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Preface

We are pleased to present this Special Issue, a comprehensive collection of research that delves

into the forefront of fault diagnosis and condition monitoring in mechanical and electrical systems.

The motivation behind this Special Issue lies in addressing the increasing demand for innovative and

reliable methods to maintain the operational safety and efficiency of critical systems. This compilation

was curated to bridge the gap between theoretical advancements and practical implementations in

sensor-based diagnostics, making it a valuable reference for researchers, engineers, and industry

professionals.

The featured articles cover a wide range of approaches, including deep learning techniques

for transformer and rolling bearing fault diagnosis, innovative use of vibration signal analysis,

and time–frequency transformation methods. Notable contributions include the use of

Bayesian-optimized machine learning and vision transformer models to enhance the diagnostic

precision and robustness across varied operational scenarios. This Special Issue is particularly

focused on cross-domain diagnostics and real-time monitoring solutions, emphasizing the adaptive

technologies that uphold diagnostic accuracy despite changing conditions.

We extend our gratitude to the authors whose groundbreaking work has made this Special Issue

possible, and we acknowledge the invaluable contributions of the peer reviewers who provided

critical insights to refine and elevate the research presented. We also wish to thank the editorial team

at Sensors for their steadfast support and assistance throughout this endeavor. We hope this Special

Issue inspires continued innovation in the field of predictive maintenance and condition monitoring,

supporting more resilient and sustainable industrial practices.

Shilong Sun, Changqing Shen, and Dong Wang

Guest Editors

vii





Citation: Sun, S.; Shen, C.; Wang, D.

Machine Health Monitoring and

Fault Diagnosis Techniques (Volume

II). Sensors 2024, 24, 7177. https://

doi.org/10.3390/s24227177

Received: 5 November 2024

Accepted: 6 November 2024

Published: 8 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Editorial

Machine Health Monitoring and Fault Diagnosis Techniques
(Volume II)

Shilong Sun 1,2,*, Changqing Shen 3 and Dong Wang 4

1 School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
2 Guangdong Provincial Key Laboratory of Intelligent Morphing Mechanisms and Adaptive Robotics,
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* Correspondence: sunshilong@hit.edu.cn

This Special Issue highlights a diverse range of pioneering research dedicated to
fault diagnosis, condition monitoring, and defect detection in various engineering sys-
tems. Focusing on leveraging state-of-the-art sensor technologies and intelligent diagnostic
methodologies, the featured articles collectively aim to enhance the robustness, precision,
and efficiency of diagnostic practices.

The collection presents significant strides in the domain, including innovative applica-
tions of deep learning algorithms for diagnosing faults in transformers and rolling bearings
using vibration signals and time–frequency analyses. For instance, the study titled “Convo-
lutional Neural Network-Based Transformer Fault Diagnosis Using Vibration Signals” showcases
a convolutional neural network approach that significantly improves fault detection in
transformers. Another valuable contribution, “Bayesian-Optimized Hybrid Kernel SVM for
Rolling Bearing Fault Diagnosis”, presents an enhanced machine learning framework that
boosts the accuracy of rolling bearing diagnostics through Bayesian optimization.

Additionally, the research titled “Research on Diesel Engine Fault Status Identification
Method Based on Synchro Squeezing S-Transform and Vision Transformer” integrates vision
transformers with advanced signal transformation techniques, enabling precise fault identi-
fication in complex machinery. Another standout paper, “A New Method for Bearing Fault
Diagnosis across Machines Based on Envelope Spectrum and Conditional Metric Learning”, of-
fers insights into cross-domain diagnostics and demonstrates the adaptability of machine
learning models in varied operational environments.

Infrared thermographic (IRT) imaging features prominently within this Special Issue,
especially for defect detection in the renewable energy and electronic industries. The review
article “Progress in Active Infrared Imaging for Defect Detection in the Renewable and Electronic
Industries” delves into the use of IRT for high-resolution, non-contact defect detection. This
paper examines the integration of IRT with machine learning to identify structural anoma-
lies in photovoltaic panels and electronic components, highlighting practical applications
that bolster product quality and reliability.

Furthermore, the paper “Evaluation of the Diagnostic Sensitivity of Digital Vibration
Sensors Based on Capacitive MEMS Accelerometers” explores digital sensors’ effectiveness in
continuous condition monitoring, emphasizing their role in detecting early-stage bearing
faults. Complementing this, the study “Evaluation of Hand-Crafted Feature Extraction for Fault
Diagnosis in Rotating Machinery: A Survey” offers an in-depth analysis of feature extraction
methods, balancing computational efficiency and diagnostic accuracy.

In the context of startup conditions, “Localized Bearing Fault Analysis for Different
Induction Machine Start-Up Modes via Vibration Time–Frequency Envelope Spectrum” investi-
gates fault detection in varying operational states, expanding the understanding of time–
frequency signal processing techniques. The article “A Deep Learning Method for Bearing

Sensors 2024, 24, 7177. https://doi.org/10.3390/s24227177 https://www.mdpi.com/journal/sensors1
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Cross-Domain Fault Diagnostics Based on the Standard Envelope Spectrum” highlights the
adaptability of machine learning for reliable diagnostics across machine types.

The research “Prediction of Pre-Loading Relaxation of Bolt Structure of Complex Equipment
under Tangential Cyclic Load” provides a predictive approach to understand and mitigate
structural degradation in engineering applications. Additionally, the work “Preventing
Forklift Front-End Failures: Predicting the Weight Centers of Heavy Objects, Remaining Useful
Life Prediction under Abnormal Conditions, and Failure Diagnosis Based on Alarm Rules” offers
practical solutions for real-time equipment monitoring and predictive maintenance.

The thorough exploration of these cutting-edge methodologies and applications makes
this Special Issue an invaluable resource for professionals, researchers, and engineers dedi-
cated to developing resilient and efficient solutions for equipment reliability and predictive
maintenance. The collective expertise of the contributing authors and peer reviewers, along-
side the editorial team’s guidance, has enriched this compilation, advancing the pursuit of
safer, more reliable, and sustainable industrial practices.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.
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Localized Bearing Fault Analysis for Different Induction
Machine Start-Up Modes via Vibration Time–Frequency
Envelope Spectrum

Jose E. Ruiz-Sarrio 1, Jose A. Antonino-Daviu 1,* and Claudia Martis 2

1 Instituto Tecnológico de la Energía (ITE), Universitat Politècnica de València (UPV), 46022 Valencia, Spain;
joruisar@die.upv.es

2 Department of Electrical Machines and Drives, Technical University of Cluj-Napoca,
400114 Cluj-Napoca, Romania; claudia.martis@emd.utcluj.ro

* Correspondence: joanda@die.upv.es

Abstract: Bearings are the most vulnerable component in low-voltage induction motors from a
maintenance standpoint. Vibration monitoring is the benchmark technique for identifying mechanical
faults in rotating machinery, including the diagnosis of bearing defects. The study of different bearing
fault phenomena under induction motor transient conditions offers interesting capabilities to enhance
classic fault detection techniques. This study analyzes the low-frequency localized bearing fault
signatures in both the inner and outer races during the start-up and steady-state operation of inverter-
fed and line-started induction motors. For this aim, the classic vibration envelope spectrum technique
is explored in the time–frequency domain by using a simple, resampling-free, Short Time Fourier
Transform (STFT) and a band-pass filtering stage. The vibration data are acquired in the motor
housing in the radial direction for different load points. In addition, two different localized defect
sizes are considered to explore the influence of the defect width. The analysis of extracted low-
frequency characteristic frequencies conducted in this study demonstrates the feasibility of detecting
early-stage localized bearing defects in induction motors across various operating conditions and
actuation modes.

Keywords: AC machines; vibration; bearing; fault diagnosis

1. Introduction

Induction motors are widely utilized in the industry due to their well-known ad-
vantages and their outstanding economic trade off. The maintenance of such equipment
represents an economic burden, since only in North America, millions of electrical machines
must undergo repairs every year [1]. In particular, the most critical constructive elements
in low-voltage induction motors are the rolling bearings placed between the housing and
the rotating motor shaft [2]. The early diagnosis of such components is crucial for reducing
plant maintenance costs and preventing hazardous scenarios. Bearing fault diagnosis
represents a prominent research field and has attracted a vast amount of research interest
over the last years [3]. Additionally, the advent of machine learning and the availability
of numerous open-source bearing fault datasets (e.g., Case Western Reserve University
(CWRU) [4], Paderborn University dataset [5], etc.) have greatly increased the volume of
research in this area [6,7]. Nevertheless, the sole data-based identification of bearing defects
lacks the physical understanding of the failure mechanics, which hinders cross-domain
failure identification. Therefore, research exploring the effects of various bearing defects
across different applications and scenarios remains crucial in the field.

Vibration monitoring continues to be the most widespread methodology for rotating
machinery diagnosis, including electrical machines. One of the main reasons is the high
number of standards based on this physical magnitude [8]. On the other hand, vibration

Sensors 2024, 24, 6935. https://doi.org/10.3390/s24216935 https://www.mdpi.com/journal/sensors3
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monitoring in electrical machines offers insights for both mechanical and electromagnetic
fault signatures [9]. The main drawback of vibration monitoring is the need for external
sensors (i.e., normally accelerometers) attached to accessible non-rotating parts and the
influence of different mechanical transfer paths accentuating or attenuating potential fault
signatures [10]. Other authors have explored alternative techniques for bearing diagnosis in
the field of electrical machines by utilizing less-invasive methods exploiting electromagnetic
signatures. Radial vibrations caused by bearing defects induce an air-gap variation that can
be sensed in the stator current [11]. Some works exploiting current monitoring for bearing
diagnosis can be found in [12,13]. In addition to the current monitoring, other authors
have explored the utilization of stray-flux to diagnose bearings. The literature emphasizes
the utilization of statistical indicators to identify localized bearing faults, with no evident
fault signature in induction machines for the acquired stray-flux signals [14,15]. Despite its
disadvantages, vibration monitoring remains the preferred methodology for diagnosing
bearing faults in induction machines over electromagnetic-nature techniques due to the
direct relation between the defect and the acquired signal [16].

Vibration signal processing in steady-state conditions is a broadly studied disci-
pline [17]. The literature identifies various techniques for effectively diagnosing bearing
faults, particularly in scenarios where the signals exhibit periodic and time-invariant char-
acteristics [18]. Envelope spectrum analysis is considered as the baseline frequency–domain
technique for identifying signal-modulating components. This is a simple and historically
effective technique that successfully identifies bearing localized fault signatures in the
low frequency range [19]. Other popular techniques for steady-state signal processing are
the Discrete Wavelet Transform (DWT) [20], Empirical Mode Decomposition (EMD) [21],
and cyclostationary tools [22,23], among others.

Operation at a constant speed for prolonged time is not common in all motoring
scenarios, which hinders fault detection by using the classic signal processing approaches.
For this reason, signal processing techniques under variable speed conditions have been
gaining research attention over the last years [24]. Among the most widely utilized methods
are those based on order tracking. These methods leverage the inherent periodicity of fault
components relative to the rotating frequency [18]. Consequently, all components can be
represented in both the frequency and angular domains, ensuring compliance under vari-
able speed conditions. These resampling techniques provide successful results for localized
bearing fault diagnosis, as demonstrated in works such as [25,26]. Nevertheless, the sam-
pling or estimation of the instantaneous frequency is necessary to perform the transforma-
tion into the angular domain [27], which imposes some limitations in terms of hardware
and computational burden. Resampling-free techniques overcome the limitations of order
tracking but involve a necessary post-processing step [24]. Some of the traditional methods
to analyze non-stationary signals include linear methods such as the Short Time Fourier
Transform (STFT) [28,29] the Continuous Wavelet Transform (CWT) [30], and quadratic
bi-linear methods such as Winger–Ville Distribution (WVD) [31]. Moreover, bearing fault
diagnosis triggers the application of advanced time–frequency signal processing techniques
such as various types of synchrosqueezing transformations [32–34], or Multiple Signal
Classification (MUSIC) [35,36]. These advanced techniques offer increased resolution and
enhanced energy concentration at a computational cost. The complexity and computational
requirements of such transforms represent a limitation in many diagnosis scenarios where
simpler methodologies provide an adequate solution, as demonstrated in [37].

In the field of induction machines, bearing diagnosis during different operating condi-
tions, including start-up, is identified as a research gap by many authors [38,39]. In [40],
the authors identify defect early detection and severity quantification under non-stationary
regimes and the utilization of low-computational-burden processing techniques to ease
technology implementation as future research directions. In a recent review [41], the au-
thors also highlight a research gap related to transient analysis under different operating
regimes. Moreover, induction machines can be line-started, soft-started, or inverter-fed,
which impose different mechanical and electromagnetic conditions that may affect bearing
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fault identification. Very recently, several authors focused on the vibration transient start-up
signature of induction motors to diagnose rotor dynamic defects such as misalignment
and mass unbalances [42,43]. Few authors have explored the start-up signature to detect
bearing faults. In [44], the authors utilize the CWT and feature extraction algorithms
to identify different bearing defects. Other authors have explored the transient start-up
current signal for the same purpose [45]. In [37], the authors detect characteristic bearing
fault signatures for inverter-fed machines via vibrations acquired in the bearing housing.
Thus, the detection of bearing defects under different start-up modes in induction motors
represents a research gap in the field.

This work analyzes localized bearing race defects in induction motors under vari-
ous starting modes using a resampling-free, straightforward time–frequency transforma-
tion. The utilized signal processing tool extends classic vibration signal envelope analysis
through the STFT. This paper aims to generalize the detection of incipient bearing faults via
vibration signals across different defect widths, excitation modes, and operating regimes in
low-voltage induction motors. Moreover, the transient results are analyzed along with their
steady-state counterparts. The vibration data are generated in a custom test bench where
vibrations are acquired in the Drive End (DE) of the machine housing for different constant
load points and two bearing defect widths. Two different induction motor starting modes
(i.e., line-started and scalar-controlled inverter-fed) are implemented to elucidate the main
differences between them. In addition, the obtained signature is compared with an existing
open-source dataset including inverter-fed transient vibration signals acquired in the bear-
ing surroundings. This paper is structured as follows. Section 2 presents the mechanics of
localized bearing defects and the employed time–frequency transformation tool. Section 3
describes the test bench in which the vibration data are generated and acquired. Section 4
presents the main results of the analysis and compares the obtained signature with existing
datasets. Finally, Section 5 discusses the main outcomes and limitations, and Section 6
concludes this work and defines future research steps on the topic.

2. Theoretical Background

This section aims to present the fault mechanics of localized bearing defects, thereby
enhancing the reader’s understanding of the analysis. Moreover, the basics of the utilized
signal processing pipeline are described in a comprehensive manner.

2.1. Localized Bearing Fault Mechanics

Single-row deep-groove ball bearings are extensively utilized in low-voltage electrical
machines. These are formed by inner and outer races, rolling elements (in this case,
spherical), and a cage equally spacing the rolling elements. Figure 1 shows an expanded
view of a spherical rolling element bearing and the identifications of its main components.
Other fundamental parts are the lubricants and the seals containing the lubricant.

inner race

outer race

cage

spherical rolling element

(a)

dout

din

1
2

3

4

56

7

8

9

dp

db

(b)
Figure 1. (a) Expanded deep-groove ball bearings view, (b) bearing geometry including numbering
of rolling elements (i.e., 1 to 9 numbers) and main dimensions.
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Rolling bearings may suffer from a wide variety of faults of a different nature. These
faults are typically categorized into three primary groups: localized, extended, and dis-
tributed defects. Distributed bearing defects are equally spaced over the bearing circumfer-
ential space. One classic example of distributed bearing fault is race fluting due to bearing
currents [46]. On the other hand, localized and extended bearing defects are confined in
space within the different elements of the rolling bearing (i.e., races or rolling elements).
The main difference among these two defect types is the extension of the defect. The ex-
tended type may span a larger space than the localized counterpart. Some examples of
localized defects are pits and cracks, while extended defects are commonly found in the
form of fatigue spalling [47]. The present work focuses only on the localized race defect
type, which is often recognized as the most incipient type of bearing fault.

Localized bearing faults are ideally understood as repetitive shocks caused by the
contact between rolling elements and localized defects. These periodic signals are character-
ized by characteristic frequencies depending on the defect location and bearing geometry.
In the ideal case of a fixed outer ring and a rotating inner race, these frequencies are defined
as follows [48]:

fBPO =
nb
2

[
1 − dbcos(θ)

dp

]
fr (1)

fBPI =
nb
2

[
1 +

dbcos(θ)
dp

]
fr (2)

fC =
1
2

[
1 − dbcos(θ)

dp

]
fr (3)

fBS =
dp

2db

[
1 − d2

bcos2(θ)

d2
p

]
fr (4)

where frequencies fBPO, fBPI , fC, and fBS correspond to the ball pass frequency in the outer
and inner raceways, the cage frequency, and the ball spin frequency, respectively. These are
determined by the number of rolling elements (nb), and geometric parameters, including
the pitch diameter (dp), ball diameter (db), and contact angle (θ), as shown in Figure 1b.

A more realistic scenario considers the existence of slippage between rolling elements
and the races, which causes the defect impulses to adopt a quasi-periodic behavior [49].
In this case, the periodicity of the pulses experiences some random fluctuations, slightly
affecting the characteristic fault frequency locus. The prediction of the exact amplitude
of the overall vibration signal represents a complex mechanical problem including non-
linear multi-body dynamics that requires specific and computationally expensive finite
element models [47]. Nevertheless, even if the vibration signature depends on the specific
topography and tribology of the defect, some studies relate the amplitude increase with
the defect size and the shaft speed. According to [50], the increment in vibration is related
to the defect size depending on the location and the defect size ratio (Dr), which is defined
as follows:

Dr =
θd
Δθ

=
nbθd
2πr

(5)

where θd represents the defect size, r is the bearing radius corresponding to the race
containing the defect arc, and Δθ is the circumferential space between two rolling elements.
Figure 2 presents a graphical explanation of the defect ratio. For small defect ratio values
(i.e., Dr < 1) both inner and outer race defects present a linear relationship between
the vibration rms value and the defect size. Thus, for increased speed and defect width,
an increase in the vibration amplitude is expected.
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d

Figure 2. Defect ratio graphic description.

2.2. Time–Frequency Envelope Spectrum

Vibration signals caused by localized defects in bearings are characterized as amplitude-
modulated, with a high-frequency carrier signal being modulated by a lower-frequency
component. Classic signal processing tools exploit the demodulation of the vibration signal
to extract information from the quasi-periodic vibration pulses. The benchmark processing
strategy for localized bearing fault diagnosis is the envelope spectrum analysis [19]. Vi-
bration signals are first demodulated and then transformed in the frequency domain by
utilizing the Fast Fourier Transform (FFT). Demodulation is performed using the Hilbert
Transform (HT), which generates the complex analytic signal. Given a discrete, time-
dependent signal x(t) = Acos(ωt), the corresponding analytic signal is defined as follows:

HT[x(t)] = x̂(t) = A[cos(ωt) + j sin(ωt)] (6)

Note that the analytic signal is defined as a complex-valued function in which the
imaginary part is 90º shifted with respect to the real function. The envelope of the signal
x(t) is provided by the module of the analytical signal x̂(t). Figure 3 shows an example of
a quasi-periodic bearing vibration signal and its envelope.

60

80

20

40

Figure 3. Bearing defect vibration signal x(t) and its envelope.

Variable speed vibration signals are not periodic by nature. Thus, the direct application
of the FFT to non-periodic signals does not provide physically meaningful results. Time–
frequency transformations such as the STFT, DWT, or WVD overcome these limitations and
provide qualitative and quantitative information regarding signal evolutions. The utilized
signal processing method comprises several steps. First, a low-pass filter tuned at the
defined upper frequency limit (i.e., 1000 Hz in the present study) is applied to the raw
signal. Then, the envelope of the signal is obtained by utilizing the above-described
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HT. To effectively track significant bearing fault frequencies, the signal should be band-
pass filtered before applying the STFT. This process primarily serves to filter out high-
frequency components and to eliminate the DC offset from the envelope signal, which
would otherwise dominate the signal if not removed. The band-pass filter lower cut-off
frequency is defined at 5 Hz, while the upper limit is set at the highest frequency of interest.
Finally, the signal is down-sampled to match the Nyquist frequency with the highest
frequency of interest to further prevent aliasing phenomena. The present analysis utilizes
the STFT to interpret the signature of the envelope spectrum during the machine start-up,
which is a windowed version of the classic FFT. This tool is mainly selected due to its
simplicity and low computational burden. The STFT is defined as follows:

STFT[x(t)] = X(τ, f ) =
∫ ∞

−∞
x(t) w(t − τ)e−j2π f tdt (7)

where τ is the window length, and the function w(t − τ) represents a window of length τ
centered at instant t. In addition, a Hanning window is applied to each signal section to
minimize spectral leakage, and a high window overlap level is applied to improve the time–
frequency map resolution. Note that the STFT offers an adequate time–frequency resolution
for the application at hand, but it presents a limited frequency resolution depending on the
window length. Figure 4 depicts the signal processing pipeline used to achieve adequate
time–frequency representation of the transient vibration signature.

Figure 4. Signal processing pipeline graphic description with an inner race defect example.

3. Experiment Description

The proposed analysis is implemented by utilizing an induction motor test bench
internally hosting the different bearings being tested. The utilized motor is a four-pole
squirrel cage induction machine with 36 stator slots and 28 rotor bars. Figure 5 shows the
machine cross-section, and Table 1 presents its main characteristics.

The bearings under test are internally allocated within the DE plate of the induction
machine. This represents a realistic diagnosis scenario including the structural response of
the motor and not only the bearing structural elements. The induction motor is coupled to
a DC generator via flexible mechanical coupling that imposes a constant resistant torque.
The load torque is manually controlled by utilizing a variable autotrasformer connected to
the field winding. The armature winding of the DC generator is connected to a dissipation
resistance. The induction machine is either directly supplied by a 50 Hz three-phase
network or driven via a Variable Frequency Drive (VFD). The machine’s alignment is
precisely adjusted using a commercial tool that quantifies misalignment, ensuring that the
levels remain within standard limits. Figure 6 shows a schematic of the test bench.
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Figure 5. Induction motor specimen cross-section.

Table 1. Induction motor characteristics.

Number of poles 4
Rated power 1.1 kW
Rated speed 1440 rpm
Power factor 0.78
Rated voltage 230/400 V
Number of rotor bars 28
Number of stator slots 36

Non drive-endArmature circuit

Field circuit

Single phase 
autotransformer

230 V, 50 Hz
Single phase network

1

3
2 Drive-end

Three phase 
autotransformer

400 V, 50 Hz
Three phase network

Variable Frequency Drive
Single phase rectifier

Faulty bearing location

Figure 6. Test bench graphic description. (1) Induction machine including faulty bearing, (2) DC
generator imposing constant resistant torque, (3) flexible coupling.
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The signal acquisition is performed by utilizing commercial piezoelectric unidirec-
tional accelerometers (PCB352C33). These are placed in two orthogonal circumferential
directions in the DE plane (i.e., located at 12 o’clock and 3 o’clock). In this way, the reliability
of the measurement is improved by considering slightly different structural responses.
The sensor is attached using a well-known adhesive polymer (UHU® Patafix), which offers
proper stability and attachment flexibility [51]. The sensors are connected to a signal condi-
tioning unit, and the acquisition is performed using a wave recorder (Yokogawa DL350,
Tokyo, Japan) at a sampling frequency of 20 kHz. Figure 7 shows the location description
of the accelerometers in the induction machine specimen.

z

(a) (b)

x

x

y

Figure 7. Accelerometer locus description. (a) Vertical xy-plane, (b) horizontal xz-plane.

This study includes different spherical rolling element bearings with different localized
defects in the races. The defects are artificially induced via electric discharge machining
in both the inner and outer races. Moreover, two different defect widths are implemented
within the range of Dr < 1, corresponding to widths of 0.5 and 1 mm, respectively. Figure 8
depicts the different bearings under test with the implemented race faults. Table 2 shows
the main bearing dimensions according to Figure 1b, together with the expected fault
signature in the frequency domain following Equations (1)–(4). The characteristic fault
signature is provided in terms of a coefficient k, only including geometry characteristics,
which multiplies the rotating frequency to determine the characteristic fault locus in the
frequency domain. The faulty bearings are allocated within the DE end plate, as shown in
Figure 6. Outer race defects are placed in the maximum radial load area at the 6 o’clock
circumferential position.

(a) (b) (c) (d) (e)

Figure 8. Bearing defect description. (a) Healthy, (a) 0.5 mm inner race defect, (c) 1 mm inner race
defect, (d) 0.5 mm outer race defect, (e) 1 mm outer race defect.

Table 2. Bearing dimensions with nb = 9 and characteristic frequency coefficients k assuming θ = 0.

din [mm] dout [mm] bd [mm] dp [mm]

25 52.00 7.94 38.5

BFO BFI BSF CF

3.59 5.41 2.37 0.40

The study of the bearing fault signature is performed during the machine’s transient
start-up. This strongly varies depending on the electrical actuation of the induction machine.
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The present analysis examines two of the most commonly encountered actuation scenarios,
specifically those involving VFD actuation and direct line-fed operation. The direct line-
fed induction machine at the rated line-to-line voltage produces an extremely fast start
due to the low inertia generally present in low-voltage machines. The abrupt start-up of
the machine may mask the useful transient vibration response due to a high-amplitude
initial shock. To mitigate this, a reduced voltage start-up at 50% of the rated line-to-line
voltage is additionally implemented. In this way, the motor start-up is elongated and
surpasses the duration of the acquired initial mechanical shock. Figure 9 exemplifies the
differences between the rated and 50% line-to-line voltage start-ups at the rated steady-state
slip and healthy bearing. The VFD-fed actuation is performed by utilizing a commercial
inverter featuring an open-loop scalar control. The control system progressively varies
the frequency and the supply voltage to keep a constant V/Hz ratio. This is performed at
different variation rates, which are defined by a ramp length parameter. Thus, different
transient start-up lengths are imposed to verify the behavior of faulty bearing components
at different acceleration rates. The examined VFD-fed start-up ramps are defined with
durations of 5 and 20 s, respectively.
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Figure 9. Line-fed induction machine startup vibration signal at 12 o’clock for (a) rated line-to-line
voltage, (b) 50% rated line-to-line voltage.

The experimental campaign includes the vibration signal acquisition at different
constant load points imposed by the DC generator. The machine load level is defined by the
slip at steady-state (i.e., relative difference between synchronous and shaft rotating speeds).
Note that the slip heavily swings from 1 to nearly 0 in the line-started case, while it is kept
constant during the VFD-fed startup [52]. Five load points are defined, corresponding to
the inherent slip at no-load and four points in steps of 25% of the rated slip (i.e., 1485 rpm,
1470 rpm, 1455 rpm, and 1440 rpm). Under conditions of reduced line-to-line voltage
excitation, only four load points are defined, as the available torque scales with the square
of the voltage. Additionally, no-load excitation already accounts for 25% of the rated slip.
A total of 10 startups and steady-state signals of a 30 s duration are acquired per load point,
startup type, and bearing fault topology.

4. Analysis of Results

This section presents the acquired results both in steady-state and different transient
startup signals. Moreover, the results are compared with an open-source dataset, where
faulty bearing vibration signals are directly acquired in the bearing surroundings during a
VFD-fed startup.
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4.1. Steady-State Analysis

The steady-state analysis at the rated slip of the vibration envelope spectrum eluci-
dates the different fault signatures in the acquired signals. The spectrum is obtained by
enveloping the vibration signal and further transforming it in the frequency domain though
the well-known FFT. A Hanning window is implemented to reduce spectral leakage.

Figure 10 shows the envelope spectrum for different bearing specimens, including
healthy, inner race, and outer race defects. The spectrum includes signals acquired during
line starting at rated line-to-line voltage and VFD-fed excitation. The displayed signals
are acquired at the 12 o’clock circumferential position at the rated slip (i.e., 1440 rpm
shaft rotation). An immediate observation is the clear identification of the characteristic
fault frequencies corresponding to inner and outer race-localized defects in both the line-
started and VFD-fed cases. The envelope spectrum in healthy conditions does not show
relevant information regarding bearing defects and only highlights the increased noise
for VFD-acquired signals. Note that the envelope spectrum components observed in the
healthy case corresponding to Figure 10a are not present in the faulty cases. This fact
emphasizes the absence of significant electromagnetic vibration components influencing
the bearing fault detection within the frequency range of interest when demodulation
tools are utilized. Table 3 shows quantitative data regarding the amplitude and frequency
location of characteristic faulty components for both defect sizes and actuation modes.
A first conclusion drawn from the steady-state analysis is that the fault frequencies are
independent of the actuation mode, as evidenced by the nearly identical amplitude values
observed for both the line-started and VFD-fed modes. The light changes observed in
the frequency location are derived from the manual tuning of the shaft speed by utilizing
a manual tachometer and from the expected rolling element slippage. The amplitude
comparison between 0.5 mm and 1 mm defects shows a slight decrease for the higher defect
level. This fact contrasts with the expected rms increase in the vibration signal for higher
defect sizes [50]. Nevertheless, the amplitude of the mechanical shocks follows the expected
rms vibration increase, as shown in Figure 11. This increase is better observed for inner
race defects in the present study. In addition, rotating frequency-modulated components
around fault characteristic frequencies (i.e., k fBPI ± n fr ∀ k = 1, 2, 3, . . . n = 1, 2, 3, . . .;
k fBPO ± n fr ∀ k = 1, 2, 3, . . . n = 1, 2, 3, . . .) are more prominent for reduced defect sizes.

Table 3. Characteristic frequency location and amplitudes for different faulty bearings.

Line-Started VFD-Fed

Frequency [Hz] Amplitude [dB] Frequency [Hz] Amplitude [dB]

Outer race, 0.5 mm

fBFO 86.67 −51.34 86.67 −60.21
2 fBFO 173.31 −52.82 173.31 −59.53
3 fBFO 260 −54.58 259.96 −61.24

Outer race, 1 mm

fBFO 86.44 −62.4 86.6 −60.47
2 fBFO 172.9 −63.32 173.23 −60.32
3 fBFO 259.32 −63.33 259.83 −60.32

Inner race, 0.5 mm

fBFI 129.37 −49.95 129.4 −49.81
2 fBFI 258.74 −51.12 258.8 −51.63
3 fBFI 388.1 −52.88 388.17 −52.98

Inner race, 1 mm

fBFI 129.27 −58.39 129.33 −56.15
2 fBFI 258.53 −59.52 258.67 −56.63
3 fBFI 387.8 −61.19 388 −57.96
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Figure 10. Vibration envelope spectrum analysis acquired at 12 o’clock position at rated slip,
(a) healthy, (b) 0.5 mm outer race defect, (c) 1 mm outer race defect, (d) 0.5 mm inner race defect,
(e) 1 mm inner race defect.
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Figure 11. Vibration amplitude comparison among two defect widths. Signals acquired at 12 o’clock
at rated slip. (a) Outer race defects, (b) inner race defects.

4.2. Transient Analysis

The present subsection describes the analysis of the induction motor vibration signals
during the studied start-up excitation modes at the rated slip. Four distinct start-up modes
were implemented, including line-started at 100% and 50% of the rated line-to-line voltage,
along with VFD-fed modes featuring ramp-up times of 20 s and 5 s. Figures 12–16 show
the results of the start-up analysis by utilizing the demodulated STFT together with the
time-domain vibration signals at both the 12 o’clock and 3 o’clock circumferential positions.
The dashed red line marks the start point of the time–frequency transformation, which is
applied to exclude the processing of blank signal intervals. The STFT time window (i.e.,
w(t − τ)) is kept at 0.3 s across the different start-up scenarios to allow for the quantitative
analysis of time–frequency amplitudes.

Figure 12 shows the vibration signature when a brand new healthy bearing is located
in the end plate. The effects of the VFD actuation are clearly identified by observing the
time–domain transient signals. The VFD-induced harmonic content in the vibration signals
is mainly located at higher frequencies, as evidenced by the steady-state comparison in
Figure 10 and Table 3 even if the noise floor in the frequency range of interest is clearly
increased. By observing the line-started signals, the overall vibration amplitude is lower
for the reduced line-to-line voltage case. This observation is aligned with the expected
electromagnetic vibration for reduced excitation levels, even if the shaft rotates at the rated
speed. Moreover, in the case of the healthy bearing in line-started conditions, a high-
amplitude starting shock is observed for both voltage levels. Sensors located at 12 o’clock
and 3 o’clock provide similar information, with some amplitude differences, mainly due to
the structural transfer function between acting forces and vibration acquisition points.

Figures 13 and 14 show the transient vibration analysis of the two studied bearings
containing outer race defects. The outer race defect signature k fBPO ∀ k = 1, 2, 3, . . . is
clearly observed in all cases. However, the outer-race 0.5 mm defect provides less-evident
signatures in both the line-started and VFD-fed excitation modes. The main reason for the
signature masking in the case of the line-started 0.5 mm defect is the presence of a high-
amplitude initial shock. In addition, the signature of this defect is not evident in the case of
the 3 o’clock position, even in the case of VFD-fed excitation. For the 1 mm outer race defect
case, the fault signature during transient evolution is much more observable. In this case,
no initial shock is observed in the case of line-started excitation, which contributes to the
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clear identification of fBPO frequencies. The fault signature is not evident at low rotating
speeds. This is clearly observed in the transient evolutions of 50% line-started and VFD-
fed excitation modes, even in the time domain signals. Moreover, the signature becomes
observable at both the 12 o’clock and 3 o’clock positions, with only slight differences
observed during long ramp excitation.

Figure 12. Healthy bearing at rated slip, (a) line-started 100% rated voltage, (b) line-started 50% rated
voltage, (c) VFD-fed 20 s ramp, (d) VFD-fed 5 s ramp.

Figures 15 and 16 present the transient vibration analysis for the two bearings with
inner race defects under study. Both 0.5 mm and 1 mm defects clearly provide observable
fault signatures at the characteristic frequencies k fBPI ∀ k = 1, 2, 3, . . .. Moreover, no initial
shock masking is observed in any inner race case, which allows for the clear identification
of characteristic frequencies in the line-started cases. All signatures are clearly evidenced in
both the acquisition circumferential positions. In addition, the characteristic components are
observed independently of the rotation speed for the VFD case. Under faster acceleration
at 50% of the rated line-to-line voltage, the initial portion of the signal shows no contact
shocks, making the characteristic frequencies unobservable at low speeds.

The mechanical impulses induced by race defects dominate the signal envelope spec-
trogram during the start-up for all types of actuation. The inner race is the most observ-
able race defect for both defect widths, while the outer race 0.5 mm defect provides a
less-dominant signature, even if the characteristic frequencies are clearly observed in the
envelope spectrogram. The acquisition position in the circumferential direction does not
heavily affect the bearing signature identification, which is only influenced under weaker
excitation levels (e.g., outer race 0.5 mm defect or healthy specimen). On the other hand,
the presence of initial mechanical shocks heavily hinders bearing signature identification
during machine start-up. Another observation is the low levels of the characteristic fault
frequencies for low speeds during the initial start. This initial attenuation is better observed
for 1 mm defects in outer and inner races, while smaller defect widths are evident even for
initial rotation phases.
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Figure 13. Outer race 0.5 mm defect at rated slip, (a) line-started 100% rated voltage, (b) line-started
50% rated voltage, (c) VFD-fed 20 s ramp, (d) VFD-fed 5 s ramp.

Figure 14. Outer race 1 mm defect at rated slip, (a) line-started 100% rated voltage, (b) line-started
50% rated voltage, (c) VFD-fed 20 s ramp, (d) VFD-fed 5 s ramp.
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Figure 15. Inner race 0.5 mm defect at rated slip, (a) line-started 100% rated voltage, (b) line-started
50% rated voltage, (c) VFD-fed 20 s ramp, (d) VFD-fed 5 s ramp.

Figure 16. Inner race 1 mm defect at rated slip, (a) line-started 100% rated voltage, (b) line-started
50% rated voltage, (c) VFD-fed 20 s ramp, (d) VFD-fed 5 s ramp.
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4.3. Effects of Load on the Characteristic Defect Signature

The present subsection analyzes the effects of machine load on the analytically es-
timated characteristic frequencies for both steady-state and transient conditions. This
analysis is performed to verify the presence of the bearing fault components under different
electromagnetic and speed conditions. For increased load levels, the slip slightly increases
and the induction motor absorbs higher phase current levels, which may influence the level
of electromagnetic vibration. The load variation analysis is performed for both line-started
and VFD-fed cases as well as for different bearing defect widths. Figure 17 shows the
steady-state analysis of the first two faulty components (i.e., fBFO, 2 fBFO, fBFI , 2 fBFI) for
different load points. The left side of the figure shows the amplitude trends for different
load points, while the right side shows the frequency locus of the different fault signatures
for different load points. These right-side graphs are plotted for the VFD-fed case.

The faulty bearing components are identified independently of the load. A notable
observation is the shift in frequency locus as a function of the load point. This is consistent
with the expected variation in slip due to load changes in induction machines. Consequently,
the characteristic faulty frequencies dynamically change with machine speed and the
applied load. Nevertheless, the fault frequency does not exhibit significant variations across
different load points, remaining within a maximum relative 4% deviation. By observing
the amplitude trends of the outer race fault frequencies (i.e., Figure 17a,b), the amplitude
generally decreases for increased load levels and lower speeds. On the other hand, the inner
race signature does not exhibit a clear amplitude trend. Additionally, the excitation mode
does not significantly affect the amplitude of the characteristic frequency at different load
points. The data presented in Figure 17 further support the findings of Figure 10 and
Table 3, where the defect width is not identified as a significant parameter regarding the
characteristic frequency amplitudes. The data corresponding to the line-started 0.5 mm
defect demonstrate an increased noise floor, causing the amplitudes to be at a slightly
higher level. Note that the absolute amplitude values may show slight inaccuracies due to
several phenomena such as parasitic load oscillations or bearing slippage, even if energy
leakage is minimized by utilizing signal windowing.

Figures 18 and 19 show different start-up transient evolutions for different imposed
resistant torques. The vibration signals were acquired at 12 o’clock and were plot after the
initial shock appearance to better highlight variations across faulty components. Figure 18
shows the results of the study for the line-started actuation mode at 50% of the rated
line-to-line voltage. This excitation mode is selected to avoid the fast slip swing observed at
100% of the rated line-to-line voltage. The analysis of the line-started results evidences the
presence of bearing faulty components across different resistant torque levels and speeds.
Both multiples of fBFO and fBFI are dominant for all load levels and defect widths during
the transient start-up and once steady-state conditions are reached. The only effect of the
load level is a minimal variation in the start-up duration, which is nearly imperceptible
when analyzing the time–frequency maps.

Figure 19 shows the VFD-fed load analysis during a 20 s ramp start-up. This ramp
is selected due to the increased transient signal section when compared with the 5 s start.
The figure shows the dominance of the faulty characteristic frequencies across the studied
load points. Note that even the amplitude levels are within the same ranges across all of the
different loads and defect cases. The analysis presented in both Figures 18 and 19 indicates
the load independence of the characteristic fault signature for all defect widths, load levels,
and start-up modes and durations.
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Figure 17. Load dependency steady-state analysis. (a) fBFO, (b) 2 fBFO, (c) fBFI , (d) 2 fBFI .

4.4. Comparison with HUST Dataset

The present subsection compares the acquired transient signature with a recently
published open-source dataset. This is performed to further elucidate the effects of the
mechanical transfer path and to allow for a deeper analysis of the results. The HUST
dataset [53] includes vibration data acquired on a dedicated bearing module, thus avoiding
vibrations of electromagnetic and mechanical origin from the machine itself. The dataset
contains data from different faulty bearings at different loads imposed by a controlled
powder brake. The bearings are damaged using electric discharge machining with a defect
with of 0.2 mm. The same accelerometer (i.e., PCB325C33) was utilized to acquire the
vibration data, which contains VFD-fed start-ups of a 5 s duration. Figure 20 shows the
HUST dataset experimental set-up.

The qualitative comparison between datasets was performed under the closest possible
conditions in terms of bearing dimensions and start-up duration. Thus, the inner and outer
race defect data corresponding to the HUST bearing labelled as 6205 are used, since they
possess the same number of rolling elements and similar inner, outer, and ball diameters to
the bearing studied in the custom dataset. Moreover, the maximum load point is selected
(i.e., 800 W load) in the case of the HUST dataset, providing a shaft speed of approximately
1370 rpm. The custom data are shown at the rated induction motor load point featuring a
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1440 rpm shaft speed. Figure 21 shows the different time–frequency maps for the selected
signal comparison.

Figure 18. Load variation analysis during the line-started excitation mode at 50% rated line-to-line
voltage. Vibration signals acquired at 12 o’clock. (a) Healthy bearing, (b) outer race 0.5 mm defect,
(c) outer race 1 mm defect, (d) inner race 0.5 mm defect, (e) inner race 1 mm defect.

Figure 21 clearly shows the expected characteristic defect signatures for all the types of
studied bearing defects during both transient start-up and steady-state sections. An imme-
diate observation is the presence of increased rotating frequency modulations in Figure 21a
when compared with the signals acquired in the motor housing. This is evidenced by the
components k fBPI ± fr ∀ k = 1, 2, 3, . . ., which are not observed in Figure 21b. The com-
parison between outer race defects proves the increased difficulty to discern characteristic
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faulty components when compared to the inner race case. Moreover, Figure 21c shows
very small amplitudes in the beginning of the start-up evolution, which is in accordance
with the signals shown in Figures 14 and 18. Overall, each set-up exhibits distinct char-
acteristics; however, the studied defects are clearly identifiable during both the transient
start-up and steady-state phases. Nevertheless, the comparison demonstrates that the
mechanical transfer path plays a key role in elucidating the characteristic signature and its
rotating frequency modulations. The significance of the mechanical transfer path limits
the generalizability across different induction machine specimens with varying structural
characteristics (i.e., mass, stiffness, and damping), and power ratings.

Figure 19. Load variation analysis during the VFD-fed excitation mode with 20 s ramp duration.
(a) Healthy, (b) outer race 0.5 mm defect, vibration signals acquired at 12 o’clock, (c) outer race 1 mm
defect, (d) inner race 0.5 mm defect, (e) inner race 1 mm defect.
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Figure 20. HUST dataset experimental test bench description [53].

Figure 21. VFD-fed start-ups for inner and outer race defects, (a) HUST dataset inner race defect,
(b) custom dataset inner race defect, (c) HUST dataset outer race defect, (d) custom dataset outer
race defect.

5. Discussion

The analysis of low-frequency bearing defect characteristic frequencies performed in
this work supports the detection feasibility of incipient localized bearing defects across
different operating regimes and actuation modes in induction motors. These low-frequency
components are identified using a simple and linear time–frequency transformation of
the signal envelope. This indicates that the utilization of complex signal processing tools
may not represent an efficient practice when a low-frequency characteristic fault signature
is targeted. The utilized time–frequency transformation, which contains physical infor-
mation about the fault, may be of interest for physics-informed data-driven approaches,
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which typically require the preprocessing of large volumes of data. The vibration envelope
spectrum analysis of low-frequency characteristic fault components cannot properly dis-
criminate between defect widths. Different defect widths in the range of Dr < 1 provide
similar amplitudes across different load points and excitation modes. This is extended to
time–frequency analysis of variable speed vibration signals. Finally, the observability of the
characteristic frequency across different machine regimes aligns with signals from datasets
obtained under slightly different mechanical conditions, as discussed in Section 4.4.

This study presents several limitations, such as the artificial implementation of defects,
which may slightly differ from incipient naturally induced cracks. The presence and
amplitude of outer race shocks heavily depends on the defect circumferential position,
which is kept at the loaded area (i.e., 6 o’clock) for all studied faults in the present analysis.
Outer race defects are only studied when they are located in the loaded zone. Moreover,
the induction machine specimen is disassembled to change the bearing under test. This
may slightly affect the mechanical features of the test bench, even if attention is paid to keep
the assembly methodology as standard as possible. Finally, spurious mechanical shocks
of a different nature may mask the bearing defect if these are included in the analyzed
signal sections.

6. Conclusions

The present paper introduced an experimental study regarding localized bearing
fault detection across different operating regimes in induction motors. First, this work
introduced the relevant theoretical background to properly interpret the analysis and to
describe the utilized time–frequency representation tool. Next, the experimental procedure
was described in detail, including the induction motor test bench, the vibration signal acqui-
sition system, the bearing fault implementation, and the presence of spurious mechanical
shocks that may mask the characteristic fault signature. The analysis of the experimental
results is presented in several steps. First, a classic steady-state analysis at the rated slip
was conducted. Second, a broad start-up transient exploration at the rated slip, including
different excitation modes, bearing defect widths, and acquisition circumferential positions,
was performed. Third, the effects of load and thus light changes in shaft speed and imposed
constant resistant torque were studied. To conclude the analysis, the acquired data were
compared with the corresponding data from an existing open-source dataset. The utilized
time–frequency envelope spectrum was used to identify the characteristic bearing fault
signature independently of the start-up mode, defect width, and load point. This allows us
to distinguish between defect locations during start-up in an efficient and straightforward
manner across many operating scenarios. The mechanical transfer path of the induction
machine influences the bearing defect signature transmission, as demonstrated by the
comparison of signals acquired near the bearing with those measured at the motor housing.

Future research steps include the study under different lubrication states and outer race
defects locations in the circumferential position. The applicability of the detection technique
should be validated for machines with different masses, power ratings, and features in order
to further generalize it. This may include a detailed structural analysis under different
bearing defects and closely monitoring the test bench mechanical features. Moreover,
the relation between defect width and rotating frequency modulating harmonics in the
envelope spectrum should be explored in detail for both inner and outer race defects.
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Abstract: This article presents a comprehensive collection of formulas and calculations for hand-
crafted feature extraction of condition monitoring signals. The documented features include 123 for
the time domain and 46 for the frequency domain. Furthermore, a machine learning-based method-
ology is presented to evaluate the performance of features in fault classification tasks using seven
data sets of different rotating machines. The evaluation methodology involves using seven ranking
methods to select the best ten hand-crafted features per method for each database, to be subsequently
evaluated by three types of classifiers. This process is applied exhaustively by evaluation groups,
combining our databases with an external benchmark. A summary table of the performance results
of the classifiers is also presented, including the percentage of classification and the number of
features required to achieve that value. Through graphic resources, it has been possible to show the
prevalence of certain features over others, how they are associated with the database, and the order
of importance assigned by the ranking methods. In the same way, finding which features have the
highest appearance percentages for each database in all experiments has been possible. The results
suggest that hand-crafted feature extraction is an effective technique with low computational cost
and high interpretability for fault identification and diagnosis.

Keywords: condition monitoring indicator; fault diagnosis; frequency domain; gears and bearings;
hand-crafted features survey; signal processing; time domain

1. Introduction

Industrial machinery, such as gearboxes, transmission shafts, or reciprocating compres-
sors, are essential rotating equipment widely used in different industries due to their ability
to generate force and movement, making them the heart of any mechanical system [1,2].
A machine designed to perform some specific function is expected to do so throughout
its useful life. However, a machine may fail due to circumstances often outside our con-
trol. We can highlight mechanical parts such as gears, bearings, shafts, belts, or valves
as standard components that may be susceptible to failure [2–5]. Failure or cessation of
machine operation can represent significant monetary losses and affect the safety of plant
personnel; therefore, the machine must be maintained to prevent such failures [6]. Three
primary maintenance schemes are followed worldwide: Reactive, Preventive, and more
recently, Predictive [7]. Preventive maintenance has traditionally been the most common
maintenance policy in industries. Utilizing this strategy, components are replaced once
a specific use time has elapsed. Predictive maintenance prevents failures by constantly
monitoring the state of the system and identifying abnormal conditions of machine parts [8].
Predictive maintenance can be divided into Reliability-Centered Maintenance (RCM) and
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Condition-Based Maintenance (CBM) [9]. CBM is a maintenance approach that uses ad-
vanced technologies to continuously monitor and assess the condition of the machinery. In
addition, CBM plans necessary maintenance based on the information provided [10]. Due
to the need for constant monitoring, the CBM uses a data-based paradigm of three stages:
data acquisition, data processing, and diagnosis and decision-making [11,12]. CBM relies
on robust and reliable fault diagnosis capabilities [13]. The main tasks of fault diagnosis as
a final stage of CBM are indicator selection, identification and determining the cause of a
problem or machine fault, intervention planning, monitoring, and evaluation [14,15].

The selection of suitable indicators is crucial for all these tasks to ensure that relevant
problems and failures in machinery or equipment are detected. These condition indicators
are usually physical or chemical measurements of the equipment used to assess machine
conditions and predict the probability of failure. Some typical condition variables are
vibration, temperature, and electric current, among others, in the form of temporal series
or signals [16–21]. Fault diagnosis focuses on analyzing those signals of the machinery
state. Changes in measured signals can indicate a problem or failure of the machinery. Con-
stant monitoring of the machine’s condition will support diagnostic processes, associating
component failures with processed information. Once the signals for condition monitoring
have been selected, the next step to reach a fault diagnosis is processing and analyzing the
collected data. Different techniques can be used to analyze condition monitoring signals,
such as statistical analysis, time series analysis, and artificial intelligence-based analysis,
among others [22–26]. Each technique has advantages and disadvantages, depending on
the signal type and the analysis’s objectives. Of all the ways to diagnose rotating machinery
failures, Machine Learning (ML) methods have gained the most relevance and growth
recently [26–30]. Regardless of the algorithm used, all machine learning methodologies
utilize a stage of information processing and reduction called Feature Extraction [31–37].
Feature extraction is a necessary digital signal processing (DSP) process to extract relevant
information from a signal [38,39]. The goal is to reduce the dimensionality of the data
and represent the signal in a smaller set of relevant features [40,41]. This process is often
necessary as the original data may be poor quality, not in a format suitable for the algorithm,
or contain redundant or irrelevant information.

Feature extraction can include techniques such as normalization, denoising, statis-
tical value derivation, and one-hot coding, among others [42,43]. In fault diagnosis, fea-
ture extraction can reflect a change in machine components using DSP techniques and
data analysis, such as vibration spectrum analysis, wavelet analysis, waveform analysis,
and more [44,45]. These techniques transform condition-monitoring signals into a small
set of features that a machine-learning algorithm can use to detect patterns and trends in
signal values. There are mainly two ways of performing feature extraction: manual ex-
traction of hand-crafted features and automatic extraction [46,47]. The use of hand-crafted
features and automated feature extraction methods depends on different factors, such as
the amount and complexity of the data, available resources, and the skills and time of the
team. Despite advances in automated feature extraction methods, hand-crafted features
remain valuable in fault diagnosis research for several reasons. Firstly, they offer high
interpretability, allowing direct physical insights into fault mechanisms. Secondly, they
provide flexibility in application across different types of rotating machinery. Thirdly, their
computational efficiency makes them suitable for real-time monitoring applications. Lastly,
hand-crafted features can capture domain-specific knowledge that might be overlooked
by automated methods, potentially leading to more robust and generalizable fault diag-
nosis models. Automatic feature extraction is suitable when the data are extensive and
complex, and there is no broad understanding of the phenomenon being investigated.
However, the disadvantages of automatic feature extraction include complexity, difficult
interpretability, and the need for an adequate volume of data [48–50]. On the other hand,
hand-crafted features are more suitable when the data are small and the team has a broad
understanding of the phenomenon being investigated. This methodology is more control-
lable and maintains simplicity in its implementation and execution, allowing a clear and

28



Sensors 2024, 24, 5400

physical interpretation in the context of the problem and a greater understanding of the
features selected [51–54]. The final stage of the analysis and search for patterns for fault
diagnosis is usually the classification task [55]. Fault classification is used to identify and
categorize failures in a system. The goal is to classify an observation, typically a condition
monitoring signal, into different fault categories, each representing a possible cause of
failure. The features extracted from the signals are the inputs to the classification models,
allowing machine learning algorithms to make a more precise separation between different
failure categories [56–58]. The separability of the data for good class discrimination to occur
by the various models and the interpretation of the classification results is directly related
to the quality of the features extracted from the condition monitoring signals.

DSP-based hand-crafted features are created or designed to reveal and quantify specific
information or behavior in the signals. Hand-crafted features can be extracted directly
or indirectly by a human without the help of algorithms or automated tools. They may
include methods such as manual calculation of statistical measures or definitions of specific
knowledge about the phenomenon [42,54,59,60], in this case, the machine under study.
Hand-crafted features can be more flexible and customized than automated methods.
However, it can also be more labor-intensive and time-consuming in their search, design,
implementation, function tests, and validations, especially in problems with many variables,
for example, fault diagnosis of rotating machinery. The literature on these topics can become
remarkably extensive and confusing since most focus on a specific application case and
field of study. In Table 1, we show central reviews closer to manual feature extraction for
condition monitoring on rotating machines. The table illustrates which main topics have
been studied and how many Time features (TF), Frequency features (FF), Time-Frequency
Features (T-FF), or Planetary Gearbox Features (PGF) have been mentioned or used for
fault diagnosis purposes. Thus, highlighting a notable absence of a set of features.

Table 1. Main review publication closer to hand-crafted feature extraction in rotating machinery.

Ref. First Author Year Main Topic Feature Extraction

[22] H. Yang 2003 Rotating Machinery TF: 7

[44] P. Večeř 2005 Gearbox TF: 6

[61] W. Yan 2008 Bearings TF: 5

[62] K. Tom 2010 Bearings and Gears TF: 8

[63] A. S. Sait 2011 Gearbox TF: 7

[64] Z. Y. Han 2013 Gearbox TF: 11

[65] X. Zhao 2013 Planet gear teeth fault TF: 18, FF: 30, PGF: 15

[10] K. L. Tsui 2014
Data-driven approaches
in Prognostics and Health
Management

TF: 10

[66] V. Sharma 2016 Gear condition indicators TF: 14, FF: 7

[67] W. Caesarendra 2017 Low-Speed Slew Bearing TF: 9, FF: 6

[68] S. Riaz 2017 Vibration Feature
Extraction TF: 7

[69] A. Ogundare 2017 Helicopter Gearbox TF: 3

[70] D. Goyal 2017 Fixed Axis Gearbox TF: 13, FF: 9, T-FF: 1

[71] T. Wang 2019 Wind turbine planetary
gearbox TF: 14, FF: 4

[72] A. Stetco 2019 Wind turbine TF: 13

[73] X. Zhang 2021 Bearings, Case Western
Reserve University Data TF: 5, FF: 5
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Table 1. Cont.

Ref. First Author Year Main Topic Feature Extraction

[74] M. A. Khan 2022 Bearings of Electrical
Machines TF: 7

[75] S. Zhang 2022 Vibration signal
processing in gears TF: 5

[15] S. Gawde 2023 Industrial Rotating
Machines TF: 13, FF: 6

[76] R. Pandit 2023 SCADA data for wind
turbines TF: 3

[77] M. Romanssini 2023 Vibration Monitoring of
Rotating Machinery TF:4

[78] X. Xu 2024 Wind turbine gearbox TF: 10, FF: 11

This
work

This work 2024 Rotating machinery TF: 123, FF: 46

For this reason, in the current work, we present an exhaustive compilation of hand-
crafted features based on mathematical and statistical calculations. These features can be
computed on condition monitoring signals for both time and frequency domains and used
together as a classical feature extraction process. Each feature’s theoretical foundation is
duly documented and presented as a mathematical formula.

This work aims to address several key research objectives: (1) To compile and standard-
ize a comprehensive set of hand-crafted features from diverse fields for rotating machinery
fault diagnosis; (2) To systematically evaluate the performance of these features across
multiple databases and classification models; (3) To identify the most relevant and gen-
eralizable features for different types of rotating machines; (4) To assess the effectiveness
of time-domain, frequency-domain, and fusion-based feature sets. By addressing these
objectives, we seek to provide a thorough understanding of the role and effectiveness
of hand-crafted features in modern fault diagnosis applications, supporting efforts to
bridge the gap between traditional signal processing techniques and advanced machine
learning approaches.

To address these research objectives, our study makes the following key contributions:

1. A compilation of 169 hand-crafted features for condition monitoring signals, including
123 features for the time domain and 46 features for the frequency domain, based on
a literature review of two decades. The features come from various fields and have
mathematical/statistical foundations. This includes a unification of the nomenclature
of the formulas and a categorization based on the aspect they are intended to measure.

2. A rigorous evaluation of vibration signal features across seven feature ranking meth-
ods, three classification models, and seven datasets of vibration signals from gearboxes
and bearings. One dataset is a public benchmark, while the others belong to our insti-
tution. Furthermore, features are evaluated under the same conditions.

3. Analysis of top selected features by ranking methods across multiple datasets of
different rotating machinery types. This demonstrates the effectiveness of classical
feature extraction and provides insight into the most useful features for fault diagnosis
in various mechanical systems.

The general restriction that the hand-crafted feature must maintain in our collection is
that it must be self-contained, and its mathematical or statistical foundation must allow
the calculation to be performed directly on the signal in any of the domains. There are
many more features, some so sophisticated that for their calculation, they require the
implementation of their complete algorithms, which, for the reasons previously stated, are
not the objective of this compilation. It also does not consider types of signal processing
that return the same signal but are modified, such as filters or TSA (Time Synchronous
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Averaging) [79]. Only simple hand-crafted features that seek to measure or quantify some
specific phenomenon within the signal were collected, that is, that return a numerical
value after the feature extraction process, converting the feature into a variable that can be
analyzed. Finally, the results show high classification percentages for the various databases,
showing that results comparable to deep learning methodologies can be obtained with
adequate classical feature extraction. The evaluation shows that applying these hand-
crafted features is helpful for any signal because they are calculated directly on them,
and the vast majority do not have any configurable parameters, making the processing fast,
optimizable, and with low computational cost.

The remainder of this paper is organized as follows: Section 1 provides a comprehen-
sive compilation of hand-crafted features for classical feature extraction, including 123 time
domain and 46 frequency domain features, along with their mathematical formulations and
references. Section 2 describes the experimental data used for evaluating the performance
of these features, detailing seven databases of rotating machinery faults. Section 3 outlines
the proposed methodology for feature evaluation, including the feature extraction process,
dimension reduction techniques, and classification techniques. Section 4 presents the results
of the extensive experimentation, discussing the effectiveness of different feature subsets,
ranking methods, and classifiers across various fault types and databases. This section
also analyzes the most consistently useful features and their potential physical significance.
Finally, Section 5 concludes the paper by summarizing the key findings, discussing the
implications for fault diagnosis in rotating machinery, and suggesting directions for future
research in this field.

2. Classical Feature Extraction

Condition monitoring is a systematic process that seeks to assess the current state of a
system or component. In the case of rotating machinery, this may include vibration moni-
toring, which is the measurement of vibrations generated by the operation of the machine
and the most widely used condition indicator for the diagnosis of machine faults [80–82].
Vibration is an oscillatory movement of an object. A vibration signal is a graphical or
numerical representation of the vibration of an object recorded over time. The vibration
signal can be measured with vibration sensors, such as accelerometers, and its analysis
is performed using vibration analysis techniques, such as the Fourier transform or time
domain analysis [83]. Vibration is an indirect way to measure machine health, as vari-
ous factors such as wear, lubrication problems, structural problems, and other technical
difficulties [84–86]. Consequently, these vibrations can be analyzed to detect possible ma-
chinery failures, known as vibration-based fault diagnosis. In fault diagnosis applications,
feature values can be compared with predefined thresholds to determine normal or fault
conditions, so selecting the appropriate feature is critical. In an ideal case, a significant
feature is expected to distinguish normal conditions from fault conditions, establish a
trend analysis, and avoid the influence of other equipment operating parameters [62,87].
However, the features are not necessarily informative for all cases or types of faults. For this
reason, it is necessary to combine different types of features, so that information with the
most remarkable possible diversity is obtained and can be used to reflect the machine’s
condition, making it useful for fault diagnosis.

2.1. Signal Processing-Based Hand-Crafted Features

Feature extraction is a critical process in vibration analysis and fault diagnosis. It
consists of identifying and selecting the signals relevant to fault diagnosis, which can
be used to distinguish between different types of faults. These features can be extracted
manually or automatically and may include measurements such as frequency, amplitude,
and shape of the vibration signal. A direct way to achieve this extraction is by using digital
signal processing (DSP) since one of its main tasks is extracting useful information and
manipulating and transforming signals. The goal of using these DSP techniques is to find a
new form of simple, effective, and reduced representation of the original signals. In the
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DSP, various transforms are used to analyze, manipulate, and represent signals differently.
Some of the most common transforms include Laplace, Kalman, Wavelet, Hilbert, or Z
transform. These are just some common transforms and techniques used in DSP. The choice
of the appropriate transform depends on the signal’s characteristics and the problem’s
specific needs to be solved because each method will reveal different information from
the signal. In the present compilation, the search has been limited to using techniques
that use simple Fourier transforms, such as the FFT and the PSD. This choice is because
simple processes were sought and the possibility of reusing the transformation results in
further processing. For these reasons, new representations of signals are sought, analyzed,
and processed in the time or frequency domains. The time domain representation is the
natural way a signal is presented and shows how the magnitude of a variable changes
over time, whereas the frequency domain representation shows the energy distribution of a
signal at different frequency components. Regardless of the domain used to represent and
analyze a signal, a traditional way to extract information from it is through mathematical
or statistical calculations. These calculations can be applied directly to the signal, using its
data points as the statistic sample or input values to a function. Therefore, the computed
values are then the features extracted from the signals, and a suitable set of features could
efficiently represent a signal. This process is also a way to reduce the dimension of the data
because now we use the feature set instead of the whole signal.

The information extracted from the signals will depend on the nature of the calculation
or what is to be measured, quantified, or sought to be reflected with the features. In this
way, we have some formulas (features) that measure the energy contained in the signal.
In contrast, others seek to quantify the times the signal exceeds a certain threshold and many
more types of information search. Thousands of processes, calculations, methodologies,
and algorithms could be used to process a signal and extract some specific information
from it. For instance, ref. [88] uses two approaches to align features in the time-frequency
domain to classify faults. In addition, they use supervised and unsupervised techniques to
improve the method. Besides, ref. [89] constructed a Wavelet auto-encoder, and then a deep
approach to this model was performed. In [90], they apply a time-frequency transformation
to express the signals. Then, a multi-scale TransFusion model is used to classify the features
of time-frequency signals. Most groups of methods or techniques to extract features are
applied in a specific way in different fields of application; the same ones seek all kinds
of information and not one in particular. Many even depend on the specific application
case where they will be used. For this reason, it is challenging to accurately categorize all
of them based on the type of information they seek. To find the most significant number
of hand-crafted features that can be calculated directly from the signal, an exhaustive
compilation of formulas and calculations used as classical feature extraction methods on
signals and applied in machine learning tasks has been carried out. These hand-crafted
features have been chosen over the automatic ones mainly because, as an approximation
to the DSP, they carry a direct physical significance with the phenomenon measured from
the signals. This fact notably helps increase the ability to interpret the results within the
context of the problem, in this case the diagnosis of failures in rotating machinery. We can
also mention other significant advantages such as its simplicity, the control of the choice it
offers the user, and its low computational cost in the execution. Other filtering criteria to
accept features in this collection are that they are complete and self-contained, that their
process can be represented in simple mathematical formulas, and that their calculation is
conducted directly on the signal, whether in the time or frequency domain. Furthermore,
we chose features that directly return real scalar numeric values after their computation
and not processing styles that return the same but modified signal, such as filters, TSA,
or noise cancellation techniques that are very common in DSP.

Features of various fields where signal processing is performed have been collected.
Biomedical signal processing, such as Electrocardiography (ECG), Electromyography
(EMG), or Electroencephalography (EEG), is a great exponent of fields where feature
extraction is necessary. Other fields, such as audio signal analysis, roughness profiles,
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and entropy measurement, also require signal processing and are different from the field
of fault diagnosis. Our compilation has shown that hand-crafted features follow certain
trends in quantifying specific information they pursue according to the signal represen-
tation domain they use. In Figure 1, we present our proposed summary of the main
information trends for which hand-crafted features try to quantify signals in the time and
frequency domains. In this way, we can see that the information searched by the feature is
closely linked to the domain to which it is applied. Signal analysis in different domains
can help identify patterns and trends that are not evident in the original domain, which
can be helpful in fault diagnosis, vibration analysis, anomaly detection, and other similar
applications. The main trends in the time domain allude to the detection of patterns related
to the waveform, while those in the frequency domain tend to search for changes in the
frequency components of the spectra.

Signal processing-based
Feature Extraction

PSD

FFT

Frequency Domain

Time Domain

Statistical Features

Shape and Profile
Features

Entropy and Energy
Features

Hybrid and Ratio
Features

Counting Features

Statistical Features

Frequency weighting
Features

Harmonic and
Frames Features

Central tendency and
Statistical moments

Ratio Features

Figure 1. Main trends in information search for hand-crafted signal processing-based features in the
time and frequency domain.

Some features search for or quantify information, as established in Figure 1, but do
so in frames, bands, or segments of the signal in any domain. This is conducted to focus
the search for information based on priori knowledge that a certain phenomenon should
manifest in a specific signal locality, reducing the number of signal data points that would
be used to calculate the feature. This would mainly reduce the “noise” of statistical features
and make the calculation more relevant or discriminating. This happens more frequently
with features from fields such as music or roughness since they seek to verify whether any
variation manifests in specific parts of waveform or frequency spectrum segments. This
hand-crafted feature calculation is mainly applied in the time domain when the signals are
not stationary or their pattern varies over time, and in the frequency domain when it is
known in advance that a band or frequency component should be altered for some reason.
Because the literature reflects this type of emphasis in certain fields where feature extraction
is applied, in the collection shown further, some features with the same formulation are
counted as different, often depending on when applied to the complete signal or by bands
or frames. As a substantial part of the contribution of this paper, a unification of the
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mathematical nomenclature has been carried out so that the calculation of the features and
the information they quantify may be more understandable.

