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Preface

The evolution of urban mobility has seen unprecedented technological advances, particularly in

the fields of vehicular sensing and intelligent transportation systems (ITS). This Reprint, “Vehicular

Sensing for Improved Urban Mobility,” brings together key research contributions that explore the

critical role of sensor technologies, connected vehicles, and communication systems in reshaping how

we navigate urban environments.

The subject of this Reprint centers around the integration of vehicle-to-everything (V2X)

technologies, including vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications,

enabled by emerging 5G networks and artificial intelligence (AI). These technological advances are

leading to safer, more efficient, and environmentally friendly transportation systems. Our aim is to

present the latest developments in vehicular sensing, highlighting how these innovations contribute

to urban mobility by addressing challenges such as traffic congestion, road safety, and environmental

impact.

The motivation behind this compilation lies in the rapidly growing interest and research in

smart cities, autonomous driving, and connected vehicles. As global urban populations expand,

the need for improved mobility solutions becomes ever more pressing. This collection showcases

cutting-edge studies that propose solutions to these pressing challenges through advancements in

vehicular sensing.

The Reprint is addressed to researchers, engineers, policymakers, and professionals working

in the fields of transportation engineering, automotive technology, urban planning, and smart

infrastructure. It serves as a comprehensive resource for those interested in the intersection of

vehicular sensing technologies and urban mobility.

We extend our gratitude to the contributing authors, whose rigorous research and innovative

thinking form the backbone of this Reprint. Additionally, we acknowledge the invaluable assistance

and support of the reviewers, editors, and collaborators who helped ensure the quality and impact of

the work presented here.

We hope this Reprint serves as a valuable resource and inspiration for future advancements in

vehicular sensing and urban mobility, contributing to safer, smarter, and more connected cities.

Constantin-Florin Caruntu and Ciprian-Romeo Comsa

Guest Editors
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Vehicular Sensing for Improved Urban Mobility

Constantin-Florin Caruntu 1,* and Ciprian-Romeo Comsa 2

1 Department of Automatic Control and Applied Informatics, “Gheorghe Asachi” Technical University of Iasi,
700050 Iasi, Romania

2 Department of Telecommunications and Information Technologies, “Gheorghe Asachi” Technical University
of Iasi, 700506 Iasi, Romania; ccomsa@etti.tuiasi.ro

* Correspondence: caruntuc@tuiasi.ro

In recent years, advancements in the automotive industry have accelerated the devel-
opment of connected and autonomous vehicles (CAVs). While fully autonomous vehicles
still require significant progress to meet all safety and security standards, there are emerging
opportunities to enhance traffic safety using environmental sensor data and connectivity
with other vehicles and smart infrastructure, especially in urban settings.

Environmental sensors such as cameras, radars, and lidars provide critical information
about objects and other traffic participants around vehicles. The latest CAV developments
enable the sharing of this information between vehicles and infrastructure, known as
collective perception. Vehicles can now create and improve their environment models (EMs)
with data from their own sensors and from vehicle-to-everything (V2X) communication
technologies. This allows vehicles to transmit their heading, position, and speed through
cooperative awareness messages (CAMs) and enhance precision with collective perception
messages (CPMs).

Urban infrastructure, equipped with various sensors, like cameras, radars, and GNSS,
plays a crucial role in traffic safety. Smart infrastructure employs computer vision and
artificial intelligence (AI) for object detection, classification, pose estimation, tracking, and
behavior prediction, thus enhancing traffic participants’ awareness. Thus, this Special Issue
explores all aspects of vehicular sensing in urban mobility, including architecture, emerging
sensors, communication technologies, advanced applications, and deployment issues, such
as developing smart infrastructure systems for information sharing and safety.

The rapid expansion of urban environments necessitates innovative solutions for im-
proving mobility and reducing congestion. Vehicular sensing technologies hold significant
promise in addressing these challenges by enhancing traffic management, ensuring safety,
and optimizing vehicle performance. This Special Issue, titled “Vehicular Sensing for
Improved Urban Mobility”, showcases ten cutting-edge studies that advance the state of
the art in vehicular sensing and its applications in urban settings.

1. Overview of the Contributions

In their study, Fernández et al. [1] develop a dual-slope path loss model tailored
for vehicular sensing applications in diverse urban and suburban environments. This
model aims to improve the reliability and accuracy of vehicular communications, which
are crucial for the deployment of intelligent transportation systems (ITSs) and vehicular ad
hoc networks (VANETs).

Herbers, Doerzaph, and Stowe [2] explore how line-of-sight (LOS) sensors and con-
nected vehicle technology (CVT) can mitigate and prevent crash and near-crash scenarios.
Their research demonstrates the potential of these technologies to enhance vehicle safety
through advanced driving assistance systems (ADASs).

Heyer-Wollenberg et al. [3] propose a cooperative method to improve the accuracy of
Turn Movement Count (TMC) by incorporating contextual observations from surrounding
areas. This method significantly enhances the identification of vehicle movements under
challenging conditions, contributing to more accurate traffic analysis and management.

Sensors 2024, 24, 5134. https://doi.org/10.3390/s24165134 https://www.mdpi.com/journal/sensors1
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In their paper, Silva et al. [4] present a model-based approach to quantify the depend-
ability of VANETs, particularly in urban advanced mobility (UAM) contexts. By leveraging
virtual machine migration, they aim to enhance the reliability and availability of VANETs,
which are essential for integrating UAM into urban infrastructures.

Lazar et al. [5] discuss a comprehensive control architecture for connected vehicle
platoons, utilizing vehicle-to-everything (V2X) communication. This architecture improves
road safety, traffic flow, and fuel efficiency, offering a promising solution to contemporary
traffic problems.

Shopovska et al. [6] address the challenge of detecting vulnerable road users (VRUs)
under varying lighting conditions. They introduce a high-dynamic-range tone mapping
technique for intelligent automotive systems, enhancing the performance of imaging
sensors in extreme lighting scenarios.

Achirei et al. [7] present a model predictive control framework for omnidirectional
mobile robots, emphasizing the use of convolutional neural networks (CNNs) for object
detection. Their approach significantly improves the navigation and operational efficiency
of mobile robots in urban logistic environments.

Frej et al. [8] conducted an experimental study on the longitudinal acceleration of
urban buses and coaches, analyzing vehicle motion dynamics and driver behavior. Their
findings provide valuable insights for enhancing passenger comfort and safety in urban
public transportation.

Park et al. [9] propose a secure mutual authentication and key agreement scheme
using physically unclonable functions (PUFs) for Internet of Drones (IoD) applications.
This scheme ensures robust security in UAV operations, which is crucial for urban traffic
surveillance and environmental monitoring.

Zhao and Zhao [10] developed an algorithm for online stochastic error modeling of
inertial sensors used in urban navigation systems. Their approach enhances the accuracy
of inertial navigation during GNSS outages, which is vital for reliable vehicle positioning
in dense urban areas.

2. Conclusions

This Editorial provides an overview of each paper’s contributions to the field of
vehicular sensing and emphasizes their impact on improving urban mobility. The papers
in this Special Issue highlight the diverse applications and significant advancements in
vehicular sensing technologies. By addressing key challenges in urban mobility, these
studies contribute to safer, more efficient, and sustainable transportation systems.

We, the Editorial Team, appreciate all the innovative research endeavors presented in
this Special Issue. We extend our thanks to the authors for their diligent incorporation of
feedback, critical assessment of their work, and adherence to timelines, which have enabled
the successful publication of this Special Issue. The Guest Editors are pleased with the
conclusive outcomes of the published papers and anticipate their utility for researchers,
engineers, designers, and other professionals engaged in various aspects of advanced
analytical and numerical simulation approaches, as well as experimental studies applied to
vehicular sensing and urban mobility. We also express our gratitude to the reviewers for
their crucial contributions and the dissemination of scientific findings. Lastly, we thank
the Editorial Board of Sensors for their patience, support, and exceptional contributions.
We hope the readers feel inspired by and can learn from the research articles in this
Special Issue.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.
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An Algorithm for Online Stochastic Error Modeling of Inertial
Sensors in Urban Cities

Luodi Zhao 1,2,3 and Long Zhao 1,2,3,*
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2 Digital Navigation Center, Beihang University, Beijing 100191, China
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Abstract: Regardless of whether the global navigation satellite system (GNSS)/inertial navigation
system (INS) is integrated or the INS operates independently during GNSS outages, the stochastic
error of the inertial sensor has an important impact on the navigation performance. The structure
of stochastic error in low-cost inertial sensors is quite complex; therefore, it is difficult to identify
and separate errors in the spectral domain using classical stochastic error methods such as the Allan
variance (AV) method and power spectral density (PSD) analysis. However, a recently proposed
estimation, based on generalized wavelet moment estimation (GMWM), is applied to the stochastic
error modeling of inertial sensors, giving significant advantages. Focusing on the online imple-
mentation of GMWM and its integration within a general navigation filter, this paper proposes
an algorithm for online stochastic error calibration of inertial sensors in urban cities. We further
develop the autonomous stochastic error model by constructing a complete stochastic error model
and determining model ranking criterion. Then, a detecting module is designed to work together
with the autonomous stochastic error model as feedback for the INS/GNSS integration. Finally, two
experiments are conducted to compare the positioning performance of this algorithm with other
classical methods. The results validate the capability of this algorithm to improve navigation accuracy
and achieve the online realization of complex stochastic models.

Keywords: GMWM; stochastic error; inertial sensor; sensor calibration; error model; Allan variance

1. Introduction

Modeling and estimation of inertial sensor errors are generally challenging tasks,
especially for low-cost inertial micro-electromechanical system (MEMS) sensors, since
the error model has complex spectral structures. For a global navigation satellite system
(GNSS) and inertial navigation system (INS) integrated system, it is usually performed
through a general Kalman filter, e.g., an extended Kalman filter (EKF), which is closely
related to the inertial sensor modeling. When the GNSS signals are partially or completely
unavailable, the INS operates in coasting mode, i.e., the navigation parameters can be
estimated completely independently of the GNSS. Consequently, the overall navigation
performance depends greatly on the accuracy of the inertial signal, or more precisely, on
the errors of the inertial signal. These errors are integrated into the INS, and their impact
increases dramatically over time. In conclusion, accurate modeling and estimation of the
error of inertial signals are crucial for improving the quality of navigation performance.

The errors of inertial sensors can generally be divided into deterministic errors and
stochastic errors. Most deterministic errors can be compensated for by physical models
and have been widely studied [1–3], while stochastic errors are difficult to model. This is
because there are many influence factors and normally the model is too complex to estimate
correctly. Traditional estimation methods, such as Allan variance (AV) and power spectral
density (PSD) analysis methods, have obvious disadvantages when the stochastic error
structure is complex [4]. AV is currently the most widely used method in engineering to

Sensors 2023, 23, 1257. https://doi.org/10.3390/s23031257 https://www.mdpi.com/journal/sensors4
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identify and calibrate inertial sensors [5–9]. Although this method was originally intended
to study the stability of oscillators, it has been successfully applied to problems in a large
number of different types of sensors, among which is the modeling of inertial sensor
errors. However, AV is only suitable for stochastic processes that can be clearly identified
and separated in the spectral domain. More strictly, stochastic processes are thought not
to be affected by spectral ambiguity, while spectral ambiguity is common for low-cost
MEMS inertial measurement units (IMU) [10,11]. Since human judgment is required in the
identification of noise when performing Allan variance, it will absolutely cause deviation in
estimation parameters in most cases. For PSD analysis, the periodogram is an inconsistent
estimator of the power spectral density function and can be badly biased even for large
sample sizes (because of frequency leakage effects). Moreover, when the PSD has large
variability over a very narrow frequency band, it will make the least squares optimization
problem based on the difference between the empirical PSD and the model-based PSD more
difficult to solve [12]. However, reference [13] associated the wavelet variance (WV) with
the PSD, and WV can be calculated from the samples using the wavelet transform estimator.
Accordingly, reference [14] proposed a generalized wavelet moment estimation method,
which identifies the time series to be estimated as a combination of stochastic processes. In
such cases, the GMWM estimator is asymptotically consistent, and the empirical WV of the
series corresponds to the WV implied by the assumed model. The generalized least squares
method has been adopted to minimize the discrepancy between the two and to estimate
the parameters of the latter [15]. This method can effectively avoid the disadvantages of the
above traditional methods and has significant practical application value. In addition to the
modeling of a given sequence of IMU data, other researchers have studied the modeling
of IMU error within filters. Reference [16] introduced the stochastic IMU error models
within a Sage Husa adaptive robust Kalman filter. Reference [17] developed an adaptive
Kalman filter with colored noise for gyroscope random drift. However, these researchers
calibrated inertial sensors before or after the experiments, i.e., offline calibration. Moreover,
they hardly considered the time-taken for the calibration process. For these reasons, we
propose an algorithm for online modeling of inertial sensor errors based on GMWM and
mainly focus on the modeling of the stochastic error of the vehicle-mounted inertial sensors
in urban areas.

The algorithm in this work is designed under the frame of INS/GNSS integration
within KF. The main contributions of this paper are as follows: Firstly, this paper realizes
autonomous stochastic error modeling by constructing a complete stochastic error model
and a model ranking criterion. Secondly, this paper proposes a static state detecting algo-
rithm with an adaptive threshold. It collects and accumulates static data when the vehicle
stops. Finally, the frame of INS/GNSS integration is developed, combining autonomous
stochastic error modeling and detecting module as feedback within the EKF. It realizes
online modeling of the stochastic errors and provides a more accurate navigation solution
as the vehicle runs. Two experiments, the GNSS denial experiment and GNSS available
experiment, are designed to validate the feasibility of the proposed algorithm.

The rest of the paper is organized as follows: Section 2 introduces the main contribu-
tions of this paper. It introduces the principles of the system frame first. Then, it explains
the basic principle of GMWM in Section 2.1 and presents the autonomous modeling in
Section 2.2. The static state detection with adaptive threshold is developed in Section 2.3.
Sections 2.1–2.3 detail the whole algorithm for online modeling of inertial errors. Section 3
details two conducted experiments to compare the algorithm proposed in this paper with
other classical methods, and analyzes the positioning performance. Section 4 reveals the
conclusions and further research directions.

2. Online Stochastic Error Modeling of Inertial Sensors

Generally, measurements of inertial sensors have various errors which contaminate the
true measurements from the gyroscopes and the accelerators, decreasing the performance

5
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of the navigation solutions. For inertial sensors, the angular rate of the gyroscope and the
specific force observation equation of the accelerometer are calculated as follows:

ω = ωtrue + bω + Sωω + cωt + εω

f = ftrue + b f + S f f + c f t + ε f
(1)

where ω is the gyro output measurement, ωtrue is the true rotation rate, bω is the gyroscope
bias, Sω is the gyroscope scale factor, cω is the gyroscope temperature coefficient, t is the
temperature, f is the accelerometer output measurement, ftrue is the true specific force,
b f is the accelerometer bias, S f is the accelerometer scale factor, c f is the accelerometer
temperature coefficient, and εω and εω are the sensor noises. For IMU calibration, the
six-position static calibration test is generally adopted to determine both the deterministic
bias and scale factor of the gyros and accelerometers. Moreover, the temperature variation
effect is neglected here in this paper due to the relatively short duration datasets. Thus, this
research mainly explores the modeling and estimation of sensor noise, εω and ε f .

GMWM is a recently proposed technique to model the sensor noise εω and ε f . We
make further improvements to GMWM to realize online modeling and design a novel
navigation solution. It is designed within an INS/GNSS integrated system with feedback
to provide information on IMU stochastic errors. The layout of the frame is shown in
Figure 1. Here, we first introduce the basic principles of the system, then more details
and some supporting conclusions will be further explained in Sections 2.1–2.3 of each
module accordingly.

 

Figure 1. Layout of online stochastic error modeling of inertial sensors in INS/GNSS integration.

• When GNSS signal is received, the INS/GNSS integration within EFK obtains the
navigation solution. Differing from traditional INS/GNSS integration, this system has
an additional feedback to the EKF and has a stochastic error model as an augmented
error vector in the EKF. When GNSS signal is blocked, the INS works in coasting mode;

• The feedback consists of autonomous stochastic error modeling of inertial sensors and
the detecting module. The raw observations from the IMU will go to the detecting
module. The static state detecting with adaptive threshold judges the motion state
of the vehicle. If the vehicle is static, e.g., waiting before traffic lights or temporarily
avoiding pedestrians or other vehicles, the IMU data accumulate during this static
duration. After bias removal, accumulations will go to autonomous stochastic error
modeling where the GMWM will prepare the best model of inertial stochastic error.
Meanwhile, the angular rate detector will judge if the angular rate of the vehicle is
higher than 30◦/s. If not, the best model can work as an augmented vector together

6
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with the navigation error models in a Kalman filter. The Kalman filter outputs the bias
of gyros and accelerators fed to autonomous stochastic error modeling in return;

• The IMU data for autonomous stochastic error modeling only accumulate during the
static duration; therefore, the amount of data is quite small, and the calculation is
generally completed within a few seconds. As the vehicle runs, the IMU data accumu-
lation increases with extension of the static duration; consequently, the accuracy of the
stochastic model improves.

2.1. Generalized Method of Wavelet Moments

GMWM is an estimation method based on the idea of generalized method of moments
(GMM) estimators and the wavelet variance (WV) [16]. The GMWM makes use of the
relationship between the WV and the parameters of a latent process, estimating the latter
by minimizing the distance between the empirical WV and model-based WV [14]. The
calculation process for the GMWM can be illustrated as follows:

The wavelet coefficients are built using wavelet filters
{

h̃j,l : j = 1, · · · J
}

, where the

j-th level wavelet filter of length is Lj = (2j − 1)(Lj − 1) + 1. In the stationary or non-
stationary process, we get the maximum overlap discrete wavelet transform (MODWT)
coefficients, Wj,k

Wj,k =
L1−1

∑
l=0

h̃j,lYk−1, k ∈ Z (2)

WV is defined as the variance of the wavelet coefficients, Wj,k, at the dyadic scales
τj = 2j−1.

v2(τj) = var
[
Wj,k

]
(3)

For a finite observed process, the MODWT-estimated WV can be calculated as follows:

v(τj) =
1

Mj

N

∑
k=Lj

W2
j,k (4)

where Wj,k =
Lj−1

∑
l=0

h̃j,lyk−l , k ∈ (Lj; N) and Mj = N − Lj + 1.

The PSD of the wavelet coefficient, SWj( f ) =
∣∣∣H̃j( f )

∣∣∣2SFθ
( f ), supports a direct rela-

tionship between WV and PSD, where the variance of the mentioned series of wavelet
coefficients are the direct integral of its PSD as follows:

v(τj) =

1/2∫
−1/2

SWj( f )d f =

1/2∫
−1/2

∣∣∣H̃j( f )
∣∣∣2SFθ

( f )d f (5)

where Hj( f ) is the transfer function of the filter hj,l , Fθ is the model built using one or more
stochastic processes that describes the dynamics of the observed sensor error sequence, and
SFθ

is the PSD implied by the model Fθ . Therefore, there is an implicit connection between
the WV and the parameters of the data generating model, Fθ . We exploit this connection
by defining an estimator for θ, namely by matching a sample estimate of the WV together
with the model-based expression of the WV. The GMWM estimator is used to minimize the
distance between the empirical and estimated WV in order to estimate the parameters of
the latent composite processes as follows:

θ̂ = argmin
θ∈Θ

(v̂ − v(θ))TΩ(v̂ − v(θ)) (6)

where θ represents the time series model parameter that we intend to estimate belonging
to the compact set Θ, and Ω is a symmetric positive definite weighting matrix chosen
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in a suitable manner to make the GMWM estimator is as efficient as possible. It is also
important to mention that this method could also be based on the AV since the aforemen-
tioned Haar WV is simply twice the AV with additional benefits. A detailed mathematical
background on the GMWM can be found in [12,14].

The next step is the parameter estimation of the possible model, Fθ , and ranking these
models using specific criterion to determine the best one.

2.2. Autonomous Stochastic Error Modeling
2.2.1. Complete Stochastic Error Model

Within our research interests, the problem of modeling and estimation focuses on the
stochastic error components affecting gyroscopes and accelerators. Hence, we restricted the
possible models, Fθ , to a complex model which is defined as a combination of independent
basic stochastic processes. These basic stochastic processes are widely used within the
design of navigation filters and can precisely describe the behaviors of inertial sensors:
gaussian white noise (WN), random walk (RW), drift (DR), quantization noise (QN) and
finite auto regressive model (AR) [18–23].

In order to cover as many basic stochastic processes as possible, this paper defines the
complete model of IMU stochastic error as

error = 4 × AR + DR + WN + QN + RW (7)

The complete model consisting of these basic stochastic processes is universally suit-
able to a variety of inertial sensors. When identifying the structure of the stochastic error,
all the combinations of these basic stochastic processes within the complete model are
regarded as the candidate models. Then, parameters of all the candidate models are es-
timated by GMWM and later, the best or most suitable model is selected by a designed
model ranking criterion.

2.2.2. Model Ranking Criterion

After using GMWM to estimate the parameters of all candidate models, it is necessary
to establish a model ranking criterion according to the actual requirements of noise model-
ing and estimation in the practice appliance. According to this criterion, candidate models
are evaluated and ranked to select the most suitable one. Ref. [15] gave a ranking criterion
called wavelet variance information, which weighs the model fitness and computational
complexity to evaluate the trade-off between the model accuracy and the estimation of the
time-taken. Ref. [15] statically collected IMU data for several hours, leading to a significant
amount of data. It makes the parameter estimation quite time-consuming, taking even
up to several hours, especially when the model contains a large number of stochastic
processes. However, for the online modeling problem of stochastic errors studied in this
paper, a relatively small amount of IMU data are processed. Accordingly, the computational
calculation is small, which leads to tiny difference between the time-taken for estimating
different candidate models. Consequently, only the model accuracy is considered in this
research here.

The objective function given by Equation (6) can be regarded as a mismatch between
the WV calculated by the model Fθ and the WV calculated by observed measurements,
and its purpose is to minimize this difference and make the model more closely match the
observations. Based on this physical explanation, the ranking criterion can be defined as
goodness of fitness (GOF) as follows:

GOF = (ν̂ − ν(θ̂))
T

Ω(ν̂ − ν(θ̂)) (8)

After the parameter estimation of all candidate models is completed by GMWM, all
candidate models are evaluated by the GOF criterion, and the model with the smallest GOF
value is selected as the optimal model.
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A summary of the overall flow of autonomous stochastic error modeling of inertial
sensors is shown in Figure 2.

 

Figure 2. The overall flow of autonomous stochastic error modeling of inertial sensors.

2.3. Static State Detecting with Adaptive Threshold

For the vehicle navigation system, the inertial outputs contain some specific constraint
information under different motion states. Under the premise of adding no extra cost
and devices, the information can provide additional constraints for the navigation system,
which is helpful to improve the accuracy and stability of the integrated navigation system.
In particular, when the vehicle is in a static state, the inertial sensor is not affected by
vehicle maneuvers, so the accelerations kept stable and the velocity remains close to zero.
Nevertheless, the stability analysis of the accelerometer output can be performed to detect
the static states. A common method is to use the standard deviation of the accelerometer
output in a fixed time window as the test statistic [24]:

{
Ti( Accel. X) < λ
Ti( Accel. Y) < λ

, Ti =

√√√√ 1
N − 1

i

∑
j=i−N+1

(Ai − Ui)
2 (9)

where Ai is the accelerometer output at epoch i, Ui is the mean value of the data in the fixed
time window at epoch i, N is the number of data in the fixed time window, and N = 100
in this paper. Ti is the standard deviation of the data in the fixed time window at epoch i.
Empirically, λ = 0.02.
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Due to the different characteristics of different inertial sensors, the standard deviation
of the output in the static state is different as well. Hence, adopting a fixed empirical
threshold is prone to misjudgment. Moreover, for the circumstances studied in this paper,
it is crucial to ensure that the data for GMWM estimation modeling are from a static state.
False detections have a more significant impact on the accuracy of modeling estimation
than missed detections. Aiming at solving this problem, this paper proposes an adaptive
method to determine the detecting threshold as follows:

λi =

{
2
(

k−1
k

)
λi−1 − |Ti−Ti−1|

k , Ti−1 < λi−1

λ0 , Ti−1 ≥ λi−1
(10)

where k is the number of the static states that has been detected at epoch i. λi is the test
statistic at epoch i, λ0 is the initial value, and λ0 = 0.02, empirically.

The first term in Equation (10) physically means that when the standard deviation of
the data is smaller than the test threshold, it is more inclined to assume that the vehicle
stays in a continuous static state, so the detection threshold increases to make it easier to
detect the static state. The second item physically means that if the standard deviation
of the data between the current epoch and the previous epoch is quite large, the motion
state of the vehicle has changed. It is more inclined to assume that the vehicle is not in
the static state, so the detection threshold decreases to make it more difficult to detect the
static state. The effect of this static state detection method with adaptive threshold will be
experimentally verified in Section 4.

The static state detection with an adaptive threshold works together with the angular
rate detection as the detecting module to provide extra guidance for autonomous stochastic
error modeling. The detecting module is supported by two important conclusions given
in [21]. One is that although stochastic errors do depend on the dynamic characteristics,
for one specific IMU, the structure of the stochastic error is not affected by the applied
dynamics. Only parameter values differ according to dynamic variations. The other
is that for the general range of MEMS-IMU, the largest factor among various dynamic
characteristics affecting stochastic errors is the angular rate. Moreover, a relatively low
angular rate, normally below 30◦/s, does not cause an evident change in the parameters.
Fortunately, this is most commonly the case when turning in urban cities. Therefore, the
angular rate detector will judge if the angular rate of the vehicle is higher than 30◦/s. If not,
the stochastic error model estimated under the static state can replace the dynamic model.

In practical applications, ranking all candidate models to identify the error structure
will take up the most majority of the calculation time. However, identifying the structure
will be conducted only once, i.e., after the first static duration, since the structure will
not differ with the dynamic variations. Once the error structure is determined, only the
parameter estimation of this fixed model structure will be conducted later through the
experiment, and it can be processed within several seconds. It means that the autonomous
stochastic error modeling lasts only a few seconds after the vehicle starts moving, then the
KF will be able to adopt the stochastic error to obtain the navigation solution.

3. Experiments

This section is split into two main parts:

(1) GNSS denial experiments, which are designed to verify the feasibility of the au-
tonomous stochastic error modeling based on GMWM;

(2) GNSS available experiments, which are designed to verify the feasibility of the pro-
posed algorithm for online stochastic error modeling of inertial sensors. We compare
the navigation performance of the proposed algorithm with the other traditional
methods and further analyze the performance of the proposed algorithm in different
trajectory sections as the car runs.
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3.1. GNSS Denial Experiment

As previously mentioned, AV is probably the most commonly used method for model
identification and sensor calibration. In 1998, the IEEE standard officially put forward this
technique as a noise identification method to determine the characteristics of the underlying
random processes that perturb data. In general, AV only considers five basic stochastic
processes: QN, WN, BI, RW, and DR. These processes correspond to the linear regions
in a log–log plot, which will present a typical U/V-shaped curve in ideal circumstances.
Therefore, parameters are usually estimated by performing linear regression of (visually)
identified linear regions in such log–log plots. Further research on this principle can be
found in [8–10,25,26]. A GMWM-based algorithm can be considered as a further extension
of AV because they both identify and quantify the different noise terms that exist in inertial
sensor data. Hence, in this experiment, we compare the three models with different GOF
values generated by the autonomous stochastic error modeling method, AV method, and
loosely coupled navigation solution with a reference trajectory.

The trajectory was produced by a car with SPAN NovAtel-CPT driving around an
urban area of Beijing on 18 June 2021. The reference is provided by SPAN NovAtel-CPT
under the post-processed solution. The raw IMU data were collected statically for 2 h at 125
Hz by SPAN NovAtel-CPT, as shown in Figure 3. After the data were fed to the autonomous
stochastic error modeling method, we adopted three models with the minimum GOF values
to analyze the performance as an example. Three artificial GNSS outages, each lasting
60 s, were designed to cover two turns and one straight line, as shown in Figure 4. The
planimetric navigation drift in the earth centered earth fixed (ECEF) coordinate system at
the end of GNSS outages was analyzed to judge the quality of the five different models.

  

Figure 3. SPAN NovAtel (left column) is placed statically indoors and the antenna (right column) is
set up outdoors to collect GNSS signals.

 

Figure 4. The reference trajectory and three artificial GNSS outages.

3.1.1. Stochastic Error Modeling

Based on the optimal model autonomous selection method proposed in Section 3.2,
the 2 h static IMU data after bias removal were processed by the GMWM-based method
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and the AV-based method. A GMWM log–log plot of the best model with the minimum
GOF and an AV log–log plot is shown in Figure 5. It implies that the GMWM-based method
proposed in this paper can achieve a good fit to the static data. The curves in the AV log–log
plot represent the characteristics of three stochastic processes, i.e., WN, BI, and RW. The
WN parameters can be deduced from a slope of −1/2 at τ = 1 on the left part. BI due to
flicker noise in the measurements can be identified at the lowest point in the curve. The
RW parameters can be deduced from a slope of 1/2 on the right part.

sτ

sτ

sτ

σ
τ

σ
τ

σ
τ

 

Figure 5. GMWM log–log plot of the three-axis gyroscope (left column) and AV log–log plot of
the three-axis gyroscope (right column). The red dashed lines are auxiliary lines to help identify
linear regions.

3.1.2. Experiment Validation

The five gyro stochastic models to be validated are as follows:
Model 1: Loosely coupled navigation solution;
Model 2: AV-based model;
Model 3–5: GMWM-based model with three minimum GOF values (values decrease

from 3 to 5).
The navigation drifts of the five models at the end of three GNSS outages are shown in

Figure 6, and the maximum navigation errors of the five models at the end of three GNSS
outages are shown in Table 1. Figure 6 indicates that during the three GNSS outages, the
GMWM-based model generally outperforms the other two models, with the AV-based
model in the middle of the two models. Among the three models generated by the GMWM
method, the best model with minimum GOF values gives the best results with 206 m,
153 m, and 182 m during three outages, respectively. Compared with the loosely coupled
navigation solution, the best GMWM model has an accuracy increase of 26.8%, 37.2%, and
38.3% during three outages, respectively.
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Figure 6. The navigation drift of the five models at the end of three GNSS outages.

Table 1. The maximum navigation error of the five models at the end of three GNSS outages.

Model
Navigation Drift at the End of GNSS Outage (m)

Outage 1 Outage 2 Outage 3

Loosely coupled 326 243 295
AV 264 186 227

GMWM
Model 3 254 178 215
Model 4 216 164 191
Model 5 206 153 182

3.2. GNSS Available Experiment

As mentioned above, human judgment in the identification of five noise terms will
absolutely cause deviation in estimation parameters when performing Allan variance.
Aiming to solve this problem, reference [27] provided a method to automate this process
by maximizing the likelihood function of the assumed state-space models of interest using
a constrained version of the expectation maximization (EM) algorithm [28]. Hence, we
compared the algorithm for online stochastic error modeling proposed with the AV-based
method, the EM-based method, and the traditional EKF solution to verify its efficiency.

In this experiment, the trajectory was produced by a car with SPAN NovAtel-CPT
driving around an urban area of Xuzhou on 16 April 2018. The reference trajectory was
provided by SPAN NovAtel-CPT under the post-processed solution, as shown in Figure 7.
The whole trajectory lasts 50 min and the IMU data were sampled at 125 Hz. The IMU
data accumulate during the static epochs detected by static state detecting with an adap-
tive threshold. Autonomous modeling prepares the best stochastic error model as the
augmented vector in INS/GNSS integration with EKF.

Figure 7. The reference trajectory of the GNSS available experiment in ECEF. The end and the start
is marked in red point. Four sections are given detailed figures for further analysis (in dashed
red circle).
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3.2.1. Static State Detection

The result of static state detection with adaptive threshold for the X axis during the
whole trajectory is shown in Figure 8. Comparing the curve of test statistic and car velocity,
it is clear that this method successfully detects almost all of the static states, including six
relatively long stops and other temporary stops. The six long stops are marked by the light
red area for further experimental analysis. For the static states marked by the red stars, the
standard deviation statistics of the fixed window have obvious statistical characteristics,
i.e., they blow the adaptive threshold, which can effectively identify the static epochs. In
particular, in the right column are two zoomed-in figures of the detected results. It shows
how the threshold (dark red lines) adjust to the actual circumstances of the detection. Since
the previous epochs are identified as static states, the adaptive threshold increases to extend
this inertia. However, when the test statistic fluctuates sharply, the adaptive threshold
shows an immediate decrease.

 

Figure 8. The result of static state detection with adaptive threshold compared with the velocity
curve (left column) and two detailed figures of static states (right column). Two sections are given
detailed figures for further analysis (in dashed black circle).

3.2.2. Stochastic Error Modeling

Based on the detection results of static states, raw IMU data accumulate during the
static epochs, reaching a duration of 318 s. The accumulation of static data was fed to the
GMWM-based model, the AV-based model, and the EM-based model. For a clear view of
the estimation results of these two methods, Figure 9 simply gives the estimation results
based on all the static data accumulated throughout the whole trajectory. The parameter
estimation results of the AV-based method, the EM-based method, and the GMWM-based
method are shown in Tables 2–4, respectively.

It is worth mentioning that AV plot-plot of X axis and Y axis does not present a typical
U- or V-shaped curve. Only WN and RW can be identified from the X axis and only WN
and BI can be identified from the Y axis. The amount of data accumulation is quite small;
therefore, it requires a much larger amount of data to present the specific characteristics of
other processes. Moreover, the human identification in each process is probably unreliable,
then the parameters estimated by performing linear regression of these visually identified
linear regions may have significant deviations. The EM-based approach is very sensitive to
the initial values of parameters. When the initial values are “far” from the true values, the
EM-based approach is likely to converge to a local minima. Hence, the initial values are set
to the results estimated by AV.
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Figure 9. A GMWM log–log plot of the three-axis gyroscope (left column) and an AV log–log plot
of the three-axis gyroscope (right column). The red dashed lines are auxiliary lines to help identify
linear regions.

Table 2. The parameter estimation results of AV-based method.

Parameter X Y Z

σWN 1.763 × 10−3 1.347 × 10−2 1.309 × 10−2

σRW 7.171 × 10−3 6.334 × 10−3

σBI 1.762 × 10−4 1.407 × 10−4

TBI 4.096 4.096

Table 3. The parameter estimation results of EM-based method.

Parameter X Y Z

σWN 1.822 × 10−3 1.441 × 10−2 1.358 × 10−2

σRW 7.167 × 10−3 6.401 × 10−3

σBI 1.759 × 10−4 1.413 × 10−4

TBI 4.092 4.093

Table 4. The parameter estimation results of GMWM-based method.

Parameter
X Y Z

Model = 3 × AR + WN + RW Model = 3 × AR + WN + RW Model = 3 × AR + WN + RW

AR

σ1 3.009 × 10−9 7.156 × 10−11 4.461 × 10−10

β1 8.574 × 10−1 9.979 × 10−1 9.298 × 10−1

σ2 1.723 × 10−9 4.498 × 10−11 1.871 × 10−10

β2 8.852 × 10−1 9.978 × 10−1 9.961 × 10−1

σ3 3.064 × 10−7 6.96 × 10−8 2.340 × 10−7

β3 7.512 × 10−1 7.611 × 10−1 3.866 × 10−1

WN σWN 4.551 × 10−7 6.264 × 10−7 1.878 × 10−6

RW σRW 1.276 × 10−11 4.171 × 10−15 2.506 × 10−11
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3.2.3. Experiment Validation

Based on the stochastic error model generated above, three models were compared
as follows:

Model 1: INS/GNSS integration within EKF;
Model 2: EKF with AV-based model;
Model 3: EKF with EM based model;
Model 4: EKF with an online GMWM-based model.
The reference trajectory is shown in the left column in Figure 10 and the four detailed

figures of trajectories generated by the four models are shown on the right. It is clear
that the algorithm proposed is the closest to the reference trajectory regarding both turns
and straight lines. Figure 11 indicates the navigation error of the three models in X, Y,
and Z of the ECEF coordinate system. The online GMWM model reflects a more accurate
positioning result than the other two models. Table 5 shows the navigation error root mean
square error (RMS) of the three models. It clarifies that the online GMWM model has the
smallest navigation errors of 1.3265 m, 1.4384 m, and 1.6629 m in X, Y, and Z, respectively.
Compared with the AV-based method, it has an improvement of 16.6%, 14.3%, and 14.7% in
the navigation accuracy of X, Y, and Z, respectively. Compared with the EM-based method,
it has an improvement of 10.8%, 8.2%, and 7.1% in the navigation accuracy of X, Y, and Z,
respectively. It significantly validates the effect of the online algorithm.

Figure 10. Four detailed figures of trajectories generated by the four models.

Moreover, the stochastic error model become more and more accurate with the accu-
mulation of the static data. Table 6 shows the navigation error RMS of the online algorithm
for the trajectory sections between two adjacent long stops. The positioning accuracy
increases in X, Y, and Y as the car drives, which further confirms the ability of the online
GMWM algorithm to enhance the navigation accuracy.
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Figure 11. The navigation error of the three models in X, Y, and Z of ECEF.

Table 5. The navigation error RMS of the three models.

Model
Navigation Error RMS (m)

X Y Z

Model 1 1.6675 1.7170 2.0956

Model 2 1.5916 1.6802 1.9492
Model 3 1.4877 1.5665 1.7902
Model 4 1.3265 1.4384 1.6629

Table 6. The navigation error RMS of the online GMWM algorithm between the two adjacent long
stops and the time-taken after long stops.

Stops
Navigation Error RMS (m) Time-Taken

X Y Z

1–2 1.5379 1.6442 1.8184 1.4 min
2–3 1.5267 1.6279 1.7950 1.877 s
3–4 1.4860 1.6118 1.7692 1.996 s
4–5 1.4369 1.5543 1.6974 2.184 s
5–6 1.3872 1.4265 1.6483 2.338 s

6–end 1.2969 1.4098 1.6318 2.434 s

Particular attention should be given to the time-taken for the online algorithm. All
the static epochs detected take up 318 s in the whole trajectory. Due to the relatively small
amount of data accumulation, calculations with the online algorithm take little time. After
the first relatively long stop, identifying the model structure and estimating the parameters
takes 1.4 min. After that, only the estimation of the fixed model structure will be performed,
which takes much less time, i.e., it is finished within 3 s. Table 6 also gives the time-taken
after six long stops in the right column. After the sixth long stop, the static data accumulated
reach the largest amount in the whole trajectory. It means that the stochastic error model
can work as an augmented vector within EKF solution, with a delay of 2.434 s. Therefore,
the algorithm has an excellent performance in online modeling of stochastic errors.

4. Conclusions

This paper proposes a new method for online modeling of stochastic errors of in-
ertial sensors, which combines static state detection with an adaptive threshold and the
autonomous stochastic error model based on GMWM. Firstly, the limitations of other
widely used stochastic modeling methods including AV and PSD are analyzed. Then, two
experiments are designed to compare the online GMWM algorithm with the AV-based
method and the EM-based method. The GNSS denial experiment proves the feasibility of
the proposed autonomous stochastic error model based on GMWM. Meanwhile, it reveals
the capability of the online GMWM algorithm to estimate the stochastic error and limit the
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navigation drift. The GNSS available experiment demonstrates that the online GMWM can
significantly improve the navigation accuracy as the vehicle runs. Moreover, it validates
the online performance as well.

This paper mainly focuses on exploring the stochastic error of inertial sensors, which
is related to the natural characteristics of the sensor itself. Meanwhile, for vehicle-mounted
sensors, the dynamic environment of the vehicle may affect the error behavior of the sensor
as well. Given the conclusions of our research, a stochastic error model in a static environ-
ment can work instead of a model at low speed. Therefore, further study is warranted on
how to construct the error models and estimate the parameters based on dynamic charac-
teristics. We will focus on how the inertial error model changes with vehicle maneuvers
at high speed. Future work aims to set up and conduct experiments which enable the
construction and analysis of error signals acquired in dynamic environments. Therefore,
the observability of some processes and the justification of employing complex stochastic
models for MEMS inertial sensors can only then be fully verified.
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Abstract: Internet of Drones (IoD), designed to coordinate the access of unmanned aerial vehicles
(UAVs), is a specific application of the Internet of Things (IoT). Drones are used to control airspace
and offer services such as rescue, traffic surveillance, environmental monitoring, delivery and so on.
However, IoD continues to suffer from privacy and security issues. Firstly, messages are transmitted
over public channels in IoD environments, which compromises data security. Further, sensitive data
can also be extracted from stolen mobile devices of remote users. Moreover, drones are susceptible
to physical capture and manipulation by adversaries, which are called drone capture attacks. Thus,
the development of a secure and lightweight authentication scheme is essential to overcoming these
security vulnerabilities, even on resource-constrained drones. In 2021, Akram et al. proposed a secure
and lightweight user–drone authentication scheme for drone networks. However, we discovered that
Akram et al.’s scheme is susceptible to user and drone impersonation, verification table leakage, and
denial of service (DoS) attacks. Furthermore, their scheme cannot provide perfect forward secrecy. To
overcome the aforementioned security vulnerabilities, we propose a secure mutual authentication
and key agreement scheme between user and drone pairs. The proposed scheme utilizes physical
unclonable function (PUF) to give drones uniqueness and resistance against drone stolen attacks.
Moreover, the proposed scheme uses a fuzzy extractor to utilize the biometrics of users as secret
parameters. We analyze the security of the proposed scheme using informal security analysis,
Burrows–Abadi–Needham (BAN) logic, a Real-or-Random (RoR) model, and Automated Verification
of Internet Security Protocols and Applications (AVISPA) simulation. We also compared the security
features and performance of the proposed scheme and the existing related schemes. Therefore, we
demonstrate that the proposed scheme is suitable for IoD environments that can provide users with
secure and convenient wireless communications.

Keywords: AVISPA; BAN logic; Internet of Drones; mutual authentication; PUF

1. Introduction

Internet of Drones (IoD) [1], which is often referred to as an unmanned aerial vehicles
(UAVs) network, is a layered network control architecture designed to coordinate the access
of drones. Drones in IoD environments can perform various flight tasks by embedding
various sensors, actuators, recorders, batteries, computations, and communication modules.
Figure 1 shows the basic structure of a drone in IoD environments. With these modules,
drones are used to control the airspace and offer services such as rescue, healthcare, traffic
surveillance, environmental monitoring, delivery, and search to users [2]. The IoD architec-
ture generally comprises remote users, a control server, and drones. Remote users query
the information of drones to receive useful services. The control server is centrally located
in the wireless communication flow, mediating and providing a seamless data exchange
process between remote users and drones. Drones, located in their own flying zone, collect
surrounding environment information and send it to users through the control center.

Sensors 2023, 23, 2034. https://doi.org/10.3390/s23042034 https://www.mdpi.com/journal/sensors20
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Figure 1. Basic structure of the drone in IoD environments.

Although IoD environments offer useful services to users, they can suffer from several
privacy and security issues [3]. Firstly, IoD environments can be vulnerable to various
security attacks, such as eavesdropping, deleting, and intercepting, because all messages
are transmitted via a public channel. Moreover, the mobile devices of remote users can
be stolen/lost, and the sensitive stored data of these devices can threaten the whole IoD
environment. Additionally, drones can be physically captured by malicious adversaries
who can try to impersonate them using secret information extracted from drones using
power analysis attacks. Finally, drones in IoD environments are designed to use restricted
power, computation, and storage sources because the entire energy source is preferentially
devoted to flying tasks. Thus, a secure and lightweight authentication scheme is necessary,
considering the above security vulnerabilities and specific features of IoD environments.

In 2021, Akram et al. [4] proposed a user–drone access scheme designed to be secure
and lightweight for drone networks. The authors claimed that the scheme resists user,
control center, and drone impersonation attacks and provides anonymity and untraceabil-
ity. However, we find that Akram et al.’s scheme is vulnerable to drone impersonation,
verification table leakage, and denial of service (DoS) attacks. In addition, their scheme
cannot ensure perfect forward secrecy and fails to guarantee correctness. To improve these
vulnerabilities, we propose a mutual authentication and key agreement (MAKA) scheme
that can provide convenient services to users with high security and efficiency for IoD
environments. In the proposed scheme, we utilize biometrics [5] to resist various security
attacks, such as offline guessing attacks on user devices. Moreover, we apply physical
unclonable function (PUF) [6] technology to prevent cloning and physical attacks of drones
using power analysis attacks. Considering real-time communication in IoD environments
and the limited computation resources of user devices and drones, we only utilize hash
functions and exclusive-OR operators, which are reliable in terms of computation and
communication overheads.

1.1. Research Contributions

• We review and perform a security analysis of Akram et al.’s scheme. Then, we propose
a MAKA scheme designed to ensure high security using biometrics and PUF. Hash
functions and exclusive-OR operations are used for lightweight architecture, making
the proposed scheme suitable for drone networks. Moreover, a fuzzy extractor and
PUF are applied in the proposed scheme to enhance the security level.

• We prove the security robustness of the proposed scheme using the Automated Verifi-
cation of Internet Security Protocols and Applications (AVISPA) simulation tool [7,8],
Real-or-Random (RoR) model [9], and Burrows–Abadi–Needham (BAN) logic [10].

• We perform an informal analysis to ensure that the proposed scheme can provide
security against various attacks, including offline password guessing, session key
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disclosure, verification table leakage, impersonation, and DoS attacks. Additionally,
we show that the proposed scheme can achieve mutual authentication, perfect forward
secrecy, untraceability, and anonymity.

• We evaluate and compare the security features, communication, and computation
costs of the proposed scheme with existing authentication schemes, including Akram
et al.’s scheme.

1.2. Organization

In Section 2, we introduce existing studies on IoD environments. We provide a system
model as well as an adversary model, fuzzy extractor, and PUF used in the proposed scheme
in Section 3. Then, we show Akram et al.’s scheme in Section 4. Section 5 describes security
vulnerabilities discovered in Akram et al.’s scheme. The proposed scheme is introduced in
Section 6. Security analyses, i.e., BAN logic, RoR model, AVISPA, are shown in Section 7,
and performance analyses, i.e., security features, communication, computation costs, are
shown in Section 8. In Section 9, we conclude our paper and describe future works.

2. Related Works

Since the basic concept of IoD environments was introduced by Gharibi et al. [1],
various authentication schemes have been proposed over the past few years. In 2018,
Wazid et al. [11] proposed an authentication scheme to provide remote users with drone
services based on three-factor technology. To apply lightweight communication services,
Wazid et al. utilize hash function and exclusive-OR operators. However, their scheme
cannot prevent privileged insider and impersonation attacks. In 2019, Teng et al. [12]
analyzed security vulnerabilities, named “attacker mode”, which can happen in IoD en-
vironments. Thus, they proposed an authentication scheme utilizing the elliptic curve
digital signature algorithm (ECDSA) to verify the legitimacy of identity signatures on
drones. However, Teng et al.’s scheme was designed as an authentication scheme involving
two-way authentication between drones based on ECC, which incurs a large computational
overhead. Srinivas et al. [13] proposed a temporal credential-based authentication for IoD
networks. Srinivas et al. argued that security and efficiency are the main requirements
for the IoD environment, and a lightweight authentication protocol is essential to satisfy
these requirements. In their scheme, the authors claimed that it can resist various security
attacks such as a stolen mobile device, replay, MITM, ephemeral secret leakage (ESL), im-
personation, password and/or biometric update, and remote drone capture attacks. In 2020,
Ali et al. [14] pointed out that Srinivas et al.’s scheme [13] does not provide untraceability
and resists stolen verifier attacks. To overcome that, Ali et al. suggested a lightweight
authentication scheme for drones using symmetric key primitives and temporal credentials.
Ever [15] suggested a framework for mobile sinks used in drones using bilinear pairing
and ECC, which has a large computational cost. However, Ever’s protocol cannot provide
user anonymity and untraceability [16]. In 2022, Wu et al. [17] proposed a drone commu-
nication scheme for 5G networks. They argued that several existing IoD protocols have
high computation overheads because of using a public key infrastructure (PKI) mechanism.
Therefore, they only utilized hash functions and exclusive-OR operators. In the same year,
Tanveer et al. [18] proposed an authentication mechanism for IoD environments. They used
an AES-CBC-256 cipher and ECC to ensure the anonymity of users. Although the above
schemes [11–15,17,18] provide useful services such as healthcare, rescue, and traffic surveil-
lance, they can suffer from physical attacks because each drone cannot protect security
parameters from power analysis attacks.

To strengthen the authentication process and access control of drones, various PUF-
based authentication schemes have been proposed. Alladi et al. [19] proposed a two-stage
authentication protocol that divided drone hierarchies for smart drone networks. In Alladi
et al.’s scheme, each drone equipped with PUF communicates with a ground station through
a leader drone, reducing network overhead. Thus, the authors claimed their scheme does
not require the storage of secret keys in drones, protecting it from impersonation, drone
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tampering, and MITM attacks. In the same years, Pu et al. [20] proposed an authentication
protocol for drone environments using PUF and chaotic systems. The authors used the
challenge–response pair of the PUF as the seed value of the chaotic system to jumble the
message randomly. In 2021, Zhang et al. [21] suggested a three-party authentication scheme
for IoD environments. In Zhang et al.’s scheme, the head drone manages member drones
and mediates the communication between the ground station and member drones. The
entire process of their scheme only uses hash functions and XOR operations. Moreover, the
authors introduced PUF systems to prevent physical capture attacks.

In 2021, Akram et al. [4] suggested a scheme for secure and efficient drone access in
IoD networks. The authors demonstrated that various security attacks, e.g., user, control
center, and drone impersonation attacks, can be prevented in their scheme. However, our
security analysis indicates that their scheme is vulnerable to DoS, session key disclosure,
stolen-verifier, and drone impersonation attacks and cannot provide perfect forward secrecy.

We summarize the cryptographic techniques and the advantages and limitations of
the existing related schemes [4,11–15,17–21] in Table 1. Although previous authentication
schemes can provide convenient services to users, they still have high computational and
communication overhead and security drawback problems. Therefore, we propose a secure
drone-access scheme to improve these security flaws considering lightweight communica-
tion characteristics of IoD environments. The proposed scheme can provide stolen mobile
device and drone impersonation attacks using biometric and PUF technologies, respectively.
Moreover, the proposed scheme can support efficient communications using only hash
functions and exclusive-OR operators.

Table 1. Cryptographic technologies and properties of the related schemes for IoD environments.

