
mdpi.com/journal/mca/topical_collections

Topical Collection Reprint

Feature Papers in 
Mathematical and 
Computational  
Applications 2023

Edited by 

Gianluigi Rozza, Oliver Schütze and Nicholas Fantuzzi 



Feature Papers in Mathematical and
Computational Applications 2023



Feature Papers in Mathematical and
Computational Applications 2023

Collection Editors

Gianluigi Rozza

Oliver Schütze

Nicholas Fantuzzi

Basel • Beijing • Wuhan • Barcelona • Belgrade • Novi Sad • Cluj • Manchester



Collection Editors

Gianluigi Rozza

International School for

Advanced Studies

Trieste

Italy

Oliver Schütze

Cinvestav

Mexico City

Mexico

Nicholas Fantuzzi

University of Bologna

Bologna

Italy

Editorial Office

MDPI AG

Grosspeteranlage 5

4052 Basel, Switzerland

This is a reprint of the Topical Collection, published open access by the journal

Mathematical and Computational Applications (ISSN 2297-8747), freely accessible at: https:

//www.mdpi.com/journal/mca/topical collections/ZGRQX7CNGE.

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-2631-5 (Hbk)

ISBN 978-3-7258-2632-2 (PDF)

https://doi.org/10.3390/books978-3-7258-2632-2

© 2024 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license (https://creativecommons.org/licenses/by-nc-nd/4.0/).





Contents

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Gianluigi Rozza, Oliver Schütze and Nicholas Fantuzzi

Feature Paper Collection of Mathematical and Computational Applications—2023
Reprinted from: Math. Comput. Appl. 2024, 29, 99, https://doi.org/10.3390/mca29060099 . . . . 1
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This Special Issue comprises the second collection of papers submitted by both the
Editorial Board Members (EBMs) of the journal Mathematical and Computational Applications
(MCA) and the outstanding scholars working in the core research fields of MCA. Therefore,
this collection typifies the most insightful and influential original articles that discuss key
topics in these fields. More precisely, this issue contains 13 research articles published in
MCA between May and December 2023. All papers are briefly outlined below, organized
chronologically by their publication times.

In [1], Romo-González and Mezura-Montes use deep learning techniques to discrimi-
nate between healthy individuals and patients with breast cancer, based on the banding
patterns obtained from the Western Blot strip images of the autoantibody response to
antigens of the T47D tumor line. The authors propose that neuroevolving convolutional
neural networks (CNNs) can be used to find the optimal architecture to achieve competitive
ranking, taking Western Blot images as the input. The CNN obtained reached 90.67% accu-
racy, 90.71% recall, 95.34% specificity, and 90.69% precision in classifying three different
classes (healthy, benign breast pathology, and breast cancer).

Bacterial Vaginosis (BV) is a common disease and recurring public health problem
for which all possible combinations of the pathogens of a possible case of infection are
not known, complicating diagnosis at the onset of the disease. Salvador-González et al.
contribute to this line of research in [2]. The experimental results obtained by the authors
allowed a reduced subset of biologically meaningful association rules to be selected for the
numerical treatment of the considered objective function.

In [3], Vázquez-Santiago et al. propose an open-set recognition (OSR) strategy with an
extension for new class discovery aimed at vehicle make-and- model recognition (VMMR).
The results show that the presented strategy can effectively address this problem as an
OSR problem, and furthermore, it is able to simultaneously recognize the new classes
hidden within the rejected objects. The proposed VMMR method is a benchmark for future
domain-specific OSR.

In [4], Eivazi et al. provide a clear description of the algorithmic FE2 structure together
with a particular integration of deep neural networks. This allows for a suitable training
strategy, where particular knowledge of the material behavior is considered to reduce the
required amount of training data. The resulting method yields a significant speed-up of
the FE2 computations, and an efficient implementation of the trained neural network in
a finite element code is provided. Moreover, the deep neural network surrogate model is
able to overcome the load-step size limitations of the representative volume element (RVE)
computations in step-size controlled computations.

In [5], Kakuli et al. use Lie symmetry to analyze the Hunter–Saxton equation, an equa-
tion relevant to the theoretical analysis of nematic liquid crystals. The proposed method
has two main advantages over the classical double-reduction method: firstly, it is more
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efficient as it can reduce the number of variables and order of the equation in a single step.
Secondly, by incorporating conservation laws, physically meaningful solutions that satisfy
important physical constraints can be obtained.

Páez-Rueda et al.[6] study the approximation of one-dimensional smooth closed-form
functions with compact support using a mixed Fourier series. Their method improves the
signal processing performance in a wide range of scenarios. Moreover, this paper provides
comprehensive examples of one-dimensional problems to showcase the advantages of
this approach.

In [7], González Flores and Barrera Sánchez review some grid quality metrics and
define some new quality measures for quadrilateral elements. Furthermore, they define
new discrete functionals, which are implemented as objective functions in an optimization-
based method for quadrilateral grid generation and improvement. These functionals are
linearly combined with a discrete functional whose domain has an infinite barrier at the
boundary of the set of unfolded grids to preserve convex grid cells in each step of the
optimization process.

Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly infectious
respiratory illness that poses a significant threat to public health. In [8], Fatima et al.
develop a precise mathematical model to capture the transmission dynamics of MERS-
CoV. Stability theory is employed to analyze the local and global properties of the model,
providing insights into the system’s equilibrium states and their stability. Sensitivity
analysis is conducted to identify the most critical parameter affecting the transmission
dynamics. The model can serve as a valuable tool for public health authorities when
designing effective control and prevention strategies, ultimately reducing the burden of
MERS-CoV on global health.

In [9], Deb and Ehrgott analyze and outline the properties of generalized dominance
structures for multi-objective optimization which help provide insights into the resulting
optimal solutions. The theoretical and deductive results of this study can be utilized to
create more meaningful dominance structures for practical problems, understand and
identify resulting optimal solutions, and help develop better test problems and algorithms
for multi-objective optimization.

In [10], Wang et al. present an innovative cascade predictor to forecast the state
of recurrent neural networks (RNNs) with delayed output. The new predictor is more
useful than the conventional single observer in predicting neural network states when the
output delay is arbitrarily large but known. In contrast to examining the stability of error
systems solely employing the Lyapunov–Krasovskii functional (LKF), several new global
asymptotic stability standards are obtained by combining the application of the Linear
Parameter Varying (LPV) approach, LKF, and convex principle. The latter is verified by
several numerical simulations.

In [11], Sánchez-García et al. analyze the determination of interplanetary trajectories
from Earth to Mars to evaluate the cost of the required impulse magnitudes for an areosta-
tionary orbiter mission design. The results show that, for the dates of the minimum-energy
Earth–Mars transfer trajectory, a low value for the maneuvers to achieve an areostationary
orbit is obtained for an arrival hyperbola with the minimum possible inclination, in addi-
tion to a capture into an elliptical trajectory with a low periapsis radius and an apoapsis in
the stationary orbit.

The preventive measures taken to curb the spread of COVID-19 have emphasized
the importance of wearing face masks to prevent potential infection with serious diseases
during daily activities or for medical professionals working in hospitals. In [12], Melin et al.
investigate various existing methods employing artificial intelligence and deep learning to
detect whether individuals are wearing face masks. The results demonstrate that the bat
algorithm obtained better results than the other metaheuristics analyzed in this study.

Finally, in [13], Annunziato and Borzí present a method for the analysis of super-
resolution microscopy images. The method is based on the analysis of stochastic trajectories
of particles moving on the membrane of a cell with the assumption that this motion is
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determined by the properties of this membrane. The results demonstrate the ability of the
proposed method to reconstruct the potential of a cell membrane by using synthetic data
similar those captured by super-resolution microscopy of luminescent activated proteins.

Conflicts of Interest: The authors declare no conflicts of interest.
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Neuroevolution of Convolutional Neural Networks for Breast
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Abstract: Breast cancer has become a global health problem, ranking first in incidences and fifth in
mortality in women around the world. In Mexico, the first cause of death in women is breast cancer.
This work uses deep learning techniques to discriminate between healthy and breast cancer patients,
based on the banding patterns obtained from the Western Blot strip images of the autoantibody
response to antigens of the T47D tumor line. The reaction of antibodies to tumor antigens occurs
early in the process of tumorigenesis, years before clinical symptoms. One of the main challenges in
deep learning is the design of the architecture of the convolutional neural network. Neuroevolution
has been used to support this and has produced highly competitive results. It is proposed that neu-
roevolve convolutional neural networks (CNN) find an optimal architecture to achieve competitive
ranking, taking Western Blot images as input. The CNN obtained reached 90.67% accuracy, 90.71%
recall, 95.34% specificity, and 90.69% precision in classifying three different classes (healthy, benign
breast pathology, and breast cancer).

Keywords: Western blot; breast cancer; neuroevolution; convolutional neural networks

1. Introduction

Breast cancer has become a global health problem as it ranks first in the world in terms
of incidence and fifth in terms of cancer-related mortality [1]. In Mexico, breast cancer is
the first cause of death in women between 30 and 50 years of age, and since 2006, it has
replaced cervical cancer as a public health concern, and it is a major challenge for the health
system [2].

Breast cancer is identified by an accelerated and uncontrolled proliferation of mam-
mary epithelial cells. These are healthy cells that have an increased reproductive capacity;
they multiply and increase until they form tumors that, depending on their characteristics,
can be malignant or benign [3].

There are several complementary approaches to the diagnosis of breast cancer. The
tests traditionally used for diagnosis are breast examination, ultrasound, mammography,
and biopsy. During a breast exam, the doctor checks the lymph nodes in both breasts and
armpits for lumps or other abnormalities. This test identifies lumps of at least 3 mm, and
detection of this size has been clinically shown to be beneficial for patient survival. The
diagnostic percentage of this test is 40% to 69% [4].

Mammography is a diagnostic test, where an image is obtained and then analyzed and
interpreted by a specialist. It is an expensive, painful procedure, generally performed on
patients over 40 years of age. The percentage of diagnosis is from 63% to 87%, depending
on the age of the patient, as well as the density of the mammary tissue. Ultrasound or

Math. Comput. Appl. 2023, 28, 72. https://doi.org/10.3390/mca28030072 https://www.mdpi.com/journal/mca4
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sonography is a diagnostic procedure that uses sound waves to detect cysts or malforma-
tions in the breasts. It is used complementarily to mammography and allows guiding the
taking of the biopsy. The diagnostic percentage is 68% to 98% [5]. A biopsy is a diagnostic
test that determines the presence or absence of cancer cells in a patient’s breast tissue. If the
type of biopsy is surgical, it can be a painful and invasive procedure [6].

The aforementioned diagnostic tests could be expensive, invasive, subjective, and
painful. In addition, they can be ineffective in the early detection of cancer since these tests
identify the disease when it is present in the patient and, most of the time, in an advanced
state. The detection of breast cancer in Mexico usually occurs in late stages because Mexican
women feel embarrassed when being examined by doctors, which decreases the possibility
of providing an effective and successful treatment. In addition, in México, not having
sufficient infrastructure to perform the procedure and not having enough trained and
certified radiologists to interpret the tests [7,8] is a limitation, which is why the number
of tests recommended by international organizations (19.9 mammograms per million
inhabitants) is not met. Thus, in Mexico, life expectancy is very low in relation to developed
countries [4]. Therefore, it is necessary to have tests that diagnose breast cancer early before
it manifests as tumors in patients.

Since breast cancer is a heterogeneous disease in which tumors express a variety of
aberrant proteins (antigens), which creates an immune response by the production of
autoantibodies against such tumor-associated antigens, it is possible to use this antitu-
mor reaction as an oncogenic signal before tumor formation manifests itself in the body.
Therefore, methods are being developed that identify autoantibodies that recognize tumor
proteins that are present up to four years before the disease is detected using the traditional
test [9]. Desmetz et al. [10], by evaluating autoantibody responses to some tumor-associated
antigens, have been able to accurately distinguish healthy patients from those with early
stage breast cancer, particularly carcinoma in situ. Thus, developing these methods could
help in the early detection of breast cancer, supporting mammographic screening, especially
in women under 50 years of age. However, it is necessary to probe its efficacy since this
kind of test changes with the genetical and phenotypical background of patients.

To that respect, Romo et al. [11] developed a method specific to Mexican women,
which confirms the presence of autoantibodies reacting to tumor cells in the T47D cell
line (ductal carcinoma of the breast), which are capable of discriminating between women
with and without breast disease. This was achieved by analyzing the bands expressed
in the one-dimensional Western Blot images of the autoantibody response to antigens of
the T47D tumor line. Although the results obtained are promising, the analysis of the
images is complex, subjective, and slow since it takes a month to create a binary base
(1 present and 0 absent proteins), from which the data are obtained for discrimination
between healthy patients and those with breast disease. On the other hand, an expert, with
the help of commercial software, is required to align the strip bands for each patient, but
the identification and final position of the bands depend exclusively and subjectively on
the expert. Consequently, more precise and automated tools are needed to identify these
banding patterns.

In recent years, artificial intelligence (AI) has used machine learning and computer
vision techniques to support processes such as the prevention and diagnosis of breast cancer.
Contributions have been made, for example, in image processing, to identify patterns that
make it possible to distinguish women with breast disease from those who do not have
the disease [12]. The images usually used to diagnose breast cancer are obtained from
mammary tissue by means of mammography, ultrasound, thermography, histopathology
(Whole Slide Image—WSI) [13,14], or they are images obtained from the reaction of the
immune system from a blood sample and processed with the Western Blot technique
(proteomic images) [15].

In addition, afterward, Sánchez-Silva et al. [15] proposed a semi-automated system to
avoid subjectivity and shorten image analysis time in Western blot images by analyzing
protein bands from the classification of patterns represented as time series [11]. These time

5



Math. Comput. Appl. 2023, 28, 72

series were obtained from the change in tone in the pixels of the bands. Because the time
series are of different lengths, they were manually standardized to a predefined length
using a geometric scaling transformation. The K-Nearest Neighbor (KNN) algorithm was
used to classify the time series, using the Euclidean, Mahalanobis, and correlation similarity
distances, achieving a classification percentage of 65.40% with three classes (healthy, benign
breast pathology, and breast cancer), and an 86.06% classification percentage with two
classes (healthy and breast cancer). The classification percentages achieved are similar to
those of the expert of reference [11]. However, the method is considered semi-automatic
since, to obtain the time series, an area is subjectively selected in each strip, which causes
the variation in the lengths of the time series and needs to be standardized. To improve the
work previously described in [16], it was proposed to analyze the bands of the Western Blot
images of antibodies that are reactive to antigens (tumor line T47D—ductal carcinoma),
using convolutional neural networks (CNN), and dispense by obtaining the time series of a
subjectively chosen area to perform the classification. A classification percentage of 68.24%
for three classes (healthy, benign breast pathology, and breast cancer) is obtained. The
classification percentage was statistically equivalent to that seen in [15], obtaining for two
classes (healthy and breast cancer) 86.00%. It is important to remark that the architecture
of the CNN used was handcrafted, so the architecture used does not ensure that the best
performance, in terms of accuracy, will be reached.

In the work developed in [17], they propose to automate the detection of breast
cancer, analyzing the regions of invasive ductal carcinoma (IDC) tissues in 162 whole-
slide images (WSI), from which 277,524 patches were obtained in digital format, RGB
with a size of 50 × 50 pixels. Patches were labeled with the value of 1 for IDC positive
and 0 for IDC negative. Three CNN’s architectures obtained through experimentation
were used, achieving a classification accuracy of 87%. In [18], detecting breast cancer
using thermographic images is proposed. Thermographic images capture the heat map
of the breasts and their surroundings. The analysis of this type of images is based on
the assumption that in a breast cancer process, blood vessels are formed and inflamed,
producing an increase in temperature in that area. They used 3895 thermographic images
of breasts in JPEG format with a dimension of 640 × 480 pixels, obtaining the information
to generate 140 patients, of which 98 were healthy patients and 42 were cancer patients.
For the classification, a CNN, whose parameters were optimized by means of the Bayes
optimization algorithm, was used, obtaining an accuracy of 98.95%. In the work presented
in [19], the objective was to differentiate malignant from benign breast cancer tumors,
classifying histopathology images using convolutional neural networks. They use the
BreakHis database, formed with histopathological images of mammary tissues with breast
cancer from 82 patients. This database consists of 7909 images of microscopic biopsies, of
which 2480 are benign and 5229 are malignant, each image has four magnification levels
(40×, 100×, 200×, and 400×). The CNN architecture was obtained from the importation
of previously trained layers from CNN AlexNet [20], achieving a classification accuracy
of 89.66%. In [21], it was proposed to predict HER2 expression (a protein that is used as
a marker of breast cancer) by analyzing ultrasound images of preoperative breast cancer
patients, using a deep learning model based on DenseNet. The model was trained with
108 patients and validated with 36 patients, obtaining an accuracy of 80.56%. In [22], a
framework for the classification of breast cancer from mammographic images is proposed.
A pre-trained network (EfficientNet-b0) is used to classify two databases of mammography
images. The first database is CBIS-DDSM, achieving a classification accuracy of 95.4%, and
the second database is INbreast, achieving a classification accuracy of 99.7%.

Although CNNs are very competitive, their main disadvantage is the necessity to
design their components (architecture), which in most cases is performed manually and
by trial and error, consuming a lot of time in finding a suitable architecture that adapts to
the requirements. Given that most network architectures have many convolution layers,
filters of different sizes, and some hyperparameters at the moment of being executed, they
demand excessive computational costs, both in time and in memory [23].
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Several solutions have been proposed to deal with this matter; one of the most used
in recent years is neuroevolution, a technique inspired by the biological process of the
evolution of the human brain, through the use of evolutionary computing, which has made
good progress toward optimizing the design of CNN architectures [24].

One of the most important parts of neuroevolution for the design of CNNs is neural
coding, which corresponds to the computational representation of an artificial neural
network. A suitable coding will allow for the creation of a design with a competitive
performance and more efficient and less complex structures.

In this work, the DeepGA neuroevolution algorithm proposed by Vargas-Hakim et al. [25]
is used as a framework for neuroevolution. It is based on the fundamentals of genetic
algorithms, exploitation (by crossing) and exploration (by mutation), and has three fun-
damental characteristics: (1) A hybrid coding, which combines blockchains and binary
codings; (2) The use of evolutionary operators to handle this type of encoding; (3) A linear
aggregation fitness function to evaluate individuals based on their classification accuracy
and the number of parameters. The goal of this work, which uses neuroevolution, is to auto-
matically obtain a convolutional neural network architecture suitable for our problem and
to classify the bands of the Western Blot images of antibodies reactive to antigens (tumor
line T47D—carcinoma ductal). According to studies [26–28], the reaction of antibodies to
tumor antigens occurs early in the process of tumorigenesis, years before clinical symptoms
appear, contrary to mammographic images, WSI (Whole-Slide Images/histopathology),
and ultrasound, that detect a tumor process that already exists. On the other hand, the
CNN architecture obtained by neuroevolution prevents either configuring a CNN by hand
or using a trained CNN, in addition to improving the classification obtained, as described
in [16].

2. Materials and Methods

The pipeline process proposed in this work is described in Figure 1.

 

Figure 1. Proposed pipeline process.
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2.1. Western Blot Strips Database

For this study, a database containing 150 images corresponding to nitrocellulose
membrane strips with the expression of bands obtained with the Western Blot of the
reaction of antibodies to specific protein antigens (T47D) has been used. Image acquisition
was performed following a protocol in a controlled environment, in addition to using
commercial editing software for image enhancement, as described in [11]. A total of
50 of the images correspond to patients with breast cancer, 50 to patients with benign
pathology, and 50 to healthy patients. These images have been provided by the Biology and
Integral Health area of the Biological Research Institute of the Universidad Veracruzana,
following ethical standards and the acquisition of informed consent from the patients who
participated. The protocol was reviewed and approved by the Research Ethics Committee
of the General Hospital of Mexico “Dr. Eduardo Liceaga” (DI/12/11/03/064). The study
conforms to the Code of Ethics of the World Medical Association (Declaration of Helsinki),
printed in the British Medical Journal (18 July 1964).

2.2. Image Preprocessing

The color images provided by the area of Biology and Integral Health of the Institute
of Biological Research of the Universidad Veracruzana are composed of an average of
18 strips in which the bands of patients of the antibody reaction to specific protein antigens
are expressed (T47D). In total, 50 strips were obtained from healthy patients, 50 strips from
patients with benign breast disease, and 50 strips from patients with breast cancer.

Sánchez-Silva et al. [15] carried out experiments with color and grayscale images and
determined that color was not relevant, so they chose to work with grayscale images. Due
to the above and for the sake of simplicity in image processing, the color images were
converted to grayscale in this study. On the other hand, based on previous experiments
carried out with the CNNs, it has been established that the ideal transformation for the size
of the strips in this work is 256 × 256 pixels.

2.3. Data Augmentation

CNNs require a large amount of data for feature extraction, as well as for training
and testing, which are used for network architecture evaluation. In the medical area, it is
difficult to have many images. To solve this problem, data augmentation is used, which
consists of applying affine transformations (such as rotation, scaling, and/or translation)
to the images of the original database to generate additional images and increase the
diversity of the training set, since CNNs can classify objects in different orientations. It is
recommended that the applied transformations are carried out on small scales so as not to
alter the nature of the images.

For this study, 200 additional images have been generated for each of the classes, with
which a database containing 750 images has been obtained. The affine transformations that
were used randomly and with a range of degrees, movement or size, are: (a) Rotation, with
a degree range of 10 to 30; (b) Translation with a movement range of 0.1 to 0.3; (c) Scaling
with a size range of 0.5 to 1; (d) Gaussian blur, with a kernel size of 7.

2.4. CNN Neuroevolution

Neuroevolution is an approach that harnesses evolutionary algorithms to optimize
the artificial neural networks, inspired by the fact that natural brains are the products of an
evolutionary process [29].

To find a CNN architecture that achieves a balance between complexity and efficiency
for the classification of Western Blot strips, the DeepGA neuroevolution algorithm [25] has
been used. The first step was adjust the parameters of the algorithm, which are shown in
Table 1. DeepGA is formed by a neuroevolutionary framework based on genetic algorithms.
Their goal is to obtain competitive CNNs through flexible hybrid coding combined with
binary and blockchain coding. The parameters required by DeepGA are the population size
(N = 20), the number of generations (T = 50), the crossover rate (CXPB = 0.7), the mutation
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rate (CXPB = 0.3), and the size of the tournament (S = 5); these values were manually
adjusted experimentally. The adjustment of mutation rate (MUPB) and crossover rate
(CXPB) was performed until sufficient diversity was obtained throughout the scan. Both
the size of the population and the number of generations were established by virtue of time
and available computational resources, for which it was not necessary to use automatic
methods for parameter adjustment. The best architecture obtained by DeepGA is shown in
Figure 2.

Table 1. List of parameters used in DeepGA.

Parameters Values

Population Size 20
Number of Generation 50

Crossover Rate 0.7
Mutation Rate 0.5

Tournament Size 4

Figure 2. Deep-CNN architecture.
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2.5. Evaluation of the Convolutional Neural Network

From the best architecture obtained in DeepGA, we proceeded to evaluate the convo-
lutional neural network. For this, a set of 750 Western Blot strips was used, and through
the hold-out technique, 70% of the data were used to train the network and the remaining
30% to test it. From the results obtained, the accuracy, recall, specificity, and precision of
the network for the classification of the Western Blot strips were calculated.

The accuracy is calculated from the total number of predictions that the algorithm
classified correctly divided by the total number in the data set (Equation (1)).

Accuracy = (correctly classified images)/(total images) (1)

The recall is the number of elements correctly identified as positives out of the total
number of true positives (Equation (2)).

Recall = TP/(TP + FN) (2)

Specificity is the number of items correctly identified as negative out of the total
number of negatives (Equation (3)).

Specificity = TN/(TN + FP) (3)

Precision is the number of elements correctly identified as positive out of a total of
elements identified as positive (Equation (4)).

Precision = TP/(TP + FP) (4)

2.6. Comparison and Statistical Analysis

The result of Western Blot strip classification accuracy obtained in this work was
compared by statistical test with the classification accuracy obtained in [15,16], with the
aim of obtaining statistical significance between them.

The data were analyzed using one-way analysis of variance (ANOVA) for independent
groups, with treatment as the factor, followed by the Tukey post hoc test for multiple mean
comparisons. The results are expressed as mean + standard error of the mean, and the
significance level was set at p < 0.05. The assumptions of normality and homogeneity were
verified. The data were analyzed using the MINITAB17 software program.

3. Experimentation and Results

To obtain the classification accuracy of the Western Blot strips with the support of
neuroevolution and convolutional neural networks, the following process was carried out:

1. The CNN obtained through the DeepGA neuroevolution algorithm (CNN-DeepGA)
was trained, taking as input data the database of 750 Western blot strips; 250 belong
to the class of healthy patients, 250 to the class of patients with benign pathology, and
250 to the class of patients with cancer. The parameters with which CNN-DeepGA
was executed have been shown in Table 1;

2. Training CNN-DeepGA consisted of only 10 epochs (as suggested by [30]); Adam’s
optimizer was used with a learning rate of 1 × 10−4. For training, we used 70% of the
data set (525 images out of 750 total), while accuracy/error was calculated using 30%
(225 images out of 750 total) of the remaining set for testing;

3. To evaluate the performance of CNN-DeepGA, 10 executions were carried out, obtain-
ing the average and the standard deviation of the accuracy in each of the executions,
as shown in Table 2;

4. To handle biases, such as overfitting and underfitting, a data augmentation was
performed by increasing the original size of examples for each class five times, going
from 50 to 250 images in each class. On the other hand, the images were obtained
in a controlled environment and an editing software program was used to improve
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them [11]. The hold-out technique was used for the evaluation of the model; 70% of
the data were used for training the network and the remaining 30% for testing it;

5. The performance of the Alexnet pretrained CNN [20] was tested with 150 Westen Blot
strip images (50 healthy, 50 benign breast pathology, and 50 breast cancer). For the
training consisting of 100 epochs, Adam’s optimizer was used with a learning range of
1 × 10−4. For the training set, 70% of the data set was used, while the accuracy/errors
were calculated using 30% of the data set;

6. Regarding the ANOVA statistical test that was applied to establish if there was a
significant difference between the results obtained in this work and those achieved
in [15] and [16], the results are shown in Tables 3–5, respectively.

Table 2. Results of CNN-DeepGA performance evaluation.

Accuracy

1 95.83
2 94.82
3 94.76
4 83.33
5 87.77
6 87.50
7 83.48
8 87.50
9 91.67
10 100.00

Average 90.67
Standard deviation 5.60

Table 3. Accuracy results.

Executions
KNN Time

Series-Geometric
Scaling [15]

Handcrafted
CNN [16]

Alexnet [20] CNN-DeepGA

1 71.11 68.89 50.00 95.83
2 66.66 66.67 45.95 94.82
3 62.22 64.44 54.05 94.76
4 64.44 68.89 39.19 83.33
5 64.44 62.22 45.95 87.77
6 60.50 64.44 48.65 87.50
7 71.11 71.11 55.41 83.48
8 60.50 66.67 54.05 87.50
9 68.88 66.67 55.41 91.67
10 64.44 64.44 45.95 100.00

Average 65.43 66.44 49.46 90.67
Stand. Dev. 3.94 2.66 5.34 5.60

Table 4. Analysis of the mean and standard deviation results.

Factor N Average Stand. Dev. 95% CI

KNN 10 65.43 3.94 (62.52, 68.35)
Handcrafted-CNN 10 66.44 2.662 (63.531, 69.357)

Alexnet pretrained CNN 10 49.46 5.34 (46.55, 52.37)
CNN-DeepGA 10 90.67 5.60 (87.75, 93.58)

Table 3 shows the results obtained from the accuracy averages of the time series classi-
fication with the KNN classification algorithm (65.43%), the handcrafted CNN (66.44%),
Alexnet pretrained CNN (49.46), and CNN-DeepGA (90.67%). The classification accuracy
with KNN and the handcrafted CNN are statistically equivalent, and the Alexnet pretrained
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CNN accuracy showed the lowest values. However, the accuracy of the CNN-DeepGA
classification is better and statistically significant considering the other three compared
approaches. It is important to remark that the same data set was used on the different runs
executed on all algorithms. Figure 3 shows the confusion matrix obtained. Table 5 shows
the different metrics used to evaluate the CNN architecture obtained through DeepGA.
As mentioned above, an accuracy of 90.67% was obtained; likewise, a recall of 90.71%, a
specificity of 95.34%, and a precision of 90.69% were also obtained.

Table 5. Metrics used to evaluate the CNN architecture obtained through DeepGA.

Metric %

Accuracy 90.67
Recall 90.71

Specificity 95.34
Precision 90.69

Figure 3. Confusion matrix.

4. Conclusions

Breast cancer is a pathology that has spread throughout the world; it is the leading
cause of death in adult women in our country. Commonly used diagnostic tests provide the
existence and stage of the disease. However, it is necessary to develop effective detection
techniques for this pathology. The response of the immune system to tumor antigens
could be the answer to this problem. As mentioned throughout this study, there have
been attempts to detect breast cancer early, using the immune response supported by
artificial intelligence techniques, such as computer vision and machine learning. Early
detection of breast cancer will improve the prognosis, provide adequate treatment, and
reduce patient mortality.

It have been reported in some studies that the architecture of the convolutional neural
network used has been obtained either manually through experimentation [17], by optimiz-
ing the CNN parameters using other algorithms, such as Bayes optimization [18], using a
previously trained CNN [19,31], or by taking advantage of the structure of a predefined net-
work [21]. In this work, it was proposed to use neuroevolution to generate a convolutional
network architecture that has competitive complexity and efficiency for the classification of
Western Blot strips. This was achieved by generating a CNN of four convolutional layers,
which allowed a satisfactory execution in terms of time and memory, and a classification
accuracy of 90.67%, a recall of 90.71%, a specificity of 95.34%, and precision of 90.69%.

Comparing our results with state-of-the-art research [15,16] and the Alexnet pretrained
CNN, which also uses images of the reaction of antibodies to tumor antigens (proteomic
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images), we observed that the classification percentage was exceeded. Through the ANOVA
statistical test, we observe that the best results are statistically significant, as we can see in
Table 4.

However, the literature also shows that the diagnosis of breast cancer is carried out
using images of breast tissue, coupled with machine learning. It has been mentioned in
various works that images of breast tissue are obtained by histopathology (Whole Slide
Image—WSI), thermography, ultrasound, and mammography. In [17,19], WSI images
were used, reaching an accuracy of 87% and 89.66%, respectively. In [18], thermographic
images were analyzed, achieving an accuracy of 98.95%. In [21], ultrasound images are
used, and they obtain an accuracy of 80.56%. In [22], the authors used two databases
of mammographic images (CBIS-DDSM, INbreast) and obtain an accuracy of 95.4% and
99.7%, respectively.

The architecture of the convolutional network obtained with the DeepGA algorithm
allowed us to reach an adequate performance for it and to minimize the time used to find the
best configuration of the CNN. On the other hand, the time and subjectivity in the analysis
of Western Blot strips continue to be reduced when compared to a proteomics specialist.

While a good rank percentage was achieved with CNN DeepGA, improvement is pos-
sible. To achieve this, as future work is proposed to change the DeepGA hyperparameters
to obtain a CNN that provides a better classification percentage than the one obtained in
addition to exploring the use of another classifier in the last layer of CNN DeeppGA, as
well as changing the percentage of data used in training and testing.

This work allowed us to obtain a fast and efficient automatic method for the discrimi-
nation of Western Blot images of healthy patients, benign breast pathology patients, and
breast cancer patients.
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Abstract: Bacterial Vaginosis is a common disease and recurring public health problem. Additionally,
this infection can trigger other sexually transmitted diseases. In the medical field, not all possible
combinations among the pathogens of a possible case of Bacterial Vaginosis are known to allow a
diagnosis at the onset of the disease. It is important to contribute to this line of research, so this
study uses a dataset with information from sexually active women between 18 and 50 years old,
including 17 numerical attributes of microorganisms and bacteria with positive and negative results
for BV. These values were semantically categorized for the Apriori algorithm to create the association
rules, using support, confidence, and lift as statistical metrics to evaluate the quality of the rules, and
incorporate those results in the objective function of the DE algorithm. To guide the evolutionary
process we also incorporated the knowledge of a human expert represented as a set of biologically
meaningful constraints. Thus, we were able to compare the performance of the rand/1/bin and
best/1/bin versions from Differential Evolution to analyze the results of 30 independent executions.
Therefore the experimental results allowed a reduced subset of biologically meaningful association
rules by their executions, dimension, and DE version to be selected.

Keywords: differential evolution; association rules; bacterial vaginosis

1. Introduction

Bacterial Vaginosis (BV) is a common disturbance of the balance of vaginal flora; about
25% of women of childbearing age suffer BV [1]. It is a disease that can be asymptomatic,
but symptoms such as discharge, bad vaginal odor, and increased PH can also occur.
It can also increase the risk of contracting other infections such as Neisseria gonorrhea,
Chlamydia trachomatis, Herpes type 2, and papillomavirus infection, among other sexually
transmitted diseases, in addition to being a recurring disease [2,3]. Diseases such as BV
and those sexually transmitted can lead to contracting more severe illnesses, including
cervical cancer, as has been demonstrated by studies that evaluate the 16S rRNA sequencing
to measure the diversity of the vaginal microbiota in women with different BV, human
papillomavirus (HPV), and cervical intraepithelial neoplasia (CIN) status [4]. This study
compares the microbiota composition of several women to gain insight into a marker
of vaginal dysbiosis. The authors use logistic regression to identify risk factors for CIN,
such as age, gestational and childbirth history, contraceptive methods, number of sexual
partners, BV status, HPV infection status, and condom use. The results show that BV and
HR-HPV infection are risk factors for CIN.
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Bacterial Vaginosis is a public health problem. The literature mentions that, in
healthy vaginal microbiota, lactobacilli are predominating. Otherwise, when lactobacilli
are replaced by several bacteria, such as Gardnerella vaginalis and Atopobium vaginae,
among others, there exists an imbalance in the vaginal flora that, in most cases, corresponds
to a BV. The Nugent score and molecular biology are commonly used for BV diagnosis in
the medical area. However, there is no certainty about the causes of this disease. Neither
are all the possible pathogen combinations that can cause BV known, because it has a high
recurrence rate, and this is essential to identify and treat this disease appropriately [5].

On the other hand, association rules (AR) are one of the four primary data mining
tasks [6]. AR algorithms try to find relationships and frequent patterns between data. Qual-
ity metrics such as support, confidence, lift, hyper lift, and Fisher’s exact test, among others,
are used to identify the best patterns [7].

Association Rule Mining (ARM) has been combined with other methods, such as
Differential Evolution, in optimization problems with a single objective. In the case of
numerical data, they are discretized by grouping into consecutive intervals [8].

Various DE-based methods exist for ARM, such as the DE for ARM using numerical
and categorical attributes (ARM-DE), where categorical attributes are discretized into
numerical values such as 0 or 1 and encoded in a real-valued parameter vector [9]. Another
approach is the Numerical Association Rule Minning (NiaARM), available in its free
version with Python libraries [10]. Moreover, other authors have proposed the DE for
mining a significant fuzzy association rules (DESigFAR) algorithm that uses fuzzy intervals
to discretize the attributes. The authors evaluate each candidate rule using statistical
tests and compare their proposal against one genetic algorithm [11]. Although several
approaches have been proposed, the use of DE-based algorithms to reduce association rules
previously generated by the Apriori algorithm, applied to discover patterns leading to VB,
has yet to be studied.

For the reasons mentioned above, the interest of this study is to reduce the number of
association rules for contributing to the identification of possible combinations between
pathogens of possible bacterial vaginosis with Association Rule Mining and Evolutionary
Computation techniques using an adaptation of the Differential Evolution (DE) algorithm
to find biologically meaningful association rules from a set of association rules derived
from the Apriori algorithm. The use of DE is proposed to decrease the number of rules that
were previously generated with Apriori [12]. Another advantage of DE is that it allows
the application of biological constraints, thus we claim that the set of rules obtained with
Differential Evolution is smaller than that obtained with Apriori alone, and still meets the
biological significance required for the diagnosis of diagnostic BV.

2. Materials and Methods

The data used for this study are a dataset with 17 numerical attributes with medical
information from 201 sexually active women aged 18 to 50 years who underwent their rou-
tine annual gynecological examination at the Metabolic and Infectious Diseases Research
Laboratory of the Universidad Juárez Autónoma de Tabasco, and who gave their written
consent. The study was designed according to international standards for responsible
publication of (COPE) and registered (protocol No. UJAT–20160006) and approved by
the Institutional Review Board of the Universidad Juarez Autonoma de Tabasco [13]. We
considered 186 records with a positive and negative diagnosis for bacterial vaginosis only.
The numerical attributes of integer type used are the density of Lactobacillus crispatus,
gasseri, jensenii, and iners. In addition to microorganisms mainly related to BV, Megas-
phaera type 1, Atopobium vaginae, and Gardnerella vaginalis.

Association rule mining is responsible for discovering interesting patterns within a
dataset and is one of the most important knowledge-discovery techniques [14]. An asso-
ciation rule has the form X ⇒ Y, where X in the rule is called the antecedent, and Y is
called consequent [15]. To measure the quality of the association rules, quality metrics are
used. The interest of this research is to find association patterns between the pathogens that
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cause bacterial vaginosis. According to other authors [16–18], metrics such as Confidence
and Lift calculate their values according to the relationship between the antecedent and
consequent of a rule.

The quality metrics of our interest are described below [19]:

• Support: It is the number of times the element appears.
• Confidence: It is based on the support of frequent itemsets to generate significant rules

according to the value of the confidence that one wants to look for.
• Lift: Calculate the number of times the antecedent and consequent occur together.

Other metrics that were evaluated in this work are the following: [19]:

• Fisher Exact Test: Each rule represents a one-sided Fisher’s exact statistical test and
the correction is used for multiple comparisons.

• Hyperlift: It is a more robust metric than the lift metric. It is used at low counts and
its false positives are less frequent.

The Apriori algorithm is one of the most effective methods for discovering valid, novel,
and meaningful rules among data and stands out for its simplicity. However, its results
exponentially grow when making associations, generating many rules [15].

The Apriori Algorithm consists of three repetitive cycles where k is the length of
the pattern generated in the previous step, i are the generations, Ck + 1 is the cycle that
generates the candidate patterns that join the patterns in Fk, the cycle continues with the
pruning and validation of patterns for all the database transactions in T until the set of
frequent k-patterns Fk in one iteration is empty. The Algorithm 1 shows the pseudocode of
the Apriori Algorithm [20].

Algorithm 1 Apriori pseudocode
Require: n

1: Generate frequent 1-patterns and 2-patterns using specialized counting methods and
denote by F1 and F2;

2: k := 2;
3: while Fk is not empty do do
4: Generate Ck + 1 by using joins on Fk;
5: Prune Ck + 1 with Apriori subset pruning trick;
6: Generate Fk + 1 by counting candidates in Ck + 1 with respect to T at support s;
7: k := k + 1;
8: end while
9: return ∪k

i =1Fi;

On the other hand, the DE process begins with the random creation of the initial pop-
ulation. The values of each individual in the population must fit within the pre-established
limits of the search space. Then, for each individual, three vectors are combined using
the mutation and crossover operators to create a new candidate solution. By comparing
current with new individuals, one new population is built. The parameters used by the DE
algorithm are the population size (NP), crossover rate (CR), mutation factor (F), and also
the bounds of the search space [21].

The DE algorithm simulates natural evolution using vectors. Starting from a target
vector �xi,g, the search direction is calculated according to the difference of the vectors �xr1,g
and �xr2,g chosen at random within the population, and its scale factor F is calculated and
added to the base vector �xr0,g and its result is the mutated vector. The mutated vector is
recombined by a binomial crossover defined by the parameter CR. Finally, a binomial cross-
type is used. The pseudocode of the DE/rand/1/bin version can be found in Algorithm 2.
The difference between the DE/rand/1/bin version and DE/best/1/bin is that in the
latter the base vector is the best vector of the current population. The pseudocode of the
DE/best/1/bin version is depicted in Algorithm 3 [22].
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Algorithm 2 DE/rand/1/bin pseudocode
Require: g = 0

1: Create a random initial population �xi,g∀i, i = 1, . . . , NP
2: Evaluate f (�xi,g)∀i, i = 1, . . . , NP
3: for g = 1 to MAXG do
4: for i = 1 to NP do
5: Select randomly r0 �= r1 �= r2 �= i
6: jrand = randint[1, n]
7: for j=1 to n do
8: if randj[0, 1] < CR ∨ j = jrand then
9: uj,i,g+1 = xj,r0,g + F(xj,r1,g − xj,r2,g)

10: else
11: uj,i,g+1 = xj,i,g
12: end if
13: end for
14: if ( f (�ui,g+1) ≤ f (�xi,g) then
15: �xi,g+1 = �ui,g+1
16: else
17: �xi,g+1 = �xi,g
18: end if
19: end for
20: g = g + 1
21: end for

The main objective of the proposed approach, named the Apriori rules reduction by
Differential Evolution (AR2DE) approach, is to apply the DE algorithm to select the most
important set of association rules generated by the Apriori algorithm. The individuals
in the population encode the original association rules using an integer-valued vector
(Figure 1). Several AR metrics are included in the fitness function to identify their biological
significance to c.

Algorithm 3 DE/best/1/bin pseudocode
Require: g = 0

1: Create a random initial population �xi,g∀i, i = 1,..., NP
2: Evaluate f (�xi,g)∀i, i = 1,..., NP
3: for g = 1 to MAXGEN do
4: for i = 1 to NP do
5: Select randomly r0 �= r1 �= r2 �= i
6: jrand = randint[1, n]
7: for j=1 to n do
8: if (randj[0, 1] < CR or j = jrand) then
9: uj,i,g+1 = xj,best,g + F(xj,r1,g − xj,r2,g)

10: else
11: uj,i,g+1 = xj,i,g
12: end if
13: end for
14: if ( f (�ui,g+1) ≤ f (�xi,g) then
15: �xi,g+1 = �ui,g+1
16: else
17: �xi,g+1 = �xi,g
18: end if
19: end for
20: g = g + 1
21: end for
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Figure 1. Encoding scheme from 1 at 15 association rules. The integers represent the ID of each
association rule.

3. Results

3.1. Experimental Study

In the first part of the experimental study, of the data set consisting of 184 records
of positive and negative BV cases, the attributes were discretized according to their nu-
merical value and cataloged into linguistic concepts according to Table 1 to obtain the
transactions used by the Apriori algorithm to generate the association rules, resulting in
5248 association rules.

Table 1. Antecedents.

Antecedent Range Classification Type

Age 1 menoredad Under 30 years old
2 mayoredad Over 30 years old

Cristpatus 1 crispatusDB Low density
2 crispatusDA High density

Gasseri 1 gasseriDB Low density
2 gasseriDA High density

Iners 1 inersDB Low density
2 inersDA High density

Jensenii 1 jenseniDB Low density
2 jenseniDA High density

Megasphaera 1 megasphaeraP Positive
2 megasphaeraN Negative

Atopobium 1 atopobiumP Positive
2 atopobiumN Negative

Gardnerella 1 gardnerellaP Positive
2 gardnerellaN Negative

Antecedents itemset values used in the experimental study.

Below, the cases of interest in this research are the rules that have BV+, after ap-
plying the filter 91 rules are evaluated in the DE process to reduce according to their
biological significance.

3.2. Analysis of Evaluation Metrics

The next part of the experiment was the analysis of the quality metrics, which evaluate
the association rules generated by the Apriori algorithm. Since this study focused on
the rules that had as a consequent VB+, which represents one element as a consequent,
the metrics Fishers Exact Test (Figure 2), Hyperlift (Figure 3), Lift (Figure 4), and Confidence
(Figure 5) were evaluated using scatter plots that allow us to visualize their range of data,
maximum, and minimum values. The comparison between the graphs shows that the
lowest value range is for the Fishers Exact Test metric (Figure 2), followed by Confidence.
In the study that metrics are used in DE the very low value ranges do not favor the
evolutionary process.

19



Math. Comput. Appl. 2023, 28, 75

Figure 2. Fisher exact test metric scatter plot.

Figure 3. Hyperlift metric scatter plot.

Figure 4. Lift metric scatter plot.
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Figure 5. Confidence metric scatter plot.

The scatter plots also show that the highest ranges of values were for the Lift (Figure 4)
and Hyperlift metrics (Figure 3).

The metrics that show the best correlation strength between their values according to
the scatter plots are Lift (Figure 4) and Confidence (Figure 5). The main metrics according
to the literature [16–18] are confidence and lift so lift represented the best option among the
four evaluated metrics, and lift, having the highest range of values, favors the evolutionary
process in DE.

The result of the analysis of the metrics reveals that lift and confidence are the best-
evaluated metrics for this study in addition to evaluating the frequency of positive bacteria
and the presence of lactobacillus iners as factors of biological significance in the associa-
tion rules.

3.3. Implementation of the Differential Evolution (DE) Algorithm

The three main elements in the DE algorithm are the individuals’ encoding scheme,
the fitness function, and the variation operators.

1. Encoding scheme: An individual of the population is a subset of R association rules
each identified with an ID number. Figure 1 shows an example of this codification
from 1 at 15 rules by ID rule.
In this work, the value of R is set to 1 to 15 since in [18] authors obtained five rules
with a biological significance which were determined by a human expert, so the
15 tests ensure the algorithm will find this minimal set of rules.

2. Fitness function: Each j-th individual in the population is evaluated to define the
fitness value. In this work, the fitness function f (xj) is the sum of the S metrics of the
association rules encoded on the individual as follows:

f (xj) =
R

∑
u=1

S

∑
w=1

mu,w (1)

where R is the number of association rules, S is the number of metrics involved to
define the solution quality, and mu,w is the w-th metric computed for the u-th rule.
Since metrics are parameters that allow us to know the quality of attributes quan-
titatively, support and confidence are normally used [23]. The metrics used in the
objective function and described in Section 2 are support, confidence, and lift. In ad-
dition, the frequency of positive bacteria in the rules, and the occurrences of high
values of lactobacillus iners are included to define the biological significance of the
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association rules [13] in this sense higher results from the addition of the metrics have
a higher significance.

3. Variation operators: Differential mutation and crossover operators are defined to
create feasible offspring.

• Mutation: Three randomly chosen individuals of the current population (xr1 ,
xr2 and xr3 ), are different from each other and also different from the target
vector, these individuals are linearly combined to yield a mutated vector vi using
a user-specified scale factor F to control the differential variation, as follows:

vi = 	xr1 + F
(
xr2 − xr3

)

, (2)

Equation (2) is related to the DE/rand/1/bin variant defined in [24]. Another
commonly used variant is known as DE/best/1/bin, where the best individual
in the population xbest is combined with two randomly chosen individuals of the
current population, as follows:

vi = 	xbest + F
(
xr1 − xr2

)

, (3)

• Crossover: The mutated vector is recombined with the target vector to build
the trial vector ui. For each j ∈

{
1, . . . , |xi|

}
, either xi

j or vi
j is selected based

on a comparison between a uniformly distributed random number r ∈ [0, 1]
and the crossover rate CR. The recombination operator also uses a randomly
chosen index l ∈ {1, . . . , |xi|} to ensure that ui acquires at least one value from
vi, as follows:

ui
j =

{
vi

j if r ≤ CR or j = l,

xi
j otherwise.

(4)

In the Equations (2) and (3), 	w
 symbol denotes that the w value is rounded to the
nearest integer since the encoding scheme defined for this work indicates that the parameter
values are only integers. If a parameter value of a mutated vector is outside its range, it is
replaced with a random value between 1 and 91.

3.4. Algorithm Parameters

It is well known that the performance of the Differential Evolution algorithm is affected
by the values of its parameters: F (Scale factor), CR (Crossover rate), and NP (Population
Size) [25]. The parameter values used in this work are shown in the Table 2 and are based
on those commonly used in the existing literature [24]. Since this experimental study is a
work in progress, no parameter-tuning process has been carried out.

Table 2. Parameters values.

Parameter Value

F (Scale factor) 0.7
CR (Crossover rate) 0.5
NP (Population size) 30

MAXGEN (Number of generations) 30
li (lower limit) 1
ls (upper limit) 91

Parameters used in DE/rand/1 and DE/best/1 versions.

4. Discussion

In this work, 30 independent runs were made for the rand/1/bin and best/1/bin
versions and 15 tests were made with each version by changing the value of the individual’s
dimension from 1 to 15.
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Table 3 shows the results of 30 independent runs with the two DE variants included
in this study (rand/1/bin and best/1/bin). The best results for both versions were when
D = 15, the best fitness value in the rand/1/bin version is 96.4201 on test number 14, and for
the best/1/bin version is 95.6184 on test 6.

Table 3. Results of 30 independent runs for each DE variant.

Test Rand/1/Bin Best/1/Bin Test Rand/1/Bin Best/1/Bin

1 95.5457 94.9080 16 93.2444 92.7573
2 93.4321 94.3232 17 93.1759 93.8795
3 95.0492 95.3183 18 92.96241 94.3069
4 92.6088 93.2915 19 93.1063 95.0708
5 93.1151 94.2030 20 94.2296 93.1564
6 93.0887 95.6184 21 95.2363 92.8379
7 92.8634 95.4351 22 93.4080 92.9451
8 94.0896 94.9295 23 96.0235 93.0003
9 95.2359 92.6744 24 94.0122 94.0149
10 92.5891 94.1667 25 92.6781 93.1910
11 94.4798 94.3319 26 94.1964 93.6972
12 93.7070 95.5788 27 92.9309 92.5566
13 94.7591 93.9418 28 94.1645 93.9121
14 96.4201 94.1041 29 94.5672 94.0574
15 93.7882 94.4250 30 94.4028 94.2564

The best fitness values are highlighted in bold, and the median value of each variant is underlined.

The statistical comparison for each variant is shown in Table 4, and Figure 6 depicts
the convergence plot of the run reaching the median value of the two variants. When
comparing the results of the two variants using the Wilcoxon signed-rank exact test by the
function wilcox.test from R, V = 163 and the p-value = 0.1579 indicated the data in each
group are significant correlated.

Table 4. Statistical values.

Statistical Measure Rand/1/Bin Best/1/Bin

Best value 96.4201 95.6184
Mean 93.9703 94.0296

Median 93.9002 94.0808
Standard deviation 1.0428 0.8942

Worst value 92.5891 92.5566
Best test number 14 6

Median test number 24 14
Statistical measure for rand/1/bin and best/1/bin.

According to the statistical results, the best value is obtained with the rand/1/bin
variant. However, the results obtained in the independent runs and the behavior of the
convergence graph show that the best/1/bin variant had better performance in selecting
the association rules.

The best individuals of each variant were taken for the 15 tests and decoded to their
corresponding association rule according to their ID. Repeated rules were removed and
a count of occurrences in both groups of rules was made to know the most frequent ones
as shown in the table. Table 5 shows the rules encoded by the best individuals of each
variant. Likewise, most of the rules comply with the biological significance requirement
of having at least two bacteria present [13]. The biological significance of the items adds
weight to rules that carry bacteria positivity, concurrently with showing low-density levels
of lactobacillus iners. This result is concordant with clinical findings observed in women
with bacterial vaginosis [26].
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Figure 6. Convergence plot for the median values of the two DE variants.

Table 5. Set of best association rules.

ID Association Rule

ine 1 {atopobiumP,megasphaeraP} → {VB+}
3 {jenseniiDB,megasphaeraP} → {VB+}
5 {atopobiumP,gardnerellaP} → {VB+}

10 {gardnerellaP,gasseriDB} → {VB+}
14 {atopobiumP,inersDB} → {VB+}
15 {atopobiumP,crispatusDB} → {VB+}
19 {atopobiumP,crispatusDB,megasphaeraP} → {VB+}
20 {atopobiumP,jenseniiDB,megasphaeraP} → {VB+}
21 {atopobiumP,gasseriDB,megasphaeraP} → {VB+}
22 {crispatusDB,jenseniiDB,megasphaeraP} → {VB+}
25 {atopobiumP,crispatusDB,gardnerellaP} → {VB+}
26 {atopobiumP,gardnerellaP,megasphaeraN} → {VB+}
27 {atopobiumP,gardnerellaP,jenseniiDB} → {VB+}
28 {atopobiumP,gardnerellaP,gasseriDB} → {VB+}
37 {atopobiumP,inersDA,jenseniiDB} → {VB+}
42 {atopobiumP,jenseniiDB,mayoredad} → {VB+}
46 {atopobiumP,gasseriDB,inersDB} → {VB+}
53 {atopobiumP,crispatusDB,jenseniiDB,megasphaeraP} → {VB+}
54 {atopobiumP,crispatusDB,gasseriDB,megasphaeraP} → {VB+}
55 {atopobiumP,gasseriDB,jenseniiDB,megasphaeraP} → {VB+}
57 {atopobiumP,crispatusDB,gardnerellaP,megasphaeraN} → {VB+}
58 {atopobiumP,crispatusDB,gardnerellaP,jenseniiDB} → {VB+}
59 {atopobiumP,crispatusDB,gardnerellaP,gasseriDB} → {VB+}
60 {atopobiumP,gardnerellaP,jenseniiDB,megasphaeraN} → {VB+}
61 {atopobiumP,gardnerellaP,gasseriDB,megasphaeraN} → {VB+}
62 {atopobiumP,gardnerellaP,gasseriDB,jenseniiDB} → {VB+}
65 {crispatusDB,gardnerellaP,gasseriDB,jenseniiDB} → {VB+}
72 {atopobiumP,crispatusDB,gasseriDB,mayoredad} → {VB+}
74 {atopobiumP,crispatusDB,inersDB,jenseniiDB} → {VB+}
75 {atopobiumP,crispatusDB,gasseriDB,inersDB} → {VB+}
81 {atopobiumP,crispatusDB,gasseriDB,jenseniiDB,megasphaeraP} → {VB+}
82 {atopobiumP,crispatusDB,gardnerellaP,jenseniiDB,megasphaeraN} → {VB+}
83 {atopobiumP,crispatusDB,gardnerellaP,gasseriDB,megasphaeraN} → {VB+}
84 {atopobiumP,crispatusDB,gardnerellaP,gasseriDB,jenseniiDB} → {VB+}
85 {atopobiumP,gardnerellaP,gasseriDB,jenseniiDB,megasphaeraN} → {VB+}
91 {atopobiumP,crispatusDB,gardnerellaP,gasseriDB,jenseniiDB,megasphaeraN} → {VB+}

Set of the best association rules selected from the two DE variants of the tests with dimensions from 1 to 15.
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The 5 most frequent rules of the 15 tests for the rand/1/bin variant by ID are 1, 58, 21,
62, and 19. For the variant, the best/1/bin by ID are 19, 58, 62, and 83. The details for both
variants are shown in Figure 7.

Figure 7. Detail of the frequency of rules per ID for rand/1/bin and best/1/bin variants.

The elements frequently found in the antecedent of the rules of both variants are atopo-
biumP, crispatusDB, gardnerellaP, jenseniiDB, gasseriDB, megasphaeraP, megasphaeraN,
inersDB, inersDA, and mayoredad. The details are shown in Figure 8.

Figure 8. Frequency of antecedent elements for rand/1/bin and best/1/bin variants of the 15 tests.

5. Conclusions

The combination of the Apriori and DE algorithms enables the generation of subsets
of rules with biological significance by utilizing a fitness function that incorporates the
biological criteria used by experts. The analysis presented in this study demonstrates that
the DE/rand/1/bin and DE/best/1/bin algorithms reveal that microorganisms such as
Atopobium positive, Gardnerella positive, and L. Crispatus in low density have a greater
interaction to present a VB+. The clinical findings coincide with the presence of these
microorganisms, which reduce the density of lactobacilli such as L. Crispatus. However,
age is not determining factor of a VB+ according to DE algorithms since it is the least
frequent antecedent. This study highlights the use of DE algorithms and the integration of
biologically significant rules into the objective function.

In that context, the use of DE algorithms and the integration of biological significance
rules to the objective function give the expected results, obtaining mostly high-quality
association rules. They comply with the requirements of the objective function by having
at least two positive bacteria present.

From this perspective, the following three rules were found where there is only one
bacterium and one lactobacillus:

• {jenseniiDB,megasphaeraP} → {VB+}
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• {gardnerellaP,gasseriDB} → {VB+}
• {atopobiumP,crispatusDB} → {VB+}

In this sense, the validation of the expert indicates that the rules where a bacterium and
a lactobacillus are present are those that can be useful for the classification of indeterminate
cases, specifically in cases where L. crispatus and iners are not informative. For this reason,
they cannot be ruled out and should be validated in other databases and biologically to
find out their contribution to the development of the condition.

This approach provides concrete support to experts in identifying relationships that
have not been explored or analyzed in the laboratory. The use of computational intelli-
gence approaches in this field of study can be considered highly beneficial for designing
new strategies to identify diseases and improve patient health. In future work, it is very
important to continue with the validation of the rules by an expert and to carry out tests
with a more robust dataset to integrate indeterminate cases, and other rules of biologi-
cal significance to add penalties to the objective function. It is also proposed to create a
new individual coding scheme that allows comparison with other evolutionary compu-
tation algorithms for association rule mining and includes parameter adjustment of the
DE algorithm.
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Abstract: One of the main limitations of traditional neural-network-based classifiers is the assumption
that all query data are well represented within their training set. Unfortunately, in real-life scenarios,
this is often not the case, and unknown class data may appear during testing, which drastically
weakens the robustness of the algorithms. For this type of problem, open-set recognition (OSR)
proposes a new approach where it is assumed that the world knowledge of algorithms is incomplete,
so they must be prepared to detect and reject objects of unknown classes. However, the goal of
this approach does not include the detection of new classes hidden within the rejected instances,
which would be beneficial to increase the model’s knowledge and classification capability, even after
training. This paper proposes an OSR strategy with an extension for new class discovery aimed at
vehicle make and model recognition. We use a neuroevolution technique and the contrastive loss
function to design a domain-specific CNN that generates a consistent distribution of feature vectors
belonging to the same class within the embedded space in terms of cosine similarity, maintaining
this behavior in unknown classes, which serves as the main guide for a probabilistic model and a
clustering algorithm to simultaneously detect objects of new classes and discover their classes. The
results show that the presented strategy works effectively to address the VMMR problem as an OSR
problem and furthermore is able to simultaneously recognize the new classes hidden within the
rejected objects. OSR is focused on demonstrating its effectiveness with benchmark databases that
are not domain-specific. VMMR is focused on improving its classification accuracy; however, since it
is a real-world recognition problem, it should have strategies to deal with unknown data, which has
not been extensively addressed and, to the best of our knowledge, has never been considered from
an OSR perspective, so this work also contributes as a benchmark for future domain-specific OSR.

Keywords: open-set recognition; new class discovery; VMMR; CNN; contrastive loss; clustering;
neuroevolution

1. Introduction

Automatic vehicle make and model recognition (VMMR) aims to offer innovative
services to improve the efficiency and safety of transportation networks. These services
include intelligent traffic analysis and management, electronic toll collection, emergency
vehicle notifications, the automatic enforcement of traffic rules, etc. In recent years, several
authors have proposed and implemented different approaches and techniques to present
solutions to the various challenges of VMMR such as the similar appearance of different
vehicle models [1,2], variations in the images due to weather conditions or resolution [3–5],
recognition through different key points or regions [6,7], etc. However, most of these
solutions are designed within a closed-set approach, where it is assumed that all query data
are well represented by the training set, and therefore these solutions lack mechanisms
to detect during testing when an input sample does not belong to any of the predefined
classes. These unforeseen situations are very likely to happen in real-life scenarios and
drastically weaken the robustness of the models.
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Every day, we have more and more access to labeled data, which makes data-hungry
algorithms such as classification algorithms that employ supervised learning improve their
classification accuracy by having more training information. However, it is unrealistic
to think that we will be able to train these algorithms to recognize any object that may
be presented to them. In the specific case of this application domain, it is estimated that
there are currently more than 3300 vehicle makes in the world, for which models have
been added and removed from the market, modifying the design in each generation and
producing different versions of the same vehicle, which has made it very difficult to have a
database containing enough examples of all the existing vehicles in circulation to correctly
train a model. This limitation is very common in real-world recognition/classification tasks
such as VMMR and, in most cases, results in misclassified vehicles because the algorithms
were not prepared to deal with objects of unknown (novel) classes.

To solve this problem, some strategies have been proposed, such as periodically
retraining the algorithms, incorporating an incremental update mechanism [8,9], using
zero-shot [10,11] or one-shot (few-shot) [12,13] learning, etc. Although these strategies
provide models with greater flexibility or the possibility of eventually increasing their
classification potential, they do not address the fundamental problem of recognizing a
novel class during testing (open-set problem). Scheirer et al. were the first to describe a more
realistic scenario in which new classes not seen in training appear in testing and require
classifiers not only to accurately classify objects of known classes but also to effectively
deal with classes not considered in the training set [14]. They formalized this problem as
open-set recognition (OSR) and proposed a solution called 1-vs-Set machine, where the risk
of labeling a sample as known if it is far from the known data (open space) is measured, and
its objective is to minimize this risk (open-space risk) by rejecting queries that lie beyond the
reasonable support of the known data.

OSR led to extensive research that mostly focused on more effectively limiting the
open-space risk [15–18], and little research was developed around efficiently performing
open-set recognition and simultaneously discovering new classes hidden in the rejected
instances. Some of the proposed solutions employed incremental learning [19], transfer
learning [20,21], or clustering [22,23]. Although they achieved good results, most of them
present limitations such as the determination of the number of new classes in a later
or separate event from the recognition of novel instances, or the use of examples of un-
known classes during validation, pretraining, or retraining stages as a strategy to fine-tune
their representations/parameters; however, in OSR, there is almost never information of
unknown classes.

In the specific case of VMMR, few works have been proposed that, although not
described within an OSR framework, have mechanisms to deal with new classes. One of
these studies was conducted by Nazemi et al. [3] from an anomaly detection approach.
Their base system is capable of classifying 50 specific vehicle models, to which they added
an anomaly detection based on a confidence threshold to identify vehicles that do not
belong to any of these 50 classes. The “anomalies” are further classified based on their
dimensions within two new classes: “unknown heavy” and “unknown light”. Another
approach was proposed by Kezebou et al. [12], with a few-shot learning approach requiring
between 1 and 20 images for the generation of new classes.

In this paper, we propose to approach VMMR as an OSR problem extended for new
class discovery. Since the known classes are supported by numerous well-labeled examples,
we can very effectively train an image classification algorithm that employs supervised
learning like convolutional neural networks (CNNs), which are the most widely used tool
for this task. While these networks cannot deal with the recognition of new classes, their
ability to extract meaningful features can be exploited to design a mechanism that can detect
objects of new classes based on the distribution of feature vectors in the embedded space
that, when aggregated between feature extraction and classification, would adopt an OSR
approach. However, feature vectors are usually of high dimensionality, their distribution
is not always clear, and there is no assurance that the behavior will be maintained in
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instances of unknown classes, which can complicate the representation and interpretation
of the space to detect new classes. To tackle these problems, we propose to train a CNN
with contrastive learning using the contrastive loss function during the training stage to
reorganize the space where the feature vectors are mapped. Instead of separating the
images with a hyperplane, the contrastive loss function brings similar images in near space
(in terms of, e.g., Euclidean distance, cosine similarity, or some other metric) and moves
dissimilar images away, generalizing this behavior on new unseen data.

Although there are CNN architectures such as VGG16, AlexNet, etc., that have
achieved state-of-the-art results in the most well-known benchmarks such as ImageNet,
CIFAR-100, etc., we propose a new CNN architecture designed from images of the applica-
tion domain of this work (VMM) and the contrastive loss function using a neuroevolution
technique to ensure consistent distribution of feature vectors within the embedded space,
which serves as the main guide for a probabilistic model and a clustering algorithm that
carry out the detection of objects of new classes and simultaneously discover their classes.

The remainder of this paper is organized as follows: Section 2 presents the related work.
Section 3 describes the proposed methodology to approach VMMR as an OSR problem
with an extension for new class discovery. This section also presents the proposed global
scheme and delves deeper into each stage, detailing how the techniques of neuroevolution,
contrastive loss function, the probabilistic model, and clustering are linked so as to achieve
the general purpose. Section 4 details the tests performed, including the parameters
and justifications for each test and the results obtained at each stage with their respective
interpretation. Finally, the conclusions are drawn, and future work is discussed in Section 5.

2. Literature Review

2.1. Open-Set Recognition

OSR [14] introduced a more realistic scenario for real-world recognition/classification
tasks, where new classes not seen during training appear at query time during testing.
To deal with these unforeseen situations, OSR algorithms have to consider that their
knowledge of the world is incomplete and formulate strategies to minimize the risk of
considering an unknown instance as known. The authors of [14] formalized this risk as an
open-set risk (RO) in a probabilistic formulation (Equation (1)) as the relative measure of
positively labeled open space O compared with the overall measure of positively labeled
space SO.

RO( f ) =

∫
O f (x)dx∫

SO
f (x)dx′

(1)

where f denotes a measurable recognition function.
Numerous studies have been conducted to minimize the risk of open sets and more

effectively reject objects of unknown classes [15–18], which is the main goal of OSR. How-
ever, in a more desirable context, an OSR should go further and discover the unknown
classes hidden inside the rejected objects. Within this context, some authors have proposed
the use of incremental learning [19], transfer learning [20,21], or clustering [22]. Bendale
and Boult [19] extended the open-set recognition problem to open-world recognition (OWR)
to jointly consider the OSR and incremental learning of new classes. They proposed that an
effective OWR system must perform four tasks: detecting unknown objects, choosing which
objects to label for addition to the model, labeling these objects, and updating the model. In
their paper, they presented the NNO algorithm. However, the tasks they proposed are not
automated in the NNO, they require human supervision for labeling, and the determination
of the number of classes happens in a later event after the recognition of new instances.
In [20], Wang et al. studied the OWR problem in more detail by incorporating transfer
learning to transfer knowledge from old classes to new ones. However, they needed to
retrain their model with the presence of samples of unknown classes, which is a limitation
since, in an OSR context, information from unknown classes is almost never available. A
similar knowledge transfer proposal was presented by Han et al. [21]; however, they have
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the same limitation since their idea was to pretrain their model with images of known and
unknown classes. Another interesting proposal was developed in [22] by some authors
of [21], where they also took advantage of the knowledge transfer approach but used
clustering. The main limitation of this work is that they determined the number of new
classes in a separate event from the discovery of new instances, which, as in [19], can lead
to suboptimal solutions.

To our knowledge, the most related work to ours, in terms of simultaneously discov-
ering the objects of new classes and these classes themselves, is [23]. They introduced a
collective/batch decision-strategy-based OSR framework (CD-OSR) by slightly modifying
the hierarchical Dirichlet process (HDP). CD-OSR first involves a co-clustering process in
the training phase to obtain the appropriate parameters. In the testing phase, each known
class is modeled as a group using a Gaussian mixture model (GMM) with an unknown
number of subclasses (one or more subclasses representing the same class can be obtained),
and the entire test set (collective/batch) is treated in the same way. Then, all the groups
are co-clustered under the HDP framework, and each one is labeled as one of the known
classes or as unknown, depending on whether the subclass assigned to it is associated with
a known class or not. Other works on OSR such as [24] also took advantage of Gaussian
distributions to obtain discriminative representations of the data to detect unknowns and
classify knowns.

Another proposal that may be related to our work was presented in [18], where the
OSR problem was addressed within a transfer learning approach using contrastive learning
to model the data. They also highlighted the importance of developing and testing OSR
solutions with domain-specific databases to test their efficiency in dealing with real-world
applications. Unfortunately, this solution only rejects objects of new classes and does not
include the discovery of their classes.

2.2. Neuroevolution and Contrastive Learning

In the field of evolutionary computation (EC), a technique called neuroevolution (NE)
emerged to optimize artificial neural networks (ANNs) at different levels. Its current overall
process can be summarized as follows: A random population of individual networks is
generated (with a neural coding), real networks are created from them, and the networks
are evaluated with a function that measures the quality of the results (the fitness function).
The networks with the highest fitness are selected, certain random changes are introduced
to generate offspring from them, and a new population (generation) is selected. This
process is repeated until a certain level of fitness or number of generations is reached.

NE has achieved excellent results in this optimization task and has rapidly advanced
toward the optimization of CNN topologies [25–32]. A crucial point in the performance
of NE algorithms is neural encodings, which contain the topology information of an
ANN and therefore have a great impact on the complexity of the search space. So, in
order to implement this technique in CNNs, NE was faced with the problem of designing
neural encodings that could abstract the parameters of CNNs in order to deal with these
highly complex architectures. There are two types of neural encodings that are commonly
employed: direct and indirect. Among the proposals using an indirect coding framework,
we find works such as [25–27], and in the case of works that used indirect encodings, we
find proposals such as [28–30]. In recent years, researchers have started to study a “hybrid”
neural coding, which combines elements of the encodings mentioned above to eliminate
some of their limitations. These “hybrid” representations have proved to be very useful to
distribute the CNN representations in different substructures, leading to improvement in
the search [31–33]. The advantages and disadvantages of different encoding schemes, as
well as important niches of opportunity for future research, were described in detail in [34].

Although NE algorithms have a strategy to determine how well individuals are
meeting the criterion (or criteria) being optimized (the fitness function), CNNs have their
own strategy to quantify how close their predictions are to the expected output (the
loss function), for which cross-entropy or negative log-likelihood are some of the most
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frequently used functions. However, the study of these functions has continued, and
alternatives have been proposed that have achieved superior results. In these advances, the
supervised contrastive loss function (SupCon) [35] was developed following the contrastive
learning approach but in a supervised environment, which allowed it to maintain the
principle of mapping examples into the embedded space of contrastive learning (distance
is minimized in terms of Euclidean distance, cosine similarity, etc., between similar objects
and maximized for dissimilar objects) but take advantage of labeled data.

Although there are marked differences between various versions of contrastive loss
functions, the family of contrastive loss functions, in general, considers the following:
For A set of N randomly sampled sample/label pairs (batch), {xk, yk} k = 1 . . . N is
considered; the corresponding batch used for training (multiviewed batch) consists of 2N
pairs,

{∼
x ,

∼
y
}

=1...2N
, where

∼
x2k and

∼
x2k−1 are two random augmentations (“views”) of

xk(k = 1 . . . N) and
∼
y2k−1 =

∼
y2k = yk. Given the above, SupCon is calculated as follows:

Lsup
in = ∑

i∈I
Lsup

in,i = ∑
i∈I
− log

⎧⎨⎩ 1
|P(i)| ∑

p∈P(i)

exp
(
zi · zp/τ

)
∑a∈A(i) exp(zi · za/τ)

⎫⎬⎭ (2)

where i ∈ I ≡ {1 . . . 2N} is the index of an augmented sample (anchor), A(i) ≡ I \ {i} is the
set of all the indices of the samples different than i, P(i) ≡

{
p ∈ A(i) :

∼
y p =

∼
yi

}
is the set

of all positive sample indices different than i, |P(i)| is its cardinality, the • symbol denotes
the inner (dot) product, and τ is a scalar temperature parameter. SupCon’s formulation
generalizes the SimCLR loss function [36] to an arbitrary number of positive examples to
deal with scenarios in which labels are available so that it is known that more than one
sample can belong to the same class.

3. Materials and Methods

This section describes the methodology proposed to approach VMMR as an OSR
problem with an extension for new class discovery. Figure 1 shows the overall process of
our proposal, and the following subsections describe the process in detail, covering the
following objectives:

1. Employ an NE algorithm and contrastive learning to design a domain-specific CNN
that generates feature vectors spatially close in terms of cosine distance if the instances
belong to the same class and distant if they belong to different classes, preserving this
behavior in instances of unknown classes.

