization of an artificial neural network model is a crucial
aspect of its training. It requires diverse data to ensure the model recognizes and learns
from patterns outside the training dataset. To achieve this, we utilized many publicly
available datasets, each presenting unique characteristics in terms of their composition,
such as variations in image resolution, centering, and color saturation, as depicted in
Figure 1. These differences result from the use of various devices and the work of different
individuals, resulting in images that differ significantly while all within the same domain
(the retina).

Figure 1. Although the images belong to the same retina domain, these datasets possess unique
properties, as demonstrated by differences such as varying degrees of centering toward the optic nerve
or the macula, mixed image resolutions, and differences in color saturation and brightness levels.

The blocks of a general methodology using DL models are very similar regardless of the
task to be performed. In our case, as can be seen in Figure 2, the general development of our
implementation, which contains the classic blocks of preprocessing and training/validation
but inside each block, has specific processes.

2.1. Preprocessing

One of the main reasons data preprocessing is essential is the nature of deep neural
networks. These networks are designed to learn functional patterns and representations
from input data. However, the quality of the input data can vary widely and may
contain noise, redundancy, outliers, or even irrelevant information. Preprocessing helps
mitigate these problems by performing normalization, denoising, and the reduction of
dimensionality. It is crucial to find a balance in data preprocessing and not to exaggerate
when homogenizing the data since a model also benefits from the natural noise with which
the data were taken.
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2.1.1. Data Cleaning

The preprocessing block can be considered the kitchen where the food of our model is
prepared. It is fundamental when handling various datasets because if garbage enters the
model, we cannot expect good results no matter how robust the architecture is. Therefore,
we must at least clean the data and try to normalize it as much as possible while maintaining
the essence of each database.

The images contained in the datasets are very different in their composition, with
some having a better resolution than others. In addition, the difference in saturation in the
red channel is noticeable, so finding a balance when preprocessing the images is vital since
we must consider the diversity of these images. RGB retinal images usually tend to have a
reddish hue in their composition, which causes a considerable saturation in the red channel.
The blue channel has the slightest presence in the image and can be considered the opposite
of the red channel. Finally, the green channel is the one that best preserves the balance of
all the channels, thus providing more precise and sharper information. Therefore, it was
decided to only use the green channel. To keep the original information of the images the
same, we chose to perform histogram equalization on the channel we used, i.e., the green
one. After the equalization, we looked for an algorithm that would improve the sharpness
and brightness without altering the images too much, so according to its performance, we
decided to use CLAHE [32], which gives us a general enhancement of the image without
altering too much of the original information of the images. The preprocessing applied to
an image can be seen in the central block in Figure 2.

Figure 2. General methodology. The first block refers to the collection of the datasets. The central
block represents the preprocessing applied to each of the datasets. The last block refers to the training
and validation of the proposed model.

2.1.2. Data Augmentation

A disadvantage of public datasets is the small number of examples they contain, so
an increase in data has to be implemented. For this reason, we divided each image into
small segments called patches with a size of (160 × 160 × 3) and obtained 25,402 patches
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for training and 2900 for validation, trying to maintain a ratio of 90–10. An example of the
patches can be seen in Figure 2.

In addition to the generation of patches as a method of data augmentation, it was
decided to perform an automatic augmentation prior to model input. This means that
before delivering an example to the model, it goes through a process that can rotate the
image, displace it, increase its color saturation, add noise, and remove a part of the image,
in order to force the model to generalize as much as possible and avoid overtraining.
However, this process does not always happen for all the input examples since the aim is to
generate the most significant difference between each data point. The decision as to which
items undergo this process and which do not is randomly determined for each epoch.

2.2. The Model

When addressing specific tasks in the medical domain, such as disease prediction
in medical imaging or lesion segmentation, choosing a good DL model becomes critical.
A well-selected model has the potential to improve the accuracy of diagnosis and treatment,
which, in turn, can lead to better clinical outcomes and more effective medical care.

2.2.1. Model Overview

As mentioned before, transformers are becoming very relevant in work with images,
despite how inconvenient their training can be. Thus, using small modules that provide
some of the benefits is a viable approach. In this work, the principal idea is the incorporation
of a module consisting of main blocks. The first one is in charge of extracting as much
information from the input as possible using different regions. These regions start from the
center of the input and can extend to the edges; the idea is to collect as much information
in the input directions, which contain valuable information from different points, and the
second block pays attention with its different attention modules to the information the first
block provides. The general idea of the focal attention convolution block (FACB) can be
seen in Figure 3.

Figure 4 shows the block called CBAM bottleneck multihead self attention (CB-BMHSA),
which incorporates an attention module inspired by the focal attention (FT) [19], which
delivers fine and granular information to an MHSA. For our implementation, we took the
FT idea of generating information in different regions of the image in parallel and used
a CBAM [33] attention module to obtain spatial and channel information and then pass
the information to a BT [18], which is a variant of the multihead self attention (MHSA);
however, this was designed to work with convolutions, which means that there is no need
to flatten the input features as a traditional MHSA would need.

Figure 3. General FACB that contains two principal blocks.
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Figure 4. The CB-BMHSA attention block.

The input information of the CB-BMHSA comes from a block that we call the region
extractor (RE). This block was inspired by the FAB used in the transformer in [19]. The block
presented in the article, as mentioned earlier, has the disadvantage that it does not work
with convolutions because it is 100% adapted to the use with transformers, so we decided
to generate an alternative that can be coupled to the use of CNNs. In Figure 5, we can
observe this block in more detail. The RE obtains the information from a window called
Pr, which delimits the region of information to be extracted from the input features. Then,
the window data are grouped into Pw sets using AvgPooling to generate subwindows
with information from different regions of the input that will be summed to have general
and granular details. Finally, when summing each subwindow, we use zero padding to
avoid dimensionality problems. This procedure can be repeated for N number of windows
as shown in Equation (1). It should be noted that FACB was designed for features with
square dimensions. In addition, the FACB can be implemented on any CNN, extracting
information from different regions of the input and paying attention to that information
using different attention modules.

N

∑
n=1

ZeroPadding(AvgrPooling(Pr[n]))) (1)

FACB can be implemented in any part of a traditional CNN, as the only requirement
is that the input dimensions are square (m × m). Typically, classical CNN models always
use square inputs and outputs, making the FACB an enhancer that allows the ability to
pay attention to be added to models such as RESNET-50, RESNET-100 [34], VGG-16 [35],
EfficientNet [36], Mobilnet [37], GoogleNet [38], and of course, the model that we use as a
base in this article, the U-NET [39]. The U-NET was chosen because it is a well-studied model
that has a wide variety of variants. These models have been applied to the segmentation of
lesions, blood vessels, and other parts of the retina, which are components that can be used
to compare and demonstrate that the FACB helps to enhance the performance of the model
without modifying the main skeleton. The final model can be seen in Figure 6, to which FACB
was added in the intermediate connections from the second downsampling.
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Figure 5. RE block that feeds the CB-BMHS block.

Figure 6. The complete U-Net architecture using FACB at the four points downstream.

2.2.2. UNET with FACB

When training a transformer either for natural language processing or a visual
transformer for working with images, we know beforehand that this will require high
computational power and a large amount of data. Similarly, adding attention modules
increases the processing time of the model: not to the level of a transformer but more than
that of a conventional CNN. Therefore, different configurations of the U-NET were tested
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with the FACB to determine the cost benefit. In this way, we noticed that the results of the
metrics were similar when using the FACB in the whole model as to when it was applied
from the second output of the convolution block; however, the computational cost changed
a lot, i.e., when using the first option, the training time increased by 50%.

3. Results

The model was evaluated with different metrics that would give us important information
about its performance. Several authors only consider metrics such as accuracy or AUC, i.e.,
metrics that, for this task, do not reflect the reality of the prediction since the number of pixels
in the images that represent an absence of blood vessels is much higher than the number of
pixels that contain blood vessels. This means that, although our model did not detect any
blood vessels in the image, the accuracy rate and the sensitivity were high, since it focuses
on the true negatives, which are more abundant than true positives. Thus, the accuracy,
recall, and F1 score better reflect the model’s performance speaking exclusively for this
task. Table 1 shows a comparison of our model and the bests in the state of the art. As can
be seen, not all the models were trained on several datasets, and some were only trained on
a single dataset, leaving uncertainty as to whether the model would generalize or would
only perform well on that dataset.

Table 1. The table shows a comparison of the best models and our proposal. As seen at least in one
metric, the proposed model achieved better results than the state of the art. Moreover, the table
indicates a good generalization over all datasets. The best results are in bold.

Dataset Author Accuracy AUC Precision Recall Specificity F1

DRIVE

Park, K.-B. et al. [29] 97.06 98.68 83.02 83.46 98.36 83.24
Galdran, A. et al. [25] - 98.1 - - - -

Chen, D. et al. [40] 96.22 98.78 - 85.76 99.32 81.60
UNET with FACB 97.9 93.6 91.7 88.1 99.0 89.9

CHASEDB1

Park, K.-B. et al. [29] 97.36 98.59 - - - 81.1
Galdran, A. et al. [25] - 98.47 - - - -

Chen, D. et al. [40] 98.12 99.25 - 84.93 99.66 82.73
UNET with FACB 99.1 97.0 94.8 94.4 99.5 94.6

HRF

Park, K.-B. et al. [29] 97.61 98.52 79.72 - - 79.72
Galdran, A. et al. [25] - 98.25 - - - -

Tang, P. et al. [26] 96.31 98.43 - 76.53 98.66 77
UNET with FACB 97.7 91.3 87.2 83.8 98.9 85.4

STARE

Park, K.-B. et al. [29] 98.76 99.73 84.17 83.24 99.38 83.7
Galdran, A. et al. [25] - 98.28 - - - -

Chen, D. et al. [40] 97.96 99.53 - 87.93 99.37 88.36
UNET with FACB 97.9 93.6 91.7 88.1 99 89.9

LES-AV Galdran, A. et al. [25] - 97.34 - - - -
UNET with FACB 99.3 97.1 94.7 94.6 99.6 94.6

IOSTAR

Guo, C. et al. [41] 97.13 98.73 - 80.82 98.54 -
Li, X. et al. [42] 95.44 96.23 - 73.22 98.02 -

Wu, H. et al. [43] 97.06 98.65 - 82.55 98.30 -
UNET with FACB 99.3 97.1 94.7 94.6 99.6 94.6

ARIA (mean) Tajbakhsh, N. et al. [44] - - - - - 72
UNET with FACB 97.3 89.9 86.4 81.4 96.1 83.2

The metrics that interest us, as mentioned above, are precision, recall, and F1 score.
As can be seen, our model achieved superior results as compared to the state-of-the-art
models in almost all the datasets for these metrics. The only datasets for which the model
did not achieve similar numbers to the others were Arias A-C-D, but this reaffirms what
we mentioned earlier: the accuracy and AUC for these datasets are competitive metrics
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but do not reflect the performance of the model since the rest of the metrics had much
lower results.

In Figures 7 and 8, we can observe the inference on an image of each dataset. This
inference shows us the outstanding performance of our model in the most challenging
regions, such as the areas closest to the optic nerve, the bifurcations and intersections,
the points where the path ends, the centralization towards the optic nerve or the macula,
and the thinnest blood vessels and arteries. The comparison column provides valuable
information on the differences between the prediction and the actual output. The yellow
color represents the true positives of the segmentation, the red pixels are the false positives,
and the green pixels are the false negatives. This final column allows us to directly compare
the results in Table 1 and the model prediction. If we only look at the prediction and mask
columns individually, it is difficult to infer whether the result is consistent with what is
presented in the metrics output.

Figure 7. Model predictions part 1.
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Figure 8. Model predictions part 2.

4. Discussion

The results of this paper indicate that the model has excellent performance in the
most challenging regions of the datasets, such as the areas closest to the optic nerve, the
bifurcations, and the intersections. This indicates that the FACB helps the UNET model
pay attention to the segmentation’s critical areas. However, the accuracy and AUC metrics
for the Arias A-C-D datasets were lower than in the other datasets, reaffirming that these
metrics only sometimes reflect the model’s performance. Nevertheless, the inference on
the images also showed outstanding results, indicating that the model can accurately
detect blood vessels and arteries even in the thinnest areas. Further research should focus
on exploring the implications of these results and investigating potential future research
directions. There are two crucial considerations to bear in mind when utilizing the FACB.
Firstly, incorporating multiple FACBs into neural networks results in a substantial increase
in memory requirements. Consequently, integrating such models becomes feasible with
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access to robust hardware resources. Secondly, training the model on high-resolution
images exceeding 200 pixels poses a formidable challenge due to the corresponding surge
in memory demands. To tackle this issue, it is vital to explore strategies, such as the one
proposed in this article, which involve partitioning images into smaller patches. This
approach enables the successful implementation of FACBs by mitigating the excessive
memory demands associated with larger image resolutions.

5. Conclusions

This research shows that our model performs in the most challenging regions for retinal
vessel segmentation. This study has implications for previous retinal vessel segmentation
studies and provides potential future research directions. This approach in retinal vein
segmentation could improve the early diagnosis of several health conditions. Moreover,
the model’s ability to recognize blood vessels accurately regardless of camera type or the
original image resolution suggests that it generalizes well and could be used in various
applications. This was achieved by combining the existing attention modules and the
regional extractor, and combining the best of the two classic convolutional networks and
care delivery approaches. Another significant consideration is that some datasets are more
challenging than others. They demand the use of all the possible datasets available to
train and evaluate the model in order to achieve generalization. It is possible to enhance
segmentation performance by conducting fine-tuning on each dataset. However, the
ultimate objective is to achieve generalizability regardless of the image type presented to
the model.

The overarching goal for future research is to achieve robustness and generalizability
regardless of the image type presented in the model. Continued efforts in fine-tuning
techniques, dataset augmentation, and advancements in model architectures and attention
mechanisms can contribute to developing highly accurate and versatile DL models for
medical image analysis.

Combining the strengths of attention mechanisms and CNNs, we can develop models
that capture relevant features, focus on informative regions, improve interpretability, and
achieve more accurate segmentation results. These advancements can contribute to early
disease diagnosis, precision medicine, and improved patient care in medical imaging.

Future research efforts can focus on optimizing the architecture and training strategies for
attention-guided CNN models. This may involve exploring different attention mechanisms,
designing novel network architectures that effectively fuse attention and convolutional
operations, and developing specialized loss functions that encourage accurate vessel segmentat-
ion. Additionally, investigating the transferability and generalizability of attention-guided
CNN models across different datasets and imaging modalities can further improve their
practical applicability in various medical image analysis tasks.
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Abstract: Objectives: The need to incentivize the humanization of healthcare providers coincides with
the development of a more technological approach to medicine, which gives rise to depersonalization
when treating patients. Currently, there is a culture of humanization that reflects the awareness of
health professionals, patients, and policy makers, although it is unknown if there are university
curricula incorporating specific skills in humanization, or what these may include. Therefore, the
objectives of this study are as follows: (1) to identify what type of education in humanization is
provided to university students of Health Sciences using digital technologies; and (2) determine
the strengths and weaknesses of this education. The authors propose a curriculum focusing on
undergraduate students to strengthen the humanization skills of future health professionals, including
digital health strategies. Methods: A systematic review, based on the scientific literature published in
EBSCO, Ovid, PubMed, Scopus, and Web of Science, over the last decade (2012–2022), was carried
out in November 2022. The keywords used were “humanization of care” and “humanization of
healthcare” combined both with and without “students”. Results: A total of 475 articles were retrieved,
of which 6 met the inclusion criteria and were subsequently analyzed, involving a total of 295 students.
Three of them (50%) were qualitative studies, while the other three (50%) involved mixed methods.
Only one of the studies (16.7%) included digital health strategies to train humanization. Meanwhile,
another study (16.7%) measured the level of humanization after training. Conclusions: There is a
clear lack of empirically tested university curricula that combine education in humanization and
digital technology for future health professionals. Greater focus on the training of future health
professionals is needed, in order to guarantee that they begin their professional careers with the
precept of medical humanities as a basis.

