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Editorial

Hydrogel for Sustained Delivery of Therapeutic Agents
Adina Magdalena Musuc 1,* , Magdalena Mititelu 2 and Mariana Chelu 1

1 Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 060021 Bucharest, Romania;
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2 Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of
Medicine and Pharmacy, 020956 Bucharest, Romania; magdalena.mititelu@umfcd.ro

* Correspondence: amusuc@icf.ro

1. Introduction

In recent years, hydrogels have emerged as a highly promising platform for the
sustained delivery of therapeutic agents, addressing critical challenges in drug delivery
systems, from controlled release to biocompatibility. With their high-water content, biocom-
patibility, and tunable physical and chemical properties, hydrogels have enabled significant
advancements in delivering a wide range of therapeutic agents, including small molecules,
proteins, nucleic acids, and cells. This Special Issue, “Hydrogels for Sustained Delivery
of Therapeutic Agents” of the journal Gels seeks to explore the latest innovations, chal-
lenges, and potential future directions in this field, highlighting the role of hydrogels in
biomedicine (Figure 1).
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tained delivery of therapeutic agents, addressing critical challenges in drug delivery sys-
tems, from controlled release to biocompatibility. With their high-water content, biocom-
patibility, and tunable physical and chemical properties, hydrogels have enabled signifi-
cant advancements in delivering a wide range of therapeutic agents, including small mol-
ecules, proteins, nucleic acids, and cells. This Special Issue, “Hydrogels for Sustained De-
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challenges, and potential future directions in this field, highlighting the role of hydrogels 
in biomedicine (Figure 1). 
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Figure 1. Various applications of hydrogels for sustained delivery of functional compounds.

Hydrogels are hydrophilic polymer networks that can absorb large amounts of wa-
ter, resulting in a soft, tissue-like structure that can seamlessly interface with biological
tissues. This unique feature allows hydrogels to deliver drugs in a more controlled manner
than traditional drug delivery systems. By manipulating their molecular composition
and structure, researchers have developed hydrogels with fine-tuned release kinetics, en-
abling the sustained delivery of therapeutic agents over extended periods. Furthermore,
hydrogels can be engineered to respond to specific environmental cues—such as pH, tem-
perature, or enzymes—making them ideal for targeted therapies in diseases such as cancer,
cardiovascular diseases, and chronic inflammatory conditions.

This Special Issue aims to showcase cutting-edge research on the synthesis, characteri-
zation, and functionalization of hydrogels tailored for drug delivery applications. Novel
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hydrogel systems are increasingly designed for the co-delivery of multiple therapeutic
agents, such as antibiotics with anti-inflammatory agents or chemotherapeutic drugs with
immunomodulators. This strategy enables enhanced therapeutic efficacy while reducing
side effects by maintaining localized, sustained release. Featuring a collection of ten papers,
including six original research articles and four reviews, this Special Issue highlights the
versatility of hydrogels in sustained drug delivery and explores how these systems are
tailored for specific therapeutic challenges.

2. Contributions

The first research article published in this Special Issue is a study conducted by Pérez-
González et al. [1]. This article focuses on caspofungin, an echinocandin-class antifungal
used to treat severe and invasive fungal infections, and explores its application in treat-
ing cutaneous candidiasis—a challenging fungal skin infection. The study investigates
the effect of two permeation enhancers, Azone and Transcutol-P, on caspofungin-loaded
gels, evaluating the resulting formulations for their drug release profile, skin permeation,
tolerability, and antimicrobial efficacy. In the treatment of fungal skin infections such as
candidiasis, a significant challenge is achieving adequate drug retention and absorption in
the skin layers while minimizing systemic absorption, which could lead to unwanted side
effects. Pérez-González et al. [1] address this by incorporating Azone in a caspofungin gel
(CPF-AZ-gel) to assess its potential for improved cutaneous application, comparing it to
a standard caspofungin gel without permeation enhancers (CPF-gel). The study reports
promising outcomes with the CPF-AZ-gel, which demonstrated superior skin retention
and controlled drug release compared to the promoter-free formulation. Through in vitro
release studies and ex vivo permeation testing on human skin, the authors showed that
the CPF-AZ-gel provided an enhanced release profile while confining caspofungin’s diffu-
sion primarily within the targeted skin layers. Additionally, both formulations displayed
pseudoplastic behavior, making them suitable for easy and uniform application, as well as
excellent spreadability and compatibility with skin biomechanics. Notably, antimicrobial
efficacy testing confirmed that both formulations were effective against Candida glabrata,
Candida parapsilosis, and Candida tropicalis, while Candida albicans exhibited resistance. His-
tological analysis of skin samples confirmed that both gels were well tolerated, indicating
their suitability for clinical use in patients with cutaneous candidiasis, particularly those
who may not respond to or tolerate conventional antifungal therapies.