2. Implement a mechanism between the feature extraction and classification sections
of the CNN capable of detecting objects of unknown classes and simultaneously
discovering their classes, taking the mapping of feature vectors, described in the
previous objective, as the main guide.

3. Run a series of tests using the test set that includes images of classes with which the
CNN was designed and trained (known) and images of new classes (unknown) to
test that the algorithm is able to detect objects of unknown classes and simultaneously
discover their classes.

4. Classify images of known classes with a classification accuracy above 90%.
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Figure 1. The proposed global process to approach VMMR as an OSR problem with an extension for
new class discovery.

3.1. Dataset

The VMMRdb database [37] (available at https://github.com/faezetta/VMMRdb,
accessed on 13 March 2023) was used in this work since it is one of the most cited in the
specialized literature [12,38,39]. Only eight classes from the VMMRdb database were used
and were manually filtered to retain only unduplicated images showing the rear view
of the vehicles (i.e., samples of each class were not balanced). The filtered images were
transformed to grayscale, resized to 28 × 28 pixels, and normalized with a mean of 0.456
and a standard deviation of 0.224.

Of the eight classes, five classes were used as “known classes”: Chevrolet Silverado
2004, Ford Explorer 2002, Ford Mustang 2000, Honda Civic 2002, and Nissan Altima 2005.
A sample of six images of each “known class” was used in the NE process to design the
domain-specific CNN for VMMR. For the training of the resulting CNN from the NE
process, the largest number of examples per class was needed, which had to be the same
among different classes. However, due to the number of available samples in the database
and the image filtering mentioned above, the final number of functional samples per “known
class” varied between 75 and 250 images. Among the functional samples, three images of
each class were kept for testing the complete OSR framework, and the rest were subjected
to a data augmentation process to balance the number of examples per class, resulting in
250 images of each “known class”. Furthermore, 200 images were used to train the CNN
and model the “known classes” with a Gaussian mixture model (GMM), and the remaining
50 images were used to test the CNN classification accuracy and define the threshold of
“known classes” in the GMM.

From the three remaining classes chosen from the database (Acura RSX 2003, Chevrolet
Avalanche 2009, and Ford Escape 2011), three images of each class were chosen to only be
used during the testing stage to represent “unknown classes” and validate that the proposed
approach can detect them and discover their classes.

3.2. Neuroevolution and Contrastive Loss

One of the main objectives of this work is to exploit the ability of a CNN to extract
meaningful features for designing a mechanism to detect objects of unknown classes
based on the distribution of the feature vectors in the embedded space. To facilitate
the interpretation of the embedded space, feature vectors extracted using the CNN are
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considered to be spatially close in terms of cosine similarity if they belong to the same class
and spatially distant if they belong to different classes, maintaining this behavior even if
the classes are unknown. According to the state-of-the-art review, adding the contrastive
loss function to the CNNs causes the feature vectors to be mapped in near space (in terms
of, e.g., Euclidean distance, cosine similarity, or some other metric) if they are similar and
far if they are dissimilar.

Although there are CNN architectures such as VGG16, AlexNet, etc., that have
achieved state-of-the-art results in the most well-known benchmarks such as ImageNet,
CIFAR-100, etc., we propose a new domain-specific architecture that would generate the
previously described behavior in feature vectors, using the images mentioned in Section 3.1,
an NE algorithm called DeepGA [33] (shown in Algorithm 1), and SupCon [35] expressed
in Equation (2).

In [35], the authors made their PyTorch implementation of SupCon generally available
(https://t.ly/supcon, accessed on 13 March 2023), and this was used in this work as a loss
function in the CNNs generated in the NE process with DeepGA. (Originally, the negative
log-likelihood loss was used.) The fitness function of DeepGA (Algorithm 1, line 15) was
also modified to measure the desired behavior in feature vectors since optimization was the
objective of our study. Thus, as the fitness function, we used the value of SupCon in the last
training epoch of each generated CNN. Since the loss function decreases as the desired output
is approached, DeepGA was set to work as a minimization problem, i.e., as the generated
CNNs approached the desired target, the value of the loss/fitness function decreased.

The hybrid coding employed in DeepGA allows the algorithm to consider the number
of fully connected layers and their corresponding number of neurons in its search for the
best solution. However, during the NE process, it was detected that leaving the number of
fully connected layers to DeepGA only increased the complexity and execution time since
with only two fully connected layers, classification accuracies above 90% were achieved.
To limit the number of fully connected layers during the evolutionary process, the first
level of the mutation operator was modified. At the first level of the mutation operator,
if U1(0, 1) > 0.5, a new block is added, and if U2(0, 1) > 0.5, the added block is a fully
connected layer; then, the operator was modified so that if U2(0, 1) > 0.5, no block is added.
This modification is shown in line 4 of Algorithm 2, which shows the mutation operator of
DeepGA. This ensures that, during the whole evolutionary process, the generated networks
only have two fully connected layers, allowing the algorithm’s search to focus on the blocks
of convolutional layers since they would be in charge of generating the feature vectors with
the desired behavior.

To access the feature vectors generated using the CNNs, the CNN class of DeepGA,
which builds the model for training and testing, was modified. As output, this class
only generated the probabilities of the images belonging to the different classes. The
modification consisted of the addition of the flattened outputs of the convolutional block
(feature vectors) to the original output to be able to access them in the next process (i.e., to
distinguish objects from new classes and simultaneously discover these classes).

The last modification to the DeepGA algorithm was an improvement in image reading.
The PyTorch ImageFolder function was used to be able to read the images of all classes in a
single process instead of reading the images of each class individually.
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Algorithm 1: DeepGA pseudocode.

1 Input: A population P of N individuals. The number of generations T,
2 crossover rate CXPB, mutation rate MUPB, tournament size TSIZE.
3 Output:

4 Initialize population (training the networks).
5 t← 1
6 while t ≤ T do

7 Select N/2 parents with probabilistic tournament selection
8 Offs← {}
9 while |Offs| < N/2 do
10 Select two random parents p1 and p2.
11 if random(0,1) ≤ CXPB then

12 O1, O2← Crossover(p1, p2) // Crossover
13 if random(0,1) ≤MUPB then

14 Mutation(O1, O2) // Mutation (modified)
15 fitness(O1, O2) (Equation (1)) // Evaluation (modified)
16 P← P ∪ Offs
17 Select the best N individuals in P as survivals.
18 end

19 end

Algorithm 2: Mutation process DeepGA.

1 if random(0,1) ≤MUPB then
2 if random(0,1) ≤ U1 then // Adding a new block
3 if random(0,1) ≤ U2 then
4 A convolutional block is added // Removed
5 else

6 A fully connected block is added
7 else // Restarting a block
8 if random(0,1) ≤W1 then
9 Restarting a convolutional block
10 else

11 Restarting a fully connected block

3.3. Neuroevolved CNN

The CNN architecture with the best fitness generated using DeepGA and SupCon
was split to fulfill two purposes. First, the goal was to train the convolutional block with
the contrastive loss function and the fully connected block with the cross-entropy loss
function, using the full test set described in Section 3.1 (200 images of each of the five
“known classes”), and to perform a classification accuracy test momentarily assuming a
closed-set environment to validate that a good classification accuracy could be obtained
since it is an essential point for OSR. Second, we sought to have the feature extraction
process and the classification process separate since the detection of new class objects and
the discovery of their classes must be accomplished between these events.

3.4. Gaussian Mixture Model (GMM) and Clustering

The main objective of this work is to approach VMMR as an OSR problem with an
extension for the discovery of new classes. To achieve this, we divided our strategy into
two phases, both relying on the consistent distribution of feature vectors in the embedded
space generated using DeepGA and SupCon.

The first phase consisted of extracting the feature vectors from the images used to train
the CNN and validating its classification accuracy. The feature vectors were compressed
using principal component analysis (PCA) where the second and third components, which
contributed 27.81 and 20.97 to the percentage of variance, respectively, were selected to
perform a linear regression on the original feature vectors to obtain their projections. As
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mentioned in Section 3.1, with the same proportion of data with which the CNN was trained
and tested (80–20%), the 2D projections of the feature vectors were used to model each
“known class” with a Gaussian mixture model (GMM) and define a recognition threshold
of “known classes”. In the test stage, where objects of both known and unknown classes
were included, the GMM divided the objects as a group of unknown classes that did not
pass the threshold and subsets of known classes whose probabilities matched the “known
class” models. The above only served as a partial guide in the recognition of new class
objects since, in the second phase of the strategy, a multiobjective clustering algorithm with
automatic determination of the number of clusters (MOCKs) was employed and optimized
with a multiobjective evolutionary algorithm (MOEA), called NSGA-II [40].

In the second phase, the clustering algorithm grouped the feature vectors extracted
using the domain-specific CNN without any modification in their dimensionality. Since
the GMM can determine the objects of known classes and their respective classes with
some confidence, due to the threshold, we compared the subgroups of known classes
generated using the GMM with the solutions of MOCK/NSGA-II to select the individual
from the population with the highest similarity, where different criteria were used. First,
the solutions that grouped the instances that the GMM determined as known and were
in the same structures (subgroups) as the GMM had a higher score (one point for each
shared structure). Although all the solutions of the clustering algorithm were optimal for
the problem, we selected the solution that had the highest score (higher match with the
GMM in the known classes) and was closest to the knee point as the “best solution”.

Finally, we determined which clusters of the “best solution” contain known objects and
separated them from the clusters containing unknown objects in a similar way to how the
solutions were scored. Then, since the GMM also detected the objects of unknown classes
(the objects that did not pass the threshold) with some confidence, those clusters that only
contained objects that the GMM determined as unknown were automatically determined
as new classes. After these processes, if there were still undetermined clusters as known or
unknown, the number of known and unknown instances within the undetermined clusters
were counted (according to the GMM determination), and the clusters were defined in the
same category as that containing the majority of instances or as unknown if it contained
the same number of examples to try to mitigate the open-set risk.

At the end of this strategy, the objects of the clusters that were determined as known
were entered into the CNN’s fully connected block to be classified, and the clusters that
were determined to be unknown were the newly discovered classes of the objects detected
as unknown.

The original version of the MOCK algorithm was proposed in 2004 by Handl et al. [41]
and employed the MOEA called PESA-II. In 2016, Martinez-Peñaloza et al. [42] managed
to improve the results by using the MOEA NSGA-II instead of PESA-II. In the MOCK
version improved with NSGA-II, individuals are ranked and sorted according to their
non-dominated level, and a crowding distance is used to perform niching. This distance
is calculated for each member to be used by the selection operator to maintain a diverse
front by ensuring that each member stays a crowding distance apart. Algorithm 3 shows
NSGA-II’s pseudocode.
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Algorithm 3: NSGA-II pseudocode.

1 Initialize Population
2 Generate random population -size M
3 Evaluate Objective values
4 Assign Rank (level) Based on Pareto Dominance -”sort”
5 Generate Child Population
6 Binary Tournament Selection
7 Recombination and Mutation
8 for i = 1 to Number of Generations do

9 for each Parent and Child in Population do

10 Assign Rank (level) Based on Pareto –”sort”
11 Generate sets of non-dominated fronts
12 Loop (inside) by adding solutions to next generation starting
13 from the “first” front until M individuals found determine
14 crowding distance between points on each front
15 end

16 Select points (elitist) on the lower front (with lower rank) and
17 are outside a crowding distance. Create next generation
18 Binary Tournament Selection
19 Recombination and Mutation
20 end

4. Experiments and Results

This section describes the experiments and results obtained from our proposal to
approach VMMR as an OSR problem with an extension for new class discovery.

For the neuroevolution process of CNNs performed with DeepGA [33] and Sup-
Con [35], as mentioned in Section 3.1, six images of each “known class” taken from the
VMMRdb [37] database were used.

The parameters described in Table 1 were used to initialize the population. Due to
time constraints, it was not possible to use a parameter calibration program. Then, the
parameters for the evolutionary process were calibrated manually. The parameters with
which the best results were obtained, and which were used to generate the CNNs are
shown in Table 2. The different values that each hyperparameter could have during the
evolutionary process were the same as those established by the author of DeepGA and are
presented in Table 3.

Table 1. Parameters for the population initialization.

Parameter Values

Min number of convolutional layers 4
Max number of convolutional layers 9
Min number of fully connected layers 1
Max number of fully connected layers 1

Table 2. Parameters for the evolutionary process.

Parameter Values

Population size 20
No. of generations 100
Tournament size 5
Crossover rate 0.7
Mutation rate 0.7
No. of epochs per individual 20
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Table 3. Values that each hyperparameter could have during the evolutionary process.

Hyperparameter Values

No. of filters * {2, 4, 8, 16, 32}
Filter size * {2, 3, 4, 5, 6, 7, 8}
Pooling type * {Max, Avg}
Pooling size * {2, 3, 4, 5}
No. of neurons {4, 8, 16, 32, 64, 128}

Rows marked with * correspond to the convolutional block, while the unmarked row corresponds to the fully
connected block.

Seven executions of the NE process with DeepGA and SupCon were performed.
Figure 2 shows the convergence curves of the seven executions and a short analysis of the
fitness values obtained in each one. As can be seen, all the executions started with a fitness
within a range of 3.3 and 3.5, and most reached premature convergence or stalled at local
optima. However, one of the executions (marked in red) achieved a more accurate search
space that led to a fitness value of 1.96096.

 
Figure 2. Convergence curves and the most relevant data of the fitness values of the seven runs of
the NE process.

The CNN with the best fitness obtained in the NE process (henceforth referred to
as the “domain-specific CNN”) had a value of 1.96096, which was the value of SupCon
in the last training epoch of the CNN (its justification is explained in Section 3.2 in more
detail) and took 7 h to execute in the Visual Studio Code editor running on a MacBook
Pro with a 2.2 GHz Quad-Core Intel Core i7 processor with 16 GB 1600 MHz DDR3 of
memory. Figure 3 illustrates the architecture in terms of its encoding. In the first level, it
can be observed that the architecture has 13 convolutional blocks (each one consisting of
a single convolutional layer) and 2 fully connected blocks (each one comprising a single
layer and a fully connected layer). The last convolutional block/layer generates feature
vectors of 288 features. At the second level, the binary string defines the connectivity
between convolutional blocks. Each bit represents the connectivity of a previous non-
consecutive layer, starting from the third block. For a better understanding, we will explain
three examples to understand the connections. The third convolutional block (first bit
marked in red) can only have connections with previous blocks that are not its immediately
previous consecutive block, so the third block cannot have a connection with the second
convolutional block, but it can with the first one, which is why only one bit is assigned to it,
and the bit value is 1. This means that there is a connection, which is represented by the
red line on the first level. The next two bits (green) are for the fourth block, which can have
a connection with the first or second block, and since the bit values are 1, both connections
exist (represented by the green lines on the first level). A different case is shown in the next
three bits (highlighted in yellow) assigned to the fifth block, which can have connections
with the first, second, and third blocks; however, of those three bits, only the second one
has a value of 1, which means that the fifth block only connects to the second block.
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Figure 3. CNN architecture with the best fitness obtained using DeepGA and SupCon. The first
level (blocks) represents simple convolutional operations instead of a set of convolutional layers. The
second level (binary string) determines the skip connections received from the third block onward.
Each bit represents the connectivity from previous layers, from the third layer onward.

To verify that the domain-specific CNN could generate the feature vectors extracted
spatially close in terms of cosine similarity if they belong to the same class and far apart
if they belong to different classes, a distance matrix using cosine similarity as the metric
was generated with the feature vectors obtained in the last training epoch of the domain-
specific CNN. On the same feature vectors, the t-SNE [43] technique was used to reduce
the dimensionality from 288 to 2 in order to visualize them in a two-dimensional plane.
The results of the distance matrix and t-SNE are shown in Figure 4. By means of these two
techniques, it could be seen that the desired behavior in the feature vectors was achieved.

Figure 4. Distance matrix (with cosine similarity) and the projection in a two-dimensional plane of
the feature vectors of the last training epoch of the domain-specific CNN.

As mentioned in Section 3.3, the domain-specific CNN was split to train the convo-
lutional block with the contrastive loss function and the fully connected block with the
cross-entropy loss function. For the training process, 1000 images of rear views of vehicles
of the five “known classes” (200 images of each class) were used. A classification accuracy
test was performed using 250 images of rear views of vehicles of the five “known classes”
(50 images of each class) momentarily assuming a closed-set environment to validate that
good classification accuracy was being achieved since it is an essential point for OSR. A
90% classification accuracy was reached during this test; more details regarding the data
used are presented in Section 3.1.

The next test was to verify that the domain-specific CNN could generate feature
vectors spatially close in terms of cosine similarity if they belong to the same class and
far apart if they belong to different classes. This behavior was maintained in objects of
unknown classes since the detection of objects of new classes and the discovery of their
classes depended on this behavior. For this, the testing images, both the nine testing
images of “unknown classes” shown in Figure 5 on the right and the fifteen images of the
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five “known classes” shown in Figure 5 on the left, were entered into the convolutional
block of the domain-specific CNN to extract their feature vectors. To visualize the results,
which are shown in Figure 6, a distance matrix using cosine similarity as the metric was
generated, and a two-dimensional projection was performed using linear regression with
the two components described in Section 3.4. Figure 6 shows that the domain-specific CNN
managed to generate feature vectors close in terms of cosine similarity if they belonged to
the same class and distant if they belonged to different classes and managed to maintain
such behavior even in objects of “unknown classes”.

 
Figure 5. Sample images from the VMMRdb database. Both “known” (left) and “unknown” (right)
classes were used during testing.

Figure 6. Distance matrix (with cosine similarity) and the projection in a two-dimensional plane of
the feature vectors of the samples shown in Figure 5.

Later, the feature vectors of the images used to train the domain-specific CNN and
validate its classification accuracy were compressed to two dimensions, and a linear re-
gression was performed on these feature vectors to obtain their projections using the two
components described in Section 3.4. With the projections of the 1000 images used to train
the domain-specific CNN, we modeled the “known Classes” using a GMM, and the distribu-
tion of the Gaussians is shown in Figure 7. We then defined a “known class” recognition
threshold within the GMM with a value of 9.999, using the projections of the 250 images
that were used in the domain-specific CNN classification accuracy test.
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Figure 7. Distribution of the “known classes” using GMM.

Finally, the strategy proposed in Section 3.4 was carried out to detect the objects of
new classes and discover their classes. The first step was to enter the two-dimensional
projections used in Figure 6, which contain objects of both known and unknown classes
(Figure 5), into the GMM to obtain their density probabilities. As its output, the model
provided the probability of each object belonging to the known classes, and the threshold
allowed us to set a probability limit for known or unknown classes. As can be seen in
Table 4, the objects of known classes were correctly identified within their classes, and in
the case of the objects of unknown classes, it can be seen that with the limit marked by
the threshold, eight of the nine objects were correctly identified as unknown. A clearer
representation of the results obtained can be seen in Figure 8, which indicates that the
GMM divided the objects as a set of unknown classes that did not pass the threshold as
well as the subsets of known classes whose probabilities matched the known class models.

Table 4. Probabilities of the test instances obtained with the GMM. The probabilities that exceeded
the threshold (9999) are marked in orange.

x y Real Label
Probability

(Class 0)
Probability

(Class 1)
Probability

(Class 2)
Probability

(Class 3)
Probability

(Class 4)

0 5.84 × 10−2 −7.59 × 10−3 0

K
no

w
n

1.000 × 100 8.152 × 10−27 7.294 × 10−57 1.650 × 10−89 1.483 × 10−73

1 5.40 × 10−2 −9.16 × 10−3 0 1.000 × 100 4.920 × 10−22 6.332 × 10−48 8.417 × 10−77 1.826 × 10−67

2 6.52 × 10−2 −9.41 × 10−3 0 1.000 × 100 1.412 × 10−33 3.304 × 10−75 1.581 × 10−112 1.321 × 10−88

3 1.37 × 10−2 −2.67 × 10−2 1 4.068 × 10−17 1.000 × 100 6.451 × 10−33 3.341 × 10−22 8.823 × 10−29

4 1.38 × 10−2 −2.92 × 10−2 1 6.396 × 10−19 1.000 × 100 1.408 × 10−37 1.556 × 10−23 2.039 × 10−31

5 8.56 × 10−3 −3.10 × 10−2 1 1.170 × 10−22 1.000 × 100 3.308 × 10−43 6.810 × 10−24 3.034 × 10−27

6 1.43 × 10−2 7.13 × 10−3 2 1.020 × 10−4 3.865 × 10−6 9.999 × 10−1 4.394 × 10−9 2.252 × 10−11

7 1.52 × 10−2 1.24 × 10−2 2 1.451 × 10−4 9.982 × 10−9 9.999 × 10−1 7.854 × 10−8 1.672 × 10−11

8 1.02 × 10−2 9.51 × 10−3 2 5.701 × 10−5 4.896 × 10−6 9.999 × 10−1 5.240 × 10−7 1.290 × 10−8

9 1.53 × 10−3 6.82 × 10−2 3 7.202 × 10−36 3.243 × 10−35 5.417 × 10−87 1.000 × 100 4.510 × 10−58

10 6.30 × 10−3 5.86 × 10−2 3 3.311 × 10−28 6.318 × 10−30 2.282 × 10−61 1.000 × 100 1.830 × 10−42

11 6.97 × 10−3 5.96 × 10−2 3 2.972 × 10−29 1.191 × 10−30 1.055 × 10−63 1.000 × 100 1.461 × 10−43

12 −2.66 × 10−2 −1.18 × 10−2 4 2.727 × 10−28 2.310 × 10−17 1.384 × 10−65 1.521 × 10−56 1.000 × 100

13 −2.68 × 10−2 −1.64 × 10−2 4 8.075 × 10−32 2.380 × 10−17 1.771 × 10−72 2.738 × 10−59 1.000 × 100

14 −3.14 × 10−2 −1.81 × 10−2 4 3.329 × 10−36 3.051 × 10−21 3.378 × 10−87 2.106 × 10−71 1.000 × 100

15 2.79 × 10−2 2.76 × 10−3 5

U
nk

no
w

n

9.995 × 10−1 2.116 × 10−6 5.257 × 10−4 6.300 × 10−19 3.457 × 10−21

16 3.32 × 10−2 2.46 × 10−3 5 1.000 × 100 2.820 × 10−9 3.713 × 10−9 7.638 × 10−27 2.355 × 10−27

17 2.41 × 10−2 −1.54 × 10−3 5 9.779 × 10−1 4.606 × 10−3 1.751 × 10−2 2.796 × 10−15 1.285 × 10−18

18 9.74 × 10−3 −4.05 × 10−3 6 4.675 × 10−5 9.986 × 10−1 1.350 × 10−3 2.120 × 10−9 2.322 × 10−8

19 1.57 × 10−2 −2.33 × 10−3 6 1.208 × 10−2 4.648 × 10−1 5.231 × 10−1 9.067 × 10−10 1.078 × 10−11

20 1.01 × 10−2 −7.46 × 10−4 6 9.939 × 10−4 5.405 × 10−1 4.585 × 10−1 7.914 × 10−8 2.899 × 10−7

21 4.78 × 10−4 2.02 × 10−2 7 5.100 × 10−2 1.262 × 10−4 1.164 × 10−2 9.322 × 10−1 5.056 × 10−3

22 1.33 × 10−3 1.69 × 10−2 7 1.022 × 10−1 1.459 × 10−3 6.103 × 10−1 2.326 × 10−1 5.334 × 10−2

23 2.57 × 10−3 2.45 × 10−2 7 2.779 × 10−4 8.184 × 10−8 1.406 × 10−5 9.997 × 10−1 4.287 × 10−7
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Figure 8. Instances grouped according to GMM probabilities and the threshold.

As previously mentioned, the GMM results were the first phase of the strategy and
only served as a partial guide in the recognition of objects of unknown classes. In the
second phase of the strategy, a clustering algorithm called MOCK was used, which was
enhanced with NSGA-II. For the second phase, the 24 feature vectors without projection
(288 features) were entered into the clustering algorithm. For execution, the algorithm was
run with the parameters shown in Table 5.

Table 5. Parameters for the clustering algorithm MOCK/NSGA-II.

Parameter Values

Population size (M) 9
Nearest neighbors (L) 2
Number of generations 10

The nine final individuals of the clustering process are shown in Figure 9 in terms of their
fitness values, and Figure 10 shows how the vectors were grouped in different structures.

Figure 9. The Pareto front generated using the MOCK clustering algorithm improved with NSGA-II.
The individual marked with a red star is the knee point.

 
Figure 10. The final nine individuals generated using the MOCK clustering algorithm improved with
NSGA-II. The individual marked in red is the knee point.

Subsequently, the comparison described in Section 3.4 was performed to select the
“best solution”. The individuals generated using the MOCK/NSGA-II algorithm (Figure 10)
and the known class subgroups generated using the GMM (Figure 8) were compared. The
results of this comparison are shown in Table 6. It can be seen that Solutions 1, 2, 3, and 5
have four structures shared with the subgroups of known classes generated with the GMM.
However, since the solution closest to the knee point was selected as the “best solution”,
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Solution 5 was chosen (marked with *), which in this case, was found to be the knee point,
marked in red in Figure 10.

Table 6. Scores obtained from the comparison of the individuals generated using MOCK/NSGA-II
and the known class subgroups generated using GMM. The solution marked with * was selected as
the “best solution”.

Pareto Frontier Position Score

Solution 1 1 4
Solution 2 2 4
Solution 3 3 4
Solution 4 4 3

Solution 5 * 5 4
Solution 6 6 2
Solution 7 7 2
Solution 8 8 1
Solution 9 9 0

Given the “best solution”, the four clusters with shared structures with the known
class subgroups generated with the GMM were determined as “known classes”. Then, the
clusters containing only objects that the GMM determined as unknown, shown in Figure 8,
were determined as “new classes”. The result of these processes can be seen in Figure 11.

Figure 11. Selection of “known classes” and “new classes”.

Since there were still unspecified clusters as known or new, we counted the number
of known and unknown instances (as determined using the GMM) in the indeterminate
clusters and defined the clusters in the same category as that comprising the majority of
instances. Thus, we obtained five groups of “known classes” and three “new classes”, as
shown in Figure 12. Given the data in Table 4, we can confirm that indeed the vectors of
the “new classes” corresponded to the instances of unknown objects and that they were
grouped in the same structure as their “unknown class”, thus confirming that both the
“new classes” of objects of “unknown classes” can indeed be discovered.

Figure 12. Final selection of “known classes” and “new classes”.

Finally, the objects of known classes were entered into the classification section of the
domain-specific CNN where a classification accuracy of 100% was obtained. Given the
classification results obtained, we calculated the critical values of true positive (TP), false
positive (FP), and false negative (FN) of both known and unknown classes. Subsequently,
we calculated the micro-F1 score since it is one of the most commonly used metrics in OSR
algorithms. The results obtained are shown in Table 7.

43



Math. Comput. Appl. 2023, 28, 80

Table 7. Calculation of the micro-F1 score.

Label
True

Positive (TP)
False

Positive (FP)
False

Negative (FN)
Micro-F1

K
no

w
n

C
la

ss
es

Chevrolet
Silverado 2004 3 0 0

Precision = 1.0
Ford Explorer

2002 3 0 0

Ford Mustang
2000 3 0 0

Honda Civic
2002 3 0 0

Recall = 1.0Nissan Altima
2005 3 0 0

U
nk

no
w

n
C

la
ss

es

Unknown Class 1 3 0 0

Unknown Class 2 3 0 0

Micro-F1 Score = 1.0Unknown Class 3 3 0 0

Total 24 0 0

5. Discussion and Conclusions

The main contribution of this work is to present a strategy to approach the VMMR as
an OSR problem that is extended to the discovery of new classes, taking the distribution of
feature vectors generated using a domain-specific CNN as the main guideline. This work
seeks to highlight the importance of generating domain-specific OSR strategies and the need
to apply them to real-world classification/recognition problems such as VMMR in order to
obtain classifiers that are not only more accurate but also more robust, as they are prepared
to face real-life scenarios. Although we focused on VMMR, the proposed methodology can
be used as a benchmark for future domain-specific OSR problems and can be applied to
other domains like handwritten digit recognition, chest X-ray classification, etc.

For the development of this work, we considered four main objectives to fulfill the
purpose of approaching VMMR as an OSR problem extended for new class discovery. The
fulfillment of our first objective could be validated with the results shown in Figure 6,
where it can be seen that the CNN designed through the NE process with contrastive loss
managed to map within the embedded space the feature vectors close in terms of cosine
distance if they belonged to the same classes and far away if they belonged to different
classes, maintaining this behavior for both known and unknown classes.

The second objective was described in detail in Section 3.4, which is the theoretical
part of the third objective. In the Section 4, the proposed methodology was described step
by step, and the experiments carried out validated that the proposed mechanism is able to
detect objects of unknown classes and simultaneously discover their classes. One point to
highlight is that our strategy is not restricted by training data, as it can be adjusted as these
data change. More precisely, by using contrastive learning to train the feature extraction
of the domain-specific CNN, the distribution of feature vectors is not only guided by
“known classes” but is able to perform a consistent mapping even for objects of “unknown
classes”, which allows us to effectively detect objects of known classes and discover their
classes simultaneously.

From the outset, we decided to employ a CNN not only to exploit the powerful ability
of CNNs to extract meaningful features but also because these networks are known to be
powerful classifiers. Therefore, since our domain-specific CNN was trained with numerous
well-labeled examples, we could rely on its accuracy in classifying instances of known
classes. Therefore, the last objective was met by achieving 100% classification accuracy of
the images of the known classes in the test set.

44



Math. Comput. Appl. 2023, 28, 80

Overall, the entire algorithm achieved a micro-F1 score of 1.00 by accurately classifying
instances of known classes and effectively discovering the classes of instances whose classes
were not included in the training. In a closed-set context, which is where most classification
algorithms are developed, all instances of unknown classes would have been classified
into some known class, so the model would not have been able to achieve a classification
accuracy higher than 62.5% with the test set used in this work since 9 of the 24 test images
belonged to unknown classes. The poor classification accuracy in this specific context,
which simulates a real-life scenario, would be due to the incomplete knowledge of the
world and not due to the classification potential that the classifier could achieve. Therefore,
in this work, we proposed to add a mechanism to one of the most used image classifiers
such as CNNs in order to detect objects of unknown classes and identify these classes. This
highlights the possibility to expand the classification potential of CNNs and increase their
robustness to work more effectively in real-life scenarios, thus enabling these classifiers not
only to react to queries but also to continue learning even after being trained.

One of the limitations of this work was that due to time constraints, the neuroevolution
algorithm was executed only seven times with the specified parameters, and it is left as
future work to create a statistically more representative sample of executions and use a
parameter calibration algorithm to possibly have better and more efficient results. It is
also left as future work to increase the number of “known classes” to be able to classify
more models with the domain-specific CNN and apply other OSR strategies to the VMMR
problem for a more representative comparison.
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Abstract: Multiscale FE2 computations enable the consideration of the micro-mechanical material
structure in macroscopical simulations. However, these computations are very time-consuming
because of numerous evaluations of a representative volume element, which represents the mi-
crostructure. In contrast, neural networks as machine learning methods are very fast to evaluate once
they are trained. Even the DNN-FE2 approach is currently a known procedure, where deep neural
networks (DNNs) are applied as a surrogate model of the representative volume element. In this
contribution, however, a clear description of the algorithmic FE2 structure and the particular inte-
gration of deep neural networks are explained in detail. This comprises a suitable training strategy,
where particular knowledge of the material behavior is considered to reduce the required amount
of training data, a study of the amount of training data required for reliable FE2 simulations with
special focus on the errors compared to conventional FE2 simulations, and the implementation aspect
to gain considerable speed-up. As it is known, the Sobolev training and automatic differentiation
increase data efficiency, prediction accuracy and speed-up in comparison to using two different
neural networks for stress and tangent matrix prediction. To gain a significant speed-up of the FE2

computations, an efficient implementation of the trained neural network in a finite element code is
provided. This is achieved by drawing on state-of-the-art high-performance computing libraries and
just-in-time compilation yielding a maximum speed-up of a factor of more than 5000 compared to a
reference FE2 computation. Moreover, the deep neural network surrogate model is able to overcome
load-step size limitations of the RVE computations in step-size controlled computations.

Keywords: multiscale finite element computations; deep neural networks; surrogate modeling;
Sobolev training; representative volume element; step-size control

1. Introduction

Nearly all commonly applied engineering materials possess, depending on the detail
of investigation, some heterogeneous microstructure, e.g., fiber-reinforced polymers or
rolled steel alloys, where the grains can have preferential directions because of the manu-
facturing process. Since this heterogeneous microstructure can significantly influence the
response of these materials to mechanical loading, it is of particular interest to consider
the microstructure already in numerical simulations. The development of constitutive
models for materials with heterogeneous microstructures is challenging in both aspects,
phenomenological constitutive modeling and subsequent experimental calibration. Thus,
the so-called FE2 method has been developed by [1–6]—to mention only a few—for cou-
pled numerical simulation of structures at macro- and microscale with finite elements.
There, in contrast to common finite element computations, a constitutive model is not
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assigned to an integration point at macroscale. Instead, the stress and consistent tangent
quantities are obtained by solving an initial boundary value problem with finite elements
on a particular microstructure followed by a numerical homogenization technique. In this
context, the microstructure is usually denoted as a representative volume element (RVE).
In addition to the aforementioned works, in [7], a comprehensive description of the FE2-
method for the numerical solution of these coupled boundary value problems on different
scales is provided. In general, there exist further methods to obtain the response of hetero-
geneous microstructures, such as Discrete Fourier Transforms or Fast Fourier Transforms;
see, for example, [8]. Even the finite cell method is applicable for the homogenization of
heterogeneous microstructures; see, for example, [9]. However, in this work, deep neural
networks are applied to replace the computationally costly solution of initial boundary
value problems at microscale.

Currently, various applications of methods of artificial intelligence exist in the field
of solid mechanics. A comprehensive overview of applications in continuum material
mechanics is given in [10]. Further reviews are provided in [11,12] for applications in
experimental solid mechanics and [13] for material development in additive manufacturing
employing machine learning methods. Ref. [14] provides a general introduction to the
application of machine learning techniques in material modeling and design of materials.
Additionally, in [15], a review and investigation of the ability to apply machine learning in
constitutive modeling is provided; however, it is in the context of soils. Most applications
of machine learning methods aim to obtain feasible information from huge amounts of data
or to increase the speed of particular computations. The source of the data could either
be simulations, as in the present work, or directly experimental data, as in the data-driven
mechanics approach, which was introduced by the aithors of [16], where it is not required to
learn the response of constitutive models from simulations.

The application of artificial neural networks for data-based constitutive modeling
was originally introduced in [17] and is frequently used in representing the material
behavior for finite element simulations since then; see, for example, [18,19]. Recently,
different approaches have been published to advance numerical simulations with machine
learning methods. An investigation into deep learning surrogate models for accelerating
numerical simulations is presented in [20]. Ref. [21] contains a proposal of a combination
of physics-based finite element analysis and convolutional neural networks for predicting
the mechanical response of materials. In contrast, ref. [22] contains an application of deep
learning techniques for extracting rules that are inherent in computational mechanics to
propose a new numerical quadrature rule that shows results superior to the well-known
Gauss–Legendre quadrature.

Learning material behavior from simulations is generally covered with versatile ap-
proaches. In this context, the authors of [23] describe a material modeling framework
for hyperelasticity and plasticity, where different architectures of neural networks are
employed. Model-free procedures that fit into the data-driven mechanics approach for rep-
resenting material behavior are described in [24–27], among others. Model-free approaches
are suitable, especially for the consideration of elastoplastic material behavior; see [28,29]
as well. Artificial neural networks could also be applied for calibrating known constitutive
models from experimental data (parameter identification). First attempts are presented
in [30,31], whereas in [32], modern deep reinforcement learning techniques are applied
for the calibration of history-dependent models. Since the measurement techniques to
obtain experimental data have evolved in recent years, modern calibration techniques can
consider full-field data, e.g., from digital image correlation; see [33]. Instead of calibrat-
ing constitutive models from experimental data with neural networks, where an error is
introduced from choosing the constitutive model, the experimental data can be directly em-
ployed for discovering the material models from data. This approach is introduced in [34]
for hyperelasticity and later on extended to cover elastoplasticity [35] and generalized
materials [36]. Similar work with automated discovery of suitable hyperelastic materials is
provided in [37], where constitutive artificial neural networks are applied, introduced in [38].
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Many different machine learning methods are successfully used for multiscale ap-
plications in solid mechanics. There, the main objective is to obtain the homogenized
response from heterogeneous microstructures. One of the first works in this context is
provided in [39], wherein the authors applied neural networks for the homogenization
of non-linear elastic materials. Ref. [40] contains a proposal of a data-driven two-scale
approach to predict homogenized quantities even for inelastic deformations by drawing on
clustering techniques. The ability to replace microscale evaluations with artificial neural
networks requires a suitable accuracy of the network after the training process. Regarding
this issue, the authors of ref. [41] make use of artificial neural networks as constitutive
relation surrogates for nonlinear material behavior. However, based on the evaluation
of quality indicators, a reduced-order model can be employed instead of the neural net-
work within an adaptive switching method. The authors of ref. [42] describe the so-called
Structural-Genome-Driven approach for FE2 computations of composite structures, wherein
even model reduction techniques are applied.

Advanced neural network architectures such as convolutional or recurrent neural
networks are regularly applied to predict the homogenized response of microstructures.
Here, atomistic data can also be used showing significant acceleration compared to molecu-
lar statics [43]. Elastic material behavior is investigated in [44–47]. In ref. [48], significant
speed up in homogenization is reached when applying three-dimensional convolutional
neural networks in broad ranges of different microstructures, phase fractions, and ma-
terial parameters. The authors of ref. [49] provide the generalization of data to obtain
three-dimensional nonlinear elastic material laws under arbitrary loading conditions. Con-
sidering anisotropy, teh authors of ref. [50] predict effective material properties of RVEs
with randomly placed and shaped inclusions. The suitability of different machine learning
methods for homogenizing polycrystalline materials is studied in [51]. Besides the purely
mechanical homogenization approaches, the authors of ref. [52] show that neural networks
can be even applied to computational homogenization of electrostatic problems. Moreover,
researchers in ref. [53] employ μCT data within a data-driven multiscale framework to
study open-cell foam structures.

According to [54], replacing microscale computations in the FE2 method by surrogate
models can be denoted as a data-driven multiscale finite element method. The authors of
ref. [55] perform multiscale computations with feedforward neural networks and recur-
rent neural networks for RVEs with inelastic material behavior and further investigate
the ability to generalize for unknown loading paths. Researchers in ref. [56] present a
hybrid methodology denoted as a model-data-driven one. Therein, the authors apply a
combination of conventional constitutive models and a data-driven correction component
as a multiscale methodology. Moreover, it is beneficial to incorporate physical knowledge
into the development of neural network surrogates. This is achieved, for example, in [57].
The authors propose thermodynamics-based artificial neural networks (TANNs) and apply
them for multiscale simulations of inelastic lattice structures, while later extending the
framework to evolution TANNs [58]. The application of particular physical constraints by
using problem-specific invariants as input quantities and the Helmholtz free energy density
as output is provided in [59]. The authors provide FEANN as a data-driven multiscale
framework and minimize the number of microscale simulations, which serve as training
data, by following an autonomous data mining approach.

Further, probabilistic approaches can be employed while developing the surrogate
models; in [60], more accurate results are achieved with Sobolev training [61] compared to
regular training for hyperelasticity. In this context, for an extension to multiscale plasticity
with geometric machine learning methods, we refer to [62,63]. Elastoplastic solid materials
are investigated in [64] using recurrent neural networks and in [65] where the authors
employ two separated neural networks for the homogenized stress and tangent information.
The authord of ref. [66] apply DeepONet as a surrogate model for the microscale level with
two-dimensional elastoplasticity and hyperelasticity. Currently, the authors of ref. [67]
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demonstrate the applicability of the encoder/decoder approach for multiscale computations
with path-dependent material behavior on the microscale.

Another research track are the so-called deep material networks (DMNs), which provide
an efficient data-driven multiscale framework to reproduce the homogenized response
of RVEs. The introduction of DMNs for two-phase heterogeneous materials is provided
in [68] together with an extension to three-dimensional microstructures [69]. The authors of
ref. [70] further extend the technique to take into account diverse fiber orientations, applying
DMNs for multiscale analysis of composites with full thermo-mechanical coupling [71].
Researchers in ref. [72] employ DMNs with the computation of the tangent operator in a
closed form as an output of the network.

The main objective of the present work is to provide a consistent approach for employ-
ing deep neural networks (DNN) as surrogate models in step-size controlled multiscale
FE2 computations. As mentioned afore, various publications already deal with embedding
artificial neural networks into numerical simulations especially for accelerating computa-
tional costly multiscale simulations. A novelty of the present work is that we provide a clear
description of the algorithmic structure, which is in general a Multilevel–Newton algorithm
(MLNA) that simplifies to a Newton–Raphson algorithm when employing DNN surrogate
models. Further, current publications leave out required information; for example, the
ways in which the consistent tangent at macroscale integration points is obtained from the
microscale information, meaning whether the computations are performed by automatic
differentiation, neural network models, or by numerical differentiation. Concerning this
objective, we start in Section 2 with an explanation of the underlying equations and the
algorithmic structure in FE2 computations, where we restrict ourselves to small strains and
quasi-static problems. Afterwards, two different architectures of neural networks and spe-
cific considerations of physical knowledge during the training process are described. Since
the amount of training data required to obtain sufficient accuracies in the neural network
outputs is of particular interest, this is investigated as well while using regular training
and Sobolev training. As another novel contribution, we develop a method for efficiently
coupling the different programming codes of the trained neural network and the multiscale
finite element code. There, the application of high-performance computing libraries and
just-in-time compilation yields significantly higher speed up of the DNN-FE2 approach
in load-step size controlled computations compared to the results presented in the cur-
rent literature. Furthermore, the DNN surrogate is even able to overcome load-step size
limitations that are apparent in FE2 computations.

The notation in use is defined in the following manner: geometrical vectors are
symbolized by�a and second-order tensors A by bold-faced Roman letters. In addition, we
introduce column vectors and matrices at the global finite element level symbolized by
bold-type italic letters A and column vectors and matrices on the local (element) level using
bold-type Roman letters A. Further, to distinguish quantities on macroscale and microscale
levels, we indicate microscale quantities by ˇ〈·〉. Calligraphic letters A denote deep neural
network surrogate models.

2. Classical FE2 Computations

In this work, finite elements are employed to perform multiscale computations; see,
for example, [4,7]. Hence, only the main equations are recapped, which are necessary
to explain the algorithmic structure. In multiscale FE2 computations, the macro- and
microscale levels have to be distinguished regarding the spatial discretization. Here, we
restrict ourselves to periodic displacement boundary conditions on the microscale and
refer to [4] for other boundary conditions on the microscale. The computation of the
system of non-linear equations resulting from the spatial discretization is explained for
the Multilevel–Newton algorithm (MLNA), which is here a two-level Newton algorithm.
Further, the connection is drawn to embedding deep neural network surrogate models as
predictors for homogenized quantities from the microscale in the MLNA.
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2.1. Spatial Discretization

In the present work, FE2 analyses are performed in a quasi-static setting with the restric-
tion to small strains. Thus, no configurations have to be distinguished and we have the sym-
metric stress tensor T(�x, t) and strain tensor E(�x, t) = 1/2

(
grad�u(�x, t) + gradT �u(�x, t)

)
at positions �x and time t. �u(�x, t) represents the displacement vector. The local balance
of linear momentum has to be fulfilled. Here, the weak form is employed, which is also
known as the principle of virtual displacements:

π(t, T, δ�u) :=
∫

V
δE(�x) · T(�x, t) dV −

∫
V

δ�u(�x) · ρ(�x)�k dV −
∫

A
δ�u(�x) ·�t(�x, t) dA = 0, (1)

where δ�u(�x) are virtual displacements that are arbitrary but vanish at positions where the
displacements �u(�x, t) are prescribed. Similarly, δE(�x) = 1/2

(
grad δ�u(�x) + gradT δ�u(�x)

)
represent virtual strains. Moreover, �k symbolizes the acceleration of gravity. V and A
denote the volume and surface of the material body and�t are surface tractions. To develop
the arising equations of the spatial discretization for three-dimensional continua on both
macro- and microscale levels, a consistent matrix notation is followed.

2.1.1. Macroscale

Due to the spatial discretization, volume V and surface A transist into approximations
Ω and Γ. Further, x ∈ Ω denote coordinates. Following a Galerkin-based finite element
formulation, the ansatz for the displacements and virtual displacements read

u h(x, t) =
nnodes

∑
j=1

Nj(x)uj(t) = N(x)u(t) + N(x)u(t)
in e©
= Ne(ϕe(x))ue(t), (2)

δu h(x, t) =
nnodes

∑
j=1

Nj(x)δuj = N(x)δu
in e©
= Ne(ϕe(x))δue. (3)

uj ∈ R
3 and δuj ∈ R

3 denote the macroscopic nodal displacement and virtual nodal dis-
placement vector at node j. The shape functions are denoted by Nj(x), while nnodes corre-
sponds to the number of nodes on a macroscale level. In Equations (2) and (3), it is tacitly
assumed that the displacements and virtual displacements are partitioned into unknown
and prescribed quantities, i.e., u∈ R

nu are unknown macroscale nodal displacements and
u∈ R

np are known (or prescribed) nodal displacements. Analogously, the arbitrary virtual
displacements are denoted by δu∈ R

nu . For the prescribed virtual displacements on the
macroscale δu = 0, δu∈ R

np holds by definition. Thus, the number of degrees of freedom
is na = nu + np. Further, the transition to a formulation of the displacements on element
level in Equations (2) and (3) yields the matrix of shape functions Ne ∈ R

3×ne
u within an ele-

ment, the element nodal displacements ue ∈ R
ne

u , and corresponding virtual element nodal
displacements δue ∈ R

ne
u . Here, ne

u is the number of element nodal degrees of freedom.
ξ = ϕe(x) = χe−1(x) are the local coordinates in the element domain with the coordinate
transformation x = χe(ξ). The assignment between global and element quantities can be
formulated as

ue(t) = Z eu(t) + Z e u(t), δue = Z eδu. (4)

Here, Z e ∈ R
ne

u×nu and Z e ∈ R
ne

u×np are formally introduced incidence matrices (Boolean
matrices) which are not programmed but used here for the explanation of the assembling
procedure of all element contributions. They assign the global unknown and prescribed
nodal displacements to element e. Regarding an explanation of an implementation of these
matrices, we refer to [73].
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Moreover, the resulting strains and virtual strains read

E h(x, t) = B(x)u(t) + B(x)u(t)
in e©
= Be(ϕe(x))ue(t) = Be(ϕe(x))(Z eu(t) + Z eu(t)), (5)

δE h(x, t) = B(x)δu
in e©
= Be(ϕe(x))δue = Be(ϕe(x))Z eδu. (6)

Again, a decomposition into known and unknown nodal displacements is employed.
Since the strain tensor is symmetric, E = ET , the strains can be written in the Voigt
notation, i.e., E h ∈ R

6 and δE h ∈ R
6. B∈ R

6×nu and B∈ R
6×np denote the global strain–

displacement matrices on the macroscale level for unknown and prescribed degrees of
freedom, respectively, whose mathematical representation is extremely difficult to specify.
Thus, the element strain–displacement matrix Be ∈ R

6×ne
u is chosen. Inserting Equations (3)

and (6) into the principle of virtual displacements (1) and performing a decomposition of
the discretized domain into elements yields the non-linear equations on macroscale

g(t, T(t)) :=
ne

∑
e=1

Z eT

⎛⎝ ne
G

∑
j=1

wj Be(j)T Te(j)(t)det Je(j)

⎞⎠− p(t) = 0, (7)

g ∈ R
nu . ne

G is the number of integration points in an element on the macroscale. Further,
wj denotes the weighting factors of the spatial integration technique, where here the Gauss-
integration is drawn on. Accordingly, ξ j symbolizes the local coordinates of the integration

points. Notation 〈·〉e(j) is used to abbreviate quantities of element e at the macroscale
integration point j, e.g., Be(j) := Be(ξ j) for the strain–displacement matrix at integration

point ξ j. Since the coordinates are transformed into a reference domain, Je(j) = ∂χe/∂ξ
∣∣
ξ=ξ j

is the Jacobian of the coordinate transformation. Moreover, p(t), p∈ R
nu represents the

equivalent nodal force vector comprising the volume and surface distributed loads:

p(t) :=
∫

Ω
N T(x)ρ(x)k dΩ +

∫
Γ

N T(x) t(x, t)dΓ. (8)

In Equation (7), T e(j) ∈ R
6 are the stresses at a specific integration point j on the

macroscale written in the Voigt notation. Usually, these quantities are obtained from the
evaluation of particular constitutive models. In contrast, in FE2 computations, the stresses
are computed by a particular homogenization scheme of the microstructure, which is
explained in the following section. The macroscopical strains at each integration point read
with Equation (4)1

Ee(j)(t, u(t)) = Be(j)ue = Be(j)(Z eu(t) + Z e u(t)
)
. (9)

Unfortunately, the principle of virtual displacements does not allow the computa-
tion of reaction forces. However, since the macroscale reaction forces are of interest in
FE2 computations, we choose here the Lagrange multiplier method; see [74] and the litera-
ture cited therein. Thus, the geometric constraint equation

Cc(t, û(t)) = û(t)− u(t) = 0 (10)

is introduced, Cc ∈ R
np . The prescribed displacements u(t) should be identical to the

degrees of freedom û(t), û∈ R
np , representing the degrees of freedom that are initially as-

sumed to be unknown as well. To satisfy constraint Equation (10), the Lagrange multipliers
λ∈ R

np are required, which can be interpreted as the negative nodal forces.
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The combining of Equations (7) and (10) provides the full system of equations for the
discretized weak form of the balance of linear momentum on the macroscale, ga ∈ R

na ,

ga(t, λ(t), T(t)) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ne

∑
e=1

Z eT

⎛⎝ ne
G

∑
j=1

wj Be(j)T Te(j)(t)det Je(j)

⎞⎠− p(t)

ne

∑
e=1

Z eT

⎛⎝ ne
G

∑
j=1

wj Be(j)T Te(j)(t)det Je(j)

⎞⎠− λ(t)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
= 0. (11)

Remark 1. It is worth mentioning that the consideration of reaction forces with the Lagrange
multiplier method is performed to obtain a consistent variational formulation. The principle of
virtual displacements does not allow the computation of reaction forces since they provide no virtual
work (remember that δu = 0 holds). Thus, another variational principle is required, which is here
the Lagrange multiplier method. It is important to state that the Lagrange multipliers do not extend
the number of unknowns in the application here, since they can be computed in a post-processing step
after the computation of the nodal displacements; see Equation (11)2. Then, the Lagrange multipliers
can be interpreted as nodal reaction forces, while considering that, of course, the accuracy of the
results depends on the chosen termination criteria for the displacements. As a result, the application
of the Lagrange multiplier method bypasses the evaluation of nodal equilibrium to compute the
reaction forces at prescribed displacement degrees of freedom. The interested reader is referred to [74]
for a detailed description of the method, and further references.

2.1.2. Microscale

The arising equations from the spatial discretization need to be studied also for the
microstructure, which represents the discretized microscale geometry in FE2 computations
and is usually denoted as representative volume element (RVE). In contrast to common
finite element simulations, where a constitutive model is evaluated at each integration
point, here, the microstructure has to be evaluated.

The discretized weak form of the local equilibrium equation on the microscale can be
derived analogously to the macroscale and reads

ǧ e(j)
a (t, ua(t), ǔ e(j)

a (t)) =
ňe(j)

e

∑̌
e=1

Ž ěT
a

⎛⎝ ňě
G

∑̌
j=1

w̌ǰ B̌
ě( ǰ)T Ťě( ǰ)

(t)det J̌ě( ǰ)

⎞⎠ = 0. (12)

Some remarks should be made regarding the above equation. First, ǔ e(j)
a ∈ R

ňe(j)
a are

all displacements in the RVE at integration point j of macroscale element e. ňe(j)
a denotes

the number of displacement degrees of freedom on the microscale. It is assumed that all
displacements are initially unknown in the RVE. ňe(j)

e defines the number of elements on the
microscale, ňě

G symbolizes the number of microscale integration points per element, and w̌ǰ

are the weights of the spatial integration. Matrix Ž ěT
a ∈ R

ňě
u×ňe(j)

a denotes formally the

assembling procedure of all element contributions and comprises matrices Ž ě ∈ R
ňě

u×ňe(j)
u

and Ž ě ∈ R
ňě

u×ňe(j)
p for the unknown and prescribed displacement degrees of freedom in

the RVE, ňe(j)
u and ňe(j)

p , respectively, Ž ěT
a =

[
Ž ě Ž ě]. The strain–displacement matrix on

the microscale is defined by B̌ě( ǰ) ∈ R
6×ňě

u . Similarly to the macroscale, ňe(j)
a = ňe(j)

u + ňe(j)
p

holds. Moreover, at the microscale level, there are no volume or surface distributed loads,
i.e., p̌ = 0.

In this work, we restrict ourselves to periodic displacement boundary conditions
on so-called conform spatial discretizations. We refer to [4] for a detailed description
of boundary conditions on the microscale and to [75] regarding periodic displacement
boundary conditions on non-conform discretizations. The underlying idea of periodic
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displacement boundary conditions is that the displacements of nodes, which are positioned
on different parts of the surface of the RVE, are coupled. This coupling can be treated as a
linear multiple point constraint problem. Thus, we introduce the primary and secondary

displacements, ǔ e(j)
M ∈ R

ňe(j)
M and ǔ e(j)

S ∈ R
ňe(j)

S . Here, ňe(j)
K = ňe(j)

M = ňe(j)
S holds for the

number of pair-wise coupled displacement degrees of freedom ňe(j)
K and ňe(j)

p = ňe(j)
S for

the prescribed degrees of freedom. Since the periodic displacements are applied on the
surface of the RVE, the internal (within the volume of the RVE) displacement degrees

of freedom are defined as ǔ e(j)
V ∈ R

ňe(j)
V , where ňe(j)

u = ňe(j)
V + ňe(j)

M holds. Accordingly,
the decomposition of the nodal displacement degrees of freedom and the discretized local
equilibrium Equation (12) on the microscale

ǔ e(j)
a =

⎧⎪⎨⎪⎩
ǔ e(j)

V

ǔ e(j)
M

ǔ e(j)
S

⎫⎪⎬⎪⎭, ǧ e(j)
a (t, ua, ǔ e(j)

a (t)) =

⎧⎪⎨⎪⎩
ǧ e(j)

V (t, ua, ǔ e(j)
V , ǔ e(j)

M )

ǧ e(j)
M (t, ua, ǔ e(j)

V , ǔ e(j)
M )

ǧ e(j)
S (t, ua, ǔ e(j)

V , ǔ e(j)
M )

⎫⎪⎬⎪⎭, (13)

is obtained.
The connection between the macro- and the microscale is achieved with macroscale

displacements ua(t) and microscale displacements ǔ e(j)
a (t) by specifying constraint

Č e(j)
c (ǔ e(j)

a (t), ua(t)) = Ǎ e(j)
1 ǔ e(j)

a (t)− Ǎe(j)
2 E e(j)(ua(t)) = 0, (14)

with Č e(j)
c ∈ R

ňe(j)
p , Ǎe(j)

1 ∈ R
ňe(j)

K ×ňe(j)
a , and Ǎe(j)

2 ∈ R
ňe(j)

K ×6. For the case of periodic displace-

ment boundary conditions, matrices Ǎe(j)
1 and Ǎe(j)

2 read

Ǎe(j)
1 =

[
0

(ňe(j)
K ×ňe(j)

u )

Ȟ e(j)
M

(ňe(j)
M ×ňe(j)

M )

Ȟ e(j)
S

(ňe(j)
S ×ňe(j)

S )

]
and Ǎe(j)

2 = P̌ e(j)T , (15)

where matrices Ȟ e(j)
M and Ȟ e(j)

S are link-topology matrices that only contain the numbers

0, +1, −1. P̌ e(j) ∈ R
6×ňe(j)

K is a matrix that comprises the differences in the correspond-
ing nodal positions. Constraint (14) can be reformulated with M̌ e(j) = Ȟ e(j)−1

S Ȟ e(j)
M ,

M̌ e(j) ∈ R
ňe(j)

S ×ňe(j)
M leading to

Č e(j)
c (ǔ e(j)

a (t), ua(t)) = M̌ e(j)ǔ e(j)
M + ǔ e(j)

S − Ȟ e(j)−1
S P̌ e(j)TE e(j)(t, u(t)). (16)

Constraint (16) is, again, enforced with the microscale Lagrange multipliers λ̌
e(j) ∈ R

ňe(j)
K .

With decomposition (13), the microscale strain vector Ěě( ǰ) ∈ R
6 of microscale element ě

and integration point ǰ in dependence of the macroscale strains (9) reads

Ěě( ǰ)
(t, u, ǔ e(j)) = B̌ě( ǰ)

{
Ž ěǔ e(j) + Ž ě

SȞ e(j)−1
S P̌ e(j)TE e(j)(t, u(t))

}
, (17)

where we abbreviate

ǔ e(j) =

{
ǔ e(j)

V

ǔ e(j)
M

}
Ž ě =

[
Ž ě

V Ž ě
M−Ž ě

SM̌ e(j)
]
. (18)

ǔ e(j) ∈ R
ňe(j)

u denotes the assembled displacement vector, while Ž ě ∈ R
ňě

u×ňe(j)
u , Ž ě

V ∈ R
ňě

u×ňe(j)
V ,

Ž ě
M ∈ R

ňě
u×ňe(j)

M , and Ž ě
S ∈ R

ňě
u×ňe(j)

S represent assignment matrices.
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In contrast to the macroscale, on the microscale, constitutive models are applied to
describe the mechanical behavior of the materials. Since in this contribution, only elastic
materials are studied, the constitutive model has the general form of

Ťě( ǰ)
= ȟě( ǰ)

(Ěě( ǰ)
), (19)

i.e., the evaluation of algebraic equations yields the stresses Ťě( ǰ) ∈ R
6 at the microscale

integration points, which are already contained in Equation (12). What remains is the
question of how to determine the required macroscale stress Te(j) from the microscale
evaluation. Here, a homogenization procedure is applied that fits into the general form of

Te(j) = h̃e(j)(λ̌ e(j)(t)) =
1

V̌ e(j)
Ǎ2

e(j)Tλ̌ e(j)(t). (20)

In the case of periodic displacement boundary conditions, the secondary displacements
ǔ e(j)

S can be expressed by constraint (16)

ǔ e(j)
S = Ȟ e(j)−1

S P̌ e(j)TE e(j)(t, u(t))− M̌ e(j)ǔ e(j)
M . (21)

Further, enforcing constraint (16) yields, on the RVE level,

ǧ e(j)
S (t, ua, ǔ e(j)

V , ǔ e(j)
M )− Ȟ e(j)T

S λ̌
e(j)

= 0. (22)

This allows computation of microscale Lagrange multipliers λ̌
e(j)

:

λ̌
e(j)

= Ȟ e(j)−T
S ǧ e(j)

S (t, ua, ǔ e(j)
V , ǔ e(j)

M ). (23)

As a result, the homogenized stresses (20) on macroscale element e and integration
point j read for periodic displacement boundary conditions:

h̃e(j)(t, ua, ǔ e(j)
V , ǔ e(j)

M ) =
1

V̌ e(j)
P̌ e(j)Ȟ e(j)−T

S ǧ e(j)
S (t, ua, ǔ e(j)

V , ǔ e(j)
M ). (24)

2.1.3. General System of Non-Linear Equations

The entire system of equations of FE2 computations with non-linear elastic material
at the microscale level is obtained by formally assembling all independent variables of
the RVEs:

ǔa =
ne

∑
e=1

ne
G

∑
j=1

Z e(j)T
ǔa

ǔ e(j)
a , λ̌ =

ne

∑
e=1

ne
G

∑
j=1

Z e(j)T
λ̌

λ̌
e(j)

, (25)

ǔa ∈ R
nene

Gňe(j)
a , λ̌∈ R

nene
Gňe(j)

K , as well as equations

ǧa(ǔa, λ̌) =
ne

∑
e=1

ne
G

∑
j=1

Z e(j)T
ǔa

{
ǧ e(j)

a (ǔ e(j)
a )− Ǎ e(j)T

1 λ̌
e(j)
}

, (26)

Čc(ua, ǔa) =
ne

∑
e=1

ne
G

∑
j=1

Z e(j)T
λ̌

Č e(j)
c (ua, ǔ e(j)

a ). (27)

The entire system of non-linear equations is obtained by compiling macroscale
Equations (10) and (11) and microscale Equations (26) and (27). The number of equations
can be essentially reduced by assuming that constraint (10) is fulfilled after solving the
entire system of non-linear equations and by employing Equation (23) on the microscale
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for periodic displacement boundary conditions. Further, Ǎ e(j)
1 , as given in Equation (15)1,

can be applied. Then, the reduced system of non-linear equations,

F(t, y) =

⎧⎪⎨⎪⎩
g(t, u)

ǧV(t, u, ǔV, ǔM)

ǧM(t, u, ǔV, ǔM)− M̌ T ǧS(t, u, ǔV, ǔM)

⎫⎪⎬⎪⎭ = 0, (28)

which is the result of the spatial discretization, has to be solved at each load-step (time-step)
with the vector of unknowns

y T = {u, ǔV, ǔM}T . (29)

In the equations mentioned above, ǔV and ǔM are the vectors of assembled internal
microscale nodal displacements ǔ e(j)

V and primary nodal displacements ǔ e(j)
M , respectively.

Remark 2. Further, an important aspect is the time discretization. Since only non-linear elastic
material is studied here, Equation (28) represents a purely algebraic system of equations. Neverthe-
less, time integration methods, such as the Backward–Euler method, can be applied when formally
extending Equation (28) with ṫ = 1 to obtain a system of differential-algebraic equations (DAE),
as it is common in finite element computations, where the inelastic material behavior is described by
evolution equations for some internal variables [76]. As a result, the application of time integration
methods to elastic problems leads to an incremental application of the prescribed loads, which is
therefore achieved in the numerical examples of this work. In the case of non-linear elastic material
behavior, the load is often applied step-wise, where the previous solution of the nodal displacements
is inserted into some Newton-like scheme as starting vector to be close to the solution. Otherwise,
problems in the convergence of the iterative scheme are observed. In this sense, the step-wise increase
in the load (displacement- or force-controlled) can be interpreted as time integration.

2.2. Multilevel–Newton Algorithm

What remains is the question of how the system of non-linear Equation (28) is solved
in multiscale simulations. Further, to sufficiently embed DNN surrogates, it is important to
make clear which parts of the overall computation scheme can be substituted with minimal
changes in a finite element program, as it is discussed later on.

There are different approaches to solve the system of non-linear Equation (28). First,
the entire system of equations could be solved with the Newton–Raphson method, but this
would only be possible for smaller problems due to the extremely large number of equa-
tions. An alternative—see [76]—would be to use the Newton–Schur complement, which,
on the one hand, requires some intervention in the coding and provision of the deriva-
tives [77]. In traditional approaches, on the other hand, one uses the MLNA considering
periodic boundary conditions for the microstructures. Therefore, in order to see what ad-
vantage neural networks have here, the Multilevel–Newton algorithm (MLNA) approach
is briefly explained.

Since the MLNA, which was originally introduced by [78,79], is frequently applied,
we refer especially to [76] regarding the differences between the MLNA and the well-
known Newton–Raphson scheme. Thus, only the required equations are recapped here to
show the general algorithmic structure of FE2 computations and the incorporation of DNN
surrogate models.

If we interpret the incremental load-control as time integration, the non-linear sys-
tem (28) has to be evaluated at time tn+1, tn+1 = tn + Δtn. Thus, in each time-step, the
unknown microscale displacements ǔ = {ǔV, ǔM}T , see Equation (18)1, and the unknown
macroscale displacements u are sought. For further treatment of the equations, we also
introduce decomposition

Ǧ =̂

{
ǧV

ǧM − M̌ T ǧS

}
. (30)
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Thus, the system of non-linear equations

G(u, ǔ) = 0,

Ǧ(u, ǔ) = 0
(31)

has to be solved.

2.2.1. Multilevel–Newton Algorithm for FE2 Computations

In the traditional manner, the MLNA is applied to solve Equation (31). The scheme
draws on the implicit function theorem, i.e., it is assumed that function ǔ = ˆ̌u(u) exists. In
other words,

G(u, ˆ̌u(u)) = 0 (32)

has to be solved. The Newton–Raphson method applied to the non-linear system (32)
requires in each iteration step the computation of linear system[

∂G
∂u

+
∂G
∂ǔ

d ˆ̌u
du

]
Δu = −G(u, ˆ̌u(u)). (33)

Here, the iteration index is omitted for brevity. Quantities d ˆ̌u/du and ǔ = ˆ̌u(u) have to
be provided by two additional computational steps, since ˆ̌u(u) is assumed to exist, but its
representation is unknown. First,

Ǧ(u, ǔ) = 0 � ǔ (34)

is evaluated for a given u, and second, the chain-rule is applied to

Ǧ(u, ˆ̌u(u)) = 0 → ∂Ǧ
∂u

+
∂Ǧ
∂ǔ

d ˆ̌u
du

= 0 � d ˆ̌u
du

. (35)

The entire procedure is shown in Algorithm 1.
In greater detail and with the problem at hand, we proceed as follows. On a microscale,

the system of non-linear equations

Ǧ(tn+1, u, ǔV, ǔM) =
ne

∑
e=1

ne
G

∑
j=1

Z e(j)T
ǔ Ǧ e(j)(tn+1, u, ǔ e(j)

V , ǔ e(j)
M ) = 0 (36)

has to be be solved for the case of periodic displacement boundary conditions, with

Ǧ e(j)(tn+1, u, ǔ e(j)
V , ǔ e(j)

M ) =
ňe(j)

e

∑̌
e=1

Ž ěT

⎛⎝ ňě
G

∑̌
j=1

w̌ǰ B̌
ě( ǰ)T ȟě( ǰ)

(Ěě( ǰ)
)det J̌ě( ǰ)

⎞⎠. (37)

Here, Ž ě still has representation (18)2, which then leads to the second and third
equations of Equation (28). For purely elastic problems, the solution of Equation (36) leads
to a linear system on global microscale level within the Newton-iteration step to solve
Equation (34), [

∂Ǧ
∂ǔ

]
Δǔ = −Ǧ(u, ǔ), (38)

which reads, in detail, as⎡⎢⎣ ∂ǦV
∂ǔV

∂ǦV
∂ǔM

∂ǦM
∂ǔV

− M̌ T
[

∂ǦS
∂ǔV

]
∂ǦM
∂ǔM

− M̌ T
[

∂ǦS
∂ǔM

]
⎤⎥⎦
∣∣∣∣∣∣∣
y

{
ΔǔV
ΔǔM

}
= −

{
ǦV(y)

ǦM(y)− M̌ TǦS(y)

}
(39)
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with the vector of unknowns y according to Equation (29)1. We apply another relationship
between microscale displacements ǔ e(j) and the assembled microscale displacements ǔ,
ǔ e(j) = Z e(j)

ǔ ǔ. The system of linear Equation (38) can be re-written employing the chain
rule and applying the decomposition into the macroscale integration point contributions,
i.e., contributions of each RVE,

ne

∑
e=1

ne
G

∑
j=1

Z e(j)T
ǔ

{[
∂Ǧ e(j)

∂ǔ e(j)

]
Δǔ e(j) + Ǧ e(j)(u, ǔ e(j))

}
= 0. (40)

Algorithm 1: Multilevel-Newton algorithm for FE2 computations with periodic
displacement boundary conditions on a microscale.

Given: starting vector estimation u(0), ǔ(0) = {ǔ(0)
V , ǔ(0)

M }
Repeat α = 0, . . .

local (macroscale) level; given: u (α)

local (macroscale) computations

Given: local starting vector estimation u(α), ǔ(α,0) = {ǔ(α,0)
V , ǔ(α,0)

M }
Repeat β = 0, . . .

global (microscale) level; given: y = {u(α), ǔ(α,β)}
solve linear system of equations⎡⎣ ∂Ǧ

∂ǔ

∣∣∣∣∣
y

⎤⎦Δǔ = −Ǧ(y) � Δǔ

update of global (microscale) variables
ǔ(α,β+1) ← ǔ(α,β) + Δǔ � ǔ(α,β+1)

Until local (microscale) convergence criterion is fulfilled
ǔ(α+1) ← ǔ(α,β+1)

� ǔ(α+1) = {ǔ(α+1)
V , ǔ(α+1)

M }
macroscale consistent linearization y = {u(α), ǔ(α+1)}⎡⎣ ∂Ǧ

∂ǔ

∣∣∣∣∣
y

⎤⎦ d ˆ̌u
du

∣∣∣∣
y
= − ∂Ǧ

∂u

∣∣∣∣∣
y

� d ˆ̌u
du

∣∣∣∣
y

global (macroscale) level
solve linear system of equations[

∂G
∂u

∣∣∣∣
y
+

∂G
∂ǔ

∣∣∣∣
y

d ˆ̌u
du

∣∣∣∣
y

]
Δu = −G(y) � Δu

update of global variables
u (α+1) ← u (α) + Δu � u (α+1)

Until global (macroscale) convergence criterion is fulfilled

For abbreviation purposes, we introduce the global microscale tangential stiffness ma-
trix

Ǩ e(j) :=
∂Ǧ e(j)

∂ǔ e(j)
=

∂Ǧ e(j)

∂Ěě( ǰ)

d ˆ̌Eě( ǰ)

dǔ e(j)
, (41)

Ǩ e(j) ∈ R
ňe(j)

u ×ňe(j)
u . Using Equations (17) and (37),

Ǩ e(j) =
ňe(j)

e

∑̌
e=1

Ž ěT

[ ňě
G

∑̌
j=1

w̌ǰ B̌
ě( ǰ)T

⎡⎣ ∂ȟě( ǰ)

∂Ěě( ǰ)

⎤⎦
︸ ︷︷ ︸

Č
ě( ǰ)

B̌ě( ǰ) det J̌ě( ǰ)
]

︸ ︷︷ ︸
ǩě

Ž ě (42)
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is obtained, where Čě( ǰ) ∈ R
6×6 denotes the consistent tangent matrix at microscale integra-

tion point ǰ of element ě, and ǩě ∈ R
ňě

ǔ×ňě
ǔ defines the element stiffness matrix of an element

in an RVE. As a result, on a microscale, i.e., each RVE, the system of linear equations

Ǩ e(j) Δǔ e(j) = −Ǧ e(j)(u, ǔ e(j)) (43)

has to be sequentially solved on a global microscale level to reach microscale equilibrium.
In other words, the solution of system (43) is repeated until a local convergence criterion is
fulfilled. Then, the microscale displacements ǔ are obtained.

As the next step, the macroscale consistent linearization (35) implies

∂Ǧ
∂ǔ

d ˆ̌u
du

= −∂Ǧ
∂u

. (44)

These matrices read under consideration of Equations (9), (17) and (42):

∂Ǧ
∂ǔ

d ˆ̌u
du

=
ne

∑
e=1

ne
G

∑
j=1

Z e(j)T
ǔ

⎡⎣ňe(j)
e

∑̌
e=1

Ž ěT ǩě Ž ě

⎤⎦ dǔ e(j)

dEe(j)
dÊe(j)

du︸ ︷︷ ︸
Be(j)Z e

, (45)

∂Ǧ
∂u

=
ne

∑
e=1

ne
G

∑
j=1

Z e(j)T
ǔ

⎡⎣ňe(j)
e

∑̌
e=1

Ž ěT ǩě Ž ě
S

⎤⎦ Ȟ e(j)−1
S P̌ e(j)T dÊe(j)

du
, (46)

where ∂Ěě( ǰ)/∂Ee(j) = B̌ě( ǰ)Ž ě
SȞ e(j)−1

S P̌ e(j)T is used in Equation (46). Then, with the two ma-
trices

Ǩ e(j) =
ňe(j)

e

∑̌
e=1

Ž ěT ǩě Ž ě and Ǩ e(j) =
ňe(j)

e

∑̌
e=1

Ž ěT ǩě Ž ě
S, (47)

Ǩ e(j) ∈ R
ňe(j)

u ×ňe(j)
S , on a global RVE level, the consistent linearization step (44) for each

RVE reads

Ǩ e(j) dǔ e(j)

dEe(j)
= −Ǩ e(j) Ȟ e(j)−1

S P̌ e(j)T (48)

in order to compute dǔ e(j)/dEe(j) and, finally, d ˆ̌u/du. Therewith, the local macroscale
computations consisting of the two steps, the global microscale level and the macroscale
consistent linearization, are finalized.