Keywords: humanization of care; humanization of healthcare; medical humanities; undergraduate
education; digital technology

1. Introduction

Digital health is defined as the use of digital technologies for health [1]. It has grad-
ually become a relevant topic of healthcare practice [2], including tools such as mobile
health technology (mHealth), virtual reality (VR), or artificial intelligence (AI). Despite
digital health having enormous potential [3], it is still poorly incorporated into healthcare
workforce [4]. Therefore, several authors have claimed that digital health training should
be included in the curriculum for healthcare professionals [4–6], so that they can reach their
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full potential [3,7,8]. One way to do this could be to combine digital health technology and
training in humanization for the healthcare workforce, paving the way for future challenges
and opportunities.

In this respect, the humanistic training of health professionals has given rise to quite
different interpretations, including the understanding of “medical humanities” (MH). These
range from positions that present MH as a discipline falling between objective technique
and compassionate ethical attitude [9], to interdisciplinary approaches that help to integrate
and interpret human experiences of illness [10], understanding the human condition of
health and illness [11], and medical practice. Classically, among the tools used, mention
is made of creative training processes such as the use of literature, art, creative writing,
cinema forums, the narrative of patients and healthcare workers, ethical decision making,
anthropology, and history in pursuit of the goals of humanized medical education [12].

The term humanization has an ethical connotation, as it refers to the evaluation of
human actions according to values and, specifically, to the treatment of others in dif-
ferent human relationships. In the healthcare setting, a recently published and tested
model [13–15] defined humanization as a “set of personal competencies that allow for the
development of professional practice within the healthcare environment, respecting and
ensuring dignity and respect for human beings. It is, therefore, an activity focused on im-
proving physical, mental, and emotional healthcare, from the perspective of both patients
and health professionals themselves”. For this reason, supported by the MH disciplines,
educational tools are developed to improve personal skills in the humanization of future
health professionals, which are aimed at improving the personal dimension of care.

Different studies suggest that this integration of MH in education can help students
develop essential qualities such as professionalism, self-awareness, social and communi-
cation skills, and reflective practice [16,17]. It also encourages a more holistic approach
to patient care [18]. A US multi-institutional survey [19] showed that medical students’
exposure to the humanities correlates with positive personal qualities and reduces stress,
mitigates burnout, fosters resilience, and promotes well-being [18,20,21]. Finally, it helps
them to think like doctors [22].

The inclusion of the humanities in medical education may offer significant potential
benefits to individual future physicians and to the medical community. There should be no
debate about the definition and precise role of the humanities in medical education, since
this training must be present from the beginning of studies in health sciences, providing
tools to health workers, which need to be continuously developed and recycled during
their years of professional practice [23].

Wald et al. [24]. assert that it is essential for medical students to be taught, from the
early stages of their training and throughout their careers, that the practice of medicine
can never be black and white, and that—in line with Schon’s view [25]—dealing with
greyness, uncertainty, and doubt will always be present in professional practice and human
complexity. The inclusion of MH could thus support the need for medical education
to respond to this complexity and help provide the necessary framework to cultivate
competent and compassionate physicians [24].

Quantifying the long-term impact of humanities training is a commendable goal.
In Ousager and Johannessen’s (2010) systematic review of 245 articles concerning the
humanities in medical education [26], only nine papers provided evidence of attempts
to document their long-term impact Humanities courses in medical schools should set
specific, measurable goals for their curricula and determine methods to evaluate whether
those goals are being met [27].

However, all this would be meaningless without a broader vision that leads from the
disciplines of MH, through the different educational tools, to the personal competencies
that enable “humanized medical care” (HMC). Therefore, several studies have tried to
determine what this term (HMC) means concretely, and how best to implement it. In
this regard, when analyzing the different actors involved in the delivery of HMC, the
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results show a clear gap between the expectations cited by stakeholders and the practices
implemented in daily clinical practice [28].

When this concept is applied to the field of healthcare practice, it is noticed that
two different expressions are used in the current literature, which, although related, refer
to different specific realities: one is “humanization of healthcare”(HH); the other, “human-
ization of care” (HOC). The former, which is more inclusive, refers to actions aimed at the
humanization of both healthcare management and practice, and focuses on all the agents
involved in the clinical relationship. On the other hand, publications on the “humanization
of care” focus on the role of nursing and specific actions such as the adoption of healthcare
environments to make them more friendly.

The term “humanization of healthcare” (HH) originated in the scientific literature [29],
yet there is currently no clear consensus on its definition [28,30]. The term HH implies
consideration of the stakeholders involved in healthcare, such as patients themselves,
patients’ caregivers, health professionals and policy makers, as well the interaction between
them all [28]. However, future care providers, i.e., current healthcare students, are not
included among them.

This absence is noteworthy. As early as the nineteenth century, William Osler coined
the phrase “The good physician treats the disease; the great physician treats the patient
who has the disease” [31]. Lately Ronnie Mac Keith in his essay “The tyranny of the idea of
cure” cautioned that “Patients are not uninterested vehicles of interesting diseases” [27].
Therefore, this concern is at the root of the training of future health professionals, highlight-
ing the importance of embracing uncertainty and restoring the integral balance between
the sciences and the humanities.

Other authors [32] considered three illustrative areas related to learning that could
serve as teaching tools for the medical humanities. These three areas would aim to improve
the understanding of patients’ experiences of disease.

The HH has two dimensions that are the object of this humanization: firstly, the
“structural”, relating to the management of the means for health activity; and, secondly,
the “personal”, relating to the aptitudes and attitudes of healthcare workers. From the
structural point of view, the automation and standardization of medical care, as well as
the lack of time, have been highlighted as causes of dehumanizing treatment by health
professionals [33]. It has even been suggested that patients are sometimes not treated as
individuals, but as a “symptom cluster” [34]. Moreover, excessive bureaucracy, deficiencies
in hospital structure, overcrowding, excessive workload, lack of material resources (as
experienced during the COVID-19 pandemic), poor coordination between departments,
and lack of assessments of dehumanizing behavior have been noted [35].

Regarding the skills and attitudes of healthcare personnel, these are linked to the ethcal
codes that regulate the healthcare relationship with patients and their relatives. However,
competence in the HOC, in addition to ethical competence, would include psychological
competences such as empathic competence (closely linked to ethical competence). The
concept of empathy towards the patient, respect for the patient’s dignity, and consideration
for the patient as an individual have been cited in several studies as fundamental aspects
of this “humanized care” [28]. On the other hand, the concept of moral sensitivity, defined
as the ability to be aware that one’s actions may affect other people, has also been related to
the concept of humanization [36].

Therefore, the MH are transformed into the HH when they are grounded in human
action and values, both incorporated into specific academic curricula. This will promote
the psychological, relational, and ethical attitudes of future health professionals that favor
“humanized care” for the patient. Although it has not yet been empirically proven, it is
postulated that humanistic training applied to the education of healthcare professionals can
have a positive influence on improving the treatment of patients, as well as the management
of healthcare environments to make them friendlier or more appropriate for patients and
their vulnerabilities.
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It is the responsibility of the scientific and teaching community to provide future health
professionals with training in humanities for the exercise of their profession. Pursuing
this goal and measuring the impact of humanization of healthcare through digital health
strategies represents the challenge itself.

Given that there is no international consensus on the concept of humanization of
healthcare, nor, therefore, on the best way to teach it, and that its effective implemen-
tation has been linked to students’ prior training, as have digital health strategies, this
research study aims to systematically review the existing scientific literature regarding
the explicit training that undergraduate students receive regarding the concept of human-
ized healthcare, using digital technology. Specifically, the following objectives are sought:
(1) to identify what type of education in humanization is provided to university students
of health sciences, developed through digital health strategies; and (2) to determine its
strengths and weaknesses.

The following sections will further explain the methodology developed for data
collection, as well as the main outcomes and conclusions.

2. Methods

To develop the present study, the following methodology was adopted.

2.1. Overview

The current systematic review was performed and reported using the Preferred Re-
porting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement (see study
protocol in Supplementary Material S1) [37–40]. The protocol was registered with the
PROSPERO International Prospective Register of Systematic Reviews (CRD42022382146).

2.2. Selection Criteria

Articles were considered potentially relevant if they were published in English or
Spanish between the years 2012 and 2022 inclusive and included a training protocol or
education in the “humanization of healthcare” for undergraduate students of any of the
branches of health sciences, provided as part of their university education. We excluded
abstracts or conference papers, study protocols, narrative reviews, and articles that were
published in a language other than English or Spanish, as well as those that did not include
training or results in “humanization of healthcare” of university students (for example,
training in “humanization of healthcare” for active professionals in hospital settings).

2.3. Outcomes

The primary outcomes were the types of humanization training provided to students
at university and if digital technologies were used for that purpose; whether the humanized
skills were assessed before or after training; and the efficacy of the training provided (in
terms of increasing humanization skills in students). The secondary outcomes were the
level of satisfaction of the students involved and the strengths and weaknesses of the forms
of training examined.

2.4. Search Methodology

A comprehensive search was carried out in EBSCO (Academic Search Complete,
CINAHL Plus with Full Text, Communication Source, eBook Collection, E-Journals, ERIC,
Fuente Academica Premier, Humanities International Complete, MEDLINE, MLA Di-
rectory of Periodicals, MLA International Bibliography, OpenDissertations, PSICODOC,
Psychology and Behavioral Sciences Collection, PsycInfo), PubMed, Scopus, Ovid, and
WOS (Web of Science Core Collection) from its inception until November 2022. The detailed
search strategies used in all the databases are provided in Supplementary Material S1. The
original versions of all the research articles were retrieved for examination, and a search
library was created using RefWorks©, a bibliography management program.

159



Technologies 2023, 11, 88

2.5. Data Collection and Analysis

For the sake of completeness, two reviewers (M.G.-M. and E.R.) independently eval-
uated and reviewed all the titles and abstracts of identified references to determine their
eligibility for inclusion in the study. In case of discrepancies, a third author was consulted
(C.M.-V.). After that, Cohen’s kappa coefficient for inter-observer agreement [41] was
calculated in order to determine the degree of agreement between the data of the two
investigators (E.R. and M.G.-M.). The interpretation of the data obtained from Cohen’s
kappa was calculated using SPSS version 27 (IBM Corp., Armonk, NY, USA), based on
the categories established by Douglas Altman [42] as 0.00–0.20 (poor), 0.21–0.40 (fair),
0.41–0.60 (moderate), 0.61–0.80 (good), and 0.81–1.00 (very good). One author (M.G.-M.)
independently extracted data on outcomes from all the studies. All extracted data were
reviewed for completeness by two reviewers (E.R. and C.M.-V.).

A data extraction tool was developed in Microsoft Excel, which was used to retrieve
relevant information. Cross-checking was undertaken to identify any inaccuracies or
oversights. Discrepancies were resolved amongst the core team with the involvement of
the broader research team when necessary.

2.6. Data Extraction and Management

We extracted data on (1) publication year, (2) country, (3) study design, (4) study
aim, (5) sample size, (6) mean participant age, (7) university course, (8) type of training
provided (using digital technologies—yes/no—), (9) assessment of prior/subsequent
level of humanization, (10) outcomes, and (11) student satisfaction, (12) strengths, and
(13) weaknesses.

2.7. Quality of Studies Included

The study designs of the articles included varied widely; therefore, the quality of
the studies included was appraised using the Mixed Methods Appraisal Tool (MMAT),
developed in 2006 [43] and revised in 2018 [44]. Total scores with higher values indi-
cated a lower risk of methodological bias (see Multimedia Supplementary Material S2).
The critical evaluation of designing and developing educational interventions was made
through a checklist for critically appraising reports of educational interventions [45] (see
Supplementary Material S3). One author (C.M.-V.) independently extracted data on out-
comes from all the studies. For completeness, all extracted data were reviewed by two
reviewers (E.R. and A.P.-M.).

2.8. Statistical Analysis

Data were pooled using SPSS version 27 (IBM Corp., Armonk, NY, USA), allowing for
frequency analysis (percentages).

3. Results

The following outcomes were obtained.

3.1. Search Results/Characteristics of Included Studies

The total number of articles retrieved when searching with the chosen keywords “hu-
manization of care” and “humanization of healthcare” was 475. After discarding duplicates
(288), 187 studies remained (39.3%) and these were evaluated on the basis of title and
abstract. Of these, 174 (93%) were rejected as they clearly did not meet the inclusion criteria.
Based on titles and abstracts, 13 (7%) articles were selected for full text screening; 7 (53.8%)
out of these 13 [46–52] were discarded for various reasons (see Supplementary Material S4).
A total of six publications (46.2%) were included in the end [53–58]. A PRISMA flow dia-
gram is shown in Figure 1 [39]. Cohen’s kappa was good (κ = 0.72) based on the categories
developed by Altman [42]. All the chosen studies were deemed to be of sufficient quality
to contribute equally to the thematic synthesis.
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3.2. General Characteristics of Included Studies

A review of the general features of the six papers evaluated shows (Table 1) that three
of the studies (50%) were carried out in Spain [53,54,58], one in Brazil (16.7%) [56] one
in Chile (16.7%) [57], and one in Canada (16.7%) [58], and that were published—except
for a paper published in 2017 [53] (Feijoo-Cid et al., 2016) almost all (83.3%)—between
2019 and 2022.
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The total number of participants in the various trials was 295 students, with the
work of Moya et al. [57] in Chile comprising the largest number of participants, concretely
112 students in the second year of their nursing degree (Table 1).

Only in the study by Mega et al. [56] were the participants medical students, while the
rest (83.3%) [53–55,57,58] involved students from different nursing courses. One study [53]
specifies that the participants in the study were enrolled in the Module in Medical An-
thropology. It is important to note that studies were developed in different countries
(Table 1).

Finally, regarding the general features of the studies, it should be noted that only three
of the six studies (50%) mention the mean age of the participants, which was 23 years
old [53], 24 years old [55], and 25 years old [58]. The papers can be organized into several
subgroups according to the number of participants and the type of study conducted.
On the one hand, the studies involving a semi-structured interview, which is 50% of
them [55,56,58], worked with groups of 12-26 participants, while those that worked with
a training methodology (33%)—”Expert Patient Illness Narratives”(EPIN) [53] or virtual
simulation-based training [54] —using surveys and quasi-experimental studies, evaluated
between 60 and 64 participants. The work of [57], whose objective was to develop learning
experience through guided group encounters and the use of surveys, involved 112 students.
Only one study [54] included digital health strategies to improve humanization (Table 1).