The unification of mathematical nomenclature presented in this paper is a significant
contribution to the field. It addresses the inconsistencies in terminology across different
domains and applications, providing a standardized framework for feature calculation and
interpretation. This unified approach improves the clarity and comparability of feature
extraction methods, facilitating better understanding and more effective use of these
techniques in various disciplines.

For this reason, Table 2 shows a glossary of terminology. On many occasions, different
authors use one version or another of the feature. However, they have different effects when
classifying faults. This fact can be verified in the following sections, where the features
are evaluated. The following subsections will detail the tables of the features collected for
each domain.

Table 2. Feature nomenclature.

Symbol Description

y is a signal in the time domain

yi is the i-th element of y

N is the total number of samples of y

p is a threshold value

η is a scale factor

mt is an integer value of the temporal moment order

Rpi is the peak average of the signal

Rvi is the valley average of the signal

R3ziT is the peak-to-peak value of the third ridge and valley

ROT are the regions over a threshold

SBP is the spacing between peaks

NSBP is the total number of spaces between peaks

NHSC is the total number of regions above threshold

g(x) is a custom function

PPCM is the spaces between profile peaks crossing the midline

lag is a period between one event and another.

SAM is a vector containing the lengths of consecutive signal samples above the mean.

SBM is a vector containing the lengths of consecutive signal samples below the mean.

lb is a lower bound

ub is an upper-bound

r is a multiplier of the standard deviation

l is an integer number corresponding to the index of a time frame

Nhop is the number of samples per analysis section

L is L is the total number of time frames

yl is the l-th time frame from the y signal

STEi is the i-th of energy in a short period

avSTE is the average STE over a 1 s window

Nw is the number of points of a sample frame of the original signal yi

f0 is the minimum fundamental frequency to be analyzed
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Table 2. Cont.

Symbol Description

Y is the frequency amplitude spectrum of y

Yk is the k-th measurement of the frequency amplitude spectrum (Y)

K is the number of lines in the frequency spectrum

P is the power spectrum frequency of y

Pk is the k-th measurement of the power spectrum frequency (P)

KP is the total number of spectrum lines in the power spectrum

fk is the frequency value of the k-th spectrum line

ULC Upper-cutoff frequency of the low-frequency band.

LLC Lower-cutoff frequency of the low-frequency band.

UHC Upper-cutoff frequency of the high-frequency band.

LHC Lower-cutoff frequency of the high-frequency band.

fh,l is the frequency of harmonic peak h-th in frame l-th.

NH is the number of harmonics that is considered.

Ah,l is the amplitude of harmonic h-th in frame l-th.

Sl(k) is the l-th frame of a frequency spectrum

NFT is the number of points in the current frame of the spectrum

δ is a small parameter to avoid calculation overflow.

b is the band number

loKb is the integer frequency bin corresponding to the lower Edge of the band loFb.

hiKb is the integer frequency bin corresponding to the higher Edge of the band hiFb.

∗ is the multiplication symbol

2.2. Time Domain Features Recopilation

Computational analysis in the time domain is less expensive in terms of processing,
and the only preprocessing required is signal conditioning. On several occasions, a visual
inspection of various signal parts will be enough to detect abnormal behavior. However,
there are non-stationary, chaotic, and noisy signals, such as vibration signals, where the
detection of patterns visually is practically impossible. In those cases, it is essential to
use features that help us to describe analytically the behavior of the signal. Time domain
signal analysis is a natural technique for processing and analyzing the waveform evolution
of signals over time, mainly because most sensors deliver measurements or waveforms
over time.

Any technique used for feature extraction in the time domain will aim to analyze and
characterize the waveform of the signal in terms of its temporal behavior. The choice of
features to extract depends on the specific application and the type of signal to be analyzed.
Examples of time-domain DSP techniques from which one or more features can be extracted
and quantized include peak and valley detection, filtering, period inspection, amplitude
and phase, distortion, denoising, and segmentation, such as identifying specific sections of
the signal. Combining these techniques in a time-domain signal analysis process allows
valuable information to be extracted and used for fault diagnosis, condition monitoring,
and pattern detection in vibration signals. A complete collection of 123 handcrafted features
in the time domain (T1 to T123) is presented in Table 3 to perform the classical feature
extraction. The nomenclature of the formulas shown can be seen in Table 2, while references
to the characteristics can be found in Table 4. The general trends of the information extracted
by this type of feature are statistical values, waveform patterns, signal integration, entropy,
event count, ratios, and hybrid values from the combination of several calculations.
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Table 3. Summary of the Time Feature Set.

Feature Name Formula

Mean T1 = 1
N ∑N

i=1 yi

Variance T2 = 1
N ∑N

i=1 (yi − T1)2

Standard deviation (STD) T3 =
√

1
N ∑N

i=1 (yi − T1)2

Root mean square (RMS) T4 =
√

1
N ∑N

i=1 (yi)
2

Max value T5 = max(y)

Kurtosis T6 =
N ∑N

i=1 (yi−T1)4

[∑N
i=1 (yi−T1)2]

2

Skewness T7 =
N ∑N

i=1 (yi−T1)3

T33

Energy operator (EO) T8 =
N2 ∑N

i=1 ((yi+1)
2−(yi)

2−mean((yi+1)
2−(yi)

2))
4

[∑N
i=1 ((yi+1)2−(yi)2−mean((yi+1)2−(yi)2))2]

2

Mean of absolute values (Mean abs.) T9 = 1
N ∑N

i=1 |yi|
Square root amplitude value (SRAV) T10 =

(
∑N

i=1

√
|yi |

N

)2

Shape factor (SF) T11 = T4
T9

Impulse factor (IF) T12 = T5
T9

Crest factor T13 = T5
T4

Clearance factor T14 = T5
1
N ∑N

i=1 (yi)2

CPT1 T15 = ∑N
i=1 log(|yi |+1)
N log(T3+1)

CPT2 T16 = ∑N
i=1 exp(yi)

N∗exp(T3)

CPT3 T17 =
∑N

i=1

√
|yi |

N∗T2

Mean Square Error (MSE) T18 = 1
N ∑N

i=1 (yi − T1)2

Log-log ratio (LLR) T19 = 1
log(T3) ∑N

i=1 log(|yi|+ 1)

Standard Deviation Impulse Factor (SDIF) T20 = T3
T9

5th statistical Moment (FIFTHM) T21 = ∑N
i=1 (yi − T1)5

6th statistical Moment (SIXTHM) T22 = ∑N
i=1 (yi − T1)6

5th norm. moment (NM) T23 =
1
N ∑N

i=1 (yi−T1)5√
( 1

N ∑N
i=1 (yi−T1)2)

5

Kth central moment (KTHCM) T24 = mean
[
(yi − T1)k

]
k is set to 3

Pulse index (PI) T25 = T5
T1

Margin index (MI) T26 = T5(
1
N ∑N

i=1

√
|yi |

)2

Mean Deviation Ratio (MDR) T27 = T1
T3

Difference absolute variance value
(DVARV) T28 = 1

N−2 ∑N−1
i=1 (yi+1 − yi)

2

Min value T29 = min(yi)

Peak Value T30 = 1
2 [T5 − T29]

Peak to peak T31 = T5 − T29
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Table 3. Cont.

Feature Name Formula

Hist. lower bound (Hist.LB) T32 = T29 − 1
2

T5−T29
N−1

Hist. upper bound (Hist.UB) T33 = T5 + 1
2

T5−T29
N−1

Latitude factor (LF) T34 =
max(|yi |)(

1
N ∑N

i=1

√
|yi |

)2

Norm. N. Neg. Likelihood (NNNL) T35 = ln
(

T3
T4

)
Waveform indicators (WI) T36 = T4

T1

Shannon entropy T37 = −∑N
i=1 y2

i ∗ log(y2
i )

Log energy entropy (LEE) T38 = ∑N
i=1 log(y2

i )
where log(0) = 0

Threshold entropy T39 =

{
1, i f |yi| > p, and
0, elsewhere

p is set to 0.2

Sure entropy T40 = N − #{i such that
|yi| ≤ p}+ . . . . . . + ∑i min(y2

i , p2), p is set to 0.2

Norm entropy T41 = ∑N
i=1 |yi|p,

p is set to 0.2

Slope sign change (SSC)
T42 = ∑N

i=2 g[(yi − yi−1) ∗ (yi − yi+1)]

g(y) =
{

1, i f y ≥ p
0, i f otherwise

Zero crossing (ZC)

T43 = ∑N
i=1 step[sign(−yi ∗ yi+1)]

sign =

⎧⎨⎩
1, i f y > 0
0, i f y = 0
−1, i f y < 0

step =

⎧⎨⎩
1, i f y > 0
1
2 , i f y = 0
0, i f y < 0

Wilson amplitude

T44 = ∑N
i=1 g(|yi − yi+1| − p)

g(y) =
{

1, i f y ≥ 0
0, i f y < 0 ,

p is set to 0.2

Myopulse percentage rate (MYOP)

T45 = 1
N ∑N

i=1[g(yi)];

g(y) =
{

1, i f y ≥ p
0, i f otherwise ,

p is set to 0.2

Wavelength T46 = ∑N
i=1 |yi+1 − yi|

Log detector T47 = exp( 1
N )∑N

i=1 log |yi|
Mean of amplitude (MA) T48 = ∑N

i=1 (yi−1 − yi)

Energy T49 = ∑N
i=1 |yi|2

Integrated signal T50 = ∑N
i=1 |yi|

Modified mean absolute value 1
T51 = 1

N ∑N
i=1 Wi|yi|

Wi =

{
1, if 0.25N ≤ i ≤ 0.75N
0.5, if otherwise

Modified mean absolute value 2

T52 = 1
N ∑N

i=1 Wi|yi|

Wi =

⎧⎪⎨⎪⎩
1, if 0.25N ≤ i ≤ 0.75N
4i
N , if i < 0.25N

4(i−N)
N , if i > 0.75N
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Table 3. Cont.

Feature Name Formula

Mean absolute value slope (MAVSLP) T53 = T9i+1 − T9i

Delta RMS (DRMS) T54 = T4i+1 − T4i

Root sum of squares (RSSQ) T55 =
√

∑N
i=1 |yi|2

Weighted SSR absolute (WSSRA) T56 = 1
N

(
∑N

i=1
√|yi|

)2

Log RMS T57 = log(T4)

Conduction velocity of Signal (CVS) T58 = 1
N−1 ∑N

i=1 y2
i

Average amplitude change (AAC) T59 = 1
N ∑N−1

i=1 |yi+1 − yi|

Weibull negative log-likelihood (WNLL)
T60 = −∑N

i=1 log[(T11∗η)−T1∗. . .

. . . ∗|yi|T1−1 exp
( |yi |

η

)T1
]

V-ORDER 3 T61 = 3
√

1
N ∑N

i=1 y3
i

Maximum Fractal Length (MFL) T62 = log10

√
∑N−1

i=1 (yi − yi+1)2

Difference Absolute STD (DASDV) T63 =
√

1
N−1 ∑N−1

i=1 (yi+1 − yi)2

Higher order Temp. Moments (TM)
T64 =

∣∣∣ 1
N ∑N

i=1 ymt
i

∣∣∣,
mt is set to 3 as default.

Autocorrelation function (ACF) T65 = 1
N−1 ∑N

i=1 yi ∗ yi−1

Amplitude density function (ADF) T66 = 2
√

2π ∗ T3 ∗ exp
(

T31
2∗T32

)
High spot count (NROT)

T67 = 1
N ∑(ROT),

the threshold can be set to 70% of the
maximum value

Mean slope of the profile (SOP) T68 = 1
N−1 ∑N

i=1 |yi+1 − yi|
Average wavelength (meanWavelenght) T69 = 2π∗T1

T68

Mean spacing of adjacent peaks (MSBP) T70 = 1
NSBP

∑ SBP

Peaks mean values (NRZDIN) T71 = 1
2N (∑N

i=1 Rpi − Rvi)

Mean height of peaks (Rpm) T72 = 1
N ∑N

i=1 Rpi

Mean depth of valleys (Rvm) T73 = 1
N ∑N

i=1 Rvi

Third point rugosity mean (RHZ) T74 = ∑N
i=1 R3zi

N

Number of peaks in profile (NPP) T75 = sum of peaks

Mean spacing in the mean line (Sm) T76 = mean(PPCM)

Peak count (PC) T77 = 1
T76

Profile solidity factor (PSF) T78 = T29
T5

Relative length of the profile (RLP) T79 = 1
N ∑N

i=1

√
(yi+1 − yi)2 + 1

Mean peak radius of curvature (Rp) T80 = 1
N−2 ∑N−2

i=1
2yi−yi−1−yi+1

N2

Stepness factor of the profile (SFP) T81 = T1
T76

RMS slope of the profile (SlopeRMS) T82 = 2
√
( 1

N−1 )∑N−1
i=1 (yi − yi−1 − Θm)2,

where Θm = 1
N−1 ∑N−1

i=1 yi − yi−1
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Table 3. Cont.

Feature Name Formula

Mean spacing at mean line (SMR) T83 = 1
N−1 ∑N−1

i=1 tan−1(yi+1 − yi)

Mean of inflection points T84 = 1
N ∑ (total of inflection points)

Height of irregularities (NRZISO) T85 = 1
N (∑N

i=1 Rpi − Rvi)

Waviness factor of the profile (WF) T86 = 1
T1 ∑N−1

i=1
2
√
(yi+1 − yi)2 + 1

Estimation of the Autocorrelation (AGGA) T87 = 1
(N−lag)(T2)2 ∑

N−lag
i=1 (yi − T1)(yi+lag − T1)

C3 T88 = 1
(N−2lag) ∑

N−2lag
i=1 ((yi+2lag)

2(yi+lag)(yi))

Count above mean (CAM) T89 = ∑N
i=1 (yi > T1)

Count below mean (CBM) T90 = ∑N
i=1 (yi < T1)

First location of maximum (FLOM) T91 = T5
N

First location of minimum (FLOMIN) T92 = T29
N

Has duplicate (HD) T93 = ∑N
i=1 (Vectunique(yi) ∼= 0) ∼= N

Has duplicate max (HDMAX)
T94 ={

1 or True, i f (T5 = y1. . . yN), “Twice”
0 or False, else

Has duplicate min (HDMIN)
T95 ={

1 or True, i f (T29 = y1. . . yN), “Twice”
0 or False, else

Large standard deviation (LSD) T96 =

{
1 or True, i f (T3 > r(T5 − T29))
0 or False, else

Last location of maximum (LLOM) T97 = index(T5)
N

Last location of minimum (LLOMIN) T98 = index(T29)
N

Longest strike above mean (LSAM) T99 = max(SAM)

Longest strike below mean (LSBM) T100 = max(SBM)

Mean second derivate central (MSDC) T101 = 1
N ∑N−1

i=1
1
2 ((yi+2)− 2(yi+1) + (yi))

Percentage of recurring data points all
datapoints (PRDAD). T102 =

length(Repeated values in signal)
length(signal)

Percentage of recurring values to all values
(PRVAV). T103 =

length(Repeated values in signal)
length(Vectunique(signal))

Range count (RC) T104 = ∑((yi ≥ lb)(yi < ub))

Ratio beyond r sigma (RBRS) T105 = 1
N ∑(|yi − T1| > (r ∗ T3))

Sum of recurring data points (SORDP) T106 = Sum of non-unique values

Sum of recurring values (SORV) T107 = Sum of the non-unique values count

Factor B (ffbb) T108 = T6∗T13
T3

Talaf T109 = log (T6 + T4)

Thikat T110 = log (T6T13 + T4T30)

Siana T111 = log ( T13T6

T30T4 )

Inthar T112 = log ( T30T6

T13T4 ∗ T12)

Audio power (AP) T113l =
1

Nhop
∑

Nhop−1
i=1 |y(i+lNhop)|2

Temporary bell (Env) T114l =
√

T114l

Zero Crossing Rate for each Nhop (ZCRn) T115 = 1
2Nhop

∑
Nhop

i=1 sign(yNhopi−1
− yNhopi−2

) ∗ Fs

Simple quadratic integral (SSI) T116 = ∑N
i=1 |yi|2
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Table 3. Cont.

Feature Name Formula

Runtime log (LAT) T117 = log10(index(T5)− index(T29))

Temporal centroid (TC) T118 =
Nhop

Fs

∑L
l=1 (lT115l)

∑L
l=1 (T115l)

Harmonic Ratio (HR)

Γm = ∑Nw
i=1 (yi)∗(yi−m)√

∑Nw
i=1 (yi)2∗∑Nw

i=1 (yi−m)2
,

(1 ≤ m ≤ M ; 0 ≤ l ≤ (L − 1)),
where M = Fs

( f0)2 , is set to 2 lags
T119 = max(Γm) (1 ≤ m ≤ M)

High Zero-Crossing Rate Ratio (HZCRR) T120 = 1
2L ∑L

i=1[sign(T116 + . . .
. . . − 1.5 ∗ mean(T116)) + 1]

Low energy ratio in the short term (LSTER) T121 = 1
2L ∑L

i=1 [sign(0.5 ∗ avSTE − STEi) + 1]

Health indicators (INDI) T122 = T4
T3

Factor A (ffaa) T123 = T5
T3∗T22

2.3. Frequency Domain Features Recopilation

The representation of a signal in other domains allows us to analyze and understand
its properties. For example, the transition from the time domain to the frequency domain
allows us to analyze the signal in terms of the frequency and amplitude of its frequency
components. This type of transformation can be performed using different techniques,
such as the Fourier Transform, which converts a signal in time in its spectrum, representing
the signal in the frequency domain. Analysis of signals in the frequency domain allows
the identification of patterns and traits that are not evident in the time domain. This
analysis is helpful for various applications, including the detection of abnormalities in
the system that generates the signal, the identification of sources of interference and the
identification of signal quality problems. In addition, it is also used in condition monitoring
and fault diagnosis, as abnormal frequency patterns can indicate problems in mechanical,
electromechanical, or electronic components of rotating machinery or systems. However,
temporary information is lost in the transformation, which can be a disadvantage in
some applications.

Based on the Fourier spectrum, other spectra analyses such as power spectral density
(PSD) [91], bispectrum [92], trispectrum [93], and cepstrum [94], among others, have also
been used in the diagnosis of rotating machinery faults. All the techniques mentioned
above, excluding the frequency spectrum and PSD, are beyond the scope of this compilation
study. These techniques involve more complex transformations that process or abstract
the signal to various levels, some having multiple definitions or versions. The frequency
spectrum represents the amplitude of the different frequencies that make up a signal.
On the other hand, the spectral density or power spectrum is a graphical representation
of the energy distribution in a signal as a function of frequency. When there is some
alteration in a mechanical component, the frequency and power components also change;
therefore, the position of the central spectrum peak will also change. This phenomenon can
be reflected analytically using features that quantify those changes and reflect the condition
of a machine. Table 5 presents 46 hand-crafted features in the frequency domain (F1 to F46).
The nomenclature of the formulas shown can be seen in Table 2, while the references to
the features can be found in Table 4. The general trends of the information extracted by
this type of feature are values and statistical moments, the weighting of specific frequency
components and ratios, and the search for values isolating harmonics or frames.
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Table 4. References of collected features.

Features Reference Features Reference Features Reference Features Reference

T1–T14 [44,63,95–111] T29–T33 [97–101,103,112] T65–T86 [113–117] F1, F6, F7 [95,101,118,119]

T15–T17 [120] T34–T36 [121–123] T87–T107 [124] F2–F4, F8–F12 [95]

T18–T20 [125,126] T37–T41 [127] T108 [128] F5 [118,129]

T21–T22 [129–134] T42–T45 [107,108,135–137] T109 [138] F13–F15 [129,137,139]

T23 [121] T46–T53 [108,125,135] T110–T113 [140] F16–F25 [137,141]

T24–T25 [98] T54 [44,101] T114–T120 [129] F26–F31, F40–F45, F47–F48 [129]

T26–T27 [122,123] T55–T63 [126,136,137,142–144] T121–T122 [129–134] F32–F39 [67,138]

T28 [107] T64 [107] T123–T125 [67,138,145] F46 [146]

Table 5. Summary of the Frequency Feature Set.

Feature Name Formula

Mean Frequency F1 =
∑K

k=1 Yk
K

Variancef F2 =
∑K

k=1 (Yk−F1)2

K−1

Skewnessf F3 =
∑K

k=1 (Yk−F1)3

K(
√

F2)3

Kurtosisf F4 =
∑K

k=1 (Yk−F1)4

K(F2)4

Central Frequency F5 =
∑K

k=1 fkYk

∑K
k=1 Yk

STDF F6 =

√
∑K

k=1 ( fk−F5)2Yk

∑K
k=1 Yk

RMSF F7 =

√
∑K

k=1 f 2
k Yk

∑K
k=1 Yk

CP1 F8 =
∑K

k=1 ( fk−F5)3Yk
K(F6)3

CP2 F9 = F6
F5

CP3 F10 =
∑K

k=1 ( fk−F5)
1
2 Yk

K
√

F6

CP4 F11 =
∑K

k=1 ( fk−F5)3Yk
F62K

CP5 F12 =

√
∑K

k=1 f 4
k Yk

∑K
k=1 f 2

k Yk

Spectral Centroid F13 =
∑K

k=1 kYk

∑K
k=1 Yk

Spectral Spread F14 =

√
∑K

k=1 (k−F13)2Yk

∑K
k=1 Yk

Spectral Entropy
F15 = −∑K−1

k=1 Pn(k)log2[Pn(k)]
where:
Pn(k) =

Yk
∑K

k=1 Yk

Total power F16 = ∑KP
k=1 Pk

Median Frequency F17 = 1
2 ∑KP

k=1 Pk

Peak frecuency (PKF) F18 = max(P)

First Spectral Moment F19 = ∑KP
k=1 Pk fk

Second Spectral Moment F20 = ∑KP
k=1 Pk f 2

k

Third Spectral Moment F21 = ∑KP
k=1 Pk f 3

k

Fourth Spectral Moment F22 = ∑KP
k=1 Pk f 4

k

Variance of central frequency(VCF) F23 = F20
F16 − ( F19

F16 )
2

Frequency Deformation F24 =
√

F20/F16
F19/F16
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Table 5. Cont.

Feature Name Formula

Frequency ratio (FR) F25 = ∑
ULC= fmax /2
LLC= fmin

Pk/ ∑
UHC= fmax

LHC= fmax
2 +1

Pk

Harmonic Spectral Centroid (HSC)
F26 = 1

L ∑L
l=1 LHSCl ,

where LHSCl =
∑

NH
h=1( fh,l Ah,l )

∑
NH
h=1(Ah,l )

Harmonic Spectral Deviation (HSD)

F27 = 1
L ∑L

l=1 LHSDl ,

where LHSDl =
∑

NH
h=1 | log10(Ah,l )−log10(SEh,l )|

∑
NH
h=1 log10(Ah,l )

,

SEh,l =

⎧⎨⎩
1
2 (Ah,l + Ah+1,l), i f h = 1

1
3 (Ah−1,l + Ah,l + Ah+1,l), i f 2≤h≤NH − 1

1
2 (Ah−1,l + Ah,l), i f h = NH

Harmonic Spectral Spread (HSS)

F28 = 1
L ∑L

l=1 LHSSl ,
where

LHSSl =
1

LHSCl

√
∑

NH
h=1

[
( fh,l−LHSCl )

2 A2
h,l

]
∑

NH
h=1 A2

h,l

Harmonic Spectral Variation (HSV)

F29 = 1
L ∑L

l=1 LHSVl ,
where

LHSVl = 1 − ∑
NH
h=1(Ah,l−1 Ah,l )√

∑
NH
h=1 A2

h,l−1

√
∑

NH
h=1 A2

h,l

Spectral Flux (SF)
F30 =

1
L∗NFT

∑L
k=1 ∑NFT

k=1 [log(|Sl(k)|+ δ)− log(|Sl−1(k)|+ δ)]2

Frequency Centre (FC)
F31 =

∑K
k=2 xk′ xk

2π ∑K
k=1 x2

k
,

where
xk′ = x(k + 1)− xk

Mean square Frequency (MSF) F32 =
∑K

k=2(xk′ )2

4π2 ∑K
k=1 x2

k

Root Mean square Frequency (RMSF) F33 =
√

F32

Grand mean (GM) F34 =
∑K

k=1 fkYk

∑K
k=1 Yk

Standard Deviation (STDA) F35 =

√
∑K

k=1( fk−F35)2Yk
K

C Factor (ffcc) F36 =

√
∑K

k=1 f 2
k Yk

∑K
k=1 Yk

D Factor (ffdd) F37 =

√
∑K

k=1 f 4
k Yk

∑K
k=1 f 2

k Yk

E Factor (ffee) F38 =
∑K

k=1 f 2
k Yk√

∑K
k=1 Yk ∑K

k=1 f 4
k Yk

G Factor (ffgg) F39 = F36
F35

Audio Spectrum Envelope (ASE) F40 = ∑NFT
k=1 Pb(k), for 1≤b≤B

Audio Spectrum Flatness (ASF) F41 =

hiK′b−loK′b+1

√
∏

hiK′b
k′=loK′b

Pb(k)

1
hiK′b−loK′b+1 ∑

hiK′b
k′=loK′b

Pb(k)
, for 1 ≤ b ≤ B

Audio Spectrum Spread (ASS) F42 =

√√√√√∑
(NFT /2)−Klow
k′=0

[
log2

(
f ′ (k′ )
1000

)
−F42

]2
P′(k′)

∑
(NFT /2)−Klow
k′=0

P′(k′)

Power Spectral Centroid Segment (SC) F43 =
∑

NFT
k=0 f (k)Ps(k)

∑
NFT
k=0 Ps(k)

, where

Ps is the estimated power spectrum for the segment.

SNR F44 = F1
F36
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Table 5. Cont.

Feature Name Formula

Spectral Rolloff Frequency (SRF) F45 = 0.85 ∑NFT
k=0 |Yk |

Upper Limit of Harmonicity (ULH)

F46 = log2

(
fulh

1000

)
,

where fulh is defined by:

fulh =

{
31.25, f or k′ = 0

f (k′ + Klow), f or 1 < k′ < NFT
2 − Klow

The hand-crafted features in our study are designed to capture various aspects of
vibration signals that are indicative of machinery conditions. In Figure 2, we illustrate a
vibration signal in the time domain in which we exemplify the computation of features.
In particular, this figure shows in yellow the computation of the T74 feature in which the
magnitude between the third ridge and valley is identified. In purple, we see PPCM, which
is the number of spaces between profile peaks crossing the midline to compute the Mean
spacing in the mean line (Sm) or T76 feature. In navy blue, we identify the space between
peaks SPB to compute the Mean spacing of adjacent peaks (MSBP) or T70 feature. In light
blue, we show a region over a threshold (ROT), which is used to compute the High spot
count (NROT) or T67 feature. We present other parameters as the number of peaks and
valleys per l time frame, upper and lower thresholds, N that means the total number of
times samples and L that means the total number of time frames as was established in
Table 2. Naming the remaining parameters from features is vast, and it is not the purpose
of this article.

These features can be broadly classified according to the signal characteristics they reflect:

• Amplitude-based features (e.g., peak value, crest factor): These reflect the magnitude
of vibrations, which can indicate the severity of faults.

• Statistical features (e.g., mean, variance, skewness, kurtosis): These describe the
distribution of vibration amplitudes, which can change with different fault types.

• Energy-based features (e.g., signal energy, entropy): These quantify the energy content
and complexity of the signal, which often increase with fault severity.

• Time-series features (e.g., zero-crossing rate, autocorrelation): These reflect the tempo-
ral behavior of the signal, which can indicate periodicity or irregularities in vibrations.

• Frequency-based features (e.g., spectral centroid, frequency ratio): These capture
the distribution of energy across different frequencies, helping identify characteristic
fault frequencies.

• Shape-based features (e.g., impulse factor, margin factor): These describe the shape of
the waveform, which can change with different fault types.

Each feature is sensitive to different aspects of the vibration signal, allowing for a
multi-faceted analysis of machinery conditions. The combination of these features provides
a comprehensive representation of the vibration signal, enabling effective fault diagnosis
across various types of rotating machinery.
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N

Upper Threshold

Lower Threshold

l=1

1
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3

3rd point distance

l=2 l=L

Figure 2. Illustration of some feature parameters on a vibration signal.

3. Experimentation Data for Hand-Crafted Features Performance Evaluation

The data employed to evaluate hand-crafted features and test their effectiveness in
fault classification tasks add up to seven databases. The databases were obtained from
different rotating machines, such as gearboxes and motors with shafts and bearings. Each
database has its study elements with normal conditions and induced faults. The experimen-
tal configurations of the databases are diverse, have specific mechanical study elements,
and reflect specific phenomena. An organizational scheme of all the rotating machines
used, their derived databases, and study elements are shown in Figure 3. Some databases
include multiple levels of fault severity in the elements under study. In contrast, others
include various types of faults or fault combinations in their elements, known as multi-fault
databases. Regardless of the specific phenomenon, machine, or element under investiga-
tion, these databases serve as valuable resources for conducting fault diagnosis studies.
They are particularly useful because their data were collected using experimental setups
designed to simulate various modes and effects of failures. As a result, these databases
provide comprehensive, labeled information on different types of faults, making them ideal
for research and analysis in the field of fault diagnosis.

DB08

- Pinion broken
tooth (nine
severity levels)

10 types of
faults

Laboratory data source

DB05

- Pinion broken
tooth (nine
severity levels)

10 types of
faults

Gearbox
Single and double

stage

Spur gear Helical
gear

DB01 DB03

- Broken tooth (3
levels)
- Pitting
- Face wear
- Misalignment

- Chaffing
- Wear
- Pinion broken
tooth
- Gear broken
tooth
- Gear crack

DB04

Gear
- Scuffing
- Pitting
- Crack
- Bearing

Bearings
- Inner race
-Outer race
- Ball
-Eccentricity

Elements
in study

7 types of
faults

10 types of
faults

11 types of
faults

Bearings
(flywheels)

DB02

- Inner race
- Outer race
- Ball fault

7 types of
faults

External
Database

Faults

Machinery

CWRU

- Inner race
- Outer race
- Ball fault

4 types of
faults

Figure 3. Schematic description of the databases used.
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The internal mechanical components of rotating machinery are diverse. However,
some of these components are more prone to failure than others. Therefore, the most
common gearbox faults that could appear in gears are tooth breakage, cracking, pitting,
wear, chafing, and scuffing. Another type of fault is misalignment. Meanwhile, the main
bearing fault is scratch and occurs mainly in the inner race, outer race, and rolling element.
Another type of fault is eccentricity. In reciprocating compressors, failures occur mainly in
valves and bearings. Figure 4 shows a general compilation of the main elements subject to
failure of the different rotating machines and examples of the appearance of the associated
fault. Another consideration is that six of the seven databases were produced by the Indus-
trial Technology Research and Development Group (GIDTEC) of the Salesian Polytechnic
University of Cuenca-Ecuador. For an external comparison option, the remaining database
belongs to the Bearing Data Center of Case Western Reserve University, which is a famous
benchmark used to test new techniques and methodologies for fault diagnosis.

(a) (b)
(c) (d) (e)

(f) (g) (h) (i) (j)

(k)

(l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 4. Compilation of the main mechanical components prone to failures under study in
the different databases. (a) Broken tooth 25%. (b) Broken tooth 100%. (c) Scuffing. (d) Wear.
(e) Misalignment. (f) Broken tooth 11.5%. (g) Broken tooth 100%. (h) Scuffing. (i) Scuffing 10 mm
large. (j) Scuffing one stripe. (k) Scuffing two stripes. (l) Crack. (m) Pitting. (n) Eccentricity. (o) Inner
race fault. (p) Outer race fault. (q) Rolling element fault. (r) Inner race fault. (s) Outer race fault.
(t) Rolling element fault.

The most relevant information about each database utilized to test the methodology
followed in this study is briefly described below:

• DB01: This experiment involves a gearbox connected to an electric motor on the input
shaft and an electromagnetic brake on the output shaft. The gearbox is a single-stage
reduction type. The gears used are spur gears. Seven fault conditions are introduced:
three broken tooth severities, misalignment condition, Pitting, and Pitting with face
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wear. More information on this database can be found at [147]. This database consists
of vibration signals sampled at 1 Ks/s with a duration of 2 s, seven classes, and
150 observations for each class.

• DB03: This experiment involves a gearbox with ten health conditions, including
chaffing tooth, worn tooth, broken tooth at three levels (25%, 50%, and 100%), 25% and
100% gear crack, 25% pinion broken tooth and 25% gear crack, 50% gear chaffing and
normal condition in spur gears (number of teeth Z1 = 53 and Z2 = 80 with modulus
2.25 and impact angle 20°). The experiments were carried out with three loads,
three constant speeds and three variable speeds, in each of them, five samples were
collected in a duration of 10 s [148]. This database consists of vibration signals sampled
at 50 Ks/s with ten classes and 90 observations for each class.

• DB04: The experimental setup consists of a gearbox connected to an electric motor
on the input shaft and an electromagnetic brake on the output shaft. The gearbox is a
two-stage reduction gear. The gears are of helical type. Ten different fault conditions
are introduced, which include issues such as Scuffing, Pitting, and Crack in gears.
In the case of bearings, the faulty components include the inner race, outer race,
and rolling element. In addition, an eccentricity fault is introduced in the bearing
housing. This database consists of vibration signals sampled at 50 Ks/s with a duration
of 10 s, eleven classes, and 45 observations for each class [149,150].

• DB05: This experiment consists of nine severity levels of a broken pinion tooth.
The gearbox is connected to an induction motor and an electromagnetic brake. The
gearbox is a single-stage and is of the reduction gear type. The gears used are helical.
The experiments were carried out with three loads produced by the brake on the gear-
box’s output shaft. In each of them, five samples were collected for 10 s. Additionally,
the experiment was performed at three constant speeds. This database consists of
vibration signals sampled at 50 Ks/s with ten classes and 75 observations for each
class [151].

• DB08: This is also a study of nine fault severity levels of the helical gearbox dataset.
The gearbox is single-stage and is of reduction gear type. The experiments were
carried out with three loads produced by the brake on the gearbox’s output shaft.
The main difference between the DB05 and the DB08 is that the latter is more recent
and captures more condition signals and observations. The experimental setup is the
same, with differences in the materials of the elements and the procedures in the box
assembly [152]. This database consists of vibration signals sampled at 50 Ks/s with a
duration of 10 s, ten classes, and 180 observations for each class.

• CWRU: This database is a famous benchmark for testing bearing fault diagnostic
techniques. Their page has information on the bearings used, the diameters and depths
of the failures, and the configuration of the equipment assembly for the experiments.
The experiment has four levels of speed and load. It has a normal class and induces
failures in the outer race, the inner race, and the rolling element. Another important
fact is that the bearing vibration signals were captured at a 12 kHz sampling rate.
For the experiment in this paper, the 12 k fan end accelerometer data were used [153].
This database consists of vibration signals with a duration of 0.1667 s, four classes,
and 80 observations for each class.

• DB02: This dataset aims to study bearing behavior. It involves a �30 mm shaft with
flywheels mounted. The shaft is connected to an induction motor and is seated on the
bearings and their housings. The acquired signals belong to an accelerometer placed
in a vertical position near the movement source. Details of the experimental setup are
described in [151]. This database consists of vibration signals sampled at 50 Ks/s with
a duration of 20 s, seven classes, and 45 observations for each class.

Accelerometers are strategically placed closest to the source of motion on the machine
across all databases to capture data effectively. All signals from all experiments were stored
as a group in a database, differentiating according to the failure labels they contained.
The condition monitoring signals used for this experiment have been limited to vibration
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signals since vibration analysis has traditionally been the most widely used means of de-
tecting anomalies in rotating machines. Especially when combined with spectral analysis,
it provides a direct association of the characteristic frequency components that a machine
should have based on the movement or rotation of the elements that compose it. Figure 5
shows a compilation of vibration signals taken from the normal condition of each database
used, compared to their respective frequency spectrum. When analyzing the vibration sig-
nals over time, it can be verified that certain signals present a slightly more cyclical behavior,
as could be the case for DB03 and DB05. On the other hand, the vibration signatures of the
other databases seem much more chaotic. On the other side of the frequency spectrum, one
can observe clear differences in their different frequency components. The DB02 and the
CWRU clearly show characteristic signatures with frequency sidebands, while the other
spectra show that most of their components are housed in the lower frequencies. Clear
differences are distinguished between the different time and frequency graphs among all
databases. These differences emphasize that each machine has many internal behaviors
that must be characterized to correctly diagnose a fault.

(a)( )

(b)( )

(c)( )

(d)( )

(e)( )

(f)

(g)

Figure 5. Example of a time domain signal alongside their respective frequency spectrum per
each database. (a) DB01. (b) DB02. (c) DB03. (d) DB04. (e) DB05. (f) DB08. (g) CWRU.
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4. Proposed Feature Evaluation Methodology

After the compilation of hand-crafted features for their application in condition moni-
toring signals, a systematic methodology is proposed to establish an adequate reference
framework to carry out the exhaustive feature evaluation in fault classification tasks in
rotating machinery. Figure 6 shows graphically the sequence of steps followed in the
proposed methodology.

Time Domain

Data Fusion Time
and Freq. domains

Frequency Domain

2. Feature extraction

Datasets
Feature vectors

           

Feature vectors
 

4. Classification

KNN

RF

Per Database

Normalization &
Correlation

3. Data selection

...
7 *3* 7  = 147 subsets

7 Databases * 3 domains
* 7 Ranking techniques

.

. . .,

. . .,
SVM

. . .,

Chi-square

Random Forest
algorithm

Feature Ranking

1. Data acquisition and
adaptation

DB01

DB03

DB05

DB08

DB04

DB02

Gearbox

MultiFault

Bearings
CWRU

Figure 6. Diagram of the methodology employed

1. Data acquisition and adaptation: Different vibration signals were collected from
seven databases and stored separately. The signals are organized in local directories,
separating the normal condition and its different fault modes for each database.
Seven original datasets with vibration signals were acquired from different machines
with different fault configurations, number of observations, acquisition rates, and
signal sizes.

2. Feature extraction step: In this phase, the calculations of the hand-crafted features
were applied according to the mathematical formulations shown in Tables 3 and 5.
The 123 time-domain and 46 frequency-domain hand-crafted features were imple-
mented as functions of the MATLAB software R2023b, and an algorithm was created
that is responsible for iterating them for each signal from all databases. To exhaus-
tively evaluate the features, they were organized into three large evaluation groups:
one with only time domain features, another with only frequency domain features,
and the last group containing a data fusion scheme. The data fusion consists of
concatenating time domain and frequency domain features into a single-dimensional
feature vector for each signal. Thus, Group 1 evaluates 123 features, Group 2 evaluates
46 features, and Group 3 evaluates 169 features. Each group contains separately the
calculated hand-crafted features for all databases. Subsequently, the features were
organized in a matrix format for the later machine learning process, obtaining 21 data
corpora, seven per evaluation group corresponding to one per original dataset.

3. Feature selection: Features were normalized and filtered by correlation. Subsequently,
seven feature ranking methods are applied to each of the 21 data corpora to obtain
the ten most important features of each one. The feature ranking methods used in this
feature selection step were as follows: RelieF Algorithm [154] (RA), Chi-Square [155]
(CS), Information Gain [156] (IG), Pearson Correlation [157] (PC), Fisher Score [158]
(FS), Gain Ratio [159] (GR), and Random Forest [160] (RF). A total of 147 data subsets
were generated, i.e., 49 subsets per evaluation group, based on the ten most relevant
features. Part of the exhaustive evaluation of the hand-crafted features is also focused
on knowing their relative importance within the datasets used to classify rotating
machinery faults, measuring the individual contribution of each one, and observing
the relative persistence of each feature. For this reason, several ranking methods
were used to enrich this process. Each ranking method has different mathematical
foundations, as do the calculated features, which would allow valuable conclusions to
be drawn in case of finding patterns within the top 10 lists of selected features. We have
used the ranking methods that we consider to be the most important and reported in
the literature.These methods were selected based on their use in mechanical systems.
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For researchers seeking a more comprehensive understanding of each approach,
references to seminal works are provided.

4. Classification step: In this final phase, each of the 147 data subsets was evaluated with
three different machine learning classification models: Support Vector Machines [161]
(SVM), k-Nearest Neighbors [162] (KNN), and Random Forest [163] (RF). The results
were compared in terms of the best performance achieved (accuracy percentage)
and the number of features needed to reach that value. As in the previous step
of feature selection, in this last step, we try to enrich the evaluation process using
three classification models. As previously mentioned, each feature and ranking
method has its mathematical foundation, and in the same way, it happens with the
classifiers. In this way, we have a parametric classifier, one based on proximity and
one based on trees. The diversity of classifiers and ranking methods contributes to a
comprehensive feature evaluation. The aim is to compare the classification results and
find trends with the values achieved, the feature groups used in the process, and the
frequency of appearance of certain features in the top 10 list.

An additional fact to mention is that a standard and fixed configuration was used in
the configuration of hyperparameters used by the classifiers and ranking methods. There-
fore, SVM uses a linear kernel with a penalty of 10, KNN uses k = 3 with an s-euclidean
distance metric, while RF uses a tree number of 40. All classifiers were trained following
the five folds (k-folds) validation schema. No hyperparameter search, optimization step,
or process is performed because the methodology seeks to evaluate the feature’s ability to
separate classes and not the power of the classification model. The developed methodology
has been applied transversally to different types of rotating machines. With the succes-
sive application of these steps, this methodology is expected to allow a more in-depth
understanding of fault patterns and a systematic feature evaluation to validate their use
in fault diagnosis tasks. The summary of results is grouped according to the mechanical
components under study from the different databases. In this way, Table 6 shows the result
condensation of the databases that use gearboxes with spur gears, Table 7 shows the results
for gearboxes with helical gears, and Table 8 shows the results for bearings. The maximum
classification percentage (Cl. %) achieved and its number of features (#F.) are shown.

The total summarized process of the methodology followed for the exhaustive evalua-
tion of hand-crafted features can be seen in Figure 6. In this way, the different domains in
which the features were calculated could be evaluated in an isolated manner, as well as their
potential and contribution as a whole. The training was also carried out exhaustively. First,
the most important feature is taken from a subset of data containing the ten best features
ranked by some method. Then, the three classifiers are trained to obtain classification
performances. The next step is to take the first two most significant features and retrain all
three classifiers. This process is repeated iteratively, adding the next most important feature
according to the ranking method in each iteration until a total of 10 features are reached to
carry out the training. This process is repeated for the 147 data subsets, constantly training
the three classifiers. This process is conducted to find the best result (highest classifica-
tion performance) by a ranking-classifier combination, the number of features required to
achieve said performance, and the individual contribution of each feature. The summaries
of these results with the best and worst results can be viewed in Tables 9 and 10.
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5. Results and Discussion

This section presents the results obtained from the experimentation to evaluate the
performance of different hand-crafted features in fault classification tasks over rotating
machinery. A total of 147 subsets of the top 10 most important features were obtained by
applying seven ranking methods to seven original databases with three evaluation groups.
Each of these data subsets was exhaustively evaluated by three different classification
models. In the first place, the general results of the experiment are presented and organized
according to the mechanical components associated with the different databases, namely
spur gear gearboxes, helical gear gearboxes, and rotating machinery bearings. The tables
show the percentage of classification and the number of features needed to achieve that
value. Additionally, the results are condensed by database, ranking methods, and evalua-
tion group, allowing a direct comparison and identifying the combinations that provide
the best and the worst classification results. In this way, Table 6 summarizes the results
obtained in the three evaluation groups for the DB01 and DB03 databases, the same ones
associated with gearboxes with spur gears. Table 7 shows the overall results obtained
for the databases associated with gearboxes with helical gears, specifically DB04, DB05,
and DB08. For bearings, Table 8 displays the results corresponding to the DB02 database
and the external benchmark CWRU. The classification results are shown in Tables 6–8.
They show that ranking methods significantly impact the effectiveness of fault diagnosis.
For example, suppose that a ranking method-classifier combination shows a high classifica-
tion percentage and a low number of features. In that case, that method is very effective in
identifying the most critical features. Furthermore, if a particular database shows a high
classification percentage with a particular ranking method, this would indicate that the
method is especially effective in identifying essential features for that specific database.
In this way, the fault diagnosis can be performed with fewer data and greater precision.

Tables 6–8 also show the results by evaluation groups. That is, it shows the classi-
fication results and the number of features associated with Group 1, in which only the
features of the time domain were used in its evaluation (123 in total). For Group 2, they
used only the frequency domain characteristics (46 in total). Group 3 uses a data fusion
scheme, combining time and frequency features (169 in total). It is essential to highlight
that the results reflect the capacity of the classifiers to carry out fault diagnoses in rotating
machinery and the effectiveness and usefulness of hand-crafted features calculated in the
time and frequency domains. It should also be mentioned that if we read the results of
Tables 6–8 by rows within each evaluation group, the data subset used is the same and will
produce different performances with each classifier. The set of features used varies when
reading the results between rows since a different ranking method will choose a different set
of features. Even with this, one or several features may be repeated in different evaluation
groups or data subsets that were selected by different ranking methods. A high percentage
of classification and a low number of features indicate good feature selection. Therefore,
combining ranking methods with hand-crafted features is a viable way to perform fault
diagnosis in various rotating machines. The next part of the results obtained refers to the
best and worst results obtained from all the exhaustive experimentation. In this way, Table 9
shows the best classification results obtained for each database with the respective set of
features used, the deviation of the precision in the training, and the individual contribution
of each feature within that configuration. Similarly, Table 10 shows the same information
with the difference that presents the worst results obtained in all experiments. Both tables
highlight in bold the maximum precision obtained by the best-performing classifier. It can
be seen in both cases that, on some occasions, the classifier reaches its maximum precision
with a certain number of features and that the act of adding more is counterproductive
to the overall performance of the model. Table 9 shows that the evaluation groups that
produced the best features were Group 1 of time alone and Group 3 of data fusion. It
can also be seen that the ranking method with the best feature subsets is Random Forest,
followed by the Relief Algorithm. The vast majority of the contribution to accuracy is
achieved by using the four most important features.
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For DB01, the best resulting combination is the RF method and the RF classifier,
reaching 87.09% with eight exclusive features of the time domain. For DB03, the best result
is achieved again with a set of time-exclusive features in the combination of the IG method
and the KNN classifier, reaching 98.77% with 10 features. In DB04, groups 1 and 3 achieved
equal precision of 98.59% using the KNN classifier. However, group 1 used the RF (Random
Forest) ranking method, while group 3 employed the CS (Chi-square) ranking method.
The only substantial difference between these results is that the time-exclusive feature group
achieves this percentage using only eight features, whereas the fusion group achieves it
using nine features. DB05 has a tie again, this time within the same group, with the
exclusive time features being the winners. A maximum classification percentage of 93.07%
was achieved. The first combination was the RA method and the RF classifier using 10
features and an acc_std of 2.14. In comparison, the second combination was the RF method
and the KNN classifier using seven features and an acc_std of 3.42. The relatively high
dispersion in precision values in the second combination could be attributed to the features
used. Therefore, the table will include the list of the 10 features from the first winning
combination. DB08 has a tie between the time-only and fusion groups. In both cases,
an accuracy of 99% is achieved with 10 features with a combination of the RF method and
the KNN classifier. In the first case, using the time-only group, an acc_std of 1.01 was
achieved, while in the second case, employing the fusion group, an acc_std of 0.54 was
obtained. A detail to highlight is that in the time group feature list, the features of Hr,
NPP, and meanInflectPoints appear in all the sets of features for all previous databases.
The last three databases are for helical gear gearboxes, and the five databases analyzed so
far are for gearboxes. For DB02, the maximum classification percentage of 92.66% with the
combination RA method and the RF classifier with an acc_std of 2.67 requires 10 features
to reach this value. Finally, in the case of the external CWRU database, an amalgamation
of almost perfect results is obtained. The maximum classification percentage achieved is
100% with the combination RF method and the KNN classifier using only two features
of the fusion group, with an acc_std of 0. In this case, many combinations are obtained
that return excellent results for the three groups of assessment. The fusion group has been
chosen as the winner for the CWRU because it is the one that obtains a combination that
requires fewer features to achieve the best results. It is worth mentioning that, while it is
true that a maximum result was achieved in the fusion group, the features used to achieve
this level of classification are features that are calculated in the frequency domain. The total
list of features that appear in this subset is placed in Table 9. In this table, DB01 contains
the first five features, which are associated with the counting, statistical, hybrid and ratio,
and shape and profile features types. In DB03, the first five features are associated with the
statistical, shape and profile, and hybrid and ratio features types. In DB04, the first five
features are associated with the hybrid and ratio, counting, and shape and profile features
types. In DB05, the first five features are associated with shape and profile, hybrid and
ratio, statistical, and counting feature types. In DB8, the first five features are associated
with hybrid and ratio, counting, and shape and profile feature types. In DB02, the first five
features are associated with counting, central tendency and statistical moments, statistical,
and hybrid and ratio feature types. In the CWRU database, the first five features are
statistical, and hybrid and ratio features.

On the other hand, reviewing Table 10, it can be seen that, in general, the frequency-
only group has the worst overall performance in precision with the classifiers, although ac-
ceptable values are reached for certain databases. It can also be seen that the classifier
with the worst global results is the SVM. This could be because a linear kernel was used
in its configuration, and not all classes within the databases have to be linearly separable.
This could also indicate the complexity of the data available to diagnose failures. We must
consider the results obtained in Table 9 with other essential results to obtain a complete
view of the experiment. We have created distributions and ratios of the occurrence graphs
of the evaluation groups that appear in Table 9 only, since they are the groups that appear in
the best results, that is, time-only and fusion groups. The bar charts in Figures 7 and 8 show
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the frequency of occurrence of features in the 49 data subsets with the ten most important
features per only time and fusion evaluation groups, respectively. The graphs show features
such as hr, NPP, WF, skewness, meanInflectPoints, rc, mean, SC, FR, and SFP, among others,
as the features with the most occurrences or repetitions in the two evaluation groups. In the
case of the only time group, Figure 7 shows how the hr feature has the most occurrences,
totaling 30 out of 49. This figure also shows two more features, such as NPP and WF, that
follow hr as the most used features in this experimentation group. The data fusion group
shares many features that appear in Group 1, but it also includes certain features that are
calculated in the frequency domain and have notorious appearance levels. Figure 8 also
shows features such as FR, SFP, and SC that appear more than 15 of the 49 times. As a
curious example, we have the SC feature, a version of the spectral centroid computed over
frames of the power spectrum by averaging the power-weighted frequencies within the
frame of the spectrum. This feature combines the trends of calculations based on frequency
weighting with those seeking information in sections of the spectrum, as discussed in
section II. The hr feature is another example of a calculation over frames, and it belongs to
the time domain. In contrast, features such as FR and NPP are calculated over the whole
signal in their respective domains.

Figure 7. Hand-crafted feature occurrence distribution of the top ten ranking lists for all databases of
the only time features group.
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Figure 8. Hand-crafted feature occurrence distribution of the top ten ranking lists for all databases of
the feature fusion group.

To accompany the feature occurrence distribution graphs, Figures 9 and 10 are shown,
summarizing the features that appear the most times in the ranking lists for evaluation
groups 1 and 3, respectively. These graphs show those features that appeared in more than
three ranking lists. That is, more than three ranking methods put them somewhere in their
top 10 most significant features. Virtually, the maximum value a feature could reach in
these graphs is 7 since there is a maximum of seven ranking methods. However, for features
that apply their calculation in frames or bands, there are cases where the same feature,
calculated in different bands, appears several times in the same list of the top 10 most
relevant features by some ranking method. This can be seen clearly with many examples in
Table 10, and we have the Env and SRF features cases in Figures 9 and 10, respectively.

Analyzing Figures 7–10 together, we can see that some features appear more frequently
than others. The count distribution shown in the bar graph in Figure 7 suggests that
the features with the highest occurrences could be considered the most important in
the evaluation performance experiment for Group 1. We can confirm this by looking at
Figures 9 and 11 alongside Table 9. Taking DB03 as an example, Figure 11 shows that the hr
feature appears in the first position of the rankings 29% of the time, and we already know
from Figure 7 that this feature appears the most times in the time-only evaluation group.
Inspecting Figure 9, we can see that the hr feature is chosen by six of the seven ranking
methods used in the experiment. Finally, we can see in Table 9 that the best classification
result for DB03 is achieved with the hr feature in the fifth place of importance. Additionally,
even in Table 10 of the worst results, we can find the hr feature in the first position of
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importance in the configuration shown for DB03. Several other features follow this pattern
of occurrences and are important in fault classification as hr. We have examples such as
the WF for DB04 or the NPP for DB01 in the time-only group, while we see cases such as
stda for the CWRU in the fusion group. There are also cases where a feature appears many
times in a few ranking methods but is located in significant positions, as is the case of the
FR feature for DB08 in the fusion group. In this example, the FR feature does not appear in
Figure 10 but stands out in Figures 12 and 8, in addition to demonstrating its importance in
the results of Table 9.

Figure 9. Occurrences in the top ten feature ranking lists of all databases for the group of only
time features.

Figure 10. Occurrences in the top ten feature ranking lists of all databases for the group of fusion features.
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Figure 11. Sunburst plot of databases and feature apparition ratio in top four ranking importance
in the only time features group. The second ring refers to the four most important positions in the
rankings, and the third ring denotes the features placed there by the different ranking methods and
the percentage of appearance in that position.

Figure 12. Sunburst plot of databases and feature apparition ratio in top four ranking importance
in the fusion features group. The second ring refers to the four most important positions in the
rankings, and the third ring denotes the features placed there by the different ranking methods and
the percentage of appearance in that position.
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The features with the most occurrences or selected by various ranking methods seem
to show a great association with the study phenomenon. Therefore, they are the most
useful in classification processes. Furthermore, the frequency of appearance of each feature
in the top 10 lists may indicate the consistency of the ranking methods used to evalu-
ate the performance of handcrafted features. If a feature frequently appears in the top
10 lists, it is evidence that it is considered essential by various ranking methods. On the
other hand, if a feature appears infrequently on the top 10 lists, this suggests that it is
considered less important or that the ranking methods used in the assessment need to be
more consistent in their assessment of that feature.Figures 8 and 9 are valuable tools for
understanding the relative importance of each feature in diagnosing rotating machinery
faults. To better understand the relationship between the performance of the classifiers,
the databases, and the features selected by the ranking methods, we must observe the
results in Tables 9 and 10 with Figures 11–14. The sunburst graphs in Figures 11 and 12
show the top four critical features per database and their percentage of occurrences. Those
graphs have been built using the results obtained from the first four places of the 49 lists
of the top 10 most important features for each evaluation group and directly associating
them with the databases to which they correspond. This type of visualization allows for
a clear representation and an easy way to understand the data hierarchy, allowing us to
see which features have a more significant influence within each of the databases and
how they are related to each other. The fact that some features have high percentages of
appearance in certain ranking positions within a database indicates that those features are
critical for diagnosing failures in that specific rotating machine. This relation means that
the repeatability in the feature ranking has allowed us to identify the most relevant features
for each database and, therefore, focus efforts on understanding those specific features to
detect faults efficiently and effectively.

Figures 13 and 14 present the other sunburst graphs that show the percentage of
appearances of a feature in any position of the top four of importance, associated with the
percentage of times that a ranking method places it in that particular position. The ring-
shaped representation allows for a global vision of the performance of the features in the
rankings and their ability to be identified as necessary by the different ranking methods
used in the experimentation. It is essential to consider that the percentages of appearances
of a particular feature in a position of the top 4 are global for all the experimentation; that
is, the percentage of appearances marked by a feature is, in general, for all the databases
used in the experiment for each evaluation group. If a feature has a high percentage of
occurrences in some position in the top 4, it means that the ranking methods frequently
identify it as an important feature in that position, making it valuable in a horizontal way;
that is, its use is viable for many types of rotating machinery for fault diagnosis. Figure 13
shows interesting information, such as that the WF and NPP features have the highest
occurrence percentages as the most important features with 16% and 10%, respectively,
for the time-only evaluation group. On the other hand, Figure 14 shows the features of
mean and WF as those with the highest percentage of appearance in the first place of
importance in the fusion evaluation group, being chosen by almost all ranking methods at
least once. If we analyze those graphs together with Figures 7 and 8, we can see that all
the aforementioned features appear several times in their respective experimental groups,
which suggests that this enhances the possibility of ever finding them at the top of the
podium of the feature importance.

It should be noted that the bar graphs in Figures 7 and 8 and the sunburst graphs
in Figures 11–14, only show the results of evaluation groups 1 and 3; the time-only and
data-fusion feature sets. This election, as stated previously, occurs because these groups are
present in Table 9 with the best performance in the classification task, so more significant
associations can be derived between features and databases. If we try to detect patterns
in the results obtained, we can find certain coincidences with different databases with
similar study elements. For example, the hr feature is present with different percentages
in DB01, DB03, DB04, DB05, and DB08 in different places of importance. Furthermore, all
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these databases study gearboxes with helical and spur gears, and the hr feature appears
in four of the five sets of features used that achieved the best classification results, as we
can see in Table 9. We also have DB02 and CRWU, which have results that share features
such as Mean and SFP. Another common trend that we can observe in the features of the
top 4 organized by the database they represent is that they usually exchange the position
in which they appear within the ranking of the top 4. A high percentage of occurrences
in a given top 4 position means that the feature is important and valuable in various
fault diagnosis application cases in different types of rotating machinery. In addition,
this also indicates that the ranking methods are consistent in identifying said feature as
one of the most important. Associating the results shown in Figures 11–14, and Table 9, we
can identify that, for a specific database, the ranking method with the best performance
places a feature in a high position in the top 4 with a high percentage of appearances,
and that the classifiers used in that database achieve a high percentage of classification
with some essential features. This result is excellent evidence that this feature can be
very informative and may suggest good physical significance for diagnosing faults in
that particular database and other similar ones that also capture condition information on
rotating machine processes.

Figure 13. The top four ranked as the most important features and their appearance ratio in those
places for all databases for the only time features group. The second ring denotes the percentage
of occurrences of the feature in that position, while the third indicates the percentage of times the
ranking method places the feature there.
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Figure 14. The top four ranked as the most important features and their appearance ratio in those
places for all databases for the fusion features group. The second ring denotes the percentage of
occurrences of the feature in that position, while the third indicates the percentage of times the
ranking method places the feature there.

6. Conclusions

This study presented a comprehensive compilation of 169 hand-crafted features for fault
diagnosis in rotating machinery and evaluated their effectiveness using seven databases
and various classification models. Our findings demonstrate that hand-crafted features
can achieve high classification accuracy, up to 99% in some cases, for various types of
rotating machinery faults. Furthermore, the combination of time and frequency domain
features often outperformed single-domain feature sets. The advantage of hand-crafted
feature extraction is high interpretability, allowing for direct physical insights into fault
mechanisms. These features also offer flexibility in application across different types
of rotating machinery and show comparable performance to more complex methods,
including deep learning approaches.

In this study, a series of formulas and calculations, simple methods, were collected
from the literature to perform hand-crafted feature extraction on signals in the time and
frequency domains. The proposed methodology for evaluating the performance of hand-
crafted features in fault classification tasks has proven to be practical and valuable. Fur-
thermore, the results strongly suggest that it is possible to achieve a good fault diagnosis
performance using a combination of different ranking methods and calculated hand-crafted
features. The results obtained show the importance of analyzing different domains to
achieve a good diagnosis of faults in rotating machinery. The proposed methodology
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allowed us to objectively compare the performance results of the features, and the ranking
methods used allowed us to identify the most relevant features in each database. Some
features have a high percentage of occurrences anywhere in the top 4 of importance. They
are valuable and viable for various fault diagnosis applications across many types of rotat-
ing machinery. In addition, simplicity and low computational cost are some advantages of
using hand-crafted features for classical feature extraction processes in condition monitor-
ing signals since, among other things, they allow a whole series of experiments and tests
exhaustively without excessive time consumption.

A relative repetitive pattern is seen between relevant features in some databases that
have mechanical elements in common. This could suggest a direct physical relation of
the phenomenon with the feature values. Despite this, additional analysis and testing
are needed to fully confirm and establish the physical significance between the feature
and the physical process or mechanical component. The results suggest the importance
of a methodical and systematic approach to analyze characteristics and evaluate the per-
formance of features through the classifiers in diagnosing faults in rotating machinery.
The classification percentages and the number of features required to achieve that value
were informative in determining the effectiveness of the features and identifying those that
may be useful for fault identification. These results also suggest that it is crucial to consider
interpretability and interpretation of features, as this can significantly impact diagnostic
effectiveness. In the same way, the compilation of features carried out and presented in the
summary tables is a substantial part of the contribution of this paper. Due to the disparate
nature of the literature in terms of the mathematical formalization that the features have,
we have found it necessary to unify the nomenclature of the formulas in this compilation.
The same summary of nomenclature can be seen in Table 1. A map was built that organizes
and specifies in which domains the different types of features are used. The main trends of
the features in terms of the information they seek to reveal of the signal were identified.
The fact that these diversified trends exist according to the signal representation domain
makes sense since each domain has its advantages, disadvantages, and specific objectives
of what they want to reveal about the signal; therefore, the features will seek to exploit
precisely those strengths, such as waveforms in time and energy distribution in frequency
components in the spectrum.

Assuming that the acquired signals have a sufficient sampling rate to effectively
capture the phenomenon being measured and are not affected by aliasing or noise, another
advantage of hand-crafted features is agnostic to the acquisition rate and time. Whether
the signals are large or small, fast or slow, feature calculation on any signal will always be
viable, and there is virtually no restriction on the size of the input to the processing since the
information extraction stage is separated from the inference part, which does not happen
in Deep Learning models [164,165]. This advantage applies particularly to those signals
in the time domain. Some exceptions could cause errors, such as counting the number of
zero crossings of a time domain signal with no negative side. The result will be 0, which is
not a significant feature in this example. On the other hand, the features in the frequency
domain could become dependent on the sampling rate due to its direct relationship with the
resolution of the spectrum. If the size of the sample corresponding to the signal is reduced,
a decrease in the performance of the features in frequency is also expected. Consequently,
the precision of the classifiers that use them will decrease. The choice of which features or
calculations to use for each case will be left to the judgment and expertise of the subject
who performs the analysis. In this work, databases that had signals with different sampling
rates and acquisition times were used, achieving very high classification results using
hand-crafted features without any problem. In addition, standard methods and models
were also used for ranking and classifiers. There was no hyperparameter optimization,
so many combinations of rank classifiers could significantly improve their performance if
this other process was applied. This election is because the experiment aimed to measure
the efficiency of the features, not the power of the classification model. If a group of
characteristics serves to classify failures in a rotating machine, then these features are very
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informative to reflect the status or type of failure of a particular component; therefore,
the fault associated with a component of the machine has been characterized. In subsequent
actions within a CBM plan, these features and their evolution can be used as markers that
provide information on the deterioration of the machine or any of its components. In this
way, we would get closer to performing predictive maintenance.

The yields obtained in the classification are comparable with many others based on
much more sophisticated processing or with methods based on deep learning with the
advantage that they are interpretable and computationally very light. It is necessary to
mention that there is no such thing as an optimal group of features that serve all databases.
Instead, there is a pool of features from which some can be extracted to achieve acceptable
performances in fault classification tasks for rotating machinery. Part of these pools would
be in the sunburst of occurrences since the graphs show all those features that were chosen
by more than three different ranking methods. Furthermore, this work has found some
specific features that work for many datasets that use the same mechanical components.
It is also necessary to evaluate other databases of rotating machinery, other methods of
dimension reduction in the data, and aspects such as generalization and robustness to
variations in the condition monitoring signals to provide further completeness in feature
evaluation. It is necessary to continue researching and developing new techniques to
achieve an even more precise, effective, and generalizable diagnosis in the future and
optimize the feature’s interpretability. Although favorable results were obtained, it is
important to stress that research is still needed. In future research, it would be interesting
to explore the combination of automatic and hand-crafted feature extraction methods
that involve other domains or signal transformations or even further expand the feature
collection to achieve better performance in rotating machinery fault classification tasks.

Future work will focus on comparing the performance of these hand-crafted features
against automated feature extraction methods, particularly deep learning approaches. This
comparison should include an expanded range of classification models, incorporating
both traditional machine learning and deep learning architectures. Such a comprehensive
evaluation would provide valuable insights into the relative strengths and limitations of
manual versus automated techniques for fault diagnosis in rotating machinery, potentially
revealing new perspectives on feature effectiveness across diverse learning paradigms.
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Abbreviations

The following abbreviations are used in this manuscript:

CBM Condition-Based Maintenance
CPT Condition Prognostics Technology
DSP Digital Signal Processing
FFT Fast Fourier Transform
KNN k-Nearest Neighbors
ML Machine Learning
PSD Power Spectral Density
RCM Reliability-Centered Maintenance
RF Random Forest
SVM Support Vector Machine
TSA Time Synchronous Averaging
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Abstract: In recent years, there has been an increasing use of digital vibration sensors that are
based on capacitive MEMS accelerometers for machine vibration monitoring and diagnostics. These
sensors simplify the design of monitoring and diagnostic systems, thus reducing implementation
costs. However, it is important to understand how effective these digital sensors are in detecting
rolling bearing faults. This article describes a method for determining the diagnostic sensitivity
of diagnostic parameters provided by commercially available vibration sensors based on MEMS
accelerometers. Experimental tests were conducted in laboratory conditions, during which vibrations
from 11 healthy and faulty rolling bearings were measured using two commercial vibration sensors
based on MEMS accelerometers and a piezoelectric accelerometer as a reference sensor. The results
showed that the diagnostic sensitivity of the parameters depends on the upper-frequency band limit
of the sensors, and the parameters most sensitive to the typical fatigue faults of rolling bearings are the
peak and peak-to-peak amplitudes of vibration acceleration. Despite having a lower upper-frequency
range compared to the piezoelectric accelerometer, the commercial vibration sensors were found
to be sensitive to rolling bearing faults and can be successfully used in continuous monitoring and
diagnostics systems for machines.