As a last step in the MLNA, the system of linear equations[
∂G
∂u

+
∂G
∂ǔ

d ˆ̌u
du

]∣∣∣∣
y
Δu = −G(y), with y =

{
u

ǔ

}
, (49)

see Equation (33), has to be solved at a global macroscale level to compute the increment
Δu of the macroscale displacements. Here, G is the discretized weak formulation of the
equilibrium equation at the macroscale; see Equation (7),

G(tn+1, u, ǔ) =
ne

∑
e=1

Z eT

⎛⎜⎝ ne
G

∑
j=1

wj Be(j)T h̃e(j)(tn+1, u, ǔ e(j))︸ ︷︷ ︸
Te(j)

det Je(j)

⎞⎟⎠− p(tn+1) = 0, (50)
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in dependence of the homogenized stress state Te(j) from Equation (20). Analogously to
Equation (41), we define the global tangential stiffness matrix

K :=
∂G
∂u

+
∂G
∂ǔ

d ˆ̌u
du

, (51)

=
ne

∑
e=1

Z eT

⎡⎣ ne
G

∑
j=1

wj Be(j)T 1

V̌ e(j)
P̌ e(j)Ȟ e(j)−T

S

[
∂Ǧ e(j)

S
∂u

+
∂Ǧ e(j)

S
∂ǔ

d ˆ̌u
du

]
det Je(j)

⎤⎦. (52)

K∈ R
nu×nu , where Equation (20) is already employed in Equation (52). Again, the

derivatives can be re-formulated applying the chain rule and the microscale element
stiffness matrix ǩě from Equation (42):

∂Ǧ e(j)
S

∂u
=

∂Ǧ e(j)
S

∂Ěě( ǰ)

∂ ˆ̌Eě( ǰ)

∂Ee(j)
dÊe(j)

du
=

⎡⎣ňe(j)
e

∑̌
e=1

Ž ěT
S ǩě Ž ě

S

⎤⎦
︸ ︷︷ ︸

Ǩ e(j)

Ȟ e(j)−1
S P̌ e(j)T Be(j)Z e, (53)

∂Ǧ e(j)
S

∂ǔ
d ˆ̌u
du

=
∂Ǧ e(j)

S

∂Ěě( ǰ)

∂ ˆ̌Eě( ǰ)

∂ǔ e(j)
d ˆ̌u e(j)

dEe(j)
dÊe(j)

du
=

⎡⎣ňe(j)
e

∑̌
e=1

Ž ěT
S ǩě Ž ě

⎤⎦ d ˆ̌u e(j)

dEe(j)
Be(j)Z e, (54)

with Ǩ e(j) ∈ R
ňe(j)

S ×ňe(j)
S . Inserting Equations (53) and (54) into Equation (52), the global

tangential stiffness matrix reads

K =
ne

∑
e=1

Z eT

⎡⎣ ne
G

∑
j=1

wj Be(j)T Ce(j) Be(j) det Je(j)

⎤⎦Z e. (55)

Here, Ce(j) ∈ R
6×6 denotes the consistent tangent matrix at integration point j of the

macroscale having the representation

Ce(j) =
1

V̌ e(j)
P̌ e(j)Ȟ e(j)−T

S

[
Ǩ e(j) − Ǩ e(j)T Ǩ e(j)−1 Ǩ e(j)

]
Ȟ e(j)−1

S P̌ e(j)T (56)

with the matrices in Equations (47) and (53) and the application of Equation (48).

2.2.2. Newton Algorithm for FE2 Computations with DNN Surrogate Models

Obviously, the computations of the non-linear system (34) and the linear system
with several right-hand sides (35) within an iterative scheme are very time consuming.
Thus, an alternative approach is of particular interest. The basic idea is that the recurrent
stress and tangent calculation is learned by a deep neural network and, thus, an efficient
evaluation can be achieved. Since we embed DNN surrogate models to accelerate the
FE2 computation, it is important to make clear which quantities are applied as input and as
output and what parts of the aforementioned MLNA are replaced by the surrogate.

As mentioned in the introduction, many different architectures of neural networks
exist and are regularly applied in the field of computational mechanics. In this work,
we draw on common feedforward neural networks to replace the entire local macroscale
computations in Algorithm 1. The particular details for the neural networks are given later
on; hence, we focus here on the algorithmic structure. During the solution of the boundary
value problem, macroscale strains Ee(j)(tn+1, u(tn+1)) at integration point j of macroscale
element e are provided in dependence of the macroscale displacements u by Equation (9).
As explained beforehand, in FE2 computations, strains Ee(j) serve as an input to compute
the displacement boundary conditions (16) under the assumption of periodic displacement
degrees of freedom. Thus, strains Ee(j) are input quantities for the DNN surrogate models
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to predict the homogenized stresses Te(j) and the consistent tangent matrix Ce(j) with the
two surrogate models T and C,

Te(j) ≈ T (Ee(j)(u); θT ) and Ce(j) ≈ C(Ee(j)(u); θC), (57)

where θT and θC are the parameters concerned of the surrogate models. Here, the notation
of the surrogate models T and C indicates that the models are evaluated for the strains
Ee(j) while parameters θT and θC are assumed to be given after sufficient training of the
neural network. At first, we introduce two different surrogate models for the stress and
consistent tangent prediction. Later on, different realizations of the surrogate models are
discussed as well.

The predicted stresses Te(j) are employed to evaluate the local equilibrium Equation (50),
here, of course, without being dependent on ǔ,

G(u) := g(tn+1, u) =
ne

∑
e=1

Z eT

⎛⎝ ne
G

∑
j=1

wj Be(j)T T (Ee(j)(u); θT )det Je(j)

⎞⎠− p(tn+1) = 0. (58)

Again, we omit the iteration indices and the load-step index n + 1 for brevity. The predicted
consistent tangent matrices Ce(j) are assembled into the global stiffness matrix K according
to Equation (55),

K =
ne

∑
e=1

Z eT

⎡⎣ ne
G

∑
j=1

wj Be(j)T C(Ee(j)(u); θC)Be(j) det Je(j)

⎤⎦Z e. (59)

As a result, when following the DNN-FE2 approach for multiscale FE2 computations,
only the solution of the linear system of equations

K Δu = −G(u) (60)

is necessary on a global macroscale level in each iteration. The entire Newton algorithm
for FE2 computations with DNN surrogate models and non-linear elastic material on a
microscale is provided in Algorithm 2.

Algorithm 2: Newton algorithm for FE2 computations following the DNN-
FE2 approach.

Given: starting vector estimation u(0); surrogate parameters θT and θC
Repeat α = 0, . . .

local (macroscale) level; given: u (α)

evaluate DNN surrogates for macroscale integration point j of element e
Te(j) ≈ T (Ee(j)(u (α)); θT )
Ce(j) ≈ C(Ee(j)(u (α)); θC )

global (macroscale) level
solve linear system of equations

K (α)Δu = −G(u(α)) � Δu
update of global variables

u (α+1) ← u (α) + Δu � u (α+1)

Until global (macroscale) convergence criterion is fulfilled

It should be emphasized that the explained algorithm for DNN-FE2 simulations in
Algorithm 2 only holds for elastic problems. The mapping between macroscale strains and
homogenized stress and consistent tangent changes essentially when applying viscous or
path-dependent materials, such as plasticity or viscoplasticity, which is not discussed here.

62



Math. Comput. Appl. 2023, 28, 91

3. Deep Neural Networks

In this section, a brief introduction is provided to deep neural networks and state-
of-the-art frameworks for the implementation of these learning methodologies. First,
a fully connected deep neural network—also known as a multilayer perceptron (MLP)—is
considered. An MLP consists of a consecutive repetition of so-called layers. Each layer
contains a set of nodes, so-called neurons, which are densely connected to the nodes of the
preceding and succeeding layers. A deep neural network (DNN) is a neural network with
multiple layers between the input and output layers which are the so-called hidden layers.
Data sample x in space χ ⊂ Rn and the corresponding target output y in space ψ ⊂ Rm

are considered. Then, the objective of a deep neural network is to learn the mapping,
F : χ → ψ, from the data by minimizing a scalar-valued loss function L(F (x; θ), y) for all
the samples in the training data set, where θ∈ R

nθ represents the trainable parameters of
the network. To this end, the data are processed through each layer i as

ζ(i) = ϕ(i)(W(i)ζ(i−1) + b(i)), i = 1, . . . , nlayer, (61)

where ζ(i−1) ∈ R
p(i) and ζ(i) ∈ R

q(i) are the input and output of the ith layer with the
number of neurons p(i) in the previous layer and q(i) neurons in the current layer. Further,

ζ(0) = x holds. W(i) ∈ R
q(i)×p(i) represents a weighting matrix and b(i) ∈ R

q(i) is the bias
vector. ϕ(i) : Rq(i) → Rq(i) symbolizes the element-wise applied activation function in layer
i. Parameters θ of the network are determined by applying a gradient-descent optimization
technique for minimizing the loss function on the training data set. The updates of the
parameters are obtained as Δθ = η ∂L/∂θ where η denotes the learning rate. The gradient
of the loss function with respect to the trainable parameters can be obtained using automatic
differentiation (AD) [80]. All the neural networks discussed in this study were developed
applying machine learning software frameworks developed by Google Research called
TensorFlow [81] and JAX [82].

Automatic differentiation (AD), also known as algorithmic differentiation or “auto-diff”
(automatic differentiation), is a family of methods for evaluating the derivatives of numeric
functions expressed as computer programs efficiently and accurately through the accumula-
tion of values during code execution. AD has an extensive application in machine learning
and also well-established use cases in computational fluid dynamics [83], atmospheric
sciences [84], and engineering design optimization [85]. In the field of computational solid
mechanics, see [86] and the literature cited therein. The idea behind AD is to break down
the function into its elementary operations and compute the derivative of each operation
using symbolic rules of differentiation. This means that instead of relying on numerical
approximations or finite differences to compute the derivative, AD can provide exact
derivatives with machine precision. To do this, AD keeps track of the derivative values
at each stage of the computation applying a technique called forward or reverse mode
differentiation. This allows AD computing the derivative of the overall composition of
the function by combining the derivatives of the constituent operations through the chain
rule. The benefit of AD is that it can be applied to a wide range of computer programs,
allowing for the efficient and accurate computation of derivatives. This makes it a powerful
tool for scientific computing, optimization, and machine learning, where derivatives are
needed for tasks such as gradient descent, optimization, and training of neural networks.
AD techniques include forward and reverse accumulation modes. Forward-mode AD is
efficient for functions f : R → Rm, while for cases f : Rn → Rm where n � m, AD in its
reverse accumulation mode is preferred [80]. For state-of-the-art deep learning models, n
can be as large as millions or billions. In this research work, we utilized reverse-mode AD
for the training of the neural networks and also for obtaining the Jacobian of the outputs
with respect to the inputs. This should be demonstrated for both applied frameworks,
TensorFlow and JAX. If one considers a batch of input vectors x and the corresponding
outputs y, then the Jacobian matrix J can be easily computed in batch mode using AD via
TensorFlow and JAX according to Algorithm 3.
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Algorithm 3: Computing the Jacobian matrix J of function f via reverse mode
AD in TensorFlow and JAX frameworks for a batch of samples x.

TensorFlow:
def Jacobian( f, x):

with tf.GradientTape() as tape:
tape.watch(x)
y = f(x)

return tape.batch_jacobian(y, x)
J = Jacobian( f, x)

JAX:
Jacobian = jax.vmap(jax.jacrev( f))
J = Jacobian(x)

3.1. Deep Neural Networks as Surrogate Models for Local RVE Computations

In the MLNA described in Section 2.2.1, the computations on local macroscale level are
very expensive to perform. Thus, the objective is to develop a data-driven surrogate model
for substituting the local macroscale computations with deep neural networks. To this
end, the macroscale strains Ee(j)(tn+1) at each integration point ξ j and time (load-step)

tn+1 are taken as the input and macroscale stresses Te(j)(tn+1) and the consistent tangent
matrix Ce(j)(tn+1) are provided as the output of the surrogate model. In the following,
the FE2 analysis is performed in a quasi-static setting with the restriction to small strains.
For the sake of simplicity of the notation and for a two-dimensional set-up, we refer to
the input of the surrogate model as E = {E11, E22, E12}T, E∈ R

3, and to the outputs as
T = {T11, T22, T12}T, T∈ R

3, and C = {C11, C12, C13, C21, C22, C23, C31, C32, C33}T, C ∈ R9.
Here, it should be mentioned that we do not employ the symmetry of the consistent tangent
matrix due to the application of AD, where we compute the Jacobian matrix of the neural
network containing the partial derivatives of each element of T with respect to each element
of the input E. Thus, we apply a soft symmetry constraint to the Jacobian matrix of the
neural network by the data.

The inputs of the surrogate model are computed using an MPI (message passing
interface) parallelized FORTRAN code. We employ FORPy [87], a library for FORTRAN-
Python interoperability, to perform the data communications between FORTRAN and
Python codes in an efficient and parallel manner. In particular, we load the required Python
libraries and the DNN models only once and conduct the RVE computations in parallel,
which leads to a considerable speed-up. The obtained outputs from the RVE surrogate
model are passed to the FORTRAN code for further computations.

3.2. Training and Validation Datasets

Since the FE2 framework in Section 2 is derived for the case of small strains, we
consider a domain of application for our surrogate model with the upper and lower bounds
of Ei,min = −0.04 and Ei,max = 0.04, respectively, where Ei represents the ith component of
the strain input E. A dataset is generated by imposing different strain inputs to an RVE
and computing the corresponding stress components and consistent tangent matrices. We
utilized Latin hypercube sampling (LHS) [88] to efficiently sample from the input space.
To generate the data, we consider two global symmetries in the input space:

T12(E11, E22,−E12) = −T12(E11, E22, E12), (62)

T11(−E11,−E22, E12) = −T11(E11, E22, E12),

T22(−E11,−E22, E12) = −T22(E11, E22, E12).
(63)

It is important to mention that the assumed symmetries can be employed as long as
the materials in the RVE show no tension–compression asymmetry, anisotropy, or rate- or
path-dependent behavior, i.e., the reduction in the input space is not applicable for more
complex behavior such as plasticity or anisotropic behavior. Thus, the data are generated
using the numerical solver for one quarter of the input space according to the region
marked by blue in Figure 1.
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Figure 1. Domain of application for the surrogate model. The two global symmetries in the input
space, Equations (62) and (63), are marked using pink and green colors, respectively. Blue dots show
a subset of the sampled data points using LHS.

The dataset is augmented by transforming the generated data through the aforemen-
tioned global symmetries (62) and (63). This leads to a reduction in the computation time
required for the preparation of the training data. After generating the dataset, it is de-
composed into 80% for training and 20% for validation. Later on, in Section 4.2, the effect
of the size of the training dataset on the accuracy of the final solution obtained from the
DNN-based FE2 simulation is investigated. It should be noted that the DNN models are
tested by conducting DNN-FE2 simulations and comparing the obtained solutions with
those of the reference FE2 simulations.

3.3. Architecture and Training Process

As it was mentioned in Sections 2.2 and 3.1, the surrogate model for the local RVE
takes E∈ R

3 as the input and predicts T∈ R
3 and C∈ R

9 as the outputs. The obtained
stress components and the consistent tangent matrix are assembled at the global finite
element level for computation of the next global iteration in the Newton–Raphson method.
In this work, two model architectures for our DNN-based surrogate models are considered,
both are developed based on MLPs. In the first architecture, two separate neural networks
T and C are implemented that map E to T and C,

T = T (E; θT ), C = C(E; θC), (64)

where θT and θC represent the trainable parameters of deep neural network, T and C,
respectively. The notation in use indicates that the deep neural networks are evaluated for
strain inputs E with the given parameters after training the neural network. Throughout the
article, this architecture is denoted as NN–2. However, this architecture does not consider
that the consistent tangent matrix is the functional matrix of the stress components with
respect to the strains,

C =
[
Cij
]

with Cij =
∂Ti
∂Ej

, i, j = 1, 2, 3, (65)
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where Ti and Ej are the corresponding entries in T and E, respectively. Thus, this is taken
into account in the second architecture by computing C as the output of the Jacobian
function T ′ as

T = T (E; θT ), C =
∂T
∂E

:= T ′(E; θT ), (66)

where T ′ is obtained by applying reverse mode AD on the deep neural network surrogate
T , which is parameterized with trainable parameters θT . This architecture is denoted as
NN–AD. Moreover, this approach is known as the so-called Sobolev training [61] in which
both the target and its derivative with respect to the input are considered for supervised
learning. Particular explanations regarding the application of Sobolev training in multiscale
simulations are provided in [63], while the method is also employed in [60]. By optimizing
the parameters of neural networks to approximate not only the function’s outputs but also
the function’s derivatives, the model can encode additional information about the target
function within its parameters. Therefore, the quality of the predictions, the data efficiency,
and generalization capabilities of the learned neural network can be improved.

In the following, we provide a detailed discussion on the data pre-processing, model
training, model selection, and hyperparameter tuning.

3.3.1. Data Pre-Processing

We perform a standardization step on both input and outputs of the model to obtain
efficient training of the networks using the statistics of the training dataset. A training
dataset Dtrain = [E, T, C ]train is considered with its mean and standard deviation over the
samples as vectors μ and σ, respectively. For training of the NN–2 model, the input and
the outputs are standardized independently with their means and standard deviations,

Ṽi =
Vi − μi

σi
, (67)

where Vi represents the ith component of E or T with the mean and standard deviation
μi and σi, respectively. In contrast, for the NN–AD model, the consistent tangent matrix
C should be scaled consistently with the scaling of E and T so that their relationship is
preserved. Therefore, scaling (67) is performed for the NN–AD model for the strains and
stresses, while the components of C are scaled as

C̃ij =
∂T̃i

∂Ẽj
=

∂T̃i
∂Ti

∂Ti
∂Ej

∂Ej

∂Ẽj
=

σj

σi
Cij, i, j = 1, 2, 3. (68)

3.3.2. Training

In the following, a detailed discussion of the training process of all DNNs implemented
in this research work is provided. We utilize an extended version of the stochastic gradient
descent algorithm, known as Adam [89], for optimizing the parameters of the network
during the training process. The weights and biases of the DNN are initialized using the
Glorot uniform algorithm [90] and zero initialization, respectively. All the neural networks
are trained for 4000 epochs with an exponential decay of learning rate of

η = η initial γ(current step/decay step), (69)

where η represents the learning rate. η initial = 10−3 is the initial learning rate and γ = 0.1
is the decay rate. Here, a decay step of 1000 is employed. The decay of the learning rate
is applied according to Equation (69) every 1000 epochs to obtain a staircase behavior.
For different sizes of the training dataset, the batch size is set such that 100 batches are
obtained in order to have the same number of training updates for different sizes of the
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training dataset. The mean squared error (MSE) is utilized as the loss function. For the
NN–2 model, the loss for a sample can be obtained as

LT (T (E; θT ), T
ref
) =

1
3

3

∑
i=1

(T̃ ref
i − T̃ pred

i (E; θT ))
2, (70)

LC(C(E; θC), C
ref
) =

1
9

9

∑
i=1

(C̃ ref
ij − C̃ pred

ij (E; θC))
2, (71)

where LT and LC indicate the loss for the mapping T and C, respectively. Here, T̃ ref
i denotes

the reference stress value and T̃ pred
i is the prediction of the neural network. Accordingly, C̃ ref

i

is the reference value in the consistent tangent and C̃ pred
i is the corresponding prediction.

The loss for a data sample for the NN–AD architecture is computed as

L(T (E; θT ), T
ref, C ref

) = α LT (T (E; θT ), T
ref
) + β LT ′ (T ′(E; θT ), C

ref
) (72)

= α
1
3

3

∑
i=1

(T̃ ref
i − T̃ pred

i (E; θT ))
2 + β

1
9

9

∑
i=1

(C̃ ref
i − C̃ pred

i (E; θT ))
2, (73)

where α and β are the weighting coefficients for the two components of the loss. In all
the cases, the loss for a batch of data is calculated by taking the average of the per-sample
losses in the batch.

3.3.3. Model Selection

During the training process of each model, we track the validation loss and save
the parameters of the model which lead to the lowest validation loss as the best model
parameters. This helps to avoid overfitting of our deep neural networks. As mentioned
earlier, the data are decomposed randomly into 80% for training and 20% for validation.

3.3.4. Hyperparameter Tuning

Hyperparameters in machine learning are the parameters that are defined by the user.
Their values are set before starting the learning process of the model, such as number of
neurons and hidden layers. The values of the hyperparameters remain unchanged during
the training process and the following prediction. In machine learning applications, it is
important to set the hyperparameters of a model such that the best performance is obtained
regarding both prediction and generalization. Here, we perform hyperparameter tuning
using a simple grid search algorithm to optimize the model performance on the validation
dataset. For this experiment, a dataset with the size of ND = 105 is selected. We investigate
three hyperparameters, i.e., the number of hidden layers Nh, the number of neurons per
each hidden layer Nn, and the activation function ϕ, and carry out the hyperparameter
tuning for the NN–2 architecture. Further, the same hyperparameters are employed for
the NN–AD architecture for the sake of comparability. Moreover, for the NN–AD model,
the weighting coefficients of the two components of the loss, α and β, are studied as well.

Results of the hyperparameter tuning for the number of hidden layers Nh, the num-
ber of neurons per each hidden layer Nn, and the activation function ϕ are reported in
Appendix A. We observe that a model with eight hidden layers, 128 neurons per each hid-
den layer, and a swish activation function leads to Lval

T = 3.52× 10−8 and Lval
C = 2.84× 10−7.

Moreover, our results show that increasing the model complexity to more than the afore-
mentioned values would not lead to a significant gain in the model accuracy. Thus, we
select these model hyperparameters for further analysis.

Other hyperparameters for the NN–AD model are the weighting coefficients α and
β of the components of the loss, i.e., LT and LT ′ . Here, the effect of the weighting on the
obtained validation losses is investigated. The results are reported in Table 1.
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Table 1. Effect of the weighting coefficients α and β for the components of the loss (72) on the
performance of the NN–AD model.

(α, β) Lval
T Lval

T ′

(1, 0.01) 4.84× 10−8 1.35× 10−6

(1, 1) 2.20× 10−8 8.85× 10−8

(1, 100) 3.55× 10−8 2.97× 10−8

We choose α = 1 for all the cases and change β from 0.01 to 100. It can be observed
that having a small β may lead to an imbalanced training where a difference of almost two
orders of magnitude between validation losses LT and LT ′ exists. However, a β of one or
larger results in a more balanced training leading to validation losses with nearly the same
scale. According to the results of this study, we select a model with α = 1 and β = 100 for
further analysis.

4. Numerical Experiments

In this section, the DNN-FE2 approach for the simulation of two canonical test cases
in computational solid mechanics is investigated, i.e., an L-profile and Cook’s membrane,
and compare the results with those of FE2 reference simulation. The numerical experiments
are performed using both architectures, NN-2 as well as NN-AD, to provide a detailed
discussion regarding the accuracy and efficiency of the simulations. The results are re-
ported for the accuracy of the simulations, required time for model development (e.g.,
computational time needed for training), time of numerical simulation, number of load
steps, and the total number of global iterations required for reaching the convergence of
the FE2 simulation. To this end, the absolute percentage error

ε =
|V ref −V pred |
〈|V ref|〉 × 100 (74)

is utilized, where V indicates any component of stress or strain tensors T and E, respectively.
To avoid the division by zero, the absolute mean of the reference solution on the global grid
is employed as the denominator, where 〈·〉 shows the ensemble average.

All DNN models are trained on an NVIDIA RTX A2000 Laptop GPU with CUDA 12.1.
The DNN-FE2 simulations are performed on an 11th Gen Intel(R) Core(TM) i7-11850H @
2.50GHz CPU with 16 threads. In contrast, the FE2 reference simulations are conducted on a
second-Gen Intel(R) Xeon(R) Silver 4216 @ 2.10GHz CPU with 16 processes and one thread
per process. The speed-up gain is calculated by dividing the total time of computation
required by the FE2 reference simulation by that of the DNN-FE2 simulation.

4.1. Problem Setup

For the numerical experiments, we restrict ourselves to two-dimensional test cases,
where a plane strain case is always assumed. The representative volume element (RVE)
under consideration is chosen as a commonly applied geometry in the mechanical analysis
of composite materials; see Figure 2.
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1

1

Figure 2. Geometry of the RVE (dimensions in mm) used as microstructure in the numerical experi-
ments with fibers (grey) and matrix material (blue).

Here, the fiber volume fraction of the applied RVE is approximately 55%. The fibers
are assumed to behave linearly, in an isotropic elastic manner with bulk modulus Kf and
shear modulus Gf; see Table 2.

Table 2. Material parameters for elastic fiber and non-linear elastic matrix material in the RVE.

Kf Gf Km α1 α2

N mm −2 N mm −2 N mm −2 N mm −2 -

4.35× 104 2.99× 104 4.78× 103 5.0× 101 6.0× 10−2

In contrast, the matrix material is modeled with a non-linear elastic material behavior,
which is extracted from an originally viscoplastic constitutive model where the shear
modulus is deformation-depending; see [91]. The particular stress–strain relation reads

T = Km(tr E)I+ Gm(ED)ED with Gm(ED) =
α1

α2 + ||ED||2
. (75)

The material parameters for the non-linear elastic material are the bulk modulus Km
and the parameters α1 and α2; see Table 2. The spatial discretization of the RVE is achieved
with ňe(j)

e = 3456 eight-noded quadrilateral elements and ňe(j)
nodes = 10, 561 nodes.

The application of DNN surrogate models in multiscale simulations is studied for two
macroscale test cases—L-profile and Cook’s membrane; see Figure 3.

(A) (B)
Figure 3. Spatial discretization and boundary conditions for macroscale test cases. (A) L-profile;
(B) Cook’s membrane.
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The spatial discretization is achieved with eight-noded quadrilateral elements. As a
result, ne

G = 9 integration points are present in each macroscale element, which means
that nene

G calls of the RVE in Figure 2 are necessary in each global Newton iteration of
a FE2 computation. The L-profile is spatially discretized with ne = 200 elements and
nnodes = 709 nodes. For the Cook’s membrane, ne = 600 elements and nnodes = 1901 nodes
are used. The L-profile has a prescribed displacement boundary condition on the top right
edge with ū2(t) = −3 mm s−1 t. In contrast, the Cook’s membrane is fixed on the left edge
and has an applied displacement boundary condition ū2(t) = 2 mm s−1 t on the right edge.

The initial time-step size of both numerical examples is Δt0 = 1× 10−3 s, whereas
the simulation is performed for t ∈ [0, 1]. The time discretization is achieved with the
Backward–Euler method; see also Remark 1 regarding the time discretization for purely
elastic problems. Here, the time-step size Δt is not fixed but chosen based on the number
of Newton iterations Niter and the time-step size of the current step Δtn,

Δtnew = Δtn ×

⎧⎪⎨⎪⎩
fmax if Niter ≤ 5,
fmin if Niter > 15,
1 if Niter > 5 and Niter ≤ 15.

(76)

In this work, the quantities fmax = 1.2 and fmin = 0.3 are chosen. The termination
criteria of the global Newton iteration are applied as

||Δu|| ≤ tolu and ||G(u)|| ≤ tolG. (77)

It should be mentioned that the applied tolerance values are rarely reported in current
literature to DNN-FE coupling in multiscale applications, which makes it difficult to draw
comparisons. In this work, tolerances tolu = 1× 10−6 and tolG = 1× 10−3 are chosen.

4.2. Investigation on the Size of Dataset

Next, the effect of increasing the size of the dataset on the performance of the DNN
models as well as the efficiency and accuracy of the DNN-FE2 simulations are assessed.
Different sizes of datasets, i.e., ND ∈ {103, 104, 105, 106, 4× 106}, are considered, while each
dataset is generated according to the explanations in Section 3.2. Note that in all the cases,
80% of the samples in the dataset are used for training and 20% for validation. Results are
reported for both NN–2 and NN–AD architectures for having a comprehensive comparison.
It should also be noted that the efficient size of the dataset depends on the complexity
of the model and the mapping that must be learned. Here, results are reported for NN
architectures containing eight hidden layers with 128 neurons per each hidden layer and
swish as the activation function, which are selected based on the results of hyperparameter
tuning; see Section 3.3.4. Figure 4 illustrates the lowest Lval

T obtained during the training of
the DNNs using different sizes of the dataset. It can be seen that increasing the size of the
dataset from 103 to 105 leads to a significant reduction in Lval

T . However, improvements
in the performance of the model are not significant when further increasing ND. We also
report the required time of training in Figure 4. The training time ttrain is normalized by
the computational time tFE2

comp,Cook needed for FE2 simulation of the Cook’s membrane,

trel,train =
ttrain

tFE2

comp,Cook

, (78)

to offer an insight into the cost of developing an NN-based surrogate model for the RVE
in comparison with the FE2 reference simulation. As it is expected, increasing ND results
in an increase in the required training time. It can be observed that even for the largest
dataset (ND = 4× 106), the training time is much shorter than the computational time of
the FE2 simulation. For the dataset with ND of 105, only 1.39% of the computational time of
the FE2 simulation is needed for the training of the NN–AD model.

70



Math. Comput. Appl. 2023, 28, 91

Figure 4. Influence of the size of the dataset ND on training time trel,train (78) and validation loss
Lval
T (70) (dashed lines corresponds to NN–AD architecture and solid lines to NN–2 architecture).

4.3. Numerical Simulations

The numerical results obtained from DNN-FE2 simulations are reported in this section
for the L-profile and Cook’s membrane test cases and compared with the FE2 reference
simulations regarding accuracy and efficiency. The accuracy of the simulations is estimated
by computing the mean and standard deviation of the absolute percentage error, defined in
Equation (74), ε mean and ε std, respectively, over all the components of E and T and over
all the global grid points. The speed-up gain is computed by dividing the total time of
computation for the FE2 reference simulation by that of the DNN-FE2 simulation. Results
are reported for different sizes of the dataset ND and for both architectures NN–2 as well as
NN–AD architectures. We refer to the models trained on datasets with different sizes as
model–∗ where ∗ × 103 shows the size of the dataset.

4.3.1. L-Profile

Results for the simulation of the L-profile test case are summarized in Table 3.

Table 3. Results of the DNN-FE2 simulation of the L-profile for different sizes of the train-
ing/validation dataset.

Model ND εmean (%) εstd (%) Speed-Up Niter Nt

NN–2–1 1× 103 8.79 10.8 232× 104 32
NN–AD–1 1× 103 4.68 8.52 443× 79 30
NN–2–10 1× 104 3.20 4.87 246× 101 32
NN–AD–10 1× 104 0.42 0.69 400× 86 30
NN–2–100 1× 105 2.48 3.68 254× 97 32
NN–AD–100 1× 105 0.21 0.40 462× 73 30
NN–2–1000 1× 106 1.59 2.62 251× 97 31
NN–AD–1000 1× 106 0.20 0.37 452× 76 30
NN–2–4000 4× 106 1.87 2.89 236× 103 32
NN–AD–4000 4× 106 0.15 0.30 462× 73 30

It is evident that both DNN surrogate models, NN–2–1 and NN–AD–1, which were
trained on a dataset with only 1000 samples, are accurate enough for achieving the conver-
gence of the FE2 simulation. This is also the case for the NN–2–10 model leading to ε mean
and ε std of 3.20% and 4.87%, respectively. Employing the NN–AD–10 model as the DNN
surrogate model leads to the convergence of the simulation and provides very accurate
results with ε mean and ε std of 0.42% and 0.69%, respectively. All the DNN-based models
trained on larger datasets lead to the convergence of the simulation. Our results show the
superior performance of the NN–AD models in comparison with the NN–2 models in all
the numerical experiments. For instance, the NN–2–100 model results in ε mean and ε std
of 2.48% and 3.68%, respectively, while the NN–AD–100 model provides more accurate
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results with ε mean and ε std of 0.21% and 0.40%, respectively. Moreover, we observe that
the NN–AD architecture is more efficient regarding the required size of the dataset where
the NN–AD–10 model performs better than the NN–2–4000 model.

Apart from accuracy aspects, the speed-up gain obtained from the DNN-FE2 simulation
is of particular interest. In Table 3, it can be observed that a speed-up of 400× can be ob-
tained from the NN–AD–10 model. This huge speed-up gain shows the excellent potential
of the DNN-FE2 approach for fast and accurate multiscale simulations of solid materials.
Our results show that the NN–AD–4000 model leads to the best performance regarding
the accuracy, speed-up, and the required number of iterations. In general, we can observe
that the NN–AD architecture is more efficient than the NN–2 architecture regarding the
speed-up gain where, for instance, the NN–AD–100 model obtains a speed-up of 462×
against 254× of the NN–2–100 model. The models of both architectures require a quite
similar number of time-steps Nt, which are here load-steps. The lesser number of load-steps
for the NN-AD architecture results from the fewer number of Newton iterations, which
leads to slightly higher load-step sizes according to Equation (76). Moreover, it is evident
that the speed-up of the NN-AD architecture is higher than for the NN-2 architecture. This
is caused, on the one hand, by the lesser number of global Newton iterations Niter because
of the higher prediction accuracy of the consistent tangent matrix. On the other hand, in our
implementation, the NN-AD model consisting of one feedforward neural network and the
backpropagation step for AD is faster to evaluate than the NN-2 model, which comprises
two different feedforward neural networks.

Figures 5 and 6 depict the results obtained from the DNN-FE2 simulation using the NN–
AD–100 model as the DNN surrogate model in comparison with that of the FE2 reference
simulation for all the components of E and T, respectively. The reference solution is
illustrated on the left panel, the DNN-FE2 solution is in the middle, and the absolute
percentage error ε is on the right. It can be observed in Figure 5 that for the normal
components of the strain tensor, E11 and E22, a maximum absolute percentage error of
1.03% is achieved which shows excellent performance of our DNN-FE2 approach. For the
shear strain E12, the error is slightly higher where a maximum absolute percentage error of
4.38% is obtained. The same conclusion can be drawn from Figure 6, where for the normal
components of the stress tensor T11 and T22, the maximum percentage errors are 2.12% and
1.02%, respectively, while for the shear stress, T12, the maximum percentage error is slightly
higher and is equal to 4.26%.

Moreover, Figure 7 shows the distribution of the absolute percentage error in the solu-
tion for the components of T (up) and E (bottom) obtained from the DNN-FE2 simulation us-
ing the NN–AD–100 model on all the integration points of the L-profile test case. The green
area and the marked percentage indicate the samples with less than 1% of error and their
population proportion. We observe that excellent simulation results are obtained where an
absolute percentage error of less than 1% is acquired for most of the samples. For instance,
it can be observed that 94.06% of the samples have an error of less than 1% in the solution
for the shear stress T12.
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Figure 5. Reference data (left) and results obtained from DNN-FE2 simulation (middle) with NN–
AD–100 model as well as error measure (74) (right) for the components of strain tensor E.

Figure 6. Reference data (left) and results obtained from DNN-FE2 simulation (middle) with NN–
AD–100 model as well as error measure (74) (right) for the components of stress tensor T.
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Figure 7. Histograms of the error (74) for the L-profile when applying the NN–AD-100 model. The top
and bottom panels illustrate the error for the components of the stress and strain tensors, T and
E, respectively.

4.3.2. Cook’s Membrane

Furthermore, we apply the DNN-FE2 approach for the simulation of Cook’s mem-
brane test case and compare the obtained solution with that of the reference FE2 . Table 4
summarizes the results for models based on the NN–2 and NN–AD architectures trained
on datasets with different sizes.

Table 4. Results of the DNN-FE2 simulation of the Cook’s membrane different for sizes of the
training/validation dataset.

Model ND εmean (%) εstd (%) Speed-Up Niter Nt

NN–2–1 1× 103 0.68 0.89 242× 123 32
NN–AD–1 1× 103 0.60 0.71 527× 85 30
NN–2–10 1× 104 0.31 0.44 292× 104 32
NN–AD–10 1× 104 0.09 0.13 542× 84 30
NN–2–100 1× 105 0.19 0.26 287× 104 32
NN–AD–100 1× 105 0.02 0.02 554× 82 30
NN–2–1000 1× 106 0.13 0.16 286× 105 32
NN–AD–1000 1× 106 0.03 0.06 575× 79 30
NN–2–4000 4× 106 0.12 0.17 291× 103 32
NN–AD–4000 4× 106 0.01 0.01 611× 73 30

The NN–2–1 and NN–AD–1 models provide a converged solution with less than
1% of error. This is also the case for the NN–2–10 and NN–2–100. Utilizing NN–AD–
10 and NN–AD–100 models leads to the convergence of the simulation with excellent
accuracy. We obtain ε mean and ε std of 0.02% using the NN–AD–100 model, which shows
the excellent capability of the NN–AD architecture for surrogate modeling of the local
macroscale computations. The results show that the NN–AD architecture outperforms the
NN–2 architecture in all the tests where, similar to the results obtained for the L-profile,
the errors ε mean and ε std are almost an order of magnitude lower.

The results are also reported regarding the computational efficiency of the proposed
framework in Table 4 for the second numerical experiment of Cook’s membrane; see
Figure 3B. It can be observed that the NN–AD–10 model obtains a speed-up gain of 542×
for this example. The results show that increasing the size of the dataset leads to a more
efficient simulation with a lesser number of iterations and lower computational time.
The NN–AD–4000 model provides a speed-up of 611× and leads to the convergence of the
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simulation in 30 time-steps. Compared to the L-profile test case, higher speed-up gain is
achieved for the Cook’s membrane. This is due to the fact that the number of elements,
which require microscale computations, is three times higher than that of the L-profile.
This suggests that utilizing the DNN-FE2 approach for more expensive computations, e.g.,
three-dimensional problems, could even lead to a higher speed-up gain.

Figures 8 and 9 show the results obtained from the DNN-FE2 simulation employing
the NN–AD–100 model as the DNN surrogate model in comparison with that of the
FE2 reference simulation for all the components of E and T, respectively. It can be observed
that for all the components of strain and stress tensors, very accurate results can be obtained.
For normal strains E11 and E22 and the shear strain E12, the maximum absolute percentage
errors are 0.14%, 0.16%, and 0.18%, respectively. Moreover, for the stress components T11,
T22, and T12 the maximum errors are equal to 0.23%, 0.38%, and 0.10%.

Figure 8. Reference data (left) and results obtained from DNN-FE2 simulation (middle) with NN–
AD–100 model as well as error measure (74) (right) for the components of strain tensor E.

We also report the distribution of the absolute percentage errors over all the integration
points for Cook’s membrane test case in Figure 10.

For this case, the green area and the marked percentage indicate the samples with
less than 0.1% of error and their population proportion. It can be seen that for most of the
sample points, an error of less than 0.1% has been obtained. Our results show the excellent
capability of the NN–AD models for very accurate and efficient FE2 simulations.
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Figure 9. Reference data (left) and results obtained from DNN-FE2 simulation (middle) with NN–
AD–100 model as well as error measure (74) (right) for the components of stress tensor T.

Figure 10. Histograms of the error (74) for the Cook’s membrane when applying the NN–AD-100
model. The top and bottom panels illustrate the error for the components of the stress and strain
tensors, T and E, respectively.
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4.4. Load-Step Size Behavior

Since FE2 computations usually require small initial time-step sizes Δt0, the application
of certain time-step control schemes is reasonable. In general, the determination of the
time-step size Δtnew for the following time-step depending on the current time-step size
Δtn can be achieved via different methods. In this contribution, we consider the number of
(global) Newton iterations Niter for the load step-size control; see Equation (76).

The step-size behavior, when using a step-size control based on global Newton itera-
tions, is shown for our two numerical experiments in Figure 11.
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Figure 11. Step-size behavior of DNN-FE2 simulations (red) with NN–AD–100 model and FE2 reference
simulation (blue), only accepted time-step sizes are shown. (A) L-profile; (B) Cook’s membrane.

For the L-profile, the overall step-size behavior is quite similar for both the FE2 reference
simulation and with embedding the DNN surrogate model NN–AD–100; see Figure 11A.
However, it is evident that the initial time-step size, which is chosen as Δt0 = 10−3 s, is
suitable for the surrogate model, but not for the FE2 reference simulation as the time-step
size is rejected multiple times and convergence is initially reached at Δt = 9× 10−5 s.
The rejections of the initial time-step size, which represents here the initially applied
load-step, result from divergence at the global macroscale level.

A similar behavior is observed for the Cook’s membrane and shown in Figure 11B.
The first accepted time-step size is Δt = 3× 10−4 s, whereas the DNN surrogate already
shows convergence at Δt0 = 10−3 s. In contrast to the L-profile, the step-size behavior
shows significant differences. For the reference FE2 simulation of the Cook’s membrane,
a certain limit exists, where the step size decreases because of failures in the local-level
computations of the MLNA (RVE computations), i.e., the applied load leads to certain
limitations in the step-size behavior of the RVEs. However, the DNN-FE2 computation with
the embedded DNN surrogate model is successfully converging even for higher step sizes.
The different step-size behaviors for L-profile and Cook’s membrane are obtained due to
different magnitudes of the strains at each macroscale integration point that result from the
loading conditions in Figure 3; see the results in Figures 5 and 8 as well.

As a result, the application of DNN surrogate models is not only possible for load-step
size controlled FE2 computations, but it also leads to certain advantages. On the one hand,
higher initial load-step sizes are possible and, on the other hand, certain limitations in
the load-step size can be overcome and thus larger step sizes can be applied compared to
classical FE2 computations.

5. Speed-Up with JAX and Just-in-Time Compilation

JAX [82] is a Python library developed by Google Research for high-performance
numerical computing. It utilizes an updated version of Autograd [92] for automatic differen-
tiation of native Python and NumPy functions. JAX supports reverse-mode differentiation
as well as forward-mode differentiation, and the two can be composed arbitrarily to any
order. Moreover, JAX uses XLA (accelerated linear algebra) [93] to compile and run NumPy
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programs on GPUs and TPUs (tensor processing units), which is performed by just-in-time
(JIT) compilation and execution of the calls. JAX also allows just-in-time compilation of
user-defined Python functions into XLA-optimized kernels using a one-function application
programming interface, jit. Compilation and automatic differentiation can be composed
arbitrarily, so one can express sophisticated algorithms and obtain maximal performance
without leaving Python. These properties allow the implementation of our NN–AD ar-
chitecture for RVE surrogate modeling efficiently using JAX. In the following, we discuss
just-in-time compilation and its application in our DNN-FE2 simulation framework in
combination with FORPy [87].

5.1. Just-in-Time Compilation

Just-in-time (JIT) compilation is a technique used in modern programming languages
to improve the performance of code execution at runtime. With JIT compilation, the code
is compiled from a high-level language into machine code at the moment it is needed,
rather than ahead of time. This allows a more efficient use of resources and can lead to
significant performance improvements, especially for applications that require repeated
execution of the same code. JIT compilers work by analyzing the code being executed and
dynamically generating optimized machine code that is tailored to the specific execution
context. In particular, when a program is executed, the JIT compiler analyzes the code
being executed and identifies hot spots or sections of code that are frequently executed.
These sections of code are then compiled into machine code and stored in memory for
future use. The next time the same section of code is executed, the JIT compiler can use the
pre-compiled machine code instead of interpreting the code again. This leads to significant
performance improvements, as the program spends less time interpreting code and more
time executing the machine code.

The JIT compiler in JAX is based on XLA, a domain-specific compiler that optimizes
numerical computations for modern hardware architectures. With JAX, users can write a
Python code that looks like a NumPy code but runs much faster on specialized hardware.
This makes JAX an ideal library for scientific computing, machine learning, and other
high-performance computing tasks. In addition to JIT compilation, JAX also provides tools
for distributed computing and parallelization, making it a versatile library for a wide range
of applications.

5.2. Speed-Up with JAX and JIT

JIT compilation is of interest in the DNN-FE2 approach since a repeated execution of
the surrogate model in every iteration and for every integration point occurs. Thus, the JIT
compilation of the prediction function, which is called from the FORTRAN finite element
code through FORPy, allows for more efficient use of resources and can lead to significant
performance improvements. To this end, we developed the NN–AD–100 model using JAX
and a neural network library and ecosystem for JAX called Flax [94]. Further, the prediction
function is compiled using jax.jit transformation.

The results are reported in Table 5, where we compare the computational efficiency
of our TensorFlow and JAX implementations. It should be noted that we utilize the same
set of hyperparameters and similar training processes for both implementations. It can
be seen that the required time of training is shorter for the JAX implementation, and it is
equal to 9.49× 10−3 of the computational time required for FE2 simulation of the Cook’s
membrane. Moreover, we gain a significant speed-up from the JAX implementation in
comparison with the TensorFlow implementation. The speed-up gain for the L-profile and
Cook’s membrane test cases are, respectively, equal to 4629× and 5853× for JAX and 462×
and 554× for TensorFlow. To the best of the authors’ knowledge, our JAX implementation
provides the highest speed-up in the context of DNN-FE2 simulations for non-linear elastic
material behavior in the literature.
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Table 5. Comparison of JAX and TensorFlow implementations of the surrogate model NN–AD–100
regarding the computational efficiency.

Framework trel,train Speed-Up for L-Profile Speed-Up for Cook’s Membrane

TensorFlow 1.39× 10−2 462× 554×
JAX 9.49× 10−3 4629× 5853×

6. Conclusions

In the present work, a DNN-FE2 approach is explained in detail to significantly acceler-
ate multiscale FE2 simulations. In general, the algorithmic structure of FE2 computations is a
Multilevel-Newton algorithm, even for the case of purely elastic material behavior without
internal variables. The main source of computational costs are the local macroscale com-
putations, which include the numerous computations of representative volume elements.
Thus, in the DNN-FE2 approach, we replace the local macroscale computations by drawing
on a deep neural network surrogate model, which is very fast to evaluate after sufficient
training. Here, it turns out that using automatic differentiation and Sobolev training to
obtain the consistent tangent information is superior to an approach with two deep neural
networks for the prediction of stresses and consistent tangent regarding data efficiency
and prediction accuracy. Moreover, in step-size-controlled computations, the deep neural
network surrogates are able to overcome certain step-size limitations of the FE2 reference
computations. For the Cook’s membrane as a particular example in this contribution, we
achieve a speed-up factor of more than 5000 compared to a FE2 reference simulation when
using just-in-time compilation techniques together with an efficient coupling between dif-
ferent programming codes using the FORPy library. The main advantage of the explained
DNN-FE2 approach is that it can be easily implemented to the existing finite element codes
since just the evaluation of a surrogate model for each macroscale integration point has to
be considered.
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FE Finite element
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DMN Deep material network
NN Neural network
MLNA Multilevel Newton algorithm
DAE Differential-algebraic equations
AD Automatic differentiation
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MPI Message passing interface
LHS Latin hypercube sampling
XLA Accelerated linear algebra
JIT Just-in-time

Appendix A. Hyperparameter Tuning

We conduct hyperparameter tuning using a grid search algorithm to optimize the
performance of the model on the validation dataset. For this purpose, we employ a dataset
with a size of ND = 105. Our attention is directed towards three specific hyperparameters:
the number of hidden layers Nh, the number of neurons per hidden layer Nn, and the choice
of the activation function ϕ. We apply hyperparameter tuning to the NN–2 architecture.
Results obtained from different sizes of the neural network (number of hidden layers
Nh × number of neurons per hidden layer Nn) with swish activation function are reported
in Table A1.

Table A1. Summary of the results obtained for training and validation losses and the required time
of training for different sizes of the NN–2–100 model. Results are reported for models with swish
activation function.

Nh × Nn Ltrain
T Lval

T Ltrain
C Lval

C trel,train

64×2 1.06×10−6 1.06×10−6 1.35×10−4 1.33×10−4 6.97×10−3

64×4 1.49×10−7 1.51×10−7 3.58×10−6 3.68×10−6 8.36×10−3

64×8 1.02×10−7 1.04×10−7 9.27×10−7 9.35×10−7 1.17×10−2

64×16 1.66×10−7 1.70×10−7 3.93×10−7 4.29×10−7 1.81×10−2

128×2 1.13×10−6 1.11×10−6 1.71×10−4 1.67×10−4 7.80×10−3

128×4 1.14×10−7 1.15×10−7 9.47×10−7 1.03×10−6 9.19×10−3

128×8 5.05×10−8 4.96×10−8 2.58×10−7 3.10×10−7 1.45×10−2

128×16 5.22×10−8 5.30×10−8 2.19×10−7 3.35×10−7 2.08×10−2

256×2 1.55×10−6 1.54×10−6 1.60×10−4 1.58×10−4 7.90×10−3

256×4 7.95×10−8 8.02×10−8 5.08×10−7 5.85×10−7 1.18×10−2

256×8 7.10×10−8 7.00×10−8 1.01×10−7 1.67×10−7 1.75×10−2

256×16 5.19×10−8 5.18×10−8 3.35×10−7 1.76×10−7 3.37×10−2

The training and the validation losses are reported for both mappings, T and C, which
are selected during the training process as the best models based on the lowest validation
loss. Also, the relative time of training trel,train is outlined. It is evident that the lowest
validation loss Lval

T = 4.96 × 10−8 is obtained from a deep neural network with eight
hidden layers and 128 neurons per hidden layer, where the corresponding validation loss
Lval
C = 3.10× 10−7 is obtained. The results show that networks with a larger number of

parameters lead to losses with the same order of magnitude and do not show a considerable
improvement while requiring more time for training. Therefore, we select Nh = 8 and
Nn = 128 for our analysis, see Table A1.

Moreover, Figure A1 illustrates the influence of the choice of activation function on
the learning curves for both mappings, T and C.

Figure A1. Influence of the choice of activation function on the learning process; Lval
T (left) and

Lval
C (right). Results are reported for models containing 8 hidden layers and 128 neurons per each

hidden layer.
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Results are reported for deep neural networks with Nh = 8 and Nn = 128. Similar
influence in all the other cases with different sizes of the neural network can be observed.
Further, it can be seen that the swish activation function performs better than sigmoid
and tanh. It should be noted that rectified linear unit (ReLU) activation function is not
used since the mapping requires to be continuously differentiable, especially for the NN–
AD architecture.
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Abstract: This study investigates via Lie symmetry analysis the Hunter–Saxton equation, an equation
relevant to the theoretical analysis of nematic liquid crystals. We employ the multiplier method to
obtain conservation laws of the equation that arise from first-order multipliers. Conservation laws
of the equation, combined with the admitted Lie point symmetries, enable us to perform symmetry
reductions by employing the double reduction method. The method exploits the relationship between
symmetries and conservation laws to reduce both the number of variables and the order of the
equation. Five nontrivial conservation laws of the Hunter–Saxton equation are derived, four of which
are found to have associated Lie point symmetries. Applying the double reduction method to the
equation results in a set of first-order ordinary differential equations, the solutions of which represent
invariant solutions for the equation. While the double reduction method may be more complex to
implement than the classical method, since it involves finding Lie point symmetries and deriving
conservation laws, it has some advantages over the classical method of reducing PDEs. Firstly, it is
more efficient in that it can reduce the number of variables and order of the equation in a single step.
Secondly, by incorporating conservation laws, physically meaningful solutions that satisfy important
physical constraints can be obtained.

Keywords: double reduction; Hunter–Saxton equation; lie symmetry analysis; conservation law;
invariant solution

1. Introduction

In this research article, we focus on the Hunter–Saxton equation, a mathematical
model described by the partial differential equation (PDE),

(ut + uux)x = 1
2 u2

x, (1)

which arises as an Euler–Lagrange equation of a variational principle in the study of a
nonlinear wave equation for the director field of a nematic liquid crystal [1]. Equation (1)
has attracted significant attention from researchers, prompting numerous studies on it and
its derivatives. These investigations have often employed Lie symmetry analysis to explore
various properties of the equations and, in certain instances, to uncover solutions.

Nadjafikhah and Ahangari [2] determined the Lie point symmetries of the equation
and used the symmetries to find conservation laws and conduct symmetry reductions of
the equation. An optimal system of one-dimensional subalgebras of the symmetry algebra
of the Hunter–Saxton equation was also constructed. San et al. [3] investigated a modified
version of the Hunter–Saxton equation, a third-order nonlinear PDE. Their work featured
the utilization of Ibragimov’s nonlocal conservation method to derive conservation laws
for the equation. Liu and Zhao [4] undertook the study of a generalized two-component
Hunter–Saxton system of equations. They determined similarity variables and executed
symmetry reductions for this new generalized system, leading to the discovery of some
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exact solutions of the system. Yao et al. [5] tackled the periodic Hunter–Saxton equa-
tion, introducing a variable coefficient into the generalized equation. They succeeded in
finding exact solutions for specific selections of the variable coefficient by employing the
classical approach to finding invariant solutions. Johnpillai and Khalique [6] also used
Lie symmetry analysis to find exact solutions for yet another generalized version of the
Hunter–Saxton equation.

In line with the research outlined above, our study is dedicated to examining the sym-
metry reductions of the Hunter–Saxton equation, utilizing the double reduction method.
Our objectives encompass the identification of Lie point symmetries, the determination of
conservation laws through the multiplier method, and the application of the double reduc-
tion method to achieve symmetry reductions. This research serves as a valuable addition to
the existing body of work on the Hunter–Saxton equation, while also contributing insights
into the double reduction method in the search for solutions of PDEs. It must be noted that
the double reduction routine we adopt in this article is based on the generalized approach
proposed by Bokhari et al. [7], which can be used to study PDEs such as those studied
in [8–10], of dimension higher than 1 + 1.

The double reduction method, introduced by Sjöberg [11,12], is a technique for solving
PDEs based on the use of Lie symmetries and conservation laws. For a (1 + 1) PDE
of order q, the double reduction theory allows for the reduction in the PDE to an ODE
of order q − 1, provided that the PDE possesses a conservation law and an associated
symmetry. Generalizations of the double reduction method have been proposed to handle
higher-dimensional PDEs and systems of PDEs [7,13,14]. Anco and Gandarias [15] have
introduced a further generalization of the double reduction method to handle partial
differential equations (PDEs) with n ≥ 2 independent variables and a symmetry algebra of
dimension at least n− 1. In their work [15], they present an algorithm for identifying all
symmetry-invariant conservation laws that reduce to first integrals for the corresponding
ordinary differential equation (ODE) governing symmetry-invariant solutions of the PDE.

Moreover, Anco and Gandarias [15] propose an improved formulation for assessing the
symmetry invariance of conservation laws by utilizing multipliers. This refined formulation
enables the direct derivation of symmetry-invariant conservation laws, eliminating the
need to first obtain conservation laws and subsequently verify their invariance.

The subsequent sections of this paper are structured as follows: Section 2 provides
an overview of the necessary preliminaries and outlines the fundamental principles of
the double reduction theorem. In Section 3, we calculate the Lie point symmetries and
conservation laws for the Hunter–Saxton equation, determining which conservation laws
are associated with symmetries. Section 4 focuses on executing symmetry reductions for
the Hunter–Saxton equation. Finally, in Section 5, we present our concluding remarks.

2. Fundamentals of the Double Reduction Theorem

In this section, we present the double reduction routine for a qth-order (q ≥ 1) partial
differential equation with n independent variables x = (x1, x2, . . . , xn) and one dependent
variable u = u(x), namely

F(x, u, u(1), u(2), . . . , u(q)) = 0, (2)

where u(q) denotes the collection
{

uq
}

of qth-order partial derivatives. In this connection,
we first present the following well-known definitions and results (see, e.g., [7,16–19]).

1. The total derivative operator with respect to xi is

Di =
∂

∂xi + ui
∂

∂u
+ uij

∂

∂uj
+ · · · , i = 1, 2, . . . , n, (3)

where ui denotes the derivative of u with respect to xi. Similarly, uij denotes the
derivative of u with respect to xi and xj.
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2. An n-tuple T =
(
T1, T2, . . . , Tn), i = 1, 2, . . . , n, such that

DiTi = 0 (4)

holds for all solutions of (2) is known as a conservation law of (2).
3. Multiplier Λ for Equation (2) is a non-singular function on the solution space of (2)

with the property
DiTi = ΛE (5)

for arbitrary function u
(
x1, x2, . . . , xn).

4. The determining equations for multipliers are obtained by taking the variational
derivative

δ

δu
(ΛE) = 0, (6)

where the Euler operator δ/δu is defined by

δ

δu
=

∂

∂u
− Di

∂

∂ui
+ Dij

∂

∂uij
− Dijk

∂

∂uijk
+ · · · . (7)

5. A Lie symmetry of (2) with infinitesimal generator X = ξi∂xi + η∂u is said to be
associated with a conserved law (4) if the symmetry and the conservation law satisfy
the relations [16][

Ti, X
]
= X

(
Ti
)
+ TiDjξ

j − TjDjξ
i, i = 1, . . . , n. (8)

Suppose that the PDE (2) admits a Lie point symmetry with infinitesimal generator
X = ξi∂xi + η∂u that is associated with a conservation law DiTi = 0. The following steps
constitute the routine of the double reduction method:

I. Find similarity variables x̃i, i = 1, 2, . . . , n and w,

x̃i = x̃i

(
x1, x2, . . . , xn

)
, i = 1, 2, . . . , n

w(x̃1, . . . , x̃n−1) = ω
(

x1, x2, . . . , xn
)

u,

such that in these variables X =
∂

∂x̃n
.

II. Find inverse canonical coordinates

xi = xi(x̃1, x̃2, . . . , x̃n), i = 1, 2, . . . , n

u
(

x1, x2, . . . , xn
)

= ψ(x̃1, x̃2, . . . , x̃n)w.

III. Write partial derivatives of u in terms of the similarity variables.
IV. Construct matrices A and A−1 as follows:

A =

⎛⎜⎜⎜⎝
D̃1x1 D̃1x2 . . . D̃1xn
D̃2x1 D̃2x2 . . . D̃2xn

...
...

...
...

D̃nx1 D̃nx2 . . . D̃nxn

⎞⎟⎟⎟⎠, A−1 =

⎛⎜⎜⎜⎝
D1 x̃1 D1 x̃2 . . . D1 x̃n
D2 x̃1 D2 x̃2 . . . D2 x̃n

...
...

...
...

Dnx̃1 Dnx̃2 . . . Dnx̃n

⎞⎟⎟⎟⎠.
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V. Write components Ti of the conserved vector in terms of the similarity variables as
follows: ⎛⎜⎜⎜⎝

T̃1

T̃2

...
T̃n

⎞⎟⎟⎟⎠ = J
(

A−1
)T

⎛⎜⎜⎜⎝
T1

T2

...
Tn

⎞⎟⎟⎟⎠, (9)

where J = det(A). Note that T1, . . . , Tn in (9) are easily expressed in terms of the
similarity variables in light of II and III.

VI. The reduced conservation law becomes

D1T̃1 + D2T̃2 + · · ·+ Dn−1T̃n−1 = 0. (10)

3. Symmetries and Conservation Laws of the Hunter–Saxton Equation

The Hunter–Saxton Equation (1) is a (1 + 1) PDE with two independent variables
x = (x1, x2) = (t, x) and one dependent variable u = u(t, x). It admits the following four
symmetries:

X1 = x
∂

∂x
+ u

∂

∂u
X2 =

∂

∂t

X3 = t
∂

∂t
+ x

∂

∂x
X4 = t2 ∂

∂t
+ 2tx

∂

∂x
+ 2x

∂

∂u
.

(11)

The symmetries are easily computed using MathLie, the symmetry-finding package for
Mathematica [20] developed by G. Baumann [21]. We use the multiplier approach to derive
conservation laws for the Hunter–Saxton Equation (1). We seek first-order multipliers

Λ = Λ(x, t, u, ux, ut) (12)

of (1), for which the determining equation according to (6) is

δ

δu

[
Λ
(
(ut + uux)x −

1
2

ux2
)]

= 0, (13)

where the standard Euler operator δ/δu, as defined in (7), is

δ

δu
=

∂

∂u
− Dt

∂

∂ut
− Dx

∂

∂ux
+ D2

t
∂

∂utt
+ D2

x
∂

∂uxx
+ DxDt

∂

∂utx
− · · · , (14)

and total derivative operators Dt and Dx using (3) are

Dt =
∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ utx

∂

∂ux
+ · · · ,

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ utx

∂

∂ut
+ · · · .

The determining equation for the multiplier Λ after expansion takes the following form:

Ω0 + uttΩ1 + utxΩ2 + (utx)
2Ω3 + uxxΩ4 + uxxuttΩ5 = 0, (15)
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where

Ω0 = uxΛtu −
1
2

u2
xΛtut + Λtx −

1
2

u3
xΛuux −

1
2

u2
xutΛuut + uu2

xΛuu + uxutΛuu

+ 2uuxΛxu + utΛxu + uΛxx −
1
2

u2
xΛxux +

3u2
xΛu

2
+ uxΛx,

Ω1 = uxΛuut −
1
2

u2
xΛutut + Λxut ,

Ω2 = 2uuxΛuut + 2uΛxut − u2
xΛutux + 2Λu,

Ω3 = uΛutut −Λutux ,

Ω4 = Λtux − uΛtut + utΛuux + uΛxux + uuxΛuux − uutΛuut −
1
2

u2
xΛuxux

+ 2uΛu − uxΛux − utΛut + Λ,

Ω5 = Λutux − uΛutut .

The multiplier determining Equation (15) splits with respect to different combinations of
the derivatives uxx, utx and utt yielding an overdetermined linear system of equations for
the multiplier. The system of equations was solved using Mathematica [20] to obtain

Λ = ut

(
δ2 + δ3t− δ1t2

2

)
+ uxx(δ3 − δ1t) + δ1x + δ4ux +

δ5

u2
x

, (16)

where δi, i = 1, 2, . . . , 5, are arbitrary constants. From (5) and (16), we obtain[
(ut + uux)x −

1
2

ux2
][

ut

(
δ2 + δ3t− δ1t2

2

)
+ uxx(δ3 − δ1t)

+ δ1x + δ4ux +
δ5

u2
x

]
= DtTt + DxTx, (17)

where

Tt = u2
x

(
u
(

δ1t2

4
− δ2

2
− δ3t

2

)
+ x

(
δ3

2
− δ1t

2

)
+

δ4

2

)
− δ5

ux
+ φ2(x)

+ ux(δ1x− δ1tu + φ1(u)),

Tx = u2
t

(
δ2

2
+

δ3t
2
− δ1t2

4

)
+ uu2

x

(
x
(

δ3

2
− δ1t

2

)
+

δ4

2

)
− δ5u

ux
+

3δ5x
2

+ ux

(
uut

(
δ2 + δ3t− δ1t2

2

)
+ δ1ux

)
+ ut(δ1tu− φ1(u)) + φ3(t)

for arbitrary functions u(t, x). When u(t, x) is a solution of Equation (1), the left hand side
of (17) vanishes and we obtain conservation laws of the Hunter–Saxton Equation (1) for
which the conserved vectors

(
T1

i , T2
i
)
, i = 1, 2, . . . , 5, are given by

T1
1 = ux

(
ux− 1

2
t2uut

)
− t2u2

t
4
− 1

2
tuu2

xx + ut(tu− φ1(u)) + φ3(t),

T2
1 = u2

x

(
t2u
4
− tx

2

)
+ ux(x− tu + φ1(u)) + φ2(x),

T1
2 = φ3(t) + uuxut − utφ1(u) +

u2
t

2
,

T2
2 = uxφ1(u) + φ2(x)− uu2

x
2

,
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T1
3 = tuuxut +

tu2
t

2
+ φ3(t) +

1
2

uu2
xx− utφ1(u),

T2
3 = u2

x

(
x
2
− tu

2

)
+ uxφ1(u) + φ2(x),

T1
4 = φ3(t)− utφ1(u) +

uu2
x

2
,

T2
4 = φ2(x) + uxφ1(u) +

u2
x

2
,

T1
5 = φ3(t)− utφ1(u)−

u
ux

+
3x
2

,

T2
5 = φ2(x) + uxφ1(u)−

1
ux

.

According to (8), symmetry X is associated with conservation law DtTt + DxTx = 0 if
the following formula is satisfied:

X
(

Tt

Tx

)
−
(

Dtξ
t Dxξt

Dtξ
x Dxξx

)(
Tt

Tx

)
+
(

Dtξ
t + Dxξx)( Tt

Tx

)
= 0. (18)

It turns out that the association of symmetries and conservation laws of (1) is obtained in
the following cases:

κ1(X1 + 2X3) + κ2X2 →
{

T1
2 =

u2
t

2 −
δ1ut

u + uuxut

T2
2 = δ1ux

u + δ3
x −

uu2
x

2

,

κ1(X1 + X3) + κ2X2 →
{

T1
4 = uu2

x
2 − δ1ut

u

T2
4 = δ1ux

u + δ3
x + u2

x
2

,

κ1

(
X1 −

X3

2

)
+ κ2X2 →

{
T1

5 = δ2
2κ2−κ1t −

δ1ut
u − u

ux
+ 3x

2

T2
5 = δ1ux

u + δ3
x − 1

ux

,

X3 →
{

T1
3 = δ1

t + tuuxut +
tu2

t
2 + 1

2 uu2
xx− utφ1(u)

T2
3 = δ2

x + u2
x
( x

2 − tu
2
)
+ uxφ1(u)

.

It is important to observe that among the five computed conservation laws, we identi-
fied associated Lie point symmetries for only four. Notably, the conservation law T1 lacks
any associated Lie point symmetry of the Hunter–Saxton equation.

4. Double Reduction of the Hunter–Saxton Equation

4.1. Double Reduction of (1) by 〈κ1(X1 + 2X3) + κ2X2〉
We transform the generator Z = κ1(X1 + 2X3) + κ2X2 to its canonical form Y =

0 ∂
∂r +

∂
∂s + 0 ∂

∂w . Therefore, canonical coordinates r = r(t, x), s = s(t, x) and w = w(t, x, u)
must be found such that Z(r) = 0, Z(s) = 1 and Z(w) = 0. While the coordinates r and w
are obtained from invariants of Z, the coordinate s may be determined by inspection. More
systematically, it can be obtained from an invariant J = v− s(x, y) of the extended operator
Z + ∂v, where v is an auxiliary variable [19]. We obtain

r =
x

(2κ1t + κ2)3/2 , s =
ln x
3κ1

, w =
u√

2κ1t + κ2
, κ1 �= 0, (19)

where w = w(r). Inverse canonical coordinates follow from (19) and are given by

t =
e2κ1s − κ2r2/3

2κ1r2/3 , x = e3κ1s, u =
weκ1s

r1/3 . (20)
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Computing A and
(

A−1)T , we obtain

A =

(
Drt Drx
Dst Dsx

)
=

⎛⎝ − e2κ1s

3κ1r5/3 0

e2κ1s

r2/3 3e3κ1sκ1

⎞⎠
and (

A−1
)T

=

(
Dtr Dxr
Dts Dxs

)
=

(
−3e−2κ1sκ1r5/3 e−3κ1sr

0 e−3κ1s

3κ1

)
.

The partial derivatives of u from (20) are given by

ut = κ1
3
√

re−κ1s(w− 3rwr), ux = r2/3wre−2κ1s,

utx = −κ1r4/3e−4κ1s(3rwrr + 2wr),

uxx = r5/3wrre−5κ1s.

(21)

The reduced conserved form is given by(
Tr

2
Ts

2

)
= J

(
A−1

)T
(

Tt
2

Tx
2

)
, (22)

where J = det(A) = − e5κ1s

r5/3 . By substituting (20) and (21) into (22), we obtain

Tr
2 = δ1κ1 + 3δ3κ1 + 3κ2

1rwwr −
9
2

κ2
1r2w2

r −
κ2

1w2

2
+

3
2

κ1rww2
r − κ1w2wr,

Ts
2 = wr

(
κ1w− δ1

w
− w2

3r

)
+

δ1

3r
− κ1w2

6r
+ w2

r

(
w− 3κ1r

2

)
,

(23)

where the reduced conserved form satisfies

DrTr
2 = 0. (24)

From (23) and (24), we have

3κ2
1rwwr −

9
2

κ2
1r2w2

r −
κ2

1w2

2
+

3
2

κ1rww2
r − κ1w2wr = k,

where k is an arbitrary constant.

4.2. Double Reduction of (1) by 〈κ1(X1 + X3) + κ2X2〉
Canonical coordinates determined from 〈κ1(X1 + X3) + κ2X2〉 are

r =
x

(κ1t + κ2)2 , s =
ln x
2κ1

, w =
u√
x

, κ1 �= 0, (25)

where w = w(r), and the inverse canonical coordinates are given by

t = −κ2
√

r− eκ1s

κ1
√

r
, x = e2κ1s u = weκ1s. (26)

Therefore, the partial derivatives of u from (26) are given by

ut = −2κ1r3/2wr, ux =
1
2

e−κ1s(2rwr + w),

utx = −e−2κ1sκ1r3/2(2rwrr + 3wr,

uxx = −1
4

e−3κ1s(w− 4r(rwrr + wr)).

(27)
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As for A and
(

A−1)T , we obtain

A =

(
Drt Drx
Dst Dsx

)
=

(
− eκ1s

2κ1r3/2 0
eκ1s√

r 2e2κ1sκ1

)
,

and (
A−1

)T
=

(
Dtr Dxr
Dts Dxs

)
=

(
−2e−κ1sκ1r3/2 e−2κ1sr

0 e−2κ1s

2κ1

)
.

Therefore, from (
Tr

4
Ts

4

)
= J

(
A−1

)T
(

Tt
4

Tx
4

)
, (28)

where J = det(A) = − e3κ1s

r3/2 , we obtain

Tr
4 = δ1κ1 + 2δ3κ1 + κ1r2w2

r + κ1rwwr +
κ1w2

4
− 1

2
r3/2ww2

r −
w3

8
√

r
− 1

2
√

rw2wr,

Ts
4 = − δ1wr

w
− w3

16κ1r3/2 −
w2wr

4κ1
√

r
−
√

rww2
r

4κ1
.

(29)

From the reduced conservation law DrTr
4 = 0, we obtain

κ1r2w2
r + κ1rwwr +

κ1w2

4
− 1

2
r3/2ww2

r −
w3

8
√

r
− 1

2
√

rw2wr = k,

where k is an arbitrary constant.

4.3. Double Reduction of (1) by
〈

κ1

(
X1 − X3

2

)
+ κ2X2

〉
Canonical coordinates determined from

〈
κ1

(
X1 − X3

2

)
+ κ2X2

〉
are

r = x(2κ2 − κ1t), s =
2 ln x

κ1
, w =

u
x2 , κ1 �= 0, (30)

where w = w(r), and the inverse canonical coordinates are given by

t =
2κ2 − re−

1
2 κ1s

κ1
, x = e

κ1s
2 , u = weκ1s (31)

Therefore, the partial derivatives of u from (31) are given by

ut = −κ1wre
3κ1s

2 , ux = e
κ1s
2 (rwr + 2w),

utx = −κ1eκ1s(rwrr + 3wr),

uxx = r(rwrr + 4wr) + 2w.