3.3. Assessment of Methodological Quality of Included Studies

Of the six studies analyzed using the Mixed Methods Appraisal Tool (MMTA) [44],
three of them (50%) are qualitative studies, while the other three (50%) correspond to mixed
methods (see Supplementary Material S2). A detailed analysis of the six studies yields
results that are consistent with the question posed and the tools chosen to answer it. The
analysis of the results obtained from the corrected data and their interpretation shows
consistency among the different studies.

3.4. Outcomes

With regard to the analysis of the results (Table 2), only one of the studies (16.7%) [54]
evaluated the level of humanization before/after training, using digital technologies to
develop it. Meanwhile, another study (16.7%) [53] evaluated the level of humanization
after training.

In one study [53], after training, a self-administered written questionnaire was dis-
tributed, which had been developed by the authors specifically for this study, taking
into account the learning objectives, skills, and abilities to be acquired by the students.
Meanwhile, in another study [54], a validated questionnaire—the Healthcare Professional
Humanization Scale (HUMAS)—was used to evaluate the acquisition of humanization
competencies by comparing the levels obtained in these competencies at baseline (pre-test)
and after the virtual simulation experience (post-test).

The results of the study by Feijoo-Cid et al. [53] show that students valued the use
of EPIN in their nursing training, both in terms of expanding their current knowledge
and acquiring new nursing skills. The nursing students were satisfied with EPIN as a
learning and teaching methodology. On the one hand, they reported an improvement in
various aspects of their training, as well as the integration of new knowledge, meaning,
applicability of theory and critical reflection. On the other hand, EPIN also offered a new
humanized perspective of care.

In this paper, however, it was emphasized that women more frequently found the new
learning methodology helpful for expanding their competency “to rationalize the presence
of the Health–Illness–Care triad in all groups, societies and historical moments”; therefore,
it was established as a learning outcome. Men, however, found that this methodology
facilitated the development of critical thinking, as well as the ability to identify situations
of normalized or deviant care.
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Turning to the work of Jiménez-Rodríguez et al. [54], their results show that following
the virtual simulation sessions, students’ total scores for levels of humanization improved,
as did their competencies in emotional understanding and self-efficacy, with large effect
sizes in all of them (rB = 0.508, rB = 0.713, and rB = 0.505, respectively). In other words, there
was a significant improvement in the acquisition of humanization competencies according
to the “Healthcare Professional Humanization Scale” model (HUMAS) [15].

As for the rest of the studies (66.7%) [55–58], none of them included assessments of
pre- or post-training knowledge by means of any objective tools. In one study [55], the
phenomenological analysis of participants’ recommendations revealed five key themes:
(1) pedagogical strategies, (2) educators’ approach, (3) considerations in teaching human-
istic caring, (4) work overload, and (5) volunteerism and externship. In other study [56],
the researchers’ assessment of the students accounts led them to conclude that the model
incorporates the idea that literature enhances the humanization of care and is capable of
departing from the biomedical model (Table 2).

In turn, a high percentage of the students who had participated in the research with
groups guided [57], viewed the content and experiences in a positive light, claiming that
the subject adds value to their life projects, and further reinforces the vocational dimension.

Finally, the training based on learning experiences in “Healthcare Improvement Sci-
ence” [58] was valued positively, with empowerment and horizontal health organizations
being two of the most recurrent units of meaning, together with professional values such
as teamwork and humanization of care (Table 2).

3.5. Strengths and Weaknesses

With regard to the strengths and weaknesses (Table 2), one of the main strengths of the
work of Feijoo-Cid et al. [53] refers that the training involved is shown to be a practical, real,
truthful, and complete way of applying theoretical concepts learned in the classroom, and
therefore facilitates the acquisition of a certain level of narrative competence. Furthermore,
Sierras-Davó et al. [58] highlight the theoretical–practical approach of the sessions, in
addition to the cultural diversity, as strengths.

Jiménez-Rodríguez et al. [54] see strength in using validated scales for measuring
competence in humanization, while using digital technologies for student training. Other
study [55] showed a key strength by highlighting the effect of clinical externships on
humanistic caring, empathy, and compassion, which has rarely been reported.

The work of Mega et al. [56] addressed humanization of care as being enhanced due
to a representative model of the experience—based on their created categories—that relays
the students’ satisfaction with literature in medical education.

Regarding the weaknesses, one study [53] indicate certain drawbacks that need to be
considered: there was little evidence of patients being included in the teaching process;
results must be treated with caution as the questionnaire used was not validated; the
research conducted was based on a local experience, with data from an elective course,
which may have had a positive impact on the results due to a high level of student mo-
tivation; and the greater proportion of female students (78.1%) may have obscured the
perspective of male nurses. Other limitations would include technical aspects, as in the
work of Jiménez-Rodríguez et al. [54], who underline the specific disadvantage of the
lack of adequate network access and correct functioning of virtual platforms as the main
limitation of their study.

Finally, the qualitative studies [55,57,58] speak of limitations associated with the
qualitative study design itself, ranging from the diversity of recommendations given by
the participants [55], to the need for uniformity in the curriculum [57], or the timing of the
intervention [57]. In this regard, Mega et al. [56] show another limitation to be the lack of
systematization in the evaluation of internal experience processes.
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4. Discussion

Although previous systematic reviews have discussed the assessment of medical
humanities in undergraduate students [59,60], to the best of our knowledge, this is the
first systematic review that addresses how education in humanization is delivered to
undergraduate health science students using digital technologies.

The main objectives were to determine the educational characteristics of the human-
ization programs studied, as well as to identify their advantages and limitations, in order
to propose a university training model in “the humanization of healthcare” for future
health professionals.

In recent decades, the intensified use of technology has improved the prevention,
diagnosis, and treatment of diseases, which has generally enhanced medical care, increasing
the quality, efficiency, and safety of patient treatment [61].

However, this technification in clinical practice implies, in many cases, a fragmentation
in medical specialization, which results in great experts treating illness in a complex and
specific manner, under highly specific conditions. Although this should favor and give
greater security to the patient, in many cases, the patient feels as though they are seen as a
set of symptoms, rather than as an individual with particular needs [33,62].

Automation and standardization of care, together with the fragmentation of work
often-limited time and personnel, can lead to depersonalized and, for some patients and
their families, dehumanized healthcare [61].

Some studies suggest that the general perception of patients, i.e., their satisfaction with
their care, seems to be linked not only to the technical skills of the professionals treating
them, the conditions of care in terms of waiting time, the total time in which they receive
care, and the amount of information received, but also to a certain “humanistic” attitude
exhibited by healthcare personnel [61].

In view of this demand, it is worth asking whether this “certain humanistic atti-
tude” [61] can be taught and, if so, how it could be included in the curriculum of health
sciences degrees, using digital health strategies. In other words, how should be taught the
treatment of patients as people, in an increasingly digitalized healthcare environment?

Subjects in “humanization of healthcare”—defined as a mental, emotional, and moral
attitude that forces the professional to continually rethink they own mental framework, and
to reshape intervention habits so that they are oriented towards the good of the patient (a
vulnerable person in need of care) [52] —allow for the identification of parameters such as
the protection of patient values (autonomy, confidentiality, dignity), personalized treatment,
and active listening, to be the focus of students’ training.

The studies discussed, which all fall under the umbrella concept of “humanization of
healthcare”, involved different training strategies. However, they share common ground
in focusing on an experience that aims to change the student’s mental and emotional
patterns so that their practice is oriented towards the patient’s values as a result of their
own personal and professional development due to these experiences.

The development of critical thinking about what the areas of professional practice
are, the concepts on which it pivots (e.g., what is health, what is disease), the social
implications of clinical–medical proceedings, and the mutual interdependence between
social normativity and medical practice all imply the deliberate shaping of the student’s
thinking about how they will be as a health professional and, on a deeper level, what kind
of health professional they want to be.

In the studies included, there is discussion of narrative training strategies [53] and phe-
nomenological training strategies [55,58] as tools for cognitive learning of the humanistic
competence of caregiving. Virtual simulation may be seen in a similar light [54]. The objec-
tive of these studies is to evaluate the effects of this kind of training on the development
and honing of humanization competencies. In other cases [56,57], the research evaluates
the competencies acquired in subjects specific to the degrees taken by students who have
already developed their own curricular strategies, either through literature [56] or through
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guided encounter groups, as a method of enabling them to recognize themselves and others
in their health–illness process [57].

This evidences the strong link between the idea of “humanization of healthcare” and
the idea of care, namely, the vulnerability of the patient. This is reinforced by the health
professional’s own attitude towards training in this context. As an example, nursing
students, i.e., those closest to care-based services who used the Expert Patient Illness
Narratives (EPIN) methodology [53], were proactive in terms of improving different aspects
of their training and integrating new knowledge, meaning, and applicability of theory, as
well as in terms of strong critical reflection.

From the perspective of medical students accustomed to intrinsically practical compe-
tencies, humanities do not provide useful skills for clinical practice; they may understand
and value the content but do not recognize its significance for professionalization [63]. As
opposed to scientific, empirical evidence, which is built on medical–epidemiological knowl-
edge, and which becomes a legitimizing factor for intervention on patients [64], the concept
of “medical humanities” refers to a conscious habit of thought, a more humane and at the
same time less tangible type of knowledge that is directly undervalued as “evidence” [65].

The belief that some professors of humanistic disciplines do not understand the reali-ty
of medical practice, and that reflection on values is intrusive, unnecessary, and has little real
effect on their empathy as professionals, has been raised [66]. In this regard, the differences
according to gender as revealed by the answers to the training questionnaires from the
methodology “Expert Patient Illness Narratives”(EPIN) are considered to be of particular
importance [53].

Thus, women, who comprised the majority in the trial (88%), more frequently found
that the new learning methodology helps them to “develop the competence to rationalize
the presence of the Health–Illness–Care triad in all groups, societies and historical mo-
ments”, thus being solidified as a learning outcome; while the men who participated in the
study—only 22%—stated that the methodology helped them to “develop critical thinking
and reasoning”; therefore, the ability to “identify normalized or deviant care situations”
was established as a learning outcome. Very few students considered the methodology
to be helpful in “incorporating therapeutics as a unit of analysis in health–illness–care
processes”. This remains a representation of the more rational and technological position
of males (in a similar way to medical students), coherent with the positions presented by
Shapiro [66].

The impact of all these strategies is evidenced by the level of satisfaction shown by
the participants in the training sessions. Létourneau et al. [55] highlight the importance
that nursing students placed on enhancing the development of humanistic caring as a core
competency in education programs. Mega et al. [56] conclude that literature enhances the
humanization of care and is able to establish a break from the biomedical model. In turn, a
high percentage of the students who participated in the research with groups guided by
facilitators valued the content and experiences positively [57], claiming that the subject
that formed part of the study contributed to their life projects, and also reinforced the
vocational dimension.

Training based on learning experiences in “Healthcare Improvement Science” was
positively valued by the students in their training in humanization, with nursing empow-
erment and horizontal healthcare organizations being two of the most recurrent units
of meaning, together with professional values such as teamwork and humanization in
care [58].

The results of the questionnaire evaluations are even more significant. The study by
Feijoo-Cid et al. [53] shows that nursing students found the Expert Patient Illness Narratives
(EPIN) methodology satisfactory as a teaching and learning method. On the one hand,
they described improvements in different areas of their training and the integration of
new knowledge, meaning, applicability of theory, and critical reflection; on the other hand,
EPIN also provided them with a new humanized perspective on care.
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Finally, Jiménez-Rodríguez et al. [54] reported an increase in total humanization scores
in post-testing after the sessions, quantified as statistically significant differences in the
dimensions of emotional understanding and self-efficacy, as well as in the total score for
the humanization scale (self-efficacy, sociability, affection, emotional understanding, and
optimism). Surprisingly, it was the only study that used digital technologies to develop
humanization training. In this study, there was a significant improvement in the acquisition
of humanization competencies according to the model of the “Healthcare Professional
Humanization Scale” (HUMAS) [13,15].

This outcome reveals the potential of the different strategies used, and on this basis, it
allowed the authors to offer a training program in humanization for healthcare students.
Given that much of medical education is currently framed in terms of competencies [67],
it is argued that the humanization curriculum should be designed as an overarching
competency, i.e., to be taught through the acquisition of other types of skills. As such,
competency in humanization may be measured in a similar way to other outcomes in the
medical and health sciences curriculum.

This program, which uses the HUMAS model [13,15] as its backbone, is innovative
because it has been adapted to the university environment, especially considering that
HUMAS was initially conceived as a humanization protocol for health professionals, instead
of university students. Furthermore, through its scale, it becomes a tool that will allow for
the evaluation of the competencies acquired by university students.

Thus, according to the dimensions contemplated by HUMAS [13,15], this training pro-
posal would be aimed at the acquisition of the following skills, all of which are considered
to be powerful recontextualization tools.

Optimistic disposition: This would be trained through “Expert Patient Illness Nar-
ratives” [53], by looking at accounts from patients who have witnessed positive aspects
in the course of their illness, as well as accounts given by health professionals who have
struggled in adverse situations, such as those that occurred during COVID-19.

Sociability: This would be trained through mindfulness techniques, self-reflection, and
social skills, since they have proven useful for health professionals to recognize, regulate
and demonstrate empathy [68,69].

Emotional understanding: Students would be trained through reading literary texts,
which is an idea taken from one of the studies discussed [56] wherein literary texts were
used to train humanization. Thus, Knight’s text [70] would be used because she analyzes
the model of the humanization of healthcare previously proposed by another author [71].
Furthermore, real patients would be included, who would observe the students’ perfor-
mance in various real cases in order to evaluate them in terms of their competency in
“emotional understanding”. As such, “involving patients in teaching and assessment” has
previously been identified as important for improving person-centeredness [72].

Self-efficacy: Training would be provided through workshops that foster emotional
intelligence, understood as the capacity for successful achievement and well-being.

Affection: This would be trained through problem-solving therapy [73], as well as
through teaching different effective coping techniques and self-management of negative
emotions through digital health technologies such as virtual or mixed reality.

The scarcity of standardized protocols which involve digital health strategies to train
humanization in healthcare professionals highlights that it could be an innovative and
promising research topic. Digital health strategies could be useful to widely disseminate
humanization training to expert groups worldwide. Perhaps this kind of training, devel-
oped through digital health tools, could represent a fast way of disseminating successful
humanization protocols that could become a productive and efficient practice to include in
the undergraduate healthcare students’ curriculum, enhancing their digital health literacy
at the same time.
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Limitations

There were even fewer studies that combine humanization and digital health strategies.
Because only six studies were finally included in this systematic review, and they were
developed in different countries, the conclusions must therefore be interpreted with caution.

Similar to previous studies [28], the number of participants in the included studies
varied widely, ranging from 12 [56] to 112 [57]. There is a lack of studies involving students
as future healthcare agents, who will have to provide care, based on the humanization of
healthcare. This is one of the most important limitations found, and it is further exacerbated
by the lack of studies conducted with non-nursing students.

In the present analysis, except for the case of Mega et al. [56], which involved medical
students, all the studies involved nursing students [53–55,57,58].

5. Conclusions

There is a clear lack of university curricula that incorporate education in humanization
for future health professionals involving digital technology, at least that are subject to
empirical validation and therefore published in a journal paper. Greater focus on the
training of future health professionals is needed in order to guarantee that they start their
professional careers based on the precept of medical humanities.