Schemes Cryptographic Technologies Advantages and Limitations

Wazid et al. [11] * Hash functions
* Fuzzy extractor

* Presented IoD environments and utilized biometrics information to ensure
the security of remote users

* Vulnerable to privileged insider and impersonation attacks

Teng et al. [12] * ECDSA * Defined security threats in IoD environments named “attacker mode”
* Requires large computation overheads

Srinivas et al. [13] * Hash functions
* Fuzzy extractor

* Used temporal credentials for mutual authentication
* Vulnerable to untraceability and stolen verifier attacks

Ali et al. [14]
* Hash functions
* Fuzzy extractor
* Symmetric key primitives

* Anonymous and lightweight security solution using temporal credentials
and symmetric key primitives

* Vulnerable to ESL, physical and cloning attacks

Ever et al. [15] * Bilinear pairings
* ECC

* Analyzed studies utilized UAVs as mobile sinks
* Require high computation overheads
* Cannot provide anonymity and untraceability

Wu et al. [17] * Hash functions
* Fuzzy extractor

* Proposed a drone-to-user authentication scheme for 5G networks
* Vulnerable to physical attacks due to the stored parameters in UAV

Tanveer et al. [18]

* Hash functions
* Fuzzy extractor
* ECC
* Symmetric key primitives

* Provides anonymous communication to users using AES and ECC
* Vulnerable to physical attacks due to the stored parameters in UAV

Alladi et al. [19]
* PUF
* Message authentication code
* Symmetric key primitives

* Classified drones by layer and proposed PUF-based two-stage
authentication protocol

* Vulnerable to replay, insider, server spoofing, DoS attacks

Pu et al. [20] * PUF
* Chaotic system

* Used PUF and chaotic map technologies to generate random key
* Vulnerable to physical attacks because of a stored challenge value in the

memory of UAV

Zhang et al. [21]

* Hash functions
* Fuzzy extractor
* FourQ
* Symmetric key primitives

* Proposed authentication scheme using FourQ and BPV pre-computation
technologies

* Require high computation and communication overheads
* Cannot provide user anonymity

Akram et al. [4]
* Hash functions
* Fuzzy extractor
* Symmetric key primitives

* Provide privacy of location information to remote users and drones
* Vulnerable to drone impersonation, stolen verifier, and DoS attacks, and

have correctness problem
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3. Preliminaries

We present the system model and adversary model for IoD environments. Moreover,
we introduce some relevant preliminaries to understand this paper.

3.1. System Model

As shown in Figure 2, IoD environments consist of a control center, users and drones.
According to the IoD environment model, various drones collect the data in their particular
zones in a target field and transmit the data to the server. External users are required
to connect to the server to obtain data from the deployed drones. For access, secure
authentication is necessary between the user and drone via the control center. Subsequently,
the user and drone pair share a session key and begin communication. The details of this
process are as follows.

Figure 2. The general system model of IoD environments.

• Remote user (Um): A remote user Um owns a mobile device to receive IoD services.
To communicate with a drone Dn, Um must register with the control center. Um
utilizes biometric technology in addition to identity and password to store sensitive
information safely.

• Control center: The control center is a trusted third party with enough computation
and storage capacities. Therefore, the control center perform a role as the system
manager of IoD environments. Furthermore, the control center authenticates with
both Um and Dn information and helps Um to access the Dn. The control center
generates secret keys for Um and Dn against their identities.

• Drone (Dn): A drone Dn collects the data in their particular flying zone and must be
registered by the control center to communicate with Um. Then, Dn sends the data
to =Um through the control center. Moreover, Dn has restricted computation and
storage capacities.

3.2. Adversary Model

We follow the widely used adversary model, named the "Dolev–Yao (DY) adversary
model" [22,23]. Under the DY model, the entities involved in the IoD environments, i.e.,
Um and Dn, are not assumed to be trustworthy, and the communication of the channel is
insecure. Therefore, an adversary A can modify or delete the transmitted messages and
also can eavesdrop on the exchanged messages. Furthermore, drones move around in
unattended hostile areas with collected sensor data. Thus, they are vulnerable to physical
capture attacks [11,24], and the sensitive data stored in the drone can be extracted using
the power analysis attacks.
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3.3. Fuzzy Extractor

The fuzzy extractor [25] is widely accepted to verify the biometric authentication. A
biometric key can be generated with a biometric template such as fingerprints, faces and
irises. The fuzzy extractor is defined with the following two algorithms:

• Gen(Biom) = (αm, βm): It is a probabilistic algorithm to generate a secret key αm. The
user inputs biometric Biom, the output of this function is the secret parameter αm, and
the public reproduction parameter βm.

• Rep(Bio∗m, βm) = (αm): It is a deterministic algorithm to recreate the original αm. The
function accepts a noisy user biometric Bio∗m and controls the noise using the public
reproduction parameter βm. Then, this algorithm reproduces the original biometric
secret key αm.

3.4. Physical Unclonable Function

PUF is a physical circuit that maps a bit-string pair called “challenge–response pair” [6].
When an input challenge value is entered into the PUF circuit, it produces a value that
isan arbitrary string of bits. In this paper, we use PUF to generate secret values instead of
stringing them in the memory of the drone and obtain a stable response good enough for
security using fuzzy extractors. The property of PUF is as below.

• The PUF is a physical microstructure of the device.
• It is extremely difficult or impossible to clone the PUF circuit.
• An unpredictable response value must be output.
• It is possible to evaluate and implement a PUF circuit easily.

4. Revisit of Akram et al.’s Scheme

Akram et al. [4] suggested a drone-access authentication protocol for surveillance
tasks in a smart city. Akram et al.’s scheme is composed of the following phases: (1) user
registration; (2) drone registration; (3) authentication and key agreement (AKA) phases.
Table 2 shows the whole notation and description in their scheme.

Table 2. Notations and descriptions.

Notation Description

IDm , IDn Identity of the user and drone
SIDc , SIDm , SIDn Pseudonym of the control center, user and drone
Biom Biometric of the user
km , kn Master private key of the user and drone
s, MSK Secret keys of the control center
Rep(.) Fuzzy biometric reproduction
Gen(.) Fuzzy biometric generator
a1, a2, a3 Random numbers
SK Session key
h(.) Hash function
|| Concatenation operator
⊕ Exclusive-OR operator

4.1. Registration Phase
4.1.1. Remote User Registration Phase

Step 1: The user inputs their own IDm, PWm and imprints Biom. Then, Um calculates
Gen(Biom) = (αm, βm) and sends IDm to the control center.

Step 2: The control center calculates SIDm = h(IDm||s), km = h(SIDm||MSK) and gener-
ates a random number am. After that, the control center computes MIDm = EncMSK
(SIDm||αm) and sends {km, SIDm, SIDn} to Um.

Step 3: Um computes γm = h(IDm||PWm||αm) ⊕ km, SIDu
m = h(IDm||PWm) ⊕ SIDm.

Then, Um stores {γm, SIDu
m, SIDn}.

4.1.2. Drone Registration Phase

Step 1: Dn selects IDn and sends it to the control center.
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Step 2: The control center computes SIDn = h(IDn||s), kn = h(SIDn||MSK) and stores
{IDn, kn, SIDn} in its database. Then, the control center sends {kn, SIDn} to Dn.

Step 3: When Dn receives {kn, SIDn}, Dn saves them in the memory.

4.2. AKA Phase

Step 1: Um inputs IDm, PWm and also imprints Biom. Then, Um computes αm = Rep(Biom,
βm), SIDm = SIDu

m ⊕ h(IDm||PWm), km = γm ⊕ h(IDm||PWm||αm). Afterward, Um
generates a1 and computes A1 = h(SIDm||SIDc||km)⊕ a1, A2 = h(SIDm||SIDc||km||
a1) ⊕ SIDn and A3 = h(SIDm||SIDn||SIDc||km||a1). Finally, Um sends {MIDm,
A1, A2, A3} to the control center.

Step 2: The control center retrieves (SIDm||αm) = DecMSK(MIDm). Then, the control cen-
ter computes km = h(SIDm|| MSK), a∗1 = A1 ⊕ h(SID∗

m||SIDc||k∗m) and
SID∗

n = A2 ⊕ h(SID∗
m||SIDc||k∗m||a∗1), and verifies kn against SID∗

n. Then, the con-

trol center computes A∗
3 = h(SID∗

m||SID∗
n||SIDc||k∗m||a∗1) and checks A∗

3
?
= A3. The

control center generates a2, anew
m and computes MIDnew

m = EncMSK(SIDm||anew
m ),

A4 = h(SID∗
n||kn) ⊕ (a∗1 ||a2||MIDnew

m ), A5 = h(SID∗
n||SIDc||kn||a∗1) ⊕ SID∗

m and
A6 = h(SID∗

m||SID∗
n||SIDc||kn||a∗1 ||a2). Finally, the control center sends {A4, A5,

A6} to the drone Dn.

Step 3: Dn computes (a∗∗1 ||a∗2 ||MIDnew
m ) = A4 ⊕ h(SIDn||kn), SID∗∗

m = A5 ⊕ h(SIDn||SIDc

||kn||a∗∗1 ) and A∗
6 = h(SID∗∗

M ||SIDn|| SIDc||kn||a∗∗1 ||a∗2). Then, Dn checks A∗
6

?
= A6

and generates a3. After that, Dn computes A7 = h(SIDn||SID∗∗
m ||a∗∗1 ) ⊕ (a2||a∗3

||MIDnew
m ), A8 = h(a∗∗1 ||a2||a∗3), SKnm = h(SID∗∗

m ||SIDn||SIDc||A8) and A9 =
h(SID∗∗

m ||SIDn|| SIDc||a2||a∗3 ||A8). Finally, Dn sends {A7, A9} to Um.

Step 4: The Um computes (a∗2 || a∗∗3 ||MIDnew
m ) = A7 ⊕ h(SIDn||SIDm||a1), A∗

8 = h(a1||a∗2
||a∗∗3 ) and A∗

9 = h(SIDm||SIDn||SIDc|| a∗2 ||a∗∗3 ||A∗
8). Then, it validates A∗

9
?
= A9 and

computes SKnm = h(SID∗∗
m ||SIDn|| SIDc||A∗

8).

5. Cryptanalysis of Akram et al.’s Scheme

According to Section 3.2, an adversary A can obtain a {γm, SIDu
m, SIDn} from legiti-

mate user’s mobile device. Moreover, A can obtain {kn, SIDn} from a captured drone using
a power analysis attack. With this information, various security attacks, i.e., session key
disclosure, drone impersonation, stolen-verifier, DoS attacks, and perfect forward secrecy,
can be executed by A. The details are shown below.

5.1. Session Key Disclosure Attack

For A to generate a session key SKnm = h(SIDm||SIDn||SIDc||A8), A has to obtain
SIDm, SIDn and A8 = h(a1||a2||a3). The procedures are as follows.

Step 1: A computes (a1||a2||MIDnew
m ) = A4 ⊕ h(SIDn|| kn), SIDm = A5 ⊕ h(SIDn||

SIDc||kn||a1), and (a2||a3||MIDnew
m ) = A7 ⊕ h(SIDn||SIDm||a1).

Step 2: A calculates SKnm = h(SIDm||SIDn||SIDc||A8).

Thus, Akram et al.’s scheme is insecure against session key disclosure attacks.

5.2. Drone Impersonation Attack

In this attack, we assume that A can capture drones Dn physically and obtain the value
{SIDn, kn} stored in the memory of Dn. In order to be able to forward message {A7, A9}
on behalf of legal Dn, then A has to calculate the value of A7 = h(SIDn||SIDm||a1) ⊕
(a2||a3||MIDnew

m ), A9 = h(SIDm||SIDn||SIDc||a2||a3||A8). A can compute the A7 and A9
through the following below:

Step 1: The adversary A first intercepts {A4, A5, A6} transmitted by the public channel.

Step 2: A can obtain a1, a2, MIDnew
m by computing (a1||a2||MIDnew

m ) = A4 ⊕ h(SIDn||kn).
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Step 3: A can compute SIDm through SIDm = A5 ⊕ h(SIDn||SIDc||kn||a1).

Step 4: A generates random a∗3 and computes A∗
8 = h(a1||a2||a∗3).

Step 5: A can successfully compute A∗
7 = h(SIDn||SIDm|| a1)⊕ (a2||a∗3 ||MIDnew

m ), A∗
9 =

h(SIDm||SIDn||SIDc|| a2||a∗3 ||A∗
8).

Therefore, Akram et al.’s scheme cannot resist drone impersonation attacks.

5.3. Stolen-Verifier Attack

When A obtains the table information {kn, SIDn} of the control center, A can calculate
SKnm = h(SIDm||SIDn||SIDc||A8). The steps are the same as Section 5.1. Therefore,
Akram et al.’s scheme is vulnerable to stolen-verifier attacks.

5.4. Perfect Forward Secrecy

Let us suppose that the control center’s long-term secret key MSK is compromised by
the adversary A, and A has captured all the previously transmitted messages MIDm, A1, A2
and A4 through the public channel. A can retrieve SIDm through (SIDm||am) = DecMSK
(MIDm), compute km = h(SIDm||MSK), a1 = A1 ⊕ h(SIDm||SIDc||km), SIDn = A2 ⊕
h(SIDm||SIDc||km||a1), and kn = h(SIDn||MSK). Furthermore, A can retrieve a1 and a2
through (a1||a2||MIDnew

m ) = A4 ⊕ h(SIDn||kn) and compute A8 = h(a1||a2||a3). Finally, A
computes the session key SKnm = h(SIDm||SIDn||SIDc||A8). Thus, Akram et al.’s scheme
does not provide perfect forward secrecy.

5.5. DoS Attack

In the AKA phase, the login process is not executed normally in the remote user
(Um) side. Afterward, the inputs IDm, PWm, and Biom, Um compute αm, SIDm, and km.
Then, Um immediately generates a random nonce and computes an authentication request
message {MIDm, A1, A3}. Therefore, the adversary A can send unlimited amounts of login
authentication request messages to the control center if A obtains a stolen/lost mobile
device of Um and inputs a randomly selected identity, password, and biometrics. These
messages can threaten the load on the control center. Thus, Akram et al.’s scheme is
vulnerable to DoS attacks.

5.6. Correctness

In the user registration phase, the control center calculates the value of MIDm. After
that, the MIDm is not transmitted to Um, and Um cannot compute it because the MIDm is
masked with MSK, which is the control center’s secret key. However, in the AKA phase,
Um sends the MIDm to the control center as the first transmitted message. Thus, Akram et
al.’s scheme has a correctness problem.

6. Proposed Scheme

The proposed scheme consists of the following phases: (1) initialization; (2) user regis-
tration; (3) drone registration; (4) MAKA. We show the flowchart of the proposed scheme in
Figure 3. The proposed scheme is lightweight as it uses only the cryptographic one-way
hash function and exclusive-OR operations, apart from the fuzzy extractor and PUF tech-
nique that is needed for verification at the user side and drone side, respectively.
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Figure 3. The overall flowchart of the proposed scheme.

6.1. Initialization Phase

This phase describes that the control center selects an identity and a challenge for
the drone Dn before the registration phase. Detailed steps are illustrated in Figure 4.
Additionally, this phase is performed via a secure channel.

Control Center Drone Dn

Selects IDn
Generates a challenge CHn

{IDn, CHn}−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Stores {IDn, CHn} in the memory

Figure 4. Initialization phase of the proposed scheme.

Step 1: The control center selects an identity IDn and a challenge CHn and sends {IDn, CHn}
to the drone Dn.

Step 2: The drone stores {IDn, CHn} in the memory.

6.2. Drone Registration Phase

In this phase, a drone Dn is registered at the control center to its deployment in the
IoD environments through a secure channel. Detailed steps are illustrated in Figure 5.

Step 1: The drone Dn retrieves the challenge CHn stored in the memory and computes
REn = PUF(CHn), and Gen(REn) = (αn, βn). After that, the Dn sends {IDn, CHn}
to the control center.

Step 2: The control center generates a random number an and computes SIDn = h(IDn||s),
kn = h(SIDn||s||an), and saves {IDn, SIDn, an, CHn} in the database. Then, the
control center sends {SIDn, kn} to the Dn.

Step 3: Finally, the Dn deletes the CHn and computes γn = h(IDn||αn) ⊕ kn, SIDD
n =

h(IDn||αn||kn)⊕ SIDn, and stores {γn} in its memory.
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Drone Dn Control Center Dn

Computes REn = PUF(CHn)
Gen(REn) = (αn, βn)

{IDn, CHn}−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Random number an
Computes
SIDn = h(IDn||s)
kn = h(SIDn||s||an)
Saves {IDn, SIDn, an, CHn} in database

{SIDn, kn}←−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Delete CHn from the memory
γn = h(IDn||αn)⊕ kn
SIDD

n = h(IDn||αn||kn)⊕ SIDn
Stores {γn}

Figure 5. Drone registration phase of the proposed scheme.

6.3. User Registration Phase

In the user registration phase, a remote user Um has to register at the control center
to access the real-time information from an accessed drone Dn in IoD environments. This
procure performs via a secure channel with the following steps. Figure 6 shows the details.

User Um Control Cetner

Selects IDm, PWm
Imprint Biom
Calculate
Gen(Biom) = (αm, βm)

{IDm}−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Random number am
Computes
SIDm = h(IDm||s)
km = h(SIDm||s||am)
SID∗

m = SIDm ⊕ h(s||am)
MIDm = h(SIDm||am)
Stores {MIDm, SID∗

m, am} in database

{km, SIDm, SIDn, MIDm}←−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Computes
γm = h(IDm||PWm||αm)⊕ km
δm = h(αm||km||SIDm)
SIDu

m = h(IDm||PWm)⊕ SIDm
SIDu

n = h(PWm||αm)⊕ SIDn
Stores {γm, δm, SIDu

m, SIDu
n , MIDm}

Figure 6. User registration phase of the proposed scheme.

Step 1: The user Um selects an identity IDm, a password PWm, and a biometric template
Biom. After that, the mobile device calculates Gen(Biom) = (αm, βm). The Um sends
{IDm} to the control center.

Step 2: The control center generates random number am and computes SIDm = h(IDm ||s),
km = h(SIDm||s||am), SID∗

m = SIDm ⊕ h(s||am) and MIDm = h(SIDm||am). Then,
the control center stores {MIDm, SID∗

m, am} in the database, and sends {km, SIDm,
SIDn, MIDm} to the Um.

Step 3: The Um computes γm = h(IDm||PWm||αm) ⊕ km, δm = h(αm||km||SIDm), SIDu
m

= h(IDm||PWm) ⊕ SIDm, and SIDu
n = h(PWm||αm) ⊕ SIDn, and stores {γm, δm,

SIDu
m, SIDu

n , MIDm} in the memory.

6.4. MAKA Phase

The following steps are performed among the Um, the control center, and an accessed
drone Dn through a public channel. To establish a session key for secure communication
among them, they need to perform the MAKA processes. Details are illustrated in Figure 7.
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User Um Control Center Drone Dn

Inputs IDm, PWm
Imprints Biom
αm = Rep(Biom, βm)
SIDm = h(IDm||PWm)⊕ SIDu

m
SIDn = h(PWm||αm)⊕ SIDu

n
km = h(IDm||PWm||αm)⊕ γm
δ∗m = h(αm||km||SIDm)

Checks if δ∗m
?
= δm

Selects a1
A1 = h(SIDm||SIDc||km)⊕ a1
A2 = h(SIDm||SIDc)⊕ SIDn
V1 = h(SIDm||SIDn||SIDc||km||a1)

{MIDm, A1, A2, V1}−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Checks whether
MIDm = MIDold

m or MIDm = MIDnew
m

If (MIDm == MIDold
m )

{Retrieves {SID∗
m, am} against MIDold

m }
If (MIDm == MIDnew

m )
{Retrieves {SID∗

m, am} against MIDnew
m }

SIDm = SID∗
m ⊕ h(s||am)

km = h(SIDm||s||am)
a1 = A1 ⊕ h(SIDm||SIDc||km)
SIDn = A2 ⊕ h(SIDm||SIDc)
V∗

1 = h(SIDm||SIDn||SIDc||km||a1)

Checks if V∗
1

?
= V1

MIDnew
m = h(SIDm||a1)

Updates MIDnew
m

Checks for IDn, an, CHn against SIDn from its database
kn = h(SIDn||s||an)
Selects a2
A3 = h(SIDn||kn)⊕ (a1||a2)
A4 = h(SIDn||kn||a1)⊕ SIDm
A5 = h(SIDc||IDn)⊕ CHn
V2 = h(SIDm||SIDn||SIDc||kn||a1||a2)

{A3, A4, A5, V2}−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Computes CHn = A5 ⊕ h(SIDc||IDn)
REn = PUF(CHn)
αn = Rep(REn, βn)
kn = γn ⊕ h(IDn||αn)
SIDn = SIDD

n ⊕ h(IDn||αn||kn)
(a1||a2) = A3 ⊕ h(SIDn||kn)
SIDm = A4 ⊕ h(SIDn||kn||a1)
V∗

2 = h(SIDm||SIDn||SIDc||kn||a1||a2)

Checks if V∗
2

?
= V2

Selects a3
A6 = h(SIDm||SIDn||a1)⊕ (a2||a3)
A7 = h(SIDm||SIDn||SIDc)
SK = h(A7||a1||a2||a3)
V3 = h(A7||a1||a3||SK)

{A6, V3}←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(a2||a3) = A6 ⊕ h(SIDm||SIDn||a1)
A7 = h(SIDm||SIDn||SIDc)
SK = h(A7||a1||a2||a3)
V∗

3 = h(A7||a1||a3||SK)
Checks if V∗

3
?
= V3

Updates MIDnew
m

Figure 7. MAKA phase of the proposed scheme.

Step 1: The Um inputs IDm and PWm, and imprints Biom. After that, Um computes
αm = Rep(Biom, βm), SIDm = h(IDm||PWm)⊕ SIDu

m, SIDn = h(PWm||αm)⊕ SIDu
n ,

km = h(IDm||PWm||αm) ⊕ γm, and δ∗m = h(αm||km||SIDm), and checks δ∗m
?
= δm.

Then, the Um generates a random nonce a1 and calculates A1 = h(SIDm||SIDc||km)⊕
a1, A2 = h(SIDm||SIDc)⊕ SIDn, and V1 = h(SIDm||SIDn ||SIDc||km||a1). The Um
sends {MIDm, A1, A2, V1} to the control center.

Step 2: The control center checks whether MIDm = MIDold
m or MIDm = MIDnew

m . If
(MIDm == MIDold

m ) then, retrieves {SID∗
m, am} against MIDold

m , and if (MIDm ==
MIDnew

m ), retrieves {SID∗
m, am} against MIDnew

m . After that, the control center com-
putes SIDm = SID∗

m ⊕ h(s||am), km = h(SIDm||s||am), a1 = A1 ⊕ h(SIDm||SIDc||
km), SIDn = A2 ⊕ h(SIDm||SIDc), and V∗

1 = h(SIDm||SIDn||SIDc||km||a1). If
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V∗
1

?
= V1 is correct, the control center computes MIDnew

m = h(SIDm||a1) and up-
dates MIDnew

m . Then, the control center checks for IDn, an, CHn against SIDn from
its database and computes kn = h(SIDn||s||an). The control center calculates A3 =
h(SIDn||kn) ⊕ (a1||a2), A4 = h(SIDn||kn||a1) ⊕ SIDm, A5 = h(SIDc||IDn) ⊕ CHn,
and V2 = h(SIDm||SIDn||SIDc||kn||a1||a2) and sends {A3, A4, A5, V2} to the drone.

Step 3: The drone Dn computes CHn = A5 ⊕ h(SIDc||IDn), REn = PUF(CHn), αn =
Rep(REn, βn), kn = γn ⊕ h(IDn||αn), SIDn = SIDD

n ⊕ h(IDn||αn||kn), (a1||a2) =
A3 ⊕ h(SIDn||kn), SIDm = A4 ⊕ h(SIDn||kn||a1), and V∗

2 = h(SIDm||SIDn||SIDc

||kn||a1||a2). If V∗
2

?
= V2 is correct, the Dn generates a random nonce a3, and calculates A6 =

h(SIDm||SIDn||a1) ⊕ (a2||a3), A7 = h(SIDm||SIDn||SIDc), SK = h(A7||a1||a2||a3),
and V3 = h(A7||a1||a3||SK). Then, the Dn sends {A6, V3} to the Um.

Step 4: The Um computes (a2||a3) = A6 ⊕ h(SIDm||SIDn ||a1), A7 = h(SIDm||SIDn||
SIDc), SK = h(A7||a1||a2||a3), and V∗

3 = h(A7||a1||a3||SK) and checks V∗
3

?
= V3.

Then, the Um updates MIDnew
m .

7. Security Analysis

To prove the security robustness of the proposed scheme, BAN logic, RoR model, and
AVISPA simulation are used in this section. Using informal security analysis, we analyze
the theoretical security of the proposed scheme.

7.1. BAN Logic

BAN logic [10] is a widely known formal proof used by many researchers to show
mutual authentication of protocols [26–28]. Therefore, we apply the proposed scheme to
BAN logic proof and verify mutual authentication. We introduce notations and descriptions
for BAN logic in Table 3.

Table 3. Basic notations in BAN logic.

Notation Description

PR1,PR2 Principals
MSG1, MSG2 Statements
SK Session key
PR1| ≡ MSG1 PR1 believes MSG1
PR1| ∼ MSG1 PR1 once said MSG1
PR1 �⇒ MSG1 PR1 controls MSG1
PR1 � MSG1 PR1 receives MSG1
#MSG1 MSG1 is fresh
(MSG1)KEY MSG1 is encrypted with KEY
PR1

KEY←−→ PR2 PR1 and PR2 have shared key KEY

7.1.1. Rules

In BAN logic, there are five logical rules: message meaning rule (MMR), nonce verifi-
cation rule (NVR), jurisdiction rule (JR), belief rule (BR), and freshness rule (FR). Details
are as follows.

1. MMR :
PR1

∣∣∣ ≡ PR1
KEY↔ PR2, PR1 � (MSG1)KEY

PR1| ≡ PR2| ∼ MSG1

2. NVR :
PR1| ≡ #(MSG1), PR1| ≡ PR2

∣∣∣ ∼ MSG1

PR1| ≡ PR2| ≡ MSG1

3. JR :
PR1| ≡ PR2 �⇒ MSG1, PR1| ≡ PR2| ≡ MSG1

PR1

∣∣∣ ≡ MSG1
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4. BR :
PR1

∣∣∣ ≡ (MSG1, MSG2)

PR1

∣∣∣ ≡ MSG1

5. FR :
PR1

∣∣∣ ≡ #(MSG1)

PR1

∣∣∣ ≡ #(MSG1, MSG2)

7.1.2. Goals

In the proposed scheme, there are four goals for the BAN logic. Let the user, control
center, and drone be Um, CC, and Dn, respectively.

Goal 1: Dn| ≡ Dn
SK←→ Um

Goal 2: Dn| ≡ Um| ≡ Dn
SK←→ Um

Goal 3: Um| ≡ Dn
SK←→ Um

Goal 4: Um| ≡ Dn| ≡ Dn
SK←→ Um

7.1.3. Idealized Forms

Three messages, i.e., {MIDm, A1, A2, V1}, {A3, A4, A5, V2}, and {A6, V3}, are transmit-
ted via open channels in the proposed scheme. These messages are converted to idealized
forms in BAN logic as below.

Mes1 : Um → CC : {a1, SIDn}SIDm

Mes2 : CC → Dn : {a1, a2, SIDm}kn

Mes3 : Dn → Um : {a2, a3}SIDm

7.1.4. Assumptions

We show the assumptions using in BAN logic as follows.

AS1: CC| ≡ #(a1)

AS2: Dn| ≡ #(a2)

AS3: Um| ≡ #(a3)

AS4: Dn| ≡ Um �⇒ (Dn
SK←→ Um)

AS5: Um| ≡ Dn �⇒ (Dn
SK←→ Um)

AS6: CC| ≡ CC SIDm←−→ Um

AS7: Dn| ≡ CC kn←→ Dn

AS8: Um| ≡ Dn
SIDm←−→ Um

7.1.5. BAN Logic Proof

Step 1: We can obtain RA1 from the message Mes1.

RA1 : CC � {a1, SIDn}SIDm

Step 2: We can obtain RA2 from the rule MMR using RA1 and AS6.

RA2 : CC| ≡ Um| ∼ (a1, SIDn)

Step 3: We can obtain RA3 from the rule FR using S3 and AS1.
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RA3 : CC| ≡ #(a1, SIDn)

Step 4: We can obtain RA4 from the rule NVR using RA2 and RA3.

RA4 : CC| ≡ Um| ≡ (a1, SIDn)

Step 5: We can obtain RA5 from the message Mes2.

RA5 : Dn � {a1, a2, SIDm}kn

Step 6: We can obtain RA6 from the MMR using RA5 and AS7.

RA6 : Dn| ≡ CC| ∼ (a1, a2, SIDm)

Step 7: We can obtain RA7 from the FR using RA6 and AS2.

RA7 : Dn| ≡ #(a1, a2, SIDm)

Step 8: We can obtain RA8 from the NVR using RA6 and RA7.

RA8 : Dn| ≡ CC| ≡ (a1, a2, SIDm)

Step 9: We can obtain RA9 from the message Mes3.

RA9 : Um � {a2, a3}SIDm

Step 10: We can obtain RA10 from the MMR using RA9 and AS8.

RA10 : Um| ≡ Dn| ∼ (a2, a3)

Step 11: We can obtain RA11 from the NVR using RA10 and AS3.

S11 : Um| ≡ Dn| ≡ (a2, a3)

Step 12: We can obtain RA12 and RA13 from RA8 and RA11. Therefore, Um and Dn can
compute the session key SK = h(A7||a1||a2||a3), where A7 = h(SIDm||SIDn||SIDc).

RA12 : Dn| ≡ Um| ≡ (Dn
SK←→ Um) (Goal 2)

RA13 : Um| ≡ Dn| ≡ (Dn
SK←→ Um) (Goal 4)

Step 13: We can obtain RA14 and RA15 from the jurisdiction rule using RA12 and AS4, and
RA13 and AS5, respectively.

RA14 : Dn| ≡ (Dn
SK←→ Um) (Goal 1)

RA15 : Un| ≡ (Dn
SK←→ Um) (Goal 3)

7.2. RoR Model

The Real-or-Random model [9] is a formal proof analysis that proves the session key
security of the protocol. Thus, we establish a premise for applying the proposed scheme to
the RoR model. There are participants, adversaries and queries in our scheme. Participants
are the entities that communicate with each other in the proposed scheme. Therefore,
participants are as follows: PARi

U , PARj
C, and PARk

D, where i, j, and k are the instances
of user, control center, and drone, respectively. The adversary in RoR model can modify,
delete, and eavesdrop the exchanged messages. With this ability, the adversary can perform
various queries such as Execute, CorruptDevice, Send, and Test. We describe the details of
these queries as below.
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• Execute(PARi
U , PARj

C, PARk
D): In this query, the adversary eavesdrop messages are

transmitted via an open channel. Therefore, the adversary can obtain messages
generated from PARi

U , PARj
C, and PARk

D. This query is a passive attack.
• CorruptDevice(PARi

U): In this query, the adversary can obtain secret parameters
from PARi

U using a power analysis attack. Therefore, the query CorruptDevice is an
active attack.

• Send(PAR): In this query, the adversary can send messages to all participants PARi
U ,

PARj
C, and PARk

D. Furthermore, the adversary can obtain returned messages from
these participants. Thus, this query is an active attack

• Test(PAR): Before starting the game, an unbiased coin UC is flipped in this query.
The adversary obtains UC = 1 when the session key is fresh. The adversary can
also obtain UC = 0 when the session key of the proposed scheme cannot guarantee
freshness. If not, the adversary obtains a “null value” ⊥. To achieve a secure session
key agreement, the adversary cannot discriminate between the session key and the
random number.

Security Proof

Theorem 1. The adversary AD attempts to compute the session key SK = h(A7||a1||a2 ||a3) in
polynomial time. Therefore, we define the possibility that AD breaks the security of the session
key as MAAD(P). Moreover, we define that HA and PU are the range space of the function h(.)
and PUF(.), respectively. The number of HA, PU, and Send queries are quha, qupu, and quse,
respectively. We define the secret biometric bits as Bm. At last, we define the Zipf’s parameter [29]
as C′ and s′.

MAAD(P) ≤ qu2
ha

|HA|+
qu2

pu

|PU|+ 2max{C′qus′
se,

quse

2Bm
}

Proof. The security proof in the proposed scheme is composed of five games GAn
(n = 0, 1, 2, 3, 4). Before starting the game, we define AGAn as the probability that AD wins the
game and AD[AGAk ] as the advantage of AGAk . We follow the security proof according to [30–32].

GA0 : In GA0, the adversary selects a random bit r. Thus, we obtain the following equation.

MAAD(P) = |2AD[AGA0 ]− 1| (1)

GA1 : In GA1, the adversary eavesdrops messages {MIDm, A1, A2, V1} , {A3, A4, A5, V2},
and {A6, V3} using Execute query. Then, the adversary performs the Test query to
obtain the session key SK = h(A7||a1||a2||a3). To compute SK, the adversary must
obtain the random nonces a1, a2, and a3. Moreover, A7 is composed of SIDm, SIDn,
and SIDc, where SIDm is the secret parameter of user. Therefore, the adversary
cannot calculate SK. Therefore, we can obtain the following equation.

|AD[AGA1 ]| = |AD[AGA0 ]| (2)

GA2 : In GA2, the adversary utilizes Send and HA to attack the network. However, all
of the parameters are masked in a cryptographic hash function that can prevent the
hash collision problem. For this reason, the adversary cannot obtain the session key
SK. According to the birthday paradox [33], we can obtain the following inequation.

|AD[AGA2 ]− AD[AGA1 ]| ≤
qu2

ha
|HA| (3)
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GA3 : Similar to GA2, the adversary utilizes queries Send and PU in this game. According
to Section 3.4, the PUF is extremely difficult or impossible to clone. This means the
adversary has no advantage in GA3.

|AD[AGA3 ]− AD[AGA2 ]| ≤
qu2

pu

|PU| (4)

GA4 : This game is the final game in which the adversary extracts secret parameters
{γm, δm, SIDu

m, SIDu
n , MIDm} from the device of the user using the query CorruptDevice.

The adversary attempts to calculate SK from these parameters. However, each
parameter consists of a password and the biometrics of a user, and this means that
the adversary must guess the password and biometrics at the same time. Since this
task is computationally infeasible, the adversary cannot compute SK. Therefore, we
can obtain the following inequation using Zipf’s law [29].

|AD[AGA4 ]− AD[AGA2 ]| ≤ max{C′qus′
se,

quse

2Bm
} (5)

After the game, the adversary guesses the result bits r, and we can make the following equation.

AD[AGA4 ] =
1
2

(6)

We can calculate and obtain Equation (7) using (1) and (2).

1
2
MAAD(P) = |AD[AGA0 ]−

1
2
| = |AD[AGA1 ]−

1
2
| (7)

Then, we can calculate and obtain Equation (8) from (6) and (7).

1
2
MAAD(P) = |AD[AGA1 ]− AD[AGA4 ]| (8)

The result (9) can be obtained using the triangular inequality.

1
2
MAAD(P) = |AD[AGA1 ]− AD[AGA4 ]|

≤ |AD[AGA1 ]− AD[AGA3 ]|
+|AD[AGA3 ]− AD[AGA4 ]|
≤ |AD[AGA1 ]− AD[AGA2 ]|
+|AD[AGA2 ]− AD[AGA3 ]|
+|AD[AGA3 ]− AD[AGA4 ]|

≤ qu2
ha

2|HA|+
qu2

pu

2|PU|+ max{C′qus′
se,

quse

2Bm
} (9)

After multiplying (9) by 2, we can obtain the required result inequation.

MAAD(P) ≤ qu2
ha

|HA|+
qu2

pu

|PU|+ 2max{C′qus′
se,

quse

2Bm
}

Therefore, we can demonstrate that the proposed scheme can ensure the session key
security by proving the Theorem 1.

7.3. AVISPA Simulation

AVISPA [7,8] is a simulation tool that proves the security robustness of the proposed
scheme against replay and MITM attacks. Therefore, various security protocols [23,34,35]
are proved by using AVISPA. In this section, we explain the main data flow of AVISPA and
show the simulation result.
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Firstly, we need to write the proposed scheme as a programming language named
“High-Level Protocol Specification Language (HLPSL)” in AVISPA. After writing in HLPSL
code, the proposed scheme is converted to “Intermediate Format (IF)”. Then, the translator
in AVISPA starts analyzing the IF through the four backends: “On-the-Fly Model Checker
(OFMC)”, “Three Automata based on Automatic Approximations for Analysis of Security
Protocol (TA4SP)”, “SAT-based Model Checker (SATMC)”, and “Constraint Logic-based
Attack Searcher (CL-AtSe)”. Because OFMC and CL-AtSe only support an exclusive-OR
operator, the proposed scheme is executed in these backends. The analyzed result is
recorded and summarized in the “Output Format (OF)”. If there is a result of “SAFE” in
OF, we can demonstrate that the proposed scheme can prevent replay and MITM attacks.

In AVISPA, we define roles to be suitable for the proposed scheme. Therefore, there
are three roles in the proposed scheme: the user US, control center CC, and drone DR.
Moreover, we show the session and environment roles in Figure 8.

Figure 8. Session and environment roles written in HLPSL.

Figure 9 shows the role of user US written in HLPSL code. State 1 is the user registration
phase that US sends {IDm} to the CC through a secure channel. After receiving return message
{km, SIDm, SIDn, MIDm} from CC, US computes and stores γm, δm, SIDu

m, and SIDu
n in

state 2. Then, US computes a login request message {MIDm, A1, A2, V1} to the CC. Note
that witness(US, CC, us_cc_aa1, Aa1′) and witness(US, DR, us_dr_aa1, Aa1′) are functions to
prove the freshness of random nonce a1. Finally, US receives {A6, V3} from DR and computes
the session key SK = h(A7||a1||a2|| a3). The code request(DR, US, dr_us_aa3, Aa3′) means
the acceptance of freshness for a3.
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Figure 9. User role written in HLPSL.

The AVISPA result is shown in Figure 10. As we mentioned before, we execute the
proposed scheme in OFMC and CL-AtSe backends, and the summary of the result is “SAFE”.
Therefore, we prove that the proposed scheme can prevent replay and MITM attacks.

Figure 10. AVISPA result.
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7.4. Informal Security Analysis

We conduct an informal analysis of the proposed scheme to demonstrate the theoretical
security robustness. Details are as below.

7.4.1. Stolen/lost Mobile Device Attack

If an adversary A obtains a lost mobile device of Um, it can extract secret parameters
{γm, δm, SIDu

m, SIDu
n , MIDm} using power analysis attacks. However, all of secret param-

eters are masked in the identity IDm, password PWm, and biometrics Biom information.
Therefore, A must guess IDm, PWm, and Biom at the same time and this process is not
practical. Thus, the proposed scheme is secure against stolen/lost mobile device attacks.

7.4.2. Offline Password-Guessing Attack

An adversary A can attempt an offline guessing attack using {MIDm, A1, A2, V1},
{A3, A4 , A5, V2} and {A6, V3}, and the extracted values {γm, δm, SIDu

m, SIDu
n , MIDm},

{γn} from mobile device and drone, respectively. Using a password dictionary, A can
guess PW∗

A. However, A cannot know that PW∗
A is valid or not. It is because δm is masked

with biometric secret key αm. Therefore, the proposed scheme prevents offline password-
guessing attacks.

7.4.3. Impersonation Attack

(1) User impersonation attack: In this attack, an adversary A tries to disguise a legitimate
user Um. A has to make a valid login request message {MIDm, A1, A2, V1}. A can
obtain MIDm from the mobile device. However, without having the credentials
SIDm, SIDn, and km, it is a difficult task for A to calculate MIDm, A1, A2, V1. Thus,
A cannot generate a valid login request message on behalf of Um. Hence, the proposed
scheme provides protection against user impersonation attacks.

(2) Control center impersonation attack: For this attack, let us suppose that A tries to send
the message {A3, A4, A5, V2} to the Dn on behalf of the CC. However, without having
the credentials SIDm, SIDn, kn, IDn, and random nonce a1, it is computationally hard
for A to make a valid message. Therefore, the proposed scheme is resilient against
the CC impersonation attack.

(3) Drone impersonation attack: This attack is a disguise attack in which a malicious
adversary A conceals its identity information and attempts to behave as Dn. To do this,
A computes CH∗

A = A3 ⊕ h(IDn||γn). Since PUF(.) is a physical unclonable circuit,
A cannot compute REn. Therefore, it is impossible to compute αn = Rep(REn, βn),
SIDn = h(IDn||αn), kn = γn ⊕ SIDn, (SIDm||a1||a2) = A2 ⊕ h(SIDn||SIDc||kn) to
calculate A4 = h(SIDm||SIDn||a1)⊕ (a2||a3). Thus, the proposed scheme can prevent
drone impersonation attacks.

7.4.4. Replay and MITM Attacks

In the proposed scheme, all messages are masked in random nonce a1, a2, and a3 to
maintain the freshness. Moreover, each participant, e.g., remote user, control center, drone,
checks the validity of the message by calculating and checking V∗

1 , V∗
2 , and V∗

3 . Therefore,
the proposed scheme can prevent replay and MITM attacks.

7.4.5. Physical and Cloning Attacks

For this attack, an adversary A intercepts a drone Dn and extracts the secret parameters
{γn} from the memory. However, A cannot compute the session key SK = h(A7||a1||a2||a3)
because each parameter in the message {A3, A4, A5, V2} is masked in the PUF technology,
which has an unclonable property. Thus, A cannot obtain any advantages from Dn, and
this means that the proposed scheme is secure against physical or cloning attacks.
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7.4.6. Privileged Insider Attack

In this attack, an adversary A is a privileged insider of the proposed system. Thus, A
can obtain the registration request message {IDm} and secret parameters {γm, δm, SIDu

m,
SIDu

n , MIDm} from the remote user Um. However, without having PWm and biomet-
ric secret key αm of Um, deriving secret credentials SIDm = h(IDm||PWm) ⊕ SIDu

m and
km = h(IDm||PWm||αm)⊕ γm is computationally infeasible. Thus, the proposed scheme
prevents privileged insider attacks.

7.4.7. Ephemeral Security Leakage Attack

To prevent this security attack, the proposed scheme must maintain security even if
random numbers are leaked. Thus, A obtains a1, a2, a3, which are used during the AKA
phase. However, A cannot calculate SIDm, km, and kn without knowing the secret key
s to the control center. Additionally, A cannot obtain any advantages to impersonate
as a legitimate user Um. Thus, the proposed scheme prevents ephemeral secret leakage
(ESL) attacks.

7.4.8. Stolen-Verifier Attack

We can assume that an adversary A obtains table data {IDn, SIDn, an, CHn} and
{MIDm, SID∗

m, am} from the database of the control center and attempts to calculate the
session key SK = h(A7||a1||a2||a3) or impersonate the control center. However, A cannot
calculate the secret parameter SIDm, km and kn without the secret keys of the control
center and also cannot obtain random number a1, a2, a3. Thus, A cannot compute SK
or impersonate the control center. This means that the proposed scheme is resilient to
stolen-verifier attacks.

7.4.9. User Anonymity and Untraceability

An adversary A cannot reveal the real identity IDm of a legitimate user because of a
cryptographic one-way hash function h(.) masks IDm with the secret key of the control
center. Therefore, the proposed scheme provides the user’s anonymity.

7.4.10. Perfect Forward Secrecy

If the master key s of the control center is leaked to an adversary A, it can attempt
to compute SK to attack the previous session. However, A cannot obtain the SK because
SK = h(A7||a1||a2||a3) does not include s. Moreover, if master secret key s of the control
center is compromised, A cannot obtain SIDm, SIDn, a1, a2, a3 because A cannot compute
SIDm = h(IDm||s) without the real identity of the Um, SIDn = h(IDn||αn) and without the
secret key αn. Therefore, A does not obtain any advantages over SK. This means that the
proposed scheme guarantees perfect forward secrecy.

7.4.11. Mutual Authentication

In the MAKA phase, there are three messages {MIDm, A1, A2, V1}, {A3, A4, A5, V2},
{A6, V3} transmitted via public channels. Thus, each participant checks the legitimacy of
the other participants and messages using V1, V2, and V3 in the proposed scheme. If this
process is successful, we can ensure authentication. Thus, the proposed scheme guarantees
mutual authentication.

7.4.12. DoS Attack

If an adversary A tries to transmit {MIDm, A1, A2, V1} to the control center as a replay
message, A has to pass the login phase by verifying the values of δm = h(αm||km||SIDm).
However, A cannot construct a valid δm because A cannot obtain αm, km, SIDm. Therefore,
the replay message would not be sent to the control center. Thus, this proposed scheme can
resist DoS attacks.
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7.4.13. Drone Capture Attack

If an adversary A captures a drone Dn and obtains {γn}, A can try to threaten another
legitimate drone Dn1. However, all of the drones are secure in PUF technology according
to Section 7.4.5, and γn = h(IDn||αn)⊕ kn is an independent parameter. Therefore, the
proposed scheme can prevent drone capture attacks.

7.4.14. Session Key Disclosure Attack

To compute the session key SK = h(A7||a1||a2||a3), an adversaryA has to obtain SIDm,
SIDn, a1, a2 and a3. However, A cannot obtain any of these values because SIDm and
SIDn are masked with secret key s and a1, a2 and a3 are random numbers that are tem-
porarily used in a session. Therefore, the proposed scheme is secure against session key
disclosure attacks.

8. Performance Analysis

We demonstrate the security features of the proposed scheme with a related sch-
eme [4,14,18,21,24] in terms of “security functionalities”, “communication costs”, and
“computation costs”.

8.1. Security Features Comparison

In order to provide visualized information, we offer comprehensive security properties
of the proposed scheme and related schemes [4,14,17,18,21,24] in a table. As shown in
Table 4, we consider various security functionalities and attacks, including “stolen smart
card/mobile device”, “offline password guessing ”, “impersonation”, “replay”, “privileged-
insider”, “physical and cloning”, “ESL”, “verification table leakage”, “user anonymity”,
“perfect forward secrecy”, “mutual authentication”, “DoS”, “untraceability”, “device/drone
capture”, and “correctness”. Thus, our scheme offers secure and functional features as
compared to the related schemes [4,14,18,21,24].

8.2. Communication Costs Comparison

We demonstrate the comparison analysis for communication costs of the proposed
scheme with the other related schemes [4,14,17,18,21,24]. We refer to [4] and assume that
the bit lengths for the hash function, random number, identity, PUF challenge, ECC point,
and enc-decryption are 256, random, 160, 32, 160, and 128 bits, respectively. Thus, during
the MAKA process of our scheme, the exchanged messages {MIDm, A1, A2, V1} require
(256+ 256+ 256+ 256 = 1024bits), the message {A3, A4, A5, V2} requires (256+ 256+ 256+
256 = 1024bits), and the message {A6, V3} requires (256 + 256 = 512bits), respectively.
Table 5 shows the total communication costs of the proposed scheme and the related schemes.

Table 4. Security and functionality features (SFF) comparison.

SFF [14] [17] [18] [21] [24] [4] Proposed

SP1 � � � � � � �
SP2 � � � � � � �
SP3 � � � � � � �
SP4 � � � � � � �
SP5 � � � � × � �
SP6 × × × × × × �
SP7 × � � � � � �
SP8 � � � � × × �
SP9 � � � � � � �
SP10 × � � � � � �
SP11 � � � � � � �
SP12 � � � � � × �
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Table 4. Cont.

SFF [14] [17] [18] [21] [24] [4] Proposed

SP13 � � � � � � �
SP14 � � � � � × �
SP15 � � � � � × �

Note: SP1: stolen smart card/mobile device attack; SP2: offline password guessing attack; SP3: impersonation
attack; SP4: replay attack; SP5: privileged-insider attack; SP6: physical and cloning attack; SP7: ESL attack;
SP8: stolen-verifier attack; SP9: user anonymity; SP10: perfect forward secrecy; SP11: mutual authentication;
SP12: DoS attack; SP13: untraceability; SP14: device/drone capture attack; SP15: correctness; �: Provide or
support SFF. ×: Do not provide or support SFF.

Table 5. Comparison study of communication costs.

Schemes Total Costs Number of Messages

Ali et al. [14] 1696 bits 3 messages
Wu et al. [17] 3360 bits 3 messages

Tanveer et al. [18] 2240 bits 3 messages
Zhang et al. [21] 5760 bits 4 messages

Tanveer et al. [24] 1856 bits 3 messages
Akram et al. [4] 2304 bits 3 messages

Proposed 2560 bits 3 messages

Although our scheme has slightly higher communication costs than Akram et al.’s
scheme [4], we offer better security functionalities and efficient computation costs compared
to the related schemes [14,17,18,21,24]. Figure 11 illustrates the total communication costs
of the proposed scheme and the related schemes.

Figure 11. Communication costs comparison [4,14,17,18,21,24].

8.3. Computation Costs Comparison

We estimate the computation costs of the proposed scheme and [4,14,17,18,21,24] in
the AKA phase. Referring to [18,21,24], we define that TH , TECC, TENC, TFE, TAC, TpmFourQ,
TM, and TO denote the hash function(≈0.029 ms), ECC multiplication(≈0.605 ms), enc-
decryption time(≈0.036 ms), fuzzy extractor(≈0.605 ms), AEGIS(≈0.07 ms), FourQ point
multiplication(≈1.199 ms), HMAC(≈0.053 ms), and BPV-online function(≈2.117 ms),
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respectively. Table 6 shows the total computation costs of the proposed scheme and the
related schemes.

Table 6. Comparison study of computation costs.

Schemes Remote User Side
Control Center

Side
Drone Side Total Total Costs (s)

[14] 10TH + 1TFE 7TH 7TH 24TH + 1TFE ≈1.301 ms

[17] 12TH + 1TFE 9TH 8TH 29TH + 1TFE ≈1.446 ms

[18]
9TH + 4TENC

+3TECC

4TH + 3TENC +
1TECC

7TH + 2TENC
+2TECC

20TH + 9TENC + 6TECC ≈4.534 ms

[21]
7TH + 3TpmFourQ+

1TENC + 1TO + 1TM

5TH + 1TpmFourQ
+2TENC + 1TM

4TH + 1TpmFourQ
+1TENC + 1TO

16TH + 5TpmFourQ
+4TENC + 2TO + 2TM

≈10.943 ms

[24]
6TH + 3TAC

+3TECC + 1TFE

2TH + 1TECC +
3TAC

3TH + 2TECC +
2TAC

11TH + 6TECC
+8TAC + 1TFE

≈5.114 ms

[4] 9TH 7TH + 2TENC 7TH 23TH + 2TENC ≈0.739 ms

Ours 11TH + 1TFE 11TH 10TH + 1TFE 32TH + 2TFE ≈2.138 ms

Compared with the proposed scheme and Akram et al.’s scheme, the proposed scheme
consumes more computation costs. However, the proposed scheme utilizes the fuzzy
extractor and PUF technologies and, therefore, provides much higher security to the entire
IoD network systems than [4]. Figure 12 illustrates that the computational cost (delay)
increases at the control center with an increasing number of users.

Figure 12. Computational delay at the control center with increasing the AKA requests [4,14,17,18,21,24].

9. Conclusions

In this study, we reviewed Akram et al.’s scheme, which was proposed for secure
authentication between users and drones in IoD networks. In Akram et al.’s scheme, there
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are several security vulnerabilities, such as session key disclosure, drone impersonation,
and stolen-verifier attacks. In addition, their scheme cannot ensure perfect forward secrecy
and has correctness problems. To overcome the security flaws of their scheme and provide
various functional features, we proposed a secure MAKA scheme using biometrics and
PUF technologies. The proposed scheme can provide robustness to withstand various
attacks, including session key disclosure, verification table leakage, impersonation, ESL,
and privileged insider attacks. Moreover, the proposed scheme can achieve mutual au-
thentication, perfect forward secrecy, and anonymity. To prove the session key security
and mutual authentication, we analyzed the proposed scheme using an RoR model and
BAN logic, respectively. Furthermore, we simulated the proposed scheme using AVISPA
and showed that the proposed scheme is resilient against replay and MITM attacks. A
comparative study of functionality features, efficiency, and security shows the effectiveness
of the proposed scheme. Therefore, we can demonstrate that the proposed scheme has se-
curity robustness compared to existing user authentication protocols for IoD environments
with reasonable computation and communication overheads. These characteristics show
that the proposed scheme can provide users with high security reliability and high-speed
communication in IoD environments. In future work, we intend to implement the proposed
scheme in real environments using the mobile device as a user, a desktop as a server, and
Raspberry PI 4 as a drone.
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Abstract: A vehicle’s longitudinal acceleration is a parameter often used for determining vehicle
motion dynamics. This parameter can also be used to evaluate driver behavior and passenger comfort
analysis. The paper presents the results of longitudinal acceleration tests of city buses and coaches
recorded during rapid acceleration and braking maneuvers. The presented test results demonstrate
that longitudinal acceleration is significantly affected by road conditions and surface type. In addition,
the paper presents the values of longitudinal accelerations of city buses and coaches during their
regular operation. These results were obtained on the basis of registration of vehicle traffic parameters
in a continuous and long-term manner. The test results showed that the maximum deceleration
values recorded during the tests of city buses and coaches in real traffic conditions were much lower
than the maximum deceleration values found during sudden braking maneuvers. This proves that
the tested drivers in real conditions did not have to use sudden braking. The maximum positive
acceleration values recorded in acceleration maneuvers were slightly higher than the acceleration
values logged during the rapid acceleration tests on the track.