(32)

Therefore,

A =

(
Drt Drx
Dst Dsx

)
=

⎛⎝ − e−
1
2 κ1s

κ1
0

1
2 e−

1
2 κ1sr 1

2 e
κ1s
2 κ1

⎞⎠
and (

A−1
)T

=

(
Dtr Dxr
Dts Dxs

)
=

⎛⎝ −e
κ1s
2 κ1 e−

1
2 κ1sr

0 2e−
1
2 κ1s

κ1

⎞⎠.
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Therefore, from (
Tr

5
Ts

5

)
= J

(
A−1

)T
(

Tt
5

Tx
5

)
, (33)

where J = det(A) = − 1
2 , we obtain

Tr
5 =

2κ1(2δ1rwr + 4δ1w + δ3rwr + 2δ3w− 1)− 2δ2(rwr + 2w)− r(3rwr + 4w)

4rwr + 8w
,

Ts
5 = −2δ1κ1r2w2

r + 4δ1κ1rwwr + 2δ2rwwr + 4δ2w2 + 3r2wwr + 4rw2

2κ1r2wwr + 4κ1rw2 .
(34)

From the reduced conservation law DrTr
5 = 0, we obtain

2κ1(2δ1rwr + 4δ1w + δ3rwr + 2δ3w− 1)− 2δ2(rwr + 2w)− r(3rwr + 4w)

4rwr + 8w
= k,

where k is an arbitrary constant.

4.4. Double Reduction of (1) by 〈X3〉
Canonical coordinates determined from X3 are

r =
x
t

, s = ln x w = u, (35)

where w = w(r), and the inverse canonical coordinates are given by

t =
es

r
, x = es u = w. (36)

Therefore, the partial derivatives of u from (36) are given by

ut = −r2e−swr, ux = re−swr,

utx = −r2e−2s(rwrr + wr),

uxx = r2e−2swrr.

(37)

As for A and
(

A−1)T , we obtain

A =

(
Drt Drx
Dst Dsx

)
=

(
− es

r2 0
es

r es

)
,

and (
A−1

)T
=

(
Dtr Dxr
Dts Dxs

)
=

( −e−sr2 e−sr
0 e−s

)
.

Therefore, from (
Tr

3
Ts

3

)
= J

(
A−1

)T
(

Tt
3

Tx
3

)
, (38)

where J = det(A) = − e2s

r2 , we obtain

Tr
3 = δ2 − δ1,

Ts
3 =

1
2

w2
r (w− r)− δ1

r
− wrφ1(w).

(39)

It is remarkable that in this case, because Tr
3 in (39) is simply a constant, the reduced

conservation law DrTr
3 = 0 does not result in an ODE that can be solved for w. Therefore,

no invariant solution arises via the double reduction method from the association of X3
and the conservation law T3.
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5. Concluding Remarks

In this paper, a study of the Hunter–Saxton equation using Lie symmetry analysis
was presented. Symmetry reductions of the equation were carried out by employing the
generalized approach to double reduction theory proposed by Bokhari et al. [7]. By utilizing
the multiplier method, nontrivial conservation laws for the Hunter–Saxton equation were
derived. These conservation laws, along with the Lie point symmetries of the equation,
were employed to perform symmetry reductions via the double reduction method.

Through the analysis, a set of first-order ODEs was obtained, whose solutions represent
invariant solutions for the Hunter–Saxton equation. Out of the five nontrivial conservation
laws constructed, it was observed that only four had associated Lie point symmetries
according to the definition provided by Kara and Mahomed [16]. The conservation law T1
did not have any linear combination of symmetries associated with it. Additionally, it is
noteworthy that despite the conservation law T3 having an associated Lie point symmetry,
X3, the application of the double reduction method in this case did not yield a symmetry
reduction of the Hunter–Saxton equation. This outcome could be attributed to the “collapse”
of the first integral, which was expected to represent a reduced ODE for the PDE but instead
resulted in a constant value.
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Abstract: This paper studies and analyzes the approximation of one-dimensional smooth closed-form
functions with compact support using a mixed Fourier series (i.e., a combination of partial Fourier
series and other forms of partial series). To explore the potential of this approach, we discuss and
revise its application in signal processing, especially because it allows us to control the decreasing rate
of Fourier coefficients and avoids the Gibbs phenomenon. Therefore, this method improves the signal
processing performance in a wide range of scenarios, such as function approximation, interpolation,
increased convergence with quasi-spectral accuracy using the time domain or the frequency domain,
numerical integration, and solutions of inverse problems such as ordinary differential equations.
Moreover, the paper provides comprehensive examples of one-dimensional problems to showcase
the advantages of this approach.

Keywords: function reconstruction; Fourier series; Gibbs phenomenon; convergence acceleration;
exponential accuracy

MSC: 42A16; 42A20; 41A10

1. Introduction

The Fourier series of a function with compact support, denoted by g:[0,T]→R, has
been the cornerstone of several modern applications through harmonic analysis and Fourier
synthesis. On the one hand, harmonic analysis allows the study of the original function or
phenomenon through the superposition of simpler trigonometric functions. This analysis
represents a wide branch of study in mathematics [1–3] and is used in many applications
in physics [4–6], engineering [7–9], medicine [10–12], and music [13]. Fourier synthesis, on
the other hand, uses a linear combination of basis functions to approximate the original
function [14], which has many applications in boundary value problems [15–17], data
interpolation [18–21], and compression [22].

The Fourier series has several advantages for representing a function with compact
support (i.e., non-periodic function). First, it has been extensively studied, and many
well-known analytical and numerical properties can be applied [1,2]. Second, unlike other
series based on local information, such as the Taylor series or the Spline series, the Fourier
series does not require the use of high-order derivatives, and their coefficients are calculated
by well-conditioned algorithms. Finally, unlike other series based on non-trigonometric
basis functions using an inner product, such as orthogonal polynomials, the Fourier series
offers the advantage of reducing the computational cost of obtaining the coefficients by
employing the FFT (fast Fourier transform). However, despite those advantages, it is well-
known that its performance degrades when the equivalent periodic function (denoted by
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ḡ:R→ R) loses its smooth property. The first shortcoming is the presence of unacceptable
oscillations (i.e., ringing artifacts) in the approximation, which are generally known as
the Gibbs (or Gibbs–Wilbraham) phenomenon [23]. The second shortcoming is slow
convergence because the magnitude of Fourier coefficients is O(|k|−1) [24] or O(|k|−2) [25],
which makes it difficult to obtain a suitable representation using few coefficients for many
purposes, such as data compression or fast solvers of inverse problems. To address these
drawbacks, several techniques have been proposed over the last several years. They can be
classified into averaging and filtering techniques [26–56], polynomial techniques [57–69],
and discontinuity subtraction techniques [70–86].

The Windowing technique [26] is possibly the most important filtering technique for
harmonic analysis, in which the function is artificially smoothed with a relevant distortion
cost for small bandwidths. Averaging and filtering techniques are more diverse for syn-
thesis applications. For instance, the Fejér’s arithmetic mean method removes the Gibbs
oscillations [27–29]. Similarly, the Lanczos sigma approximation [30–32], Mollifiers [33–38],
and other averaging methods [39,40] and filters [41–44] can reduce ringing artifacts, too.
Moreover, they can be combined with special wavelets [45–50] with the same purpose.
Furthermore, these techniques can be merged with Fourier extension methods, in which
artificial and convenient information in an extended interval t ∈ [−a, T + a] allows for a
reduction in undesirable phenomena in t ∈ [0, T] [51–56]. Despite their success, averaging
and filtering techniques have several drawbacks due to the artificial modification and slow
convergence of the Fourier coefficients.

The main polynomial methodology for synthesis application may be the spectral
reprojection approach [57], in which Fourier coefficients are reprojected onto other basis
functions conformed by polynomials. For instance, the Gegenbauer polynomials [58–60]
and general polynomials using inverse methods [61,62] are successful in removing the
Gibbs phenomenon. In the same direction, Chebyshev polynomials produce a strongly
nonuniform distribution of points with good performance for interpolation [63,64]. How-
ever, the solution loses simplification by using non-equidistant data. Similarly, other related
techniques can address these concerns, such as Padé approximations [65–67], convergence
acceleration, and inverse methods [68,69]. Although polynomial techniques reduce or
remove ringing artifacts from arbitrary Fourier coefficients, they have some drawbacks due
to their complexities or ill-conditioned solutions.

Discontinuity subtraction techniques are employed to separate the discontinuities
in the original function, yielding a more convenient Fourier representation. To the best
of our knowledge, the concept of removing discontinuities using polynomials was first
introduced by Russian works in the 1900s. For instance, A. N. Krylov proposed the method
of Acad using a piecewise linear polynomial [70], ([71], p. 79) and A. S. Maliev proposed
a strengthened convergence method using high-order piecewise polynomials using a
Fourier extension method ([71], p. 86). Those approaches were generalized by C. Lanczos
in ([72], p. 98), using quasi-Bernoulli polynomials, denoted by Bm(t), in the same domain
of the function. The Maliev–Lanczos approach has enormous potential because it avoids
the Gibbs phenomenon and allows for generating Fourier coefficients with convergence
O(|k|−M). Despite the fact that these works demonstrated that the Fourier series can
achieve accelerated convergence for smooth functions, there was little scientific discussion
for almost three decades about these methods [77,78]. The Lanczos approach emerged
again in the 1990s in the works of K. S. Eckhoff [79–81], who proposed the reconstruction of
piecewise smooth functions with M jumps by solving a linear system of M equations using
quasi-Bernoulli polynomials and the spectral domain. Over the last two decades, several
Armenian researchers have made significant contributions to the Lanczos approach. For
instance, the works of A. Nersessian and A. Poghosyan addressed the main issue of some
alternatives to the quasi-Bernoulli series in [67,87–92], such as the quasi-polynomial series,
the Fourier–Pade series, the trigonometric interpolations series, and the quasi-polynomial
Pade series. Similarly, A. Nersessian studied a framework based on a biorthogonal system
and adaptive algorithms with a strong potential for accelerating the convergence of Fourier
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series due to an over-convergence phenomenon [93–96]. Furthermore, some simplifica-
tions and applications of Eckhoff algorithm have been studied by A. Poghosyan et al.
in [83–86,97], such as its application to two-dimensional functions, the simplification of the
minimization problem, and the study of trigonometric interpolations series. Finally, several
researchers around the world, who are not fully discussed in this introduction due to space
limitations, have also contributed to this technique [82,98–101]. For example, B. Adcock
provided a comprehensive discussion and evaluation of several related techniques in [99],
and D. Batenkov proposed a novel decimated Eckhoff’s algorithm in [101].

On the other hand, Fourier series have been widely used to solve differential problems,
such as ODEs, PDEs, and eigenvalues [14,102,103]. In particular, we found that, unrelated
to the previous state of the art, P. Roache proposed the method of “reduction to periodicity”
in [104] for solving differential equations in fluid dynamics [105,106]. That method applies
the discontinuity subtraction technique using simple polynomials in a normalized domain
(i.e., φ(t) = ∑M

k=0 ak · tk, ∀t ∈ [0, 1]), where the coefficients are chosen to produce a smooth
periodic residual error, and therefore, the solution increases the convergence and removes
ringing artifacts using the Fourier approach.

The Maliev–Lanczos approach to approximating closed-form smooth functions has
four disadvantages in applied problems. First, the method requires explicit knowledge
of the function’s derivative at the edges of the interval. However, for continuous-time
applications where the closed-form function is known, this requirement does not cause
setbacks because derivative operators may be easily computed using the chain rule. These
continuous-time applications include the solutions to direct and inverse problems using
linear operators (i.e., L {·} : g → h such that L {α · g1(t) + β · g2(t)} = α ·L {g1(t)}+
β ·L {g2(t)}). Second, Fourier coefficients of the original function must be determined
because the method is supported by the Fourier framework. For common functions,
these coefficients are not always known in closed form. Third, the evaluation of quasi-
Bernoulli polynomials requires an iterative algorithm that increases addition and product
operations and, therefore, increases computation time and sensitivity to rounding errors in
the operations L {Bm(t)}. Finally, it would seem that the approach using quasi-Bernoulli
polynomials is the best framework for accelerated convergence because they are directly
found from integration by parts using the integral definition of Fourier coefficients.

Despite the advances of the last decades, the Maliev–Lanczos approach is not widely
used or recognized as one would expect in continuous-time problems involving closed-
form smooth functions in applied mathematics, physics, and engineering. For example, this
technique receives minimal attention as an alternative to the Taylor series for non-analytic
smooth functions on a closed interval. Unfortunately, the Maliev–Lanczos approach is
rarely mentioned in engineering textbooks, despite the fact that the Fourier series and Taylor
series are fundamental tools for a wide range of problems and applications (e.g., Riemann
integration, integral equations, and boundary or initial value problems). Perhaps this is due
to the aforementioned shortcomings, as well as a lack of useful information and discussions,
canonical examples, or practical applications.

The contributions of this publication are categorized as follows. The first category
involves making scientific contributions to the Maliev–Lanczos approach. This includes
advancements, improvements, and novel insights related to the approach, which are
listed below:

1. We prove that the Roache approach (i.e., using simple polynomials derived from the
residual error framework) is spectrally equivalent to the Lanczos approach (i.e., using
quasi-Bernoulli polynomials derived from an integration-by-parts framework) for any
harmonic different from zero (i.e., ∀k ∈ Z−{0}), where simple polynomial coefficients
are determined by a low-cost backward algorithm. Although both approaches have
the same complexity when using linear operators based on integrals or derivatives,
simple polynomials are easier to manipulate using these operators, and they reduce
rounding errors by lowering addition and multiplication operations.
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2. We propose a reprojection method that allows the transformation from Fourier series
coefficients to mixed Fourier series coefficients. We introduce the term “mixed Fourier
series” to designate the summation of series derived from a smooth periodic residual
error, wherein one of the series is the Fourier series. This method allows for recovering
convergence O(|k|−M) using standard Fourier coefficients obtained from any smooth
function. The proposed method has the advantage of avoiding the temporal informa-
tion of g:[0, T]→ R. Therefore, it has the potential to be particularly useful for native
spectral applications (e.g., solving differential equations with spectral methods).

3. By employing the Maliev–Lanczos approach and leveraging the residual error frame-
work, we introduce and evaluate a novel sub-harmonic mixed Fourier series. This
new series demonstrates enhanced performance and versatility in approximating
wide-band or pass-band functions compared to the quasi-Bernoulli series. It is worth
noting that the Maliev–Lanczos approach presents a set of continuity-based cons-
traints that can be applied to any series complementing the Fourier series. Moreover,
the conditions for achieving accelerated convergence can be readily obtained using
the residual error framework.

The second category focuses on utilizing case studies as canonical examples to inspire
and encourage non-specialists to apply the Maliev–Lanczos approach to real-life problems.
The contributions pertaining to this category are listed below:

1. We discuss several examples of common smooth functions whose approximations
using polynomials and trigonometric series exhibit several well-known adverse phe-
nomena, such as the Gibbs phenomenon, Runge’s phenomenon, spectral leakage, and
non-convergence by a non-analytic point or a limited region of convergence (using the
Taylor series), which are successfully represented by the mixed Fourier series. The re-
sults demonstrate the potential of the Maliev–Lanczos approach in the approximation
of the usual smooth functions in applied problems, even outperforming, in several
scenarios, the Taylor series, orthogonal polynomials, and Chebyshev polynomials
using nonuniform sampling.

2. We illustrate the application of the mixed Fourier series with linear operators. In
particular, we solve a common direct problem in applied mathematics (Numerical
Riemann Integration) and a common inverse problem in fluid dynamics (Poisson’s
equation). In both examples, we show the benefit of employing simple polynomials,
and we illustrate fast convergence without the Gibbs phenomenon.

3. We evaluate the use of a mixed evaluation (i.e., a combination of closed-form deriva-
tives and the DFT approach) to find the mixed Fourier series of functions without
closed-form Fourier coefficients. In that case, we show that the DFT reflects the
property O(|k|−M) for smooth functions, which allows accelerated discrete Fourier
processing. Therefore, this approach has a huge potential for a wide range of practi-
cal situations.

4. Finally, we show in detail the methodology used to define a new mixed Fourier series
using the residual error framework. Additionally, the versatility of this new series is
demonstrated through several examples.

The rest of this article is divided as follows. Section 2 develops the continuous-
time theory, and Section 3 discusses several continuous-time examples and applications.
Finally, the last sections present open challenges and future work (Section 4), followed by
conclusions (Section 5).
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2. Continuous-Time Theory

2.1. Fourier Series Fundamentals

Let g:[0, T]→ R be a function with compact support. Traditionally, the partial Fourier
series of g(t) is given by [3], p. 62

SN{g; t} :=
N

∑
k=−N

Gk · e2πi·t·k f0 , (1)

where f0 = 1
T , and the Fourier coefficients are

Gk :=
1
T
·

T∫
0

g(t)·e−2πi·t·k f0 dt, ∀k ∈ Z. (2)

This paper makes the assumption that g(t) is a well-behaved (i.e., not pathologi-
cal [107]) function such that limN→∞ SN{g; t} → g(t), ∀t ∈ [0, T] using a well-defined con-
cept of convergence, such as point-wise, uniform, or based on the 2-norm (i.e., ‖·‖2) [1,2].
Moreover, the periodic equivalent function (denoted by ḡ : R → R) is defined from the
partial Fourier series by

ḡ(t) := lim
N→∞

SN{g; t}, ∀t ∈ R. (3)

Definition 1. Let C0[0, T] be the set of continuous functions on [0, T]. Let CK[0, T] be the set of
continuous functions with K-times continuously differential properties on [0, T], where we use only
the right-hand derivative definition at t = 0 and the left-hand derivative definition at t = T.

Even though g(t) has a smooth property, defined by g ∈ CK[0, T], the Fourier series
could be inefficient for analysis or synthesis applications because the periodic equivalent
function could have discontinuities caused by the edges of the interval (e.g., g(0+) �=
g(T−) ⇒ ḡ(mT+) �= ḡ(mT−), ∀m ∈ Z). As a result, the periodic equivalent function
is usually inconvenient for a Fourier representation because it lacks a smooth property
(i.e., ḡ /∈ CK(R)).

2.2. Mixed Fourier Series

The disadvantages of the Fourier series representation could be solved using the linear
combination given by

g(t) := PM{g; t}+ r(t), ∀t ∈ [0, T], (4)

where the function r(t) means the residual error between g(t) and an arbitrary partial series
PM{g; t}. If a convenient form of PM{g; t} is chosen, then an equivalent periodic residual
error (i.e., r̄ : R → R) with suitable properties for a Fourier series representation can be
obtained. Therefore, as part of the method, we design PM{g; t} such that r̄ ∈ CM(R) for
some 0 ≤ M ≤ K. As a result, the partial mixed Fourier series, defined by

gN,M(t) :=PM{g; t}+ RN,M{r; t}, ∀t ∈ [0, T] (5)

=PM{g; t}+
N

∑
k=−N

Rg
k,M · e2πi·t·k f0,∀t∈ [0, T], (6)

has greater potential for processing applications because the partial Fourier series RN,M{r; t}
avoids the Gibbs phenomenon with a better decreasing rate of their Fourier coefficients, where
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Rg
k,M =

1
T
·

T∫
0

{g(t)− PM{g; t}} · e−2πi·t·k f0 dt. (7)

The new Fourier coefficient (i.e., Rg
k,M) is the kth harmonic of the residual error formed

between the original function g(t) and the hypothesis PM{g; t}.
Lastly, in this paper, in order to simplify the results, we study a simple polynomial

series,

PM{g; t} :=
M+1

∑
m=1

Pg
m,M ·

(
t
T

)m
, ∀t ∈ [0, T] (8)

with coefficients Pg
m,M, M ∈ N ∪ {0} and 0 ≤ M ≤ K. This polynomial series is mostly

equivalent to the one proposed by Roache in [104], where we utilize an arbitrary compact
interval [0,T] and we avoid the use of the coefficient Pg

0,M.
The mixed Fourier series defined in (5) is a combination of functions without a Fourier

series representation (i.e., polynomial series are not mandatory in PM{g; t}) and standard
trigonometric functions (i.e., using k f0-harmonics in RN,M{r; t}) with constants Pg

m,M and
Rg

k,M, respectively. As we prove with the theory, and we show with several study cases, the
mixed Fourier series representation can substantially enhance the processing of g(t) with
low-cost of implementation and storage.

2.3. Polynomial Coefficients in Closed Form

To find the general coefficients of PM{g; t}, we first study the methodology for the
cases M ∈ {0, 1, 2}.

2.3.1. Case M = 0

Using (4) and (8) with M = 0, we obtain the edges

g(0) = r(0), (9)

g(T) = Pg
1,0 + r(T). (10)

If r̄ ∈ C0(R), then r(T) = r(0). As a result, solving (9) and (10), we obtain

Pg
1,0 = g(T)− g(0). (11)

In particular, the trivial case g(T) = g(0) has the trivial representation Pg
1,0=0. Finally,

we approximate g(t) by means of gN,0(t) using (5)–(8).

2.3.2. Case M = 1

Using (4) and (8) with M = 1, we obtain the edges

g(0) = r(0), (12)

g(T) = Pg
1,1 + Pg

2,1 + r(T). (13)

Let g(m)(t) be the mth derivative of g(t), or dm

dtm g(t), where g(0)(t) := g(t). If
g, r ∈ C1[0, T], then we obtain

g(1)(t) =
1
T

Pg
1,1 +

2
T2 Pg

2,1 · t + r(1)(t), ∀t ∈ [0, T] (14)
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with the edges

g(1)(0) =
1
T

Pg
1,1 + r(1)(0), (15)

g(1)(T) =
1
T

Pg
1,1 +

2
T

Pg
2,1 + r(1)(T). (16)

If r̄ ∈ C1(R), then r(1)(T) = r(1)(0) and r(T) = r(0). Solving (15)–(16) and (12)–(13),
we obtain

Pg
2,1 =

T
2
{g(1)(T)− g(1)(0)}, (17)

Pg
1,1 = {g(T)− g(0)} − Pg

2,1. (18)

We want to note that the coefficients of M = 0 are the same coefficients of M = 1 with
Pg

2,1 = 0. Finally, we approximate g(t) through gN,1(t) using (5)–(8).

2.3.3. Case M = 2

Using (4) and (8) with M = 2, and g, r ∈ C2[0, T], we obtain the edges

g(0) = r(0), (19)

g(T) = Pg
1,2 + Pg

2,2 + Pg
3,2 + r(T), (20)

g(1)(0) =
1
T

Pg
1,2 + r(1)(0), (21)

g(1)(T) =
1
T

Pg
1,2 + 2

1
T

Pg
2,2 + 3

1
T

Pg
3,2 + r(1)(T), (22)

g(2)(0) = 2
1

T2 Pg
2,2 + r(2)(0), (23)

g(2)(T) = 2
1

T2 Pg
2,2 + 6

1
T2 Pg

3,2 + r(2)(T). (24)

Solving (23)–(24), (21)–(22), and (19)–(20) with r̄ ∈ C2(R), we obtain

Pg
3,2 =

T2

6
{g(2)(T)− g(2)(0)}, (25)

Pg
2,2 =

T
2
{g(1)(T)− g(1)(0)} − 3

2
P3,2, (26)

Pg
1,2 = {g(T)− g(0)} − P2,2 − P3,2. (27)

Again, we want to note that the coefficients of M = 1 are the same coefficients of
M = 2 with Pg

3,2 = 0. Finally, we approximate g(t) through gN,2(t) using (5)–(8).

2.3.4. General Case: Arbitrary M ∈ N+ {0} Such That M ≤ K

If g ∈ CK[0, T], then the polynomial coefficients Pg
m,M in closed form can be determined

from (8) by the property

g(k)(t) = r(k)(t) +
1

Tk ·
M+1

∑
m=k

αk+1,m ·Pg
m,M ·

(
t
T

)m−k
, ∀k∈{M, M−1,· · ·, 1}, ∀t ∈ [0, T], (28)

where
αk,m =

m!
(m− k + 1)!

, ∀1 ≤ k ≤ m. (29)

If we design PM{g; t} such that r̄ ∈ CM(R), then the boundaries

r(k)(T) = r(k)(0) (30)
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are mandatory for any 0 ≤ k ≤ M ≤ K. From those boundaries and (28), the unknown
constants can be easily obtained using the backward algorithm derived from

Pg
M+1,M =

1
(M + 1)!

Fg
M, (31)

Pg
k,M =

1
k!

Fg
k−1−

1
k!
·

M+1

∑
m=k+1

αk,m ·Pg
m,M, ∀k∈{M, M−1,· · ·, 1}, (32)

where
Fg

k := Tk · {g(k)(T)− g(k)(0)}. (33)

Corollary 1. If g(M)(T) = g(M)(0), then Pg
M+1,M = 0 and Pg

k,M = Pg
k,M−1, ∀k = {M, · · · , 1}.

Proof. Trivial from (31)–(33).

2.4. Fourier Coefficients in Closed Form

We have two ways to determine Rg
k,M in closed form. With that objective, we first

present the following lemmas.

Lemma 1. If h0(t) := 1 and hm(t) := 1
Tm tm, ∀m ∈ N, then

Hk,m :=
1
T

∫ T

0
hm(t) · e−2πi·t·k f0 dt = − 1

2πi·k +
m · Hk,m−1

2πi·k (34)

for ∀m ∈ N and ∀k ∈ Z− {0}, where Hk,0 = 0, ∀k ∈ Z− {0}.

Proof. First, we note that

Hk,0 =
1
T

∫ T

0
h0(t) · e−2πi·t·k f0 dt = 0, ∀k ∈ Z− {0}

and d
dt hm(t) = m

Tm tm−1 = m
T

1
Tm−1 tm−1 = m

T · hm−1(t), ∀m ∈ N. If we use integration by
parts in hm(t), then

Hk,m =
1
T

∫ T

0
hm(t) · e−2πi·t·k f0 dt

=
1
T

e−2πi·t·k f0

(−2πi·k f0)
hm(t)

∣∣∣∣∣
t=T

t=0

− 1
T

∫ T

0

d
dt

hm(t)
e−2πi·t·k f0

−2πi·k f0
dt

= − 1
2πi · k +

m
2πi · k f0

· 1
T2 ·

∫ T

0
hm−1(t)e−2πi·t·k f0 dt

= − 1
2πi · k +

m · Hk,m−1

2πi · k , ∀k ∈ Z− {0}.

Lemma 2. If hm(t) = 1
Tm tm, ∀m ∈ N, then

Hk,m = −
m

∑
n=1

m!
(m− n + 1)!

1
(2πi·k)n , ∀k ∈ Z− {0}. (35)

Proof. If we use (34) with m = 1, then

Hk,1 = − 1
2πi · k +

1
2πi · k Hk,0 = − 1

2πi · k , ∀k ∈ Z− {0}.
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For the general case m ≥ 2, we have

Hk,m = − 1
2πi · k +

m
2πi · k Hk,m−1

= − 1
2πi · k +

m
2πi · k{−

1
2πi · k +

m− 1
2πi · k Hk,m−2}

...

=− 1
2πi · k−

m
(2πi · k)2−

m(m−1)
(2πi · k)3−· · ·−

m!
(2πi · k)m

for ∀k ∈ Z− {0}.

Therefore, using (7) and Lemma 2, we obtain Rg
k,M by means of

Rg
k,M = Gk −

M+1

∑
m=1

Pg
m,M · Hk,m, ∀k ∈ Z− {0}. (36)

This equation has the simplification of Corollary 2, which is very useful for low-order
values of M.

Corollary 2 (First Method). If we use (4) and (8) such that r̄ ∈ CM(R) for M ∈ N∪ {0}, then
their Fourier coefficients are

Rg
k,M = Gk +

M+1

∑
m=1

Fg
m−1

(2πi · k)m ,∀k∈Z−{0}, M ≥ 0 (37)

= Rg
k,M−1+ f−M

0 · {g(M)(T)−gM)(0)}
(2πi · k)M+1 ,∀k∈Z−{0}, M ≥ 1. (38)

Proof. We obtain (37) by replacing (31)–(32) in (36). The simplification is straightforward
from its definition.

For instance, for M ∈ {0, 1, 2}, we obtain the following Fourier coefficients:

Rg
k,0 = Gk +

{g(T)− g(0)}
2πi · k , ∀k ∈ Z− {0}, (39)

Rg
k,1 = Rg

k,0 + f−1
0 · {g(1)(T)− g(1)(0)}

(2πi · k)2 , ∀k ∈ Z− {0}, (40)

Rg
k,2 = Rg

k,1 + f−2
0 · {g(2)(T)− g(2)(0)}

(2πi · k)3 , ∀k ∈ Z− {0}. (41)

On the other hand, if g(M)(t) and their Fourier coefficients are easy to calculate, then
we can use the simplification of Lemma 3 and Corollary 3.

Lemma 3. If r̄ ∈ CM(R) for M ∈ N∪ {0}, then their Fourier coefficients for ∀k ∈ Z− {0} are

Rg
k,M =

1
(2πi · k f0)M · 1

T

∫ T

0
r(M)(t) · e−2πi·t·k f0 dt. (42)

Proof. For more detail, see [108–111].
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Corollary 3 (Second Method). If we use (4) and (8) such that r̄ ∈ CM(R) for M ∈ N ∪ {0},
then their Fourier coefficients are

Rg
k,M =

f−M
0

(2πi · k)M

(
Dg

k,M+
{g(M)(T)−g(M)(0)}

2πi · k

)
,∀k ∈ Z− {0}, (43)

where

Dg
k,M =

1
T
·
∫ T

0
g(M)(t) · e−2πi·t·k f0 dt, ∀k ∈ Z− {0}. (44)

Proof. For r̄ ∈ C0(R), we obtain the same result as in (39) by

Rg
k,0 = Dg

k,0 +
{g(T)− g(0)}

2πi · k , ∀k ∈ Z− {0}

= Gk +
{g(T)− g(0)}

2πi · k , ∀k ∈ Z− {0}.

For r̄ ∈ CM(R) such that M ∈ N, we obtain the expression using (4), (42), and (44) in

Rg
k,M =

1
(2πi · k f0)M

(
Dg

k,M−
1
T

∫ T

0

dM

dtM PM{g, t}·e−2πi·t·k f0 dt
)

=
f−M
0

(2πi · k)M

(
Dg

k,M−
1

TM Fg
M· Hk,1

)
, ∀k ∈ Z−{0}

=
f−M
0

(2πi · k)M

(
Dg

k,M+
{g(M)(T)−g(M)(0)}

2πi · k

)
, ∀k ∈ Z−{0}.

Finally, we obtain the case k = 0 by definition:

Rg
0,M :=

1
T
·
∫ T

0
r(t)dt =

1
T
·
∫ T

0
g(t)dt− 1

T
·
∫ T

0
PM{g; t}dt

= G0 −
M+1

∑
m=1

1
m + 1

· Pg
m,M. (45)

2.5. Enhanced Continuous-Time Processing

The potential of the mixed Fourier series approach is supported by the following
well-known theorem [108–111].

Theorem 1. If r̄ ∈ CM(R) for M ∈ N ∪ {0}, then their Fourier coefficients are bounded for
∀k ∈ Z− {0} by ∣∣∣Rg

k,M

∣∣∣ ≤ Dmax · |k|−M, (46)

where
Dmax =

1
(2π f0)M · sup

∀t∈[0,T]

∣∣∣r(M)(t)
∣∣∣. (47)

Proof. If r̄ ∈ CM(R) for M ∈ N ∪ {0}, then we obtain the inequality using (42) for
∀k ∈ Z− {0} by
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∣∣∣Rg
k,M

∣∣∣ = 1

|k|M
· 1
(2π f0)M · 1

T

∣∣∣∣∫ T

0
r(M)(t) · e−2πi·t·k f0 dt

∣∣∣∣
≤ 1

|k|M
· 1
(2π f0)M · 1

T

∫ T

0

∣∣∣r(M)(t)
∣∣∣dt

≤ 1

|k|M
· 1
(2π f0)M · sup

∀t∈[0,T]

∣∣∣r(M)(t)
∣∣∣ = Dmax · |k|−M.

Therefore, if we design (4) such that r̄ ∈ CM(R), then the two major drawbacks of
the partial Fourier series of g ∈ CK[0, T] are solved. First, RN,M{r; t} does not have the
Gibbs phenomenon because r̄ ∈ C0(R). Second, the decreasing rates of their coefficients
are controlled toward O(|k|−M) because Dmax is bounded by the Boundedness Theorem.

Moreover, the mixed Fourier series allows the use of the linear property because both
summations are linear, as summarized in the following corollary.

Corollary 4 (Superposition Property). Let v ∈ CK[0, T] be a function with mixed Fourier series
given by Pv

k,M and Rv
k,M. Let w ∈ CK[0, T] be a function with mixed Fourier series given by Pw

k,M
and Rw

k,M. Consequently, g∈ CK[0, T] obtained by g(t) = α · v(t) + β · w(t) has mixed Fourier
series given by Pg

k,M = α · Pv
k,M + β · Pw

k,M and Rg
k,M = α · Rv

k,M + β · Rw
k,M.

2.6. Relation with the Maliev–Lanczos Approach

In [71], p. 86, A.S. Maliev proposed using a Fourier extension method through
ge : [−π, π] → R to enhance the processing of g : [0, π] → R, where ge(t), ∀t ∈ [−π, 0] is
represented by polynomials based on its continuity properties utilizing the edge informa-
tion g(m)(0) and g(m)(π). Although we acknowledge this fundamental concept, we do not
delve into that idea in this paper because it involves artificially increasing the domain (i.e.,
it can be a major issue for some applications), and it implies increasing the complexity of
Fourier estimation (i.e., the Fourier approach goes from fundamental period T to funda-
mental period 2T, which implies an increase in the frequency resolution from f0 to 1

2 f0).
However, it should be noted that Maliev’s approach can improve the performance of (5)
at the expense of doubling the number of unknown variables (or doubling the number of
samples) for a fixed bandwidth.

On the other hand, in [72], p. 98, C. Lanczos simplified Maliev’s works by using
quasi-Bernoulli polynomials without changing the domain. This approach for a partial
series, using the Lanczos nomenclature, is defined by g, hp : [−1, 1]→ R such that

hp(t) ≈ g(t)− 1
2

p

∑
m=0

{g(m)(1)− g(m)(−1)} · Bm+1(t)−
1
2

∫ 1

−1
g(t)dt, (48)

where

Bm+1(t) =
tm

m!
− b2

tm−2

(m− 2)!
+ b4

tm−4

(m− 4)!
− · · · (49)

and
2t

et − e−t = 1− b2t2 + b4t4 − b6t6 + · · · . (50)

The function Bm+1(t) is closely related to Bernoulli polynomials ([72], p. 106 and
p. 109), and it takes, for example, the following values: B1(t) = t, B2(t) = 1

2 t2 − 1
6 ,
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B3(t) = 1
6 t3 − 1

6 t, B4(t) = 1
24 t4 − 1

12 t2 + 7
360 . From Lanczos’s works, it is easy to deduce

that the Fourier coefficients of (48) are

Hk,p =

⎧⎨⎩0 , k = 0

Gk +
1
2 ·∑

p
m=0{g(m)(1)− g(m)(−1)} · (−1)k

(iπk)m+1 , ∀k ∈ Z− {0}
. (51)

Conclusively, we find that Rg
k,M has the same Fourier coefficients Hk,p for ∀k ∈ Z−{0}

when we replace the function Bm+1(t) in (48) by Tm

2m · Bm+1(
2
T · t − 1), defined in a new

domain t ∈ [0, T], with new boundaries g(m)(T), g(m)(0), and p = M. Therefore, the simple
polynomial series simplifies (48) using a different perspective based on the residual error
framework. Because consecutive derivatives or integrals are easy to evaluate using simple
polynomials, our result facilitates the application of gN,M(t) through many linear operators.
Because we intend to use M � N, the numerical values of Pg

m,M calculated by the backward
algorithm derived from (31)–(33) have a low computational cost.

2.7. A Simple Reprojection Method: Using Standard Closed-Form Fourier Coefficients to Define a
Mixed Fourier Series

Because the Fourier series is widely used in signal theory, determining a mixed Fourier
series (i.e., Pg

m,M and Rg
k,M) from standard closed-form Fourier coefficients (i.e., Gk) may be

necessary in some cases, either to avoid the Gibbs phenomenon or to improve convergence
for a fixed number of harmonics. In this subsection, we briefly discuss that methodology
for M = 0.

If g ∈ C0[0, T], then

gN,0(t) = Fg
0 ·
(

t
T

)
+

N

∑
k=−N,k �=0

{Gk +
Fg

0
2πi · k} · e

2πi·t·k f0 + Rg
0,0 (52)

may exist for ∀t∈ [0, T]. As a result of the continuity property, the approximation gN,0(t)
must have the property gN,0(Δ) ≈ gN,0(0) for a small and convenient value Δ. Therefore,
we find

Fg
0 ≈

∑N
k=−N,k �=0 Gk · {1− e2πi·Δ·k f0}

(Δ
T )−∑N

k=−N,k �=0
1

2πi·k{1− e2πi·Δ·k f0}
(53)

from (52). Because the approximation gN,0(t) has the bandwidth N f0, we can select any
0 < Δ ≤ 1

4
1

N f0
in order to model the discontinuity without ringing artifacts.

Example 1. Let g:[0, 2]→ R be a test function with closed-form Fourier coefficients given by

Gk =
−16 iπk3 − 16k2 + 36 iπk− 36

π2(16k4 − 72k2 + 81)
, ∀k ∈ Z. (54)

Figure 1 shows gN,0(t) using (53) with Δ = 1
4

1
N f0

and Δ = 1
16

1
N f0

, where, by reference, the

test function is g(t) = t · cos( 3
2 · π · t), ∀t ∈ [0, 2]. As the figure makes clear, the approximation of

Fg
0 allows the recovery of convergence O(|k|−2) for Rg

k,0 from Gk without ambiguities. As a result,
the Gibbs phenomenon is removed.

In the other cases (i.e., M ≥ 1), we can repeat a similar procedure using the partial
Maclaurin Series of g(m)

N,M(t)⊥m ∈ {0, · · · , M − 1} at t = Δ, and g(M)
N,M(Δ) ≈ g(M)

N,M(0).

For instance, if M = 1, then we obtain gN,1(Δ) ≈ gN,1(0) + 1
1! g(1)N,1(0) · Δ and g(1)N,1(Δ) ≈

g(1)N,1(0), which results in a system of two equations that can be solved using standard
matrix techniques. In conclusion, this method is a low-complexity alternative to spectral
reprojection methods [58–60] for removing the Gibbs phenomenon of g ∈ CK[0, T] because
the mixed Fourier series has the potential to improve convergence (i.e., not just remove
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the Gibbs phenomenon) from the original Fourier coefficients using a straightforward and
simple procedure.

Figure 1. Example of removing Gibbs phenomenon from closed-form Fourier coefficients (Gk) with a
bandwidth N f0.

3. Continuous-Time Examples and Applications

3.1. A Different Perspective for Convergent Series of Functions

By Weierstrass’s approximation theorem ([112], §14.08), a function h ∈ C0[0, T] can be
uniformly approximated by polynomials as closely as desired. Because polynomial series
are important in signal theory, we link our approach with that perspective as follows.

Definition 2. If g, r, hm : [0, T]→ R, PM{g; t} := ∑M+1
m=1 Pg

m,M · hm(t) and g(t) = PM{g; t}+
r(t), then a predisposed series of g ∈ C0[0, T] is PM{g; t} such that limM→∞ PM{g} → g.

Consequently, a predisposed series is a linear combination of functions (e.g., polyno-
mials) designed to have direct convergence toward g(t) (i.e., a series predisposed to con-
verge directly). A complementary interpretation of this definition is obtained by analyzing
the periodic functions using harmonic analysis. If r̄(t) is the equivalent periodic residual
error resulting from the periodic extension of g(t)− PM{g; t}, then a predisposed series
is obtained when PM{g; t} allows that limM→∞ r̄(t) → 0 using point-wise or uniform
convergence. Naturally, the concept of convergence can be generalized in a weak sense
(i.e., using the “almost anywhere” concept) by other norms, such as ‖·‖2. Predisposed
series, such as sequences of polynomials based on orthogonalization or useful solutions to
ordinary differential equations, are difficult to find or build because limM→∞ r̄(t) → 0 is
a hard constraint (i.e., difficult to achieve with a potentially slow convergence rate), with
relevant challenges in updating their coefficients at a low computational cost.

The Maliev–Lanczos approach implies a different class of convergence. We design
PM{g; t}, with a reasonably low order, for some particular application and function g :
[0, T] → R, such that r̄ ∈ CM(R). Afterward, we find a harmonic approximation for a
“nonzero residual error” through Rg

k,M. Therefore, the convergence proposal is indirect
in the sense that r̄(t) �= 0, with several advantages. First, ringing artifacts are removed
because we can control the type of convergence; for example:

Corollary 5 (Convergence Everywhere). If g ∈ C1[0, T] and P1{g; t} are given by (8)
with coefficients (31)–(33), then the Fourier series of r(t) = g(t) − P1{g; t}, ∀t ∈ [0, T] has
uniform convergence.
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Proof. In the methodology proposed, we design P1{g; t} such that r̄∈ C1(R). Therefore,
r̄(t) has Fourier series with uniform convergence [109,110]. Consequently, r(t) has uniform
convergence, too.

Second, the bandwidth of r̄(t) becomes more compacted for base-band functions
because |Rg

k,M| is O(|k|−M). Conclusively, low-order harmonics of RN,M{r; t} will provide
good approximations, where its discrete-time signal will have less aliasing. Furthermore,
we could use (4) through linear operators without ambiguities because PM{g; t} is well-
defined for many linear operators, and r̄ ∈ CM(R) does not have the Gibbs phenomenon,
with a small enough bandwidth for many practical applications.

3.2. Canonical Examples of Approximation Using Closed-Form Smooth Functions

This subsection discusses typical and well-known closed-form smooth functions
approximated by gN,M(t) using a reasonably small value of M to clearly explain the
methodology and encourage the use of the mixed Fourier series in more complex problems.

3.2.1. Generic Sawtooth Function

We define this function by

g(t) = α + β · t, ∀t ∈ [0, T],

where α, β ∈ R. The coefficients of SN{g; t} are

Gk =

{
α+ 1

2 ·T·β , k = 0
− T·β

2πi·k , ∀k ∈ Z−{0}
. (55)

Using M = 0, we obtain g(0) = α, g(T) = α + β · T. Consequently, Pg
1,0 = β · T and

P0{g; t} = β · t, ∀t ∈ [0, T], (56)

Rg
k,0 = α · sinc(k) =

{
α , k = 0
0 , elsewhere

. (57)

As expected, we obtain the best possible scenario because only two coefficients (i.e.,
Pg

1,0 = β · T and Rg
0,0 = α) are necessary to model this function without errors. From

Corollary 1, we obtain PM≥0{g; t} = β · t, ∀t ∈ [0, T].

3.2.2. Power Function

We define this function by

g(t) = tm, ∀t ∈ [0, T],

where m ∈ N− {1}. The coefficients of SN{g; t} are

Gk =

{
1

m+1 · Tm , k = 0
Tm · Hk,m , elsewhere

. (58)

We are interested in this case because many functions can have partial Taylor approx-
imations. As a result, the ability to approximate polynomials with the mixed series can
arise as a relevant question. This function produces ringing artifacts in SN{g; t} for higher
values of m · Tm−1 caused by the change in amplitude and slope at edges. In Figure 2, we
show the Fourier series for m = 5 and T = 2 using N = 3 and N = 30.
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Figure 2. Evaluation of g(t) = t5, ∀t ∈ [0, 2].

In this case, the polynomial constants (31)–(33) use

g(k)(t) =

{
m!

(m−k)! · tm−k , k ≤ m, ∀t ∈ [0, T]

0 , k > m, ∀t ∈ [0, T]
. (59)

For instance, for m = 5 and T = 2, we obtain the following polynomials:

P0{g; t} = 16t, ∀t ∈ [0, 2], (60)

P1{g; t} = 20t2 − 24t, ∀t ∈ [0, 2], (61)

and using (37) and (45), we obtain the Fourier coefficients

Rk,0 =

{
− 32

3 , k = 0
25 · Hk,5 + 25 1

2πik , elsewhere
, (62)

Rk,1 =

{
8
3 , k = 0
Rk,0 − 25 5

(2πk)2 , elsewhere
. (63)

As we show in Figure 2, the approximations gN,0(t) and gN,1(t) do not have the Gibbs
phenomenon, and we obtain control of the decreasing rate of the Fourier coefficients. For
instance, we find that the 30th harmonic has |G30| · ‖Gk

∥∥−1
∞ ∼3.1× 10−2 and |Rg

30,M| ·
‖Rg

k,M

∥∥−1
∞ ∼3.5× 10−5 for M = 1 in this example. As a result, the increase in resolution

using the mixed Fourier series is nearly cubic (29.47 dB) for that harmonic. If M ≥ m− 1,
then we obtain again the best possible scenario because PM≥m−1{g; t} = tm, ∀t ∈ [0, T].
Applying superposition, it follows that arbitrary polynomials with degree D have an exact
representation when M ≥ D− 1. We emphasize, however, that by using a low-order value
of M in the mixed Fourier series, we can avoid using high-order derivatives.

3.2.3. Exponential Function

We define this function by

g(t) = eα·t, ∀t ∈ [0, T], (64)
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where α ∈ R− {0}. The coefficients of SN{g; t} are

Gk =
eTα − 1

Tα− 2iπk
, ∀k ∈ Z. (65)

This function is of our interest because it could increase or decrease its values very fast.
In Figure 3, we show the Fourier series for α = −4 and T = 2 using N = 3 and N = 30.

Figure 3. Evaluation of g(t) = e−4t, ∀t ∈ [0, 2].

In this case, the polynomial constants (31)–(33) use

g(k)(t) = αk · eα·t, ∀t ∈ [0, T]. (66)

For instance, for α = −4 and T = 2, we obtain the following polynomials:

P1{g; t} = −
(

e−8 − 1
)(

t2− 5
2

t
)

, ∀t ∈ [0, 2], (67)

P4{g; t} =
(

e−8 − 1
) 5

∑
m=1

φm · tm, ∀t∈ [0, 2], (68)

where φ1 = 209
90 , φ2 = − 31

3 , φ3 = 124
9 , φ4 = − 20

3 , and φ5 = 16
15 . On the other hand, the

Fourier coefficients Rk,M can be calculated efficiently using Corollary 3. In particular, for
this example, we find

Rk,1 =

{
− 31

24
(
e−8 − 1

)
, k = 0

Tα
(2πi·k)

(
eTα−1

Tα−2iπk +
eTα−1
2πi·k

)
, elsewhere

, (69)

Rk,4 =

{
− 209

360
(
e−8 − 1

)
, k = 0

T4α4

(2πi·k)4

(
eTα−1

Tα−2iπk +
eTα−1
2πi·k

)
, elsewhere

. (70)

As Figure 3 makes clear, we are able to recover an approximation of this function
with ‖g(t)− g3,4(t)‖∞∼10−8 using 30 harmonics (i.e., N = 30). From a practical point
of view, for M = 4, we obtain a worst absolute error of ∼10−3 and ∼10−6 using only
3 and 10 harmonics, respectively. For instance, we find that the 30th harmonic has |G30| ·
‖Gk

∥∥−1
∞ ∼4.2× 10−2 and |Rg

30,M| · ‖Rg
k,M

∥∥−1
∞ ∼1.2× 10−9 for M = 4 in this example. As

a result, the increase in resolution using the mixed Fourier series is almost 75.44 dB for
that harmonic.
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3.2.4. Base-Band Cosine Function

We define this function by

g(t) = cos(2π
β

T
· t), ∀t ∈ [0, T],

where 0 < β < 1. The coefficients of SN{g; t} are

Gk =
1
2

e−iπ(k−β)sinc(k− β) +
1
2

e−iπ(k+β)sinc(k + β). (71)

This function is of our interest because it allows us to study the spectrum leakage in
trigonometric base-band functions. As Figure 4 makes clear, even though the Fourier series
obtains a small Gibbs phenomenon for β = 0.9 and T = 2, the spectrum leakage could be
relevant for many practical applications.

Figure 4. Evaluation of g(t) = cos(0.9π · t), ∀t ∈ [0, 2].

In this case, the polynomial constants (31)–(33) use

g(k)(t)=(2π
β

T
)k

{
(−1)

k
2+

1
2 ·sin(2π

β
T ·t) , ∀k ∈ {1, 3, 5, · · · }, ∀t ∈ [0, T]

(−1)
k
2 ·cos(2π

β
T ·t) , ∀k ∈ {0, 2, 4, · · · }, ∀t ∈ [0, T]

, (72)

where the Fourier coefficients Rg
k,M can be calculated efficiently using Corollary 3. As an

example, for β = 0.9 and T = 2, we find the following Fourier coefficients:

Rg
k,2 =

{
0.268535523631802 , k = 0

−
( 0.9

ik
)2
(

Gk +
{cos(1.8π)−1}

2πik

)
, elsewhere

, (73)

Rg
k,4 =

{
0.416158284137357 , k = 0( 0.9

ik
)4
(

Gk +
{cos(1.8π)−1}

2πik

)
, elsewhere

. (74)

As expected, Figure 4 shows a reduction in spectral leakage by increasing M. In contrast
to the spectral distortion caused by improving amplitude-based frequency discrimination us-
ing the Windowing technique, the mixed Fourier series improves amplitude-based frequency
discrimination only by increasing M (i.e., without adding artificial distortion). For instance,
using a criteria of 10−2 in amplitude-based frequency discrimination, |Gk| · ‖Gk‖−1

∞ ≥ 10−2

requires eight harmonics in Figure 4. In contrast, |Rg
k,M| · ‖Rg

k,M‖
−1
∞ ≥ 10−2 requires only
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three and two harmonics using M = 2 and M = 4, respectively. Using more selective
criteria of 10−3 in this example, the standard Fourier approach requires 65 harmonics, and
the mixed Fourier series requires 4 and 3 harmonics using M = 2 and M = 4, respec-
tively. Nonetheless, a redefinition of PM{g; t} is required to apply this technique directly
to carrier detection (i.e., β � 1) because PM{g; t} composed only of polynomials is a
base-band function.

3.3. Comparison with Selected State-of-the-Art Techniques

In this subsection, we compare the performance of the mixed Fourier series with other
types of series in a variety of scenarios using convenient test functions. Although the term
“convenient function” is debatable, we define it as a function that is demanding enough for
trigonometric and polynomial basis functions on [0, T] and, at the same time, has a simple
mathematical structure that allows us to avoid debating its influence on the numerical
implementation. For this reason, we start our comparison with the exponential function
previously studied in Section 3.2.3.

Figure 5 shows the performance of the most common averaging and filtering tech-
niques for N = 10 [27,32], where FN{g; t} is the partial Fejér’s series (i.e., Fejér’s arithmetic
mean method), given by

FN{g; t} :=
1

N + 1

N

∑
m=0

Sm{g; t}, (75)

and σN,M{g; t} is a partial Fourier series using a particular σl-filter with the Mth order,
given by

σN,M{g; t} :=
N

∑
k=−N

Gk · e2πi·t·k f0 · σM+1
l

(
k · N−1

)
. (76)

For example, the standard Lanczos filter (also known as σ-approximation) is given
by σ1(x) = sinc(x) := sin(πx)

πx , the Raised cosine filter is given by σ2(x) := 1
2{1 + cos(πx)},

and the Sharpened Raised cosine filter is given by σ3(x) := σ4
2 (x) · {35− 84 · σ2(x) + 70 ·

σ2
2 (x) − 20 · σ3

2 (x)}. As can be concluded from a cursory examination of Figure 5, we
obtain better performance using gN,0(t). Because the average and convolution operators
are smooth operators, methods based on them converge more slowly than gN,M≥1(t).

Figure 5. Example of removing Gibbs phenomenon using averaging and filtering techniques and
mixed Fourier series for g(t) = e−4t, ∀t ∈ [0, 2].
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On the other hand, a comparison between mixed Fourier series and orthogonal poly-
nomials is also pertinent. Figure 6 shows the absolute residual error using the Legendre or-
thogonal polynomials, denoted by WLeg

M {g; t}, and the Chebyshev orthogonal polynomials,
denoted by WChe

M {g; t}, both defined on [0, T]. As the figure makes clear, both approxi-
mations have good performance for M = 10, where ‖g(t)−WLeg

M {g; t}‖∞ � 9.2× 10−6

and ‖g(t) −WChe
M {g; t}‖∞ � 3.1 × 10−6. We are interested in determining some fair

comparatives because the mixed Fourier series has two degrees of freedom (i.e., N and
M). For instance, we obtain ‖g(t)− gN,10(t)‖∞ ≤ 2.7× 10−7 for N ≥ 3, which implies
that we can improve both orthogonal polynomials by combining simple polynomials
with the same degree and a few harmonics from the residual. As another example, we
find ‖g(t) − g10,M(t)‖∞ ≤ 1.6× 10−6 for M ≥ 4, which implies that the same number
of unknown harmonics can also improve both orthogonal polynomials using low-order
derivatives from the edges. Finally, we obtain ‖g(t)− g6,5(t)‖∞ � 2.7× 10−6 such that
min{M + N}, which implies that the mixed Fourier series has a better performance using
at least 19 unknown variables (i.e., M + 2N + 2 unknown variables) versus the 11 unknown
variables (i.e., M + 1 unknown variables) from the orthogonal polynomials. In summary,
the mixed Fourier series outperforms orthogonal polynomials in several ways. First, we
have an additional degree of freedom that has a significant impact on convergence. Second,
we have less computational complexity because the interior product is more simple and
computationally efficient using the Fourier approach (i.e., Gk can be defined in terms of
an inner product using the same framework of orthogonal polynomials). Third, our ap-
proach implies uniform sampling, which simplifies the numerical implementation using the
DFT{·}. Finally, we also find a quasi-spectral accuracy because |Rg

N,M| ≤ Dmax · |N|−M,
where M ≤ K and Dmax is (47).

Figure 6. Absolute residual error between g(t) = e−4t, ∀t ∈ [0, 2], and the approximations using
orthogonal polynomials and mixed Fourier series.

Another critical situation to discuss is when the Taylor series of g(t) at t0, defined by
TM{g; t; t0} := ∑M

k=0
1
k! g(k)(t0)(t− t0)

k, cannot converge in the whole domain or at some
point of the domain (e.g., g(t) is a smooth function but a non-analytic function at some
t0 ∈ [0, T]). For instance, the case g(t) = ln(t + 1), ∀t ∈ [0, 2], allows us to discuss a typical
example where the Taylor series cannot converge in the whole domain using t0 = 0 because
its residual has a region of convergence |t| < 1, as we show in Figure 7. As happens in
this example, the mixed Fourier series can be found by using a mixed evaluation (i.e., a
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combination of closed-form and numerical evaluations). On the one hand, we can usually
find Pg

m,M from closed-form derivatives, as shown in this example by

g(k)(t) =

⎧⎨⎩ln(t + 1) k = 0, ∀t ∈ [0, T]

− (−1)k ·(k−1)!
(t+1)k k ∈ N, ∀t ∈ [0, T]

(77)

On the other hand, because closed-form Fourier coefficients are relatively uncommon
for many well-known functions, we can approximate Gk ≈ TN{Ĝk} and Rg

k,M ≈ TN{R̂g
k,M}

using the Discrete Fourier Transform (DFT) of 2N + 1 points through

TN{Ĝk} :=
1

2N + 1
·

⎧⎪⎨⎪⎩
Ĝ0 , k = 0
Ĝk , ∀k∈ [1, N]

Ĝ2N+k+1, ∀k∈ [−N,−1]

, (78)

where

Ĝk =DFT{g(tn)}2N
n=0 :=

2N

∑
n=0

g(tn)·e−
2π

2N+1 i·kn, ∀k∈ [0, 2N] (79)

and

R̂g
k,M := DFT{g(tn)−PM{g; tn}}2N

n=0 (80)

using the uniform samples tn = h · n, ∀n ∈ {0, 1, · · · , 2N}, and h = T
2N+1 . According to the

Sampling Theory [113,114], this approach converges by increasing N because the aliasing
from the discrete-time model is removed when N → ∞ for g ∈ CK[0, T]. In particular,
because ln(·) does not have closed-form Fourier coefficients, we can use (80) to obtain
gN,M(t). As shown in Figure 7, the mixed evaluation allows us to obtain a convergent
approximation for increasing values of M and N. Similarly, another relevant case study
is given by g(t) = e−1/t2

, ∀t ∈ (0, 2] and g(0) = 0 because it is a typical smooth function
with non-analytic behavior at t0 = 0 (i.e., caused by g(k)(0) = 0, ∀k ∈ N ∪ {0}). As we
show in Figure 7, we also obtain a convergent mixed Fourier series for increasing values of
M and N.

Figure 7. Smooth functions with anomalous Taylor series behavior, and mixed Fourier series us-
ing mixed evaluation (i.e., derivatives calculated using the closed form, and Fourier coefficients
approximated by the DFT).
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Lastly, it is pertinent to evaluate this mixed evaluation with special cases, for ex-
ample, when the test function exhibits both Gibbs and Runge’s phenomena. In particu-
lar, we propose the study case g(t) = tanh(α · t − 1

2 α · T), ∀t ∈ [0, T], using α = 4 and
T = 2. As shown in Figure 8, we obtain Runge’s phenomenon by using a partial inter-
polating polynomial series L2N+1{g; t} = ∑2N+1

m=0 αm · ( t
T )

m and uniform matching nodes
tn = h · n, ∀n ∈ {0, 1, · · · , 2N + 1}. On the other hand, we obtain the Gibbs phenomenon by
using a partial Fourier interpolating series SN{g; t} = ∑N

k=−N Gk · e2πi·t·k f0 , where Gk is ap-
proximated by TN{Ĝk} with uniform matching nodes tn = h · n, ∀n ∈ {0, 1, · · · , 2N}. One
well-known solution for this situation is obtained by using nonuniform sampling, for exam-
ple, with the Chebyshev interpolating function T2N+1{g; t} = ∑2N+1

m=0 βm · Tm(
2
T t− 1) and

the Chebyshev–Gauss–Lobatto (CGL) matching nodes given by tl := T
2 {1 + cos( l·π

2N+1 )},
∀l ∈ {0, · · · , 2N + 1} [115]. In this paper, we propose a different solution obtained by
gN,1(t) using uniform matching nodes tn = h · n, ∀n ∈ {0, 1, · · · , 2N}, TN{R̂g

k,1}, and

P1{g; t} = 2 · tanh(
1
2

α · T) ·
(

t
T

)
, ∀t ∈ [0, T]. (81)

Despite the reduced performance due to the mixed evaluation, Figure 8 shows that
gN,1(t) has the best performance without Gibbs and Runge’s phenomena, outperforming
the Chebyshev interpolating function. For instance, we obtain an absolute residual error
around ‖g(t)− g7,1(t)‖∞∼1.5× 10−4 using seven harmonics (i.e., N = 7). If we increase α,
then more harmonics (and samples) will be necessary for a good approximation because
the test function increases its bandwidth.

Figure 8. Interpolation of a closed-form function affected by Gibbs phenomenon and Runge’s
phenomenon simultaneously.

Although the Legendre, Chebyshev, or other modern interpolating series may perform
better for other smooth functions, we have shown in several situations that the mixed
Fourier series allows us to interpolate a closed-form function without anomalous phe-
nomena caused by convergence. Unlike interpolating methods such as Legendre and
Chebyshev, the method for finding gN,M(t) is well conditioned because the DFT is well
conditioned and the polynomial constants are found using a low-cost backward algorithm.
In summary, we can derive a mixed Fourier series from a closed-form evaluation of g(t) or
from a mixed evaluation of g(t), where the new series may outperform common signal pre-
sentations with low complexity and well-conditioned methodologies. The Maliev–Lanczos
approach has two degrees of freedom, which allows quasi-spectral accuracy. Moreover, it
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has a simple method based on uniform sampling with convergence everywhere for M ≥ 1,
which allows us to avoid Gibbs and Runge phenomena for g ∈ CK≥1[0, T].

3.4. A Canonical Direct Problem: Numerical Riemann Integration of Closed-Form
Smooth Functions

Numerical integration using uniform samples has several advantages because of its
computational simplicity. Because the magnitude of Fourier coefficients of r̄ ∈ CM(R)

has the property O(|k|−M), it is a reasonable hypothesis that r(t) allows better numerical
integration using the Newton–Cotes quadrature rules [116]. Therefore, we propose the
numerical integration of g(t) using r(t) by means of

I=
∫ T

0
g(t)dt =

∫ T

0
(PM{g; t}+ r(t))dt

≈ T·
M+1

∑
m=1

1
m + 1

·Pg
m,M+

2N+1

∑
n=0

wn ·r(tn), (82)

where h = T/(2N + 1), tn = n · h, r(tn) = g(tn)− PM{g; tn}, and wn denotes the weights
for a particular quadrature rule [116].

As a case of study, we evaluate I =
∫ 3

0 e−t2
dt in Figure 9 by means of the absolute

relative error of the integral defined by η :=
∣∣∣1− Iapprox

Iexact

∣∣∣. We compare (82) with

∫ T

0
g(t)dt ≈

2N+1

∑
n=0

wn · g(tn) (83)

using the left rectangular rule (i.e., left Riemann sums), the trapezoidal rule, and Simpson’s
rule. As we show in this example, the simple left rectangular rule (i.e., wn = h, ∀n ∈ [0, 2N]
and w2N+1 = 0) obtains a higher performance. For instance, Figure 9 shows that using that
simplest integration scheme, the evaluation of (82) only requires N > 10 with M = 3 for a
typical relative integration error of 1× 10−10. This result makes sense using the Fourier
framework because r(tn) has less aliasing than its counterpart g(tn).

Figure 9. Numerical evaluation of
∫ 3

0 e−t2
dt using Newton–Cotes quadrature rules.

3.5. A Canonical Inverse Problem: Solution of a Boundary Value Problem (BVP) Using Standard
Closed-Form Fourier Coefficients

The mixed Fourier series emerged when we were analyzing the solution of Pois-
son’s equation in one dimension with a Dirichlet boundary condition using the Fourier
series [117]. Our approach to solving that problem is as follows.
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Let x ∈ C2[0, T] be an unknown function such that

d2

dt2 x(t) = λ · y(t), ∀t ∈ [0, T], (84)

s.t. x(0), x(T) ∈ R (85)

where we use the right-hand derivative definition at t = 0, the left-hand derivative defini-
tion at t = T, and λ ∈ R.

If we assume that y ∈ C0[0, T] has a partial Fourier series given by

SN{y; t} =
N

∑
k=−N

Yk · e2πi·t·k f0 , ∀t ∈ [0, T], (86)

such that |Yk| is O(|k|−1), then the partial series solution of this problem is

xN,1(t) =
N

∑
k=−N

Rx
k,1 ·e2πi·t·k f0 +

2

∑
m=1

Px
m,1 ·

(
t
T

)m
, ∀t ∈ [0, T]. (87)

Replacing xN,1(t) and SN{y; t} in (84), and using the boundaries and the orthogonality
of the harmonics, we obtain

Rx
k,1 =

λ

(2πi · k f0)2 ·Yk, ∀k ∈ {±1, · · · ,±N}, (88)

Rx
0,1 = x(0)− 2 ·

N

∑
k=1

Re{Rx
k,1}, (89)

Px
2,1 =

λ

2
· T2 ·Y0, (90)

Px
1,1 = {x(T)− x(0)} − Px

2,1. (91)

This result is always convergent because y(t) is bounded by the Boundedness The-
orem, |Yk| has a decreasing rate O(|k|−1) [24], and |Rx

k,1| has a decreasing rate O(|k|−3).
Therefore, ∑∞

k=1 Re{Rx
k,1} is bounded, too.

In particular, if x(t) = sin(t), ∀t ∈ [0, π
2 ], and λ = −1, then y(t) = sin(t), ∀t ∈ [0, π

2 ],
and

Yk =
2
π
· 4ik− 1

16k2 − 1
. (92)

In this case, we can see that there are two types of series for the same function
x(t) = y(t) = sin(t), ∀t ∈ [0, π

2 ]. The first is the standard partial Fourier series using the
coefficients (92), which have a decreasing rate O(|k|−1), and they produce ringing artifacts,
as shown in Figure 10. The second is a mixed Fourier series using particular coefficients
with x(0) = 0 and x(T) = 1 obtained from the BVP by (88)–(91). The mixed series includes
Fourier coefficients with a decreasing rate O(|k|−3), and they do not produce ringing
artifacts, as shown in Figure 10. These characteristics motivated us to develop an in-depth
analysis of this series and its applications in the framework of signal processing, which is
described in this paper.

On the other hand, the solution using the mixed series has better accuracy compared
with the standard Finite Difference Method (FDM) [118] given by⎡⎢⎢⎢⎢⎢⎣

−2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
x2N(t1)
x2N(t2)

...
x2N(t2N−1)

x2N(t2N)

⎤⎥⎥⎥⎥⎥⎦= λ · h2

⎡⎢⎢⎢⎢⎢⎣
y(t1)
y(t2)

...
y(t2N−1)

y(t2N)

⎤⎥⎥⎥⎥⎥⎦−
⎡⎢⎢⎢⎢⎢⎣

x(0)
0
...
0

x(T)

⎤⎥⎥⎥⎥⎥⎦, (93)
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where h = T/(2N + 1) and tn = n · h, ∀n ∈ [1, 2N]. Furthermore, the complexity to find the
unknown constants in both cases is O(N) because the solution of (93) using the tridiagonal
matrix algorithm is O(N), the evaluation of (88) or (89) is O(N), and the evaluation of (90)
or (91) is O(1). Figure 10 shows the FDM solution using linear interpolation, too.

Figure 10. Evaluation of Poisson’s equation with Dirichlet boundary condition using mixed Fourier series.

Finally, we can still improve the accuracy of Poisson’s Equation solution for any
y ∈ C0[0, T] using yN,0(t) and xN,2(t), where

Ry
k,0 =

{
Y0 − 1

2{y(T)− y(0)} k = 0

Yk +
{y(T)−y(0)}

2πi·k elsewhere
, (94)

Rx
k,2 =

λ

(2πi · k f0)2 · Ry
k,0, ∀k ∈ {±1, · · · ,±N}, (95)

Rx
0,2 = x(0)− 2 ·

N

∑
k=1

Re{Rx
k,2}, (96)

Px
3,2 =

λ

6
· T2 · (y(T)− y(0)), (97)

Px
2,2 =

λ

2
· T2 · Ry

0,0, (98)

Px
1,2 = x(T)− x(0)− Px

2,2 − Px
3,2. (99)

Figure 10 also shows the solution using x(T) = y(T) = 1 and x(0) = y(0) = 0, where
‖x(t)− x3,2(t)‖∞ ∼ 6× 10−5 is obtained using only three harmonics (i.e., N = 3).

3.6. A Canonical Inverse Problem: Solution of a Boundary Value Problem (BVP) Using the DFT

In the absence of direct knowledge of the Fourier coefficients of y(t), we can use the
approximation based on the DFT, given by TN{R̂y

k,M}, without ambiguities at the edges
of the interval because we always obtain r̄y ∈ CM(R) using the Maliev–Lanczos approach.
Furthermore, Py

m,M is obtained from y(t), and the coefficients Px
m,M+L and Rx

k,M+L are
obtained from Py

m,M and Ry
k,M using the boundaries.

In particular, the case M = 0 is always relevant because we simplify the formulation
without derivatives. For example, in Figure 10, we compare Poisson’s solution using
TN{R̂y

k,M} with (95)–(99). As we show, even though the solution loses accuracy in compari-
son to the theoretical value Ry

k,0, the residual error is still acceptable in comparison to the
other solutions.
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3.7. Toward an Ideal Sampling Theorem for Truncated Continuous-Time Functions

Let gT : R→ R be a truncated function defined by

gT(t) =

{
g(t) , ∀t ∈ [0, T]
0 , elsewhere

. (100)

From the Fourier analysis, it is well known that truncated functions are not band-
limited. As a result, sampling that function may result in relevant aliasing when the sam-
pling frequency is reasonably close to twice the usual bandwidth (BW) definitions, such as
half-power bandwidth or first null bandwidth. Using the ideal sampling theorem [113,114],
the number of instantaneous samples required to rebuild gT : R→ R using a Fourier ap-
proach is asymptotic, and it is given by T

Ts
= fs

f0
� 2BW

f0
. This result implies many samples

to rebuild the truncated function for high-resolution applications. The mixed Fourier series
provides a method for quantifying the finite number of instantaneous samples required to
rebuild gT(t) through g(t) such that g ∈ CM[0, T], ∀M ∈ N. The procedure can be argued
as follows:

1. If limM→∞

∣∣∣Pg
M+1,M

∣∣∣ → 0, then ∃M0 ≥ 0 such that limM→∞ PM{g; t} = PM0{g; t}+
ε1(t), where sup∀t∈[0,T]|ε1(t)| can be as small as desired.

2. If limk,M→∞

∣∣∣Rg
k,M

∣∣∣ → 0, then ∃N0 ≥ 0 such that limN,M→∞ RNM{r; t} = RN0{r; t}+
ε2(t), where sup∀t∈[0,T]|ε2(t)| can be as small as desired. The bandwidth of r̄(t) with
this approach is BW = N0 f0.

3. Conclusively, if both previous limits converge to zero, then limN,M→∞ gNM (t) =
PM0{g; t}+ RN0{r; t}+ ε(t), where sup∀t∈[0,T]|ε(t)| can be as small as desired.

Therefore, 2M0 + 2 instantaneous samples from the edges (i.e., g(0), g(T), · · · ,
g(M0)

0 (0), g(M0)(T)) are required to obtain PM0{g, t}, and 2N0 + 1 instantaneous samples
related to the periodic residual error (i.e., r(ti) = g(ti) − PM0{g; ti}, where t0 = 0, · · · ,
t2N0 = T) are required to obtain RN0{r; t} by means of DFT. Conclusively, we require at
least 2M0 + 2N0 + 1 different instantaneous samples from g(t) and its derivatives to rebuild
its form in a finite interval [0, T] with an error as small as desired.

Example 2 (Numerical case). We studied the exponential function with α = −4 and T = 2 in
Section 3.2.3 using the Fourier series and the mixed Fourier series with M = 1 and M = 4. First,
the Fourier series in this example does not converge to zero using sup∀t∈[0,T]|g(t)− SN{g; t}|
because it has the Gibbs phenomenon. In contrast, the mixed Fourier series converges with
sup∀t∈[0,T]|g(t)− gN,4{g; t}| ≤ 10−11 using N ≥ 74. As a result, our approach for M = 4
requires at least 149 samples (i.e, 2N + 1) to estimate the Fourier coefficients numerically using the
DFT and 10 samples (i.e., 2M + 2) of the kth derivatives at the edges to determine the constants
Pg

1,4, · · · , Pg
5,4. If we make the same calculation using the Taylor series, then this example requires

M ≥ 38 for t0 = 0, M ≥ 23 for t0 = T
2 = 1, and M ≥ 34 for t0 = T = 2. As a result,

in the best of those cases, the Taylor series with the same error requires 24 samples (i.e., M + 1)
of the kth derivatives at t0 = T

2 = 1. Nevertheless, the cases M = 1 and M = 4 using the
mixed Fourier series were only included in Section 3.2.3 to compare low-order convergences. If
M := [Mm] = [ 1 2 3 4 5 6 7 8 9 10 11 12 ], then the mixed Fourier series converges
with the same criterion for N := [Nm] = [ 26, 000 2800 380 74 54 32 20 16 11 9 8 7 ].
As can be seen, the number of harmonics does not change significantly when Mm > 8. In fact,
we want to emphasize the limiting factor Nm + Mm ≈ 19 for Mm > 8. The major advantage of
this approach is given by avoiding the information of higher-order derivatives at one point in the
exchange of instantaneous samples in the whole domain. The absolute residual errors for some cases
are shown in Figure 11.
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Figure 11. Convergence example for g(t) = e−4t, ∀t ∈ [0, 2], using Taylor and mixed Fourier series.