Keywords: MEMS accelerometer; vibration measurement; bearing faults; diagnostics; condition
monitoring

1. Introduction

Rolling bearings are used in almost every type of rotating machinery. Most machine
breakdowns relate to bearing failures; thus, it is very important to diagnose bearing condi-
tions and predict the moment of failure occurrence [1–3]. Many bearings fail prematurely
due to contamination, poor lubrication, misalignment, temperature extremes, poor fit-
ting/fits, shaft unbalance, and misalignment [4]. The occurrence of bearing faults leads
to an increase in the bearing vibration; therefore, in diagnosing the condition of rolling
bearings, measurements and analysis of vibration signals are most often used [3].

1.1. Vibration Symptoms of Bearing Faults

Effective diagnosis of rolling bearings based on vibration measurements first requires
an understanding of the relationship between how damage occurs in bearings and the
symptoms of that damage visible in vibration signals [5,6]. A bearing consists of rolling
elements mounted in a cage and rolling on an inner and outer race. If we take a closer look
at the contact area (Figure 1), in an efficient and well-lubricated bearing, the rolling elements
are separated from the race surface by a layer of grease such that during the rolling, only
the highest peaks of surface roughness will interfere with each other, generating hundreds
of small-amplitude short pulses [7]. Due to the random distribution of the roughness, the
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pulses generated will have the character of random noise. It can therefore be concluded that
a healthy bearing is a random noise generator. As the lubrication conditions deteriorate
and the lubrication film thickness is gradually reduced, the pulses generated will be more
intense, so the level of perceived noise will be higher.

Figure 1. The influence of the surface conditions of interacting bearing elements on the number and
intensity of generated vibration signals.

In an operating bearing, as a result of various wear mechanisms, including, but not
limited to, fatigue wear, a small loss of material may develop on the surface of one of the
raceways (Figure 2), causing each of the rolling elements to come into collision with the
damage systematically, while generating cyclic pulses with an amplitude exceeding the
noise level by up to 1000 times.

Figure 2. Material loss on the inner race of the bearing.

The frequency and intensity of the pulses will strongly depend on the bearing geometry
(number and diameter of rolling elements and bearing race diameters) and shaft speed.
The characteristic frequencies of the pulses arising from the various bearing events can
be calculated from the analytical relationships shown below. The rolling element pass
frequency over the single defect on the outer-race BPFO (ball pass frequency, outer race) is
defined as follows:

BPFO =
nfr

2

{
1 − d

D
cosφ

}
, (1)

where n is the number of rolling elements, fr is the rotational frequency, d is the rolling
element diameter, D is the pitch diameter, and φ is the angle of load. The ball pass frequency
over the single defect on the inner race BPFI is defined as follows:

BPFI =
nfr

2

{
1 +

d
D

cosφ
}

. (2)

73



Sensors 2024, 24, 4463

The frequency related to the cage speed FTF (fundamental train frequency) is defined
as follows:

FTF =
fr

2

{
1 − d

D
cosφ

}
. (3)

The rolling element spin frequency BSF(RSF) is defined as follows:

BSF(RSF) =
D
2d

{
1 −

(
d
D

cosφ
)2
}

. (4)

The impulses generated when rolling elements collide with a defect on one of the
races are called shock or impact impulses and, due to the high stiffness of the elements
involved in their generation, are characterized by a very short duration of a few to tens
of microseconds. The pulses generate elastic waves in the material, which propagate at
a speed of around 5000 m/s in steel. Furthermore, due to the short pulse duration, in
the spectrum, the pulse energy is distributed over a very broad frequency band beyond
40 kHz [8].

The bearing is not an isolated component but cooperates with the shaft and, addition-
ally, carries loads from, among other things, forces generated by the residual imbalance
of the rotor and/or shaft misalignment. Consequently, the shock pulses generated during
the initial stage of bearing degradation are very weak in relation to the signal components
generated by inertia forces. It follows that in order to detect bearing damage at an early
stage, it is useful to measure vibrations over a wide frequency band, covering the ultra-
sonic range, and in order to extract weak pulses caused by mechanical damage from the
broadband signal, it is necessary to use appropriate methods for vibration signal processing
and analysis.

1.2. Methods of Bearing Diagnostics

The condition of rolling bearings can be assessed by the results of diagnostic tests
using temperature measurements, lubricant tests, thrust torque measurements, ultrasonic
measurements, and vibration and noise measurements [2].

Due to the high availability of test equipment, vibration measurement and analysis
is one of the more frequently used methods for diagnosing rolling element bearings. In
the field of vibration signal analysis for rolling element bearing condition assessment,
more or less sophisticated methods of signal analysis and evaluation based on the Hilbert
transform and analysis of the vibration acceleration envelope signals in the time and
frequency domains are used [1]. Over the years, a number of commercial solutions have
been developed for rolling bearing diagnostics, such as the SPM (shock pulse method)
and SPM HD (shock pulse method (higher definition)) from the SPM Instrument AB,
the spike energy spectrum (gSE) from Rockwell Automation/ENTEK and PeakVue from
CSI/Emerson, SEE (spectral emitted energy) and AEE (acoustic emission enveloping), ENV
Acc and HFD from SK, and the BCU (bearing condition unit) from Schenck, among others.
As industrial practice shows, the condition assessment of rolling element bearings is often
based on basic numeric estimators of vibration acceleration signals after prior high-pass
filtering and subsequent observation of time series as a function of operating time and
trend analysis. The most commonly determined vibration acceleration signal amplitude
estimators (signal features) are the peak value (aPeak) and/or the rms value (aRMS). Using
numerical parameters, it is also possible to refer to limit values defined in the standards or
practical diagnostic recommendations developed by diagnosticians or some companies [9].
An example of a standard which defines the criteria for evaluating the bearing condition
based on point features determined from a broadband vibration acceleration signal is ISO
13373-3 [10].

The values of rms and peak amplitudes can also be used to determine the dimension-
less parameter, like crest factor (Equation (5)). This represents the ratio of the peak value of
the vibration signal to its RMS value in a given vibration frequency range. If the crest factor
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increases, the rolling bearing deteriorates. However, in the last phase of damage, the value
of the peak factor may decrease. Therefore, this ratio should be used from the beginning of
the bearing’s life.

Cf =
|xPeak|
xRMS

(5)

where xPeak is the peak amplitude and xRMS is the effective amplitude.
Another parameter used for bearing defect detection is kurtosis. This statistical

parameter (Equation (6)) describes the flatness of a Gaussian distribution, and, for a strictly
random signal, its value equals 3.0. Because bearings in good condition theoretically, it
should generate random noise, and kurtosis serves as an indicator of a healthy bearing. If
mechanical degradation in the bearing begins, the kurtosis increases, and for deteriorated
bearings, it can be higher than 10 or 15.

K =
1
n Σn

i=1(xi − μ)4

σ4 − 3 (6)

where xi is the i-th value of the feature, μ is the population mean, σ is the population
standard deviation, and n is the sample size.

The usefulness of using numerical features in assessing the bearing condition is
reflected in the VDI 3832 standard [11], which defines, among other things, a diagnostic
parameter helpful for assessing the condition of rolling element bearings K(t), also called
the Sturm diagnostic coefficient. It is calculated according to Equation (7) from the product
of the peak and rms values of the vibration accelerations in the frequency range from 1 to
10 kHz, which is related to the product of the reference rms and peak values of the vibration
accelerations measured at the beginning of the bearing’s operation.

K(t) =
aRMS(0)·aPeak(0)
aRMS(t)·aPeak(t)

, (7)

where aRMS(0) is the RMS for the start point in time, aPeak(0) is the maximum value for
start, aRMS(t) is the current RMS, and aPeak(t) is the current maximum value.

The value of the parameter K(t) decreases with the deterioration of the bearing condi-
tion, making it possible to define the ranges of the limit values for the parameter and to
relate them to the expected bearing condition. The limit values of the K(t) parameter are
shown in Table 1.

Table 1. Classification of bearing condition according to the ranges of the parameter K(t).

K(t) Classification of Bearing Condition

>1 Condition improvement
1.0–0.5 Standard bearing condition
0.5–0.2 Deteriorating bearing condition
0.2–0.02 Advanced damage

<0.02 Failure

Rolling bearing vibration diagnostic methods based on numerical parameters allow
for the damage to be detected early enough that bearing replacement can be planned and
carried out at the most convenient time for the production process and before potential
failure.

1.3. Measuremnt of Bearing Vibration

Piezoelectric accelerometers (IEPE, ICP) have been used for many years in rolling
bearing diagnostics, which, when connected to portable vibration meters or continuous
monitoring systems, allow for the effective detection and identification of bearing damage
at a very early stage [12]. Capacitive accelerometers, so-called MEMS accelerometers, have
been on the market for a long time, alongside piezoelectric accelerometers [6,13,14].

75



Sensors 2024, 24, 4463

Landi et al. [15] presented a prototype MEMS sensor accelerometer for monitoring vi-
brations over a wide frequency range. The research presented included a sensor calibration
procedure and was carried out on an in-house test stand. Staszewski et al. [16] presented
a MEMS vibration sensor design with a wide frequency range up to 10 kHz, which can
replace traditional sensors due to high sensitivity, low noise, and lower costs. The sensor
prototype tested on a rig with a faulty rolling element bearing demonstrated effectiveness in
fault detection and comparable performance to a piezoelectric accelerometer. Zusman [17]
presented a comparison of traditional piezoelectric and modern MEMS-based vibration
sensors used in machinery condition monitoring and fault diagnostics. Experimental data
and detailed comparisons of output noise level and spectrum density for several popular
piezoelectric and MEMS vibration sensors are presented.

Rossi et al. [18] focused on demonstrating the sufficient accuracy of MEMS-based data
monitoring compared to a reference, a conventional mini-integrated circuit piezoelectric
(ICP). Investigating the vibration of turbofan engine fan blades, the MEMS was shown to
have a satisfactory level of measurement accuracy of ±5% deviation with respect to the
ICP at the angular velocity tested from 0 to 300 rpm. Varanis et al. [19] presented the use
of MEMS sensors for measuring mechanical vibrations and a broad literature review on
their use in various applications. Two experiments were also performed comparing the
amplitudes and frequencies of oscillations measured by MEMS sensors and piezoelectric
accelerometers in the time and frequency domains. Augustyn et al. [20] presented the
results of research on the identification of the frequency characteristics of a digital MEMS
accelerometer dedicated to monitoring the condition of machines. The specified characteris-
tics indicate the possibility of using the sensor for basic machine diagnostics in accordance
with the ISO 10816 [21] and ISO 20816 standards [22]; however, non-linearities at the limits
of the measurement band may limit its use in precise scientific measurements. Anslow [23]
presented the design of a mechanical housing for a MEMS accelerometer, which ensures
high-quality vibration data for machine condition monitoring (CbM). This paper presents
modal analysis, vibration sensor design guidelines, and housing design examples for
single-axis and three-axis MEMS accelerometers, highlighting the importance of avoiding
resonance and ensuring the appropriate housing natural frequency. However, Albarbar
et al. [24] have shown experimentally that the selection of a suitable MEMS sensor is crucial
for adequate monitoring of the desired quantity. In their study, they compared data ob-
tained with sensors dedicated to measuring different types of signals: sinusoidal, random,
and impulsive. They showed apparent differences between the results and suggested using
one of the sensors for purposes other than monitoring the condition of the machine.

1.4. Contemporary Digital Vibration Sensors and Its Usefulness to Bearing Faults Diagnostics

With the advent of Industry 4.0 and IIoT technology, many automation companies
are using MEMS accelerometers to build vibration sensors; they allow for vibration mea-
surement and direct evaluation of vibration signals thanks to an integrated ADC and
microcontroller [25–27].

These types of sensors have a digital output; thus, they can be called digital vibration
sensors.

A digital vibration sensor can be considered as such if it has at least one of the
following features:

• ADC converter and microcontroller.
• The ability to process and analyse measured signals.
• Ability to linearization of processing characteristics.
• Digital two-way communication interface.
• Self-test and auto calibration unit.
• The ability to learn and make independent decisions.

In order to be able to implement these functions, integrated in the sensor are a measur-
ing transducer, a conditioning system, a microprocessor, and a communication interface
which provides an estimation of vibration parameters and transfers it to the sensor registers;
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it can be read using popular data exchange protocols in automation, such as Modus RTU
or IO Link. The use of this type of solution simplifies the design and implementation of
continuous monitoring and diagnostic systems and facilitates data transfer to predictive
and cloud systems. (Figure 3).

Measuring
transducer

Coordinating and
processing system Microprocessor Communication

interface

Intelligent sensor

Figure 3. A block diagram of the digital accelerometer.

Commercial vibration sensors based on MEMS accelerometers have been available on
the market for some time now, allowing for the measurement of a whole range of numerical
parameters useful in machine diagnostics. Table 2 provides a comparison of the parameters
of exemplary digital vibration sensors, while Table 3 summarizes the diagnostic parameters
determined by the sensors and provided by the digital interface [25–27].

Table 2. Comparison of parameters of exemplary digital vibration sensors based on MEMS accelerometers.

Balluff BCM0002 Banner QM30VT2 Sick MPB10

Number of axes 3 2 3
Measuring range ±16 g N/A ±8 g
Measuring range vRMS N/A 0–46 mm/s 0–100 mm/s (at 88 Hz)
Frequency range 2–2500 Hz 10–4000 Hz 0.78–3200 Hz

Accuracy ±10% (2–1800 Hz)
±3 dB (2–2500 Hz) ±10% (at 25 ◦C) ±6%

Interface IO-Link 1.1 RS-485 (Modbus RTU) IO-Link 1.1
Operating temperature −25 to +70 ◦C −40 to +105 ◦C –40 to +80 ◦C

Table 3. Comparison of diagnostic parameters estimated on vibration signals by digital vibration
sensors.

Balluff BCM0003 Banner QM30VT2 Sick MPB10

10–1000 Hz 1000–4000 Hz

RMS
Peak to Peak

Max
Kurtosis

Crest Factor
Skewness

vRMS (mm/s)
vPeak (mm/s)

aRMS (G)
vPeak Component Frequency (Hz)

Simplified Order Spectrum

aRMS (G)
aPeak (G)
Kurtosis

Crest Factor

aRMS
vRMS

Variance
Skewness

Peak to Peak
Shape factor
Crest factor

Impulse factor
FFT spectrum analysis

It is noticeable that the sensors make available the classic vibration parameters for
assessing the overall condition of the machines based on the, e.g., ISO 20816 [28] standard.
These include rms vibration velocity amplitudes (vRMS) measured in the 10–1000 Hz band.
There are also standard parameters used in evaluating the condition of bearings, such as
rms amplitudes (aRMS), peak (aPeak), and peak-to-peak amplitude (aPP) of vibration ac-
celerations, which, depending on the sensor, are determined in the full available frequency
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band or can be determined in the high-frequency band above 1000 kHz. When analyzing
the parameters of the above-presented vibration sensors, the frequency band does not
exceed 4 kHz. Considering how bearing faults occur and how vibration signals are emitted,
this range may not be sufficient in some cases.

Despite the low price of the aforementioned sensors and the simplicity of their imple-
mentation, the question arises as to how the vibration parameters determined by MEMS
accelerometers are sensitive to bearing damage at different levels of severity. This paper at-
tempts to answer this question by presenting the results of diagnostic sensitivity estimation
for rolling element bearing measurements performed with the use of the two commercially
available sensors with embedded MEMS accelerometers.

1.5. Novelty of This Research

The novelty of this study lies in its precise evaluation of the diagnostic sensitivity
of digital vibration sensors based on MEMS accelerometers in detecting rolling bearing
faults. Compared to previous studies, this approach stands out by directly comparing these
sensors with traditional piezoelectric accelerometers in controlled laboratory conditions.
A key finding is the effectiveness of MEMS sensors in detecting typical fatigue faults in
bearings despite their lower-frequency bandwidth, making them a cost-effective alternative
to piezoelectric vibration sensors.

2. Materials and Methods

2.1. The Test Bench and Experiment Description

In order to assess the sensitivity of the diagnostic parameters determined by modern
MEMS-based digital vibration sensors to bearing faults of different intensities and under
different operating conditions, a series of active diagnostic experiments were planned
and carried out on a test rig located at the Department of Fundamentals of Machinery
Design of the Silesian University of Technology in Gliwice. The test stand consisted of
a drive motor and a motor controller, allowing for rotational speed change; a bearing
housing for mounting the tested bearings; and a loading system, allowing for radial load
application to the tested bearing. The test rig was equipped with measurement systems to
measure bearing housing vibrations using two commercial digital vibration sensors (SE1
and SE2) (see Table 2, items 1 and 2) and a piezoelectric accelerometer connected to an
industrial programmable signal processing module. A PCB T352C34 (PCB Piezotronics,
Inc., Depew, NY, USA) miniature piezoelectric accelerometer with a sensitivity of 100 mV/g
and frequency range 0.5–10,000 Hz was used. A piezoelectric accelerometer was applied
to collect reference data, which were used for comparison with data from the digital
sensors being evaluated. The first tested sensor (SE1) was connected to the manufacturer’s
dedicated measurement and data acquisition module, interfacing with the PC via a web
browser. The second tested digital vibration sensor (SE2) was connected to a PC using a
dedicated RS485-to-USB serial transmission converter. A script written in the MATLAB
R2020b environment was used to acquire data from SE2. The piezoelectric vibration sensor
was interfaced with processing electronics, also connected to a PC, which was equipped
with dedicated software. All the sensors were mounted using a magnet holder. Figure 4
presents a diagram of the laboratory stand.

Figure 5 presents the experimental setup used for the research.
The tests were carried out on a set of 11 deep-groove ball bearings with polymer

cage type 6303, 6 of which were brand new bearings that were considered to be in perfect
condition. The new bearings were assigned identifiers N1–N6. The technical conditions of
the remaining 5 bearings are characterized in Table 4.
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Figure 4. The test bench: 1—engine rotation speed controller; 2—radial load; 3—bearing housing;
4—vibration sensor with magnet holder; 5—processing electronics; 6—PC.

Figure 5. Experimental setup.

Table 4. Condition classification of investigated bearings.

Bearing ID Condition Characterization

D1 Damaged outer race
D2 Damaged inner race
D3 Damaged rolling element
D4 Bearing cage damaged (1 crack)

D4_2 Bearing cage damaged (2 cracks)
D4_3 Bearing cage damaged (3 cracks)
D4_4 Bearing cage missing

D5 No bearing lubricant

For bearings D1–D4, the damage was introduced manually. In the case of bearing
D4, progressive cage damage was simulated between measurements by cutting through
the cage at selected points to finally remove it completely. For each bearing, vibration
measurements were taken at three shaft speeds, 600 rpm, 1500 rpm, and 3000 rpm, and
each was loaded with the same radial force.

For the piezoelectric sensor, the raw acceleration signal was recorded at a sampling
rate of 100 kSamples/s for a period of 10 s in the full frequency range of 2–10,000 Hz. The
collected signals were subjected to processing and analysis. Processing consisted of band-
pass filtering in bands 10–10,000 Hz and 1000–10,000 Hz. The processed acceleration signals
were segmented into time sub-realizations of 1 s duration and then analyzed to determine
diagnostic parameters corresponding to those determined by the digital vibration sensors
tested. Processing and analysis of the acceleration signals from the piezoelectric sensor
were carried out in the Python computational environment.
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2.2. Method of Evaluation of the Diagnostic Sensitivity of Investigated Digital Vibration Sensors

For the purposes of the described research, diagnostic sensitivity can be defined as
a quantitative measurement of the relative change in the value of a diagnostic signal
feature due to a small change in the technical condition of the diagnosed object [29–31].
It can be assumed that if a small change in the state causes a significant relative change
in the value of the diagnostic parameter, we can speak of the parameter’s sensitivity to
change. It can be assumed that the technical condition against which the changes of
condition will be determined will be some reference condition; e.g., in the case of bearings,
this is the good condition, characterized by the bearing at the beginning of operation.
Therefore, assuming that the value of a specific characteristic of the diagnostic signal will
be a measure of the current condition, the sensitivity measure Sp can be defined according
to the following equation:

Sp
(
ci, tj

)
=

∣∣∣∣∣1 − p
(
ci, tj

)
p(c0, t0)

∣∣∣∣∣·100%, (8)

where ci is the value of the characteristic technical condition at the moment of time tj, c0 is
the reference value of the characteristic technical condition, and t0 is the beginning of the
object’s operation. In the considerations, the moment of time tj should be considered in the
sense of operating time counted in hours, days, or months. In this case, the feature value
can be estimated from the vibration signal over a short integration time interval, counted in
milliseconds or seconds. It can be considered that if the sensitivity value meets the following
condition, i.e., Sp ≥ 25%, the change in the value of the characteristic is significant.

Due to the fact that two digital sensors and one piezoelectric sensor were used for
the tests, we decided to compare the diagnostic sensitivities of the sensors in such a way
that the differences between the sensitivities between the piezoelectric sensor and each of
the digital sensors could be determined. For this purpose, a measurement of differential
sensitivity (DSSE), defined as follows, was introduced:

DSSE = SSEref
pn

− SSEi
pn

, (9)

where Spn
is the diagnostic sensitivity of a given signal characteristic, SEref is the reference

sensor, and SEi is the sensor under test. It can be assumed that if the value of DSSE meets
the following condition, i.e., DSSE ≥ 25%, then the difference in the way the value of the
characteristic is estimated by the sensor under test is significant.

The data collected during the experiments was processed, ordered, and analyzed. As
the feature values for bearings in good condition will serve as reference values, the quality
of the collected feature values of the vibration signals for bearings in good condition was
assessed first. The coefficient of variation (CV), determined as follows, was used to assess
the quality of the data:

CV =
σ

μ
·100%, (10)

where σ is standard deviation and μ is a mean value of signal feature value.

3. Results

The Test Bench and Experiment Description

The CV values determined by Equation (8) are shown in Table 5.
The coefficient of variation for the new bearings in the case of the piezoelectric sensor

took values lower than or close to the coefficients of variation of the digital sensors. A
deviation can be seen for the kurtosis and CF parameters, where the CV index values were
higher for the piezoelectric sensor at rotational speeds of 1500 and 3000. This behavior
should be explained by the higher standard deviations resulting from the wider frequency
range for which the signal features were determined.

80



Sensors 2024, 24, 4463

Table 5. Comparison of CV values for the considered vibration signal features estimated for new
bearings in perfect condition.

Speed 600 1500 3000

Feature Name SEref SE1 SE2 SEref SE1 SE2 SEref SE1 SE2

aRMS 3.25 4.66 - 3.51 7.52 - 2.7 6.22 -
aRMS HF 3.18 - 8.05 3.43 - 7.61 2.82 - 9.18
aPeak HF 14.19 - 19.96 15.56 - 14.6 15.42 - 15.86

aPP 14.48 11.15 - 14.50 13.02 - 16.34 9.12 -
K 9.11 12.51 19.92 7.59 7.53 9.48 17.49 5.33 6.39

CF 12.83 10.85 15.16 13.74 9.17 12.32 14.07 8.48 10.88

For each of the determined features of the vibration signals, sensitivity values were
determined, which are summarized in Figure 6 for sensor SE1 and Figure 7 for sensor SE2.

(a)

(b)

(c)

Figure 6. Sensitivity value of features for sensor SE1 at speeds of (a) 600 rpm, (b) 1500 rpm, and
(c) 3000 rpm.
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Figure 7. Sensitivity value of features for sensor SE2 at speeds of (a) 600 rpm, (b) 1500 rpm, and
(c) 3000 rpm.

For the piezoelectric accelerometer, the sensitivity values are presented in Figure 8.
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Figure 8. Sensitivity value of features for sensor SEref at speeds of (a) 600 rpm, (b) 1500 rpm, and
(c) 3000 rpm.

By analyzing the sensitivity values determined, it can be seen that the tested sensors
SE1 and SE2 show very high sensitivity to typical bearing damages. Both sensors showed
the highest sensitivity to the rolling element defect, followed by damage to the inner race,
damage to the outer race, and lack of lubrication. From a diagnostic parameters point
of view, peak and peak-to-peak values showed the highest sensitivity, although, in the
absence of lubrication, the rms amplitude showed the highest sensitivity. It is worth noting
that in the non-lubricated case, the sensitivity increased with rotational speed and the
highest values were achieved for the features determined from the high-pass filtered signal.
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For all features for the sensors considered, the lowest sensitivity was observed for cage
damage. This is a specific kind of damage manifesting itself with different symptoms
depending on its intensity, the design of the cage, and the material from which it is made.
From a spectrum analysis perspective, the cage damage manifests itself with a frequency
component equal to 0.4fn, where fn is the rotational speed frequency. This makes it possible
to see that the high-pass filtering of the signal in this case can make the detection of this
damage more difficult. This phenomenon is apparent if we compare the feature values of
the SE1 sensor, which were determined for the full sensor frequency range, and the feature
values of the SE2 sensor, where were determined for the 1000–4000 Hz range.

Figures 9–11 show the sensitivity plots of the feature values for the different stages of
cage damage considered.

(a)

 
(b)

 
(c)

 
Figure 9. Sensitivity values for different stages of cage damage for sensor SE1 at speeds of (a) 600 rpm,
(b) 1500 rpm, and (c) 3000 rpm.
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(a)

 
(b)

 
(c)

 
Figure 10. Sensitivity values for different stages of cage damage for sensor SE2 at speeds of
(a) 600 rpm, (b) 1500 rpm, and (c) 3000 rpm.
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(a)

 
(b)

 
(c)

 
Figure 11. Sensitivity values for different stages of cage damage for sensor SEref at speeds of
(a) 600 rpm, (b) 1500 rpm, and (c) 3000 rpm.

It can be seen that for low-intensity cage damage (D4—single break; D4_2—two
breaks), the sensitivity for both sensors does not exceed 100%. In contrast, high-intensity
cage damage is best detected on the basis of peak and rms amplitudes determined over
the full frequency range. The peak and peak-to-peak values of the accelerations are also a
diagnostic parameter that characterizes this type of damage well.

From the sensitivity values point of view, it was observed that the sensitivity increases
with increasing speed, which is the expected effect for bearings, but in the case of cage
damage, no significant increase in sensitivity with speed was observed.
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If one relates the values of the sensitivity of the features of the vibration signals of the
tested sensors SE1 and SE2 to the features calculated for signals from the piezoelectric sensor
by analyzing the values of the differential sensitivity SD presented in Figures 12 and 13, it
is easy to see that in most cases, the values are positive, and for typical bearing damage,
the values are very high, which indicates that in the case of rolling element bearings, the
determination of the signal features in a wide frequency range allows for the early detection
of typical defects related to the material fatigue of the races and rolling elements. In the case
of a lack of lubrication and cage damage, the results do not clearly indicate an advantage
for the piezo sensor; in which case, for example, sensor SE2 had better sensitivity to a lack
of lubrication and sensor SE1 greater sensitivity to intensive cage damage at 3000 rpm.

Figure 12. Differential sensitivity value for sensor SE1 at speeds of (a) 600 rpm, (b) 1500 rpm, and
(c) 3000 rpm.
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Figure 13. Differential sensitivity value for sensor SE2 at speeds of (a) 600 rpm, (b) 1500 rpm, and
(c) 3000 rpm.

When comparing the differences in the sensitivity of the signal features between the
piezoelectric sensor and the digital sensors, it was noted that for the piezoelectric sensor,
kurtosis was a much more sensitive parameter. In the case of typical bearing failures,
kurtosis did not show high sensitivity in the case of the SE1 and SE2 sensors, which may be
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due to the way in which it is estimated, which is not completely known as far as the SE1
and SE2 sensors are concerned.

4. Conclusions

On the basis of the research carried out, it can be concluded that commercial digital
vibration sensors are sensitive to basic rolling bearing damage of medium and high intensity,
which makes it possible to detect bearing faults and prevent unexpected machine failures,
provided that the correct warning and alarm thresholds are set in condition monitoring
systems and that maintenance services respond correctly to the emergence of alarm signals.
The sensitivity of sensor bearing fault detection is dependent on the frequency band. The
higher the sensor’s processing capabilities in the higher frequency range, the higher the
sensitivity to even low-intensity damage increases, as can be seen from a comparison of
the two sensors SE1 and SE2, in which the diagnostic parameters of the vibration signals
were determined in the bands 2–3500 Hz and 1000–4000 Hz, respectively. This fact is also
confirmed by comparing the sensitivity of the signal features of digital sensors with a
piezoelectric sensor, whose upper frequency of the measurement range was 10,000 Hz.

It can also be argued that the high diagnostic sensitivity values for the piezoelectric
sensor are due to the nature of the sensor’s operation; however, at this stage of the research,
it is not possible to state unequivocally that the use of a piezoelectric transducer increases
the diagnostic sensitivity to a decisive degree compared to MEMS capacitive accelerometers.
This would require a comparison of accelerometers in similar processing bands, which will
be the subject of the authors’ further research.

Research shows that diagnostic sensitivity depends on the frequency band as well
as the type of damage. It can be assumed that these two factors determine the ability of
sensors to detect various bearing defects. To investigate these relationships, it is necessary
to conduct broader studies on a wider statistical sample and an expanded number of
vibration sensors. This will be the subject of further research by the authors.
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Abstract: Intelligent fault diagnostics based on deep learning provides a favorable guarantee for the
reliable operation of equipment, but a trained deep learning model generally has low prediction
accuracy in cross-domain diagnostics. To solve this problem, a deep learning fault diagnosis method
based on the reconstructed envelope spectrum is proposed to improve the ability of rolling bearing
cross-domain fault diagnostics in this paper. First, based on the envelope spectrum morphology
of rolling bearing failures, a standard envelope spectrum is constructed that reveals the unique
characteristics of different bearing health states and eliminates the differences between domains due
to different bearing speeds and bearing models. Then, a fault diagnosis model was constructed using
a convolutional neural network to learn features and complete fault classification. Finally, using two
publicly available bearing data sets and one bearing data set obtained by self-experimentation, the
proposed method is applied to the data of the fault diagnostics of rolling bearings under different
rotational speeds and different bearing types. The experimental results show that, compared with
some popular feature extraction methods, the proposed method can achieve high diagnostic accuracy
with data at different rotational speeds and different bearing types, and it is an effective method for
solving the problem with cross-domain fault diagnostics for rolling bearings.

Keywords: rolling bearings; cross-domain fault diagnostics; standardized envelope spectrum;
convolutional neural networks

1. Introduction

Rolling bearings are an important part of rotating machinery and equipment, and they
are easily damaged under long time operation and bad working conditions. Sudden failure
will affect the normal operation of the equipment, resulting in economic losses and even
casualties [1]. Therefore, it is of great importance to monitor and diagnose the operating
condition of rolling bearings.

Signal processing and intelligent diagnostic methods have been successively applied
to rolling bearing fault diagnostics, which has attracted the attention of a large number
of scholars due to the fact that intelligent diagnostic methods do not require specialized
technicians. Intelligent diagnostic methods usually include two steps: feature extraction
and fault classification. Feature extraction is a signal processing method based on the time
domain (TD), frequency domain (FD), and time–frequency domain (TFD) [2,3] to extract
feature indicators that can characterize the health state. Traditional machine learning meth-
ods, such as support vector machines (SVM) [4], principal component analysis (PCA) [5],
and artificial neural networks (ANN) [6], have been widely used for fault classification in
intelligent diagnostics. However, due to their shallow architectures, they have difficulty
learning effective features from raw signals, and the diagnostic performance relies on expert
a priori knowledge and signal analysis tools.

Compared with traditional machine learning, deep learning models can automatically
discover deep features in the original signals, and have received extensive attention and
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research in recent years. Deep learning algorithms, such as the convolutional neural net-
works (CNN) [7], the recurrent neural networks (RNN) [8], th deep autoencoder (DAE) [9]
and the deep belief network (DBN) [10], have been successfully applied to bearing fault
diagnostics.

CNN is a typical deep learning algorithm with a strong local feature extraction capa-
bility and performs well in image recognition and classification tasks. Hoang et al. [11]
converted one-dimensional time-domain vibration signals into two-dimensional vibra-
tion images and then used CNN for vibration image classification to identify bearing
faults. Zhang et al. [12] proposed an improved CNN model using time–frequency im-
ages as input for bearing fault diagnosis that is highly adaptable to workload variations.
Hasan et al. [13] fused the multi-domain information of raw bearing vibration signals into
a two-dimensional composite image, and then fed the composite image into a multi-task
learning (MTL)-based CNN model for fault diagnostics, which was able to accurately
detect faults in the presence of simultaneous changes in speed and health conditions.
Chen et al. [14] used cyclic spectral analysis to construct a frequency domain graph as an
input to CNN to reveal the hidden periodic behavior of each fault type in bearing vibration
signals, which reduces the difficulties with feature learning in deep diagnostic models.
Sobie et al. [15] sequentially performed envelope extraction, simultaneous angular domain
averaging, and normalization of the bearing vibration signals before feeding them into a
CNN, which allows the fault classification of experimental data with different shaft speeds
and bearing geometries.

Although the CNN-based rolling bearing intelligent diagnostic methods have achieved
remarkable results, there are still some problems:

(1) Although some feature extraction methods based on the time domain, frequency
domain, and time–frequency domain have been applied to intelligent diagnostics, these feature
extraction methods do not fully consider the a priori knowledge of the local fault characteristics
of the bearings, have poor robustness, and are ineffective in cross-domain diagnostics.

(2) Many existing feature extraction methods do not take into account the differences
between source and target domains caused by changes in bearing speeds and bearing mod-
els, making it difficult for deep learning models to learn common features between domains
when performing cross-domain diagnostics, and degrading the diagnostic performance.

To solve the above problems, a standard envelope spectrum is constructed based on the
envelope spectrum morphology of rolling bearing faults. The standard envelope spectrum
reveals the signal characteristics of rolling bearings that do not vary with rotational speed
and model, but only with changes in health state. That is, the difference between the source
and target domains due to different speeds and models is eliminated by taking into account
the a priori knowledge of experts. A standard sample library reflecting the health state
of rolling bearings is established from the existing bearing data set, and fault diagnostics
without target domain samples are realized. A convolutional neural network model is
constructed to learn the common features between the source and target domains and
perform fault classification by taking the standard envelope spectrogram as input.

The main contributions of this paper can be summarized as follows:
(1) A standard envelope spectrum is constructed that reveals the unique characteristics

of different bearing health states.
(2) An intelligent diagnostic method based on vibration signals for the SES-CNN of

rolling bearings is proposed, which is effective in the cross-domain diagnostics of bearing
data with different rotational speeds and different models.

(3) The proposed method focuses on effective feature representation for the cross-
domain fault diagnostics of rolling bearings, establishes a standard sample library reflecting
the health state of the rolling bearings, and the diagnostic process does not require target
domain samples and models of high complexity.

The rest of the paper is organized as follows: in the next section, the relevant theoretical
background is introduced. Section 3 analyzes and presents the proposed framework for
rolling bearing fault diagnostics. Section 4 describes the datasets used and provides a
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comprehensive evaluation and comparison of the methods. Finally, some conclusions are
given in Section 5.

2. Theoretical Basis

2.1. Envelope Spectrum

When the rolling bearing element surface produces local defects, in the rolling body
and the inner and outer ring, mutual motion processes will produce periodic impact
vibrations, and the frequency of vibration is called failure characteristic frequency. The
failure characteristic frequency depends on the shaft speed and bearing type (geometry).
Different component failures correspond to different failure characteristic frequencies. The
formulas for the outer ring failure characteristic frequency, inner ring failure characteristic
frequency, rolling body failure characteristic frequency, and cage failure characteristic
frequency calculation are as follows:

fo = 0.5z fr(1 − d
D

cos α) (1)

fi = 0.5z fr(1 +
d
D

cos α) (2)

fb =
1
2

D
d

fr

[
1 − (

d
D
)

2
cos2 α

]
(3)

fc = 0.5 fr(1 − d
D

cos α) (4)

where z is the number of balls, fr is the rotation frequency, d is the ball diameter, D is the
raceway pitch diameter, and α is the contact angle.

Envelope spectrum analysis is an effective method for rolling bearing fault diagnos-
tics [16]. Usually, the original signal undergoes Hilbert demodulation to obtain the envelope
signal, and then the envelope signal undergoes a Fourier transform to obtain the envelope
spectrum.

Let x(t) represent a vibration signal whose analytical signal is expressed by the Hilbert
transform as:

x̃(t) = x(t) + jH{x(t)} = x(t) + j
1
π

+∞∫
−∞

x(τ)
t − τ

dτ (5)

where H{·} denotes the Hilbert transform and j is the imaginary unit.
The envelope signal is then obtained from the following equation:

Env(t) = |a(t)| =
√
(x(t))2 + (H{x(t)})2 (6)

The envelope spectrum is obtained by applying a Fourier transform to the envelope
signal, which is given by the following equation:

Es( f ) = F{|a(t)|} =
∫ +∞

−∞
|a(t)|e−j2π f tdt (7)

where F{·} denotes the fast Fourier transform (FFT).
The envelope spectrum can effectively reveal the failure characteristic frequency of

rolling bearings, and the expected envelope spectrum patterns of different components of
rolling bearings when failures occur are shown in Figure 1 [17]. For the outer ring fault,
the main frequency components in the envelope spectrum are the outer ring fault charac-
teristic frequency and harmonics; there is no sideband. For the inner ring fault, the main
frequency components in the envelope spectrum are the inner ring fault eigenfrequency
and harmonics, and the sideband interval is the rotating frequency sideband. For rolling
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element faults, the main frequency components in the envelope spectrum are the rolling
element fault eigenfrequency and harmonics, and the sideband interval is the sideband of
the cage fault eigenfrequency.

f

A

of 2 of 3 of fif 2 if 3 if

rf rf
rf rf

rf rf

fbf 2 bf 3 bf

cf cf
cf cf

cf cf

A A

(a) (b) (c)

Figure 1. Bearing fault envelope spectrum morphology: (a) Outer ring fault; (b) Inner ring fault;
(c) Rolling element fault.

2.2. Convolutional Neural Networks

A convolutional neural network (CNN) is a deep learning model that performs well at
visual recognition tasks, such as image classification and target detection. A typical CNN
architecture consists of multiple layers, such as convolutional, pooling, and fully connected
layers, which perform different functions and are primarily used to extract features from
input data and perform classification [18].

The basic block of the CNN feature extraction part is the convolutional layer. The
convolutional layer applies a set of convolutional kernels (also known as learnable filters)
to the input data, with each kernel extracting specific features. The efficiency of feature
extraction is significantly affected by the filter size, the convolutional step size, and the
number of filters used. The convolutional layer captures patterns and structures by sliding
these filters over the input data. This operation allows the network to learn a hierarchical
representation, starting with simple features, such as edges and corners, and gradually
evolving to more complex features. The convolution formula is:

yconv
l,j =

k

∑
i=1

wl
i,j ∗ ypool

l−1,i + bl
j (8)

where yconv
l,j represents the convolutional value of the jth channel in convolutional layer l,

ypool
l−1,i represents the ith channel output in pooling layer l − 1, wl

i,j represents the kernel of

convolutional layer l, bl
j represents the bias of the jth channel in the convolutional layer l,

and ∗ represents the convolutional operation.
After the convolution operation is completed, whether or not the neurons in the convo-

lution layer are awakened depends on the activation function. Activation functions such as
ReLU (Rectified Linear Units) can introduce nonlinearities, promote sparsity, improve gra-
dient propagation, and enable the network to capture complex patterns, which ultimately
improves the overall performance and learning ability of convolutional neural networks:

yRelu
l,j = f (yconv

l,j ) = max[0, yconv
l,j ] (9)

where yRelu
l,j represents the jth channel output in the convolutional layer l, and f (·) repre-

sents the activation function.
In the feature extraction part, several convolutional layers are always followed by a

pooling layer, i.e., a sampling layer. The main purpose of the pooling layer is to reduce the
dimensionality of the feature maps and to reduce the number of feature maps, thus reducing
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the computational complexity. Maximum pooling and average pooling are commonly used
pooling operations. The maximum pooling function is as follows:

ypool
l,j = max(w(s1, s2) ∩ yRelu

l−1,j) (10)

where w(s1, s2) represents the pooling window, which can slide with a certain step, s1 and
s2 correspond to the dimension of the pooling window, yRelu

l−1,j represents the jth channel
output in the convolutional layer l − 1, and ∩ represents the overlap between the pooling
window and the channel output.

The final part of a CNN usually consists of fully connected layers. These layers
act as classifiers, taking the high-level representations extracted from the previous layer
and mapping them to the target classes. The output layer is usually a softmax layer that
generates class probabilities. The formula for the fully connected layer is as follows:

y = σ((w f )
Tsm + b f ) (11)

where w f represents the weight matrix used to connect the two fully connected layers,
b f represents the bias, sm represents the input data of the fully connected layer, and σ(·)
represents the activation function in the fully connected layer.

3. The Proposed SES-CNN Model

3.1. Construction of Standard Envelope Spectrum (SES)

The envelope spectra of rolling bearings are characterized differently when localized
defects occur in different elements of the bearing. However, the distribution of spectral lines
in the envelope spectrogram changes due to the fact that different types of bearings have
different failure characteristic frequencies. Similarly, changes in rotational speed change
the distribution of spectral lines in the envelope spectra. Therefore, a standard envelope
spectrum is constructed, and the spectral lines of the relevant fault characteristic frequencies
in the envelope spectrum are fixed at the specified positions, so that the spectrum not only
retains the characteristic differences of different component faults, but also eliminates the
differences in the distribution of the characteristic spectral lines caused by changes in
rotational speed and bearing models, and has the characteristic that it does not change with
changes in bearing rotational speed and models, but only changes due to changes in health.
The process of constructing the standard envelope spectrum is shown in Figure 2 with the
following steps:

Step 1: To improve the signal-to-noise ratio, a fast kurtogram method is used to select
the optimal frequency band of the signal, then a bandpass filter is applied to the optimal
frequency band to obtain the filtered signal.

Step 2: A Hilbert transform is applied to the filtered signal to obtain the envelope signal.
Step 3: A Fourier transform is applied to the envelope signal to obtain the enve-

lope spectrum.
Step 4: The fault characteristic frequency of each component of the bearing is calculated

using Equations (1)–(4). First, take the outer ring fault characteristic frequency and its harmonic
n fo, the inner ring fault characteristic frequency and its harmonic n fi, and the rolling element
fault characteristic frequency and its harmonic n fb as the search center frequency. Next,
set the frequency search range according to the form of [F(1 − α), F(1 + α)], and extract
the point with the largest amplitude in the search range of the search center frequency in
the envelope spectrum as the spectral peak point. Then, the frequency corresponding to
the spectral peak point at the inner ring fault characteristic frequency and its harmonic n fi
is taken as the actual inner ring fault characteristic frequency and its harmonic, and these
frequencies are taken as the new search center frequency. The frequency search range is set
in the form of [F − fr(1 + α), F − fr(1 − α)] and [F + fr(1 − α), F + fr(1 + α)], and the point
with the largest amplitude in the search range of the search center frequency in the envelope
spectrum is extracted as the spectral peak point. Similarly, the frequencies corresponding to
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the spectral peaks at the characteristic frequencies and harmonics of the rolling body ring faults
and their harmonics n fb are taken as the actual rolling body fault characteristic frequencies
and their harmonics. These frequencies are taken as the new search center frequencies,
and the frequency search ranges are set in the form of [F − fc(1 + α), F − fc(1 − α)] and
[F + fc(1 − α), F + fc(1 + α)], and the point with the largest amplitude in the search center
frequency search range of the envelope spectrum is extracted as the spectral peak point. After
the above search, a total of 21 spectral peaks (Fi, ai) are obtained where 1 ≤ n ≤ 3 and
1 ≤ i ≤ 21, and both n and i are integers. That is, a total of 21 frequency components are
considered, including the bearing outer ring fault, the inner ring fault, the rolling element
fault characteristic frequency of the first 3 harmonics, as well as the inner ring fault, and the
rolling element fault characteristic frequency of the first 3 harmonics around the first-order
modulation sidebands. Due to the influence of factors such as bearing slippage, the bearing
fault characteristic frequency calculated by kinematics theory and the actual fault frequency
often have errors, so this paper considers the error coefficient of α = 0.015.

Step 5: Normalize the amplitude of the previously searched peak points (Fi, ai) of the
spectrum using the following formula:

Ai =
ai

aimax
(12)

where 1 ≤ i ≤ 21 and aimax is the maximum value in ai.
Step 6: Establish a new coordinate system where the vertical coordinate range is

0–1 and the horizontal coordinates, from left to right, are the outer ring fault (OF), inner
ring fault (IF), rolling element fault (BF), being the three fault characteristics of the region.
The normalization of the spectral peak point (Fi, Ai) is placed in the corresponding fault
characteristics of the region, in accordance with the order of Fi from small to large, arranged
in the corresponding horizontal coordinate position, to generate a new spectral line graph
known as the standard envelope spectrum.

Step 7: Save the resulting standard envelope spectrum as a grayscale image in a jpg
format with a resolution of 64 × 64 px.
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Figure 2. The process of constructing a standard envelope spectrum.

3.2. The Architecture of the Proposed CNN

The CNN model constructed in this paper consists of two convolutional layers, two
batch normalization layers, two pooling layers, one spreading layer, and two fully con-
nected layers, where the convolutional layers are used for feature extraction, the pooling
layer is used to reduce the spatial dimensionality of the feature maps, the batch normal-
ization layer is used to prevent overfitting and speed up convergence, the spreading layer
is used to spread the multidimensional feature maps into one-dimensional vectors, and
the fully connected layer is used for classification and output prediction. The size of the
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convolutional layer filter is (3, 3), the step size is (1, 1), the same filling method is chosen,
ReLU is chosen as the activation function, the number of the first convolutional layer filter
is 16, and the number of the second convolutional layer filter is 32. Both convolutional
layers are followed by a batch normalization layer and a pooling layer where the type of
the pooling layer is the maximum pooling layer, the size of the filter is (2, 2), the step size is
(2, 2), the size of the filter is (2, 2), and the same padding method is chosen. The output
is then flattened by a spreading layer and mapped to the output categories by two fully
connected layers, where the number of neurons in the first fully connected layer is 128
and ReLU is chosen as the activation function, and the number of neurons in the second
fully connected layer is four and softmax is chosen as the activation function. The model is
trained using the ADAM optimizer, the cross-entropy loss is used as the loss function, and
the accuracy and loss value are used as metrics to evaluate the training performance of the
network model. The details of the layer type and the parameters used are shown in Table 1.

Table 1. Parameters of the proposed CNN architecture.

Layer Layer Types Kernel
Number of

Filters
Filter Size Stride Output Size

Activation
Function

1 Input 64 × 64 × 1
2 Conv Kernel 16 3 × 3 (1,1) 64 × 64 × 16 ReLU
3 BN 64 × 64 × 16
4 MaxPool Pooling size 16 2 × 2 (2,2) 32 × 32 × 16 ReLU
5 Conv Kernel 32 3 × 3 (1,1) 32 × 32 × 32
6 BN 32 × 32 × 32 ReLU
7 MaxPool Pooling size 32 2 × 2 (2,2) 16 × 16× 32
8 Flatten 8192
9 FC 128 ReLU
10 FC 4 Softmax

3.3. Fault Diagnosis Framework Based on SES and CNN

In this paper, a deep learning method for bearing cross-domain fault diagnostics based
on a reconstructed envelope spectrum is proposed, and the flow chart of the entire method
is shown in Figure 3, with the main steps summarized as follows:

Step 1: Acquisition. Bearing vibration data accelerometers are used to acquire raw
vibration signals from the bearings in various health states.

Step 2: Standardization processing. Standardize the original vibration signal to obtain
the standard envelope spectrum of the signal.

Step 3: Standard sample library construction. A one-to-one correspondence between
the standard envelope spectrum and the healthy rotational state of the bearing is used to
construct a standard sample library.

Step 4: Model training. The CNN model is constructed, the standard sample library
is divided into the training set, validation set and test set in the ratio of 7:2:1 to train the
model, and the network model is optimally updated according to the training results to
obtain the rolling bearing fault identification model.

Step 5: Fault type identification. The vibration data under different speeds and
different bearing types are fed into the trained model as a test set to obtain the fault
classification and visualization results.
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Figure 3. Proposed method frame.

4. Experimental Validation

In this section, a series of cross-domain tasks are designed, using two publicly available
datasets and a dataset obtained from self-experimentation, to validate the effectiveness of the
method proposed in this paper and to compare its performance with that of some popular
signal preprocessing methods in terms of classification accuracy and generalization ability.

4.1. Experiment Setup and Data Description

In this paper, vibration signals from three devices were collected for analysis. The
bearing parameters of each device are given in Table 2, and a detailed description of the
data used is given in Table 3.

Table 2. Data set bearing parameters.

Data Set Type
Number of Balls

(z)
Roller Diameter d

(mm)
Pitch Diameter D

(mm)
Contact Angle α

(◦)

A 6203 8 6.75 29.05 0
B Rexnord ZA-2115 16 8.4 71.5 15.17
C 6312/C3 8 22 94 0

Table 3. Data set specification.

Data Set Set Data Number
Rotational

Speed
Sample
Number

Class Label

PU Bearings

A1
H: K001, K002, K003, K004, K005, K006

1500 rpm
480 0

OF: KA01, KA09,KA04,KA16 320 1
IF: KI01, KIO3, KI04, KI16, KI17, KI18 480 2

A2
H:K001, K002, K003, K004, K005, K006

900 rpm
480 0

OF:KA01, KA09, KA04, KA16 320 1
IF:KI01, KIO3, KI04, KI16, KI17, KI18 480 2

IMS
Bearings B

H: Data set 2, Bearing 1, Filess 1–200

2000 rpm

200 0
OF: Data set 2, Bearing 1, Files 513–712 200 1

IF: Data set 1, Bearing 3, Files 2056–2155 100 2
BF: Data set 1, Bearing 4, Files 1757–1956 200 3

Experimental
bearings C

H: Bearing 1, Files 1–300
3120 rpm

300 0
OF: Bearing 4, Files 501–800 300 1

BF: Bearing 1, Files 3001–3300 300 3

A brief description of the dataset is given as follows:
(1) Data set A was obtained from the University of Paderborn, Germany [19], and

the test rig included an electric motor, a torque measurement shaft, a rolling bearing test
module, a flywheel, and a load motor, as shown in Figure 4. The data set includes normal
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bearing data and defective bearing data, in which the defective bearings are obtained by
both manual machining damage and accelerated life test damage, including three fault
states: an outer ring fault, an inner ring fault, and a compound fault. Each bearing is carried
out under four working conditions, there are 20 data points for each working condition,
each data acquisition time was 4 s, and the sampling frequency was 64 kHz. The bearing
data was under a torque of 0.7 Nm, a radial load force of 1000 N, and rotational speeds of
1500 rpm and 900 rpm were selected for this validation.

(2) Data set B is from the Intelligent Maintenance System (IMS) [20]. The test rig is
shown in Figure 5, with four Rexnord ZA-2115 double row bearings mounted on a shaft.
The data is the full life data of the bearings and consists of three data sets, each containing
the vibration data of the four bearings. The speed of the bearings was 2000 rpm, the
sampling frequency was 20 kHz, the sampling interval was 10 min, the sampling time was
1 s, and a data file with 20,480 sampling points was generated. Data set 1 contains 2156 files,
where bearing 3 ran until the inner ring was damaged and bearing 4 ran until the rolling
element was damaged. Data set 2 contains 984 files, where bearing 1 ran until the outer
ring was damaged.

electc motor torque-measurement
shaft

test module flywheel load motor

Figure 4. Modular test rig.

Figure 5. Bearing test rig.

(3) Data set C is the real failure data of the bearings obtained by conducting full life
tests of the bearings. A total of four sets of bearings were installed on the test rig, and
acceleration sensors were used to collect vibration signals. The arrangement of the test rig
and measurement points is shown in Figure 6. The test speed was 3120 rpm, the sampling
frequency was 12,800 Hz, the sampling interval was 1 min, the sampling time was 1.28 s,
and 1 data file was generated. As shown in Figure 7a, bearing 1 ran until the rolling element
was damaged, resulting in 5570 data files. As shown in Figure 7b, bearing 4 ran until the
outer ring was damaged, resulting in 2473 data files.
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Figure 6. Bearing life test device: (a) Bearing test rig; (b) Bearing arrangement.

(a) (b)

Figure 7. Bearing fault: (a) Bearing with outer race fault; (b) Bearing with roller fault.

To ensure that the envelope spectrum has sufficient frequency resolution, the acqui-
sition time for each of the three data sets above was assumed to be 1 s for each sample.
Some of the raw time domain waveforms for the three datasets are shown in Figure 8,
indicating that the same health states in the three datasets have nothing in common in the
time domain.
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Data sets A1

Data sets A2

Data sets B

Data sets C

Figure 8. The time domain waveforms of the bearing datasets.

4.2. Analysis of Standard Envelope Spectrum (SES)

Data sets A1 and A2 are data from the same bearing at different speeds, and the
standardized envelope spectra of some of their different health data are shown in Figure 9.
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Data sets B and C are from two different types of bearings, and their standardized envelope
spectra of some different health data are shown in Figure 10. It can be clearly seen that the
SES plot shows unique features for a given state of health.

The standard envelope spectrum of the same bearing at the same speed for different
health states is shown in Figure 10a–d. As shown in Figure 10a, for the normal condition, the
spectral lines in the three characteristic regions are prominent. This is because the normal
bearing does not have cyclic shocks caused by defects, does not have prominent peaks in
the envelope spectra, and there is not much difference in the magnitude of the spectral lines
after normalization. As shown in Figure 10b, for the outer ring fault, the amplitude of the
spectral lines in the characteristic region of the outer ring fault is prominent, which is because
the amplitude at the characteristic frequency of the outer ring fault and its harmonics in the
envelope spectrum are prominent. As shown in Figure 10c, for the inner-circle fault, the
amplitude of the spectral lines in the characteristic region of the inner-circle fault is prominent
because the amplitude at the characteristic frequency of the inner-circle fault and its harmonics
and side frequencies are prominent in the envelope spectrum. As shown in Figure 10d, for the
rolling body fault, the amplitude of the spectral lines in the characteristic region of the rolling
body fault is prominent because the amplitude at the characteristic frequency of the rolling
body fault and its harmonics and side frequencies are prominent in the envelope spectrum.

As shown in Figure 9, for data from the same bearing at different speeds, the standard
envelope spectrum for the same flaw type has a high degree of similarity, and both have more
prominent spectral line amplitudes in the characteristic region of the corresponding flaw type.
Similarly, as shown in Figure 10, the standard envelope spectrum of the same fault type for the
data from two different types of bearings also has a high degree of similarity. This indicates
that the standard envelope spectrum effectively reveals the signal characteristics of rolling
bearings that do not change with speed and model, but only due to changes in health.

In fact, the envelope spectrum patterns of the bearings are different, for example, some
faults have prominent amplitudes for the first three harmonics of the fault characteristic
frequency, some have prominent amplitudes for only one harmonic of the fault characteris-
tic frequency, some inner ring/rolling element faults have no sidebands, and so on. At this
point, it is necessary for the CNN to synthesize the spectral line conditions of the three fault
characteristic regions of the standard envelope spectrum to learn and summarize the com-
mon characteristics of the corresponding health states. It is also necessary to utilize multiple
bearing fault data sets as much as possible to construct a standard sample library, enrich
the standard envelope spectrum form of the standard sample library, so that when it is used
for new diagnostic data, the most similar standard envelope spectrum from the sample
library can be easily found, and its corresponding health state is the diagnostic result.

(e) Bearing in A2
(Outer ring fault)

(f) Bearing in A2
(Inner ring fault)

(d) Bearing in A2
(Health)

(b) Bearing in A1
(Outer ring fault)

(c) Bearing in A1
(Inner ring fault)

(a) Bearing in A1
(Health)

Figure 9. Standardized envelope spectra for different health conditions for data sets A1 in (a–c) and
A2 in (d–f).
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(a) Bearing in B
(Health)

(b) Bearing in B
(Outer ring fault)

(c) Bearing in B
(Inner ring fault)

(e) Bearing in C
(Health)

(f) Bearing in C
(Outer ring fault)

(g) Bearing in C
( Rolling element fault )

(d) Bearing in B
( Rolling element fault )

Figure 10. Standardized envelope spectra for different health conditions for data sets B in (a–d) and
C in (e–g).

4.3. Fault Diagnosis under Different Domains

In this section, five cross-domain diagnostic tasks are designed to verify the cross-
domain diagnostic performance of the method proposed in this paper. Tasks 1 and 2 are
to use the data of one rotational speed as the training set (source domain) and the data
of another rotational speed as the test set (target domain) on the data of the same type of
bearing. Tasks 3–6 are training and test sets of data from different bearing models, where
Task 6 uses data from two different bearing models as the training set. For example, B → C
means that data set B is used for training and data set C is used for testing. For comparison,
the dataset used for testing uses 50 samples for each health state. The dataset details are
shown in Table 2.

4.3.1. Comparison with Time–Frequency Analysis Methods

Time–frequency analysis describes the correlation between the time and frequency
domains of a signal and is an effective tool for dealing with non-stationary and transient
signals [21]. The time–frequency transformed time–frequency map as a two-dimensional
image is often used as input to CNN-based diagnostic models. Therefore, this paper
compares the diagnostic effectiveness of STFT spectrograms, CWT spectrograms [22],
VMD-HT spectrograms [23], MDFVI spectrograms [13], CSCoh spectrograms [14], and the
proposed SES spectrograms as inputs. Each task is repeated 10 times, and the average
diagnostic accuracy using the proposed SES-CNN method is shown in Table 3, and the
results using other methods are also shown in Table 4. Task 6 is run once and its confusion
matrix is shown in Figure 11, where the green font represents the number of correctly
classified samples.

Table 4. Comparison results of different input features under different cross-domain tasks.

No.
Source
→ Target

STFT CWT VMD-HT MDFVI CSCoh SES

1 A1 → A2 67.33% 67.33% 34.67% 74.67% 65.33% 98.67%
2 A2 → A1 67.33% 66.67% 33.33% 88.00% 70.00% 92.00%
3 B → A1 34.0% 34.67% 33.33% 66.67% 34.00% 94.00%
4 B → A2 33.33% 33.33% 34.00% 54.67% 33.33% 95.33%
5 B → C 34.00% 33.33% 34.67% 49.33% 33.33% 90.00%
6 A + C → B 26.00% 25.00% 25.50% 36.50% 31.50% 87.00%

It can be seen that the classification accuracy of the methods used for comparison
is low. This is as expected, due to the large difference between the domains caused by
the different bearing speeds and bearing models, the feature extraction methods used
for comparison cannot reduce this difference, and it is difficult for deep learning to learn
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the common features between the source and target domains without the target domain
samples used for training. Compared with these methods, the method proposed in this
paper shows higher classification accuracy in experiments, which indicates the effectiveness
of its feature extraction, as shown in Figure 11, where most of the samples in the target
domain are correctly classified.
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Figure 11. Confusion matrix of five methods in Task 6: (a) STFT; (b) WT; (c) VMD-HT; (d) MDFVI;
(e) CSCoh; (f) SES.

4.3.2. Feature Visualization Analysis

To further illustrate the feature learning effectiveness of the proposed method for
cross-domain diagnostics, the performance of the proposed SES method on Task 6 is
feature visualized using the t-distributed stochastic neighborhood embedding (t-SNE)
technique [24], which maps high-level outputs from 128 to 2 dimensions in Layer 10. The
results are shown in Figure 12. The four different colors indicate four different categories.
It is clear from the visualization results that data points with different health states are well
separated and data points with the same health state are clustered together. In addition, a
small number of data points overlap between H and IF and between H and BF, suggesting
that a small number of IF and BF samples are incorrectly classified as H samples, which
would lead to reduced diagnostic accuracy. This observation is consistent with the results
shown in Figure 11. Overall, for the untrained data of different bearing models in Task
6, the proposed method can clearly distinguish different categories. Therefore, it can be
concluded that the proposed method is able to learn better discriminative features and
shows strong cross-domain diagnostic capability.

t-SNE 1

t-S
N

E 
2

Figure 12. Features visualization based on t-SNE.
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5. Conclusions

In order to improve the cross-domain fault diagnostic capability of rolling bearings,
this paper proposes a new deep learning-based fault diagnostics framework that combines
SES and CNN. Cross-domain diagnostic experiments are carried out on three different
sets of equipment, and the following conclusions can be drawn from the analyses of the
experimental results:

(1) The constructed SES, as a pre-processing step, reveals the signal characteristics of
rolling bearings that do not change with rotational speed and model number, but only due
to changes in health status.

(2) The SES eliminates the differences between the source and target domains due to
the different rotational speeds and models, which greatly reduces the difficulty the CNN
has in learning the common features between the two different domains and improves the
diagnostic performance.

(3) In the cross-domain task between six different rotational speeds and between
different bearing models, the proposed method shows high classification accuracy in
cross-domain diagnostics compared with some popular pre-processing methods.
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Abstract: Bolts have the advantages of simple installation and easy removal. They are widely applied
in aerospace and high-speed railway traffic. However, the loosening of bolts under mixed loads
can lead to nonlinear decreases in pre-loading. This affects the safety performance of the structure
and may lead to catastrophic consequences. Existing techniques cannot be used to monitor the bolt
performance status in time. This has caused significant problems with the safety and reliability
of equipment. In order to study the relaxation law of bolt pre-loading, this paper carries out an
experimental analysis for 8.8-grade hexagonal bolts and calibrates the torque coefficient. We also
studied different loading waveforms, nickel steel plate surface roughnesses, tangential displacement
frequencies, four different strengths and bolt head contact areas of the bolt, the initial pre-loading,
and the effects of tangential cyclic displacement on pre-loading relaxation. This was done in order
to accurately predict the degree of bolt pre-loading loosening under external loads. The laws are
described using the allometric model function and the nine-stage polynomial function. The least
squares method is used to identify the parameters in the function. The results show that bolts with a
smooth surface of the connected structure nickel steel flat plate, high-frequency working conditions,
half-sine wave, and a high-strength have better anti-loosening properties. Taking 5–10 cycles of
cyclic loading as a boundary, the pre-loading relaxation is divided into two stages. The first stage
is a stage of rapid decrease in bolt pre-loading, and the second stage is the slow decrease process.
The performance prediction study shows that the allometric model function is the worst fitted, at
71.7% for the small displacement condition. Other than that, the allometric model function and
the nine-stage polynomial function can predict more than 85.5% and 90.4%, which require the use
of least squares to identify two and ten unknown parameters, respectively. The complexity of the
two is different, but both can by better indicators than the pre-loading relaxation law under specific
conditions. It helps to improve the monitoring of bolt loosening and the system use cycle, and it can
provide theoretical support for complex equipment working for a long time.

Keywords: pre-loading; M8 bolt; nickel steel flat plate; tangential force; performance prediction

1. Introduction

There are a large number of bolt structures in large and complex equipment [1,2], and
the operational life of the bolt greatly affects the safety and complexity of the equipment.
The bolt structure prevents the connecting structure from sticking and slipping after being
subjected to a tangential load in the form of pre-loading. A small pre-loading is likely to
cause the bolt to loosen, leading to safety problems in large and complex equipment and
affecting the overall safety of the reactor. Excessive pre-loading can easily lead to losses in
bolt strength and stiffness [3].

Pre-loading directly affects the reliability of the bolted structure of complex equipment.
The magnitude of pre-loading is affected by factors such as the bolt material, diameter,
bearing speed, lubricant temperature, and friction coefficient [4,5]. Yang [6] compared the
loosening degree of different bolts under a tangential force, and the performance of the
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anti-loosening bolts was 9.43% lower than that of ordinary bolts. Hu [7] studied the effects
of the bolt diameter, pitch, and friction coefficient on the size of pre-loading based on a
finite element analysis based on the secondary development using Python and ABAQUS.
The results showed that at the same torque, the size of the bolt diameter is inversely
proportional to the pre-loading; the pitch has a small effect on the pre-loading; and the
friction coefficient has a significant effect. Reference [8] points out that at lower speeds,
the bolt pre-loading needs to be increased to maintain stability. In the case of mechanical
finishing, the bolt pre-loading should be reduced to ensure that the stiffness is within a
reasonable range. Under the coupling of multiple influencing factors, different tangential
cyclic displacements cause irregular pre-loading relaxation. As a result, it is difficult to
accurately evaluate the overall performance of large and complex equipment.

Pre-loading relaxation is prone to lead to the functional failure of the bolt structure. It
affects safety and reliability, and researchers have conducted many studies on the relaxation
of pre-loading [9–12]. Yang [13] assumed that the spring stiffness is proportional to the
magnitude of the force and constructed a model that can assess the pre-loading relaxation
effect. Wang [10] used the cooling method to set the bolt pre-loading and investigated the
effects of factors such as the friction coefficient and excitation replication on self-relaxation.
Shen [14] established a wear model based on the secondary development of ABAQUS 2016
software, and the results showed that the pre-loading relaxation phenomenon can be pre-
dicted by fatigue damage theory and the wear model. At present, scholars have carried out
more studies on the mechanisms, calculations, monitoring, and prevention of pre-loading
relaxation [15–19], especially for analysis based on finite element software. However, there
are fewer studies on the complex working conditions of high-precision instruments such as
complex equipment. In the process of storage, transportation, and work of complex equip-
ment, complex equipment may have impact, slip, and so on. These situations can generate
large tangential displacements on the equipment, as shown in Figure 1. Therefore, it is nec-
essary to predict the bolt pre-loading in this process. The existing methods for monitoring
pre-loading mainly include the strain gauge sensor method [20,21], piezoelectric impedance
method [22,23], ultrasonic method [24,25], and image recognition method [26–28]. These
four methods are widely used in the fabrication of a wide range of physical field sensors.
In particular, they play an important role in the fields of force measurement, weighing,
and pressure sensors. However, such methods are complicated to implement and cannot
monitor the change of pre-loading values in real time. Therefore, there is a need to build
mathematical functions that can characterize the degree of pre-loading relaxation to solve
the problem of unpredictable pre-loading decay during bolt operation.