Keywords: vehicle dynamics and stability; longitudinal acceleration; vehicle testing

1. Introduction

Urban buses and coaches are some of the most important collective transport means.
An urban bus is a vehicle planned to transport numerous people over small distances. In
addition to seating, city buses have room for standing passengers, spacious and comfortable
aisles among seats, and spacious entrance doors. An urban bus is adapted to move in urban
conditions characterized by frequent accelerations and braking, and thereby its maximum
speed usually is not very high. Passengers in these vehicles do not have seat belts at their
disposal and may therefore be at risk of injury in driving situations that require dynamic
driver responses.

Coaches are vehicles that usually carry out passenger transport at long distances,
including interurban and international routes. These vehicles usually do not use traditional
stops and are most often not restricted by rigid time schedules. Coaches are only equipped
with seats and have dedicated spaces for luggage. Coaches are also characterized by
higher passenger comfort than urban buses. Passengers have at their disposal comfortable,
adjustable seats with armrests and tables, air-conditioning, and monitors for watching
movies, and even fridges and a bar with hot drinks. Coach passengers should use the seat
belts installed at each seat while driving.

Urban buses and coaches differ in terms of dynamic driving properties. Accelera-
tion is one of the parameters that enable the testing of differences between a vehicle’s
dynamic parameters. Longitudinal acceleration is directly related to acceleration and
braking maneuvers. Acceleration and deceleration values depend on the maneuver’s
intensity applied by the driver and vehicle type. The recording of longitudinal acceleration
during experimental testing can be done with the use of various devices, including a 3-axis
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accelerometer, acceleration sensors with a GPS module, and recorders that read data from
the CAN bus using OBD connections. Lately, it is becoming increasingly popular to use
smartphones with dedicated applications. However, they are characterized by various
measurement accuracies.

Accelerometers are widely used in vehicle dynamics studies. In vehicle monitoring,
it is necessary to differentiate between acceleration, deceleration, and lateral acceleration,
because these data can be used to effectively identify and classify vehicle maneuvers.
Three-axis accelerometers are used to measure vehicle acceleration relative to three perpen-
dicular coordinate axles. Examples of using three-axis accelerometers for vehicle dynamics
testing can be found in [1–3]. Currently, there are increasing numbers of studies in which
accelerometers are mounted in wheel rims [4–6].

The method of collecting acceleration profiles using GPS sensors allows for automatic
and continuous recording of acceleration values while driving without the need to modify
the vehicle’s design or to design the experiment in a specific way. Sensors with a GPS
module provide information about the vehicle’s instantaneous position, instantaneous
speed, instantaneous acceleration values, distance traveled, and travel time. Examples of
this method’s application in recording acceleration values and other dynamic parameters
of a vehicle while driving are presented, among others, in [7–10].

In many papers, the dynamic properties of a vehicle in real conditions were evaluated
using data derived from a CAN (controller area network) bus. A CAN bus is a two-wire
network with real-time data transmission. Each electrical module of the vehicle is monitored
and controlled using one or more sensors that provide notification to and interoperate with
the main control unit (MCU). Microcontrollers (that operate the sensors) communicate with
the MCU and between one another using typical communication standards based on a bus,
such as the CAN bus. The data that can be obtained from the CAN bus include longitudinal
and lateral acceleration, brake pedal use, accelerator pedal use, or engine speed. Examples
of using data derived from a CAN bus to test the dynamic parameters of a vehicle can be
found in [11–14].

Another popular method of collecting vehicle driving parameters is to use an OBD
connection that plugs into a dedicated port on the vehicle. As mentioned earlier, the
vehicle’s electronic units communicate with one another using a network (CAN bus or
similar) to monitor and transmit data. Vehicle dynamic parameters are derived from a
microcontroller that uses the OBD protocol (on-board diagnostics). OBD is the vehicle’s
reporting and diagnostic function that allows the vehicle operator or technician to access
the condition of engine subsystems. Vehicles usually have an external port that enables the
downloading of values of selected parameters and reading errors, as well as identifying
the error code source. Access to the monitored values is provided by using OBD scanners.
OBD connections can be used to record lateral acceleration and longitudinal acceleration,
engine speed, acceleration and braking pedal position, or fuel consumption. The method
of collecting data using an OBD connection to obtain the vehicle’s dynamic parameters is
presented in studies [15–18].

Using a smartphone as a device to record acceleration profiles is relatively inexpensive;
however, the data captured are limited to features allowed by the smartphone. Common
sensors provided by a smartphone include accelerometers, gyroscopes, and global posi-
tioning systems (GPS). Based on the possibility to record the vehicle’s acceleration and
instantaneous position, dedicated applications were developed that constitute an element
of the measurement system. For example, in papers [19–22], it is possible to find an appli-
cation that determines the driver’s profile using a statistical model based on the recorded
longitudinal and lateral acceleration values while driving.

Acceleration profiles are used to analyze and assess many aspects related to vehicle
operation and safety. Many papers present results of experimental testing aimed at deter-
mining the relation between acceleration momentum and speed [23–27]. In the literature,
it is possible to find a comparison of longitudinal acceleration values recorded by several
types of vehicles. Analyses conducted in works [28–30] show that accelerating a vehicle
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to a higher desired speed requires a longer acceleration time and a longer acceleration
distance. Vehicles braking from a higher initial speed show longer deceleration times,
longer deceleration distances, and lower deceleration values. This is important in terms of
the active safety of buses.

Due to the specificity of urban traffic conditions and high traffic intensity, public
transport can be much more often involved in accidents or collisions. It is estimated
that several hundred accidents involving buses take place each year. For example, in
2020, 189 accidents involving urban buses, 6 fatalities, and 232 wounded were recorded
in Poland. In the case of other buses (coaches), 34 accidents involving 4 fatalities and
73 wounded were recorded. Traffic incidents that take place on different road types and in
different atmospheric conditions are subject to evaluations of road traffic experts aimed
at determining the causes of the traffic accident. These evaluations require obtaining the
limit values of acceleration recorded during sudden braking and acceleration, which can be
applied as a result of the tests described in this paper. The necessity of updating the related
data must also be noted. This is related to the continuous improvement of vehicle braking
systems, wheel slip control systems during acceleration and braking (e.g., BAS, ABS, ASR,
TCS, ATC, ESP), and the use of, e.g., electric drive systems.

Longitudinal acceleration studies and analyses obtained during testing conducted
in the normal operation of these form of transport enable the detection of dangerous
driver behavior when driving a bus. When analyzing the data in a longer time interval,
it becomes possible to determine the probability of accidents and collisions caused by a
driver’s dangerous driving. The acceleration and deceleration characteristics can point
to different driver danger behaviors, thereby making it possible to eliminate them. The
results described in studies [31–33] established that each driver uniquely perceives the
environment and reacts subjectively to changing road conditions, which is reflected in
acceleration values. Several studies have been reported in the literature in which driving
style and driver behavior are determined by longitudinal acceleration profiles. Better and
more effective brakes in a vehicle enable faster deceleration to avoid an accident, on one
hand, but on the other hand, higher deceleration can cause dangerous situations among
the vehicle’s passengers [34,35]. Considering the specificity of bus designs, e.g., possible
standing places, such tests can provide an opportunity to determine situations in which
passengers can feel discomfort during travel. Many studies and scientific papers confirm
that longitudinal acceleration is one of the factors that determine the comfort of passengers
in urban buses and coaches. Papers [36–39] present the results of a study with the evaluation
of acceleration values considered to be uncomfortable by seated standing and moving
passengers on the bus, registered at different speeds and traffic conditions.

A literature review allowed for the observation that there are not very many studies
that demonstrate the real longitudinal acceleration of urban buses and coaches.

The objective of this study is to present methodology to determine the extreme values
of longitudinal accelerations recorded in test conditions and then compare them with the
acceleration values obtained in driving conditions in real traffic conditions. Extreme longi-
tudinal acceleration values are expressed as acceleration and deceleration ranges. These
values were determined for city buses and coaches during sudden braking and acceleration
maneuvers. The testing conducted as part of this research project featured two stages. In
the first stage, special test sections were used to conduct sudden braking maneuvers and
intense acceleration maneuvers from a standing start. This made it possible to determine
the maximum acceleration and deceleration values under laboratory conditions. In the
second stage, longitudinal acceleration was analyzed while driving the test vehicles in real
road traffic conditions. The acceleration values collected under real conditions could be
compared to the maximum values set in the track tests. The presented results are part of
a project aimed at developing an application to determine and assess the driving style of
drivers of several types of vehicles.

Longitudinal acceleration is one of the parameters used to examine a driver’s driving
style. These parameters are important in the case of urban buses and coaches due to
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passenger comfort. Reliable deceleration and acceleration values of vehicles are important
for car experts. Acceleration values differ depending on the vehicle type. Programs
intended for complex evaluation of road incidents utilize sophisticated vehicle models
aimed at conducting a space and time analysis that covers any type of moving object.
Many of these programs require the specification of the vehicle’s longitudinal acceleration.
A literature review allowed for the observation that not many publications demonstrate
updated results of longitudinal acceleration tests conducted on urban buses and coaches.
Obtaining true and reliable longitudinal acceleration values requires appropriate laboratory
tests using specialized equipment.

This paper shows the results of part of the research carried out as part of a project to
determine the driving style of drivers of different types of vehicles (including urban buses
and long-distance coaches) under different road conditions. The maximum and minimum
values of longitudinal acceleration determined in the test conditions were the basis for
the initial evaluation of the drivers. High acceleration values recorded by the driver
during regular driving were considered potentially dangerous and risky behavior. The
ultimate goal of the project, of which the presented results are part, was to use longitudinal
acceleration as one of the factors determining driver behavior. Thanks to this, it was
possible to identify drivers with dangerous behavior that could lead to dangerous road
incidents in the future.

In this paper, Section 2 shows the methodology of the conducted research. The tests
of accelerations were carried out on the track and in a real-world driving condition. The
parameter recorded during the tests was longitudinal acceleration. Section 3 presents the
acceleration values recorded during rapid acceleration and braking maneuvers as well as
the acceleration values recorded while driving in real traffic conditions. Section 4 discusses
the differences between the acceleration values obtained by the city bus and coach in track
tests and the acceleration values collected during the normal operation of the vehicles. The
obtained results were compared with the results of similar tests presented in the literature.
Finally, Section 5 presents the main conclusions from the analyzes carried out in the study.

2. Research Methodology

In this paper, an experimental study of vehicles was performed. The parameter investi-
gated was longitudinal acceleration, recorded using specialized measuring equipment. The
experimental research was carried out in two stages. The first stage was carried out under
specific measurement conditions on specially prepared measuring sections on the track.
The second was carried out in real conditions during regular vehicle operation. The data
collected during the experimental tests were then statistically analyzed using the Statistica
program (StatSoft, version 13).

As mentioned above, buses differ in terms of dynamic properties during driving
based on their intended purpose and design. It was therefore decided to conduct testing
of longitudinal acceleration values for two specific types of buses, i.e., an urban bus and
a coach. These vehicles differ, due to their purpose, in their dynamic performance. The
testing was conducted in two stages.

In the first stage, measurements were made during acceleration and rapid braking
maneuvers. In acceleration maneuvers, the driver had to smoothly reach a speed of about
50 km/h from the starting position as quickly as possible. In braking maneuvers, the
driver had to stop the vehicle as quickly as possible from an initial speed of 50 km/h.
Measurements were carried out on test tracks with various surfaces: dry asphalt, wet
asphalt, dry concrete surface, and wet concrete surface.

In the first stage of testing, the vehicles were equipped with a measurement system
that consisted of the following:

• An optoelectronic sensor (Corrsys Datron S-350® Aqua) that recorded the vehicle’s
motion components, including the instantaneous speed (Figure 1a);
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• A multi-functional acceleration sensor (TAA®) that recorded the linear acceleration, a
sensor that measured the linear and angular acceleration (TANS®) relative to the X, Y,
and Z axes (Figure 1b);

• A data acquisition station (Datron uEEP12®) connected with a tablet and the software
(ARMS®) (Figure 1c,d).

Figure 1. Measurement system during acceleration and braking maneuvers: (a) optoelectronic sensor,
(b) acceleration sensors, (c) control tablet with software, (d) data acquisition station.

The measurement system enabled data recording with a frequency of 100 Hz, thereby
allowing for detailed determination of the waveforms of the maneuvers’ selected dynamic
parameters.

The test vehicles underwent appropriate metering before the testing (Figure 2) to
ensure adequate repeatability of the results. The parameters of the test vehicles used in the
first stage of testing are shown in Table 1.

Figure 2. Test vehicles during acceleration and braking maneuvers: (a) urban bus, (b) coach.

Table 1. Test vehicle technical parameters.

Parameter
Urban bus (Figure 2a)

Solaris Urbino 12
Coach (Figure 2b)
Automex Apollo

Maximum output power (kW) 224 160
Maximum torque (Nm) 1200 810
Length (m) 12.00 8.70
Mass (m) 2.55 2.42
Height (m) 3.04 3.27
Wheelbase (m) 5.90 4.22
Curb mass (kg) 10,900 7645
Total mass (kg) 18,000 10,500
Tire Continental 275/70 R22.5 Fulda RegioForce 245/70R17.5
Number of passengers

standing 43 30
sitting 61 -

The aim of the first part of the study was to determine the range of limit values of
longitudinal acceleration for the analyzed vehicles on various types of road surfaces. At this
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stage, the minimum values of the longitudinal acceleration during the rapid braking tests
and the maximum acceleration values during the rapid acceleration tests were determined.
The specified acceleration range can provide a reference for assessing driving style and
detecting unsafe driver behavior.

The second stage of testing included a long-term recording data system installed
in urban buses and coaches. The measurement system recorded vehicle velocity as a
function of time and acceleration longitudinal related to time. In addition, a sensor with
a GPS module was used to estimate the instantaneous position of the test vehicle. These
vehicles were driven at different times of day and in various atmospheric conditions during
traditional (planned) transport tasks.

Time profiles of longitudinal acceleration were recorded at this stage of testing. The
measurement system used featured a sensor with a GPS module that recorded the vehicle’s
instantaneous position, velocity as a function of time, and acceleration related to time.
The sensor’s computer system saved the data on an SD card with a frequency of 25 Hz.
It periodically archived the measurement data at a fixed time interval and designated
maximum acceleration values in this interval. The data covering maximum (acceleration)
and minimum (deceleration) values were used in further statistical analyses. The tests were
conducted on 25 urban buses performing transport tasks for 7 consecutive days and on
8 coaches for 16 consecutive days.

3. Results

3.1. Longitudinal Acceleration Recorded during Sudden Braking

Figure 3 presents examples of deceleration profiles during braking from the initial
speed of 50 km/h recorded on the track for an urban bus and a coach.

Figure 3. Acceleration profiles during braking for an urban bus (a) and a coach (b).

Multiple measurement cycles involved the recording of the vehicle’s motion parame-
ters, including longitudinal acceleration profiles as a function of time, which were then used
to read the minimum values. The data obtained in this way were subjected to statistical
analysis. Results are shown in Figure 4.

Figure 4 shows box plots of the minimum values of longitudinal accelerations noted
for an urban bus on the sudden braking maneuvers from the initial speed of 50 km/h.
These were designed based on 20 series measurements.

The average of minimal negative acceleration (calculated from the minimum values)
of an urban bus recorded during extreme braking maneuvers on a dry asphalt surface
was −7.96 m/s2. The minimum value of acceleration noted during the sudden braking
maneuvers was −8.54 m/s2. The acceleration of the urban bus noted on a wet asphalt
surface was −7.35 m/s2. The lowest acceleration value noted during maneuvers on a wet
asphalt surface was −7.88 m/s2.
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Figure 4. Longitudinal acceleration of urban bus during braking.

A concrete surface is characterized by a lower grip index than an asphalt surface.
The average acceleration determined based on the maneuvers performed was −7.01 m/s2,
while the standard deviation was 0.49 m/s2. The lowest acceleration noted during braking
maneuvers of an urban bus on a dry concrete surface was −7.58 m/s2. The average
acceleration of an urban bus on a wet concrete surface was −5.15 m/s2. The acceleration
lower value noted in braking on a wet concrete surface was −5.58 m/s2. As can be seen,
the value of the standard deviation was small, which means that the obtained acceleration
results were clustered around the average.

Table 2 presents selected statistical parameters of the urban bus deceleration values
collected during braking maneuvers on different surfaces.

Table 2. Statistical characteristics of the acceleration value in the braking maneuvers of the urban bus.

Surface/Parameter Max m/s2 Min m/s2 Average m/s2 Standard
Deviation m/s2

Dry asphalt −7.54 −8.54 −7.96 0.27
Wet asphalt −6.85 −7.88 −7.35 0.32
Dry concrete −5.68 −7.58 −7.01 0.49
Wet concrete −4.76 −5.58 −5.15 0.26

When measuring the acceleration of an urban bus in sudden braking maneuvers, a
higher value was recorded on a dry asphalt surface (−8.54 m/s2) and the lowest on a wet
concrete surface (−4.76 m/s2). The average value of the minimum accelerations recorded
during the tests on the dry asphalt surface and wet asphalt surface differed by 8%. The
average of the minimum accelerations obtained from braking tests on dry concrete surfaces
was 27% greater than the average acceleration obtained from braking maneuvers on wet
concrete surfaces.

Figure 5 shows box plots of coach longitudinal acceleration values noted for a braking
maneuver from the initial speed of 50 km/h.

The average value of acceleration determined for the series of measurements per-
formed by the vehicle was −8.56 m/s2. The minimum value of acceleration noted during
braking maneuvers was −8.86 m/s2. The average minimum acceleration value reached on
the wet asphalt surface was −8.12 m/s2. The lowest value of acceleration achieved during
braking on the wet asphalt surface was −8.74 m/s2.
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Figure 5. Longitudinal acceleration of coach during braking.

When analyzing the braking tests of the coach on a dry concrete surface, the average
minimum acceleration value was −7.84 m/s2 with a standard deviation of 0.29 m/s2. The
lowest acceleration value noted in sudden braking tests of the coach on the concrete dry
surface was −8.25 m/s2. On the concrete wet surface, the average value of minimum
acceleration was −7.84 m/s2, and the standard deviation was 0.30 m/s2. The highest
braking intensity on the concrete wet surface was −8.24 m/s2. Table 3 presents selected
statistical parameters of the coach acceleration value from braking maneuvers carried out
on various surfaces.

Table 3. Statistical characteristics of the acceleration value in the braking maneuvers of the coach.

Surface/Parameter Max m/s2 Min m/s2 Average m/s2 Standard
Deviation m/s2

Dry asphalt −8.22 −8.86 −8.56 0.26
Wet asphalt −7.63 −8.74 −8.12 0.38
Dry concrete −7.28 −8.25 −7.84 0.29
Wet concrete −7.28 −8.24 −7.84 0.30

The highest value of acceleration was recorded during sudden braking maneuvers on
a dry asphalt surface, which was −8.86 m/s2. The average of the maximum deceleration
values from all the rapid braking tests on the dry asphalt surface was 5% higher than the
average of the minimum acceleration values from the wet asphalt surface tests. The lowest
value of deceleration was recorded during rapid braking maneuvers on a concrete surface
(−7.28 m/s2).

3.2. Longitudinal Acceleration Recorded during Intense Acceleration

Figure 6 presents examples of acceleration profiles recorded during sudden accelera-
tion from a standing start to 50 km/h. In this case, the recorded value was the acceleration
over time, which was used to read the maximum acceleration.
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Figure 6. Profiles of acceleration during acceleration for an urban bus (a) and a coach (b).

A statistical analysis of the obtained maximum values is presented in Figure 7, which
features box plots of urban bus acceleration recorded during sudden acceleration maneuvers.

 
Figure 7. Longitudinal acceleration of urban buses during acceleration.

During sudden acceleration maneuvers of an urban bus on an asphalt dry surface, the
average maximum acceleration value was 2.03 m/s2. The maximum acceleration value
achieved in maneuvers on dry asphalt pavement was 2.18 m/s2.

During sudden acceleration maneuvers of the urban bus on a concrete dry surface,
the average acceleration of the urban bus in these maneuvers was 2.64 m/s2. The highest
acceleration value noted in rapid acceleration maneuvers of an urban bus on a concrete
dry surface was 2.81 m/s2. On a concrete wet surface, the average value of urban bus
acceleration was 2.43 m/s2. The highest acceleration noted in rapid acceleration maneuvers
on a concrete wet surface was 2.55 m/s2.

Table 4 presents selected statistical parameters of the acceleration values of the urban
bus obtained in the acceleration maneuvers carried out on various road surfaces.
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Table 4. Statistical characteristics of the acceleration values in the acceleration maneuvers of the
urban bus.

Parameter
Surface

Max
m/s2

Min
m/s2

Average
m/s2

Standard
Deviation

m/s2

Dry asphalt 2.18 1.92 2.03 0.08
Wet asphalt 2.33 1.52 1.91 0.31
Dry concrete 2.81 2.51 2.64 0.10
Wet concrete 2.55 2.21 2.43 0.09

Analyzing the maximum acceleration values achieved during the acceleration ma-
neuver, it was noticed that the range of results for the urban bus on different surfaces was
rather wide and ranged from 2.18 to 2.81 m/s2. The average of acceleration maximum
values recorded during acceleration maneuvers on asphalt dry surfaces and asphalt wet
surfaces differed by 6%.

Figure 8 shows box plots of coach acceleration in sudden acceleration maneuvers up
to 50 km/h.

 

Figure 8. Longitudinal acceleration of coach during acceleration.

The coach’s average maximum acceleration value during extreme acceleration ma-
neuvers performed on an asphalt dry surface was 2.49 m/s2. The maximum acceleration
value noted in the maneuvers was 2.70 m/s2. On an asphalt wet surface, the acceleration
average value of the coach was 2.43 m/s2. The highest acceleration value in maneuvers on
an asphalt wet surface was 3.08 m/s2.

During sudden acceleration maneuvers on asphalt dry pavement, the spread of ac-
celeration values was 1.04 m/s2, and the average acceleration was 2.69 m/s2. The highest
value of acceleration noted in sudden acceleration maneuvers on concrete dry pavement
was 3.51 m/s2. On concrete wet pavement, the average acceleration of the coach was
2.55 m/s2, and the standard deviation was 0.21 m/s2. The highest value of acceleration in
the acceleration maneuvers of the coach on the concrete wet surface was 2.93 m/s2.

Table 5 presents selected statistical parameters of the acceleration values obtained by
the coach in the acceleration maneuvers carried out on different surfaces.
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Table 5. Statistical characteristics of the acceleration value in the coach acceleration maneuvers.

Parameter
Surface

Max m/s2 Min m/s2 Average
m/s2

Standard
Deviation m/s2

Dry asphalt 2.70 2.27 2.49 0.16
Wet asphalt 3.08 2.00 2.43 0.34
Dry concrete 3.51 2.47 2.69 0.29
Wet concrete 2.93 2.26 2.55 0.21

The maximum value of acceleration achieved by the coach during the acceleration
maneuver on the analyzed surfaces was within the range of 2.70 to 3.51 m/s2. Low values
of the standard deviation confirmed the repeatability of the measurements. However, the
average maximum acceleration value was within the range of 2.43 to 2.69 m/s2. The highest
on a dry concrete surface was 3.51 m/s2.

3.3. Longitudinal Acceleration of Urban Bus and Coach in Real Road Traffic Conditions

The second stage of testing involved measurements in real traffic conditions specific to
both vehicle types. For urban buses, these conditions involved regular travels on various
routes performed during different days of the week and at different times. Transport by
coaches was performed on short and longer sections.

The tests involved the recording of longitudinal acceleration in real road traffic con-
ditions. Figure 9 presents examples of longitudinal acceleration profiles recorded for an
urban bus and a coach.

 
Figure 9. Longitudinal acceleration profiles during regular travels (a) for an urban bus and (b) for
a coach.

With the use of the measuring equipment installed in the vehicles, the acceleration
longitudinal values were continuously measured in real conditions during the regular oper-
ation of the vehicle. An analysis of the accelerations obtained provided insight into drivers’
behaviors under different road conditions. In this study, only the values of longitudinal
accelerations—maximum (during acceleration) and minimum (during braking)—were
presented. Statistical analysis was performed on these parameters.

Positive values of the recorded acceleration corresponded to the acceleration maneu-
ver, while negative values correspond to the braking maneuver and are identical to the
deceleration presented in many publications. Figure 10 presents the ranges of negative
acceleration (deceleration) recorded in real traffic conditions during braking for an urban
bus and a coach.

As can be seen in real road conditions, the dominant share of maximum accelerations
for the urban bus ranged from −3.0 to −2.5 m/s2 (42%), and for the coach from −2.0 to
−1.5 m/s2 (44%).
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Figure 10. Acceleration recorded during braking in real traffic conditions (a) for an urban bus and (b)
for a coach.

Table 6 presents selected statistical parameters of the values of acceleration accumu-
lated in real conditions during the regular operation of the coach and urban bus.

Table 6. Statistical characteristics of the acceleration values accumulated under the regular driving
conditions of the analyzed vehicles during braking.

Vehicle/Parameter Min m/s2 Average m/s2 Standard Deviation m/s2

Urban bus −6.01 −2.78 2.78
Coach −5.31 −1.92 0.50

The minimum acceleration values recorded in real road traffic conditions differed. The
average acceleration of urban buses during braking in real traffic conditions amounted to
about −2.8 m/s2, while the minimum value recorded during the travel reached −6 m/s2.
This shows that drivers relatively rarely achieve high deceleration values when braking,
which may be related to the care for passenger safety. The few higher deceleration values
are usually caused by traffic situations. Additionally, when we analyzed the acceleration
values obtained under real conditions, it can be seen that the standard deviation reached
much higher values than in the track tests. This indicates a large dispersion of values
around the average values. This is due to the peculiarities of urban traffic, where the driver
is forced to perform many braking and acceleration maneuvers.

For coaches, the average acceleration during braking was slightly lower and amounted
to approx. −2 m/s2, while the standard deviation was only 0.50 m/s2. The minimum value
of acceleration noted in braking in real traffic conditions was −5.31 m/s2.

Figure 11 shows the acceleration ranges of an urban bus and a coach during accelera-
tion maneuvers.

As can be seen in real road conditions, the dominant shares of maximum accelerations
for the urban bus ranged from 1.5 to 2.5 m/s2 (82%) and for coach from 1.0 to 2.0 m/s2 (82%).

Table 7 presents selected statistical parameters of acceleration values accumulated in
real conditions during the regular operation of a coach and a city bus.

Table 7. Statistical characteristics of acceleration values collected in regular driving conditions of the
analyzed vehicles during acceleration maneuvers.

Vehicle/Parameter
Max
m/s2

Average
m/s2

Standard Deviation
m/s2

Urban bus 4.91 2.10 2.78
Coach 3.99 1.66 0.50
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Figure 11. Acceleration recorded in real traffic conditions (a) for an urban bus and (b) for a coach.

The average maximum acceleration values achieved by the urban buses in real traffic
conditions amounted to 2.1 m/s2. The maximum of the acceleration values noted for an
urban bus in real traffic conditions amounted to approximately 4.9 m/s2. The temporary
high values of accelerations in the urban bus indicated dynamic phenomena during normal
operations related to frequent starting and braking, e.g., when moving in a traffic jam. The
average acceleration of coaches in real traffic conditions was slightly lower and amounted
to 1.66 m/s2, and the standard deviation was 0.39 m/s2. The maximum acceleration noted
in real traffic conditions amounted to approximately 4 m/s2.

4. Discussion

The presented study of longitudinal acceleration was separated into several parts. The
first part featured sudden braking and acceleration maneuvers, and it can be observed
that a change in the road surface condition and type affected the obtained acceleration
values. The acceleration values obtained during braking for an urban bus demonstrate that
the highest deceleration (negative value of longitudinal acceleration) was achieved on an
asphalt dry surface. The maximum deceleration value recorded during the braking tests of
the urban bus was 8.54 m/s2. The lowest deceleration value was recorded during sudden
braking maneuvers on wet concrete surfaces (5.58 m/s2).

The deceleration achieved by a coach was substantially higher than the deceleration
achieved by an urban bus during braking maneuvers on each of the analyzed surfaces. The
differences are especially evident in deceleration values achieved on concrete surfaces. The
maximum deceleration achieved by an urban bus on a concrete wet surface was 32% higher
than the maximum deceleration achieved by a coach.

It is necessary to consider many factors in the acceleration maneuver analysis and the
acceleration values achieved during this maneuver. Hydro-mechanical transmissions are
usually used in urban buses, while traditional drive units are still often used in coaches.
During rapid acceleration maneuvers, the differences in maximum acceleration values
analyzed for each type of vehicle are no more than 0.8 m/s2. The highest acceleration
values of the urban bus and coach were observed on the concrete surface.

It should be noted that the obtained acceleration values reflect the dynamic properties
of a specific type of bus, type of road surface, and environmental conditions. However, by
determining the values of extreme longitudinal accelerations in experimental conditions on
the track, it can be assumed that they constitute a specific framework for the acceleration of
city buses and coaches. Therefore, taking into account the aim of the project, measurements
carried out in real traffic conditions are of primary importance. Obtaining by vehicles
of this type of deceleration values close to the extreme values determined in this study
may be a signal of a dangerous situation on the road. Similar research was presented
in [40]. The results of acceleration maneuvers of rapid braking of coaches and urban buses
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were analyzed. During the tests of rapid acceleration to a speed of 42 km/h, the highest
acceleration value was 0.37 g (3.63 m/s2). During braking from initial speeds of 30 km/h
and 50 km/h, the highest recorded deceleration value was 0.85 g (8.34 m/s2).

An analysis of the longitudinal acceleration obtained during measurements in real
traffic conditions demonstrated that the minimum negative acceleration values recorded
for urban buses were 12% higher than the values recorded for coaches. The average value
of negative acceleration noted by urban buses was 30% higher than the average value of the
negative acceleration of coaches. The minimum negative acceleration recorded for urban
buses during the regular course in real traffic conditions amounted to −6.01 m/s2, while
for coaches, it amounted to −5.31 m/s2. The testing conducted on urban buses and coaches
in real traffic conditions featured no values similar to the maximum negative acceleration
values recorded during sudden braking maneuvers. This proves that during the tests there
was no dangerous emergency requiring a violent reaction from the driver.

When analyzing the acceleration values obtained during tests in real traffic conditions,
maximum acceleration values obtained for both types of vehicles differed by approximately
19%. The maximum acceleration recorded for urban buses amounted to 4.91 m/s2, while
for coaches it was 3.99 m/s2.

The range of maximum values obtained during an urban bus’s acceleration maneuvers
on tested road surfaces amounted to 2.81 m/s2, while the maximum acceleration value
recorded in real traffic conditions amounted to 4.91 m/s2. As can be seen in Figure 11, high
acceleration values were obtained very rarely. For a coach, the maximum acceleration value
recorded in real traffic conditions amounted to 3.99 m/s2.

The driving style and behavior of a driver, especially a professional driver, affect
the safety of other road users [41–43]. Depending on the driver’s driving style, traffic
conditions, and other road conditions, drivers may experience different values of longitu-
dinal acceleration. When driving in real traffic conditions, the average acceleration and
deceleration values determined in the tests were 2.10 m/s2 and 2.78 m/s2, respectively.
The values of longitudinal accelerations obtained for city buses presented in the paper
are comparable to the results of similar tests described in the literature. The results of the
study of the urban bus dynamic parameters during normal driving are presented in [44].
It was noticed that during heavy braking before traffic lights, the value of longitudinal
acceleration was −0.32 g (3.14 m/s2). When accelerating from a traffic light, the acceleration
value was 0.16 g (1.57 m/s2). In [45], the values of longitudinal accelerations of various
vehicles during acceleration and braking at intersections with traffic lights were analyzed.
The average value of acceleration of a city bus when starting from a stop before traffic lights
was 0.62 m/s2, and the maximum value was 1.57 m/s2. The average deceleration when
braking before traffic lights was 0.58 m/s2, and the maximum was 1.28 m/s2.

The acceleration of city buses during regular driving on the streets of Amsterdam was
presented in [46]. The most common acceleration values were in the range of 1 m/s2 do
2 m/s2. The results presented in [40] show that the accelerations recorded during normal
bus driving were usually less than 2 m/s2. During the tests, emergency situations were
also recorded, and then during acceleration, acceleration values above 4 m/s2 were logged,
and during braking the deceleration was over 8 m/s2.

5. Conclusions

The aim of the article was to determine the maximum (extreme) values of acceleration
and deceleration of urban buses and coaches in rapid acceleration and braking maneuvers
and the values of longitudinal acceleration during their regular driving. The presented
research is part of a project aimed at creating an application for assessing the driving
style of drivers and quantifying drivers using many parameters, including longitudinal
accelerations. The study did not conduct comparisons of vehicles in terms of dynamics, but
to learn about and present the acceleration values of these vehicles in selected maneuvers
on the track and in ordinary road conditions.
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Based on the results of experimental tests of vehicles on various types of road surfaces,
the values show that the average maximum and minimum longitudinal accelerations
obtained for the city bus are higher than for the coach. Without taking into account the type
of surface, the minimum acceleration values were −7.4 m/s2 and −8.5 m/s2, respectively.
The determined limit values of longitudinal acceleration during sudden acceleration and
braking maneuvers carried out on the track indicate that the measurements for the analyzed
vehicles were carried out correctly. This can be verified by analyzing statistical parameters,
e.g., standard deviation. They reached small values not exceeding 0.5 m/s2 for the braking
maneuver and about 0.35 m/s2 for acceleration. In turn, the average values determined
for all types of surfaces indicated that the average maximum acceleration values during
acceleration were lower for the city bus than for the coach. Without taking into account the
type of road surface, the average values were 2.5 m/s2 and 3 m/s2, respectively.

This work determined the longitudinal acceleration during sudden acceleration and
braking maneuvers during regular driving during normal operation of these vehicles. The
values obtained in these conditions, due to the impossibility of separating the performed
defensive maneuvers from normal driving, resulted in highly variable acceleration values.
Taking into account the acceleration distributions obtained, one can indicate the values
commonly used in road traffic and those approaching the limit values—characterizing
dangerous maneuvers. One should be aware that especially in real traffic conditions, the
obtained acceleration values may depend not only on the type of vehicle but also on the
specificity of a given city, e.g., road infrastructure system, or road layout. Additionally,
traffic regulations and the size of fines for offenses in different countries can significantly
determine the tendency of drivers to drive dangerously.

The presented methodology was used in a research project, where having a sufficiently
large, representative measurement base could be used to determine the driving style of
drivers. In this way, it was possible to evaluate drivers on the basis of simple measurements
of longitudinal acceleration values. The values obtained in measurements in real road
conditions significantly exceeded the limit acceleration values set in the track tests for the
braking maneuver, which may indicate the occurrence of a dangerous road event.

Drivers have their own driving styles. Additionally, the types of roads may determine
the possibility of obtaining different acceleration values in various situations. The type
of road surface can change quite often, so it was omitted during real traffic analyses. The
recorded values of acceleration and deceleration during experimental tests on the track are
treated as extreme values. If during the regular driving of the vehicle the recorded accel-
eration values are close to the extreme values, then it can be expected that an emergency
situation may have occurred. The presented method, which used continuous measure-
ments of accelerations, allowed the drivers of the minimum determination to achieve high
accelerations. Thanks to this, it was possible to analyze the driving style of professional
drivers. Appropriate actions eliminating such drivers from work or forcing them to drive
safely will help to reduce dangerous situations to which passengers of these vehicles may
be exposed in the future.

The presented results are only part of a project devoted to the assessment of drivers’
driving styles. Depending on the specificity of traffic, layout, and type of roads, these
values may vary. Therefore, in the assumptions of the project, the fleet owner, based on the
given dynamic parameters of the vehicles, can set a reference base and then, considering
a specific parameter, compare the driving style of the drivers. In this way, it is possible
to select drivers whose values of a given parameter differ significantly. In this paper,
longitudinal acceleration was analyzed. In further research, analyses of other quantitative
and qualitative parameters are planned, e.g., longitudinal acceleration, speed, overspeeding.
The combination of various parameters will allow for a deeper analysis of the driver’s
driving style.
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10. Jurecki, R.S.; Stańczyk, T.L. A Methodology for Evaluating Driving Styles in Various Road Conditions. Energies 2021, 14, 3570.
[CrossRef]

11. Azzopardi, M.A.; Azzopardi, J.P.; Farrugia, M.; Farrugia, M. Vehicle Dynamics Analysis from a Production Vehicle’s CAN Bus
Data Augmented with Additional IMU’s. In Proceedings of the 2019 IEEE International Conference on Mechatronics (ICM),
Ilmenau, Germany, 18–20 March 2019; pp. 277–283. [CrossRef]

12. Fugiglando, U.; Massaro, E.; Santi, P.; Milardo, S.; Abida, K.; Stahlmann, R.; Netter, F.; Ratti, C. Driving Behavior Analysis through
CAN Bus Data in an Uncontrolled Environment. IEEE Trans. Intell. Transp. Syst. 2019, 20, 737–748. [CrossRef]

13. Vaitkus, V.; Lengvenis, P.; Žylius, G. Driving style classification using long-term accelerometer information. In Proceedings
of the 19th International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland,
2–5 September 2014; pp. 641–644. [CrossRef]

14. Girbés, V.; Hernández, D.; Armesto, L.; Dols, J.F.; Sala, A. Drive Force and Longitudinal Dynamics Estimation in Heavy-Duty
Vehicles. Sensors 2019, 19, 3515. [CrossRef] [PubMed]

15. Zhang, C.; Patel, M.; Buthpitiya, S.; Lyons, K.; Harrison, B.; Abowd, G.D. Driver Classification Based on Driving Behaviors. In
Proceedings of the 21st International Conference on Intelligent User Interfaces (IUI ‘16), New York, NY, USA, 7–10 March 2016;
Association for Computing Machinery: New York, NY, USA, 2016; pp. 80–84. [CrossRef]

16. Chen, Y.; Hwang, S. Combining OBD technology with acceleration, sensor to analyze aggressive driving behavior. Am. J. Eng.
Res. 2018, 7, 139–144.

17. Malik, M.; Nandal, R.; Dalal, S.; Jalglan, V.; Le, D. Driving Pattern Profiling and Classification Using Deep Learning. Intell. Autom.
Soft Comput. 2021, 28, 887–906. [CrossRef]

18. Wu, F.; Stern, R.; Churchill, M.; Delle Monache, M.L.; Han, K.; Piccoli, B.; Work, D.B. Measuring trajectories and fuel consumption
in oscillatory traffic: Experimental results. In Proceedings of the TRB 2017—Transportation Research Board 96th Annual Meeting
(TRB 2017), Washington, DC, USA, 8–12 January 2017; p. 14.

19. Marchuk, R.; Marchuk, N.; Sakhno, V.; Poliakov, V. To determine the stability of the metrobus in unstable driving modes. Arch.
Automot. Eng. Arch. Motoryz. 2021, 91, 63–79. [CrossRef]

20. Meseguer, J.E.; Calafate, C.T.; Cano, J.C.; Manzoni, P. Driving Styles: A smartphone application to assess driver behavior. In
Proceedings of the IEEE Symposium on Computers and Communications (ISCC), Split, Croatia, 7–10 July 2013; pp. 000535–000540.
[CrossRef]

60



Sensors 2023, 23, 3125

21. Drobiszewski, J.; Lozia, Z.; Zdanowicz, P. Verification of assessment method of car braking process using a mobile phone. In
Paragraf na Drodze. Prawne i Kryminalistyczne Problemy Ruchu Drogowego; Wydawnictwo Instytutu Ekspertyz Sądowych: Kraków,
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Abstract: Object detection is an essential component of autonomous mobile robotic systems, enabling
robots to understand and interact with the environment. Object detection and recognition have
made significant progress using convolutional neural networks (CNNs). Widely used in autonomous
mobile robot applications, CNNs can quickly identify complicated image patterns, such as objects
in a logistic environment. Integration of environment perception algorithms and motion control
algorithms is a topic subjected to significant research. On the one hand, this paper presents an object
detector to better understand the robot environment and the newly acquired dataset. The model
was optimized to run on the mobile platform already on the robot. On the other hand, the paper
introduces a model-based predictive controller to guide an omnidirectional robot to a particular
position in a logistic environment based on an object map obtained from a custom-trained CNN
detector and LIDAR data. Object detection contributes to a safe, optimal, and efficient path for the
omnidirectional mobile robot. In a practical scenario, we deploy a custom-trained and optimized
CNN model to detect specific objects in the warehouse environment. Then we evaluate, through
simulation, a predictive control approach based on the detected objects using CNNs. Results are
obtained in object detection using a custom-trained CNN with an in-house acquired data set on a
mobile platform and in the optimal control for the omnidirectional mobile robot.

Keywords: omnidirectional mobile robots; object detection; convolutional neural networks; depth
sensing; computer vision; discretized-time model; predictive control algorithm; navigation

1. Introduction

The mobile robots sector has seen a global rise over the past decade. Industrial
mobile robots are becoming more advanced to achieve higher levels of autonomy and
efficiency in various industries [1]. These robots are equipped with sophisticated sensors,
such as Light Detection and Ranging (LiDAR), stereo cameras, Inertial Measurement Unit
(IMU), and a global positioning system or indoor positioning system, to gather information
about the work environment and make well-informed decisions [2]. This is made possible
by using complex algorithms for path planning, obstacle avoidance, and task execution.
Furthermore, autonomous mobile robots, grouped in fleets, are often integrated with cloud-
based technologies for remote monitoring and control, allowing for greater flexibility and
scalability in their deployment.

Path planning is a crucial aspect of mobile robotics navigation because of the need to
perform a task by moving from one point to another while avoiding obstacles and satisfying
more constraints, among which are time, the level of autonomy given by the energy
available, and significantly, maintaining safety margins regarding human operators and
transported cargo. Mobile robot navigation is still one of the most researched topics of today,
addressing two main categories: classical and heuristic navigation. In the variety of classical
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approaches, the most well-known algorithms, characterized by limited intelligence in [3],
are cell decomposition, roadmap approach, and artificial potential field (APF). Heuristic
approaches are more intelligent, including but not limited to the main components of
computational intelligence (i.e., fuzzy logic, neural networks, and genetic algorithms).
Researchers investigate solutions based on the particle swarm optimization algorithm, the
FireFly algorithm, and the artificial BEE colony algorithm [4]. Combining classical and
heuristic approaches, known as hybrid algorithms, offers better performances, especially
for navigation in complex, dynamic environments [3].

In dynamic operational environments, the increased flexibility of autonomous mobile
robots compared to automated guided vehicles is an added advantage due to decreased
infrastructure setup and maintenance costs. Supplementary, the omnidirectional mobile
robots (OMR), compared to other traction and steering systems (e.g., differential drive
and Ackerman), provide three independent degrees of freedom (longitudinal and lateral
translation, together with in-place rotation), motions that can be combined within certain
speed and acceleration limits without producing any excessive wear on the ground contact
surfaces. On the other hand, to obtain precise motion for the OMR, certain constraints
apply to their suspension system and the smoothness of the ground surface.

Considering the computational requirements criteria, the planning technology of a
mobile robot is divided into offline planning and online planning [5]. In offline planning,
the path for the robot is pre-computed and stored in the robot’s memory. The robot then
follows the pre-computed path to reach its destination. This approach is suitable for
deterministic environments with a priori information. When the mobile robot navigates
and performs tasks in a dynamic and uncertain environment, it is necessary to use the
online planning approach. The robot computes its path in real time based on its current
location and the information obtained from its perception module.

Independent of the type of path planning algorithm, the OMR structure is beneficial
because it better resembles the material point model used for simplifying the modeling of
robots in motion planning simulations. In [6–9], a four-wheel’s dynamic and kinematic
modeling, OMR was studied using the Lagrange framework. Sliding mode control allows
robust control for OMRs employing mecanum-wheels and rejects disturbances caused by
unmodeled dynamics [10–12]. The nonholonomic model of the wheel was used to develop
the dynamic equation of an OMR with four mecanum wheels [13]. The kinematic model of
a three-wheeled mobile robot was used to create a predictive control model and filtered
Smith predictor for steering the robot along predetermined paths [14]. A reduced dynamic
model of the robot is the basis for developing a nonlinear model-predictive controller for tra-
jectory tracking of a mecanum wheeled OMR [15]. A constrained quadratic programming
problem is formulated towards optimizing the trajectory of a four-wheel omnidirectional
robot [16]. Dynamic obstacles are considered in the work of the authors [17], whereas the
numerical implementation presented in [18] is based on a three-wheeled omnidirectional
robot. Distributed predictive control on a cooperative paradigm is discussed for a coalition
of robots [19]. A nonlinear predictive control strategy with a self-rotating prediction hori-
zon for OMR in uncertain environments is discussed. The appropriate prediction horizon
was selected by incorporating the effects of moving velocity and road curvature on the
system [20]. Adaptive model-predictive control, with friction compensation and incre-
mental input constraints, is presented for an omnidirectional mobile robot [21]. Wrench
equivalent optimality is used in a model-predictive control formulation to control a cable-
driven robot [22]. Authors discuss an optimal controller to control the robot’s motion on a
minimum energy trajectory [23]. Recently, potential field methods have been used mainly
due to their naturally inspired logic. These methods are also widely used in omnidirectional
mobile robots due to their simplicity and performance in obstacle avoidance [24,25]. Timed
elastic-band approaches utilize a predictive control strategy to steer the robot in a dynamic
environment to tackle real-time trajectory planning tasks [26]. Because the optimization
is confined to local minima, the original timed elastic-band planner may cause a route
through obstacles. Researchers proposed an improved strategy for producing alternate
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sub-optimal trajectory clusters based on unique topologies [27]. To overcome the mismatch
problem between the optimization graph and grid-based map, the authors suggested an
egocentric map representation for a timed elastic band in an unknown environment [28].
These path-planning methods are viable and pragmatic, and acquiring a desired path in
various scenarios is generally possible. Yet, these approaches could have multiple draw-
backs, such as a local minimum, a low convergence rate, a lack of robustness, substantial
computation, and so on. Additionally, in logistic environments where OMR robots are
equipped with conveyor belts to transport cargo, it is essential to guarantee low transla-
tional and rotational accelerations for the safety of the transported cargo. Therefore, we
propose a nonlinear predictive control strategy on a reduced model where we can include
maximum acceleration and velocities of the wheels within inequality constraints derived
from the obstacle positions obtained from environment perception sensors (i.e., LiDAR and
video camera). To tackle the problem of local minima, we propose a variable cost function
based on the proximity of obstacles ahead to balance the global objectives.

Object Detection for Mobile Platforms

Deep neural networks specifically created to analyze organized arrays of data (i.e.,
images) are known as convolutional neural networks, often called CNNs or ConvNets.
CNNs offered solutions to computer vision challenges that are difficult to handle using con-
ventional methods. They quickly advance to the state-of-the-art in areas such as semantic
segmentation, object detection, and image classification. They are widely used in computer
vision because they can quickly identify image patterns (such as lines, gradients, or more
complex objects such as eyes and faces). CNNs are convolutional-layered feed-forward
neural networks. CNNs attempt to mimic the structure of the human visual cortex with
these specific layers.

Localization of object instances in images is implied by object detection. Object
recognition generally assigns a class to the identified objects from a previously learned
class list. Although object detection operates at the bounding-box level, it has no notion
of different classes. The phrase “object detection” now encompasses both activities, even
though they were initially two distinct jobs. So, before continuing, let’s be clear that object
detection includes both object localization and object recognition.

Object detection and recognition is an essential field of study in the context of au-
tonomous systems. The models can be broadly divided into one-stage and two-stage
detectors. One-stage detectors are designed to detect objects in a single step, making them
faster and more suitable for real-time applications, such as path planning based on object
detection for a moving system. On the other hand, two-stage detectors use a two-step pro-
cess, first proposing regions of interest and then looking for objects within those areas. This
approach excludes irrelevant parts of the image, and the process is highly parallelizable.
However, it comes at the cost of being slower than one-stage detectors.

To meet the constraints of the Nvidia Jetson mobile platforms considered for the OMR,
lightweight neural networks were investigated for object detection and recognition. Among
the models evaluated, YoloV5 [29], SSD-Mobilenet-v1 [30], SSD-Mobilenet-v2-lite [31] and
SSD-VGG16 [32] were trained and tested. Earlier, the YoloV4 [33] model had already
made significant improvements over the previous iteration by introducing a new backbone
architecture and modifying the neck of the model, resulting in an improvement of mean
average precision (mAP) by 10% and an increase in FPS by 12%. Additionally, the training
process has been optimized for single GPU architectures, like the Nvidia Jetson family,
commonly used in embedded and mobile systems.

A particular implementation is YoloV5 [29], which differs from other Yolo implemen-
tations using the PyTorch framework [34] rather than the original Yolo Darknet repository.
This implementation offers a wide range of architectural complexity, with ten models
available, starting from the YoloV5n (nano), which uses only 1.9M parameters, up to the
YoloV5x6 (extra large), which uses 70 times as many parameters (140M). The lightest models
are recommended for Nvidia Jetson platforms.
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Recently, an increasing interest has been in developing mobile device object detec-
tion and recognition algorithms. A popular approach is using the Single Shot Detector
(SSD) [35] neural network, a one-step algorithm. To further improve the efficiency of the
SSD algorithm on mobile devices, researchers have proposed various modifications to
the SSD architecture, such as combining it with other neural network architectures. One
such modification is the use of the SSD-MobileNet and SSD-Inception architectures, which
combine the SSD300 [35] neural network with various backbone architectures, such as Mo-
bileNet [30] or Inception [36]. These architectures, such as the Nvidia Jetson development
platforms, are recognized for their real-time object detection capabilities on mobile devices.

These methods for object detection perform very well in general detection tasks.
Yet, there must be more datasets and pretrained models for objects specific to the OMR
environment, such as fixed or mobile conveyors, charging stations, other OMRs, etc. We
have acquired our dataset and deployed domain-specific models for object detection in
the OMR environment. We summarize the main contributions of this paper to the field of
object detection and OMR control in logistic environments below:

• Acquisition of a data set for object detection in the OMR environment;
• Investigation of domain-specific models for object detection and providing a model to

be used in an OMR environment;
• Deployed an image acquisition and object detection module fit for the real-time task

of OMR control;
• Proposed a joint perception&control strategy based on a non-linear model-predictive

control;
• Avoid local minima by using switched cost function weights to navigate around

obstacles while still achieving the overall objective of decreasing travel distance;
• Guarantee maximum wheel speed and acceleration through the constrained non-linear

MPC in order to ensure safe transportation of cargo;

The rest of the paper is organized as follows: Section 2 discusses object detection
in the context of OMR’s logistic environment. First, some equipment experiments were
conducted on the image acquisition sensor and the processing unit. We also describe the
object detection dataset creation and object mapping in 2D and 3D perspectives. Section 3 is
dedicated to the modeling and control of the OMR. We introduce the mathematical model
used for developing the control strategy, followed by formulating the optimization problem
considering the environmental objects. In the last two sections, we discuss the object
detection results and the simulation of the control algorithm, conclude, and emphasize
future work goals.