Example 3 (Theoretical case). The exponential function (64) has the following properties:
g(M)(t) = αMg(t), g ∈ CM[0, T] for ∀M ∈ N ∪ {0}, and Gk = eTα−1

Tα−2iπk , ∀k ∈ Z. This
function has Pg

M+1,M = 1
(M+1)! (Tα)M{eTα − 1} using (31). Therefore, we can choose a finite

M0 > T|α| such that Pg
M0+1,M0

is as small as desired because the factorial grows faster than poly-

nomials and exponentials. On the other hand, we find that Rg
k,M =

(
Tα

2πi·k
)M({eTα−1}

Tα−2iπk +
{eTα−1}

2πi·k
)

for ∀k �= 0 using (43). Therefore, if N0 > T · |α|, then limM→∞

∣∣∣Rg
N0,M

∣∣∣ → 0. Conclusively,
using the mixed Fourier series, the number of different instantaneous samples required to rebuild
g(t) = eαt, ∀t ∈ [0, T], with an error as small as desired is 2M0 + 2N0 + 1, where M0, N0 are
convenient and bounded constants such that M0, N0 > T|α|.

3.8. Canonical Example of a Non-Polynomial Mixed Fourier Series: The Sub-Harmonic Case

The methodology utilized in Section 2.2 to obtain the polynomial mixed Fourier series
based on the smooth periodic residual error is a framework for defining any mixed Fourier
series. In this subsection, we illustrate this methodology to find a novel mixed Fourier
series with a non-polynomial form.

Let

PM{g; t} =
M+1

2

∑
m=1

Ag
m,M · cos(2π f̂mt) +

M+1
2

∑
m=1

Bg
m,M · sin(2π f̂mt), ∀t∈ [0, T] (101)

be a sub-harmonic partial series, where M ∈ N is an odd number, f̂m ∈ R− {k · f0}, ∀k ∈ Z,
such that 0 < f̂1 < · · · < f̂(M+1)/2, and Ag

m,M, Bg
m,M ∈ R. Let

HN,M{g; t} := PM{g; t}+
N

∑
k=−N

Rg
k,M · e2πi·t·k f0 , ∀t∈ [0, T] (102)

be the sub-harmonic mixed Fourier series, where

Rg
k,M =Gk +

M+1
2

∑
m=1

Ag
m,M ·

ik·Cm−ρm ·Sm

2π(ρ2
m−k2)

+

M+1
2

∑
m=1

Bg
m,M ·

ik·Sm+ρm ·Cm

2π(ρ2
m−k2)

,∀k∈Z, (103)

and ρm := T· f̂m, Cm := cos(2πρm)− 1, and Sm := sin(2πρm).
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Because we assume the property g, r ∈ CM[0, T], the derivative

g(k)(t) = r(k)(t) +

M+1
2

∑
m=1

Ag
m,M ·

dk

dtk cos(2π f̂mt) +

M+1
2

∑
m=1

Bg
m,M ·

dk

dtk sin(2π f̂mt) (104)

exists for ∀t ∈ [0, T] and ∀k ∈ {0, 1, · · · , M}. Because we design PM{g; t} such that the
equivalent periodic residual error has a smooth property derived from r(k)(0) = r(k)(T),
the unknown sub-harmonic coefficients (i.e., Ag

m,M and Bg
m,M) can be obtained by

g(k)(T)− g(k)(0) =

M+1
2

∑
m=1

Ag
m,M ·

(
dk

dtk cos(2π f̂mt)|t=T −
dk

dtk cos(2π f̂mt)|t=0

)

+

M+1
2

∑
m=1

Bg
m,M ·

(
dk

dtk sin(2π f̂mt)|t=T −
dk

dtk sin(2π f̂mt)|t=0

)
(105)

for ∀k ∈ {0, 1, · · · , M}. For example, if M = 1, then we obtain[
C1 S1

−ρ1 ·S1 ρ1 ·C1

][
Ag

1,1
Bg

1,1

]
=

[
Fg

0
(2π)−1 · Fg

1

]
, (106)

and if M = 3, then we obtain⎡⎢⎢⎣
C1 C2 S1 S2

−ρ1 ·S1 −ρ2 ·S2 ρ1 ·C1 ρ2 ·C2
ρ2

1 ·C1 ρ2
2 ·C2 ρ2

1 ·S1 ρ2
2 ·S2

−ρ3
1 ·S1 −ρ3

2 ·S2 ρ3
1 ·C1 ρ3

2 ·C2

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

Ag
1,3

Ag
2,3

Bg
1,3

Bg
2,3

⎤⎥⎥⎥⎦=
⎡⎢⎢⎣

Fg
0

(2π)−1 · Fg
1

−(2π)−2 · Fg
2

−(2π)−3 · Fg
3

⎤⎥⎥⎦, (107)

where Fg
k is (33). The matrix formulation for an arbitrary odd case is easily generalized

from (105)–(107).
The sub-harmonic mixed Fourier series could have a better performance and versatility

than the polynomial mixed Fourier series in several scenarios because it is phenomenologi-
cally related to the Fourier basis functions (i.e., it is interpreted literally as a better spectral
resolution for some harmonics). Additionally, we can select the sub-harmonics following
some special profile for any band-base or pass-band functions. For instance, we can use a
uniform distribution (e.g., sub-frequencies f̂m ∈ { 1

3 f0, 2
3 f0} or sub-harmonics ρm ∈ { 1

3 , 2
3}),

a non-self-interfering but equally spaced distribution (e.g., sub-frequencies f̂m ∈ { 1
6 f0, 1

3 f0}
or sub-harmonics ρm ∈ { 1

6 , 1
3}), or a particular logarithm distribution (e.g., sub-frequencies

f̂m ∈ { 1
9 f0, 1

3 f0} or sub-harmonics ρm ∈ { 1
9 , 1

3}) for any band-base function using M = 3.
Many others are possible depending on the characteristic of g(t) or the conditioning of the
matrix resulting from (105).

Although a comprehensive examination of all the characteristics and applications of
this new mixed Fourier series is beyond the scope of this paper, we will cover some of
them briefly below. First, we obtain the same performance as the polynomial mixed Fourier
series when T · f̂(M+1)/2 � 1 because

cos(2π f̂mt) ≈
(M+1)/2

∑
k=0

(−1)k

(2k)!
(2π f̂mt)2k, ∀t ∈ [0, T], (108)

sin(2π f̂mt) ≈
(M−1)/2

∑
k=0

(−1)k

(2k + 1)!
(2π f̂mt)2k+1, ∀t ∈ [0, T], (109)

form a non-normalized polynomial mixed Fourier series for ∀m ∈ {1, · · · , (M + 1)/2}.
The absolute residual errors for M = 1 and M = 3 using several sub-harmonic profiles, the
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polynomial mixed Fourier series, and the Fourier series for the exponential test function
are compared in Figure 12.

Figure 12. Sub-harmonic mixed Fourier series evaluation using the test function g(t) = e−4t,
∀t ∈ [0, 2].

This new series can be used with base-band functions with a wide-band characteristic,
where the main information is influenced by many different harmonics. For example, the
test function formed by a base-band frequency sweep given by

g(t) = sin(2π · eK f f0·t − 2π · K f f0t), ∀t ∈ [0, T] (110)

has considerable spectral information in the instantaneous frequencies

fins(t) :=
1

2π

d
dt
(2π · eK f f0·t − 2π · K f · f0t) = K f f0 · (eK f f0·t − 1), ∀t ∈ [0, T]. (111)

For narrow-band applications (e.g., 0 < K f ≤ 1), it is well known that the Chebyshev
interpolating function using nonuniform samples achieves greater accuracy for these kind
of functions. However, the ill conditioning of that solution for wide-band applications
(e.g., K f > 1) produces relevant errors for many applications (e.g., inverse problems).
For instance, Figure 13 shows the absolute relative error using the Chebyshev interpolat-
ing function with CGL matching nodes for N ∈ {7, 10, 13} and K f = 1.6. The same
figure shows that the polynomial mixed Fourier series, where gN≥140,1(t), gN≥28,3(t),
and gN≥17,5(t), improve the Chebyshev results using uniform samples and a mixed
evaluation (i.e., with TN{R̂g

k,M}). Because the instantaneous frequencies are in the in-
terval [0 Hz, 3.16 Hz] and the spectral resolution using the Fourier series is f0 = 1

2 Hz,
sub-frequencies f̂m ∈ {0.75 Hz, 1.25 Hz, 1.75 Hz, 2.25 Hz, 2.75 Hz, 3.25 Hz}would contribute
relevant information to reduce the bandwidth of the test function. As Figure 13 makes clear,
the sub-harmonic approach using a mixed evaluation improves polynomial approaches for
HN≥23,1{g; t} using f̂1 = 3.25 Hz and for HN≥17,3{g; t} using f̂m ∈ {2.75 Hz, 3.25 Hz}. This
finding, however, can be improved by performing a local search for the best sub-harmonics
in this specific study situation.
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Figure 13. Sub-harmonic mixed Fourier series evaluation using the test function g(t) = sin(2π ·
eK f · t

2 − πK f · t), ∀t ∈ [0, 2] and K f = 1.6.

Finally, the approximation increases its spectral discrimination when f̂m → L · f0,
where L ∈ Z. As a result, pass-band functions can obtain a better spectral discrimination
around their main frequencies. For instance, if we assume the test function

g(t)= cos(2π · 8.1t + 2.2) + 30 cos(2π · 10.3t + 3.7) + cos(2π · 13.2t), ∀t∈ [0, 2], (112)

then the spectral leakage does not allow the Fourier series (or the DFT) to obtain a
good discrimination of their estimated carriers using the fundamental frequency f0 = 1

2
(i.e., 8 Hz, 10.5 Hz, and 13 Hz, which are harmonics 16, 21, and 26). As illustrated in
Figure 14, harmonic 16 is not detectable from the magnitude spectrum using Gk, and
it is quite difficult to recognize the three fundamental carries. On the other hand, the
polynomial mixed Fourier series improves its accuracy, and it eliminates the Gibbs phe-
nomenon. However, it has low performance, and the magnitude spectrum using Rg

k,M also

has poor spectral discrimination for pass-band functions because the convergence O(|k|−M)
lowers high-frequency information, as seen in Figure 14. In contrast, if we use M = 1
with f̂1 = (20+21)

2 f0 = 20.5× f0 = 10.25 Hz, where harmonics 20 and 21 were obtained
from the two major and adjunct harmonics of |Gk|, then |Rg

k,1| has a better discrimination
of carriers using the sub-harmonic mixed Fourier series and increases its approximation
accuracy for N > 45, at the same time. Although PM{g; t} and SN{r; t} are not orthogonal,
the sub-harmonic coefficients can be shown simultaneously in the magnitude spectrum

for f̂1 > f0 through |Cg
m,M| :=

√
(Ag

m,M)2 + (Bg
m,M)2 because they can be interpreted in

the same way as a standard Fourier coefficients, which are the peak amplitudes of the
trigonometric basis function at the sub-frequencies f̂m (or sub-harmonic ρm). Continuing
this process repeatedly with M = 2, we propose f̂2 = (26+27)

2 · f0 = 26.5× f0 = 13.25 Hz,
where the harmonics were chosen using |Rg

k,1| based on its highest next relevance and
lowest spectral selectivity. Conclusively, the magnitude spectrum based on Rg

k,3 allows for
a good discrimination of the three carriers with a sub-harmonic resolution and a significant
improvement in accuracy for N > 35, at the same time. Better results can be obtained by
using other strategies, such as the least-square-error approach or a low-cost local search for
f̂m. This mixed Fourier series removes the distortion (or loss of spectral information) caused
by other approaches, such as the Windowing technique, while simultaneously combining
all information into a single spectral diagram.
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Figure 14. Pass-band application using sub-harmonic mixed Fourier series.

4. Open Challenges and Future Work

Although the mixed Fourier series was discussed and analyzed with several study
cases, it is necessary to explore its application to other signal processing problems. In fact, if
we replace the original function by its residual error (i.e., r = g− PM{g}) in any processing
technique, then the technique will process a function with a more compacted spectrum.
Therefore, it is reasonable to assume a priori that linear processing techniques will perform
better for a fixed bandwidth.

The discrete-time case of this framework requires much more discussion because we
found several ways to find the unknown constants. In addition, it is necessary to study the
fundamental ambiguity caused by the loss of the sample g(T) using the usual Digital Signal
Processing framework (i.e., by taking only N samples, denoted by t0, · · · , tN−1). For the
same reason, more analysis is needed to efficiently integrate the FFT{·} into this approach.
Furthermore, it is necessary to evaluate and modify our results for noisy discrete-time
signals because the constants Pg

m,M are derivative-dependent, and thus, the performance
may be sensitive to their discrete estimations. However, this technique has a promising
future in that circumstance due to the use of the least-square-method or modern noise-
robust differentiators.

From Section 3.7, it is seems that a wide class of smoothness functions with compact
support g : [0, T]→ R can be approximated everywhere by a polynomial function with a
finite degree (i.e., with a finite value of M) plus a periodic band-limited function (i.e., with
a finite value of N) as closely as desired. Nevertheless, more discussion and research on
that or related topics are required because it has several consequences for sampling limits
for continuous and piecewise functions. For instance, following the Fourier approach,
the number of samples to rebuild a pulse function with a duration 0 < T1 < T is an
asymptotically large number. Using a piecewise mixed Fourier series, it requires only four
samples to rebuild that function with M = 0.

In future work, we will research the methods and applications of mixed Fourier series
for piecewise continuous functions, and we will apply the Ideal Sampling Theorem to
extend our findings to the discrete-time case. In addition, a comprehensive comparison will
be made with other modern methods, such as the spectral reprojection method. Although
our work is currently limited to one-dimensional problems, we aspire to encourage the
exploration of this approach in high-dimensional scenarios.
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5. Conclusions

This paper discusses and extends the Maliev–Lanczos approach for processing conti-
nuous-time functions with compact support. In contrast to the Taylor series or the Fourier
series, the mixed Fourier series uses local and global information. A convenient partial
series contains local information about the derivatives at the edges of the interval, whereas
the Fourier series contains global information about the remainders throughout the whole
domain. The mixed Fourier series avoids the Gibbs phenomenon, and it allows uniform
convergence for functions with a bounded continuous first derivative in a closed interval.
With the inclusion of M + 1 real constants related to simple polynomials computed by
a backward algorithm, a major improvement in the error of the approximation is found
using N harmonics because the magnitudes of new Fourier coefficients have convergence
O(|k|−M). In fact, the results evidence that the improvement is better than O(|k|−2−M)
using common smoothness functions. Similarly, its application in numerical integration
shows high performance (e.g., absolute relative error better than 10−10) with a low number
of samples using the simple left rectangular rule. On the other hand, in the case of inter-
polation, we found that the hyperbolic tangent test function (which exhibits Runge’s and
Gibbs phenomena) can be well represented with M = 1, outperforming the Chebyshev in-
terpolation technique using nonuniform sampling. Furthermore, we found that by solving
M + 1 linear equations, the Fourier series of smooth functions may be easily reprojected to
the polynomial mixed Fourier series without using time-domain information (i.e., without
derivatives). Several additional canonical examples, applications, and discussions were
presented throughout the paper, demonstrating a relevant improvement in the processing
of smooth functions.
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Abstract: In this paper, we review some grid quality metrics and define some new quality measures
for quadrilateral elements. The curved elements are not discussed. Usually, the maximum value of
a quality measure corresponds to the minimum value of the energy density over the grid. We also
define new discrete functionals, which are implemented as objective functions in an optimization-
based method for quadrilateral grid generation and improvement. These functionals are linearly
combined with a discrete functional whose domain has an infinite barrier at the boundary of the set
of unfolded grids to preserve convex grid cells in each step of the optimization process.

Keywords: mesh generation; quality measure; aspect ratio; quality improvement

1. Introduction

Research on mesh generation in Computer Graphics, Scientific Visualization and
Computational Field Simulations has led to a substantial number of methods within the
last six decades. An exhaustive description of this field is beyond the scope of this paper;
one can refer to the many surveys available, see, e.g., Thompson et al. [1] and Lo [2].
However, that mesh generation in regions in 2D and 3D is a central task, used in numerical
methods for the solution of partial differential equations, using finite difference, finite
element and finite volume methods.

There is also a special interest in studying meshes formed by triangular elements. Our
interest here is to generate structured meshes with quadrilateral elements; however, all
of the discussion can be applied to unstructured meshes. The simplest way to generate a
structured mesh is via interpolation of the boundaries, but it is difficult to ensure that the
mesh thus obtained is a convex one. In 2010, Barrera et al. [3] provided a review of some
functionals and conditions that guarantee the existence of optimal meshes that are convex
over irregular planar regions.

Our interest now is to improve the mesh quality via controlling the shape of the
elements. The improvement of mesh quality can be carried out in two ways:

Clean-up. This consists of the elimination, insertion and reconnection of nodes to elim-
inate the worst elements. Some authors call that this procedure topological
optimization in the sense that the connectivity of the nodes is removed to
obtain an optimal configuration.

Smoothing. This consists of node repositioning without changing the connectivity of the
elements.

In both cases, the goal is to obtain a quality mesh with a low number of distorted
elements. To achieve this goal for a quadrilateral, it is neccesary to define an ad hoc
quality measure.

Definition 1 (González [4]). We say that a real-valued function μ(Q) over a quadrilateral Q is a
quality measure in the sense of Field-Oddy if it
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(1) Has the ability to detect degenerated elements;
(2) Is bounded and continuous;
(3) Is independent of scale;
(4) Is normalized;
(5) Is invariant under rigid transformations.

For practical purposes, it is convenient to define an acceptability interval [μ0, 1] for the
quality measure, i.e., when a quadrilateral has a suitable shape, outside of this interval, we
say that the quadrilateral does not have the desired shape. The acceptability interval are
defined empirically for each quality measure.

In this paper, we are interested in identifying the shape of the cells and in quantifying
the distortion of a quadrilateral when it is not a square or a rectangle. In the remainder of
this paper, we will discuss the most used quality measures for rectangles and then propose
new quality measures.

The remainder of this paper is structured as follows. The following, background
section presents the most used quality measures for rectangles based on angles. Section 3
then presents some new quality measures based on geometric properties. Section 4 then
presents some classical global quality metrics and proposes a statistical analysis of all
elements of the mesh. Section 5 then presents some concepts to grid quality improvement
using quality measures. Finally in the Section 6 then presents some new quality discrete
functionals for improvement of the mesh.

2. Background

Following the ideas behind the quality measures for triangles, it is straightforward to
define some figures that measure the shape of quadrilaterals. One of these is the aspect
ratio, which is defined by comparing to the ideal case when the quadrilateral is a rectangle;
it represents the ratio of the largest to the smallest sides. An estimator for this ratio was
discussed in 1987 by Robinson [5]. The idea is to associate a rectangle with the convex
quadrilateral: a rectangle passing through the midpoints of the sides of the quadrilateral,
see Figure 1.

Figure 1. PQRS is the rectangle associated by Robinson to quadrilateral ABCD.

This idea is usual in continuum mechanics. Robinson proposed a practical method of
calculating it by means of bilinear mapping between the unit square and the quadrilateral

x = e1 + e2ξ + e3η + e4ξη, (1)

y = f1 + f2ξ + f3η + f4ξη, (2)

where the e and f coefficients are realated to the nodal coordinates x1 to x4 and y1 to y4 by
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e1 = 1
4 (x1 + x2 + x3 + x4) e2 = 1

4 (−x1 + x2 + x3 − x4)
e3 = 1

4 (−x1 − x2 + x3 + x4) e4 = 1
4 (x1 − x2 + x3 − x4)

f1 = 1
4 (y1 + y2 + y3 + y4) f2 = 1

4 (−y1 + y2 + y3 − y4)

f3 = 1
4 (−y1 − y2 + y3 + y4) f4 = 1

4 (y1 − y2 + y3 − y4)

(3)

The meaning of the coefficients in Equation (3) is now shown in [5]. Which yields

aspect ratio = max
{

e2

f3
,

f3

e2

}
.

The associated rectangle has sides, which are parallel to the coordinate axes and pass
through the midpoints of the sides of the quadrilateral. In spite of its simplicity, this
analytic representation is not satisfactory since it depends on an orthogonal coordinate
system. In 2000, Field [6] reviewed this definition and suggested calculating the aspect
ratio of Robinson and orthogonalizing the main axes, and proposed a quality measure to
detect squares.

In 1989, Lo [7] reviewed the classical quality measure for triangles T(a, b, c) with side
lengths l1, l2 and l3,

gi = 4
√

3
area(Ti)

l2
1 + l2

2 + l2
3

(4)

which attains its optimum value in equilateral triangles, and again proposed calculating
each one of those values over the four Ti triangles, which are defined by the sides and
diagonals of a quadrilateral, but reordering these quantities in such a way that

g1 ≤ g2 ≤ g3 ≤ g4, (5)

and using

μ1(Q) =
g1g2

g3g4
, (6)

as a quality measure. The maximum value is 1 and it is obtained for rectangles. This is
a quality measure because it is continuous, bounded and identifies degenerate and even
non-convex quadrilaterals. The measure that Lo uses for triangles T is the reciprocal of the
number of conditions of a linear mapping μ(T) = 1/κ2(T), which Knupp [8] used in 2001
to measure the distortion of the elements. Locally, Lo’s measure may have more critical
points, which can be far from representing a rectangle.

Another measure of quality for quadrilaterals is described by van Rens et al. [9] as
follows: compute the inner angles θk and define

μ2(Q) =
4

∏
k=1

(
1−

∣∣∣∣ π
2 − θk

π
2

∣∣∣∣). (7)

This function is continuous, dimensionless and 0 ≤ μ2(Q) ≤ 1. One can see that μ2(Q) = 0
if Q is a triangle and μ2(Q) = 1 only if Q is a rectangle.

In 2012, Remacle et al. [10] described the Blossom-Quad algorithm to construct a
non-structured mesh with quadrilateral elements obtained from a previous triangulation
and used a cost function to produce a quality mesh. They used

μ3(Q) = max
{

1− 2
π

max
k

{
|π

2
− θk|

}
, 0
}

, (8)

and observed that if the value of this function is 1, Q is a perfect quadrilateral, and it is 0 if
any of the angles are greater than or equal to π, i.e., when the quadrilateral degenerates
into a triangle or is nonconvex. This function is also a quality measure.

As noted, unlike other measures for rectangles we have discussed up to this point, the
last two ones do not depend either on the shape of the quadrilaterals or the aspect ratio or
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proportion of their sides; they only measure how near or far away a quadrilateral is from
being a rectangle using only the internal angles.

Another function based on the inner angles was proposed by Wu [11]. This author
used the same idea as Lo: to order the inner angles θi so that θ1 ≤ θ2 ≤ θ3 ≤ θ4 and define

μ4(Q) =
θ1θ2

θ3θ4
. (9)

This function reaches its maximum value of 1 on rectangles. However, this is not a good
measure in the sense of Field-Oddy, since it is not capable of detecting degenerate quadri-
laterals.

3. New Quality Measures

In the previous section, we had reviewed some measures that characterize rectangles
and also pointed out some intervals of acceptability to decide if a quadrilateral is close to
the desired shape. However, which rectangle is it close to?

3.1. Quality Measure of Rectangles

A very interesting problem in computational geometry is the following: given a cloud
of points, calculate the rectangle of the minimum area that contains them. It is known that
this problem can be raised directly on the convex hull of the cloud of points, and therefore
the problem can be regarded as calculating a rectangle of minimum area that contains a
convex polygon.

We propose the use of the rectangle of minimum area to define a distortion measure
of the quadrilateral in the sense that it measures how close or far a quadrilateral Q is from
being a rectangle, Figure 2.

Example 1. For the quadrilateral A(−6.84, 7.5), B(−10,−4), C(11.81,−1.38) and D(9.27, 11.94),
the rectangle of minimum area is A′BCD′ with an aspect ratio of 1.62. See Figure 2.

Figure 2. A′BCD′ is the rectangle of minimum area for quadrilateral ABCD and RUTS is the rectangle
associated by Robinson for Example 1.

On one hand, the cell area ac, is less than the rectangle area; that is, ac ≤ aR, and it is
easy to see that

2ac − aR
aR

≤ 1;

see Lassak [12] for the proof. The quotient thus defined reaches its maximum value of 1 on
rectangles. Therefore, we propose the value

μr1(Q) =
2ac − aR

aR
(10)
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as a new quality measure to characterize rectangles.
One must note that μr1(Q) is a good quality measure according to Field-Oddy, and

μr1(Q) = 0 if Q is a triangle.
Another good quality measure in this sense is

μr2(Q) =
2a−
aR

, (11)

where
a− = min{a1, a2, a3, a4} (12)

and ai are the area of the four triangles defined by taking the four vertices of a quadrilateral
into groups of three.

3.2. New Aspect Ratio

Using the rectangle of minimum area for Q, we propose the use of the ratio of the
largest to the smallest side as the aspect ratio. This measure is invariant under rigid and
scaling transformations. This measure is better than Robinson’s aspect ratio. It is easy
to construct an example for which the Robinson aspect ratio is 1 but the quadrilateral is
distorted following the next example.

Example 2. For the quadrilateral A(3.53, 10.21), B(−10, −4), C(11.81, −1.38) and D(9.27,
11.94), Robinson’s aspect ratio is 1.00 but using the rectangle of minimum area NBCD, the aspect
ratio is 1.62. See Figure 3.

Figure 3. NBCD is the rectangle of minimum area for quadrilateral ABCD and JKLM is the rectangle
associated by Robinson for the Example 2.

As we have discussed, some measures to characterize rectangles are based on the inner
angles. Another way to achieve this is to ask Q to be a parallelogram and one of its inner
angles to be a right one. As it is, we use a measure that imposes a particular condition on a
rectangle instead of one on the form of Q .

Our interest is to characterize the rectangles geometrically. A well-known result in the
literature is as follows:

Theorem 1. Let Q be a quadrilateral of vertices A, B, C and D whose sides are a, b, c and d.
The quadrilateral Q is a rectangle if and only if the area of the quadrilateral is written as

aR =
1
2

√
(a2 + c2)(b2 + d2). (13)

The proof of this result can be found in Josefsson [13]. The interesting fact about this
theorem is that it provides of an analytical expression of the area of a hypothetical rectangle
formed by the sum of the squares of the opposite sides of Q and compares the square of
the area of Q to identify how far it is from being a rectangle.
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On the other hand, following the proof of the theorem, it is easy to see that the area ac
of any convex quadrilateral satisfies

2ac ≤
√
(a2 + c2)(b2 + d2). (14)

Using this idea, we propose the measure

μR(Q) =
2a−√

(a2 + c2)(b2 + d2)
(15)

where a− is defined in Equation (12).
The measure μR(Q) is a good quality measure in the Field-Oddy sense, since it is

continuous, bounded and capable of indentifying degenerate quadrilaterals (to triangles),
as well as to identify if a quadrilateral is non-convex. This measure reaches its optimal
value of 1 for rectangles.

An acceptability interval to consider that the quadrilateral is a rectangle under this
measure is [0.95, 1].

3.3. Quality Measure of Parallelograms

Let Q be an oriented quadrilateral of vertices P1P2P3P4. The latter defines four oriented
triangles T1 = T(P4, P1, P2), T2 = T(P1, P2, P3), T3 = T(P2, P3, P4) and T4 = T(P3, P4, P1),
see the Figure 4.

Figure 4. The four oriented triangles defined by a quadrilateral grid cell.

Let ai be the area of the four oriented triangle and ac be the area of grid cell Q, we
have

g1 =
a1

ac
, g2 =

a2

ac
, g3 =

a3

ac
, g4 =

a4

ac
(16)

It is easy to see that a quadrilateral is a parallelogram if and only if

g1g2 = g3g4 =
1
4

, (17)

The proof is based on follow: on one side

g1 + g3 = g2 + g4 = 1. (18)

On the other hand
g1 = g2 (19)

if and only if corresponding sides are parallel. But if we impose that g1 and g2 are equal
1/2, g3 = g4 so that the other sides are parallel, see [4]. A quality measure to characterize
parallelograms is

μp1(Q) = 4 min{g1g2, g3g4}. (20)
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This measure is invariant under rigid and scaling transformations.
In the Figure 5 it is shown differents level curves for μp1(Q).

(a) (b)

Figure 5. Level curves for (20) where (a) Q has 3 fixed vertices (0, 0), (2, 0) and (0.5, 2) and (b) Q has
3 fixed vertices (0, 0), (2, 0.5) and (0.5, 2).

Now, we reorder these quantities in such a way that

g1 ≤ g2 ≤ g3 ≤ g4, (21)

and use
μp2(Q) =

g1g2

g3g4
, (22)

as a quality measure. Again, the maximum value is 1 and it is obtained for parallelograms.
This is a quality measure because it is continuous, bounded and identifies degenerate and
even non-convex quadrilaterals, see [4].

In the Figure 6 it is shown different level curves for μp2(Q).

(a) (b)

Figure 6. Level curves for (22) where (a) Q has 3 fixed vertices (0, 0), (2, 0) and (0.5, 2) and (b) Q has
3 fixed vertices (0, 0), (2, 0.5) and (0.5, 2).
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3.4. Quality Measure of Squares

An ideal mesh is one in which its cells are close to being squares. If μ(T) is a good
quality measure for triangles, the harmonic mean of the four triangles Ti is

μs(Q) = σ
4

∑4
i=1

1
μ(Ti)

, (23)

If rewriting μs(Q) in the form

μs(Q) =
4σμ(T1)μ(T2)μ(T3)μ(T4)

μ(T2)μ(T3)μ(T4) + μ(T1)μ(T3)μ(T4) + μ(T1)μ(T2)μ(T4) + μ(T1)μ(T2)μ(T3)
, (24)

we obtain a good quality measure for quadrilaterals, because it is continuous, bounded,
invariant under the rigid and scaling transformations and identifies degenerate and even
non-convex quadrilaterals, since it inherits those properties from μ(T). Here, σ is a normal-
ization parameter.

To characterize squares, we require a property μ(T) as seen from

Theorem 2. If μ(T) is a good quality measure for triangles according to Field-Oddy, in which for
isosceles right triangle the highest energy among all right triangles is achieved, μs(Q) defined in
(24) is a quality measure in the Field-Oddy sense and characterizes squares at their maximum value.

Proof. The proof is very simple; it is based on the fact that the four triangles must be
congruent to have the same energy. From this it follows that the triangles must be right
triangle or they do not form a quadrilateral. Now, if the lowest energy contained for right
triangle only occurs when they are isosceles right triangle then μs(Q) defined in (24) only
detects squares at its maximum value.

Some measures μ(T) for triangles with those properties are

μ1(T) = 4
√

3
A

l2
1 + l2

2 + l2
3

, μ2(T) = 2
r
R

, μ3(T) =
4
√

3
9

A
R2 , μ4(T) =

4√
3

A
l2
max

where μ1(T) was proposed by Joe, [14], μ2(T) is the radius ratio measure, μ3(T) is described
by Shewchuk and μ4(T) is Cavendish’s measure, see [15].

Using the quadrilateral Q with 3 fixed vertices (0, 0), (2, 0) and (0, 2), μ(Q) is a function
of (x, y). In the Figure 7 it is shown the level curves for μs(Q) using μ1(T) and μ2(T).

(a) (b)

Figure 7. Level curves for (24) using (a) μ1(T) and (b) radius ratio μ2(T).
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4. Some Global Quality Metrics

In many applications, it is necessary to identify the utility of a mesh through the
assessment of the quality of all the mesh elements.

The assessment of the quality of a mesh can be achieved through

(1) A visual or exploratory or inspection;
(2) Qualitative evaluation or shape parameters;
(3) Statistical analysis.

A first visual evaluation can involve analyzing the distribution in a histogram of
values of a chosen good-quality measure μ(Q) or metric δ(Q). A second visual assessment
can be performed by looking at a color map on a quality-dependent color scale. In this
section, we will attempt to describe some methods or techniques with which to carry out a
global qualitative assessment of the mesh by assigning a value to the mesh.

Allievi and Casal [16] proposed two measures for qualitative evaluation of orthogo-
nality of the mesh. The first criteria is the maximum deviation of orthogonality given by

MDO = max
i,j
{|90◦ − θi,j|} (25)

and the second is the mean deviation of orthogonality given by

ADO =
1

(n− 1)(m− 1)

m−1

∑
i=2

n−1

∑
j=2
|90◦ − θi,j|, (26)

where θi,j are the internal angles of the mesh.
Now, let μ(Q) be a measure of quality. Other global criteria used frecuently is the

average quality of a mesh G, or the mean quality, defined as

MQ = μ̄(G) =
1
N

N

∑
i=1

μ(Qi), (27)

where N is the number of elements in G. Another global measure well known is the
standard deviation or the mean square error:

MSE = σ2 =

√√√√ 1
N

N

∑
i=1

(μ(Qi)− μ̄(G))2, (28)

which is a value that represents the averages of all the individual differences of the obser-
vations with respect to a common reference point, which is the arithmetic mean.

As it is well known, a greater value of MSE corresponds to a greater dispersion of
the values, in this case μ(Q) with respect to its mean MQ. For this reason, researchers are
using the geometric mean as a measure of global quality of the mesh for a measure μ(Q)
given by

SP = β = N

√√√√ N

∏
i=1

μ(Qi). (29)

This quantity is well known in the literature as the mesh shape parameter or simply shape
parameter, see [2].

The natural approach to evaluate the quality of an mesh from that of its elements
consists of considering the best and worst element qualities, the arithmetic mean, the mean
square error and the shape parameter. For the mesh of the Figure 8 with ADO = 13.21,
MDO = 76.17, the corresponding results for differents quality measures are given in Table 1.
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Table 1. Summary of quadrangle quality measures for the mesh in Figure 8.

Shape Name μ(Q) Min Max MQ MSE SP

Parallelogram
AreaI 0.0381 0.9998 0.9169 0.1081 0.9068

AreaII 0.0117 0.9973 0.8615 0.1510 0.8284

Rectangle

Lo1989 0.0160 0.9941 0.7597 0.1901 0.7241

ScaledJacobian 0.2391 1.0000 0.9384 0.0975 0.9318

ScaledJacobianM 0.0457 0.9965 0.8639 0.1361 0.8478

MinRect2015 0.0555 0.9942 0.7929 0.1837 0.7607

Rectangles2015 0.0719 0.9983 0.8999 0.1170 0.8890

Square

Lo1985 0.0339 0.9897 0.4792 0.2362 0.4162

Hua1995 0.0830 0.9996 0.5302 0.2573 0.4621

Knupp2000 0.0365 0.9993 0.5113 0.2588 0.4402

Pebay2002 0.0591 0.9814 0.6119 0.2208 0.5670

Hmean2017E 0.0797 0.9996 0.5292 0.2578 0.4607

Hmean2017R 0.0788 0.9996 0.5292 0.2578 0.4606

Hmean2017r 0.0297 0.9996 0.5351 0.2485 0.4713

We believe that a statistical approach should be used to qualify and quantify the
geometric quality of a mesh. The shape parameter for squares or rectangles can be combined
with a statistical analysis of all the elements of the mesh in the following order:

(1) How many elements are squares?
(2) How many elements are rectangles with aspect ratio less than 4?
(3) How many elements are parallelograms with aspect ratio less than 4?

We will say that the remainer cells are distorted. This can be performed as follows:
consider three measures of quality μs(Q), μr(Q) and μp(Q) for squares, rectangles and
parallelograms, and exclude rectangles from squares and parallelograms from rectangles.
Let us exclude, respectively, large-aspect-ratio rectangles and large skew elements. Now let
us represent those elements in a colormap, see Figure 8.

Figure 8. Characterized mesh elements with different shapes.
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This technique can be very useful for meshes over irregular regions such as lakes
or reservoirs.

In this paper the quality measure for curved elements are not discussed, but a good
reference for curvilinear finite elements is [17].

5. Grid Quality Improvement

On Distortion of the Mesh

In general, if μ(Q) is a good quality measure for quadrilaterals, a way of measuring
the distortion of a quadrilateral Q with respect to μ(Q) is using

f (Q) =
1

μ(Q)
, (30)

because if f (Q) is much greater than 1, the cell will be far from the value for which μ(Q)
characterizes the geometric shape of the cell Q (square, rectangle, parallelogram, etc.)
and we can say that Q is a distorted quadrilateral with respect to that measure. Usually,
the maximum value of a quality measure corresponds to the minimum value of the energy
density over the grid, see Ivanenko [18].

Under this idea, the distortion of the mesh G can be measured as the average of the
distortions of all the cells

F(G) =
1

Ne

Ne

∑
k=1

1
μ(Qk)

, (31)

where Ne its the number of the cells. Using this concept, we have the following definition:

Definition 2. A grid Ĝ has better quality than the mesh Ḡ if

F(Ĝ) < F(Ḡ), (32)

where F(G) is a distorsion measure.

As an optimization problem, improving the quality of a G mesh can be considered as
the problem

G∗ = arg min
G

F(G) =
1

Ne

Ne

∑
k=1

1
μ(Qk)

, (33)

where the inner nodes of G are the unknowns. In this context, the discrete grid generation
problem can be posed, in general, as a large scale optimization problem. The optimiza-
tion problem is a large-scale one when the mesh dimensions m× n are very large. It is
important to note that the initial mesh G0 must be convex and remain so in each step of
the optimization process. We use for this a Newton-like methods with bound constraints
L-BFGS-B [19].

Usually, the quality measures for quadrilaterals are non-differentiable functions; in an
optimization process, it is better to build a convex function with similar characteristics to
the quality measure.

6. New Quality Discrete Functionals

From the proof of Theorem 1, it is easy to see that

2ac ≤
√
(a2 + c2)(b2 + d2), (34)

for any convex quadrilateral, then

fR(Q) =
(a2 + c2)(b2 + d2)

4a2
c

, (35)
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is a positive convex function whose critical points are rectangles. With this function, we
can define a discrete functional FR(G) over all the grid cells

FR(G) =
1

Ne

Ne

∑
k=1

fR(Qk). (36)

In Figure 9, the shape of the surface of FR is sketched.

(a) (b)

Figure 9. Level curves for (a) fR(Q) and (b) fr(Q) where Q has 3 fixed vertices (0, 0), (2, 0) and (0, 1).

We propose to combine this functional with a convex area functional Sw(G) defined
in [3]. This functional has an infinite barrier at the boundary of the set of unfolded grids.

F(G) = (1− σ)Sw(G) + σFR(G), (37)

where σ > 0. In addition, the function

fR(Q) =
(a2 + c2)(b2 + d2)

4a2
c

, (38)

can be interpreted (by cells) as a normalization (with respect to the Jacobian) of Knupp’s
area-orthogonality functional defined in [20]

fao(Q) = (a2 + c2)(b2 + d2). (39)

As we have discussed, since the quality measures are usually non-differentiable
functions, it is difficult to use them as objective functions; it is advisable to design the
convex and differentiable functions f (Q), whose optimal values also satisfy μ(Q) ≈ 1 for a
specific quality measure μ(Q).

As it is known, a rectangle is a parallelogram, so its opposite sides are equal. The diag-
onals of a rectangle are equal and bisect each other. In Figure 10, we can see those elements.

With this idea, we propose to use a convex functional of the form

Fp(G) = ∑
i,j
‖

pi,j + pi+1,j+1

2
−

pi+1,j + pi,j+1

2
‖2, (40)

over all elements of the grid G. Locally, this functional has a critical point in the cells
formed by parallelograms, see Khattri [21].
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Figure 10. Diagonals of a quadrilateral and the segment joining the midpoints between them.

Optimizing Fp(G) is an attempt to produce parallelograms. Now, we define a discrete
functional to obtain rectangles. For each cell of G let us measure the square of the difference
of the square of diagonals

Fd(G) = ∑
i,j
(‖pi,j − pi+1,j+1‖2 − ‖pi+1,j − pi,j+1‖2)2; (41)

combining both functionals, we obtain

Fr(G) = (1− α)Fp(G) + αFd(G). (42)

If where α ≥ 0 is chosen to allow that shape of the cells can be flexible. In the practice we
use α = 0.5. Fr(G) is a positive and convex functional, which has a critical point in a mesh
formed by rectangles (including squares). This can always be achieved if we guarantee that
in each optimization step the mesh is convex.

Therefore, we use Sw(G) to guarantee and preserve the convexity of the mesh, and com-
bine it with the latter functional in the form

F(G) = (1− σ)Sω(G) + σFr(G). (43)

Thus, with a linear convex combination between Sω(G) and Fr(G), one can generate
both convex grid and close to being rectangles.

7. Examples

For both functionals, we can obtain optimal grids whose cells have a very large aspect
ratio, see Figure 11.

Now, for control of the aspect ratio, we propose to use an area (volume) distortion
measure functional

FA(G) =
N

∑
q=1

1
α(�q)2 + δα(�q)

2, (44)

over all the N signed areas of all the grid cell triangles. Here, δ > 0 is an adequate value,
see [4]. This distortion measure has a barrier on the boundary of the set of grids consisting
of convex quadrilateral cells and it is very similar to the one proposed by Garanzha [22],
but now we have a better control of the global distribution of the area.

For the mesh optimized using the functional (37) with area control, we show in
Figure 12 the color maps for two quality measures.

For the mesh optimized using the functional (43) with area control, we show in
Figure 13 the color maps for two quality measures.
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Figure 11. A mesh over the Strait of Gibraltar.

(a)

(b)

Figure 12. Color map of (a) rectangles quality measure and (b) rectangle of minimum area qual-
ity measure.
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(a)

(b)

Figure 13. Color map of (a) rectangles quality measure and (b) rectangle of minimum area qual-
ity measure.

As it is well known, for irregular regions, the distorted cells accumulate near the border.

8. Conclusions

In conclusion, this paper presented an overview of classical quality measures and
introduced new quality measures for quadrilaterals that help to improve meshes and the
aspect ratio. We show that our aspect ratio is better than the one proposed by Robinson.
We propose that a statistical approach should be used to qualify and quantify the geometric
quality of a mesh. In addition, we have proposed new functionals for grid generation as
alternatives for area-orthogonal grid generation. These functionals are based on the fact
that the maximum value of a quality measure corresponds to the minimum value of the
energy density over the grid.
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Future work in this area could include extending some of these ideas to 3D, as well
as exploring the potential of functionals for volume grid generation, which need to be
further investigated.
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Abstract: The Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly infectious
respiratory illness that poses a significant threat to public health. Understanding the transmission
dynamics of MERS-CoV is crucial for effective control and prevention strategies. In this study,
we develop a precise mathematical model to capture the transmission dynamics of MERS-CoV.
We incorporate some novel parameters related to birth and mortality rates, which are essential
factors influencing the spread of the virus. We obtain epidemiological data from reliable sources to
estimate the model parameters. We compute its basic reproduction number (R0). Stability theory
is employed to analyze the local and global properties of the model, providing insights into the
system’s equilibrium states and their stability. Sensitivity analysis is conducted to identify the most
critical parameter affecting the transmission dynamics. Our findings revealed important insights
into the transmission dynamics of MERS-CoV. The stability analysis demonstrated the existence of
stable equilibrium points, indicating the long-term behavior of the epidemic. Through the evaluation
of optimal control strategies, we identify effective intervention measures to mitigate the spread of
MERS-CoV. Our simulations demonstrate the impact of time-dependent control variables, such as
supportive care and treatment, in reducing the number of infected individuals and controlling the
epidemic. The model can serve as a valuable tool for public health authorities in designing effective
control and prevention strategies, ultimately reducing the burden of MERS-CoV on global health.

Keywords: MERS-CoV model; basic reproductive number; analysis of stability; equilibria points;
optimality control; numerical analysis

1. Introduction

The first identification of the Middle East respiratory syndrome coronavirus (MERS-CoV),
a viral respiratory illness, took place in Saudi Arabia in 2012, as reported by multiple studies,
including those conducted by [1–3]. MERS-CoV is believed to have originated from an
animal source and has been identified in both humans and animals. The transmission of the
disease occurs through close contact with an infected individual, in any form. The World
Health Organization (2019) has reported a global total of 2519 laboratory-confirmed cases
of MERS-CoV infection, with 866 associated deaths. One of the largest outbreaks of MERS-
CoV occurred in South Korea in 2015.

Coronaviruses constitute a diverse family of viruses that are known to infect humans,
causing respiratory illnesses that can vary in severity from mild cold-like symptoms to se-
vere respiratory syndromes, such as severe acute respiratory syndrome (SARS). MERS-CoV
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can cause zoonotic infections in humans through direct or indirect contact with camels or
camel-related products. Additionally, human-to-human transmission has been reported,
particularly in healthcare settings [4–6]. Since 2002, three novel coronaviruses have emerged
and caused deadly zoonotic diseases in humans. The first was SARS, which emerged in
November 2002. The second was MERS, which emerged in April 2012. The most recent
and ongoing pandemic is COVID-19, which emerged in December 2019 and has affected
millions of people worldwide [7–10]. The authors in [11,12] modified a mathematical model
of COVID-19 by including the quarantine class and measured the disease transmission.
Shen et al. studied a mathematical model of COVID-19 by presenting the vaccinated
class with an optimal control analysis [13]. The authors in [14] used the data of Saudi
Arabia and investigated the transmission dynamics of COVID-19. Tsay et al. analyzed
the state estimation and optimal control for the COVID-19 outbreak model in the US [15].
Libotte et al. used the optimal strategy for vaccines in COVID-19 treatment considered for
both mono- and multi-objective optimization [16]. Using the optimal control models also
gives information about the impact of individual vaccination during an epidemic, together
with the key considerations for political and economic decision making.

MERS typically presents with symptoms such as fever, cough, and shortness of breath.
It is believed to spread through respiratory secretions, such as through coughing, from an
infected person, similar to other coronaviruses. Several studies have investigated the
potential role of camel handlers in the transmission of the virus to determine its source
of infection. To understand and predict the dynamics of infectious diseases, researchers
have developed various models based on biologically feasible parameters [17–19]. These
models are essential tools for analyzing and forecasting the spread of diseases [20]. Al-
though several case studies have explored the transmission of MERS-CoV, the literature on
its transmission dynamics is limited. Using available data, Cauchemez et al. [21] estimated
the incubation period and generation time of MERS-CoV, and calculated the reproductive
numbers for both animal-to-human and human-to-human transmission. Chowell et al. [22]
took a different approach and compared the reproductive numbers of SARS and MERS.
Assiri et al. [23] reported one of the largest outbreaks of MERS-CoV, describing the virus
as transmissible from human to human. The virus has spread globally through travel-
associated cases, with reported incidences in countries including Algeria, Austria, China,
Egypt, Italy, Netherlands, Philippines, South Korea, Thailand, the UK, and the US. Ground-
breaking research has been published by numerous esteemed researchers, delving into the
exploration of various model types, such as: SIR epidemic models [24,25], the discrete-time
prey–predator model [26], and the memristor system [27]. Several infectious disease models
have been investigated by researchers by using different approaches, which are available
in the literature, such as [28–32].

Members of the coronavirus family, MERS-CoV and COVID-19 (caused by SARS-CoV-2)
have certain similarities. It is crucial to remember that these viruses are diverse from one
another and have distinctive traits and effects on human health. The following examples
demonstrate how MERS-CoV can be used to treat various illnesses, including COVID-
19. Both COVID-19 and MERS-CoV can cause serious respiratory infections in people.
However, their overall effects differ considerably in a number of ways. MERS-CoV and
COVID-19 can also be compared to influenza viruses, particularly those that cause severe
respiratory infections. Different influenza viruses (A, B, and C) are what cause the illness.
Despite the fact that some symptoms and the means of transmission are similar, influenza
viruses have unique genetic traits and often create seasonal outbreaks. However, MERS-
CoV and SARS-CoV-2 can cause pandemics or sporadic epidemics with ongoing human-to-
human transmission. Several researchers have suggested mathematical models by applying
different approaches to an infectious disease and studying its dynamics from different
angles [33–37].

As far as the novelty is concerned, we study the model presented in [38], by in-
corporating the natural birth rate and death rate due to MERS-CoV. We modified the
mathematical model for MERS-CoV transmission dynamics. This model consists of six

148



Math. Comput. Appl. 2023, 28, 98

groups: susceptible class S , exposed class (or high risk latent) E , symptomatic and infec-
tious class I , infectious but asymptotic class A, hospitalized class H, and recovery class
R. After constructing the model, the basic reproductive number is calculated by using the
next generation method, and the local and global stability of the equilibrium points are
determined. Lyapunov function theory is then utilized to analyze the global behavior of
the model. Furthermore, the principles of optimal control theory are employed to reduce
the number of infected persons and maximize the recovery rate within a given population.

2. Model Formulation

Here, we study the mathematical formulation of the deterministic model for MERS-CoV,
using a set of differential equations. Specifically, the model describes the dynamics of the
host population using the following system of equations:

Ṡ(t) = bN − ϕIS
N

− ϕqHS
N

− η0S ,

Ė(t) = ϕIS
N

+
ϕqHS

N
− (χ + η0)E ,

İ(t) = χξE − (ϑa + ϑ1)I − (η0 + η1)I ,

Ȧ(t) = χ(1− ξ)E − (η0 + η2)A,

Ḣ(t) = ϑaI − ϑϑH− η0H,

Ṙ(t) = ϑ1I + ϑϑH− η0R,

(1)

with initial conditions

S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, A(0) ≥ 0, H(0) ≥, R ≥0,

where the used parameters in the above system are: bN represents the rate of birth for
the host populace, while the transmission rate from human to human per unit time is
represented by ϕ. The parameter q determines the relative transmissibility of hospitalized
individuals. χ represents the rate at which individuals transition from the exposed compart-
ment E to the infectious compartment I . The proportion of individuals who progress from
E to I is given by ξ, while the remaining (1− ξ) progress to class A. The average rate at
which symptomatic persons are hospitalized is denoted by ϑa, while ϑ1 represents the rate
of recovery without hospitalization, and ϑϑ represents the rate of recovery of hospitalized
patients. The rate of natural death is represented by η0, while η1 and η2 represent deaths
due to MERS-CoV.

Assume that the total populace is represented by N(t) at time t, and satisfies N(t) =
S + E + I +A+H+R.

Adding all the equations of system (1), we have

dN
dt

= bN− η0S − η0E − (η0 + η1)I − (η0 + η2)A− η0H− η0R.

Therefore, from the above relation for biological applications, the considered system (1)
occurred in the closed set as

F =

{
(S , E , I ,A,H,R) ∈ R6

+, 0 <,S + E + I +A+H+R ≤ bN
η0

}
.

3. Basic Reproduction Number

The basic reproduction number determines whether an epidemic will appear or the
infection will die out. It represents the expected average number of new infections that will
be generated by a single infective person, both directly and indirectly, when introduced
into a fully susceptible populace. In this study, we use the approach of Driessche and

149



Math. Comput. Appl. 2023, 28, 98

Watmough [39,40] to calculate the basic reproduction number for the aforementioned
system (1).

F =

⎡⎢⎢⎢⎢⎣
0 ϕS0

N
ϕqS0

N

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎦, V =

⎡⎢⎢⎢⎢⎣
χ + η0 0 0

−χξ (ϑa + ϑ1) + (η0 + η1) 0

0 −ϑa ϑϑ + η0

⎤⎥⎥⎥⎥⎦ (2)

to find

FV−1 =

⎛⎜⎜⎜⎜⎜⎝
χϕξS0(ϑϑ+η0+qϑa)I

N(χ+η0)(ϑϑ+η0)[(ϑa+ϑ1)+(η0+η1)]
ϕS0(ϑϑ+η0+qϑa)

N(ϑϑ+η0)[(ϑa+ϑ1)+(η0+η1))]
ϕS0q

N[(ϑϑ+η0)(ϑa+ϑ1)+(η0+η1)]

0 0 0

0 0 0

⎞⎟⎟⎟⎟⎟⎠.

Thus, the required basic reproduction number R0 is followed by

R0 =
χϕξS0Q1

N(χ + η0)Q2Q3
.

The terms Q1, Q2, and Q3 are defined as follows:
Q1 = (ϑϑ + η0 + qϑa);
Q2 = (ϑϑ + η0);
Q3 = (ϑa + ϑ1) + (η0 + η1).
These terms correspond to the susceptible individuals at the disease-free equilib-

rium (DFE).

Analysis of Sensitivity

Here, we conduct a sensitivity analysis of some of the parameters used in the model.
This technique helps us to identify the parameters that have a significant effect on the basic
reproduction number (See Table 1 and Figure 1). We use the approach as described by
Chintis [41] to calculate the sensitivity index of R0. Specifically, the sensitivity index ΔR0

h of
a parameter h is presented by the formula ΔR0

h = ∂R0
∂k

h
R0

.

Table 1. Sensitivity indices of different parameters.

Notation Sensitivity Values Notation Sensitivity Values

χ 0.0384651 ϑ1 − 0.058565
ϑϑ −0.00000453 ϑa −0.93704
η0 −0.001464128 η1 −0.041392
ϕ 0.99999 q 0.0000476

bN 0.99999 ξ 0.000432
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(a) (b)

(c) (d)

(e)

Figure 1. Cont.
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(f) (g)

(h)

Figure 1. The graphs display the results of a sensitivity analysis on the basic reproductive number R0.
(a) R0 with η1, bN; (b) R0 with ξ, bN; (c) R0 with η1, ξ; (d) R0 with ϕ, bN; (e) R0 with η1, ϑ1; (f) R0

with ϕ, ξ; (g) R0 with ϑϑ, ξ; (h) R0 with ϑϑ, ϑa.

4. Equilibria Points

The aforementioned system (1) has two possible equilibria: one is the disease-free
equilibrium (DFE) and second one is the endemic equilibrium (EE). The DFE, denoted

by F0, is given by F0 =

(
bN
η0

, 0, 0, 0, 0, 0
)

. The EE, denoted by F1, is found by setting

“S = S∗, E = E∗, I = I∗, A = A∗, H = H∗, and R = R∗, and the LHS of the resulting
system to zero”. We obtain the following expression after simplification, S∗, E∗, I∗, A∗,H∗,
andR∗ at the EE.

S∗ = NbNQ2
ϕQ2+ϕqϑa+η0NQ2

,

E∗ = NbNQ2+ϕqϑa+NbNQ2
ϕQ2+ϕqϑa+η0NQ2

,

I∗ = (χξ)(NbNQ2+(R0−1)+NbNQ2)
Q3 ϕ+ϕqϑa+η0NQ2

,

A∗ = χ(1−ξ)NbNQ2
2+ϕqϑa+NbNQ2

ϕQ2+ϕqϑa+η0NQ3
,

H∗ = ϑaI∗
Q2

,

R∗ = Q2I∗+Q1
Q2

.

(3)

4.1. Local Stability

We show the local asymptotic stability (LAS) of the DFE as well as the EE of the
system (1) with the help of the following theorem.
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Theorem 1. If the basic reproductive number R0 is less than 1, the DFE point is LAS.

Proof. To show the local stability of the system, about the point DFE, the Jacobian matrix
for the said system (1) is

J0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−η0 0 − ϕS0
N 0 ϕqS0

N 0
0 −(χ + η0)

ϕS0
N 0 ϕqS0

N 0
0 χξ −Q3 0 0 0
0 χ(1− ξ) 0 −η2 0 0
0 0 ϑa 0 −Q2 0
0 0 ϑ1 0 ϑϑ −η0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (4)

By conducting a row operation, reducing the matrix to echelon form, the following
Jacobian matrix is obtained⎛⎜⎜⎜⎜⎜⎜⎜⎝

−η0 0 − ϕS0
N 0 ϕqS0

N 0
0 −(χ + η0)

ϕS0
N 0 ϕqS0

N 0
0 0 A

ϕqS0χξ
N 0 ϕqS0χξ

N
0 0 0 B

ϕqS0χ
N 0

0 0 0 0 C 0
0 0 0 0 0 D

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (5)

A = −Q3Q2(χ + η0)−
ϕS0χξ

N
,

B = −(η0 + η2)(χ + η0)Q1 −
ϕS0χξ

N
,

C = −Q1Q2Q3(S0 + η0),

D = −η0Q3(κ + η0)−
(ϕS0χξ)

N
− [(1− R0)(N(χ + η0)Q2Q3)ϕqS0χξ].

According to [42], when R0 < 1, the matrices A, B, C, and D are all negative, and the
eigenvalues have negative real parts. As a result, the DFE is LAS.

Theorem 2. If R0 is greater than 1, the EE point is LAS.

Proof. Consider the Jacobian of the considered problem (1) at F1 is,

J0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

− ϕI∗
N − ϕH∗q

N − η0 0 − ϕS∗
N 0 − ϕqS∗

N 0
ϕI∗
N + ϕH∗q

N −(χ + η0)
ϕS∗
N 0 ϕqS∗

N 0
0 χξ Q3 0 0 0
0 χ(1− ξ) 0 −(η0 + η1) 0 0
0 0 ϑa 0 −(ϑϑ + η0) 0
0 0 ϑ1 0 ϑϑ −η0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (6)

After performing a row operation and simplifying the resulting expressions, we obtain
the following Jacobian matrix:

⎛⎜⎜⎜⎜⎜⎜⎜⎝

− ϕI∗
N − ϕH∗q

N − η0 0 − ϕS∗
N 0 − ϕqS∗

N 0
0 −(χ + η0)(

ϕI∗
N + ϕH∗qS∗

N + η0) − ϕS∗
N 0 − ϕqS∗

N 0
0 0 Z1 η2ξ 0 0
0 0 0 Z2 Z3 Z4
0 0 0 0 Z5 η0ϑϑ

0 0 0 0 0 Z6

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (7)
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where

Z1 = −ξQ3,

Z2 = −η2(κ + η0)(ϕI∗ + ϕqH∗ + η0)ϑ1,

Z3 = −ϑϑ ϕS∗η0χξ,

Z4 = −η0 ϕS∗χ(1− ξ),

Z5 = −Q2ϑ1 − ϑa − ϑϑ,

Z6 = −η0Q3(η2(χ + η0)(ϕI∗

+ϕqH∗ + η0)ϑ1(R0 − 1)× [(χ + η0)Q3](ϕS∗η0 ϕ(η2ξϑI)(ϑϑ + η0)ϑ1 + ϑa

+Q3(η0ξQ3(η2(χ + η0))(ϕI∗ + ϕqH∗ + η0)ϑ1

+(ϑϑ ϕS∗η0χξ)η2ξϑ1.

.

The eigenvalues are given by

ζ1 = − ϕI∗
N − ϕH∗q

N − η0 < 0,

ζ2 = −(χ + η0)(
ϕI∗
N + ϕH∗qS∗

N + η0) < 0,

ζ3 = −ξ(ϑa + ϑ1 + η0 + η1) = Z1 < 0,

ζ4 = −η2(κ + η0)(ϕI∗ + ϕqH∗ + η0)ϑ1 = Z2,< 0,

ζ5 = −(ϑϑ + η0)ϑ1 − ϑa − ϑϑ = Z5 < 0,

ζ6 = Z6 < 0.

. (8)

As per the findings reported in [43], when R0 > 1, all of the eigenvalues have nonpos-
itive real parts, which indicates that the EE point is LAS.

4.2. Analysis of Global Stability

The next theorem presents that the said system is globally asymptotically stable (GAS)
for the DFE and EE point.

Theorem 3. The DFE of the system is GAS for R0 < 1, otherwise unstable.

Proof. We define the Lyapunov function as follows:

U(t) = k1(S − S0) + k2E + k3I + k4A+ k5H. (9)

We differentiate Equation (9) and obtain:

U′(t) = k1S′ + k2E′ + k3I′ + k4A′ + k5H′. (10)
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Using model (1), we obtain

U′(t) = k1[bN− ϕIS
N

− ϕqHS
N

− η0S] + k2[
ϕIS

N
+

ϕqHS
N

− (χ + η0)E ]
+ k3[χξE − (ϑa + ϑ1)I − (η0 + η1)I ] + k4[χ(1− ξ)E − (η0 + η2)A]

+ k5[ϑaI − ϑϑH− η0H].

If we choose the positive parameter values k1 = k2 = k4 = ξ, k3 = 1, and k5 = qϕρ,
and simplify, we obtain:

U′(t) = −ξη0(S − S0)− 2
ϕqHS

N
−Q1ξη0E − (η0 + η2)A

− Q3[1− R0]−Q2Q3(κ + η0)−Q2
2H.

where
S0 =

bN
η0

,

Let U′(t) be a function of time t, and let S and R0 be constants. If S > S0 and R0 < 1,
then U′(t) is negative. If S = S0, then U′(t) = 0. According to the LaSalle invariance
principle [44,45], if E = I = A = H = 0, then the set of initial conditions for which U′(t)
approaches zero as t approaches infinity is an invariant set.

Therefore, the DFE F0 is GAS.

Theorem 4. When R0 > 1, the EE point is GAS at F1, and unstable when R0 < 1.

Proof. For the GAS of the EE point, we define the Lyapunov function as:

U(t) =
1
2
[p1(S − S∗) + p2(E − E∗) + p3(I − I∗) + p4(A−A∗) + p5(H−H∗)]2, (11)

and we introduce the constants p1, p2, p3, p4, and p5, which will be chosen later. Upon differ-
entiating Equation (11), we obtain:

U′(t) = [p1(S − S∗) + p2(E − E∗) + p3(I − I∗) + p4(A−A∗)

+ p5(H−H∗)][p1(
ds
dt
) + p2(

dE
dt

) + p3(
dI
dt

) + p4(
dA
dt

) + p5(
dH
dt

)],

U′(t) = p1(S − S∗) + p2(E − E∗) + p3(I − I∗) + p4(A−A∗) + p5(H−H∗)(p1(bN− ϕIS
N

− ϕqHS
N

− η0S)

+ p2(
ϕIS

N
+

ϕqHS
N

− (χ + η0)E + p3(χξE − (ϑa + ϑ1)I − (η0 + η1)I) + p4(χ(1− ξ)E − (η0 + η2)A
+ p5(ϑaI − ϑϑH− η0H).

After some calculation, we obtain, and utilizing the values of p1, . . . p5, we obtain

U′(t) = − (ϕS∗)
N

(S − S∗)− (R0 − 1)Q1Q2 −
ϕqH∗S∗

N
[E + I +A]− (ϑaI − ϑϑ)Q2Q2

3H∗

For S = S∗ and (ϑa > ϑϑ) for R0 is greater than 1; thus, the proof is finished.

5. Results and Discussion

In this context, we substantiate our analytical discoveries through the application of the
fourth-order Runge–Kutta method [46]. We select certain parameters for illustrative purposes,
while obtaining others from published data sources [38]. The parameters employed in the
simulation are chosen with careful consideration of their biological plausibility. The ensuing
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set of parameters is utilized for the subsequent analysis. ϕ = 0.007; q = 0.003; χ = 0.005;
ξ = 0.0001; η0 = 0.0003; η1 = 0.0001; ξ = 0.002; ϑ1 = 0.001; ϑa = 0.000001; ϑϑ = 0.0007; and
bN = 0.00004. To validate the analytical findings of the proposed model concerning the
DFE, we employed the aforementioned parameter values. Subsequently, we computed
the DFE point’s coordinates and the threshold parameter R0 as (7.98337196, 0, 0, 0, 0) and
(0.043732), respectively. The simulation outcomes utilizing the aforementioned parameters
are depicted in Figures 2 and 3, thereby substantiating the analytical conclusions outlined
in the theorem. To corroborate this, we employed the linear stability analysis technique and
introduced perturbations to the initial compartmental population values. Remarkably, these
perturbed values consistently converged to the DFE, underscoring its robustness against
varying initial conditions, S(0) = 1000, E(0) = 800, I(0) = 600, A(0) = 500,H(0) = 400,
and R(0) = 300. Drawing from the theoretical interpretation of the data, a definitive
conclusion can be drawn: when the value of R0 is below 1, the disease transmission will
inevitably diminish over time. This is evidenced by the convergence of every solution
curve to a stable position, as depicted in the corresponding plots.

S i+1 − S i

l
= bN − ϕI iS i+1

N
− ϕqHiS i+1

N
− η0S i+1,

E i+1 − E i

l
=

ϕI iS i+1

N
+

ϕqHiS i+1

N
− (χ + η0)E i+1,

I i+1 − I i

l
= χξE i+1 − (ϑa + ϑ1)I i+1 − (η0 + η1)I i+1,

Ai+1 −Ai

l
= χ(1− ξ)E i+1 − (η0 + η2)Ai+1,

Hi+1 −Hi

l
= ϑaI i+1 − ϑϑHi+1 − η0Hi+1,

Ri+1 −Ri

l
= ϑ1I i+1 + ϑϑHi+1 − η0Ri+1.

Used Algorithm

Step 1: (S0, E0, I0,A0,H0,R0 = 0).
Step 2: Let i = 1, 2 . . . n− 1.

S i+1 =
Nlb

ϕI iS i+1 + ϕqHiS i+1l + η0lN
+

S i+1

ϕI iS i+1 + ϕqHiS i+1l + η0lN
,

E i+1 =
lϕI iS i+1

N(1 + l(χ + η0))
+

lϕqHiS i+1

N(1 + l(χ + η0))
+

E i+1

(1 + l(χ + η0))
,

I i+1 =
lχξE i+1

(1 + l(ϑa + ϑ1) + (η0 + η1)l)
+

I i+1

1 + l(ϑa + ϑ1) + (η0 + η1)l
,

Ai+1 =
lχ(1− ξ)E i+1

1 + (η0 + η2)l
+

Ai+1

1 + (η0 + η2)l
,

Hi+1 =
lϑaI i+1

1 + η0l + ϑϑl
+

Hi+1

1 + ϑϑ + η0l
,

Ri+1 =
lϑ1I i+1

1 + η0l
+

lϑϑHi+1

1 + η0l
+
Ri+1

1 + η0l
.

Step 3: Let i = 1, 2, 3, . . . , n − 1, by letting “S∗(ti) = S∗, E∗(ti) = E∗, I∗(ti) = I∗,
A∗(ti) = A∗,H∗(ti) = H∗,R∗(ti) = R∗.”
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Figure 2. The time dynamics of the compartmental populations in model (1) are shown graphically
for an initial population value. (a) Class of S ; (b) class of E ; (c) class of I ; (d) class of A; (e) class ofH;
(f) class ofR.

Subsequently, we proceed to explore the system’s dynamics around the EE by as-
suming an alternate set of parameters: ϕ = 0.17, q = 0.03, χ = 0.05, ξ = 0.01, η0 = 0.03,
η1 = 0.031, ξ = 0.052, ϑ1 = 0.041, ϑa = 0.000001, ϑϑ = 0.0007, and bN = 0.004. Us-
ing these parameter values acquired earlier, we calculate the endemic equilibrium points
and the associated R0 for the model (1). When R0 > 1, the endemic equilibrium point
is determined to be (40.76549, 110.908700, 70.45321, 85.934214, 85.7659321, 120.7659321),
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with a calculated value of R0 = 7.13587. Assuming the same initial population sizes
for the compartments as in the previous analysis, the graphical results indicate that the
populations of susceptible, exposed, infected asymptomatic, hospitalized, and recovered
individuals initially undergo fluctuations before eventually stabilizing at their respective
equilibrium values. For the parameter values employed in this study, the equilibrium point
is (24.76549, 99.908700, 22.45321, 90.934214, 85.7659321, 120.7659321).
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Figure 3. The time dynamics of the compartmental populations in model (1) are shown graphically
for initial population values. (a) Class of S ; (b) class of E ; (c) class of I ; (d) class of A; (e) class ofH;
(f) class ofR.
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6. Analysis of Optimal Control

Here, we aim to establish an effective control strategy to prevent the spread of MERS
in the population. Optimal control theory is a powerful mathematical technique that can
be applied to design control schemes for a variety of infectious diseases. To achieve this,
we apply optimal control theory, as described in previous works [46–49], to establish an
appropriate control strategy. Our objective in this study is to reduce the prevalence of
MERS in the populace by increasing the number of persons who recover from the disease,
denoted asR, and decreasing the number of individuals who are infectious, denoted as I ,
and hospitalized, denoted asH, by implementing time-dependent control variables such
as treatment v1(t) and care v2(t). In model (1), we take six state variables S , E , I , A, H,
andR. Now, for the control problem, we take the two control variables, that is treatment
v1(t) and care v2(t). Hence, we have the successive optimal control problem to reduce the
objective functional

J(v1, v2) =
∫ T

0
[c1I(t) + c2H(t) +

1
2
(c3v2

1 (t) + c4v2
2 (t)]dt (12)

subject to

Ṡ(t) = bN− ϕIS
N

− ϕqHS
N

− η0S ,

Ė(t) = ϕIS
N

+
ϕqHS

N
− (χ + η0)E ,

İ(t) = χξE − (ϑa + ϑ1)I − (η0 + η1)− v1I ,

Ȧ(t) = χ(1− ξ)E − (η0 + η2)A,

Ḣ(t) = ϑaI − ϑϑH− η0H− v2H,

Ṙ(t) = ϑ1I + ϑϑH− η0R+ v1I + v2H,

(13)

with initial conditions

“S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0,A(0) ≥ 0,H(0) ≥ 0,R(0) ≥ 0”.

Equation (12) includes weight constants c1, c2, c3, and c4 that correspond to the relative
importance of infected people I and hospitalized individual H in the objective function.
The parameters 1

2 c3v2
1 and 1

2 c4v2
2 represent the costs associated with self-care and treatment.

The primary objective is to evaluate the control function to achieve a specific goal.

J(v∗1 , v∗2 ) = min{J(v1, v2), v1, v2 ∈ U} (14)

dependent on control system (13), where U in Equation (14) is known as the control set and
is presented as,

“U = {(v1, v2)/vi(t) is Lebesgue measurable on [0, 1], 0 ≤ vi(t) ≤ 1, i = 1, 2}.” (15)

Before proceeding, it is important to establish the existence of control variables. Ac-
cording to Kamien and Aldila’s study [47], a solution for a state system can be found when
the controls are bounded and Lebesgue measurable, in addition to satisfying the initial
conditions. Thus, we can suppose that the considered control model can be formulated in
the manner presented below.

dφ

dt
= A φ +Bφ.
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From the above equation φ = (S , E , I ,A,H,R), where A (φ) and B(φ) denote the
linear and nonlinear bounded coefficient �

J0 =

⎛⎜⎜⎜⎜⎜⎜⎝

−η0 0 0 0 0 0
0 −(χ + η0) 0 0 0 0
0 χξ −Q3 0 0 0
0 χ(1− ξ) 0 −η2 0 0
0 0 ϑa 0 −Q2 0
0 0 ϑ1 0 ϑϑ −η0

⎞⎟⎟⎟⎟⎟⎟⎠. (16)

B(φ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

bN− ϕIS
N − ϕqHS

N
ϕIS

N + ϕqHS
N

0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (17)

Letting L(φ) = Aφ + FŒ,

|F(φ1)− F(φ2)| ≤ m1|S1 − S2|+ m2|E1 − E2|+ m3|I1 − I2|+ m4|A1 −A2|+ m5|H1 −H2|+ m6|R1 −R2|
≤ N|S1 − S2|+ |E1 − E2|+ |I1 − I2|+ |A1 −A2|+ |H1 −H2|+ |R1 −R2|.

Here, N = max(m1, m2, m3, m4, m5, m6) is a constant that is independent of the state
variables in the aforementioned system. We also express

|L(φ1)− L(φ2)| ≤ M|(φ1)− (φ2)|.

The solution for (13) exists due to the nonnegativity of the model state variables S , E ,
I , A,H, andR. Furthermore, it has been shown that the function L is Lipschitz uniformly
continuous, and where M = (N, ‖K‖) < ∞. Based on the properties mentioned earlier, we
present the following theorem to establish the existence of a solution for model (1), which
we then proceed to prove.