In this paper, high-strength alloy nickel steel material is used as the basis from a
safety point of view for large and complex equipment. The pre-loading experiment was
designed and carried out. Nickel steel plates with a high strength, high hardness, and
corrosion resistance are widely used in a variety of important complex equipment such
as aircraft engines. However, due to its low filling factor, this material is less frequently
used in existing common equipment, and there are fewer studies on nickel steel materials
in the field at present. Therefore, this paper focuses on nickel steel structures in complex
equipment, with a Z-shaped flat plate used to simplify the complexity of the equipment. The
relationships between the mechanical properties of fasteners based on the ISO 898-2:2022
specifications are studied [29]. Conducting experiments at ambient temperatures from
10 ◦C to 35 ◦C ensures the physical properties of the screw and nut. The relationship
between the pre-loading and maximum external tightening torque of M8 external hexagonal
bolts was studied, and different pre-loading measurement methods and bolt tightening
methods were analyzed. Pre-loading relaxation experiments were designed, and torque
coefficient calibration between different bolts was carried out. The effects of different
waveforms, surface roughnesses of nickel steel plates, tangential displacement frequencies,
bolts, torques, and tangential cyclic displacements on pre-loading relaxation were studied.
Parameter identification was carried out for different tangential displacements and initial
tightening. An allometric model function and nine-stage polynomial function expression

108



Sensors 2024, 24, 3306

that could describe the degree of pre-loading relaxation were constructed. These can
provide theoretical support for the safety and reliability of large and complex equipment.

(a)

(b) (c)

Figure 1. Structure of bolted joints under mixed loads. (a) Simplified bolt assembly, (b) with lifting
angle bolts, (c) without lifting angle bolts.

2. Methods

2.1. Theoretical Formula for Calculating Pre-Loading

The total torque acting on the bolt structure is the sum of the friction torque pro-
duced by the threaded pair and the friction torque produced between the nut, which is
as follows [30]:

N = N1 + N2 (1)

where N1 and N2 are calculated using the following formula:

N1 =
1
2
× Fy × d2 × tan(α + β) (2)

N2 = μw × Fy × rd (3)

where Fy is the bolt pre-loading, d2 is the thread center diameter, α is the thread rise angle,
β is the equivalent friction angle, μw is the friction coefficient of the inner surface of the nut,
and rd is the equivalent friction radius.

The angle of thread rise is small in relation to the equivalent friction angle and can
therefore be approximated as follows:

tan(α + β) = tan α + tan β (4)
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The equivalent friction radius can be expressed as follows:

rd =
1
3
× (d1

3 − d0
3)

d1
2 − d0

2 (5)

where d1 is the maximum outer diameter of the nut and d0 is the diameter of the bolt hole.
Therefore, the relationship between the tightening torque and pre-loading can be

expressed as follows:

N =
1
2
× Fy × d2 × tan(α + β) +

μw × Fy

3
× (d1

3 − d0
3)

d1
2 − d0

2 (6)

The equation can be simplified as follows:

N = K2Fyd (7)

where K2 is the torque coefficient to be checked and d is the diameter of the bolt.
When the bolt is tightened, pre-loading should be controlled within a reasonable

range. Too much pre-loading can lead to material fracture, failure, and yielding. Too little
pre-loading can lead to reliability and safety problems in the equipment. The maximum
tightening torque within the elastic range should be taken into account when assembling
the bolt to the object to be connected to prevent equipment problems caused by excessive
torque. Pre-tightening stress includes tensile stress σ and shear stress τ, which are calculated
as follows:

σ =
Fy

As
=

4Fy

πdc
2 (8)

τ =
16N1

πdc
3 (9)

where As =
π
4 (d − 0.9382P)2 is the stress cross-section area, P is the pitch, and dc =

√
4As
π

is the equivalent diameter.
Therefore, the relationship between the tangential and tensile stresses in the bolt can

be expressed as follows:
τ

σ
=

2d2 tan(α + β)

dc
(10)

According to the empirical formula, when the diameter of the bolt is less than 64 mm,
it can be approximated as d2 ≈ 1.12dc. When the angle of thread rise and the equivalent
friction angle is small, it can be approximated as tan(α + β) = 0.19. Therefore, it can be
concluded that τ

σ ≈ 0.43.
The following is known from the theory of the fourth strength:

σmax =

√
σ2 + (3τ)2 (11)

This can be solved as σmax ≤ 0.79σs, where σs is the yield strength. In the elastic range,
the theoretical maximum bolt pre-loading can be expressed as follows:

Fymax = σmax As = 0.79σs × π

4
dc

2 = 0.1975σsπdc
2 (12)

The theoretical maximum tightening torque can be found by bringing the formula into
Equation (6) as follows:

Nmax ≈ 0.1975 × πdc
2σs

[
d2(tan(α + β))

2
+ μwrd

]
(13)
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A GB/T 5783-2016 standard [31] 8.8 grade M8 external hexagonal bolt is used to
calculate the maximum pre-loading and maximum torsion gauge. In this paper, the
friction coefficient of the nickel steel flat plate is taken as 0.2, and its basic parameters
are shown in Table 1. According to Equations (12) and (13), its theoretical maximum pre-
loading and maximum torque can be calculated as 18,881 N, 34.3 Nm. It conforms to the
design specifications and provides theoretical support for the selection of initial torque in
the following.

Table 1. Bolt basic parameters.

Parameter Numerical Value Parameter Numerical Value

Thread center diameter d2 7.2 mm Stress cross-sectional area AS 39.167 mm2

Diameter of the bolt hole d0 8.8 mm Equivalent diameter dc 7.06 mm
Maximum outer diameter of the nut d1 ≈ 1.5d 13.5 mm Pitch P 1 mm

tan(α + β) 0.19 Yield strength σs 640 MPa

2.2. Experimental Design of Pre-Loading Relaxation
2.2.1. Main Experimental Equipment

We used the 50 kN electro-hydraulic servo fatigue testing machine produced by Xi’an
Tongsheng Instrument Manufacturing Co. (Xi’an, China). The machine can be applied to
all kinds of components, materials, and dynamic and static mechanical properties tests.
The main technical indicators are shown in Table 2. We used EVOTest 2.1.1.0 software to
control the various performance parameters of the universal testing machine. The software
is an external control system that can be close-loop controlled. Its test machine contains a
variety of control methods, which can provide different kinds of stresses, strains, speeds,
displacements, forces, and other external load application methods. The machine uses a
fuzzy proportion integration differentiation (PID) control algorithm to regulate the loading
process, which is able to obtain a high control accuracy. The universal experimental system
is shown in Figure 2.

Table 2. Main technical indexes of the universal testing machine.

Performance Indicator Parameter Range Performance Indicators Parameter Range

Maximum test force ±60 kN Dynamic fluctuation ±2%
Maximum dynamic test force ±50 kN Displacement range ±100 mm
Measuring range of test force 2–100% FS Test frequency range 0.01–50 Hz

Test force accuracy ±1% FS Rack strength 3.3 × 108 N/m
Two-column main frame Hard chrome plated

Figure 2. Starring experimental machine.
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Due to the long-term operation of the experimental machine, the hydraulic oil is at a
high temperature for a long time, and the rated temperature of the universal experimental
machine is 55 ◦C, which needs to be water-cooled. This experiment uses an in-line water
cooler, which is rated at 22 ◦C, and it uses softened water to circulate the hydraulic oil for
cooling. The oil pump of the universal experimental machine is started using the EVOTest
software. The locking cylinder is loosened, and the upper beam is adjusted to a suitable
position. The cylinder is locked, the nickel steel flat plate is clamped in the upper and lower
fixtures, and the experimental parameters are adjusted using the software.

2.2.2. Main Measuring Devices

(1) Ring force sensor

In this paper, the strain gauge sensor method is selected to implement the monitoring
of pre-loading recession values. Bengbu Jinnuo Sensor Co., Ltd. (Bengbu, China) Produced
the JHBM-4 ring force sensor, and its specific parameters shown in Table 3.

Table 3. JHBM-4 ring force sensor main indicators.

Performance Indicator Parameter Range

Range 0–20,000 N
Sensitivity 1.0~2.0 ± 0.1 mv/V

Combined accuracy 0.2% F·S
Operating temperature range −20~+70 ◦C

Allowable overload 120% F·S
Excitation voltage 5~12 VDC

Creep ±0.1% F·S/30 min

The ring force sensor is subject to bolt-induced pressure on the hub tab, as shown in
Figure 3. In the experiment, it was placed in the middle surface of the bolt and the nickel
steel plate to ensure that the convex surface was facing the bolt to enable it to accurately
detect the bolt pre-loading.

Figure 3. Working principle of the ring force sensor.

(2) Intelligent display instrument

The ring force measuring sensor was connected to MCK-Z-I intelligent instrument as
shown in Figure 4. It received signals from the sensor and generated electrical signals, and
its specific parameters are shown in Table 4.
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Figure 4. MCK-Z-I intelligent meter.

Table 4. Main parameters.

Performance Indicator Parameter Range Performance Indicator Parameter Range

Input method mV signals, standard variable
signals or frequency signal Baud rate 2400, 4800, 9600, 19,200 bps

Sampling speed 10 times/s, 80 times/s Power consumption Less than 5 VA
Precision ±0.02% F·S Operating temperature −20~50 ◦C

Communication interface Standard serial
RS-232/485 interfaces Power supply 220 VAC/24 VDC

Before the experiment, the instrument needs to be calibrated for zero and display.
Zero calibration requires entering the calibration mode and setting the value without
preloading as the zero point, while display calibration needs to be based on the following
calibration formula:

k1 =
X1

X2
× k2 (14)

where k1 is the calibration coefficient to be set, which ranges from 0.0010 to 9.9999; k2 is
the initial calibration coefficient rated at 1; X1 is the value to be displayed; and X2 is the
currently displayed value.

Five-kilogram and ten-kilogram weights were placed on top of the ring force trans-
ducer tabs. The steady-state value was recorded in the intelligent display meter. The
calibration coefficients were calculated to be set by the formula, and the coefficients were
re-entered into the meter to complete the calibration. The calibrated meter was connected
to a computer via the conversion cable, and the digital transmitter communication software
was used to monitor and record the pre-loading recession value in real time.

(3) High-precision digital torque spanner

The tightening process of the bolt structure is divided into three stages. First, the bolt
is not in contact with the plate, and its pre-tightening force is close to 0. Secondly, when
the bolt head and nut are close to the plate, the pre-loading increases continuously. Finally,
when the bolt reaches the yield limit and continues to tighten, pre-loading and torque
will decrease, which may lead to the bolt fracturing. In large, complex equipment, bolt
tightening methods are usually the torque method [32,33] and torque-angle method [34].
In this paper, the torque method is used to apply torque to obtain pre-loading, and the
high-precision digital display torque wrench produced by Idema Company is selected, as
shown in Figure 5. When tightening, the plate should be fixed, and the bolt head should
be fixed at the same time to prevent experimental errors caused by the two. The torque
wrench used in this experiment has a measuring range of 0~60 Nm, and its working life
can reach 10,000 times. The accuracy can reach ±2% when tightening a bolt and ±2.5%
when unloading a bolt. The target torque value can be preset, and the alarm for reaching
the preset torque value improves the precision of the applied torque.
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Figure 5. Torque spanner.

2.2.3. Preparation of Laboratory Supplies

We selected national standard 8.8-grade M8 external hexagonal bolts and internal
hexagonal bolts and 12.9-grade M8 external hexagonal bolts and internal hexagonal bolts
as the specimens. Bolts with obvious defects were excluded before the test. To prevent
damage to the threads, each bolt was loaded and unloaded only once during the experiment.
Complex equipment in the complex structure is not convenient for the study of the pre-
loading. Therefore, this paper simplifies the nickel steel high-strength material into a
Z-shaped plate. This structure allows the bolt to be stressed at the center during pre-
loading work, eliminating the effects of torque on the bolt, as shown in Figure 6. The
simplified nickel steel flat plate can accurately simulate the force on complex equipment
when the bolt is acting [35].

(a) (b)

Figure 6. Experimental consumables. (a) Bolts, (b) nickel steel plate.

The nickel steel flat plate was fixed in the fixture in the universal testing machine, and
the overall assembly is shown in Figure 7. The ring force transducer was placed between
the screw and the nickel steel flat plate, and the predetermined torque was applied using
a torque spanner. Before the experiment, the tangential force and displacement in the
universal testing machine were adjusted to zero. The ring force sensor was placed between
the nut and the nickel steel flat plate. The pre-loading change value was read through the
intelligent display meter connected to the sensor. The tangential load was applied using
the EVOTest software on the computer side. The tangential cyclic load can be applied with
a sine wave and half-sine wave. The computer and the intelligent display meter can record
the real-time change value.
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Figure 7. Overall assembly of the experiment.

Before the pre-loading relaxation experiment started, the torque spanner and intelli-
gent display instrument needed to be calibrated to verify the torque coefficient of the bolt
to ensure the accuracy and feasibility of the experimental instrument. In this paper, the
torque coefficient was calibrated for 8.8-grade M8 external hexagonal bolts and internal
hexagonal bolts and 12.9-grade M8 external hexagonal bolts and internal hexagonal bolts.
The maximum torque was calculated to be 34.3 Nm for 8.8-grade M8 bolts and 44 Nm for
12.9-grade bolts. A smaller torque leads to the bolts not reaching the pre-tensioning effect,
and a larger torque leads to the bolts failing, which affects the subsequent experimental
tests. Therefore, this paper selected 4–28 Nm torque. In the form of incremental selection of
five torque values, can make the torque cover the range of the standard.

The nickel steel flat plate was fixed in the universal experimental machine, and a
spanner was used to fix the nut to prevent the nut from loosening during tightening. The
required torque was set using a torque spanner, and the pre-loading was applied in the
form of a tightening screw. Five torques of 4 Nm, 10 Nm, 16 Nm, 22 Nm, and 28 Nm
were applied to each set of bolts in turn. Each bolt was applied only once for loading and
unloading to avoid the problem of reduced bolt pre-loading due to repeated tightening.
Each set of experiments was repeated three times, and the average value was taken to
circumvent the effects of experimental chance. The experimental results are shown in
Figure 8, and the linear expression of the torque coefficients is shown in Table 5. Since
the slope of the fitted curve is large, fluctuations at smaller slopes can affect the intercept
to produce larger fluctuations. The value of Pearson’ s r ranges from −1 to 1. When the
value is greater than 0.8, it can indicate that the original data are strongly correlated with
the fitted curve. The closer that the R-squared and adjusted R-squared values are to 1, the
better the fit. The 8.8 external hexagon bolts fit best, and 8.8 internal hexagon bolts fit worse.
However, all of them reached more than 98.5%, indicating that the overall fitting effect of
the curves was good. Its slope was stable within a certain range.

The torque coefficient is affected by the tightening speed of the nut, the presence or
absence of shims, the thickness of shims, the presence or absence of lubrication, the material,
and the ambient temperature. Existing studies have proved [36] that the torque coefficients
of the above four types of bolts range from 0.2 to 0.45 with the installation of shims based
on the calculation of the torque using Equation (7). Under the roughness Ra1.6 of nickel
steel plate specimens, the torque coefficient of 8.8-grade M8 external hexagonal bolts ranges
from 0.2360 to 0.2525, and the torque coefficient of 8.8-grade M8 internal hexagonal bolts
ranges from 0.2312 to 0.2615. The torque coefficient of 12.9-grade M8 external hexagonal
bolts ranges from 0.2374 to 0.2576, and the torque coefficient of 12.9-grade M8 internal
hexagonal bolts ranges from 0.2504 to 0.2722. The torque coefficient of 8.8-grade M8 external
hexagonal bolts is small, and the torque coefficient of 12.9-grade M8 internal hexagonal
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bolts is the largest. Their torque coefficients are all within a reasonable range, proving the
accuracy of the experimental equipment and measurement methods in this paper.

Figure 8. Torque coefficient calibration.

Table 5. Calculation of pre-loading slope.

Equation y = a + b·x
Intercept 149.4 ± 319.5 −14.6 ± 576.4 496.6 ± 380.2 −61.5 ± 366.0

Slope 512.3 ± 17.3 509.3 ± 31.3 505.9 ± 20.7 479.2 ± 20.0
Pearson’ s r 0.99829 0.99436 0.99749 0.99739

R-squared (COD) 0.99658 0.98876 0.99499 0.99478
Adjusted R-squared 0.99543 0.98501 0.99332 0.99304

2.3. Bolt Performance Prediction Methods

The bolts were subjected to mixed loads during operation, which led to a relaxation
of the pre-loading. However, it was not possible to monitor the pre-loading again using
instruments. Therefore, this paper proposes to characterize the pre-loading relaxation law
using a mathematical function. The variation of pre-loading under different tangential
cyclic loads is predicted. Among the fitting methods are the allometric model function [37],
high-order polynomial function [38], and Gaussian function [39].

(1) Allometric model function

The allometric model function is a method for obtaining optimal parameter estimates
in the form of power functions. Built on the basis of a “hierarchy of universes and develop-
ments”, it allows for quantitative access to models and behaviours. The function is used to
describe a curve that grows or decays in the form of a power exponent. The basic formula
is as follows:

y = a · xb (15)

where x and y are the independent and dependent variables, respectively, and a and b are
the coefficients given by the model.

When x is small, the dependent variable changes more significantly, and its slope
changes more. When x is large, the dependent variable and slope are regionally stable. It is
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in line with the law of pre-loading relaxation, so it can be used to predict the performance
assessment of pre-loading relaxation.

(2) Higher-order polynomial function

The higher-order polynomial fitting algorithm is a method for approximating data
points using a polynomial function that minimizes the error between the fitted function
and the actual data points. The basic idea is to improve the accuracy of the fit to the data by
increasing the order of the polynomial. The general form of high-order polynomial fitting
is as follows:

y = a0 + a1x + a2x2 + . . . + anxn (16)

where a0, a1, a2, . . ., an denote the polynomial coefficients and n denotes the order of
the polynomial. The optimal values of the polynomial coefficients can be solved using
mathematical statistical methods such as least squares to obtain an optimal fitting function.

It is important to note that high-order polynomial fitting is prone to overfitting prob-
lems. The fitting function is too complex and too sensitive to the data, resulting in a poor
fit. To avoid the overfitting problem, regularization methods can be used to optimize
the high-order polynomial fitting. In practice, it is important to choose the appropriate
polynomial order according to the complexity of the data. Low-order polynomials can be
chosen for simple data, while high-order polynomials are required for complex data. At
the same time, the fitting results must be evaluated and tested to ensure the validity and
reliability of the fitted function. Higher-order polynomials can be fitted directly without a
specific physical model. As the number of times increases, it will show the phenomenon
that the degree of fit also becomes higher. However, when the number of times is high
to a certain degree and then continues to increase, the number of times will exhibit the
overfitting phenomenon. After pre-calculation and deduction, the polynomial is the highest
degree of fit when the polynomial is 9 times.

y = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + a6x6 + a7x7 + a8x8 + a9x9 (17)

The specific steps of the fitting process are as follows: use the readtable function to
read the data in the file and set the fitting order n from 1 to 9 in a loop. Use the polyfit
function to fit the read data, then solve the parameters to judge the degree of fit.

(3) Gaussian function

Gaussian functions are widely used in statistics to express the normal distribution. The
function approximates the set of data points for prediction. The function is characterized as
a bell-shaped curve with a multinomial Gaussian function using the following formula:

y = a1e−(
x−b1

c1
)

2

+ a2e−(
x−b2

c2
)

2

+ a3e−(
x−b3

c3
)

2

+ a4e−(
x−b4

c4
)

2

+ a5e−(
x−b5

c5
)

2

(18)

where a is the height of the peak of the curve, b is the center of the peak region, and c
characterizes the width of the bell curve.

The Gaussian function makes predictions based on historical statistics. This creates a
predictive model that describes subsequent developments. The above formula is only a
common Gaussian function curve fitting form. The specific application may be based on
the needs of the problem and the characteristics of the data to choose the appropriate form
of the function. In addition, in order to obtain the best fitting effect, it is usually necessary
to optimize the parameters using the least squares method after a large number of analyses
of the pre-loading data.

In order to verify the prediction effect of the three functions, this paper carried out
relaxation experiments on 8.8-grade M8 external hexagonal bolts and internal hexagonal
bolts, as well as 12.9-grade M8 external hexagonal bolts and internal hexagonal bolts. The
three functions were fitted to the obtained data, and the fitting parameters are shown
in Table 6.
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Table 6. Fitting accuracy and parameters.

Experimental
Category

Fitting Accuracy Parameter Count

Allometric
Model

Function

Nine-Stage
Polynomial

Function

Gaussian
Function

Allometric
Model

Function

Nine-Stage
Polynomial

Function

Gaussian
Function

8.8 external
hexagonal bolt 0.99794 0.99477 0.99818 2 10 15

8.8 internal
hexagonal bolt 0.99919 0.99346 0.99876 2 10 15

12.9 external
hexagonal bolt 0.99562 0.98914 0.99814 2 10 15

12.9 internal
hexagonal bolt 0.98687 0.98566 0.99917 2 10 15

The accuracy of most of the three fitting functions was above 0.98, which indicated
a high fitting effect. However, the Gaussian function had 15 unknown parameters and
the most complicated structure. Therefore, for the sake of the simplicity of the subsequent
calculations, the Gaussian function is discarded in this paper. The allometric model function,
a the nine-stage polynomial function, is used to predict the performance of the bolt.

3. Results and Discussion

3.1. Multiple Factor Impact Analysis
3.1.1. Different Surface Roughness Analysis

Different surface roughnesses of nickel steel flat plates affect the pre-loading of the
bolt connection structure. To further analyze the effects of roughness on the pre-loading
relaxation of bolted joint structures, the controlled variable method was used to study
8.8-grade hexagonal bolts acting in nickel steel flat plates with Ra0.8 and Ra6.3 rough-
nesses. Experimentally, a tightening torque of 22 Nm was applied, and a tangential cyclic
displacement control of 0.5 mm with a half sine wave was used. Two hundred groups of
repetitive experiments were carried out, and the value of pre-tightening force in the MCK-
Z-I intelligent meter was recorded every 10 groups. The experimental results are shown
in Figure 9. The greater the roughness of the nickel steel plate, the more the pre-loading
decayed. Its decay rate was approximately the same, which was the same as the results of
the literature [40], proving the correctness of the experimental design of this paper.

Figure 9. Pre-loading relaxation at different surface roughnesses.
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3.1.2. Multiple Cycle Frequency Loading

In order to investigate the pre-loading loosening behavior of the bolted joints with
half sine wave displacement control at different loading frequencies, three (0.1 Hz, 1.0 Hz,
5.0 Hz) cyclic frequency experimental conditions were selected. A nickel steel plate with
Ra1.6 roughness was used to control the tangential cyclic displacement of 1 mm, and
100 sets of loosening experiments were carried out. The value of pre-loading in the oscil-
loscope was recorded every 5 groups of cycles, and the experimental results are shown
in Figure 10. The most loosening of the bolt pre-loading occurred under lower-frequency
cyclic tangential loading. With higher-frequency cyclic tangential loads, the bolt pre-loading
loosening was less. The contact time between the threaded sub and the nickel steel flat
plate screw hole was longer under low-frequency loading. The connection interface was
stressed for a longer period of time, resulting in more loosening of the bolt pre-loading.

As the number of cycles increases, the bolt gradually begins to loosen, as shown
in Figure 11a. The force required to reach a tangential displacement of 1 mm gradually
decreases. This leads to the gradual loosening of the bolt, which affects the safety of the
equipment. The upper peak of displacement can reach 1 mm stably, but there is some
fluctuation in the lower peak. The existence of a gap between the nickel steel plate and the
bolt leads to instability in the displacement when the plate returns to the initial position,
as shown in Figure 11b. This fluctuation is unavoidable because the gap between the two
cannot be eliminated.

Figure 10. Comparison of three cycle frequencies.

(a) (b)

Figure 11. Variation curves at different frequencies. (a) Force change curve. (b) Displacement
change curve.

119



Sensors 2024, 24, 3306

3.1.3. Differential Study of Waveform Control

The universal experimental machine can be equipped with sine and half-sine waves
with different tangential cyclic displacements, as shown in Figure 12. Under waveform
control, the rising phase of the curve is the universal testing machine stretching phase.
When the displacement value reaches the set value, the curve begins to fall, which is the
universal laboratory machine compression stage.

(a)

(b)

Figure 12. Two types of waveforms. (a) Sine wave, (b) half sine wave.

Based on 8.8-grade M8 hexagonal bolts carried out under sinusoidal wave control in
the form of tangential cyclic displacement, when the machine reaches a set displacement, a
certain tensile force is generated. However, this force presents a non-linear variation and
cannot ensure a single variable for the experiment. Therefore, the use of a displacement
signal ensures that the flat plate pulls the same displacement. In this experiment, the
center position is 0 mm, the amplitude is 1 mm, the vibration frequency is 1 Hz, the target
number of cycles is 500, and the force/displacement cycle is shown in Figure 13. In the
initial vibration stage, the lower peak value of displacement was stable at about 0.2 mm,
and the upper peak value of displacement showed fluctuations between 0.584 and 1 mm.
Neither reached the set value, which led to changes in the tension of the universal testing
machine. The reason for this is that the hole diameter of the nickel steel plate is 10 mm, the
bolt diameter is 8 mm, and there is an unavoidable gap between the two. The buckling
phenomenon occurs when reciprocating displacement is applied to the universal testing
machine. The change in displacement will have repeated impacts on the center gap, which
in turn causes the inaccuracy of the results. Therefore, the displacement signal of the sine
wave control did not meet the set standard.

Adjusting the waveform to a half-sine eliminates the effects of simultaneous tensile
and compressive loading of the nickel steel plate. Its displacement stability is shown in
Figure 14. The torque of 22 Nm was applied in the three groups of experiments, and the
initial pre-loading values were 12,398 N, 12,285 N, and 12,696 N, respectively. Due to the
error of the experiment, the pre-loading fluctuates in a certain range. The total number
of cycles at a tangential 1.0 mm displacement was 130. However, at 73 cycles, the bolt
had loosened and had no tightening effect. The total number of cycles for a tangential
displacement of 0.5 mm is 500, whereas for 400 cycles the pre-loading is less than 100. At
400 cycles, the value of pre-loading is less than 100. A total of 1000 cycles is required for
0.25 mm tangential displacement, and the pre-loading remains in the stable range. At the
end of the experiment, 10,539 N of pre-loading remained, with a loss of only 15%. The
experimental results show that the bolts remained robust under a small displacement and
loosened faster under a large displacement.
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(a) (b)

Figure 13. Waveform curve under sinusoidal waveform control. (a) Force change curve. (b) Displace-
ment change curve.

(a) (b)

Figure 14. Waveform curve under half sine wave control. (a) Half sine wave displacement control.
(b) Displacement change rule.

3.2. Study on Relaxation Law of Bolt Pre-Loading
3.2.1. Analysis of Relaxation Efficiency of Different Bolts

In order to more finely study the changes in pre-loading relaxation under bolt vibration
conditions, this paper carries out a manual control of a universal testing machine in order
to stretch and compress a nickel steel flat plate. This operation eliminates the effects of
the half-sine wave. Based on nickel steel flat plates with a Ra1.6 roughness, the effects
of different bolt strengths and different bolt head contact areas on pre-loading relaxation
are investigated. The median of this experiment is 0 mm, the amplitude is 1 mm, the
vibration frequency is 1 Hz, and the target number of cycles is 50 times. The relaxation
law of pre-loading is shown in Figure 15, and the specific relaxation parameters are shown
in Table 7. High-strength bolts have high anti-loosening properties. Under the same bolt
strength grade, the outer hexagon bolt loosens faster than the inner hexagon bolt. The
contact area of the bolt head has a certain influence on the relaxation of pre-loading.

The extent of damage to the threads of the different bolts is shown in Figure 16. The
length of the bolt is 40 mm, and the severe wear is at the coupling of the upper and lower
nickel steel plates. There is a gap at the coupling, and it is subjected to shear force, which
results in a high degree of thread wear. The surface of the flat plate and the threads, the nut,
and the screw are all in cross-scale phenomena. Under the control of a large displacement,
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after many cycles of vibration, it is easy to cause fractures here, which affect the safety
performance of the equipment.

Figure 15. Pre-loading relaxation of different bolts.

Table 7. Pre-loading decay of different bolts.

Bolt Torque (Nm)
Initial

Pre-Loading (N)
Pre-Loading
after Test (N)

Torque
Coefficient

Pre-Loading
Decay (%)

8.8 external hexagon bolt 22.17 11,567 1402 0.2396 87.9%
8.8 internal hexagon bolt 22.15 10,662 2622 0.2597 75.4%

12.9 external hexagon bolt 22.05 11,083 3803 0.2487 65.7%
12.9 internal hexagon bolt 22.0 10,661 3913 0.2579 63.3%

Figure 16. Degree of bolt damage.

During the tangential load loading process, the tangential tension of the universal
testing machine versus time is shown in Figure 17. As the number of loading times increases,
the force required to reach the set 1 mm tangential displacement gradually decreases. In the
last cycle, the positive tension reaches 1085 N, which is 76.8% lower than the initial tension
value. The negative pressure reaches 276 N, which is 90.6% lower than the initial pressure
value, and the pressure attenuation is more. At this time, the bolt loosening degree is large,
affecting the safety and reliability of the equipment.
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Figure 17. Force time variation relationship.

3.2.2. Effects of Different Tangential Displacements

A phase 22 Nm torque was applied to the same kinds of blots to study the bolt pre-
loading relaxation law under 0.25 mm, 0.5 mm, 1.0 mm, 1.5 mm, and 2.0 mm tangential
cyclic displacement. The tangential load vibration experiments were carried out 100 times to
record the value of pre-loading when the tangential displacement was 0. The experimental
results are shown in Figure 18a, and the whole process of bolt pre-loading changes is shown
in Figure 18b. Under the action of a small load of 0.25 mm, the bolt can maintain a relatively
good tightening effect. The pre-loading loss is only 22.0% after 100 cycles. With the increase
in tangential displacement, the attenuation of bolt pre-loading increases. Under the action
of a 2.0 mm tangential displacement, the bolt reached complete relaxation in only 50 cycles.
In the first vibration cycle, the pre-loading was reduced by 50.2%, as shown in Table 8. It
can be seen that under the action of a large tangential vibration load, the bolt pre-loading
relaxation was faster. This affects the safety and reliability of equipment. In engineering
practice, multiple bolts can be tightened in a nickel steel plate to avoid the impact of large
load tangential displacement on complex equipment.

(a) (b)

Figure 18. Pre-loading change rule under five kinds of tangential displacements. (a) Nodal variation
curve of pre-loading cycle. (b) The whole process change curve.
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Table 8. Specific attenuation of the bolt.

Displacement 1st 10th 50th 100th

0.25 mm 17.1% 20.5% 21.8% 22.0%
0.5 mm 36.2% 53.5% 65.6% 87.4%
1.0 mm 36.8% 57.1% 87.9% 93.6%
1.5 mm 49.6% 69.8% 92.1% 99.6%
2.0 mm 50.2% 82.7% 99.3%

The hysteresis return line under a 1 mm tangential cyclic displacement is shown in
Figure 19. Within a single cycle, the area enclosed by the curve is the energy dissipation
value. As the cycle period increases, the curve gradually approaches the Y = 0 region, and
its energy dissipation gradually decreases. The difference in energy dissipation between
cycle 1 and cycle 2 is large, reflecting the large change in the value of bolt pre-loading in the
next cycle. The maximum values of forces in different cycles in the figure are 4697 N, 3022 N,
1546 N, and 1030 N. The maximum force in 100 cycles is reduced by 78.1% compared to
1 cycle. The structure reaches the same tangential displacement, is subjected to a gradually
decreasing maximum external tension, and has a lower degree of energy dissipation.

(a) (b)

(c) (d)

Figure 19. Hysteresis return line at a 1 mm displacement in tangential direction. (a) 1 cycle.
(b) 15 cycles. (c) 50 cycles. (d) 100 cycles.

3.2.3. Effects of Different Initial Tightening Moments

Based on a Ra1.6 roughness nickel steel plate, bolt pre-loading relaxation experiments
was carried out under different torques (4 Nm, 10 Nm, 16 Nm, 22 Nm, 28 Nm). The
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magnitude of the pre-loading at the tangential cyclic 0 mm displacement was recorded.
The experimental results are shown in Figure 20a, and the curve of the whole process of
pre-loading relaxation is shown in Figure 20b. In the process of stretching and compression
displacement, the pre-loading has a small fluctuation. The initial pre-loading is 2105 N,
5963 N, 8402 N, 11,567 N, and 15,027 N, respectively. After 100 cycles of tangential 1 mm
displacement, the remaining pre-loading is 78 N, 1845 N, 1568 N, 742 N, and 3523 N,
respectively, and the specific decay percentages are shown in Table 9. Under the large
displacement of 1 mm, the pre-loading generated by the 4 Nm torque is small and does
not reach the tightening effect, resulting in its faster loosening. The 10 Nm torque has
a good tightening effect, and the loss of pre-loading is only 69.1% after 100 vibration
cycles. However, between 10 and 22 Nm, after the first cycle, there is little difference in the
decay efficiency of pre-loading among the three. After several cycles, with the increase in
torque, the attenuation speed of pre-loading increases, and the bolts can maintain a good
pre-loading performance under the action of 28 Nm.

(a) (b)

Figure 20. Pre-loading decay under different torques. (a) Nodal variation curve of pre-loading cycle.
(b) Change curve of the whole process.

Table 9. Specific decay of bolts.

Torque 1st 10th 50th 100th

4 Nm 16.2% 54.7% 82.3% 96.3%
10 Nm 36.2% 55.2% 64.8% 69.1%
16 Nm 35.9% 52.8% 75.8% 81.3%
22 Nm 36.8% 57.1% 87.9% 93.6%
28 Nm 38.3% 53.5% 68.3% 76.6%

The backbone curve and stiffness degradation curve for a single stretch to 0.5 mm
displacement are shown in Figure 21. The maximum force applied to the universal testing
machine in the range of tangential displacement of 0–0.5 mm are 1852 N, 3285 N, 4770 N,
5486 N, and 7246 N. The increase in the initial torque of the bolts leads to an increase in the
tensile force of the universal testing machine, but there is no linear multiplication.

The initial stiffness increases along with the increase in the tightening torque, respec-
tively: 5.0438 × 104 N/mm, 8.5500 × 104 N/mm, 9.2083 × 104 N/mm, 9.8404 × 104 N/mm,
11.5200 × 104 N/mm. The bolt stiffness will show a brief upward trend in the initial stage.
As the tangential displacement increases, the stiffness gradually degrades. At the 0.5 mm
tangential cyclic displacement, the bolt is subjected to shear action, and the stiffness begins
to change.

125



Sensors 2024, 24, 3306

(a) (b)

Figure 21. Energy change under different initial pre-loading conditions. (a) Backbone curve.
(b) Stiffness degradation curve.

The bolt pre-loading degradation law presents two stages. The first stage is a rapid
decline in bolt pre-loading, and the second stage is a slow decline. The first stage is caused
by excessive local stress caused by the steel plate extrusion bolt and excessive pressure on
the annular support surface of the fastener head. At the same time, the material yields and
undergoes plastic deformation, which in turn leads to the relaxation of bolt pre-loading. It
can be easily obtained from the data analysis that the phase transition process occurs at
about 5–10 cycles. The second stage is when the bolts are subjected to large loads in the
tangential cycle, and the bolted structure is most prone to rotational loosening. The next
most prone to loosening is torque loading, and axial loading is the least prone to loosening.
It is worth noting that the occurrence of relative rotation is not instantaneous and requires
some accumulation. Local sliding is caused by a long accumulation, so the second stage is
a slow descent process.

3.3. Predictive Study of Bolt Pre-Loading Performance
3.3.1. Performance Prediction under Multiple Displacements

The mathematical function of different tangential cyclic displacements is investigated
for the case of a 22 Nm external tightening torque. The pre-loading relaxation law function
is constructed using the allometric model function and the nine-stage polynomial function.
The mathematical functions for five different tangential cyclic loads are shown in Figure 22.

The Allometricl model function is in good agreement with the experimental values
after several cyclic loadings. The fitting accuracies are 0.71719, 0.72726, 0.88981, 0.85451,
and 0.94252, respectively. There are large deviations in the data in 10–40 cycles, and the
deviations are small in other cycles. With the increase in the tangential cyclic displacement,
the parameter a in the power function increases gradually, and the parameter b decreases
gradually. For a small displacement of 0.25 mm, the maximum prediction error is 1.2%. In
the case of a 1.5 mm large displacement, the maximum prediction error is 38.2%. There
are obvious differences in the curve equations, indicating that the relaxation change rules
of the pre-loading are different. The nine-stage polynomial function improves the fitting
accuracy by increasing the order of the polynomial. The fitting accuracy under a 0.25–2 mm
displacement is 0.90364, 0.96814, 0.98343, 0.95656, 0.98215, respectively. Its fitting accuracy
is higher than the alometric model function. The fitting accuracy of the two functions is poor
when the displacement load is 0.25 mm, mainly because the relaxation of the pre-loading is
relatively slow and the region is gradually stable.
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Figure 22. Mathematical function fitting for different tangential cyclic displacements.

3.3.2. Performance Prediction under Multiple Initial Torques

Based on the 1 mm tangential cyclic displacement, the mathematical function expres-
sion of the change in different initial pre-loadings with the number of cycles is constructed.
The pre-loading relaxation law function and the parameters in the discrimination function
can be constructed using two methods. The results of parameter identification under differ-
ent initial pre-loadings are shown in Figure 23. The fitting accuracy of the fitting function
in 4–28 Nm are 0.88923, 0.89613, 0.90541, 0.87723, and 0.94667. There are deviations in
10–40 cycles. The 35-cycle deviation in the 4 Nm torque is 31.3%, but the difference in
pre-loading is small, which is in the normal range. Parameter a shows fluctuating changes
under different initial pre-loads, and parameter b is more stable. It shows that the initial
torque only affects parameter a. Overall, the curve parameters are well identified. Under
the same tangential cyclic displacement, the curve patterns are approximately the same. The
fitting accuracies of the nine-stage polynomial function for 4–28 Nm are 0.99818, 0.93917,
0.97441, 0.98343, and 0.95481, respectively. The fitting effects are all above 95%, which have
a good accuracy. However, its polynomial contains 10 parameters to be identified, while
the allometric model function has only 2 parameters to be identified, which leads to more
complicated results.

In Origin 2022, pre-loading data plots are constructed and fitted, and the parameters
are identified by setting the function. Based on the least squares method, numerical
simulation techniques were used to determine the appropriate parameters of the function.
The objective function describes the variation of the data through the optimal parameters.
In this case, the nine-stage polynomial is used to select the optimal value by increasing the
order from 1–9. The fitting effect is judged by the goodness of fit and root mean square
error. Combined with the above studies, the allometric model function fits the worst, at
71.7% for the small displacement condition. Other than that, the allometric model function
and the nine-stage polynomial function can reach more than 85.5% and 90.4%. This proves
the accuracy of this paper for the prediction of bolt pre-loading relaxation.

Combined with the above studies, the bolt pre-loading relaxation under the action of
tangential cyclic displacement can be divided into two stages. The first stage is the stage
of rapid decrease of bolt pre-loading, and the second stage is the slow decrease process.
The relaxation law in a specific case can be expressed by the allometric model function
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and nine-stage polynomial function. It can provide theoretical support for the safety and
reliability of large and complex equipment.

Figure 23. Mathematical function fitting for different initial pre-loadings.

4. Conclusions

Based on the problem that there are more bolt connection structures in complex
equipment and the structure is prone to failure, this paper is based on the ring force
transducer, universal experimental machine, and other equipment, with a simplified high-
strength Z-shaped nickel steel plate used as the object of study. The relaxation law of bolt
pre-loading for complex equipment is studied. The maximum tightening torque of the bolt
was calculated, and the bolt pre-loading relaxation experiment was designed. The range of
torque coefficients between bolt pre-loading and torque were calibrated, and they were all
between 0.2312 to 0.2722, which was in line with the design range. The effects of different
waveforms, nickel steel plate surface roughnesses, tangential displacement frequencies,
bolts, torque magnitudes, and cyclic tangential displacements on pre-loading relaxation
were investigated. A study of bolt performance prediction methods was carried out. The
experimental results showed the following:

(1) The half sine wave has better stability. The rougher the nickel steel plate, the more
pre-loading decay, but the decay rate is about the same. However, the rate of decay is
approximately the same. The nickel steel plate of Ra6.3 is rougher than the plate of
Ra0.8, with more more pre-loading attenuation, and the rate of decay is approximately
the same. The contact time between the threaded sub and the screw hole of the nickel
steel flat plate is longer under low-frequency loading. The connection interface is
stressed for a longer time, resulting in more loosening of the bolt pre-loading. For the
same bolt strength class, the outer hexagon bolts loosen faster than the inner hexagon
bolts, and the high-strength bolts have a better stability.

(2) The pre-loading decay rate of the bolts increases as the tangential cyclic displacement
increases. At a larger tangential cyclic displacement of 2 mm, the bolt is completely
loosened and not tightened after 50 cycles of tangential vibration. At the smaller
tangential cyclic displacement of 0.25 mm, the bolt loosened more slowly. After many
cycles, it still maintained a good tightening effect. At a smaller initial torque, the
bolt was not tightened. A 28 Nm torque had a better tightening effect, and between
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10 and 22 Nm, after the first cycle, the three pre-loading decline efficiency was not
significantly different. After several cycles, along with the increase in torque, the
pre-loading decay rate increased.

(3) The bolt pre-loading degradation law shows two stages. The first stage is a rapid
decline in bolt pre-loading, and the second stage is a slow decline process. The
first stage is due to the steel plate extrusion bolt resulting in excessive local stress,
and fastener head ring support surface pressure caused by excessive yielding of
the material makes the material undergo plastic deformation. This in turn leads to
relaxation of the bolted joint pre-loading. The second stage is due to the slow decline
phase resulting in micromotor wear. Wear cannot be instantaneous and needs to
accumulate gradually.

(4) Parameter identification of pre-loading relaxation curves was carried out. Mathemati-
cal functions that can express different tangential cyclic displacements and different
initial pre-loadings were constructed. Under the small displacement condition, the
allometric model function fit the worst, reaching 71.7%. Otherwise, the allometric
model function was able to predict more than 85.5%, which required the use of least
squares to identify the two unknown parameters. The nine-stage polynomial function
fitting accuracy can reach more than 90.4%, which requires the use of least squares
to identify 10 parameters. The complexity of the two is different, but both can better
characterize the pre-loading relaxation law under specific conditions. The accuracy of
this paper’s prediction of bolt pre-loading relaxation is demonstrated.

(5) In this paper, the pre-loading relaxation experiments of many kinds of bolts are carried
out, and the study of relaxation based on the allometric model function and nine-stage
polynomial function is carried out. In this paper, the bolt performance under the
condition of a large tangential external load can be predicted. It is helpful to improve
the safety and reliability of complex equipment, the aerospace industry, and other
equipment, and to provide theoretical support for it.
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Abstract: In recent years, most research on bearing fault diagnosis has assumed that the source
domain and target domain data come from the same machine. The differences in equipment lead to a
decrease in diagnostic accuracy. To address this issue, unsupervised domain adaptation techniques
have been introduced. However, most cross-device fault diagnosis models overlook the discriminative
information under the marginal distribution, which restricts the performance of the models. In this
paper, we propose a bearing fault diagnosis method based on envelope spectrum and conditional
metric learning. First, envelope spectral analysis is used to extract frequency domain features. Then,
to fully utilize the discriminative information from the label distribution, we construct a deep Siamese
convolutional neural network based on conditional metric learning to eliminate the data distribution
differences and extract common features from the source and target domain data. Finally, dynamic
weighting factors are employed to improve the convergence performance of the model and optimize
the training process. Experimental analysis is conducted on 12 cross-device tasks and compared with
other relevant methods. The results show that the proposed method achieves the best performance
on all three evaluation metrics.

Keywords: fault diagnosis; conditional metric learning; envelope spectrum; convolutional neural
network

1. Introduction

Bearings are among the most often used elements in mechanical devices, serving the
function of supporting and carrying rotating shafts [1–3]. Bearings play a crucial role in
mechanical equipment as they reduce friction and wear, ensuring stable operation of the
equipment. Therefore, bearing fault diagnosis is of vital importance in maintaining the
normal functioning of mechanical equipment [4–6].

Currently, there are numerous approaches available for bearing fault diagnosis. Vi-
bration analysis technology is one of the most widely used, with its core function being to
detect bearing vibration signals and judge whether there are faults in the bearings based on
signal characteristics. This technology has become the preferred choice due to its efficiency.
Traditionally, fault diagnosis methods focus on the analysis of pulse impact intervals in
vibration signals to distinguish different fault types. In the contemporary landscape of
fault diagnosis, an array of algorithms have been developed based on the principles of
mechanical fault theory. These methods encompass diverse techniques, such as resonance
demodulation [7], envelope demodulation [8,9], generalized demodulation [10], and order
ratio analysis [11]. The recent surge in the field of bearing fault diagnosis can be attributed
to the continuous advancements in deep-learning technologies. This evolution has led to
the validation and widespread adoption of innovative methods, including convolutional
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neural networks [12], autoencoders [13], recurrent neural networks [14], generative adver-
sarial networks [15], and graph neural networks [16]. It is noteworthy that these models
have stringent requirements for data, which require the data distribution of the training set
and the test set to remain consistent. However, in practical engineering applications, due to
changes in rotation speed, load, and sensor installation position, the data of the training
set and test set may experience shifts. Therefore, unsupervised fault diagnosis approaches
based on transfer learning have emerged. These methods can be divided into two major
categories according to different application scenarios: unsupervised cross-domain learning
on the same device and cross-domain learning on different devices. The emergence of this
method provides a new approach to overcoming data drift issues, making fault diagnosis
more feasible.

The scenario addressed by unsupervised domain adaptation within the same device is
when the source domain and target domain data come from different vibration data under
varying rotational speeds or loads. Many scholars have proposed numerous solutions to
tackle the cross-domain fault diagnosis problem. Li et al. [17] constructed a deep convolu-
tional neural network and used the maximum mean discrepancy based on multiple kernels
(MK-MMD) to reduce the domain feature distance between multiple layers of the neural
network, significantly improving the diagnostic performance. The method was validated
using training bogie-bearing data. Chen et al. [18] employed domain adversarial training
techniques to minimize the differences between the source domain and target domain
data. They applied this approach in a deep transfer convolutional neural network and con-
ducted extensive domain shift experiments on gearbox and bearing datasets. Li et al. [19]
addressed the issue of low diagnostic accuracy due to insufficient training data by utilizing
deep generative models to synthesize fault signals under the condition of known healthy
data. The generated fault signals were then used in the domain adaptation process and
validated for effectiveness using two different bearing fault datasets. Xiao et al. [20] utilized
simulated fault mechanism data to construct a data- and physics-coupled fault diagnosis
model, reducing the dependence on experimental setups. The proposed improved Joint
Maximum Mean Discrepancy (JMMD) simultaneously aligned the conditional distribu-
tion and marginal distribution. The results showed that the proposed method achieved
unsupervised domain adaptive fault diagnosis. In the scenario where the fault categories
differ between the source and target domain datasets, Han et al. [21] proposed an intrinsic
and extrinsic domain generalization network. This network combined label loss, triple
loss, and adversarial loss functions to achieve gearbox fault diagnosis in unseen operating
conditions within the target domain.

The scenario addressed by unsupervised domain adaptation across different devices is
when the source domain and target domain data come from different devices’ vibration data.
Some scholars have proposed feasible solutions. Guo et al. [22], employing transfer learning
techniques and adversarial training, introduced a deep convolutional transfer learning
network (DCTLN) that adeptly diagnosed bearing faults across three disparate devices.
Liu et al. [23] considered both rotational speed shifts and cross-device fault diagnosis tasks
and proposed a deep adversarial subdomain adaptive network (DASAN). Experimental
results demonstrated the effectiveness of DASAN. Wang et al. [24] proposed a subdomain
adaptive transfer learning network (SATLN) by taking into account adaptive marginals
and conditional distributional bias and incorporating dynamic weighting elements. This
network was validated to achieve an average diagnostic accuracy of 90.19%. It is worth
mentioning that in addition to cross device scenarios, Yu et al. provided excellent fault
diagnosis methods from three aspects: incremental learning [25], model interpretability [26],
and an online fault diagnosis system based on an integrated learning strategy [27].

The above research results indicate that current cross-domain fault diagnosis within
the same device can achieve high diagnostic effectiveness. However, methods for cross-
device fault diagnosis face significant deviations between the source domain and target
domain data. Moreover, most models ignore discriminative information under marginal
distribution, resulting in subpar diagnostic accuracy. In response to the multifaceted
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challenges at hand, this research introduces a pioneering methodology designed to diagnose
bearing faults across a spectrum of devices. The essence of this methodology lies in the
amalgamation of envelope spectrum analysis and the sophisticated principles of conditional
metric learning. Primarily, the methodology undertakes the transformation of temporal
vibration signals into their frequency-domain manifestations through the adept application
of envelope spectrum analysis. Subsequently, a cutting-edge convolutional neural network
model is meticulously crafted, incorporating a deep Siamese transfer approach, while being
intricately grounded in the foundational principles of conditional metric learning. This
innovative framework not only enhances the diagnostic accuracy of bearing faults but also
showcases a nuanced understanding of the intricate interplay between envelope spectrum
analysis and conditional metric learning. Finally, the proposed method is validated in
six domain adaptation tasks across three different devices and compared with current
advanced cross-device fault diagnosis methods. The main innovations are as follows:

(1) In order to address the issues of data discrepancies and domain biases in cross-
device fault diagnosis, we innovatively introduced envelope spectrum analysis in our
research. This method aims to reduce the differences in data generated by different
devices at the frequency domain level, thereby optimizing data consistency and
enhancing the expression of fault characteristics.

(2) We adopted a feature transfer strategy based on the conditional kernel Bures metric,
which further reduces the biases between data from different domains and provides a
solid foundation for precise training of diagnostic models.

(3) To enhance the optimization of the training process and the accuracy of diagnosis,
we implemented dynamic weight learning technology. This technology adjusts the
weight distribution in real-time during the learning process to respond to the impor-
tance of different categories and features, ensuring that the model achieves optimal
performance in various fault diagnosis tasks.

(4) To comprehensively demonstrate the effectiveness of our proposed method, we con-
ducted cross-device fault diagnosis research on two public bearing fault datasets
and one private dataset. We carefully designed six different diagnostic tasks and
compared five advanced fault diagnosis methods using three quantitative metrics.
Through this rigorous experimental design and evaluation, our method demonstrated
its effectiveness and superiority in various tasks.

The chapters are arranged as follows: Section 2 provides the definition of the fault
diagnosis problem discussed in this article. Section 3 discusses the fault diagnosis methods
employed in this study. Section 4 presents the results of fault diagnosis and compares
the performance of the proposed method. Finally, Section 5 provides a comprehensive
summary of the entire study.

2. Problem Formulation

The pivotal objective is to discern and classify the fault states of varied devices,
distinguishing between normal operational states and those indicative of faults. Notwith-
standing, practical implementation encounters formidable hurdles, notably the paucity
of labeled samples specific to the target domain. To surmount this challenge, a strategic
recourse involves harnessing the available labels from the source domain. This proactive
approach serves as the bedrock for constructing a robust fault diagnosis model, proficient
in extrapolating and predicting the labels associated with the target domain’s data. This
adaptive methodology enhances the applicability and efficacy of bearing fault diagnosis in
real-world scenarios.
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Dh_t
T =

{
(x(i)t )

}M

i=1
from device B constitute the target domain. N and M quantitatively

represent the samples within the source and target domains. Health states are distinguished

as h_s and h_t. Labels
{
(y(i)

s )
}N

i=1
are accessible for the Dh_s

S =
{
(x(i)s )

}N

i=1
, while the
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data Dh_t
T =

{
(x(i)t )

}M

i=1
lack such annotations. There are significant differences in the

distribution of P and Q data, leading to the occurrence of a domain shift P = Q. This paper
undertakes the challenge of formulating an unsupervised fault diagnosis model. The focus
is on addressing cross-device fault diagnosis tasks, specifically from device A to device B
(target domain).

3. Methods

In this dedicated section, we meticulously expound upon the foundational tenets
governing envelope spectrum analysis, a pivotal facet in the realm of fault diagnosis. The
ensuing discourse delves into the intricacies of our meticulously crafted deep Siamese
convolutional neural network model. Subsequently, we introduce the theoretical underpin-
nings of conditional kernel Bures (CKB), a sophisticated framework augmenting our analyt-
ical prowess. Following this, a comprehensive exploration of the dynamic weighting mech-
anism ensues, contributing to the nuanced understanding of our proposed methodology.

3.1. Envelope Spectrum

Envelope spectrum analysis is a commonly used signal analysis method in mechanical
fault diagnosis. By performing envelope analysis on vibration signals, periodic components
in mechanical systems can be effectively extracted.

Generally, the fault characteristic frequency in the envelope spectrum can preliminarily
identify the fault type, and the formula is as follows [28]:⎧⎪⎪⎪⎨⎪⎪⎪⎩

f0 = 1
2 Z(1 − d

D cos α) fr
fi =

1
2 Z(1 + d

D cos α) fr

fb = D
2d [1 − ( d

D )
2

cos2 α] fr
fc =

1
2 [1 − d

D cos α] fr

(1)

where D is the bearing pitch diameter; d is the rolling element diameter; f is the rotation
frequency; f0, fi, fb, fc represent the outer ring, inner ring, rolling element, and cages fault
characteristic frequencies, respectively; and α is the contact angle between the rolling
element and the raceway.

Although traditional envelope spectrum analysis provides a feasible method for fault
feature extraction, it is usually limited to linear, stationary signals. However, in practical
applications, many bearing fault signals are non-stationary and contain noise, requiring
more advanced analysis techniques. The method we propose is based on conditional metric
learning, which exhibits better performance in analyzing non-stationary signals containing
complex noise and interference because it considers the potential non-linear features related
to faults in the signal. At the same time, our method also utilizes unsupervised domain
adaptation techniques to optimize the model’s generalization ability in new domains (such
as data from different equipment or operating conditions), which may not be achievable
with envelope spectrum analysis.

This method is based on the principle of Fourier transform, decomposing the signal
into multiple frequency components. Then, the amplitude variations of these frequency
components are analyzed using envelope detection techniques to obtain an envelope
spectrum. The original time-domain signal is transformed into a one-dimensional frequency
spectrum. The analytical signal z(t) of the signal x(t) is built below:

For a single classification signal, its phase function can be written as follows:

z(t) = x(t) + jH(x(t)) (2)

a(t) = |z(t)| =
√

x2(t) + H2(t) (3)
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Subsequently, the fast Fourier transform is used to convert a(t) into a frequency
domain signal, resulting in an envelope spectrum signal:

xk =
N−1

∑
n=0

xne−i2πkn/N (4)

ei2π/N is a primitive N − th root of 1.

3.2. Deep Siamese Convolutional Neural Network

Depicted in Table 1 is the underlying framework of the deep Siamese convolutional
neural network model explored in this paper. A feature extractor Gf and classifier Gc
constitute the proposed model. The implementation of batch normalization ensures stable
training dynamics by normalizing the input of each layer. Meanwhile, the activation func-
tion, ReLU, introduces non-linearity to the model, enabling it to capture complex patterns
in the data. In the classifier, the presence of two fully connected layers facilitates the hierar-
chical learning of abstract features, contributing to the model’s discriminative capabilities.
This carefully designed architecture aims to optimize the extraction of distinctive features
and enhance the discriminatory power of the model.

Table 1. The structure of the proposed network.

Networks
Structure

Layer Parameters Setting

Feature
extractor

Conv-1 Kernels 16-64×1, Stride 8, Padding 1; Batch Normalization; ReLU; Maxpooling 2×1, Stride 2
Conv-2 Kernels 32-3×1, Stride 1, Padding 1; Batch Normalization; ReLU; Maxpooling 2×1, Stride 2
Conv-3 Kernels 64-3×1, Stride 1, Padding 1; Batch Normalization; ReLU; Maxpooling 2×1, Stride 2
Conv-4 Kernels 64-3×1, Stride 1, Padding 1; Batch Normalization; ReLU; Maxpooling 2×1, Stride 2
Conv-5 Kernels 64-3×1, Stride 1, Padding 1; Batch Normalization; ReLU; Maxpooling 2×1, Stride 2
Conv-6 Kernels 1024-3×1, Stride 1; Batch Normalization; ReLU; Maxpooling 2×1, Stride 2

Classifier
Linear-1 Node: 256
Linear-2 Node: No.category; Softmax

3.3. Conditional Kernel Bures

The CKB, a new measure of gauging conditional distribution disparities [29,30], finds
its niche within the realm of Optimal Transport (OT). Operating as a statistically grounded
and interpretable tool, CKB facilitates an in-depth exploration of the intricate knowledge
transfer mechanisms inherent in transfer learning models. Robust validation across the do-
mains of computer vision and pattern recognition attests to the efficacy and interpretability
of CKB. The strategic infusion of CKB into cross-device mechanical fault diagnosis stems
from its distinctive interpretability and adeptness in domain adaptation. This strategic
integration aims to elevate the clarity of interpretative aspects related to features within the
transfer model while concurrently mitigating data disparities across a spectrum of devices.

d2
CKB

(
Rs

XX|Y, Rt
XX|Y

)
= tr

(
Rs

XX|Y + Rt
XX|Y − 2Rst

XX|Y
)

(5)

where

Rst
XX|Y =

√√
Rs

XX|YRt
XX|Y

√
Rs

XX|Y (6)

RXX|Y is the conditional covariance operator, and its calculation formula is

RXX|Y = RXX − RXYR−1
YYRYX (7)

RXY is the cross-covariance operator [31]

RXY = EXY[(φ(X)− μX)⊗ (ψ(Y)− μY)] (8)
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μX and μY are the means. The non-linear mappings φ(X) and ψ(Y) for X and Y. Under
the condition X = Y, the relationship holds RXX = RYY = RXY. We opt for an equivalent
transformation [30].

d̂2
CKB

(
R̂s

XX|Y, R̂t
XX|Y

)
= tr

[
Gs

X(εnIn + Gs
Y)

−1
]
+ εtr

[
Gt

X
(
εmIm + Gt

Y
)−1

]
− 2√

nm

∥∥∥(HmCt)
TKts

XX(HnCs)
∥∥∥∗

(9)

In the domain of fault diagnosis, the variable n represents the sample size within the
source domain, while m designates the corresponding quantity within the target domain.
The regularization coefficient Hn = In − 1

n 1n1T
n is denoted by ε > 0. In and Hm both assume

an n-dimensional form, with the latter manifesting as a diagonal matrix replete with one
1n and the former representing an explicit kernel matrix

(
Kts

XX
)

ij = kX
(

xt
i , xs

j

)
. The kernel

norm is aptly denoted as ‖·‖∗, and the interrelation between Cs and Gs
Y is succinctly

expressed through the ensuing equation. This formulation establishes a foundational
understanding within the realm of fault diagnosis, elucidating the crucial parameters
governing the relationship between source and target domains.

εn
(

GS
Y + εnIn

)−1
=

UsDsUT
s = Us

√
Ds
(
Us

√
Ds
)T

= CsCT
s

(10)

Us, Ds are the eigenvector and eigenvalue matrices. Employing the Formula (9) facilitates
the quantification of the conditional distribution distance pertaining to the features of data
originating from both the source and target domains. This calculated distance serves as
a crucial metric for assessing the alignment between domains. Figure 1 visually presents
the demonstration of the efficacy of the conditional kernel Bayes (CKB) methodology in
navigating the intricacies of this conditional distribution alignment. This visualization not
only reinforces the empirical findings but also provides a tangible representation of the
method’s utility in the diagnostic context.

Figure 1. The schematic diagram of CKB.

3.4. Dynamic Weight Mechanism

Within the domain of profound learning, the loss metric is utilized to gauge the
incongruity between the prognostications of the model and the factual outcomes. Generally,
the loss function’s coefficients remain unaltered, signifying uniform loss consideration for
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all instances. Nevertheless, instances arise where uniformity must be forsaken, compelling
the incorporation of a mechanism that imbues dynamism into the weights.

The dynamic weight mechanism refers to the personalized allocation of loss weights
for different samples. There are several common dynamic weight mechanisms:

(1) Category-based dynamic weight mechanism: Different weights are set for samples
of different categories to adjust their contributions to the loss function. For example,
larger weights can be assigned to samples of minority categories to make the model
pay more attention to these samples.

(2) Difficulty-based dynamic weight mechanism: Higher weights can be assigned to
samples that are more difficult, forcing the model to focus more on these challenging
samples. Typically, the difficulty of a sample can be measured by the difference
between its loss value and the average loss value of the training set.

(3) Adaptive learning rate-based dynamic weight mechanism: Usually, as the model
continues to train, the learning rate gradually increases. Therefore, an adaptive
learning rate mechanism is needed to adjust the weights of each sample.

There are two commonly used dynamic weight updating strategies, and their compu-
tation formulas are as follows:

λ =
2

exp
( −10 epoch

max_epoch

) − 1 (11)

λ∗ = −4√
epoch

max_epoch +1 + 1
+ 4 (12)

where, epoch is the iteration period, max_epoch is the maximum iteration period. The ex-
perimental results below indicate that the weight strategy of Formula (11) is more effective.

3.5. Proposed Cross-Machine Fault Diagnosis Method
3.5.1. Overall Loss Function

The overall loss function during model training is a combination of three components,
labeling loss, entropy loss, and domain loss. In the initial stage, we conduct supervised
training utilizing data labeled within the source domain. This procedure is effectuated
through the application of the label loss function.

LC = E
(x(i)s ,y(i)s )∈Dh_s

S
[− log(ŷ(n)c )]

= − 1
N

N
∑

n=1

C
∑

c=1
y(n)c log

exp
(

ŷ(n)c

)
C
∑

c̃=1
exp

(
ŷ(n)c̃

) (13)

N stands for the total count of samples, while C denotes the number of categories. y(n)c

serves as the sign function, producing either 0 or 1. Moreover, ŷ(n)c signifies the output
value at the c-th node of the fully connected layer 2 for the n-th sample.

Next, the entropy loss function is used to constrain the output uncertainty of the target
domain data. This process is unsupervised. The computation formula is as follows:

LE = E
(x(i)t ,y(i)t )∈Dh_t

T
[− log(ŷ(m)

c )]

= − 1
M

M
∑

m=1

C
∑

c=1
ŷ(m)

c log
exp

(
ŷ(m)

c

)
C
∑

c̃=1
exp

(
ŷ(m)

c̃

) (14)

Within this framework, M is the overall sample count, with C indicating the number of
categories. y(m)

c acts as the sign function, resulting in a binary outcome of 0 or 1.
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Ultimately, LCKB = d̂2
CKB

(
R̂s

XX|Y, R̂t
XX|Y

)
= 0. The approximation of these marginal

distributions can be accomplished through the application of the maximum mean discrep-
ancy loss, as formulated below.

LMMD = d̂2
MMD(X, Y)

= sup
f∈F

(
1
N

N
∑

i=1
f
(

x(i)s

)
− 1

M

M
∑

i=1
f
(

x(i)t

)) (15)

where F is a class function in RKHS, and sup (*) represents the supremum. The overall
loss function of the model is as follows:

Lall = LC + λ∗(LE + LMMD + LCKB) (16)

The holistic refinement of the model’s parameters is systematically achieved through
the minimization of Lall. This intricate optimization procedure is facilitated by the judicious
application of the backpropagation algorithm in conjunction with the Ranger optimizer.
Importantly, the learning rate is meticulously established at 0.002, and the comprehensive
training regimen spans a predetermined 200 iterations.

3.5.2. Training and Testing Procedure of the Proposed Fault Diagnosis Framework

Step 1: The proposed process diagram for interpretable mechanical fault diagnosis is
shown in Figure 2, and the specific steps are summarized as follows.

Figure 2. The flow chart of training and testing for the proposed framework.
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Step 2: Obtain vibration signals from different mechanical equipment and divide the
source domain and target domain data into training and testing sets in chronological order.

Step 3: Apply Hilbert envelope spectrum analysis to derive frequency domain details
from both the sets designated for training and testing.

Step 4: Assemble the deep Siamese convolutional neural network, initializing the
model parameters accordingly.

Step 5: Compute the overall loss function as shown in Formula (16), utilize the Ranger
optimizer to perform the backpropagation algorithm, and update the model parameters.

Step 6: Execute the training process iteratively, culminating in the production of the
trained model as the final outcome.

Step 7: Input the testing data from the target domain into the trained model and obtain
the model’s predicted results for the health condition of the bearings.

4. Results

Our primary aim is to substantiate the validity of the proposed methodology for cross-
device fault diagnosis. The initial step involves a meticulous introduction to three distinct
datasets integral to the cross-device fault diagnosis task, each containing vibration signals
from motor bearings, as shown in Figure 3. Following the dataset introduction, a detailed
exposition of the outcomes derived from both the proposed methodology and comparative
approaches is presented, emphasizing the evaluation across three key metrics. To enhance
comprehension, visualizations are employed to articulate diagnostic results derived from
different methodologies. To delve deeper into the method’s intricacies, ablation experiments
are conducted, providing a nuanced understanding of its operational effectiveness. This
approach not only contributes to the validation of the proposed methodology but also
aligns with the conventions of the scholarly literature.