2. Object Detection for Omnidirectional Mobile Robots

2.1. Image Acquisition and Processing Unit

For the image acquisition unit, we analyzed four depth cameras. Depth information
is needed to accurately place the detected objects on the 2D and 3D maps of the envi-
ronment. The predictive control task relies on object maps. The most important features
considered for the experiments were the correctness of the depth information and the
integration of the camera with the Nvidia Jetson platforms, which are already in use on the
Omnidirectional Robot.

All Zed cameras perform well in indoor environments, but, as can be seen in Figure 1,
the far-depth information provided by Zed 2i is significantly better. Depth information is
completely missing after 10 m for Intel RealSense. The best depth information is given by
Zed 2i; it also has the largest FoV. Based on the image acquisition experiments performed
in the OMR environment, Zed 2i was chosen to be integrated into the robot.

65



Sensors 2023, 23, 4992

Figure 1. Depth information for ZED 1 (top left), ZED 2i (top right), ZED mini (bottom left), and
Intel RealSense D435i (bottom right).

Nvidia Jetson system-on-chip platforms are already used on the OMR. Some experi-
ments evaluated the computational capabilities, detection precision, and the dependency
between inference time and resolution. Localization is very important in our defined use
cases for the OMR environment. MS COCO dataset [37] was used for object detection
evaluation across different lightweight neural networks such as Mobilenet [30,31] and
Yolo [29,33] which are suitable for mobile platforms.

The neural networks used for the first experiment are optimized using TensorRT to
run on Jetson mobile platforms. In Table 1, we can see the run-time measurements for the
selected models from the SSD family. The same solution takes considerably more time to
run on the Jetson Nano.

Table 1. Object detection evaluation of the SSD model family.

Architecture
FPS on Jetson FPS on Jetson

Nano Xavier AGX

SSD–Mobilenet–v1 10 83

SSD–Mobilenet–v2 7 61

SSD–Inception–v2 6 42

A second experiment aims to see how the processing time evolves depending on
the image resolution. Table 2 presents the results in terms of FPS on a test subset from
Cityscapes data set [38,39]. The results emphasize that the inference time depends on the
size of the images provided at input. Thus, the higher the image resolution, the slower the
model. Jetson Xavier AGX is 4 to 6 times faster than Jetson Nano, depending on the model
and the input resolution.
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Table 2. Inference Time vs. Image Resolution.

Architecture Resolution
FPS on Jetson FPS on Jetson

Nano Xavier AGX

SSD–Mobilenet–v1 2048 × 1024 15 fps 91 fps
1024 × 512 23 fps 102 fps

SSD–Mobilenet–v2 2048 × 1024 12 fps 74 fps
1024 × 512 18 fps 76 fps

SSD–Inception–v2 2048 × 1024 11 fps 63 fps
1024 × 512 15 fps 63 fps

Following the analysis of hardware equipment and the experimental measurements,
the Jetson architecture chosen to be integrated into the proposed solution for object detection
in the OMR environment that meets the minimum requirements is the Nvidia Jetson
Xavier AGX.

2.2. The Omnidirectional Robot Object Detection Dataset (OROD)

Enabling the efficient operation of autonomous robots is crucial for accurately detect-
ing and recognizing objects specific to the OMR environment. Using the ZED 2i camera,
we have acquired a new dataset for the object detection task that contains objects specific
to the omnidirectional robot environment. The “Omnidirectional Robot Object Detection
(OROD)” dataset includes charging stations, construction cones, mobile conveyors, and
different types of fixed conveyors. The images in the dataset were captured using the
camera mounted on an omnidirectional robot and were annotated with bounding boxes of
objects. The dataset is intended to evaluate the performance of object detection algorithms
in an omnidirectional robot environment.

The OROD dataset contains 1343 images, each labeled with the objects of interest in the
scene. The images were collected in different environments, such as industrial warehouses
and logistics centers, to reflect the various scenarios in which an omnidirectional robot
operates. Additionally, the data set includes images with varying lighting conditions,
occlusions, and different orientations of the objects to represent real-world challenges in
object detection. The training subset was augmented for better results by applying flip,
rotation, zoom, hue, saturation, blur, noise, etc. The original and augmented data sets were
split according to the figures from Table 3. Examples of the augmented images can be
visualized in Figure 2. The dataset augmentation process did not change the initial class
distribution; it scaled by 3.

Table 3. OROD train-val-test split.

Annotated Frames
before/after Augmentation

Percentage before/after
Augmentation

train-initial 940/2816 70/88

validation 269/269 20/8

test 134/134 10/4

The OROD dataset is the first to focus specifically on object detection in the context of
an omnidirectional robot environment. It is intended to serve as a reference for evaluating
the performance of object detection algorithms in this context and to promote research in
this field.

The augmented data set and the raw dataset, both with YOLO annotations, are publicly
available at https://universe.roboflow.com/gheorghe-asachi-technical-university-of-iasi/
rmoa, accessed on 20 May 2023.
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Figure 2. Acquired frame (column 1) and augmentation results (columns 2 and 3).

2.3. Detected Objects in 3D and Mapping

All objects detected by the custom-trained model, along with the distances to them,
are visible on the left side of Figure 3. Their 3D position is also exemplified on the right
side. The distance between the scene object and the camera is measured from the back of
the left eye of the camera and is given in meters.

In the context of an OMR moving through its environment, an important feature is to
continuously be aware of its position and rotation relative to the starting point, the charging
station, in our case.

Figure 3. Object detection and distance estimation in meters (top) and 3D point cloud mapping (bottom).

Examples of the OMR position and orientation are listed on the bottom of the frames
in Figure 3. As a benefit of the IMU integration with Zed 2i, we can obtain the camera
position, rotation, and quaternion orientation. In addition to the ZED 2i camera, the OMR
is equipped with two LiDAR sensors for a 360-degree map. At this stage, the LiDAR data
are empirically merged with the detected objects to obtain a bird’s-eye view map of the
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entire environment. In Figure 4, we can see the obtained map of the environment with the
detected objects shown in Figure 3.

Figure 4. Bird’s eye view mapping of detected objects.

3. Model-Predictive Motion Control of OMR

We derive the motion control strategy of the OMR based on a non-linear optimization
algorithm as the core of the motion controller. We define in Section 3.1 the mathematical model
used in the predictions step of the controller. The continuous time equations are discretized
by the Euler method to realize the numerical implementation. Then, we define the physical
constraints of the robot’s actuators (i.e., omnidirectional wheel speed and acceleration) and
the geometrical constraints of the objects (i.e., circumscribed circles of objects). We formulate
the optimization problem considering the global objective of navigating on the shortest path,
avoiding obstacles, and limiting the movement of the OMR within actuator limits.

3.1. Mathematical Model of 3D of Omnidirectional Robot

In this section, we define the discrete mathematical model used in the model-predictive
controller to generate short-term paths and control the robot’s movement along the pre-
dicted trajectory. Equation (1) depicts the inverse kinematics matrix representation:⎡⎢⎢⎢⎢⎢⎢⎣

ω1

ω2

ω3

ω4

⎤⎥⎥⎥⎥⎥⎥⎦ = J

⎡⎢⎢⎢⎣
vx

vy

Ω

⎤⎥⎥⎥⎦ (1)

where vx and vy are the longitudinal and lateral velocities of the OMR, respectively. Ω defines
the angular speed along the normal axis, ωj, j = 1..4 are the individual wheels’ angular
velocities, while J is the inverse kinematic Jacobian matrix of the OMR defined in (2) [1]:

J =
1
R

⎡⎢⎢⎣
1 1 −(lx + ly)
1 −1 −(lx + ly)
1 1 (lx + ly)
1 −1 (lx + ly)

⎤⎥⎥⎦ (2)

The forward kinematics of the 3DOF system are obtained from the lateral, longitudinal,
and rotation velocities:⎡⎢⎣ dx

dt
dy
dt
dθ
dt

⎤⎥⎦ =
R
4

⎡⎢⎣ 1 1 1 1
1 −1 1 −1

−1
lx+ly

−1
lx+ly

1
lx+ly

1
lx+ly

⎤⎥⎦
⎡⎢⎢⎣

ω1
ω2
ω3
ω4

⎤⎥⎥⎦ (3)
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where x, y, θ are plane coordinates and robot orientation, respectively. Moreover, R is the
wheel radius, lx defines the distance from the GC to the front axle, while ly defines the half
distance between the left and right wheels.

Pragmatically, it can be considered that deviations from the nominal kinematic model
act on the system input. Therefore, we can design an input disturbance observer to
compensate for unmodeled dynamics and disturbances. Let us define the disturbance
acting on the system input as F = [ f1, f2, f3, f4]

t, where the additive terms F act on the
system inputs. The observer is designed considering the inverse kinematics of the process.
An additional pole is added for the realizability of the observer. We define Q as a passive
(i.e., unitary gain) first-order low-pass filter diagonal matrix. We define the estimated
input disturbance as: F̂ = [ f̂1, f̂2, f̂3, f̂4]

t = −Q[ω1, ω2, ω3, ω4]
t + QJ[vx, vy, θ̇]t Therefore,

the plant model becomes:⎡⎢⎣ dx
dt
dy
dt
dθ
dt

⎤⎥⎦ =
R
4

⎡⎢⎣ 1 1 1 1
1 −1 1 −1

−1
lx+ly

−1
lx+ly

1
lx+ly

1
lx+ly

⎤⎥⎦
⎡⎢⎢⎣

ω1
ω2
ω3
ω4

⎤⎥⎥⎦+

⎡⎢⎢⎣
f1
f2
f3
f4

⎤⎥⎥⎦ (4)

The discretized-time model of (3) is obtained by backward rectangle area approxi-
mation (i.e., Euler method). Therefore, the system Equation (3) can be re-written in the
state space framework Ẋ = AX + (J+)ω, where the state transition matrix is null, the state
vector is X = [x y θ]t while the input matrix J+ is defined as J+ = (JT J)−1 JT . Thus, we
obtain the discretized-time model of the OMR in global coordinates:

Xk+1 = I3Xk + (J+)Tsωk (5)

where I3 ∈ R
3×3 unity matrix, Xk+1 = [xk yk θk]

t is the state vector at iteration k + 1, Ts is
the sampling time and ωk = [ω1k ω2k ω3k ω4k ]

t is the input vector.

⎡⎣xk+1
yk+1
θk+1

⎤⎦ =

⎡⎣xk
yk
θk

⎤⎦+ Ts
R
4

⎡⎢⎣ 1 1 1 1
1 −1 1 −1
−1

lx+ly
−1

lx+ly
1

lx+ly
1

lx+ly

⎤⎥⎦
⎡⎢⎢⎣

ω1k
ω2k
ω3k
ω4k

⎤⎥⎥⎦ (6)

To improve controller behavior w.r.t to deviations of the model and input perturbation, the
extended discretized model can be used for states and output predictions within the MPC
solver:

⎡⎣xk+1
yk+1
θk+1

⎤⎦ =

⎡⎣xk
yk
θk

⎤⎦+ Ts
R
4

⎡⎢⎣ 1 1 1 1
1 −1 1 −1
−1

lx+ly
−1

lx+ly
1

lx+ly
1

lx+ly

⎤⎥⎦
⎡⎢⎢⎣

ω1k
ω2k
ω3k
ω4k

⎤⎥⎥⎦+ Ts

⎡⎢⎢⎣
f1k
f2k
f3k
f4k

⎤⎥⎥⎦ (7)

Table 4 contains the parameters of the mobile robot and the sampling time considered
for the time-discretization of the process.

Table 4. OMR parameters.

Parameter Value

Wheel radius (R) 0.076 [m]
Distance from GC to front axle (lx) 0.294 [m]

Half distance between left and right wheels (ly) 0.2 [m]
Sampling time (Ts) 0.02 [s]

3.2. OMR Motion Optimization Problem

In the optimization problem, we aim to find the solution at time kTs, comprised of
actuator commands ω

(i,k)
j f or j = 1..4, i∈ {1 . . . H} satisfying actuator physical constraints,
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the geometric constraints, and to fulfill the global objective of traveling the shortest distance
and avoiding the detected obstacles. Therefore, we formulate the optimization problem as
follows. Find,

min
x(·|k), y(·|k), θ(·|k), dp(·|k)

Jk(X, Xr, α)

s.t. − ωUB ≤ ωj,j=1..4 ≤ ωUB

−aUB ≤ ω̇j,j=1..4 ≤ aUB

Co < 0

(8)

where Jk is the cost function defined in (9), x(·|k), y(·|k), θ(·|k) are the solutions of the opti-
mization problem; ωUB and aUB are the upper bounds of the angular velocity and acceleration
of the wheels, respectively. Co is the geometric constraints vector and is defined in (22).

The cost function Jk is defined by:

Jk(X, Xr, α) =
1
2

H−1

∑
i=0

[
wx(α)(x(i|k)r − x(i|k))2 + wy(α)(y

(i|k)
r − y(i|k))2 + wθ(θ

(i|k)
r − θ(i|k))2 + (9)

+wTx(x(H−1|k)
r − x(i|k))2 + wTy(y

(H−1|k)
r − y(i|k))2]+ wp(α)

H−1

∑
i=0

(dp(X, X0, X f )
(i|k)) (10)

where Xr ∈ RH×3 is the reference trajectory matrix of the OMR over the prediction horizon H:

Xr =

⎡⎢⎢⎢⎣
x(0,k)

r y(0,k)
r θ

(0,k)
r

x(1,k)
r y(1,k)

r θ
(1,k)
r

... ... ...
x(H−1,k)

r y(H−1,k)
r θ

(H−1,k)
r

⎤⎥⎥⎥⎦ (11)

dp(X0, X f ) is the length of the projection of the OMR geometric center over the ideal straight
path connecting the starting (i.e., initial) node with the final node and is defined in (12):

dp(X, X0, X f ) =

√
|L2

1 −
[
(L2

1 + L2
3 − L2

2)/(2L3)
]2| (12)

with

L1 =
√
(x − x0)2 + (y − y0)2 (13)

L2 =

√
(x − x(H−1)

r )2 + (y − y(H−1)
r )2 (14)

L3 =

√
(x0 − x(H−1)

r )2 + (y0 − y(H−1)
r )2 (15)

where L1, L2, and L3 define the L2-norms between the OMR position, initial, and resting
positions, while X0 = [x0, y0, θ0]

t and X f = [x(H−1)
r , y(H−1)

r , θ
(H−1)
r ]t = [x f , y f , θ f ]

t are the
initial and final resting positions. In the cost function, we aim to penalize by weights wx(α)

and wy(α) the deviation from the reference trajectory x(i)r , y(i)r , i = 0..H − 1 defined by (25);
by weight wθ it is penalized the deviation from the desired orientation of the OMR. The
set-point orientation θ

(i)
r , i = 0..H − 1 is such that the OMR remains with the frontal part

facing the destination location. By wTx, we penalize the terminal cost of xr and yr to reduce
the steady-state error. Therefore, wTx > wx and wTy > wy; wp(α) is a weight with two
discrete states, and its value is a function of α which depends on the proximity (tolerance)
of the closest object and is defined by (23).

The actuator constraints of the OMR are defined as:

−ωUB ≤ ωj,j=1..4 ≤ ωUB (16)

−aUB ≤ ω̇j,j=1..4 ≤ aUB (17)
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We define the physical-space constraints from the coordinates of the objects and their
known sizes as:

−(x − xo)
2 − (y − yo)

2 + r2
o ≤ 0 (18)

where xo = [xo1 . . . xono ]
t and yo = [yo1 . . . yono ]

t are the coordinates ro = [ro1 . . . rono ]
t is the

radius of the circle circumscribed about the polygon defining the object. Index no refers to
Number-of-Objects, while, index o signifies the word Objects, also, index a refers to word
Actuators. The global coordinates of the obstacles are obtained from the local coordinates of
the OMR according to the equation below:[

xo
yo

]
=

[
cosφ sinφ

−sinφ cosφ

][[
xl
yl

]
−
[

x
y

]]
(19)

where φ is the angle from the global system’s abscissa to the local system’s abscissa. xl and
yl are the local coordinates of the detected objects, and x and y are the global coordinates of
the local system’s origin. From inequality constraints (16) and (18), we obtain a concatenated
vector of inequality constraints denoted by Ck ∈ R

(na ·nw ·H+no ·H)×1 ≤ 0:

Ck = [Ct
a, Ct

o]
t ∈ R

(na ·nw ·H+no ·H)×1 (20)

where Ca ∈ Rna ·nw ·H×1, Co ∈ R
no H×1 are defined below:

C(k)
a =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

|ω(0|k)
1 | − ωUB

|ω(1|k)
1 | − ωUB

...
|ω(H−1|k)

1 | − ωUB

|ω(0|k)
2 | − ωUB

...
|ω(H−1|k)

4 | − ωUB

|ω̇(0|k)
1 | − aUB

...
|ω̇(H−1|k)

4 | − aUB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 0 (21)

C(k)
o =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(x(0|k) − xo1)
2 − (y(0|k) − yo1)

2 + r2
o1

−(x(1|k) − xo1)
2 − (y(1|k) − yo1)

2 + r2
o1
...

−(x(H−1|k) − xo1)
2 − (y(H−1|k) − yo1)

2 + r2
o1

−(x(0|k) − xo2)
2 − (y(0|k) − yo2)

2 + r2
o2
...

−(x(H−1|k) − xono )
2 − (y(H−1|k) − yono )

2 + r2
ono

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ 0 (22)

In the previous equations, na = 2 defines the number of constraints regarding actuators,
and it is two because we included two types of actuator restrictions: angular speed and
angular acceleration.

We approximate numerically ω̇j by ω̇j ≈
(ω

(i)
j −ω

(i−1)
j )

Ts
where Ts is the sampling time.
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In the cost function (9), we propose that wp(α), wx(α) and wy(α) are switched between
their two states based on the value of α = max1≤j≤no ·H Coj which, practically, determines
the minimum proximity to an obstacle from the object list. Therefore,

wp(α) =

{
wp1 , if α > tol
wp2 , if α ≤ tol

wx(α) = wy(α) =

{
wxy1

, if α > tol
wxy2

, if α ≤ tol
(23)

In the previous equation, tol defines the avoidance tolerance.
The set-point orientation over the control horizon H is defined as:

θ
(i)
r = atan2(y

(H−1)
r − y, x(H−1)

r − x)
360
2π

, for i = 0..H − 1 (24)

and the reference trajectory is given by a first-order static function where the slope λ and
the bias ρ are given by:

λ =

{ y f −y
x f −x , if x f �= x

0, otherwise

ρ =

{
y f − y f −y

x f −x x f , if x f �= x

0, otherwise

x(i)r =
x f − x

H
i + x , i = 0..H − 2

x(H−1)
r = x f

y(i)r = λx(i)f + ρ , i = 0..H − 2

y(H−1)
r = y f (25)

3.3. Control Algorithm—One Step Optimization

The control algorithm core is the sequential quadratic optimizer with a constraint
tolerance of 1.0 × 10−3 and an optimality tolerance of 1.0 × 10−4 deduced heuristically
through multiple experiments. Under this parametrization, the behavior is fairly robust
and predictable with respect to the initial robot position, final resting position, varying
size obstacles, wheel speeds, and acceleration. The object lists consist of a matrix of object
positions obtained from the perception module. In order to determine the radius of the
obstacles, we use the Moor–Neighbour tracing algorithm with Jacob’s stopping criteria,
which provides the contour of the objects from LIDAR data. Beyond providing LIDAR data,
CNN can provide estimates of object radius with higher precision based on the object class.
In order to reduce the computation time, the optimization problem is reformulated at each
sampling time, and we consider in the optimization only those objects within a maximum
radius (dmax) relative to the OMR’s geometric center. The avoidance radius for each object is
determined from the actual object radius with an additional tolerance according to OMR’s
dimensions. The reference orientation θr, and reference trajectory (xr, yr) are determined
at each sample time since the OMR position evolves from one pose to another, constantly
changing the heading to the final resting position. The first computed command over the
predicted horizon is applied to the process inputs. We summarize the control algorithm
steps for one sampling time Ts in Algorithm 1.
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Algorithm 1 Main control algorithm

Inputs:
Desired setpoint X f from mission planner, X f ← [x f y f θ f ]

t;
Initial position X0 from perception module, X0 ← [x0 y0 θ0]

t;
Outputs:

Actuator commands over horizon H, ω
(i,k)
j , j = 1..4, i = 0..H − 1

Predicted path over horizon H, x(i|k), y(i|k), θ(i|k), i = 0..H − 1
Runtime
Acquire object list data: positions (xo, yo), radius (ro) from perception module;
Detect object boundaries from LiDAR data using Moore-Neighbor tracing algorithm with Jacob’s
stopping criteria [40]
[B,L] = bwboundaries(LiDAR data); (Matlab specific function)
l = 0;
for k ∈ {1 . . . length(B)} do

Object boundary ← B{k}; B is Matlab cell data-type, therefore brackets are ‘{}’ for indexing
Ignore objects composed of a very small or very high number of pixels (usually are artifacts or

room boundaries)
if BoundaryMin ≤ numel(Object boundary)/2 ≤ BoundaryMax then

l ← l + 1;
If the number of objects exceeds buffer size (MaxNoObjs), an error will be thrown, and

optimization will not be started
if l > MaxNoObjs then

l ← −1;
break;

xy ← mean(Object boundary) ∈ R2×1 Matlab specific function to determine mean
value over each line of a matrix.

xo(l) ← xy[2];
yo(l) ← xy[1];
ro(l) ← max(|max(Objectboundary) − min(Objectboundary)|); Matlab specific

functions to determine min, max values of matrix rows; or ro provided by CNN subsystem;
noObjs ← l; No. of all objects detected in the map;
Determine relevant objects (within specified proximity dmax);
for k ∈ {1 . . . noObjs} No. of all objects do

Calculate distance to each relevant object:
do ←

√
(xo[k]− x)2 + (yo[k]− y)2;

if do ≤ dmax then
Update object radius to include tolerance w.r.t to OMR dimensions
ro[k] ← ro[k] + max(lx, ly);
no ← no + 1;

Calculate reference trajectory x(i)r , y(i)r according to Equation (25);
Calculate reference angle θ

(i)
r , i = 0..H − 1 according to Equation (24);

Input data to optimizer: Sampling time: Ts; Object list: xo, yo, ro; Number of objects no, Initial
resting point X0; Final resting point X f , Run-time reference trajectory Xr; Previous optimized
commands ωi
Optimize;
Save in buffer the optimized commands;
Provide to the process inputs the first (i.e., i = 0) command from the- control buffer;

Figure 5 depicts the control structure consisting of two main subsystems: Environment
perception, Model-Predictive Controller, and the interconnection with the psychical process.
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Figure 5. Illustrative block diagram of the control structure.

Figure 6 illustrates the main coordinates and notations used throughout the optimiza-
tion problem. The projection dp from the robot CG to the imaginary straight path connecting
the initial X0 and final X f resting locations is noticeable. Moreover, the L2-norms used in
calculating the cost function, L1, L2, and L3 define the distances between the OMR, initial,
and resting positions.

 

 

 

 

 

 

 

 

 

Figure 6. Coordinates system for control algorithm illustrating the used notations.

Table 5 contains the parameters of the model-predictive controller, including the
penalizing factor of the cost function, the proximity threshold (tol) for switching cost
function weights, the radius w.r.t to OMR’s CG to and the prediction horizon.
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Table 5. Control parameters.

Parameter Value

Cost weight 1 of reference trajectory (wxy1) 0.6
Cost weight 1 of projection length to ideal path (wp1 ) 0.01

Cost weight 2 of reference trajectory (wxy2) 0.05
Cost weight 2 of projection length to ideal path (wp2 ) 2.0

Cost weight of orientation angle (wθ) 0.3
Terminal cost weight of reference trajectory (wTx) 0.8
Terminal cost weight of reference trajectory (wTy) 0.8

Threshold for switching cost weights tol −0.1 [m]
Maximum distance from CG to objects (dmax) 2.5 [m]

Prediction horizon (H) 10 [samples] (Thorizon = 0.2 s)
Map cell size 10 [cm]

4. Results

4.1. Object Detection Results

The performance of the selected object detection solutions (ssd-mobilenet-v1, ssd-
mobilenet-v2-lite, ssd-vgg16, and YoloV5) was evaluated on a testing subset with image
resolutions varying between 720 × 404 and 2048 × 1024 pixels. The neural networks were
tested on the Nvidia Jetson AGX mobile platform with the same input.

All models are optimized for Jetson Xavier AGX with the TensorRT framework from
CUDA for Nvidia cards. The run time of the three selected architectures from the SSD family
and the five main YoloV5 [29] is presented in Table 6. Architectures with fewer parameters
performed better in terms of frames per second. Being the lightest model, the Nano YoloV5
is six times faster than the Extra Large model, the largest we considered for the Jetson
platform. This highlights the importance of considering the specific hardware platform and
the model’s complexity for deploying object detection algorithms on mobile robots.

The two largest YoloV5 models did not bring any improvements for the overall
precision and the precision per class compared to the Medium architecture; therefore, they
were not considered for Table 6. A comparison between the precision of the models can
be made based on the figures presented in Table 7. All architectures were trained for
150 epochs to evaluate the mean Average Precision. SSD Mobilenet v2 lite and SSD VGG16
reach a similar mAP@0.5 of 98–99%, while SSD Mobilenet v1 has a lower precision on the
test subset, 86%.

Based on the results from Tables 6 and 7, we can draw the conclusion that the best
model for our OMR object detection use cases is YoloV5 Medium which has a mAP
comparable to SSD-VGG16, with the benefit of being twice as fast. Detection examples
with the neural network models tested in the OMR environment are shown in Figure 7.

Table 6. Inference time.

Architecture FPS on Jetson Xavier AGX Number of Parameters

SSD Mobilenet v1 120 4.2M

SSD Mobilenet v2 lite 130 3.4M

SSD VGG16 50 35M

yoloV5 Nano 270 1.9M

yoloV5 Small 225 7.2M

yoloV5 Medium 109 21.2M

yoloV5 Large 72 46.5M

yoloV5 Extra Large 44 86.7M

76



Sensors 2023, 23, 4992

Table 7. Average precision on test subset.

Per Class mAP@0.5

Model
Overall

mAP@0.5
Conveyor

Type 1
Conveyor

Type 2
Rosy

Charging
Station

Cone

SSD Mobilenet v1 0.860 0.909 0.891 0.816 0.717 0.969

SSD Mobilenet v2 lite 0.989 0.998 0.980 0.974 0.998 0.992

SSD VGG16 0.997 0.998 0.996 0.990 0.998 0.998

YoloV5 Nano 0.989 0.993 0.985 0.992 0.982 0.995

YoloV5 Small 0.992 0.995 0.989 0.994 0.99 0.995

YoloV5 Medium 0.994 0.995 0.992 0.995 0.991 0.995

Figure 7. Detected objects with SSD architectures (1st row) and with YOLOv5 architecture (2nd row).

4.2. Simulation Results

To evaluate the control performances, we considered scenarios where the initial and
final positions varied throughout the room so that obstacles blocked the OMR path. We
perform numerical simulations on real data acquired from the perception module. We
evaluate the steady-state error, the possible constraint violations, the cost function, and the
optimization run-time.

In the first test case considered in Figure 8, the final resting position X f is reached
after avoiding the two obstacles on the circumference of virtual circles centered around
the objects. The inequality geometric inequality constrained Co < 0, and the actuator
constraints are satisfied Ca < 0 with an acceptable tolerance. Generally, the tolerance
is within the expected margin of 1.0 × 10−3. The steady-state error of the controlled
position (x, y) is less than 1% as measured around moment t = 10.2 s. The transient time
is limited by the upper and lower bounds of the wheel speed, in this case, ±10 rad/s.
The orientation θ changes at each sample time as the vehicle travels towards X f . Hence,
the tracking is decent, with a peak error of 17 degrees noticeably on the roundabouts of
the objects since the optimizer is more constrained. The cost function decreases as the
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vehicle evolves across the map. In the proximity of an object, the cost function is purposely
increased to avoid local minima by amplifying the deviation from the reference trajectory
and decreasing the penalizing weight for the projection to the ideal path to allow solutions
on the circumference of the encircled object. The maximum number of iterations was 79
with a run-time of 0.8945 s, and the minimum number of iterations was 2 with a run-time
of 0.0204 s (CPU Intel i7 7500u, dual-core, 7th generation). The mean number of iterations
was 6.526, with an execution time of 0.0647 s. It must be mentioned that the run-time is less
relevant since in MEX mode (Matlab executable), the run-time can be reduced considerably
(in MEX mode, the average run-time was 0.0507 s, while in normal mode 0.0647 s). The
execution time is platform dependent.

Figure 8. Simulation results of the model−predictive controller with LiDAR data and simulation of
camera detection (test case I).

In the second scenario presented in Figure 9, the behavior is similar concerning the
constraint tolerances. The violation of the object boundaries is within the expected limit,
and the steady-state error of the controlled pose (x, y, θ) is less than 1%. In this case, the
actuator constraints limit the transient time, ±10 rad/s. The maximum number of iterations
was 66 with a run-time of 0.9923 s, and the minimum number of iterations was 2 with a
run-time of 0.022 s (same CPU as mentioned in test case I). The mean number of iterations
was 8.5658, with a mean execution time of 0.0814 s. In MEX mode, the maximum run-time
was 0.5681 s, the minimum 0.0039 s, and the average 0.0356 s. Generally, the behavior is as
expected, and the run-time proves the applicability of the control structure.

Similar behavior is obtained in the third test case presented in Figure 10, but the
maximum run-time is slightly higher at 1.6 s, the maximum number of iterations is 210, and
the minimum is 2. The minimum run-time was 0.0191 s. However, the average run-time in
MEX mode is 0.0358 s with a maximum of 0.3176 s (instead of 1.6 s as in normal mode) and
a minimum of 0.0043 s.
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Figure 9. Simulation results of the model−predictive controller with LiDAR data and simulation of
camera detection (test case II).

Figure 10. Simulation results of the model−predictive controller with LiDAR data and simulation of
camera detection (test case III).

5. Conclusions and Future Work

The use of CNNs for object detection in mobile robot navigation provides benefits
such as accuracy, robustness, and adaptability, which are desirable for the navigation of
mobile robots in a logistic environment.

The paper proves the use of an object detector for a better understanding of the OMR
working environment. To overcome this challenge, we also acquired a dataset for domain-
specific object detection that was made public. It contains all objects of interest for the
working environment, such as fixed or mobile conveyors, charging stations, other robots,
and boundary cones. The results show a detection accuracy of 99% using the selected
lightweight model, which was optimized to run on the available mobile platform already
installed on the OMR at about 109 frames per second. The detection results offer a better
understanding of the LiDAR map by assigning a name to obstacles and objects within the
working environment, allowing the control model constraints to be adjusted on the fly.
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This paper also demonstrates the model-predictive control of the OMR in logistic
environments with actuator and geometric constraints. We avoid local minima by using
variable cost function weights to navigate around obstacles while still achieving the overall
objective of reducing travel distance. The execution runtime of the optimizer allows for
practical implementation while the control performance is within the expected margin.

Future work is also expected to involve the deployment of the OMR controller and
testing in a controlled environment and then in an automated logistic warehouse. One of
the short-term goals is to collect and annotate more instances of domain-specific objects so
that the intraclass variety is better covered and the detector can extrapolate on new data.
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Abbreviations

The following abbreviations are used in this manuscript:

AP Average Precision
APF Artificial Potential Field
AR Average Recall
CNN Convolutional Neural Network
CPU Central Processing Unit
FN False Negative
FoV Field of View
FP False Positive
FPS Frames Per Second
GPU Graphics Processing Unit
GT Ground Truth
IMU Inertial Measurement Unit
IoU Intersection over Union
IR Infrared
LiDAR Light Detection and Ranging
mAP mean Average Precision
mAR mean Average Recall
MEX Matlab Executable
MS COCO Microsoft Common Objects in COntext
OMR Omnidirectional Mobile Robots
OROD Omnidirectional Robot Object Detection
SP Set Point
SSD Single Shot Detector
TN True Negative
TP True Positive
TPU Tensor Processing Unit
YOLO You Only Look Once the algorithm
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Abstract: Intelligent driver assistance systems are becoming increasingly popular in modern passen-
ger vehicles. A crucial component of intelligent vehicles is the ability to detect vulnerable road users
(VRUs) for an early and safe response. However, standard imaging sensors perform poorly in condi-
tions of strong illumination contrast, such as approaching a tunnel or at night, due to their dynamic
range limitations. In this paper, we focus on the use of high-dynamic-range (HDR) imaging sensors
in vehicle perception systems and the subsequent need for tone mapping of the acquired data into a
standard 8-bit representation. To our knowledge, no previous studies have evaluated the impact of
tone mapping on object detection performance. We investigate the potential for optimizing HDR tone
mapping to achieve a natural image appearance while facilitating object detection of state-of-the-art
detectors designed for standard dynamic range (SDR) images. Our proposed approach relies on a
lightweight convolutional neural network (CNN) that tone maps HDR video frames into a standard
8-bit representation. We introduce a novel training approach called detection-informed tone mapping
(DI-TM) and evaluate its performance with respect to its effectiveness and robustness in various scene
conditions, as well as its performance relative to an existing state-of-the-art tone mapping method.
The results show that the proposed DI-TM method achieves the best results in terms of detection
performance metrics in challenging dynamic range conditions, while both methods perform well in
typical, non-challenging conditions. In challenging conditions, our method improves the detection
F2 score by 13%. Compared to SDR images, the increase in F2 score is 49%.

Keywords: high dynamic range; tone mapping; deep learning; object detection; autonomous driving

1. Introduction

According to studies by the Governors Highway Safety Association (GHSA) [1] and
the National Highway Traffic Safety Administration (NHTSA) [2], between 50% and 75%
of fatal traffic accidents involving pedestrians occur at night, despite the decreased traffic
flow. One of the main contributing factors to nighttime accidents is impaired visibility
due to insufficient light. Although the human eye is adaptable to a wide range of light
conditions, it has trouble adjusting to low-light conditions. Blinding lights are also a
significant challenge that impairs a driver’s vision.

Increasing the vehicle’s autonomy is expected to improve traffic safety by reducing the
impact of human error [3,4]. The intermediate steps towards achieving full autonomy include
the incorporation of increasingly intelligent sensing and control technologies in vehicles to
assist human drivers [5,6], referred to as “advanced driver assistance systems” (ADAS).

In the context of challenging light conditions, the ratio between the brightest and
the darkest perceivable light level is defined as the dynamic range (DR). Digital cameras
used in commercial automotive vision systems are more limited in dynamic range than
the eye, typically at around 70 dB. This is insufficient for a number of driving conditions.
For example, oncoming car headlights at night or the sun low at the horizon are blinding to
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a typical sensor. Entering and exiting a tunnel introduces challenges of the stark contrast
between dark and bright, where the sensitivity of a standard sensor can adapt well only to
the bright or dark areas of the scene, but not both simultaneously. Such conditions impair
visibility and pose a danger to drivers and other road users.

For ADAS and autonomous vehicles, using a high-dynamic-range (HDR) sensor with
a low sensitivity threshold and a high saturation capacity is beneficial to increasing the
signal-to-noise ratio (SNR) of the captured images. To encode HDR data, a representation
of more than the standard 8 bits is required. For example, the automotive HDR sensor of
the Sony IMX490 (Sony, Tokyo, Japan) uses 24 bits. However, processing high-bit-depth
data requires more powerful computational resources than what is available on onboard
computers. Another challenge is the limited availability of perception algorithms that work
with high bit-depth data. The majority of state-of-the-art computer vision methods are
optimized for 8-bit standard dynamic range (SDR) images, which makes them incompatible
with high-bit-depth HDR data.

One solution is to adapt the existing algorithms to work directly with HDR input.
The limitations of such a strategy are the need to redesign the state-of-the-art methods to
a non-standard data representation, as well as the need to acquire sufficient new data to
retrain the algorithms. We approach this problem from the perspective of adapting the
input data instead, reasoning that it has a greater potential for facilitating the integration of
HDR cameras in intelligent perception systems. Our approach is to non-linearly compress
(tone map) the HDR data into a standard 8-bit representation, for application in object
detection tasks for environment perception in traffic.

In this study, we demonstrated improved detection capabilities over a conventional
tone-mapping-based detection system by specifically optimizing the tone mapping process
for the detection of traffic-related objects. We compressed the intensity range of HDR
images through object-aware tone mapping into an 8-bit/color channel representation
while preserving the important image information. In comparison with other tone mapping
operators developed for perceptual picture quality, our method helps to improve object
detection while maintaining a natural image appearance.

Section 2 presents an overview of relevant literature related to high-dynamic-range
imaging and tone mapping that optimizes the visual quality, as well as optimization of
algorithms designed for more specific tasks that use HDR inputs. In Section 3, we describe
the proposed algorithm for tone mapping using a deep neural net, optimized with respect
to object detection performance for automotive applications. The experiments and results
are presented in Section 4, and Section 5 concludes the paper and discusses future prospects.

2. Related Work

In the research literature, the vast majority of state-of-the-art tone mapping methods
are optimized for enhancement of the image appearance for visualization purposes, based
on models of the human visual system (HVS) or for subjective quality and artistic pho-
tography purposes [7–17]. The majority of these methods consider either local or global
image features, but the most successful approaches typically analyze the input on multiple
scales [9]. Global processing analyzes the overall illumination range, allowing preservation
of the relative intensity differences without introducing artifacts such as halos and contrast
reversal. A local analysis, on the other hand, helps preserve sharpness and enhance details.
Nevertheless, ranking tone-mapping methods is not straightforward and depends on the
evaluation criteria, as found by [11,12]. A recent method, iCAM06-m [10], builds upon
the perceptual appearance model iCAM06 [8], and focuses on improving the color repre-
sentation of tone-mapped HDR images. Subjective and objective evaluation experiments
were carried out to evaluate the perceptual image quality of the results, achieving slightly
better results for the modified model. However, these metrics do not adequately capture
the effectiveness of the system for object detection purposes.

Another limitation of the aforementioned methods is that the performance is highly
dependent on adequate hyperparameter tuning. To improve the robustness to changing
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conditions, more recent efforts rely on training a neural network for adapting to a broader
range of scene contexts [14–17]. The limitations of these methods are that they are relatively
computationally complex for implementation in real-time processing, as well as that they
aim for general solutions with perceptual image quality goals. Furthermore, these goals are
often subjective, without a precise and consistent performance metric.

To the knowledge of the authors, the quality of tone mapping operators has not been
thoroughly evaluated with respect to object detection accuracy, and only a few studies exist
that focus on object detection performance in HDR content [18–20]. Furthermore, the ef-
fectiveness of HDR imaging in various illumination conditions has not been extensively
investigated in the automotive vision context. In this work, we aimed to optimize the
process of tone mapping of HDR images to facilitate the detection of traffic-related objects
in challenging light conditions.

In Ref. [18], the object detection performance was evaluated when seven different tone
mapping operators (TMOs) were applied to HDR images. Moreover, the authors retrained
three different neural-network-based object detector heads on a dataset of tone-mapped
HDR images. The training dataset comprises a carefully selected subset of publicly avail-
able HDR images, manually annotated with labels for six object categories. The conclusions
of this paper show that using tone-mapped HDR data results in better detection perfor-
mance compared to using SDR data and that, in the majority of situations, most of the TM
operators result in similar detection performance. However, the analysis does not differ-
entiate between non-challenging and challenging light conditions, whereas the impact of
different tone mapping methods is mostly observed in relatively few but safety-important
challenging scenarios.

In continuation of this work, in [19], the authors explored the feasibility of training
object detectors directly using HDR images. Due to the limited availability of HDR data
for training, they created a pseudo-HDR dataset by applying a dynamic range expansion
operator [21] on a set of SDR images. For evaluation, a small set of true HDR images was
used. On average, the performance of detectors trained on HDR images was similar to that
of detectors that were trained for SDR images and applied to tone-mapped HDR images.
However, an isolated, small-scale study using 126 images of scenes with extreme light
differences indicates a significant performance gain when HDR data are used, due to the
better preservation of meaningful features.

Despite being evaluated on object detection performance, the aforementioned methods
do not receive feedback from a task-specific module such as an object detector. A novel idea
that combines multi-task learning is presented in [20]. The paper proposes a method for
exposure selection as an alternative to using HDR sensors. A model that predicts optimal
exposure values for image acquisition was trained in a joint end-to-end pipeline with image
processing and object detection modules. The entire pipeline is supervised only with the
object detector loss at the end. The reported results indicate that the proposed method
outperforms the standard luminance-based and gradient-based auto-exposure control
methods in supporting the object detection task for several automotive object categories.

In Ref. [22], the authors propose a novel approach, called TMO-Det, that jointly
optimizes a generative adversarial network (GAN)-based tone mapping model and an
object detector. Next to the discriminator, the GAN architecture is extended with a de-
tection branch, which also provides feedback to the generator. The training loss function
is augmented to enforce not only visual similarity to a classical tone mapping method
but to also maximize object detection performance on the generated images. The main
conclusions of this paper are that training the tone mapping GAN model jointly with a
detector can achieve higher detection accuracy compared to classical TMOs as well as
compared to GAN-based tone mapping architecture without jointly training with a detector.
However, according to the authors, this increase was not very significant. Nonetheless,
considering both detection performance measured by average precision (AP) and image
quality measured by the Tone-Mapping Quality Index (TMQI) [23], the proposed method
achieves the best results among the compared TMOs.
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Since the main goal of this work is the application of tone mapping in an autonomous
driving context, we have evaluated the effectiveness of several successful classical state-
of-the-art tone mapping methods from the literature [9,24–27]. They were evaluated
in terms of object detection performance applied to the tone-mapped outputs of each
method. The evaluation confirmed our assumption that quality metrics such as SNR,
contrast, or color saturation are not indicative of the performance of each tone mapping
method in detection applications, and methods can vary in their robustness to scene
conditions. Based on a comparison between many different state-of-the-art methods, we
have selected the method of Farbman et al. [9] as a state-of-the-art representative in further
evaluation. This is an edge-preserving filtering technique based on weighted least-squares
optimization. In HDR tone mapping, it is used for compressing the luminance while
preserving the details.

In the proposed method, all algorithm design choices consider the effect on the
detection of traffic road users. For evaluation purposes, we relied on HDR images simulated
from images in a public SDR traffic dataset [28], as well as our multi-modal traffic dataset
including true HDR data with “person” annotations [29].

3. Proposed Method

In this paper, we present a tone mapping method that generalizes to the large variety of
light conditions that is encountered in driving scenarios. The optimization of the algorithm
is set in a learning-based framework using a convolutional neural network (CNN) trained
to perform tone mapping of HDR images while maximizing image quality and object
detection objectives.

The proposed method introduces three main novelties:

• The method emphasizes accuracy in image regions containing objects of interest by
increasing the sampling density of these image regions during the neural network’s
stochastic gradient descent training.

• During training, data augmentation techniques are used to improve the model’s ro-
bustness to challenging lighting conditions, particularly in traffic situations. The aug-
mentations are informed by an analysis of factors identified as having a significant
impact on detection performance in a study we conducted for this research.

• Unlike most HDR methods in the literature, the method is evaluated using real driving
data, with detection accuracy measured in the context of traffic safety. Additionally,
the method’s tone mapping performance is evaluated on challenging data, which is a
small but important subset of traffic situations.

3.1. Network Architecture

The design of the network architecture was inspired by ExpandNet [21], which is a
framework originally designed for HDR expansion (inverse tone mapping). In this work,
we adapted a simplified architecture based on ExpandNet for tone mapping. The architec-
ture utilizes multi-scale processing and draws from successful classical approaches while
maintaining low complexity.

Figure 1 illustrates the structure of the proposed tone mapping method. The full-
resolution HDR image is passed through convolution layers of size 3 × 3 × 64 and convolu-
tions of size 3 × 3 × 128, followed by non-linear activations (ReLUs) in a local processing
branch. The local branch encodes local image features related to object edges and struc-
tures, with the purpose of ensuring correct contrast compression without contrast inversion
and halo artifacts. A global branch applies strided 3 × 3 × 64 convolutions followed by
ReLUs and a 4 × 4 × 64 convolution to summarize the global illumination into a single,
64-element vector. The effect of this branch can be interpreted as analogous to calculating a
global image histogram in classical methods. A final fusion branch concatenates the local
features with the global representation and applies two full-resolution convolution layers:
a convolution of size 3 × 3 × 64 followed by a final layer of size 1 × 1 × 3. The output is a
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tone-mapped RGB image suitable for 8-bit quantization without a significant loss of details
in the relevant luminance ranges and local regions.

Computational efficiency is an important constraint for computer vision systems in
autonomous driving and advanced driver assistance systems (ADAS) applications. Consid-
ering efficiency, we identified the middle “dilation” branch from the original ExpandNet
architecture as the least contributing and omitted it in the simplified design shown in
Figure 1 while still preserving the local and global branches. The number of trainable
parameters was reduced by approximately 25%, and our experiments confirmed that the
reduction did not cause a noticeable loss in learning capability.

Figure 1. The proposed tone mapping architecture was inspired by ExpandNet [21], and it was
simplified by discarding a branch of layers called the “dilation branch”, which operates on the full
resolution with a wide perceptive field and is therefore computationally complex. The network
is comprised of convolutional layers followed by ReLU activations. The global branch spatially
down-samples the feature maps in each subsequent layer through skip convolutions, and the local
branch operates at the original resolution. The fusion layers combine the local and global features
into an output tone-mapped image.

Consequently, the proposed tone mapping architecture has 340,227 trainable parame-
ters, which is only 0.5% of the size of YOLO v3. In terms of calculations, our architecture
performs 290 million floating-point operations (GFLOPs) for a 3-channel image of size
1.6 Mpixels, which is approximately 46% of the complexity of YOLO v3 for the same
image size.

3.2. Training Cost Function

Our tone mapping CNN is trained to map the intensity range of the input HDR
images by enforcing similarity between the output and a reference SDR image. The original
similarity loss proposed in [21] is suitable in our framework as well since it ensures correct
color and detail reconstruction. Following the definition in [21], the loss L(Z, Y) between
the output image Z and the reference image Y is defined as a linear combination of the
mean L1-based loss and the mean cosine similarity-based loss LCS, with a constant linear
coefficient λ = 5:

L(Z, Y) = L1(Z, Y) + λLCS(Z, Y), (1)

where L1(Z, Y) is the mean absolute difference between the output image Z and the ground
truth image Y averaged over all three RGB color channels and all N pixel locations. This
loss was chosen due to its robustness to outliers and was found to result in sharper images
compared to L2-based loss.

The cosine similarity (CS) reflects a relative similarity between two colors and is
invariant to the absolute intensity (the vector magnitude). It is calculated as the inner
product of the vectors of RGB intensities at matching pixel locations in the two images,
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normalized by the product of their magnitudes (Equation (2)). The cosine similarity-based
loss LCS used in this work is inversely proportional to the cosine similarity metric:

LCS(Z, Y) = 1 − 1
N

N

∑
i=1

[Zi,R, Zi,G, Zi,B] · [Yi,R, Yi,G, Yi,B]
T

‖[[Zi,R, Zi,G, Zi,B]‖‖[Yi,R, Yi,G, Yi,B]‖ . (2)

In the HDR-to-SDR mapping context, this loss is suitable for ensuring correct color
reconstruction, which is less sensitive to luminance compression in the tone mapping process.

3.3. Data Pre-Processing and Augmentation

Currently, to the best of our knowledge, there is no extensive, publicly available
annotated traffic dataset of high-dynamic-range images. Therefore, we relied on a public
automotive SDR dataset [28], based on which we created synthetic HDR training images.
The modifications that simulate different challenging situations applied as an augmentation
to the training set were also applied for controlled, simulated experiments for validation.
Furthermore, for evaluation in real conditions, we collected and annotated our own dataset
with true HDR images [29].

After investigating the main contributing factors that negatively affect detection per-
formance, we focused on two aspects: the robustness to noise and the image brightness in
dark scenes. Modifying the intensity values in dark areas can increase the prominence of
noise and negatively impact the quality and thus detection performance. Our proposed
contribution to mitigating this problem is to focus on improving the contrast-to-noise ratio
of the output images, as described below.

To create a training dataset, we applied different pre-processing and data augmentation
steps to the original SDR images and obtained pairs of input HDR and ground truth SDR
images. This process is illustrated in Figure 2 and summarized in the following steps:

1. A collection of SDR images X1, X2, . . . is used as a source for simulating input HDR
images, as well as for a reference during training.

2. If a dark SDR training image is identified, its exposure is increased by simulating a
higher sensor gain. In the case of a bright (daylight) image, the exposure remains
unchanged. This becomes the target SDR ground truth image Y.

3. The original SDR image is converted into an HDR image H0 using a dynamic range
expansion operator [21]. Poisson noise is added with a random noise variance,
through mosaicking/demosaicking (H1).

4. A contrast remapping is performed to simulate (augment) alternative and more
challenging light conditions in terms of light intensity contrast (H2).

5. To make the model robust to various light sources and daylight conditions, a slight
color temperature shift is applied to each training image randomly. This results in
the final simulated HDR image (H). The full HDR image is used as an input into the
global branch of the network responsible for global illumination compression.

6. Lastly, to give higher significance to the reconstruction of objects of interest, a region is
cropped from the HDR image which is sampled around the center of a known object
location. This region (H̃) is the input to the local branch of the network responsible
for the local contrast mapping.
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Figure 2. Flowchart of the process of creating synthetic HDR training data from SDR images. The blue
blocks represent the data pre-processing steps that comprise the proposed detection-informed training
procedure. It focuses on creating realistic and challenging training conditions. The training inputs
that are created are an HDR input image and a crop from the same image centered at a known object
location, and they are coupled with a training ground-truth (target) SDR image.

3.3.1. Datasets

The Berkeley Deep Drive (BDD) dataset [28] consists of diverse images of daylight,
night-time, and dawn/dusk traffic scenes in urban scenarios. A collection of corresponding
object annotations are available in the form of 2D bounding box coordinates and labels for
multiple road user categories. The images in the dataset are captured using the automatic
exposure settings of an SDR camera, and stored in an 8-bit representation.

For training we used 3657 images from the BDD dataset. The validation set consists
of a different set of 550 images used to evaluate the model during training, and another
99 images were selected as a test set for objective evaluation of the algorithm.

Our collection of HDR test data [29] is part of a multi-modal dataset recorded in traffic
conditions and annotated in a semi-automatic fashion with labels of the class “person”,
including pedestrians and cyclists. In this work, we used an actual high-dynamic-range
camera (using the Sony IMX490 sensor) with a dynamic range of 120 dB. The image data
were saved in a 24-bit format. We used approximately 370 diverse test images captured in
daylight, twilight, and at night.

3.3.2. Enhancement of Dark Ground Truth Training Images

Our small-scale investigation revealed that in the majority of dynamic range condi-
tions, object detectors are robust to a decrease in contrast. However, low contrast negatively
impacts the detection confidence, and from a picture quality perspective in a driver assis-
tance context, low contrast is also undesirable. Therefore, the proposed approach increases
the brightness of nighttime ground truth images to train the network to enhance the visibil-
ity of objects. Specifically, a nighttime target SDR image Y at pixel location i is created by
increasing the exposure of the original nighttime SDR image X1 by s ∈ [0.5, 1.5] stops as:

Yi =
(
Xβ

1,i · 2s)1/β, (3)

where the exponential mapping with β = 2.2 serves as a replacement of a camera response
curve, and the parameter s is determined by random sampling from a uniform distribution
to increase the variability in the data and the robustness of the model.