Theorem 5. For the control problem in Equations (12) and (13) there exists an optimal control as
v∗ = (v∗1 , v∗2 ) ∈ U.

Proof. It is evident that the control and state variables in system (1) are positive. Addition-
ally, the control variables set U is a closed and convex set, as mentioned in the problem
statement. Furthermore, the control system is bounded, implying the compactness of
the system. The integral in the objective function of the optimization problem, given
by c1I + c2H + 1

2 (c3v2
1 (t) + c4v2

2 (t)), is also convex w.r.t the control set U. This convex-
ity guarantees the existence results for optimal control for the optimal control variables
(v∗1 , v∗2 ).

6.1. Methods

Next to show the optimal solution to the control model (12) and (13), we can apply the
Lagrangian and Hamiltonian methods, described in the equation below

L(I ,H, v1, v2) = c1I + c2H+
1
2
(c3v2

1 (t) + c4v2
2 (t).

To describe the Hamiltonian (H), by utilizing the notation ϑ = (ϑ1, ϑ2, ϑ3, ϑ4, ϑ5, ϑ6)
and y = (y1, y2, y3, y4, y5, y6), thus

H(x, v , ϑ) = L(x, v) + ϑZ(x, v),
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where
Z1 = bN− ϕIS

N − ϕqHS
N − η0S ,

Z2 = ϕIS
N + ϕqHS

N − (χ + η0)E ,

Z3 = χξE − (ϑa + ϑ1)I − (η0 + η1)− v1(t)I(t),

Z4 = χ(1− ξ)E − (η0 + η2)A,

Z5 = ϑaI − ϑϑH− η0H− v2(t)H(t),

Z6 = ϑ1I + ϑϑH− η0R+ v1(t)I(t) + v2(t)H(t),

(18)

Thus we apply the Pontryagin Maximum Principle [50,51] to the Hamiltonian in order
to determine the optimal solution. According to this principle, if (x∗, v∗) is an optimal
solution, then there must exist a function ϑ �:

dx
dt

=
∂H
∂ϑ

, 0 =
∂H
∂u

,

ϑ(t)
′
= −∂H

∂x
.

H(t, x∗, v∗, ϑ)∂x = maxv1,v2,v3,v4∈[0,1]H(x∗(t), v1, v2ϑ(t)); (19)

with
ϑ(t f ) = 0, (20)

The principles outlined in Equation (19) are utilized to determine the adjoint system
(adjoint variables) and optimal control variables. Based on these principles, the following
result can be obtained.

Theorem 6. Suppose S∗, E∗, I∗, A∗, H∗, and R∗ represent the optimal state solutions for the
system, obtained using the combined optimal control variables (v∗1 , v∗2 ) that were derived through
the numerical solution of the optimality system. The optimal control problem is defined by the
objective function (12) and the control system (13). Then ∃ adjoint variables ϑ1(t), ϑ2(t), ϑ3(t),
and ϑ4(t), ϑ5(t), ϑ6(t) satisfy

ϑ
′
1(t) = −A1 + (ϑ2 − ϑ1)ϕI∗ + (ϑ2 − ϑ1)ϕqH∗ − η0ϑ1,

ϑ
′
2(t) = −A2 + (ϑ4 − ϑ2)ϕN∗ + (χ + η0)ϑ2 − ϑ1v∗1 − ϑ3ξ,

ϑ
′
3(t) = −A3 + (ϑ2 − ϑ1)ϕS∗ + (ϑ5 − ϑ3)ϑa + (ϑ6 − ϑ3)ϑ1 + (ϑ6 − ϑ3)v1(t)− v1ϑ3, (21)

ϑ
′
4(t) = −A4 + (v2 − u0)ϑ4,

ϑ5
′(t) = −A5 − (ϑ2 − ϑ1)ϕqS∗ + (ϑ6 − ϑ5)ϑϑ − (u0 + v2)ϑ5,

ϑ6
′(t) = −A6 + u0ϑ6,

with boundary conditions.
Additionally, the optimal control parameters v1(t) and v2(t) are obtained through numerical

solutions of the optimality problem and are presented below.

v∗1 (t) = max{min{ (ϑ6 − ϑ3)I∗
B1

, 1}, 0}, (22)

v∗2 (t) = max{min{ (ϑ6 − ϑ5)H∗
B2

, 1}, 0}. (23)

Proof. The adjoint problem described by Equation (21) is obtained through the uses of the
Pontryagin Maximum Principle given by Equation (19), while the transversal conditions
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arise from ϑ(T) = 0. The set of optimal functions v∗1 , v
′
2 is obtained using ∂H

∂u . In the
following section, we present numerical solutions to the optimality system in order to
provide a clearer understanding for the reader, as opposed to relying solely on analytical
results. The optimality problem is expressed by several components, including the control
problem (13), the adjoint model (21), the boundary (terminal) conditions, and the optimal
control functions. By solving these components numerically, we can gain valuable insights
into the behavior of the system and assess its performance.

6.2. Results and Discussion for Optimal Control

We utilize the Runge–Kutta method of order four to solve the optimal control sys-
tem (13), in order to investigate the effects of self-care and treatment. To find the solution
of the state system (12) with initial conditions in the time interval [0, 50], we employ the
forward Runge–Kutta procedure. Similarly, the backward Runge–Kutta technique is used
to solve the adjoint system (21) in the same interval with the assistance of the transver-
sality condition. Below are the parameters that we used for the simulation: bN = 0.0071;
ϕ = 0.00041; q = 0.0000123; χ = 0.0000123; ξ = 0.0000123; ϑ1 = 0.003907997; ϑa = 0.98;
ϑϑ = 0.0000404720925; q = 0.017816; ρ = 0.00007; and η0 = 0.00997. The weight con-
stants c1, c2, c3, and c4 were chosen based on biological feasibility. Specifically, we set
c1 = 0.6610000, c2 = 0.54450, c3 = 0.0090030, c4 = 0.44440. The results obtained from the
simulations are presented in Figures 4 and 5.

Figures 4 and 5 show the variations in the number of all compartments with and
without control measures implemented.

0 50 100 150

T

0

5

10

15

S
us

ce
pt

ib
le

 P
op

ul
at

io
on

 (
S

)

×105

with control
without control

(a)

0 50 100 150

T

0

50

100

150

200

250

300

350

400

E
xp

os
ed

 P
op

ul
at

io
n 

(E
)

with control
without control

(b)

0 50 100 150

T

0

2

4

6

8

10

12

In
fe

ct
ed

 P
op

ul
at

io
n 

(I
)

with control
without control

(c)

0 50 100 150

T

0

1

2

3

4

5

6

7

8

9

10

A
sy

m
pt

om
at

ic
 P

op
ul

at
io

n 
(A

)

with control
without control

(d)

Figure 4. The visual representations demonstrate the changes in the compartmental population over
time, comparing the scenarios with and without control measures implemented. (a) Susceptible
populace; (b) exposed populace; (c) infected population; (d) asymptomatic population.
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Figure 5. The visual representations demonstrate the changes in the compartmental population over
time, comparing the scenarios with and without control measures implemented. (a) Hospitalized
population; (b) recovered population.

7. Conclusions

The objective of this study is to developed a more realistic mathematical model that
captures the transmission dynamics of the MERS-CoV. This is accomplished by introducing
new parameters for the birth and death rates in the host populace. The threshold number
R0 is a measure used to estimate the potential spread of a disease within a populace, and it
can be calculated from a model to quantify the transmissibility of MERS-CoV. The model is
analyzed using stability theory to identify conditions for local and global stability, and the
most sensitive parameter is determined through a sensitivity analysis of R0. An optimal
control problem is formulated with the goal of minimizing the number of infected persons
and maximizing the number of recoveries in the population. The effectiveness of the
approach is verified through numerical simulations, which demonstrate the stability of
the results.
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Abstract: Various dominance structures have been proposed in the multi-objective optimization
literature. However, a systematic procedure to understand their effect in determining the resulting
optimal set for generic domination principles, besides the standard Pareto-dominance principle,
is lacking. In this paper, we analyze and lay out properties of generalized dominance structures
which help provide insights for resulting optimal solutions. We introduce the concept of the anti-
dominance structure, derived from the chosen dominance structure, to explain how the resulting
non-dominated or optimal set can be identified easily compared to using the dominance structure
directly. The concept allows a unified explanation of optimal solutions for both single- and multi-
objective optimization problems. The anti-dominance structure is applied to analyze respective
optimal solutions for most popularly used static and spatially changing dominance structures. The
theoretical and deductive results of this study can be utilized to create more meaningful dominance
structures for practical problems, understand and identify resulting optimal solutions, and help
develop better test problems and algorithms for multi-objective optimization.

Keywords: dominance principles; multi-objective optimization; evolutionary algorithms

1. Introduction

In a practical multi-objective optimization study, users should have the flexibility in
choosing a dominance structure which would involve objective preferences and priorities
of users. In most evolutionary multi-objective optimization (EMO) studies, a set of Pareto-
optimal solutions are attempted to be found by an evolutionary population-based algorithm
and the choice of a single preferred solution from the Pareto-optimal set is deferred as a post-
optimality decision-making task [1,2]. In the recent past, some exceptions to this principle
have shown that a generic dominance structure can be created with desired preference
information for the resulting EMO to converge to a single preferred Pareto-optimal solution
or to focus to a preferred Pareto-optimal region at the end of the optimization task [3–7].
The practicalities and merits of both approaches from computational and decision-making
points of view can be debated, but if the preference information is easier to obtain, the latter
approach can be appealing from a computational viewpoint.

The EMO and classical optimization literature has proposed a number of alternate
dominance structures for this purpose [8–12], not always motivated by the decision-making
preferences used in the real world, rather from considering interesting geometric construc-
tions aided by their practical significance. However, the literature lacks a systematic study
outlining what properties a generalized dominance structure must have such that an EMO
will end up finding a non-empty optimal solution set with certain desired properties. This
study attempts to fill this gap and answer the following questions. Does any arbitrarily
chosen dominance structure generate a non-empty optimal solution set? For a given domi-
nance structure, how does one identify the resulting optimal solution set for a problem?

Math. Comput. Appl. 2023, 28, 100. https://doi.org/10.3390/mca28050100 https://www.mdpi.com/journal/mca
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If a dominance structure fails to produce an optimal solution, are there ways to modify
it to find the desired non-empty optimal solution set? To have confidence in the derived
principles, do they reveal known properties of the existing dominance structures?

To achieve our goal, we have formalized the concept of an anti-dominance structure,
which is intricately dependent on the chosen dominance structure; however, we argue
that it is more useful than the dominance structure in answering the above questions and
providing a better understanding of the outcome of the chosen dominance structure. In
addition to the conditions for a non-empty optimal solution set, we discover a number of
interesting and useful properties of these structures to determine if the respective optimal
solution set has a single optimum or multiple optima. Contrary to the general belief, it
has been clearly demonstrated here that dominance structures satisfying semi-transitive
properties can lead to an optimal solution set and that a satisfaction of the transitive
property need not be a hard restriction. Although demonstrated using two- and three-
objective problems in this paper, the concepts of this paper are applicable to many-objective
problems as well. Overall, the results of this paper should enable researchers to obtain
a better insight into a direct understanding of generalized dominance structures and the
resulting optimal solution set, which may be useful in achieving various EMO activities,
such as multi-objective test problem generation, efficient algorithm development with a
knowledge of sources of algorithmic inefficiencies in finding the true optimal solution set,
and the design of meaningful generalized dominance structures for effective application.

In the rest of the paper, we discuss the optimality conditions for single-objective
optimization problems in a generalized manner through an inferior structure concept in
Section 2. Based on uni-modal and multi-modal single-objective optimization, the concept
of an anti-inferior structure is introduced so the concept of inferior and anti-inferior (or
anti-dominance) structures can be carried over to multi-objective optimization in Section 3.
Section 4 applies the concept of an anti-dominance structure to explain the working of a
number of existing generalized dominance principles proposed in the literature. Then,
in Section 5, we extend the use of dominance and anti-dominance structures for spatially
changing dominance relationships. Finally, in Section 6, we present the conclusions of
this study.

2. Optimality Principles for Single-Objective Optimization

For a single-objective minimization problem:

Minimize f (x),
Subject to gj(x) ≤ 0, j = 1, 2, . . . , J,

(1)

in which x ∈ Rn is the variable vector, f : Rn → R is the objective function, and gj : Rn → R

is the j-th inequality constraint. A solution is called feasible if all J constraints are satisfied
by the solution. Let us denote the feasible solution set X = {x|gj(x) ≤ 0, ∀j} as the set of
all feasible solutions in the search space and the feasible objective set Z = { f (x)|x ∈ X}. If
a solution is not feasible, it is called an infeasible solution.

To arrive at the definition of the optimal solution for the problem stated above, we
first define the concept of the inferiority solution set ω(x) of a feasible solution x. Every
member of ω(x) is worse than x in terms of the given objective function. To understand the
inferiority set, we first define the inferiority condition between two feasible solutions.

Definition 1 (Single-objective inferiority condition). For a pair of feasible solutions x ∈ X and
y ∈ X, y is inferior to x (or mathematically, x ≺ y) in a single-objective sense if f (x) < f (y).

From this condition, we derive an inferior solution set ω(x), as follows:

Definition 2 (Single-objective inferior set of x). The set of all feasible solutions y ∈ X for which
x ≺ y is defined as the inferior set ω(x) of x ∈ X, and the set of respective objective values is
defined as the inferior objective set Ω(x) = { f (y)|x ≺ y, ∀y ∈ X}.
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For minimization problems, the inferior objective set of x ∈ X can also be written as
follows:

Ω(x) = f (x) + {δ|δ = f (y)− f (x) > 0, ∀y ∈ X}. (2)

The summation is in the Minkowski sense. For a problem, the user can provide a gen-
eralized null inferior structure Ω0 at the origin to define the desired inferiority condition
(Ω0 = {δ|δ > 0}). Note that the definition of Ω0 may not depend on the knowledge of the
feasible objective space Z and can be defined purely based on the desired condition for
a generalized “optimal” solution. The following relationships between Ω(x) and Ω0 can
be written:

Ω(x) ⊂ f (x) + Ω0, (3)

Ω(x) = ( f (x) + Ω0) ∩ Z. (4)

The above inferiority condition respects the following properties:

• Irreflexive property: A solution x is not inferior to itself, that is, x �≺ x.
• Asymmetric property: If x ≺ y, then y �≺ x.
• Transitive property: If x ≺ y and y ≺ z, then x ≺ z.

Graphically, the above inferiority condition can be demonstrated with a sketch of the
objective function on a real line (R), as shown in Figure 1a. In the sketch, Ω(x) represents
the entire green line on the right of f (x), excluding the value of f(x).
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Figure 1. Inferiority and optimality definitions are illustrated for a single-objective problem.

Note that a simple check on Ω(x) is not adequate for defining an optimal solution
appropriately, particularly if there exist multiple optimal solutions to the problem. To
define the optimal solution, we need to define an anti-inferior solution set ω′(x) and its
corresponding anti-inferior objective set Ω′(x) as follows:

Definition 3 (Anti-inferiority condition). For a pair of feasible solutions x ∈ X and y ∈ X, y is
anti-inferior to x in a single-objective sense if f (x) > f (y).

A little thought will lead us to define the anti-inferior solution set ω′(x) = {y|y ≺
x, y ∈ X} and the anti-inferior objective set Ω′(x) = f (x) + {δ|δ = f (y)− f (x) < 0, ∀y ∈ X}.
For the sketch in Figure 1a, the golden line left of f (x) (excluding f (x)) denotes the anti-
inferior objective set. The set Ω′(x) is important in determining the optimal solution, as
there cannot exist any better solution than the optimal solution:

Definition 4 (Single-objective optimality condition). A solution x∗ ∈ X is an (global) optimal
solution in the single-objective sense if its anti-inferior objective set is empty or Ω′(x∗) = ∅.
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For the solution x∗ in Figure 1a, Ω(x∗) = ∅ (there is no feasible objective value left of
f (x∗)). Hence, it is an optimal solution to the problem. This is true for every global optimal
solution. The opposite is also true.

Theorem 1 (Empty anti-inferior set). If x∗ is an (global) optimal solution, its anti-inferior set is
empty, or, Ω′(x∗) = ∅.

The proof is intuitive. The definition and theorem also suggest that at the optimal
solution x∗, Ω(x∗) ∩ Ω′(x∗) = ∅. From the asymmetric property, it is also true that
Ω(x) ∩ Ω′(x) = ∅ for every feasible point x. However, this may not be true at every
feasible point in the search space and still have an existence of an optimal solution x∗ by
satisfying Ω(x∗)∩Ω′(x∗) = ∅. However, if this condition is not met at every feasible point,
an algorithm to find optimal solutions may have difficulties in progressing towards the
optimal region.

Let us now define a null anti-inferior structure at the origin as Ω′
0 = {δ|δ < 0}, so

that Ω′(x) ⊂ f (x) + Ω′
0 and Ω′(x) = ( f (x) + Ω′

0) ∩ Z. It is interesting to note from their
mathematical constructs that Ω′

0 = −Ω0. Because the user has the liberty to choose any
null inferior structure Ω0 for defining certain desired properties of the resulting optimal
solution(s), it is advisable to meet the condition Ω0 ∩Ω′

0 = ∅ to guarantee asymmetric
property everywhere in the search space, irrespective of the nature of Z. This may allow
the smooth operation of an optimization algorithm. However, in some esoteric cases, an
optimal solution still may exist without satisfying this condition with Ω0. This happens
when there exists no feasible solution at the overlapping region of inferior and anti-inferior
structures applied at the optimal solution. This discussion brings us to the following
theorem.

Theorem 2 (Overlapping inferior and anti-inferior sets). For a null inferior structure Ω0 with
non-empty Ω0 ∩Ω′

0, an optimal solution x∗ exists only if ( f (x∗) + (Ω0 ∩Ω′
0)) ∩ Z = f (x∗).

Note that the Definition 4 is also valid for each of the multiple global optimal solutions
if they exist in a problem, as all such optimal solutions have an identical f (x∗) value.
However, for a local optimal solution, the condition x ∈ X needs to be appended with a
local neighborhood restriction of y, Bγ(x) = {y| (‖y− x‖2 ≤ γ) ∧ (y ∈ X)}, around x.

Definition 5 (Single-objective local inferiority condition). For a pair of feasible solutions
x ∈ X and y ∈ Bγ(x), y is local inferior to x (say, x ≺L y) in a single-objective sense if
f (x) < f (y).

Figure 1b marks the respective objective values in the neighborhood of x. It is un-
derstood that y is within a radius of γ around x and has a worse objective value than
x, hence x ≺ y in the local sense. Note that the anti-inferior solution and objective sets
for a local optimal solution can also be defined by restricting the members within the
neighborhood. For brevity, we do not define them here. The irreflexive and asymmetric
properties are still valid for the local inferior structure; however, the transitivity property
may not be satisfied among three feasible solutions (x ∈ X, y ∈ X, and z ∈ X). To have
x ≺L y, the solution y must be in the neighborhood of x, and to have y ≺L z, the solution z

must be in the neighborhood of y; however, these conditions do not require that z must
be in the neighborhood of x. Hence, z may not lie in Bγ(x), and vice versa. Thus, the
transitivity property may not be satisfied for the local inferiority structure. This brings us
to the semi-transitive property for a generic inferiority structure:

• Semi-transitive Property: If x ≺ y and y ≺ z, then z �≺ x.

It is not as strong as the transitive property. This property does not require that the solution
x be better than z, but enforces that z must not be better than x. Clearly, if an inferiority
structure does not satisfy the transitivity property, it must necessarily satisfy the semi-
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transitive property for it to break the inferiority cycle and finally result in an optimal
solution.

Theorem 3 (Nonexistence of optimum). If both transitive and semi-transitive properties are
violated by an inferiority structure, there cannot exist an optimal solution.

Proof. This can be proven by contradiction. Assume that there exists an optimal solution
x∗ and also consider two other feasible solutions y and z, in which y satisfies x∗ ≺ y and z

satisfies y ≺ z. Because neither the transitivity nor semi-transitivity condition is satisfied,
it is possible that x∗ �≺ z and z ≺ x∗, thereby violating the optimality condition stated in
Definition 4.

2.1. Epsilon-Inferiority Conditions

Let us reconsider Equation (2) and generalize it with a non-negative parameter ε
(Equation (2) was defined with ε = 0):

Ω(x, ε) = f (x) + {δ|δ = f (y)− f (x) > ε, ∀x ∈ X, y ∈ X}. (5)

Equation (5) allows a generalization of the inferior objective set with an epsilon-optimality
condition in which a solution y is considered epsilon-inferior to x, if f (x) < f (y) − ε,
allowing a more practice-oriented inferiority definition, as shown in Figure 1c. Writing
Ω in terms of the difference in objective values (δ = f (y)− f (x)), we can define a null
inferior set, Ω0(ε) = {δ|δ > ε}. Thus, Ω(x, ε) ⊂ f (x) + Ω0(ε) in the Minkowski sense.
The defining boundary of the inferior set Ω0(ε) (BΩ = ε in this case) is an important feature
for a user to define the desired inferiority of a solution in the feasible objective set Z. The
boundary of the inferior set can be inclusive (BI

Ω) to the set or exclusive (BE
Ω). Note that the

epsilon-inferiority condition defined in Equation (5) is valid for BE
Ω.

It is interesting to note that the respective anti-inferior objective set is Ω′(x, ε) ⊂
f (x) + Ω′

0(ε), where Ω′
0 = {δ|δ < −ε} is the null anti-inferior set for the epsilon-inferior

condition. In the same manner as before, we notice that Ω′
0(ε) = −Ω0(ε). All solutions

y which have an objective value smaller than ε from f (x) are now epsilon-inferior to
x. The defining boundary of the anti-inferior set is BE

Ω′ = −ε for the epsilon-inferiority
definition. Figure 1c shows that solutions with objective values left of BΩ′E are inferior
to x. By definition, irreflexive, asymmetric, and transitive properties are satisfied by the
epsilon-inferiority structure.

The epsilon-inferiority condition extends the definition of optimality conditions for
problems having multiple optimal solutions. All solutions x which are within ε from the
optimal solution’s objective value f (x∗) are epsilon-optimal. This discussion helps to define
optimality conditions for multi-objective optimization.

3. Optimality Principles for Multi-Objective Optimization

A constrained multi-objective optimization problem having M conflicting objectives, J
inequality constraints, and no equality constraints is formulated as follows:

Minimize f(x) ={ f1(x), f2(x), . . . , fM(x)},
Subject to gj(x) ≤ 0, j = 1, 2, . . . , J.

(6)

The set of feasible solutions satisfying all constraints is denoted with X and the respective
objective vectors constitute the feasible objective set Z. First, we extend and define the
inferiority of a solution over another as follows:

Definition 6 (Multi-objective inferiority condition). For a pair of solutions x ∈ X and y ∈ X,
y is inferior to x in a multi-objective sense if x dominates y (x ≺ y).
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The above requires a suitable definition of dominance. The popularly used Pareto-
dominance condition (≺P) is defined as follows:

Definition 7 (Pareto-dominance (≺P) condition). A solution x ∈ X Pareto-dominates another
solution y ∈ X, if the following two conditions are true: (i) fi(x) ≤ fi(y) for all i = 1, 2, . . . , M,
and (ii) fj(x) < f j(y) for at least one j = 1, 2, . . . , M.

Note that for the single-objective case, M = 1 and the above dominance condition
becomes equivalent to the inferiority condition defined in Definition 1. As with the single-
objective case, the inferior objective set is defined as follows: Ω(x) = {f(y)|x ≺ y, ∀y ∈ X}.
To define the optimality condition (Pareto-optimality condition with ≺P), we need to have
the definition of anti-inferior objective set Ω′(x) = {f(y)|y ≺ x, ∀y ∈ X}, derived from a
generalized dominance structure Ω(x).

It is clear from the above discussion that the dominance concept between two so-
lutions prevalent in multi-objective optimization literature is equivalent to the inferior-
ity concept introduced here for single-objective optimization. Hence, we call Ω(x) and
Ω′(x) sets the dominance and anti-dominance sets of x, respectively, in the context of multi-
objective optimization. Like in the single-objective case, a user can define the null dom-
inance structure Ω0, a bounded M-dimensional set for which origin is not a member for
multi-objective optimization. The resulting dominance set at a point x is then defined as
Ω(x) = (f(x) + Ω0)∩ Z. Clearly, Ω(x) ⊂ f(x) + Ω0. Figure 2 shows a specific dominance
structure and its null structure. The boundary BΩ of Ω0 in the M-dimensional objective
space can be obtained from Ω0. Then, the resulting null anti-dominance structure Ω′

0 can be
determined from Ω0 with a procedure described in Section 3.2 in order to define the respec-
tive generalized optimal solutions for the supplied dominance structure Ω0. Extending the
concept from single-objective optimization, the defined generalized dominance structure
must satisfy irreflexive and asymmetry properties mentioned for the single-objective case
and also the transitivity or semi-transitivity property stated in Theorem 3.

BΩ

’
f2

BΩ

’

Z

’

f(x)+

f(x)+
f1

Ω 0

x

x

0Ω

Ω(  )

Ω(  )
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Figure 2. Relationship between Ω(x) and Ω0. Here, Ω0 and Ω′
0 are non-overlapping.
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Knowing the null anti-dominance structure Ω′
0 = {δ|δ < 0} and defining anti-

dominance objective set Ω′(x) = (f(x) + Ω′
0)∩ Z, an optimal solution for a multi-objective

optimization problem can be defined as follows:

Definition 8 (Multi-objective optimality condition). A solution x∗ ∈ X is optimal in the
multi-objective sense with a generalized dominance structure Ω0 at the origin if there does not exist
any feasible solution in the anti-inferior objective set, or Ω′(x∗) = ∅.

The resulting objective vector f∗ lies in the optimal set Z∗. Note that the above
definition can result in multiple optimal solutions. In fact, if the optimal solution x∗,i of
the single-objective constrained optimization problem with the i-th objective function is
different from (x∗,j) that of j-th objective function, then x∗,i �≺ x∗,j and x∗,j �≺ x∗,i can both
occur. Both solutions then become optimal solutions to the multi-objective optimization
problem. Besides these individual optimal solutions, many other compromise solutions,
trading off the objectives, may exist in the feasible solution set. For the Pareto-dominance
structure (≺P) with Ω0 = RM

+ \ {0}, the respective optimal solutions are called Pareto-
optimal solutions (xP) and the set is referred to as the Pareto-optimal set. The respective
set of objective vectors (set Z∗,P) is called to constitute a Pareto-optimal front (PF), in the
parlance of the EMO literature.

As with Theorem 1 for the single-objective case, the following is also true:

Theorem 4 (Empty anti-dominance set for multi-objective optimization). If x∗ is an optimal
solution, its anti-inferior objective set is empty, or, Ω′(x∗) = ∅.

Although it is advisable to construct a dominance structure Ω0 such that Ω0 ∩Ω′
0 = ∅

to achieve a smooth progress of an optimization algorithm towards the optimal region, for
some scenarios, an overlapping Ω0 and Ω′

0 structure can also cause an optimal solution
x∗ to exist, particularly when (f(x∗) + (Ω0 ∩Ω′

0)) ∩ Z = f(x∗), meaning that there does
not exist any other feasible objective vector other than the optimal objective vector at the
intersection of dominance and anti-dominance objectives sets constructed at the optimal
solution.

3.1. Defining a Generalized Dominance Structure for Multi-Objective Optimization

The defining boundary for the dominance structure is useful to define a generalized
dominance condition for the multi-objective case. Extending the boundary of the domi-
nance structure Ω0(ε) discussed for epsilon-inferiority condition in Section 2.1, one can de-
fine a boundary Ω0(ε) at the origin to declare the part of the M-dimensional objective space
(with ε-vector) that are dominated (or worse) than the origin, where ε = (ε1, . . . , εM) ∈ RM

+
is the vector of changes in objective values. Figure 3 shows one such generalized dominance
structure (Ω0) at the origin. It implies that, up to a limit of−ε1 change on f1 from the origin,
the origin is inferior to any point with a trade-off (loss/gain) larger than T1. A similar
trade-off of T2 exists for a limit of −ε2 change in f2. Note that the generic Ω0(ε) structure
allows any arbitrary definition of the dominance structure as a function of changes in objec-
tives, compared to the objective-wise settings in the level sets [13] and epsilon-dominance
principles [14]. A redefinition of the dominance structure will create a different set of
optimal solutions than the Pareto-optimal solutions. Hence, such an approach will allow
users to find respective optimal solution set for any chosen dominance structure. However,
before we find the generalized optimal solution set, let us find the relationship between Ω0
and Ω′

0.
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Figure 3. A generalized dominance structure Ω0 and its boundary BΩ.

3.2. Relationship Between Dominance and Anti-Dominance Structures

Every member of the dominance structure Ω0 is dominated by (i.e., worse than) the
origin and every member of anti-dominance structure Ω′

0 dominates (i.e., is better than)
the origin. As indicated for the single-objective case, the two sets are related by a simple
relation: Ω′

0 = −Ω0. The following theorem states that this is a universal property, even
for the multi-objective case.

Theorem 5 (Relationship between dominance and anti-dominance structures). For any null
dominance set Ω0, its null anti-dominance structures Ω′

0 = −Ω0.

Proof. Let us consider Figure 4 for a proof with a generic dominance structure (Ω0) defined
at the origin (point O). Let us consider a generic point A at d ∈ Ω0 from O. Let us now
construct a point B at d′ = −d from O. Now, we construct the dominance structure Ω0 at B
(shown in shaded region), as if B is the new origin. Then, the original origin (point O) is
now at d location from the new origin (B). Because d is inside the set Ω0, the new origin B
dominates the original origin O. This is true for every d, and thus Ω′

0 can be constructed
with negative vectors of every member of Ω0.
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Figure 4. Illustration of anti-dominance structure Ω′
0.

Corollary 1. For any dominance structure Ω0 with a defining boundary BΩ, the defining boundary
of the anti-dominance structure BΩ′ = −BΩ.

As with the single-objective case, we now discuss the properties that a generalized
dominance (GD) structure (Ω0) must have:

• Irreflexive property: Ω0 (and its boundary BΩ) must exclude the 0-vector (origin)
from its set.

• Asymmetric property: Ω0 ∩Ω′
0 = ∅ (recommended, as discussed in the paragraph

before Theorem 2).
• Transitive property: This requires a chain of Ω0 consideration and requires further

discussion (provided in Section 3.2.1).

The first two properties indicate that a GD structure can have an inclusive boundary
with points on the boundary BI

Ω being inferior to the origin or an exclusive boundary on
which the points are not inferior to the origin.

The above also indicates the following corollary is true, as in multi-objective objective
space, overlapping solutions between Ω0 and Ω′

0 can arise from the boundary (BI
Ω) of the

chosen dominance structure:

Corollary 2. For M > 1, if Ω0 ∪Ω′
0 = RM\{0}, no optimal solution exists.

The clause indicates that boundary BΩ must be included in both Ω0 and Ω′
0. Because

this contradicts Ω0 ∩Ω′
0 = ∅, the corollary is true. For M = 1, the clause is true only when

BI
Ω = BI

Ω′ = 0 (origin). Because the definition of Ω0 excludes the origin, the corollary may
not be true for M = 1.
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Corollary 3. If Ω0 ∪ Ω′
0 = RM\(BΩ ∪ BΩ′ ∪ {0}), the exclusive boundaries must be equal

(that is, BE
Ω = BE

Ω′ ) and all optimal solutions must lie on BΩ passing through one of the optimal
solutions.

The above theorem is valid for the exclusive boundary GDs. The weighted-sum domi-
nance structure (Figure 9d) satisfies the above condition and forces all optimal solutions to
lie on the boundary plane BE

Ω(x∗) having a normal vector (w) and passing through any of
the optimal solutions x∗. Another GD structure is shown in Figure 5.

Figure 5. A dominance structure satisfying Corollary 3.

3.2.1. Transitive and Semi-Transitive Properties

It has been previously mentioned that the generalized dominance structure Ω0 having
irreflexive, asymmetric, and semi-transitive properties can produce a non-empty optimal
solution set, contrary to the general belief that a transitive property is a must. Let us first
demonstrate this fact graphically with the generalized dominance structure considered
in Figure 3. We observe from Figure 6 that when a dominated or an inferior point y is
chosen from ΩGD

0 at x and another point z is chosen from ΩGD
0 at y, x may not dominate

z, in general. This violates the transitive property, but we observe from the figure that
this specific dominance structure satisfies the semi-transitive property in that z does not
dominate x, as z does not lie inside the Ω′(x) set. Thus, an important task is to determine
the true nature of the effective dominance structure when intermediate points such as y are
allowed in the optimization process.
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Figure 6. ΩGD
0 is not transitive but follows the semi-transitive property.

For a population-based optimization algorithm, such as evolutionary multi-objective
optimization (EMO) [1,2], the set of non-dominated population members (which are not
dominated by any other population member) is determined by comparing every population
member with every other for dominance. Thus, in an EMO population, if all three solutions
(x, y, and z) exist, z will not be in the same non-dominated set with x due to the presence of
y as a catalyst in the population. This may not be possible for a point-based multi-objective
optimization approach, which works mostly by comparing two competing solutions at
every iteration. If we continue the chain of dominance structure on the specific problem in
Figure 3, we observe that with the presence of catalyst solutions, the effective dominant
structure of x becomes a cone, shown in Figure 7, which has the transitive property [13].

This example illustrates how a semi-transitive dominance (STD) structure can exhibit
an effective transitive dominance (ETD) structure in the presence of a population of catalyst
solutions, such as solution y. This is an important distinction between population-based
and point-based multi-objective optimization algorithms, allowing EMO researchers and
practitioners to consider a more relaxed dominance structures to suit their practical needs.
This concept leads to the following theorem.
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Figure 7. Repeated application of semi-transitive Ω0 creates a transitive dominance condition Ωcone
0 .

Theorem 6 (Semi-transitive and effective transitive dominance structure relation). For a
semi-transitive dominance structure having Ω0 ∩ Ω′

0 = ∅, its effective transitive dominance
structure also follows the same principle: ΩETD

0 ∩Ω′ETD
0 = ∅.

Proof. Consider three points x, y, and z in Figure 6. The semi-transitive property indicates
that x ≺GD y, and y ≺GD z, but z �≺GD x. The final property indicates that z cannot lie
in Ω′GD

0 of x. Clearly, y ∈ ΩETD
0 and z ∈ ΩETD

0 of x, as the ETD structure is the collection
of all such dominated points, thereby yielding x ≺ETD z. If z must lie in Ω′ETD

0 as well, it
means that there exists a chain of points starting with z, making z ≺GD y′ and y′ ≺GD x.
Because each and every point y′ which is dominated by z is also a member of ΩETD

0 (by
semi-transitive property of GD structure), y′ �≺GD x. Hence, the chain breaks, and z cannot
be a member of both ΩETD

0 and Ω′ETD
0 .

3.2.2. Further Illustration of Semi-Transitive Property

Let us define a circle-dominance structure Ωcircle
0 at the origin indicating the region

inside (and not on) the blue circle, which is dominated by the origin, as shown in Figure 8.
The origin is at 5π/4 radian from the positive f1-axis set at the center of the circle. Its
anti-dominance structure Ω′

0 is shown in golden color. Clearly, Ωcircle
0 ∩Ω′circle

0 = ∅. Thus,
this circle dominance structure is expected to produce a non-empty optimal solution set.
However, to understand the exact nature of the optimal solution set, we notice that the
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above circle dominance structure is semi-transitive. An analysis reveals that the effec-
tive transitive dominance (ETD) structure is a region above the −45deg line at the origin:
ΩETD,circle

0 = {f(ε)| f1(ε) + f2(ε) > 0}, shown in the figure. The respective anti-dominance
structure is Ω′ETD,circle

0 = {f(ε)| f1(ε) + f2(ε) < 0}. A careful thought reveals that the ETD
structure is identical to the weighted-sum dominance structure with equal weight to each
objective and according to Theorem 6, the respective ETD and anti-ETD structures are also
non-overlapping. Thus, although we wanted to establish a circle-dominance concept to find
respective optimal points, an EMO will effectively establish a weighted-sum dominance
structure with equal weight to find the optimal points. Thus, ΩETD,circle

0 = Ωcone
0 with equal

weights.

Ω0
’

Ω0

Ω0
’

f1

2

0

ETD

ETD

f

Ω

O

Figure 8. A user-specified circle dominance Ωcircle
0 results in weighted-sum dominance as an effective

transitive dominance structure.

For semi-transitive dominance structures, the results (both theoretical and experimen-
tal) of this paper extend to their effective transitive dominance structures as well.

3.3. Commonly Used Dominance Structures

Figure 9 shows Ω0 for a number of commonly used dominance structures in the litera-
ture and presents their respective Ω′

0 set for two-objective problems. They are extendable
to higher dimensions as well.

First, the Pareto-dominance structure (ΩP
0 = {ε| εi ≥ 0, ∀i ∧ ε �= 0}), in which the

origin dominates all points in its first quadrant (for two objectives) without itself, is shown
in Figure 9a. Its respective Ω′P

0 = −ΩP
0 = {ε| εi ≤ 0, ∀i ∧ ε �= 0} is, by definition, the third

quadrant without the origin. Because ΩP
0 ∪Ω′P

0 ⊂ RM\{0} (second and fourth quadrants
are not in the set ΩP

0 ∪Ω′P
0 , hence the subset symbol ⊂), the optimal solution set is likely to

have multiple optimal points.
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Figure 9. Commonly used dominance structures. In each case, Ω0 ∩Ω′
0 = ∅. For Figure 9b,d, the

boundary is exclusive, whereas in the other two the boundary is inclusive.

Second, the weak dominance structure (Ωweak
0 = {ε| εi > 0, ∀i}), in which a point

dominates all points in the interior of its first quadrant (for two objectives), is shown in
Figure 9b. Its respective Ω′weak

0 = −Ωweak
0 = {ε| εi < 0, ∀i} is the interior of the third

quadrant.
Next, Ωcone

0 and its respective Ω′cone
0 of the commonly used cone dominance

structure [13,15] are shown in Figure 9c. Note that for a wider cone structure (cone angle
more than 180 degrees for two objectives), the asymmetric property is violated, meaning
Ωcone

0 ∩Ω′cone
0 �= ∅. Such a structure will result in an empty optimal solution set.

For the weighted-sum approach, Ωwt
0 = {ε| ∑M

i=1 wiεi > 0}, the resulting Ω′wt
0 =

{ε| ∑M
i=1 wiεi < 0} and is shown Figure 9d. Here, BE

Ω′ = BE
Ω. According to Corollary 3,

the optimal point(s) must lie on the hyperplane boundary BE
Ω passing through one of the

optimal solutions.
We discuss a few more existing generalized dominance structures in Section 4, but

next we discuss an important matter of identifying the generalized optimal solution set for
a given generalized dominance structure.

3.4. Identifying Generalized Non-Dominated Set

For a given Ω0 structure, a member of the generalized non-dominated (GND) set in a
finite population of objective vectors P is defined as follows:

Definition 9 (Generalized non-dominated set). A feasible objective vector f in a finite set P is a
member of the generalized non-dominated set PGND ⊂ P with a null GD structure Ω0 if no other
member of P lies in the anti-dominance set at f, or z �∈ (f + Ω′

0), ∀z ∈ P.

Let us reconsider Figure 10 with a GD structure with four members in set P: points O,
A, B, and C. The above definition can be used to identify if the point O is a non-dominated
point in P. There can be two approaches for checking it. First, the Ω0 set can be translated
to every other feasible point in P, such as A, B and C, and check if O lies on the respective
Ω0 set. With three other points in P, three translations of Ω0 are needed. As is clear from
Figure 10, point O does not lie in any of the Ω0 sets of three population members. Only
at the end of three checks, we know that O is a non-dominated point in P. The second
approach can be executed with the anti-dominance structure and the set Ω′

0 can be put
only on O and check whether any of the other population members lies on the respective
Ω′

0 set. It is observed that none of the points (A, B, or C) lie in Ω′
0, meaning that point O

is a non-dominated point in P. Because the latter involves a single translation of the Ω′
0

set, rather than translating Ω0 multiple times, the second approach is a computationally
faster non-domination check approach [16]. In this regard, the creation of Ω′

0 from a given
Ω0 becomes an important task for non-domination check. On the same account, it is also
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useful for non-dominated sorting-based algorithms, such as the NSGA series [16–18]. The
above discussion also results in the following theorem.

Figure 10. The set Ω0 needs to be applied many times to identify a GND point, but Ω0
′ needs to be

applied once at point O to identify if it is on the GND set.

Theorem 7 (Identical optimal solution sets). For two identical Ω0 (or, two identical Ω′
0 sets),

the respective optimal solution sets are identical.

Proof. Because for a given Ω0, Ω′
0 is unique and the non-domination check is performed

with Ω′
0, if the resulting Ω′

0 for two dominance principles are identical, the resulting
optimal solution sets will also be identical.

3.5. Identifying Generalized Optimal Solution Set

If Ω0 satisfies all three properties (irreflexive, asymmetric and transitive or semi-
transitive), then there will exist a non-empty optimal solution set. Ω′

0 can be used directly
with the following theorem to identify an optimal point:

Theorem 8 (Generalized optimal solution set). A feasible point x is optimal with respect to a
generalized dominance structure Ω0 if (f(x) + Ω′

0) ∩ Z = ∅.

Proof. Because there does not exist any feasible objective vector in the anti-dominance set
of x in the entire feasible search space Z, there is no solution to dominate (in the sense of
Ω0) it. Hence, x is an optimal point.

The above theorem can be used to achieve the following tasks computationally or
theoretically.

1. First, it can be used to test if an objective vector f is a potential optimal point, as
discussed above, but instead of restricting the check in a finite sampled set P, every
feasible point from the search space must be considered. Although it is a computa-
tionally challenging task, the concept can be used theoretically or in a geometry-based
checking procedure.

2. Second, Ω′
0 can be used to identify the entire optimal solution set for a given feasible

structure Z. This task will be useful for studies involving test problems and requires
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an identification of the exact optimal objective set (Z∗) from Z for a given dominance
structure. The theoretical procedure is to identify Ω′

0 set for every point in Z system-
atically and by repeating the test only to Ω′

0 members in a nested manner. This will
allow a faster computational procedure to identify the optimal solution set.

3. Third, knowing one or more optimal points, Ω0 can help identify further optimal
points quickly by eliminating the dominated solutions from its Ω0 set and narrowing
down the search to find further optimal points. However, in such a task, often the
relevant boundary points of Z can be tested for their optimality. Starting with extreme
boundary points of Z, Ω′

0 can immediately verify if the point is a member of the
optimal solution set. If yes, the test can continue to the neighboring extreme boundary
point, and so on. If no, the test will identify the points in the Ω′

0 set that dominate the
extreme point and a new test can be executed on members of the Ω′

0 set.

Clearly, Ω′
0 enables a faster way to identify the optimal solution set than Ω0, simply

because of the former’s ability to identify points that dominate the current point under con-
sideration, thereby not only allowing to determine if the current point is an optimal point
but also narrowing down the search for further optimal points. For the generalized domi-
nance structure (Ωcone

0 ) shown in the inset of Figure 11, the resulting Z∗,cone is determined
for a hypothetical Z, shown in the figure. The Z∗,P according to the Pareto-dominance
principle is the entire line 1–10, whereas the Z∗,cone consists of line segments 2–4, 6–7, and
9–10. For the extreme boundary point 1, Ω′

0 is not empty, as shown by the overlap of Z

and Ω′
0 at point 1. Thus, point 1 cannot be an optimal point.

Ω′
0 also helps to identify the boundary region (line segments between 1 and 10) which

must be tested next. Because the relevant boundary in this problem comes from piece-wise
linear segments and a cone-dominance structure is used, we restrict our testing only to
extreme points of the line segments. By testing point 2 with Ω′

0, it is clear that Ω′
0 = ∅.

Thus, point 2 is a member of the optimal solution set. This can continue systematically to
identify the entire optimal solution set (line segments 2–4, 6–7, and 9–10). Cone-dominance
brings in useful properties, such as, finding proper Pareto-optimal solutions [15], finding
the partial preferred Pareto set [1], and helping to eliminate dominant resistant solutions in
a population, thereby enabling NSGA-II-like algorithms to solve many-objective problems
well [19].

The set Ω0 at any feasible point f can also be used to identify a special scenario:

Theorem 9 (Singleton optimal objective vector). If Z− (f(x∗) + Ω0) = {f(x∗)}, then the
dominance structure Ω0 produces a single optimal objective vector (f(x∗)) for the problem.

Proof. The condition signifies that x∗ dominates every point in Z and thus, no member of
Z dominates x∗. Hence, it is the only optimal point.

Corollary 4 (Singleton solution). If the condition in the above theorem is satisfied by a unique
solution x∗, then x∗ is the only strictly optimal solution in the search space.

The single-objective optimality condition satisfies the above condition and results
in a singleton global optimal objective value. If the weighted-sum dominance structure,
demonstrated in Figure 9d, satisfies the above condition for a unique solution x, it is the
singleton optimal point for the problem [15]. Figure 12 illustrates one such example.

The following generic properties of dominance structures are also useful for identifying
optimal solution sets [13].
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Figure 12. An illustration of cone-dominance structure supporting Theorem 9.

Theorem 10. If Ω(1)
0 is a subset of Ω(2)

0 , then the resulting optimal solution set Z∗,(2) is a subset
of Z∗,(1).
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Proof. Because Ω(1)
0 ⊂ Ω(2)

0 , Ω′(1)
0 ⊂ Ω′(2)

0 . Thus, every member of Ω′(1)
0 that dominates

xalso exists in Ω′(2)
0 and dominates x. Moreover, there can be additional members of Ω′(2)

0
that dominate x. Hence, the optimal solution set Z∗,(2) is a subset of Z∗,(1).

Two corollaries follow from this theorem.

Corollary 5. For any ΩGD
0 ⊂ ΩP

0 , Z∗,P ⊂ Z∗,GD.

The above corollary means that any dominance structure that is weaker than the
Pareto-dominance will include originally dominated points as optimal points, thereby
causing a larger optimal solution set. An example is when Ω0 = Ωweak

0 . The Pareto-optimal
set is a subset of the weakly Pareto-optimal set.

Corollary 6. For any ΩP
0 ⊂ ΩGD

0 , Z∗,GD ⊂ Z∗,P.

The above indicates that any dominance structure that is stronger than the Pareto-
dominance structure may not indicate some Pareto-optimal points as optimal, thereby
having a reduced number of optimal solutions. An example is when Ω0 = Ωcone

0 (with an
obtuse angle). The cone-optimal set Z∗,cone is a subset of Pareto-optimal set Z∗,P.

3.6. Theoretical and Practical Optimal Sets

In addition to identifying the theoretical optimal solution set by the above procedure,
there is a practical aspect which we discuss next. For practical reasons, one can define a
generalized dominance structure that has an overlapping dominated and anti-dominance
sets having Ω0 ∩ Ω′

0 �= ∅. For such a structure, no theoretical optimal point exists.
However, the use of such a dominance structure can still produce artificial optimal points
with a multi-objective optimization algorithm due to certain algorithmic inaccuracies and
an often-used implementational adjustment. We illustrate these aspects with the epsilon-
dominance structure [20].

Epsilon-dominance was proposed to obtain Pareto-optimal solutions with a certain
pre-specified (εi) difference in the i-th objective values, even in continuous search space
problems. The epsilon-dominance structure is defined as follows:

Definition 10 (Epsilon-Dominance). A feasible solution x ∈ X epsilon-dominates (The original
study [20] defined with a product term). Furthermore, notice that this definition is different from
epsilon-inferior structure defined in Section 2.1. another feasible solution y ∈ X, if fi(x) ≤
fi(y) + εi for each i = 1, . . . , M.

The respective Ω0 and Ω′
0 sets are shown in Figure 13a in blue and golden shaded

regions, respectively. It is clear that Ω0 ∩Ω′
0 �= ∅, having a small overlapping rectangular

region around the point O. Thus, there does not exist a theoretical optimal solution set for
this dominance structure. However, an EMO algorithm may still find optimized solutions
using this dominance structure but, due to search inefficiencies associated in the algorithm,
run for a finite number of solution evaluations. In other occasions, additional implementa-
tional changes are forcibly introduced to find a discrete set of optimized solutions with at
least εi difference in the i-th objective between any two optimized solutions.
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Figure 13. Ωeps
0 does not produce any theoretical optimal point due to the overlap between Ω0 and

Ω′
0, although in practice it may produce an artificial optimized solution set.

We discuss these ideas, as they can be generically used with some other GD structures.

3.6.1. Search Inefficiency

For a point (say, x) close to the optimal set, Ω′
0 at x indicates the set of points that GD-

dominates x. However, if this objective space is relatively small or is difficult to discover
by an algorithm’s search operators, the point x may still be declared as an optimal point.
Consider point 8 in Figure 11. It is not an optimal point based on Ωcone

0 , due to the existence
of a tiny objective space (region 8–9–11). If a multi-objective optimization algorithm fails to
find any point in this tiny objective region which would dominate point 8, point 8 will be
wrongly declared as an optimal point.

3.6.2. Compatibility of Dominance Structure with Discreteness in Search Space

Artificial optimal points may also emerge if the search space is discrete, causing certain
critical points to stay non-dominated due to unavailability of other points in the feasible
search space to dominate them. Figure 13b shows two scenarios with epsilon-dominance
structure with εi = 0.1 for i = 1, 2 to find optimal points for a discrete search space problem
on a linear Pareto-optimal front ( fi ∈ [0, 1] for i = 1, 2). In the first scenario (the main part
of the figure), each objective value comes at an interval of 1/9. The epsilon-dominance
structure finds 10 optimal points, each of whose Ω′

0 is empty, as shown in the figure.
Each discrete point clears the Ω′

0 region for other discrete points to constitute 10 optimal
points. The second scenario (shown in the inlet figure) has a finer discreteness ( fi values
are available at an interval of 1/19). The inlet figure shows that now no optimal point is
discovered, as for every discrete point on the boundary of Z, there are a few points in its
Ω′

0 set, making it dominated. This example illustrates that despite the non-existence of
any optimal solution, a correct combination of the discreteness of the search space and the
chosen dominance structure may allow a non-empty optimized solution set to be found.

3.6.3. Implementation of Adjusted Dominance Principle

The overlapping dominant structure can be modified before using it in an EMO
algorithm so that non-overlapping Ω0 and Ω′

0 sets are achieved to produce a non-empty
optimal solution set in a problem. For example, the epsilon-dominance structure can be
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modified by removing the overlapping region between Ω0 and Ω′
0, as follows and as

illustrated in Figure 14a:

Ω0 ← Ω0\(Ω0 ∩Ω′
0), (7)

Ω′
0 ← Ω′

0\(Ω0 ∩Ω′
0). (8)

The above operations guarantee that adjusted sets are non-overlapping: ΩAdj
0 ∩Ω′Adj

0 = ∅.
Figure 14a identifies the same 10 optimal solutions as in Figure 13b with the above adjusted
dominance structure for the coarse search space (interval of 1/9). However, when a
finer search space (interval of 1/19) is used, all 20 discrete optimal points are found
with the same epsilon vector (εi = 0.1). The non-overlapping property of the adjusted
dominance structure discovers a non-empty optimal set, but it seems that the number
of optimal solutions cannot be controlled directly by setting the ε-vector. The following
implementational change fixes this issue.

Figure 14. Adjusted epsilon-dominance structure can produce an optimal solution set.

3.6.4. Implementation of Grid Dominance Principle

Another approach adopted by EMO researchers is the use of a fixed grid structure in
the objective space with size εi along the i-th objective axis [21–23]. Every objective vector f

is now replaced with its grid vector (the lower left corner point of the grid in which f lies).
In the grid-dominance structure, a Pareto-dominance structure is applied with grid vector
of points, and not with the points themselves. If two points in the same grid result in the
same grid vector, then the one closer (in the Euclidean sense) to the grid vector dominates
the other, as shown in Figure 15a. Note that the resulting dominance and anti-dominance
sets are non-overlapping, or Ωgrid

0 ∩Ω′grid
0 = ∅. This change in the dominance structure

produces a non-empty optimal solution set with well-distributed points. Figure 15b shows
that irrespective of the discreteness in the search space, the same number of optimal points
are obtained for both levels of discreteness in the search space (interval of 1/9 and 1/19).
Because the same epsilon-vector (εi = 0.1) is used in the dominance structure, the final
outcomes are identical for both scenarios. Despite the existence of more discrete Pareto-
optimal solutions in the search space, the ε-vector keeps the cardinality of the optimal set
checked.
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Figure 15. Grids are fixed in objective space. Ωgrid
0 can produce a well-distributed set of optimal

points.

These algorithmic and implementational adjustments of a generalized dominance
structure may produce a different outcome than their Pareto-dominance structure. A
proper analysis of the derived Ω′

0 for the chosen Ω0 structure may reveal the expected
outcome from an EMO run. Moreover, such a thought process is expected to reveal a
better understanding of relationships between Ω0 and Ω′

0 and allow new and innovative
dominance structures and new algorithmic implementations to be used for different types
of problems.

4. Other Existing Dominance Structures

Next, we consider a few other existing dominance structures from the EMO literature
and attempt to reveal their properties based on the above fundamental principles of
generalized dominance structures. Visual descriptions of the boundary for the dominated
objective space (Ω0) of some of these dominance structures were presented in [9].

4.1. α-Dominance Structure

The α-dominance structure [12] was proposed in 2001 and is identical to the cone-
dominance structure, described in Figure 9c.

4.2. Cone-Epsilon Dominance Structure

The cone-epsilon dominance structure [24] uses the grid-based epsilon-dominance con-
cept, discussed in Section 3.6.4, but instead of distance-based dominance for points within
the occupying grid, it uses an acute cone dominance principle, as shown in Figure 16a.
Clearly, Ωcone-e

0 ∩Ω′cone-e
0 �= ∅, thereby producing no theoretical optimal solution. However,

an adjusted dominance principle (shown in Figure 16b), discussed in Section 3.6.3, can be
implemented to find a set of optimal solutions.
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Figure 16. Cone-epsilon dominance.

4.3. CN and CN-Alpha Dominance Structures

The CN-dominance structure is shown in Figure 17a. Clearly, ΩCN
0 ∩Ω′CN

0 �= ∅, mak-
ing no theoretical optimal solution. The adjusted Ω′CN

0 ← Ω′CN
0 \(ΩCN

0 ∩Ω′CN
0 ) structure

will produce a set of CN-optimal solutions and is equivalent to the adjusted epsilon-
dominance structure (shown in Figure 17b), discussed in Section 3.6.3.
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Figure 17. CN domination.

4.4. CN-α Domination Structure

The CN-α dominance structure uses the cone dominance structure with a predefined
cone in the vicinity (within ε-vector), as shown in Figure 18a. The overlap between ΩCN-α

0
and Ω′CN-α

0 exists. To find an optimal solution set, the adjusted anti-dominance structure
(Figure 18b) can be used.
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4.5. Nonlinear Dominance Structure (NLAD)

A nonlinear dominance structure was proposed in [25]. It uses a cubic dominance
boundary to define the dominated region (Figure 19). For certain cubic parameters, a non-
overlapping Ω′NLAD

0 can be formulated and used to find the respective optimal solution set.
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Ω
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Figure 19. NLAD dominance.

Other nonlinear dominance definitions exist that combine objectives in a nonlinear
manner φ(f). They impose a dominance structure which prefers solutions having a small
value of φ [26,27] and other structures that simply map every objective into a nonlin-
ear function φi( fi) and check Pareto-dominance based on φi, such as CDAS-dominance
structure [28].

4.6. D-Dominance Structure

The D-dominance structure was defined in [29] and was based on the PBI metric,
shown in Figure 20:

Definition 11 (D-dominance). A solution x ∈ X D-dominates another solution y ∈ X, if
d1(x) + d2(f(y)− f(x)) cot β < d1(y).
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In the figure, the clause in the definition refers to OA < OB. The distances d1 and d2
are along and orthogonal directions of a weight vector w from a reference point (usually,
the ideal point), as shown in Figure 20. It is similar to the edge-rotated cone-dominance
structures [30,31], except in more than two-objective problems, the dominated region is con-
ical, rather than prismatic. For a pair of solutions x and y, the authors defined a condition
for which x is better and also a condition for which y is better and if both conditions are
not satisfied, then both solutions are non-dominated according to D-dominance structure.
In some sense, the dominated and anti-dominance sets can be defined from the definition,
making this study one of the precursors of the anti-dominance concept introduced in
this study.

Figure 20. D-dominance.

4.7. Strength Dominance Relationship (SDR) Structure

For the reference vector-based optimization, [9] proposed a new dominance structure
in which points associated with the reference vector are compared with the sum of objective
functions:

Definition 12 (SDR-dominance). A solution x ∈ X SDR-dominates another solution y ∈ X if{
∑M

i=1 fi(x) < ∑M
i=1 fi(y), for ∠(f(x), f(y)) ≤ θ;

∑M
i=1 fi(x)

∠(f(x),f(y))
θ < ∑M

i=1 fi(y), otherwise.

However, when an associated point is compared with an unassociated point, angles
between the points are considered, resulting in a dominance structure ΩSDR

0 shown in
Figure 21. If the entire objective space is checked for SDR-dominance structure, the null
anti-dominance structure Ω′

0 can be constructed from Ω0, as shown in the figure. Clearly,
they are non-overlapping sets with no common points on boundaries of these sets and are
expected to produce a set of optimal solutions.
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Figure 21. SDR domination.

4.8. (1− k)-Dominance Structure

For two solutions x and y, three quantities are first computed [8]: (i) nb(x, y), count of
number of objectives in which x is better than y, (ii) ne(x, y), count of number of objectives
in which x is identical to y, and (iii) nw(x, y), count of number of objectives in which x is
worse than y, which is not directly used in the definition, but nw = M− nb − ne.

Definition 13. A solution x ∈ X (1− k)-dominates another solution y ∈ X if (i) ne(x, y) < M,
and (ii) nb(x, y) ≥ M−ne(x,y)

k+1 .

For k = 0, (1− k)-dominance becomes Pareto-dominance, but for k > 1, it results in
a reduced optimal solution set. Figures 22 and 23 show Ω0 and Ω′

0 for a three-objective
case having k = 1 with ne = 1 and ne = 0, respectively. Both sets are non-overlapping in
both cases.

Figure 22. (1− k)-dominance structure with M = 3, k = 1, and ne = 1.
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Figure 23. (1− k)-dominance structure with M = 3, k = 1, and ne = 0.

This dominance is also known as the fuzzy-dominance structure. Its effect becomes
prominent for more than two objectives.

4.9. L-Dominance Structure

Borrowing the idea from the above (1− k)-dominance structure, ref. [32] proposed
the L-dominance structure:

Definition 14 (L-Dominance). A solution x L-dominates another solution yif (i) nb(x, y) >
nw(x, y) and (ii) ‖f(x)‖ < ‖f(y)‖.

Normalization of objectives is performed before computing the above checks. L-
dominance causes more solutions to be dominated than the Pareto-dominance mainly
due to the first condition, hence L-dominance is likely to cause a reduced L-optimal set
compared to the Pareto-optimal set. The contribution of the second condition in defining
the dominance structure is to emphasize optimal solutions closer to the ideal point.

4.10. (M− 1)-Generalized Pareto-Dominance Structure

Following the concept of cone-dominance structure, ref. [33] proposed a cone which
does not extend it along one of the chosen objective axes (say, the k-th one). Thereafter,
they suggested to use M different GPD cones, each with a different k, to determine the
overall non-dominated set. The concept of (M− 1)-GPD is similar to the cone-dominance
described before.

5. Spatially Dependent Ω0 Structure

The above discussions are applicable to static dominance structures in which the same
dominance structure is applicable at every point in the feasible objective space. How-
ever, multi-objective optimization researchers have developed other dominance structures,
which change with the location of f in the objective space [34,35]. A few such dominance
structures are reference vector (RV)-based dominance, such as achievement scalariza-
tion function (ASF)-based dominance structure [36], PBI metric-based dominance [37],
LHiFD [10], w-dominance [38], and location-based dominance, such as angle-dominance
structures [39,40]. Some of these structures are applied to a number of pre-defined RVs
in the objective space and each RV is expected to produce a single optimal solution. We
attempt to explain here how our proposed anti-dominance structure concept can be used
to identify respective optimal solution(s).
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5.1. ASF-Based Dominance Structure

Consider the ASF approach [36] first, in which the minimization of the following
scalarizing function produces a weakly Pareto-optimal point:

Minimize ASF(x) = maxM
i=1

fi(x)−zr
i

wi
,

subject to x ∈ X.
(9)

The reference vector w and reference point zr are fixed in the objective space, as shown in
Figure 24. Because points above or below the reference vector w have different dominance
principles, theoretically, Ω0 and Ω′

0 sets vary from point to point and also depend on the
chosen RV. However, considering the contour of ASF function, we can perform a mapping of
f-vector onto the RV line, marked as the w line in Figure 24. Thereafter, we can define a Ω0
(resulting in a Ω′

0) on w-vector, as follows. For a point A, its mapped point a on w-vector is
first found. All objective vectors that are mapped above a (away from zr) on w-line belong
to point A’s Ω0 set. Similarly, all points that are mapped below (near zr) belong to Ω′

0 at
A, thereby applying the proposed dominated and anti-dominance structure definitions
along the RV line. A little thought will reveal that the respective objective vectors of Ω′

0
set will come from the region marked in golden color in the objective space, meaning any
point in the golden region ASF-dominates point A. These adjusted and mapped dominated
and anti-dominance sets are non-overlapping to each other and when applied to the entire
feasible Z, will result in a single optimal point, marked with a red point, according to
Theorem 9.

PO point

f1

f2

rz

Ω’Α

rz

C
D

ΩΑ

A
B

C
D

ww

A

B
a a

Figure 24. ASF dominance.

Other reference point-based dominance structures, such as g-dominance [41], r-
dominance [42], p-dominance [43], and ar-dominance [44] can also be analyzed using
the above concept.

5.2. θ-Dominance or PBI-Dominance Structure

A similar adjusted and mapped dominance structure can also be applied to the PBI
metric-based dominance structure [11], as shown in Figure 25. The PBI metric uses a
user-specified parameter θ, which is equal to tan(γ) (γ is half of the cone angle) to create
a penalty function to combine perpendicular and parallel distances along the w-line. It
is clear that point A PBI-dominates B, which again PBI-dominates C. The region that
dominates point A is marked in golden color. The ΩA created at mapped point A contains
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mapped points B and C and the respective Ω′
A represents all points from the golden region,

thereby following the principle of PBI-based dominance structure.

f1γ=        (θ) tan

f2

PO point

γ

−1

γ

γ

C
B

A
A

B

z

w
Ω

r

Α

Ω’Α
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w

C

d
2d1

a
a

Figure 25. PBI dominance.

5.3. Angle-Dominance Structure

Instead of the objective values, angles (αi, i = 1, . . . , M) from M anchor points on
objective axes can be computed for any f-vector by extending the nadir point by k times
(>1) and locating its coordinates on the objective axes. The angle-dominance [39] is then
defined as follows:

Definition 15 (Angle-dominance). A solution x ∈ X angle-dominates another solution y ∈ X if
αi(x) ≤ αi(y) for all i = 1, 2, . . . , M and αj(x) < αj(y) for at least one j = 1, 2, . . . , M.

As can be seen from Figure 26, it is similar to the cone-dominance principle, except that
the cone depends on the point x. To determine the optimal set, f-vectors can be converted
to α-vectors, as shown in Figure 26 and a Pareto-dominance structure can be applied on the
angle space.

Figure 26. Angle-dominance structure can be converted to angle-space, on which Pareto-dominance
can be applied.

Besides the above positionally defined dominance structures in the objective space,
dominance structures that depend on a given sample of points, such as, ranking
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dominance [45,46], and dominance structures that do not use objective vectors and are
restricted to variable space relationships, are difficult to analyze to have a comprehensive
insight on resulting optimal solution set; however, certain innovative mapping techniques,
following the ones proposed above, may be derived in such cases.

6. Conclusions

This study has introduced a concept of anti-dominance structure for a chosen static
dominance structure by extending the optimality conditions in a single-objective problem
to multi-modal problems and then to multi-objective problems. It has been shown that the
anti-dominance structure can be useful for identifying the respective non-dominated set in
a finite population or perceiving the true optimal solution set in two and three-objective
problems. Importantly, the study has brought out certain fundamental principles which
every practical dominance structure should have for it to generate a non-empty optimal
solution set. However, suitable adjustments to generic dominance structures have been
proposed to make them more practically applicable.

To demonstrate their use, dominated and anti-dominance structures have been iden-
tified for most popular dominance structures in EMO and classical multi-objective opti-
mization literature. In some situations, an adjustment with mapped objective vectors has
been proposed to analyze the resulting optimal solutions. The reasons for their necessary
adjustment have been presented in the light of the anti-dominance structures.

It has been shown that with a population-based multi-objective optimization algo-
rithm (such as an EMO algorithm), transitivity of the dominance structure need not be a
strict requirement. Semi-transitivity property of dominance structures breaks the cycle
of domination among three solutions and allows a transitive relationship to be implicitly
formed from the existence of intermediate population members. In this sense, population-
based evolutionary multi-objective optimization algorithms have an edge for using more
flexible dominated structures possessing semi-transitive properties.

Although not used in this paper, the anti-inferiority concept can be extended to find
special and practically relevant (but non-optimal) solutions by developing generalized
inferiority conditions for single-objective optimization. An extension of the anti-dominance
structure for constrained dominance principles [47,48] will motivate further development
of optimal constrained multi-objective optimization algorithms. There is a practical need for
developing a GUI-based system in which the user can provide any desired dominance struc-
ture and the system creates the respective adjusted anti-dominance structure automatically
and runs an EMO algorithm with it. This paper has also revealed that for semi-transitive
dominance structures, optimization algorithms must find appropriate catalyst intermediate
solutions to establish the non-dominated structure. Whether EMO algorithms will be
slower in converging to the resulting optimal solution set compared to algorithms which
use transitive dominance structures will be an interesting future study. In this regard, it
will be interesting to find if there can ever exist a theoretical dominance structure that
may cause a domination cycle with four or more solutions. Finally, providing preference
elicitation through a number of pair-wise comparisons of objective vectors and creating
a meaningful generalized dominance structure from them through the use of developed
principles of this paper, would make another interesting practically significant study.
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Abstract: An innovative cascade predictor is presented in this study to forecast the state of recurrent
neural networks (RNNs) with delayed output. This cascade predictor is a chain-structured observer, as
opposed to the conventional single observer, and is made up of several sub-observers that individually
estimate the state of the neurons at various periods. This new cascade predictor is more useful than
the conventional single observer in predicting neural network states when the output delay is
arbitrarily large but known. In contrast to examining the stability of error systems solely employing
the Lyapunov–Krasovskii functional (LKF), several new global asymptotic stability standards are
obtained by combining the application of the Linear Parameter Varying (LPV) approach, LKF and
convex principle. Finally, a series of numerical simulations verify the efficacy of the obtained results.

Keywords: cascade predictor; recurrent neural networks; delayed output; linear parameter varying
approach

1. Introduction

Over the past decades, delayed recurrent neural networks were successfully applied
in many fields, including pattern recognition, image processing, and combinatorial op-
timization [1–5], and the dynamic behaviors of RNNs have quickly become a research
hotspot. At present, many stability results about the dynamic behavior of RNNs have
been obtained [6–12]. Meanwhile, the state information of neurons is very important,
because it may participate in the design process of control law, such as feedback con-
trol. Therefore, neural networks’ state estimation research is of significant importance in
practical applications.

The issue of state estimation for RNNs is currently of great interest to many scholars,
and many significant results have been made [13–20]. In [13], the authors discussed the
state estimation problem for delayed RNNs and obtained delay-independent results using
LMI technique. The state estimation problem for Markov jump RNNs with distributed
delays was discussed in [14]; the authors proposed an effective LMI technique to solve the
problem of neuron states’ estimation. The state estimation problem of uncertain RNNs was
addressed via a robust state estimator in [15], and it was shown that the suggested robust
estimator can be ensured by the feasibility of solving a set of LMIs. An interesting delay
partition method was proposed in [17]; the authors used this method to investigate the
state estimation problem for delayed static neural networks. In [20], the authors solved the
memristive neural networks’ (MNNs) state estimation problem by using a novel full-order
state observer. It is well known that the effectiveness of the designed observer is usually
related to system parameters and the size of various time delays. For example, in most
of the works mentioned above, the output states do not have a time delay or the size of
the delay is limited to a small range, and a full-order observer is designed based on the
measured output. In [21], during the identification of RNN models, a subspace encoder
is co-estimated to reconstruct the state of the model from past input and output data.
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However, such an explicit form of an observer might run into difficulties if the state delay
is not known, and needs an excessively large number of past input–output samples.

For arbitrary large known output delays, it is still an open problem to construct an
effective observer to predict the current accurate states of the neuron. In fact, the proposal
of the cascade predictor in the field of nonlinear systems has attracted much attention from
researchers in recent years. In [22], the authors first proposed a cascade predictor for a
class of triangular nonlinear systems that have only output delay; the cascade predictor is
made up of a series of subsystems, and each subsystem has a similar structure. However,
due to the complexity of the structure of the cascade predictor in [22], the observation
estimation is not easily implemented by computer simulation. Since then, the cascade
predictor has been studied and a series of results have been achieved on such triangular
nonlinear systems with only output delay [23–25]. It can be observed that the cascade
predictor has a promising application value in the state estimation of delay systems. It will
be a challenge to incorporate cascade predictors into the state estimation of RNNs, and new
state estimation approaches may arise.

Inspired by the arguments mentioned above, we focus on the state estimation of
delayed RNNs based on cascade predictors. The designed cascade predictor is composed of
a limited amount of subsystems; each subsystem estimates the neuron states at different de-
lays, and the last subsystem estimates the current actual states of the neuron. The following
are the paper’s primary innovative ideas.

(1) This paper theoretically describes the reason why a single observer cannot observe
the neuron state information when the output delay is large enough. Then, inspired
by [22,23], we design a new cascade predictor for estimating the state of RNNs with state
and output delays. To our best knowledge, this is the first time that a cascade predictor has
been applied to state estimation in neural networks.

(2) For the activation function, most papers usually use the traditional Lipschitz
condition hypothesis; however, for the activation with the large Lipschitz constant, it
may indirectly lead to the conservatism of the design process and theoretical results.
To overcome these difficulties, a new reformulated Lipschitz property of the activation
function, which is the outcome of applying the LPV approach to the Lipschitz condition, is
provided. This property is motivated by [26,27] and can lessen conservatism in the observer
design process.

(3) In contrast to [14,16,20], the case when the output states have an arbitrarily large
delay is explored, and the state prediction problem of delayed RNNs is resolved based on
the measured output. A set of LMIs may be used to calculate the observer gain, and new
adequate requirements for the global asymptotic stability of each error system are obtained
based on the LKF, the LMI technique, and the convex principle.

The structure of this paper is as follows. The RNNs model and its associated assump-
tions are introduced in Section 2 of this article. The main results of this paper are presented
in Section 3. The efficiency of the results obtained is demonstrated in Section 4 by numerical
simulations. Section 5 closes with a general conclusion.