As a second conclusion, this scarcity of university curricula incorporating humaniza-
tion education is sustained by methodological and substantive problems.

From a methodological point of view, it is necessary to design curricula that include
tools that allow for the development of skills culminating in the acquisition of competencies
by university students that can be evaluated by the system. For this purpose, a training
program has been provided as a training strategy to improve skills and competencies,
based on HUMAS [13,15].

Finally, there is a need for more studies on medical graduates, and also studies
involving more balanced groups of female and male participants, in order to analyze
and gain a deeper understanding of the reason for this perception of “soft skills” as a
prior step to the development of strategies for the revaluation of “health humanities”.
In this regard, it is important to highlight the need to develop awareness programs for
undergraduate students so that they understand the influence of “soft skills” in their future
professional practice.
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Abstract: This work proposes a metaheuristic-based approach to hyperparameter selection in a multi-
layer perceptron to classify EMG signals. The main goal of the study is to improve the performance of
the model by optimizing four important hyperparameters: the number of neurons, the learning rate,
the epochs, and the training batches. The approach proposed in this work shows that hyperparameter
optimization using particle swarm optimization and the gray wolf optimizer significantly improves
the performance of a multilayer perceptron in classifying EMG motion signals. The final model
achieves an average classification rate of 93% for the validation phase. The results obtained are
promising and suggest that the proposed approach may be helpful for the optimization of deep
learning models in other signal processing applications.

Keywords: PSO; GWO; metaheuristic; multilayer perceptron; hyperparameters; EMG signals;
optimization; deep learning

1. Introduction

The classification of electromyographic (EMG) signals corresponding to movement is
a fundamental task in biomedical engineering and has been widely studied in recent years.
EMG signals are electrical records of muscle activity that contain valuable information
about muscle contraction and relaxation patterns. The accurate classification of these signals
is essential for various applications, such as EMG-controlled prosthetics, rehabilitation, and
the monitoring of muscle activity [1].

One recently used method to classify EMG signals is the multilayer perceptron (MLP).
This artificial neural network architecture has proven effective in signal processing and
pattern classification. An MLP consists of several layers of interconnected neurons, each
activated by a non-linear function. These layers include an input layer, one or more
hidden layers, and an output layer. Although MLPs are suitable for the classification of
EMG signals, their performance is strongly affected by the choice of hyperparameters.
Hyperparameters are configurable values that are not learned directly from the dataset but
do define the behavior and performance of the model. Some examples of hyperparameters
in the MLP context are as follows [2–4]:

• Number of neurons in hidden layers: This hyperparameter determines the generaliza-
tion power of the model. Too few neurons leads to underfitting, while too many leads
to overfitting.

• Learning rate: This factor determines how much the network weights are adjusted
during the learning process. A high learning rate prevents the model from converging,
while a low learning rate slows the training process.

• Training periods: This indicates the number of times that the network weights were
updated during training using the complete dataset. An insufficient number of epochs
leads to the undertraining of the model, while too many epochs leads to overtraining.
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• Training batch size: The number of training samples to use each time that the weights
are updated. The batch size affects the stability of the training process and the speed
of convergence of the model.

Traditionally, hyperparameter selection has involved a trial-and-error process of ex-
ploring different combinations of values to determine the best performance. However, this
approach is time-consuming and computationally intensive, especially with a large search
space. Automated hyperparameter search methods have been developed to address this
problem [5]. In this context, it is proposed to use the particle swarm optimization (PSO) and
gray wolf optimization (GWO) algorithms to select the hyperparameters of the MLP model
automatically. These metaheuristic optimization algorithms effectively find the optimal
solution in a given search space.

PSO and GWO work similarly, generating an initial set of possible solutions and
iteratively updating them based on their performance. Each solution is a combination of
MLP hyperparameters. The objective of these algorithms is to find the combination of
hyperparameters that maximizes the performance of the MLP model in the classification of
EMG signals [6].

The performed experiments show that hyperparameter optimization significantly
improves the performance of MLP models in classifying EMG signals. The optimized MLP
model achieved a classification accuracy of 93% in the validation phase, which is promising.
The main motivations of this work are the following.

• Comparison of algorithms: The main objective of this study is to compare and analyze
the selection of hyperparameters using metaheuristic algorithms. The PSO algorithm,
one of the most popular, was implemented and compared with the GWO algorithm,
which is relatively new. This comparison allows us to evaluate both algorithms’ perfor-
mance and efficiency in selecting hyperparameters in the context of the classification
of EMG signals.

• Exploration of new possibilities: Although the PSO and GWO optimization algorithms
have been widely used for feature selection in EMG signals, their application to
optimize classifiers has yet to be fully explored. This study seeks to address this gap
and examine the effectiveness of metaheuristic algorithms in improving rankings.

The current work is structured as follows. Section 2 provides a comprehensive lit-
erature review, offering insights into the proposed work. In Section 3, the methods and
definitions essential for the development of the project are outlined. Section 4 presents the
sequential steps to be followed in order to implement the proposed algorithm. The results
and discoveries obtained are presented in Section 5. Section 6 presents the interpretation of
the results from the perspective of previous studies and working hypotheses. Lastly, the
areas covered by the scope of this work are presented in Section 7.

2. Related Works

In signal processing, particularly electromyography, various approaches have been pro-
posed to enhance the accuracy of pattern recognition models. In 2018, Purushothaman et al. [7]
introduced an efficient pattern recognition scheme for the control of prosthetic hands using
EMG signals. The study utilized eight EMG channels from eight able-bodied subjects
to classify 15 finger movements, aiming for optimal performance with minimal features.
The EMG signals were preprocessed using a dual-tree complex wavelet transform. Subse-
quently, several time-domain features were extracted, including zero crossing, slope sign
change, mean absolute value, and waveform length. These features were chosen to capture
relevant information from the EMG signals.

The results demonstrated that the naive Bayes classifier and ant colony optimization
achieved average precision of 88.89% in recognizing the 15 different finger movements
using only 16 characteristics. This outcome highlights the effectiveness of the proposed
approach in accurately classifying and controlling prosthetic hands based on EMG signals.
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On the other hand, in 2019, Too et al. [8] proposed the use of Pbest-guide binary
particle swarm optimization to select relevant features from EMG signals decomposed by
a discrete wavelet transform, managing to reduce the features by more than 90% while
maintaining average classification accuracy of 88%. Moreover, Sui et al. [9] proposed
the use of the wavelet package to decompose the EMG signal and extract the energy and
variance of the coefficients as feature vectors. They combined PSO with an enhanced
support vector machine (SVM) to build a new model, achieving an average recognition
rate of 90.66% and reducing the training time by 0.042 s.

In 2020, Kan et al. [10] proposed an EMG pattern recognition method based on a
recurrent neural network optimized by the PSO algorithm, obtaining classification accuracy
of 95.7%.

One year later, in 2021, Bittibssi et al. [11] implemented a recurrent neural network
model based on long short-term memory, Convolution Peephole LSTM, and a gated
recurrent unit to predict movements from sEMG signals. Various techniques were evaluated
and applied to six reference datasets, obtaining prediction accuracy of almost 99.6%. In the
same year, Li et al. [12] developed a scheme to classify 11 movements using three feature
selection methods and four classification methods. They found that the TrAdaBoost-based
incremental SVM method achieved the highest classification accuracy. The PSO method
achieved classification accuracy of 93%.

Moreover, Cao et al. [13] proposed an sEMG gesture recognition model that combines
feature extraction, genetic algorithm, and a support vector machine model with a new
adaptive mutation particle swarm optimization algorithm to optimize the SVM parameters,
achieving a recognition rate of 97.5%.

In 2022, Aviles et al. [14] proposed a methodology to classify upper and lower extrem-
ity electromyography (EMG) signals using feature selection GA. Their approach yielded
average classification efficiency exceeding 91% using an SVM model. The study aimed
to identify the most informative features for accurate classification by employing GA in
feature selection.

Subsequently, Dhindsa et al. [15] utilized a feature selection technique based on binary
particle swarm optimization to predict knee angle classes from surface EMG signals. The
EMG signals were segmented, and twenty features were extracted from each muscle. These
features were input into a support vector machine classifier for the classification task.
The classification accuracy was evaluated using a reduced feature set comprising only
30% of the total features, to reduce the computational complexity and enhance efficiency.
Remarkably, this reduced feature set achieved accuracy of 90.92%, demonstrating the
effectiveness of the feature selection technique in optimizing the classification performance.

Finally, in 2022, Li et al. [16] proposed a lower extremity movement pattern recognition
algorithm based on the Improved Whale Algorithm Optimized SVM model. They used
surface EMG signals as input to the movement pattern recognition system, and movement
pattern recognition was performed by combining the IWOA-SVM model. The results
showed that the recognition accuracy was 94.12%.

3. Materials and Methods

This section shows the essential concepts applied in this work.

3.1. EMG Signals

An EMG signal is a bioelectric signal produced by muscle activity. When a muscle
contracts, the muscle fibers are activated, generating an electrical current measured with
surface electrodes. The recorded EMG signal contains information about muscle activity,
such as force, movement, and fatigue. The EMG signal has a low amplitude, typically
ranging from 0.1 mV to 10 mV. It is important to pre-process the signal to remove noise
and amplify it before performing any analysis. Furthermore, the location of the electrodes
on the muscle surface is crucial to obtain accurate and consistent EMG signals [17,18].
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In the context of movement classification using EMG signals, movements made by a
subject are recorded by surface electrodes placed on the skin over the muscles involved. The
resulting EMG signals are processed to extract relevant features and train a classification
model. Artifacts, such as unintentional electrode movements or electromagnetic interfer-
ence, affect the quality of the EMG signals and reduce the accuracy of the classification
model. Therefore, steps must be taken to ensure that the EMG signals are as clean and
accurate as possible [17,19].

3.2. Multilayer Perceptron

The MLP is an artificial neural network for supervised learning tasks such as clas-
sification and regression. It is a feedforward network composed of several layers of
interconnected neurons. Each neuron receives weighted inputs and applies a nonlinear
activation function to produce an output. The backpropagation algorithm is commonly
used to adjust the weights of the connections between neurons. This iterative process
minimizes the error between the output of the network and the expected output based on a
given training dataset [4,20].

The MLP consists of an input layer, a hidden layer, and an output layer. The input
layer receives input features and forwards them to the hidden layer, and the hidden layer
processes the features and passes them to the output layer. The output layer produces
the final output, a classification result. The specific architecture of the MLP, including the
number of neurons in each layer and the number of hidden layers, depends on the task
and the input data [4,20]. Below, in the pseudocode in Algorithm 1, the MLP algorithm
is presented.

Note that the following pseudocode assumes that the weight matrices and bias vectors
have already been initialized and altered by a suitable algorithm and that the activation
function σ has been chosen. The algorithm then takes an input vector x and passes it
through the MLP to produce an output vector y. The intermediate variables al and hl are
the input and output of each hidden layer, respectively. The activation function σ is usually
a non-linear function that allows the MLP to learn complex mappings between inputs
and outputs.

Algorithm 1 Multilayer Perceptron

1: Input: Input vector x, weight matrices Wi,j and bias vectors bi, number of hidden layers
L, activation function σ

2: Output: Output vector y
3: for l = 1 to L do
4: if l = 1 then
5: al = Wl−1,l x + bl
6: else
7: al = Wl−1,lσ(al−1) + bl

8: hl = σ(al)

9: y = hL

3.3. Particle Swarm Optimization and Gray Wolf Optimizer

The PSO algorithm is an optimization method inspired by observing the collective
behavior of a swarm of particles. Each particle represents a solution in the search space
and moves based on its own experience and the experience of the swarm in general. The
goal is to find the best possible solution to an optimization problem [21,22].

The PSO algorithm has proven effective in optimizing complex problems in various
areas, including machine learning. This work uses PSO to optimize the hyperparameters of
a multilayer perceptron in the classification of EMG signals. The pseudocode in Algorithm 2
shows the PSO algorithm [21].
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Algorithm 2 Particle Swarm Optimization

1: Input: Number of particles N, maximum number of iterations Tmax, parameters ω, φp,
φg, initial positions xi and velocities vi

2: Output: Global best position pbest and its corresponding fitness value fbest
3: Initialize positions and velocities of particles: xi ← random, vi ← 0
4: for t = 1 to Tmax do
5: for each particle i = 1, . . . , N do
6: Evaluate fitness of current position: fi ← fitness function(xi)
7: if fi < fpbesti

then
8: Update personal best position: pbesti

← xi, fpbesti
← fi

9: Find global best position: pbest ← argminpbestj
fpbestj

10: for each particle i = 1, . . . , N do
11: Update velocity: vi ← ωvi + φprp(pbesti

− xi) + φgrg(pbest − xi)
12: Update position: xi ← xi + vi

13: Return: pbest and fbest

In the algorithm, a set of parameters that regulate the speed and direction of movement
of each particle is used. These parameters are the inertial weight ω, the cognitive learning
coefficient φp, and the social learning coefficient φg. The current positions and velocities of
the particles are also used, as well as the personal and global best positions found by the
entire swarm [22].

On the other hand, the gray wolf optimizer is an algorithm inspired by the social be-
havior of gray wolves. This algorithm is based on the social hierarchy and the collaboration
between wolves in a pack to find optimal solutions to complex problems. The algorithm
starts with an initial population of wolves (candidate solutions) and uses an iterative pro-
cess to improve these solutions. The positions of wolves are updated during each iteration
based on their results, simulating a hunt and pack search. As the algorithm progresses, the
wolves adjust their positions based on the quality of their solutions and feedback from the
pack leaders. Lead wolves represent the best solutions found so far, and their influence
ripples through the pack, helping to converge toward more promising solutions. The
GWO has proven to be effective in optimizing complex problems in various areas, such as
mathematical function optimization, pattern classification, parameter optimization, and
engineering. The pseudocode in Algorithm 3 shows the GWO algorithm [6].

Algorithm 3 Gray Wolf Optimizer

1: Initialize the wolf population (initial solutions)
2: Initialize the position vector of the group leader (X∗)
3: Initialize the position vector of the previous group leader (X∗∗)
4: Initialize the iteration counter (t)
5: Define the maximum number of iterations (Tmax)
6: while t < Tmax do
7: for each wolf in the population do
8: Update the fitness value of the wolf
9: Sort the wolves based on their fitness values (from lowest to highest)

10: for each wolf in the population do
11: for each dimension of the position vector do
12: Generate random values (r1, r2)
13: Calculate the update coefficient (A)
14: Calculate the scale factor (C)
15: Update the position of the wolfs
16: Increment the iteration counter (t)
17: Obtain the wolf with the best fitness value (X∗)
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3.4. Hyperparameters

A hyperparameter is a parameter that is not learned from the data but is set before
training the model. Hyperparameters dictate how the neural network learns and how the
model is optimized. Ensuring the appropriate selection of hyperparameters is crucial in
achieving the optimal performance of the model (Nematzadeh, 2022) [23].

When working with MLPs, several critical hyperparameters significantly impact the
performance of the model. These include the number of hidden layers, the number of
neurons within each layer, the chosen activation function, the learning rate, and the number
of training epochs. The numbers of hidden layers and neurons per layer play a crucial
role in the capacity of the network to capture intricate functions. Increasing these aspects
enables the network to learn complex relationships within the data. However, it may also
result in overfitting issues [3,24].