3.3.3. Noise Augmentation

Since noise is inextricably linked to low-light conditions, we propose to incorporate
a noise-augmented training procedure. Noise robustness is achieved by augmenting the
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training dataset with noisy images by adding different levels of signal-dependent Poisson
noise in Bayer mosaicked (raw) image data. The parameters of the Poisson noise distri-
bution are: k = 1, and λ is randomly sampled from a range between 0.2% of the pixel
intensity H0,i (corresponding to low amount of noise) and 20% of the pixel intensity H0,i
(high amount of noise). The images are then demosaicked using bilinear interpolation into
full-resolution color images before providing them as input to the neural network. The mo-
saicking/demosaicking aspect is important because it simulates a real sensor and because
this process affects the spatial correlation of the noise in neighboring pixels and therefore
the local contrast. An example of the results of this procedure applied to an SDR image for
visualization purposes is shown in Figure 3.

Figure 3. Example of simulating different amounts of Poisson noise to augment the training set and
create a model robust to noise.

3.3.4. Contrast Augmentation Procedures

The dynamic range of real-world scenes can vary depending on light sources and
atmospheric conditions. For example, a sunlit daytime urban scene is typically about five
orders of magnitude brighter than an artificially illuminated street at night [20]. Similarly,
the contrast between dark areas and bright lights in nighttime scenes can have a ratio of
104 : 1.

One of the contributions of this paper is the data augmentation approach focusing on
contrast robustness. By simulating realistic conditions, a pool of contrast mapping tech-
niques is created, including gamma encoding, sigmoidal contrast stretching, and selective
region-based non-linear mapping described further. At each iteration, for each training
image, one contrast mapping function is randomly selected and applied to the simulated
HDR output form ExpandNet [21].

Gamma encoding performs non-linear mapping of the image intensity values H1,i
normalized in the range [0, 1]: H2,i = Hγ

1,i. In our augmentation procedure, we applied
gamma expansion with γ ∈ [1, 3], selected by random sampling for each training image,
to further expand the dynamic range and effectively increase the contrast by making the
shadows darker. This procedure simulates variability in ambient light in the environment.

The sigmoidal contrast stretching maps the normalized luminance range into a sig-
moidal shape as H2,i =

H1,i

1+e−kH1,i
, thus stretching the difference between the dark and the

bright areas within the same bit-depth [30]. By varying k ∈ [4, 12], which determines
the steepness of the sigmoid, various dynamic range versions of the scene are created at
each training iteration, simulating a sensor with more limited dynamic range capabili-
ties. With steeper curves, the dark areas become darker and close to the lower sensitivity
threshold, while the bright areas become closer to the saturation limit.

For simulating even more challenging situations in the scene, we applied a selective
degradation procedure that selectively suppresses the luminance in the shadows, with-
out significantly disturbing the bright areas. A selective mask S was used to identify the
shadow regions in the image. Given an input HDR image H1 with intensity normalized in
the range [0, 1], the selective mask at pixel i is defined as Si =

1
1+e−20(H1,i−t) . The threshold

t to select between shadows and bright areas is determined by uniform random sam-
pling between 60% and 70% of the maximum possible luminance intensity t ∈ [0.6, 0.7].
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Finally, the simulation of challenging conditions is achieved as a linear combination as
H2,i = (1 − Si)cH1,i + Si H1,i, where cH1,i is a luminance-compressed (dark) representation
of the image H1 at pixel i, using an experimentally chosen parameter c = 0.004. Such
modifications correspond to challenging situations such as entering a tunnel or a camera
blinded by strong direct light. Easy conditions are simulated by selecting parameters that
do not increase the contrast significantly, and medium (mixed) conditions are obtained by
blending an easy and a challenging version of a frame, using a random blending weight.

3.3.5. Color Temperature Change

The motivation to augment the dataset with a variable color temperature results from
the observation that the ambient light throughout the day has a variable color temperature
and that camera compensation for it is often inadequate or absent, especially in those
challenging conditions. Taking the color temperature into consideration assists the process
of learning to generalize to images of different color balances. In the augmentation process,
we simulate color temperature variations from 2000 K to 10,000 K following [31]. Since
state-of-the-art object detectors are highly robust to the color balance, this augmentation
predominantly contributes to the visual quality of the image and only affects detection
performance in corner cases which significantly distort the natural appearance of the colors.

3.4. General Training Details

As illustrated in Figure 4, the global branch summarizes the entire image into a single
64-element vector through strided convolutions. Due to the large dimensionality reduction
in this branch, preservation of fine image details is not essential. Therefore, for efficiency,
the image is resized to a fixed size of 256 × 256 pixels before being processed by the
global branch.

Figure 4. An illustration of the proposed training approach using crops at object-centered locations
to focus on reconstruction of details. The size of the convolution kernels is indicated by the numbers
at the corresponding feature maps of each layer.

The local branch looks at local image patches at each pixel location and requires
full-resolution image information, without any loss of detail. To achieve a memory- and
computationally-efficient method, this is implemented by cropping and processing rectan-
gular regions taken from the full-resolution image. To that end, another contribution of
this paper is the selection of regions for training that are fed into the local branch. Since
the end goal is the application of the proposed method in object detection in traffic scenes,
the quality of the output has the highest importance in regions with important road users.
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With the aforementioned considerations, for training, we used crops of size 128× 128 pixels
extracted through weighted random sampling, focusing on areas where the presence of at
least one object is known from the ground-truth labels.

The network was trained using the Adam [32] optimizer, with an initial learning rate
of 10−3, reduced to 10−4 during the final epochs, for approximately 3500 epochs, each with
a random variation of the original training set. The batch size was gradually increased
to 16. Training a lightweight neural network using the Adam optimizer combined with
extensive data augmentation helps to mitigate a common training-time issue of vanishing
gradients [33].

The proposed method was developed in the Python programming language using
the PyTorch framework on a Linux operating system. The CNN training and inference
processing was carried out and tested using an Nvidia GeForce RTX 2080 Ti graphics card
with 11 GB of memory.

4. Experiments and Results

To evaluate the contributions of the proposed training procedure, we carried out an
ablation study, where initially a baseline model was trained without the proposed novelties:
the ground truth images were the original (non-enhanced) SDR images, no noise was
added, and the region crops were sampled at uniformly distributed random positions as
inputs to the local branch. The baseline model is used as a reference for comparison with
our proposed training strategy that is informed by an empirical analysis of factors related
to detection performance.

The quality of the tone mapping output was evaluated based on the object detection
performance of the YOLO v3 object detector [34]. We used a YOLO model pre-trained
on the COCO dataset [35], and considered only the traffic-related objects from its multi-
class output.

For a comprehensive analysis, we evaluated the results in several aspects: robustness
to challenging light conditions, robustness to noise, and overall detection performance
by comparison with the state-of-the-art in tone mapping. After a rigorous comparison
evaluation study, the algorithm by Farbman et al. [9] was selected as a representative of the
state-of-the-art (SOTA), due to its strong performance in various conditions.

4.1. Evaluation with Simulated HDR Data

In the first set of experiments, the goal is to evaluate the contribution of the proposed
novelties towards improving the detection quality. The comparison with the baseline
model is to assess relative improvement by applying informed training and comparing it
to the selected classical state-of-the-art method illustrates the absolute performance of the
proposed method.

The first set of experiments focuses on evaluating the robustness of the proposed
method to dynamic range (DR) conditions in the scene. To this end, three different ver-
sions of the test set were created: non-challenging, medium, and challenging set. More
specifically, from the available SDR images in the Berkeley dataset [28], HDR images
were simulated by dynamic range expansion [21] and applying the selective degradation
procedure described in Section 3.3.4 with increasing degradation levels.

The results in Table 1 demonstrate that the proposed tone mapping method DI-TM
significantly outperforms that of Farbman et al. [9] in the challenging cases. We reason
that the strength of the proposed network lies in the training on a versatile set of realistic
conditions specific to traffic situations, such as blinding headlights or street lights at night
and direct sunlight also reflecting from the road. The two methods perform similarly well
on the medium and the non-challenging sets, showing that our model is robust to a range
of different illumination levels while mitigating the need for initial parameter adaptation.
In this experiment, the comparison with our baseline model verifies that the proposed
contrast augmentation steps are effective for training a robust model.
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Table 1. Object detection performance (average F2 score for “person”, “car”, and “traffic light”) of
YOLO v3 [34] applied to the outputs of the classical-state-of-the-art method of Farbman et al. [9]
on our baseline model and the outputs from the proposed detection-informed method DI-TM in
scenes of different dynamic range. The bold numbers indicate the best performance among the listed
methods in each category.

Average F2 Score per Scene Type

Method Non-Challenging Medium Challenging

Farbman et. al [9] 0.48 0.48 0.32
Baseline model 0.49 0.46 0.37

Proposed DI-TM 0.50 0.49 0.44

As an illustration, Figure 5 provides an example of the different levels of simulated
dynamic range conditions and shows the output of the comparison with the method of
Farbman et al. [9]. The proposed DI-TM method produces more consistent tone mapping
results across a range of challenging conditions thanks to the robust training strategy.
Furthermore, in the output of the proposed method, more objects are correctly detected in
challenging conditions due to better detail preservation and contrast adaptation.

Figure 5. Example of the performance of the reference SOTA tone mapping method Farbman et al. [9]
and the proposed DI-TM in variable scene dynamic range conditions. The green bounding boxes
represent correct detection outputs (true positives) for “person”, “car”, and “traffic light” combined.
The proposed method DI-TM is more robust in variable and extreme contrast conditions.

From a qualitative perspective, we evaluated the proposed method in terms of its
robustness to noise. In this experiment, three variants of the test set were obtained by
increasing the Poisson noise strength (see Figure 3) that is added to the HDR test set.
The results in Table 2 indicate that, due to the denoising properties of the proposed method,
object detection is less affected by noise in all three categories compared to the method of
Farbman et al. [9]. Furthermore, compared to the baseline model, the noise augmentation
approach proves to be beneficial for detection since it helps the network learn to generate
less noisy images.
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Table 2. Object detection performance of YOLO v3 [34] on the outputs of the classical-state-of-the-art
method of Farbman et al. [9], our baseline model and the proposed detection-informed method
DI-TM in variable degrees of Poisson noise. The bold numbers indicate the best performance among
the listed methods in each category.

Average F2 Score per Noise Level

Method Low Medium High

Farbman et. al [9] 0.43 0.35 0.22
Baseline model 0.43 0.36 0.26

Proposed DI-TM 0.45 0.40 0.34

4.2. Evaluation with True HDR Data

To assess the performance in real-world conditions, we relied on a diverse subset
of 372 annotated frames of our own captured dataset using a pair of SDR and HDR
cameras, aligned and synchronized to match their viewpoints. In total, this subset contains
1398 “person” objects. Comparing to SDR helps to evaluate the benefits of using an HDR
sensor in the automotive context. For objective evaluation of the proposed method, we
relied on the comparison with the method of Farbman et al. [9].

The first experiment focused on the difficulty of the light conditions in terms of
dynamic range, similar to the experiment in Section 4.1, where high-contrast scenes are con-
sidered more challenging for visibility than low-contrast scenes. To keep the original pixel
intensity distribution unchanged, the distinction between easy and challenging subsets
was achieved by manually identifying images of low and high contrast. Due to its higher
representation in the dataset as well as the object detection reliability, this experiment
evaluated only the category “person”.

In Table 3, the detection performance of the object detector for the class “person” is
presented for easy and challenging dynamic range conditions. The results confirm that
using HDR data is beneficial, especially in challenging conditions. Furthermore, the results
show that adapting the tone mapping method specifically for object detection in the
automotive context brings an additional contribution to the detection quality. We believe
that this is a result of the extensive data augmentation process combining variable contrast,
illumination, and noise simulation. Such conditions are more scarce in typical driving
conditions; however, they are critical for the safety and reliability of intelligent vehicles.

Table 3. Object detection performance of YOLO v3 [34] on matching SDR frames, on the outputs of
Farbman et al. [9], and on the proposed detection-informed method DI-TM in selected subsets of easy
(lower dynamic range) and hard (high dynamic range) examples from our own collected dataset for
the category “person”. The bold numbers indicate the best performance among the listed methods in
each category.

F2 Score per Scene Type

Method Easy Challenging

SDR data 0.68 0.41
Farbman et al. [9] 0.73 0.54
Proposed DI-TM 0.75 0.61

An example of a challenging night-time scene is presented in Figure 6. The cropped
regions were further manually enhanced only for visualization purposes. It can be noticed
that due to the high contrast, the pedestrians in the darkness were missed in the SDR image,
while they were detected in the tone-mapped output using the proposed DI-TM. Due to the
highly variable augmentation, our method is robust to changing scene conditions without
any manual interventions, unlike the method of Farbman et al. [9]
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Figure 6. An example of a challenging scene in our dataset of SDR and true HDR images. In an
SDR representation, much of the contrast at the object edges is lost, and the objects in the darkness
are invisible to the detector. HDR images preserve fine intensity differences, and our tone mapping
method enhances the details such that they become visible for the detector, as well as for visualization
to a human driver.

Finally, as a qualitative evaluation, we present an experiment focusing on extreme
dynamic range conditions. In this evaluation, the model was applied to samples from
our recorded true HDR dataset. Examples of this evaluation are presented in Figure 7.
The proposed method can suppress the noise, and it is more robust to variable and highly
challenging conditions compared to the representative of the classical state-of-the-art.

Figure 7. Qualitative evaluation of the robustness of Farbman et al. [9] vs. proposed model DI-TM1
in extremely challenging high-contrast night-time scenes

Both the qualitative and the quantitative evaluations confirm the effectiveness of the image
pre-processing strategies involved in data augmentation. The ideas were motivated by realistic
driving conditions and observations following an investigation into the performance of object
detectors in various high-contrast conditions. On the other hand, the method of Farbman et al. [9]
is among the state-of-the-art in classical tone mapping algorithms; however, it is optimized for
aesthetic aspects of the image quality in photography and cinematic applications.

5. Conclusions

In this study, our focus lies in the design of an HDR tone mapping model aimed at
enhancing image quality while considering the objectives of object detection. We believe
that this approach holds significant potential for facilitating the integration of HDR cameras
into ADAS and autonomous vehicle perception systems. We investigated different factors
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contributing towards good-quality tone mapping, informed by the performance of object
detectors on the tone mapping outputs.

We proposed a detection-informed strategy for tone mapping, referred to as DI-TM,
and evaluated its performance in multiple aspects, including image quality and detection
accuracy. Our findings demonstrate that the proposed approach outperforms classical
state-of-the-art tone mappers in easy and challenging lighting conditions while maintaining
robustness across different noise levels. Compared to using an SDR sensor, the detection
performance improvement in challenging light conditions was 49% as measured by the F2
score, which highlights the advantage of integrating HDR cameras in intelligent vehicles.
Compared to a state-of-the-art tone mapping method optimized for visual quality, with our
detection-optimized approach, we achieved an improvement of 13% in detection accuracy.

These results suggest the promising potential for informed, task-based algorithm de-
sign improvements in the already very researched field of HDR tone mapping, with future
applications in enriching the vision systems of autonomous driving platforms.

Future research will focus on exploring the robustness of the proposed training ap-
proach in multiple-vehicle perception tasks, examining its effectiveness across various
scenarios. Additionally, there is a need to explore the tradeoff between computational
efficiency and performance, especially in the context of adapting existing computer vision
tools or developing novel techniques tailored to handle high-dynamic-range (HDR) data.
This investigation will contribute to the optimization and advancement of more accurate
environment perception systems by application of HDR data in the automotive domain.
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Abstract: A suitable control architecture for connected vehicle platoons may be seen as a promising
solution for today’s traffic problems, by improving road safety and traffic flow, reducing emissions
and fuel consumption, and increasing driver comfort. This paper provides a comprehensive overview
concerning the defining levels of a general control architecture for connected vehicle platoons,
intending to illustrate the options available in terms of sensor technologies, in-vehicle networks,
vehicular communication, and control solutions. Moreover, starting from the proposed control
architecture, a solution that implements a Cooperative Adaptive Cruise Control (CACC) functionality
for a vehicle platoon is designed. Also, two control algorithms based on the distributed model-based
predictive control (DMPC) strategy and the feedback gain matrix method for the control level of the
CACC functionality are proposed. The designed architecture was tested in a simulation scenario, and
the obtained results show the control performances achieved using the proposed solutions suitable
for the longitudinal dynamics of vehicle platoons.

Keywords: control architecture; connected vehicle platoons; V2X communication; CACC; DMPC

1. Introduction

Nowadays, with the ever-increasing number of vehicles on the highways, there is a
stringent need to improve the driving experience quality through autonomous driving, by
making use of the available vehicle connectivity. There is much interest in the research
community to explore this topic, a testimony given by the following highly cited review
works. In [1], a survey on the control of connected and automated vehicles (CAVs), with
emphasis on control solutions for improving the energy efficiency of different powertrain
architectures is given. In [2], a comprehensive survey on urban traffic signal control for
CAVs, with both deterministic and stochastic approaches, is provided.

A typical control framework for connected vehicles (CVs) is given by the connected
cruise control (CCC) architecture, which is suitable for a vehicle group consisting of both
autonomous and human-driven vehicles, connected with a vehicle-to-vehicle (V2V) com-
munication network [3]. In [4], a fuzzy support vector machine (SVM) method for CCC,
using radar and V2V communication to detect the lane change of a side vehicle, is proposed.
In [5], a deep reinforcing learning (DRL) solution to solve a CCC problem with communica-
tion delays and dynamic traffic changes is given. In [6], a nonlinear range policy for a CCC
application with merging capabilities is provided.

Vehicle platoons are control applications for groups of CVs, which are designed using
the advantages of vehicle-to-infrastructure (V2I) and V2V connectivity. To perform a
desired common task for the entire platoon, each vehicle needs to exchange the relevant
local measured data with the other participants. Usually, a vehicle platoon task is to travel
with a velocity imposed by the leader vehicle of the platoon, while maintaining a desired
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safe distance between the follower vehicles [7]. One of the most promising functionalities
for CAVs is cooperative adaptive cruise control (CACC). The most defining things for CACC
are the use of sensors and communication technologies. As an extension of adaptive cruise
control (ACC), in CACC systems, CAVs use V2V communications to exchange information
with other CAVs in an autonomous manner, as well as V2I to provide information on traffic
conditions and traffic management [8].

There are several design frameworks that have recently been researched for the platoon
formation of multiple CVs, such as non-cooperative differential games [9], estimation of
the communication delays via an adaptive switched predictor [10], model-based predictive
control (MPC) with switching communication topology [11], robust feedback control [12], or
a cooperative adaptive sliding mode [13], among others. In [14], an LMI-based optimisation
problem for a cooperative optimal control method for a CAV platoon is given. In [15], a
consensus-based impulse control method, which simplifies the communication exchange
in a platoon of CVs, is proposed. In [16], security for the distributed platooning control of
CAVs, subject to denial-of-service (DoS) attacks, is discussed. In [17], an ACC strategy for
CAVs in a platoon formation subject to cyber-attacks and communication delays is given.

However, in the state-of-the-art literature, there are few studies that detail the design
of a complete control architecture for a connected vehicle group. Thus, this work presents a
detailed survey regarding the components required by a control architecture for a vehicle
group, by describing the multitude of options available in terms of sensors, control, and
communication requirements. Moreover, the proposed study of the control architecture
can be used as a tutorial in designing a control solution for an automated vehicle group.

The main contributions of this paper are the following:

• A detailed survey was carried out on the solutions available in the literature of general
control architectures for the CAV platoon, from the point of view of the constructive
levels, the elements that define each level, and the links between them;
Moreover, in relation to other works on this topic [1,18,19], this paper presents a more
detailed description of the sensors and V2V communication standards essential for
the CAV concept;

• Starting from the proposed architecture, a suitable control architecture is defined for a
platoon of connected vehicles based on the CACC strategy, by presenting the necessary
sensors, the suitable types of communication means, and the control solutions;

• Finally, two control methods are proposed for the longitudinal dynamics suitable for
a CAV platoon framework. Thus, a state-space distributed model-based predictive
control (DMPC) method suitable for vehicle platooning is described and tested. More-
over, a second control method is proposed, designed using off-line optimisation to
compute a feedback gain control matrix. Both methods are compared using a CAV
platoon application.

The remainder of this paper is structured as follows. Section 2 deals with a general
presentation of architecture design for connected vehicle platoons, by describing the main
subsystems, their purpose, and component elements. In Section 3, different aspects of
the vehicle communication systems are presented, synthesised under intra-vehicle com-
munication and inter-vehicular communications. Section 4 presents the proposed control
architecture for a specific case involving a CACC strategy and model used to describe the
longitudinal dynamics of a vehicle platoon. Section 5 illustrates the simulation results
obtained using the proposed control solutions, and Section 6 includes a thorough analysis
based on their resulting performances. In the last section, one can find the conclusions and
future research directions.

2. Architecture Design for Connected Vehicle Platoons

The control architecture design defines the necessary stages in the transformation of
an ordinary car into a connected one by adding additional components, including different
sensors that allow the vehicle to detect the environment and communicate with other traffic
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participants and with the intelligent infrastructure, as well as adequate control strategies
for controlling the vehicle’s mobility.

A general control architecture is presented in Figure 1, where the communication
process between the most important subsystems of the architecture is illustrated. At a high
level, the architecture has five subsystems, responsible for defining the autonomy process of
a connected vehicle, such as sensing interface, perception, planning, decision, and control.
The proposed architecture is used by each vehicle regardless of the position within the
platoon. Depending on the type of the vehicle (leader or follower), the general control
architecture presented can be used differently, from the point of view of the component
elements and the functions performed by each of its subsystems.

Figure 1. Example of a general control architecture.

According to the work in [20], these subsystems, which are described in detail in
the following subsections, have the purpose of (1) retrieving information from the real
environment around the vehicle (i.e., the sensing interface), (2) fusing the data with the
purpose of detection and localisation (i.e., perception), (3) choosing the route (i.e., planning),
(4) predicting the behaviour of other traffic participants and planning the optimal trajectory
(i.e., decision), and based on the taken decision, (5) controlling the vehicle by operating
the various responsible actuators (i.e., control). In order to exchange the necessary infor-
mation between them, these subsystems are connected with a car-level communication
system, more precisely, the intra-vehicular communication network. For the exchange of
information between several connected vehicles, each with its own control architecture, an
inter-vehicular communication network is used, synthesised under vehicle-to-everything
(V2X) [21].

2.1. Sensing Interface

This subsystem shows how the information is captured from the vehicle’s environment,
such as the detection of its position in relation to the surroundings, but also information
about the other traffic participants. The sensing interface consists of different sensors for
data collection. These sensors can be classified into two categories: (1) internal sensors that
provide information only about the state of the vehicle and (2) external sensors used to
capture data from the outside of the vehicle. All of them are better exemplified in Figure 2,
where one can see the sensors’ position, the coverage area, and the performed functions.
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Figure 2. Typical types of sensors and their functionalities.

2.1.1. Literature Review

In the following, the most important external sensors are presented in detail:

(1) The camera is one of the key sensors of a vehicle, used for perceiving the visual
environment, lane and traffic sign recognition, object tracking, and much more [22].
Cameras may be mono, stereo, or full surround, and placed in areas such as dash-
boards and windshields. These types of cameras used for autonomous vehicles
are described in detail in [7]. Depending on the quality of the lens, the maximum
working distance of the camera is around 250 m. The main advantages of a camera
are related to the accuracy of the colour distribution, the contour of the surroundings,
and the texture [23]. As a disadvantage, cameras are sensitive to low-intensity lights
and can be affected by weather conditions [24].

(2) Radar is the most common sensor used in vehicles to identify and locate objects in the
presence of various interferences, such as noise, clutter, and jamming [25]. To measure
the distance, the time Of flight (TOF) method [26] is used, whereas to measure the
relative velocity, the Doppler shift [23] is used. Thus, radars lend themselves very
well for obstacle detection [27] and pedestrian and vehicle recognition [28,29]. Also,
some functionalities of the radars are blind spot detection, rear collision warning,
emergency braking, and cross-traffic alert. Radar sensors operate in the millimetre-
wave (mm-Wave) spectrum, using different frequency bands, such as 24, 60, 77, and
79 GHz, being able to measure a range from 5 to 200 m [30]. Depending on the type
of radar and the application for which it is used, radar sensors are divided into short,
medium, or long-range ones. The most important characteristics of the types of
radars used in the automotive field are presented in [25]. Radar sensors also offer the
benefits of high availability and low cost [31]. Moreover, compared to cameras, they
are less affected by the weather and the low lighting environment [26]. Disadvantages
include lack of precision, receded field of view (FOV), and the production of false
positives by rejecting emitted signals [32].

(3) A light detection and ranging (LiDAR) sensor is a technology used to determine
precise information about the distance and size of objects [33]. It uses a remote
sensing technique, producing pulses of infrared or laser light and measuring the
time it takes for the pulses to be reflected [34], a principle known as TOF, and it is
similar to how the radar sensor operates. The range of LiDAR is about 200 m on
average [35], using 905 nm and 1550 nm spectra [36]. There are different types of
LiDAR sensors, these being 2D, 3D, and solid-state [37]. The general specifications
for each type of LiDAR sensor are presented in [34]. Compared to the camera, the
LiDAR sensor has better detection capabilities in terms of range, with bad weather
and low lighting affecting this sensor less than the camera [26]. Compared to radar,
it has a higher accuracy and precision, but also a superior 3D perception competence.
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As a disadvantage, the LiDAR sensor is affected by severe weather conditions, such
as snow, fog, and rain [38]. Moreover, in terms of cost and low availability, the LiDAR
is less competitive than the other two types of sensors.

(4) An ultrasonic sensor is the most diligent and cheap sensor, used for short-range
obstacle detection, proximity sensing for lane change, and parking functions [39].
These sensors use ultrasonic waves to measure the distance to objects by calculating
the TOF of the emitted wave. These sensors operate in the 20–40 KHz range, with a
detection range of generally less than 11 m [40], and are used at low speeds. Also,
these sensors are easier to implement, and work satisfactorily in bad weather condi-
tions and in dusty environments [41]. The main disadvantages are the disturbances
in the sound waves and the tendency to produce false positives in the measurements,
as well as the need to use multiple sensors to obtain a complete view; thus, mutual
interference is produced between them [42].

(5) Global Positioning System (GPS) and inertial measurement unit (IMU) technolo-
gies are used for navigation and localisation purposes, by determining the exact
position of the vehicle and helping it to navigate. The GPS is a system used to
obtain information about geolocation, speed, and time, each vehicle containing
a GPS receiver that connects to GPS satellites [43]. The position of the vehicle is
given by the GPS coordinates, but the accuracy with which these are extracted
depends on several factors. Therefore, position errors can be obtained with an
average value of 3 m, and with a deviation of 1 m [44], and can reach up to 20 m
depending on the environment. In urban environments, the GPS performances are
lower [45]. It presents advantages in terms of cost and the way of managing the
accumulation of errors over time. The disadvantages would be related to precision,
which is reduced to one metre for current vehicles, but also the inability to operate
in environments where the view of the sky is obstructed, such as tunnels [26]. An
IMU is an electronic device that measures and reports the body’s specific force,
angular rate, and sometimes the magnetic field surrounding the body, using a com-
bination of accelerometers and gyroscopes, sometimes also magnetometers [46].
Therefore, with the help of these data, the linear velocity and angular positions for
the vehicle can be calculated. The IMU sensor can be combined with the GPS, as a
complementary sensor, because the IMU can not give the position error by itself,
but also for the performance qualities of the IMU sensor in tunnels [47]. Moreover,
to improve the estimation of the vehicle’s position, different techniques are used
in which GPS and IMU data are fused [48].

2.1.2. Summary

Table 1 illustrates the comparison between external sensors from the point of view
of the most relevant metrics. Thus, it can be concluded which of them lends itself best
depending on the functionality chosen for CAVs from the platoon.

Due to the fact that the leader vehicle is in front of the platoon, it imposes the travel
velocity and direction for all members, and has also the role of detecting the lanes and
the various obstacles on the road. To fulfil the leader’s tasks, it can be equipped with the
following sensors: (i) camera (for lane, traffic signs/lights, and obstacle size detections),
and (ii) radar and LiDAR (for obstacle detection at large distances). In other words, because
the follower vehicles require high accuracy for distance measurement, each follower can
be equipped with radar, and with a camera for lane detection. The GPS and IMU sensors
should be used by each vehicle from the platoon to measure their velocity and obtain
their position.
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Table 1. Comparison of different sensing technologies.

Metrics Camera Radar LiDAR Ultrasonic

Technology Lights Radio waves Laser beams Ultrasound
waves

Range ∼=250 m 5–200 m ∼=200 m Up to 10 m

Data per second 20–40 MB 10–100 KB 10–70 MB 10–100 KB

Bad weather
functionality

Poor Good Fair Good

Low lighting
functionality

Fair Good Good Good

Speed detection Poor Very good Good Poor

Distance detection Poor Very good Good Good

Resolution Very good Average Good Poor

2.2. Perception

The perception subsystem is composed of software elements that receive the informa-
tion from the sensors and combine and structure it in a simpler form, in order to classify
it. Sensor fusion is a necessary process for this stage, and involves the combination of
information from all the available sensors in the vehicle [49]. Thus, a complete assessment
of the environment can be carried out and more precise information can be obtained.

Literature Review

In practice, different algorithms are used for the fusion process, such as Kalman and
Bayesian filters [20]. In [23], several data fusion methods are presented, based on the
following strategies: discernible units, complementary features, target attributes, and the
decision making of different sensors.

The perception subsystem is in charge of two key tasks: the localisation of the ego
vehicle and the detection of other traffic participants and other elements of interest from
the surrounding environment. Within the localisation task, the location of the vehicle
relative to a map is computed. More precisely, the vehicle’s position is determined using
data received from different sensors, such as GPS, IMU, LiDAR, and V2X communication,
combined with the use of maps. The work in [50] presents a localisation system for urban
and indoor scenarios, where LiDAR, IMU, and GPS sensors are integrated. A multitude of
combinations of different sensors for data fusion in localisation and mapping are presented
in [51], with an emphasis on limitations without fusion and fusion advantages. The
detection process uses camera, radar, LiDAR, and ultrasonic sensors to collect the necessary
data for the identification and classification of various elements of the vehicle’s external
environment. In [52,53], a fusion between camera and LiDAR used for pedestrian detection
is given, whereas in [54,55], the same is employed for road detection. Moreover, for vehicle
and lane detection, information from camera and radar are used in [56]. The perception
subsystem is used by both leaders and followers to fuse sensor measurements.

2.3. Planning and Decision

The planning subsystem uses information from the perception subsystem to find the
most suitable route for the vehicle, from the origin to the destination, both for short-term
and long-term planning. The GPS navigation system has the role of a global planner, being
used to plan routes, but considering the current requirements, it does not ensure the safety
of the user [57]. In this context, according to Figure 1, a traditional planner structure for a
self-driving car consists of a route planner, behaviour planner, and trajectory planner.

The decision subsystem, which is the next step after planning, makes a decision and
sends all the information to the control subsystem by assuming a compact data form
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received from the previous subsystems. A number of the decisions available for connected
vehicles are illustrated in Figure 1, such as anti-lock braking systems (ABS), lane keep assist
(LKA), traffic sign assist (TSA), collision avoidance (CA), adaptive cruise control (ACC),
and more. The decision-making process is based on the information from the previous
subsystems available at the current moment, but also uses past information. Furthermore,
real-time data from maps, traffic models, and additional information from the driver are
also used as information. Thus, depending on the type of decision chosen, based on the
collected information, it is forwarded to the control subsystem, which in turn will choose
the appropriate control type and optimal method.

Literature Review

Route planning, at a general level, involves the use of a route planner, whose purpose is
to identify the path that a vehicle must travel between two cardinal points. Moreover, route
planning includes several dynamic parameters, such as congestion level, spontaneous
indicators, meteorological conditions, and others [58]. An optimal route consists of a
continuous adjustment of the planning process, in which the vehicles decide their routes
in an adaptive manner. Considering the unexpected changes that may appear along the
route (e.g., traffic barricades or lane obstructions), an efficient planning subsystem employs
dynamic optimisation techniques at each discrete moment of time. For this type of planning,
updated maps and data provided by the localisation stage from the previous subsystem
are basically used. In the case of connected vehicles, a distributed route design strategy
is used, where each vehicle collects its own traffic data and calculates its own route, thus
improving the overall calculation time for the route planner [59].

Behaviour planning involves the use of a behaviour planner, which is closely related to
a predictor. The prediction component evaluates the behaviour of other traffic participants,
such as vehicles and pedestrians, but also other intervening obstacles, in order to obtain
risk and road traffic management [60]. Moreover, another source of information for this
planner is sensor fusion data from the perception subsystem. As such, the behaviour
planner uses the information from lane detectors, traffic lights, and traffic signs, as well
as detected objects, but also information from the localisation part. All this information
is used to plan their own safe handling behaviour. Therefore, having all these data as
inputs, certain decisions are issued for the vehicle, such as maintaining or changing lanes,
maintaining the current distance from the vehicle in front, and maintaining the speed by
braking or accelerating.

Trajectory planning uses a trajectory planner in order to generate a series of trajectories
based on the behaviour planner, taking into account several aspects, such as driver comfort,
various road limitations, and vehicle dynamics [61]. The most used methods to design the
trajectory planner are based on polynomial equations [62,63], Bézier curves [64,65], and
MPC algorithms [66,67]. Thus, taking into account the previously mentioned aspects, the
desired trajectory is determined and sent to the decision subsystem [68].

The planning subsystem is mainly intended for the leader vehicle; it computes the
global route using localisation functionality based on GPS and V2X communication. Based
on the information from the perception subsystem, the leader determines the general
behaviour of the platoon by choosing the most suitable action. After that, it must inform
the followers about the chosen decision (maintaining or changing lanes, maintaining the
speed by braking or accelerating, and more). Finally, based on the previously mentioned
information, the leader uses trajectory planning to compute a path so that the platoon can
follow the global route and avoid collisions that may occur.

The follower vehicles receive the decision taken by the leader, and depending on this,
the following cases result: (i) maintaining or reducing the speed to ensure an imposed
distance to the vehicle in front (longitudinal dynamics); and (ii) maintaining or changing
lanes to minimise the lateral position error between followers and the vehicle in front.
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2.4. Control

The control subsystem receives its task and all related information from the deci-
sion subsystem. Thus, starting from the desired trajectory determined by the planning
subsystem, and the imposed driving action, implements the best decision for the vehicle.
Following the description from Figure 1, once the decision is taken, an appropriate control
strategy is selected.

Literature Review

Let us assume that a collision avoidance action is requested. This can happen if an
unexpected obstacle is detected on the travel lane in front of the vehicle. Prior to this
decision, at the stage of the planning subsection, the trajectory planner computes the
optimal trajectory to avoid the obstacle, starting from the current position measured by
the sensors to the final position for the vehicle, which usually is on the neighbouring
available lane. In the control subsystem, using this information as input data, the lateral
control strategy is implemented. In this case, the end result of the control action is a
steering movement, i.e., the vehicle’s wheels are moved with the desired steering angle
while following the planned trajectory [68]. The lateral control supposes that vehicles are
equipped with GPS and IMU sensors to measure their position and orientation; also, the
vehicles have to be equipped with LiDAR and camera sensors to measure their position
and orientation with respect to the neighbour vehicles or an obstacle. In the case of an
ego vehicle, the lateral control function uses the measurements of these sensors and inputs
received from the planning and decision subsystems to steer the vehicle so that it follows
the imposed trajectory and avoids collision with obstacles or other vehicles. In the case of a
vehicle group (e.g., platoon), there are three preferred approaches: (i) follower vehicles do
not use information about the vehicle in front and they only follow the road; (ii) a follower
vehicle receives from the vehicles in front information about their lateral references and
uses it to determine its own future trajectory; and (iii) the case in which the follower vehicle
is following the lateral trajectory of the vehicle in front. In the last two cases, the use of
vehicle communication can improve performances due to the fact that the follower is not
using only measurements from its own sensors, but also information received from its
neighbour vehicles. The most used approaches for lateral control are based on the MPC
strategy [69–71], LQR algorithm [72,73], adaptive control [74], and optimal control [75].
The lateral control of the leader involves steering the vehicle according to the trajectory
from the planning subsystem. Also, the follower vehicles use lateral control to track the
trajectory of the vehicle in front and to maintain the lanes (if no other functionality is
chosen, e.g., collision avoidance).

Moreover, when ACC-based travel is decided, the most suitable control strategy is
longitudinal control. This means that the vehicle must travel with an imposed longitudinal
velocity (i.e., cruise control) while maintaining a safe distance with respect to the vehicle
in front (i.e., headway control). Here, the control action is either braking, if the current
velocity is greater than the desired velocity, or accelerating, if the measured velocity is
lower than the imposed target [76]. The cruise control (CC) functionality is specific for
an ego vehicle or the leader vehicle from a platoon. The vehicles use sensors like GPS
and IMU to measure their velocity, which is used afterwards to compute the error to
the imposed velocity. The longitudinal controller uses these measurements and errors to
calculate the control inputs that command the brake or acceleration. In the cases of ACC
functionality, follower vehicles have to use sensors like radar or LiDAR to determine the
distance between vehicles. Moreover, if the vehicles can exchange information through
communication networks about their velocity, acceleration, or position, then the CACC
functionality can be used to ensure improved performances obtained by the ACC. The most
used approaches for the longitudinal control are also based on the MPC algorithm [62,77,78],
LQR [79], and PID controllers [80]. The advantage of using the MPC strategy and vehicle
communication compared to the other methods consists of the possibility to use the future
actions’ predictions of a neighbouring vehicle. The leader vehicle uses longitudinal control
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to travel with the imposed velocity, and the follower vehicles use it to maintain the imposed
distance from the vehicle in front.

3. Vehicle Communication

This section presents the different aspects of the vehicle communication systems
by introducing several communication standards used for the exchange of information
between the vehicle components (i.e., intra-vehicle communication), as well as for the inter-
vehicular communications, between the vehicle and other traffic participants or intelligent
infrastructure, known as V2X communication.

3.1. Intra-Vehicle Communication

Intra-vehicle communication is an absolutely necessary requirement to take into
account in the development of new model cars. Thus, for proper vehicle operation, strict
information must be exchanged in real time between different nodes/modules. Depending
on the communication architecture, the amount of data to be transmitted, bandwidth,
reliability, and security, several networks can be distinguished.

3.1.1. Literature Review

The most important intra-vehicle protocols are presented in the following:

(1) The controller area network (CAN) protocol is an automotive-specific bus standard,
usually used for powertrain and body control applications. Thus, from the data rate
point of view, two networks can be distinguished: (i) high-speed CAN (500 Kb/s)
for real-time control for chassis and power-train electronic control units (ECUs),
and (ii) low-speed CAN (125 Kb/s) for body and comfort electronics. The CAN
is a multi-master serial bus that uses multiplexed communication between several
ECUs in the vehicle [81]. Related to CAN arbitration, bus access conflicts are re-
solved by bit-level arbitration using the carrier sense multiple access with bitwise
arbitration (CSMA/BA) technique. The CAN also contains five mechanisms for error
detection, three for the message level: cyclic redundancy check (CRC), frame check,
and acknowledgement (ACK) bit; and two for the bit level: bus monitoring and
bit stuffing [82]. The advantages of CAN are reliability, robustness, low cost, high
flexibility, and low network complexity. As disadvantages, it would be that it is
not deterministic, it is not suitable for safety-critical applications, and it has a low
bandwidth [83].

(2) The local interconnect network (LIN) is a low-cost network used for simple, less
time-critical applications, especially used for connecting sensors and actuators. The
LIN protocol uses the master–slave architecture; the master sends a frame header
and the slave node must respond with a frame response. For low-cost requirements,
a single wire is used at the physical level, thus resulting in a limited data rate of
19.2 Kb/s [84]. To detect incorrect messages in the network, LIN uses parity bits and
checksum. The advantages of the LIN network are related to the ease of use, low
implementation costs, and its deterministic characteristic when compared to other
networks. As disadvantages, it is not as reliable as CAN, has a lower bandwidth,
and less effective bus access, and cannot be used for time-critical applications [85].

(3) The FlexRay protocol was developed by the FlexRay consortium, and it is used for
time-critical applications in the advanced chassis control area [86]. During data
transmission, each node uses two parallel communication channels, the exchange of
information being performed based on a communication schedule. Regarding the
bus access principle, two methods are used: time division multiple access (TDMA)
and flexible TDMA (FTDMA) [87]. A FlexRay frame consists of three parts: the
header, the payload segment, and the trailer CRC. For error protection, checksums
and redundancy mechanisms are used [88]. The advantages of the FlexRay protocol
are its flexibility, higher data rate, and deterministic behaviour. Moreover, it offers
constant latency and scalable fault tolerance, which makes it suitable for “drive-by-
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wire” applications. The disadvantages of this protocol can be summed up in the very
high implementation costs and the high complexity compared to CAN [89].

(4) The Media Oriented Systems Transport (MOST) protocol is a multimedia network de-
veloped for infotainment applications. The bandwidth is up to 150 Mb/s, supporting
both synchronous and asynchronous transmission. The MOST network can manage
up to 64 devices using a ring topology, which can be easily connected and removed
using the plug-and-play functionality. Moreover, different end-user applications can
be connected to this network, such as radios, GPS, and entertainment systems [90].
Although this protocol satisfies the requirements for infotainment applications, there
is a limitation in terms of bandwidth for certain requirements [91].

(5) Automotive Ethernet is a communications bus that successfully serves high-bandwidth
applications in the field of autonomous driving and connected cars. Ethernet tech-
nology has several uses besides in-vehicle communication, such as measurement
and calibration, but also diagnostics over IP (DoIP) [92]. The Ethernet standards
used for automotive requirements are 100Base-T1 and 1000Base-T1. Automotive
Ethernet is implemented with a single twisted cable pair, obtaining data rates from 10
Mb/s to 10 Gb/s. Ethernet lends itself very well to the requirements of applications
in the advanced driver-assistance system (ADAS) field, which requires the use of
large bandwidth for the sensors used. Moreover, related to diagnostics, Ethernet has
started to replace CAN, offering a much shorter time for flashing procedures [89].
Supporting a switched network technology, another advantage is the reduced cost of
cabling. The main disadvantages are related to the high costs, resulting in a more
expensive physical-level interface [90]. Besides this, Ethernet does not offer deter-
ministic and real-time communication, and this is the main reason why automotive
Ethernet does not completely replace the CAN protocol.

3.1.2. Summary

A comparison of in-vehicle network protocols from the point of view of technical
characteristics is illustrated in Table 2, where can be observed the essential aspects that can
classify each protocol according to its advantages, as it can be concluded which is more
suitable depending on the chosen architecture.

Table 2. Classification of intra-vehicle network protocols.

Intra-Vehicle
Network

Bit Rate Data Length Access Control Messaging
Network
Topology

Error
Detection

LIN 19.2 Kb/s 8 bytes Polling Master–Slave Bus 8-bit Checksum

CAN 125 Kb/s–1
Mb/s 0–8 bytes CSMA/CA Multi-Master Bus Star 15-bit CRC

FlexRay Up to 10 Mb/s 0–254 bytes TDMA FTDMA Multi-Master Bus Star
Multi-star 24-bit CRC

MOST Up to 150 Mb/s Up to 364 Bytes
TDMA Support

for
(a)synchronous

Master–Slave
Streams Ring 16-bit CRC

Automotive
Ethernet Up to 10 Gb/s Up to 1500

bytes CSMA/CR Based on IP Bus Star 32-bit CRC

3.2. V2X Communication

V2X communication technology has major importance in the implementation of an
intelligent transport system (ITS), offering a level of automated driving and intelligent
mobility. Furthermore, this technology involves the exchange of information between a
vehicle and other entities of the traffic system.
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3.2.1. Literature Review

The V2X includes four modes of communication: vehicle-to-vehicle (V2V), vehicle-to-
infrastructure (V2I), vehicle-to-pedestrian (V2P), and vehicle-to-network (V2N) [93]. Each
of these communication modes is illustrated in Figure 3 and exemplified in the following:

(1) V2V communication allows for the exchange of information between vehicles in
proximity, exchanging useful information about vehicle location, traffic accidents,
speed, and traffic dynamics [94]. Each vehicle is equipped with an on-board unit
(OBU). Communication between vehicles is achieved by forming a mesh network
and connecting them as nodes to the network [95]. Therefore, for the exchange of
information between nodes, messages are used with the aim of creating a more
efficient decision-making system. Thus, if used properly, V2V communication has
the benefits of increased driver safety and road capacity, improving fuel efficiency,
and preventing possible accidents [96].

Figure 3. V2X communication modes.

(2) V2I communication refers to the exchange of information between the vehicle and
various equipment installed on the road infrastructure [97]. V2I communication
can be ad hoc, wireless, or bidirectional [98]. The vehicles collect information from
a road side unit (RSU), which is a stationary unit installed along the roads. This
information is used for traffic management [99]. Thus, useful information can be
obtained about traffic congestion, available parking, the most efficient routes, and
road conditions [100]. All these are used to obtain reduced fuel consumption, increase
mobility, and reduce polluting emissions [22].

(3) V2P involves real-time, wireless communication between vehicles and vulnerable
road users (VRUs), such as pedestrians, bicyclists, and more [101]. Each VRU has
user equipment (UE), usually a mobile phone, which makes it possible to exchange
information with vehicles. Thus, messages and alerts are sent about the location,
speed, and direction of VRUs [102]. Using V2P, communication between vehicles
and VRUs can be achieved even in unfavourable weather conditions [93]. Therefore,
the benefits of this type of communication refer to the improvement of pedestrian
safety and the reduction in traffic accidents in which VRUs are involved.

(4) V2N communication allows the vehicle to access the network, through a server, for
various cloud-based services. This type of communication can be made directly
between the vehicle and the network or indirectly through a node installed in the
road infrastructure, depending on the distance between the vehicle and the network
infrastructure [103]. Vehicles can receive broadcast alerts regarding various aspects
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of traffic, such as accidents ahead, traffic congestion, or support for planning the
best route. All this leads to increased vehicle safety, better route planning, and better
traffic efficiency [104].

V2V communication is used for all platoon members to exchange information related
to position, velocity, acceleration, and decision. Moreover, V2P communication is also
necessary for leaders and followers according to safety considerations for vulnerable road
users. The V2I and V2N communications are used only by the leader vehicle to obtain
information about traffic management, traffic congestion, road conditions, accidents ahead,
and support for planning the best route.

From the point of view of the communication standards used for V2X communication,
two important categories of communication technologies are distinguished: dedicated
short-range communication (DSRC) and Cellular-V2X (C-V2X) technology. Each of these is
presented in detail in the following:

(1) DSRC is a specific communication standard for V2X technology, which allows for
wireless communication between connected vehicles, but also with road infrastruc-
ture. The DSRC involves short-range bidirectional wireless communication, and it is
used for V2V and V2I communications [8]. The DSRC system is based on a series
of IEEE and SAE standards. For the physical (PHY) and medium access control
(MAC) layers, DSRC uses the IEEE 802.11p standard, for requirements related to
authentication, data transmission, and high mobility challenges. The network and
security services are defined in the IEEE 1609.x family of standards [105,106]. In
the U.S., the Federal Communications Commission (FCC) has allocated for DSRC a
75 MHz spectrum, divided into 10 MHz channels, in the 5.9 GHz frequency band [8].
DSRC-based V2X is successfully used in applications such as traffic safety, traffic
management, and commercial vehicle applications [107]. Thus, this standard comes
with the following benefits: low latency, high reliability, data rates from 3 Mbps up
to 27 Mbps, and ad hoc communications. Cooperative awareness messages (CAMs)
and event-triggered warnings, i.e., decentralised environmental notification mes-
sage (DENM)-type messages, were established in the IEEE 802.11p standard by The
European Telecommunications Standards Institute (ETSI). On the other side, in the
U.S., the basic safety message (BSM) set messages have been defined by the Society
of Automotive Engineers (SAE) [108]. The CAM and BSM are periodical messages
sent between vehicles and between vehicles and the infrastructure. These contain
information about the status information on heading, speed, position, and accelera-
tion. Moreover, for V2X applications, the transmission frequency of CAM messages
is standardised between 1 to 10 Hz, and the broadcast rate of BSM messages is 10 Hz.
The DENM messages are warnings transmitted in emergency situations. These are
decentralised and information is transmitted directly between vehicles, without the
involvement of a centralised infrastructure [109].

(2) C-V2X technology is based on cellular systems, merging the traditional V2X network
with the cellular network [110]. According to the 3rd Generation Partnership Project
(3GPP) unified global standards, this communication technology uses long-term evo-
lution (LTE)–V2X for assisted driving and 5G New Radio (NR)–V2X for autonomous
driving [111]. The working frequency for C-V2X is the same as in the case of the
DSRC, operating in the 5.9 Hz frequency band, a band allocated for communica-
tions in the intelligent transportation system (ITS) area. LTE-V2X uses single-carrier
frequency division multiple access (SC-FDMA) and supports 10 MHz and 20 MHz
channels. The communication channel for LTE-V2X uses resource blocks (RBs) of
180 kHz; this implies 12 subcarriers of 15 kHz each. Moreover, from the point of
view of time, the channel is divided into sub-frames of 1 ms [112]. LTE-V2X uses
communication modes 3 and 4 for resource allocation. The initial advantages of LTE-
V2X were improving road safety and reducing traffic congestion. This is possible by
periodically broadcasting a CAM message between connected vehicles and LTE-V2X
supporting in-coverage, out-of-coverage, and partial-coverage scenarios.
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The 5G NR-V2X technology started to be developed from Release 16, coming as a
complement to LTE-V2X. For 5G NR, two frequency ranges are defined in which
it can operate: frequency range 1 (410 MHz–7.126 GHz) and frequency range
2 (24.25–52.6 GHz). This results in bandwidth for the channel in both bands of 10,
20, 30, and 40 MHz. Besides these, 5G NR-V2X supports various frequency division
multiplexing (OFDM) methodologies [113]. For 5G NR-V2X, two communication
modes are defined, as in the case of LTE-V2X, mode 1 and mode 2. The advantages
of 5G NR-V2X technology include increased capacity and speed, as well as reliability,
but also a considerable decrease in latency [114]. The C-V2X uses two complemen-
tary transmission modes: the Uu and PC5 interfaces. Modes 1 and 3 correspond
to the Uu interface, this being a traditional radio interface that accesses terminals
through a base station, using uplink (UL) and downlink (DL) transmissions. Within
Uu, C-V2X applications operate in traditional mobile broadband licensed spectrum.
This interface is used in V2N communication, for long-range applications. The PC5
interface corresponds to modes 2 and 4 and involves direct communication between
traffic entities, unassisted by the base station. It is used for V2V, V2I, and V2P com-
munications, the exchange of information being carried out with the help of sidelink
(SL) transmission. Within PC5, C-V2X applications operate in the 5.9 GHz ITS band
for short-range applications, on a distance of less than 1 km [115].

3.2.2. Summary

The technical characteristics of DSRC and C-V2X standards are illustrated compara-
tively in Table 3, where can be observed the properties of each communication technology:
IEEE 802.11p, LTE, and 5G NR. Therefore, depending on the V2X communication require-
ments for each use case, the appropriate communication standard can be chosen.

Table 3. Comparison between communication standards used for V2X communication.