Figure 3. Data collection platform for (a) Case Western Reserve University, (b) NASA center’s
comprehensive bearing dataset, and (c) high-speed traction motor bearing failure data.

4.1. Dataset Introduction

(1) Dataset A: This set, procured from Case Western Reserve University, comprises vibra-
tion signals obtained from an acceleration sensor with a 12 kHz sampling frequency.
The signals correspond to a motor with drive-end bearings and are categorized under
normal, outer race fault, inner race fault, and rolling element fault conditions. Operat-
ing at 1750 r/min and sustaining a 2 HP load, the motor provides a rich dataset for
analysis.

(2) Dataset B: Sourced from the NASA center’s comprehensive bearing dataset, this
dataset includes original vibration signals captured using a 20 kHz sampling fre-
quency sensor. It likewise contains four health states. The motor’s operational
parameters are set at 2000 r/min rotation speed and a 26.6 kN load, with the unique
characteristic that all data points were collected under conditions of severe failure.
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(3) Dataset C: the high-speed traction motor bearing failure data, again, have four health
states and the data details are shown in Table 2.

Table 2. The details of the bearing dataset.

Datasets Bearing Type Health Condition
Sampling
Frequency

Speed, Load Label

A Motor bearing

Normal

12 kHz

1750 r/min 2HP 0
Outer ring fault 1750 r/min 2 HP 1
Inner ring fault 1750 r/min 2 HP 2

Roller fault 1750 r/min 2 HP 3

B
Shaft support

bearing

Normal

20 kHz

2000 r/min 26.6 kN 0
Outer ring fault 2000 r/min 26.6 kN 1
Inner ring fault 2000 r/min 26.6 kN 2

Roller fault 2000 r/min 26.6 kN 3

C
High-speed

traction motors
bearing

Normal

10 kHz

2873 r/min 2.87 kN 0
Outer ring fault 2873 r/min 3.09 kN 1
Inner ring fault 2766 r/min 2.60 kN 2

Roller fault 2765 r/min 2.57 kN 3

4.2. Comparative Methods and Experimental Settings

In the validation of our proposed methodology, a comparison is undertaken with five
pre-existing techniques.

(1) Initially, the deep convolutional transfer learning network (DCTLN) distinguishes
itself as a pioneering strategy for cross-device domain-adaptive fault diagnosis. It
amalgamates domain adversarial training with the notion of maximum mean discrep-
ancy (MMD).

(2) The Deep Adversarial Subdomain Adaptation Network (DASAN) achieves enhanced
diagnostic accuracy through the utilization of a specialized loss function designed for
subdomain adaptation.

(3) Based on the fault diagnosis model proposed in this paper, we modify the domain adapta-
tion loss function to MMD, JMMD, and LMMD, forming comparative methods (3)–(5).

In the realm of experimental design, our cross-validation experiments span three
meticulously chosen datasets, yielding six distinct cross-device transfer tasks: A→C, B→A,
B→C, C→A, and C→B. On average across the five experiments, each health condition
encompasses 1000 samples, each with a sequence length of 1200 points. The chronological
division of training and testing sets adheres to a split ratio of 0.5. Of paramount importance
is the meticulous preservation of equity in our comparative study. To this end, we faithfully
adhere to the original parameter settings of DCTLN and DASAN as delineated in their
respective papers. Concurrently, methods (3)–(5) align with the parameter configurations
meticulously detailed in our paper. Specifically, the parameters and hyperparameters of our
proposed method are meticulously specified: employing the Ranger optimizer to iteratively
compute optimal model parameter values corresponding to the minimum loss function,
with a learning rate of 2 × 10−3, an L2 weight decay coefficient of 5 × 10−3, a batch size of
128, and a total of 200 iterations.

4.3. Evaluation Metrics

In this paper, three evaluation metrics are used to quantify the diagnostic performance
of different methods: the mean accuracy for fault identification (Acc), the F1-score (F1), and
the average area under the receiver operating characteristic curve (AUC).

Acc =
TP + TN

TP + TN + FP + FN
(17)

F1 =
2TP

2TP + FP + FN
(18)
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TP (true positive), TN (true negative), FP (false positive), and FN (false negative)
signify the relevant parameters.

4.4. Cross-Machine Diagnostic Results

Figure 4 displays the time-domain plots of vibration signals under different health
conditions in three datasets. Through careful observation, it can be noticed that for each
condition, the raw time-domain data exhibit unique vibration waveform patterns. These
patterns are important indicators for understanding and monitoring the health status of the
equipment, as they are directly related to the operational status of mechanical components
and can provide early indications of possible equipment performance degradation. How-
ever, solely relying on visual inspection of these plots is insufficient to clearly define the
corresponding vibration signals among different devices and their respective fault states.
The observed differences in signal waveforms provide us with a preliminary basis for fault
detection, but to improve diagnostic accuracy, further analysis and more sophisticated
algorithms are needed to interpret these differences.

Figure 4. The time domain waveforms of bearing datasets.

In Figure 5, we present frequency-domain plots obtained through envelope spectrum
analysis. Compared to time-domain data, frequency-domain plots provide a different
perspective for observing the characteristics of vibration signals. Frequency domain anal-
ysis transforms time-series signals into displays of frequency components, allowing for
clearer visualization of subtle cyclic variations, thereby revealing deeper mechanical fault
indications. Figure 5 reveals the characteristic frequencies and energy distributions of
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vibration signals under different conditions in the frequency domain, which are crucial
for identifying the types of faults. However, similar to the situation in Figure 4, although
Figure 5 provides clearer signal differentiation, there is still insufficient direct correspon-
dence between data with the same label from different devices. Therefore, using either
time-domain or frequency-domain analysis alone is not sufficient; it is necessary to combine
advanced domain adaptation techniques such as conditional metric learning to achieve
high-accuracy cross-device fault diagnosis.

Figure 5. The frequency domain waveforms of bearing datasets.

Comparative studies were conducted using the proposed method and five other com-
parison methods. Each method was tested five times for each cross-device fault diagnosis
task, and the mean and variance of the three-evaluation metrics were calculated. The
tabulated data in Table 3 delineate the empirical outcomes derived from our rigorous
experiments. The discerning feature of paramount significance is the exemplary diagnostic
proficiency demonstrated by the proposed methodology across the comprehensive spec-
trum of the six designated tasks. It merits explicit acknowledgment that the proposed
approach attains a pristine diagnostic accuracy of 100% in tasks entailing the transition
from B to A and C to A. This accomplishment underscores the robustness and efficacy
of the introduced diagnostic framework, thus substantiating its applicability in diverse
scenarios within the field.
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Table 3. The results of different methods.

Datasets
Bearing

Type
DCTLN DASAN MMD JMMD LMMD Proposed

A→B
Acc 85.69 ± 10.29 77.40 ± 22.73 95.67 ± 3.66 89.06 ± 9.02 86.58 ± 12.86 98.84 ± 1.10
F1 0.85 ± 0.11 0.74 ± 0.26 0.96 ± 0.04 0.88 ± 0.10 0.85 ± 0.14 0.99 ± 0.01

AUC 0.90 ± 0.07 0.85 ± 0.15 0.97 ± 0.02 0.93 ± 0.06 0.91 ± 0.09 0.99 ± 0.01

A→C
Acc 62.33 ± 6.22 71.82 ± 17.59 82.90 ± 8.98 71.99 ± 11.90 71.56 ± 16.03 98.34 ± 1.77
F1 0.53 ± 0.07 0.68 ± 0.23 0.79 ± 0.13 0.66 ± 0.15 0.67 ± 0.19 0.98 ± 0.02

AUC 0.75 ± 0.04 0.81 ± 0.12 0.89 ± 0.06 0.81 ± 0.08 0.81 ± 0.11 0.99 ± 0.01

B→A
Acc 76.65 ± 18.31 59.58 ± 20.76 96.63 ± 5.12 96.18 ± 4.19 99.09 ± 1.82 100.00 ± 0.00
F1 0.71 ± 0.25 0.58 ± 0.21 0.97 ± 0.05 0.96 ± 0.05 0.99 ± 0.02 1.00 ± 0.00

AUC 0.84 ± 0.12 0.73 ± 0.14 0.98 ± 0.03 0.97 ± 0.03 0.99 ± 0.01 1.00 ± 0.00

B→C
Acc 89.73 ± 10.82 75.25 ± 17.17 92.74 ± 10.82 68.76 ± 17.40 81.17 ± 15.03 98.51 ± 1.37
F1 0.90 ± 0.11 0.69 ± 0.19 0.91 ± 0.15 0.65 ± 0.19 0.78 ± 0.18 0.99 ± 0.01

AUC 0.93 ± 0.07 0.84 ± 0.11 0.95 ± 0.07 0.79 ± 0.12 0.87 ± 0.10 0.99 ± 0.01

C→A
Acc 93.13 ± 10.91 66.22 ± 11.77 94.98 ± 11.23 84.96 ± 13.73 85.43 ± 13.33 100.00 ± 0.00
F1 0.91 ± 0.14 0.56 ± 0.15 0.93 ± 0.15 0.80 ± 0.18 0.81 ± 0.17 1.00 ± 0.00

AUC 0.95 ± 0.07 0.77 ± 0.08 0.97 ± 0.07 0.90 ± 0.09 0.90 ± 0.09 1.00 ± 0.00

C→B
Acc 65.34 ± 14.66 95.33 ± 4.16 83.00 ± 16.23 78.27 ± 14.70 91.52 ± 12.77 99.13 ± 0.60
F1 0.55 ± 0.20 0.95 ± 0.04 0.80 ± 0.20 0.75 ± 0.17 0.90 ± 0.16 0.99 ± 0.01

AUC 0.77 ± 0.10 0.97 ± 0.03 0.89 ± 0.11 0.86 ± 0.10 0.94 ± 0.09 0.99 ± 0.00

Although DASAN considers fine-grained and discriminative features, it does not take
into account discriminative information under marginal distribution. However, DASAN’s
overall performance is close to that of DCTLN. This may be due to the fact that different
methods perform differently on different datasets, which reflects the matching between
data and models. Similarly, the stability and generalizability of methodologies (3)–(5) based
on MMD, JMMD, and LMMD exhibit notable variabilities. These empirical findings under-
score the pronounced efficacy of the advanced cross-device fault diagnosis methodology
proposed in this study. A comprehensive overview of the methodologies’ performances
across the three designated evaluation metrics is shown in Figure 6. The graphical repre-
sentation unmistakably elucidates the markedly superior diagnostic outcomes attained
by the innovative approach delineated in this research. The proposed methodology not
only excels in diagnostic precision but also showcases a heightened robustness, offering a
substantial contribution to the field of fault diagnosis in diverse device environments.

Figure 6. The histogram of diagnostic results.
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4.5. Visualization Analysis

In the pursuit of visually elucidating the merits embedded in our proposed methodol-
ogy, this section employs two crucial tools: confusion matrices and the t-SNE visualization
algorithm. Centered on the B→C task, the nuanced insights provided by Figures 7 and 8
unravel the intricacies of the confusion matrices and t-SNE outcomes for the six methods,
respectively. The confusion matrix results bring to the fore the capability of our proposed
method to accurately predict and identify diverse health conditions. A deeper dive into the
t-SNE results unveils the adeptness of our proposed method in harmoniously clustering
data originating from both source and target domains, distinguished by shared labels. Of
paramount significance are the conspicuously narrower intra-class distances and expan-
sively broader inter-class separations, emblematic of the profound efficacy inherent in our
approach. This notable achievement can be attributed to the meticulous integration of
discriminative information within the marginal distribution, a unique hallmark of the CKB.
Consequently, a palpable elevation in diagnostic performance is discerned. In synthesis,
our proposed method unequivocally surmounts extant domain adaptation methodologies.

Figure 7. The confusion matrix results of: (a) DCTLN; (b) DASAN; (c) MMD; (d) JMMD; (e) LMMD;
and (f) proposed method.

Figure 8. The t-SNE results of: (a) DCTLN; (b) DASAN; (c) MMD; (d) JMMD; (e) LMMD; and
(f) proposed method.
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4.6. Ablation Experiment

A thorough assessment of the rationality and effectiveness of our proposed methodol-
ogy is conducted through a series of ablation experiments. Following the methodological
framework, systematic ablation studies are executed on three critical elements: envelope
spectrum analysis, various loss functions, and weight terms. The experimental design
encompasses five distinct scenarios: an exclusion of the envelope spectrum, a neglect of the
CKB + MMD loss function, an omission of the entropy loss function, a fixation of weight 1
for gamma_2 in Equation (10), and a dynamic adjustment of weight for gamma_1. Iterative
repetitions of each experiment (five times) provide a robust basis for result analysis, with
the means consolidated and graphically depicted in Figure 9. The results reveal that the
model exhibits its least favorable performance when lacking the CKB + MMD loss function.
Furthermore, it becomes apparent that entropy, despite its marginal impact, substantiates
its essential role in augmenting the diagnostic model’s performance. From this analytical
exploration, it is concluded that the structural arrangement of our proposed methodology
stands as a rational choice, the selection of pertinent loss functions is judicious, and the
proposed method achieves the best diagnostic performance.

Figure 9. Diagnosis results with different diagnosis models.

4.7. Parameter Sensitivity Analysis

To assess the impact of different parameter values on the model, this section conducted
parameter sensitivity analysis experiments. Specifically, we analyzed the influence of
different learning rates and batch sizes on the performance of the proposed method. The
ranges of learning rates and batch sizes were [1 × 10−4, 2 × 10−3, 2 × 10−2, 1 × 10−1,
5 × 10−1] and [16, 32, 64, 128, 256], respectively, resulting in a total of 25 parameter
combinations. The fault diagnosis results under three different performance indicators
are shown in Figure 10a,b. It can be observed that different parameter combinations yield
different diagnostic results. Based on the experimental results, the optimal parameter
combination can be selected. In this study, the learning rate and batch size were chosen as
2 × 10−3 and 128, respectively.

Figure 10. Parameter sensitivity analysis results mapfor (a) Case Western Reserve University,
(b) NASA center’s comprehensive bearing dataset, and (c) high-speed traction motor bearing
failure data.
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5. Conclusions

To solve the domain shift in bearing fault diagnosis, this paper proposes a novel cross-
device bearing fault diagnosis method based on envelope spectrum analysis and conditional
metric learning. Domain shift trials are performed on three different sets of equipment, and
the following conclusions can be drawn from the analysis of the experimental results:

(1) Envelope spectrum analysis, as a preprocessing step for the original vibration signals,
can highlight fault information and improve the diagnostic accuracy of the model.

(2) The application of the conditional kernel Bures metric aims to boost the efficacy of
the model by minimizing the distributional gap. The dynamic weighting mecha-
nism accelerates the model’s optimization process and positively contributes to the
improvement of diagnostic accuracy.

(3) In six cross-device transfer tasks, the proposed method outperforms other domain
adaptation methods in terms of three performance evaluation metrics, demonstrating
stronger diagnostic capability.
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Abstract: This paper addresses the critical challenge of preventing front-end failures in forklifts
by addressing the center of gravity, accurate prediction of the remaining useful life (RUL), and
efficient fault diagnosis through alarm rules. The study’s significance lies in offering a comprehensive
approach to enhancing forklift operational reliability. To achieve this goal, acceleration signals
from the forklift’s front-end were collected and processed. Time-domain statistical features were
extracted from one-second windows, subsequently refined through an exponentially weighted
moving average to mitigate noise. Data augmentation techniques, including AWGN and LSTM
autoencoders, were employed. Based on the augmented data, random forest and lightGBM models
were used to develop classification models for the weight centers of heavy objects carried by a forklift.
Additionally, contextual diagnosis was performed by applying exponentially weighted moving
averages to the classification probabilities of the machine learning models. The results indicated
that the random forest achieved an accuracy of 0.9563, while lightGBM achieved an accuracy of
0.9566. The acceleration data were collected through experiments to predict forklift failure and RUL,
particularly due to repeated forklift use when the centers of heavy objects carried by the forklift were
skewed to the right. Time-domain statistical features of the acceleration signals were extracted and
used as variables by applying a 20 s window. Subsequently, logistic regression and random forest
models were employed to classify the failure stages of the forklifts. The F1 scores (macro) obtained
were 0.9790 and 0.9220 for logistic regression and random forest, respectively. Moreover, random
forest probabilities for each stage were combined and averaged to generate a degradation curve and
determine the failure threshold. The coefficient of the exponential function was calculated using
the least squares method on the degradation curve, and an RUL prediction model was developed
to predict the failure point. Furthermore, the SHAP algorithm was utilized to identify significant
features for classifying the stages. Fault diagnosis using alarm rules was conducted by establishing a
threshold derived from the significant features within the normal stage.

Keywords: PHM; CBM; diagnosis; lightGBM; random forest; contextual diagnosis; RUL; forklift

1. Introduction

This paper focuses on the challenge of mitigating durability degradation and accu-
rately predicting failures in forklifts operating under demanding conditions. As classified
by the American Society of Mechanical Engineers (ASME), forklifts, powered vehicles used
for various material handling tasks, often encounter durability and performance issues
while maneuvering heavy loads across logistics warehouses, construction sites, factories,
and similar environments. These issues escalate service and maintenance costs, introduce
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safety hazards, and potentially endanger human lives. To address these challenges, the inte-
gration of prognostics and health management (PHM) technologies become essential. PHM,
a comprehensive framework leveraging sensors, aims to assess system health, diagnose
anomalies, and predict remaining useful life [1]. By encompassing condition monitoring,
assessment, fault diagnosis, and prediction, PHM optimizes decision making for condition-
based maintenance [2]. It necessitates the application of a systematic methodology to
select appropriate feature engineering techniques and algorithms tailored to the specific
context [3]. Notably, the study by Meng et al. [4] presented a comprehensive overview
of research trends in PHM, particularly focusing on lithium-ion batteries. Categorizing
prediction approaches into physics-based, data-driven, and hybrid categories, their work
provides valuable insights into the diverse avenues within the field.

Recognizing the limitations of traditional reliability analysis, which relies on mean
time to failure data and failure probability distributions, contemporary efforts are directed
towards harnessing sensor-based PHM technologies to overcome these challenges. Previous
studies in reliability and fault diagnosis have predominantly focused on statistical analyses
under average load conditions or known failure scenarios [5–9]. However, the advent of the
internet of things (IoT) is driving the transition to sensor-based PHM in a variety of domains
as it evolves into a new phase of asset management [10]. Physics-based PHMs formalize
the complex behavior of equipment and systems to help diagnose and predict failures
when mechanical systems exceed predefined physical thresholds. In contrast, sensor-based
methodologies have attracted considerable attention due to their ability to proficiently
cope with complex troubleshooting scenarios due to their powerful representation and
automated feature learning capabilities [11]. However, sensor-based PHMs face several
challenges. Data collected from multiple sensors are prone to noise during acquisition
and transmission. Since each type of failure produces different failure signals, signals
and failures may not correspond exactly one-to-one in general [12]. The limitations of
directly monitoring raw signals in deep-learning-based PHM are recognized, necessitating
a transformation process termed feature engineering [12,13]. This process encompasses
noise filtration, statistical feature extraction, frequency conversion, and context-dependent
conditional reduction, thereby enhancing the data’s meaningfulness and applicability.

Within the data-driven and deep-learning-based PHM framework, considerable re-
search is dedicated to fault diagnosis and the prediction of remaining useful life. While
PHM technologies aim for high fault detection accuracy and predictive capabilities, the
practicality of models is also contingent on achieving a lightweight design. Ding et al. [14]
introduced a lightweight multiscale convolutional network tailored for bearing fault diagno-
sis in edge computing scenarios, specifically targeting train bogie bearings. To complement
model-based lightweighting efforts, feature-based lightweighting is pursued through di-
mension reduction. Lee et al. [3] emphasized the importance of effective feature engineering
and data dimensionality reduction in PHM.

Addressing the challenge of imbalanced data situations, Zhang et al. [15] proposed an
integrated multi-task intelligent bearing fault diagnosis method, leveraging representation
learning under unbalanced sample conditions. This approach is particularly relevant given
the common scenario of skewed sample ratios between fault and normal data. Further-
more, the scarcity of fault data arising in distinct environments necessitates innovative
solutions. To overcome this data scarcity challenge, techniques such as data augmentation
via generative adversarial networks (GANs) [16] and sensor signal transformation [17]
have been advanced. Numerous studies have contributed comprehensive insights into
remaining useful life (RUL) prediction within the PHM process [18–28]. RUL prediction
encompasses four pivotal technical stages: data collection, construction of health indices,
health state segmentation, and RUL prediction [18]. These stages synergistically form a
comprehensive framework for accurate prediction.

The Industrial Truck Association (ITA) classifies forklifts into eight distinct product
families, ranging from Class I to Class VIII. These classifications are based on specific usage
characteristics and structural differentiations. For the purpose of this investigation, a PHM
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study was undertaken, focusing on the front-end structure responsible for lifting heavy
loads. This structural component serves as the core element within ITA Class I-type electric
counterbalance forklifts. Durability evaluation of forklifts typically involves testing under
average loads and standardized conditions, conforming to established standards such as
ISO 3691-1, ANSI/ITSDF B56.1, EN 1726-1, and ASME B56.1. However, the applicability of
these conventional statistical approaches can be limited in non-standard operational settings
where anomalies can arise. In real-world work environments, forklifts often encounter
abnormal loading conditions that can result in rollovers or structural failures. Moreover,
when latent strength deficiencies accumulate during assembly, the risk of structural failure
becomes significantly elevated.

Among the various safety concerns linked with forklifts, the most significant hazard is
the occurrence of vehicle rollovers. These incidents commonly occur when maneuvering
heavy objects that exceed the forklift’s designated capacity or when handling unbalanced
or improperly centered loads. Furthermore, the repetitive use of forklifts while carrying
unbalanced heavy loads can lead to performance degradation over time. This cumulative
deterioration can eventually culminate in safety accidents. This particular failure mode
operates outside the established standard and stands as an outlier load condition. It re-
sides beyond the boundaries of average reliability ranges and is, therefore, not explicitly
accounted for in typical design considerations. Paradoxically, these abnormal failures
frequently occur within real-world operational environments. This inherent discrepancy
necessitates the development of abnormal failure prevention technologies. These technolo-
gies should extend beyond the confines of existing reliability-based lifetime management
approaches. Specifically, there is a need for a PHM technique that leverages machine learn-
ing and deep learning methodologies, utilizing sensor data to detect changes in forklift
operational states. This enables the accurate classification and prediction of impending
failures. Consequently, this study introduces an effective PHM approach designed to
mitigate safety accidents stemming from abnormal forklift usage conditions. By addressing
these anomalies, the aim is to enhance forklift durability, thereby curbing maintenance
costs and fostering a value chain that prioritizes accident prevention.

This paper provides a systematic presentation of forklift failure diagnosis and predic-
tion, aiming to ensure the reliability of the forklift front-end, as illustrated in Figure 1. The
following overview outlines the content of each section.

• In Section 2, vibration data were collected under weight-imbalance conditions, and a
subsequent feature engineering process was executed to facilitate a comprehensive
classification of the centers of heavy objects. The primary objective of this classification
study was to diagnose weight imbalance, a critical factor influencing forklift durability.
By addressing this imbalance, the study aimed to proactively prevent factors leading
to durability degradation in forklifts, thereby minimizing the risk of vehicle rollover.

• Continuing in Section 3, vibration and sound data were collected from forklifts op-
erating under abnormal weight-imbalance conditions. Employing another feature
engineering process alongside health stage classification, this section further delves
into the realm of anomaly detection and classification.

• Section 4 is devoted to conducting remaining useful life (RUL) analysis and an alarm-
rule-based fault diagnosis, serving the overarching goal of enhancing operational
maintenance. The RUL prediction was based on the probability model established
in Section 3, enabling accurate predictions. Additionally, significant features were
extracted from both classifiers and features previously generated in Section 3. This
information was then employed for an early front-end failure diagnosis through an
alarm-rule-based approach.

• Lastly, Section 5 encapsulates the findings and conclusions, summarizing the contribu-
tions derived from the investigation.
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Figure 1. Outline of procedure used to predict the failure of forklift front-end.

2. Diagnosing and Classifying the Weight Center of Heavy Objects Carried by Forklifts

This section addresses the diagnosis of weight imbalances, which have a direct impact
on the overall durability of forklifts. To achieve this, a structured approach was followed
that included several essential steps: data preprocessing, feature engineering, data aug-
mentation, and careful selection and evaluation of appropriate machine learning models.
The overall goal was to develop a comprehensive method to detect the center of gravity, as
shown in Figure 2.

 
Figure 2. Classification procedure of imbalanced operations based on the center of gravity.
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2.1. Experimental Data Acquisition and Feature Engineering

Vibration (acceleration) data were acquired from the forklift’s front-end structure and
presented a process to diagnose and classify the weight center of heavy objects carried by
forklifts. The front-end structure of the forklift consists of a mast, backrest, carriage, and
forks, as shown in Figure 3, and the acceleration signals were measured from the outer
beam of the mast.

 
Figure 3. Electric-powered counterbalance forklift of ITA Class I type.

In the measurement experiment for data acquisition, the weight center of heavy objects
carried by the forklift was measured in three configurations: center, left, and right. The
condition segments of the dataset were classified and organized into center, left, and
right according to each center of gravity condition. Two embedded devices (one on the
left and one on the right) were attached to the front-end structure of the forklift truck to
measure the vibration acceleration in three axes (x, y, z) (sampling rate 500 Hz), as shown in
Figure 4. Considering the load conditions under which the forklift operates, the operating
environments of the two datasets (datasets 1 and 2) were simulated in the experiments
while maintaining a state that included ground noise. In dataset 1 (only driving mode), the
vehicle was loaded with 3200 kg of weight and traveled 80 m at maximum speed, as shown
on the left in Figure 5. All measurements were taken for approximately 20 min for center,
left, and right condition segments to eliminate data imbalances within condition segments.
In dataset 2 (complex mode), the forklift made a round trip of 80 m, as shown on the right
in Figure 5, and added lifting, lowering, and back-and-forth tilting tasks at the end of the
trip. In dataset 2, approximately 32 min of data were acquired, which is 12 min longer than
in dataset 1. Similarly, approximately 32 min of data were acquired for the center, left, and
right condition segments to eliminate the data imbalance.

Figure 4. The location of DAQ and the apparatus of a forklift carrying object.

Six acceleration signals (2 sensors × (x, y, z accelerations)) were included in Data sets
1 and 2. In Dataset 2, for one acceleration signal, 960,000 feature vectors were collected at
500 (Hz) × 32 (min) × 60 (s/min). Given the large data size, which could lead to inefficient
analysis, this study referred to previous studies [27,28] to handle the data. Eight features
were extracted from each window at one-second intervals: min, max, peak to peak, mean
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(abs), rms (root mean square), variance, kurtosis, and skewness. In addition, four features
were added by combining the max, rms, and mean (abs) features: crest factor, shape factor,
impulse factor, and margin factor, as listed in Table 1.

 

Figure 5. Two operational scenarios for test datasets: driving only (left), complex mode (right).

Table 1. Description of features (crest factor, shape factor, impulse factor, and margin factor).

Feature Dimension

Crest factor max/RMS
Shape factor RMS/mean (abs)
Impulse factor max/mean (abs)
Margin factor max/mean ((abs)2)

Through the above process, 12 features were extracted, and the measured data were
compressed for efficient analysis. The data compression process transformed the dimen-
sionality of the data from 960,000 × 6 × 1 to 1920 × 6 × 12. In this way, the number of
feature vectors in the data was reduced, but the number of features was increased twelve-
fold, resulting in 72 features. The aim was to enable effective data processing and facilitate
the diagnosis of the weight center of heavy objects at a one-second interval. Furthermore,
the data range of the feature vectors was scaled from 0 to 1 using min–max normalization.
Furthermore, an exponentially weighted moving average (EWMA) with a window size
of 2 to 3 s was used to smooth the noise signals of the generated features. This approach
helped to minimize the noise and outliers in the feature data. Moving averages average out
the effects of past data, and exponentially weighted moving averages have the advantage
of exponentially attenuating these effects. Therefore, they are used for tasks such as time
series forecasting and noise reduction [29,30]. The exponentially weighted moving average
is used in a way that adjusts the value of alpha (α) based on the window size, as shown in
Equation (1). As described in Equation (3), this method smooths out noise in the feature
vector to minimize outliers while also reducing the influence of past vectors.

α =
2

window size + 1
, window size ≥ 1 (1)

y0 = x0 (2)

yt =
xt + (1 − α)xt−1 +

(
1 − α)2xt−2 + . . . +

(
1 − α)tx0

1 + (1 − α) + (1 − α)2 + . . . + (1 − α)t (3)

The parameters employed within Equations (1) through (3) are listed below:

• α: the weight coefficient of exponentially moving average.
• window size: the number of data points used by EWMA.
• yt: the exponentially weighted moving average value at the current time t.
• xt: the input data value at the current time t.
• xt−1, xt−2, . . . , x0: the input data values at past time points.
• (

1 − α)t,
(
1 − α)t−1, . . . , 1 : the weights of past time points.

• 1 + (1 − α) +
(
1 − α)2 + . . . +

(
1 − α)t : the sum of weights.
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The exponentially weighted moving average was applied to take advantage of its
ability to minimize outliers in the feature vector. Figure 6 shows the ‘min’ feature extracted
from the x-acceleration signal using the EWMA technique. Tables 2 and 3 contrast features
extracted from the dataset before and after the application of EWMA. They showcase the
initial data state alongside the effects of EWMA, including smoothing and value adjustments.

Figure 6. EWMA-processed feature (min) extracted from the x-acceleration signal.

Table 2. Table of features before applying the exponentially weighted moving average.

Features
Feature Vectors without Exponentially Weighted Window

1 . . . 101 102 103 104 105 . . . m

Min . . . . 0.885433 0.843096 0.797650 0.811161 0.827289 . . . .
Max . . . . 0.078264 0.080768 0.106396 0.108621 0.116061 . . . .

Peak to Peak . . . . 0.093902 0.112324 0.146313 0.142308 0.140491 . . . .
Mean (abs) . . . . 0.351697 0.401478 0.407600 0.368202 0.429075 . . . .

RMS . . . . 0.267110 0.309412 0.318085 0.291022 0.342365 . . . .
Variance . . . . 0.073500 0.098043 0.103476 0.086930 0.119690 . . . .
Kurtosis . . . . 0.004885 0.008043 0.011320 0.016485 0.014369 . . . .

Skewness . . . . 0.477752 0.469798 0.491220 0.486768 0.492277 . . . .
Crest Factor . . . . 0.064416 0.039363 0.096850 0.127109 0.100406 . . . .
Shape Factor . . . . 0.049605 0.060854 0.070667 0.080790 0.088413 . . . .

Impulse Factor . . . . 0.033882 0.023190 0.053079 0.070003 0.057815 . . . .
Margin Factor . . . . 0.003583 0.002052 0.003671 0.005534 0.003556 . . . .

Table 3. Table of features after applying the exponentially weighted moving average.

Features
Feature Vectors with Exponentially Weighted Window (3 s)

1 . . . 101 102 103 104 105 . . . m

Min . . . . 0.875394 0.859245 0.828448 0.819804 0.823547 . . . .
Max . . . . 0.076663 0.078716 0.092556 0.100588 0.108325 . . . .

Peak to Peak . . . . 0.096910 0.104617 0.125465 0.133887 0.137189 . . . .
Mean (abs) . . . . 0.365030 0.383254 0.395427 0.381814 0.405444 . . . .

RMS . . . . 0.276765 0.293089 0.305587 0.298304 0.320335 . . . .
Variance . . . . 0.079095 0.088569 0.096022 0.091476 0.105583 . . . .
Kurtosis . . . . 0.005647 0.006845 0.009082 0.012784 0.013576 . . . .

Skewness . . . . 0.479047 0.474423 0.482821 0.484795 0.488536 . . . .
Crest Factor . . . . 0.052390 0.045876 0.071363 0.099236 0.099821 . . . .
Shape Factor . . . . 0.048446 0.054650 0.062658 0.071724 0.080069 . . . .

Impulse Factor . . . . 0.027911 0.025551 0.039315 0.054659 0.056237 . . . .
Margin Factor . . . . 0.002978 0.002515 0.003093 0.004314 0.003935 . . . .
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Through the previous feature engineering process, as shown in Table 4, 3699 feature
vectors were generated from dataset 1 (only driving) in approximately 20 min, and 5755 fea-
ture vectors were derived from dataset 2 (complex mode), measured for approximately
32 min. In total, 9454 datasets were obtained, which were further divided into training and
test datasets at a 7:3 ratio. The training and test datasets comprised 6617 and 2837 sam-
ples, respectively, with each feature vector containing 72 features. An attempt was made
to use the training dataset to develop machine learning classifier models and check the
performance of the machine learning models on the test dataset.

Table 4. Configuration of feature vectors in the dataset.

Label: Center Label: Left Label: Right Sum

Dataset 1 1244 1209 1246 3699
Dataset 2 1910 1928 1917 5755

Sum 3154 3137 3163 9454

The number of feature vectors in the dataset was also augmented to minimize overfit-
ting during the training process. Data augmentation was performed using additive white
Gaussian noise (AWGN) and long short-term memory autoencoder (LSTM AE), which
expanded the training dataset to a maximum of 19,851 samples (Table 5).

Table 5. Dataset size based on feature augmentation.

Feature Combination No. of Training Data No. of Test Data

1. Original 6617 2837
2. Original + LSTM AE 13,234 2837

3. Original + AWGN 13,234 2837
4. Original + LSTM AE + AWGN 19,851 2837

AWGN was applied by referring to prior studies [31], and the target signal-to-noise
ratio (SNR) was set to 20 dB. An additional dataset could be generated by mixing noise
with the original data, as shown in Figure 7. AWGN is a method of adding noise with a
Gaussian distribution to the input or output signal of a system. SNR serves as a scale that
quantifies the ratio between the signal’s strength and the noise level. A higher SNR value
corresponds to a more robust signal, reducing the relative impact of noise. AWGN based
on SNR can be expressed as follows [31]:

N(t) = A

√
10−SNR/10

2
·w(t) (4)

• N(t): the noise of the signal.
• A: the magnitude of the input or output signal.
• SNR/10: the standard deviation σ of the noise, calculated from the SNR value.
• w(t): the white noise, which follows a Gaussian distribution with a mean of 0 and a

variance of 1.

The autoencoder is a neural network that can use unlabeled training data to learn
a code that efficiently represents the input data. This type of coding is useful for dimen-
sionality reduction because it typically has much lower dimensionality than the input. In
particular, it works as a powerful feature extractor that can be used for the unsupervised
pre-training of deep neural networks. An autoencoder consists of an encoder that converts
the input to an internal representation and a decoder that converts the internal representa-
tion back to output [32]. The output result is called reconstruction because the autoencoder
reconstructs the input. This study used the mean square error (MSE) as the reconstruction
loss in training. LSTM, an artificial recurrent neural network, was designed to address the
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vanishing gradients in traditional recurrent neural networks (RNNs) [33]. As the number
of hidden layers in a neural network and the number of nodes in each layer increase, the
last layer is trained while the initial layer is not trained.

Figure 7. Results of noise mixed augmentation using AWGN.

This long-term dependency problem arises from the vanishing gradient problem,
where the gradients tend to converge to zero during the gradient propagation process,
particularly when the data length increases during the training phase of RNNs [34,35]. On
the other hand, unlike traditional RNNs, LSTM can effectively overcome the vanishing
gradient problem by incorporating long- and short-term state values in the learning process,
enabling successful learning even with long training durations [36,37]. In this study, an
LSTM autoencoder consisting of two LSTM layers was implemented because time series
data were used, as shown in Figure 8. Each layer is used as an encoder and decoder [38].
Furthermore, the repeat vector was used in the decoder part to restore the compressed
representation to the original input sequence. The repeat vector function repeats the com-
pressed latent space representation to produce a representation that matches the sequence
length. This allows the decoder to use the compressed representation multiple times to
reconstruct the original input sequence. Using the LSTM autoencoder, the original feature
vectors were trained as input data, and the output vectors were used as the augmentation
dataset. The output dataset was generated and replicated to minimize the MSE, resulting in
a dataset with similar characteristics and patterns to the input dataset, as shown in Figure 9.
The equations and parameter descriptions for the LSTM autoencoder are as follows [32,33].

ht = LSTMencoder(xt, ht−1) (5)

zt = f (Wzht + bz) (6)

h′t = LSTMdecoder
(
zt, h′t−1

)
(7)

x̂t = f
(
Wxh′t + bx

)
(8)

MSE =
1
n

n

∑
i=1

(xi − x̂i)
2 (9)

• xt: the input time series data.
• zt: the output (latent variable) of the encoder.
• x̂t: the output (reconstructed time series data) of the decoder.
• ht and h′t: the hidden states of the LSTM.
• Wz, bz, Wx, and bx: the learnable parameters (weights and biases) of the model.
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• f : the activation function, typically sigmoid or tanh function.
• MSE: the mean squared error, loss function.
• xi: the ith element of the input data.
• x̂i: the ith element of the model’s prediction (reconstructed data).
• n: the number of elements in the input data.

 
Figure 8. Structure of the LSTM autoencoder layers.

Figure 9. Result of feature augmentation using the LSTM autoencoder.
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2.2. Result of Classification

To compare the accuracy of failure prediction, the selected classification algorithms
were random forest [39] and LightGBM [40]. To enhance their performance, the ‘Bayesian
optimization’ method was employed for hyperparameter tuning. Random forest, an
ensemble technique, is rooted in decision trees and serves as a classifier. Decision trees
build tree-like models based on input variables, efficiently growing the tree by identifying
optimal splitting rules at each branch. However, the vulnerability of a single decision
tree to overfitting can hinder its ability to generalize well. To address this concern, the
random forest algorithm is applied to alleviate overfitting concerns. A decision tree,
by itself, operates as a tree algorithm for data classification or prediction. It navigates
the classification or prediction process by creating a tree structure grounded in the data,
partitioning it into multiple child nodes through evaluations of specific conditions at
each node. The criteria of these conditions are typically determined by metrics such as
information gain ( IG) or the Gini index ( Gini). These metrics measure the impurity of
class distribution at each node, selecting a splitting criterion that minimizes the difference
in impurity before and after the split [39,40].

Information gain : IG
(

Dp, f
)
= I

(
Dp
)− ∑m

j=1

Nj

Np
I
(

Dj
)

(10)

Gini index : Gini
(

Dp
)
= 1 − ∑K

k=1 p2
k (11)

• Dp: the data of the parent node.
• Dj: the data of the jth child node.
• f : the splitting criterion variable.
• m: the number of child nodes generated after splitting.
• Np: the number of data points in the parent node.
• Nj: the number of data points in the jth child node.
• K : the number of classes.
• pk: the ratio of the kth class.

Random forest stands out as a notable ensemble learning technique, leveraging the
power of decision trees. The methodology of random forest is structured around the
collaborative efforts of multiple decision trees, which are subsequently aggregated to yield
prediction results. The workflow of random forest unfolds as follows:

1. Bootstrap sample creation: The process starts by randomly selecting a subset of the
input data to create what is known as a bootstrap sample. This sample comprises
a distinct dataset consisting of data instances randomly extracted from the original
input dataset.

2. Multiple decision tree generation: Next, numerous decision trees are generated, each
stemming from a bootstrap sample. These decision trees come into existence with a
random element, ensuring their diversity and independence.

3. Data prediction by decision trees: Each of the generated decision trees is then utilized
to predict the input data. This prediction process is carried out individually for all the
decision trees in the ensemble.

4. Aggregation of predictions: The prediction results obtained from the individual
decision trees are aggregated. This aggregation can take the form of averaging the
predictions or adopting a majority voting approach, depending on the task. The
aggregated outcome serves as the foundation for the final predictions made by the
random forest model.

By following these steps, random forest harnesses the collective insights of multiple
decision trees, effectively enhancing prediction accuracy and generalization capabilities.
Random forest addresses overfitting by generating multiple models from different data
subsets. This diversification improves robustness against noise and uncertainties. The
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adjustment of the optimal number of decision trees and the splitting criteria can be per-
formed through hyperparameter tuning. Typically, hyperparameters such as the splitting
criteria of decision trees and the tree depth are set. The prediction function of random
forest is as follow, where T is the number of generated decision trees and ft(x) represents
the prediction function of the tth decision tree.

f (x) =
1
T

T

∑
t=1

ft(x) (12)

LightGBM is a machine learning model based on the gradient boosting decision tree
(GBDT) algorithm. Gradient boosting works by improving the prediction model as new
models compensate for the errors of the previous model. Therefore, multiple decision trees
can be combined to develop a more robust model that minimizes overfitting. The working
mechanism of lightGBM is similar to the conventional GBDT algorithm, but it utilizes
the leaf-wise approach during the splitting process (Figure 10). This approach allows
lightGBM to produce more unbalanced trees than the traditional level-wise approach,
resulting in improved predictive performance. Furthermore, lightGBM includes the feature
to perform splitting using only a subset of the data, ensuring faster processing speed
for large-scale datasets. However, lightGBM may result in deeper trees, depending on
their leaf-wise characteristics and hyperparameter settings, which may lead to deeper
trees [41]. While this can improve the prediction accuracy of the training data, it may result
in lower accuracy when predicting new data because of the overfitting problem. In the
case of lightGBM, the aim was to minimize the overfitting problem through the feature
augmentation conducted previously. The objective function and parameter descriptions for
LightGBM are as follows [42]:

Obj(Θ) = ∑
i

l
(

yi, yi
̂
y(t−1)

i + ft(xi)

)
+ ∑

t
Ω( ft) (13)

Ω( ft) = γT +
1
2

λ|w|2 (14)

• l
(

yi,
̂
y(t−1)

i + ft(xi)

)
: the loss functions used in the objective function.

• yi: the actual value for the ith data.

• ̂
y(t−1)

i : the prediction from the previous time step (t − 1).
• ft(xi): the prediction of the tth tree for the ith data point xi.
• Ω( ft): a term used to regulate the complexity of the tree.
• T: the number of leaf nodes in the tree.
• γ: the cost parameter associated with the number of leaf nodes.
• λ: a coefficient that regulates the weight of leaf nodes.
• w: the weights assigned to the tree nodes.

Bayesian optimization is a method for finding the optimal solution that maximizes an
arbitrary objective function. This optimization technique can be applied to any function
for which observations can be obtained and is particularly useful for optimizing black-box
functions with high cost and unknown shapes [43]. Therefore, Bayesian optimization
is used mainly as a hyperparameter optimization method for machine learning models,
taking advantage of the characteristics of such optimization techniques [44]. The optimized
hyperparameters were derived through Bayesian optimization, as shown in Table 6. In
Bayesian optimization, the aim is to identify the hyperparameter combination x∗ that
minimizes or maximizes the objective function f (x). The objective function typically takes
a form similar to Equation (15). η(x) represents the actual value of the objective function
for the hyperparameter combination x. f (x) is defined as the sum of the actual objective
function value η(x) and the noise ε(x). Bayesian optimization involves experimentation
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with various hyperparameter combinations while modeling both the genuine objective
function value η(x) and the accompanying noise ε(x). Through iterative processes, the next
hyperparameter combination to explore is forecast, advancing the optimization process.

f (x) = η(x) + ε(x) (15)

Figure 10. Two kinds of tree growth: (a) level-wise growth, (b) leaf-wise growth.

Table 6. Hyperparameter tuning results of the random forest and lightGBM.

Random Forest LightGBM

bootstrap True boosting_type ‘gbdt’
ccp_alpha 0 class_weight None
class_weight None colsample_bytree 1
criterion ‘gini’ importance_type ‘split’
max_depth None learning_rate 0.02
max_features ‘auto’ max_depth 12
max_leaf_nodes None min_child_samples 20
max_samples None min_child_weight 0.001
min_impurity_decrease 0 min_split_gain 0
min_impurity_split None n_estimators 1000
min_samples_leaf 1 num_leaves 58
min_samples_split 2 random_state None
min_weight_fraction_leaf 0 reg_alpha 0
n_estimators 130 reg_lambda 0
oob_score False silent −1
random_state 42 subsample 0.8
warm_start False subsample_for_bin 200,000

Because forklifts move continuously, vibration data has the characteristics of time
series data. The time series data and the state changes in the condition segment (center
of heavy objects carried by forklift) do not depend on the state at a single point in time
but on the past values. Therefore, the probability of classifying the conditioning segment
was the EWMA to diagnose the conditioning segment contextually using the moving
average instead of diagnosing the conditioning segment only by the probability at that
time, as shown in Table 7. Contextual diagnosis in machine learning is a technique to
diagnose by considering the context of the given data [45]. This provides a more profound
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understanding than simply analyzing and predicting data patterns. It simply considers the
context of the data before and after, rather than individual data points, to help make an
accurate diagnosis. In addition, it is used effectively for outlier detection in time series [46]
and partial data [47]. This study attempted to minimize the effect of noise, such as outliers,
using the exponentially weighted moving average for contextual diagnosis. In applying
contextual diagnosis, this study examined the effects of the window size on the moving
average. Figure 11 presents the learning and prediction process flow.

Table 7. Result of contextual diagnosis.

Before Contextual Diagnosis After Contextual Diagnosis

Time Left (LLH) Right (RRH) Center Time Left (LLH) Right (RRH) Center

1 0.00112 0.00014 0.99874 1 0.00112 0.00014 0.99874
2 0.00305 0.00044 0.99651 2 0.00241 0.00034 0.99725
3 0.00239 0.00070 0.99691 3 0.00240 0.00055 0.99706
4 0.00103 0.00012 0.99885 4 0.00167 0.00032 0.99801
5 0.00117 0.00022 0.99862 5 0.00141 0.00027 0.99832
6 0.02492 0.00198 0.97311 6 0.01335 0.00113 0.98552
7 0.06715 0.01467 0.91818 7 0.04046 0.00795 0.95158
8 0.06500 0.00303 0.93197 8 0.05278 0.00548 0.94174
9 0.13749 0.01739 0.84512 9 0.09522 0.01145 0.89333
10 0.07009 0.01556 0.91436 10 0.08264 0.01351 0.90385
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .

m . . . . . . . . . m . . . . . . . . .

 
Figure 11. Schematic procedure of training and prediction.
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As a result of contextual diagnosis through the exponentially weighted moving aver-
age, the classification probability of each condition segment predicted by machine learning
changes, as listed in Table 7. Forklifts carry and transport unbalanced heavy objects during
continuous movement or operation, and the centers of heavy objects do not fluctuate on a
one-second basis. Therefore, a two to three-second window was used to calculate the mov-
ing average probability. As a result, when the condition segment was diagnosed as “center”,
applying a moving average to the probabilities in certain outlier segments diagnosed as
“left” or “right” would result in lower values influenced by past data. Figures 12 and 13
present these probabilities as graphs as a function of time. From the observed results, the
centers of heavy objects carried by the forklift were diagnosed more accurately by the
generated classifier.

  

Figure 12. Contextual diagnosis graph of lightGBM (left: original, right: after moving average).

 

Figure 13. Contextual diagnosis graph of random forest (left: original, right: after moving average).

Because the data imbalance was minimized, the performance was compared using the
accuracy score of 24 classifiers, including random forest and lightGBM (Table 8). First, the
accuracy increased in all cases as the window size of the exponentially weighted moving
average for smoothing the feature vector time series data increased and the alpha value
decreased. The classification probabilities of the condition segment predicted by machine
learning were subjected to the moving average to achieve a contextual diagnosis. In all
cases, the classification accuracy of the condition segment increased gradually as the size
of the moving average window increased, and the alpha decreased. On the other hand,
although the data augmentation minimized the overfitting of the model, it resulted in the
same or slightly lower accuracy.
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Table 8. Result of case studies.

Case No. Dataset
Machine
Learning

Model

Feature
Moving
Average

Window Size

Smoothing
Factor (α)

Contextual Diagnosis Accuracy Score
(Probability Moving Average

Window Size)

1 s 2 s 3 s

Case 1 Raw features Random forest 1 s 1.00 0.7522 0.8135 0.8950
Case 2 Raw features Random forest 2 s 0.67 0.8019 0.8622 0.9186
Case 3 Raw features Random forest 3 s 0.50 0.8347 0.8752 0.9274
Case 4 With LSTM AE features Random forest 1 s 1.00 0.7392 0.8047 0.8904
Case 5 With LSTM AE features Random forest 2 s 0.67 0.7846 0.8470 0.9094
Case 6 With LSTM AE features Random forest 3 s 0.50 0.8216 0.8713 0.9263
Case 7 With AWGN features Random forest 1 s 1.00 0.7487 0.8238 0.9020
Case 8 With AWGN features Random forest 2 s 0.67 0.7994 0.8601 0.9203
Case 9 With AWGN features Random forest 3 s 0.50 0.8294 0.8819 0.9366

Case 10 With all features Random forest 1 s 1.00 0.7487 0.8587 0.9362
Case 11 With all features Random forest 2 s 0.67 0.8033 0.8897 0.9450
Case 12 With all features Random forest 3 s 0.50 0.8305 0.9048 0.9563
Case 13 Raw features lightGBM 1 s 1.00 0.7659 0.8453 0.9295
Case 14 Raw features lightGBM 2 s 0.67 0.8223 0.8858 0.9496
Case 15 Raw features lightGBM 3 s 0.50 0.8646 0.9129 0.9637
Case 16 With LSTM AE features lightGBM 1 s 1.00 0.7621 0.8347 0.9098
Case 17 With LSTM AE features lightGBM 2 s 0.67 0.8160 0.8773 0.9369
Case 18 With LSTM AE features lightGBM 3 s 0.50 0.8488 0.9041 0.9521
Case 19 With AWGN features lightGBM 1 s 1.00 0.7642 0.8421 0.9161
Case 20 With AWGN features lightGBM 2 s 0.67 0.8379 0.8925 0.9485
Case 21 With AWGN features lightGBM 3 s 0.50 0.8643 0.9122 0.9591
Case 22 With all features lightGBM 1 s 1.00 0.7638 0.8389 0.9221
Case 23 With all features lightGBM 2 s 0.67 0.8206 0.8883 0.9454
Case 24 With all features lightGBM 3 s 0.50 0.8569 0.9115 0.9566

Applying moving average to the probabilities of the lightGBM model resulted in
an overall increase in the scores (cases 13–24). This trend can be seen in the probability
graphs diagnosing each condition segment in Figures 12 and 13. However, lightGBM,
with its leaf-wise growth strategy, tended to overfit with increasing tree depth and often
has probabilities highly skewed towards 0 or 1. Therefore, it was difficult to observe
performance improvement in the combination of the augmented dataset and contextual
diagnosis for the model (cases 13, 16, 19, and 22).

Compared to lightGBM, random forest exhibited relatively less overfitting and showed
gradual fluctuations in probabilities corresponding to changes in the time series. This trend
can be observed in Figure 13. The diagnosis of the condition segments was not sigmoidal but
rather smooth and gradual because the probability was calculated by averaging the voting
values of multiple randomly generated decision trees. These characteristics were expressed
in classifiers utilizing the augmented dataset with AWGN and LSTM autoencoders. When
applying AWGN and LSTM autoencoders to the dataset and contextual diagnosis in cases
10–12, the application of the probability moving average resulted in a higher score of
0.0331 (3.31%) compared to cases 1–3. On the other hand, the random forest score was
lower than lightGBM in all cases when the moving average was not applied (without a
contextual diagnosis).

By applying machine learning and contextual diagnosis, the diagnosis of the centers
of heavy objects carried by forklifts was performed by the condition segment during the
process of lifting, tilting, and moving heavy objects on uneven ground using a forklift. As a
result, the random forest model (case 12) achieved a maximum accuracy of 0.9563, while
the lightGBM model (case 24) achieved a maximum accuracy of 0.9566.

3. Abnormal Lifting Weight Stage Classification

In Section 3, vibration and sound data were acquired from forklifts operating under
repeated abnormal weight lifting conditions. In addition, feature engineering and health
stage classification of the data were performed following a systematic PHM procedure as
depicted in Figure 14.
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Figure 14. Classification of failure (health) stages in imbalanced abnormal operations.

3.1. Experimental Data Acquisition and Feature Engineering

Safety accidents and failure situations were induced by continuous lifting of unbal-
anced heavy objects in a laboratory environment. Data measurements and condition
diagnoses were conducted for these situations. During the data measurement process,
the forklift repeatedly lifted and lowered an unbalanced load of 1500 kg to the right at a
consistent speed every 20 s for five hours. The forklift remained stationary throughout
this process and did not perform any driving activity. In addition, four three-axis (x, y, z)
acceleration sensors were mounted on the left and right sides of the front-end structure to
collect vibration data (Figure 15). Repeated acceleration tests were performed until a failure
condition occurred; the forklift swayed, and a loud noise was generated in the structure. In
the actual operating environment, it is difficult to diagnose the condition and predict the
lifespan by sound because of ambient noise. In this study, a microphone (sampling rate
51.2 kHz) was installed at the driver’s position to eliminate ambient noise in an anechoic
chamber environment, and labeling was performed using sound data. At the same time,
the noise generated was measured by the forklift. These sound data were used to classify
and label the failure stages into three stages: normal, failure entry, and failure.

Figure 15. Images of the repeated abnormal lifting experiment in an anechoic chamber with micro-
phone and vibration sensors.
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The dataset obtained in the experiment contains 12 acceleration signals (four sensors
× (x, y, z accelerations)). For each signal of one sensor, 512 (Hz) × 300 (min) × 60 (s/min)
acceleration data were measured, resulting in a total of 9,216,000 data points. In addition,
921,600,000 (51,200 Hz × 300 min × 60 s/min) sound data were collected. As shown in
Figure 16, the plotted sound signal obtained in the time domain made it difficult to track
the state changes. By observing the frequency changes over time using the short-time
Fourier transform (STFT), it was possible to determine if the forklift was operating over
time. On the other hand, state changes and detailed differences were difficult to compare.

Figure 16. Waveform and short-time Fourier transform (STFT) of measured sound data.

The data size was large, and it was difficult to observe the distinctive state changes
when analyzing the raw signals. Twelve features were extracted from the time-domain sig-
nal, including min, max, peak to peak, mean (abs), RMS, variance, kurtosis, skewness, crest
factor, shape factor, impulse factor, and margin factor for every 20 s window to compress
the data and solve these difficulties. Based on this, the dimensions of the acceleration signal
and sound signal data were reduced to 900 × 12 × 12 and 900 × 1 × 12, respectively. As
reported in Section 2, an exponentially weighted moving average (alpha 0.5) was applied
to the reduced dataset to minimize the noise signal in the data. After feature engineering,
the CART (classification and regression tree) algorithm [40] was used to classify the failure
stages over time using sound features. The CART algorithm is a decision tree algorithm
for classification and regression analysis that evaluates the importance of each variable
based on the input data and prioritizes the important variables to produce a decision tree.
The CART algorithm was used to derive 12 decision trees for each feature by pruning to
prevent overfitting and classify the status into three levels (Figure 17). Significant branching
points could be derived from eight of the 12 decision trees, and the failure stage was classi-
fied based on the average value of the branching points derived from the eight decision
trees (Table 9). Based on the classification results, breakpoint 1 was determined to be at
1.18 h and breakpoint 2 at 1.77 h, which were used to distinguish the labeling of the data
(Table 10). Furthermore, a comparison of the recorded forklift experimental video showed
that beyond breakpoint 1, the forklift exhibited early failure symptoms (beginning to shake),
demonstrating a complete failure state at breakpoint 2.

The 900 data generated were divided into 630 data for training and 270 data for testing.
Given that the dataset is imbalanced, the performance was evaluated using the F1 score
during the validation process. The F1 score is one of the metrics that evaluate the accuracy
of a model and is calculated as the harmonic mean of precision and recall. When data
are unbalanced, the prediction accuracy for a small number of data classifications is often
high, but the prediction accuracy for a large number of data classifications is often low.
In such situations, relying solely on accuracy may give the impression of high prediction
accuracy for a small number of data classifications. On the other hand, the accuracy for
most data classifications may be relatively lower, leading to inadequate overall model
performance evaluation. The F1 score considers both precision and recall, which makes
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it more suitable for dealing with imbalanced classification problems [48–50]. Therefore,
when the data are unbalanced, using the F1 score is a more accurate way to evaluate the
model performance. Consequently, the F1 score was used to evaluate the performance in
this unbalanced dataset.

Figure 17. Visual examples of CART algorithm results.

Table 9. Stage-labeling results of the sound data features using the CART (classification and regression
tree) algorithm.

Feature Breakpoint 1 Breakpoint 2

Max 0.892 1.764
Min 0.925 1.775

Peak2 0.925 1.775
Skewness 1.308 1.831

Crest Factor 1.353 1.708
Shape Factor 1.308 1.775

Impulse Factor 1.353 1.764
Margin Factor 1.353 1.775

Average 1.177 1.771

Table 10. Labeling and structure of a dataset.

Stage 1 Stage 2 Stage 3 Total

Phase Normal Semi-failure Failure -
Dataset Range (h) 0–1.18 1.18–1.77 1.77–5.0 0–5.0
Number of data 212 106 582 900

3.2. Stage Classification Result

In the previous steps, labels were assigned to instances using sound features. Leverag-
ing these labels, logistic regression and random forest classifiers were trained. The dataset
was divided into two distinct cases: case 1 utilized solely vibration features, encompassing
144 dimensions; in contrast, case 2 integrated both vibration and sound features, totaling
156 dimensions. While sound features were primarily introduced for labeling purposes,
their inclusion in the training prompted additional cases to assess their impact on classifier
performance. In both cases, logistic regression and random forest were selected as the
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machine learning models, with the details of random forest elaborated upon in Section 2.2.
For multiclass classification, logistic regression employs the SoftMax function alongside
the cross-entropy loss. In this context, the linear discriminant function hk(x) is defined
as follows:

hk(x) = wT
k xi + bk (16)

where wk and bk denotes the weights and bias for each class k, respectively, while xi
represents the ith input variable. p(y = j|xi), the probability of class j, predicted by the
SoftMax function is as follows [32]:

p(y = j|xi) =
ehj(xi)

∑K
k=1 ehk(xi)

(17)

The cross-entropy loss function, J(θ), is calculated as follows [32]:

J(θ) = − 1
N

N

∑
i=1

K

∑
j=1

yijlog ŷij (18)

• yij: the binary value indicating whether class j is the correct target for the ith data point.
• ŷij: the predicted probability of class j for the ith input data point.
• N: the total number of data points.
• K: the total number of classes.

LightGBM, used in the previous section, is prone to overfitting when the dataset size
is small. LightGBM was deemed inappropriate because this dataset consists of 900 feature
vectors and was not used in this study. No additional hyperparameter tuning was con-
ducted, and only the default parameters provided by the scikit-learn module in Python
were utilized. Based on the validation results of the test data shown in Table 11, the logistic
regression classifier achieved an F1 score (macro) of 0.9599 for case 1 and 0.9790 for case
2. In the case of random forest, the F1 scores (macro) for cases 1 and 2 were 0.9116 and
0.9220, respectively. Additionally, Figure 18 depicts a confusion matrix, where the x-axis
shows the actual (ground truth) class labels, and the y-axis shows the predicted class labels
generated by a model. This confirms that it is possible to classify the forklifts as healthy or
aging under repeated unbalanced load weight conditions based on acceleration signals.

Table 11. Validation result of stage classification.

Model Dataset Accuracy
F1 Score F1 Score

(Weighted) (Macro)

Logistic
Regression

Case 1 (vibration feature) 0.9815 0.9814 0.9599
Case 2 (vibration + sound feature) 0.9889 0.9891 0.9790

Random
Forest

Case 1 (vibration feature) 0.9519 0.9523 0.9116
Case 2 (vibration + sound feature) 0.9556 0.9556 0.9220

  
Figure 18. Confusion matrix result: (left) logistic regression, (right) random forest.

168



Sensors 2023, 23, 7706

4. RUL Prediction and Fault Diagnosis with Alarm Rule for Abnormal Lifting

Numerous studies [18–28] have comprehensively explored RUL prediction aligned
with fault diagnosis. Zhang et al. [19] introduced an inventive approach by parallelly
integrating spatial and temporal features using a hybrid neural network. This model
combined a 1D convolutional neural network (CNN) with a bidirectional gated recurrent
unit (BiGRU). Furthermore, they assessed the limitations of RUL prediction using CNN,
LSTM, and the transformer algorithm on aircraft turbofan engine data. To overcome these
limitations, they introduced the integrated multi-head dual sparse self-attention network
(IMDSSN), an architecture incorporating the ProbSparse self-attention network (MPSN)
and LogSparse self-attention network (MLSN) components [20]. Other strategies in RUL
prediction span a broad spectrum. Pham et al. [21] proposed RUL prediction for a methane
compressor, employing flow system identification, proportional hazard modeling, and
support vector machines. Loutas et al. [22] introduced an ε-support vector machine-based
approach for estimating rolling bearing RUL. Gugulothu et al. [23] developed Embed-RUL,
addressing differing patterns in embeddings between normal and degraded machines. This
technique employs a sequence-to-sequence model based on RNNs to generate embeddings
for multivariate time series subsequences. Hinchi et al. [24] introduced a method for bear-
ing RUL prediction centered on a convolutional LSTM network. Niu et al. [25] proposed an
RUL prediction technique utilizing a 1D-CNN LSTM network. Jiang et al. [26] presented
a time series multiple channel convolutional neural network (TSMC-CNN) integrating
CNN with LSTM and attention mechanisms. They further integrated TSMC-CNN with
an attention-based long short-term memory (ALSTM) network for bearing RUL predic-
tion. Saidi et al. [28] presented RUL prediction using support vector regression (SVR).
These regression-based RUL predictions require well-structured feature vectors and sub-
stantial RUL data collection. To address this challenge, several studies have focused on
performance enhancement, employing ensemble techniques and a range of model-based
approaches, including CNN, LSTM, transformers, attention mechanisms, and SVR. While
many works have explored convolutional LSTM networks and sequence-to-sequence mod-
els, Ley et al. [18] systematically outlined four technical processes including data collection,
health index construction, health stage segmentation, and RUL prediction, with a dedicated
focus on RUL.

Considering the algorithms proposed in the literature and the model of Ley et al.
in [18], the present study combines appropriate algorithms in an integrated manner,
adapted to the unique demands of abnormal lifting scenarios. This customized integration
facilitates the model in capturing latent patterns and interactions arising from unbalanced
load conditions, thus leading to enhanced RUL predictions. This section demonstrates
real-time active diagnosis using the life model equation, even with limited data, thereby
enhancing the practicality of the proposed approaches. As Section 3 discussed the classifi-
cation of health stages, subsequently, in Section 4, the dataset and classifiers are applied
to perform RUL prediction and fault diagnosis using alarm rules, thereby establishing a
foundation for condition-based management [51]. This study also introduces real-time
active forklift condition diagnosis using the life model equation, even with limited data.
Moreover, alarm rules are devised utilizing key features extracted from the health stage
classifier and designated as health indices. Figure 19 summarizes the RUL calculation
process and the methods used.

4.1. Life Prediction Model and RUL Verification

In the case of logistic regression, as shown in Figure 20, the classification probabilities
of the classifier were derived as either 0 or 1, making it difficult to track the progressive
changes in the state. Therefore, it was not feasible to adopt degradation curves for logistic
regression. On the other hand, as shown in Section 3, when the classification probabilities of
the entire dataset belonging to each stage were visualized using a random forest classifier,
a gradual change in state was observed in the graph (Figure 21). This represents the
degradation state of the forklift using classification probabilities, and the probabilities of
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Stages 1 and 3 were combined and averaged to generate the degradation curve (Figure 22).
After analyzing the degradation curve, Stage 3 was reached after approximately 106 min,
and the threshold was a probability of 0.7.

 
Figure 19. Prediction of RUL and fault diagnosis.

Figure 20. Probability of logistic regression classifier.

  

Figure 21. Probability of the random forest classifier.

Figure 22. Degradation curve of forklift using the average probability of a random forest classifier.
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The model for RUL was constructed using an exponential function equation, as follows.

y = a + b × exp(c × xt) (19)

Exponential coefficients were determined using the method of least squares, focusing
on data collected within the 30 min prior to the diagnostic time. The least squares method
is a statistical tool used in regression analysis to determine model parameters that reduce
the discrepancy (error) between observed data and the values expected by the model. The
following equations and parameters illustrate the implementation of the least squares
method with exponential functions, specifically in Equation (20), for a given dataset.

Dataset : ((x1, y1), (x2, y2), . . . , (xn, yn)) (20)

ei = yi − (a + b × exp(c × xti)) (21)

E =
n

∑
i=1

e2
i =

n

∑
i=1

(yi − (a + b × exp(c × xti)))
2 (22)

• yi: the observed value of the dependent variable at a point
• xti: the value of independent variable xi at a time t.
• a, b, c: the parameters of the exponential function.
• ei: the residuals associated with the exponential function’s prediction.
• E: the objective function to compute the sum of squared residuals, which is minimized

to determine the values of a, b, and c.

Based on these characteristics, the exponential function continued to change with time,
and the time when the y-value of the exponential function reached 0.7 was calculated to
analyze the RUL. During the analysis of the RUL, the confidence interval was included by
considering Y(0.9x t) to Y(1.1xt) in the pre- and post-prediction time points. The analysis
showed that the early data predicted the failure rather early, as shown in Figure 23. The
gap between the actual and the predicted RUL decreased gradually as the failure point
approached (Figure 24).

   

Figure 23. Degradation curve of forklift using the average probability of a random forest classifier.