The activation function determines the nonlinearity of the network and, therefore,
its ability to represent nonlinear functions. The most common activation function is the
sigmoid function, but others, such as the ReLU function and the hyperbolic tangent function,
are also frequently used [25].

The learning rate determines how much the network weights are adjusted in each
training iteration. If the learning rate is too high, the network starts to oscillate and not
converge, while a low learning rate causes the network to converge slowly and become
stuck in local minima. The number of training epochs determines how often the entire
dataset is processed during training. Too many epochs leads to overfitting, while too few
epochs leads to the suboptimality of the model. In this work, the PSO and GWO algorithms
are used to find the best values of the hyperparameters of the MLP network [3,25].

3.5. Sensitivity Analysis

In order to verify the impact that each of the characteristics selected by genetic algo-
rithm (GA) has on the classification of the EMG signal, a sensitivity analysis is performed.
This technique consists of removing one of the predictors during the classification process
and recording the accuracy percentage. This is to observe how the output of the model
is altered. If the classification percentage decreases, it indicates that the removed feature
significantly impacts the prediction [14]. This procedure is performed once the features
have been selected, to assess the importance of the chosen predictors through GA.

The procedure of calculating the sensitivity is as follows. Having a dataset X1, the
sensitivity of the predictor i is obtained from a new set X2, where the i th-predictor has
been eliminated. The characteristics that make up X1 are used as a second step, resulting in
the precision Y1. The third step is to use the new feature set X2 and obtain Y2. Finally, the
sensitivity for the i-th predictor is Y2 −Y1. A tool used to better visualize the sensitivity is
the percentage change, which is calculated as

Percentage change =
Y2 −Y1

Y1
× 100 (1)

4. Methodology

This section explains how the study was carried out, the procedures used, and how
the results were analyzed.

4.1. EMG Data

The dataset used in this study was obtained from [14] and comprised muscle signals
recorded from nine individuals aged between 23 and 27. The dataset included five men
and four women without musculoskeletal or nervous system disorders, obesity problems,
or amputations. The dataset captured muscle signals during five distinct arm and hand
movements: arm flexion at the elbow joint, arm extension at the elbow joint, finger flexion,
finger extension, and resting state. The acquisition utilized four bipolar channels and a
reference electrode positioned on the dorsal region of the wrist of each participant. During
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the experimental procedure, the participants were instructed to perform each movement
for 6 s, preceded by an initial relaxation period of 2 s. Each action was repeated 20 times
to ensure adequate data for analysis. The data were sampled at a frequency of 1.5 kHz,
allowing for detailed recordings of the muscle signals during the movements.

The database was divided into two sets. The first one (90%) was used to select the
characteristics for the classification and hyperparameters. This first set was subdivided
into the training and validation sets, which were used to calculate the objective functions
of the metaheuristic algorithms. On the other hand, the second set (10%) was used for the
final validation of the classifier. This second set was not presented to the network until the
final validation stage, to check the level of generalization of the algorithm.

4.2. Signal Processing

This section explains the filtering process applied to the EMG signals before extracting
the features needed for classification. Digital filtering was done using a fourth-order
Butterworth filter with a passband ranging from 10 Hz to 500 Hz. This filtering aimed to
remove unwanted noise and highlight relevant signals.

It is important to note that the database was subjected to analog filtering from 10 Hz
to 500 Hz using a combination of a low-pass filter and a high-pass filter in series. These
controllers used the second-order Sallen–Key topology. In addition, a second-order Bainter–
Notch band-stop filter was produced to remove the 60 Hz interference generated by the
power supply.

4.3. Feature Extraction

The characterization of EMG signals is required for their classification since individual
signal values have no practical relevance for classification. Therefore, a feature extraction
step is needed to find useful information before extracting the features of the signal. The
features are based on the statistical method and are calculated in the time domain. Temporal
features are widely used to classify EMG signals due to their low complexity and high
computational speed. Moreover, they are calculated directly from the EMG time series.
Table 1 illustrates the characteristics used [14,26].

Table 1. Most common time-domain indicators in the classification of EMG signals.

N° Feature Extracted Abbr. N° Feature Extracted Abbr.

1 Average amplitude change AAC 14 Variance VAR
2 Average amplitude value AAV 15 Wavelength WL
3 Difference absolute standard deviation DASDV 16 Zero crossings ZC
4 Katz fractals FC 17 Log detector LOG
5 Entropy SE 18 Mean absolute value MAV
6 Kurtosis K 19 Mean absolute value slope MAVSLP
7 Skewness SK 20 Modified mean absolute value type 1 MMAV1
8 Mean absolute deviation MAD 21 Modified mean value type 2 MMAV2
9 Willson amplitude WAMP 22 RMS value RMS

10 Absolute value of the third moment Y3 23 Slope changes SSC
11 Absolute value of fourth moment Y4 24 Simple square integral SSI
12 Absolute value of the fifth moment Y5 25 Standard deviation STD
13 Myopulse percentage rate MYOP 26 Integrated EMG IEMG

Within the context of EMG signals, the features shown in Table 1 represent different
quantitative aspects generated by muscle activity. The definition or conceptualization of
each of these characteristics is presented below [17].
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1. Average amplitude change: The average amplitude change in the EMG signal over a
given time interval. It represents the average variation in the signal amplitude during
this period.

AAC =
1
N

N

∑
k=1
|xk+1 − xk| (2)

where xk is the k-th voltage value that makes up the signal and N is the number of
elements that constitute it.

2. Average amplitude value: This is the average of the amplitude values of the EMG sig-
nal. It indicates the average amplitude level of the signal during a specific time interval.

AAV =
1
N

N

∑
k=1

xk (3)

3. Difference absolute standard deviation: This is the absolute difference between the
standard deviations of two adjacent segments of the EMG signal. It measures extrac-
tion and abrupt changes in signal amplitude.

DASDV =

√√√√ 1
N − 1

N−1

∑
k=1

(xk+1 − xk)2 (4)

4. Katz fractals: This refers to the fractal dimension of the EMG signal. It represents the
self-similarity and structural complexity of the signal at different scales.

FD =
log10(N)

− log10(
m
L ) + log10(N)

(5)

where L is the total length of the curve or the sum of the Euclidean distances between
successive points, m is the diameter of the curve, and N is the number of steps in
the curve.

5. Entropy: This measures the randomness and complexity of the EMG signal. The
higher the entropy, the greater the harvest and unpredictability of the signal.

SE(X) = −
n

∑
k=1

P(xk) log2 P(xk) (6)

where SE(X) is the entropy of the random variable X, P(xi) is the probability that X
takes the value xi, and n is the total number of possible values that X can take.

6. Kurtosis: This measures the shape of the amplitude distribution of the EMG signal. It
indicates the number and concentration of extreme values relative to the mean.

K =
N

∑
k=1

(xk − x̄)4

Ns4 (7)

where N is the size of the dataset, xk is the k-th value of the signal, x̄ is the mean of
the data, and s is the standard deviation of the dataset.

7. Skewness: This is a measure of the asymmetry of the amplitude distribution of the
EMG signal. It describes whether the distribution is skewed to the left or the right
relative to the mean.

SK =
N

∑
k=1

(xk − x̄)3

Ns3 (8)
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8. Mean absolute deviation: This is the average of the absolute deviations of the ampli-
tude values of the EMG signal concerning its mean. It indicates the mean spread of
the data around the mean.

MAD =
1
N

N

∑
k=1
|xk − x̄| (9)

9. Wilson amplitude: This measures the amplitude of the EMG signal to a specific
threshold. It represents the muscle force or electrical activity generated by the muscle.

WAMP =
1
N

N−1

∑
k=1

f (|xk+1 − xk|) (10)

f (x) =





1 i f x > L,

0 otherwise
(11)

In this study, a threshold L of 0.05 V is considered.

10. The absolute value of the third moment: This is the absolute value of the third
statistical moment of the EMG signal. It is a proportion of information about the
symmetry and shape of the amplitude distribution.

Y3 =

∣∣∣∣∣
1
N

N

∑
k=1

x3
k

∣∣∣∣∣ (12)

11. The absolute value of the fourth moment: This is the absolute value of the fourth
statistical moment of the EMG signal. It describes the concentration and shape of the
amplitude distribution.

Y4 =

∣∣∣∣∣
1
N

N

∑
k=1

x4
k

∣∣∣∣∣ (13)

12. The absolute value of the fifth moment: This is the absolute value of the fifth statistical
moment of the EMG signal. It provides additional information about the shape and
amplitude distribution of the signal.

Y5 =

∣∣∣∣∣
1
N

N

∑
k=1

x5
k

∣∣∣∣∣ (14)

13. Myopulse percentage rate: This is the average of a series of myopulse outputs, and the
myopulse output is 1 if the myoelectric signal is greater than a pre-defined threshold.

MYOP =
1
N

N

∑
k=1

φ(xk) (15)

where φ(xk) is defined as

φ(x) =





1 i f x > L,

0 otherwise
(16)

In this work, L is defined as 0.016.
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14. Variance: This measures the dispersion of the amplitude values of the EMG signal to
its mean. It indicates the lack of signal around its average value.

VAR =
1

N − 1

N

∑
k=1

xk
2 (17)

15. Wavelength: This is the average distance between two consecutive zero crossings in
the EMG signal. It is the information ratio regarding the frequency and period of
the signal.

WL =
n

∑
k=1
|xk − xk−1| (18)

16. Zero crossings: This refers to the number of times that the EMG signal crosses the
zero value in each time interval. It indicates polarity changes and signal transitions.

ZC =
n−1

∑
k=1

f (x) (19)

where

f (x) =





1 i f xkxk+1 < 0 and |xk − xk+1| ≥ L,

0 otherwise
(20)

17. Log detector: An envelope detector is used to measure the amplitude of the EMG
signal on a logarithmic scale. It helps to bring out the most subtle variations in
the signal.

LOG = exp

(
1
N

N

∑
k=1

log(|xk|)
)

(21)

18. Mean absolute value: This is the average of the absolute values of the EMG signal. It
represents the average amplitude level of the signal regardless of polarity.

MAV =
∑n

K=1 |xK|
N

(22)

19. Mean absolute value slope: The average slope of the EMG signal is calculated using
the absolute values of the amplitude changes in a specific time interval. It indicates
the average rate of change in the signal.

MAVSLPk = MAVk+1 −MAVk (23)

20. Modified mean absolute value type 1: This is a modified version of the average
of the absolute values of the EMG signal. It is used to reduce the effect of higher-
frequency components.

MMAV1 =
1
N

N

∑
k=1

wk|xk| (24)

where wk is defined as

wk =





1 0.25N ≤ k ≤ 0.75N,

0 otherwise
(25)
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21. Modified mean value type 2: This is a modified version of the average of the amplitude
values of the EMG signal. It is used to reduce the effect of higher-frequency components.

MMAV2 =
1
N

N

∑
k=1

wk|xk| (26)

where wk is defined as

wk =





1 0.25N ≤ k ≤ 0.75N,

4k
N k < 0.25N,

4(N−k)
N otherwise

(27)

22. Root mean square (RMS): This is the square root of the average of the squared values
of the EMG signal. It represents a measure of the effective amplitude of the signal.

RMS =

√√√√ 1
N

N

∑
k=1

xk
2 (28)

23. Slope changes: This refers to the number of slope changes in the EMG signal. It
indicates inflection points and changes in the direction of the signal.

SSC =
n

∑
k=1

f (x), (29)

where

f (x) =





1 i f xk < xi+1 and xk < xk−1,

1 i f xk > xi+1 and xk > xk−1,

0 otherwise

(30)

24. Simple square integral: This is the integral value of the squares of the EMG signal in a
specific time interval. It provides a measure of the energy contained in the signal.

SSI =
N

∑
k=1

x2
k (31)

25. Standard deviation: This measures the dispersion of the amplitude values of the EMG
signal for its average. It indicates the variability of the signal around its mean value.

STD =

√√√√ 1
N

N

∑
k=1

(xk − x̄)2 (32)

26. Integrated EMG: This is the integral value of the absolute amplitude of the EMG
signal in each time interval. It provides a measure of total muscle activity.

IEMG =
N

∑
k=1
|xk| (33)

After extracting the characteristics, a matrix of arrangements was created with the
features. This matrix comprised rows corresponding to the 20 tests carried out by eight
people and for the different movements (five movements of the right arm). In contrast, the
columns corresponded to the 26 predictors multiplied by the four channels.
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4.4. Feature Selection

Figure 1 shows the methodology for the selection of characteristics. GA was used to
select features to minimize the classification error of the validation data for a specific set
of features used as input to a multilayer perceptron. The model hyperparameters were
selected manually. The same input data from 9 of the 10 participants that comprised the
database were used for the feature and hyperparameter selection.

Start
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Figure 1. Methodology based on the proposal given by [14] for the selection of features by GA.

Table 2 shows the initial parameters used in GA for feature selection. These parameters
include the initial population, the mutation rate, and the hyperparameters of the MLP,
among others.

Table 2. Configuration used by GA for the selection of classification features.

Name Configuration

Number of genes 104
Number of parents 100
Iteration number 25

Mutation percentage 2%
Selection operator Roulette wheel

Crossover operator Two-point
Mutation operator Uniform mutation

Hidden layers 4
Number of hidden neurons per layer 150

Activation function of the hidden layers Hyperbolic tangent
Activation function of the output layers Sigmoid

Learning rate 0.0001
Epochs 10

Mini-batch size 20
Training data 60% of the data
Testing data 20% of the data

Validation data 20% of the data

4.5. Design and Integration of the Metaheuristic Algorithms and MLP

For the selection of the hyperparameters of the neural network, the PSO and GWO
techniques were used. The cost criterion was the error of the validation stage. First, the
completed data were divided into training, testing, and validation sets. The training set
was used to train the neural network, the test set was used to fit the hyperparameters of the
network, and the validation set was used to evaluate the final performance of the model.

Table 3 shows the initial parameters used in the PSO algorithm for the selection of the
hyperparameters of the neural network. These parameters include the size of the particle
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population, the number of iterations, the range of values allowed for each hyperparameter
(hidden neurons, epochs, mini-batch size, and learning rate), and the initial values for the
coefficients of inertia, personal acceleration, and social acceleration. The Clerc and Kennedy
method was used to calculate the coefficients in the PSO algorithm [27].

Table 3. Configuration of initial parameters used for the PSO algorithm, calculated using the Clerc
and Kennedy method.

Name Configuration

Coefficients of inertia 0.729
Personal accelerations 1.49

Global acceleration 1.49
Number of particles 12

Max iterations 35
Hidden neurons [50 300]

Number of hidden layers 2
Epochs [5 40]

Mini-batch size [10 100]
Learning rate [0.0001 0.01]

Activation function of the hidden layers Hyperbolic tangent
Activation function of the output layers Sigmoid

Training data 60% of the data
Testing data 20% of the data

Validation data 20% of the data

On the other hand, Table 4 shows the initial values for the hyperparameter selection pro-
cess for GWO. Unlike PSO, only the initial number of individuals and the maximum number
of iterations must be selected, in addition to the intervals for the MLP hyperparameters.