Features DSRC LTE-V2X NR-V2X

Communication
technology IEEE 802.11p LTE 5G NR

Frequency bands 5.9 GHz 5.9 GHz 5.9–52.6 GHz
including mmWave

Data rates 3–27 Mb/s 150 Mb/s 1–10 Gb/s

Latency Up to 150 ms 10–100 ms <5 ms

Communication
modes Broadcast Broadcast Broadcast, unicast,

and multicast

Mobility support 252 km/h 350 km/h 500 km/h

Transmission time 0.4 ms 1 ms 1 ms

Retransmission None Blind HARQ-based

Sub-carrier spacing 156.25 KHz 15 KHz
Sub–6 GHz: 15, 30, 60

KHz; mmWave: 60,
120 KHz

4. Cooperative Adaptive Cruise Control for Vehicle Platoon

Interconnected vehicle systems are built around the ability of multiple vehicles to
establish a local network and communicate with one another their mobility characteristics
so that cooperative maneuvers can be performed such as maintaining lanes, maintaining a
constant speed, changing lanes, and many others. In recent years, cooperative adaptive
cruise control (CACC) has emerged as a promising technology in vehicular safety appli-
cations. CACC-based platoons involve a group of vehicles that are connected through
wireless communication and are capable of performing coordinated driving manoeuvres,
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such as acceleration, deceleration, and lane changing. The use of CACC in platooning
applications has been shown to improve traffic efficiency, reduce fuel consumption, and
enhance safety by mitigating the effects of human error [8].

This section presents a proposal for a control architecture targeting a specific case
involving a CACC strategy for a vehicle platoon, as illustrated in Figure 4. The topology
used is predecessor–follower; thus, the vehicles periodically transmit their current state
information, such as location, speed, and acceleration. The proposed control architecture
that implements the CACC functionality has the following components:

• Sensors:

– The leader is equipped with a long-range radar for obstacle detection;
– The follower vehicles are equipped with a short-range radar to measure the

distance to the preceding vehicle;
– Each vehicle is equipped with a camera for lane and obstacle detection, and GPS

and IMU to determine the position and velocity of the vehicle.

• Vehicle communication:

– The communication channel consists of a V2V link between the vehicles. Thus,
vehicles are equipped with DSRC technology for short-range communication
using CAM messages. These are sent with a frequency of 10 Hz, with each vehicle
sending 10 messages per second, which is the minimum required by the CACC
functionality [116]. The bitrate for CAM messages is set to 6 Mbit/s, which means
an optimal value for vehicular scenarios [117];

– For each vehicle, the data from the sensors are processed and then transferred to
the vehicle’s central control unit for fusion using a CAN bus. Also, the automotive
Ethernet bus is preferred for the camera sensor according to its required high
bandwidth.

• Control solutions:

– Specifically for lateral control, vehicles can use an LQR algorithm to implement
the lane keep assist functionality;

– For the longitudinal control, two methods based on the DMPC algorithm and
feedback gain matrix are proposed.

Figure 4. Cooperative adaptive cruise control for a vehicle platoon.

In what follows, the modelling method and the two control strategies proposed for
the longitudinal dynamics are detailed.

4.1. Vehicle Platoon Modelling

The leader vehicle (denoted with V0) is in front of the platoon and leads the platoon
with a desired travel velocity. The follower vehicles are tracking the vehicle in front while
keeping an imposed distance from it. Each vehicle uses GPS, IMU, camera, and LiDAR to
measure the velocity, acceleration, position, and velocity errors, and receives information
about the states of its in-front neighbour via V2V communication. Moreover, the control
solution for CACC functionality assumes that in front of the leader is a “virtual leader”
vehicle that is moving with the desired acceleration. In this way, the leader vehicle can
be modelled as a follower that has to follow the virtual leader. The model that describes
the longitudinal dynamics [118] is given by (1). This model describes the relationship
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between states of the vehicle, position and velocity errors and inputs. Moreover, the model
illustrates the coupling between two consecutive vehicles from the platoon :⎡⎣ ėpi(t)

ėvi(t)
ȧi(t)

⎤⎦ =

⎡⎣ 0 1 −δ
0 0 −1
0 0 −1/τ

⎤⎦⎡⎣ epi(t)
evi(t)
ai(t)

⎤⎦+

⎡⎣ 0
0

1/τ

⎤⎦ui(t) +

⎡⎣ 0
1
0

⎤⎦ai−1(t), (1)

where epi represents the longitudinal position error of vehicle i to the vehicle in front i − 1;
evi represents the velocity error; ai represents the acceleration; ui represents the input, i.e.,
acceleration request; δ = 0.7 s represents time headway; and τ = 0.1 s represents the time
constant. Notice that for the leader vehicle i = 0, the acceleration a−1 represents the virtual
leader’s imposed acceleration ar.

To control the vehicle platoon, this study proposes two control solutions based on the
distributed model-based predictive control (DMPC) strategy and the feedback gain matrix
method. In the latter, the control law of each vehicle is a linear combination of its states and
states of the vehicle in front:

ui = Ki,iζi + Ki,i−1ζi−1, (2)

where ζi =

⎡⎣ epi(t)
evi(t)
ai(t)

⎤⎦ represents the vector of system states and Ki,j represents a real array.

The model presented in this section will be used in the design phase of the two control
methods (i.e., DMPC strategy and feedback gain matrix method), but also to simulate the
longitudinal dynamics of the platoon.

4.2. Communication Topologies

The use of vehicular communication in designing the CACC solution improves driv-
ing performance, safety, and stability. Vehicles can obtain information about velocities,
accelerations, and positions from vehicles in front and use them to decide the new action
so that the imposed constraints and targets are respected. The main advantages of V2V
communication are represented by [19,119]: (i) improving safety, (ii) optimising the use
of roads by reducing the space between vehicles, (iii) reducing fuel consumption and
pollution by minimising the accelerations, (iv) improving control performances, and (v)
ensuring string stability. The most studied communication typologies are represented by (i)
predecessor–follower communication, where each follower i receives information from the
vehicle in front i − 1; (ii) leader–follower, where each follower i receives information from
the leader vehicle i = 0; (iii) leader–predecessor–follower, where each follower i receives
information from the vehicle in front i − 1 and from the leader i = 0; (iv) bidirectional
communication, where each vehicle i receives information from its neighbour vehicles i + 1
and i − 1. However, the performance of the vehicle platoons that use these communication
topologies depends on the model and the chosen control solution. In the case of the MPC
algorithm, some studies show that the control performances are quite similar for these
topologies [68,120]. Also, solutions that ensure string stability and performances for a
vehicle platoon’s lateral and longitudinal dynamics are proposed in [121–123]. These solu-
tions use predecessor–follower communication in cases where the dynamics of a follower
is described taking into account the position of the vehicle in front, and leader–follower
communication when the dynamics of a follower is described taking into account the
position of the leader or both of them.

Due to the fact that the model (1) describes the position of a vehicle to the vehicle in
front and a follower i is coupled with follower i − 1 through the acceleration, this work
uses the predecessor–follower communication topology.

4.3. Distributed Model-Based Predictive Control Method

This section presents the DMPC strategy used to control the velocity and distance
between vehicles. The algorithm is used by each vehicle to compute its control inputs
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(i.e., acceleration requests). The method uses a model of the vehicle to predict its behaviour
and to determine a sequence of optimal control inputs so that a cost function is minimised.
Also, due to the coupling between two consecutive vehicles, the method supposes com-
munication between vehicles regarding their prediction of acceleration. With this, the
prediction of vehicle future states is improved, which implies better performance.

Consider a system in chain architecture described by:

ζi(k + 1) = Aiζi(k) + Biui(k) + Ai,i−1ζi−1(k), (3)

where Ai ∈ R
n×n, Bi ∈ R

m×n, Ai,i−1 ∈ R
n×ni,i−1 , n represents the number of states for

subsystem i, m represents the number of inputs for subsystem i, ni,i−1 represents the
number of states through which the subsystems i and i − 1 are coupled, and i = 0, . . . , M,
M + 1 represents the number of subsystems.

The optimal sequence of control inputs is determined by solving at each sample time
the DMPC problem 1. This problem assumes the minimisation of a cost function that has
three types of terms: (i) terms that minimise the prediction of vehicle position and velocity
errors, (ii) terms that minimise the control efforts, and (iii) terms that minimise the error
between the prediction of the states of vehicle ζi(·) and the assumed prediction of the
states of the vehicle in front ζ̃i−1(·). Moreover, the DMPC problem 1 takes into account the
imposed constraints on vehicle inputs and states.

Problem 1. At each discrete step k, starting from an initial state ζi(k) = ζ0 and using the system
model (3) to predict the states of the vehicles, compute a finite horizon optimal input sequence
minimising the cost function:

Ji(k, ζi(k), Ui(k)) =ζi(N|k)TQiζi(N|k) + (ζi(N|k)− ζ̃i−1(N|k))TWi(ζi(N|k)− ζ̃i−1(N|k))+

+
N−1

∑
j=0

[ζi(j|k)TQiζi(j|k) + uT
i (j|k)Riui(j|k)+

+ (ζi(j|k)− ζ̃i−1(j|k))TWi(ζi(j|k)− ζ̃i−1(j|k))]

(4)

over Ui(k), subject to the following constraints:

Umin
i ≤ Ui(j|k) ≤ Umax

i ,

ζmin
i ≤ ζi(j|k) ≤ ζmax

i ,
(5)

where Qi, Ri, and Wi represent the weighting matrices, W0 = 0 (for the leader), N represents the
prediction horizon, Ui(k) = [ui(0|k), . . . , ui(N − 1|k)]T is the sequence of control inputs, and
ζ̃i−1 = [ζi−1(2|k − 1), . . . , ζi−1(N|k − 1), ζi−1(N|k − 1)]T represents the prediction of the states
for vehicle i − 1, computed at step k − 1 and sent to vehicle i.

Remark 1. Note that for the leader vehicle, with index i = 0, the vehicle in front is considered to be
the “virtual leader” that is driving with the imposed acceleration, so ζ̃−1 represents the imposed
acceleration for the leader for the next N steps.

4.4. Feedback Gain Matrix Method

The second method uses a feedback gain matrix to compute the control inputs instead
of a complex algorithm, such as DMPC. This solution has the advantage of requiring a low
computational effort and being easier to be implemented on hardware with limited storage
and computational capabilities. In what follows, the method used to determine this control
matrix is detailed.

The model (3) can be rewritten as

ζℵ(k + 1) = Aℵζℵ(k) + Bℵuℵ(k) + Aℵ,0ζr(k), (6)
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where ζℵ = [ζT
0 , . . . , ζT

M]T and uℵ = [uT
0 , . . . , uT

m]
T aggregate all states and inputs of each

subsystem i = 0, . . . , M, ζr ∈ R
nr represents the imposed reference for subsystem 0 (i.e., the

leader), Aℵ,0 =

⎡⎢⎢⎣
An,nr

On,nr

. . .
On,nr

⎤⎥⎥⎦, On,nr represents the null matrix of size (n × nr).

Notice that the matrix An,nr corresponds to the matrix A0,−1, and ζr to x−1 from (3).
Then, the control law of the whole system can be defined as:

uℵ(k) = Kζℵ(k), (7)

where K ∈ R
(M+1)×n(M+1) represents the feedback gain matrix.

Moreover, each vehicle receives via V2V communication the states of the vehicle in
front. Based on this, the control law of each follower is considered as in (2). The leader
vehicle does not have a vehicle in front (except the virtual leader), so its control law is
defined as u0 = K0,0ζ0. The control matrix K has non-zero elements only on the sub-
block (1, 1) corresponding to the leader and on the sub-block {(i + 1, i), (i + 1, i + 1)}
corresponding to the follower vehicles. Notice that a sub-block (i, j) refers to the elements
from matrix K represented by line i and columns {j, j + 1, . . . , j + n − 1}. Also, the notation
Ki,j is referring to the sub-block (i + 1, j + 1) in matrix K.

The control matrix K is obtained by solving Problem 2. The method assumes the use
of a set of reference states, and the control matrix is computed so that the error between the
reference states and model states (6) is minimised:

Problem 2. Starting from a set of reference states, compute the K matrix so that the following cost
function is minimised:

V(K) =
L

∑
j=1

Vj(k), (8)

Vj(k) =
tk f

∑
k=0

||ζr
ℵ(j, k)− ζℵ(k)||22, (9)

over K, subject to the following constraints:

ζℵ(k + 1) = Aℵζℵ(k) + Bℵuℵ(k) + Aℵ,0ζr(j, k)

uℵ(k) = Kζℵ(k),
ζℵ(0) = ζr

ℵ(j, 0),

(10)

where ζr
ℵ represents the set of the reference states, tk f represents the length of a reference, L represents

the number of states from the set.

Note that the first solution, i.e., CACC based on the DMPC strategy, has the advantage
that at each sample time, the method computes the command minimising a cost function
that takes into account the prediction of the vehicle states, i.e., position and velocity errors
and acceleration, as well as imposed constraints on the states and inputs, and also takes
into account the information about the prediction of acceleration received from the vehicle
in front. However, it has the disadvantage of requiring a high computing power to solve
optimisation Problem 1. The second method requires a significant computational effort,
but only in the phase of computing the feedback gain matrix K. After that, the command is
computed at each sample time using Equation (2). The disadvantages of this method are
represented by the possibility of violating imposed constraints, and also by the fact that it
does not use a prediction of the vehicle’s state. Moreover, the method does not receive the
prediction of the acceleration of the vehicle in front as it is using the method based on the
DMPC approach. But the last disadvantage can be minimised in the phase of computing the
matrix K by "training" the feedback gain matrix, so that the error between the two methods
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is minimised by choosing the set of references as the solution of the DMPC algorithm [124]
(see Problem 2).

5. Illustrative Results

This section presents the simulation results obtained using the proposed control so-
lutions. The platoon is formed by a leader, followed by three follower vehicles. As it was
previously mentioned, the leader and follower vehicles use their sensors to obtain informa-
tion about their velocity, acceleration, position, and velocity errors. These measurements
are used by the control methods to obtain the prediction of vehicle states and to compute
the control input. Also, the vehicles receive from their vehicle in-front information that
contains the prediction of their accelerations (DMPC method) and their states (feedback
gain matrix method). Note that the leader vehicle does not have a real vehicle in front,
which means that model (1) can be used to compute the position and velocity error states.

The parameters used by the DMPC controller are represented by prediction horizon
N = 50 time samples, Q0 = Q1 = . . . = QM = diag{1, 10, 0.1}, R0 = R1 = . . . = RM = 0.1,
W0 = 0, Wi = diag{3, 3, 3}, i = 1, . . . , M, M = 3. The limits imposed on the input u and
longitudinal error ep are represented by umin = −2 m/s2, umax = 2 m/s2, emin

pi = −0.7 m,
emax

pi = 0.7 m. The used sample time is Ts = 0.1 s. For the second method based on the
feedback matrix, the set of the reference state is formed by L = 100 references computed
using the DMPC strategy. These reference states were obtained using a set of 100 reference
accelerations illustrated in Figure 5. The length of each reference is tk f = 200/Ts.

Figure 5. Set of 100 accelerations used by the second control method to design the control feedback
matrix for the platoon.

To test the proposed control methods, a simulation scenario was designed. The
reference of the leader consists of a series of changes in imposed acceleration to test the
methods in various situations. The reference and acceleration of vehicles are illustrated by
Figure 6. Based on these figures, it can be noticed that all vehicles follow the acceleration
and deceleration behaviour of the vehicle in front, but the first method (based on the DMPC
algorithm) has a smoother acceleration compared to the second method (based on the
feedback gain matrix). But this difference between methods is not noticed in the graph
of velocity; see Figure 7, where all follower vehicles travel with the same velocity in both
cases. All vehicles succeed in following the vehicle in front with imposed distance and
with small errors, as can be observed in Figure 8. For all methods, the errors decrease in
the upstream direction. Moreover, for the second method, the maximum of the absolute
values of eigenvalues is ρ = max(|Aℵ + BℵK|) = 0.9774 < 1, which means the platoon is
globally stable. The control inputs are illustrated in Figure 9. The difference between the
two methods is the following: the first method obtained a higher value for the requested
acceleration compared to the second method, which implies higher fuel consumption. Also,
all commands and position errors respect the imposed constraints.
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Remark 2. Note that for each reference acceleration from those 100, the evolution of the states of
the vehicle platoon was computed by imposing the reference accelerations for the platoon and having
the DMPC strategy as a control solution. As a result, a set of 100 reference states, ζr

ℵ, was obtained.
The control feedback matrix K was computed by solving Problem 2. By finding a control law (7) so
that the cost function (8) is minimised, the states of the platoon are led to follow the dynamics of the
states controlled by the DMPC strategy. This means that the behaviour of the platoon (controlled
with (7)) is close to the behaviour of the platoon controlled by the DMPC algorithm. Moreover,
using a random large set of references, the platoon is tested in multiple operating points, ensuring
that no bias from a particular case influences the calculus of matrix K.
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Figure 6. Accelerations of vehicles: (a) DMPC method; (b) feedback gain matrix method.
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Figure 7. Velocities of vehicles: (a) DMPC method; (b) feedback gain matrix method.
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Figure 8. Position errors of vehicles: (a) DMPC method; (b) feedback gain matrix method.
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Figure 9. Control inputs of vehicles: (a) DMPC method; (b) feedback gain matrix method.

6. Discussion

In order to ensure a fair comparison between the two methods, each proposed control
solution was tested for 100 random references for acceleration (other than those used in
the phase of computing matrix K, see Figure 5). Figures 10–13 contain the position error
of the leader and follower vehicles obtained from 100 simulated cases. Moreover, for
each vehicle, the average error is computed and illustrated with a black continuous line.
From these result, it can be noticed that the maximum average position error for each
vehicle are the following: (i) method based on DMPC algorithm—max(ep0) = 0.297 m,
max(ep1) = 0.291 m, max(ep2) = 0.276 m, max(ep3) = 0.258 m; (ii) method based on
feedback gain matrix—max(ep0) = 0.338 m, max(ep1) = 0.326 m, max(ep2) = 0.296 m,
max(ep3) = 0.276 m.
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Furthermore, using the results obtained from these 100 cases, a cumulative cost was
used to evaluate better the performances of the two methods. This cost takes into account
the position errors and input efforts of the vehicles:

J =
1

tk f

100

∑
s=1

3

∑
i=0

tk f

∑
j=1

(e2
pi(j) + u2

i (j)). (11)

Figure 10. Position errors sets for L: (a) DMPC method; (b) feedback gain matrix method. Thin
line—100 case; bold line—mean of |ep|.

Figure 11. Position errors sets for F1: (a) DMPC method; (b) feedback gain matrix method. Thin
line—100 case; bold line—mean of |ep|.
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Figure 12. Position errors sets for F2: (a) DMPC method; (b) feedback gain matrix method. Thin
line—100 case; bold line—mean of |ep|.

Figure 13. Position errors sets for F3: (a) DMPC method; (b) feedback gain matrix method. Thin
line—100 case; bold line—mean of |ep|.

The method based on DMPC obtains a cost equal to JDMPC = 6.18, and the second
method, based on the feedback gain matrix, obtains a cost equal to JK = 5.828. Based on
these results, the second method obtains control performances quite similar to the one
based on the DMPC approach. As can be seen from these results, by designing the feedback
matrix K using the proposed solution, it can be obtained a control solution that has a
behaviour close to the DMPC algorithm but did not require specialised software and online
optimisation to be implemented. These results made the second method proper for real-
time implementation. The first method, based on the DMPC strategy, has the advantage
that it can take into account online constraints imposed for the states and commands
compared with the second method. Also, the first method, using a model of the system,
can predict the state’s evolution. Although the used model usually has modelling errors,
DMPC can obtain better performances. But the second control method is more suitable
for real-time implementation because it does not require high computational power or
complex optimisation algorithms to be implemented online.
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The simulations were performed using MATLAB R2022b on Windows 10, 64-bit
Operating System with a laptop Intel Core i7-8750H CPU @ 2.200 GHz and 8 GB RAM.

7. Conclusions and Future Work

This paper presents in detail the related levels of a highly advanced vehicle control
architecture (sensing interface, perception, planning, decision, and control) and their
element components. Moreover, the proposed control architecture was used to design a
control solution for the longitudinal dynamics of a vehicle platoon. Also, for the control
level, two methods were proposed: (i) the first one uses a complex control algorithm
represented by DMPC; and (ii) the second method uses feedback gain matrices computed
using results from the first method. The simulation results prove that the second method
obtains similar performance compared to the one based on the DMPC algorithm, and this
fact made it suitable for real-time implementation due to the simplicity of the control law.

Future work will focus on using the proposed control architecture in a laboratory scale,
real-time vehicle platooning system.
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Abstract: In the rapidly evolving urban advanced mobility (UAM) sphere, Vehicular Ad Hoc Net-
works (VANETs) are crucial for robust communication and operational efficiency in future urban
environments. This paper quantifies VANETs to improve their reliability and availability, essential for
integrating UAM into urban infrastructures. It proposes a novel Stochastic Petri Nets (SPN) method
for evaluating VANET-based Vehicle Communication and Control (VCC) architectures, crucial given
the dynamic demands of UAM. The SPN model, incorporating virtual machine (VM) migration and
Edge Computing, addresses VANET integration challenges with Edge Computing. It uses stochastic
elements to mirror VANET scenarios, enhancing network robustness and dependability, vital for the
operational integrity of UAM. Case studies using this model offer insights into system availability
and reliability, guiding VANET optimizations for UAM. The paper also applies a Design of Exper-
iments (DoE) approach for a sensitivity analysis of SPN components, identifying key parameters
affecting system availability. This is critical for refining the model for UAM efficiency. This research is
significant for monitoring UAM systems in future cities, presenting a cost-effective framework over
traditional methods and advancing VANET reliability and availability in urban mobility contexts.

Keywords: Vehicular Ad Hoc Networks (VANETs); dependability modeling; Stochastic Petri Nets
(SPN); virtual machine migration; network reliability and availability

1. Introduction

Vehicular Ad Hoc Networks (VANETs) represent a significant advancement in wireless
communication technology. These networks are pivotal in enhancing vehicular connec-
tivity, thereby fostering a safer and more efficient environment for all traffic participants.
GSMA estimates indicate that approximately 20% of the global vehicular fleet, estimated at
1.5 billion, are internet-connected, contributing substantially to data generation [1]. Projec-
tions suggest that by 2027, there will be an annual growth rate of around 17%, resulting in
367 million connected vehicles.
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Typically, a VANET incorporates a static infrastructure component, known as a Road-
side Unit (RSU), positioned alongside thoroughfares. Vehicles interface with this infras-
tructure through an onboard unit (OBU) [2]. It is presumed that each vehicle is outfitted
with sensors to collect environmental data. The OBU processes these data and engages
in communication with other vehicles or RSUs, either directly or indirectly. Additionally,
RSUs have the capability to connect to the internet, thereby facilitating vehicular access to
various services [3].

VANETs find application in diverse traffic-related domains, encompassing areas
such as network security [4], traffic management [5], and parking space optimization [6].
Nonetheless, managing the Quality of Service (QoS) within VANETs poses a multifaceted
and critical challenge. Key challenges include ensuring network availability and reliability,
addressing latency, and managing traffic, as well as grappling with issues of poor con-
nectivity, limited flexibility, and scalability constraints. The physical distance from Edge
processing and storage centers can also introduce considerable communication delays [7–9].

The literature review reveals a paucity of studies employing Stochastic Petri Nets
(SPN) in the context under consideration in this research. The proposed model incorporates
crucial factors such as availability and reliability, utilizing VM migration across the network
to link various RSUs and implementing an Edge Computing-based data processing system.
This model facilitates a comprehensive analysis of the key parameters, aiming to refine
architectures to address the integration challenges of VANETs with Edge Computing. The
principal contributions of this research are as follows:

• Development of an SPN model to assess the reliability and availability of VANET-
based VCC architectures, factoring in stochastic elements to emulate realistic scenarios.
This aims to enhance the robustness of vehicular network environments, ensuring
dependable and consistent performance.

• Execution of case studies using the proposed models, offering a blueprint for other
researchers in applying these models. These case studies focus on identifying and
analyzing primary parameters influencing system availability, providing prelimi-
nary insights into the critical variables affecting system reliability, and facilitating
enhancements and optimizations.

• Conducting a sensitivity analysis of the SPN model components, identifying param-
eters with significant influence on system availability. This analysis enhances the
understanding of the model and aids in its optimization.

The structure of this work is organized as follows: Section 2 introduces essential
concepts foundational to this study. Section 3 describes the architecture forming the basis
of the model. Section 4 details the developed SPN model. Section 5 presents two sensitivity
analyses performed on the SPN model. Section 6 elaborates on the outcomes of the case
study. Finally, Section 7 concludes the paper and outlines directions for future work.

2. Background

This section succinctly delineates the core concepts fundamental to this research, pri-
marily focusing on SPNs. An elucidation of experimental design and sensitivity analysis
will follow. These concepts are critical for comprehending the methodologies and tech-
niques employed in the formulation of this article. Understanding these foundational
principles is essential for appreciating the intricacies of the proposed models and analyses
within the context of this study. Related works of the above discussions are provided in
Table 1.

2.1. Stochastic Petri Nets

A Petri Net is a combined graphical and mathematical representation that effectively
models systems and processes undergoing continuous changes and concurrent operations.
This modeling is particularly valuable for systems characterized by simultaneous multi-
action scenarios [10]. The present study employs a sophisticated form of Petri Nets, termed
SPNs, which are distinguished by their ability to incorporate randomness and probabilistic
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behaviors [11]. SPNs are comprised of three primary elements that delineate the system’s
states or conditions: transitions (denoting potential system events or actions), tokens
(symbolizing entities within the system), and each token’s potential association with a
specific resource [12].

The functionality of SPNs hinges on two essential types of connections: (I) Input Arcs,
which are preconditions for triggering transitions, necessitating specific tokens’ presence
at designated locations; and (II) Output Arcs, which dictate the subsequent transferal
of tokens upon a transition’s activation [13]. Transitions in SPNs are categorized into
timed transitions, obeying stochastic distributions [14], and immediate transitions that
occur instantaneously upon activation. Additionally, inhibitor arcs play a pivotal role in
controlling token flow between locations, with tokens being allocated to particular places
within the system.

Crucially, SPNs utilize guard conditions to define the specific prerequisites for transi-
tion activations. These conditions often incorporate random variables, thus introducing
a probabilistic dimension. The fulfillment of these guard conditions triggers transitions
according to predefined rate functions, effectuating a change in the system’s state [15].
Figure 1 visually explicates the core components of an SPN model, providing a comprehen-
sive understanding of its structure and functionality.

Figure 1. SPN components.

2.2. Sensitivity Analysis with DoE

Design of Experiments (DoE) is an extensively utilized methodology in research and
development for enhancing processes, products, and systems. It entails the meticulous
planning and execution of controlled experiments to gather pertinent and substantial
data [16]. The initial step in DoE involves defining the experiment’s objective, followed
by identifying the variables or factors that could influence the outcome. Subsequently, an
experimental plan is formulated, which includes determining the levels for each factor and
designing the experiments to extract significant insights. The execution of the experiment
is aligned with this plan, leading to the collection and statistical analysis of the results.

DoE equips system designers with the ability to discern the most influential variables,
understand their interactions, and fine-tune the conditions to achieve optimal outcomes
with minimal experimental iterations [17]. Complementing DoE, sensitivity analysis serves
as a pivotal technique for examining how variations in the input parameters or model
attributes influence the outputs or results [18]. This analysis is essential for assessing the
robustness of a system or model in the face of uncertainties or changes in parameters [19].
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Through sensitivity analysis, it becomes feasible to identify which variables signif-
icantly affect outputs and which have lesser impacts, thereby guiding the allocation of
resources and efforts towards efficient system optimization. Both DoE and sensitivity anal-
ysis play crucial roles in research, engineering, and strategic decision making, providing
pathways to more effective solutions, resource and time conservation, and the acquisition of
valuable insights for the enhancement of processes and systems. This efficiency is achieved
as they necessitate fewer experiments to glean significant information [20,21].

Table 1. Related works.

Reference Contribution Assessment Method Metrics
Multiple
RSUs

Sensitivity
Analysis

[22] A performance modeling of media access
control (MAC).

Simulation Performance No No

[23] Threat-Oriented Authentication Approach for
Secure Communication.

Simulation Performance No No

[24] Modeling that integrates the transmission of
the 802.11p system and the queuing process.

Simulation Performance No No

[25]
A mobile agent-based information
dissemination scheme
in the VANET environment.

Simulation Performance No No

[26]
A mobile agent migration mechanism based
on location simulation experiments in the
VANET environment.

Simulation Performance No No

[27]
A TCP Context Migration Scheme (TOMS)
method for enhancing data services in
vehicular networks.

Simulation Performance Yes No

[28] Detection of anomalies, loss of messages with
conventional and VEC techniques.

Simulation Availability Yes No

[29]
A container-based virtualization and live
migration framework for the in-vehicle ad hoc
network.

Measurement Performance Yes No

[30] Provide a classification of security requirements,
characteristics and security challenges.

Measurement Does not have Yes No

[31] A seamless handover system in a software-
defined network ( SDN) framework.

Measurement Performance Yes No

[32]
BaaS (Broadcast as a Service) transmission is
proposed for VANET to disseminate data
efficiently to network vehicles using cloud
computing.

Measurement Performance Yes No

[33]
It presents a model for the connectivity
patterns of chains of vehicles traveling on a
highway.

Markov Model Availability No No

[34]
Analytical model based on Stochastic Petri Net
(SPN) theory for assessment of Vehicular
Ad Hoc Network infrastructures.

SPN Model Performance No No

[35]
Use SDN to
improve the allocation and migration of
microservices in Vehicular Fog Networks
(VFN).

Measurement Performance Yes No

This work Modeling an architecture with multiple RSUs
and migration to assess system availability.

SPN Model Availability Yes Yes

2.2.1. Simulation-Based Methods

In the initial category of research, simulation served as the primary method for evalu-
ation. The study by [22] focused on assessing the performance of Medium Access Control
(MAC) protocols within VANETs. Ref. [23] introduced a threat-oriented authentication
strategy designed to bolster secure communication in vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I) interactions, utilizing a combination of encryption keys. The research
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conducted by [24] highlighted deficiencies in the 802.11 system, particularly the absence of
backoff and binary exponential retransmission mechanisms, which were found to adversely
affect the QoS during periods of intense traffic.

Further, Ref. [25] proposed an innovative mobile agent migration mechanism. This
mechanism, rooted in network location analytics, was employed to simulate a VANET
environment, exploring its practical applications. In parallel, the studies by [26,27] utilized
the TCP Context Migration Scheme (TOMS), a novel approach aimed at enhancing data
services within vehicular networks. This scheme entailed the proactive establishment of
TCP connections, managed by a mobile TCP proxy that assumed the role of a cluster leader.

Lastly, the investigation by [28] delved into the application of Vehicle Edge Computing
(VEC) alongside conventional anomaly detection techniques. This approach was targeted
at identifying and quantifying message loss, thereby evaluating the extent of fault coverage
within these networked systems.

2.2.2. Measurement-Based Methods

In the second category, the selected studies employed measurement as their primary
evaluation methodology. Ref. [29] developed a container-based virtualization architec-
ture, facilitating dynamic migration within ad hoc vehicular networks, particularly in
VANETs. This innovation aimed to enhance flexibility and responsiveness in these net-
works. Meanwhile, Ref. [30] undertook the task of classifying security requirements,
identifying key characteristics, and delineating the challenges related to security within
similar VANET scenarios.

In another significant contribution, Ref. [31] introduced a seamless transition system
that leverages the capabilities of SDN and Media Independent Handover (MIH). This
system was designed to dynamically modify the topology of VANETs, enhancing their
adaptability and efficiency. Additionally, Ref. [32] proposed a novel concept termed Broad-
cast as a Service (BaaS), specifically tailored for VANETs. This solution aimed to efficiently
disseminate data across networked vehicles utilizing cloud computing technologies. Lastly,
the work of Ref. [35] applied SDN to improve the management and migration of mi-
croservices in Vehicular Fog Networks (VFNs), taking into account the dynamic nature of
vehicular nodes.

2.2.3. Modeling-Based Methods

The third classification encompasses studies that utilized modeling as their core eval-
uation technique. The research of [33] presented a model to describe the connectivity
patterns among vehicles on highways. This model is crucial for the development of proto-
cols and applications in VANETs, tailored to their specific connectivity traits. Similarly, [34]
adopted an analytical approach rooted in SPN theory. This approach was used to assess
the infrastructure of VANETs, taking into consideration the mobility of the network and its
inherent limitations. Notably, this study modeled the service fees of RSUs using exponential
distributions.

2.2.4. Contributions of This Work in Relation to Others

This study introduces an SPN model that evaluates the impact of VM migration across
multiple RSUs within vehicular networks. A review of the literature reveals the scarcity of
studies addressing this specific scenario within the VANET context. The adoption of such
an approach is economically advantageous, as it enables the analysis of availability and
reliability without necessitating a physical infrastructure for testing.

The review further indicates that systems modeling, as employed in this study, pro-
vides a more predictive and comprehensive understanding compared to measurement
and simulation methods. This is achieved by simplifying the representation of critical
system elements. In contrast, measurement and simulation tend to rely on observational
data, which may not fully encapsulate the complexity of the system. Most of the reviewed
studies focused primarily on performance evaluation, with limited attention to metrics
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such as availability, reliability, or downtime. Moreover, there is a noticeable gap in studies
exploring the cooperation between multiple RSUs and the use of sensitivity analysis to
determine the impact of Mean Time To Failure (MTTF) and Mean Time To Repair (MTTR)
parameters on system performance.

3. Evaluated Architecture

In this section, the envisaged architecture for integrating VANETs is elucidated. The
foundational scenario, as illustrated in Figure 2, encompasses an array of RSUs, with their
respective coverage zones depicted as green and red circles. The operational dynamics of
this architecture are as follows:

• (1) Active RSU Coverage and Vehicle Interaction: Vehicles in transit enter the coverage
area of active RSUs (represented by green circles), wherein these RSUs facilitate
communication and gather data from the vehicles.

• (2) Response to RSU Failure: In the event of an RSU malfunction, leading to a disruption
in data collection, a contingency protocol is activated.

• (3) VM Migration for Uninterrupted System Availability: To ensure continued system
functionality, an allocation of data from VMs is performed that will be transferred to
the subsequent RSU within the network after an RSU fails.

• (4) Data Management: Subsequent to collection, all data are transmitted to an Edge
Server for storage and further processing.

The RSUs in this architecture are equipped with advanced communication technolo-
gies, potentially including 5G [36] or Lora [37], enabling interaction with vehicular systems.
These units are strategically placed along roadways to form a dependable communication
infrastructure, essential for the efficient operation of the VANET system. This arrangement
guarantees a seamless data flow and operational continuity of the system, even amidst
individual RSU failures, thereby augmenting the reliability and resilience of the VANET
infrastructure.

In this segment, the technical composition of the VANETs is detailed, emphasizing the
integration of On-Board Units (OBUs) in each vehicle. These OBUs are imbued with com-
munication capabilities, enabling the transmission and reception of messages. Additionally,
they are outfitted with GPS tracking devices, facilitating the sharing of precise, real-time
locational data [38]. The infrastructure is based on the assumption that all RSUs maintain a
connection to a private Edge server via a high-speed wireless link, such as 5G; 5G offers
faster data transmission speeds and reduced latency, key features for system efficiency [39].

The selection of these technologies plays a significant role in influencing the overall
system availability [40]. The choice of communication technology emerges as a vital
consideration in the model’s design process. The architecture’s design is inherently scalable,
allowing for the integration of a variable number of RSUs to meet the specific requirements
of the deployment area. The depicted scenario in the figure showcases four groups of RSUs,
but this configuration can be dynamically adjusted to suit varying demands.

A key attribute of this architecture is its fault detection capability in RSUs. When an
RSU is compromised, indicated by red in Figure 2, it triggers the migration of VMs to the
next cluster of RSUs. This migration is essential for maintaining operational continuity and
ensuring system availability, thereby minimizing disruptions in communication and data
processing.

Data processing in this system is executed at the Edge (Edge Computing), which
enhances communication efficiency and reduces latency. The proximity of RSUs to the
vehicles permits a portion of the data processing to occur locally, thus enhancing the
system’s real-time responsiveness. The proposed architecture aims to establish an effective
communicative link between vehicles and cloud infrastructure, with a strong focus on
reliability, scalability, and the migration of VMs to guarantee uninterrupted operations.
The ensuing section will delve into the model used to assess the reliability and availability
of this system.
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Figure 2. Base architecture.

4. Proposed Model

This section delineates the models applied in this study, which are constructed based
on the architecture outlined in the preceding section. It further details the reliability and
representative availability models in scenarios both with and without the implementation
of migration strategies. All the models and simulations in this study were conducted using
the Mercury Tool [41].

4.1. System Reliability Model

The model for analyzing the reliability of VANETs is depicted in Figure 3. Within
this context, reliability is defined as the conditional probability that a system will continue
functioning over a time interval [0, t], provided that it was operational at the inception of
this interval (t = 0) . The presented model (Figure 3) bears resemblance to the model in
Figure 4, with a notable distinction: it excludes the MTTR transitions that would facilitate
the recovery of components in the event of a failure. This exclusion is a critical aspect, as it
directly impacts the system’s ability to self-recover post-failure, thereby influencing the
overall reliability assessment of the VANET system under study.
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Figure 3. Reliability model.

Figure 4. Availability model with migration.

In the RSU GROUP within the VANET system, the RSUs can host varying numbers
of VMs, symbolized by the variables x, y, and z. The reliability of the model under
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consideration can be quantitatively assessed using Equation (1). This metric is defined as
the complement of the probability of failure of any component in the system. Specifically,
it is represented as one minus the probability that the RSU Group, RSU Logical Group,
Network, and Edge components play all operations simultaneously:

R = 1 − P((#EDGE_U > 0) AND (#NET_UP > 0) AND

((#RSU_UP1 + #RSU_UP2) + #RSU_UP3) = (n · TOKENS) AND

(#RSU_LOG_UP1 = 1 OR #RSU_LOG_UP2 = 1 OR #RSU_LOG_UP3 = 1)) (1)

In this model, the variable “ P” is utilized to determine the probability that the system
will become unavailable or fail. By applying this equation, it is possible to generate a curve
that effectively illustrates how the system’s reliability diminishes over time. This curve is
a crucial analytical tool, as it provides a visual representation of the system’s reliability,
enabling the identification of trends and potential vulnerabilities over a specified time
frame. Such an analysis is vital for understanding the robustness of the system and for
making informed decisions regarding maintenance, upgrades, or other interventions to
enhance the system’s reliability.

4.2. Availability Model with Migration

Table 2 systematically details the elements of the availability model, employing tokens
to represent the count of operational VMs within each RSU. In this model, the transitions
labeled RSU_MTTF and RSU_MTTR are integral for facilitating the exchange of information
among different RSU groups via VMs. For the effective operation of an RSU Group, it
is imperative that the quantity of tokens in the RSU_UP state aligns with the initially
set value.

The availability of an RSU is contingent upon the presence of tokens in the RSU_LOG_UP
state and their absence in the RSU_LOG_DW state. Concurrently, the operational state
of the NETWORK is indicated by the distribution of tokens: tokens in the NET_UP state
signify an active network, while those in NET_DW denote an inactive state. This model
underscores the reliance on token distribution for depicting the dynamic status of each RSU
and the overall network, thus providing a comprehensive view of the system’s availability
and the efficacy of the migration strategy.

Table 2. Description of the main components of the model.

Type Components Description

Places

MIGRATE_UP
MIGRATE_DW
EDGE_UP
EDGE_DW
NET_UP
NET_DW
RSU_UP1, RSU_UP2, RSU_UP3
RSU_DW1, RSU_DW2, RSU_DW3
RSU_LOG_UP1, RSU_LOG_UP2, RSU_LOG_UP3
RSU_LOG_DW1, RSU_LOG_DW2, RSU_LOG_DW3

Migration of VMs between RSUs is available
Migration of VMs between RSUs is unavailable
Data processing at the Edge is available
Data processing at the Edge is unavailable
The network connecting the RSUs is available
The network connecting the RSUs is unavailable
The physical RSUs are available
The physical RSUs are unavailable
The logical RSUs are available
The logical RSUs are unavailable

Transitions

E_MTTR
E_MTTF
NET_MTTR
NET_MTTF
RSU_MTTR1, RSU_MTTR2, RSU_MTTR3
RSU_MTTF1, RSU_MTTF2, RSU_MTTF3
LOG_MTTR1, LOG_MTTR2, LOG_MTTR3
LOG_MTTF1, LOG_MTTF2, LOG_MTTF3
T1, T2, T3, T4

Represents the MTTR of the system’s Edge computing
Represents the MTTF of the system’s Edge computing
Represents the MTTR of the system’s network
Represents the MTTF of the system’s network
Represents the MTTR of the system’s RSUs
Represents the MTTF of the system’s RSUs
Represents the MTTR of the logical part of the RSUs
Represents the MTTF of the logical part of the RSUs
Transitions between RSUs in the system
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The transitions labeled NET_MTTF and NET_MTTR are pivotal in the management of
the network’s operational dynamics. Concurrently, the functioning of the EDGE component
relies on the E_MTTF and E_MTTR transitions, which govern the activation (EDGE_UP)
and deactivation (EDGE_DW) states. The migration process, a key element for ensuring
uninterrupted system operation, is regulated through MIGRATE_UP (activation) and MI-
GRATE_DW (deactivation) markers. These markers facilitate the transfer of VMs between
RSUs, an action critical for maintaining system availability.

Figure 4 presents the proposed SPN model, which is constructed based on the pre-
viously outlined scenario. This model encompasses various components such as RSU
GROUP, RSU LOGICAL GROUP, NETWORK, EDGE, and MIGRATION. Each of these
components is associated with metrics like MTTF and MTTR, which are instrumental in
evaluating the availability and reliability of systems and their individual components.

The operational status of the VMs in each RSU is indicated by the presence of tokens
in the RSU_UP and RSU_DW states. Here, RSU_UP denotes active RSUs, while RSU_DW
represents inactive ones. The transitions between the active and inactive states of each Road
Service Unit (RSU) are controlled by the RSU_MTTF and RSU_MTTR transitions. Within
the RSU Group, each unit contributes to the collective functionality by sharing information
via VMs. For the RSU Group to function effectively, it is essential that the number of tokens
in RSU_UP aligns with its pre-established initial value.

Table 3 illustrates the implementation of guard conditions in the transitions T1, T2,
T3, and T4, which are situated between the RSUs designated as UP1, UP2, and UP3. These
guard conditions are essential for regulating the migration of VMs in scenarios where
a logical component of the RSU becomes unavailable. When this logical component is
subsequently reactivated and resumes normal operation, the previously migrated VMs
are reintegrated into their original RSU. This mechanism of migration and reintegration is
pivotal in ensuring the seamless and continuous functioning of the system, as it provides a
dynamic response to temporary outages or disruptions within individual RSUs, thereby
maintaining overall system integrity and operational continuity.

Table 3. Description of model storage conditions.

Places Transition Condition

RSU_UP1, RSU_UP2 T2
IF(#RSU_LOG_DW2 =0): (N -(#RSU_UP1+#RSU_DW1))
ELSE(#RSU_UP1+(#RSU_UP1+#RSU_UP2+#RSU_UP3))

RSU_UP2, RSU_UP3 T4
IF(#RSU_LOG_DW3=0): (N-(#RSU_UP2+#RSU_DW2))
ELSE(#RSU_UP2+(#RSU_UP1+#RSU_UP2+#RSU_UP3))

The transition T2 is activated by the guard condition #RSU_LOG_DW1=1, which
denotes a critical event indicative of the instability or inactivation of RSU 1’s logical
component. This event initiates the process for VM migration from the compromised RSU.
The procedure begins by verifying the operational status of the subsequent RSU, indicated
by #RSU_LOG_DW2=0. Should this RSU be operational, the migration of VMs is executed
accordingly. Subsequently, in the event of a recovery and reactivation of the initially failed
RSU, the previously migrated VMs are reintegrated into it. In a parallel scenario, transition
T4 is invoked when #RSU_LOG_Dw2=1, a condition signaling the deactivation of the logical
component of RSU 2. This state necessitates the migration of VMs from RSU 2 to another
operational unit, thereby ensuring the continuity of system functionality.

The availability of the model with migration is quantified using Equation (2). This
equation computes the probability that the RSU Group, RSU Logical Group, Network,
and Edge components are all operational concurrently. In this context, ‘P’ denotes the
probability, while ‘TOKENS’ refers to the number of tokens present in a specific state or
place within the model. This approach to calculating availability is crucial for assessing the
effectiveness of the migration strategy in maintaining continuous operation of the system,
even in the face of individual component failures or disruptions. The inclusion of these
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probabilistic measures provides a comprehensive understanding of the system’s resilience
and its ability to sustain uninterrupted service through dynamic VM migration processes:

A = P((#EDGEU > 0) AND (#NET_UP > 0) AND

((#RSU_UP1 + #RSU_UP2) + #RSU_UP3) = (n · TOKENS) AND

(#RSU_LOG_UP1 = 1 OR #RSU_LOG_UP2 = 1 OR #RSU_LOG_UP3 = 1)) (2)

4.3. SPN Availability Model: Non-Migration Framework

The depicted SPN availability model in Figure 5 delineates the system’s functionality
in the absence of migration capabilities. This model parallels its counterpart incorporating
migration, encompassing components such as MIGRATION, EDGE, NETWORK, RSU
GROUP, and RSU LOGICAL GROUP. Integral to each component is an MTTF and a singular
MTTR, with the exception of MIGRATION, which is characterized by the Happened
attribute (HAP). This attribute simulates potential disasters or system instabilities, leading
to the activation of MIGRATE_DW, thereby deactivating migration processes.

A notable deviation in this non-migratory model is the omission of transition mech-
anisms within the RSU GROUP, precluding inter-RSU migration. The activation of the
recovery process (REC) is contingent upon the RSU GROUP configuration, which facilitates
the identification of operational RSUs via the tokens in RSU_UP. The symbol ‘N’ signifies
the possibility of multiple tokens within each RSU, with the quantity of tokens representing
the number of operational RSUs.

Conversely, the RSU_DW token count reflects the number of non-operational RSUs.
The transitions RSU_MTTF and RSU_MTTR govern the oscillation between the active and
inactive states of individual RSUs. Network functionality is ensured when a token resides in
NET_UP (active network), and it becomes non-functional with a token in NET_DW (inactive
network). The transitions NET_MTTF and NET_MTTR regulate these state changes.

Similarly, the cloud’s operational status is indicated by the presence of a token in
EDGE_UP, and its non-operational status is signified by a token in EDGE_DW. The tran-
sitions EDGE_MTTF and EDGE_MTTR are instrumental in toggling between the cloud’s
active and inactive states.

Figure 5. Availability model without migration.
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5. Sensitivity Analysis

This research utilizes a Design of Experiments (DoE) approach in conjunction with
SPN modeling to derive comprehensive insights into the performance of Edge Computing
systems. The variables and their respective levels are consistently applied across models,
both incorporating and excluding migration. This methodological consistency is critical
to ascertain which variable combinations exert the most significant impact on the system.
By exploring these variable combinations across different scenarios, the study robustly
underpins the optimization strategies proposed for enhancing the system’s availability
and reliability.

5.1. Sensitivity Analysis of the System Incorporating Migration

The sensitivity analysis was conducted using the experimental setup illustrated in
Figure 2, with a primary focus on the time interval preceding system failure. Table 4 presents
a comprehensive enumeration of the variables considered in the Design of Experiments
(DoE). This enumeration includes detailed descriptions of each factor and specifies their
respective levels. The factors assessed are (a) EDGE_F, (b) NET_F, (c) RSU_F, (d) RSU_R,
and (e) LOG_F. For each factor, evaluations were conducted at both high and low settings
to ascertain their impact on the overall system performance. The specific configurations for
these factors, as applied in the various experimental scenarios, are thoroughly delineated
in the aforementioned table.

Table 4. Design table.

Factor Name Factor Description Low Setting High Setting

EDGE_F Edge MTTF 125.892 157.365
NET_F Network MTTF 83,220.0 104,025.0
RSU_F MTTF Physical Part of RSU 500.0 750.0
RSU_R MTTR Physical Part of RSU 2.0 3.0
LOG_F MTTF Logical Part of RSU 168.0 210.0

Table 5 comprehensively catalogs the permutations of factor levels employed in the
simulations designed to assess their impact on system availability within an Edge Comput-
ing framework. Each row in the table represents a distinct amalgamation of factor values,
specifically EDGE_F, NET_F, RSU_F, RSU_R, and LOG_F. The terminal column of this table
quantifies the system availability corresponding to each unique factor combination. This
tabulation effectively encapsulates the outcomes of the DOE simulations, facilitating the
identification of factor combinations that either significantly influence or minimally affect
the system’s availability. The structured presentation of these results serves as a pivotal
resource for comprehending the dynamics influencing system performance and the relative
importance of various system components.

The graph depicted in Figure 6, illustrating the effects of a DOE with migration,
provides pivotal insights into the elements most influential on system availability within
an Edge Computing environment. Foremost, the MTTF of the physical RSU emerges as the
paramount factor, with its impact value approximating 0.70. This underscores the criticality
of physical infrastructure reliability in the overall system performance.

Following this, the MTTR of the physical components of RSU, with values oscillating
between 0.40 and 0.45, is identified as another crucial determinant in minimizing system
failures. This finding accentuates the significance of efficient repair processes in maintaining
system integrity.

The interaction between the MTTR of the physical RSU and the MTTF of the logical
RSU is also noted to exert a substantial influence on availability. In addition, the chart
delineates factors with comparatively lower impacts, such as the interplay between the
MTTF of the Edge component and the MTTF of the Network, the MTTF of the logical
components, and the interaction between the MTTF of the Network and the MTTR of the
physical RSU, each registering impact values below 0.05. While these elements are deemed
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less consequential in the present analysis, they could acquire greater significance in certain
specific scenarios, suggesting the need for a nuanced understanding of different operational
contexts in Edge Computing systems.

Table 5. Combination table.

EDGE_F NET_F RSU_F RSU_R LOG_F Availability (%)

125.89 83,220.00 500.00 2.00 168.00 98.35
125.89 83,220.00 500.00 2.00 210.00 97.29
125.89 83,220.00 500.00 3.00 168.00 97.76
125.89 83,220.00 500.00 3.00 210.00 97.41
125.89 83,220.00 750.00 2.00 168.00 98.80
125.89 83,220.00 750.00 2.00 210.00 98.44
125.89 83,220.00 750.00 3.00 168.00 97.93
125.89 83,220.00 750.00 3.00 210.00 98.20
125.89 104,025.00 500.00 2.00 168.00 97.82
125.89 104,025.00 500.00 2.00 210.00 98.02
125.89 104,025.00 500.00 3.00 168.00 98.09
125.89 104,025.00 500.00 3.00 210.00 97.77
125.89 104,025.00 750.00 2.00 168.00 98.62
125.89 104,025.00 750.00 2.00 210.00 98.69
125.89 104,025.00 750.00 3.00 168.00 98.04
125.89 104,025.00 750.00 3.00 210.00 98.61
157.36 83,220.00 500.00 2.00 168.00 97.80
157.36 83,220.00 500.00 2.00 210.00 98.09
157.36 83,220.00 500.00 3.00 168.00 97.16
157.36 83,220.00 500.00 3.00 210.00 97.30
157.36 83,220.00 750.00 2.00 168.00 98.50
157.36 83,220.00 750.00 2.00 210.00 98.71
157.36 83,220.00 750.00 3.00 168.00 98.07
157.36 83,220.00 750.00 3.00 210.00 98.50
157.36 104,025.00 500.00 2.00 168.00 98.16
157.36 104,025.00 500.00 2.00 210.00 98.02
157.36 104,025.00 500.00 3.00 168.00 97.01
157.36 104,025.00 500.00 3.00 210.00 97.92
157.36 104,025.00 750.00 2.00 168.00 99.02
157.36 104,025.00 750.00 2.00 210.00 98.62
157.36 104,025.00 750.00 3.00 168.00 98.06
157.36 104,025.00 750.00 3.00 210.00 98.16

Figure 6. Impact of Different Factors on the System with Migration.
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Figure 7 elucidates the intricate interactions between various factors in a migration-
inclusive scenario and their collective impact on system availability as assessed through a
DOE approach.