Petrini et al. explore [2] a novel application of photodynamic therapy (PDT) using
an aminolevulinic acid-based gel in periodontal tissue repair. The study assesses how
photodynamic therapy (ALAD-PDT) with red LED irradiation affects human gingival
fibroblasts (hGFs) and osteoblasts (hOBs) cultured on porcine acellular dermal matrix
membranes (PADMMs), a common material used in periodontal surgery. The findings
offer promising insights into PDT’s potential for accelerating healing and reinforcing the
stability of membrane grafts in oral surgery. In this study, human gingival fibroblasts and
osteoblasts obtained from dental patients were cultured on PADMMs and subjected to
three treatment groups: a control group (CTRL) without exposure, a group receiving red
LED irradiation only, and a group treated with ALAD-PDT (45 min of aminolevulinic acid
incubation followed by 7 min of red LED exposure). The results show that ALAD-PDT
significantly enhanced cellular proliferation and organization, forming a dense network of
cells on PADMMs. Further assays—including MTT, histology, SEM, and mineralization
assays—confirmed that ALAD-PDT significantly increased collagen and fibronectin pro-
duction in fibroblasts and promoted bone marker expression in osteoblasts, suggesting that
ALAD-PDT facilitates faster and more robust healing outcomes.

Hussain et al. [3] explore a cutting-edge, non-invasive approach to delivering valproic
acid (VA) directly to the brain via nasal administration. This innovative study leverages
computational predictive modeling and nanoemulsion gel formulation to overcome the
challenges of conventional valproic acid delivery routes, which often result in systemic
side effects, rapid hepatic metabolism, and low bioavailability in the brain. The study
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incorporated GastroPlus Version 9.8.3 and HSPiP (Hansen Solubility Parameters in Practice)
programs to identify optimal excipients, evaluate formulation parameters, and predict
the in vivo performance of valproic acid. GastroPlus simulations provided insights into
drug absorption, distribution, and predicted the advantages of nasal administration over
traditional oral and parenteral routes. Hansen solubility parameters helped select excipients
that offered optimal miscibility, forming stable and effective nanoemulsion gels.

The development of advanced hydrogel systems for wound care has significant po-
tential in managing chronic conditions, especially for diabetic patients facing slow or
non-healing wounds. The research article by Aldakheel and colleagues [4] showcases a
promising approach that merges green synthesis techniques with hydrogel technology to
address this urgent healthcare need. Diabetic chronic wounds are prone to infection, poor
healing outcomes, and an increased risk of complications like limb amputation, making
effective, rapid-healing wound care solutions critical. In this study, the authors developed
a polysaccharide-based hydrogel infused with silver nanoparticles (AgNPs) synthesized
through an eco-friendly process using garlic extract, which acts as a reducing agent. The
hydrogel matrix, composed of chitosan, starch, and alginate (PsB), was further modified
with acrylamide to improve its mechanical and adhesive properties. The green-synthesized
AgNPs demonstrated effective antibacterial activity against Klebsiella pneumoniae and Staphy-
lococcus aureus, two bacterial strains commonly associated with wound infections. The
choice of silver, known for its broad-spectrum antibacterial properties, enhances the hydro-
gel’s functionality by providing infection control, while the polysaccharide matrix aids in
creating a moist wound environment conducive to healing. By using green synthesis for
AgNP production, this research aligns with the growing demand for sustainable medical
materials and demonstrates a practical alternative to traditional, chemical-based wound
care products.

In their paper, Ji and colleagues [5] present an innovative approach to anticancer drug
delivery. This study addresses the significant challenge of safely delivering toxic anticancer
agents, such as tamoxifen citrate, in a controlled and sustained manner to improve therapeu-
tic efficacy and reduce side effects. Utilizing a modified coaxial electrospraying technique,
the authors created microparticles composed of tamoxifen citrate (TC) within a matrix of
ethylcellulose (EC), coated with stearic acid (SA) to regulate the drug’s release. The use
of ethylcellulose as the core matrix provided a robust foundation for the encapsulation,
while the stearic acid layer functioned as an additional control mechanism to moderate
the diffusion of the drug. The authors analyzed the morphology, structural compatibility,
and physical state of the microparticles using advanced characterization techniques, in-
cluding scanning and transmission electron microscopy (SEM and TEM), X-ray diffraction
(XRD), and Fourier-transform infrared spectroscopy (FTIR). These methods validated the
integrity and uniformity of the SA coating, which was integral to the observed sustained
release profile.