Notations: R, Z denote, respectively, the set of real numbers and the positive integer
set. Rn represents the n dimensional Euclidean space with the Euclidean norm ‖ · ‖. Rn×m

denotes the set of all n× m real matrices. The superscript “T” and “− 1” represent the
transpose and inverse of a matrix. X > Y (X < Y) means that X−Y is a positive (negative)
matrix. ‖A‖ denotes the operator norm of matrix A, i.e., A = (aij), ‖A‖ =

√
λmax(AT A),

where λmax(A) is the largest eigenvalue of A. diag{· · ·} represents a block diagonal matrix.
The symbol “ ∗ ” denotes the symmetric term of the matrix. Let τ > 0, C

(
[−τ, 0]; Rn)

denote the family of continuous functions ψ from [−τ, 0] to Rn. I stands for an identity
matrix with the proper dimensions.
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2. Problem Formulation

Consider the following RNNs with delayed output [28,29]:⎧⎪⎨⎪⎩
ẋ(t) = −Ax(t) + W0 f

(
x(t)

)
+ W1 f

(
x(t− hx)

)
,

y(t) = Cx(t− hy),

x(s) = φ(s), s ∈ [−τ, 0],

(1)

where x(t) = [x1(t), · · · , xn(t)]T ∈ Rn denotes the state vector, A = diag{a1, · · · , an}
is a diagonal matrix with ai > 0, W0 and W1 represent the connection weight matrices,
f (x(t)) = [ f1(x1(t)), · · · , fn(xn(t))]T ∈ Rn denotes the activation function, C is a output
matrix, y(t) represents the measured output. hx, hy denote the known discrete delays, and
φ(s) ∈ C

(
[−τ, 0]; Rn) is an initial condition, τ = max{hx, hy}.

The primary objective of this research is to construct an effective observer that can
accurately predict the neuron states when the output delay hy is arbitrarily large yet known.
Next, for a subsequent analysis, the following corresponding lemmas are given.

Assumption 1. The activation function fi(·) is bounded and satisfies

| fi(u)− fi(v)| ≤ li|u− v|, ∀u, v ∈ R, (2)

where fi(0) = 0 and li > 0 is a Lipschitz constant.

Some conservative conditions in the observer design may result from the Lipschitz
condition of the activation function in (2). However, it is generally known that LPV
approach can reduce the Lipschitz condition’s conservatism, making it useful for designing
observers for nonlinear systems with a large Lipschitz constant [26,27]. Here, we will
extend this method to RNNs (1) and derive the subsequent lemma.

Lemma 1. The activation function f (·) has the following two properties that are equal:

(1) Lipschitz property: fi(·) is li -Lipschitz, i.e.,

| fi(xi)− fi(yi)| ≤ li|xi − yi|, ∀xi, yi ∈ R. (3)

(2) Lipschitz property reformulated: for all i = 1, · · ·, n, there exist functions ψii(t) : R → R
and constants γii, γii, such that

f (x)− f (y) =
n

∑
i=1

ψii(t)Hii(x− y), ∀x, y ∈ Rn (4)

with γii ≤ ψii(t) ≤ γii, where Hii = en(i)eT
n (i) and en(i) = [0, . . . ,

i−th︷︸︸︷
1 , . . . , 0]T ∈ Rn.

The proofs of Lemma 1 are similar to Lemma 6 and Lemma 7 in [26]; we omit it here.
Note that ψii(t) in (4) is expressed as follows

ψii(t) =

{
fi(xi)− fi(yi)

xi−yi
, xi �= yi,

0, xi = yi.
(5)

Remark 1. Compared with the traditional global Lipschitz condition hypothesis of activation
functions in [13–16,30], the reformulation (4) in Lemma 1 offers a best less conservative Lipschitz
condition and deals with the activation functions f (x) with the best accuracy. For instance,
for f (x) = [tanh(x1) +

1
2 sin(x1), 1

2 cos(x2) +
1
2 (|x2 + 1| − |x2 − 1|)]T, we have γ11 = − 1

2 ,
γ11 = 3

2 , γ22 = − 1
2 , γ22 = 3

2 . For g(x) = [ 3
4 (|x1 + 1| − |x1 − 1|), 3

2 tanh(x2)]
T, we have

γ11 = 0, γ11 = 3
2 , γ22 = 0 , γ22 = 3

2 . If we use the global Lipschitz condition in Assumption 1,
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we can only obtain | fi(xi)− fi(yi)| ≤ 3
2 |xi − yi| and |gi(xi)− gi(yi)| ≤ 3

2 |xi − yi|, i = 1, 2, we
cannot accurately distinguish between f (x) and g(x), and the related properties of f (x) and g(x)
cannot be effectively utilized.

Lemma 2 (Finsler’s Lemma [31]). For x ∈ Rn, M ∈ Rn×n is a symmetric matrix, and the
matrix G ∈ Rm×n, such that rank(G ) < n. The subsequent properties are equivalent:

(1) xT Mx < 0, ∀x ∈ Rn/G x = 0, x �= 0,

(2) G⊥
T

MG⊥ < 0,

where G⊥ is a right orthogonal complement of G .

Lemma 3 (Moon’s Inequality [32]). Assume that x(s) ∈ Rna , y(s) ∈ Rnb are defined on the
interval Ω and Y ∈ Rna×nb . Then, for matrices D ∈ Rna×na , T ∈ Rna×nb and Z ∈ Rnb×nb ,
the following holds:

−2
∫

Ω
xT(s)Yy(s)ds ≤

∫
Ω

[
x(s)
y(s)

]T

·
[

D T −Y
∗ Z

]
·
[

x(s)
y(s)

]
ds,

where [
D T
∗ Z

]
> 0.

3. Results

3.1. Single Observer

In this section, we will employ a full-order observer to handle the matter of RNNs’
state estimation. First, in order to accurately estimate the RNNs’ state information, we will
design the full-order observer based on the measured delayed output as

˙̂x(t) = −Ax̂(t) + W0 f
(
x̂(t)

)
+ W1 f

(
x̂(t− hx)

)
+ L

(
Cx̂(t− hy)− y(t)

)
, (6)

where x̂(t) is an estimation of the state x(t) of (1). Then, by defining the estimation error
e(t) = x̂(t)− x(t), we can obtain the error system given, as follows

ė(t) =− Ae(t) + W0Δ f (t) + W1Δ f (t− hx) + LCe(t− hy), (7)

where Δ f (t) = f
(
x̂(t)

)
− f

(
x(t)

)
. Due to Lemma 1, there are functions ψii(t) and ψhx

ii (t),
such that ⎧⎪⎪⎪⎨⎪⎪⎪⎩

Δ f (t) =
n

∑
i=1

ψii(t)Hiie(t),

Δ f (t− hx) =
n

∑
i=1

ψhx
ii (t)Hiie(t− hx),

(8)

where ψhx
ii (t) = ψii(t− hx).

Define the time-varying matrices Ψ(t) = diag{ψ11(t), · · · , ψnn(t)}, Ψhx (t) = diag
{ψhx

11(t), · · · , ψhx
nn(t)}, and bounded convex setHn, where the vertex set ofHn is defined as

VHn =
[
φ = diag[φ11, φ22, · · · , φnn] ∈ Rn×n|φii ∈ {γii, γii}

]
. (9)
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It is obvious that time-varying matrix parameters Ψ(t) and Ψhx (t) belong to the bounded
convex setHn. Now, we define the following matrices:⎧⎪⎪⎪⎨⎪⎪⎪⎩

A
(
Ψ(t)

)
= −A + W0

n

∑
i=1

ψii(t)Hii = −A + W0Ψ(t),

B
(
Ψhx (t)

)
= W1

n

∑
i=1

ψhx
ii (t)Hii = W1Ψhx (t),

(10)

then, by using (10), the LPV error system (7) can be reconstructed as

ė(t) = A
(
Ψ(t)

)
e(t) + B

(
Ψhx (t)

)
e(t− hx) + LCe(t− hy). (11)

The sufficient condition for the global asymptotic stability of error system (11) is presented
in the following theorem.

Theorem 1. The error system (11) is globally asymptotically stable for all hy ∈ [0, h∗], if there exist
matrices P > 0, Q > 0, M > 0, Z > 0, S > 0, a matrix R, and positive scalars ρi > 0, i = 1, 2,
such that for ∀Ψ, Ψhx ∈ VHn , the following LMIs hold with observer gain L = P−1R:⎡⎢⎢⎢⎢⎣

Ω1 PB(Ψhx ) +
Z
hx

RC + S
h∗ hxAT(Ψ)P h∗AT(Ψ)P

∗ Ω2 0 hxBT(Ψhx )P h∗BT(Ψhx )P
∗ ∗ Ω3 hxCT RT h∗CT RT

∗ ∗ ∗ Ω4 0
∗ ∗ ∗ ∗ Ω5

⎤⎥⎥⎥⎥⎦ < 0, (12)

where Ω1 = PA(Ψ) + AT(Ψ)P + Q + M − Z
hx
− S

h∗ , Ω2 = −Q − Z
hx

, Ω3 = −M − S
h∗ ,

Ω4 = −hx(2ρ1P− ρ2
1Z) and Ω5 = −h∗(2ρ2P− ρ2

2S).

Proof. Consider the following Lyapunov–Krasovskii functions as

V(t) =eT(t)Pe(t) +
∫ t

t−hx
eT(τ)Qe(τ)dτ +

∫ t

t−hy
eT(τ)Me(τ)dτ

+
∫ 0

−hx

∫ t

t+β
ėT(τ)Zė(τ)dτdβ +

∫ 0

−hy

∫ t

t+β
ėT(τ)Sė(τ)dτdβ, (13)

and the time derivative of V(t) can be evaluated as

V̇(t) =2eT(t)Pė(t) + eT(t)Qe(t)− eT(t− hx)Qe(t− hx) + eT(t)Me(t)

− eT(t− hy)Me(t− hy) + hxėT(t)Zė(t)−
∫ t

t−hx
ėT(τ)Zė(τ)dτ

+ hyėT(t)Sė(t)−
∫ t

t−hy
ėT(τ)Sė(τ)dτ. (14)

Applying the Jensen’s Inequality [33], we can obtain

−
∫ t

t−hx
ėT(τ)Zė(τ)dτ ≤ − 1

hx
ΔeT

hx
(t)ZΔehx (t), (15)

−
∫ t

t−hy
ėT(τ)Sė(τ)dτ ≤ − 1

hy
ΔeT

hy
(t)SΔehy(t), (16)

where Δehx (t) = e(t)− e(t− hx), Δehy(t) = e(t)− e(t− hy).
By using (14)–(16), V̇(t) satisfies

V̇(t) ≤ χT(t)Υ(hx, hy)χ(t), (17)
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where

χ(t) = [ėT(t), eT(t), eT(t− hx), eT(t− hy), ΔeT
hx
(t), ΔeT

hy
(t)]T ,

Υ(hx, hy) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

hxZ + hyS P 0 0 0 0
∗ Q + M 0 0 0 0
∗ ∗ −Q 0 0 0
∗ ∗ ∗ −M 0 0
∗ ∗ ∗ ∗ − Z

hx
0

∗ ∗ ∗ ∗ ∗ − S
hy

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Moreover, it follows from the error system (11) and the definition of yhx (t) and yhy(t) that
Γ
(
Ψ(t), Ψhx (t)

)
χ(t) = 0 with

Γ
(
Ψ(t), Ψhx (t)

)
=

⎡⎣ I −A
(
Ψ(t)

)
−B

(
Ψhx (t)

)
−P−1RC 0 0

0 −I I 0 I 0
0 −I 0 I 0 0

⎤⎦.

Therefore, the error system (11) is globally asymptotically stable if, for all Γ
(
Ψ(t),

Ψhx (t)
)
χ(t) = 0 with χ(t) �= 0, there holds χT(t)Υ(hx, hy)χ(t) < 0. Then, according

to Lemma 2 and the convexity principle [34], χT(t)Υ(hx, hy)χ(t) < 0 is equivalent to(
Γ⊥(Ψ, Ψhx )

)TΥ(hx, hy)Γ⊥(Ψ, Ψhx ) < 0, ∀Ψ, Ψhx ∈ VHn , (18)

where Γ⊥(Ψ, Ψhx ) is a right orthogonal complement of Γ(Ψ, Ψhx ) and

Γ⊥(Ψ, Ψhx ) =

⎡⎢⎢⎢⎢⎢⎢⎣

A(Ψ) B(Ψhx ) P−1RC
I 0 0
0 I 0
0 0 I
I −I 0
I 0 −I

⎤⎥⎥⎥⎥⎥⎥⎦. (19)

Further, (18) can be rewritten as⎡⎣PA(Ψ) +AT(Ψ)P + Q + M PB(Ψhx ) RC
∗ −Q 0
∗ ∗ −M

⎤⎦+ hxΠ1ZΠT
1

− 1
hx

Π2ZΠT
2 + hyΠ1SΠT

1 −
1
hy

Π3SΠT
3 < 0, ∀Ψ, Ψhx ∈ VHn , (20)

where Π1 = [A(Ψ),B(Ψhx ), P−1RC]T , Π2 = [I,−I, 0]T and Π3 = [I, 0,−I]T . Since Z > 0
and S > 0, (20) cannot hold when hy is large enough. Therefore, there exists an upper bound

h∗ for hy such that (20) holds when hy ∈ [0, h∗], and
(
Γ⊥(Ψ, Ψhx )

)TΥ(hx, hy)Γ⊥(Ψ, Ψhx ) < 0,
∀Ψ, Ψhx ∈ VHn is a sufficient condition for (18).

By employing a Schur complement [34],
(
Γ⊥(Ψ, Ψhx )

)TΥ(hx, hy)Γ⊥(Ψ, Ψhx ) < 0 with
∀Ψ, Ψhx ∈ VHn is equivalent to⎡⎢⎢⎢⎢⎣

Ω1 PB(Ψhx ) +
Z
hx

RC + S
h∗ hxAT(Ψ)Z h∗AT(Ψ)S

∗ Ω2 0 hxBT(Ψhx )Z h∗BT(Ψhx )S
∗ ∗ Ω3 hxCT RT P−1Z h∗CT RT P−1S
∗ ∗ ∗ −hxZ 0
∗ ∗ ∗ ∗ −h∗S

⎤⎥⎥⎥⎥⎦ < 0, (21)
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with ∀Ψ, Ψhx ∈ VHn , then, multiplying both sides of (21) on the left and on the right
by diag{I, I, I, PZ−1, PS−1} and its transpose, respectively, and using the inequalities
−PZ−1P ≤ −2ρ1P + ρ2

1Z, −PS−1P ≤ −2ρ2P + ρ2
2S, we can deduce that (12) is a suffi-

cient condition for (21). We finish the proof.

Remark 2. Different from the stability analysis of the nonlinear error system in [12,13,15,16,20],
we provide an LPV formulation of the error system for RNNs with Lipschitz activation functions,
which leads us to study the stability of the linear error system (11) by using the convexity principle.
Obviously, our LPV-based approach is a useful tool for the state estimation of RNNs.

Remark 3. It follows from Theorem 1, which depends on the output delay, that the designed full-
order observer (6) cannot predict the current state of RNNs (1) if hy � h∗. This is due to our
inability to choose the appropriate observer gain L to stabilize the error system (11). From the later
numerical simulations, it is clear that this is a drawback of the full-order observer. In addition,
the conditions shown in (12) can be checked against a set of fixed values by standard LMI routines
and an estimate of h∗ is obtained. The algorithm for finding a feasible solution to (12) is summarized
as follows:
Step 1: Fix the value of h∗ to constant h and make an initial guess for h.
Step 2: Fix the value of ρ1, ρ2 to some constants ρ1, ρ2 and make an initial guess for the values of
ρ1, ρ2.
Step 3: Solve the LMI (12) for L with the fixed values ρ1, ρ2 and h; if a feasible value of L cannot
be computed, return to step 2 to reset the initial values of ρ1 and ρ2; if a feasible value of L can be
computed, return to step 1 and increase the value of h until L cannot be solved.

3.2. Cascade Predictor

If h � h∗, the full-order observer (6) will fail. In this case, cascade predictor design
can be used to solve this problem. Let h =

hy
m , m ∈ Z and define

xi(t) :

⎧⎪⎨⎪⎩
ẋi(t) = −Axi(t) + W0 f (xi(t)) + W1 f (xi(t− hx)), t ∈ [(m− i)h,+∞),

xi(s) = φ(s− (m− i)h), s ∈ [−τ + (m− i)h, (m− i)h],

(22)

where i = 1, 2, · · · , m. Through mathematical analysis, we obtain xi(t) = x(t− hy + i · h) =
xi+1(t − h), i = 1, 2, · · · , m − 1 and xm(t) = x(t). Then, the cascade predictor can be
constructed as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

˙̂x1(t) =− Ax̂1(t) + W0 f
(
x̂1(t)

)
+ W1 f

(
x̂1(t− hx)

)
+ L1

(
Cx̂1(t− h)− y(t)

)
,

˙̂x2(t) =− Ax̂2(t) + W0 f
(
x̂2(t)

)
+ W1 f

(
x̂2(t− hx)

)
+ L2

(
Cx̂2(t− h)− ŷ1(t)

)
,

...
˙̂xm(t) =− Ax̂m(t) + W0 f

(
x̂m(t)

)
+ W1 f

(
x̂m(t− hx)

)
+ Lm

(
Cx̂m(t− h)− ŷm−1(t)

)
,

(23)

where φi(s) ∈ C
(
[−τ1, 0]; Rn) is an initial condition for the subsystem x̂i, i = 1, 2, · · · , m,

τ1 = max{hx, h}, and ŷi(t) = Cxi(t), i = 1, 2, · · · , m − 1. In the cascade predictor (23),
the subsystem x̂i(t) estimates the state xi(t), i = 1, 2, . . . , m− 1, and the subsystem x̂m(t)
estimates the state x(t).

Remark 4. The idea behind the cascade predictor (23) is that regardless of how long the output
delay hy is, we can split it into m small time periods. Then, each sub-observer x̂i(t) in the cascade

predictor estimates the delayed state x(t− hy + i hy
m ), and the last sub-observer x̂m(t) estimates the

current state x(t). Compared with [14–20], which discuss the state estimation of neural networks
with only a small output delay or even no output delay using a full-order observer, the output delay
hy in this paper is arbitrarily large yet known, and, in this sense, this is an advancement in the
study of neural networks’ state estimation.

203



Math. Comput. Appl. 2023, 28, 104

Remark 5. Moreover, the idea of this novel predictor was first proposed in [22], and the authors
used this predictor with a chain structure for a class of triangular nonlinear systems with only the
output delay. In this paper, we will discuss the state estimation problem of RNNs with both the state
delay and output delay using this novel cascade predictor.

Next, define the estimation error ei(t) = x̂i(t)− xi(t), i = 1, 2, · · · , m; then, similar to
(10)–(11), which use the LPV approach, we can obtain the following error systems{

ė1(t) = A
(
Ψ(t)

)
e1(t) + B

(
Ψhx (t)

)
e1(t− hx) + L1Ce1(t− h),

ėj(t) = A
(
Ψ(t)

)
ej(t) + B

(
Ψhx (t)

)
ej(t− hx) + LjCej(t− h)− Ljej−1(t), j = 2, 3, · · · , m.

(24)

Theorem 2. For given output delay hy and scalar m ∈ Z , the error systems (24) are globally
asymptotically stable if there exist matrices Pj > 0, Qj > 0, Mj > 0, Zj > 0, Sj > 0, Xi > 0,
Di > 0, i = 1, 2, · · · , m, matrices Ri, Yi, Ti, i = 1, 2, · · · , m and a positive scalar γ > 0, such that
Li = P−1

i Ri, i = 1, 2, · · · , m and the following LMIs are satisfied:⎡⎢⎢⎣
Ξi −Ti + PiB(Ψhx ) −Yi + RiC γA(Ψ)Pi
∗ −Qi 0 γBT(Ψhx )Pi
∗ ∗ −Mi γCT RT

i
∗ ∗ ∗ −2γPi + hxZi + hSi

⎤⎥⎥⎦ < 0, (25)

with ∀Ψ ∈ VHn , ∀Ψhx ∈ VHn and [
Xi Yi
∗ Si

]
< 0, (26)

[
Di Ti
∗ Zi

]
< 0, (27)

where Ξi = PiA(Ψ) +AT(Ψ)Pi + Ti + TT
i + Yi + YT

i + hxDi + hXi + Qi + Mi.

Proof. The stability of the error systems (24) will be proved gradually:
Step 1: we consider the first error system e1(t) in (24):

ė1(t) = A
(
Ψ(t)

)
e1(t) + B

(
Ψhx (t)

)
e1(t− hx) + L1Ce1(t− h). (28)

Using the Newton–Leibniz formula, we have⎧⎪⎪⎨⎪⎪⎩
e1(t− hx) = e1(t)−

∫ t

t−hx
ė1(τ)dτ,

e1(t− h) = e1(t)−
∫ t

t−h
ė1(τ)dτ,

(29)

then, ė1(t) in (28) can be reconstructed as

ė1(t) =
[
A
(
Ψ(t)

)
+ B

(
Ψhx (t)

)
+ L1C

]
e1(t)−B

(
Ψhx (t)

) ∫ t

t−hx
ė1(τ)dτ − L1C

∫ t

t−h
ė1(τ)dτ. (30)

Constructing the Lyapunov–Krasovskii functions as follows

204



Math. Comput. Appl. 2023, 28, 104

V1(t) =

V11(t)︷ ︸︸ ︷
eT

1 (t)P1e1(t) +

V12(t)︷ ︸︸ ︷∫ t

t−hx
eT

1 (τ)Q1e1(τ)dτ +

V13(t)︷ ︸︸ ︷∫ t

t−h
eT

1 (τ)M1e1(τ)dτ

+

V14(t)︷ ︸︸ ︷∫ 0

−hx

∫ t

t+η
ėT

1 (τ)Z1 ė1(τ)dτdη +

V15(t)︷ ︸︸ ︷∫ 0

−h

∫ t

t+η
ėT

1 (τ)S1 ė1(τ)dτdη . (31)

then, the derivative of V11(t) along (30) is as follows

V̇11(t) =eT
1 (t)

[
P1A

(
Ψ(t)

)
+AT(Ψ(t)

)
P1 + P1B

(
Ψhx (t)

)
+ BT(Ψhx (t)

)
P1 + R1C + CT R1

]
× e1(t)− 2eT

1 (t)P1B
(
Ψhx (t)

) ∫ t

t−hx
ė1(τ)dτ − 2eT

1 (t)R1C
∫ t

t−h
ė1(τ)dτ. (32)

According to Lemma 2 and (26)–(27), we have

−2eT
1 (t)P1B

(
Ψhx (t)

) ∫ t

t−hx
ė1(τ)dτ ≤hxeT

1 (t)D1e1(t) + 2eT
1 (t)

[
T1 − P1B

(
Ψhx (t)

)]
×
[
e1(t)− e1(t− hx)

]
+
∫ t

t−hx
ėT

1 (τ)Z1 ė1(τ)dτ, (33)

−2eT
1 (t)R1C

∫ t

t−h
ė1(τ)dτ ≤heT

1 (t)X1e1(t) + 2eT
1 (t)[Y1 − R1C]

[
e1(t)− e1(t− h)

]
+
∫ t

t−h
ėT

1 (τ)S1 ė1(τ)dτ. (34)

By (32)–(34), V̇11(t) satisfies

V̇11 ≤eT
1 (t)

[
P1A

(
Ψ(t)

)
+AT(Ψ(t)

)
P1 + TT

1 + T1 + YT
1 + Y1 + hxD1 + hX1

]
e1(t)

− 2eT
1 (t)

[
T1 − P1B

(
Ψhx (t)

)]
e1(t− hx)− 2eT

1 (t)
[
Y1 − R1C

]
e1(t− h)

+
∫ t

t−hx
ėT

1 (τ)Z1 ė1(τ)dτ +
∫ t

t−h
ėT

1 (τ)S1 ė1(τ)dτ. (35)

The derivatives of V12(t), V13(t), V14(t) and V15(t) are as follows

V̇12(t) =eT
1 (t)Q1e1(t)− eT

1 (t− hx)Q1e1(t− hx), (36)

V̇13(t) =eT
1 (t)M1e1(t)− eT

1 (t− h)M1e1(t− h), (37)

V̇14(t) =hxėT
1 (t)Z1 ė1(t)−

∫ t

t−hx
ėT

1 (τ)Z1 ė1(τ)dτ, (38)

V̇15(t) =hėT
1 (t)S1 ė1(t)−

∫ t

t−h
ėT

1 (τ)S1 ė1(τ)dτ, (39)

and for arbitrary constant γ > 0, we have

−2γėT
1 (t)P1

[
ė1(t)−A

(
Ψ(t)

)
e1(t)−B

(
Ψhx (t)

)
e1(t− hx)− P−1

1 R1Ce1(t− h)
]
= 0. (40)

Combining (35)–(40), we obtain

V̇1(t) ≤ ξT
1 (t)Ω1ξ1(t), (41)
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where ξ1(t) = [eT
1 (t), eT

1 (t− hx), eT
1 (t− h), ėT

1 (t)]
T and

Ω1 =

⎡⎢⎢⎣
Ξ1 −T1 + P1B

(
Ψhx (t)

)
−Y1 + R1C γA

(
Ψ(t)

)
P1

∗ −Q1 0 γBT(Ψhx (t)
)

P1
∗ ∗ −M1 γCT RT

1
∗ ∗ ∗ −2γP1 + hxZ1 + hS1

⎤⎥⎥⎦.

Due to ∀Ψ ∈ VHn , ∀Ψhx ∈ VHn , according to the convex principle, one obtains

Ω1 < 0, ∀Ψ, Ψhx ∈ VHn , (42)

which leads to V̇1(t) < 0. Then, it follows from (41) that

V̇1(t) ≤ −λmin(−Ω1)ξ
T
1 (t)ξ1(t) ≤ −λmin(−Ω1)eT

1 (t)e1(t), (43)

this indicates that the error system e1(t) is globally asymptotically stable. Obviously,
conditions (25) ensure that Ω1 < 0 holds.

Step j: To recursively prove the stability of the error system ej(t), we assume that
ej−1(t) is globally asymptotically stable. Similar to (28) and using the Newton–Leibniz
formula, ej(t) (j = 2, 3, · · · , m) can be rewritten, as follows

ėj(t) =
[
A
(
Ψ(t)

)
+ B

(
Ψhx (t)

)
+ LjC

]
ej(t)−B

(
Ψhx (t)

) ∫ t

t−hx
ėj(τ)dτ − LjC

∫ t

t−h
ėj(τ)dτ

− LjCej−1(t). (44)

Then, we construct the following Lyapunov–Krasovskill functions

Vj(t) =

Vj1(t)︷ ︸︸ ︷
eT

j (t)Pjej(t) +

Vj2(t)︷ ︸︸ ︷∫ t

t−hx
eT

j (τ)Qjej(τ)dτ +

Vj3(t)︷ ︸︸ ︷∫ t

t−h
eT

j (τ)Mjej(τ)dτ

+

Vj4(t)︷ ︸︸ ︷∫ 0

−hx

∫ t

t+η
ėT

j (τ)Zjėj(τ)dτdη +

Vj5(t)︷ ︸︸ ︷∫ 0

−h

∫ t

t+η
ėT

j (τ)Sjėj(τ)dτdη . (45)

Taking the derivative of Vj1(t) along with (44), we have

V̇j1(t) =eT
j (t)

[
PjA

(
Ψ(t)

)
+AT(Ψ(t)

)
Pj + PjB

(
Ψhx (t)

)
+ BT(Ψhx (t)

)
Pj + RjC + CT Rj

]
×

ej(t)− 2eT
j (t)PjB

(
Ψhx (t)

) ∫ t

t−hx
ėj(τ)dτ − 2eT

j (t)RjC
∫ t

t−h
ėj(τ)dτ

− eT
j (t)RjCej−1(t). (46)

Now, by using Young’s inequality [27], we obtain

−eT
j (t)RjCej−1(t) ≤ ε1eT

j (t)ej(t) +
1
ε1
‖RjC‖2‖ej−1‖2, (47)

with ε1 > 0. Then, similar to (33)–(34) in step 1 and using (46)–(47), we have

V̇j1 ≤eT
j (t)

[
PjA

(
Ψ(t)

)
+AT(Ψ(t)

)
Pj + TT

j + Tj + YT
j + Yj + hxDj + hXj + ε1 I

]
ej(t)

− 2eT
j (t)

[
Tj − PjB

(
Ψhx (t)

)]
ej(t− hx)− 2eT

j (t)[Yj − RjC]ej(t− h)

+
∫ t

t−hx
ėT

j (τ)Zjėj(τ)dτ +
∫ t

t−h
ėT

j (τ)Sjėj(τ)dτ +
1
ε1
‖RjC‖2‖ej−1‖2. (48)
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For arbitrary constants γ > 0 and ε2 > 0, we obtain⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− 2γėT

j (t)Pj
[
ėj(t)−A

(
Ψ(t)

)
ej(t)−B

(
Ψhx (t)

)
ej(t− hx)− P−1

j RjCej(t− h)

+ P−1
j RjCej−1(t)

]
= 0,

− 2γeT
j (t)RjCej−1(t) ≤ ε2eT

j (t)ej(t) +
γ2

ε2
‖RjC‖2‖ej−1‖2.

(49)

Then, combining the derivative of ∑5
i=2 Vji(t) and using (48)–(49), we have

V̇j(t) ≤ ξT
j (t)Ω̂jξ j(t) + (

1
ε1

+
γ2

ε2
)‖RjC‖2‖ej−1‖2, (50)

where ξ j(t) = [eT
j (t), eT

j (t− hx), eT
j (t− h), ėT

j (t)]
T ,

Ω̂j =

⎡⎢⎢⎢⎣
Ξ̂j −Tj + PjB

(
Ψhx (t)

)
−Yj + RjC γA

(
Ψ(t)

)
Pj

∗ −Qj 0 γBT(Ψhx (t)
)

Pj
∗ ∗ −Mj γCT RT

j
∗ ∗ ∗ −2γPj + hxZj + hSj + ε2 I

⎤⎥⎥⎥⎦
and Ξ̂j = PjA

(
Ψ(t)

)
+ AT(Ψ(t)

)
Pj + Tj + TT

j + Yj + YT
j + hxDj + hXj + Qj + Mj + ε1 I.

Similar to Ω1 in step 1, if

Ω̂j < 0, ∀Ψ, Ψhx ∈ VHn (51)

is true, we have

V̇j(t) ≤ −λmin(−Ω̂j)eT
j (t)ej(t) + (

1
ε1

+
γ2

ε2
)‖RjC‖2‖ej−1‖2. (52)

Then, employing the comparison Lemma [35], we can conclude that if ej−1(t) is globally
asymptotically stable, then ej(t) is also globally asymptotically stable.

Furthermore, it not difficult to observe that Ω̂j = Ωj + ε1ΠT
1 Π1 + ε2ΠT

2 Π2, where
Π1 = [I, 0, 0, 0]T , Π2 = [0, 0, 0, I]T , and

Ωj =

⎡⎢⎢⎢⎣
Ξj −Tj + PjB(Ψhx ) −Yj + RjC γA(Ψ)Pj
∗ −Qj 0 γBT(Ψhx )Pj
∗ ∗ −Mj γCT RT

j
∗ ∗ ∗ −2γPj + hxZj + hSj

⎤⎥⎥⎥⎦ < 0.

Since ε1 and ε2 are selected arbitrarily, Ωj < 0 ensures that Ω̂j < 0 holds when ε1 and ε2
are sufficiently small. Finally, it observes that conditions (25) ensure that Ωj < 0 holds. We
finish the proof.

Remark 6. It follows from Theorem 2 that for a given output delay hy, whether the LMI set (25),

(26) and (27) have feasible solutions depends on the size of the parameter h =
hy
m . Obviously, for a

large output delay of hy, a sufficiently large m can ensure that the LMI sets (25), (26) and (27) have
feasible solutions. However, the complexity of the cascade predictor is proportional to m; in other
words, a larger m will reduce the observational performance of the cascade predictor. Therefore, we
should choose a suitable value of m to balance the stability requirement and the complexity limitation
of the cascade predictor.

4. Numerical Simulation

This section provides a series of numerical simulations to demonstrate the efficacy of
our results.
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Let x(t) = [x1(t), x2(t)]T . Consider the RNNs (1) with the following parameters:

A =

[
1 0
0 1

]
, W0 =

[
2.0 −0.1
−5.0 3.0

]
, W1 =

[−1.5 −0.1
−0.2 −2.5

]
, C =

[
3 0.3

0.3 3

]
,

hx = 1, φ(s) = [2, 2]T , f
(
x(t)

)
= [tanh(x1(t)), tanh(x2(t))]T ,

where hy exists if we take the value later. It can be observed from Figure 1 that these RNNs
have complex chaotic behaviors. Then, from Theorem 1, it follows that there is a nonfeasible
solution to the LMI set (12) when h∗ > 0.24. Therefore, when hy ≤ 0.24, we only use the
full-order observer (6). When hy > 0.24, we use the cascade predictor (23).

Figure 1. The phase space trajectory of RNNs (1).

Example 1. For hy = 0.23, assume that the initial conditions of the full-order observer x̂ are
x̂(s) = [−2,−2]T, s ∈ [−1, 0). Then, from Theorem 1, we can obtain feasible solutions:

P =

[
15.9540 0.3889
0.3889 2.3080

]
, L =

[−1.4728 0.1894
1.1641 −2.3357

]
.

The simulation results are shown in Figures 2 and 3. Figure 2 represents the trajectory profiles of
x̂(t) and x(t), which implies the validity of our designed full-order observer (6). Figure 3 represents
the converged trajectory of ‖e(t)‖ = ‖x̂(t)− x(t)‖, which implies the convergence performance of
the full-order observer (6). However, when h = 0.25, it can be observed from Figures 4 and 5 that
the full-order observer cannot accurately estimate the state of the original system and the estimation
error ‖e(t)‖ becomes larger, since h = 0.25 is greater than h∗ = 0.24.

Figure 2. Profile on trajectories of x(t) and x̂(t).
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Figure 3. The estimation error ‖e(t)‖.

Figure 4. The state xi(t) and x̂i(t), i = 1, 2.

Figure 5. The estimation error ‖e(t)‖.

Example 2. This example considers the case hy > 0.24; thus, we only use the cascade predictor (23).
(i) For hy = 0.5, we select m = 5 and h = 0.1 and assume that the initial conditions

of x̂i, i = 1, · · · , 5 are x̂i(s) = [−2,−2]T, s ∈ [−1, 0). Then, from Theorem 2, we obtain
feasible solutions:

Pi =

[
142.1455 −3.8554
−3.8554 16.5776

]
, Li =

[−1.5129 0.1483
1.5729 −2.8071

]
(i = 1, · · · 5).

As illustrated in Figures 6 and 7, the cascade predictor is valid and the estimation error ‖e5(t)‖ =
‖x̂5(t)− x(t)‖ finally converges to 0.

209



Math. Comput. Appl. 2023, 28, 104

Figure 6. Profile on trajectories of x(t) and x̂5(t).

Figure 7. The estimation error ‖e5(t)‖.

(ii) For hy = 1, we select m = 10 and h = 0.1 and assume that the initial conditions
of x̂i, i = 1, · · · , 10 are x̂i(s) = [−1,−1]T, s ∈ [−1, 0). Since the value of h is equal to the
value of h in i), the observer gain Li (i = 1, · · · , 10) can be equal to the observer gain in (i).
Then, from Figures 8 and 9, it is clear that the cascade predictor is valid, and the observer error
‖e10(t)‖ = ‖x̂10(t)− x(t)‖ finally converges to 0.

Figure 8. Profile on trajectories of x(t) and x̂10(t).

210



Math. Comput. Appl. 2023, 28, 104

Figure 9. The estimation error ‖e10(t)‖.

Example 3. This example will further discuss the effect of the size of the output delay on the
convergence of the two predictors. The simulation results are shown in Figures 10–12, and the
influence of m and h on the convergence time is given in Table 1, where “*" denoting the single
observer is not valid (hy > h∗).

From Table 1, we can clearly observe that for both predictors, the output delay is directly
proportional to the convergence time, and the larger the output delay, the longer the convergence
time. In addition, from the experimental results, it can be concluded that, although the cascade
predictor can solve the problem of an arbitrarily large output delay, as hy increases, we will have to
choose more subsystems to transmit the state information, which leads to the accumulation of error
information and increases the cost of observation.

Table 1. The convergence time for two types of predictors by setting observer error ‖e‖ = 0.1.

Predictor\hy hy = 0.1 hy = 0.2 hy = 0.5 hy = 1 hy = 1.5 hy = 2

Convergence time
Simple observer 1.6 8.5 * * * *

Cascade predictor 1.8 (m = 1) 3.6 (m = 2) 9.1 (m = 5) 16.3 (m = 10) 27.4 (m = 15) 31.5 (m = 20)

Figure 10. Convergence of single observer at different delays.
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Figure 11. Convergence of cascade predictor at different delays.

Figure 12. Convergence of cascade predictor at different delays.

5. Conclusions

In this research, we investigate the RNNs’ state estimation by proposing an output-
predicting and LPV approach. Due to the LPV approach, LKF and convex principle, several
new conditions for the global asymptotic stability of the error system have been established.
Compared with the traditional observer in [14–20], the chain-structured cascade predictor
is more useful in the state estimation of neural networks. Different from [12,13,15,16,20],
we use the LPV approach to convert nonlinear error dynamic systems into linear error
systems, which greatly reduces the difficulty of the stability analysis. Finally, a series of
numerical simulations show the effectiveness of the cascade predictor.
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Abstract: The aim of this paper is to analyze the determination of interplanetary trajectories from
Earth to Mars to evaluate the cost of the required impulse magnitudes for an areostationary orbiter
mission design. Such analysis is first conducted by solving the Lambert orbital boundary value
problem and studying the launch and arrival conditions for various date combinations. Then, genetic
algorithms are applied to investigate the minimum-energy transfer orbit. Afterwards, an iterative
procedure is used to determine the heliocentric elliptic transfer orbit that matches at the entry point
of Mars’s sphere of influence with an areocentric hyperbolic orbit imposing specific conditions on
inclination and periapsis radius. Finally, the maneuvers needed to obtain an areostationary orbit are
numerically computed for different objective condition values at the Mars entry point to evaluate an
areostationary preliminary mission cost for further study and characterization. Results show that,
for the dates of the minimum-energy Earth–Mars transfer trajectory, a low value for the maneuvers
to achieve an areostationary orbit is obtained for an arrival hyperbola with the minimum possible
inclination and a capture into an elliptical trajectory with a low periapsis radius and an apoapsis
at the stationary orbit. For a 2026 mission with a TOF of 304 for the minimum-energy Earth–Mars
transfer trajectory, for a capture with a periapsis of 300 km above the Mars surface the value achieved
will be 2.083 km/s.

Keywords: areostationary mission planning; Earth–Mars transfer trajectories; hyperbolic orbit
matching; Lambert problem

1. Introduction

Small relay satellites in areostationary orbit are considered the most efficient candidates
to support the telecommunication needs in the 2020s [1–7]. Areostationary orbiters, like
geostationary satellites for Earth [8,9], can provide continuous access at very high data
rates to remotely supervise a significant population of probes and robotic missions on the
Martian surface. The determination of transfer trajectories from Earth to Mars aimed at
lowering costs in terms of impulses has become a key factor in mission planning, allowing
for larger payloads to be transported at a minimum energy cost.

In this work, we analyze the design of an interplanetary Earth–Mars transfer to reach
the areostationary orbit with the minimum impulsive maneuvers cost. Several authors have
studied the optimization of interplanetary trajectories: in [10,11] transfer trajectories to the
Moon and Jupiter, respectively, passing close to a Lagrangian point, are considered; in [12],
a method is developed to obtain approximate near-optimal low-thrust interplanetary
transfers using solar electric propulsion spacecraft; in [13], the optimization is performed
with a cost function with variable coefficients; in [14], launch constraints are imposed for
the optimization. We derive the heliocentric elliptic transfer characterizing the launch
windows using an heuristic optimization method for determining an optimal time of flight
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(TOF) that minimizes the characteristic energies [15,16]. We will analyze the sensibility of
this parameter in the optimization of impulsive maneuvers.

The first step consists in solving the Lambert problem [17] for various combinations of
departure and arrival dates. Departure characteristic energy and hyperbolic arrival velocity
plots are usually examined to investigate possible transfer windows [18]. We use genetic
algorithms [19] to simultaneously minimize these two key parameters within these launch
windows, comparing their performance.

Then, we match this interplanetary transfer with an entry hyperbola around Mars. The
classic patched conic problem has been used to achieve a continuous trajectory composed
of the trajectory between two planets and the planetocentric trajectory [20–24]. We use
the iterative procedure [25] with imposed conditions on the periapsis distance, the arrival
hyperbolic inclination, and a fixed radius for the Mars sphere of influence (SOI), and
analyze the changes in the B-plane [26] due to the variations in the arrival asymptote
direction. This iterative procedure enables the evaluation of these selected parameters in
order to minimize fuel consumption for planning an areostationary mission. Once the fully
matched trajectory to arrive at Mars is obtained, the maneuvers necessary to capture the
orbiter and to place it in the areostationary orbit are analyzed.

The paper is organized as follows. In Section 2, we describe the dynamical model
of the minimum-energy launch window problem. The determination of the Earth–Mars
transfer trajectory with imposed hyperbolic arrival trajectory conditions is presented in
Section 3. Section 4 describes the maneuvers performed to capture the spacecraft into
an areostationary orbit and the numerical simulations to evaluate these maneuvers for
different conditions. Finally, in Section 5, we briefly summarize the main conclusions.

2. Minimum-Energy Launch Window for Earth–Mars Transfer Trajectories

We first analyze the determination of interplanetary trajectories from Earth to Mars
by minimizing the required energy at Earth departure and Mars arrival. We assume point
mass gravitational forces for Earth and Mars within their respective spheres of influence
and an unperturbed Keplerian orbit around the Sun.

The key parameters commonly used [27,28] to analyze the Earth–Mars mission launch
opportunities are the characteristic energy at departure from Earth, C3 = V2

∞E
, the hyper-

bolic excess velocity to escape from Earth, V∞E , and Mars arrival hyperbolic excess velocity,
V∞M. In order to obtain these two parameters, it is necessary to first solve the Lambert
orbital boundary value problem for the heliocentric spacecraft position, rsS ,

r̈sS = −μS
rsS

r3
sS

, (1)

constrained by two points, P1 and P2, and an elapsed TOF, t2 = t1 + TOF, as illustrated in
Figure 1,

rsS(t1) = rE, (2)

rsS(t2) = rM, (3)

where rE and rM are the heliocentric position vectors for the Earth at t1 and Mars at
t2, respectively.

The solution to the Lambert problem results in an elliptic conic section connecting P1
and P2. We consider the shortcut solution that satisfies the boundary conditions, based on
the iterative procedure, choosing the time transfer function introduced by Lancaster [29] as
parameter for the iteration. The solution results in an elliptic conic section connecting P1
and P2, with departure and arrival velocities, VsS1 and VsS2 , at t1 and t2, respectively.
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For each Earth departure and Mars arrival combination of dates, V∞E and V∞M change
as VsS1 and VsS2 change according to

V∞E = VsS1 −VES1 , (4)

V∞M = VsS2 −VMS2 , (5)

where VES1 and VMS2 are the heliocentric velocity vectors for the Earth at t1 and Mars at
t2, respectively.

Sun

P : Mars at t
2 2

P : Earth at t
1 1

r

r

1

2

Figure 1. Lambert orbital boundary value problem and the heliocentric elliptic trajectory.

To analyze launch and arrival window opportunities, we first focus on data visual-
ization [15,18] of the departure characteristic energy C3 and the hyperbolic arrival velocity
V∞M for various combinations of departure and arrival dates. We use Matlab software avail-
able from [30] to solve the Lambert problem, first obtaining a reduced launch window
for the minimum-energy solution. The porkchop plots [31,32] shown in Figure 2 depict
the contour lines of constant C3 in km2/s2 and V∞M in km/s for the 2019–2029 departure
and the 2020–2030 arrival time frames. It is possible to observe that the launch and arrival
windows that give the minimum values approximately repeat every Mars synodic period
of about 780 days. In more detail, Figure 3a shows the departure characteristic energy and
hyperbolic arrival velocity contour plots for the Earth–Mars transfer covering 27 months,
from 1 July 2019 to 1 November 2021, and Figure 3b presents these plots for the departure
window on July 2020 and the arrival window on February 2021.
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Figure 2. Departure characteristic energy and hyperbolic arrival velocity contour plots for the
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Figure 3. Departure characteristic energy and hyperbolic arrival velocity contour plots for the
Earth–Mars transfer (a) from July 2019 to November 2021 and (b) from July 2020 to February 2021.

Now, we search for the solution minimizing the equation:

C = C3 + V∞M . (6)

The minimum C in Equation (6) tends to give lower values of the impulsive maneuvers
required, first to obtain an Earth escape velocity, and after, at the Mars arriving hyperbolic
orbit, to reduce the hyperbolic excess velocity to capture the probe.

To minimize Equation (6), applied to the reduced windows previously estimated from
porkchop plots, we now use a Matlab optimizer [33] that includes a library dedicated to
genetic algorithms with different implementations of selection and crossover functions
(see [19]). In order to analyze the accuracy of the genetic algorithms when applied to this
problem, we compare the performance of the Remainder and the Stochastic Uniform functions
as selection functions to select the individuals that contribute to the population at the next
generation, and the Heuristic, the Scattered, and the Single point rules as crossover functions
to combine two individuals to form the next generation for populations of 100, 500, and
2000 individuals.

Table 1 summarizes the key results to compare the genetic algorithms performances. It
can be concluded that the considered selection and crossover functions do not significantly
change the results. CPU time depends on the population size, leading to equivalent results.

Moreover, the results in Table 1 are in agreement with the trajectories defined by the
different missions launched in the year 2020. The Mars 2020 mission (EEUU) [34] was
launched on 30 July 2020, and its rover, the Perseverance rover, landed on 18 February
2021, with TOF = 203 days; The Tianwen-1 mission (China) [35] was launched on 23 July
2020 and arrived in Mars on 10 February 2021, with a TOF of 202 days. The Emirates Mars
Mission (UAE) [36] was launched on 19 July 2020, and arrived at the orbit around Mars on
9 February 2021, with a TOF of 205 days.

In order to analyze how a lower TOF impacts V∞E and V∞M , we compare the helio-
centric Earth–Mars optimal transfer orbit with the resulting orbit when a TOF 31 days less
than the optimal minimum-energy trajectory is imposed. We choose a population of 500 in-
dividuals, the Stochastic Uniform function as the selection function, and the Heuristic as the
crossover function. The resulting heliocentric elliptical orbits are illustrated in Figure 4, and
their orbital elements are listed in Table 2. For the optimal minimum-energy orbit with a
TOF of 197 days, departure on 20 July 2020 and arrival on 1 February 2021, we obtain values
of V∞E = 3.6361 km/s and V∞M = 2.7682 km/s. When reducing the TOF to 166 days, de-
parture and arrival dates change to 22 July 2020 and 4 January 2021, respectively, resulting
in a more eccentric orbit, with V∞M = 3.5888 km/s significantly increased.
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Table 1. Simulation scenarios in a launch window in 2020 to compare the genetic algorithm per-
formances minimizing the cost function, C = C3 + V∞M , of the required C3 energy and the arrival
velocity, V∞M .

Pop. Crossover Selection
CPU Departure TOF C3 V∞M C

Time (s) Time (Days) (km2/s2) (km/s)

Departure Date 20 July 2020

100

Heuristic remainder 10.86 01:19:08 196.9397 13.2216 2.7681 15.9897
stoch. unif. 10.36 01:05:27 196.9253 13.2212 2.7685 15.9897

Scattered remainder 10.30 01:04:01 196.9501 13.2213 2.7684 15.9897
stoch. unif. 10.49 01:01:17 196.9281 13.2212 2.7685 15.9897

Single pt remainder 10.14 01:06:02 196.9657 13.2218 2.7679 15.9897
stoch. unif. 10.35 01:14:40 196.9566 13.2217 2.7680 15.9897

500

Heuristic remainder 48.30 01:06:27 196.9288 13.2212 2.7685 15.9897
stoch. unif. 47.86 01:13:05 196.9420 13.2215 2.7682 15.9897

Scattered remainder 48.31 01:12:22 196.9420 13.2215 2.7682 15.9897
stoch. unif. 47.60 01:21:17 196.9537 13.2218 2.7679 15.9897

Single pt remainder 47.32 01:24:10 196.9407 13.2217 2.7681 15.9898
stoch. unif. 47.19 01:16:41 196.9450 13.2216 2.7681 15.9897

2000

Heuristic remainder 188.06 01:04:09 196.9393 13.2214 2.7683 15.9897
stoch. unif. 186.57 01:07:45 196.9332 13.2213 2.7684 15.9897

Scattered remainder 222.98 01:16:41 196.9450 13.2216 2.7681 15.9897
stoch. unif. 229.03 01:10:38 196.9361 13.2214 2.7683 15.9897

Single pt remainder 238.38 01:08:54 196.9343 13.2214 2.7683 15.9897
stoch. unif. 237.49 01:26:54 196.9480 13.2218 2.7679 15.9897

Table 2. Comparison of Earth–Mars optimal transfer heliocentric orbital parameters with respect to
the mean ecliptic and equinox of J2000 for (a) the optimal launch and arrival dates in the window from
1 July 2019 to 1 November 2021 and (b) the launch and arrival dates in the window from 1 July 2019
to 1 November 2021 with the constraint of having 31 days of flight less than the optimal.

Parameter (a) (b)

Departure Date, t1 20 July 2020 01:13:05 22 July 2020 15:20:14
Arrival Date, t2 1 February 2021 4 January 2021
Arrival time 23:49:34 h 15:21:40 h
Semimajor axis, asS (km) 198,312,598.97 202,972,264.04
Eccentricity, esS (unitless) 0.23346 0.25130
Inclination, isS (deg) 1.73626 0.72898
Ascending node long., ΩsS (deg) 297.4399 299.8067
Arg. of the perihelium, ωsS (deg) 359.6131 358.1402
True anomaly, vsS (deg) 0.4652 2.0420
V∞E (km/s) 3.6361 3.7803
V∞M (km/s) 2.7682 3.5888
Time of flight, TOF (days) 196.9420 166.0010
Total cost, C 15.9897 17.8795

For the analysis henceforth, we focus on the optimal orbit for a transference in the
launch window of 2026. We consider the window with the earliest launch date on 1 March
2026 and latest arrival date on 1 November 2027. We consider the same parameters for the
genetic algorithms as considered in the case of the launch window of 2020: a population of
500 individuals, the Stochastic Uniform function as the selection function, and the Heuristic
as crossover function. The obtained trajectory has its launch date on 31 October 2026 and
arrival date on 31 August 2027. Table 3 presents the heliocentric elliptic orbital elements for
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this transference. The results, particularly the higher TOF value with respect to 2020, are in
good agreement with the mission analysis referenced for year 2026 in [28].

Table 3. Elliptic heliocentric orbital elements for the optimal launch and arrival dates in the window
from 1 March 2026 to 1 November 2027.

Parameter Value

Departure Date, t1 31 October 2026 05:42:13 h
Arrival Date, t2 31 August 2027 16:47:12 h
Semimajor axis, asS (km) 189,961,652.992134
Eccentricity, esS (unitless) 0.218496
Inclination, isS (deg) 0.8695
Periapsis argument, ωsS (deg) 4.1768
Right ascension node longitude, ΩsS (deg) 37.5815
True anomaly, vsS (deg) 197.9132
V∞E (km/s) 3.0311
V∞M (km/s) 2.5913
Time of flight, TOF (days) 304.4618
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Figure 4. Minimum-energy optimal trajectory for the Earth–Mars transfer for departure date on 1
July 2019 and arrival date on 1 November 2021 (top) in comparison with a trajectory with 31 fewer
days of flight (bottom).

3. Determination of Earth–Mars Trajectories with Hyperbolic Orbital Objective Values

Once the launch and arrival dates for the optimal minimum-energy solution have
been determined, we move on to deal with the determination of the orbit for the entry
point at the Mars SOI. To this end, we implement a procedure for matching the Earth–Mars
elliptic transfer orbit and the Mars arrival hyperbolic orbit, fixing the periapsis distance,
rpsM , the arrival hyperbolic inclination, isM , and the radius for the SOI. We first present the
determination of the arrival hyperbolic orbit and subsequent computation of the position
and velocity at the matching point, which will be iterated with the Earth–Mars elliptic
transfer afterwards. The goal is to analyze the changes in the B-plane [26] due to the
variations in the arrival asymptote direction.

The iterative procedure used to compute the entry point at the SOI, in which both
the heliocentric elliptic transfer orbit for the obtained TOF and the areocentric hyperbolic
arrival orbit match, is formulated as follows:

r
(i+1)
sM = g

(
f
(

r
(i)
sM

))
. (7)

The function f provides the areocentric ecliptic transfer velocity, V∞M , at the Mars SOI entry
point, rsM:

f(r
(i)
sM) = V

(i)
∞M, (8)

obtaining first VsS2
, by solving Lambert’s problem (1) with a modified condition (3),

rsS(t2) = rM + rsM , (9)
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and then using Equation (5).
The function g in (7) provides the position vector, rsM, in the areocentric ecliptic

reference frame:

g(V
(i)
∞M) = r

(i+1)
sM . (10)

This function gathers a set of expressions to obtain rsM at the SOI for the objective
values of isM and rpsM, based on [22,24,25], fixing the radius of the SOI instead of the time
that the spacecraft is inside the SOI, as in [22].

To this end, we first determine the areoequatorial coordinates (α, δ) of the arrival
asymptote, given by−VsM (obtained by transforming V∞M to the areocentric areoequatorial
reference frame), to obtain the parameter σ as

σ = arcsin
tan δ

tan isM

, (11)

defining the minimum inclination as the value of ‖δ‖.
For a direct orbit, the right ascension of the ascending node, ΩsM , can be computed in

two different ways:

ΩsM = α− σ (VsMz > 0), (12)

ΩsM = α + σ + π (VsMz < 0). (13)

The value of VsM determines the semimajor axis, asM. Then, the eccentricity of the
hyperbola, esM , for a periapsis radius, rpsM , is fixed as

esM = 1 +
rpsM

asM

. (14)

The true anomaly, vsM, of the spacecraft at the SOI is determined using the standard
procedure (i.e., [37,38]).

According to Figure 5, the unitary vectors defining the local reference system for the
arrival asymptote, {uT , uB, uH}, are obtained as

uT =
−VsM

||VsM ||
, (15)

uH =

⎡⎣ sin isM sin ΩsM

− sin isM cos ΩsM

cos isM

⎤⎦, (16)

uB = uH × uT . (17)

The plane containing uB, the planet center, and perpendicular to the arrival orbit is known
as the B-plane, which is considered a fundamental tool in analyzing planetary arrivals [26].
With this iterative procedure, we update the B-plane according to the objective values
imposed (see Figure 6).

The vectors (15)–(17) are then transformed to a local reference system in the periapsis,{
uRp , uTp , uH

}
, according to

uRp = − sin η uT + cos η uN , (18)

uTp = − cos η uT − sin η uN , (19)

where
η = arcsin

1
esM

. (20)
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Then, the areocentric areoequatorial position RsM = (XsM, YsM, ZsM) vector compo-

nents at the SOI are determined in terms of the base vectors
{

uRp , uTp , uH

}
, in a classical

way, as
RsM = rsM

(
cos vsM uRp + sin vsM uTp

)
. (21)

Finally, the position vector RsM is transformed to obtain rsM in the areocentric ecliptic
reference frame, as a result of the function g in (10).

Figure 5. Local reference system vectors {�uT ,�uB} and
{
�uRp ,�uTp

}
in the arrival hyperbolic orbit plane

defined by the normal vector �uH .

Figure 6. Changes in the B-plane orientation due to the arrival asymptotic velocity variations.
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We consider that the iterative method defined by (7) converges, for a given tolerance
τ, when the following condition is achieved:∥∥∥r

(i+1)
sM − r

(i)
sM

∥∥∥ < τ. (22)

For comparison with Table 3, in Table 4, we present the results for the elliptic transfer or-
bit in the heliocentric ecliptic reference frame for the minimum-energy TOF (304.4618 days),
the minimum arrival hyperbolic inclination (isMmin = 16◦.1167), rpsM = 20,428 km, and a
SOI of rIM = 577,239 km. We note that V∞M changes by 0.015 km/s approximately. Also,
the resulting areocentric hyperbolic arrival trajectory orbital elements in the areoequatorial
reference frame are shown in Table 4.

Table 4. Elliptic heliocentric orbital elements for (a) the Earth–Mars transfer orbit at the Mars sphere
of influence entry point and final hyperbolic areocentric orbital elements and (b) launch date on
31 October 2026 and arrival date on 31 August 2027, for the objective values isM = isMmin = 16.◦1167
and rpsM = 20,428 km.

Orbit Parameter Units Value

(a)

Departure date, t1 (UT) 31 October 2026 05:42:13 h
Arrival date, t2 (UT) 31 August 2027 16:47:12 h
Semimajor axis, asS (km) 189,905,238.422086
Eccentricity, esS (unitless) 0.218286
Inclination, isS (deg) 0.9311
Periapsis argument, ωsS (deg) 4.3094
Right ascension node longitude, ΩsS (deg) 37.5723
True anomaly, vsS (deg) 197.9302
V∞E (km/s) 3.0333
V∞M (km/s) 2.5763
Time of flight, TOF (days) 304.4618

(b)

Semimajor axis, asM (km) 6600.229103
Eccentricity, esM (unitless) 4.0950441
Inclination, isM (deg) 16.1167
Periapsis argument, ωsM (deg) 194.1344
Right ascension node longitude, ΩsM (deg) 162.7116
True anomaly at t2, vsM (deg) 258.4533
Periapsis radius, rpsM (km) 20,467.9232
Arrival at periapsis date, tp (UT) 31 August 2027 20:03:55

4. Mars Arrival Maneuvers Evaluation for an Areostationary Mission

We now conduct a preliminary evaluation of the total impulsive maneuvers ΔVM
needed to capture the probe and to place it in an areostationary orbit:

ΔVM = ΔVc + ΔVP + ΔVA + ΔVi, (23)

where ΔVc is the capture maneuver to avoid the probe leaving the SOI on a flyby trajec-
tory; ΔVP and ΔVA are the two Hohmann transfer maneuvers, at the perigee and apogee,
respectively, designed to obtain a transfer orbit from the capture orbit to the target are-
ostationary orbit; and ΔVi is the inclination correction maneuver to reach the final zero
desired inclination.

If we consider a ΔVc maneuver at the periapsis of the hyperbolic orbit in order to
obtain a circular capture orbit, its magnitude would be

ΔVc =

√
V2

∞M
+ 2

μM
rpsM

−
√

μM
rpsM

. (24)
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The hyperbolic periapsis distance, rpsM, is calculated as follows:

rpsM = asM(esM − 1), (25)

with asM as the hyperbolic semimajor axis and esM as the hyperbolic eccentricity.
The two Hohmann transfer maneuvers required to achieve an orbit at the areosta-

tionary semimajor axis, rA = 20,428 km, in the case that rpsM < rA, are calculated as

ΔVP =
√

μM
rpsM

(√
2rA

rpsM+rA
− 1

)
, (26)

ΔVA =
√

μM
rA

(
1−

√
2rpsM

rpsM+rA

)
. (27)

Finally, the inclination maneuver is performed at the stationary distance in order to
minimize its magnitude. For a maneuver at the node, this is obtained as

ΔVi =

√
2

μM
rA
− 2

μM
rA

cos isM , (28)

where isM is the hyperbolic inclination.
In the case that rpsM > rA, the inclination maneuver at the node would be the first to

be performed at the rpsM distance:

ΔVi =

√
2

μM
rpsM

− 2
μM
rpsM

cos isM . (29)

Then, the two Hohmann maneuvers would be performed according to the following equations:

ΔVP =
√

μM
rpsM

(
1−

√
2rA

rpsM+rA

)
, (30)

ΔVA =
√

μM
rA

(√
2rpsM

rpsM+rA
− 1

)
. (31)

As can be seen from Equations (24) to (31), the periapsis distance, rpsM , and the orbital
inclination of the arrival trajectory with respect to Mars, isM , are the key design parameters
in order to minimize the required impulses. Corrections to change the approach asymptotic
plane are not considered, and neither are the combinations of the capture maneuver with the
first Hohmann maneuver or the inclination maneuver with the second Hohmann maneuver.

Several numerical simulations are carried out to analyze the magnitude of these
impulses due to the variations in the B-plane when different imposed values for TOF, isM,
and rpsM are considered.

We fix the launch window for 2026 according to the parameters given in Table 3 for the
launch and arrival dates connecting Earth and Mars that minimize V∞M. In the first set of
simulations, we consider different imposed objective values for the inclination, isM , and the
periapsis radius, rpsM , to determine the entry point at the SOI, using the iterative procedure
defined in (7) to evaluate the total impulse ΔVM in Equation (23). We consider different
values for isM , ranging in the interval

[
isMmin, 90◦

)
, and for rpsM , in the interval [15,000 km,

25,000 km], with the arrival velocity, V∞M, recalculated for the different entry points.
Figure 7a,b represent the results obtained for V∞M with different values of rpsM and

isM, respectively. For the objective conditions of isM = 16◦.1167, which corresponds to
the isMmin for rpsM = rA = 20,428 km, a value of V∞M = 2.5763 km/s is obtained. As
can be observed in Figure 7a for isMmin, V∞M decreases linearly when increasing rpsM from
2.5768 km/s to 2.5759 km/s. Figure 7b shows variations of about 2× 10−3 km/s in V∞M,
for the areostationary distance, as the objective inclination increases from isMmin to 90◦.
Table 5 summarizes the values for the C3, V∞M, and total cost C of Equation (6) for the
minimum and maximum values of rpsM and isM considered.
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Figure 7. V∞M values for (a) the isMmin for different periapsis radii, rpsM , ranging in the interval
[15,000 km, 25,000 km] and (b) the objective values of rpsM = rA = 20,428 km for different inclination
values, isM , ranging in the interval

[
isMmin = 16.◦1167, 90◦

]
.

Figure 8a,b represent the values of ΔVc, ΔVi, ΔVA, ΔVP, and the total ΔVM for dif-
ferent values of rpsM and isM to achieve the circular areostationary orbit at rA with zero
areoequatorial inclination. In the case that rpsM < rA, the maneuvers are computed
using (24) and (26)–(28). In the other case, the maneuvers are computed by means of (24)
and (29)–(31).

225



Math. Comput. Appl. 2023, 28, 105

Table 5. Interplanetary transfer energy variations for the considered combinations of isM and the
maximum and minimum rpsM and of rpsM = rA with the maximum and minimum isM .

isM (deg) rpsM (km) C3 (km2/s2) V∞M (km/s) C

isMmin = 16.1158 15,000 9.2014 2.5768 11.7782
isMmin = 16.1175 25,000 9.2008 2.5759 11.7767

isMmin = 16.1167 rA = 20, 428 9.2011 2.5763 11.7774
90 rA = 20, 428 9.2123 2.5781 11.7904

As can be seen in Figure 8a, with the above-described strategy, the values for the
capture maneuver ΔVc change, for isMmin, from 1.8246 km/s for rpsM = 15,000 km to
1.8631 km/s for rpsM = 25,000 km, depending on the different objective periapsis radius
considered. Obviously, the Hohmann maneuver vanishes for a capture at rA, and its value
varies from 0.2404 km/s for rpsM = 15,000 km to 0.1387 km/s for rpsM = 25,000. The in-
clination maneuver, ΔVi, to achieve zero inclination, from the isMmin for each rpsM, has a
slight variation from 0.4062 km/s to 0.3673 km/s. The minimum for the total amount,
ΔVM, has a value of 2.2493 km/s, which corresponds to rpsM = rA. This magnitude rises to
2.4712 km/s for rpsM = 15,000 km and to 2.3691 km/s for rpsM = 25,000 km.

Figure 8b shows that, for rpsM = rA, with ΔVH = 0 km/s, ΔVM increases when
different values for the objective hyperbolic inclination are considered. From the same
minimum of ΔVM = 2.2493 km/s for isMmin = 16.◦1167, the total quantity of impulses rises
to 3.8922 km/s, as illustrated in Figure 8a.

In a second set of simulations, we consider a different strategy to evaluate the Oberth
effect that, due to the potential energy for a capture near the Mars surface, allows one to
reduce the required ΔVM. To this end, we consider a capture into an elliptical trajectory
with a low periapsis radius and an apoapsis at the stationary orbit. Then, a circularization
process is performed at the apoapsis. For a capture at a periapsis of rpsM = rM + 300 km
into an ellipse with an apoapsis of rA, the value of the impulse required to obtain a circular
orbit at the areostationary distance is decreased to 1.6764 km/s, with ΔVc = 1.0294 km/s
and ΔVA = 0.6470 km/s. The total ΔVM = 2.0834 km/s reduces 0.1659 km/s with respect
to the previous strategy.

Finally, we analyze the influence of the TOF in ΔVM for a possible launch date delay.
We consider up to two weeks delay from 31 October 2026 for the launch date and up to two
months after 31 August 2027 for the arrival date for the minimum isM. In the first case, a
capture into a circular orbit of rpsM = rA is considered, as shown in Figure 9a. In the second
case, a capture into an ellipse with rpsM = rM + 300 and an apoapsis of rA is considered, as
shown in Figure 9b. It can be noticed, by comparing Figure 9a,b, that the second case is less
sensitive to TOF variations. For case (a), a delay of 14 days at departure and 60 at arrival,
increases the value of 2.25 km/s by 0.75 km/s, corresponding to the minimum-energy
transfer TOF of 304 days, instead of an increase of 0.52 km/s from the value 2.08 km/s in
case (b). In both cases, a launch delay of 14 days maintaining a TOF of 304 days would
increase ΔVM by 0.25 km/s.
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Figure 8. ΔVc, ΔVi, ΔVA, ΔVP, and the total ΔVM values for (a) the isMmin for different peri-
apsis radii, rpsM , ranging in the interval [15,000 km, 25,000 km] and (b) the objective values of
rpsM = rA = 20,428 km for different inclinations, isM , ranging in the interval

[
isMmin = 16.◦1167, 90◦

]
.
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Figure 9. ΔV values for a combination of dates ranging from 31 October 2026 to 13 November 2026
for the launch date and from 31 August 2027 to 30 October 2027 for the arrival date, for the following
objective conditions: (a) minimum isM and rpsM = rA = 20,428 km; (b) minimum isM and a capture
into an ellipse with a periapsis of rpsM = rM + 300 km and an apoapsis of rA.

5. Conclusions

In this paper, we conducted a preliminary analysis of the impulsive maneuvers cost to
transfer a spacecraft from Earth to Mars and to position it in an areostationary orbit. We
first obtained the minimum-energy interplanetary transfer from Earth to Mars by applying
genetic algorithms to select launch and arrival dates. Several simulations were carried out
to analyze the performance of the genetic algorithms. Results show that differences in the
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final energy cost and the time of flight are negligible, and the only significant change is the
CPU time needed to converge, which is dependent on the population size.

With the optimized launch and arrival dates, an iterative procedure was used to match
the interplanetary trajectory obtained with the genetic algorithms, with an entry hyperbola
defined by imposing objective conditions for the inclination and the periapsis radius of
the orbit. Two different strategies were computed to evaluate the cost of the mission, ΔVM:
The first includes a capture maneuver to a circular orbit at different periapsis radii, as
well as Hohmann maneuvers and an inclination maneuver; The second includes a capture
maneuver to an elliptic orbit with a low periapsis and an apoapsis at the areostationary
orbit. Simulations with different imposed conditions on the entry hyperbola were con-
ducted depending on the two key parameters: the hyperbolic inclination, isM, and the
periapsis radius, rpsM. For a circular capture at the stationary radius, results show that
for a 2026 mission with a TOF of 304 days for the minimum-energy Earth–Mars transfer
trajectory, the values achieved are ΔVc = 1.84, ΔVH = 0 and ΔVi = 0.41, being the to-
tal impulse ΔVM = 2.25 km/s for the minimum possible inclination isM = 16.◦1167 and
rpsM = 20,428 km corresponding to an areostationary radius. For an elliptical capture with
a periapsis of rpsM = rM + 300 km and an apoapsis of 20,428, the values achieved are
ΔVc = 1.03, ΔVA = 0.65, and ΔVi = 0.41, the total impulse amounting to ΔVM = 2.08 km/s.
A launch delay of two weeks would increase this minimum value of ΔVM by 0.25 km/s
in both cases. The capture into an ellipse with a delay of 14 days at departure and 60 at
arrival is less sensitive to TOF variations, increasing the total ΔVM by 0.52 km/s, instead of
0.75 for the direct circular capture.
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Abstract: The preventive measures taken to curb the spread of COVID-19 have emphasized the
importance of wearing face masks to prevent potential infection with serious diseases during daily
activities or for medical professionals working in hospitals. Due to the mandatory use of face masks,
various methods employing artificial intelligence and deep learning have emerged to detect whether
individuals are wearing masks. In this paper, we utilized convolutional neural networks (CNNs)
to classify the use of face masks into three categories: no mask, incorrect mask, and proper mask.
Establishing the appropriate CNN architecture can be a demanding task. This study compares four
swarm intelligent metaheuristics: particle swarm optimization (PSO), grey wolf optimizer (GWO),
bat algorithm (BA), and whale optimization algorithm (WOA). The CNN architecture design involves
determining the essential hyperparameters of the CNNs. The results indicate the effectiveness of the
PSO and BA in achieving an accuracy of 100% when using 10% of the images for testing. Meanwhile,
when 90% of the images were used for testing, the results were as follows: PSO 97.15%, WOA 97.14%,
BA 97.23%, and GWO 97.18%. These statistically significant differences demonstrate that the BA
allows better results than the other metaheuristics analyzed in this study.

Keywords: face mask classification; swarm intelligence metaheuristics; convolutional neural network;
particle swarm optimization; whale optimization algorithm; bat algorithm; grey wolf optimizer

1. Introduction

The COVID-19 pandemic has shown the importance of using face masks, avoiding the
spread of the virus, and preventing the infection of millions of people [1,2]. However, it is
important to mention that various studies on its use were performed several years before
the COVID-19 pandemic, where the importance and efficacy of its use to prevent other
respiratory infections were demonstrated [3,4]. Two of the most widely used subsets of
artificial intelligence related to face masks are deep learning (DL) and machine learning
(ML). Different works on the detection of the facial mask using pre-trained models of con-
volutional neural networks can be found in [5–7], which allowed us to observe the potential
of this technique in the detection and classification of facial masks [8–10]. In Ref. [11],
the authors studied the architectures of different pre-trained models such as EfficientNet,
InceptionV3, MobileNetV1, MobileNetV2, ResNet-101, ResNet-50, VGG16, and VGG19.
Based on their study, they proposed a model for face mask detection based on MobileNetV2,
applying data augmentation techniques to increase the number of images for the training
phase. In Ref. [12], an application for mobile devices was developed to identify face masks
using the Google Cloud ML API, while analyzing the progress of cloud technology and
the benefits of machine learning. In Ref. [10], the authors developed five ML models for
face mask classification. The developed models were Naïve Bayes (NB), Support Vector
Machine (SVM), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbors (KNN).
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The test of the models was performed using 1222 images, where the results demonstrated
the effectiveness of the DT over the other models. The use of neural networks is related
to metaheuristics, which are utilized to find the optimal architectures that improve the
results depending on the application for which the network is used [13]. Metaheuristics
are a great option for finding optimal parameters in applications in different areas. These
algorithms have been classified according to their inspiration: based on evolutionary al-
gorithms, physics-based algorithms, and algorithms based on swarm intelligence [14–16].
Nature-inspired algorithms are mainly inspired by collective behavior, where the main
characteristics of a particular species are analyzed and represented in a computational way
to be used in solving complex problems in the search for optimal solutions [17,18]. In recent
works, comparisons have been made between metaheuristics to compare the performances
applied to find CNN hyperparameters. Some of these metaheuristics are grey wolf opti-
mizer (GWO), whale optimization algorithm (WOA), salp swarm algorithm (SSA), sine
cosine algorithm (SCA), multiverse optimizer (MVO), particle swarm optimization (PSO),
moth flame optimization (MFO), and bat algorithm (BA), to mention a few. The authors
have concluded the advantages of combining convolutional neural networks and meta-
heuristics for the search of hyperparameters [19–21]. These techniques have been combined
to solve applications related to pattern recognition [19,22,23], image classifications [18,24],
and medical diagnosis [21,25,26], among other applications.