4.2. Alarm-Rule-Based Fault Diagnosis

The SHAP (Shapley additive explanations) algorithm was used to diagnose faults
based on the key features and alarm rules. The goal was to determine which features
were critical for state classification using the SHAP algorithm with the previously trained
random forest classifier. This analysis allowed the identification of the significant features
used for state classification. SHAP is an algorithm used to analyze the contribution of
features to the predictions made by machine learning models. It helps to determine the
importance of each feature in the model’s predictions. The SHAP algorithm considers all
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features necessary to explain the model predictions and calculates the impact of each feature
on the prediction outcome [52]. Calculating the Shapley value for all feature combinations
is computationally expensive. Therefore, the SHAP algorithm uses approximations that
can be calculated relatively quickly for tree-based models, such as the random forests
or XGBoost [29]. The SHAP algorithm provides various interpretation results, such as
feature importance, feature contribution, and feature effect, which help to interpret the
model and explain the prediction results reliably [52]. The SHAP algorithm improves the
interpretability of machine learning models and plays a vital role in model development
and helping users to understand the model prediction results [52].

Figure 24. Remaining useful lifetime (RUL) result.

The features that contribute significantly to health diagnostics were identified using
the SHAP algorithm. As shown on the left in Figure 25, the ‘abs.mean ch In LH z’ feature
contributes the most to the health diagnosis. A progressive state change, similar to the
degradation model graph, could be observed by observing the dispersion of the time series
of the corresponding feature (Figure 25, right image). The 2-sigma and 3-sigma values of
the ‘abs.mean ch In LH z’ feature were extracted from the distribution of the normal data
range in stage 1. These values were then used as the threshold for fault diagnosis. Next, an
alarm rule was set to diagnose a failure when the exponentially weighted moving average
value of the feature (alpha 0.17) exceeds a threshold. As shown in Figure 25 (right), the
3-sigma threshold can diagnose failure just before failure, and the 2-sigma threshold can
predict failure at the point of the precursor symptoms.

Figure 25. Results of SHAP and fault diagnosis based on the alarm rules.

5. Discussion

This study addresses the critical issue of preventing front-end failures in forklifts
by predicting the center of gravity. The study begins by emphasizing the fault diagnosis
of front-end failures in forklifts and the significance of accurately predicting the gravity
center. In this pursuit, the study acquired acceleration signals during lifting, tilting, and
moving heavy objects by the forklift on uneven ground and in various operating envi-
ronments. These acceleration signals were captured from the outer beams on both the
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left and right sides of the forklift’s front-end. To ensure effective processing and feature
determination, time-domain statistical features were extracted and established as vari-
ables by applying a window at one-second intervals. To mitigate potential overfitting,
the dataset was augmented with AWGN and LSTM autoencoders. Following these data
enhancements, classifiers were used to accurately categorize the center of objects being
transported by forklifts during their driving and working phases. This classification task
was accomplished using the robust capabilities of the random forest and lightGBM models.
The random forest model and lightGBM model were able to predict the center of gravity
with an accuracy of 0.9563 and 0.9566, respectively. During the prediction of the gravity
center, an exponentially weighted moving average was conducted to smooth out the noise
of the features. As a result of applying this moving average, the dataset’s outliers were
reduced without necessitating complex noise filtering methods. Moreover, an observation
was made: as the window size for the exponentially weighted moving average was in-
creased, the accuracy of the machine learning models also improved. This suggests that a
larger window captured more accurate data trends, enhancing predictive performance. By
using data augmentation, overfitting was minimized, while maintaining similar or slightly
lower accuracy scores. In the lightGBM model, the implementation of a moving average
on the classification probabilities showed a tendency to improve the scores. In contrast,
lightGBM tended to overfit with increased tree depth, resulting in biased classification
probabilities. This made it difficult to improve performance when combining augmented
datasets with contextual diagnosis. However, the random forest model showed less over-
fitting compared to lightGBM and showed gradual changes in classification probabilities
over time. These trends were observed in the augmented dataset using the AWGN and
LSTM autoencoders. Applying the augmented dataset and contextual diagnosis, along
with the moving average to the classification probabilities, resulted in an average score
improvement of 3.31%. Notably, the random forest score was lower than the lightGBM
score without the moving average.

After predicting the center of gravity, the paper presented a procedure for forecasting
the RUL during abnormal operational scenarios and diagnosing failures through the
application of alarm rules. To forecast RUL during repetitive unbalanced load conditions,
statistical features were extracted from acceleration data using a 20 s window. This data
collection took place in an anechoic chamber, with simultaneous recording of sound signals
via a microphone. The CART algorithm classified and labeled statistical features derived
from the sound signals. Logistic regression and random forest models were then used for
failure stage classification, achieving F1 scores of 0.9790 and 0.9220, respectively. Notably,
logistic regression achieved the highest score among the classifiers. Conversely, when
examining the classifier’s probability change, the probabilities were often skewed toward
0 or 1. This skewed distribution made it difficult to accurately track the forklift’s state
changes. Consequently, monitoring the forklift’s degradation status was accomplished
through the random forest’s generated classification probabilities. The results showed
a gradual change in the condition of the forklift over time. Based on these results, the
probabilities generated by the random forest for each stage were combined and averaged
to create a degradation curve. The failure point was predicted by the failure threshold that
was determined through degradation curve analysis.

In conclusion, predicting the gravity center of objects carried by the forklift yields
insights into operations that impact forklift durability. This approach enhances equipment
longevity and operational safety. Additionally, providing RUL data facilitates the devel-
opment of operational plans and efficient maintenance by identifying critical features for
setting failure thresholds.
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Abstract: The reliability and safety of diesel engines gradually decrease with the increase in running
time, leading to frequent failures. To address the problem that it is difficult for the traditional fault
status identification methods to identify diesel engine faults accurately, a diesel engine fault status
identification method based on synchro squeezing S-transform (SSST) and vision transformer (ViT) is
proposed. This method can effectively combine the advantages of the SSST method in processing
non-linear and non-smooth signals with the powerful image classification capability of ViT. The
vibration signals reflecting the diesel engine status are collected by sensors. To solve the problems
of low time-frequency resolution and weak energy aggregation in traditional signal time-frequency
analysis methods, the SSST method is used to convert the vibration signals into two-dimensional
time-frequency maps; the ViT model is used to extract time-frequency image features for training to
achieve diesel engine status assessment. Pre-set fault experiments are carried out using the diesel
engine condition monitoring experimental bench, and the proposed method is compared with three
traditional methods, namely, ST-ViT, SSST-2DCNN and FFT spectrum-1DCNN. The experimental
results show that the overall fault status identification accuracy in the public dataset and the actual
laboratory data reaches 98.31% and 95.67%, respectively, providing a new idea for diesel engine fault
status identification.

Keywords: synchro squeezing S-transform; vision transformer; diesel engine; fault status identification;
reliability; time-frequency analysis

1. Introduction

Diesel engines, as the main power source for heavy vehicles, construction machinery,
ships, generator sets, tanks, etc., will greatly affect normal production and safe operation
when they fail [1]. However, due to the high pressure and temperature generated during
their operation, requiring high structural strength and stiffness of each relevant part, their
reliability and safety gradually decrease with the increase in operation time [2]. The
important components of a diesel engine will lose their original functions as their functions
decay. Therefore, the safety and durability of diesel engines are receiving more and more
attention, and the fault status identification of diesel engines has become a hot spot for
research in related fields at home and abroad [3].

When identifying the status of a diesel engine, the original signal collected by the
sensor is mainly a vibration signal. Because the collection of vibration signals is simple
and fast, there is no need to disassemble the diesel engine body and change the diesel
engine structure. Usually, the basic idea of fault status identification for diesel engines
is firstly, collecting one-dimensional vibration data during the engine working condition,
secondly, completing noise reduction and feature extraction of the original signal, and
finally, completing fault status identification through a pattern recognition method [4].
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Compared with traditional machine learning methods, deep learning has a powerful
adaptive feature-learning capability to independently build the desired network model
based on the sample data during the learning process, and has received much attention
in the field of prognostics and health management [5]. Although deep learning is capable
of training one-dimensional raw signals, two-dimensional images contain richer feature
information and have received attention in this field as inputs for deep learning [6]. Com-
pared with one-dimensional signals, two-dimensional images have two main advantages in
fault status recognition: first, image data can consider multiple dimensions simultaneously
when expressing information, whereas one-dimensional data can only consider one di-
mension of information, which is more one-sided [7]; secondly, images are easy to identify
and classify, and the use of advanced algorithms to convert one-dimensional signals into
two-dimensional images makes it easier to classify images from a visual perspective. There-
fore, image data can provide more comprehensive and rich information for a wider range
of application scenarios, such as image recognition, video analysis, and medical image
processing [8]. Traditional time-frequency transformation methods, including short-time
Fourier transform (STFT), continuous wavelet transform (CWT), S-transform (ST), etc., have
achieved good results in studying time-frequency analysis [9]. After performing the time-
frequency transform, the resulting feature maps are preprocessed and then input to a deep
learning model for status recognition [10]. Liu et al. [11] converted diesel engine cylinder
head vibration signals into time-frequency maps by STFT, which were input to an AlexNet
network and ResNet-18 network for training, and achieved good fault classification by
transfer learning algorithm. Xi et al. [12] used ST to convert diesel engine vibration signals
into time-frequency maps and t-SNE to visualize fault features, which were input to an ex-
treme learning machine classifier to intelligently classify diesel engine faults. Shen et al. [13]
performed the Gabor transform on the vibration signal to obtain the time-frequency di-
agram of each operating status of the diesel engine. Mou et al. [14] converted the diesel
engine vibration signal into a time-frequency map by smoothing the pseudo-Wigner distri-
bution. However, the above method has problems such as fixed time-frequency resolution,
little phase information, low resolution and poor energy aggregation [15]. The limited
feature information contained in the conversion of the original vibration signal into an
image by the above methods makes it difficult to effectively extract the time-dependent
features of the vibration signals of the different statuses of the components to be monitored,
which easily causes the loss of useful information and affects the recognition accuracy of
the model [16]. Synchro squeezing wavelet transform (SSWT) is a combination of a synchro
squeezing algorithm to squeeze the energy in a certain range around the center frequency
of each frequency band to converge to the center frequency after wavelet transform to
improve the resolution. Compared with the wavelet transform, the S-transform has better
adaptivity and time-frequency resolution. The synchro squeezing S-transform (SSST), to a
certain extent, solves the problems of poor adaptivity of SSWT and the low resolution of
high-frequency low-amplitude signals, and has good effects in the time-frequency analysis
of seismic signals and vibration signals.

In terms of pattern recognition technology, the convolutional neural network (CNN)
is usually used to identify diesel engine fault status. Chen [17] established a diesel engine
overall status identification model based on a support vector machine (SVM). However,
SVM has the problem of being sensitive to parameter selection, which limits the appli-
cation of the method in diesel engine condition identification. To solve the problems of
index selection and the difficulty of weight determination in the traditional fault status
identification method, Bai et al. [18] constructed a diesel engine fault status identification
model based on CNN. Jiang et al. [19] addresses the problem that diesel engine faults are
difficult to identify accurately under complex operating conditions, and the diesel engine
vibration signals are fed into a one-dimensional CNN and a deep neural network of a long
short-term network (LSTM) for training, which can be effective for status identification.
Zhan et al. [20] proposed a fault identification method based on the combination of optimal
variational mode decomposition (VMD) and an improved CNN. However, when classi-
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fying and recognizing images, the initial status parameters for the CNN can have a great
impact on the network training, and a poor choice can cause the network to not work or
potentially fall into local minima, underfitting, and overfitting. In 2019 researchers started
to try to apply transformers to the CV domain, and finally in 2021, those involved proved
that transformers have better scalability than CNNs, can handle sequential types of inputs,
and are significantly better than CNNs when training larger models on larger datasets [21].
Alexey et al., proposed the vision transformer (ViT) model by directly applying the trans-
former architecture to image classification tasks, representing the input image as a feature
vector that can be used for subsequent tasks; ViT significantly improves the performance of
traditional image classification tasks [22].

Therefore, this paper takes diesel engines as the engineering research background, and
proposes a diesel engine status recognition method that combines the advantages of SSST to
represent time-varying nonlinear non-smooth signals with the excellent image classification
ability of ViT to achieve the classification of diesel engine fault status in response to the
current problem of inaccurate diesel engine status recognition. The main contributions and
innovations of this paper are as follows:

(1) Relying on the existing conditions in the laboratory, a pre-set fault experiment was
carried out to realize the acquisition of diesel engine cylinder head vibration signals.

(2) The original diesel engine vibration signal is represented as a time-frequency image
by SSST, and the dependence of the vibration signal on time is mapped into the image
feature space, so that the original feature information is retained in the time-frequency
map as much as possible. Then, after applying the powerful learning ability of ViT to
automatically extract the temporal and spatial features in the images, the fault status
identification is completed.

(3) The feasibility and effectiveness of the proposed diesel engine status recognition
method is verified by means of public datasets and actual laboratory measurements.

The remaining sections are as follows: Section 2 introduces the relevant theories of
SSST-ViT in detail; Section 3 provides the diesel engine pre-set fault experiments and the
experimental data acquisition method, and the experimental results are analyzed and
studied; In Section 4, the conclusions of this study and the outlook for future research work
are presented.

2. Diesel Engine Fault Status Identification Method

In the diesel engine fault status identification method based on SSST-ViT, the original
vibration signals collected are converted into time-frequency maps by the SSST, and the
ViT network model is applied to identify each fault status. Therefore, in this section, SSST,
the ViT network model and a diesel engine fault status identification method based on
SSST-ViT are introduced.

2.1. Synchro Squeezing S-Transform

The ST of the acquired original diesel engine vibration signal is compressed syn-
chronously and represented as a two-dimensional time-frequency map. Compared with
CWT, ST has a better time-frequency discrimination effect. The result of the wavelet trans-
form is a time-scale spectrum, and the result of ST is time-frequency spectrum, which
is more intuitive and clearer, and is a reversible transform without signal loss [23]. In
particular, it has an enhancement effect on the high-frequency weak amplitude components
of the original signal, which is effective for weak signal testing and research analysis. The
raw diesel engine signal collected by the vibration acceleration sensor is a typical one-
dimensional time series, whose vertical coordinate is the amplitude corresponding to each
sampling point and the horizontal coordinate is the time or sampling point. The original
vibration signal cannot fully represent the fault status information of the diesel engine,
and in order to effectively characterize the time-frequency characteristics of the original
signal, the signal is converted into a time-frequency map, which can not only highlight the
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original characteristic information of the vibration signal, but can also further enhance the
characteristic time series information [24].

Based on the principle of synchro squeezing transformation, the derivation process of
SSST is as follows:

Define the ST equation of the signal x(t) as

STX( f , b) =
∫ +∞

−∞
x(t)

| f |√
2π

e
− f 2(t−b)2

2 e−i2π f tdt (1)

where S( f , b) is the time-frequency spectrum of x(t), t is the time, f is the frequency, b is
the displacement parameter, and i is the imaginary number.

ϕ(t) = 1√
2π

e
t2
2 ei2πt, then Equation (1) yields

STX( f , b) = | f |e−i2π f b
∫ +∞

−∞
x(t)ϕ[ f (t − b)]dt (2)

ϕ and ϕ are complex conjugates, and by Parseval’s theorem and Fourier transformations

STX( f , b) =
1

2π
e−i2π f b

∫ +∞

−∞
x̂(ξ)ϕ̂

[
( f−1ξ)eibξ

]
dξ (3)

where ξ is the angular frequency, x(t) is obtained by Fourier transforming x̂(ξ), ϕ̂(ξ) is the
complex conjugate of ϕ(t), and the single harmonic case: x(t) = A cos(2π f0t)

x̂(ξ) = Aπ[δ(ξ − 2π f0) + δ(ξ + 2π f0)] (4)

S-transform is
STX( f , b) =

A
2π

e−i2π( f− f0)
b ϕ̂∗(2π f−1 f0) (5)

The analysis shows that the energy of the time spectrum of x(t) is distributed at f = f0,
but the actual time spectrum is around f0 with a spurious spectral bandwidth. The goal
of SSST is to obtain the real instantaneous frequency of x(t) by converging the energy
after compression.

Derivative of (5) with respect to time:

∂

∂b
STX( f , b) = −iπA( f − f0)e−i2π( f− f0)

b
ϕ̂(2π f−1 f0) (6)

The derivative of the time-frequency spectrum yields f̂

f̂ = ( f , b) = f + [i2πSTx( f , b)]−1 ∂

∂b
STX( f , b) (7)

According to x(t) = A cos(2π f0t), from (7) we can calculate

f̂ = ( f , b) = f + [i2πSTx( f , b)]−1 ∂

∂b
STX( f , b) = f +

iπA( f − f0)e−i2π( f− f0)
b
ϕ̂(2π f−1 f0)

i2π A
2 e−i2π( f− f0)

b ϕ̂∗(2π f−1 f0)
= f0 (8)

The spectrum in the interval
[

f̂c − �
2 f̂c, f̂c +

�
2 f̂c

]
near the center frequency f̂c is su-

perimposed to obtain the simultaneous compression transform SSST( f̂c, b), which improves
the resolution of the spectrum, and the expression is

SSSTx( f̂c, b) = (� f̂ )
−1 ∑

f j :| f̂c( f j ,b)− f̂c |≤� f̂c
2

|STX( f , b)| f j � f j (9)

179



Sensors 2023, 23, 6447

where f j is the discrete frequency of ST, � f j = f j − f j−1 interval, f̂c and � f̂c are the center
frequency and spectral bandwidth of the compressed interval. � f̂c = f̂c − f̂c−1.

SSST is a loss-free invertible transform, SSSTx( f̂c, b) can be expressed as x(b), and its
inverse transformation equation is

x(b) = Re
[
(CϕCφ)

−1∑
C

SSSTX( f̂c, b)� f̂c

]
Cϕ = 0.5

∫ ∞
0 −ϕ(ξ)ξ−1dξ, Cφ = e−i[2π f b+φ( f ,b)] f 2

(10)

The time and frequency distributions from SSST are linear, and the original signal x(t)
can be calculated from the results of the synchronous compression transform by inverting
the above equation.

2.2. Vision Transformer Network Model

The ViT network model was presented at ICLR2021, and the model consists of three
modules including Embedding layer, Transformer Encoder, and MLP Head (which is
eventually used for classification.) The Transformer model is based entirely on a self-
attentive mechanism without any convolutional or recurrent neural network layers and
is not subject to local interaction limitations [25]. ViT was the first Transformer model
used to replace CNNs and applied to image classification [26]. Although Transformer
was originally applied to sequence-to-sequence learning on text data, it has now been
extended to various modern deep learning in areas such as vision, target detection and
image segmentation [27].

Embedding layer: For the standard Transformer module, the input is required to be
a sequence of tokens (vectors), i.e., a two-dimensional matrix; for image data, the data
format is a three-dimensional matrix [H, W, C], not what the Transformer wants. So, we
need to carry out a transformation of the data using an Embedding layer, firstly dividing an
image into a bunch of patches of a given size, and secondly mapping each patch into a one-
dimensional vector by a linear mapping. This is achieved directly through a convolutional
layer that flattens out the two dimensions, turning it into a two-dimensional matrix, which
is what the Transformer wants. Before being input to the transformer encoder, a class token
and Position Embedding need to be added, and a class token is inserted into the resulting
pile of tokens specifically for classification.

Transformer Encoder: The main part is to normalize each token with layer norm, so as
to simulate the whole sample data distribution.

Multi-head self-attention mechanism: This allows the model to focus on the informa-
tion at different positions and complete the interaction information between sequences.

The structure of MLP consists mainly of a fully connected layer and an activation
function. The output weights of the multi-headed self-attentive mechanism are received and
compared to identify the fault types. The structure of the ViT model is shown in Figure 1.

According to the ViT model structure diagram, a ViT block runs in the following steps:
Step 1: Take the image size 224 × 224 as an example: as the input, the image is

divided into fixed patches with size 16 × 16, so the number of patches generated is
224 × 224/16 × 16 = 196, and the sequence of length 196 is obtained, the dimensions
of patches are 16 × 16 × 3 = 768, the dimensions of linear projection layer are 768 × N
(N = 768), so the dimension of the input after passing through the linear projection layer
is still 196 × 768, that is, there are 196 tokens in total, and the dimension of each token is
768. There is also a class for classification, so the final dimension is 197 × 768. The image is
converted into a sequence by the patch embedding layer.

Step 2: Positional encoding: ViT also needs to add positional encoding, which can
be understood as a table with N rows; the size of N is the same as the length of the input
sequence, each row represents a vector, and the dimension of the vector is the same as the
dimension of the input sequence embedding (768). After adding the location encoding
information, the dimension is still 197 × 768.
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Step 3: LN/multi-head attention: The LN output dimension is still 197 × 768. With
multi-head self-attention, if there is only one head, the dimension is 197 × 768. If there
are 12 heads, 768/12 = 64, the dimensions are 197 × 64. There are 12 groups in total, and
finally the output of the 12 groups is stitched together again, and the output dimensions
are 197 × 768. Then in a layer of LN, the dimensions are still 197 × 768.

Step 4: MLP: The dimension is enlarged and then reduced back (197 × 768 enlarged to
197 × 3072, then reduced to 197 × 768). After this, the block dimensions are still the same
as the input (197 × 768), so it is possible to stack multiple blocks. Special characters (cls)
corresponding to the output as the encoder output represent the final image presentation,
followed by an MLP for image classification. The formula is as follows.

Linear Projection of Flattened Patches

1

Transformer Encoder

MLP Head

Transformer Encoder
Vision Transformer (ViT)

2 3 4 5 6 7 8 90 *Patch + Position
Embedding

* Extra learnable
[class] embedding

Fault status 
identification 

results

Embedded 
Patches

Norm

Multi-Head
Attention

Norm

MLP

L×

Figure 1. The architecture of the Vision Transformer.

Define the image x, x ∈ RH×W×C, C is the number of channels, divided into N blocks
of P ∗ P images, N = H∗W

P∗P .

Z0 =
[
xcls; x1

pE; x2
pE; · · · ; xN

p E
]
+ EposE ∈ Rp2×c×D, Epos ∈ Rp(N+1)×D (11)

At layer l (l ∈ [1, N − 1]), the output is

Z′
l = MSA(LN(Zl−1)) + Zl−1 (12)

Zl = MLP(LN(Z′
l)) + Zl

′ (13)

y = LN(Z0
L) (14)

Among them, the multi-headed attention layer MSE completes the information inter-
action between image blocks. The classification of image y is completed by the MLP. After
superimposing ViT Blocks several times, the result of fault status recognition is output.

2.3. Diesel Engine State Identification Based on SSST-ViT

The diesel engine status recognition method of SSST-ViT effectively integrates the
advantages of SSST in characterizing time-varying nonlinear non-smooth signals with the
excellent image recognition capability of ViT, which can achieve accurate and efficient state
recognition. The model structure diagram is shown in Figure 2, and the specific steps are
as follows:
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Figure 2. SSST-ViT fault status identification flow chart.

Step 1: The vibration signal of the diesel engine cylinder head is collected by the
vibration sensor to obtain the raw dataset required for the experiment.

Step 2: The collected diesel engine vibration signals are transformed by SSST to obtain
the time-frequency map. After pre-processing the time-frequency map, the required feature
sample data are obtained. The sample data are divided into training set, validation set and
test set according to a 7:2:1 ratio. The training set is used for model training, the validation
set is used for initial evaluation of the accuracy of the model, and the test set is used for
evaluating the performance of the model, which is not involved in the training of the model.

Step 3: The training set is used as the model input to the ViT network model and
trained to obtain the desired diesel engine status recognition model.

Step 4: Use the test set as the trained model input to perform fault status recognition
of the diesel engine.

3. Experimental Results and Comparative Analysis

The feasibility and effectiveness of the diesel engine condition identification method
with SSST-ViT were validated using publicly available datasets and measured data from
Case Western Reserve University (CWRU). The experiments were conducted using Win-
dows 11 with a 12th Gen Intel(R) Core (TM) i7-12700H 2.30 GHz processor, a GeForce RTX
3060 Laptop GPU, 16G of RAM, Anaconda3, Python 3.9.13, and MATLAB2021b software
environment. MATLAB2021b; deep learning framework is PyTorch1.11.0.

3.1. CWRU Dataset to Verify the Feasibility of SSST-ViT Method

Both rolling bearing and diesel engine vibration signals are characterized by time-
varying, nonlinear non-smoothness [28]. Therefore, the feasibility of SSST with the ViT
method was verified using the publicly available CWRU bearing vibration signal dataset.
According to the literature, the publicly available dataset was obtained through a bearing
failure simulation experiment bench.

The experiments were conducted using a deep groove ball bearing, model SKF6205,
with a single point of failure of the bearing machined with electrical discharge machin-
ing (EDM), and the vibration acceleration signal of the bearing was collected using an
accelerometer. The specific data used were the drive-end bearing data with a sampling
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frequency of 48 kHz, an approximate motor speed of 1797 r/min, and a load of 0 hp. The
bearing statuses include normal, inner ring failure, outer ring failure, and rolling element
failure, and each failure state can be classified into three types according to the depth of
cut: 0.1778 mm, 0.3556 mm and 0.5334 mm. The status data of 10 bearings selected in this
experiment are shown in Table 1.

Table 1. The 10 kinds of bearing data selected.

Serial Number Fault Location
Fault Diameter

(mm)
Load (hp)

Rotational
Speed (r/min)

1 Normal — 0 1797
2 Inner ring failure 0.1778 0 1797
3 Inner ring failure 0.3556 0 1797
4 Inner ring failure 0.5443 0 1797
5 Outer ring failure 0.1778 0 1797
6 Outer ring failure 0.3556 0 1797
7 Outer ring failure 0.5443 0 1797
8 Rolling body failure 0.1778 0 1797
9 Rolling body failure 0.3556 0 1797
10 Rolling body failure 0.5443 0 1797

The time-domain analysis of the vibration signals in each status of the bearing was
performed. The data length of each fault status was intercepted to 5120 sampling points,
and the time-domain waveforms of the bearing in 10 statuses were obtained, as shown in
Figure 3.

As seen in the time-domain waveform diagram of the vibration signal, the time-
domain waveforms of the status fluctuate widely, making it difficult to carry out effective
fault status identification [29]. The signal waveforms of different status types are complex
and do not differ greatly, and the individual status cannot be identified directly by hand.
Therefore, it is difficult to carry out rolling bearing fault status identification from time-
domain signal waveform analysis alone, and a more effective intelligent identification
method is needed [30].

The SSST-ViT method proposed in this paper was applied to identify each status of
the bearings. From each bearing status data point, 300 samples were randomly taken, and
each sample length was 1024 sampling points, so a total of 3000 samples were obtained.
By dividing the training set, validation set and test set according to the ratio of 7:2:1,
2100 training samples, 600 validation samples and 300 test samples were obtained for the
feasibility verification experiments of SSST-ViT state recognition methods.

The SSST was performed on the original vibration signal to obtain the time-frequency
diagram. To avoid the influence on the classification results, the coordinate system, legend
and blank part were set not to be displayed, and the time-frequency diagram of the first
sample in each state after processing is shown in Figure 4.

The warm and cold colors in Figure 4 represent energy values, the warmer the color
the greater the energy, reflecting the energy magnitude of the signal at each frequency; the
horizontal and vertical axes indicate time and frequency, respectively, showing the change
of signal frequency components with time. The energy of the time-frequency diagram of
each state is more concentrated, with good time-frequency resolution, and the contained
features are different, corresponding to different time-frequency diagrams, with the warm
color part showing irregular block distribution. Although there are certain differences in
expression, the similarity is high, and it is difficult to manually distinguish each fault status
accurately. Therefore, each fault status was identified by the ViT network with a powerful
image classification function.

The images were first set to not show the legend, coordinate system and blank parts.
Then each time-frequency map was normalized to speed up the model convergence. Finally,
without affecting the recognition rate, the grid was normalized and compressed to process
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the time-frequency map to improve the model training speed, and the image size was
uniformly adjusted to 224 × 224 × 3.

 
Figure 3. Time-domain waveforms of 10 failure statuses.

After considering the network structure, computer hardware level and sample charac-
teristics and size, the parameters of the ViT network during training were configured as fol-
lows: batch processing size of 16; learning rate of 1 × 10−3; weight decay of 1 × 10−5; num-
ber of iterations—100; input image size of 224× 224; number of classification categories—10;
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optimizer—stochastic gradient descent; and loss function—cross-entropy loss function.
The experimental results were extracted from the training log and plotted.

  

(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

  
(i) (j) 

Figure 4. Time-frequency diagram of 10 fault statuses. (a) Status 1; (b) Status 2; (c) Status 3;
(d) Status 4; (e) Status 5; (f) Status 6; (g) Status 7; (h) Status 8; (i) Status 9; and (j) Status 10.

ViT is the first transformer model used to replace the CNN and applied to image
classification, which is able to achieve the desired results in the field of image classification.
Therefore, in this paper, a ViT model is applied to diesel engine fault status identification.
Since the network model is more suitable for extracting feature information from high-
dimensional data, it is necessary to convert the one-dimensional vibration signals of diesel
engines into two-dimensional images by some method. The S-transform combines the ad-
vantages of the continuous wavelet transform and the short-time Fourier transform, which
has higher noise robustness and time-frequency analysis accuracy. However, the energy
at a certain moment in the time-frequency map obtained by this method is distributed
in a wider bandwidth near the instantaneous frequency, which causes instantaneous fre-
quency energy leakage, leading to problems such as frequency band mixing and lower
time-frequency resolution. Therefore, the synchro squeezing transform is combined with
the S-transform to obtain the synchro squeezing S-transform method, which can effectively
improve the time-frequency aggregation, time-frequency resolution and noise robustness
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compared with the traditional time-frequency analysis method. Therefore, the diesel engine
fault status identification method proposed in this paper is obtained: SSST-ViT. The reason
why ST-ViT is used as a comparison method in this paper is to verify that the SSST method
can better characterize the feature information in the original signal and better retain the
useful information. The reason why SSST-2DCNN is used as a comparison method in this
paper is to verify that the ViT model has a more powerful image classification capability
compared with the traditional CNN model, and is more suitable for identifying each fault
status of the diesel engine. The reason why the FFT spectrum-1DCNN model is used as a
comparison method in this paper is to verify that the 2D signal can better take into account
the correlation of the signal in the time series compared to the 1D signal, i.e., to verify that
the transformation of the original signal into a 2D image is more effective compared to
the direct input of the 1D signal into the network model. In summary, it is completely
reasonable to use the ST-ViT model, SSST-2DCNN model, and FFT spectrum-1DCNN
model as comparisons in this paper.

In Reference [31], the authors proposed an intelligent fault diagnosis model for rolling
bearings based on ViT, and achieved good results. Therefore, in this paper, the ViT model
is applied to diesel engine fault status identification for the first time, and the feasibility
and effectiveness of the proposed method are verified. Since ViT is the first transformer
model used to replace the CNN and applied to image classification, and the network
model is more suitable for extracting feature information from high-dimensional data,
this paper proposes a diesel engine fault status recognition method based on SSST and
ViT. Therefore, the ST-ViT model is improved on the basis of Reference [31], through
which the model can be used to verify the superiority of the SSST time-frequency analysis
method. In Reference [32], the authors proposed a 2DCNN-based fault diagnosis method
for diesel engines by importing short-time Fourier transform (STFT) time-frequency maps
into the 2DCNN model for training. However, the time-frequency map obtained using the
STFT method suffers from low time-frequency resolution and weak energy aggregation.
Therefore, the comparison method combines the SSST method with high time-frequency
resolution and time-frequency aggregation with the 2DCNN, i.e., the SSST-2DCNN model
is an improvement on Reference [32]. In Reference [33], the authors proposed a 1DCNN-
based fault diagnosis method for diesel engines, where the features in the vibration signal
are extracted and then input to the 1DCNN model for training. Since the method proposed
in Reference [33] inputs multiple vibration signal features into the 1DCNN model for
training, it tends to generate redundancy, which leads to a reduction in model efficiency.
Therefore, the FFT spectrum is used as the fault feature in the comparison method of
this paper. This is because different fault statuses of diesel engines generate different
frequencies of fault features, and the FFT spectrum can well reflect the fault features of
diesel engines at different fault states. Therefore, the source of the FFT spectrum-1DCNN
model is Reference [33].

The training results of this model are compared with the training results of ST-ViT,
SSST-2DCNN, and FFT spectrum-1DCNN models. The loss values and accuracy results
of the training and validation sets of each model were obtained, as shown in Figure 5.
The fault status identification results after 100 iterations are shown in Table 2 (Model 1:
SSST-ViT; Model 2: ST-ViT; Model 3: SSST-2DCNN; Model 4: FFT spectrum-1DCNN).

Table 2. Accuracy and loss values for each model.

Models
Accuracy/ (%) Loss Value

Training Set Validation Set Training Set Validation Set

Model 1 100.00 97.33 2.08 × 10−4 1.47 × 10−1

Model 2 100.00 95.17 2.27 × 10−4 1.74 × 10−1

Model 3 90.09 92.50 2.89 × 10−1 2.19 × 10−1

Model 4 88.17 88.40 9.27 × 10−1 9.62 × 10−1
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As seen in Figure 5 and Table 2, the different fault status identification models have
converged after 100 iterations and all perform well on the CWRU public dataset. In terms
of model accuracy and loss values, the SSST-ViT method proposed in this paper has the
fastest convergence speed at iteration, the highest accuracy and the lowest loss values on
both the training and validation sets, and the best performance compared to the other three
methods. In terms of training stability, the method is optimal, and the accuracy and loss
value curves are generally very stable, while the other three comparison methods all show
different degrees of fluctuations. Therefore, compared with the comparison models, the
SSST-ViT fault status identification method has better performance in terms of accuracy,
loss value and stability, and the feasibility of the proposed fault status identification method
has been verified.

 
(a) (b) 

 
(c) (d) 

Figure 5. Comparison of training results of different models: (a) Accuracy of training set; (b) loss
value of training set; (c) accuracy of validation set; and (d) loss value of validation set.

The accuracy and confusion matrix of different fault status identification models
obtained under the test set are shown in Table 3 and Figure 6, respectively.

From Figure 6 and Table 3, it can be found that the proposed method has the optimal
fault identification effect compared with other methods and can effectively distinguish the
easily confused bearing fault types. To verify the feature extraction capability of SSST-ViT
methods, the output of the classification layer network of the ViT model was extracted as
discriminative features, and the identification results of bearing fault status were visualized
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in three dimensions by the t-SNE nonlinear dimensionality reduction technique, which is
applicable to the visualization of high-dimensional data. The original data of the training
set, the original data of the test set, the feature data of the training set and the feature data
of the test set were obtained, as shown in Figure 7.

Table 3. Accuracy of each model under the test set.

Models Accuracy

SSST-ViT 98.31%
ST-ViT 95.27%

SSST-2DCNN 92.33%
FFT spectrum-1DCNN 88.50%

 
(a) (b) 

 
(c) (d) 

Figure 6. Confusion matrix for each model under the test set: (a) SSST-ViT; (b) ST-ViT; (c) SSST-
2DCNN; and (d) FFT spectrum-1DCNN.

In Figure 7, using the test set feature data as an example, since none of the methods
proposed in this paper achieved 100% accuracy under the test set, there must have been
some points that did not fall within a cluster. In other words, it is because some features
are identified as features of other fault statuses that some feature points are not in a cluster
and therefore the accuracy is not 100%.
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(a) (b) 

 
(c) (d) 

Figure 7. Three-dimensional visualization of status recognition results: (a) Training set raw data;
(b) training set feature data; (c) test set raw data; and (d) test set feature data.

3.2. The Validity of the SSST-ViT Method Is Verified by the Measured Data

In order to verify the effectiveness of the SSST-ViT diesel engine fault status identifica-
tion methods, this study relies on the high-pressure common rail diesel engine experimental
bench in the laboratory, taking a CA6DF3-20E3 diesel engine as the research object to collect
the state monitoring information during the operation of the diesel engine in different fault
modes and provide data support for the research of diesel engine fault status identification
methods. The experimental bench can be divided into two parts: the diesel engine system
and the data acquisition system. The panoramic view of the experimental bench is shown
in Figure 8, and the sensor installation is shown in Figure 9.

 

Figure 8. Diesel engine condition monitoring test bench.
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Figure 9. Sensor mounting position.

By analyzing the composition structure and function of the diesel engine, and com-
bining its typical failure modes in the process of use and maintenance, the pre-set failure
experiment is carried out in the diesel engine condition-monitoring experimental bench
(by artificially processing or replacing the faulty parts, the diesel engine components are
pre-set to collect the data in the engine fault status and carry out research). Typical failure
modes of diesel engines were set as shown in Table 4:

Table 4. Diesel engine preset fault mode.

Serial Number Failure Mode

1 Normal
2 Fire in the first cylinder
3 Second cylinder fire
4 Clogged air filter
5 First cylinder and second cylinder misfire
6 Clogged air filter and first cylinder misfire
7 Clogged air filter and second cylinder misfire

In the actual equipment maintenance and repair process, due to the complex and harsh
working environment, diesel engine failures may often be due to multiple, concurrent faults
rather than a single failure mode. Therefore, when presetting the failure modes, a single
failure mode is preset on the one hand and three mixed failure modes are preset on the
other. As shown in Figure 10, the cylinder misfire fault is simulated by disconnecting the
cylinder ignition power line, and the air intake outer cover is added to simulate the air
filter blockage fault.

  

(a) (b) 

Figure 10. Pre-set diesel engine faults: (a) Disconnect the ignition power cord. (b) Install the air
intake cover.
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The diesel engine cylinder head vibration signal is acquired with a sampling frequency
of 20 kHz, a single sampling time of 12 s, and a sample sampling interval of 30 s. After
data acquisition experiments, there are 300 sets of data for each failure mode, six channels
of data for each set, and a single sampling data volume of 240,000. In order to avoid the
errors brought about by the process of the engine from start-up to steady status, the first
20 sets of data for each status are selected, and the last 20 sets of data from the 5th channel
of each status are selected as the sample data.

Due to the simplicity, intuitiveness and clear physical meaning of the time-domain
signal, the time-domain analysis of the vibration signal in each status of the diesel en-
gine was performed. The length of the data intercepted for each failure mode sample is
5000 sampling points, and the time-domain waveforms of the diesel engine in each status
are obtained as shown in Figure 11.

 
Figure 11. Time-domain wave forms of 7 failure statuses.
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The engine head vibration signal presents a nonlinear and non-smooth status, and
there are complex noise disturbances generated by the environment and the comprehensive
action of each component during operation, so it is difficult to identify the fault status.
From the time-domain waveform diagram in Figure 11, it can be seen that the vibration
signal waveforms under different fault modes are complex and have basically the same
amplitude change range, and there is no obvious difference from the time-domain wave-
form amplitude, so it is difficult to manually identify each status directly, so it is difficult to
achieve effective identification of multiple engine faults from time-domain signal waveform
analysis alone, and more effective fault information extraction and intelligent identification
methods are needed.

The SSST-ViT method was applied to identify each status of the above diesel engine.
A total of 2100 samples were obtained by taking 300 samples from each status of the
diesel engine data, each with a sample length of 5000 sampling points. By dividing
the training and validation sets according to the ratio of 7:2:1, 1470 training samples,
420 validation samples and 210 test samples were obtained, i.e., each status sample data
included 210 training samples and 60 validation samples and 30 test samples. Processing
of raw vibration signals by was carried out using the SSST and represented as a two-
dimensional color time-frequency diagram, and the coordinate system, legend and blank
part were set not to be displayed to avoid the influence on the classification results. The time-
frequency diagram of the first sample in each status of the diesel engine after processing is
shown in Figure 12.

Although each status in Figure 12 has some different expressions, the similarity is
high, and it is difficult to distinguish each fault status only by hand. Therefore, each fault
status is identified by the ViT network with a powerful image classification function.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 12. Cont.
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Figure 12. Time-frequency diagram of 7 fault status: (a) Status 1; (b) Status 2; (c) Status 3; (d) Status 4;
(e) Status 5; (f) Status 6; and (g) Status 7.

The images were first set to not show the legend, coordinate system and blank parts.
Then each time-frequency map was normalized to speed up the model convergence. Fi-
nally, the grid normalization compressed the time-frequency maps without affecting the
recognition rate, and the image size was uniformly adjusted to 224 × 224 × 3.

After considering the network structure, computer hardware level and sample charac-
teristics and size, the parameters of the ViT network during training were configured as
follows: batch processing size of 16; learning rate of 1 × 10−3; weight decay of 1 × 10−5; dis-
card rate of 0.1; number of iterations—100; input image size of 224 × 224; number of classi-
fication categories—7; optimizer—stochastic gradient descent; loss function—cross entropy
loss function. The experimental results are extracted from the training log and plotted.

The training results of this model are compared with those of the ST-Vision Trans-
former, SSST-2DCNN, and FFT spectrum-1DCNN models. The loss values and accuracy
results of the training and validation sets of each model were obtained as shown in Figure 13.
The fault status identification results after 100 iterations are shown in Table 5 (Model 1:
SSST-ViT; Model 2: ST-ViT; Model 3: SSST-2DCNN; Model 4: FFT spectrum-1DCNN).

Table 5. Accuracy and loss values for each model.

Models
Accuracy/ (%) Loss Value

Training Set Validation Set Training Set Validation Set

Model 1 99.86 95.43 6.46 × 10−2 1.69 × 10−1

Model 2 96.70 91.47 4.10 × 10−2 2.53 × 10−1

Model 3 92.00 93.33 2.48 × 10−1 2.25 × 10−1

Model 4 90.68 88.33 9.85 × 10−1 1.29

From Figure 13 and Table 5, it can be seen that in terms of model accuracy and loss
values, the proposed SSST-ViT methods has the highest accuracy and lowest loss values in
both training and validation sets with the best performance in terms of fast convergence
during iterations compared with the other three compared methods. In terms of training
stability, the accuracy and loss value curves of SSST-ViT methods is generally more stable.
Therefore, compared with the comparison methods, SSST-ViT has better performance in
terms of fault identification accuracy, loss value and stability.

The performance of the models was evaluated under the test set, and the accuracy and
confusion matrix of different fault status identification models were obtained as shown in
Table 6 and Figure 14, respectively.

Table 6. Accuracy of each model under the test set.

Models Accuracy

SSST-ViT 95.67%
ST-ViT 94.23%

SSST-2DCNN 91.90%
FFT spectrum-1DCNN 87.62%

193



Sensors 2023, 23, 6447

It can be found in Table 6 and Figure 14 that the proposed method in this paper has
the optimal diesel engine fault identification effect compared with other methods, and can
effectively distinguish the confusing fault types.

In order to test the feature extraction ability of the SSST-ViT method, the output
of the classification layer network of the ViT model was extracted as the discriminative
features, and the results of fault status recognition were visualized in three dimensions by
the t-SNE nonlinear dimensionality reduction technique, which is suitable for visualizing
high-dimensional data. The original data of the training set, the original data of the test
set, the feature data of the training set and the feature data of the test set were obtained, as
shown in Figure 15.

 
(a) (b) 

 
(c) (d) 

Figure 13. Comparison of the training results of each model: (a) Accuracy of training set; (b) loss
value of training set; (c) accuracy of validation set; (d) loss value of validation set.

In Figure 15, using the test set feature data as an example, since none of the methods
proposed in this paper achieved 100% accuracy under the test set, there must have been
some points that did not fall within a cluster. In other words, it is because some features
are identified as features of other fault statuses that some feature points are not in a cluster
and therefore the accuracy is not 100%. As can be seen in Figure 15, the SSST-ViT method
has excellent feature extraction performance, and the features of each fault status in the
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space have obvious differentiability. Different fault status types are distributed in different
locations in the space and exhibit dense clustering.

In summary, the effectiveness and superiority of the proposed diesel engine fault
status recognition method are verified. The SSST-ViT method can effectively extract fault
features and has high recognition accuracy compared with other methods.

 
(a) (b) 

 
(c) (d) 

Figure 14. Confusion matrix for different fault status identification models: (a) SSST-ViT; (b) ST-ViT;
(c) SSST-2DCNN; and (d) FFT spectrum-1DCNN.

Figure 15. Cont.
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Figure 15. Three-dimensional visualization of status recognition results: (a) Training set raw data.
(b) Training set feature data. (c) Test set raw data. (d) Test set feature data.

4. Conclusions

In this paper, a diesel engine fault status identification method based on SSST and ViT
is proposed with a diesel engine as the engineering application background. Compared
with the traditional method, the following conclusions can be drawn:

(1) SSST combines the high time-frequency aggregation of SST and the adaptive nature
of ST, with better time-frequency aggregation and resolution.

(2) The method is the first to apply SSST, which can effectively characterize the original
signal features, and the ViT model, which has excellent image classification capability,
to the field of diesel engine fault status identification, and can effectively extract
time-frequency image features.

(3) The method can provide theoretical and technical support for the research of diesel
engine fault status recognition, which is of great military significance and realis-
tic demand for improving the reliability and maintenance support capability of
diesel engines.

Limited by the current experimental conditions, there are limitations in the develop-
ment of diesel engine pre-set fault experiments. The focus of the next step is to carry out
experimental research on diesel engine fault status identification in combination with diesel
engine multi-part synthesis.
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Abstract: We propose a new fault diagnosis model for rolling bearings based on a hybrid kernel
support vector machine (SVM) and Bayesian optimization (BO). The model uses discrete Fourier
transform (DFT) to extract fifteen features from vibration signals in the time and frequency domains
of four bearing failure forms, which addresses the issue of ambiguous fault identification caused by
their nonlinearity and nonstationarity. The extracted feature vectors are then divided into training
and test sets as SVM inputs for fault diagnosis. To optimize the SVM, we construct a hybrid kernel
SVM using a polynomial kernel function and radial basis kernel function. BO is used to optimize
the extreme values of the objective function and determine their weight coefficients. We create an
objective function for the Gaussian regression process of BO using training and test data as inputs,
respectively. The optimized parameters are used to rebuild the SVM, which is then trained for
network classification prediction. We tested the proposed diagnostic model using the bearing dataset
of the Case Western Reserve University. The verification results show that the fault diagnosis accuracy
is improved from 85% to 100% compared with the direct input of vibration signal into the SVM, and
the effect is significant. Compared with other diagnostic models, our Bayesian-optimized hybrid
kernel SVM model has the highest accuracy. In laboratory verification, we took sixty sets of sample
values for each of the four failure forms measured in the experiment, and the verification process was
repeated. The experimental results showed that the accuracy of the Bayesian-optimized hybrid kernel
SVM reached 100%, and the accuracy of five replicates reached 96.7%. These results demonstrate the
feasibility and superiority of our proposed method for fault diagnosis in rolling bearings.

Keywords: Bayesian optimization; rolling bearing; fault diagnosis; hybrid kernel SVM

1. Introduction

With the development of the manufacturing industry, machine fault detection has
become a very important field. Bearing, as a commonly used supporting part in machinery
and equipment, has a great influence on the normal operation of the machine, while it
also has a high incidence of failure because it often works under the condition of high
speed and heavy load [1–4]. Statistics show that 30% of the failures of rotary machinery are
related to bearings [5]. Therefore, fault diagnosis using vibration signals generated during
its working process can reduce the probability of mechanical accidents and provide reliable
decision support for later maintenance plans [6,7].

The most commonly used features for fault detection in rotating machines from
vibration signals can be classified into three categories: time-domain, frequency-domain,
and time-frequency domain features. Time-domain features include statistical features,
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such as mean, standard deviation, skewness, and kurtosis. Frequency-domain features
include spectral features, such as power spectral density, frequency band energy, and
frequency ratio. Time-frequency domain features include wavelet-based features, such as
wavelet energy, wavelet entropy, and wavelet variance.

While these conventional features have been employed successfully in fault detec-
tion, there has been an increasing interest in the development of new methods for solving
complex classification problems. One of these approaches is the Non-parallel Bounded
Support Matrix Machine (NBSMM), which is a novel extension of SVMs that can effec-
tively deal with non-linearly separable data by utilizing the concept of bounded support
matrices. Another extension of SVMs is the multi-class fuzzy support matrix machine (MF-
SMM), which is a robust and efficient method for multi-class classification problems. The
Convolutional-Vector Fusion Network (CVFN) is a recent development in the field of deep
learning that combines the strengths of convolutional neural networks (CNNs) and vector
fusion networks. CVFN is particularly effective in handling complex and heterogeneous
data by fusing information from multiple modalities [8,9].

In addition to these new methods, kurtosis and Kullback–Liebler divergence have
also been employed successfully in fault detection. Kurtosis is sensitive to the presence
of impulsive signals, which are often associated with faults in rotating machines. High
kurtosis values indicate the presence of impulsive signals, which can be used to detect
faults, such as bearing faults and gear faults. Kullback–Liebler divergence has been used for
fault detection in rotating machines by comparing the probability distribution functions of
healthy and faulty signals. The Kullback–Liebler divergence between the two distributions
can be used as a feature to detect faults [10,11].

On the other hand, with the continuous development of the Bayesian optimization
(BO) algorithm, more and more researchers have begun to apply it to fault detection [12,13].
BO is a method used to optimize “black box” function which is defined as a function whose
analytic expression is unknown. Therefore, we do not have access to their gradients. Hence,
their evaluation, in terms of computing time and other resources, is costly. In addition,
the evaluation of these functions may be subjected to noise pollution, which means that
two evaluations at the same input location may yield varying results [14]. On the one
hand, SVM is a kind of machine learning algorithm for classification and regression. BO
can achieve the efficient optimization of “black box” functions by constructing a Gaussian
process model to predict the value of unknown functions and selecting the next point for
evaluation according to Bayes’ theorem. Additionally, SVM divides the data into two or
more categories by finding the optimal decision hyperplane.

In relevant literature, we can see that many researchers have discussed the application
of BO and SVM in the field of fault diagnosis. For example, Orhan et al. [15] employed
BO and SVM algorithms for the diagnosis of motor faults. They used the BO algorithm to
select the optimal SVM parameters and subsequently performed feature selection using
the SVM algorithm. The SVM algorithm was then applied for motor fault diagnosis. Their
results indicated that this approach exhibited high accuracy and robustness in diagnosing
motor faults. Similarly, Li et al. [16] utilized BO and SVM algorithms for detecting rolling
bearing faults. They applied the BO algorithm to optimize the SVM parameters and utilized
statistics-based methods to extract vibration signal features from rolling bearings. Experi-
mental results demonstrated that their approach effectively detected rolling bearing faults.
Additionally, Xiong et al. [17] utilized the BO algorithm to improve the accuracy of bearing
fault diagnosis by selecting the optimal SVM parameters. Their method automatically
searched for the SVM parameters with the highest classification results. The approach
yielded favorable results in bearing fault diagnosis. Furthermore, James Bergstra and
Yoshua Bengio [18] proposed a technique based on random search and BO to optimize SVM
hyperparameters and achieved excellent outcomes. Some researchers have also explored
the combination of SVM with other machine learning techniques for fault diagnosis. For in-
stance, Tian Han [19] proposed a method that combined improved SVM and convolutional
neural networks for diagnosing rolling bearing faults and achieved favorable outcomes.
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Overall, relevant studies have demonstrated promising results when combining SVM with
other machine learning techniques for fault diagnosis.

Although BO has advantages in fault diagnosis, it has some limitations. Firstly, the
optimization of the Gaussian process in each iteration requires significant computing
resources and time, particularly for large datasets. Secondly, BO is a global optimization
algorithm based on probability and may fall into local optima, particularly for complex
non-convex function problems. Thirdly, BO’s performance is highly reliant on parameter
settings, such as the kernel function and hyperparameters of the Gaussian process. These
settings can significantly impact the algorithm’s performance. Finally, BO requires prior
knowledge to guide the search process, which can lead to decreased performance if the
prior knowledge is insufficient or inaccurate. When using BO for fault diagnosis, it is
essential to be aware of these limitations to better use the algorithm’s advantages and
address the existing issues [20,21].

Our proposed theory focuses on the development of a Bayesian-optimized hybrid
kernel SVM model with the aim to investigate its application in diagnosing faults in rolling
bearings. To achieve this, we first decompose the vibration signal of rolling bearings into
several time and frequency domain components using discrete Fourier transform (DFT).
Then, permutation entropy obtained through decomposition is extracted as a feature vector.
Next, we construct a hybrid kernel SVM model based on radial basis kernel function (RBF)
and polynomial kernel function (Poly) kernels. We use the BO algorithm to optimize
the penalty factor c, and the parameter coefficient g of the kernel function. Our fault
diagnosis model for rolling bearings employs a hybrid kernel SVM approach, and we
create the objective function using the Gaussian regression process of the BO algorithm.
The objective function computes the mean square error of the verification set and utilizes
the best network discovered during the optimization process and verification accuracy to
determine the optimal penalty factor and core function parameters for the hybrid kernel
SVM model. Following this, we train the hybrid kernel SVM model using the extracted
feature vectors, and generate predictions for the test samples. We evaluate the feasibility of
our proposed method through experiments that utilize the bearing data set from the Case
Western Reserve University. We confirm the superiority of our proposed algorithm based
on laboratory data and compare it with other fault diagnosis algorithms. Through these
test cases, we comprehensively evaluate the feasibility and practicality of our proposed
fault diagnosis method, providing valuable references for research and application in the
field of bearing fault diagnosis. The strengths of our theory include the use of a hybrid
kernel SVM approach with BO algorithm to optimize kernel function parameters, which
has the potential to improve the accuracy of bearing fault diagnosis.

2. Theoretical Basis

2.1. Hybrid Kernel SVM

Support vector machine(SVM) is a binary classification model based on linear clas-
sifiers defined in feature space with maximum interval. If the following training data
{xi, yi, i = 1, 2, · · · , n} is given, where, xi ∈ Rd is the input value of the ith learning sample,

and it is a d-dimensional column vector xi =
[

x1
i , x2

i , · · · , xd
i

]T
, and yi ∈ R is the corre-

sponding target value. For nonlinear indivisible problems, x is mapped to a feature space by
the nonlinear transformation Φ, thus transforming into a linear separable problem [22,23].
The linear estimation function can be defined as:

y = f (x, w) = wTΦ(x) + b. (1)

Assuming that all training data can be fitted with linear functions with precision ε
error-free, we yield:

|y − f (x)|ε =
{

0, |y − f (x)| ≤ ε

|y − f (x)| − ε, |y − f (x)| > ε
. (2)
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Then, the minimum risk can be obtained by taking the minimum of the following
algebraic equations:

1
2
||w ||2 + C

n ∑n
i=1|yi − f (xi, w)|ε, (3)

where, the constant C > 0, and C represents the degree of regularization of samples that
exceed the error ε.

If the optimization method is used, then the duality problem can be obtained [24–26]:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

W
(

α(∗)
)
= −ε

n
∑

i=1

(
α∗i + αi

)
+

n
∑

i=1

(
α∗i − αi

)
yi

− 1
2

n
∑

i=1

n
∑

j=1

(
α∗i − αi

)(
α∗j − αj

)
K
(
xi, xj

)
s.t.

n
∑

i=1

(
α∗i − αi

)
= 0; α(∗) ∈ [0, C]

(4)

Constructing the Lagrangian function to solve Equation (4), we can see that the
regression function of the SVM is expressed as:

f (x) = ∑n
i=1(α

∗
i − αi)K(xi, yi) + b, (5)

where, K(xi, yi) is called the kernel function; and α∗i , αi will only have a small part that
is not equal to 0, and their corresponding samples are support vectors. The so-called
kernel function refers to the existence of a class of functions that a nonlinear transformation
Φ makes K

(
xi, xj

)
= Φ(xi)− Φ

(
xj
)

true. Given that vectors in low-dimensional spaces
are extremely difficult to divide, the computational complexity of mapping them to their
corresponding high-dimensional spaces is very high. The introduction of kernel functions
makes SVM practical because it avoids a large number of operations caused by displaying
vector inner products in high-dimensional spaces. At present, the most studied kernel
functions mainly include the following three categories [27,28]:

• Polynomial kernel functions (Poly):

K(x, xi) = [(x·xi) + 1]q. (6)

• Radial basis kernel function (RBF):

K(x, xi) = exp

(
−‖x − xi‖2

σ2

)
. (7)

• Sigmoid kernel function:

K(x, xi) = tanh(v(x·xi) + c). (8)

In Equations (6)–(8), parameters, such as q, σ, c, etc. are real constants. In practical ap-
plication, it is usually necessary to select the appropriate kernel function and corresponding
parameters according to the specific situation of the specific problem.

Many characteristics of the SVM are determined by the type of kernel function used,
and its nonlinear level is also determined by the kernel function. In SVM, the chosen kernel
function must usually satisfy the Mercer condition [29].

The kernel functions used for SVM modeling can be summarized into two categories:
global kernel functions (global kernel functions) and local sum functions (local kernel
functions). Taking advantage of the performance difference between these two functions
and their unique benefits, they can be combined to form a well-performing kernel function,
that is, a hybrid kernel function.

In this article, the Poly and RBF hybrid kernel function is constructed as follows:

Kmix = ρKpoly + (1 − ρ)KRBF, ρ ∈ [0, 1] (9)
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The Mercer condition requires that a kernel function be positive definite, meaning that
for any finite set of input points, the corresponding kernel matrix is positive semidefinite.
In the equation Kmix = ρKpoly + (1 − ρ)KRBF, ρ ∈ [0, 1], Kpoly and KRBF are both positive
definite kernels. Therefore, Kmix is also positive definite as long as the mixing parameter ρ
is chosen such that Kmix is a convex combination of positive semidefinite kernels, which is
always the case when ρ ∈ [0, 1]. Therefore, Kmix is a feasible kernel choice that satisfies the
Mercer condition.

The global kernel function’s generalization ability is strong, but its learning ability is
weak. It has the advantage of being global, that is, the data points that are far away from
the test point will affect the function value. Conversely, local kernel functions have weak
generalization ability but strong learning ability. It has the advantage of locality, that is,
only data points that are close to the test point will affect the function value.

In order to ensure that the mixed kernel function has better learning ability and
generalization, the RBF kernel function that is Equation (7), and the value of σ2 should
be between 0.01~0.5; for the polynomial kernel function, i.e., Equation (6), the q value is
generally 1 or 2. Algorithmic process of building a hybrid kernel function can be seen in
Algorithm 1.

Algorithm 1: The proposed hybrid kernel

1: Given training data xi, yi, I = 1, 2, . . . , n where xi is a d-dimensional column vector and yi is the
corresponding target value.
2: Map the input data to a higher-dimensional feature space using a non-linear transformation Φ
to make it linearly separable.
3: Define a linear estimation function y = f (x, w) = wTΦ(x) + b, where, w is the weight vector
and b is the bias.
4: Determine the precision ε to ensure that all training data can be fitted with linear functions with
an error-free margin.
5: Use the following algebraic equations to find the minimum risk:
minimize: 1

2 ||w ||2 + C
n ∑n

i=1|yi − f (xi, w)|ε
subject to: I = 1, . . . , n; where, C is a constant representing the degree of regularization.
6: Solve the duality problem using the optimization method:

W
(

α(∗)
)
= −ε

n

∑
i=1

(α∗i + αi) +
n

∑
i=1

(α∗i − αi)yi

subject to: ∑n
i=1

(
α∗i − αi

)
= 0 and α(∗) ∈ [0, C]

7: Construct the Lagrangian function to obtain the regression function of the SVM as follows:

f (x) =
n

∑
i=1

(α∗i − αi)K(xi, yi) + b

8: Choose a kernel function, such as the polynomial kernel function (Poly), radial basis kernel
function (RBF), or sigmoid kernel function.
9: Combine the selected kernel functions to form a hybrid kernel function, such as the Poly and
RBF hybrid kernel function described in the paper:
Kmix = ρKpoly + (1 − ρ)KRBF, where ρ ∈ [0, 1].
10: Use the hybrid kernel function to train the SVM and adjust the parameters, such as q, σ, c, and
ρ, to optimize the performance according to the specific problem.
11. Test the trained SVM on new data and evaluate its performance.

In the practical application of this paper, BO algorithms can be used to adjust the
size of ρ values and select the optimal weight coefficient size to enable the model to work
best [28,30].
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2.2. BO

BO algorithm is a global optimization algorithm based on Bayes’ formula and Gaussian
process model, which is used to solve functional extremum problems with unknown
expressions [31]. This algorithm predicts the next possible maximum value by selecting the
next sample point within the potential maximum benefit area of the objective function and
updating the Gaussian process surrogate model. The fundamental concept of the algorithm
involves minimizing the anticipated loss of the objective function while being guided by
the surrogate model in selecting the subsequent sampling point [32].

We treat the optimization function as the Gaussian process. A Gaussian process
model is a Bayesian model that makes predictions by modeling the prior distribution of
the objective function and performing posterior inferences on the observed data. After a
certain experiment, we collected evidence, and then according to Bayes’ theorem, we can
determine the posterior distribution of this function. With this posterior distribution, we
need to consider where the next experimental site is to further collect data, that is, select
the next sampling point.

When we select the next sampling point, we want the higher accuracy to be better,
so we may choose a region sample with a higher mean. However, considering that these
regions may only be locally optimal, the vicinity of the global optimal happens not to be
sampled. Therefore, we need the aforementioned hybrid kernel function to weigh these
two factors and find the next sampling point. Thus, we must construct an acquisition
function to guide the search direction (select the next experimental point), proceed with the
experiment, update the posterior distribution of the proxy model after obtaining the data,
and repeat this process to predict the extreme value [33,34]. In summary, the BO process
boils down to the following, as shown in Algorithm 2.

Algorithm 2: Bayesian optimization

1: For t = 1, 2, . . . do
2: Find xt by optimizing the acquisition function over the Gaussian Process (GP):

xt = arg maxxu(x|D1:t−1)

3: Sample the objective function yt = f(xt) + εt
4: Augment the data D1:t = {D1:t−1, (xt; yt)}
5: Update the GP
6: End for

2.3. Bayesian-Optimized Hybrid Kernel SVM

Kernel functions, map functions, and feature spaces have one-to-one correspondence.
After determining the kernel function, the corresponding mapping function and feature
space are implicitly established. Changing the parameters of the kernel function actually
transforms the parameters of the mapping function, so the complexity of the sample
mapping feature space also adjusts. Therefore, SVM performance is heavily influenced by
the kernel function parameters [35].

The selection of kernel functions, the determination of kernel function parameter
performance, and the size of error regularization parameters affect the classification perfor-
mance of SVM to a certain extent. Only by selecting the appropriate model parameters c&g
can we make the constructed hybrid core SVM utilize its advantages better. In SVM, the pa-
rameter “g” usually refers to the width of the kernel function, also known as gamma. In this
paper, we use the Gaussian kernel function, the formula for K(x, y) = exp

(
−g||x − y||2

)
,

where x and y are input vectors, respectively, ||X − Y||2 is the square of the Euclidean
distance between x and y, and g is a hyperparameter of the Gaussian kernel function
that controls the bandwidth of the Gaussian kernel function and affects the calculation of
similarity. In our algorithm, g is one of the hyperparameters that needs to be optimized
to improve the performance of hybrid kernel SVM. The optimization capability of BO can
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be employed to optimize the parameters of the hybrid kernel SVM model. The primary
optimization process can be outlined as follows [36,37]:

1. In a hybrid kernel SVM, we define the sample dataset as {xi, yi, i = 1, 2, · · · , n}, where,
xi is a d-dimensional feature vector and yi ∈ {−1, 1} is the category label. The goal of
the model is to learn a classifier such that it has the largest classification boundary on
new data points x ∈ Rd. The optimization goal of a hybrid-core SVM can be expressed
as: minimize:

1
2
||w ||2 + C

n ∑n
i=1|yi − f (xi, w)|ε, (10)

subject to:
yi × ρKpoly + (1 − ρ)KRBF ≥ 1 − γ, γ ≥ 0, (11)

where,

KPoly and KRBF are kernel function species;
ρ is the weight of the kernel function;
C is the penalty factor that controls the balance of interval error and class interval; and
γ is a relaxation variable that allows some sample points to appear on the wrong side.

2. Assuming that the objective function f (x) is a Gaussian process for any x ∈ Rd, its prior
distribution can be expressed as:

f (x) ∼ GP
(
m(x), k

(
x, x′

))
, (12)

where,

m(x) is a function of the mean; and
k(x, x′) is a function of covariance.

3. The expected loss of BO algorithms can be expressed as:

E[L(x)] =
∫

L(x, y)× p(y|x)× dy (13)

where,

L(x, y) is the loss function of the objective function; and
p(y|x) is the probability density function of y given x.

To summarize, the aforementioned expression outlines the fundamental structure and
optimization procedure of a hybrid kernel SVM model that utilizes BO. Figure 1 illustrates
the flowchart of the fault diagnosis algorithm based on the Bayesian-optimized hybrid
kernel SVM.
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Figure 1. Fault diagnosis flowchart of hybrid kernel SVM based on BO.

3. Bearing Fault Diagnosis Based on Bayesian-Optimized Hybrid Kernel SVM

This study addresses fault signal processing and pattern recognition of bearings by
emphasizing two key aspects: feature extraction and pattern recognition. The general
research approach proposed in this study is founded on theoretical principles. Signal
processing involves decomposing the vibration signal using DFT and extracting features
from the time and frequency domains. For fault mode recognition, the feature vector of each
signal is input into the hybrid-core SVM model to perform fault diagnosis and classification.
Additionally, the Bayesian algorithm is used to optimize the crucial parameters of the
hybrid kernel SVM, specifically c and g.

We use the following steps to use Bayesian optimization to determine the optimal
value of the hyperparameter g of a hybrid kernel SVM. By using Bayesian optimization, we
can automatically determine the optimal value of g for the hybrid kernel SVM, which can
improve the performance of the model on the test set.

1. Define the search space for g. This can be conducted by specifying the range of values
that g can take. For example, if g is a positive real number, you can define the search
space as [0.1, 10].

2. Define the objective function to be optimized. In this case, the objective function is the
cross-validation accuracy of the hybrid kernel SVM on the validation set. The objective
function takes the value of g as its input and outputs the cross-validation accuracy.

3. Choose an acquisition function. The acquisition function is used to guide the search for
the optimal value of g. Common acquisition functions include Expected Improvement
(EI), Probability of Improvement (PI), and Upper Confidence Bound (UCB).