In Figure 7a, the interaction between the Mean MTTF of the Edge component and the
MTTF of the Network is analyzed. A notable decrease in system availability is observed
when the MTTF of the Edge (157.0) is juxtaposed with the Network’s MTTF (98.3). This
observation is indicative of the system’s heightened sensitivity to fluctuations in these pa-
rameters, underscoring the critical nature of their balance for optimal system performance.

In Figure 7b, the dynamics between the MTTF of the Network and the MTTF of
the logical RSU component are examined. An inverse relationship is discerned here: an
escalation in the MTTF of the Edge (from 168.0 to 210.0) correspondingly diminishes the
MTTF of the logical RSU. This pattern exemplifies the complex interdependencies within
the system, where enhancing the reliability of one component may inversely affect another,
thereby impacting overall system availability.

In Figure 7c, the analysis is centered on the interplay between the MTTF of the
Network and the MTTR of the physical RSU. An observed increase in the Network’s
MTTF, along with an enhancement to 210 in the MTTF of the physical RSU component,
indicates a notable enhancement in the overall system performance. This result underscores
the critical importance of an integrated assessment of both failure and repair durations
within the Network and physical components of the RSU. Such a holistic approach is
essential for optimizing system availability. These insights collectively contribute to a
deeper understanding of system reliability in Edge Computing environments, highlighting
the need for a thorough evaluation of the interactions between various system components
to achieve optimal system performance.

(a) MTTF Edge × MTTF Network (b) MTTF Network × MTTF RSU Logic (c) MTTF Network × MTTR RSU

Figure 7. Interaction between factors in the system with migration.

5.2. Analysis of System Sensitivity in the Absence of Migration

The effect graph in Figure 8, derived from the DOE conducted without the migration
feature, elucidates the principal factors impacting system availability in an Edge Computing
context. The graph reveals that the MTTF of the logical RSU holds paramount significance,
as indicated by its value exceeding 0.90. This underscores the critical role of the reliability
of the logical RSU in the overall system.

Secondarily, the MTTR of the RSU physical components also emerges as a conse-
quential factor, exhibiting values around 0.60. This finding emphasizes the importance of
efficient repair mechanisms in mitigating system downtime during failures.

Other factors, though less influential, still contribute to the system’s performance.
These include the MTTF of the Network and the interactions between the MTTF of the
Edge component and the MTTF of the logical RSU. Additionally, the interplay between the
MTTR of the physical RSU and the MTTF of the logical RSU, each with impact values below
0.1, also bears significance. These findings are instrumental in enhancing system reliability,
particularly in scenarios where migrating VMs between RSUs is not feasible. They inform
strategic resource allocation decisions and guide interventions aimed at bolstering the
overall performance of Edge Computing systems in non-migratory environments. This
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nuanced understanding of the relative impact of various system components and their
interactions is essential for targeted improvements in system robustness and reliability.

Figure 8. Impact of different factors on the system without migration.

Figure 9 presents an insightful graph of DOE interactions in a context devoid of migra-
tion, offering a clear view of how various factor combinations impact system availability in
Edge Computing environments.

In Figure 9a, the graph underscores the system’s sensitivity to changes in the MTTF of
the Edge component relative to the MTTF of the Network. A significant observation here is
that an elevation in the Edge’s MTTF to 157.0 prompts a slight increase in the Network’s
MTTF, from 95.0 to 95.3. This shift underscores the substantial influence that the Edge’s
MTTF exerts on overall system availability.

Figure 9b examines the interplay between the MTTF of the physical RSU and that of
its logical counterpart. It is observed that augmenting the reliability of the logical part of
the RSU positively influences the MTTF of the physical RSU. This relationship highlights
the criticality of integrating these factors to enhance the overall system performance.

Lastly, Figure 9c delves into the interaction between the MTTR and the MTTF of the
physical RSU. An increase in the MTTR of the physical RSU is shown to improve the
MTTF. However, an increase in MTTF does not significantly impact the MTTR. This finding
accentuates the importance of a balanced approach to managing failure and repair times,
as this balance is key to optimizing system availability.

Together, these insights from Figure 9 emphasize the complex nature of factor interde-
pendencies in Edge Computing systems, particularly in scenarios where migration is not an
option. Understanding these relationships is crucial for the strategic planning and imple-
mentation of measures aimed at enhancing the reliability and efficiency of such systems.
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(a) MTTF Edge × MTTF Network (b) MTTF RSU × MTTF RSU Logic (c) MTTF RSU × MTTR RSU

Figure 9. Interaction between factors in the system without migration.

6. Case Study

In this segment, the paper delineates the findings from the analytical evaluation of the
models introduced herein. This evaluation encompasses a comprehensive assessment of
both the availability and reliability metrics for all the models under consideration. Table 6
provides a detailed account of the parameter values assigned to various system components,
with these values meticulously sourced from extant scholarly publications [40,42–44]. The
parameters detailed include those pertaining to the RSU group, the MTTF and MTTR
for the Edge component, as well as the failure and repair durations associated with the
network. Additionally, the table specifies the initial values for the tokens employed in the
system, a critical element in the modeling process.

Table 6. Model parameters.

Type Component Definition Value

MTTF

EDGE_MTTF
NET_MTTF
RSU_MTTF
RSU_LOG_MTTF

EGDE component failure time
Network component failure time
RSU component failure time
RSU Logical component failure time

125.89284
83,220.0
500.0
168.0

MTTR

EDGE_MTTR
NET_MTTR
RSU_MTTR
RSU_LOG_MTTR

EGDE component recovery time
Network component recovery time
RSU component recovery time
RSU Logical component recovery time

0.913794
12.0
2.0
2..0

Variável
TOKENS
T_M

Entity representing a state or resource
Migration Time

2.0
0.083333

The graph depicting system availability with migration, as shown in Figure 10, delin-
eates a non-linear association between the quantity of VMs utilized and the consequent
system availability. Notably, this graph exhibits a convergence of the availability metrics at
specific VM counts, namely 8, 16, and 32. This overlapping of data lines suggests that the
deployment of eight VMs is sufficient to assure the desired level of availability. Such an
observation is pivotal in informing strategies for resource allocation and cost optimization.
It implies that beyond a threshold of eight VMs, additional VMs do not significantly en-
hance system availability, thereby offering a pathway to maximize resource efficiency. This
efficient allocation of VMs, without compromising the operational efficacy of the system, is
essential in balancing cost effectiveness with system performance.

The research study includes Figure 11, which portrays the graph of system availability
in scenarios where migration between RSUs is not implemented. This graph maintains
consistency in the range of VMs as used in Figure 10, varying from 2 to 32 VMs in operation.
The MTTF for these VMs is set between 100 and 1000 h. A critical observation from the
results depicted in this graph is the comparative reduction in system availability when
migration is not employed, as opposed to scenarios where migration is feasible.
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Figure 10. Availability model with migration.

Specifically, the graph shows that system availability commences at ‘1.00 nines’
with the operation of just 2 VMs, and it marginally escalates to ‘1.36 nines’ with the
use of four VMs. This pattern of availability underscores the significance of migrating
VMs between RSUs in enhancing system reliability. The ability to migrate VMs appears
to be a crucial factor in achieving higher availability, as evidenced by the increase in the
number of ‘nines’ in the availability metric. This insight highlights the importance of
VM migration as a strategy to bolster the robustness and dependability of the system,
especially in contexts where maintaining high availability is paramount. The study thus
provides a compelling argument for incorporating VM migration between RSUs as a means
to optimize system performance and reliability.

Figure 11. Availability chart—no migration model.

In the context of a system deploying four VMs with a MTTF set at 1000 h, it is feasible
to achieve a level of system availability analogous to that obtained with a deployment
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of 32 VMs. This finding suggests that an augmentation in the number of VMs does not
correspondingly result in a substantial increase in system availability. Particularly in the
model excluding migration, the availability attributed to the logical component of the RSUs
emerges as a predominant factor as discerned from the sensitivity analysis.

This distinction between the models with and without migration underscores the
efficacy of the VM migration technique, especially in scenarios characterized by high
demand. It accentuates the necessity of integrating VM migration into strategies for com-
puting resource allocation. Figure 12 provides a comparative analysis, juxtaposing the
average cases in scenarios of system operation with and without migration. This compar-
ison elucidates the differential impacts of VM migration on system availability, thereby
underscoring its critical role in the optimization of computing resources in demanding
operational environments.

Figure 12. Comparison between the with-migration and without-migration models.

Figure 12 presents an analysis of system availability based on the failure time of RSUs
to assess performance in configurations with and without VM migration. In scenarios
without migration, the system demonstrates notable availability, achieving approximately
10.00 nines and increasing slightly to just over 14.00 nines when the MTTF is set at
100 h. Conversely, in configurations with migration, the availability shows a marked
increase as the MTTF is extended, reaching an impressive 20.00 nines with an MTTF of
100 h. These results clearly indicate that migration exerts a positive influence on system
availability, particularly in contexts characterized by extended MTTF periods.

Turning to Figure 13, the reliability graph for the physical component of the system
illustrates the variance in the MTTF of the physical aspect of the RSU, with values spanning
168.0, 250.0, and 500.0 over a duration of 800 h. Reliability is a critical metric for evaluating
the system’s capability to function consistently without failures and interruptions. The data
portrayed in this graph establish a direct correlation between the MTTF of the physical
component and the overall reliability of the system. This relationship indicates that an
increase in the MTTF of the physical part is directly proportional to an enhancement in the
system’s reliability. This insight is pivotal for understanding the impact of the physical
component’s robustness on the overall operational stability of the system.
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Figure 13. Reliability—physical part of the RSU.

As the MTTF is extended, the system exhibits enhanced robustness and resilience,
thereby diminishing the frequency of failures and bolstering reliable operations. Conversely,
a system characterized by an MTTF of less than 168 h tends to be more vulnerable to
failures and faces challenges in sustaining stable operations. This insight is invaluable for
strategizing enhancements to the physical infrastructure of systems in Edge Computing
environments. Effective planning in this context encompasses the implementation of
both preventive and corrective strategies aimed at augmenting the reliability, quality, and
availability of services delivered to end users.

Figure 14 displays the reliability graph for the logical component of the system, with
the MTTF varying between 168.0, 250.0, and 500.0 over a span of 800 h. Assessing the MTTF
of the logical part is vital to gauge its capacity to sustain adequate operational performance,
particularly in Edge Computing contexts where uninterrupted availability is paramount.
The data gleaned from this graph offer insights into the reliability trends of the system’s
logical component relative to the MTTF of VMs.

It is observed that the system with the lowest MTTF of 168 h exhibits a decline in
reliability before reaching 80 h of operation. This trend signifies a reduced capability of
the system to maintain stability and remain free from failures over a shorter duration. In
contrast, the system with the highest MTTF of 500 h demonstrates consistent reliability
throughout the initial 80 h of operation, underscoring its superior ability to remain op-
erational and reliable for an extended period before encountering declines in reliability.
These findings are crucial in understanding the resilience of the logical component of the
system and in guiding decisions related to the management and optimization of Edge
Computing systems.

The analysis of the data underscores the heightened significance of the logical compo-
nent in determining the system’s reliability, surpassing the influence of the physical part.
Although both aspects are integral, the role of VMs, particularly their efficiency in terms
of MTTF, emerges as a critical factor in ensuring uninterrupted system availability. The
observation that a system with an elevated MTTF exhibits prolonged stable reliability prior
to any decline in performance indicates that the efficacy and dependability of VMs are key
determinants of system stability.

144



Sensors 2023, 23, 9485

Figure 14. Reliability—logical part of the RSU.

Consequently, it is imperative to place emphasis on strategies aimed at bolstering
the reliability of the system’s logical aspect. This strategic focus encompasses several
key measures:

• VM management policies: The development and implementation of comprehensive
management policies for VMs are crucial. These policies should be designed to
effectively handle resource allocation, scaling, and migration, thereby enhancing
system performance.

• Performance monitoring: Rigorous and continuous monitoring of system perfor-
mance is essential. This enables the early identification and resolution of potential
issues, thereby maintaining the system’s operational integrity.

• Maintenance practices: The adoption of appropriate and systematic maintenance
practices is vital in ensuring the optimal functioning of VMs. Regular maintenance
activities, including updates and troubleshooting, are necessary for sustaining system
health and efficiency.

Implementing these strategies will significantly enhance the availability and quality
of the services rendered by the system. Such enhancements not only contribute to the
system’s resilience and operational efficiency but also to the overall user experience in Edge
Computing environments. Therefore, prioritizing improvements in the logical part of the
system is not merely a technical imperative but a strategic approach to achieving superior
service delivery.

7. Conclusions

This research meticulously analyzed system availability within networks of RSUs
using SPN and the DOE methodology, focusing on environments with and without VM
migration. The findings successfully met the study’s objectives, providing insightful
revelations about the impact of critical factors on system performance in both migration
scenarios. A significant aspect highlighted by the study is the critical role of VM migration
in VANETs, which proves to be fundamental in optimizing system availability. This process
not only ensures a balanced distribution of workload but also substantially minimizes
system downtime. The study identifies the MTTF of physical RSUs and the MTTR of the
logical components of RSUs as pivotal determinants of system availability. These findings
emphasize the necessity of enhancing these components to secure reliable and efficient
operation in VANET contexts.
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For future research directions, a more granular investigation of the identified factor
interactions is suggested. This should include considering a broader range of variables
and conducting empirical experiments in real-world environments to further validate and
refine the proposed model. Additionally, exploring alternative approaches to VM migration
and incorporating advanced load-balancing strategies are proposed as avenues for further
study. These investigations are expected to provide deeper insights and enable additional
improvements in system availability and performance, especially in the complex and
evolving landscape of Edge Computing. This comprehensive approach to future research
will not only enhance the understanding of system dynamics in VANETs but also contribute
to the development of more resilient and efficient vehicular network systems.
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Abstract: In this paper, we propose a new cooperative method that improves the accuracy of Turn
Movement Count (TMC) under challenging conditions by introducing contextual observations from
the surrounding areas. The proposed method focuses on the correct identification of the movements
in conditions where current methods have difficulties. Existing vision-based TMC systems are limited
under heavy traffic conditions. The main problems for most existing methods are occlusions between
vehicles that prevent the correct detection and tracking of the vehicles through the entire intersection
and the assessment of the vehicle’s entry and exit points, incorrectly assigning the movement. The
proposed method intends to overcome this incapability by sharing information with other observation
systems located at neighboring intersections. Shared information is used in a cooperative scheme
to infer the missing data, thereby improving the assessment that would otherwise not be counted
or miscounted. Experimental evaluation of the system shows a clear improvement over related
reference methods.

Keywords: Turn Movement Count (TMC); cooperative vision; vehicle count; smart intersection;
traffic analysis

1. Introduction

Turn Movement Count (TMC) is the task of counting how many vehicles perform each of
the possible movements at an intersection in a specific time period. It has been widely used
in the applications of infrastructure planning, smart cities, and traffic optimization. Existing
automated traffic analysis systems often underperform compared to human annotators,
but they are able to annotate much larger datasets for extended periods of time. Despite
these systems’ successes, they tend to miscount turn movements in situations with many
simultaneously visible vehicles. These vehicles occlude each other, making it impossible to
correctly identify the origin or destination of the vehicle. If a vehicle is occluded for most of
its trajectory, current methods that rely on a single source of information cannot overcome
this problem.

More recently, systems that implement multiple cameras at a single intersection have
been introduced, with the goal of overcoming some of these problems in cases when a
vehicle can be seen by at least one camera at all times. However, to ensure that all vehicles
are in view, greater numbers of cameras are required and the computational cost is higher
due to the larger amount of data to be processed. Although increasing the number of
cameras observing a single intersection is not a cost-effective solution, traffic surveillance
systems that observe the entry and exit streets at most intersections are already deployed
in most cities. Other methods from the literature rely on information provided directly
from vehicles. The available information varies depending on the vehicle types transiting
through the area and the implemented technology. Information sources range from RFID
tags that simply inform the system that a certain vehicle is present, to highly sophisticated
systems common on autonomous vehicles. These latter systems obtain information on
traffic environments from onboard sensors such as cameras, radars, and LIDAR.
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In this work, we propose a system that utilizes existing camera infrastructure to
perform TMC cooperatively. This system consists of multiple independent observational
systems that collect and process local data at different locations in parallel and share relevant
information between nearby intersections. The shared data provides a broader context to
the observations at any given intersection, either by confirming previous motion estimations
or by providing information about the vehicle’s movements before entering and after
leaving the intersection. We postulate that with this additional information, a cooperative
system should be capable of correctly evaluating a vehicle’s movement under conditions in
which current systems would fail, given the same sensor configuration.

2. Related Work

Over the years, various innovative approaches have been proposed to solve the
turn movement count problem using video analysis. Most of the methods described
below employ a variation in the Detect-Track-Count paradigm, which consists of a set of
sequential processes.

2.1. Detection

The Detection step consists of determining the regions of interest (ROI) in the image
containing vehicles. Early methods used a variation in background subtraction to determine
the ROIs, such as those presented in [1,2], by removing parts of the image that have
not changed significantly over a certain number of frames. As these methods require
multiple steps to be performed in sequence, they are often slower and more computationally
expensive than more recent approaches.

More recent approaches rely on deep learning techniques to detect vehicles in the scene,
such as in the works of [3–5]. These techniques have demonstrated better performance in
detecting vehicles. In addition, these approaches are able to process algorithms such as
YOLO [6] faster, a technique that provides accurate regions of interest from a single pass
over the image. While improvements in detection speed and accuracy have contributed to
a better TMC performance, they do not address high occlusion scenarios.

2.2. Tracking

The Tracking step of the process obtains the trajectories of previously detected vehicles
as they move across the intersection. The most naive tracking methods, such as those
presented by [7,8], extract the distances between the current and previously detected object
positions. The trajectory is therefore described as a series of points in a sequence of images
in which the vehicle has been detected. As these systems are frame-to-frame based, they
require a high frame rate to track vehicles, given that the association of trajectory to a
specific vehicle becomes inaccurate at low frame rates.

More sophisticated methods rely on a combination of visual features’ re-identification
(described further below in Section 2.4) and the current position, to associate a trajectory
to a vehicle. Such methods can correctly determine the location of an identified vehicle
in a new frame, instead of relying on the proximity of detected positions to associate the
tracks. Therefore, they allow for more robust trajectory assignment. This can be seen in
the works of Liang et al. and Wojke et al. [9,10]. This approach reduces the uncertainty
of the tracker while allowing for lower frame rates to be used, at the expense of higher
computational complexity.

Other tracking systems, such as the one presented by Li et al. [11], essentially merge
detection and tracking into a single process. This tracker passes a prediction of probable
ROIs based on the current trajectory, providing the detector algorithm with a distribution
of probable ROIs on which to perform detection. While this solution is the most complex of
those discussed here, it is also the most reliable for continuous tracking, once a vehicle has
been detected and tracking has started.
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2.3. Movement Assignment and Counting

Movement assignment and counting is the last step taken via existing TMC methods.
Based on the trajectory obtained from the tracking system, a turn movement is selected
and counted based on a preexisting list of possible moves. Two main approaches exist for
selecting the turn movement.

The first method consists of determining the entry and exit points of the vehicle by
performing an intersection test between the vehicle’s trajectory and a predefined region of
the intersection; the entry point is defined as the first region where the vehicle was detected,
and the exit point corresponds to the last tracked position. This type of TMC can be seen in
works such as [1,12–14]. When the detection algorithm is slow, this type of TMC becomes
unreliable—the entry point will be incorrectly identified, and in cases where the vehicle is
occluded while in the exit region, missed assignments will occur.

The second method consists of comparing the entire trajectory with previously known
trajectories from the annotated data. These methods, as presented in [15–17], tend to
be computationally expensive, since comparing whole trajectories is more complex than
performing point-region intersection tests. The biggest issue in trajectory comparison is the
precision of the tracker and the accuracy of the reference trajectory, since minor tracking
deviations can generate confusion during evaluation.

2.4. Re-Identification

Re-identification consists of determining if an object of interest is detected—in this
case a vehicle—and if it is the same as a previously detected vehicle. When an object has
been detected, a series of identifying features are collected and compared to all previously
collected feature sets. If the similarities between the features surpass a certain threshold,
the object is considered the same as the one generating the initial feature set. While re-
identification is not an essential part of TMC, some methods use it to increase the precision
of assigning a trajectory to a vehicle. The main limitation of current vehicle re-identification
methods is that the similarities of different vehicles tend to surpass the threshold for
positive ID. That is, the feature set used to describe a previously observed vehicle may be
similar enough to that of a different vehicle and cause incorrect identification, confusing
the second vehicle for the first one.

This problem can be partially solved by increasing the similarity threshold required
to match a newly detected vehicle to an existing ID. However, this comes with the main
drawback of decreasing the number of vehicles correctly identified.

2.5. Other Data Sources

Although in this work we focus on conducting TMC using camera-based systems,
other methods perform traffic analysis using data collected from different sources. These
methods include systems based on radar, such as in [18,19], while others use 3D data
captured via LIDAR, such as [20,21]. In recent years, a new concept has emerged to combine
existing roadside sensors, such as those already described, with vehicle-mounted sensors
such as LIDAR. Since autonomous driving vehicles already include such technologies, as
described in [22], this integration would deliver more relevant information to the traffic
system without increasing the cost of the infrastructure. The inclusion of these additional
traffic data sources presents a great opportunity for research. However, a main limitation
barring a wider application of these concepts is the limited types of data used in existing
public infrastructure, where these kinds of systems are to be deployed.

3. Methodology

We propose a cooperative feedback approach to address the vehicle occlusion problem
affecting traffic analysis systems. Our approach gathers information from multiple points
in surrounding areas. This information is used to assign a turn movement to a vehicle in
cases where the assignment could not be made using information obtained only locally.
We propose this approach based on the fact that the movement of a vehicle through an
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intersection is not an isolated event limited to the intersection, but rather part of a complex
series of movements through an environment of interconnected roads, observed via traffic
monitoring systems at multiple intersections. We represent the interconnections of roads as
a directed multigraph, where each intersection is considered a node and each of the lanes
connecting these intersections is an edge, as shown in Figure 1 where the main intersection
C is connected to A, B, D using directional edges representing the traffic flow. We also
consider all possible combinations of incoming and outgoing edges as the list of possible
turn movements at that node, without considering the legality of such moves.

Figure 1. Visual representation of an intersection as a node C in a connected graph, with neighboring
intersections A, B, D. Intersection C is connected with entry points w3, w4, and exit points a1, a2.
Dotted lines represent possible movements through the node, representing the legal turn movements
at that intersection.

To determine how the information provided by the other intersections influences a
TMC system, we propose a method formally described in Section 3.1. In Section 3.2, we
describe the software implemented to test this system.

3.1. Formalization

Given the previously described assumptions, the problem can be formalized as follows:

• U = {uv|v = 1, . . . , V}, a set of objects of interest uv (vehicles in this case) where V
denotes the cardinality of the set.

• Ω = {ωj|j = 1, . . . , J}, a set of incoming edges’ ends ωj (entry points to intersections
in this case), where J denotes the cardinality of the set.

• A = {αk|k = 1, . . . , K}, a set of outgoing edges’ ends αk (exit points to intersections in
this case) where K denotes the cardinality of the set.

• Γ = {γi|γi ∈ Ω
⋃

A}, the set of edges’ ends γi (accesses, whether entries or exits, to
intersections in this case).

• A crossing P(cl) : Ω → A is a function linking entries to exits according to the rule of
association P(cl) = {(ωj, αk)|ωj ∈ Ω, αk ∈ A}, where a set of ordered pairs between
entries ωj and αk exits on a crossing. Note that this allows us to model most types of
intersections. We enforce the constraint that any given access γi can only be part of, at
most, one crossing p(cl), noted γl

i , but within that intersection, it may participate in
several ordered pairs, i.e., we assume free ends. We refer to an ordered pair (ωl

j , αl
k) as

a pathlink pl
jk; hence, a crossing is a set of intranodal pathlinks.

• C = {P(cl)|l = 1, . . . , L}, the set of intersections as described by its pathlinks P(cl),
with L as the cardinality of the set.

• A road network can be represented by a directed multigraph G = (C, E) of intersec-
tions and E = C × C and streets. Now, the incoming edges to a node form Ω, and
the outgoing edges are in A. In other words, an edge is an ordered pair e = (αk, ωj),
with Γ as all the edges’ endpoints. Not all intersections will be monitored, but this
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is circumstantial. Furthermore, it is not critical to know the whole network G, and it
suffices to know C.

• S = {si
r|r = 1, . . . , R, i : γi ∈ Γ}, a set of observations obtained from the video analysis

(acquired with some corresponding camera) si
r looking at some intersection access

γi, with R denoting the cardinality of the set. If a camera can monitor more than one
access in one or more intersections, this can be represented by as many si

r instances as
required. If any camera does not monitor some access, there will not be a data source
for that access. An access γi may be observed via none, one, or more cameras. These
observations will be noted as si

r[tn] with n = 1, . . . , T set of timestamps.

At any given time tn of {T}, a vehicle uv may be detected using an observation
algorithm si

r. A function fdetect in Equation (1):

fdetect :{T} × S × U → Bool = {True, False, NA}
b = fdetect(tn, si

r, uv)
(1)

indicates when the vehicle uv is being detected via some observer si
r at the time tn, si

r[tn].
If the status of the detection b is True, this indicates that the vehicle is being detected.
The outcome False indicates that the object is not being detected, while NA indicates
that the detection cannot be confirmed (e.g., due to occlusions). Naturally, because si

r
monitors access γi and given the constraint that one access can only be part of, at most, one
intersection p(cl), if fdetect(tn, si

r, uv) = True, we also know that object uv was at node p(cl)
at time tn.

The problem can be stated as follows: Given a time t, an object uv, an entry access ωj

at intersection p(cl), noted ωl
j , and knowledge of the situation at the intersection C and

observation S, determine the (most likely) exit access αk in the same crossing p(cl), noted αl
k

t with g as the node traversing function, which is unknown.

argmax
αl

k

Pr(g(tn, uv, ωj; C, S) = αk) (2)

In other words, determine the most likely outgoing end of the pathlink (ωl
j , αl

k),
followed by the vehicle uv traveling road network G at time tn exploiting the info in S.
This is solved using the Nelder–Mead algorithm [23] by iteratively adjusting the shape of
a graph to find the lowest or highest point, depending on the goal. Shape optimization
continues until passing a convergence threshold or reaching a stopping condition.

3.2. The Algorithm

The proposed solution is organized as a modular platform that executes different
algorithms in parallel. Each algorithm is implemented as an independent plugin, sharing
information using a shared memory whiteboard model. An illustration of the proposed
algorithm is shown in Figure 2.

3.2.1. Data Acquisition

This module obtains the most recent unprocessed video frame from the device and
associates a timestamp to it, then saves the frame to memory and shares it with the other
plugins using the shared whiteboard. The protocols supported by this plugin are RTSP [24],
TrafiSense2 Dual thermal camera, iDS uEye camera, and local video files or image sequences.

3.2.2. Detection

This plugin relies on the YOLO version 4 implementation provided by OpenCV, [25]
using the parameters shown in Table 1 trained on the COCO dataset [26] and considering
only the traffic-related objects from its multi-class output. The algorithm determines the
position and bounding boxes of the vehicles in the scene, as illustrated in Figure 3. Once the
bounding box is determined, it is cropped and shared along with its view space coordinates.
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Figure 2. Illustrative data exchange among different modules of the architecture proposed. All
modules are executed in parallel and data exchange is bidirectional and asynchronous.

Table 1. Parameters used in the training of YOLO using the COCO dataset.

Parameter Value Parameter Value Parameter Value

batch 64 momentum 0.9 learning_rate 0.001
subdivisions 16 decay 0.0005 burn_in 1000
width 608 saturation 1.5 max_batches 500,200
height 608 exposure 1.5 policy steps
channels 3 hue 0.1 steps 400,000, 450,000

Figure 3. Visual representation of resulting bounding boxes defined by the detection algorithm.
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3.2.3. Feature Collection and Re-Identification

This plugin extracts recognizable features from the bounding box using the ORB
algorithm [27]. A sample of the feature match progress is shown in Figure 4. A set of
newly extracted features are compared to either the previously known features collected
via this processing node, or to those received from other locations via the network, using
the Hamming distance defined in Equation (3) where the features a from the current camera
image are compared to features b stored from previously collected features, as well as
where ai and bi are the individual features.

dhamming(a, b) =
n−1

∑
i=0

(ai ⊕ bi) (3)

Figure 4. Feature matching during the re-identification process. Red circles features detected via the
ORB algorithm. Green lines matching features.

If there is a match, the vehicle is considered re-identified and the known ID is assigned.
If the comparison does not pass the threshold, the vehicle is regarded as unknown and a
new ID is assigned. Once the ID is assigned, the system shares it, appending its features to
the existing feature set.

3.2.4. Tracking

This module follows the vehicle through the scene. The position obtained via the
detector is projected to a top-view representation. In addition, the position of each detected
object is tracked using a Kalman tracker in combination with the ID provided by the re-
identification algorithm. Once the top-view trajectory has been determined for all cameras,
the trajectories are merged based on their associated ID, using the Frechet distance as
shown in Algorithm 1 and in Figure 5. This algorithm measures the similarity between two
curves that maintain a certain proximity by recursively calculating the Euclidean distance
of the points that belong to the curves. If the resulting distance is below a certain threshold,
the trajectories are merged using point averaging. Thus, the resulting trajectory is stored
as an observation S for the intersection C. The stored trajectories are then used by the
turn movement assignment algorithm to select both the most probable route taken and the
appropriate TMC.

3.2.5. Turn Movement Assignment

The system determines the most probable trajectory (ωl
j , αl

k) for a vehicle uv based on
its entry point ωj and the observations collected via the tracking module using Equation (2).
This is performed by comparing the observed trajectory, aligning the sequences in a non-
linear manner to a series of predefined turn movements, as shown in Figure 6, and finding
the optimal match by stretching or compressing one of the trajectories to match the other,
as described in Algorithm 2. The trajectory that requires the smallest change is considered
the best match to the known legal turn movement.
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Algorithm 1 MergeTrajectories

function MERGETRAJECTORIES (splines, threshold)
trajectory ← ∅
if splines is not empty then

for i ← 0 to length(splines)− 1 do
for j ← i + 1 to length(splines) do

distance ← CalculateEuclideanDistance(splines[i], splines[j])
if distance < threshold then

mergedSpline ← AveragePoints(splines[i], splines[j])
trajectory ← trajectory ∪ {mergedSpline}

end if
end for

end for
end if
return trajectory

end function

Figure 5. Tracking and smoothing process. Image-space trajectories projected to top-view blue and
green lines and combined to obtain the final trajectory in top-view space red line.

Algorithm 2 TrajectorySimilarityEvaluation

1: function TSS(A, B): float
2: n ← length of A
3: m ← length of B
4: DP ← a 2D array of size (n + 1)× (m + 1)
5: for i ← 1 to n do
6: for j ← 1 to m do
7: cost ← distance between A[i] and B[j]
8: DP[i][j] ← cost + min(DP[i − 1][j], DP[i][j − 1], DP[i − 1][j − 1])
9: end for

10: end for
11: return DP[n][m]
12: end function
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A4->B2
A4->B3

Figure 6. Visual representation of the proposed scene model at one intersection. Blue arrows indicate
three legal turn movements at this specific intersection starting from A1: left (A1→B2), straight
(A1→B3), and right (A1→B4).

Once the most probable trajectory is assigned, it is stored along with the vehicle ID
and used for future comparisons with the trajectories obtained by human observers. In
addition, the computed TMC is communicated to other nodes on the road network G to be
used in further computations.

3.2.6. Communication

This module collects all available information shared by the other modules of its
node and sends it to other nodes on the network. It also receives incoming data from
other nodes and integrates it into the node’s shared whiteboard. As the main component
of the cooperative system, this module allows the node access to information about the
environment that the locally connected sensors cannot collect. The information exchange
uses a low-latency broadcasting messaging protocol that sends messages to all the other
nodes simultaneously. In addition, the communication system also sends messages at each
vehicle entry event, when a vehicle has been re-identified via a new node, and vehicle exit
event, when the vehicle has left an intersection. The data communicated is user-defined;
to reduce the amount of data exchange in our experiments, data sharing was limited to:
originating node, timestamp, re-identification ORB features, vehicle IDs, and entry/exit point.

In addition, this module continuously reviews the events provided by the other sys-
tems and compares the entry/exit events to determine if the vehicle has been re-identified
via another node. If re-identification occurs, the turn movement assignment is confirmed,
thereby giving a higher certainty of a correct assessment.

4. Experiments

To evaluate the influence the proposed cooperation scheme has on the overall perfor-
mance of a TMC system, we conducted a comparison between four scenarios, using the
same dataset. The scenarios were a no-cooperation setup, a partial TMC confirmation, a
complete TMC confirmation, and a partial blackout setup. We assessed the accuracy of
TMC assignments compared to the ground truth manual annotations. We hypothesized
that the TMC system would have the highest performance when maximum information
was shared between the different nodes.

157



Sensors 2023, 23, 9772

4.1. Experimental Setup

To correctly assess how the knowledge of its surroundings affects the result of a TMC
algorithm, the dataset used should provide the context of surrounding intersections. To
the best of our knowledge, no such dataset was available. A new dataset was captured
using publicly accessible traffic cameras provided by the Lexington-Fayette Urban County
Government in Lexington, KY, USA. The dataset was recorded from a total of 90 intersec-
tions, each equipped with four cameras pointing in the general direction of the legs of
the intersection. Recordings were 1280 × 720 pixels, collected for 30 min at 25 frames per
second. One issue we had to address is that the cameras in this system were destined for
human traffic monitoring. Therefore, these cameras have not been calibrated or configured
for software analysis. Sample images captured at one of the intersections used in this
dataset can be seen in Figure 7. To overcome the problem of calibrations, the views were
manually projected to align with the observable ground plane.

Figure 7. Illustrative frames of video captured at one of the intersections and approximated locations
of all the cameras recorded.

Since the full context was not available for all intersections, a subset was selected.
We chose intersections whose adjacent intersections were also recorded. The videos from
these intersections were manually labeled by assigning an identifier to each leg of the
intersection, enumerating each possible movement to be performed, and finally, assigning
one of the possible movements to each vehicle in the scene. The data from the adjacent
intersections were labeled and assigned the same unique ID to each vehicle in all scenes. As
the experiment did not allow for on-site analysis, the experiments were performed offline on
a single computer. To best replicate real-world conditions where each intersection would be
processed via a single edge device such as an Intel NUC or a similar low-power unit, each
node was executed on a single thread of the host unit, limiting the RAM available to 1 GB
and with no GPU acceleration. Meanwhile, the network connection was set to 10 Mbps
with an average simulated latency of 100–150 ms, which is similar to the latency found on
low-cost public infrastructure solutions. For each experiment, the system simulated five
processing nodes simultaneously, i.e., one main central node and four secondary nodes. The
results reported in Section 4.3 only consider the results of the central node. The secondary
nodes are used to provide context to the main node to increase its accuracy, but are not used
directly for the evaluation. In this way, the systems are compared under the most similar
conditions possible.

4.2. Experimental Scenarios

These scenarios were designed to test our hypothesis that “A cooperative system will
surpass a non-cooperative system under the same conditions”. Specifically, we selected the
three most circulated intersections, each in a traditional crossroad configuration (i.e., four-legged
symmetric intersection). For each intersection, the central intersection area acted as the main
point of interest, and the four surrounding nodes served as cooperative inputs. An illustration of
a typical four-legged intersection can be seen in Figure 8. The four scenarios are described next.
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Main
node

Figure 8. Illustrative distribution of a common four-legged intersection with one central node and
four secondary nodes that communicate.

Scenario 1: No cooperation. Cooperation is entirely disabled. Information provided
by other nodes is not used to determine the vehicle’s movement. To maintain a similar
workload of the system, we left communication enabled, but configured the main node
to ignore any information provided by the other nodes of the network. This reflects the
basic scenario of how most TMC systems are tested. That is, a standalone system that is
only capable of using locally collected data. This also reflects the fundamental behavior
of non-cooperative systems typically found in the literature. Therefore, we consider this
scenario as a baseline for the comparison of a cooperative system, as all other conditions
remain equal.

Scenario 2: Partial TMC confirmation. In this scenario, the data from other nodes is
only used if the entry/exit points cannot be determined using local data. This scenario
represents the main cases where the vehicle is occluded during the initial or final parts of
its trajectory. This can be reduced to the following steps:

(1) If entry and exit points are defined:

• Store trajectory and exit.

(2) If no entry point is defined:

• Request re-identification.
• If the re-identification is positive:

– Assign the vehicle entry point based on the location where the vehicle was
initially identified.

• If the re-identification is negative:

– Assign the vehicle entry point based on the closest available point.

(3) If no exit point is defined:

• Await a positive re-identification reported by another node.
• If the re-identification is positive:

– Assign the exit point to the leg of the intersection connected to that node.

• If the re-identification is negative:

– Assign the vehicle exit point based on the closest available point.

We limit the cooperation in this scenario to undetermined cases. Therefore, the system
will not perform any correction to incorrectly assessed movements. Consequently, incorrect
assignments made on the central node, not related to an incomplete trajectory, will remain
incorrect even if other nodes perform correct re-identification.

Scenario 3: Complete TMC confirmation. In this scenario, we take full advantage of
the cooperative mode of the system. Each node performs the turn movement assignment
using the local data, while also confirming with other nodes following the steps listed below:

(1) Each node performs the turn movement assignment using the local data.
(2) Confirm the entry point by:
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• Performing a re-identification of the vehicle.
• Determining if the assigned entry point coincides with the previously identified

node.

(3) Confirm the exit point by:

• Awaiting a positive re-identification reported by another node.
• Determining if the assigned exit point coincides with the subsequently identified

node.

(4) If more than one node presents an entry/exit:

• Maintain the locally obtained trajectory and exit as probable misidentification
occurred.

(5) In case of any discrepancy between local and remote ID:

• Re-assign the points if the re-identification confidence level is above the threshold.
• Maintain original points if the re-identification confidence level is below the

threshold (assumed misidentification).

In addition, the node also adds vehicle IDs with a turn movement when two neighbor-
ing nodes indicate the route to the intersection as the exit point and entry point, respectively.
Therefore, the node manages to assign probable turn movements even to occluded vehicles,
based on the information provided by its peers.

Scenario 4: Partial blackout. In this scenario, the system is configured with the same
cooperative capabilities as in scenario 3—Complete. However, the locally obtained data is
blocked in order to simulate a failure of the cameras. This is a common situation when
traffic accidents damage the sensing infrastructure. Traffic behavior analysis becomes more
important in these cases, as the conditions at the intersection produce unexpected traffic
flows. In order to make its turn movement assignment with these limiting conditions, the
node depends entirely on the cooperative aspect of the system and the data provided by
the surrounding nodes. Under this scenario, the system should be able to correctly assess
those cases where a vehicle is identified by two of the adjacent nodes and assign the turn
movement based on this. While this scenario represents an extreme case where a system
that only uses local information is completely incapable of performing correctly, it presents
an opportunity to determine if cooperation is beneficial in cases of technical failures, such
as the one illustrated in Figure 9.

Figure 9. Illustrative example of the cooperation of the system. In this scenario, it is possible to infer
the trajectory of the vehicle across the middle intersection (red) from the information provided by the
neighboring nodes (green, blue), even if the camera at the central intersection was obstructed.
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The architecture is configured in such a way that the plugins of the platform can be
activated based on the cooperative level being used in each tested scenario, which can be
seen in Algorithm 3. This is used to dynamically change how each node of the network
uses the context provided by the other nodes and what information is to be shared using
the communication plugin.

Algorithm 3 Simplified plugin call pseudocode

1: trajectory ← GET_REDUCED_TRAJECTORY()
2: if cooperationlevel = 1 then
3: if not EntryPoint then
4: Assign closest entry point to trajectory
5: end if
6: if not ExitPoint then
7: Assign closest exit point to trajectory
8: end if
9: end if

10: if cooperationlevel = 2 then
11: if not EntryPoint then
12: trajectory.Entry ← REIDENTIFYENTRY(features)
13: end if
14: if not ExitPoint then
15: trajectory.Exit ← REIDENTIFYEXIT(features)
16: end if
17: end if
18: if cooperationlevel = 3 then
19: if REIDENTIFYENTRY(features) > threshold then
20: trajectory.Entry ← NewEntry
21: end if
22: if REIDENTIFYEXIT(features) > threshold then
23: trajectory.Exit ← NewExit
24: end if
25: end if
26: TM ← TRAJECTORYSIMILARITYEVALUATION(trajectory)
27: ASSIGNTMC(TM)

4.3. Experimental Results

The system was applied to three intersections, with a total of 890 manually labeled
turn movements.

As shown in Table 2 and in Figure 10, Scenario 3—Complete—achieved the highest
average at 95.65% ± 1.55 correctly identified movements and reached a performance of 97%
on Intersection 3, outperforming the other scenarios by 4% to 70%. On scenario 4—Partial
Blackout, the system was capable of correctly assigning on average 30.67% ± 4.04 of the
turn movements. Systems without a cooperative feature would be incapable of this task
because the local data has been blocked, where such systems would identify zero vehicles.

Table 2. Percentage of Correctly Assigned Turn Movements for the three intersections under the
four scenarios.

Intersection
A

Intersection
B

Intersection
C

Average STD

No-Coop 87% 82% 91% 86.67% 4.51
Partial 91% 86% 93% 90.00% 3.61

Complete 94% 96% 97% 95.65% 1.55
P-Blackout 30% 35% 27% 30.67% 4.04
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Figure 10. Correctly assigned turn movements in different scenarios.

Table 2 also shows that the standard deviation (STD) is smaller in more cooperative
scenarios. This shows a clear tendency for an overall higher performance when the system
shares more information.

These results can also be contrasted in Table 3, showing a clear increase in the F1 score
when the system uses cooperative mode. The clear advantage of the use of cooperation in
scenario 4 P-Blackout can also be seen, in contrast to a standard system, where the score
without cooperation would be zero. It should also be noted that in scenarios 2 Partial and
3 Complete, cooperation reduces the false negative rate without inducing a large increase
in the false positive rate, demonstrating that cooperation does not increase incorrect turn
movement assignments.

IDF1 =
2 × TP

2 × TP + FP + FN
(4)

Table 3. IDF1 score of the TMC under different scenarios on a total of 890 different turn movements.
IDF1 score obtained using Equation (4); TP true positive; FP false positive; FN false negative.

IDF1 TP FP FN

No-Coop 0.7120 55.28 24.49 20.22
Partial 0.7464 59.55 21.01 19.43

Complete 0.7799 63.93 21.91 14.15
P-Blackout 0.4786 31.46 9.77 58.76

Further testing is required due to the relatively small dataset used in these experiments.
Nevertheless, we note a tendency for performance improvements when using cooperative
methods compared to non-comparative ones. Moreover, this system is capable of correctly
inferring the information of an intersection without directly observing it.

5. Conclusions

While the TMC results of the proposed system, when functioning in non-cooperative
mode, are similar to the published results in the literature, the integration of coopera-
tion significantly improves the TMC performance. Additionally, it is noteworthy that
by integrating a cooperative scheme into the algorithm, it is possible to perform TMC
under adverse conditions where one part of the system is incapable of collecting data
on its own. This system will be more robust and reliable in conditions where the correct
assessment of movements is the most important factor when making decisions about
infrastructure improvements.
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The main contribution of a cooperative system, compared to non-cooperative systems,
is that the proposed system is capable of determining the movements of vehicles even
when no direct observation of the intersection is possible. As the cooperation of the system
does not depend on any particular detection or tracking algorithm, the proposed system
can be integrated with other existing TMC methods, providing additional certainty. The
experiments described here demonstrate that the system is highly scalable, as each node
is only required to both analyze the data provided by the cameras at one intersection
and communicate with the directly neighboring intersection, e.g., 3–5 neighbors in most
common urban scenarios. This scalability at a relatively low cost, compared with a cen-
tralized solution, allows for ad hoc expansion of the system. We expect to expand this
research to evaluate the system in real-world scenarios using real edge hardware solutions.
We also plan to integrate additional sensing capabilities such as thermal cameras, radar,
and LIDAR, as these sensors provide additional information, expanding the possibilities
of better infrastructure planning. We are also exploring the possibility of expanding the
system to observe larger areas, such as highways and interstates, to perform long-term
vehicle tracking. Once these sensing technologies have been integrated into the system, we
plan to deploy the complete system in real-world scenarios to improve the local capabilities
of traffic analysis.
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Abstract: Line-of-sight (LOS) sensors developed in newer vehicles have the potential to help avoid
crash and near-crash scenarios with advanced driving-assistance systems; furthermore, connected
vehicle technologies (CVT) also have a promising role in advancing vehicle safety. This study used
crash and near-crash events from the Second Strategic Highway Research Program Naturalistic
Driving Study (SHRP2 NDS) to reconstruct crash events so that the applicable benefit of sensors in
LOS systems and CVT can be compared. The benefits of CVT over LOS systems include additional
reaction time before a predicted crash, as well as a lower deceleration value needed to prevent a crash.
This work acts as a baseline effort to determine the potential safety benefits of CVT-enabled systems
over LOS sensors alone.

Keywords: advanced driver assistance systems; naturalistic driving data; automated driving systems;
connected vehicles

1. Introduction

New vehicles are being equipped with a multitude of sensors to be used in advanced
driver assistance systems (ADAS) and/or automated driving systems (ADS) to develop
an understanding of their environment. These environmental sensors can generally be
characterized as line-of-sight (LOS) sensors because they rely on information directly
captured by the sensors’ field of view. However, to increase the amount of information
available and to expand the sensed field of view, it is beneficial to use additional shared
data from other vehicles and the infrastructure. By leveraging evolving communication
systems, data shared over connected vehicle technologies (CVT) may provide a variety of
performance benefits to transportation. This new level of collaborative communication has
the potential to develop a collective perception of a vehicle’s environment, which could
directly improve safety as events unfold.

The purpose of this research is to act as a baseline attempt to measure the potential
safety impact that advanced sensors and communication methods can make in real-world
crashes and near-crashes. Therefore, in this research LOS sensors are used to describe any
sensors that use vision-based technology for object detection (such as cameras, RADAR, or
LiDAR). These sensors are most often used in advanced driver assistance systems (ADAS)
and automated driving systems (ADS). CVT may have additional sensors that are used
in sharing or receiving information with other vehicles or infrastructure. Currently, the
implementation of CVT is mostly found in simulation testing [1].

Previous work has characterized some of the potential advantages of LOS and CVT,
such as increasing traffic speed or flow rate without any negative impact on traffic safety,
improving individual mobility, providing environmental impact reduction benefits through
reduced fuel use and better efficiency, and preventing/mitigating fatal and injury-causing
crashes [2–6]. Although some of these potential advantages can be readily predicted
through macrosimulation techniques, quantifying the actualized safety benefit of LOS
sensors or CVT requires a more nuanced approach. This is because the specific factors
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leading up to a police-reported crash are generally unknown and can vary greatly between
one another [7]. Generally, the prospective safety impact of more advanced vehicle-sensing
technology, like LOS or CVT, is projected by estimating the number or percentage of police-
reported crashes that could have been avoided if the vehicles involved were equipped with
additional sensors. For example, through a meta-analysis model of 73 different studies,
it was found that up to 48.07% of crashes in the US could have been prevented if all of
the vehicles involved had CVT or were automated vehicles [8]. Additionally, through
the analysis of GES crash records from 2005–2008, CVT or LOS sensors could conceivably
have prevented 32.99% of crashes, and 47% of rear-end crashes in the US [9]. According
to a preliminary study by the National Highway Traffic Administration (NHTSA), CVT
could eventually prevent or mitigate about 80% of non-alcohol-related crashes [10]. These
studies use crash aggregates and crash types to assume how many crashes could have been
prevented if there was 100% market penetration of these technologies.

Studies like these provide a general estimate of the types of crashes that could be miti-
gated or avoided with the implementation of these sensors and technologies, but each crash
is unique, and the actual impact of LOS and CVT may be affected by additional factors. It
becomes more difficult to accurately predict the safety impact of these systems on the micro-
scopic scale [11]. One way to do so is to evaluate the performance of current ADAS systems
(which contain LOS sensors). For example, a partnership between automakers and NHTSA
used real-world vehicle data from 47 million ADAS-equipped vehicles to determine that ve-
hicles with automatic emergency braking (AEB) are 49% less likely to strike another vehicle
in a rear-end crash [12]. Another way to do so is by introducing LOS or CVT sensors into
simulation studies. A study in which intersection crashes were re-simulated predicted that
an intersection-specific ADAS could prevent 25–59% of crashes [13]. Another simulation
study using a bottom-up microscopic simulation approach to predict macroscopic statistics
found that 24–87% of fatal crashes could have been avoided in scenarios involving vehicles
with ADAS/ADS systems compared to fully manual driving scenarios [14].

In developing simulations to assess CVT effectiveness, machine learning models have
been used to simulate specific events which can then be tested on the road. One study
developed a long short-term memory model to predict vehicle trajectories to simulate a
cut-in maneuver in a V2V environment, which was superior to traditional collision-warning
models [15]. Another study developed a road safety information system using naturalistic
data from connected vehicles on Korean highways to assess how connected vehicles could
affect traffic safety and flow. However, this study used a macroscopic model for each
section of the highway, and suggests a more microscopic calibration to assess actual crash
risk [16]. Although one study used Doppler shift to assess a collision-avoidance system
that specifically used only wireless communication without any LOS sensors [17], another
study developed a high-level fusion of LOS sensors and wireless vehicle communication
data to predict the trajectories of conflict with vehicles and pedestrians and found that this
fusion enabled higher driver and pedestrian safety [18]. This fusion method is more similar
to how the sensors are viewed within LOS and CVT systems in this research. However,
an important piece of information that is missing from these simulations and could be
beneficial in predicting the actual impact of more advanced vehicle sensors is the actual
vehicle kinematic signatures before and during some of these safety-critical events (SCEs).

In this paper, a physics-based model was developed to simulate real-world crash and
near-crash scenarios using naturalistic data from the Second Strategic Highway Research
Program Naturalistic Driving Study (SHRP2 NDS). Naturalistic driving data provide a
wealth of information before, during, and after SCEs and baseline scenarios. Especially
important for this research, real-time vehicle data of near-crashes were captured, which
enabled us to analyze SCEs that are not found in national crash datasets. These events
were reconstructed so that the benefit of LOS sensors and CVT could be compared to the
baseline scenarios that did not have either of those technological benefits. Four different
crash configurations were studied, and the system activation time and resulting required
deceleration to avoid these crash and near-crash events were calculated. The research in
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this report intends to add to the body of knowledge around the potential quantitative safety
impact of vehicles equipped with LOS sensors (ADAS-equipped vehicles) and the probable
added benefit of CVT systems (vehicle-to-everything (V2X)). This work was part of a larger
Safety Through Disruption (Safe-D) University Transportation Center (UTC) report [19].