In this work, convolutional neural network hyperparameters are optimized by differ-
ent nature-inspired algorithms [27–29]. The optimized hyperparameters are the number of
convolutional layers, filters, fully connected layers, neurons, batch size, and epochs. The
contribution of this work includes the optimal design of the convolutional neural network
architectures to increase classification accuracy and its application to face mask classifica-
tion: no mask, incorrect mask, and mask. Recent works applied to face mask classification
based their model architectures on pre-trained models, which does not guarantee optimal
architecture. As a novelty, this paper proposed optimizing CNN architectures instead
of basing them on other architectures. The optimal hyperparameters are found using
four metaheuristics used in recent works to make a statistical comparison and analysis,
providing better accuracy for face mask classification.

This paper is presented as follows. In Section 2, the metaheuristics applied in this
work are presented in a succinct manner. Section 3 shows the optimization proposed
for the convolutional neural networks. The results obtained by each swarm intelligence
metaheuristic are shown in Section 4. The statistical test results are shown in Section 5. The
conclusions are presented in Section 6.

2. Background

The optimal design of architectures and models has allowed the realization of impor-
tant practical applications. In Ref. [30], optimal convolutional neural network architectures
was designed to identify various types of damage on reinforced concrete (RC) to avoid
further structure deterioration. The results achieved show good accuracy of six types of
damage. The design of convolutional neural network architectures using a particle swarm
optimization algorithm was proposed and applied to sign language recognition using three
study cases of sign language databases: the Mexican Sign Language alphabet, the American
Sign Language MNIST, and the American Sign Language alphabet [31]. In Ref. [32], the
authors proposed face detection and face classification by developing adaptive sailfish
moth flame optimization (ASMFO) to the parameter optimization using a deep learning
approach. In Ref. [19], the authors analyzed the importance of the CNN hyperparameters,
such as filters, kernel, epoch, batch size, and pooling size of the convolutional neural
networks applied to classify human movements. They compared seven metaheuristic
algorithms: GWO, WOA, SSA, SCA, MVO, PSO, and MFO, concluding the advantages of
the metaheuristics to optimize the hyperparameters of CNNs. The results led the authors
to the conclusion that the implementation of GWO achieved higher accuracy than the other
metaheuristics. In Ref. [20], the authors proposed a PSO to determine optimal hyperpa-
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rameters of convolutional neural networks. They used the simplest CNN model as a base:
LeNet. Their results achieved better results when the PSO designed the CNN architectures.
The results achieved by their study were obtained using MNIST, Fashion-MNIST, and
CIFAR-10 datasets.

In previous works [33,34], nature-inspired algorithms have optimized modular neural
network architectures applied to human recognition using different biometric measures.
In those works, comparisons using genetic algorithms (GAs) and swarm intelligence algo-
rithms were performed, and significant evidence of the advantage of the swarm intelligence
algorithms was proven. More recently, in [22], and based on the advantages offered by
the swarm intelligence algorithms, the architecture of convolutional neural networks was
optimized and applied to face recognition. In this work, algorithms such as particle swarm
optimization and grey wolf optimizer offer advantages when designing convolutional
neural network architectures. It is important to mention that the databases used for this
work were small, with 400 and 165 images. In Ref. [35], the non-optimized design of
convolutional neural network architectures applied to the facial mask classification was
performed, and the best architecture was implemented in a real-time system using a Rasp-
berry Pi 4 in combination with a camera to obtain the image in real time. The Raspberry Pi
4 sends a signal through its GPIO Board, and a result is provided by lighting an LED. If
the mask is correctly used, the green LED is turned on. If the mask is incorrectly used, the
yellow LED is turned on, and if a mask is not used, the red LED is turned on.

3. Intelligence Techniques

This section shows a description of the intelligence techniques utilized in this work.

3.1. Convolutional Neural Networks

Artificial neural networks (ANNs) are mainly based on the behavior of the human
nervous system and its way of processing information. An artificial neural network is a type
of distributive processor made up of simple processing units known as neurons, simulating
two main aspects of the human brain: it acquires knowledge of its environment through a
learning process and the use of synaptic weights to store the required knowledge [36,37].
Learning methods are categorized into supervised, semi-supervised, and unsupervised
learning. Among the main properties that can be found in ANNs that make them one of the
main techniques used in artificial intelligence, we can find their capacity for generalization,
adaptation, learning, and parallelism [38,39]. Convolutional neural networks (CNNs) are an
improvement of ANNs with some characteristics that make them powerful in applications
where images are used. This type of network consists of other layers in addition to those
already existing in conventional neural networks: the convolutional and the pooling layers.
One of the advantages provided by this type of network is the extraction of features from the
given images before proceeding to the learning phase, which makes it possible to reduce the
amount of information that must be learned by the ANN [38]. In the convolutional layers
(CLs), the inputs are multiplied by a filter with the size m × n. Each layer contains a height,
width, and depth. When talking about depth concerning the layer, it refers to the number
of channels (primary colors) that contain the input images [40]. The most used grouping
layers with the maximum, average, and minimum are responsible for grouping the feature
map produced in the convolution layer, thus reducing the amount of information that will
pass to the fully connected layers [23,41]. In Figure 1, a representation of a convolutional
neural network is shown.

3.2. Nature-Inspired Algorithms

The nature-inspired algorithms used in this study are described below.

233



Math. Comput. Appl. 2023, 28, 107

Figure 1. Representation of the architecture of a convolutional neural network.

3.2.1. Particle Swarm Optimization

In Ref. [42], the particle swarm optimization (PSO) based on the fish or bird social
performance was proposed. A set of particles is known as a swarm, and each particle is a
solution [43]. A particle defines their next position by Equation (1).

xid(t + 1) = xid(t) + vid(t + 1) (1)

where xid(t) indicates at time t, in the dimension d, the actual position of the particle i. A
velocity vi(t + 1) is designated to establish the next position. In Ref. [44], this algorithm
was enhanced by adding the parameter: inertia weight (w). The particle velocity is defined
by Equation (2).

vid(t + 1) = w× vid(t) + c1 × r1d(t)× [yid(t)− xid(t)] + c2 × r2d(t)× [ŷd(t)− xid(t)] (2)

where r1 and r2 are random values in [0, 1]. The best position of a particle i in dimension d
is connoted by yid(t); the best position of the swarm in d dimension is denoted by ŷd(t). c1
and c2 are the cognitive and social components.

w has a decreased value during the algorithm execution to allow exploitation and
exploration. The linear decrease in the inertia weight applied in this work is given
by Equation (3).

wt = (ws − we)×
(tmax − t)

tmax
+ we (3)

where tmax denotes the maximum number of time steps, and ws and we are the initial and
final values of the inertia weight, respectively. The recommended values are ws = 0.9 and
we = 0.4 [45].

3.2.2. Grey Wolf Optimizer

In Ref. [46], the grey wolf optimizer (GWO) was proposed. This metaheuristic uses
a dominant hierarchy applied by the wolves in hunting as inspiration. This dominant
hierarchy is shown in Figure 2, where leaders known as alphas are at the top of the pyramid,
and they make the main hunting and sleeping decisions. The betas are subaltern wolves
that help the alpha wolves in making decisions. A delta wolf does not belong to any
level already mentioned and can dominate only the lowest level. The delta wolves have
different roles as scouts, sentinels, elders, hunters, and caretakers. The wolves in the lowest
level are known as the omegas. They are always submitted by the wolves that are in the
superior hierarchies [47,48].

The description of the principles used to define this algorithm and its mathematical
representation is described below:
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Figure 2. The dominance hierarchy of wolves.

• Social hierarchy: The three best solutions are alpha (α), beta (β), and delta (δ). The
wolves belonging to the lowest level are the omegas (ω).

• Encircling prey: The process of prey encircling during hunting are represented by
Equations (4) and (5).

→
D = |

→
C ×

→
Xp (t)−

→
X (t) (4)

→
X(t + 1) =

→
Xp(t)−

→
A×

→
D (5)

where
→
X denotes the agent position in the t iteration, and

→
Xp represents the position of

the prey. The coefficient vectors are
→
A and

→
C . Equations (6) and (7) are used to determine

their values. →
A = 2

→
a ×→

r1 −
→
a (6)

→
C = 2×→

r2 (7)

where
→
r1 and

→
r2 represent vectors with random values in [0, 1]. During the algorithm

execution, the vector
→
a has linear decreasing values in [2, 0] given by Equation (8) [49].

→
a (t) = 2− 2× t

tmax
(8)

where t denotes the current iteration, and tmax denotes the maximum number of iterations.

• Hunting: The first three levels in the dominant hierarchy know the prey position.
With their positions, the wolves belonging to the lowest level (omega) can update their
position using Equations (9)–(11).

→
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→
Xα −

→
X
∣∣∣∣, →

Dβ =

∣∣∣∣ →C2 ×
→
Xβ −

→
X
∣∣∣∣, →

Dδ =

∣∣∣∣ →C3 ×
→
Xδ −

→
X
∣∣∣∣ (9)

→
X1 =

→
Xα −

→
A1 ×

( →
Dα

)
,

→
X2 =

→
Xβ −

→
A2 ×

( →
Dβ

)
,

→
X3 =

→
Xδ −

→
A3 ×

(→
Dδ
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→
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3
(11)
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• Attacking prey: The process is also known as exploitation, where the current posi-
tion of an agent and the prey allows it to establish the next position of the agent.

This position is calculated using
→
a and vector

→
A with random values in an interval

[−2a, 2a].

• Search for prey: The process is also known as exploration, where vector
→
C is used

with values in [0, 2] to provide diversity to the population and avoid local optimal.

3.2.3. Whale Optimization Algorithm

In Ref. [50], the whale optimization algorithm (WOA) was proposed. This algorithm
uses as inspiration the hunting method applied by the whales. These marine mammals
usually live in groups and are considered killers and predators [51]. One of the main
characteristics shared with the grey wolf optimizer is the process of encircling prey, present
also in WOA. The description of the processes used to define this algorithm based on
humpback whales and its mathematical representation is described below:

• Encircling prey: The whales encircle the prey because they know its position. The
whale closest to the prey becomes the best solution. Equations (3) and (4) allow the
update of the position of the rest of the agents.

• Bubble-net attacking method: This process is also known as exploitation and is very
similar to the one in the GWO, where the distance between the agent and the prey is
determined. The process can be accomplished using two approaches:

1. Mechanism of shrinking encircling: In Equation (5), the values of
→
a decrease

every iteration, and an interval [−a, a ] is used to generate random values for the

vector
→
A.

2. Spiral updating position: The helix-shaped movement of whales between the
whale and prey position is mimicked by Equation (12).

→
X(t + 1) =

→
D′ × ebl × cos (2πl) +

→
Xp(t) (12)

where the distance between prey and whale is connoted by
→
D′, and b is a constant that

represents the shape of the logarithmic spiral. A random value in an interval [−1, 1] is
represented by l.

• Search for prey: This process is also known as exploration, where the whales seek ran-

domly based on the position of others. To force the exploration, the
→
A vector has num-

bers less than−1 and greater than 1. The process is defined by Equations (13) and (14).

→
D =

∣∣∣∣ →C × →
Xrand −

→
X
∣∣∣∣ (13)

→
X(t + 1) =

→
Xrand −

→
A×

→
D (14)

where a random whale of the current iteration is represented by
→

Xrand. This random whale
or the best solution found is utilized to help the other whales update their position.

3.2.4. Bat Algorithm

The bat algorithm (BA) [52] is based on their echolocation behavior due to the ability
they have to identify their prey even in darkness. There are different types of bats de-
pending on their size. Microbats have the characteristic of using a type of sonar known
as echolocation, allowing them to detect prey and avoid obstacles. The bats make a loud
sound pulse and listen for the echo that is reflected off of nearby objects. The rate of pulse
is established in an interval [0, 1] [53].

The author established some important rules to delimit the behavior and knowledge
that the bats can have:
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• Echolocation is used for all the bats to sense distance, and they know the difference
between the prey and other kind of elements.

• To search for prey, each bat flies randomly in a position xi with a velocity vi. This task
is performed by changing loudness A and wavelength λ. Depending on the closeness
of its objective, the bat regulates the wavelength of its emitted pulses and regulate the
rate of pulse emission r ∈ [0, 1].

• The loudness is assumed to be a large value positive number A to a minimum constant
value Amin.

To define the update of position and velocities, the next equations are given by
Equations (15)–(17).

fi = fmin + ( fmax + fmin)× β (15)

vi(t) = vi(t− 1) + (xi(t− 1)− x∗)× fi (16)

xi(t) = vi(t− 1) + vi(t) (17)

where xi(t) and vi(t) represent the new position and velocity, respectively, at time step t. A
vector with random values in [0, 1] is represented by β. The current global best solution is
denoted by x∗. For the local search, the best solutions are used to select one of them and
locally generate a new solution using a random walk given by Equation (18) [54].

xnew = xold + ε× A(t) (18)

where ε represents a random value in an interval [−1, 1], and the average loudness of all
the bats at time step t is represented by A(t).

4. Proposed Method

The proposed optimization is applied to face mask classification (no mask, incorrect
mask, and mask). To perform this task, the method combines CNNs and optimization
algorithms. The metaheuristics allow the optimal design of CNN architectures to be
found. The optimization algorithm designs the CNN architectures, seeking their number
of convolutional layers, filters, fully connected layers, neurons, batch size, and epochs.
Each CL is followed by a max-pooling layer with a pool size of 3 × 3 to reduce image size.
Figure 3 shows an example of the CNN architecture applied to face mask classification.
As input to the convolutional neural network, images of people wearing (correctly and
incorrectly) or not using face masks are used for the training phase of the convolutional
neural network. The first layers of the convolutional neural network (convolutional and
pooling) will extract features and reduce the image so that the fully connected layers learn
the most relevant information. As output, when an image is simulated, a classification
will be obtained (no mask, incorrect mask, and mask). A correct classification will depend
on correct learning and the convolutional neural network architecture. For this reason,
an optimization algorithm is an excellent option for designing the architecture because it
allows a specific model to be applied to a particular application.

Figure 3. Illustration of the CNN architecture applied to face mask classification.
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4.1. Description of the Optimization

The parameters used to execute any optimization algorithm have great importance
because these depend on its performance. For each optimization algorithm, 10 solutions
(particles, bats, or search agents) and 10 iterations are used. The configuration of the
optimization algorithms used in this work is presented in more detail in Table 1. The
parameters presented are based on previous works [22,33,55].

Table 1. Configuration of characteristic/tuning parameters of the optimization algorithms.

PSO BAT WOA and GWO

Parameter Value Parameter Value Parameter Value

Particles 10 Bats 10 Search
Agents 10

Maximum
Iterations

(tmax)
10

Maximum
Iterations

(tmax)
10

Maximum
Iterations

(tmax)
10

C1 2 fmin 0 - -

C2 2 fmax 2 - -

ws 0.9 Loudness
(A) 0.5 - -

we 0.4 Pulse rate
(r) 0.5 - -

Each solution seeks to minimize the face mask classification error. In this work, the
accuracy equation is used and given by Equation (19).

Accuraccy =
TP + TN

TP + FP + TN + FN
(19)

where TP, TN, FP, and FN mean True Positive, True Negative, False Positive, and False
Negative, respectively. The objective function used in this work is expressed by Equation (20).

f = 1− TP + TN
TP + FP + TN + FN

(20)

The search space used for each solution (particle or agent) is determined by the
minimum and maximum ranges shown in Table 2. These ranges are established based
on previous works [18,22]. The convolutional neural networks use the Adaptive Moment
Estimation (Adam) as a leaning algorithm and the rectified linear activation function (ReLU)
as an activation function. The batch size is determined using a range from 1 up to 5, which
means 8, 16, 32, 64, or 128.

Each particle or agent represents a solution, where each solution has 14 dimensions,
which allow the creation of a CNN. In Figure 4, the dimensions of the solution are shown.
The first four dimensions allow the determination of the number of convolutional layers,
epoch, batch size, and the number of fully connected layers. Meanwhile, the rest of the
dimensions allow us to determine the number of neurons and filters.

All the metaheuristics have, as a stopping criterion, 10 iterations or when the best
solution has a cost equal to zero. The Keras Python package based on TensorFlow was used
to implement the optimization algorithms and to build and train the CNN models.
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Table 2. Definition of the search space to determine the solutions.

Hyperparameter Minimum Maximum

Convolutional layers (CLs) 1 5

Number of filters

CL 1 8 16

CL 2 8 16

CL 3 16 32

CL 4 16 32

CL 5 32 64

Fully connected layers (FCL) 1 5

Neurons 10 150

Epoch 5 50

Batch Size 1 5

Figure 4. Dimensions of the solutions to design CNN architectures. CL indicates convolutional layer,
and Layer indicates fully connected layer.

4.2. Database

To perform the face mask classification, the convolution neural networks are trained,
validated, and tested using images of three classes (no mask, incorrect mask, and mask).
The first two classes are obtained from the MaskedFace-Net dataset [56], and the no mask
class is obtained from the Flickr-Faces-HQ Dataset (FFHQ) [57]. The MaskedFace-Net
dataset consists of 137,016 images, and it is based on the Flickr-Faces-HQ (FFHQ) dataset.
In this work, 3000 images were used, where each class contains 1000 images of the dataset.
In Figure 5, a sample of the dataset is shown. The images used in this work were separated
into training, validation, and testing. To help prevent bias in our models, when the images
are split into sets, stratified sampling is utilized to guarantee a consistent distribution.
Stratified sampling is a functionality provided by the Keras Python package.
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Figure 5. Examples of the database with 3 classes: incorrect, mask, and no mask.

4.3. Preprocessing

The original images have a resolution of 1024 × 1024 pixels. The region of interest
(ROI) for this work is the face region, and it is automatically found using the Caffe model.
The Caffe model was developed by the Berkeley Vision and Learning Center (BVLC). This
model was trained to perform object detection and classification [58]. In Figure 6, an
example of the face detection is shown.

 

Figure 6. Application of the Caffe Model to detect the region of interest (face detection).

When the face region is detected, the image is resized to 100 × 100 pixels. Once the
image is resized, an RGB subtraction technique is implemented to the ROI in order to help
counteract slight variations [59]. In Figure 7, an example of the RGB subtraction technique
is shown.

 

Figure 7. Example of the RGB subtraction applied to the ROI.
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The proposed method is shown in Figure 8, which begins with the input images that
go through preprocessing. The database is partitioned into three sets (training, validation,
and testing), and the optimized CNN architecture is obtained with the metaheuristic.

 

Figure 8. The flowchart of the proposed method begins with the input images up to the optimized
CNN architecture using a metaheuristic.

5. Experimental Results

The database previously described is used to prove the proposed hyperparameters op-
timization. As previously mentioned, 3000 images were used to train, validate and test each
convolutional neural network. In this work, 20 runs were performed using 10, 20, 30, 40, 50,
70, 80, and 90 percent of the images for testing, leaving the rest for training and validation.
These experiments are performed with all the previously mentioned metaheuristics.

5.1. PSO Results

The best architectures achieved by the PSO with different percentages of images for the
testing phase are summarized in Table 3. The best results are obtained with 10% and 20%
of images for the testing phase, where an accuracy of 100% is achieved (marked with bold
text in Table 3). We can define the best architecture as the one that uses less information
for the training phase, which would be when 20% is used for the testing phase. This CNN
model is structured as follows: four convolutional layers with 16, 16, 28, and 23 filters, with
a size of 3 × 3. This architecture uses four FCLs with 150, 10, 117, and 19 neurons and a
batch size of 8 with 12 epochs.
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Table 3. The best accuracy results and architectures obtained by the PSO. CLs indicates the number
of convolutional layers with their number of filters, and FCLs indicates the number of fully connected
layers with their number of neurons.

%
Images for Testing

CLs
(Filters)

FCLs
(Neurons)

Epoch Batch Size Error Accuracy (%)

10
4 3

12 32 0 100(12, 10, 17, 28) (65, 40, 73)

20
4 4

12 8 0 100(16, 16, 28, 23) (150, 10, 117, 19)

30
3 3

20 8 0.0022 99.78(16, 11, 22) (150, 10, 78)

40
5 3

20 8 0.0017 99.83(8, 16, 16, 32, 64) (10, 10, 10)

50
4 3

15 8 0.0033 99.67(13, 12, 24, 32) (99, 109, 54)

60
4 3

12 8 0.0056 99.44(8, 16, 32, 32) (150, 10, 150)

70
4 5

17 8 0.0067 99.33(14, 16, 25, 23) (104, 150, 10, 21, 50)

80
4 5

15 8 0.0125 98.75(16, 8, 32, 18) (150, 128, 10, 100, 10)

90
1 5

19 8 0.0249 97.51(16) (105, 150, 108, 100, 47)

The results achieved by the PSO are shown in Table 4. The results illustrate how the
accuracy (best and average) decreases as the percentage of images for the testing phase
increases, and this occurs because the CNN is trained with less information.

Table 4. The best, average, and worst accuracy values obtained by the PSO.

Images (Testing)
%

Best
%

Average
%

Worst
%

10 - 100 -

20 100 99.66 99.17

30 99.78 99.59 99.22

40 99.83 99.51 99.25

50 99.67 99.49 99.20

60 99.44 99.17 98.72

70 99.33 98.72 98.00

80 98.75 98.08 97.54

90 97.51 97.15 96.14

5.2. WOA Results

In Table 5, the best architectures achieved by the WOA with different percentages of
images for the testing phase are shown. The best results are also obtained with 10% and
20% of images for the testing phase, where an accuracy of 100% is achieved (marked with
bold text in Table 5). The best architecture can be defined as the one that uses 20% for the
testing phase. This CNN model is structured as five CLs with 16, 16, 32, 32, and 64 filters,
with a size of 3 × 3 with five FCLs with 150, 88, 150, 100, and 50 neurons and a batch size
of 32 with 20 epochs.
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Table 5. The best accuracy results and architectures obtained by the WOA. CLs indicates the number
of convolutional layers with their number of filters, and FCLs indicates the number of fully connected
layers with their number of neurons.

%
Images for Testing

CLs
(Filters)

FCLs
(Neurons)

Epoch Batch Size Error
Accuracy

(%)

10
3 4

19 8 0 100(9, 15, 21) (77, 84, 83, 27)

20
5 5

20 32 0 100(16, 16, 32, 32, 64) (150, 88, 150, 100, 50)

30
4 2

20 8 0.0022 99.78(13, 16, 32, 27) (150, 143)

40
5 4

20 8 0.0017 99.83(16, 13, 32, 32, 46) (150, 26, 136, 56)

50
5 5

20 8 0.0033 99.67(16, 13, 32, 32, 64) (150, 80, 150, 100, 50)

60
5 5

20 16 0.0056 99.44(16, 12, 32, 32, 64) (150, 137, 53, 55, 50)

70
4 4

20 8 0.0067 99.33(16, 14, 30, 32) (150, 150, 114, 26)

80
5 3

20 8 0.0121 98.79(16, 9, 32, 32, 54) (53, 150, 150)

90
3 3

20 8 0.0223 97.77(14, 10, 23) (11, 96, 102)

The results achieved by the WOA is shown in Table 6. The results show how the
accuracy (best and average) also decreases as the percentage of images for the testing phase
increases, except the best result using 40% of the images in the testing phase, which is
superior to the best value obtained using 30%.

Table 6. The best, average, and worst accuracy values obtained by the WOA.

Images (Testing)
%

Best
%

Average
%

Worst
%

10 100 99.92 99.33

20 100 99.76 99.50

30 99.78 99.53 99.11

40 99.83 99.46 99.17

50 99.67 99.48 99.27

60 99.44 98.94 98.27

70 99.33 98.76 98.14

80 98.79 97.94 97.24

90 97.77 97.14 96.51

5.3. BA Results

The best architectures achieved by the BA with different percentages of images for the
testing phase are shown in Table 7. The best result is obtained with only 10% of images for
the testing phase, where an accuracy of 100% is achieved (marked with bold text in Table 7).
This CNN model is structured as follows: three CLs with 11, 10, and 28 filters, with a size
of 3 × 3, three FCLs with 121, 61, and 63 neurons, and a batch size of 16 with 14 epochs.
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This architecture uses less convolutional and fully connected layers than the previous ones,
which also obtained 100% accuracy.

Table 7. The best accuracy results and architectures obtained by the BA. CLs indicates the number of
convolutional layers with their number of filters, and FCLs indicates the number of fully connected
layers with their number of neurons.

%
Images for Testing

CLs
(Filters)

FCLs
(Neurons)

Epoch Batch Size Error
Accuracy

(%)

10
3 3

14 16 0 100(11, 10, 28) (121, 61, 63)

20
3 3

15 8 0.0017 99.83(14, 15, 20) (66, 69, 34)

30
4 4

20 8 0.0022 99.78(14, 13, 17, 31) (12, 43, 10, 75)

40
4 3

20 8 0.0033 99.67(15, 8, 16, 16) (150, 150, 10)

50
4 5

20 8 0.0027 99.73(16, 15, 32, 24) (150, 150, 150, 33, 28)

60
4 5

20 8 0.0050 99.50(15, 16, 26, 32) (35, 150, 50, 36, 10)

70
5 5

20 8 0.0072 99.28(8, 8, 32, 32, 64) (42, 150, 150, 100, 50)

80
3 4

20 8 0.0109 98.91(16, 8, 32) (50, 29, 150, 100)

90
2 4

12 8 0.0245 97.55(12, 11) (71, 75, 96, 25)

Table 8 shows the results achieved by the BA. For this metaheuristic, the accuracy (best
and average) also decreases as the percentage of images for the testing phase increases,
except the best result using 50% of the images in the testing phase, which is superior to the
best value obtained using 40%.

Table 8. The best, average, and worst accuracy values obtained by the BA.

Images (Testing)
%

Best
%

Average
%

Worst
%

10 - 100 -

20 99.83 99.72 99.50

30 99.78 99.54 99.22

40 99.67 99.47 99.00

50 99.73 99.53 99.33

60 99.50 99.23 99.05

70 99.28 98.89 98.33

80 98.91 98.16 97.70

90 97.55 97.23 96.84

5.4. GWO Results

Table 9 shows the best architectures achieved using the GWO with different percent-
ages of images for the testing phase. The best results are obtained with 10% and 20% of
images for the testing phase as PSO and WOA, where an accuracy of 100% is achieved
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(marked with bold text in Table 9). The best architecture can be defined as the one that
uses 20% for the testing phase. This CNN model is structured in the following way: four
convolutional layers with 10, 8, 23, and 25 filters, with a size of 3 × 3 with three FCLs with
42, 139, and 32 neuron and a batch size of 8 with 20 epochs.

Table 9. The best accuracy results and architectures obtained by the GWO. CLs indicates the number
of convolutional layers with their number of filters, and FCLs indicates the number of fully connected
layers with their number of neurons.

%
Images for Testing

CLs
(Filters)

FCLs
(Neurons)

Epoch Batch Size Error
Accuracy

(%)

10
4 2

17 32 0 100(13, 8, 27, 24) (122, 104)

20
4 3

20 8 0 100(10, 8, 23, 25) (42, 139, 32)

30
3 2

10 8 0.0033 99.67(9, 8, 22) (38, 93)

40
4 4

20 8 0.0025 99.75(16, 16, 16, 30) (150, 67, 106, 10)

50
5 3

20 8 0.0033 99.67(8, 9, 32, 19, 64) (120, 81, 10)

60
4 5

20 8 0.0067 99.33(9, 12, 16, 29) (63, 10, 53, 15, 15)

70
4 3

16 8 0.0081 99.19(8, 8, 26, 32) (14, 102, 37)

80
3 1

15 8 0.0175 98.25(16, 13) (48)

90
1 4

11 8 0.0241 97.59(15) (107, 131, 117, 53)

Table 10 shows the results obtained by the GWO. The accuracy decreases as with the
other metaheuristics, but when 30% and 50% for the testing phase are used, the same result
(the best value) is obtained. It is important to mention that when using 40%, the accuracy is
better (the best value).

Table 10. The best, average, and worst accuracy values obtained by the GWO.

Images (Testing)
%

Best
%

Average
%

Worst
%

10 100 99.93 99.67

20 100 99.62 99.00

30 99.67 99.40 99.11

40 99.75 99.47 99.17

50 99.67 99.34 98.80

60 99.33 98.84 98.22

70 99.19 98.76 98.33

80 98.25 97.91 97.62

90 97.59 97.18 96.81
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5.5. Comparison of Results

In Tables 3, 5, 7 and 9, the best architectures generated by each metaheuristic are
presented, where it can be seen how the architectures can vary and still provide good
results without using architectures as complex as those of the pre-trained models.

In Figure 9, the accuracy values (best, average, and worst) shown in Tables 4, 6, 8
and 10 are graphically shown. We can see that the PSO (Figure 9a) and BA (Figure 9c)
always achieve an accuracy of 100% when 10% of the images are used for the testing phase
(90% for training and validation). Meanwhile, the WOA and GWO only achieved the
same value in some experiments using the same percentage of images. Using 50% of the
percentage of images, we can see how the BA and PSO have very parallel values, which
indicates that there is not much difference between their values (best, average, and worst),
which could indicate greater stability between the results obtained in their experiments.

(a) (b) 

  
(c) (d) 

Figure 9. Accuracy values achieved by: (a) PSO; (b) WOA; (c) BA; (d) GWO using different percent-
ages of images for the testing phase.

The average convergence during the learning phase of the 20 runs for each percentage
of images (from 10 up to 90) obtained with each metaheuristic is depicted in Figure 10. It
can be observed that when different percentages of images are used for the testing phase,
the behavior of the PSO and BA is very similar. Even with only 10% of the images used
for testing, both the PSO and BA achieve an error of 0 by iterations 6 and 4, respectively.
Meanwhile, WOA and GWO exhibit similar behavior when 60%, 70%, 80%, and 90% of the
images are used for the testing phase.
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(a) (b) 

 
(c) (d) 

Figure 10. Convergence of accuracy error for: (a) PSO; (b) WOA; (c) BA; (d) GWO using different
percentages of images for the testing phase.

The accuracy and loss curves with their respective validation of the best models are
depicted in Figure 11. These models achieved an accuracy of 100%. The figure shows how
the accuracy and loss have similar behavior to their validation.

Table 11 shows the averages (accuracy) obtained by each optimization algorithm.
As results show, the average decreases when the percentage of images for testing in-
creases, which means the CNN has less information to learn. Only two metaheuristics can
achieve 100% accuracy: PSO and BA. Figure 12 shows graphically the accuracy achieved
by the metaheuristics.

Table 11. Summary of accuracy results obtained by the metaheuristics.

Images (Testing)
%

PSO
%

WOA
%

BA
%

GWO
%

10 100 99.92 100 99.93

20 99.66 99.76 99.72 99.62

30 99.59 99.53 99.54 99.40

40 99.51 99.46 99.47 99.47

50 99.49 99.48 99.53 99.34

60 99.17 98.94 99.23 98.84

70 98.72 98.76 98.89 98.76

80 98.08 97.94 98.16 97.91

90 97.15 97.14 97.23 97.18
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(a) (b) 

 
(c) (d) 

Figure 11. The accuracy and loss curves of the best models: (a) PSO; (b) WOA; (c) BA; (d) GWO.

Figure 12. The average accuracy obtained by the metaheuristics.

The errors achieved by each metaheuristic are shown in Table 12. These results are
utilized to perform statistical comparisons in the next section. These errors are graphically
shown in Figure 13.
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Table 12. Summary of error results obtained by the metaheuristics.

%
Images (Testing)

PSO WOA BA GWO

10 0 0.0008 0 0.0007

20 0.0034 0.0024 0.0028 0.0038

30 0.0041 0.0047 0.0046 0.006

40 0.0049 0.0054 0.0053 0.0053

50 0.0051 0.0052 0.0047 0.0066

60 0.0083 0.0106 0.0077 0.0116

70 0.0128 0.0124 0.0111 0.0124

80 0.0192 0.0206 0.0184 0.0209

90 0.0285 0.0286 0.0277 0.0282

Figure 13. The accuracy error achieved by the metaheuristics.

Figures 12 and 13 graphically show the results obtained in this study. It can be seen
that when a percentage between 10% and 50% is used for the testing phase, the PSO, WOA,
and BA have similar good behavior. Meanwhile, when the percentage increases, it can be
observed that the BA has a better accuracy, which means less error. In Table 13, the results
achieved with the best average of accuracy are shown using other metrics (Recall, Precision,
and F1 Score). The results show that the BA achieved better results in the other metrics,
proving the effectiveness in metrics such as the F1 Score, where a combination of Recall
and Precision is performed.

Table 13. Average results using Accuracy, Recall, Precision, and F1 Score.

Metric PSO WOA BA GWO

Accuracy 100 99.92 100 99.93

Recall 97.05 96.28 99.77 95.80

Precision 80.07 82.67 84.47 81.38

F1 Score 86.18 87.31 90.54 86.40

6. Statistical Comparison

This section shows statistical comparisons where the averages (errors) achieved by
each optimization algorithm are used. In this work, the Wilcoxon signed-rank tests are
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utilized, where the value of α depends on the statistical significance. Table 14 shows the
critical values with different statistical significance levels. A significance level of 0.10 is
used in this work.

Table 14. Critical values for the Wilcoxon signed-rank test.

n
α

0.02 0.05 0.10

9 3 6 8

Table 15 shows the results of the statistical tests performed among all the metaheuris-
tics. The null hypothesis assumes that means are equal, which contradicts the alternative
hypothesis. The null hypothesis can be rejected if the column “W” value is equal to or
smaller than the “W0” based on the critical value with a 0.10 significance level. All possible
comparisons were performed among the four metaheuristics studied in this work. The
results exhibit a significant difference between the PSO and GWO. Meanwhile, the BA
achieves significant differences against the other metaheuristics, allowing a better face
mask classification.

Table 15. Summary of Wilcoxon test results.

Methods
Negative Sum

(W−)
Positive Sum

(W+)
Test Statistic

(W)
Degrees of Freedom

(m)
W0 = Wα,m

BA
PSO 41 3 3 9 8

BA
WOA 41 3 3 9 8

BA
GWO 44 0 0 9 8

PSO
WOA 34 10 10 9 8

PSO
GWO 39 5 5 9 8

WOA
GWO 33 10 10 9 8

The results obtained with the method applying the bat algorithm allowed us to obtain
better results, especially when less percentage is utilized for the training phase of the CNNs
applied to face mask classification.

7. Conclusions

In this work, four swarm intelligence metaheuristics were applied to perform a com-
parison. A face mask database is used as a training, validation, and testing set to prove the
proposed CNN design. This database has three classes: no mask, incorrect mask, and mask.
The metaheuristics applied to CNN architecture design were PSO, WOA, BA, and GWO.
These algorithms were implemented to CNN optimization applied to face mask multiclass
classification, where hyperparameters of CNN were sought: the number of convolutional
layers, filters, number of fully connected layers, neurons, batch size, and epoch. The results
showed that some average convergences of the metaheuristics have a similar behavior
when different percentages of images for the testing phase are utilized. The PSO and BA
achieved an average of 100% accuracy when 10% of the images for the testing phase were
used (leaving 90% for training and validation), but the BA converged faster than the PSO.
The Wilcoxon signed-rank tests are utilized to compare results, and there is a statistical
difference when the PSO and GWO are compared. However, when comparing the BA
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against PSO, WOA, and GWO, there is a statistical difference, which indicates that the BA
allows for achieving better results than the other metaheuristics analyzed in this study
when hyperparameters of convolutional neural networks are searched for the face mask
classification. Results achieved in previous works and the results obtained in this work
show that the performance of each optimization algorithm will depend on its application.
In this work, only 3000 images were used, and different percentages of images were used
for each phase to find optimal architectures with fewer images performing comparisons
among swarm intelligence algorithms. The real implementation implies that optimized
models have learned enough with the idea of not invading privacy and not having to train
the models with specific persons. The optimized architectures could perform a correct
face mask classification independently whether images of a person were used or not to
train the model. The comparison performed in this work will allow us, as future work,
to select those optimized architectures with a better percentage of accuracy and continue
with the implementation in a real-time system. Although metaheuristics allow for optimal
architectures with high accuracy, several limitations must be addressed in future works,
such as the use of novel types of face masks not considered in this work, which would
lead us to the need to evaluate their behavior. The dataset used to train and evaluate the
architectures uses different face positions. However, it would be important to work with
images with different kinds of illumination, especially for future work on implementing
these architectures in real systems. Also, in future works, the comparison of these meta-
heuristics will be implemented by applying them to other intelligent techniques, such as
fuzzy logic for parameter adjustment or fuzzy control.
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Abstract: A method for the analysis of super-resolution microscopy images is presented. This method
is based on the analysis of stochastic trajectories of particles moving on the membrane of a cell
with the assumption that this motion is determined by the properties of this membrane. Thus, the
purpose of this method is to recover the structural properties of the membrane by solving an inverse
problem governed by the Fokker–Planck equation related to the stochastic trajectories. Results of
numerical experiments demonstrate the ability of the proposed method to reconstruct the potential
of a cell membrane by using synthetic data similar those captured by super-resolution microscopy of
luminescent activated proteins.

Keywords: super-resolution microscopy; Fokker–Planck equation; stochastic processes; numerical
optimization
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1. Introduction

The pioneering works [1–3] mark the development of the revolutionary superresolu-
tion microscopy (SRM) that allows us to go beyond the Abbe limit for conventional light
microscopy [4]. The SRM method consists of labeling the molecules moving on a biological
support with fluorophores and then in sampling the microscopic images of the activated
fluorescent molecules.

Observation of the frames of the sampled SRM microscopic images have suggested
that the motion of the molecules could be modeled by a stochastic Langevin equation [5,6].
Clearly, the cell membrane at the microscope is a 3-dimensional object; however, it can be
considered flat, and the observed motion is 2-dimensional since it results in the projection
on the focal plane of the SRM microscope. It appears that an adequate model of the ob-
served trajectories of 2-dimensional images is given by the following stochastic differential
equation (SDE) [7]:

dXt = b(Xt) dt + σ(Xt) dWt (1)

Xt0 = X0, (2)

where b represents the drift, σ is the dispersion coefficient, and Xt ∈ R2 denotes the position
of the observed molecule at time t. In this framework, it is well-known that the drift and
dispersion coefficients satisfy

lim
t→s

E

[
Xt − Xs

t− s
|Xs = z

]
= b(z), lim

t→s
E

[ |Xt − Xs|2
t− s

|Xs = z
]
= σ2(z),
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where the expected values are computed with respect to the process having value z at t = s;
the operator E[· |Xs = z] denotes averaging with regard to the measure of the trajectories
conditioned to be at z at time s.

The formulas above suggest that suitable approximations to b and σ can be obtained
by tracking single molecules; see, e.g., [7,8]. However, this approach may suffer from
the highly fluctuating values of the trajectories and the difficulty of discerning between
different molecules that come closer to the resolution limit.

For this reason, already in [9] the authors have pursued an alternative strategy that
allows us to build a robust methodology for the estimation of the drift based on the
observation of an ensemble of trajectories. Our approach is built upon the assumption that
this ensemble is driven by a velocity field (the drift), given by a potential velocity field
U(x), with x ∈ Ω ⊂ R2, as follows:

b(x; U) = −∇U(x). (3)

Moreover, one assumes a constant diffusion coefficient whose value is chosen consistently
with estimates of laboratory measurement [10]. It is the purpose of our work to reconstruct
the potential U(x) by means of the observation of the motion Xt of the molecules modeled
by Equation (1).

In agreement with our statistical approach based on ensembles, we focus on the
evolution of the probability density function (PDF) of the positions of the molecules (not
on the single trajectories) whose evolution is governed by the Fokker–Planck (FP) problem
given by [6,11]:

∂t f (x, t)−∇ · (∇U(x) f (x, t))− σ2

2
Δ f (x, t) = 0, (x, t) ∈ Q (4)

F( f ) · n̂ = 0, (x, t) ∈ Σ, (5)

f (x, 0) = f0(x), x ∈ Ω, (6)

where Q = Ω× (0, T) and Σ = ∂Ω× (0, T). In this formulation, f (x, t) represents the PDF
of a particle at x ∈ R2 at time t, ∇U(x) is the Cartesian gradient of the potential U, f0 is
the initial density, and Δ is the two-dimensional Laplace operator. Notice that we require
zero-flux boundary conditions, where F( f )(x, t) is the following flux of probability

F( f )(x, t) =
σ2

2
∇ f (x, t)− b(x; U) f (x, t). (7)

We choose zero-flux boundary conditions since they reasonably model the situation where
a similar number of particles enters and exits the domain; see, e.g., [6,12].

Our proposal is to construct an FP-based imaging modality that is based on the
formulation of an inverse problem for U and the observation of a time sequence, in time
interval [0, T], of numerical PDFs (two-dimensional histograms), which are obtained from a
uniform binning of SRM particles’ positions. We denote this input data as fd(x, t) which is a
piecewise constant function. In this setting, the initial condition is given by f0(x) = fd(x, 0).

This proposal is similar to that in our previous work [9]. However, in [9] the as-
sumption of interacting particles was made that resulted in very involved and CPU time
demanding calculations. It is the purpose of this work to demonstrate that accurate recon-
struction results can be obtained assuming noninteracting particles, hence by using a linear
FP model.

At the continuous level, our FP-based imaging tool is formulated as the following
inverse problem:
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min J( f , U) :=
1
2

∫
Ω

∫ T

0
( f (x, t)− fd(x, t))2 dx dt

+
ξ

2

∫
Ω
( f (x, T)− fd(x, T))2 dx

+
α

2

∫
Ω
(|U(x)|2 + |∇U(x)|2) dx, (8)

s.t. ∂t f (x, t) +∇ · [b(x, ; U) f (x, t)]− σ2

2
Δ f (x, t) = 0, in Q

f (x, 0) = f0(x) in Ω, F( f ) · n̂ = 0 on Σ,

with the given initial and boundary conditions for the FP equation, and α, ξ > 0.
In this problem, the objective functional J is defined as the weighted sum of a

space–time best fit term
∫

Ω

∫ T
0 ( f (x, t) − fd(x, t))2 dx dt, and at final time

∫
Ω( f (x, T) −

fd(x, T))2 dx, and of a suitable ‘energy’ of the potential ‖U‖2 =
∫

Ω(|U(x)|2 + |∇U(x)|2) dx,
which corresponds to the square of the H1(Ω) norm of U. Notice that this formulation
allows us to avoid any differentiation of the data and makes it possible to choose the
binning size and, in general, the measurement setting, independently of any choice of
parameters that are required in the numerical solution of the optimization problem.

Our second main concern in determining the potential U is to provide a measure of
uncertainty, and thus of reliability, of its reconstruction. Statistically, this is achieved by
many repetitions of the same experiment, that could not be feasible for (short) living cells.
However, inspired by the so-called model predictive control (MPC) scheme [13] already
used for optimal control problems [12,14], we propose a novel procedure to quantify the
uncertainty of the estimation of U by using the data of a single experiment.

Our methodology is to consider a sequence of non-parametric inverse problems like (8)
defined on time windows (tk, tk+1), k = 0, . . . , K− 1, that represent a uniform partition in
K subintervals of the time interval [0, T]. Therefore, a statistical analysis can be performed
on the set of the corresponding K solutions for U that are obtained in the subintervals.

For development and validation, we consider images of a cell’s membrane structures
(actin, cytoskeleton), as expression of potentials, that is pixel grey values where increased
brightness stands for more repulsion, with which we generate our synthetic data. In
particular, we use an image of actin from a cytoskeleton obtained with a Platinium-replica
electron microscopy [15,16].

With this images taken as gray-level representation of potential functions, we perform
Monte Carlo simulation of motion of particles to generate images of molecules at different
time instants, thus constructing the datasets representing the output of measurements. This
setting is illustrated in Figure 1, where the image of actin [17] and a plot of few trajectories
of the corresponding stochastic motion of the particles in this potential are shown.

Once the synthetic measurement data is constructed, we perform a pre-processing step
on this data to construct the numerical PDF required in our method and solve our inverse
problem to find the estimated–measured potential U. The latter is compared with that one
used in the MC simulation, by a measure of similarity based on the pixel cross-correlation
between the two images.

In Section 2, we discuss a numerical methodology for solving our FP-based reconstruc-
tion method for the potential U. In Section 3, we provide all details of our experimental
setting and introduce some analysis tools for determining the accuracy of the proposed re-
construction. In Section 4, we validate our reconstruction method, and use our uncertainty
quantification procedure. In Section 5, we investigate the resolution of the proposed FP im-
age reconstruction as an optical instrument. A section of conclusion and acknowledgements
completes this work.

256



Math. Comput. Appl. 2023, 28, 113

Figure 1. (Up) A picture of actin from a cytoskeleton as cell membrane potential (close up) (courtesy
of Koch Institute [17]); (Down) a few simulated trajectories of particles (black dots) on the membrane
(in reverse colors).
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2. Numerical Methodology

Our aim is to reconstruct the potential U from the data consisting of a temporally
sampled SRM images of the positions of particles subject to this potential; see Figure 2 (up)
for a schematic snap-shot of this data. This image is subject to a pre-processing binning
procedure in order to construct histograms by counting the number of particles in a regular
square partition of Ω. The height of an histogram is proportional to the number of particles
in a bin of the domain. This procedure for the image at time t defines the histogram function
fd(·, t); see Figure 2 (down).

Figure 2. A frame of particles (up) and the corresponding histogram fd(x, t) on a mesh of 40 × 40 bins
for a fixed time (down), from simulated data.

In order to illustrate our numerical framework, we introduce the potential-to-state
map U $→ f = S(U), that is, the map that associates to a given U ∈ H1(Ω) the unique
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solution to our FP problem (4)–(6), with given initial condition f0. For the analysis of
well-posedness and regularity of the map S, we refer to [18].

Next, we remark that with the map S, we can define the reduced objective functional
Ĵ(U) := J(S(U), U) and consider the equivalent formulation of (8) given by

min
U∈H1(Ω)

Ĵ(U), (9)

which has the structure of an unconstrained optimization problem. Thanks to the regularity
of S and the quadratic structure of J, existence of an optimal U can be stated by well known
techniques; see, e.g., [19].

Further, since S and J are Fréchet differentiable, it is possible to characterize an optimal
U as the solution to the following first-order optimality condition

∇U Ĵ(U) = 0,

where ∇U Ĵ(U) denotes the so-called reduced gradient [20].
In the Lagrange framework, this condition results in the following optimality system:

∂t f (x, t) +∇ · [b(x; U) f (x, t)]− σ2

2
Δ f (x, t) = 0,

f (x, 0) = f0(x) in Ω, F( f ) · n̂ = 0 on ∂Ω× (0, T],

∂t p(x, t) +
σ2

2
Δp(x, t) +∇p(x, t) · b(x; U) = f (x, t)− fd(x, t), (10)

p(x, T) = −ξ ( f (x, T)− fd(x, T)) in Ω, ∂n̂ p(x, t) = 0 on ∂Ω× (0, T],

α U(x)− α ΔU(x)−
∫ T

0
∇ · ( f (x, t)∇p(x, t))dt = 0 in Ω,

∂n̂U = 0, on ∂Ω,

where p denotes the adjoint variable, which is governed by a backward adjoint FP equation.
Notice that the adjoint equation is a well-posed problem with fd(x, t) ∈ L2, which allows
to use the irregular histograms as input data. The numerical solution obtained with a finite
difference approximation is consistent with the interpretation of fd as a piecewise constant
function obtained by local averaging an L2 function on subcells centered at grid points.
Notice that the numerical grid is finer than that of the binning.

The last equation in (10) is the so-called the optimality condition equation, and the
Neumann boundary condition ∂n̂U = 0 is our modeling choice. One can show that its
left-hand side represents the L2 gradient along the FP differential constraint with respect to
U of the objective functional. We have

∇U Ĵ(U)(x) := α U(x)− α ΔU(x)−
∫ T

0
∇ · ( f (x, t)∇p(x, t))dt. (11)

Our approach for solving our FP optimization problem (8) is based on the nonlinear
conjugate gradient (NCG) method; see, e.g., [20]. This is an iterative method that resem-
bles the standard CG scheme and requires to estimate the reduced gradient ∇U Ĵ(U) at
each iteration.

In order to illustrate the NCG method, we start with a discussion on the construction
of the gradient. For a given Un obtained after n iterations, we solve the FP equation and its
adjoint, and use (11) to assemble the L2 gradient. However, since the potential is sought in
H1(Ω), we need to obtain the H1 gradient that satisfies the following relation(

∇U Ĵ(U)|H1 , δU
)

H1 =
(
∇U Ĵ(U)|L2 , δU

)
L2 , (12)

where (·, ·) denotes the L2(Ω) scalar product.
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Now, using the definition of the H1 inner product, we obtain∫
Ω

[
∇U Ĵ(U)|H1 · δU(x) +∇x∇U Ĵ(U)|H1 · ∇xδU(x)

]
dx =

∫
Ω
∇U Ĵ(U)|L2 δU(x) dx, (13)

which must hold for all the test functions δU ∈ H1(Ω). Therefore we obtain

−Δ
[
∇U Ĵ(U)|H1

]
+
[
∇U Ĵ(U)|H1

]
= ∇U Ĵ(U)|L2 , (14)

with the boundary conditions ∂
∂n̂∇U Ĵ(U)|H1 = 0 on ∂Ω; see [9] for more details. In

Algorithm 1 our procedure for computing the gradient is given.

Algorithm 1 Calculate H1 gradient.

Require: control U(x), f0(x), fd(x, t).
Ensure: reduced gradient ∇U Ĵ(U)|H1

Solve forward the FP equation with inputs: f0(x), U(x)
Solve backward the adoint FP equation with inputs: U(x), f (x, t)
Assemble the L2 gradient ∇U Ĵ(U)|L2 using (11).
Compute the H1 gradient ∇U Ĵ(U)|H1 solving (14).
return ∇U Ĵ(U)|H1(x)

In this algorithm, the FP problem and its optimization FP adjoint are approximated by
the exponential Chang–Cooper scheme and the implicit BDF2 method; see [12].

Now, we can discuss the NCG method. The NCG iterative procedure is initialized
with U0(x) = 0. We denote the optimization directions with dn. In the first update, we
have d0 = −∇U Ĵ(U0)|H1 and perform the optimization step

U1 = U0 + α0 d0,

where α0 is obtained by a backtracking linesearch procedure. After the first step, in the
NCG method the descent direction is defined as a linear combination of the new gradient
and the past direction as follows:

dn = −∇U Ĵ(Un)|H1 + βn−1 dn−1,

where β−1 = 0, and βn−1 = ‖∇U Ĵ(Un)|H1‖2/(dn−1 · (∇U Ĵ(Un)|H1 − ∇U Ĵ(Un−1)|H1)),
that is, the Dai-Yuan formula bn−1 = ‖rn‖2/(−dn−1(rn − rn−1)), where here rn stand for
the deepest descent direction rn = −∇U Ĵ(Un)|H1 and dn−1 is the conjugate direction at the
previous step; see, e.g., [20].

The tolerance tol and the maximum number of iterations nmax are used for termination
criteria. Summarizing, in Algorithm 2 we present the NCG procedure.

Algorithm 2 Nonlinear conjugate gradient (NCG) method

Require: U0(x) ≡ 0, f0(x), fd(x, t)
Ensure: Optimal control U(x) and corresponding state f (x, t)

n = 0
Assemble gradient g0 = ∇U Ĵ(U0)|H1 using Algorithm 1; set d0 = −g0.
while ‖gn‖H1 > tol and n < nmax do

Use linesearch to determine αn
Update control: Un+1 = Un + αn dn

Compute the gradient gn+1 = ∇U Ĵ(Un+1)|H1 using Algorithm 1
Calculate the new descent direction dn+1 = −gn+1 + βn dn

Set n = n + 1
end while
return Un(x)
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For our numerical experiments these algorithms have been implemented with ob-
ject oriented programming in C++, by using the numerical libraries Armadillo [21,22],
Openblas [23], Lapack [24], SuperLU [25,26] and HDF5 [27].

3. Experimental Design and Analysis Tools

In a real application, the input data fd is given by frames of a recorded sequence of a
SRM experiment, and the desired output is the reconstructed potential denoted with Ur. In
our case, we construct this data based on a sample potential Us that determines the drift
function in our stochastic model (1). Thus, we generate our frames of synthetic data first by
time-integrating this SDE in the chosen interval [0, T], and choosing the initial positions
of the particles randomly uniformly distributed. Next, the positions of the particles at
different times are collected in a sequence of 2-dimensional bins that result in the sequence
of distributions fd(x, t�), � = 1, . . . , L, where L is the length of the resulting time sequence
of frames. With this preparation, we apply our algorithm to obtain Ur, which represents
the proposed reconstruction of Us. A comparison between these two potentials allows to
validate the accuracy of our reconstruction method (see below).

We choose a domain Ω = [−3, 3]× [−3, 3], and Us corresponds to Figure 1 (up), where
the values of Us in Ω correspond to the gray scale pixel values of the picture mapped in
[0, 1]. With this Us, we perform a stochastic simulation of Np particles for a time horizon T,
and diffusion amplitude σ. The particles trajectories given by (1) with (3), are computed
with the Euler-Maruyama scheme with a time step τ = 10−3, which results in a number of
L frames. In this simulation, reflecting barriers for the stochastic motion are implemented.
We remark that for the following calculations we are going to consider a relatively small
value of density of particles; see [10,28].

Next, we perform a binning of the positions of the particles at each frame to construct
fd. Hence, we consider a uniform partition of Ω with non-overlapping squares; see Figure 2
for a plot of particles in Ω at a given time and the corresponding fd. Notice that fd is
irregular; nevertheless, we do not perform smoothing of this data. The sequence of fd
values enter in our best fit functional in (8).

Once we have computed Ur with our optimization procedure, we aim at providing
a quantification of its uncertainty. Thus, we compute the following normalized cross-
correlation factor between the reconstructed potential Ur and the one used to generate the
synthetic data Us. We have

cc(Ur, Us) =
Ur ·Us

|Ur| |Us|
. (15)

In this formula, Ur and Us are considered as vectors and · represents the scalar product.
Therefore if cc = 1 we have that the two potentials match perfectly, whereas if its value is
close to 0, the two potentials are dissimilar. Notice that cross-correlation is commonly used
in medical imaging and biology; see, e.g., [29–31].

Clearly, one could consider many repetitions of the simulation of the motion of the
particles with the same initial condition and make the final binning on the average of the
resulting frames. This procedure would result in a less fluctuating fd(x, t�) that allows a
better reconstruction. However, this scenario seems difficult to realize in the real laboratory
setting of a living cell. On the other hand, in SRM, imaging is able to visualize the motion
of the particles on a cell membrane for a relatively long time (T � 1 in our setting), and our
approach exploits this possibility considering a subdivision of the time interval in a number
K of time windows, and solving our optimization problem in each of these windows almost
independently. This approach allows us to improve the reconstruction Ur and makes it
possible to quantify the uncertainty of the reconstruction.

Now, to illustrate our approach, consider a uniform partition of [0, T] in time windows
of size Δt = T/K with K a positive integer. Let tk = kΔt, k = 0, 1, . . . , K, denote the start-
and end-points of the windows. At time t0, we have the initial PDF f0, and we solve our
optimization problem (8) in the interval [t0, t1]. This means that the final time is t1 and the
terminal condition for the adjoined variable is given by p(x, t1) = −ξ ( f (x, t1)− fd(x, t1)).
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The resulting potential is denoted with U1. Thus, the solution obtained in this window also
provides the PDF at t = t1.

Clearly, we can repeat this procedure in the interval (t1, t2) with the computed PDF
at t = t1 as the initial condition and t2 as final time, to compute U2. This procedure is
recursive and can be repeated for k = 1, . . . , K, thus obtaining Uk, k = 1, . . . , K.

Notice that small values of K in relation to L produce a rough estimate of the average
potential and its standard deviation due to statistical fluctuations of the Monte Carlo
experiments. On the other hand, for greater values of K, the number of frames for each
window of our approach is reduced when L is kept fixed, thus resulting in a worsening of
the reconstruction procedure.

For the purpose of our analysis, we apply a scaling of these potentials so that their
point-wise values are in the interval [0, 1]. This scaling is performed as follows:

Û =
U −min(U)

max(U)−min(U)
. (16)

Thereafter, we the reconstructed potential by pixel-wise average of the Uk is given by

〈Ur〉 =
1
K

K

∑
k=1

Ûk. (17)

Moreover, we can also compute the following pixel-wise standard deviation

sd(Ur) =

√√√√ K

∑
k=1

(Ûk − 〈Ur〉)2

K− 1
. (18)

Next, we provide conversion formulas for our parameters in order to accommodate
data from real laboratory experiments. We introduce a unit of length u such that the side
length l of our square domain Ω is given by l = 6 u, and the unit of the noise amplitude σ
is given by

√
u/s. In real biological experiments, the typical measure of the length l̃ of a

cell membrane is given in μm. Further, the particle’s diffusion constant D = σ2/2 is given
in μm2/s; hence, we have the correspondence σ = l/l̃

√
2D in unit

√
u/s, whose value is

used for MC simulations.
The depth of the potential Ũ is expressed in unit of KBT̄, where KB is the Boltzmann

constant and T̄ the absolute temperature. In experimental papers, the Equation (3) is
written with the diffusion constant D and KBT̄, i.e., DŨ/(KBT̄). As above, we obtain the
relationship between the values of a potential U and the scaled Ũ, as Ũ = U(l̃/l)2/D in
the unit of KBT̄.

As an illustration of the setting above, we see that in an experiment, the super-
resolution of an acquired image frame can reach the value of 0.02 μm/pixel. With an
image of 500× 500 pixels, we have l̃ = 10 μm. The average diffusion coefficient of parti-
cles (protein molecules) observed in SRM imaging is estimated with D = 0.1 μm2/s [10].
By super-resolution techniques, it is possible to activate a density of 0.5÷ 2/μm2 visible
particles, which in terms of image pixels corresponds to 0.5÷ 2 particles in a square of 50
pixels of side. Each frame is usually sampled at time intervals of δt = 30 ms.

In order to set up a consistent MC simulation of a real experiment, by mapping an
image of a square of side 10 μm on our domain Ω, we get from the above mentioned
formula: σ = 6/10

√
0.2 ≈ 0.268 u/

√
s.

4. Numerical Validation

In this section, we discuss results of experiments in a setting that is close to real labora-
tory experiments involving SRM imaging. The results of these experiments demonstrate
the ability of our methodology to reconstruct the potential from the simulations of the SRM
measurements of the motion of particles on a cell’s membrane.
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We consider a potential that corresponds to a portion of cytoskeleton as depicted in
Figure 3, with 200× 200 pixels. We assume that the pixel is 50 nm, which corresponds to an
area of 100 μm2. In the figure, the white regions represent the structure of the cytoskeleton;
the black ones are the ‘valleys’ where the proteins are supposed to be attracted.

For the MC simulations for generating the synthetic data, we choose σ = 0.268 u/
√

s.
This value of σ corresponds to a diffusion constant of D � 0.1 μm2/s. We consider
Np = 1000 particles, i.e., an average density of 10 particles per μm2. In this case, we
consider a sequence of L = 3000 frames and T = 90, obtained by the numerical integration
of the stochastic differential equation with an integration step τ = 30× 10−3 s. The frames
have δt = 30 ms, similar to a real experiment. The resulting (single run) particle trajectories
are collected in a binning process based on a mesh Ω of 50× 50 bins.

For our reconstruction method, we choose a numerical partition of Ω of
100× 100 subdivisions, corresponding to a mesh size of 100 nm. The time integration
step coincides with that of the frames. For the tracking functional, we set α = 10−4 and
ξ = 1. Further, in the FP setting, we have σ = 0.7 u/

√
s. Notice that σ in the FP model is

chosen to be larger than the one used in the MC simulations. This choice is dictated by
numerical convenience and it appears that it does not affect the quality of the reconstruction.
The calculations are performed according to the MPC procedure with K = 5 time windows.

With this setting, we obtain the reconstructed potential shown in Figure 3 (down). We
see that the reconstruction is less sharp as we expected considering the much finer structure
of the cytoskeleton and the small number of particles involved.

Further, in Figure 4, we depict the potentials obtained on each time window of the
MPC procedure and the values of the corresponding cc. With these results, we have
obtained the reconstructed potential Ur in Figure 3, which we re-plot in level-set format in
Figure 5 for comparison. In Figure 5, we also depict the standard deviation that suggests
that we have obtained a reliable reconstruction with small uncertainty.

Figure 3. Cont.
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Figure 3. (Up): Portion of the cytoskeleton (Courtesy of [17]). (Down): reconstructed potential with
the MPC scheme and K = 5.

Figure 4. Cont.
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Figure 4. Sequence of the 5 (from top-left to right-down) calculated potentials obtained with the
MPC procedure. Cross-correlation values: 0.82, 0.81, 0.82, 0.81, 0.82.

Figure 5. (Up): reconstructed mean potential. Its cross-correlation value with respect to the real
image is 0.82. (Down): standard deviation of the reconstructed potential, in level set representation.

265



Math. Comput. Appl. 2023, 28, 113

5. Resolution of FP-Based Image Reconstruction

In this section, we investigate the optical resolution of our reconstruction method,
that is, try to determine a confidence value related to the scale at which our method
can resolve variations of the potential. As a guideline, we remark that single molecule
localization microscopy (SMLM) can distinguish distances of molecules of approximately
20 nm resolution. Therefore, we assume this resolution range of the fluorescently labeled
particles images, and we attempt to quantify the smallest scale at which geometric features
of the reconstructed potential U can be distinguished.

For our purpose, we consider the following ‘target potential’, appearing as an alternat-
ing sequence of black and white circles (likewise those in test targets used for the resolution
measurement of optical instruments), to synthetically generate the motion data of particles.
We have

U(x, y) = A
(

1 + cos
(

2π

dl
(x2 + y2)

))
, (x, y) ∈ Ω, (19)

where A denotes the semi-amplitude of the variation between the minimum and the
maximum of the potential, l is the length of the side of the domain, d is the distance
between two peaks of the potential as a fraction of l.

Now, we consider a single MC simulation of 500 particles with the setting: σ = 0.5,
T = 90 and L = 3000 frames, integrated with the time step τ = 0.03. In Figure 6, we
show (left) the given potential with A = 0.05 and d = 1/20, with a gray-scale value
representation conveniently adjusted for illustration pourpose. According to the above
working hypothesis, we suppose that the pixel’s width of the image is 20 nm. In Figure 6
(left), we depict U in a square of side of 500 pixels, corresponding to l̃ = 10 μm. Hence,
the distance between two peaks is λ = 10/20 = 500 nm. Further, the particle’s density is
5 particles per μm2, the diffusion coefficient D � 0.3472 μm2/s, and the potential depth,
i.e., the difference between the maximum and the minimum, is Ũ = 0.8 KBT. For the
reconstruction process, we use a binning of 50× 50, α = 10−4, ξ = 1. In the numerical
setting, we use a grid of 100× 100 points, and K = 5. Also in Figure 6 (right), we show
the reconstructed potential 〈Ur〉 and notice its high accuracy that is also confirmed by the
high value 0.82 of the cross correlation. Notice, that the quality of the reconstruction can be
further improved by using post-processing techniques of images.

Figure 6. (Left): the potential (19) with A = 0.05 and d = 1/20 (the gray scale levels spans from
U = 0 to 0.1). (Right): result of the reconstruction with the gray levels expanded to the min/max of
〈Ur〉. The cross correlation between the two images is 0.82.

Now, with the aim to define a criteria to establish the resolution measure for the
potential, we introduce a confidence level for the quality of the reconstructed potential by
setting a threshold for the calculated cross-correlation. This approach has been adopted
in [29] for the detection of cellular objects from images acquired from electron tomography.
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For that purpose, the authors used the threshold value of 0.5, whereas in our case, we
set a more strict threshold-cc level equal to 0.8. With this threshold, we can state that the
test pattern depicted in Figure 6 (left) is satisfactorily reconstructed and determines that
the resolution measure associated to our ‘imaging instrument’ is 500 nm. Notice that this
value is affected by the value of the potential U and the diffusion D, and it can be further
improved by changing the other parameters of the experiment, such as K or the time T of
the motion sampling.

6. Conclusions

A novel method for the analysis of super-resolution microscopy images was presented
and applied to the reconstruction of the structure of a cell membrane potential based on
the observation of the motion of particles on the membrane.

The working principle of this method is the modeling with the linear Fokker–Planck
equation of the ensemble of the stochastic trajectories of particles moving on the membrane
of a cell, and the solution of an optimization problem governed by this equation, where
the purpose of the optimization is to find a potential such that a least-squares best fit
term of the computed and observed particles’ density and a Tikhonov regularization term
are minimized.

Results of numerical experiments were presented that demonstrated the ability of the
proposed method to reconstruct the potential of a cell membrane by using the data of a
super-resolution microscopy of luminescent activated proteins.

7. Brief Documentation of the Code

The program code has been written in C++ with the support of Armadillo, LAPACK,
and others common public available linear algebra routines. The structure of the code
follows the object oriented programming style, with some basic classes for the the definition
of the mathematical model, numerical grids and solvers, and derived classes for the solution
of the optimization problem. Notice that the code is not computationally optimized, that is, it
has been written with the purpose to test the ability of the numerical scheme to accomplish
the proposed reconstruction task. Further major improvements could be implemented,
such as a better organization of the hierarchical class structure and a more efficient use of
the pointers.

The package of the source codes is composed of 14 files (The code will be available in
the repository of this journal as a supplemental material):

• CALC_FIG3.cpp, CALC_FIG6.cpp the main driver routines
• Non_lin_conjug_grad.cpp/.hpp class definitions for the nonlinear conjugate gradi-

ent method
• Optim_problem.cpp/.hpp class definition for the optimization problem
• BDF_Chang_Cooper.cpp/.hpp class definitions of the BDF2 solver associated with the

Chang-Cooper method
• Chang_Cooper.cpp/.hpp class definitions of the Chang-Cooper numerical method
• gradients.cpp/.hpp support functions for the discrete gradients
• model.cpp/.hpp class definition for the Fokker–Planck model

For our tests, the following libraries were installed on the OS Linux Mint (20.3): Ar-
madillo (version 12.6), Openblas (version 0.3.8), Lapack (version 3.9.0), SuperLU (version
5.2.1) and HDF5® (version 1.10.4). The makefile gives support for the compilation, pro-
vided that the user customizes the library paths according to his own OS configuration.
The compilation process is invoked with the command make CALC_FIG3 that produces
the related executable file. The command make clean cleans all the object codes. At run
time, the executable file loads the input data from the folder input_data, prints on the
screen some computation information about the minimizing process, and finally saves the
resulting reconstruction in data files and pictures inside automated created folders.

Here follows a brief description of the input/output data structure.
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The main input data of the algorithm, namely fd, is a 3-dimensional matrix that,
according to the syntax of Matlab®/Octave [32,33], has size as [Nx,Ny,Nt]=size(fd),
where Nx,Ny are the number of histogram bins in each dimension on the domain space, and
Nt is the number of time step samples of the particles trajectories, i.e., fd(:,:,n) represents
the 2-dimensional matrices slice at the time step n with the values of the histograms of the
particles positions. This matrix is saved in the HDF5® format [27] under the set data name
value, as follows

name_h5 = [save_name ’.h5’];

h5create(name_h5,’/value’,size(fd));

h5write(name_h5,’/value’,fd);

The library Armadillo provides the loading method.
The files CALC_FIG3.cpp and CALC_FIG6.cpp are the driver programs for calculating

the figures of the papers. They differs on the input/output data name and some parameters
value. Here follows the list of variables that can be customized by the user:

• base_data_dir: folder name containing the input data.
• data: file name of the input data, i.e., the trajectories, binned in histograms, of the

particles. The HDF5 format is used.
• base_dir: is the parent folder name where the results of the computation will be saved.

This folder must be created in advance, otherwise the run-time is stopped by an error.
The program creates automatically the sub-folder and saves the results inside.

• save_name: is a root file name, used to create file names for saving the results of the
reconstruction.

• nlcg_param_fname: file name for the file containing the parameters of the nonlinear
conjugate gradient algorithm. See below the description.

• sig: intensity of the Gaussian noise σ in the FPE (4).
• alfa: weight α of the norm of the potential U(x) in the objective functional (8).
• beta: weight of the norm of the gradient of the potential ∇U(x) in the objective

functional (8). Notice, here we assume beta= α.
• xi: weight ξ of the terminal condition in the objective functional (8).
• ax, bx, ay, by: are the boundaries of the 2-dimensional domain. It is not necessary

to change the default values.
• TT: total time interval for the reconstruction. It is equal to the time of the Monte Carlo

simulation or the time length of the sampled trajectories.
• Nx: number of grid points of the numerical domain. In this implementation it must be

square.
• mux, muy, s0: parameters for the 2-dimensional Gauss PDF used as initial condition

f0(x) for the FPE (4). mux, muy are the (x, y) coordinates of the mean value, s0 is the
standard deviation. If s0 < 0 then the PDF is uniform.

• Nt_seq: number of windows of the Model Predictive Control. It corresponds to the
number of the reconstructions computed along all available input time step data of
the particles trajectories from the Monte Carlo simulation, as depicted in Figure 4.

• lam0: is the initial step length for a single cycle of the NLCG algorithm.
• kmax: maximum number of iterations for a single cycle of the NLCG algorithm.
• max_restart: maximum restart sequences of the NLCG algorithm.

Non_lin_conjug_grad.hpp/.cpp defines the class NLCG that implements the nonlinear
conjugate gradient method. It contains some default values of parameters for the Armijo
condition during the linesearch algorithm (for details see [12,20]).

• BACK_TRACK 0.5 is the backtracking coefficient of the linesearch algorithm.
• MAX_LEVELS 10 is the maximum number of level search for the Armijo condition.
• GAMMA 0.1 is the coefficient for the Armijo sufficient decrease condition of the func-

tional.
• EPS_CONV 1e-4 is the tolerance level for the search of the step-length
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• U_TOLERANCE 1e-4 is the tolerance level for the search of the step-length related to the
control.

• EPS_PDF 1e-8 is the minimum value of the PDF under which the control should be
set vanishing (not used).

These values can be overwritten by those defined in an external file pointed out by the
variable nlcg_param_fname. Such as an example, in the file nlcg_params.dat the following
values are changed

• BACK_TRACK 0.3

• GAMMA 0.2

Outline of the classes usage.
The source codes CALC_FIG3.cpp and CALC_FIG6.cpp give the guidelines on how to

use the classes for solving the optimization problem. After loading the input data and
defining some parameters, the classes Param and Model must be instantiated. In particular,
the class Model named fokker_planck that contains the mathematical model of the FPE.
Afterward, it follows the definition of the Cauchy initial condition. Then it starts the
iterations over the reconstruction windows related to the MPC. Each iteration solves an
optimization problem, inside of that it instantiates a Grid class for the numerical grid and
matrices for the data. The instance of the class NLCG provides the numerical optimizer
for the reconstruction problem. The constructor of the class takes as input arguments the
classes Model and Grid, and a reference to the output, i.e., the solution of the optimization
stored in u. After loading the algorithm parameters, the optimization starts by invoking the
public method start_restart_sequence. At the completion of the method, the solution
is stored in u, and the final value of the PDF is set as the initial condition for the next
temporal window.

Finally, notice that the classes can be easily reused, e.g., for solving the sole Fokker–
Planck equation, or modified in order to implements others optimization algorithms.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mca28060113/s1.
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