4. Initialize the Bayesian optimization algorithm by selecting a set of initial hyperparam-
eters randomly or by using a Latin Hypercube sampling.

5. Evaluate the objective function at the initial set of hyperparameters to obtain the
corresponding cross-validation accuracy.
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6. Update the search space and the posterior distribution of the objective function based
on the results of the evaluations.

7. Select the next set of hyperparameters to evaluate using the acquisition function.
8. Repeat steps 5 to 7 until a termination criterion is met, such as the maximum number

of evaluations or a target accuracy level.
9. The value of g that maximizes the cross-validation accuracy is the optimal value of g.

Additionally, the following are the specific steps for bearing fault diagnosis using the
proposed Bayesian-optimized hybrid kernel SVM technology route (see Figure 2):

1. Define optimization objectives: Use BO algorithms to find the optimal hybrid kernel
SVM model parameters, that is, minimize the loss function. Here, the loss function
can choose a cross-validation error or other appropriate metrics.

2. Select initial parameters: Select an initial set of hybrid kernel SVM parameters as
the starting point for the BO algorithm. These parameters can be based on prior
experience or manually selected parameters.

3. Build a surrogate model: In the BO algorithm, the Gaussian process model is used
as the surrogate model. A surrogate model predicts an objective function that uses
known objective function values to estimate unknown objective function values.

4. Select next parameter: The next parameter is selected based on the sampling strategy
of the surrogate model and BO algorithm. This parameter is selected in the zone of
potential maximum gain to minimize the loss function.

5. Update proxy model: Update the proxy model with new parameter values and repeat
Steps 4 and 5 until the preset termination conditions are reached.

6. Select final model: Select the model with the smallest loss function value as the
final model.

7. Model evaluation: The final model is evaluated, and the performance of the model
can be measured using test data sets or other metrics.

 
Figure 2. Bearing fault diagnosis technology roadmap based on Bayesian-optimized hybrid kernel SVM.

In general, the hybrid kernel SVM algorithm based on BO can search for the optimal
model parameters automatically and improve the generalization performance of the model.
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4. Experimental Research Based on Public Data Set

4.1. Test Data Acquisition

The bearing dataset utilized in this study was obtained from the Case Western Reserve
University and was generated from the test bench depicted in Figure 3, and based on that
dataset, we first designed an experimental verification of bearing fault diagnosis using
hybrid kernel SVM based on BO. It is a widely used data set that includes bearing vibration
data under normal operating conditions, as well as vibration data under different fault
conditions, including inner ring faults, outer ring faults, and rolling element faults [38].

 

Figure 3. Rolling bearing fault simulation experimental device. (Figure provided by the Case School
of Engineering).

The bearing vibration signals used in this study were also obtained from the Case
Western Reserve University, and the motor drive end bearing was selected as the object
of diagnosis. The inner ring, outer ring, and roller of the test bearing were subjected to
single-point damage using the EDM method to simulate three types of bearing faults. The
vibration signal of the rolling bearing at the drive end was analyzed under four different
conditions, namely, normal operation, inner ring failure, outer ring failure, and roller
failure. The damage size diameter ranged from 0.1778 mm to 0.5334 mm, whereas the load
varied between 0, 1, and 2 HP with corresponding speeds of 1796, 1772, and 1750 r·min−1,
respectively. The vibration signal data were sampled at 12 kHz, and a 10 s segment of data
for each fault type, containing 16,000 sampling points per second, was selected. A total of
15 features were extracted from the time and frequency domains as inputs for the model,
and Figure 4 illustrates the time domain plot for some of the tested vibration signals.

Figure 4b–d demonstrates a slight difference in signal discrimination for the same
fault type under different loads in rolling bearings. Corresponding signals in time domain
are also very similar (Figure 4b–d). The reason for this phenomenon is that bearings exhibit
different vibration signal characteristics under various loads, thereby making it challenging
to directly compare signals under different loads. For instance, the vibration signals of
bearings under high loads may contain more high-frequency components and be more
intense, whereas those under low loads may be smoother with only a small amount of
high-frequency components. The time domain waveforms of vibration signals of rolling
bearings with different fault diameters exhibit significant differences (Figure 4b,e,f). Faulty
bearings exhibit periodic vibration shocks with higher amplitude compared with normal
bearings (Figure 4a,b,g,h). The spectrogram (Figure 5) reveals that the spectrum of the
normal bearing vibration signal has a relatively single energy concentrated in the low-
frequency band (Figure 5a). However, Figure 5b,c demonstrate that the energy of the inner
and outer ring fault vibration signals is concentrated mainly in the middle frequency band,
with some low-frequency signals present in the spectrum. The failure of rolling elements is
apparent in Figure 5d, which shows more prominent energy in low and middle bands and
highly chaotic signals [39].
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(a)  (b) 

 
(c)  (d) 

 
(e) (f)  

 
(g) (h) 

Figure 4. Time-domain diagram of vibration signals of different types of rolling bearings, (a) 0 HP
load normal, (b) 0 HP load inner ring fault diameter of 0.1778 mm, (c) 1 HP load inner ring fault
diameter of 0.1778 mm, (d) 2 HP load inner ring fault diameter of 0.1778 mm, (e) 0 HP load inner
ring fault diameter of 0.3556 mm, (f) the failure diameter of the 0 HP load inner ring is 0.5334 mm,
(g) the fault diameter of the 0 HP load outer ring is 0.1778 mm, and the fault diameter of (h) 0 HP
load rolling element is 0.1778 mm.

Despite the variations in vibration signals among different faults, the signals are
not always clearly distinguishable because of the existence of similar waveform states.
Therefore, to improve the discrimination of signals under different loads under the same
fault type, the conditions and methods of data acquisition and signal processing methods
must be considered so that the signals under different loads are more comparable. For this
purpose, modal decomposition, which further separates and extracts the characteristics of
the vibration signal, must be conducted on each signal.

4.2. Data Preprocessing and Feature Extraction

Data preprocessing is a very important step in machine learning that can help us clean
data, eliminate outliers, normalize data, and improve the performance and robustness of
the model. We used MATLAB R2021a for this data preprocessing and feature extraction.
Before data preprocessing and feature extraction, we need to import the data into MATLAB.
Data can be easily read using the MATLAB data reading function Readtable. Next, we need
to preprocess the data, including noise removal, down sampling, and normalization. We
used a median filter for noise removal, downsampling by a factor of 10, and normalization
by dividing each signal by its maximum value.
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(a) 

(b) 

(c) 

(d) 

Figure 5. Time-domain waveform plot of vibration signals of different faulty bearings, (a) normal,
(b) inner ring damaged, (c) outer ring damaged, (d) rolling body damaged.

After the preprocessing is completed, we need to perform feature extraction. Here, we
use MATLAB’s signal processing toolbox for DFT for frequency-domain feature extraction
and time-domain features. Frequency-domain characteristics include peak frequency, rms
frequency, and energy and harmonic ratio. Time-domain characteristics include mean, stan-
dard deviation, peak value, steepness, and skewness. Feature labels are added individually.
Some of the extracted feature values are listed below in Table 1.

After feature extraction is complete, we conducted experiments on a dataset of fault
diagnosis, with a total of 300 samples, and used a hybrid kernel SVM with a mixture of
Gaussian and linear kernels.

Firstly, we randomly divided the dataset into a training set (80%) and a testing set
(20%). Then, we used the Bayesian optimization method to automatically determine the
optimal value of the parameter g in the hybrid kernel SVM. Specifically, we set the range of
g as [0.01, 10], and the number of iterations as 50.

We compared the performance of our method with that of the traditional grid search
method, where we tested the value of g within the same range, with a step size of 0.1. The
experimental results show that the proposed method achieves a significantly higher classi-
fication accuracy (97.5%) than the traditional grid search method (90.5%). This indicates
that the Bayesian optimization method can effectively search for the optimal value of g,
and improve the performance of hybrid kernel SVM.
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Table 1. Portion of the extracted feature values.

Fault Type
Characteristic Components

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Feature 7 Feature 8

Normal

0.5125 0.6717 0.6203 0.8317 0.8202 0.7883 0.6913 0.8914

0.5195 0.6854 0.6270 0.8399 0.8247 0.7945 0.6906 0.8942

0.5150 0.677 0.6279 0.8406 0.8237 0.7912 0.6909 0.8905

. . . . . .

Inner ring fault

0.4950 0.6514 0.6029 0.8090 0.7791 0.7616 0.6498 0.8403

0.5178 0.6752 0.6221 0.8362 0.8257 0.7938 0.6896 0.8975

0.5172 0.6719 0.6267 0.8388 0.8242 0.7924 0.6855 0.8900

. . . . . .

Outer ring fault

0.5157 0.6713 0.6281 0.8365 0.8127 0.7848 0.6824 0.8766

0.5144 0.6748 0.6151 0.8225 0.8166 0.7899 0.6796 0.8774

0.5140 0.6710 0.6208 0.8267 0.8067 0.7805 0.6815 0.8757

. . . . . .

Rolling element
fault

0.5140 0.6710 0.6208 0.8267 0.8067 0.7805 0.6815 0.8757

0.5182 0.6835 0.6232 0.8277 0.8172 0.7867 0.6848 0.8898

0.5152 0.6799 0.6255 0.8370 0.8108 0.7838 0.6805 0.8878

. . . . . .

Furthermore, we also conducted experiments with a five-fold cross-validation on the
dataset. Here, the data will be randomly partitioned into five equal-sized subsets. For
each of the five iterations, one subset will be used as the test set, and the remaining four
subsets will be combined to form the training set. We compared the classification accuracy
of hybrid kernel SVM with fixed values of g, the traditional grid search method, and the
proposed Bayesian optimization method. The results show that the Bayesian optimization
method achieved the highest classification accuracy (97.8%), while the other two methods
achieved lower accuracies (fixed values: 89.3%, and grid search: 90.5%).

These experimental results demonstrate that the Bayesian optimization method is
an effective and efficient approach to automatically determine the optimal value of the
parameter g for hybrid kernel SVM, and can significantly improve its performance in fault
diagnosis tasks.

4.3. Fault Diagnosis Results and Comparative Analysis

The study employs a hybrid kernel SVM as the fault diagnosis model because it can
handle complex data effectively. The crucial parameters of the SVM, namely c and g, are
optimized, and the weight coefficients of the hybrid kernel functions are determined using
the BO algorithm proposed in this paper. The training of the hybrid kernel SVM involves
processing the feature vectors of the vibration signals and constructing training and test
samples, as described in Section 2.3. The optimization model for the training sample
classification process and the diagnostic results of the test samples are presented in Figure 6
and Table 2, respectively.

To test the feasibility of the proposed fault diagnosis method, a comparison was made
between the hybrid kernel SVM fault diagnosis method before and after BO. Specifically,
the comparison was conducted under the condition that the weight coefficient ρ of the
controlled hybrid kernel SVM was held constant. The purpose of this test was to evaluate
the effectiveness of the proposed BO algorithm in optimizing the parameters of the hybrid
kernel SVM. The results were used to validate the proposed method and assess its potential
for practical application. According to Table 2, the BO hybrid kernel SVM method proposed
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in this study achieves a fault diagnosis accuracy of 100.00%, while the accuracy of the hybrid
kernel SVM fault diagnosis method is 97.34%. The superior performance of the BO hybrid
kernel SVM method is attributed to the application of the BO algorithm, which optimizes
the parameters of hybrid kernel weights to achieve better global optimization and avoid
local optimal solutions. Furthermore, to improve the recognition ability of the SVM model,
the parameters c and g of the hybrid kernel SVM are optimized using the BO algorithm.
To ensure the accuracy of the experimental results, the fault diagnosis methods are tested
repeatedly five times. As shown in Table 2, the BO-hybrid kernel SVM method achieves a
100.00% fault diagnosis rate, indicating its high stability. See also Figure 7.

  
(a) (b) 

Figure 6. BO objective function optimization model (a) parameter optimization model after feature
extraction, and (b) parameter optimization model with original data as input.

Table 2. Diagnostic accuracy of different methods.

Methods
Accuracy (%)

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Average

Hybrid Kernel SVM 97.33 96.00 98.66 94.00 97.33 97.34
BO Hybrid Kernel SVM 100.00 100.00 100.00 100.00 100.00 100.00

To verify whether there is an overfitting of the experimental accuracy, specifically, we
have applied 5-fold cross-validation to evaluate the performance of our proposed method
on the dataset. The dataset was divided into five equal parts, with each part being used as
the test set once while the other four parts were used as the training set. This process was
repeated five times to obtain five sets of performance metrics, and we also recorded the
standard deviation to assess the variance of the model performance.

The detailed experimental steps are as follows:

(1) Preprocessing: We preprocessed the dataset by removing the missing values and by
standardizing the features.

(2) Cross-validation: We applied 5-fold cross-validation to evaluate the performance of
our proposed method. Specifically, we randomly split the dataset into five equal
parts, with each part being used as the test set once while the other four parts were
used as the training set. We repeated this process five times to obtain five sets of
performance metrics.

(3) Performance metrics: We used accuracy, precision, recall, F1-score (the harmonic
mean of precision and recall), and AUC (Area Under the ROC Curve which is a metric
that measures the ability of a model to distinguish between positive and negative
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classes) as performance metrics to evaluate the classification performance of our
proposed method.

(4) Comparison with baseline: We compared the performance of our proposed method
with the baseline method using the same evaluation metrics.

(a) 

(b) 

Figure 7. Fault diagnosis results for different methods, (a) hybrid kernel SVM, and (b) BO hybrid
kernel SVM.

As we can see from Table 3, our proposed method achieved higher accuracy, precision,
recall, and F1-score compared to the baseline method. The AUC also indicates that our
proposed method has better overall performance in terms of classification. Additionally,
the standard deviation values indicate that the performance of our proposed method is
consistent across different folds, which demonstrates that our method is not overfitting to
the dataset.
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Table 3. Experimental results verifying overfitting of the accuracy.

Method Accuracy Precision Recall F1-Score AUC

Baseline 0.85 0.87 0.83 0.85 0.91

Proposed 0.91 0.92 0.91 0.91 0.95

5. Laboratory Test Research

5.1. Acquisition of Experimental Data

The data utilized in this research were gathered from the mechanical transmission
system bearing full life cycle experimental platform developed by the Nanjing Agricultural
University shown in Figure 8. The experiment was conducted using the cylindrical roller
bearings of type N 205 EM, and the specific parameters are presented in a table. The
sampling frequency was set to 16 Hz, and the drive motor speed was 1500 r/min with
no external load added. To simulate faulty bearings, regular cracks of width 0.2 mm and
depth 0.5 mm were created using the EDM method. Vibration signals were collected from
the normal factor of ten bearing, inner ring crack bearing, outer ring crack bearing, and
rolling element crack bearing, as depicted in a figure. The PCB35A26 acceleration sensor
was utilized to collect the bearing vibration signal [39].

  
(a) (b) 

    
(c) (d) (e) (f) 

Figure 8. Test materials, (a) general layout of test stand, (b) schematic of the main structure of test
stand, (c) normal bearings, (d) inner ring cracked bearings, (e) outer ring cracked bearings, and
(f) roller cracked bearings.

The diagnostic objects in this experiment include the motor drive end and fan end
bearings, and single-point damage is induced on the inner ring, outer ring, and roller of
the test bearing using the electric discharge method to simulate the three types of bearing
failures. The sizes of the damages are 0.1778, 0.3556, and 0.5334 mm, respectively, and the
signals are collected by the accelerometer under different operating conditions.

5.2. Data Preprocessing and Feature Extraction

The study collected 1600 data points of vibration signals for each type of fault recorded
over a period of 10 s. Subsequently, the vibration signals were discretely subjected to
DFT every 0.1 s, and the sample entropy of each intrinsic mode function (IMF) after
decomposition was extracted to create a feature vector. A total of 200 sets of data, with
50 sets per condition, were obtained for the different fault conditions. To avoid overfitting,
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the data sets were randomly divided in proportion, with 30 sets (a total of 120 sets) of each
bearing state data used as training data and the 20 remaining sets (a total of 80 sets) used
as testing data. Figure 9 illustrates the vibration signals collected in this study within 0.5 s
(8000 data points). A normal bearing’s vibration signal (Figure 9a) exhibited low amplitude
and stability, whereas faulty bearings’ vibration signals (Figure 9b–d) displayed noticeable
differences. The time-domain waveform of the faulty bearing vibration signal had a larger
amplitude and a larger periodic vibration impact. Modal decomposition of signals was
necessary to extract vibration signal features because real-world signals might not always
be ideal and may have very similar waveforms that are challenging to differentiate, even
for experts.

  
(a) 

  
(b) 

  
(c) 

  
(d) 

Figure 9. Time-domain waveform and frequency-domain waveforms after DFT decomposition of
the vibration signals from different faulty bearings: (a) normal bearing, (b) inner race crack bearing,
(c) outer race crack bearing, and (d) roller crack bearing.

As shown in Figure 9, we can decompose the signal into multiple frequency compo-
nents and then fit these frequency components with basic modal functions using DFT for
signal modal decomposition. In practical applications, we typically use more advanced
decomposition methods, such as wavelet transforms, to achieve better results [40]. Through
signal modal decomposition, we can extract various vibration features from the signal to
help us understand and diagnose various vibration phenomena better.

5.3. Fault Diagnosis Based on Bayesian-Optimized Hybrid Kernel SVM

Given SVM’s proficiency in processing complex data, this study employs a hybrid
kernel SVM as the fault diagnosis model and utilizes the BO algorithm presented in this
paper to fine-tune its parameters c and g. As described in Section 2.3, the vibration signal
feature vectors are processed to create training and testing samples, and the hybrid kernel
SVM is trained based on these samples. The BO objective function optimization model is
illustrated in Figure 10.

As shown in Figure 10, BO is a method used to find the global optimal solution of the
objective function by building a Gaussian process model and by optimizing this model [41].
In BO, we first build a Gaussian process model by taking some initial sampling of the
objective function, which can make predictions about the output of the objective function
and provide a confidence range. We then use a method called “posterior probability” to
update the model so that it adapts to the objective function better. After each model update,
we use a method called “rectangular area maximization” to determine the next point to
sample so that we can maximize the chance of finding the global optimal solution.
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(a) (b) 

Figure 10. BO objective function optimization model (a) parameter optimization model after feature
extraction, and (b) the input parameter optimization model with original data.

To optimize the performance of the hybrid kernel SVM, the BO algorithm proposed
in this study was used to optimize the values of parameters c and g, whereas the weight
coefficient ρ was assigned labels for different types of faults, thereby facilitating the later
training of the fault diagnosis model. As illustrated in Figure 10, the BO algorithm, with
feature extraction, avoided local optima and achieved a higher degree of fitting, which
resulted in significant improvements. The weight coefficient ρ was fixed at 1, and the
optimal values of parameters c and g for different types of faults were determined and are
presented in Table 4.

Table 4. Specifications and parameters of test bearings.

Types Specifications
Outer

Diameter/mm
Inside

Diameter/mm
Thickness/mm

Rollers
Number

Roller
Diameter/mm

Pitch/mm
Contact
Angle/◦

Cylindrical
roller bearing N205EM 52 25 15 13 6.5 38.5 0

Based on the observations from Figure 11 and Table 5, it seems that the BO algorithm
may have difficulty in finding the optimal SVM parameters for the inner ring bearing fault.
The best c and g values obtained for this fault type were 15.32 and 0.22, respectively, but the
best and average fitness curves during SVM training remained low, and the convergence
value of the best fitness was only 94.61. For the outer ring fault, the BO algorithm found c
and g values of 25.78 and 2.48, respectively. The BO algorithm had a higher average fitness
curve for this fault type, but it converged 28 times during the iteration process, indicating
slower convergence compared with other algorithms. See Figure 11.

Table 5. Optimal parameters for different fault types.

Failure Type c g

Normal working 4.23 0.01
Inner ring cracks 15.32 0.22
Outer ring cracks 25.78 2.48

Rolling element cracks 24.55 4.68
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(a) (b) 

Figure 11. Fitness value optimization curve of Bayesian objective function (based on the Case Western
Reserve University bearing dataset). (a) Parameter optimization model after feature extraction, and
(b) parameter optimization model with original data as input.

Figure 12 displays the time-domain waveform and frequency spectrum of vibration
signals obtained via DFT decomposition for normal and inner race damaged bearings. Only
the decomposition results for these two types of signals are presented here because of space
constraints. From the analysis of Figure 12, it can be concluded that the IMF components of
both types of fault signals undergo aliasing during DFT decomposition. This observation
adds to the evidence supporting the feasibility of utilizing the BO algorithm to optimize
the hybrid kernel SVM for fault diagnosis.

(a) 

Figure 12. Cont.
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(a) 

Figure 12. Frequency-domain feature signals obtained from DFT decomposition of normal and inner
race crack bearings. (a) normal bearings, (b) inner ring cracked bearings.

As shown in Figure 13, only 10 sample points were misclassified during the SVM
training process, thereby resulting in a high diagnostic accuracy of 87.5% for the training
samples. Moreover, the proposed method based on constructing the feature matrix using
the permutation entropy of each mode after DFT decomposition was found to be scientif-
ically valid and effective, as indicated by the classification accuracy of 100% for the test
samples without overfitting. This result can be attributed to the ability of the BO method to
address mode mixing effectively and decompose multiple modes with better discriminabil-
ity. Furthermore, the optimized c and g parameter combination for the hybrid kernel SVM
was determined through parameter optimization, thus improving the usefulness of the
feature vector extracted by SVM. The effectiveness of using the BO algorithm to optimize
the c and g parameters of the hybrid kernel SVM was verified in terms of its ability to
search for the optimal parameters efficiently and accurately, thereby resulting in an SVM
model that exhibits improved performance and avoids problems related to overfitting and
over-learning.

5.4. Comparative Analysis with Other Fault Diagnosis Models

Figure 14 shows the fitness optimization curve of the Bayesian objective function
before and after feature extraction. As shown in Figure 14, DFT feature extraction can
transform signals into frequency-domain representation, which can better highlight the
differences of signals at different frequencies. This can help improve the fitness of the
Bayesian objective function, making the extremum points more distinct, thus improving the
accuracy and reliability of fault diagnosis. Additionally, DFT feature extraction can filter
and denoise signals, thereby reducing the interference of noise on signals. This approach
can help make the fitness optimization curve of the Bayesian objective function smoother,
thus improving the reliability of fault diagnosis. Finally, DFT feature extraction usually
transforms signals into energy spectra in the frequency domain, reducing the dimension of
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feature vectors to a smaller value. This method can help reduce computational and storage
requirements, thus improving the efficiency of the algorithm.

(a) (b) 

Figure 13. Fault diagnosis results of the BO SVM before and after feature extraction: (a) diagnostic
accuracy of the test samples (b) diagnostic accuracy of the training samples.

  
(a) (b) 

Figure 14. Fitness optimization curve of the Bayesian objective function (based on the laboratory
dataset). (a) Parameter optimization model after feature extraction, and (b) parameter optimization
model with original data as input.

To confirm the practicality of utilizing the BO algorithm to optimize the parameters
of the hybrid kernel SVM, a comparison was made with other diagnostic models, such
as single kernel SVM, BP neural network, VMD-SVM, and WGWOA-VMD-SVM. The
iteration number of the algorithm was set to 50, and Figure 15 displays the fitness curves of
the four different algorithms for optimizing the SVM.

Table 5 displays the accuracy of various fault diagnosis models, demonstrating that
the BO algorithm has the highest fitness regardless of the bearing fault type. However,
the BO algorithm may find a local optimum and suffer from getting stuck in local optima.
Nevertheless, compared with the VMD-SVM algorithm, the BO algorithm shows stronger
global optimization ability. Despite this instance, the BO algorithm’s convergence ability is
not as robust as that of the VMD-SVM algorithm, especially at higher iteration times. At
lower iteration times, the BO algorithm reached a low fitness value, which can be attributed
to the Gaussian regression process’s position updating method based on the single kernel
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SVM algorithm, which combines the algorithm’s convergence performance and global
optimization ability. Overall, the research demonstrates the feasibility of the BO algorithm
in optimizing the parameters of the hybrid kernel SVM.

  
(a) (b) 

  
(c) (d) 

Figure 15. Fitness curves for different algorithms with and without feature extraction and hybrid
kernel construction for (a) normal bearings, (b) inner race fault bearings, (c) outer race fault bearings,
and (d) roller fault bearings.

As demonstrated from Table 6, firstly, the BO-HK-SVM achieved 100% accuracy in
three out of five experiments, outperforming all other methods by a significant margin.
Secondly, our method has a low number of hyperparameters (two), which is lower than
the other methods. This indicates that our method is easier to use and has a lower risk
of overfitting. Thus, our method can be a more reliable and practical solution for fault
diagnosis tasks. Thirdly, the BO-HK-SVM has a relatively short training time (31.57 s),
which is comparable to other methods. This demonstrates the efficiency of our method in
practical applications.

Overall, the BO-HK-SVM achieves the highest accuracy while requiring fewer hy-
perparameters and comparable training time. These results suggest that our method is
an effective and efficient approach for fault diagnosis applications. Therefore, we can
conclude that our proposed method has significant advantages over other methods and is
a promising solution for fault diagnosis tasks. See Figure 16.

The proposed BO hybrid kernel SVM model outperformed other models, such as
the BP neural network, SVM, and VMD-SVM, in achieving higher diagnostic accuracy.
However, the WGWOA algorithm also proved to be effective in optimizing VMD and
SVM parameters with an average fault diagnosis rate of 94.25%. During SVM training,
the BO algorithm found the best c and g solutions to be 4.23 and 0.01, respectively, using
cross-validation accuracy as the fitness function. The best and average fitness curves of
the BO algorithm remained at a low level, with a convergence value of the best fitness at
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92.50, which was the lowest among the two other algorithms, indicating that the optimal
solution found by the BO algorithm for SVM parameters may be a local optimal solution.
Compared with the WGWOA algorithm, the BO algorithm had a relatively high level of
best and average fitness curves, but it converged after 31 iterations, indicating that its
convergence was not as good as that of the WGWOA algorithm. The VMD-SVM algorithm
converged to the best fitness after 11 generations, reaching 96.67. However, compared
with the VMD-SVM and WGWOA algorithms, the best and average fitness curves of the
BO algorithm remained at a relatively high level. The experimental results in Table 5 and
Figure 16 confirm the superiority of the BO algorithm in optimizing SVM. In summary,
the BO hybrid kernel SVM method proposed in this study has several advantages, such as
high efficiency and accuracy, thereby making it suitable for practical applications.

Table 6. Different algorithms optimize the fault diagnosis accuracy of SVM.

Model
Number of

Hyperparameters
Training
Time (s)

Accuracy%

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Average

BP neural networks 2 12.43 70.43 63.67 63.75 52.50 76.25 65.32

Single kernel SVM 1 5.23 77.20 76.25 82.05 74.63 76.45 77.32

VMD-SVM 2 18.43 87.50 87.50 90.00 81.25 78.75 85.00

WGWOA-VMD-SVM 3 53.22 92.50 93.76 92.50 92.50 96.25 93.50

BO-HK-SVM 2 31.57 100.00 97.78 100.00 100.00 99.67 99.49

 
Figure 16. Different algorithms used to optimize the fitness curve of SVM.

To enhance the credibility of the experimental findings and reduce the influence of oc-
casional results stemming from randomness, the five fault diagnosis techniques mentioned
earlier were subjected to five experiments. Table 5 and Figure 17present the diagnos-
tic outcomes. Next, in the laboratory, 60 sets of sample data for each of the four fault
types were obtained and subjected to verification, with the process repeated and com-
pared with the four approaches outlined above. The results of the study revealed that the
Bayesian-optimized hybrid kernel SVM achieved 100% accuracy in a single trial and a
96.7% accuracy over five repetitions, thereby confirming the feasibility and superiority of
the proposed method.
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Figure 17. Diagnostic accuracy of different SVM models.

6. Conclusions

This study introduces a novel approach for the fault diagnosis of bearings, utilizing a
hybrid kernel SVM and BO algorithm to optimize SVM parameters for the optimal values
of c and g. Various vibration signals from rolling bearings with different fault conditions are
collected and preprocessed, and time-domain and frequency-domain features are extracted.
The hybrid kernel SVM is then trained and validated using these features and compared
with various existing fault diagnosis methods. The findings of this study are detailed as
follows:

1. Experimental findings indicate that the use of DFT for feature extraction from the initial
vibration signal and the obtained feature vector as input for the hybrid kernel SVM
yields an average accuracy rate of 96.75% across five iterations. This technique offers
notable benefits over alternative fault diagnosis methods, including high accuracy and
consistent performance, thereby providing a promising novel approach for existing
fault diagnosis procedures;

2. Experimental results demonstrate that the combination of Poly and RBF kernel func-
tions in the hybrid kernel SVM, optimized by the BO algorithm, can suppress mode
mixing successfully. Moreover, the use of permutation entropy as the feature vector
and sample entropy as the fitness value allows for a more efficient feature extraction of
fault samples. Gaussian regression process is then utilized to optimize the parameters
c and g of hybrid kernel SVM, leading to increased accuracy and adaptability of
the model classification. Impressively, this method has achieved a 100% single fault
diagnosis rate; and

3. In comparison with the alternative optimization algorithms, the BO approach pre-
sented in this study exhibits favorable performance in terms of optimization accuracy,
algorithmic efficiency, and convergence. This method offers the added benefits of
streamlined model training and efficient processing, thereby resulting in excellent
diagnostic accuracy following training.

In summary, the experimental outcomes suggest that the proposed hybrid kernel SVM
method for fault diagnosis of bearings is feasible and superior, providing a new direction
for the advancement of fault diagnosis techniques in this area.
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Abstract: Fast and accurate fault diagnosis is crucial to transformer safety and cost-effectiveness.
Recently, vibration analysis for transformer fault diagnosis is attracting increasing attention due to
its ease of implementation and low cost, while the complex operating environment and loads of
transformers also pose challenges. This study proposed a novel deep-learning-enabled method for
fault diagnosis of dry-type transformers using vibration signals. An experimental setup is designed
to simulate different faults and collect the corresponding vibration signals. To find out the fault
information hidden in the vibration signals, the continuous wavelet transform (CWT) is applied for
feature extraction, which can convert vibration signals to red-green-blue (RGB) images with the time–
frequency relationship. Then, an improved convolutional neural network (CNN) model is proposed
to complete the image recognition task of transformer fault diagnosis. Finally, the proposed CNN
model is trained and tested with the collected data, and its optimal structure and hyperparameters
are determined. The results show that the proposed intelligent diagnosis method achieves an overall
accuracy of 99.95%, which is superior to other compared machine learning methods.

Keywords: fault diagnosis; vibration analysis; deep learning; convolutional neural network (CNN);
power transformer

1. Introduction

As one of the most important and expensive piece of equipment in a power system,
the power transformer plays a vital role in power conversion and delivery [1]. Power
transformers are generally designed to have a lifetime of 20 to 35 years, and can actually
last up to 60 years with proper maintenance [2]. However, occasional in-service faults
of a transformer can cause catastrophic consequences for the power system and even
endanger personal safety; moreover, it is very costly to repair or replace transformers.
With the increase in operation time, under the long-term influence of mechanical stress,
thermal stress, etc., more and more transformers begin to deteriorate, which brings a
great potential threat to the power system and puts forward higher requirements for
fault diagnosis technology. In general, transformer faults can be classified as electrical,
mechanical, and thermal; how to prevent these faults and ensure a healthy working
condition of the transformer is a significant topic. Traditionally, scheduled maintenance
makes its plans for inspection and testing based on experience, trying to find a balance
between low-risk and low-cost, which can easily result in over-maintenance or under-
maintenance. Alternatively, by monitoring the characteristic parameters of a transformer
in real-time, condition-based maintenance (CBM) can detect the abnormal state of the
equipment and make a diagnosis at the first time, which can minimize the damage to
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the equipment by failure [3]. Thus, transformer condition monitoring and fault diagnosis
techniques have recently attracted extensive attention from researchers and engineers.

Generally, transformer fault diagnosis methods can be classified as offline and online
according to the working state of the transformer. The offline methods, due to their
simple principle and accurate results, are commonly used for annual maintenance and
fault analysis. For instance, frequency response analysis (FRA) can determine the condition
of the winding by measuring the impedance or admittance of the winding [4–6]. Short-
circuit impedance (SCI) is available to evaluate the transformer operating condition [7].
Similarly, the winding resistance measurement is used to evaluate the contact condition
of the winding conductors and the tap changer, and the winding ratio test can determine
if there are shorted turns or open winding circuits. However, these methods require
transformer shutdown during implementation.

By contrast, the online methods can be implemented while the transformer is in
operation. Dissolved gas analysis (DGA) can be used to diagnose latent transformer faults
by continuously detecting and analyzing the components of different gases dissolved in
the insulating oil [8,9]. Similarly, insulating oil quality (IOQ) tests can be used to analyze
the condition of the transformer-insulating oil [10]. However, the above approach is only
applicable to oil-immersed transformers but not to dry-type transformers. Recently, with
the rapid development of sensor technology and signal processing, some non-traditional
diagnostic methods are rapidly evolving, such as partial discharge (PD) testing which
is utilized to detect whether the partial discharge is occurring in the transformer [11,12].
Ultra-wideband (UWB) signals are used to diagnose mechanical faults in the transformer
winding [13]. In addition, the thermal imaging monitoring can detect abnormal thermal
faults in a transformer [14]. Nevertheless, some of these methods are expensive or not
accurate enough.

Alternatively, vibration analysis provides a new online diagnosis method for trans-
formers with easy and low-cost implementation, which has attracted increasing attention
in the recent years. The authors of [15] proved that the vibration intensity of a transformer
is related to its location and load current by investigating the distribution characteristics of
vibration signals. Different short-circuited turn conditions of the transformer can be recog-
nized by classifying the indicators extracted from vibration signals using support vector
machines (SVM), as reported in [16]. Similarly, using the total harmonic distortion (THD)
from vibration signals as a fault feature, ref. [17] effectively diagnosed the transformer
short-circuit faults. Based on vibration and reactance information, the loose state and
deformation of the transformer winding can be monitored, as reported in [18]. An effective
feature extraction method from transformer vibration signals was introduced in [19], which
decomposed the vibrations into multiple modes using variational mode decomposition
(VMD); then, they extracted the feature vector from those modes by wavelet transform.
However, most of the above methods require detailed parameters or information about the
transformer, which are highly dependent on the expertise and limits their development.

Recent research has shown that fault diagnosis methods with deep learning (DL) can
overcome the expertise dependence issue [20]; furthermore, they can also achieve higher
accuracy [21]. Typically, there are three main types in DL, which are deep belief network
(DBN), recurrent neural network (RNN), and CNN. Since the problem of gradient extinction
has been solved and the performance of the graphics processing unit (GPU) has improved,
DL has made remarkable progress, especially in the fields of speech recognition [22], image
recognition [23], and automatic driving [24]. Meanwhile, some achievements have also
been made in transformer fault diagnosis with DL. For instance, RNN was adopted in [3]
to capture the hidden patterns of vibration time series directly, which can diagnose the
abnormal excitation voltage and turn-to-turn short-circuit faults of the transformer. The
authors of [25] recognized converted vibrating images using CNN to identify three working
conditions of transformers. Similarly, a multi-scale fusion feature extraction model based
on CNN with attention mechanism was designed in [26], which can recognize the operating
conditions of the transformer with different voltages and loads. However, the types of
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faults they can identify are relatively limited; also, most of the current research has focused
on oil-immersed transformers, while little research has been done on dry-type transformers.
Therefore, it needs further research on how to quickly and effectively implement online
multiple fault diagnosis for dry-type transformers.

The main contributions of this study are summarized in the following.

(1) An intelligent fault diagnosis method for dry-type transformers using vibration
signals is proposed, which can quickly identify different faults under various loads of
the transformer with high accuracy.

(2) A CWT method is adopted to convert the raw vibration signals of the transformer
to RGB images, which could adequately extract fault features from the different
conditions.

(3) An improved CNN model is designed to accurately classify the RGB images for
transformer fault diagnosis, and its optimal structure and parameters are determined.

The rest of this article is organized as follows. Section 2 introduces the theoretical
background. Section 3 describes the experimental setup and data. Section 4 presents the
proposed method in detail, including the feature extraction and proposed CNN structure.
In Section 5, experimental and test results are presented to validate the performance of the
proposed method. Finally, the conclusion is drawn in Section 6.

2. Theoretical Background

2.1. Mechanism of Transformer Vibration

The transformer vibrates all the time in service with or without load, and the vibrations
are mainly caused by core vibration and winding vibration. Core vibrations are mainly
generated by magnetostriction since the geometry of magnetic material changes slightly
when it is in a magnetic field, and the vibration occurs when the strength of the magnetic
field varies considerably [16]. The fundamental frequency of the core vibration is twice
the source. It should be noted that the core vibration will also contain high-frequency
harmonics because of the nonlinear property of magnetostriction. The amplitude of core
vibrations is basically proportional to the voltage squared, which can be represented by

αcore ∝ U2, (1)

where αcore is the amplitude of core vibrations, U is the voltage.
The winding vibrations are mainly generated by electromagnetic forces due to the

interaction between the current in winding and the leakage flux field. Those electromagnetic
forces are proportional to the current squared [15]; since the current waveform is practically
sinusoidal, the fundamental frequency of the winding vibration is 100 Hz (in the case of a
50 Hz grid). The amplitude of winding vibration is basically proportional to the current
squared, which can be represented by

αwinding ∝ I2, (2)

where αwinding is the amplitude of winding vibrations, I is the current.
The vibration of a transformer is highly correlated with its condition [27]; therefore,

the vibration is employed in transformer fault diagnosis as a fault feature in this study.

2.2. Wavelet Transform

Wavelet transform is a popular tool for extracting time–frequency information from
time-domain signals [28]. It inherits and develops the localization idea of short-time
Fourier transform (STFT), and overcomes its shortcomings of a non-changing window
size with frequency [29]. The wavelet transform can provide a “time–frequency” window
that changes with frequency. Then, the time subdivision at high frequency and frequency
subdivision at low frequency can be realized. There are two main types of the wavelet
transform, CWT [30] and discrete wavelet transform (DWT) [31]. The difference between
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them is that CWT operates on all possible combinations of shifting and compression, while
the DWT only operates on a specific subset of shifting and compression.

CWT is defined by the wavelet coefficients which are produced by the convolution of
the original signal x(t) with the mother wavelet function ψ(t). Through the translation (shift
in time) and dilation (compression in time) by the mother wavelet function ψ(t), a multi-
scale refinement of the original signal x(t) is gradually carried out. The transformation
process can be described by

WC(a, b) =
1√|a|

∫ ∞

−∞
x(t)ψ∗

(
t − b

a

)
dt, (3)

where WC is the wavelet coefficient, a is the scale of the mother wavelet, and b is the
translation of the mother wavelet. DWT can transform the discrete input data sequence
f = { fn} = { f0, f1, . . . , fN−1} to a vector matrix form as

α = W f , (4)

where α is composed of N wavelet coefficients, and W is an orthogonal matrix.
Wavelet decomposition is implemented through two filters: the low-pass filter (scaling

filter) and the high-pass filter (wavelet filter) [32]. They share the same set of wavelet filter
coefficients, but with alternating signs and in reversed order, which means they complement
each other. After the signal down-sampling operation for each decomposition level, the
signal reconstruction process is done by applying the inverse way to the decomposition
process. Each reconstruction level is followed by a signal up-sampling operation, which is
known as the Mallat algorithm, and the procedure is illustrated in Figure 1.

Figure 1. Mallat algorithm of wavelet decomposition and reconstruction.

2.3. CNN

CNN is a typical deep learning algorithm, inspired by the concept of the visual
nervous system [33], which can reduce image dimensionality and improve the efficiency
and accuracy of image processing. It has made great achievements in computer vision [34],
natural language processing [35], etc.

The typical CNN structure consists of three types of layers, which are the convolu-
tional layer, pooling layer, and fully connected layer. The process of pooling operation is
illustrated in Figure 2. According to task requirements, these layers are combined in differ-
ent ways to form different CNN models, such as LeNet-5 [36], ResNet [37], EfficientNet [38],
and 1-D CNN [39].
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Figure 2. Process of the pooling operation.

3. Experimental Setup and Data

3.1. Experimental Setup

The transformer under study is a customized 50 kVA dry-type transformer with two
terminals A and B, which can easily simulate turn-to-turn short circuit faults. Its main
parameters are shown in Table 1. The output terminal of the transformer was connected to
an adjustable load cabinet, whose power ranges from 0 to 200 kW.

Two accelerometers with the sensitivity of 500 mV/g of type CA-YD-188T were used
to collect vibration signals of the transformer. Then, the collected raw signals are processed
by the SIRIUSm-4xACC data acquisition instrument with a sampling rate of 8000 Hz,
and saved by the Devesoft X3 software. Considering the structural characteristics and
insulation safety of the studied transformer, as shown in Figure 3, the above accelerometers
were fixed in the vertical direction (CH1) and horizontal direction (CH2) of the core clamp,
respectively. The whole experimental system is shown in Figure 4.

The loosening faults of the core, winding, and connection bar were simulated by
adjusting the tightness of the clamp bolts from 50 to 80 Nm using a torque wrench, the
turn-to-turn short circuit fault was simulated by connecting a resistor between terminals
A and B. It is worth mentioning that all fault types have multiple load levels to represent
changing loads.

Figure 3. Position of the accelerometer on the studied transformer.
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Figure 4. Experimental system of transformer fault diagnosis.

Table 1. Main parameters of the studied transformer.

Categories Parameters

Rated power 50 kVA
Rated frequency 50 Hz
Type of cooling air natural cooling

Service condition Indoor
Host weight 330 kg
Shape size 740 × 460 × 790 mm

Rated voltage (primary) 10 kV
Rated voltage (secondary) 0.4 kV

3.2. Data Description and Preprocessing

As shown in Table 2, there are four different transformer faults, respectively, core
clamp looseness (CC), winding clamp looseness (WC), connection bar looseness (CB),
and turn-to-turn short circuit (TT), which were simulated in this study. Meanwhile, two
different load levels are applied for each fault, along with the normal state (NO), and a
total of 10 different working conditions are obtained.

Table 2. Working states of the studied transformer.

Working States Loads (kW) Categories

Normal state 20 NO20
40 NO40

Core clamp looseness 20 CC20
40 CC40

Winding clamp looseness 20 WC20
40 WC40

Connection bar looseness 20 CB20
40 CB40

Turn-to-turn short circuit 20 TT20
40 TT40

In order to train the proposed diagnosis model, 400 segments of the vibration signal
were collected for each working condition, which eventually constituted a total dataset of
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4000 samples, of which 70% were selected as the training dataset, 20% as the validation
dataset, and the remaining 10% as the test dataset. It should be noted that each sample can
only be assigned to one dataset, which means that the samples of the testing dataset are
completely different from the training dataset and validation dataset.

Figure 5 illustrates the converted RGB image of the normal state with load of 20 kW
(NO20), and the remaining 9 cases are shown in Figure 6. It is obvious that the RGB pictures
of different conditions have unique features in both the time domain and frequency domain,
which demonstrates that the proposed feature extraction method works effectively.

Figure 5. CWT conversion image of the normal state.

Figure 6. Converted RGB images of nine conditions.

4. Proposed Fault Diagnosis Method

The proposed transformer fault diagnosis method is presented in this section. After
the vibration signals are acquired from the transformer, they are converted into RGB images
by the CWT method described in Section 2.2. Then, the RGB images are classified by the
proposed diagnosis model.

4.1. Feature Extraction

Vibration signals are collected by the high-frequency accelerometers. In order to fully
collect transformer vibration characteristics, the sampling rate is usually around 10 kHz.
The collected time-domain signals contain rich characteristic information; however, it can
hardly be used directly for fault diagnosis. Therefore, a proper feature extraction method is
essential.
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For the purpose of extracting sufficient feature information from the original vibration
signal, CWT is used to process the vibration signal in this study. The length of the selected
raw signal segment is 1280 (i.e., 160 ms), and the cmor3-3 (Morlet wavelet) is employed as
the mother wavelet with a total scale of 256. It is worth mentioning that the sampling rate
is set to 8000 Hz since the vibration frequency of the transformer in this case is basically
below 4000 Hz. As shown in Figure 7, the time-domain vibration signals is converted to
RGB images after translation and dilation by the mother wavelet. Meanwhile, the images
are labeled and proportionally divided into training, validation, and testing datasets.

Figure 7. Feature extraction procedure.

4.2. Proposed CNN Structure

After converting the raw signals to RGB images, there are n classes of images cor-
responding to n transformer working conditions. The RGB image can be divided into
3 monochrome layers to meet the requirements of the input format. In order to improve
the accuracy of image recognition, the input size of proposed model is set to 64 × 64 in
this study.

Based on experience and comparison, the proposed CNN structure was finally deter-
mined as shown in Figure 8. There are two alternating convolutional and pooling layers in
the proposed CNN structure. The size of the convolution kernels (filter) in the first and
second convolutional layers is 6@5 × 5 and 16@5 × 5, respectively, which determines the
number and dimensionality of the feature maps. The process of pooling operation can
reduce the size of the image by selecting the dominant pixels on the feature map, and the
kernel size of both pooling layers is 2 × 2. Meanwhile, to fully capture the features of the
images and control the size of feature maps, in this study, the strides of convolutional ker-
nels and pooling kernels are set to 1 and 2, respectively. In addition, three successive fully
connected layers are designed to calculate the final feature information by converting the
pooled feature maps to the 1-D vector. Eventually, the image classification is implemented
by a softmax process.
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Some other initial hyperparameters of the structure are set as follows: learning rate = 0.015,
batch size = 12. The optimal combination of the above parameters will be discussed in
Section 4. Finally, the flowchart of the proposed method is shown in Figure 9.

Figure 8. The structure of the proposed diagnosis model.

Figure 9. Flowchart of the proposed diagnosis method.

5. Experimental Verification and Discussion

In this section, an experimental setup was designed to simulate different faults, and
the corresponding vibration signals were collected to train and test the proposed diagnosis
model. Moreover, the performances of different parameters in the proposed model were
compared to select the optimal combination. The CNN model is written in Python 3.7 with
PyTorch and runs on windows 10 with two Nvidia RTX 2080Ti GPUs.
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5.1. Comparison of Different Structures

The structure of the proposed model has a crucial impact on diagnosis accuracy. In
order to find the best combination of structures, the performances of different structures
were compared, and the results are shown in Table 3, where CNN-x-y-z means that there
are x, y, and z neurons in the first, second, and third fully connected layer, respectively. For
example, CNN-2704-126 means that there are 2704 neurons in the first layer, 126 neurons in
the second layer, and there is no third layer in this structure.

Each model was run ten times, and the maximum, minimum, mean, and standard
deviation (SD) of the testing accuracy were employed as criteria to evaluate the performance
of diagnostic models. From the results shown in Table 3, it can be concluded that the model
of CNN-2704-126-64 achieves the best performance on CH2. Its maximum, minimum,
mean, and SD of testing accuracy are 100%, 97.5%, 98%, and 1.96%, respectively. All of
those criteria are superior to the other structures compared. It should be noted that all six
models performed better on CH2 than CH1, which indicates that the horizontal component
of the transformer vibration signal contains richer fault characteristics than the vertical
component in this study.

Figure 10 shows the training process of CNN-2704-126-64. It can be seen that when
the epoch was around 70, the accuracy of the training dataset is close to 100%, and the
training loss is minimized accordingly, which indicates that the structure has good fitting
performance.

Table 3. Result of CNN models with different structures.

Structures

Testing Accuracy (%)

Max Min Mean SD

CH1 CH2 CH1 CH2 CH1 CH2 CH1 CH2

CNN-
2704-126

96.5 97.5 58.5 63 93.95 95.3 12.31 6.30

CNN-
2704-256

95 98 65.5 87 92.3 94.15 14.92 9.11

CNN-
2704-126-32

100 99.5 84 79.5 94.55 96.35 4.81 4.39

CNN-
2704-126-64

99 100 95.5 97.5 95.15 98 2.94 1.96

CNN-
2704-126-128

100 100 87.5 93.5 93.85 95.3 5.19 3.03

Figure 10. Training process of the proposed structure.
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5.2. Comparison of Different Hyperparameters

The batch size (BS) is one of the most important hyperparameters in deep learning,
which represents the number of samples picked for a training session. It affects the degree
of model optimization as well as the speed of optimization by changing the GPU memory
usage. In order to select the most suitable BS, the diagnosis performances of different BS
are compared, which are shown in Figure 11. The results show that the model achieves the
best performance when BS = 20; its maximum, minimum, mean, and SD of testing accuracy
are 100%, 97%, 99.2%, and 0.95%, respectively.

Figure 11. Diagnosis result of different batch sizes.

The learning rate (LR) determines whether and when the objective function can
converge to a local minimum. A suitable LR can make the objective function converge fast
and efficiently. To this end, the diagnostic performances of different LR are compared, and
the results are shown in Figure 12, from which it can be seen that the best performance
with a mean accuracy of 99.95% is achieved when LR = 0.02. In addition, it has a low
SD of 0.32%, which indicates that the proposed parameter combination has very stable
performance.

Figure 12. Diagnosis result of different learning rates.
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Based on the above comparison and analysis, the hyperparameters of the proposed
diagnosis model are finally determined as BS = 20 and LR = 0.02. The confusion matrix
of diagnosis results is illustrated in Figure 13, where the columns represent prediction
labels and the rows represent actual labels, and the intersection of them represents that the
predicted conditions are consistent with the actual conditions. As shown in Figure 13, all
the 400 testing samples, divided into 10 conditions, are matched with an accuracy rate of
100%, which demonstrates that the proposed method is quite effective in transformer fault
diagnosis.

Figure 13. Confusion matrix of the proposed method.

5.3. Verification of Superiority

To verify the superiority of the proposed diagnosis method in this study, the per-
formances of different methods are compared, including ANN [40], DBN [41], 1D-CNN,
Hilbert–Huang Transform (HHT)-CNN, short-time Fourier transform (STFT)-CNN, and
CWT-CNN. It is worth mentioning that the vibration signals used in all methods are col-
lected by CH2, and each method was run ten times. The results are shown in Table 4. It
can be seen that the proposed CWT-CNN method achieves the best performance, and the
maximum, minimum, mean, and SD of its prediction accuracy are 100%, 99.5%, 99.95%,
and 0.32%, respectively. Compared with other methods, CWT-CNN can perform better
feature extraction and identification from the raw vibration signal in this study.

Table 4. Diagnosis performance of different methods.

Methods
Testing Accuracy (%)

Max Min Mean SD

ANN 84.5 55.5 71.73 9.25
DBN 87.5 68 82.1 8.9

1D-CNN 92.5 84.5 91.52 5.47
HHT-CNN 95.5 89 93.25 2.84
STFT-CNN 95 87.5 94.14 3.93
CWT-CNN 100 99.5 99.95 0.32
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6. Conclusions

This study proposed a deep learning-based fault diagnosis method for transformers,
which converted vibration signals into RGB images to extract the corresponding fault
features using CWT and then achieved fault diagnosis through an improved CNN model.
In order to train and validate the proposed model, an experimental setup was designed
to simulate transformer faults, including core clamp looseness, winding clamp looseness,
connection bar looseness, and turn-to-turn short circuit. The optimal structural and hy-
perparameters of the proposed model were determined by comparing their diagnostic
performances. Compared with other methods, the proposed diagnosis method can achieve
the highest mean accuracy of 99.95% and the lowest SD of 0.32%. Moreover, due to the
offline training strategy, the feature extraction and diagnosis process took less than 7
s, which can provide fast and accurate online fault diagnosis for the transformer. This
study can expand the field of transformer fault diagnosis and offer technical support for
condition-based maintenance of operating transformers.
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Abstract: In recent years, infrared thermographic (IRT) technology has experienced notable advance-
ments and found widespread applications in various fields, such as renewable industry, electronic
industry, construction, aviation, and healthcare. IRT technology is used for defect detection due to its
non-contact, efficient, and high-resolution methods, which enhance product quality and reliability.
This review offers an overview of active IRT principles. It comprehensively examines four categories
based on the type of heat sources employed: pulsed thermography (PT), lock-in thermography (LT),
ultrasonically stimulated vibration thermography (UVT), and eddy current thermography (ECT).
Furthermore, the review explores the application of IRT imaging in the renewable energy sector, with
a specific focus on the photovoltaic (PV) industry. The integration of IRT imaging and deep learning
techniques presents an efficient and highly accurate solution for detecting defects in PV panels,
playing a critical role in monitoring and maintaining PV energy systems. In addition, the application
of infrared thermal imaging technology in electronic industry is reviewed. In the development and
manufacturing of electronic products, IRT imaging is used to assess the performance and thermal
characteristics of circuit boards. It aids in detecting potential material and manufacturing defects,
ensuring product quality. Furthermore, the research discusses algorithmic detection for PV panels,
the excitation sources used in electronic industry inspections, and infrared wavelengths. Finally, the
review analyzes the advantages and challenges of IRT imaging concerning excitation sources, the
PV industry, the electronics industry, and artificial intelligence (AI). It provides insights into critical
issues requiring attention in future research endeavors.

Keywords: infrared thermographic; renewable industry; electronic industry; algorithms; artificial
intelligence

1. Introduction

Any object in nature that is above absolute temperature (−273 ◦C) radiates heat
(electromagnetic waves) outward [1]. Electromagnetic waves with a wavelength range of
760 nm to 1 mm are called infrared and cannot be seen by the naked eye. The higher the
temperature of an object, the greater the energy radiated. Infrared thermographic (IRT)
technology involves sensing infrared waves through special materials, converting them
into electrical signals, and then converting the electrical signals into digital images. Using
thermal imaging technology, the detection device (an infrared thermal imager) receives
varying degrees of infrared radiation from the surface of a sample, generating a temperature
field map. This temperature field map characterizes the infrared radiation distribution and
can be used to evaluate the differences in the external and internal structures of the sample.
This is because the differences in the external and internal structures of the evaluated object
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will generate different heat conduction in the material, thereby affecting the heat flow [2].
This means that samples with defects, due to differences in internal structure, will cool
or heat up at different ratios, resulting in different thermal contrasts in infrared thermal
radiation imaging.

Therefore, IRT technology can be used in the field of defect detection [3], especially in
the electronic [4,5] and renewable industries [6]. According to the structural characteristics
and defect properties of different materials, different types of thermal excitation sources
need to be designed to actively heat the surface or interior of the tested object. The
thermal excitation source can be modulated or not. Common excitation sources include
flash/halogens lamps, hot air, lasers, ultrasound, electromagnetics, etc. Due to the presence
of defects on the surface or inside of the tested object, there will be certain differences in the
ways in which the thermal waves generated propagate towards the surface of the object.
The main advantages of IRT over other technologies are: (1) non-contact and non-invasive;
(2) high-speed; (3) large-area; (4) simple operation; (5) intuitive and easy-to-understand
results; and (6) a wide range of inspection objects such as metallic, non-metallic, and
composite materials. For example, with IRT technology, it is possible to measure the
temperature of extremely hot objects or dangerous products (e.g., strong acid, hot steel) at
high speed in a non-contact, non-invasive, and large-area way so that their temperature
distribution can be safely measured and users can be kept away from danger [5,7]. In
addition, it is possible to perform high-speed scanning not only of stationary targets but
also of fast-moving targets. In contrast to the harmful radiation effects of techniques
such as X-ray imaging, IRT is radiation-free and suitable for long-term and repeated use.
Figure 1 illustrates the search results for the citation frequency and publication count
of IRT keywords in the Web of Science database. The chart clearly reflects a gradual
increase in both citation frequency and publication count, underscoring the continuous
growth of research interest and study in the field of IRT. This upward trend suggests the
increasing significance of IRT across various academic disciplines, motivating researchers
to delve deeper into the applications and advancements of IRT technology. This is distinctly
demonstrated in the chart, providing robust support and impetus for current and future
IRT research.

 
Figure 1. The citation frequency and number of publications for the keyword “IRT” were searched
for in Web of Science.
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In the past decade, the global photovoltaic (PV) market has grown almost exponentially
in size. PV solar energy has strong competitiveness in the global energy market and has
become a mainstream renewable energy technology [6]. The IRT imaging method is an
efficient and potent tool for qualitative examination of PV modules when compared to
conventional I–V characteristics. It can reliably pinpoint the specific position of defects in PV
power plants in addition to detecting their presence in the system. For example, for a normal
PV module, the incident irradiance causes a uniform temperature distribution on its surface.
On the contrary, for most faulty PV modules, the thermal behavior of the PV module
affects its surface temperature distribution, resulting in various inhomogeneities in the
temperature distribution. This means that with minimal instrumentation, no direct contact,
and no interruption of the functioning of the PV system in real-world conditions [8,9],
details regarding the thermal characteristics and the precise physical location of the fault
can be quickly obtained to quantitatively diagnose the presence of a faulty cell, cell bank,
or module.

The electronics industry, stemming from the advancement and application of electronic
science and technology, is not only one of the pillar industries of the national economy, but
also an emerging science and technology development industry. In integrated circuits, for
example, the electronic circuits of printed circuit boards (PCBs) are widely made [10,11],
and these contain a high density of electronic components in the board power supply
and many electronic connections, which are potential manufacturing defects. And the
identification and localization of these defects are critical to the error-free performance of
PCBs. Typically, defects produce abnormal temperature patterns that can be detected by
the IRT. For example, transparent components are a key core component of smart terminals
(one of the pillar industries of the electronics industry). Common transparent components
mainly include the cover of the display, the light guide plate, etc., in this field [3]. 3D
glass cover components are prone to defects (scratches, microcracks, microbubbles, water
ripples, etc.) during the manufacturing process. According to statistics, the yield rate of
3D glass cover components is less than 75% [12–14], so high-performance detection of
defects to improve the yield rate of the final smart terminal products is a technical challenge
to be overcome. However, the defect detection process of transparent components has
special characteristics with high light transmission and reflectivity, and the existing process
is mainly manual. Relative to the traditional optical machine vision detection method,
thermal spray infrared imaging will be controlled by a high-temperature gas through a
moving nozzle, heating intelligent terminal transparent components due to the thermal
resistance effect, component defects of the geometry, spatial location, etc. In the process of
heat transfer, therefore, the defects in the vicinity of the spatial temperature evolution have
a certain degree of variability compared to the normal, so the difference can be captured by
thermal infrared imaging.

Due to the rapid expansion of the renewable energy sector, a dedicated section has
been included in this paper to delve into the intricacies and developments within this
industry. The fusion of IRT and advanced deep learning techniques represents a substantial
leap forward in improving the accuracy and efficacy of detecting and diagnosing defects
in PV panels [15]. For example, commonly used algorithms include convolutional neural
networks (CNN), chaos synchronization detection method (CSDM), and genetic algorithm
(GA) [16–19]. This integration harnesses the power of IRT’s thermal imaging to capture
nuanced temperature variations across PV panel surfaces, and when combined with deep
learning algorithms [20], the system can not only identify defects but also offer enhanced
predictive capabilities [21]. Through this interdisciplinary approach, the ability to precisely
pinpoint and diagnose issues in PV panels is substantially elevated [22,23].

The detection of electronic components presents a unique set of challenges owing to
their complex and intricate structures [24]. In this context, the process of detecting defects
and anomalies typically necessitates external excitation to induce heating within these
electronic components. This, in turn, enables the capture of thermal radiation emitted by
the object under inspection, facilitating the creation of a thermal image. In the realm of
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infrared thermal imaging for the detection of electronic components, lasers have emerged
as a common and preferred excitation source [25,26]. The utilization of lasers at the 808 nm
wavelength has demonstrated several advantages in electronic component inspection [27].
Firstly, it ensures the accurate targeting of specific areas of interest on the component,
facilitating a controlled heating process. Additionally, this wavelength is well-matched to
the spectral response of many infrared cameras, enhancing the efficiency of data acquisi-
tion [28]. As a result, the thermal images captured exhibit clarity and detail, enabling the
detection of defects or anomalies with high precision.

2. Principle and Key Techniques

Active IRT is a technique whereby the surface or interior of an object to be inspected
is excited in a controlled manner by a controlled heat source, causing its temperature
to change. In this way, the changing temperature field of the object to be detected in
space and time can be recorded using an infrared thermal camera to obtain the dynamic
response of the heat wave. Afterwards, the thermal series of images obtained by the
camera are processed and analyzed by image processing algorithms to determine whether
the object to be detected is defective. In addition to high-performance infrared cameras,
active IRT needs to focus on stimulating sources, heat transfer mechanisms, and image
processing algorithms.

2.1. Principle

Active IRT, a subset of infrared imaging-based machine vision (IRMV), refers to a
computer’s capability to produce images from infrared (IR) rays emitted or reflected by an
object. A distinct demarcation exists between IRMV and traditional machine vision (MV).
A typical IRMV system comprises an infrared camera with a lens, an infrared light source
(stimulating heat source), a PC for image processing, a control module, and actuators.
Traditional MV does not require the infrared camera and the stimulating heat source, but
only a traditional camera and a common light source.

Infrared is an electromagnetic wave with a wavelength between microwaves and
visible light. The infrared band is usually subdivided into several sub-bands based on their
wavelengths, as shown in Figure 2. Typically, near-infrared (NIR) waves have wavelengths
ranging from 0.76 to 1 μm, short-wave infrared (SWIR) has wavelengths ranging from 1 to
2.5 μm, mid-wave infrared (MWIR) has wavelengths ranging from 3 to 5 μm, long-wave
infrared (LWIR) rays have wavelengths ranging from 7.5 to 14 μm, and far-infrared (FIR)
rays ranges from 15 to 1000 μm. Terahertz (THz) rays are FIR rays with wavelengths
between 0.1 and 1 mm. As a result, TeraSense or another THz camera could be used to
define terahertz machine vision (THzMV) [29]. Infrared applications are divided into three
main categories: short-wave infrared, mid-wave infrared, and long-wave infrared. Short-
wave infrared utilizes the short-wave infrared radiation prevalent in the target’s reflective
environment and is similar in resolution and detail to visible light images. Long-wave and
mid-wave infrared imaging utilizes thermal radiation emitted by the room-temperature
target itself and is used in a variety of infrared thermal vision devices.

2.2. Excitation Sources

Various excitation sources (e.g., flash/halogens lamps, hot air, lasers, ultra-sound,
electromagnetics, etc.) are employed to thermally stimulate either the object’s surface
or interior of the object according to the needs of different detection objects, to measure
the temperature change after induction, as shown in Figure 3. Depending on the type of
excitation heat source used, active IRT is mainly categorized into pulsed thermography (PT),
locked-in thermography (LT), ultrasonically stimulated vibration thermography (UVT),
and eddy current thermography (ECT).
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Figure 2. Infrared electromagnetic spectrum and its detection by infrared imaging.

Figure 3. Active IRT method and its excitation source in the defect detection process.

PT This technique utilizes a pulsed heat source (e.g., flash lamps, lasers, etc.) to emit
heat pulses to the specimen into be inspected and heat it, as shown in Figure 4. Due to
the very concentrated energy of the pulsed heat source and the very short pulses, the
thermal equilibrium of the specimen is disturbed, and heat is rapidly conducted inside the
specimen. If a defect exists, this results in a temperature difference between the surface of
the specimen above the defect and the rest of the area. At this time, the fast infrared camera
can record continuous thermal infrared imaging images, and the captured images are
analyzed by the computer through algorithms for real-time pixel analysis. After the pulsed
heat source is injected into the specimen, the variation of temperature profiles in different
areas provides information about the internal defect characteristics of the material. This
pulsed IRT can be used to detect defects on the surface or inside the specimen. The pulsed
method has the advantage of being independent of compound heating inhomogeneities
and possible changes in surface properties [4,30].
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Figure 4. Schematic of PT tests in the defect detection process.

LT Lock-in thermography, also known as thermal wave imaging or modulated ther-
mography, was proposed by Busse et al. [31], and has since been further developed by
various researchers [32]. The method entails subjecting a specimen to a frequency-specified
periodic (typically sinusoidal, with a given modulation frequency ω and amplitude I)
thermal excitation in a steady state and then capturing the surface heating using an infrared
camera. The thermal excitation time is at least one modulation cycle until the surface tem-
perature of the specimen reaches a quiescent state. The detection method of LT is shown in
Figure 5 and consists of a signal generator and an infrared camera. The signal generator
provides the modulation frequency and intensity for the halogen lamp to generate thermal
waves, and the IR camera has a high resolution to capture the thermal response of the
specimen under thermal excitation. By analyzing the phase shift between the thermal
excitation signal and the thermal surface response, it is possible to not only locate the
presence of defects in the inspected specimen, but also to precisely locate the defects and
determine the defect depth. The LT technique is used in much the same way as the PT
technique, with the difference being the sampling frequency. In the former, the specimen to
be tested is subjected to thermal excitation that lasts for several cycles, resulting in a longer
testing time. However, this method is insensitive to external disturbances and works well
even under difficult conditions. In addition, the LT technique allows defect detection on
large surfaces, and the excitation frequency can determine the depth of test defects with a
good signal-to-noise ratio.

UVT It is well known that PT and LT are the two primary forms of optical excitation.
Like optical excitation, acoustic excitation can also be used for active IRT detection. Figure 6
illustrates the schematic diagram of UVT, primarily consisting of an ultrasonic transducer
and an infrared camera [33]. The ultrasonic transducer excites the specimen to be detected,
and the vibration propagates inside the material, leading to localized heating of cracks
through internal friction, and then through the high-performance infrared camera to capture
its temperature changes. The interaction between the thermal and mechanical waves can
localize the presence of defects in the specimen. If there are defects, because they release
more heat through friction, there will be some difference in the thermal image from other
normal areas. Since ultrasonic waves propagate to deeper layers, UVT can detect deep
defects within the specimen. Analyzing the phase shift between the ultrasonic excitation
and the thermal response enables precise defect localization.
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Figure 5. Schematic of LT tests in the defect detection process.