2. Materials and Methods

The following section includes a description of the dataset, and how events were
identified to be included in the data extraction. A flowchart of this method can be found
in Appendix B. The data extraction included pulling de-identified data from VTTI’s data
enclave to obtain the Global Positioning System (GPS) positions of the subject vehicle to
generate a map image of the location without the linked GPS coordinates. The subject
vehicle in this research is used to describe the “host vehicle”, or the vehicle containing
the DAS. The target vehicle is used to describe the vehicle that conflicted with the subject
vehicle (i.e., it was the other vehicle in the crash or near-crash). The subject vehicles and
the target vehicles were then manually tracked throughout the event to determine their
trajectories and speed. This information was used to recreate the events and calculate
crash-specific variables that could be used to calculate the impact that ADS technologies
could have had on the outcome of these events.

2.1. Dataset

The Second Strategic Highway Research Program Naturalistic Driving Study (SHRP2
NDS), funded by the U.S. Federal highway Administration (FHWA), is the largest natural-
istic driving study that has been undertaken to date. The SHRP2 database consists of over
5.5 million trips driven by 3542 drivers across 6 collections sites in the continental United
States. These sites hosted from 150 to 450 participants each and included rural sights such
as central Pennsylvania, and more populated urban areas such as Seattle, Washington.
VTTI developed a data acquisition system (DAS) to support the research questions and
objectives of the SHRP2 NDS program, which included compiling a dataset that could
be used to support future data mining activities such as this one [20]. SHRP2 was used
because of the availability of a “breadcrumb” trail of the GPS location, speed, acceleration,
and other timeseries data [21]. The DAS facilitated the collection of the following data of
interest to this study:

• video data of the forward view;
• subject vehicle speed;
• subject vehicle yaw and yaw rate;
• GPS latitude and longitude.

These variables were chosen because they could be used to recreate events of interest
within a simple physics-based model. However, the DAS collected a variety of additional
variables such as multiple video angles, machine vision, accelerometer data in all 3 axes,
driver cell phone use, vehicle network data, and more. The study was conducted in
accordance with the Declaration of Helsinki and approved by the Institutional Review
Board of Virginia Tech (IRB #18-957 23 October 2018).

2.2. Event Identification

To correctly compare the potential benefit of CVT over LOS sensors, a subset of the
crash and near-crash events from SHRP2 were identified. These events included ones
where the view of target vehicle was obstructed so that the LOS sensor would not be
able to perceive the target vehicle prior to an imminent potential conflict. Therefore, the
capability of an LOS system would be limited, while a CVT system could provide a benefit
to the operation of the associated safety system. Therefore, the conflict object, or target
vehicle, was out of sight for the majority of the time leading up to the event. Figure 1
illustrates an example of such an event. Although this constitutes a strong selection bias,
these specific events were chosen because they showed the most promise to fulfill the
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purpose of determining how the addition of LOS and CVT systems could mitigate or
prevent real-world crash and near-crash scenarios.

 

Figure 1. Example of a visual obstruction event.

From initial data mining, 594 events showed initial promise to be relevant to this
research because there was a view-obstructing object involved within the incident and the
necessary data elements were available. These events were defined by the SHRP2 dataset
and included crashes and near-crashes. A crash was defined as “any contact that the subject
vehicle has with an object” and a near-crash was defined as “any circumstance that requires
a rapid evasive maneuver by the subject vehicle, or any other vehicle, pedestrian, cyclist, or
animal, to avoid a crash” [20].

The candidacy of each event was then rated by its relevancy to the project and its ability
to be reconstructed; those that were not good candidates included events with insufficient
video, unpredictable conflict object maneuvers, host driver error, and more. Insufficient
video included video with heavy precipitation, video with insufficient lighting, or video
that was unavailable. Unpredictable conflict object maneuvers included any vehicles or
animals that made erratic movements that would be difficult to reproduce with a simple
physics-based model. Thus, 18 crashes and 162 near-crashes were identified that promised
a strong ability to be recreated for the purposes of this project.

After these events were determined, they were reviewed once again to classify the
leading cause of conflict. Table 1 provides a summary of the obstruction type for the events
with strong candidacy.

Table 1. Events with strong candidacy by obstruction type.

Obstruction Type Near Crash Crashes

vehicle 126 11
bend in path (lateral or vertical) 9 1

none (small agent) 0 1
fog 0 1

other (e.g., building, vegetation) 27 4
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2.3. Data Extraction

To obtain a better picture of the environment during a crash or near-crash event, a
birds-eye view of the location of the event was created. The corresponding Google map
image was extracted for each event and overlayed with the relative location of the subject
vehicle. To keep the locations anonymous, the actual GPS coordinates of the subject vehicle
were kept in the VTTI data enclave and converted to pixel locations, relative to the map
image. The other data taken from SHRP2 were the instantaneous kinematic details of the
subject vehicle and the front-facing video of the subject vehicle. Together, these four pieces
of data were used to reconstruct the events in a physics-based model.

2.4. Event Reconstruction
2.4.1. Identifying Important Timepoints

The first step in recreating the event was to superimpose the subject vehicle trajectory
over the map image. The accuracy of automotive-grade GPS is not always good enough
to directly overlay on the map. For example, in one case, the subject vehicle appeared to
be offset from the road and driving in the grass a few meters to the side. Therefore, the
relative kinematic information collected from the DAS was used to generate the trajectory
given a set of initial conditions. Points were marked individually on the map for the subject
vehicle’s initial location and the kinematic information from the subject vehicle was used
to recreate its trajectory.

A graphical user interface (GUI) was developed to complete the following two tasks:

1. Determining the impact proximity frame (timestamp) by watching the event video.
This is the approximate timestamp in which the subject vehicle and target vehicle
come into contact (or near contact for near-crash events). This is later referred to as
the conflict time.

2. Then, two frames (timestamps) are identified within the video that correspond to two
locations of the subject vehicle on the map. The frames are chosen based on the ability
to accurately place the concurrent subject vehicle position and heading on the map
(i.e., lane markings, buildings, trees, etc.).

2.4.2. Calculating Subject Vehicle Trajectory

Once two positions, headings, and corresponding timestamps were identified, the
vehicle’s trajectory throughout the event was calculated given the vehicle kinematic data
that were extracted previously from the DAS. This was performed by using the vehicle’s
starting position (xn), heading (θn), and speed (vn) in a basic iterative trajectory formula
shown in Equation (1).

xn+1 = xn + vncos θn (1)

This produced a photo of the event trajectory superimposed on the corresponding map
as shown in Figure 2. These photos were reviewed to determine if it would be beneficial
to modify and repeat earlier steps for any events that had an unexpected trajectory. If the
trajectory was unexpected (Figure 2, right), the associated trace factor and theta shifter were
internally developed to determine more accurate positions and headings for the subject
vehicle in the first step. The trace factor is the ratio between the trajectory distance of the
event (as determined from the DAS) and the distance calculated from the vehicle positions
chosen during the video review. The theta shifter is the difference in heading (degree).

2.4.3. Determining Locations of Objects of Interest

The GUI generated a .MAT file that contained the positions of the subject vehicle,
view-obstructing objects, and the target vehicle (or conflict object). To generate the locations
of the objects of interest, the subject vehicle front camera and the position of the subject
vehicle on the map were displayed at corresponding timestamps.
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Figure 2. Review step showing an example of correctly calculated trajectory (left) and incorrectly
calculated trajectory (right).

First, the impact proximity frame (conflict time) was brought up and the location of
the target vehicle was identified on the map. Then, the event was reversed by 4 frames
at a time until the frame in which the target vehicle was no longer visible was reached.
At this frame, each object that could be obstructing the view of the subject vehicle was
identified and its location was marked. Then, the event continued 4 frames at a time and
the corresponding locations of each view obstructing object and the target vehicle was
marked. These locations were marked up until the conflict time.

This step went quickly if the position and heading of the subject vehicle was accurate
(as determined by the previous two steps), there was only one target vehicle, and only one
stationary view-obstructing object. This step took considerable effort if there were many
view-obstructing objects that move throughout each frame, there were multiple target
vehicles, or the subject vehicle position was not accurate.

2.5. Physics-Based Model

Each event now had the relative locations and headings on the subject vehicle, the tar-
get vehicle(s), and the view-obstructing object(s) at certain time frames of the event. Linear
interpolation was used to fill in the locations of these objects for the missing timestamps.
This allowed for different parameters to be manipulated to simulate different scenarios that
stem from one event. For the purposes of this project, three scenarios were simulated. The
first scenario acts as the base case, which used the data in the original event reconstruction.
The second scenario acts as though the subject vehicle has line-of-sight (LOS) technology.
For simplicity in calculation, the subject vehicle detects the target vehicle when an uninter-
rupted line can be drawn from the centroid of each vehicle as shown in Figure 3. Since LOS
sensors differ in range and width, this simplification allows for consistent calculation. We
expect that most sensors will need to view much of the vehicle in order to correctly detect
it, and this was a simple way to exemplify this expectation. The third scenario describes
when the subject vehicle and target vehicle are using CVT (i.e., the subject vehicle knows
the location, speed, acceleration, and trajectory of the target vehicle). These assumptions
were used to calculate how environmental sensors (LOS) and information-sharing between
traffic participants and smart infrastructures (CVT) could impact vehicle safety in these
crash and near-crash scenarios. Using these data, two pieces of information were calculated
for each scenario: (1) the activation time in which a potential conflict is identified in both
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CVT and LOS ADS and (2) the required deceleration of the subject vehicle to prevent a
crash in both CVT and LOS ADS.

 
Figure 3. The centroid of the target vehicle (blue) is within the line of sight of the subject vehicle (red)
around the visual obstruction object (purple), which determines LOS activation.

2.5.1. Activation Time before Conflict Calculation

To calculate these two pieces of information, the relative speed, heading, and locations
of the target vehicle and view-obstructing objects were needed. The instantaneous speed,
vn, was calculated by taking a simple derivative of the pixel location of each object over
time. The pixel distance was converted to distance in meters by using the zoom factor
used to produce the map image (i.e., the zoom factor, zf, was a fraction that correlated the
number of pixels to a distance in meters).

Then, in each frame, the current speed, location, and heading of the subject vehicle and
target vehicle were used to determine the expected trajectory of each vehicle (Equation (1)).
A conflict was identified if the vehicle centroids came within 4 m of each other at some
point within their predicted trajectories.

The first time a potential conflict was identified in the data, defined when the CVT
system would activate. The LOS activation timepoint would occur once the subject vehicle
could “see” the target vehicle (as shown in Figure 3). Therefore, a LOS system would
activate either concurrently, or after a CVT system. By taking the difference between those
two vectors, it could be determined how much earlier a CVT system could notify a driver
of a potential conflict over an LOS system. The system activation time before the conflict
time is essentially the commonly used safety surrogate measure, time-to-collision (TTC).
However, because the real-world conflict time was known, we used this predicted system
activation time relative to the actual conflict time.

2.5.2. Required Deceleration

With the distance between each vehicle (d), the predicted point of collision, the time
until collision (t), and the speed of both vehicles (vS and vT), the minimum required
deceleration (−a) to prevent a crash can be calculated by Equation (2).

−a =
d − |vS − vT |t

t2 (2)

The collision avoidance strategy assumes that the subject vehicle does not swerve and
the conflict is avoided with braking only; the driver (or vehicle) does not have to perform
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any other evasive maneuvers. Additionally, a simplifying assumption is made such that
the target vehicle does not accelerate or swerve once a conflict is identified.

3. Results and Discussion

As discussed earlier in Section 2.2 Event Identification, 18 crashes and 162 near-crash
events were reconstructed. After analyzing these 180 events, 68 events still possessed with
usable data. Furthermore, 112 events were excluded due to incorrect satellite images (e.g.,
major construction since the date of the event, incorrect GPS data points in SHRP2) or
missing kinematic data within the time of interest for our project. The resulting 68 events
were separated into four crash configuration categories, and the following two values were
calculated: (1) the difference between CVT and LOS activation time, and (2) the minimum
required deceleration to avoid a collision.

3.1. Crash Configuration Categories

To organize the events and find significance within the values calculated, events were
categorized into four crash configurations. These four categories were based off the General
Estimates System (GES) accident type diagram and can be found in Appendix A, with the
number of events within each configuration shown in Table 2.

Table 2. Crash configuration categories and the number of events analyzed.

Crash Configuration Number of Events

left turn across path 40
perpendicular 8

rear-end 14
turn into same direction 6

Even though rear-end collisions are the most frequent type of crash in the US [22],
the study did not include a proportional number of these events. This is because they
are generally not caused by a visual obstruction, but rather due to driver distraction or
lack of driver awareness. Although the events in this research make up a relatively low
sample size for each crash configuration, it is important to note that the left turn across path
configurations made up a significant number of crash and near-crash events that could be
mitigated by LOS and CVT systems within this sample. Therefore, it could be beneficial to
focus on left turn across path scenarios in future work involved with assessing the safety of
technologically advanced vehicles.

3.2. Activation Time before Conflict

The activation time represents the amount of time between when each system detected
an imminent conflict and the actual time of conflict. This concept somewhat represents
the common safety surrogate measure, time-to-collision (TTC), but is calculated slightly
differently here since the time of the actual conflict is known. Figure 4 shows the difference
in activation time between CVT and LOS sensors. Each dot represents the actual value for
each scenario, the X represents the mean value, the horizontal line represents the median
value, the box encompasses the first and third quartile, and the whiskers extend to the
maximum value that is within 1.5 times the inner quartile range.

Across all scenarios, the CVT system activated 0.51 ± 0.15 s before a LOS sensor detects
the target vehicle on average. This means that CVT could provide an additional 1

2 second
of reaction time over LOS systems. Additionally, since all crash and near-crash events are
generally classified together as safety-critical events (SCEs), an additional 1

2 second could
allow for earlier activation of forward collision-warning systems or automated emergency
braking in these scenarios [20].
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Figure 4. Box and whisker plot of the difference in activation time (seconds) between LOS and CVT
systems separated by crash configuration categories. Each circle represents the actual value for each
scenario, the X represents the mean value, the horizontal line represents the median value, the box
encompasses the first and third quartile, and the whiskers extend to the maximum value that is
within 1.5 times the inner quartile range.

3.3. Required Deceleration

The required deceleration is a value calculated to determine the minimum deceleration
necessary to avoid a crash or near-crash if the vehicle began braking at the system activation
time. Figure 5 is a box and whisker plot of the deceleration values required to prevent a
potential conflict. Similar to Figure 4, the X represents the mean value, the horizontal line
represents the median value, the box encompasses the first and third quartile, the whiskers
extend to the maximum value that is within 1.5 times the inner quartile range, and each
dot represents the actual value.

Figure 5. Box and whisker plot of mean required deceleration (negative acceleration) separated by
crash configuration category and sensor type. The X represents the mean value, the horizontal line
represents the median value, the box encompasses the first and third quartile, the whiskers extend to
the maximum value that is within 1.5 times the inner quartile range, and the circles represents any
values outside of the whisker range.

173



Sensors 2024, 24, 484

Across all four crash configuration categories, the average required deceleration of
CVT systems vs. the LOS systems were 3.79 m/s2 and 6.22 m/s2, respectively. Generally,
a deceleration value over 0.45 g (4.41 m/s2) is considered hard braking [23]. Therefore,
CVT systems could reduce the need for hard braking, and reduce the average deceleration
required by 2.43 m/s2 to avoid the conflict by braking alone.

Some events required excessive deceleration values. Figure 6 shows the number of
events binned by their respective required deceleration to avoid a conflict (anything above
14 m/s2 is shown as 14+). In general, a deceleration value of less than 1 g (9.8 m/s2) is
reasonable for most modern light vehicles equipped with crash-avoidance systems [24].
This figure shows that more LOS events (than CVT events) require an acceleration value of
more than 1g as depicted by the black dashed line. Additionally, 91.2% of the CVT events
and 75.0% of the LOS events analyzed required a deceleration value less than 1g, implying
that a vehicle equipped with LOS features alone could prevent 75.0% of conflicts within
this dataset, while a connected vehicle could prevent 91.2% of conflicts.
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Figure 6. Count of events binned by required acceleration to avoid the crash or near-crash separated
by sensor type.

4. Conclusions

In this research, crash and near-crash scenarios from the Second Strategic Highway
Research Program Naturalistic Driving Study (SHRP2 NDS) were simulated via a physics-
based model to calculate the potential safety benefit of line-of-sight (LOS) sensors and
connected vehicle technology (CVT). Previous work has predicated the potential safety
impacts of LOS and CVT through an estimation of the types of police-recorded crashes
that could have been avoided if these sensors and systems were in place, or by simulating
different crash scenarios with these technologies in place. A missing piece has been the use
of real-time kinematic data of vehicles during a crash, as well as using other safety-critical
events, such as near-crashes, to analyze how additional LOS or CVT could perform in
these scenarios. This research acts as a baseline attempt to measure the potential safety
impact that advanced sensors and communication methods can provide in real-world
safety-critical events (SCEs).

This project looked at four different crash configurations, including left turn across
path, rear-end, perpendicular, and turn into same direction. The turn across left path
configurations contained the largest number of crash and near-crash scenarios that could
be addressed through LOS sensors or CVT systems. Therefore, it could be beneficial to
focus more attention on the accuracy of these sensors specifically for left-turn maneuvers.

On average, the CVT system would activate 0.51 ± 0.15 s before a LOS sensor detects
the target vehicle. This means that CVT could provide about an additional half-second of
reaction time over LOS systems. In future research, determining how this calculated value
might change at different speeds could greatly affect the added safety benefit of some of
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these sensors. On average, the required deceleration of CVT systems vs. the LOS systems
to avoid a conflict were 3.79 m/s2 and 6.22 m/s2, respectively. Additionally, 91.2% of the
CVT events and 75.0% of the LOS events analyzed required a deceleration value less than 1 g.

From the required deceleration interpretation, it is expected that any event which re-
quired a deceleration value greater than 9.8 m/s2 could have resulted in a crash. However,
only 4.4% of the actual events that were analyzed resulted in a collision; the remaining
95.6% were near-crashes. This is because one or more of the vehicles involved performed
an evasive maneuver in addition to braking, which is often how near-crashes are catego-
rized [25]. The simulated event then calculated a required deceleration that was higher than
the baseline event to avoid the collision because it did not include a swerving maneuver.
These near-crashes were used for this research to increase the sample size and they can
be used as a potential surrogate measure to crashes in similar scenarios [26]. Although
the near-crashes did not result in an actual police-reported crash, these are important to
use in determining the potential safety impact of automated driving systems since these
were events in which the driver performed a successful evasive maneuver. However, since
the results from the simulated LOS and CVT systems only included braking as an evasive
maneuver, further research could look into how swerving could be used to avoid some
of these conflicts. This would be especially beneficial for ADS development. Most of
the drivers in these near-crash events were able to avoid the crash with a combination
of swerving and braking, so it would also be beneficial to see if vehicles with additional
sensors and more advanced driving assistance systems could do the same.

Although this research includes only a small sample of SCEs, this work demonstrates
how certain safety-surrogate measures can be used to measure the potential safety impact
of more advanced sensors and communication methods. It would also be beneficial to
calculate these same surrogate measures with a larger dataset for use in different baseline
scenarios without a visual obstruction to compare the results. The events analyzed were
specifically chosen because CVT is most likely to have an impact in scenarios in which LOS
sensors are blocked. However, many SCEs occur when there are no visual obstructions,
and CVT has the potential for also avoiding or mitigating these events.

Finally, these simulations assumed that the sensors would have 100% accuracy in de-
termining an imminent conflict. More conservative estimates could be made to account for
sensor inaccuracies or additional reaction time within technological systems. This research
acts as a baseline sample of how to use real SCEs to predict the potential safety benefit of
advanced vehicle sensors, and which events should be focused on for future research.
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Appendix A

This appendix contains Figure A1, which shows the crash configurations used for
this research as they compare to the crash configuration from the accident glossary of the
1988-2015 General Estimates System (GES) Analytical User Manual [27].

Figure A1. GES crash configurations are organized into four categories relevant for this research.

Appendix B

This appendix contains Figure A2, which depicts the methods flowchart for the data
extraction and data analysis. More information about the specific data method can be
found in the Safe-D Report that this research is based on [19].

Figure A2. Methods flowchart.
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and Potential Use of Smart Vehicle-Assisted Techniques. Sensors 2020, 20, 3274. [CrossRef] [PubMed]

6. Schiegg, F.A.; Llatser, I.; Bischoff, D.; Volk, G. Collective Perception: A Safety Perspective. Sensors 2020, 21, 159. [CrossRef]
7. Rolison, J.J.; Regev, S.; Moutari, S.; Feeney, A. What are the factors that contribute to road accidents? An assessment of law

enforcement views, ordinary drivers’ opinions, and road accident records. Accid. Anal. Prev. 2018, 115, 11–24. [CrossRef]
[PubMed]

8. Wang, L.; Zhong, H.; Ma, W.; Abdel-Aty, M.; Park, J. How many crashes can connected vehicle and automated vehicle technologies
prevent: A meta-analysis. Accid. Anal. Prev. 2020, 136, 105299. [CrossRef] [PubMed]

9. Yue, L.; Abdel-Aty, M.; Wu, Y.; Wang, L. Assessment of the safety benefits of vehicles’ advanced driver assistance, connectivity
and low level automation systems. Accid. Anal. Prev. 2018, 117, 55–64. [CrossRef] [PubMed]

10. NHTSA. Vehicle-to-Vehicle Communication Technology for Light Vehicles; FMVSS No. 150; NHTSA: Washington, DC, USA, 2016.
11. Abdeen, M.A.R.; Yasar, A.; Benaida, M.; Sheltami, T.; Zavantis, D.; El-Hansali, Y. Evaluating the Impacts of Autonomous Vehicles’

Market Penetration on a Complex Urban Freeway during Autonomous Vehicles’ Transition Period. Sustainability 2022, 14, 10094.
[CrossRef]

12. Czapp, T.; Chen, C.-L.; Lawrence, S.S.; Wiacek, C. Real-World Effectiveness of Model Year 2015–2020 Advanced Driver Assistance
Systems; Public Release Case Number 22-3734; Partnership for Analytics Research in Traffic Safety (PARTS): Washington, DC,
USA, 2022.

13. Scanlon, J.; Sherony, R.; Gabler, H. Injury Mitigation Estimates for an Intersection Driver Assistance System in Straight Crossing
Path Crashes in the US. Taylor Fr. 2017, 18, S9–S17. [CrossRef]

14. Kitajima, S.; Chouchane, H.; Antona-Makoshi, J.; Uchida, N.; Tajima, J. A Nationwide Impact Assessment of Automated Driving
Systems on Traffic Safety Using Multiagent Traffic Simulations. IEEE Open J. Intell. Transp. Syst. 2022, 3, 302–312. [CrossRef]

15. Lyu, N.; Wen, J.; Duan, Z.; Wu, C. Vehicle Trajectory Prediction and Cut-In Collision Warning Model in a Connected Vehicle
Environment. IEEE Trans. Intell. Transp. Syst. 2022, 23, 966–981. [CrossRef]

16. Jo, Y.; Jang, J.; Park, S.; Oh, C. Connected vehicle-based road safety information system (CROSS): Framework and evaluation.
Accid. Anal. Prev. 2021, 151, 105972. [CrossRef] [PubMed]

17. Guo, Y.; Lee, Y.-H.; Tseng, H.-W.; Yang, C.-F. Simulation for Non-line-of-sight Collision Avoidance Warning System Based on 5G
Mobile Car Communication Network. Sens. Mater. 2022, 35, 723–732. [CrossRef]

18. Baek, M.; Jeong, D.; Choi, D.; Lee, S. Vehicle Trajectory Prediction and Collision Warning via Fusion of Multisensors and Wireless
Vehicular Communications. Sensors 2020, 20, 288. [CrossRef] [PubMed]

19. Herbers, E.; Stowe, L. Impacts of Connected Vehicle Technology on Automated Vehicle Safety; 04-120; Virginia Transportation Institute:
Blacksburg, VA, USA, 2022.

20. Hankey, J.M.; Perez, M.A.; McClafferty, J.A. Description of the SHRP2 Naturalistic Database and the Crash, Near-Crash, and Baseline
Data Sets; Virginia Tech Transportation Institute—The Strategic Highway Research Program 2 Transportation Research Board of
the National Academies: Blacksburg, VA, USA, 2016.

21. Brown, J.L.; Richard, C.M. Analysis of SHRP2 Speeding Data: Methods Used to Conduct the Reseearch; DOT HS 812 793; National
Highway Traffic Safety Administration: Washington, DC, USA, 2020.

22. Lee, S.E.; Llanera, E.; Klauer, S.; Sudweeks, J. Analyses of Rear-End Crashes and Near-Crashes in the 100-Car Naturalistic Driving Study
to Support Rear-Signaling Countermeasure Development; DOT HS 810 846; Virginia Tech Transportation Institute: Blacksburg, VA,
USA, 2007.

23. Simons-Morton, B.G.; Ouimet, M.C.; Wang, J.; Klauer, S.G.; Lee, S.E.; Dingus, T.A. Hard Braking Events among Novice Teenage
Drivers by Passenger Characteristics. Driv. Assess. Conf. 2009, 2009, 236–242. [CrossRef]

24. American Automobile Association (AAA). Automatic Emergency Braking Performance in the Context of Common Crash Scenarios;
American Automobile Association: Heathrow, FL, USA, 2022.

25. Seacrist, T.; Douglas, E.C.; Hannan, C.; Rogers, R.; Belwadi, A.; Loeb, H. Near crash characteristics among risky drivers using the
SHRP2 naturalistic driving study. J. Saf. Res. 2020, 73, 263–269. [CrossRef]

177



Sensors 2024, 24, 484

26. Guo, F.; Klauer, S.G.; Hankey, J.M.; Dingus, T.A. Near Crashes as Crash Surrogate for Naturalistic Driving Studies. Transp. Res.
Rec. 2010, 2147, 66–74. [CrossRef]

27. NHTSA. General Estimates System (GES) Analytical User’s Manual; DOT HS 812 320; U.S. Department of Transportation: Washington,
DC, USA, 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

178



Citation: Fernández, H.; Rubio, L.;

Rodrigo Peñarrocha, V.M.; Reig, J.

Dual-Slope Path Loss Model for

Integrating Vehicular Sensing

Applications in Urban and Suburban

Environments. Sensors 2024, 24, 4334.

https://doi.org/10.3390/s24134334

Academic Editors: Constantin

Caruntu and Ciprian Romeo Comşa
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Abstract: The development of intelligent transportation systems (ITS), vehicular ad hoc networks
(VANETs), and autonomous driving (AD) has progressed rapidly in recent years, driven by artificial
intelligence (AI), the internet of things (IoT), and their integration with dedicated short-range com-
munications (DSRC) systems and fifth-generation (5G) networks. This has led to improved mobility
conditions in different road propagation environments: urban, suburban, rural, and highway. The
use of these communication technologies has enabled drivers and pedestrians to be more aware of
the need to improve their behavior and decision making in adverse traffic conditions by sharing
information from cameras, radars, and sensors widely deployed in vehicles and road infrastruc-
ture. However, wireless data transmission in VANETs is affected by the specific conditions of the
propagation environment, weather, terrain, traffic density, and frequency bands used. In this paper,
we characterize the path loss based on the extensive measurement campaign carrier out in vehic-
ular environments at 700 MHz and 5.9 GHz under realistic road traffic conditions. From a linear
dual-slope path loss propagation model, the results of the path loss exponents and the standard
deviations of the shadowing are reported. This study focused on three different environments,
i.e., urban with high traffic density (U-HD), urban with moderate/low traffic density (U-LD), and
suburban (SU). The results presented here can be easily incorporated into VANET simulators to
develop, evaluate, and validate new protocols and system architecture configurations under more
realistic propagation conditions.

Keywords: vehicular ad hoc network (VANET); vehicle-to-everything (V2X); artificial intelligence (AI);
internet of things (IoT); path loss models; path loss exponent; 5G; autonomous driving (AD); cooperative
autonomous driving (CAD); cooperative sensing; connected and autonomous vehicles (CAVs)

1. Introduction

The development of intelligent transportation systems (ITS), vehicular ad hoc net-
works (VANETs), and autonomous driving (AD) has accelerated in recent years, driven by
artificial intelligence (AI), the internet of things (IoT), and their integration with dedicated
short-range communications (DSRC) systems and fifth-generation (5G) networks since
5G is emerging as a platform for connecting sensors and vehicles on the road, providing
vehicle-to-everything (V2X) services to drivers and pedestrians [1–4]. This is due to the
potential of IoT-focused applications of AD and the use of 5G New Radio interfaces to meet
these integration requirements given the use scenarios defined in the ITU-M2150-1 recom-
mendation for IMT-2020 systems [5]. These include enhanced mobile broadband (eMBB),
ultra-reliable low-latency communication (URLLC), and massive machine-type commu-
nication (mMTC). In [6], the authors also described how services such as autonomous
vehicles (AV), ITS, V2X, industry 4.0, and smart grid are related to URLLC. This leads to
improved mobility conditions in the different road propagation environments, including
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urban, suburban, rural, and highway, among others. The integration of ITS, VANETs, AD,
AV, and V2X with the URLLC scenario has rendered drivers and pedestrians more aware
of the need to improve their behavior and decision making in adverse traffic conditions by
enabling them to exchange information from different types of sensors widely deployed in
vehicles and road infrastructure. However, the wireless data transmission in these systems
is affected by the specific conditions of the propagation environment, including the weather,
orography, traffic density, and frequency bands used.

The future design of vehicle communication systems has received considerable atten-
tion in recent years from the automotive industry, government, and the scientific community
as the integration of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I). These are
aimed at proposing better vehicle-reliable safety applications based on DSRC [2], which
require high reliability in the connectivity between V2V and V2I communications. In
this sense, various types of sensors such as cameras, radars, and speed detectors, among
others, have been implemented to support the development of AD and improve mobility
conditions in cities and on the road network [4,7,8]. For example, in [4], an integrated
sensing and communication system (ISAC) was proposed based on a path loss prediction
approach to improve the knowledge of wireless data transmission in vehicular networks.
The approach predicts the end-to-end path loss distribution using multimodal data col-
lected by millimeter wave (mmWave) radars, laser radars, and cameras. The important
role of sensor fusion in intelligent transportation systems was described in [7]. This paper
provides a comprehensive overview of the capabilities, the impacts, the planning, and the
technological challenges of AVs. In [8], the author introduced several V2X use cases for
autonomous driving, where cooperative autonomous driving is categorized into two types:
cooperative sensing and cooperative decision. Cooperative sensing focuses on the exchange
of sensor information between V2V and V2I. This will further enhance road safety, reduce
traffic congestion, and improve travel comfort in urban environments [9,10]. In this sense,
it is necessary to develop measurement campaigns in vehicular propagation channels in
order to provide more accurate propagation models that can be used to determine the
parameters in the characterization of the propagation channel.

Cooperative sensing uses VANET simulators to develop, evaluate, and validate new
protocols and system architecture configurations under more realistic propagation condi-
tions. Therefore, it is necessary to propose dual-slope models that allow for more efficient
radio planning. Dual-slope models consider a breaking point or critical distance that de-
pends on factors such as the propagation scenario and the frequency band used, among
others. This critical distance indicates the end of one wave propagation mechanism and the
beginning of another, where more path loss can appear. Dual-slope propagation models
allow the generation of results that can be easily incorporated into VANET simulators to
optimize the deployment of sensors in the road infrastructure networks.

Government standards bodies have identified specific bands for the development
of ITS applications. For example, the Federal Communication Commission (FCC) issued
a report and order adopting rules that repurposed the 5850–5895 MHz to expand unli-
censed mid-band operations while continuing to dedicate the 5895–5925 MHz for ITS
operations [11]. Also, the FCC has proposed that the transition of ITS operations from
DSRC-based technology to cellular V2X (C-V2X)-based technology will occur in accor-
dance with a schedule to be determined in a future report and order. In Europe, the
European Telecommunication Standard Institute (ETSI) has adopted the DSRC band for
ITS applications, allocating 50 MHz (5.875 to 5.925 GHz) [12]. The specific characteristics of
both applications (safety and non-safety) require the development and implementation of
new communication technologies, where the characterization and modeling of the vehicle
channel play a very important role [13,14]. Although progress has been made in the charac-
terization of the V2X radio channel in recent years [15,16], more research is needed that
focuses on future vehicle networks that enable interaction with the 5G IoT ecosystem.

Several path loss models have been developed for vehicular network scenarios. These
include the one/dual-slope, ray tracing (RT), floating intercept (FI), close-in (CI), free space
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reference distance, and ABG models. For example, large-scale path loss models for urban
environments have been proposed based on the CI, FI, and ABG models under line-of-
sight (LOS) and non-line-of-sight (NLOS) conditions in mmWave frequency bands [17].
In [18], the authors presented a shadow fading model for system simulations based on real
measurements in urban and highway scenarios. The measurement data were divided into
three categories, namely LOS, obstructed line-of-sight (OLOS) by vehicles, and NLOS, and
it was observed that vehicles obstructing the LOS induce an additional average attenuation
of about 10 dB in the received signal power. In addition, a connection probability in V2V
urban scenarios was analyzed based on a dual-slope path loss model on both LOS and
OLOS [19]. In [20], path loss models were proposed considering weather conditions, and RT
simulations were performed to verify the accuracy of the proposed expression. In [21], the
authors adopted a measurement-based dual-slope path loss model to analyze the channel
capacity performance for both direct transmission of inter-vehicle and infrastructure-based
cooperative communication in VANETs. On the other hand, Wei and Tao analyzed the
effects of antenna height on V2I communication in rural areas. They first classified the
V2I communication into LOS and NLOS links and then established two-beam ground
reflection and integrated models for LOS and NLOS conditions, respectively [22]. In [23], a
two-slope model was proposed by performing path loss measurements in a sports utility
vehicle (SUV) at 915 MHz and 2.4 GHz. On the other hand, ref. [24] provided an overview
of experimentally verified propagation models for wireless sensor networks (WSNs) and
quantitative comparisons of propagation models used in WSN research under different
scenarios and frequency bands.

Furthermore, the large differences between V2V propagation channels and fixed-to-
mobile (F2M) propagation channels, transmitter (Tx) and receiver (Rx) heights, propagation
environments, and frequency bands mean that the propagation models developed for
the deployment of F2M systems cannot be applied in the performance evaluation and
development of future ITS applications over VANETs, thus forcing characterization and
modeling of the radio channel at 700 MHz and in the DSRC band at 5.9 GHz for future
V2X systems.

This paper presents the vehicular channel characterization by using the dual-slope
path loss propagation model in urban with high traffic density (U-HD), urban with low
traffic density (U-LD), and suburban (SU) scenarios in the city of Valencia, based on real
propagation measurements carried out in 2012 at 700 MHz and 5.9 GHz. The paper is
organized as follows: Section 2 describes the measurement system and the main charac-
teristics of the propagation scenarios where the measurements were performed. Section 3
presents the results derived from the analysis of the measurements, where the path loss
exponent (PLE) behavior of the received signal is analyzed and classified according to the
propagation scenarios. Finally, the conclusions derived from the study are summarized in
Section 4.

2. Methodology

2.1. Measurement System

The channel sounder implemented at 700 MHz is shown in Figure 1. This channel
sounder consists of an Hewlett HP8648C signal generator in the Tx vehicle transmitting
an unmodulated carrier at 700 MHz and a Hewlett Packard HP8590L spectrum analyzer
(SA) in the Rx vehicle. A SPAN of zero was selected in the SA to measure received
power on 401-point traces. The antennas used are monopoles with a horizontal plane gain
of approximately −5.43 dB. For transmission, a power amplifier was used that allowed
transmission with an equivalent isotropic radiated power (EIRP) of 26.3 dBm. For reception,
an amplifier with a gain of 32.75 dB was used.
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Figure 1. Channel sounder at 700 MHz.

The channel sounder implemented at 5.9 GHz is shown in Figure 2. This channel
sounder consists of a Hewlett Packard HP83623A signal generator in the Tx vehicle, which
transmits an unmodulated carrier at 5.9 GHz, and the Rohde & Schwartz ZVA24 vector
network analyzer (VNA) in the Rx vehicle. The VNA was used in power meter mode,
directly measuring the b2 parameter in traces of 5000 points. The antennas used in Tx/Rx
are monopoles at λ/4 with a gain in the horizontal plane of about −2.56 dB and a scattering
parameter S11 lower than −22 dB. A power amplifier was used for transmission, allowing
transmission with an EIRP of 23.8 dBm. For reception, two amplifiers were used in series
with a total gain of 68.12 dB.

Figure 2. Channel sounder at 5.9 GHz.

The vehicles were equipped with global position systems (GPS) receivers controlled
by laptops to obtain information on the time of measurement, relative speed, and Tx-Rx
separation distance. All laptops were synchronized in time to correlate the measurements
taken by the VNA with the information provided by the GPS receivers.

The vehicles used for the measurements were a Renault (Tx) (Figure 3a) and a Peugeot
(Rx) (Figure 3b). The antennas were mounted on the roof of the vehicles at a height of
approximately 1.41 m and 1.45 m above the ground for Tx and Rx, respectively. Part of
the on-board equipment is also shown in Figure 3. In each of the vehicles, 75 Ah batteries
and 12 V DC to 220 V AC inverters were used as the power supply system, allowing an
autonomous time of approximately 90 min.
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(a) Tx vehicle (b) Rx Vehicle 

Figure 3. Tx/Rx vehicles together with on-board equipment at 700 MHz and 5.9 GHz.

2.2. Scenarios

The type of environment, vehicle speed, and road traffic density determine the propa-
gation characteristics of the vehicle channel. Traffic density and vehicle speed are usually
higher in suburban environments. These conditions allowed the selection of the most
suitable areas for the measurement campaign to characterize the path loss propagation. A
series of avenues and ring roads were found, forming a concentric ring around the city of
Valencia, which, according to its characteristics, was defined as a suburban environment
and is referred to as scenario 3. Figure 4 illustrates the routes taken in this scenario with
a yellow line. Moving inland in the concentric rings, a clearly urban environment with
a high road traffic density is presented and referred to as scenario 1. The routes taken
are shown with a red line in Figure 4. Within this urban environment, some areas with
particular and interesting characteristics were selected. Thus, we analyzed the area of the
old town of the city, where narrow streets without a defined shape meet small squares,
abrupt intersections, and cobbled pedestrian streets with a large absence of pedestrians.
We also utilized a special area within this old town, such as the Plaza del Ayuntamiento.
Figure 4 shows in green the routes taken in these urban environments with low road traffic
density, which are referred to as scenario 2.

Scenario 1: This is an urban environment with high traffic density, with an average
of 44,200 vehicles/24 h. Two avenues in the city of Valencia were chosen for the analysis,
namely Avenida del Puerto (one-way traffic) and Avenida Blasco Ibañez (two-way traffic),
with four and five lanes in each direction, respectively. Figure 5a shows a view of the
measurement scenario.
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Figure 4. Scenario 1 is shown with a red line, scenario 2 is shown with a green line, and scenario 3 is
shown with a yellow line.

 
(a) (b) (c) 

Figure 5. Measurement scenarios, (a) urban high density, (b) urban low density, and (c) suburban.
The Rx vehicle can be seen driving in front of the Tx vehicle.

Scenario 2: This is the urban center of the city of Valencia, the old town, with low traffic
density at an average of 7500 vehicles/24 h and with narrow streets and one-way traffic.
The streets are approximately 10 meters wide, including, in some cases, parking lots and
sidewalks on both sides of the street. Figure 5b shows a view of the measurement scenario.

Scenario 3: This scenario is the Ronda Norte in the city of Valencia, Spain, with
an average intensity of 71,200 vehicles/24 h, with three and four lanes of traffic in each
direction, with wide open spaces on both sides alternating with buildings close to the
roadway and medium-height trees along several sections of the avenue. Figure 5c shows a
view of the measurement scenario.

It is relevant to note that the measurements were carried out at 700 MHz and 5.9 GHz
(DSRC band), with the Tx and Rx vehicles traveling in the same direction several times over
the measurement scenario on weekdays between 10:00 and 13:00. Measurements were also
carried out under normal driving conditions, with alternations of LOS and NLOS between
the Tx vehicle and the Rx vehicle.

3. Link Budget and Dual-Slope Path Loss Measurement Results

The path loss is one of the most significant parameters in radio link design and
provides a measure of channel quality. It is expressed as the average level of path loss in
dB and varies as a function of the Tx and Rx separation distance. The path loss considers
the propagation mechanisms present in the radio channel, such as free space, rejection,
diffraction and scattering, the influence of the propagation environments (urban, suburban,
rural, and highway), directional characteristics, antenna heights, and Tx and Rx separation
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distance. In addition, the signal-to-noise ratio (SNR) is inversely related to the path loss; i.e.,
as the path loss increases, the SNR at the Rx decreases, and the coverage area is reduced.

The average received power in log units (dBm) under free space propagation condi-
tions, denoted by PRx(d), is given by the following:

PRx(d) = PTx + GTx + GRx − 10log10

(
4πd
λc

)2
, (1)

where PTx is the transmitted power in dBm, d is the Tx/Rx separation distance; GTx and
GRx are the transmit and receive antennas’ gain expressed in decibels (dB), respectively;
and λc is the wavelength associated with the carrier frequency fc. The last term in Equation
(1) is the path loss for free space propagation conditions, PLFS(d), expressed in dB.

3.1. Link Budget at 5.9 GHz and at 700 MHz

Figure 6 shows the schematic diagram of the 5.9 GHz V2V measurement system and
the components used to perform the link budget.

 
Figure 6. V2V schematic diagram at 5.9 GHz.

According to (1) and taking the received power level PRx(d) as that related to the VNA
input with PTx= −10 dBm and subtracting the cable losses LcT1 = 0.35 dB, LcT2 = 4.68 dB,
and LcR = 4.68 dB and then adding the gains of the amplifier GAT = 33.38 dB in Tx and
the two cascaded amplifiers GAR = 2 × 34.06 dB in Rx and the Tx and Rx antenna gains
GTx = GRx = 2.56 dB, the value of PRx(d) is given by the following:

PRx(d) = PTx − LcT1 + GAT − LcT2 + GTx + GRx − PL(d)− LcR + GAR. (2)

Therefore, the path loss propagation at 5.9 GHz, expressed in (dB) and denoted by PL(d),
is given by the following:

PL(d) = 76.67 − PRx(d). (3)

Using the parameter b2( f ) measured by the VNA as the received power value, records
were obtained to analyze the behavior of the path loss as a function of d.

The link budget for the 700 MHz test system was performed in the same manner as
for the 5.9 GHz test system, as shown in Figure 7.

 
Figure 7. V2V schematic diagram at 700 MHz.

Taking the received power level PRx(d) with respect to the SA input and also, taking
into account a PTx = −20 dBm and subtracting the cable losses LcT1 = 0.45 dB, LcT2 = 2.14 dB,
and LcR = 2.14 dB and then adding the gains of the amplifier GAT = 43.29 dB in Tx and
the amplifier GAR = 32.75 dB in Rx and the Tx and Rx antenna gains GTx = GRx = −5.43 dB
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gives the same expression as in Equation (2). In this case, the PL(d) at 700 MHz is expressed
(in dB) by the following:

PL(d) = 40.45 − PRx(d). (4)

Table 1 summarizes the main parameters used to configure the measurement systems.

Table 1. Measurement system configuration parameters at 700 MHz and 5.9 GHz.

Parameter
Channel Sounder at 700

MHz
Channel Sounder at 5.9 GHz

Transmitted power −20 dBm −10 dBm
Points number 401 5000

Resolution bandwidth 30 kHz 100 kHz
SPAN 0 0

Dynamic range 80 dB 80 dB

3.2. Dual-Slope Path Loss Model Results

To process the data sets obtained during the measurement campaign, a selection was
made according to the propagation scenarios, analyzing the behavior of the path loss
propagation as a function of the separation distance between the Tx and Rx. A further
process of data filtering was carried out to obtain more accurate values for the parameters
of the dual-slope path loss model. According to [25], a linear relationship can be established
between the mean path loss expressed in logarithmic units, PL(d), and log10(d) in V2V
radio channels, analogous to traditional F2M channels, given by the following:

PL(d) = L0 + 10γlog10

(
d
d0

)
+ S, d ≥ d0, (5)

where L0 represents the average path loss propagation at a separation distance d0, the term
10γlog10

(
d
d0

)
refers to the average path loss propagation referring to the Tx/Rx distance d0,

γ is the PLE related to the type of propagation environment, and S is a Gaussian distributed
random variable with zero mean and standard deviation σS in dB that is used to model
long-term fading or shadowing.

However, there are environments in which a dual-slope model can more accurately
fit the measured data. A dual-slope model is characterized by a path loss exponent of γ1
and a standard deviation of σS1 above a reference distance up to critical distance dC, a path
loss exponent of γ2, and a standard deviation of σS2 for a distance higher than the critical
distance. Using this model, the average path loss value can be estimated as the following:

PL(d)[dB] =

⎧⎨⎩ L0 + 10γ1log10

(
d
d0

)
+ S, d0 ≤ d ≤ dC;

L0 + 10γ1log10

(
dC
d0

)
+ 10γ2log10

(
d

dC

)
+ S, d ≥ dC.

(6)

On the other hand, the behavior of the path loss propagation based on a dual-slope
model was observed for some of the analyzed routes. It should be noted that this behavior
did not appear in all propagation scenarios or in the two frequency bands (700 MHz and
5.9 GHz) in which the measurements were made.

Figure 8 shows the path loss as a function of the Tx/Rx separation distance for an
urban environment with high traffic density at 700 MHz. A double-slope behavior was
observed; thus, applying a linear least squares fit (magenta curve for the first slope and red
curve for the second slope in Figure 8) yields values of L0 = 36.83 dB, γ1 = 1.65, σS1 = 4.73 dB,
γ2 = 3.26, and σS2 = 5.1 dB, with a dC = 39.67 m.

Similarly, Figure 9 shows the path loss as a function of the Tx/Rx separation dis-
tance for an urban environment with low traffic density at 5.9 GHz. We thus obtained
L0 = 59.88 dB, γ1 = 1.61, σS1 = 4.00 dB, γ2 = 4.42, σS2 = 5.26 dB, and dC = 134.56 m.
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Figure 8. Path loss as a function of Tx/Rx separation distance for an urban environment with high
road traffic density at 700 MHz.

Figure 9. Path loss as a function of Tx/Rx separation distance for an urban environment with low
road traffic density at 5.9 GHz.

The mean parameters that characterize the path loss propagation for the dual-slope
model are summarized in Table 2. The PLE values for the first slope range from 1.04 to
2.13 and 1.72 to 2.46 at 700 MHz and 5.9 GHz, respectively. The highest PLE values for
the first slope occurred in urban environments with low traffic density at 700 MHz and
5.9 GHz. Similarly, the PLE values for the second slope range from 3.43 to 4.92 and from
6.26 to 9.69 at 700 MHz and 5.9 GHz, respectively. In addition, the largest exponents of
PLE for the second slope occurred in suburban environments at 700 MHz and 5.9 GHz.
Note that for the suburban environment at 700 MHz and 5.9 GHz, constructive interference
was observed for the first slope due to the multipath effect. This was also observed for the
urban environment with high traffic density at 700 MHz.

Table 2. Parameters obtained at 700 MHz and 5.9 GHz.

Scenario
700 MHz

γ1 L0 (dB) σS1
(dB) γ2 σS2

(dB) dC (m)

1 (Urban H-D) 1.45 37.34 4.52 3.43 5.00 35.16
2 (Urban L-D) 2.13 31.42 5.47 3.76 6.66 35.44
3 (Suburban) 1.04 38.78 4.28 4.92 5.67 58.40

Scenario
5.9 GHz

γ1 L0 (dB) σS1
(dB) γ2 σS2

(dB) dC (m)

2 (Urban L-D) 2.46 45.88 4.49 6.26 5.01 132.42
3 (Suburban) 1.72 52.40 4.80 9.69 5.25 306.04
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With respect to the large-scale fading modeled by the parameter σS, the received signal
suffered the highest variations in urban with low traffic density and suburban environments
at 700 MHz and 5.9 GHz. On the other hand, the critical distance ranges from 35.16 m to
58.40 m at 700 MHz, with the largest critical distance obtained in a suburban environment,
while the critical distance at 5.9 GHz varies from 132.42 m to 306.04 m for urban with low
traffic density and suburban environments, respectively.

It should be noted that in our measurement campaign, there are very few records
and scenarios where dual-slope behavior occurred in the path loss propagation analysis.
Similarly, only a very small number of researchers have shown results from dual-slope
models for vehicular applications [18,26–30]. Table 3 summarizes the values of the dual-
slope path loss exponent and the standard deviations of shadowing derived from channel
measurement campaigns conducted in different vehicular environments. These results can
be used in vehicular network simulators to design, evaluate, and validate new protocols
that improve the quality of vehicular communication systems and enable the integration of
ITS, AD, and vehicular sensing with the 5G-IoT ecosystem.

Table 3. Large-scale dual-slope path loss model parameters for vehicular environments.

Scenario γ1 σS1
(dB) γ2 σS2

(dB) dC (m)
Frequency

Band
Related
Works

Suburban 2.00–2.10 5.60–2.60 3.80–4.00 4.40–8.40 100 5.9 GHz Ref. [26]
Highway 1.90 2.50 4.00 0.90 220

5.9 GHz Ref. [27]Rural 2.30 3.20 4.00 0.40 226
Urban intersection 1 1.54 3.64 3.96 4.81 24.5

5.9 GHz Ref. [28]Urban intersection 2 1.56 3.64 5.34 4.81 40
Urban intersection 3 1.53 3.64 4.86 4.81 45

Urban 0.10 3.03 5.24 7.40 120
500 MHz Ref. [29]Suburban 1.47 6.63 6.42 9.22 200

Urban 1.60 2.20 3.14 4.50 35 725 MHz Ref. [30]

Scenario Conditions γ1 γ2 σS (dB) dC (m)
Frequency

Band
Related
Works

Highway LOS 1.66 2.88 3.95 104

5.6 GHz Ref. [18]
OLOS ---- 3.18 6.12

Urban
LOS 1.81 2.85 4.15 104

OLOS 1.93 2.74 6.67 104

The results obtained in this work show the influence of the frequency band and
the propagation environment on the estimated values of the path loss propagation and
the critical distance. Therefore, when deploying sensor networks for ITS applications in
real conditions, the propagation scenario must be considered. According to the results
presented in this paper, it is necessary to take into account that urban scenarios with low
traffic density have more path loss propagation values for the first slope, up to the critical
distance. Similarly, it should be noted that the path loss increased significantly from the
critical distance for all propagation environments analyzed in this study at 700 MHz and
5.9 GHz.

4. Conclusions

The results obtained for a dual-slope path loss propagation model in three different
environments, i.e., urban with high traffic density, urban with low traffic density, and
suburban, are herein presented. These results can be used in vehicular network simulators
to design, evaluate, and validate new protocols that improve the quality of vehicular
communication systems and enable the integration of ITS, AD, and vehicular sensing with
the 5G-IoT ecosystem.

From the results obtained, it should be noted that the parameters of the dual-slope path
loss propagation model are influenced by the frequency band. For example, in the results
reported in this paper, it was observed that the mean values of the first- and second-slope
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PLEs were lower at 700 MHz than at 5.9 GHz for urban with low density and suburban
environments studied, where the highest values of the first- and second-slope PLEs were
obtained for the urban environments with low traffic density at 5.9 GHz.

Future lines of work will include performing broadband measurement campaigns for
applications in the ITS to generate path loss and capacity models that enable the optimal
deployment of device and sensor networks in V2X 5G-IoT ecosystem.
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