Table 4. Configuration of initial parameters used for the GWO algorithm.

Name Configuration

Number of wolfs 25
Max iterations 35

Hidden neurons [50 300]
Number of hidden layers 2

Epochs [5 40]
Mini-batch size [10 100]
Learning rate [0.0001 0.01]

Activation function of the hidden layers Hyperbolic tangent
Activation function of the output layers Sigmoid

Training data 60% of the data
Testing data 20% of the data

Validation data 20% of the data

The different stages of the general methodology for the integration of the PSO and
GWO algorithms with an MLP neural network for hyperparameter selection are shown in
Figure 2.

186



Technologies 2023, 11, 87

Start Setting metaheuristic 
parameters

Random generation of initial 
(𝑖𝑖 = 0)

Evaluation of the error in the
validation stage of the MLP for
each proposal which corresponds
to a set of hyperparameters

Did any 
proposal 

achieve the 
desired 
error?

Reached the 
maximum 
number of 
iterations?

Select the proposal for which 
the classification error was the 

smallest

yes

yes
End

No

𝑖𝑖 = 𝑖𝑖 + 1

Generates new
proposals according to
the methodology of
the metaheuristic
algorithm

Evaluation of the error in the
validation stage of the MLP
for each updated new
proposal

No

Figure 2. Proposed methodology for the selection of hyperparameters of MLP.

5. Results

This section presents and analyzes the results obtained from the multiple stages of the
methodology.

5.1. Feature Selection

Table 5 shows the characteristics that GA selected from 104 predictors. In total,
55 features were selected and used as inputs in an MLP to classify the data and select the
hyperparameters, representing a 47% reduction in features. A final classification percentage
of 93% was achieved.

Table 5. Features selected as the best subset of characteristics for classification of signals.

Acronym Channel

AAC 1 and 2
IEMG All
MAV 1, 2 and 4

MAVSLP 1 and 4
MMAV1 All

VAR 1, 2 and 4
FC 1, 2 and 4
K 1,2 and 4
Y3 1

MYOP 1, 3 and 4
AAV 2 and 4

DASDV 2 and 4
LOG 2 and 3

MMAV2 2 and 3
SSC 2
SSI 2, 3 and 4

STD 2, 3 and 4
WL 2, 4
ZC 2, 3 and 4

MAD 2, 3 and 4
WAMP 2, 3 and 4

SE 3
SK 3 and 4

RMS 4
Y4 4
Y5 4
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As shown in Figure 3, initially, the feature selection process had an error rate of 14%.
GA improved the performance during the first iterations and reduced the errors to 11%.
However, it stalled at a 10% error for eight iterations and an 8% error for 12 iterations. This
deadlock occurred when existing candidate solutions had already explored most of the
search space and new feature combinations that significantly improved the performance
were not found. At this point, GA became stuck in a local minimum. This deadlock was
overcome by implementing the mutate operation. In this case, it was possible that, during
the 10% error plateau period, some mutation introduced in a later iteration led to the
exploration of a new combination of features that improved the performance. This new
solution could have been selected and propagated in the following generations, finally
allowing it to reach a classification value of 93%.
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Figure 3. Reduction in the classification error due to the selection of features through GA.

In order to ensure that the feature selection process was carried out correctly and
that only predictors that allowed high classification were selected, a sensitivity analysis
was carried out. In Figure 4, the bar graph is shown, where the percentage decrease or
increase in precision can be observed concerning the classification obtained at the end of
the character selection stage, which was 93%.
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Figure 4. Sensitivity analysis of classification reduction percentages by predictor.
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It is observed that feature number 18, which corresponds to the mean absolute value
type 1 of channel 2, has the lowest percentage decrease in classification when eliminated.
On the other hand, the characteristics with the most significant contributions are the
absolute value of the fifth moment channel 4, integrated EMG channel 1, and modified
mean value type 1 channel 1. When comparing the characteristics that present a more
significant contribution against those of lesser contribution, it is seen that the type 1
modified mean value appears in both limits. The difference occurs in the channel from
which the characteristic is extracted. Therefore, the exact predictor can have more or less
importance in the classification depending on the muscle from which it is extracted.

5.2. Hyperparameter Selection

As shown in Figure 5, in the GWO implementation process, there is an error rate
of 14% with the initial values proposed for the hyperparameters. This indicates that the
initial solutions have yet to find the best set for the problem since, prior to the selection of
the hyperparameters, there is a classification percentage of 93%, and it is found that the
efficiency after the hyperparameter adjustment process is more significant than or equal to
that of the previous phase.
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Figure 5. Reduction in the error due to the selection of hyperparameters by GWO.

In iteration 4, a reduction in error to 7% is observed. The proposed solutions have
found a hyperparameter configuration that improves the model performance and reduces
the error. During subsequent iterations, they continue to adjust their positions and explore
the search space for better solutions. As observed during iterations 5 to 20, a deadlock is
generated. However, later, it is observed that the error drops to 3%, which indicates that
the GWO has managed to overcome this problem and find a solution that considerably
improves the classification.

A possible reason that the GWO was able to exit the deadlock and reduce the error
may be related to the intensification and diversification of the search. During the first few
iterations, the GWO may have been in an intensification phase, focusing on exploiting
promising regions of the search space based on the positions of the pack leaders. However,
after a while, the GWO may have moved into a diversification phase, where the gray
wolves explored new regions of the search space, allowing them to find a better solution
and reduce the error to 3%.

Table 6 shows the values obtained for the MLP hyperparameters using GWO, achiev-
ing classification in the validation stage of 97%. When comparing the values implemented
in the feature layer, it is noteworthy that the number of hidden layers was reduced from 4 to
2. On the other hand, the total number of neurons was reduced from 600 to 409. However,
the epochs increased from 10 to 33 after hyperparameter selection. This indicates that the
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model required more opportunities to adjust the weights and improve its performance on
the training dataset. Similarly, the mini-batch size is increased from 20 to 58, indicating that
it needs more information during each training stage to adjust the weights.

Table 6. Hyperparameters selected as the best subset for classification of signals given by GWO.

Name Value

Hidden neurons layer 1 204
Hidden neurons layer 2 205

Epochs 33
Mini-batch size 58
Learning rate 0.00223750

Finally, the learning rate increased from 0.0001 to 0.002237, which showed that the
neural network learned faster during training. The results indicate that the selection of the
hyperparameters improved the efficiency of the model by reducing its complexity, without
compromising its classification ability.

Figure 6 shows the error reduction in selecting hyperparameters by PSO. The best
initial proposal achieves a 13% error. After this, there is a stage where the error percentage
is kept constant until iteration 6. From there, the error is reduced to 8%. Once this error is
reached, it remains constant until iteration 27. Once iteration 28 begins, an error of 7% is
achieved, representing only a 1% improvement. This 1% improvement is not a significant
increase and could be attributed to slight variations in the MLP training weights.
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Figure 6. Reduction in the error due to the selection of hyperparameters by PSO.

On the other hand, Table 7 shows the calculated values of the MLP hyperparameters
through PSO; the precision achieved is less than that achieved by GWO, being 93%. Despite
this, a 50% reduction in hidden layers is also achieved, and it manages to maintain the
precision percentage obtained in the feature selection stage with fewer neurons than
achieved by GWO, being 359. However, similarly to the values obtained by GWO, the
epochs increase to 38. Moreover, the mini-batch size is increased from 50. Finally, the
learning rate increases from 0.0001 to 0.0010184. This smaller amount of information used
for training, and the smaller learning steps and smaller number of neurons, justify the 4%
decrease in classification.

When comparing Figures 5 and 6, it is observed that both start with error values close
to 15%, and, after the first few iterations, there is an improvement close to 50%, achieving
an error close to 8%. Hence, both algorithms have a period of stagnation, in which GWO is
superior as it obtains a second improvement of 50%, achieving errors of 3%. On the other

190



Technologies 2023, 11, 87

hand, although, visually, PSO managed to overcome the stagnation, it only managed to
reduce the error to 1%, which does not represent a significant improvement and can be
attributed to variations within the MLP parameters, such as the weights, and not to the
selection of the hyperparameters.

Table 7. Hyperparameters selected as the best subset for classification of signals given by PSO.

Name Value

Hidden neurons layer 1 155
Hidden neurons layer 2 204

Epochs 38
Mini-batch size 46
Learning rate 0.0010184

5.3. Validation

After selecting the characteristics and hyperparameters, the rest of the signals that
comprised the database were used to validate the results obtained, since this information
had never been used before. Figure 7 shows the graphs of the error in the training stage
(60% of the data corresponding to 9 of 10 people, equivalent to 600 data to be classified),
the test stage (40% of the data corresponding to 9 out of 10 people, equivalent to 200 data
to classify), and the validation stage, which corresponded to data from the tenth person
(equivalent to 100 data). It is noted that the data to be classified are formed from the number
of people × the number of movements × the number of repetitions.
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Figure 7. The error in training, testing, and validating a model using (a) GWO hyperparameters and
(b) PSO hyperparameters.
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Additionally, these graphs allow us to verify the overfitting in the model. The training,
test, and validation errors were plotted in each epoch. If the training error decreases while
the test and validation errors increase, this suggests the presence of overfitting. However,
the results indicated that the errors decreased evenly across the three stages, suggesting
that the model can generalize and classify accurately without overfitting. In addition, the
percentage for the hyperparameter values given by GWO only decreased by approximately
4% for new input data, reaching 93% accuracy. Meanwhile, for PSO, 3% was lost in the
classification, achieving a final average close to 90%.

6. Discussion

The following comparative Table 8 presents the classification results obtained in pre-
views papers related to the subject of study, compared to the results obtained in this work.

Table 8. Comparative analysis of classification results.

Ref. Classification Model Accuracy

[14] SVM 91%
[15] SVM 90.92%
[13] SVM 97.5%
[10] Recurrent neuronal network 95.7%
[8] SVM 88%

[28] MLP 88.8%
[29] MLP 94.10%

This work MLP 93%

In this work, an approach based on hyperparameter optimization using PSO and GWO
was used to improve the performance of a multilayer perceptron in the classification of
EMG signals. This approach performed comparably to other previously studied methods.

However, during the experimentation, there were stages of stagnation. Several reasons
explain this lack of success. First, the intrinsic limitations of PSO and GWO, such as their
susceptibility to stagnation at local optima and their difficulty in exploring complex search
spaces, might have made it challenging to obtain the best combination of hyperparame-
ters [30]. Other factors that might have played a role include the size and quality of the
dataset used, since the multilayer perceptron requires a more considerable amount of data
to generalize [31].

Despite these limitations, the proposed approach has several advantages. On the one
hand, it allows us to improve the performance of the multilayer perceptron by optimizing
the key hyperparameters, which is crucial to obtain a more efficient model. Although the
performance is comparable with that of other methods, the metaheuristics-based approach
manages to reduce the complexity of the model, indicating its potential as an effective
strategy for the classification of EMG signals.

Furthermore, the use of PSO and GWO for hyperparameter optimization offers a
systematic and automated methodology, making it easy to apply to different datasets
and similar problems. It avoids manually tuning hyperparameters, which is messy and
error-prone.

It is important to note that each method has its advantages and limitations, and the
appropriate approach may depend on factors such as the size and quality of the dataset,
the complexity of the problem, and the available computational resources.

7. Conclusions

The proper selection of hyperparameters in MLPs is crucial to classify EMG signals
correctly. Optimizing these hyperparameters is challenging due to the many possible
combinations. This work uses the PSO and GWA algorithms to find the best combination
of hyperparameters for the neural network. Although 93% accuracy has been achieved in
classifying EMG signals, there is still room for improvement. Some possible factors that
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prevent higher accuracy may be the size of the EMG signal database. One way to overcome
these problems is to obtain more extensive and robust databases. It is also possible to use
data augmentation techniques to generate more variety in the signals. Another possible
solution could be to use more advanced EMG signal preprocessing techniques to reduce
noise and interference from unwanted signals. Different neural network architectures
and optimization techniques can also be considered to improve the classification accuracy
further. It is pointed out that the use of a reduced database in this work was part of an initial
and exploratory approach to assessing the feasibility of the methodology. This strategy
made it possible to obtain valuable information on the effectiveness of the approach before
applying it to more extensive databases.

In addition, it is essential to point out that, in this work, no normalization of the data
was performed, which might have further improved the performance of the MLP model.
Therefore, it is recommended to consider this step in future work to achieve better perfor-
mance in classifying EMG signals. It is essential to highlight that the cost function used in
metaheuristics algorithms is crucial for its success. In this work, the error in the validation
stage of the neural network was used as the cost function to be minimized. However,
alternatives include sensitivity, efficiency, specificity, ROC, and AUC. A cost function that
works well in one issue may not work well in another. Therefore, exploring different cost
functions and evaluating their performance is advisable before making a final decision.
Another factor that should be considered in this work is the initialization methodology
of the network weights. Such considerations and initialization alternatives are subjects
for future work that must be analyzed. In general, the selection of hyperparameters is a
fundamental step in the construction and training of neural networks for the classification
of EMG signals. With the proper optimization of these hyperparameters and the continuous
exploration of new techniques and methods, significant advances can be made in this area
of research.

Finally, although other algorithms are recognized for their robustness and ability to
handle complex data, the MLP proved a suitable option due to the nature of EMG signals.
The flexibility of the MLP to model nonlinear relationships was crucial since the interactions
between the components were highly nonlinear and time-varying. Furthermore, the MLP
has shown good performance even with small datasets, which was necessary considering
the limited data availability.
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Abstract: Radiation dose tracking is becoming very important due to the popularity of computerized
tomography (CT) scans. One of the challenges of radiation dose tracking is that there are several
variables that affect the dose from the patient side, machine side, and procedures side. Although
some tracking software programs exists, they are based on static analysis and cause integration errors
due to the heterogeneity of Hospital Information Systems (HISs) and prevent users from obtaining
accurate answers to their questions. In this paper, a visual analytic approach is utilized to track
radiation dose data from computed tomography (CT) through the use of Tableau data visualization
software. The web solution is evaluated in real-life scenarios by domain experts. The results show
that the visual analytics approach improves the tracking process, as users completed the tasks with a
100% success rate. The process increased user satisfaction and also provided invaluable insight into
the analytical process.

Keywords: visual analytics; radiation dose; big data; tracking; computerized tomography (CT)

1. Introduction

Recent advances in technology have led to the evolution of data sources, forms, and
structures in healthcare. This evolution has made healthcare a source of big data. One
of the many available sources of data includes computerized tomography (CT) scans
and other imaging modalities. However, the equipment used to generate such imagery
exposes patients to harmful ionizing radiation [1], though it can produce numerous pieces
of information about the patient‘s body parts, protocol, images, and radiation dosage. Even
though a single dose may be small, radiation exposure is cumulative [2,3]; hence, there is a
risk of overdose. The cohort under study in [4] had a higher baseline risk of cancer due to
the cumulative doses of repeated CT scans.