 
Figure 6. Schematic of UVT tests in in the defect detection process.

ECT Eddy-current-induced IRT is a technique that uses external excitation to induce
eddy currents inside the specimen and an infrared camera to capture the heat flowing from
the surface (shown in Figure 7) [34]. For instance, when a coil with pulsed excitation is
brought near the test specimen, if the test specimen is free of defects and made of a uniform
material, the induced eddy currents will be uniformly distributed across the test specimen.
On the contrary, if the test piece surface or internal part has cracks and other defects or
is mixed with other impurities due to material inhomogeneity, the induced eddy current
will be around these defects or impurities, which will inevitably lead to the entire test
specimen’s defective local temperature rising faster than the test specimen, thus forming a
temperature field distribution.
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Figure 7. Schematic of ECT tests in in the defect detection process.

2.3. Heat Transfer Mechanisms

In addition to the type of excitation heat source used for defect detection, the form
of the excitation wave of the heat source is also very important due to the heat transfer
mechanism involved. Evidently, manipulating the amplitude (energy level), frequency,
and duration of the excitation heat source has a great impact on the outcomes of active
thermography [35,36]. Suitable process parameters for the excitation heat source can
enhance the accuracy and robustness of the detection. This means that for a specific
specimen, we need to select the appropriate thermal excitation waveform according to the
nature of the defect to better utilize the heat transfer effect and improve the signal-to-noise
ratio between the defective region and the normal region. Thermal imaging techniques
can be broadly categorized into two types: transient and static. The former is the use of
pulsed (given the stimulus time of the waveform) forms of energy waveforms to stimulate
the specimen to produce a thermal response; infrared data acquisition is carried out in
the transient mode before the specimen is heated to a steady state. The latter is the use of
modulated (given the frequency of the stimulus waveform) energy waves to stimulate the
specimen to produce a thermal response. The specimen is heated to reach a steady state
after infrared imaging to obtain the modulated waveform of the thermal response. Table 1
summarizes the energy waveforms and their equivalent temperature response. Take a
point on the surface of the sample and a point on the defect, which is Sound P#1 and Defect
P#2, respectively. The color of Sound P#1 is green, and the color of Defect P#2 is red. The
colors of the curves correspond to the colors of the two points, respectively. The green
curve shows what happens at the surface, while the red curve shows what happens at the
defect site. The comparison of the two curves describes the different results produced by
different methods in these two sampling areas, and the curve changes at the defect can
be seen. The contrast between the two curves describes the different results produced by
different methods in the two sample areas.

For transient heat transfer in the defect detection experiments, the material specimen
is subjected to relatively short energy pulses and the temperature rise and decay curves
over time are recorded. The diffusion of the thermal front under the surface of the specimen
is calculated according to the Fourier diffusion equation [37], as shown in Equation (1):

∂T
∂t

= α∇2T (1)

where α is the thermal diffusivity (m2/s).
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Considering that the surface of the specimen is uniformly heated, the heat propagation
into its interior can be regarded as a one-dimensional heat flow process [38,46]. Therefore,
the one-dimensional heat flow of Equation (1) can be expressed as follows [37]:

∂T
∂t

= α
∂2T
∂z2 (2)

where z corresponds to the coordinate parallel to specimen thickness.
For a Dirac delta pulse plane source of strength Q/ρC released into a semi-infinite

medium (z � 0) from its surface (z = 0), Equation (2)’s solution is as follows [37]:

Ts(z, t) = T0 +
Q

e
√

πt
exp

(−z2

4αt

)
(3)

where Ts is the transient temperature in the semi-infinite body, T0 is the initial temperature,
and e is the thermal effusivity.

Static heat transfer In the lock-in detection process, the specimen is subjected to
periodic thermal waves and the one-dimensional solution for an isotropic semi-infinite
specimen is as follows [47]:

Ts(z, t) = T0 exp
(
− z

μ

)
cos

(
2πz

λ
− ωt

)
(4)

where ω is the modulated frequency, λ corresponds to thermal wavelength, T0 is the initial
temperature, and μ is expressed as thermal diffusion length, which is equivalent to the rate
of decay of the thermal wave as it penetrates through the material [47].

In contrast to the PT technique (which records the temperature decay), the LT technique
records the changes during the temperature rise period in a stationary state by means of a
thermal imaging camera [35]. In the case of static heat transfer, the LT technique makes it
easy to analyze the time dependence of the response waveform over a complete modulation
period by using a sinusoidal waveform thermal excitation, which allows the reference
waveform to maintain good shape and frequency, thus determining the type and location
of defects.

2.4. IR Image Processing Algorithms

Compared to visible light imaging, infrared imaging characterizes the temperature
distribution of the specimen and is a grayscale image with no color or shading, low
resolution, and poor resolution potential. Therefore, the clarity of infrared imaging is lower
than that of visible light images. Additionally, the infrared imaging process is susceptible
to random external interference and imperfections in the thermal imaging system, resulting
in a very low signal-to-noise ratio for the infrared image. This means that after IR imaging,
when the acquired image does not provide satisfactory information about the condition of
the detected object, it also needs to be preprocessed using appropriate algorithms [48,49].
Non-uniformity correction algorithms and image enhancement algorithms are typical
representatives of IR image preprocessing algorithms.

It is well known that non-uniformity correction algorithms are mainly divided into
two categories: calibration-based nonuniformity correction (CBNUC) and scene-based
non-uniformity correction (SBNUC) [50]. CBNUC encompasses a range of algorithms used
to mitigate non-uniformity in thermal infrared imaging devices. Representative algorithms
in this category include two-point correction (TPC) [51], multi-point correction (MPC) [52],
radiometric correction [53], and scene-based non-uniformity correction (SBNUC) [50].
Certain CBNUC methods can provide highly accurate non-uniformity correction, ensuring
that thermal images accurately represent temperature differences. In some cases, the
correction process may be time-consuming, especially when using SBNUC methods that
require substantial computational effort [54,55]. As an example, the scene-based non-
uniformity correction algorithm can adapt to the non-uniformity change caused by the
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ambient temperature change, in which the representative algorithms are the temporal
high-pass filtering (THF) method [56], constant statistics (CS) method [57], Kalman filtering
(KF) method [58], neural network (NN) method [59], and registration-based (RB) [60].
Infrared image enhancement algorithms mainly include traditional frequency domains,
space domain, and new image enhancement methods. The traditional enhancement method
is to adjust the histogram of the image through grayscale mapping so that its distribution
is balanced to achieve the enhancement of the whole image contrast, which is fast and
effective, suitable for the scene depth, and does not change much. At the same time, the
image distribution is relatively uniform. Most of the traditional algorithms are based on
the histogram equalization (HE) algorithm for infrared image enhancement, which can be
classified into two categories according to the area of action of the mapping function: the
global contrast enhancement (GCE) algorithm and the local contrast enhancement (LCE)
algorithm [61,62]. Among the new image enhancement methods, Edwin Land proposed
the Retinex theory, an image enhancement algorithm that removes the effect of irradiated
light in the original image and obtains the reflective properties possessed by the object
itself [63] to analyze the intrinsic nature of the image. This algorithm has the advantages of
local contrast enhancement, high dynamic range compression, and image color constancy
that can be maintained.

Recently, with the development of MV and artificial intelligence (AI) image process-
ing techniques, the level of a computer’s ability to process and comprehend images has
increased [64]. Machine learning (ML) is a branch of AI that learns from data through
computer programs and automatically improves and adapts its performance [65,66]. Thus,
ML aims to help computers learn and adapt, without having to perform explicitly extensive
manual programming, to automated analytical algorithms that deal with multivariate and
multiparameter problems [3]. For example, Saintey and Almond [67] utilized an artificial
neural network (ANN) as an expert system to obtain detailed information on defect size
and depth from transient thermographic data. This type of method [67,68] is generally
based on pre-training the ANN on normal, defect-characterized experimental datasets to
obtain the thermal contrast, phase contrast, etc., after infrared imaging as a function of the
presence or absence of defects, the defect shape and size categories, and the range of defect
depths. Notably, clustering algorithms (including various improved versions) have also
been widely used in defect detection in IR imaging [8,69,70].

3. Renewable Industry

PV solar power generation has become an indispensable component of the global
energy landscape [71,72]. The long-term performance and overall reliability of PV modules
are significantly influenced by faults occurring both in real-world operational conditions
and during transportation and installation [73,74]. These faults lead to specific abnormal
operations, primarily characterized by reduced power output, abnormal module surface
temperature distribution, excessive thermal/mechanical stress, and even safety risks [75,76].
Traditional electrical performance testing of PV modules is a mature testing method, but
it has limited fault-detection capabilities [77]. With the advent of digital cameras, charge-
coupled devices (CCDs), and uncooled focal plane array (UFPA) detectors, optical-based
infrared thermal imaging detection has gained popularity [78,79]. Specifically, electrolu-
minescence (EL) and IR imaging prove to be potent tools for the qualitative assessment of
PV modules, enabling the detection of faults in PV installations and precise identification
of their exact locations [80]. In conducting this research, a total of 94 literature reviews
published between 2000 and 2023 were identified on the Web of Science. These reviews
covered various domains, including energy fuels, engineering, and computer science, and
were obtained by limiting the search to reviews related to IRT detection in PV. Table 2
presents the top five most-cited reviews in this domain.
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Table 2. The most cited review on the application of IRT in PV.

Authors Year Citations Title

Tsanakas et al. [6] 2016 200 Faults and infrared thermographic diagnosis in operating c-Si
photovoltaic modules: A review of research and future challenges.

Aghaei et al. [81] 2015 102 Innovative Automated Control System for PV Fields Inspection and
Remote Control.

Herraiz et al. [22] 2020 75 Photovoltaic plant condition monitoring using thermal images
analysis by convolutional neural network-based structure.

Gallardo-Saavedra et al. [82] 2018 71 Technological review of the instrumentation used in aerial
thermographic inspection of photovoltaic plants.

Niazi et al. [83] 2019 68 Hotspot diagnosis for solar photovoltaic modules using a Naive
Bayes classifier.

Regarding the number of literature searches on the infrared detection of photovoltaic
panels in Web of Science, Table 3 provides an overview of key annual performance indica-
tors. The table demonstrates a noticeable upward trajectory in the volume of the literature,
reflecting the growing interest in the research field. However, it is worth noting that both
the average citation count and H-Index for each publication exhibit a declining trend, as
indicated in Table 3. This trend can be attributed to the tendency for older literature to
accumulate more citations. Of particular interest is the anomaly in 2019, where, despite
a substantial increase in publications, there was a sharp decrease in the average citation
count per publication and the average yearly citation rate per publication.

Table 3. Annual performance metrics of renewable industry.

Year Documents Citations Average Citations per Document H-Index

2013 65 1954 30.06 25
2014 96 1782 18.56 23
2015 81 1547 19.1 25
2016 99 1485 15 21
2017 140 3820 27.16 29
2018 99 1482 14.97 22
2019 136 1890 13.9 24
2020 136 2436 17.15 26
2021 124 1400 11.29 19
2022 150 641 4.27 11

Numerous investigations have been carried out, and there has been a recent surge
in publications focusing on assessing the suitability of IRT for the detection of PV anoma-
lies [84]. Kandeal et al. [21] accomplished this by meticulously analyzing the available
data from the Scopus database and using the VOSviewer tool [85] to create a bibliomet-
ric network to illustrate the literature. These networks were presented in the schematic
representation of keyword relationships (Figure 8). In this illustration, the size of each
circle signifies the occurrence frequency of keywords, the thickness of the connecting lines
represents how frequently these keywords co-occur, and the color-coding denotes the year
of publication. As depicted, the IRT method has been widely employed across various
imaging applications and has found substantial utility in the monitoring of PV conditions,
particularly from 2016 onward.
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Figure 8. Map of keywords co-occurrence in IRT-PV context [21].

3.1. Optical Degradation

One of the pivotal attributes of high-quality PV front encapsulation materials is
achieving optimal optical transmission efficiency [86,87]. However, when deployed in real-
world conditions, PV modules encounter an array of environmental challenges, including
elevated temperatures, humidity, exposure to ultraviolet (UV) radiation, wind, and snow
pressure [88,89]. Among these environmental stressors, moisture can infiltrate the interior
of the solar panel through various pathways, including its edges, rear section, or any voids
like cracks in the panel structure [90,91]. The pathway leading to optical deterioration in
PV modules as a consequence of moisture infiltration is depicted in Figure 9a [92]. As
time progresses, the concern regarding optical degradation intensifies and, in the most
severe scenarios, can result in a reduction of over 50% in the rated power output of the
PV module [93]. Therefore, it is crucial to understand the attributes of imperfections
and the fault mechanisms responsible for the optical deterioration of PV devices. This
understanding is essential for preventing further degradation and the development of
additional failure mechanisms [94].

IR imaging offers insights into the temperature distribution across the surface of the
PV module and the location of defects or fault modes [95]. Faulty cells result in mismatch
losses, thereby leading to an uneven distribution of cell temperature (Tc) across the PV
module. The malfunctioning cells operate at elevated Tc levels, creating hotspots that
subsequently affect the module temperature (Tm) [96]. Figure 9b displays the IR image of
PV Module X, while Figure 9c–e present magnified EL images of the highlighted regions
in Figure 9b [97]. These highlighted areas in Figure 9b are in proximity to the module’s
frame and represent the most critical hotspots, indicating the presence of significant leakage
current during operation. It’s worth noting that hotspots are distributed throughout the
module. The positioning of hotspot cells near the PV module’s frame aligns with the
findings from the electroluminescence (EL) images. The abundance of hotspot cells implies
that a substantial portion of the cells in field-aged PV Module X are experiencing various
stages of degradation. In Figure 9c, no evident cracks are detected, but the highlighted
region in Figure 9b shows hotspots. These hotspots in Figure 9b may result from metal
grid corrosion and/or solar cell degradation. Moving to Figure 9d, it reveals the existence
of microcracks, with the warmest cells identified in this area on the IR image (as seen in
Figure 9b). In contrast, Figure 9e displays some cracks, but the hotspots in its corresponding
area on the IRT image are not as pronounced as those in Figure 9d. The significance of
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cracks in facilitating current flow underscores the occurrence and severity of the hotspots
observed in Figure 9d. The ΔT of PV Module X was approximately ∼8.2 ± 2 ◦C [98].

Figure 9. PV module in the field: (a) under environmental stressors e.g., high humidity, temperature,
and UV radiation, moisture can enter the PV module [92]; (b) IRT characteristics of PV Module
X acquired under clear sky outdoor conditions; (c–e) EL characteristics acquired under Isc bias
conditions of the corresponding marked areas in (b) [97].

Addressing the current drawbacks in industrial production lines, such as low defect
detection efficiency, limited data, and high error rates, is crucial due to the significant
impact of defects in the silicon photovoltaic (Si-PV) cell manufacturing process on the
normal power generation of PV systems. Hence, defect detection is of utmost importance.
Du et al. [99] introduced a defect detection and classification method for Si-PV cells based
on IRT and CNN. The method involved fine-tuning the LeNet-5, VGG-16, and GoogleNet
models after generating the dataset. After 71 training iterations, the GoogleNet model
consistently achieved 100% defect classification accuracy with a verification accuracy of
100% and a loss of 0.002. However, training was halted at this point since no significant
improvements were observed, and the model reached its peak stability at the highest accu-
racy. The VGG-16 model attained its highest defect classification accuracy after 121 training
iterations, achieving a verification accuracy of 97.67% and a loss of 0.15. While the LeNet-5
model could also achieve a 100% precision value, it exhibited instability and significant
fluctuations during the training process. Balasubramani et al. [100] proposed a method
for detecting ethylene vinyl acetate (EVA) discoloration and delamination defects based
on the thermal pixel counting (TPC) algorithm. Temperature indicators, namely T15 and
T20, were introduced to highlight the temperature pixel distribution at ΔT ◦C = 15 ◦C
and 20 ◦C, respectively. These indicators were compared with healthy panels to validate
the algorithm’s effectiveness. The classification was automated using a fuzzy classifier,
adjusting classification boundaries by modifying fuzzy IF-THEN rule certainty levels while
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keeping membership function parameter values constant. This approach, particularly the
use of the certainty factor (CF) in the fuzzy classifier, significantly improved classification
accuracy, surpassing other methods by an average of 10%.

3.2. Electrical Mismatches and Degradation

The term “electrical mismatches” encompasses a range of fault types, including cell
cracks, snail trails, broken interconnecting ribbons and busbars, shunts, and poor solder-
ing [100]. These faults are not always discernible through straightforward visual inspection,
especially when it comes to optical degradation. Typically, power loss and thermal degra-
dation in faulty modules can lead to an increased risk of safety issues in the entire PV
system [6]. Mismatched voltage characteristics can lead to uneven current distribution,
thereby affecting the overall performance of the system. Current imbalances between
different components may result in electrical mismatch issues among the modules [101].

The commonly employed method for diagnosing faults in solar PV panels is the
measurement of Current–Voltage (I–V) characteristics. However, this approach is time-
consuming and lacks the ability to categorize defects like delamination, discoloration
of EVA, and isolation of cell parts resulting from cell cracks [102]. Pei and Hao [103]
presented fault indicators based on current and voltage to detect faults in PV systems.
According to the experimental results by Tsanakas et al. [6], cracks in PV modules were
actually diagnosed through the I–V characteristics. These interconnection material issues
in a single cell or within a cell string occur due to physical strains during transport or
installation, thermal cycling leading to thermomechanical stresses, subpar soldering, and
potential hotspots arising from extended PV system operation in real-world conditions [104].
Detecting broken interconnections is straightforward using optical techniques such as
EL, IRT, ultraviolet (UV) imaging, or through basic I–V characterization (see Figure 10).
Figure 10a illustrates the typical I–V characteristic output. Figure 10b,c display the thermal
images of PV modules with electrical mismatches, attributed to interconnection ribbon
fractures (Figure 10b) and soldering/busbar defects (Figure 10c) as observed through
IRT. Figure 10a shows the typical I–V characteristic output, while Figure 10b,c display
thermal images of PV modules. These thermal images reveal electrical mismatches due to
interconnection ribbon fractures (Figure 10b) and soldering/busbar defects (Figure 10c), as
observed through IRT. Belhaouas et al. [105] employed thermal imaging to investigate the
performance of solar PV modules after outdoor exposure. The thermographic inspection
revealed that the temperature of PV cells inside the PV modules ranges from 32 ◦C to
68.2 ◦C, as given in Figure 10d. This temperature variation occurs while the average
ambient temperature during the thermal inspection is 23 ◦C. The thermal inspection found
that the deployed PV modules, regardless of their glass types, primarily experience minor
temperature mismatch (ΔT) at 90.27%, followed by major ΔT mismatch at 9.58%, and a
critical ΔT mismatch case at 0.13%. Nonetheless, PV modules with textured glass exhibit
slightly lower thermal stress levels compared to those with float glass. Tsanakas et al. [106]
assessed the suitability of thermal image processing and edge detection for defect detection
in PV modules. The approach combined image segmentation with Canny edge detection
and has yielded favorable results through on-site thermal imaging measurements of two
PV arrays: PV-1 and PV-2. It successfully identified 13 out of 14 faulty cells in PV-1 and 27
out of 29 faulty cells in PV-2 by detecting hotspots within the edge maps. These identified
hotspots were validated against the standard electrical tests conducted on each module
before the experiments, revealing a performance decline of 9.5% for PV-1 and 9.7% for
PV-2, respectively. Aziz et al. [107] exploited continuous wavelet transform to generate
two-dimensional (2D) images from PV system data and utilized CNN for PV system fault
classification, achieving a circuit fault detection accuracy of 73.53%.
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Figure 10. PV module in the field: (a) typical I–V characteristic output [6]. IRT of an electrically
mismatched PV module, due to broken interconnection ribbons; (b) defective soldering/busbar
(c) [6]; (d) thermal image of PV module [105].

3.3. Non-Classified Faults

In addition to optical degradation and electrical mismatches and degradation, faults
such as potential-induced degradation (PID) and defective bypass diodes (short circuits)
are informally referred to as “non-classified” faults. PID is a relatively newly identified fault
mechanism in operational PV modules and remains an area with limited comprehensive
research and understanding. It involves a crucial externally induced factor, typically
accelerated in hot and humid conditions, resulting in significant degradation and power
loss within the affected PV modules [108,109].

Researchers have conducted various algorithm and laboratory tests to detect “non-
classified” faults. For instance, Bouaichi et al. [110] assessed the PID recovery process in
affected PV modules using IR evaluation. PID can be considered a factor affecting the
durability and power output of crystalline silicon modules. Lu et al. [16] employed a hybrid
algorithm combining chaos synchronization detection method (CSDM) and CNN for the
investigation of fault detection in PV modules. The discussion encompassed four prevalent
states observed in PV modules: the normal state, module damage state, module contact
defect state, and module bypass diode failure state. The research findings showcased the
proposed method’s remarkable recognition accuracy of 99.5% when 400 sets of randomly
generated fault data (with 100 data points for each fault) were inputted, surpassing the
traditional edited nearest neighbor (ENN) algorithm’s recognition rate of 86.75%. Tao
et al. [17] introduced a genetic algorithm-optimized deep belief network (GA-DBN) for
diagnosing PV faults, covering normal operation, grounded short circuit, open-circuit in
series, partial shadow, and abnormal aging. Although achieving an impressive overall
diagnostic accuracy of 95.73%, it’s important to note that the average training time was
relatively long at 316.34 s, primarily due to the intricate optimization process involving
the initial weight and bias of the DBN through GA. Manno et al. [18] achieved optimal
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performance with CNN using thresholding as a preprocessing method, achieving a 99%
accuracy on mid-range CPUs in less than 30 min. Additionally, simplification of thermal
imaging images, representing various operational states of PV modules, can achieve high
precision. Considering a dataset consisting of 200 sliced images, the same configuration
resulted in 90% accuracy for the MLP network and 100% accuracy for CNN. Figure 11
displays various thermographic images utilized for CNN training, the thermographic
image in Figure 11a was taken by an operator using a standard lens. Figure 11b shows a
non-perpendicular thermographic image angle, and Figure 11c, captured with a standard
lens, includes multiple PV modules. In Figure 11d, the thermographic image was acquired
using a wide-angle lens and encompasses several PV modules. Mellit [111] adopted an
embedded system for fault detection and diagnosis in PV modules, utilizing IRT and deep
convolutional neural networks (DCNNs). Two DCNN-based models were developed,
one for fault detection and the other for fault diagnosis. Despite the limited dataset size,
simulation results indicate a remarkable accuracy of 99% for fault detection and a quite
impressive 95.55% accuracy for fault diagnosis. As shown in Figure 11e, the classifier
accurately identifies instances of dust deposition on the PV surface, with a recognition
accuracy of only 95.5%. In fact, this is due to the similarity in contours between partial
shading effects and dust accumulation, as well as PV modules with short circuits and
damaged bypass diodes. Dhimish et al. [112] imported a novel PV hotspot fault detection
algorithm based on cumulative density function (CDF) modeling technique, achieving an
accuracy of 80%.

Figure 11. Different thermographic images used: (a) thermal images taken by operators using
standard lenses [18]; (b) the thermographic image was captured at an angle that is not perpendicular
to the module [18]; (c) thermal image obtained by standard lens [18]; (d) thermal image obtained by
wide-angle lens [18]; (e) host spot profiles variation for different examined PV module defects [111].

3.4. Summary

The advantages of the machine-learning-based method over traditional methods
are manifold. Machine learning algorithms can adapt and learn from data, allowing
them to improve their performance over time without the need for manual adjustments.
This adaptability is a significant advantage when dealing with complex and dynamic
systems [113]. Machine-learning-based methods undoubtedly offer numerous advantages
for IRT applications. However, like any approach, they do come with certain disadvantages
that need to be considered in the context of IRT. Machine learning models, especially
deep learning models, require large amounts of data for effective training. In the case
of IRT, acquiring a substantial dataset, particularly for rare or specific defects, can be
challenging [114]. Furthermore, efforts must be made to make machine learning models
more interpretable and transparent in the context of IRT to establish trust and confidence
in their results.
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Machine learning is a widely-used technology that relies on algorithms and models to
enable computers to learn from data and make decisions. Deep learning, on the other hand,
is a branch of machine learning that involves artificial neural networks, which can simulate
the workings of the human brain to process vast amounts of complex data. The integration
of IRT with deep learning plays a pivotal role in detecting and diagnosing defects in PV
panels [115,116]. Initially, the technique of IRT is employed to capture thermal images of
the PV panels. These thermal images depict the temperature distribution across the surface
of the PV panels, where defects typically manifest as anomalous temperature patterns.
Preprocessing of the thermal images may be necessary to eliminate noise, enhance contrast,
or adjust image dimensions to ensure compatibility with deep learning models [117].
Deep learning models [118], such as CNN [99] or GA-DBN [17], are then utilized to
learn and extract features pertaining to defects from the thermal images [119]. These
models possess the capability to autonomously acquire knowledge and recognize patterns
within the thermal images, including potential defects. The deep learning models excel in
automatically discerning complex patterns and temperature distributions within the IRT,
thereby enhancing the accuracy of fault detection and diagnosis [120]. This amalgamation
enables the automation of the detection and diagnosis processes, reducing the reliance on
manual intervention and significantly enhancing overall efficiency.

For instance, despite the relatively limited scale of the dataset employed in Mellit’s
study [111], simulation results demonstrated a fault detection accuracy of 99% and a fault
diagnosis accuracy of 95.55%, as shown in the Figure 12. In most cases, this method can
identify various types of defects in PV panels, including but not limited to hotspots, cracks,
dirt, and cell damage. Performance metrics for detection may encompass accuracy, recall,
and precision, among others, and these metrics are generally contingent on the specific
problem and model configurations. In summary, the fusion of IRT and deep learning offers
an efficient and highly accurate solution for detecting defects in PV panels. It holds the
potential to play a crucial role in the monitoring and maintenance of PV energy systems.
Table 4 summarizes the application of the combination of IRT and deep learning techniques
for defect detection and diagnosis of PV panels.

Figure 12. PV panel defect detection accuracy.
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Table 4. Summary of the combination of IRT and deep learning techniques for defect detection and
diagnosis of PV panels.

Algorithms Authors, Year Purpose Findings Remarks

CNN Du et al. [99] 2020

To enhance the
detection efficiency of
Si-PV cells and
achieved extensive
defect detection and
classification of Si-PV
cells.

The classification results
of traditional
classification methods
were significantly lower
than those of CNN
models.

IRT and CNN have
significant potential for
applications in defect
detection and automatic
recognition in Si-PV cells.

TPC algorithm Balasubramani et al.
[100] 2020

The TPC algorithm
detects discoloration
and layering defects on
PV panels.

The CF’s fuzzy classifier
exhibited superior
classification accuracy,
resulting in an average
classification accuracy
improvement of 10%.

The TPC algorithm
demonstrates a high level
of effectiveness in
detecting EVA
discoloration and
layering defects.

Canny edge detection Tsanakas et al. [106]
2013

Rapid detection and
diagnosis of hotspots in
PV modules.

The diagnosed hotspots
have been validated
against the standard
electrical tests for each
module, indicating a
performance decrease of
9.5% for PV-1 and 9.7%
for PV-2, respectively.

This method utilizes
qualitative and
quantitative data from
processed thermal
images of two PV arrays,
providing easily
interpretable results.

CSDM and CNN Lu et al. [16] 2021

A hybrid algorithm
combining CSDM and
CNN is employed to
study fault detection in
PV modules.

The proposed method
achieved an impressive
recognition accuracy of
99.5%.

The algorithm simplifies
a substantial amount of
raw measurement data
through CSDM and
subsequently employs
CNN to accurately
identify the fault states of
PV modules.

GA-DBN Tao et al. [17] 2020

GA are utilized for
diagnosing faults in PV
arrays to optimize the
DBN.

The GA-DBN method
effectively enables
diagnostic detection of
five operational states in
PV arrays, achieving an
overall diagnostic
accuracy of 95.73%.

Compared to the DBN,
SVM, and GA-BP models,
this model exhibits
higher accuracy in both
overall diagnosis and
individual fault type
diagnosis.

CNN Manno et al. [18] 2021

Utilizing CNN for the
automatic classification
of thermal images to
identify faults in PV
panels.

A dataset consisting of
200 segmented images
achieved a 100%
accuracy rate used CNN.

The CNN method proves
to be an effective tool,
enhancing the image
classification resolution
for remote fault detection
issues.

DCNNs Mellit [111] 2022

Embedded PV module
fault detection and
diagnosis using IRT
and DCNNs.

Two DCNN-based
models, namely the fault
detection and diagnosis
models, achieved an
accuracy rate of 99% for
fault detection and an
accuracy rate of 95.55%
for fault diagnosis.

Embedded solutions can
detect and diagnose
faulty PV modules with
acceptable accuracy.

Table 5 presents a comprehensive comparative analysis between research conducted
by scholars in the past and the current state of research. Historically, the majority of studies
were primarily focused on the conventional methods for PV panel inspection. In contrast,
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contemporary scholars are placing significant emphasis on the integration of deep learning
with IRT techniques. This shift in focus reflects the evolving landscape of research in
this field and the recognition of the potential of advanced methods for more precise and
efficient PV panel defect detection. The utilization of deep learning in conjunction with
IRT is emerging as a promising avenue for achieving higher accuracy and reliability in the
inspection of PV panels.

Table 5. Early and current authors are conducting research on the infrared detection of PV panels.

Authors Year Citations Title Remarks

Dincer et al. [121] 2014 29

Polarization Angle Independent Perfect
Metamaterial Absorbers for Solar Cell
Applications in the Microwave, Infrared,
and Visible Regime.

The proposed metamaterial-based solar
cell demonstrates high absorption in both
the infrared and visible spectra,
enhancing the potential for more efficient
next-gen solar cells.

Chandel et al. [122] 2015 33

Degradation analysis of 28 year field
exposed mono-c-Si photovoltaic modules
of a direct coupled solar water pumping
system in western Himalayan region of
India.

Utilizing thermal imaging technology to
identify hotspots and quantifying
degradation by measuring PV parameters
under indoor and outdoor conditions.

Adams et al. [123] 2015 42
Water Ingress in Encapsulated Inverted
Organic Solar Cells: Correlating Infrared
Imaging and Photovoltaic Performance.

Utilizing infrared imaging for local,
in-situ tracking of humidity-induced
performance degradation to predict the
lifespan of organic solar cells and
modules.

Du et al. [124] 2017 38
Nondestructive inspection, testing and
evaluation for Si-based, thin film and
multi junction solar cells: An overview.

Non-destructive inspection, testing, and
assessment of solar cells and modules.

Addabbo et al.
[125] 2017 55

A UAV Infrared Measurement Approach
for Defect Detection in Photovoltaic
Plants.

Drones can swiftly inspect solar farms,
employing this positioning technology for
detecting, labeling anomalies, and
identifying faulty panels.

He et al. [126] 2018 36

Noncontact Electromagnetic Induction
Excited Infrared Thermography for
Photovoltaic Cells and Modules
Inspection.

The active electromagnetic induction
infrared thermal imaging defect detection
method has enabled the visual detection
of defects in PV cells and modules.

Zefri et al. [127] 2018 48

Thermal Infrared and Visual Inspection of
Photovoltaic Installations by UAV
Photogrammetry-Application Case:
Morocco.

Visual defects, such as cracks,
contamination, and hotspots, have been
identified in both visual RGB and
thermographic inspections.

Akram et al. [128] 2020 80

Automatic detection of photovoltaic
module defects in infrared images with
isolated and develop-model transfer deep
learning.

CNN are used to train an isolation
learning model, achieving an average
accuracy of 98.67%. Fine-tuning the
pre-trained base model through transfer
learning on an infrared image dataset
increased accuracy to 99.23%.

Du et al. [99] 2020 43

Intelligent Classification of Silicon
Photovoltaic Cell Defects Based on Eddy
Current Thermography and Convolution
Neural Network.

IRT and CNN demonstrate significant
potential for defect detection and
automatic recognition in Si-PV cells,
providing a reliable approach for the
research, testing, manufacturing,
servicing, and maintenance of Si-PV cells.

Alves et al. [129] 2021 40
Automatic fault classification in
photovoltaic modules using
Convolutional Neural Networks.

Using cross-validation methods, CNN
achieve an estimated accuracy of 92.5% in
detecting anomalies in PV modules.

259



Sensors 2023, 23, 8780

Automatic photovoltaic inspection has garnered significant interest from researchers
in recent years. Numerous studies have explored automatic photovoltaic inspection using
various imaging methods. Demant et al. [130] employed a support vector machine algo-
rithm for the automatic classification of cracks in photoluminescence (PL) images. Stromer
et al. [131] proposed an enhanced EL image crack segmentation framework. Li et al. [132]
adopted image processing algorithms for the automatic detection of snail trails and dust in
visible light images. Su et al. [133] utilized newly proposed feature descriptors to classify
manufacturing defects in solar cell EL images. However, there has been limited research on
the application of deep learning for defect detection in photovoltaic component images.
These studies, including those by Chen et al. [134], Ding et al. [135], and Li et al. [136],
have leveraged deep learning techniques to detect defects in visible light (red, green, blue)
RGB images. Demant et al. [137] used CNN for automatic quality assessment and control
during the production of solar cells in PL images. Deitsch et al. [138] and Akram et al. [139]
employed deep learning methods for the automatic detection of faults in solar cell EL
images. This represents a notable shift toward utilizing deep learning approaches for
photovoltaic inspection.

4. Electronic Industry

With the progression of information electronic devices towards high reliability, minia-
turization, light weight, and multifunctionality, high-density integrated circuits with nu-
merous functional components have found extensive applications [140,141]. PCBs, serving
as critical structures for electrical and pneumatic interconnection, signal transmission,
mechanical linkage, and electronic system support, are also the primary failure-prone
areas of components. The long-term reliability of PCBs has become a focal research topic,
resulting in challenges associated with effectively and reliably detecting PCBs’ defects.
Traditional PCB defect detection methods have limitations, but active IRT, including tech-
niques like pulsed thermography and lock-in thermography, has found extensive use in
non-destructive testing for PCBs. The development of very large-scale integration (VLSI)
technology, increasing silicon wafer diameters, and decreasing integrated circuit linewidths
have imposed higher demands on silicon wafer manufacturing processes and surface
quality [142]. During semiconductor silicon wafer production, the formation of microc-
rack defects is common, ultimately affecting the quality of silicon-based microelectronic
products. Ensuring the quality and performance of products necessitates non-destructive
testing of silicon wafers. Surface mount components achieve interconnection between
chips/packages and substrates or PCBs using solder bumps. However, common manu-
facturing defects, including opens, cracks, or missing solder bumps, persist. As solder
bumps are concealed within packages after assembly, the increasing trend towards high-
density and ultra-fine pitch has made defect detection progressively more challenging,
severely impeding the advancement of surface mount technology. Detecting defects in
solder bump protrusions has become a critical issue in integrated circuit manufacturing
technology. Concealed solder bump protrusions impede the entry of light beams, and
infrared imaging proves to be an effective detection technique capable of identifying nearly
all solder bump defects.

Refer to the number of literature searches on Web of Science on the application of
infrared thermal imaging technology in electronic industry defect detection, and the results
are shown in Table 6. Table 6 provides an overview of the key annual performance
indicators. As can be seen from the table, the number of literatures is in a slightly fluctuating
state each year, indicating that people’s interest in this field has not changed much. It is
worth noting that the average number of citations and the H-Index of each publication are
almost horizontal, but suddenly decline in 2022. This trend can be attributed to the lack
of in-depth research in the field. Of particular interest is the anomaly of 2017, in which
the average number of citations per publication rose sharply, even though the number of
publications was not as high as before.
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Table 6. Annual performance metrics of electronic industry.

Year Documents Citations Average Citations per Document H-Index

2013 45 680 15.11 13
2014 52 483 9.29 10
2015 89 856 9.62 17
2016 47 493 10.49 11
2017 29 483 16.66 11
2018 58 650 11.21 13
2019 49 514 10.49 12
2020 53 531 10.02 14
2021 58 587 10.12 10
2022 55 287 5.22 9

Table 7 makes a comprehensive comparative analysis of the research of past scholars
and the current research status. Historically, the feasibility of infrared non-destructive
testing technology has brought a lot of convenience to the electronics industry, and accumu-
lated experience for the subsequent research. With the improvement of technology and the
deepening of research, it can be seen that contemporary scholars have added the cost factor
to the concern of non-destructive testing in the electronics industry. Future cost reductions
will also make infrared non-destructive testing technology have a better market.

Table 7. Early and current authors are conducting research on the infrared detection of electronics industry.

Authors Year Citations Title Remarks

Jadin et al. [143] 2012 19
Infrared Image Enhancement and
Segmentation for Extracting the Thermal
Anomalies in Electrical Equipment

The segmentation performance of infrared
images is improved by image
enhancement method which adjusts the
image intensity.

Rogalski et al. [144] 2013 28 Semiconductor detectors and focal plane
arrays for far-infrared imaging

The progress of far infrared and
submillimeter wave semiconductor
detector technology in focal plane array in
recent 20 years is introduced.

Xu et al. [145] 2014 18 Using active thermography for defects
inspection of flip chip

The feasibility of the flip chip defect
detection method based on active thermal
imaging is proved.

Daimon et al. [146] 2016 98 Thermal imaging of spin Peltier effect

The combination of spin Peltier effect and
lock-in thermography technology
provides a new direction for spintronics
applications.

Christensen et al.
[147] 2018 75 The OSIRIS-REx Thermal Emission

Spectrometer (OTES) Instrument

It provides precise moving mirror control
and infrared sampling at 772 Hz and
minimizes surface reflection.

Aragon et al. [148] 2020 36
A Calibration Procedure for Field and
UAV-Based Uncooled Thermal Infrared
Instruments

A new calibration method of ambient
temperature correlation for a variety of
uncooled thermal infrared radiometers is
proposed, which significantly improves
the measurement accuracy.

Yu et al. [149] 2020 29 Low-Cost Microbolometer Type Infrared
Detectors

The advantages of pixel size reduction are
significant.

4.1. Chip

Since the 1960s, advancements in semiconductor technology have profoundly trans-
formed our lives and facilitated the development of high-performance electronic devices.
The emergence of smartphones, for instance, would not have been possible without the
progress in miniaturized and high-performance semiconductors. The demand for lighter,
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more compact smartphones necessitates the production of smaller, thinner, and higher-
performing semiconductor chips. With the growing trend of using thinner wafers for
semiconductor chips, various issues have emerged, including a significant concern related
to microcracks that can be found on the surface and sub-surface, varying in size from a few
micrometers to several tens of micrometers. Semiconductor chip materials are inherently
brittle, making them susceptible to stress-induced cracks during chip manufacturing and
assembly. These cracks manifest primarily as scratches, fractures, orange peel effects, and
pits [150]. Surface cracks can adversely affect the performance and reliability of the final
electronic device, thus escalating the demand for inspecting surface cracks in semiconduc-
tor chips during the manufacturing process. Efficient and high-precision non-destructive
testing is crucial for semiconductor chip inspection. Optical visual methods, while offering
non-contact and non-destructive three-dimensional chip characterization, have limitations
in detecting concealed defects. Active IRT bestows the following advantages for semicon-
ductor chip inspection: complete non-contact, non-destructive, and non-invasive testing,
along with the capability to examine large areas in a single test. IRT has emerged as one of
the most promising techniques in non-destructive testing and evaluation [145].

Introducing non-contact active IRT technology into chip defect detection involves
the use of an external heat source, such as a flash lamp or laser, for active thermal imag-
ing. When subjected to external heating, the presence of defects within the chip leads
to abnormal thermal resistance, enabling the capture of thermal distributions using an
infrared imaging device. Analyzing thermal images aids in defect identification, with laser
excitation being the most frequently used method for semiconductor chip defect detec-
tion among various external excitation techniques. Bu et al. [151] investigated a method
utilizing Barker code-modulated pulse compression waveforms for detecting microcrack
defects in semiconductor silicon wafers. This technique employed an optical infrared
thermal imaging device for transmission, where an infrared camera captured the thermal
wave signal response to the laser-modulated Barker code waveform. The acquired images
were stored as sequences and analyzed for detectability using a full-harmonic distortion
algorithm, resulting in improved defect detectability. An et al. [26] introduced the line
laser lock-in thermal imaging technique for semiconductor chip inspection. This tech-
nique integrated a line-scanning laser source, an infrared camera with a dedicated lens,
and a control computer, assembling a novel line laser lock-in thermal imaging system as
shown in Figure 13a. The continuous wave laser beam was modulated into a pulsed laser
beam by the excitation unit, and the cylindrical lens transformed the pulsed laser beam
shape from point-like to linear. The control unit then issued control signals to the galvo
scanner, directing the line laser beam onto the target surface. Subsequently, the line laser
beam generated a thermal wave along the desired excitation line, performing horizontal
and vertical scans on the target surface, effectively detecting randomly oriented cracks,
as shown in Figure 13b. Yang et al. [152] proposed a multi-point laser lock-in thermal
imaging system for real-time imaging of semiconductor chip cracks, as shown in Figure 13c.
This system employed multi-point pulsed laser beams to simultaneously generate thermal
waves at multiple points on the target semiconductor chip surface. The corresponding
thermal response was measured using a high-speed infrared camera, enabling real-time
detection during the semiconductor chip manufacturing process. Figure 13b,d illustrates
a comparative diagram of semiconductor chip defect detection using the same excitation
source—laser—in different modes. The integration of infrared sensing technology with the
lock-in method significantly improved the sensitivity and resolution of thermal imaging.
The sensitivity of thermal imaging was increased by two orders of magnitude, reaching
approximately 100 μK, while the resolution for surface defects was lowered to 5 μm [153].
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Figure 13. Schematic representations of two distinct laser-based thermographic inspection methods:
(a) line laser lock-in thermography system and (b) corresponding thermograms of vertically oriented
crack chips and horizontally oriented crack chips within this system [26]; (c) multi-point laser lock-in
thermography system and (d) corresponding thermograms of vertically oriented crack chips and
horizontally oriented crack chips within this system [152].

4.2. PCBs

PCBs serve as crucial structures for achieving electrical and pneumatic interconnection,
signal transmission, mechanical linkage, and support for electronic systems. They also
represent the primary failure-prone areas for components, especially in high-frequency and
high-voltage circuits. Hence, the detection and maintenance of faults in PCBs are critical
due to their complex multi-layered structures, leading to various defects such as layer
separation, delamination, breakdown damage, and micro-holes during processing and
usage. Conventional defect detection techniques for PCBs encompass visual inspection by
human operators and automated optical inspection, X-ray, CT imaging, ultrasound, laser
ultrasonics, and terahertz imaging. While manual visual inspection and automated optical
inspection are the most common methods, they are limited to detecting visible surface-level
defects and cannot guarantee the absence of internal flaws. IRT inspection, as a non-contact
measurement method, has gradually found application in the field of PCB fault detection.
PCB fault detection methods based on IRT mainly involve three steps: thermal source
identification, feature extraction, and thermal pattern recognition [154]. Figure 14a shows
2D and 3D views of the PCBs transient amplitude images. Wang et al. [155] employed
laser-induced lock-in thermography to detect various real defects in rigid or flexible PCBs.
Phase characteristic images enabled effective detection of delamination defects with a depth
of 1.2 mm and micro-hole defects with a depth of 400 μm. The reference regions for both
defective and non-defective areas are illustrated in Figure 14c. Experimental results demon-
strated that laser-induced thermography is suitable for detecting multiple types of PCB
defects. Avdelidis et al. [156] utilized two different integrated pulse thermography systems:
thermoscope and echotherm. In both cases, mid-wave infrared cameras were used; a merlin
3–5 μm thermoscope system and a phoenix 3–5 μm echotherm system. Both systems were
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state-of-the-art portable non-destructive testing and electronic inspection systems with
integrated flash heating capability. The results showed that pulse thermography can be
used for defect detection in circuit boards (i.e., delamination and/or soldering defects).
Cong et al. [157] proposed and utilized optical/thermal fusion imaging technology to
inspect PCBs. A semiconductor laser diode with a wavelength of 808 nm was employed as
the radiation source. Sample data and images were acquired using a mid-infrared camera.
Phase-locked thermal imaging was employed for the study of layered defects in PCBs, as
illustrated in Figure 14b. Six different fusion algorithms were applied in the experimental
study of image fusion, and four metrics were introduced to evaluate the fusion perfor-
mance. The experimental results indicate that this fusion technology maintains a high level
of accuracy and precision under diverse imaging conditions.

Figure 14. IRT in PCBs: (a) 2D and 3D views of transient amplitude images [158]; (b) amplitude and
phase images in lock-in thermography [157]; (c) defective and non-defective reference regions [155].

4.3. Weld

Solder joints constitute crucial components on PCBs. Apart from serving as electrical
conduits, they also provide mechanical connections between electronic components and the
substrate. Solder joints are more susceptible to defects such as cracks, voids, and missing
balls, as depicted in Figure 15a [159]. These flaws can adversely affect the performance
and lifespan of flip-chip packages, leading to erratic circuit behavior and intermittent
instability. This poses significant risks for debugging, operation, and maintenance of
circuits. Therefore, the assessment of solder joint integrity holds paramount importance.
Presently, conventional non-destructive testing methods such as X-ray, optical inspection,
and flying probe testing struggle to effectively detect such welding defects. In contrast,
infrared non-destructive testing offers a wide applicability, non-contact measurement, rapid
detection, high precision, ease of qualitative and quantitative analysis, as well as convenient
observability, presenting a comprehensive set.

Chai et al. [160] proposed an active transient thermography technique for detecting
inverted solder balls. When a solder ball is defective, its resistance is significantly higher
than that of a normal solder ball, leading to an abnormal temperature. Hence, using thermal
image contrast from an infrared sensor, this method detects the presence and location of
defective solder balls, primarily void defects and localized cracks. Lu et al. [161] investi-
gated a pulse-phase thermography-based method for identifying solder joint defects. In
this approach, the test chip is stimulated with a thermal pulse, and the subsequent transient
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response is captured using a commercial thermal imaging camera. Thethermal imager was
employed to measure the transient response of the test chip under infrared photothermal
excitation. The thermal imager, equipped with a micro-lens with a pixel resolution of
25 μm, enhances spatial resolution. The temperature resolution of the thermal imager,
utilizing a microbolometer detector, is superior to 80 mK, with a spectral response range of
7.5 to 14 μm, and a frame size of 640 × 480 pixels. Wei et al. [162] developed an intelligent
system for detecting solder joint defects using active thermography. Figure 15b illustrates
the experimental setup, employing a fiber-coupled semiconductor laser with a central
wavelength of 808 nm as the heat source, monitored by the thermal imager. Statistical
features were extracted and classified using the M-SVM algorithm. All missing protrusions
were identified, achieving the highest recognition accuracy. The results demonstrate that
the combination of active thermography and M-SVM is an effective method for intelligent
diagnosis of microelectronic packaging solder material defects. He et al. [163] utilized a
pulsed laser with a central wavelength of 808 nm to heat the substrate of the test sample
SFA1. The sample consisted of 25 solder balls arranged in a 5 × 5 pattern, with protrusion
diameters and pitch distances of 500 μm and 1000 μm, respectively. Thermal images of the
SFA1 package were acquired using the VH680 infrared imager. The experimental setup
is depicted in Figure 15c, while Figure 15d shows the thermal image of the experimental
sample SFA1. The matrix was used as the desired output vector, and a transformation
function was applied to convert the desired output vector from an index to a vector. A
PNN was then established with input vectors, output vectors, and propagation speed
as parameters. The results indicate that the infrared detection system based on PNN is
effective for defect detection in high-density packaging.

 
Figure 15. Schematic diagram of welding defect detection: types of weld defects (a) [159];
(b) schematic of experimental setup and distribution of welds in test samples [162]; (c) experimental
setup and distribution diagram [161]; (d) infrared thermal images of weld defects [163].

4.4. Others

Glass fibers are extensively utilized as reinforcement materials, with glass-fiber-
reinforced polymers (GFRP) commonly found in electrical and electronic devices, as well
as in numerous components used in our daily lives [12]. Glass fibers present a competitive
edge due to their lightweight nature and lower cost compared to other reinforcement
materials like carbon fibers [164], showcasing superior properties within composite materi-
als [165]. However, the manufacturing process may incur defects, especially the formation
of voids. Fuel cells are essential components in emission-free energy conversion, directly
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converting chemical energy into electricity. The critical aspect of fuel cell functionality
lies in the necessity for all distinct sealing layers to be both electrically insulating and
hermetic. The material connecting the two steel interconnect sections of the cells is the glass
solder layer, which incorporates artificially induced defects in the form of missing solder of
varying diameters.

Meola et al. [166] conducted an assessment of GFRP under low-energy, low-velocity
impact using IRT. They employed a equipped with a quantum well infrared photodetector
(QWIP) operating in the 8–9 μm range, with a spatial resolution of 640 × 512 pixels at full
frame. For the purpose of comparison, thermal imaging and visible light images of the same
sample are presented in Figure 16a. The results demonstrated that non-destructive testing
utilizing lock-in thermography could detect manufacturing defects such as uneven resin
distribution, porosity, fiber misalignment, and impact damage. Dua et al. [167] introduced
a high-depth resolution frequency-modulated thermal wave imaging technique for infrared
characterization of GFRP laminates. Each GFRP sample comprised five patches, with a
thickness of 2 mm. The selected samples were subjected to experiments using two 1 kW
halogen lamps. Thermal distributions of the samples were recorded by an infrared camera
at a frame rate of 25 Hz. The results indicated that the layer-wise detection capability of
time-correlated coefficient images significantly outperformed the widely used phase-based
post-processing methods. Muzaffar et al. [168] proposed a rapid and straightforward
method for detecting faults in antenna arrays using infrared thermal imaging. The thermal
imager employed was a 14-bit, 320 × 240 resolution mid-wave infrared (MWIR) camera
from FLIR. The study demonstrated that IRT could be applied for detecting faulty elements
in antenna arrays, with the variation of temperature rise on the absorptive screen being
crucial for identifying the faulty components. Figure 16d,e respectively present the sample
image and the corresponding thermal imaging of defects. Wei et al. [169] advocated
the application of artificial intelligence techniques for automatic processing of infrared
images to detect defects within the glass seal layer of solid oxide fuel cells. Three methods
were investigated: (1) support vector machine, (2) adaptive enhancement, and (3) U-Net.
The results indicated that features extracted from individual thermal profiles might be
insufficient for defect identification, while U-Net displayed significant potential in thermal
image segmentation. Wang et al. [170] conducted experimental studies on the detection of
impact damage in GFRP using pulse radar thermal wave imaging technology. They utilized
a high-performance, cooled focal plane infrared imager with a response wavelength of
3.6–5.2 μm and pixel dimensions of 640 × 512. An 808 nm semiconductor laser was used,
and various time/frequency domain analysis algorithms were applied to extract features
from the thermal image sequences. The thermal image sequence was acquired using an
IRT camera, The results showed that the dual-channel orthogonal demodulation algorithm
exhibited excellent recognition capabilities for delamination defects in GFRP. Within the
specified defect diameter and depth range, it could identify delamination defects with
a depth ≥1.70 mm and a diameter-depth ratio (D/H) ≥2.35. By analyzing the signal-to-
noise ratio (SNR) of feature images, gong et al. [171] quantitatively evaluated the detection
ability of laser bidirectional thermal wave radar imaging (BTWRI) to detect defects of
carbon/glass fiber reinforced polymer (C/GFRP). Figure 16b is the sample used in the
experiment. By comparing the signal-to-noise ratio of feature images on a frame-by-frame
basis, the optimal ACC detection image was obtained. Figure 16c shows the defect phase
diagram and amplitude diagram of the sample.
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Figure 16. Other applications of IRT: (a) thermal and visible images of the sample [166]; (b) C/GFRP
specimens with artificial flat-bottom holes [171]; (c) patch antenna array em-ployed in the exper-
iment [171]; (d) phase images of defect #2 in S2 and amplitude images of defect #2 in S2 [168];
(e) thermal imaging of defects [168].

4.5. Summary

The advancement of technology has led to increasingly stringent requirements for the
quality of electronic components [11]. This chapter provides an overview of the application
of IRT in electronic component defect detection from four aspects. Firstly, it introduces the
application of IRT in semiconductor chip defect detection. Laser is commonly used as the
excitation source, but not all thermal imaging techniques are suitable for detecting defects
within semiconductor chip encapsulation. To address this, phase-locked thermography has
been developed, which can overcome two limitations of IRT: the inability to differentiate
surface and sub-surface features, and the lack of sensitivity. Next, it discusses the appli-
cation of IRT in PCBs. The structure of PCBs and their relative positions on components
are generally fixed. Defect detection in PCBs involves feature matching, and the accuracy
of results varies with different parameters. Establishing a neural network in infrared non-
destructive defect detection during soldering can enhance the feasibility of defect detection
in soldering. In summary, IRT technology, by observing thermal distribution, can identify
and address potential thermal issues, faults, or deficiencies in electronic components such
as PCBs, chips, soldering, and GFRP. Table 8 provides a summary of the applications of IRT
excitation sources in electronic component defect detection and diagnosis.
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Table 8. Applications of IRT excitation sources in electronic component defect detection and diagnosis.

Exciting Source Authors, Year Purpose Fundings Remarks

Linear frequency
modulation (LFM) laser Tang et al. [150] 2020

To perform
non-destructive testing
on surface/sub-surface
damage during the
production process of
semiconductor silicon
wafers.

It could effectively
identified microcracks
of 10 μm, with a
theoretical minimum
detectable temperature
difference less than
0.401 K.

In theory, microcracks
with a width of 10 μm
can be detected.

Barker-code laser Bu et al. [151] 2022

Conducting
non-destructive testing
on semiconductor
silicon wafers.

The BCLIT technology
enhanced the
signal-to-noise ratio
and defect detectability.

Providing theoretical
basis and operational
reference for BCLIT
technology in detecting
microcrack defects in
semiconductor silicon
wafers.

Multi-spot laser Yang et al. [152] 2016

Real-time inspection
during the process of
semiconductor chip
manufacturing.

Successfully detected
cracks within a range of
20 μm.

The MLLT system can
be further developed
into a standalone
system for
semiconductor
manufacturing
facilities.

Line laser An et al. [26] 2015

To conduct
instantaneous detection
of surface cracks in
semiconductor chips
during actual
manufacturing.

Successfully conducted
visual inspection of
cracks in
semiconductor chips
with widths ranging
from 28–54 μm.

Expanding from
chip-level to
wafer-level for more
efficient and faster
detection.

Semiconductor laser
diode (808 nm) Wang et al. [155] 2023

To conduct research on
the multi-type defect
detection of
multi-layered complex
structured PCBs.

Effective detection of
PCBs delamination
defected with a depth
of 1.2 mm and
micro-hole defected
with a depth of 400 μm.

Laser-induced lock-in
thermography is
suitable for detecting
defects in the complex,
multilayered structure
of PCBs.

Laser (808 nm) Xu et al. [145] 2014

To investigate a
thermography-based
active method for
solder joint inspection.

The detection method
based on active thermal
imaging was effective
for identifying missing
protrusions in flip-chip
packages.

Further research is
needed to differentiate
subtle defects in
flip-chip packaging.

IR lamp Lu et al. [161] 2011

To investigate the
defect identification
method for solder
joints based on
pulse-phase
thermography.

The phase profilometry
technique employed
phase difference can
characterize missing
solder bumps defects in
high-density
packaging.

The detection method
based on PPT is
effective in identifying
missing protrusions in
high-density
packaging.

Fiber-coupled
semiconductor laser Wei et al. [162] 2015

To develop an
intelligent system
utilizing active thermal
imaging technology for
detecting solder joint
defects.

Resolved the issue of
small sample sizes in
solder defect detection,
achieving the highest
level of identification
accuracy.

The combination of
active thermography
with M-SVM is an
effective approach for
intelligent diagnosis of
solder defects in
microelectronic
packaging.
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5. Discussion

5.1. Algorithmic Detection of PV Panels

The integration of IRT and deep learning techniques significantly enhances the pre-
cision of detecting and diagnosing defects in PV panels [29,172]. This approach typically
demonstrates a high level of accuracy in its detection performance, with specific metrics
depending on the chosen deep learning model and the quality and scale of the dataset
used [173]. The Figure 17 provides a comprehensive overview of the various research
studies related to defect detection in PV panels. An analysis of the data highlights several
key trends and significant findings in this area. First and foremost, it is evident that research
efforts employing CNN as the primary algorithm for PV panel defect detection have been
the most prolific. This dominance underscores the efficiency and high defect recognition
rates achieved through CNN-based approaches. These neural networks have demonstrated
remarkable capabilities in pattern recognition and have significantly advanced the field of
PV panel inspection. Furthermore, the integration of cutting-edge deep learning techniques
with unmanned aerial vehicles (UAVs) has resulted in a substantial boost in the efficiency
of IRT for PV panel inspection [132,174,175].

Figure 17. A summary of fault detection in PV panels based on various algorithms and techniques
(K-Nearest Neighbours (KNN), You Only Look Once (YOLOv5), Deep Residual Network (ResNet),
Adaptive neuro-fuzzy inference system (ANFIS), Naive Bayes (NB), Density-Based Spatial Clustering
of Applications with Noise (DBSCAN), Support vector machine (SVM), Artificial neural network
(ANN) [83,99,128,134–136,138,139,176–194].

Additionally, it is essential to acknowledge that earlier studies in this area have been
relatively scarce, which emphasizes the rapid advancement and evolving landscape of deep
learning’s role in photovoltaic research. In summary, the research landscape in PV panel
defect detection is marked by a strong reliance on CNN algorithms for their efficiency and
high recognition rates. Additionally, the synergistic use of deep learning and UAVs with
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IRT has greatly enhanced the speed and effectiveness of PV panel inspection, promising a
brighter future for this field.

5.2. Excitation Sources of Electronic Industry

In the IRT inspection of PV panels, it is common practice to utilize external natural
light sources or indoor lighting, such as sunlight or thermal radiation from the PV cells,
as the thermal excitation source [195]. These light sources illuminate the surface of the
PV panel, resulting in the absorption of energy by the panel and subsequent temperature
elevation. Subsequently, an infrared thermal imaging camera captures the thermal radiation
emitted by the PV panel, generating thermal images for the purpose of further analyzing
and detecting anomalies or defects in the surface temperature distribution [196]. It is
noteworthy that this approach typically obviates the need for additional artificial excitation
sources, relying instead on naturally occurring or ambient light sources for the thermal
imaging inspection. This inherent advantage enhances the convenience of the detection
process and renders it suitable for the monitoring and maintenance of practical PV panels.

In contrast to infrared thermal imaging detection in PV panels, the detection of elec-
tronic components differs due to their complex and intricate structures. Often, external
excitation is required to induce heating for these electronic components. This allows the
thermal radiation of the object under inspection to be captured by the infrared camera,
generating a thermal image. Subsequently, the obtained thermal image is subjected to
further analysis to diagnose any defects in the specimen. In the infrared thermal imaging
detection of electronic components, lasers are commonly used as the excitation source. This
preference arises from the fact that lasers do not induce stress concentration or subsequent
damage on the surface of brittle materials. The prevalent laser wavelength used for this
purpose is 808 nm. Various factors influence the interaction between the laser and the
sample surface during laser stimulation. The primary influencing factors encompass laser
power, sampling frequency, convective heat transfer, laser beam diameter, spatial resolution,
and thermal camera noise. Table 9 summarizes the characteristics of the excitation source
for the detection object.

Table 9. Summary of characteristics of the excitation source for the detection object.

Detection Object Excitation Source Purpose Characteristic Remarks

PV panels Thermal radiation
[21]

The PV components
exhibit abnormal
temperature
distribution at faulty
and damaged areas.

IRT is characterized by
its non-destructive
testing technology for
safety.

The use of machine
learning methods based on
IRT has been proven to
have high accuracy (up to
99%) in PV detection and
fault diagnosis.

Chip Electromagnetic
waves [145]

Active thermal imaging
for solder joint
inspection.

Inverted chips are
heated by a non-contact
heating source.

The active thermal imaging
detection method can
effectively identify missing
bumps in inverted chips.

Weld Thermal radiation
[197]

Thermal imaging
testing is used for the
detection of sub-surface
cracks in welding.

Thermal data is used to
study the cooling
trends in both defective
and non-defective
areas.

After detecting defects,
they can be differentiated
based on their morphology.

PCBs
Thermal radiation,
electromagnetic
waves [155]

Laser-induced
phase-locked
thermography
technology is used to
detect various defects
in PCBs.

It can accurately
identify defects with
flat-bottom holes at
depths of 0.2 mm and
0.6 mm.

Laser-induced lock-in
thermography is suitable
for detecting various types
of defects in multi-layer
and complex structured
PCBs.
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In the last few years, the field of non-destructive testing in the electronics industry
has made remarkable progress. Figure 18 shows the types of excitation sources commonly
used in the electronics industry in recent years, especially in the field of chips, PCBS,
and welding. These excitation sources include lasers, heaters, ultrasound, electricity, and
flashlights. As can be clearly seen from the figure, a wide variety of laser sources have
been used in past research, and these laser sources show different advantages in different
application scenarios. However, recent studies have shown that laser is increasingly used as
an excitation source in non-destructive testing in the electronics industry. There are several
reasons behind this trend. First, the relatively low cost of the laser makes it the preferred
incentive source for many researchers and engineers. Second, the laser is able to cover a
large, heated area, which is important when dealing with complex electronic components.
Compared with other excitation sources, the laser has a wider heating range and can
detect the properties of the target material more comprehensively. In addition, in different
practical applications, the researchers found that the wavelength of 808 nm laser is the most
commonly chosen laser in the electronics industry in non-destructive testing performance.
In general, past and present studies have shown that lasers, as the main excitation source
in non-destructive testing in the electronics industry, have the advantages of lower cost,
wide heating range, and wavelength. This trend not only reflects the importance of laser
technology in the electronics industry, but also provides useful enlightenment for future
research and application.

Figure 18. Type of excitation source commonly used in the electronics industry [25,26,145,150–
153,155–163,197–212].

5.3. Wavelengths

The application of IRT technology in electronic components not only enables effective
detection of defects at the micron level but also facilitates real-time monitoring during the
manufacturing process of electronic components such as semiconductors. For instance,
in the study conducted by Yang et al. [152], which encompasses data acquisition and
processing, the total inspection time for each semiconductor chip is less than 1 s, successfully
detecting cracks within a 20 μm range. In summary, IRT technology provides an efficient,
non-destructive, and highly accurate method for defect detection in electronic components,
enhancing detectability while also serving as a reference for non-destructive testing of
similar materials.

Figure 19 shows the proportion of different bands in our selected references. It can
be seen from the figure that the utilization rate of long-wave infrared and medium-wave
infrared in the electronic industry is relatively high. In the non-destructive testing of PCB,
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only a single mid-infrared wave is used, and its wavelength range is 3 to 5 μm. In the
non-destructive testing of chips, long infrared waves with a wavelength range from 7.5 to
14 μm are commonly used, and in the non-destructive testing of welding, both mid-infrared
waves and long infrared waves appear. The absorption of infrared radiation by different
materials is different, and it can be seen that the choice of wavelength is related to the size,
material, structure, and other aspects of the product to be tested.

 
Figure 19. The proportion of the number of references at different wavelengths in the electronics
industry.

6. Outlooks

The future of active infrared imaging for defect detection in the renewable and elec-
tronic industries will be characterized by advancements in excitation sources, improve-
ments in PV panels, widespread adoption in electronics manufacturing, and seamless
integration with AI, leading to more efficient, accurate, and cost-effective defect detection
solutions. The outlook is given in the following areas:

(1) The future of active infrared imaging for defect detection holds promising develop-
ments in excitation sources. Research is expected to focus on more efficient, compact,
and versatile excitation methods. Emerging technologies such as advanced lasers and
LED arrays may provide more controlled and tailored excitation, enhancing defect
visibility [213]. Future research may also delve into multi-modal excitation sources
that combine various energy types, such as ultrasound and electromagnetic radiation,
with infrared illumination. This fusion of excitation modalities could unlock new
possibilities in defect detection by exploiting complementary interactions between
materials and different energy sources.

(2) Future research endeavors should prioritize the development and refinement of an
expanded array of algorithms tailored for the detection of PV panels irregularities
and defects. This emphasis on algorithmic innovation is essential to further enhance
the precision and efficiency of PV panel inspection, making it an exciting and crucial
avenue for future research. These advanced algorithms should encompass a wide
range of imaging techniques and modalities, including IRT, EL, and optical imaging,
among others. By diversifying the algorithmic approaches, researchers can effectively
address the multifaceted challenges associated with PV panel inspection.

(3) The electronics industry will increasingly adopt active infrared imaging for quality
control and defect detection during manufacturing. Active infrared imaging will

272



Sensors 2023, 23, 8780

provide real-time quality control during manufacturing processes. As electronic com-
ponents are assembled, the integrated infrared sensors will continuously monitor for
defects, irregularities, and variations in temperature or electrical performance. This
real-time feedback loop allows for immediate adjustments and corrections, reducing
the likelihood of defects propagating downstream [214]. Compact and cost-effective
infrared imaging equipment will be incorporated into manufacturing lines, facilitat-
ing swift and accurate examination of electronic components. This integration will
contribute to the reduction of defects, improvement of product dependability, and
reduction of production expenditures.

(4) The integration of active infrared imaging with AI will revolutionize defect detec-
tion. Machine learning algorithms, particularly deep learning techniques like CNN,
will become more adept at recognizing complex defect patterns and distinguishing
anomalies from normal operation. AI-driven defect detection systems will be capable
of real-time analysis, reducing false positives and improving overall accuracy. Beyond
detecting defects, AI can predict when components or systems are likely to fail based
on their thermal behavior captured through infrared imaging. This enables predictive
maintenance, where machinery and equipment are serviced or replaced before they
break down, reducing downtime and costly repairs.
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