Radiation dose tracking has, consequently, become increasingly important owing to
the popularity of CT scans. Several variables affect the tracking dose, such as the patient’s
age, the size of the body part being scanned, the total size of the body, the scanner model
and pitch, and the scanning protocol [5]. For example, for a chest CT scan, the patient lies
on a flat bed, and then the machine circulates around him/her, emitting a beam that goes
through the patient’s body (in this case, the chest). When the machine completes a full cycle,
it creates a slice that is a 2-D image of the lungs and the inside of the chest. The number of
slices is determined based on the study protocol, and a computer processes these images to
be displayed on the monitor, and they may even be rendered in a 3-D form [6]. In radiology,
a study means all the procedures a patient underwent to obtain a specific scan protocol.

Tracking radiation dosages is an important and mandatory practice in healthcare
facilities [7]. In some facilities, teams are assigned to carry out this task manually or by
using commercial software, such as DoseTrack (version 1.0) by Sectra [8]. Manual tracking
is unfeasible and has the potential for human error. However, commercial tools are based
on static analysis, which limits the possibilities of exploring data due to problems such as
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predefined reports, no interwind filters, and complex interfaces for inexperienced users [9].
In addition, this commercial tracking software can create integration errors, such as errors
while extracting data from the PACS. PACS is a technology used in healthcare facilities for
storing, retrieving, presenting, and sharing images produced by medical hardware [10]
thanks to the heterogeneity of Hospital Information Systems (HISs) [11].

Using visual analytics to track radiation dosages will allow users to track a single patient
or cohort of patients, will include temporal information, and will enable one to observe patterns
over time, find trends, and even optimize the practices in use through gained insights.

In this paper, we propose a visual analytical dashboard called VATrack to track radiation
dose data for CT scans through employing visual analytics techniques. It monitors the
radiation dose in patients undergoing CT scans. The dashboard processes multivariate
temporal data and identifies any radiation overdose while reducing human intervention in
the radiation dose tracking process and enhancing the performance in terms of accuracy and
time. Domain experts have evaluated the proposed dashboard.

The remainder of this paper is organized as follows. Section 2 discusses some back-
ground information and sheds light on existing solutions for radiation dose tracking.
Section 3 presents the proposed solution for applying visual analytics to monitor the ra-
diation dosage for patients undergoing CT scans and the experimental design in more
detail. The performance evaluation of the proposed solution is discussed in Section 4 and
the results are presented in Section 5. Section 6 discusses the results. Finally, Section 7
concludes the thesis and provides suggestions for future research.

2. Related Work

Visual analytics is not the same as data or information visualization, even though they
have a similar goal, which is to provide insight to the end-users so that they can make
good and informed decisions. Visual analytics was first defined by Thomas and Cook as
“The science of analytical reasoning facilitated by interactive visual interfaces” [12]. Data
visualization is the representation of information or data using visual elements, with no
regard to how to manage and process the data.

Therefore, when the problem is not simple or clear enough to be modelled using auto-
matic analysis, the need for human cognitive abilities arises; hence, the use of visual analytics
becomes necessary. Visual analytics has attracted considerable interest because it aids in
gaining an understanding of problems and solutions; hence, it has been adopted in several
application areas such as space, healthcare, social networks, deep learning, and many more.

There are available tools to track radiation doses. Kovacs et al. proposed an engine that
calculates radiation exposure from a CT scan with several analysing schemes called the “RE3-
Radiation Exposure Extraction Engine” [13]. The engine was integrated within the hospital’s
PACs to recover radiation dose data using image data and DICOM headers. This integration
could, however, create several problems, such as errors in data extraction from different DICOM
sources or other integration errors, whereas our solution is completely independent.

The authors in [14] used SharePoint (2013) to create a report generator to monitor the
radiation dose in digital mammography and digital breast tomosynthesis. It supports different
user roles and operates in a mixed imaging environment. In addition, it was integrated within
DICOM and the PACS. However, it provides information as static visualizations to support
decision making and quality assurance, whereas the proposed solution provides interactive
visuals that support explanatory analysis in addition to the basic functions of monitoring.

Finally, the authors in [15] used the commercial software DoseWatch (version 1.3)
(GE Healthcare). They confirmed that commercial dose tracking software is not sufficient
on its own, even though it is true to what the developers claim in terms of tracking and
monitoring, but inexperienced or busy users require additional time and effort because the
tools are static and not interactive; thus, the user feels less motivated to search for answers.
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3. VATrack Dashboard

To the best of our knowledge, there have been no applications of visual analytics in
diagnostic imaging radiation dose tracking. Therefore, in this paper, a web solution is
presented that provides tracking functionality and an exploratory environment for CT
scan radiation dose data. The solution is based on visual analytics techniques and Tableau
software. The proposed dashboard was evaluated using use case scenarios. To build the
proposed dashboard, there were four phases, as follows [16].

• Phase 1: Conducting interviews with domain experts to collect and analyse the
requirements.

• Phase 2: Abstraction of data and requirements; our data are multivariate temporal data.
• Phase 3: During this iterative phase, we conduct the following:

– Generate multiple designs;
– Develop and implement the selected design;
– Evaluate prototypes;
– Improve the design based on user-required improvements.

• Phase 4: Deploy the dashboard and interview users and domain experts for feedback [17].

3.1. Requirement Analysis

To collect the requirements, several meetings with domain experts were held. During
this process, the required functions were defined as follows:

• Automate the tracking process and reduce human intervention as much as possible.
• Identify high-dose studies according to European DRLs (Diagnostic Reference Levels).
• Search by patient ID.
• Study comparisons.
• Grouping study protocols into three categories (Head, Chest, and Abdomen).
• Redefine age classes to be:

– 0–3 months;
– 4 months–1 year;
– 2–5 years;
– 6–16 years;
– 16+ years.

• Reduce study attributes to provide good tracking and summary information—we
chose only 13 relevant attributes. These attributes were chosen based on domain
experts’ opinions and reviews of what and how the radiology department performed
the tracking process and what they used for their tracking process.

Additionally, we were able to ascertain our user characteristics:

• Educational level: Bachelor or higher;
• Experience: they are experienced in the field but not in the tracking process;
• Disabilities: No visual disabilities such as colour blindness or loss of vision;
• Technical expertise: Basic level of computer skills.

Finally, we determined the following general constraints:

• No integration with HIS is required;
• No data pre-processing by users;
• Platform-independent.

3.2. CT Radiation Tracking Dataset

Data records for 2019 were obtained from the Radiology Department at King Abdulaziz
University Hospital, Jeddah, Saudi Arabia. They are multivariate data generated by
Dosewatch software, not raw data from medical scanners, exported into an Excel file
format. The dataset consisted of 98 columns. The number of rows varied depending on the
patient count and the type of CT scan protocol conducted. It included patient information,
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such as Patient ID, date of birth, age class, sex, weight (kg), height (cm), and BMI. It also
contained information pertaining to the study performed, such as study protocol name,
study time, series type, mean CTDI, DLP, the operator, and the imaging machine.

The sample consisted of 2755 records that represented 946 patients. Data were ad-
versely affected by user input errors, such as entering the wrong file number as a study ID
or the wrong date of birth. Unfortunately, patient size, BMI, and weight data are missing,
which has created an obstacle in tracking and identifying radiation overexposure cases.
This will affect tracking of chest and abdominal CT scans, as head CT scan dosage limits
are determined by age, as shown in Table 1.

Table 1. European diagnostic reference levels [18].

EDRL

Exam Age or Weight
Group CTDI vol, mGy DLP, mGycm

Head [0 ≤ 3 months] 24 300
[3 months ≤ 1 year] 28 385
[1 ≤ 6 years] 40 505
[≥6 years] 50 650

Thorax
<5 kg 1.4 35
[5 ≤ 15 kg] 1.8 50
[15 ≤ 30 kg] 2.7 70
[30 ≤ 50 kg] 3.7 115
[50 ≤ 80 kg] 5.4 200

Abdomen
< 5 kg 45
[5 ≤ 15 kg] 3.5 120
[15 ≤ 30 kg] 5.4 150
[30 ≤ 50 kg] 7.3 210
[50 ≤ 80 kg] 13 480

Table 1 represents the European Diagnostic Reference Levels (DRLs) followed by King
Abdulaziz University Hospital and is used to identify any study that exceeded the radiation
limits to be investigated in more detail. It covers three main areas: Head, Chest, and Abdomen.
For head-related CT scans, it classifies the safe dosages by age, while for chest-related CT
scans and abdomen-related CT scans, it uses weight for classification purposes.

Data pre-processing and cleaning was carried out by defining the conditions in Tableau
that would be applied to the extracted data when uploaded. First, data were cleaned by
removing records with missing patient IDs, invalid ID numbers, or invalid values in
basic patient attributes (such as no gender given or an unrealistic date of birth provided).
Subsequently, data aggregation occurred for studies with protocols that consisted of more
than one step. Some CT scan protocols consisted of more than one step; hence, in the
dataset, there were as many records for a study per patient as the number of protocol
steps. This situation proved problematic because there were also some protocols with
an unknown number of steps, meaning they could not be defined in the system because
the physician decided how many steps there would be at the time of the procedure. To
overcome this problem, VATrack aggregated each study using the patient ID, Study ID, and
protocol name (local study description) to ensure that the protocol steps (series description)
were covered.

3.3. Design

The dashboard must be easy to use and intuitive since our users will have only a basic
level of computer skills and limited time to learn or be trained due to busy schedules, yet it
still must be able to provide users with summary information at a glance. A dashboard
that is capable of this is shown in Figure 1.
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Figure 1. VATrack: Radiation dose tracking and monitoring interactive visual display. (A) main view,
(B) imaging device model, (C) flagged studies (red indicates overdose studies and green indicates safe
dose studies), (D) scatter plot of studies in relation to DLP and CTDI, (E) timeline to show the number
of studies per day over the selected period, (F) study protocols categorized according to the targeted
body part, (G) gender bar chart, (H) age classes using bar chart b, and (I) patient ID search bar.

The dashboard consists of:

• Nine coordinated views;
• Search bar;
• Several interaction techniques (filtering, linking and brushing, and details on demand).

Coordinated views are used, whereby clicking on or selecting an area in one view
updates the remaining views. In addition, the search bar updates all nine views. The
interaction techniques depend on the view, as shown below.

Figures 1A and 2 are the main view of the top third, which is a scrollable table
structure wherein the 13 attributes are displayed at the beginning. The table is populated
with complete data; each record represents a patient, clicking on a cell will highlight his/her
record, and the remaining views will not be updated. In addition, under the table, there is
a counter for the records that are currently available.

Figure 2. Dashboard main view.
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Figures 1B and 3 are a horizontal bar graph that represents the imaging device model
and acts as a filter by clicking on the bars, and the numbers at the outside end of each bar
represent the number of studies using each model.

Figure 3. Imaging device model.

Figures 1C and 4 are also a horizontal bar graph that represents red-colour overdose
studies, green-colour safe dose studies, and NA for studies that have yet to be categorized. The
bar graph also acts as a filter by clicking on the bars, and the numbers at the outside end of
each bar represent the number of studies within each category. We used bar graphs as filters to
provide the necessary information and to visualize the comparison of data among categories.

Figure 4. Flagged studies (red indicates overdose studies and green indicates safe-dose studies).

Figures 1D and 5 show a scatter plot that represents each study according to its DLP
and CTDI. Users can click on an individual point or use ‘sliding’ by selecting an area on the
plot that will update the rest of the dashboard; also, there are ‘infotip’ details-on-demand that
appear when you rest the pointer on a point. We use a scatter plot to show the relationship
between the two variables and allow the user to identify other patterns in the dataset.

Figure 5. Scatter plot of studies in relation to DLP and CTDI.

Figure 1E is a dotted-line graph that represents the study date, and the dots represent
the number of studies per day. It also has a brushing and linking interaction technique
by selecting an area on the graph that updates the rest of the dashboard and ‘infotip’
details-on-demand, as seen in Figure 6.
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Figure 6. Total CTDI DLP per patient/study.

Figures 1F and 7 are a bar graph wherein each bar represents a group of CT scan
protocols related to body area, which also acts as a filter, and the numbers inside each bar
represent the number of patients in the category.

Figure 7. Study protocols categorized according to the targeted body part.

Figures 1G and 8 are a bar graph wherein each bar represents a gender, which also acts
as a filter, and the numbers inside each bar represent the number of patients in the category.

Figure 8. Gender bar chart.

Figures 1H and 9 are a bar graph wherein each bar represents an age class; it also acts as
a filter, and the numbers inside each bar represent the number of patients in the class.

Figure 9. Age classes using the bar chart.

Figures 1I and 10 show a search bar wherein the user can filter the dashboard by
patient ID, as shown in Figure 1.

202



Technologies 2023, 11, 74

Figure 10. Patient ID search bar.

Using these different visualization components as filters provides insights from an
initial look and also conveys as much information as possible without overloading the user
with multiple irrelevant records to scroll through. In addition, we used colour-coded views
to indicate that the deeper the colour, the higher the number (that is, except for the “flagged
studies” filter, which uses a traffic-light colour code to indicate high risk for red and safety
for green).

3.4. Implementation

For testing and evaluation purposes, a proof of concept (PoC) implementation of the
interactive visual display was developed. Tableau is a visual analytics software platform
that provides several functions to individuals and enterprises. It helps with creating
interactive and connected dashboards across an organization from pre-processing data,
whether from a spreadsheet, SQL database, or in the cloud, to publishing compelling results
to provide insights and answers acquired through the analytical process [19,20].

Tableau Desktop (version 2020.4) was used because data visualization and analysis
functionalities are its main features, and the researcher(s) have greater familiarity with
the software. Tableau was used to build the interactive visual display. The next section
describes the steps taken to build the solution depicted in Figure 1.

Data Interaction Components

First, Tableau was connected to a data-source Excel (version 2019) file, as shown in
Figure 11. The rules defined in data pre-processing are applied automatically whenever the
user uploads new data.

Figure 11. Connecting data source to Tableau software.

In Figure 1, only 13 different attributes are displayed in the data source rather than 98.
The age-class interaction component is created in Tableau, as shown in Figure 12; according to
user needs, age classes are split differently. To calculate the age month, which is not available
in source data, Tableau subtracts the date of birth from the study date and converts that period
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to the number of months; then, the desired classes are applied using conditional statements.
In this study, the linking and brushing interaction techniques were used.

Figure 12. Defining age-class filter complying to user specifications.

For the body part interaction component shown in Figure 1, four groups were created,
each containing specific scanning protocols, as shown in Figure 13. In addition, there were
eight other data interaction components:

• Model (B in Figure 1): a bar graph shows the number of studies performed using different
devices. In addition, it acts as a cross-filter based on the medical scanners used.

• Flagged studies according to CTDI and DLP (C in Figure 1): a bar graph represents
studies based on the total radiation dosage per study; hence, for each study per patient,
the software sums the CTDI and DLP values then compares the total to the standard
used in Figure 1. If it is over the standard, then it is in the red category, while if it is
under the standard, then it is placed in the green category. In addition, it acts as a
cross filter, which updates the dashboard based on whichever bar is clicked on.

• Number of studies/day (E in Figure 1): a dotted line graph represents the number
of studies performed each day. In addition, it acts as a cross-filter when sliding and
linking a group of days or selecting a single day. Further, it has an infotip feature.

• Gender (G in Figure 1): a bar graph shows the number of patients according to
gender—female or male. In addition, it acts as a cross-filter when clicked on.

• Patient ID (I in Figure 1): a search bar filters data based on entering the patient ID in
the search bar or by selecting a patient ID from a single-value drop-down list.

• Total CTDI and DLP/patient/study (D in Figure 1): this is a scatter plot wherein
each point represents a study showing the radiation dose in CTDI and DLP measures.
In addition, it acts as a cross-filter when sliding and linking a group of points or by
selecting a single point. Further, it has an infotip feature.

To remove what the user may think of as redundancies, a field called “series descrip-
tion” was created, as shown in Figure 14. Each scanning protocol consists of a different
number of steps, and each step has its own radiation dose value in the DLP field. For exam-
ple, in Figure 14, a protocol with four steps actually appears four times in the data source,
but in Figure 14, it appears as a single record, and the aggregate value of the radiation dose
is in the DLP field.

All charts and input boxes in Figure 14 are cross-filters that can be applied simultane-
ously. The table at the top displays the records available after applying the data interaction
components. Users can click on several interaction components and immediately inspect
the dashboard. On the scatter plot and the timeline at the bottom, the user can either click
on a single value/day or slide a group of dots or days.
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Figure 13. Defining body-part filter based on scanning protocols.

Figure 14. Listing all protocol steps in a single record.

All charts and input boxes in Figure 1 are cross-filters that can be applied simultane-
ously. The table at the top displays the records available after applying the data interaction
components. Users can click on several interaction components and immediately reflect on
the dashboard. On the scatter plot and the timeline at the bottom, the user can either click
on a single value/day or brush a group of dots or days.

4. Evaluation

The evaluation focused on use-case scenarios, completion accuracy, and time. We also
used a questionnaire-based evaluation. A usability test was conducted to evaluate, measure,
and improve the usability of the proposed solution. The usability test examined the user-
friendliness of the solution. According to Jakob Nielsen, a renowned usability expert, usability
consists of five components: learnability, efficiency, memorability, error minimization, and
satisfaction [21]. A “User and Task Observation” test method was chosen.

4.1. Study Design

An on-site usability test was conducted at King Abdulaziz University Hospital. It
took place at participants’ offices on Sunday 17 October 2021 from 8:30 a.m. to 2:45 p.m.
There were some waiting periods between the test sessions since a number of participants
were working. The test started by greeting the participants and explaining the goal of
the study, which was to assess the usability of VATrack interface design and interactivity.
Four test users who worked as medical physicists in the department participated; they
were responsible for monitoring radiation doses and exposure in all forms at the hospital,
including tracking radiological procedure doses.

It was difficult to include additional participants since the remainder were technicians
who were operating the scanning machines, and it would have been very difficult to
suspend the workflow. Then, a consent form was signed by each participant to obtain
his/her agreement to conduct the study. Then, the observer introduced VAtrack as a
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dashboard web-based solution that served as a medium to track and analyse radiation
doses of CT scans retrospectively.

The dashboard also performed data pre-processing and provided users with easy
access to tracking information and efficient interactivity that allowed users to answer
related questions. Subsequently, scenarios were provided to test users one by one. Each
individual session lasted approximately one hour, during which test users performed the
scenarios both ways. The first participant started by using the current existing process
and then VATrack, while the remaining participant started with VATrack then the current
existing process. We made the switch in order to ensure the completion of the test because
the first test participant became reluctant, tired, and kept checking the time. All participants
had the same order of scenarios.

4.2. User and Task Observation

In this usability testing method, a tester observed a test user performing a given
task while documenting and timing the process. Any success or failure was recorded. In
addition, the test users were not coached. User success was measured by the percentage of
tasks completed correctly and the time taken to complete the task.

4.2.1. Identifying Users

This study illustrates how visual analytics enhances the radiation dose tracking process
in the radiology department at King Abdulaziz University Hospital. To identify the user
group, we started by looking at who was going to use the dashboard: the radiologists at
the hospital. We then had to identify their characteristics, so we interviewed radiologists
at the hospital to get their thoughts about the current tracking method deployed there,
the problems they faced, their needs, and what they felt should be changed. During the
conversations, we also learned about their technical skill levels. Four users working in the
radiology department volunteered to participate in the testing phase. One of them who
was responsible for the tracking task was involved in VATrack’s data collection phase. Two
of them were female and the other two were male. Three of them were in their late twenties
to mid-thirties and one was in his/her early forties.

4.2.2. Task Scenarios

To create the test scenarios, we first listed three basic tasks that needed to be completed
regularly by the end users plus two additional related tasks. We determined these tasks by
reviewing department tracking files and discussing their contents with domain experts in
the Radiology Department at the hospital. These scenarios were completed both ways—the
current process and using the proposed dashboard—to compare the two solutions fairly.
The task scenario activities were as follows:

• Participating users needed to provide a quick summary presentation of studies and
patients from April 2019 that included patients’ total counts and distributions within the
three main categories of CT scan studies (head, chest, and abdomen) by age classes using
both the VATrack dashboard and the process currently used to obtain that information.

• Participating users needed to create a report that showed gender and age distributions
within chest CT scan studies using both the VATrack dashboard and the process
currently used to obtain that information.

• Participating users needed to know why the patient with ID 1054533 had received a high
dosage that was over the limits of the European Diagnostic Reference Levels using both
the VATrack dashboard and the process currently used to obtain that information.

• Participating users needed to create a report of adult head CT scan studies performed
with a device model “Somatom Definition AS” using both the VATrack dashboard and
the process currently used to obtain that information.

• Participating users needed to create a report of overdose studies in children aged
0–3 months for the month of April 2019 using both the VATrack dashboard and the
process currently used to obtain that information.
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To complete Activities 1 and 2, test users had to explore the data and complete
Activities 3 and 5. Further, the data had to be analysed. Finally, to complete Activity 4,
participants had to compare the data. In addition, any age criterion was based on the
standard used by the department. Age classes were as follows:

• 0–3 months;
• 4 months–1 year;
• 2–5 years ;
• 6–16 years;
• 16+ years.

5. Results

Using the VATrack dashboard, all participants successfully completed the five task
scenarios shown in Table 2. However, while following the current procedure used in the
department of radiology, 10% of the tasks were completed correctly, 45% were completed
with errors, and 45% were not completed (Figure 15).

Table 2. Task completion time. NA means the task hasn’t been completed.

VATrack Test User 1 Test User 2 Test User 3 Test User 4

Activity 1 00:47.23 00:07.50 00:11.60 00:19.00

Activity 2 00:21.17 00:39.50 00:04.52 00:19.95

Activity 3 00:28.47 00:39.51 01:24.91 00:21.90

Activity 4 03:16.84 01:22.95 00:17.50 00:25.10

Activity 5 02:19.99 01:54.65 00:01.00 00:01.00

Total 07:13.70 04:44.11 01:59.53 01:26.95

Current Process Test User 1 Test User 2 Test User 3 Test User 4

Activity 1 09:32.83 01:20.00 02:14.64 NA

Activity 2 01:37.60 03:46.32 02:04.42 NA

Activity 3 03:00.47 02:15.91 00:00.00 NA

Activity 4 03:55.97 04:03.25 01:13.85 NA

Activity 5 19:35.28 03:30.87 04:30.05 NA

Total 37:42.13 14:56.35 10:02.96 00:00.00

For completion time, Figure 16 compares the total times the test users took to perform
each activity both ways. As depicted in Figure 16, the activities performed using VATrack
took less time to complete with a 100% success rate. On the other hand, being familiar with
the current process did not have a significant impact on the time required to complete each
activity. Activity 1 represented a basic task the users performed in the department every
month. This activity had the longest completion time of 27 min and 36 s, and it was one of
the activities that users either did not complete or completed with errors. The test user who
already performed this task monthly stopped after approximately 20 min because it would
take the entire morning to perform correctly.

In contrast, performing the same Activity 1 using VATrack took around 4 min and 17 s
for this particular user, and it took two test users a second to complete, with them noting:
“no need to do anything, it is clear by looking at the dashboard”.
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Figure 15. Comparison of task completion percentage.

Figure 16. Comparison of task completion time.

Activity 2 took five minutes and 16 s using VATrack and had a 100% success rate,
while following the current process took nine minutes and 13 s with a 0% success rate,
putting it into the categories of ‘completed with errors’ and ‘did not complete’. Some of
the user errors in this activity occurred during data filtration in Excel; for example, a user
chose scanning protocols with “chest” in the name but did not know that “thorax” was
an alternative name for the chest. Another user did not complete the task because he was
confused by the amount of data.

Activity 3 took two minutes and fifty-five seconds using VATrack with a 100% success
rate. Following the current process, it took five minutes 16 s while falling into the three
categories ’completed correctly’, ’completed with errors’, and ’did not complete’. Some of
the user errors in this activity while following the current process involved guessing the
answer based on his/her knowledge and experience. A user who did not complete this
activity knew that he/she needed to compare information against certain standards but
did not know what they were.
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Activity 4 took one minute and twenty-six seconds using VATrack with a 100% success
rate. Using the current process, it took seven minutes and twenty-six seconds and also
fell into the three categories ’completed correctly’, ’completed with errors’, and ’did not
complete’. Some of the user errors in this activity while following the current process
involved included any scanning protocol with the words ’head’ and ’adult’ in the name.
Additionally, one user used “Series description”, not “Study Protocol Name”, which was
usually used.

Finally, Activity 5 using VATrack took one minute and twenty-six seconds with a 100%
success rate. The current process took 13 min and 8 s with a 0% success rate.

Many human errors occurred while following the current process, such as missing
records while aggregating the dosages of a single study or adding a CT scan protocol that
was not included in a given category; in addition, there were mistakes when recalculating
age groups or not calculating them at all. The same went for the use of diagnostic reference
levels. In general, looking at the raw data while working with the current process led to
the test users becoming reluctant and confused.

Questionnaire

After the test users completed the required tasks, they were asked to contribute and
answer an electronic questionnaire that summarised their experience and the usability of the
new solution. The first question, as shown in Figure 17, asked users to choose, after trying
both methods, which they felt performed each activity better, and 100% chose VATrack.

Figure 17. Test users’ responses to the first question of the questionnaire.

The second question was about the overall satisfaction with the VATrack design
according to the clarity of information, comfort of usage, visual appeal, and usefulness. In
general, the responses fell into two categories, as seen in Figure 18: 62% of participants
were very satisfied, and 38% were satisfied.
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Figure 18. Test users’ responses to the second question of the questionnaire.

The third question was about VATrack’s ability to minimise errors while performing
tasks or in data pre-processing. All test users, as shown in Figure 19, agreed that VATrack
minimised errors. In addition, all test users, as shown in Figure 20, agreed with this.

Figure 19. Test users’ responses to the third question of the questionnaire.

Figure 20. Test users’ responses to the fourth question of the questionnaire.

The remaining question was about what particular aspect(s) VATrack users liked
or disliked and what they thought would improve VATrack. In general, users liked the
speed of obtaining the required answers and that the ease of use—interacting with it—was
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intuitive. In addition, they liked not having to constantly check the DRLs since they were
built-in.

In addition, the users liked several simultaneous filters. One complaint was that
even though VATrack was much faster than the current process, it needed a better internet
connection to perform smoothly. This could be solved using a desktop version of VATrack.
Second, if it is possible to change the used Diagnostic Reference Levels (DRLs).

For the suggested improvements in general, users were very happy with their experi-
ence with VATrack. One user suggestion was to allow multiple DRLs such as American
DRLs and Saudi DRLs in addition to the European DRLs. This point will be added in our
future work to support different DRLs.

Users needed more flexibility than commercial radiation dose-tracking software of-
fered, and age classes had to be redefined in accordance with standards used in a user
environment, which cannot be done with Dosewatch software. In addition, users needed
to be able to customize the view to display CT scan protocols as groups of the targeted
body part and to aggregate multi-step protocols into a single record. Plus, users needed
to be able to dig deeper once they had identified which patient had been exposed to high
radiation doses and answer some important questions such as: ’Why?’, ’Which device?’,
’Who was the operator?’, ’Was it a cumulative or single-dose?’, and many more.

6. Discussion

Due to the current increased use of CT scans, patients are increasingly prone to
radiation overdose hazards, such as an increased risk of developing cancer [2]; hence,
there is a need to keep track of every possible venue where a person might be exposed to
radiation, and one of these venues is the hospital.

For example, in [22], the cumulative radiation dose from diagnostic imaging such as a
CT scan measured over a partial period—from diagnosis until radiotherapy planning—was
71.5 mSv (range: 11.9–131.9 mSv) for breast cancer patients; this is not negligible. It is
also important to note that monitoring is not only to track the cumulative dose but also to
support the justification and optimization of procedures.

Before proceeding in detail, we must differentiate between radiation exposure tracking
and radiation dose tracking. According to Rehani [2], exposure tracking involves tracking
all radiological examinations a patient has undertaken regardless of the dose, whereas
radiation dose tracking takes into consideration the dose of each examination.

Healthcare providers, policymakers, regulators, researchers, industries, and, most
importantly, patients can benefit from radiation exposure and dose tracking. For instance, in
terms of patient safety to avoid/reduce instances of radiation exposure overdose, healthcare
providers can benefit from such tools in decision support, resource savings, and better-
quality radiation datasets for researchers.

When tracking, patients may be tracked as individuals or groups. In addition, one
might track radiological procedure types and counts if a patient has undergone several
procedures, the radiation dose data of those procedures, or both. Tracking diagnostic
imaging approaches is not an easy task: one of the main difficulties is that radiation dosage
varies for the same examination type depending on the scanner, protocol, part of the body
to be imaged, and total body size, even if it is the same scanner.

Using the proposed solution shown in Figure 1, users can start by filtering cases using the
“flagged studies” filter on the left, examining data more closely on the scatter plot, or viewing
detailed patient and study information from the table at the top. In addition, each filter is
colour-coded such that the darker/more intense the colour, the higher the radiation count.

7. Concluding Remarks

In this study, we have addressed several problems associated with radiation dose
tracking software solutions, including lack of flexibility, ineffective analysis support, and
poor interactivity, which tend to decrease user satisfaction with such solutions. The main
contributions of this work include:
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• Design and develop the proposed visual analytics dashboard to track radiation doses
to which patients are exposed.

• Clean the data and organize it automatically in an interactive dashboard.
• Apply several filters simultaneously to the data using several interactive styles. Addi-

tionally, the versatility of different filters allows users to explore and manipulate data
to answer specific questions.

The aim of this study was to provide a generic, flexible, and easy-to-use visual analytics
display tool for radiation dose data from medical scanners and to implement a proof-of-
concept prototype that proves our design. The results show that the visual analytic approach
improves the tracking process, as users completed the tasks with a 100% success rate.

In future work, we will utilize VATrack exploratory data analysis to allow users to
create their own radiation dose benchmarks. They can then include them with other
diagnostic reference level standards by providing patient cohort comparison features to
emphasize trends and patterns. In addition, to overcome the limitation of a retrospective
analysis style, VATrack will have a built-in predictive model that can predict future scenarios
based on user-defined criteria and generate alerts based on the radiation dose. Furthermore,
VATrack can be used with other diagnostic imaging types where tracking is required, such
as nuclear imaging. More, we will make VATrack customizable in a way that allows the
user to determine protocols within each targeted body category because this cannot be
automated based on protocol names considering there is no standard naming convention
in the department. Finally, we will create a desktop version of VATrack to ensure reliability
and availability, thus avoiding internet connection issues.
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