In another research paper, Slavkova and colleagues [6] present a promising therapeutic
approach for pediatric atopic dermatitis, utilizing budesonide-loaded nanoparticles in a
hydrogel matrix to enhance treatment precision and efficacy. Budesonide, a corticosteroid
often used in treating skin inflammation, has shown limited success in topical applications
due to side effects and challenges related to its stability and permeability in the skin.
This study leverages the pH differences observed in atopic dermatitis lesions to create a
responsive nanocarrier, Eudragit L100, which enhances budesonide’s release to the inflamed
site. Nanoparticles were created via a nanoprecipitation method, producing particles with
a mean size of 57 nm, a negative surface charge (−31.2 mV), and high drug encapsulation
efficiency (~90%). Cytotoxicity assays on HaCaT keratinocyte cells indicated their safety
for skin applications, making this a viable delivery method for young patients. The
nanoparticles were subsequently incorporated into two types of hydrogels: methylcellulose
or Pluronic F127, which were rigorously analyzed for characteristics like pH, occlusion,
rheology, spreadability, and drug release profiles. These hydrogels demonstrated controlled,
targeted release of budesonide, positioning them as an effective solution for treating atopic
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dermatitis in pediatric patients. This study underscores the potential of nanoparticle-
infused hydrogels as advanced, localized treatment options for skin conditions, especially
where traditional therapies may fall short.

In their comprehensive review, Chen et al. [7] examine recent innovations in hydrogel
coatings applied to titanium and titanium alloy implants, materials widely used due
to their mechanical properties and biocompatibility. However, titanium’s performance
within the physiological environment can be limited, particularly in promoting cellular
interactions and biological integration. To address these challenges, hydrogel coatings offer
a biochemical approach to enhance surface bioactivity by attaching functional biomolecules,
including proteins, growth factors, and peptides. This biochemical strategy enables the
implant surface to better support cell adhesion, proliferation, and differentiation, which
are critical for improved biocompatibility and long-term implant success. The review
highlights both natural polymers (e.g., collagen, gelatin, chitosan, alginate) and synthetic
polymers (e.g., polyvinyl alcohol, polyacrylamide, polyethylene glycol, polyacrylic acid)
used in hydrogel coatings. Various application methods for creating these coatings, such as
electrochemical deposition, sol–gel processes, and layer-by-layer assembly, are thoroughly
reviewed. Furthermore, the authors explore the five key benefits hydrogel coatings bring to
titanium implants: enhanced osseointegration, improved angiogenesis, the modulation of
macrophage responses (promoting an anti-inflammatory effect), antimicrobial properties,
and the capability of localized drug delivery.

The review of Chelu et al. [8] delves into the growing field of Aloe vera-based hydrogels,
emphasizing their advantages as biocompatible, therapeutic wound dressings. Aloe vera
is renowned for its healing properties, and when integrated into hydrogels, it provides
an ideal environment for the promotion of tissue repair, mitigating inflammation, and
delivering bioactive agents directly to wound sites. This review discusses the synthesis
techniques and structural characteristics of these hydrogels, examining how their properties
support wound healing. Chelu et al. [8] explore the various mechanisms through which
therapeutic agents are released from Aloe vera hydrogels, including diffusion, swelling, and
degradation, which allow for controlled and sustained drug delivery. In addition to enhanc-
ing wound closure, these hydrogels offer significant antimicrobial and anti-inflammatory
benefits due to Aloe vera’s natural compounds and the potential for incorporating additional
therapeutic agents. The review covers different approaches for embedding antimicrobial
and anti-inflammatory agents into these hydrogels, thus expanding their efficacy against
infections and inflammation.

Villa et al. [9] examine the use of natural deep eutectic solvents (NaDESs) as eco-
friendly, effective solvents in the cosmetic and pharmaceutical industries. Recognized as a
new generation of green solvents, NaDESs provide a safer, non-flammable alternative to
conventional ionic liquids and can be tailored for both lipophilic and hydrophilic molecules.
This versatility makes them ideal for various applications, from sustainable extraction
processes to biocompatible drug delivery systems. In pharmaceuticals, NaDESs are high-
lighted for their role as biopolymer modifiers, where they act as “therapeutic deep eutectic
systems”. These systems enhance the solubility and stability of active ingredients, offering
potential improvements in drug delivery. In cosmetics, NaDESs show promise in forming
more sustainable, efficient formulations, providing a means for the stable incorporation
of bioactive ingredients in topical and dermal applications. This review synthesizes the
current understanding of NaDES applications in these fields, discussing both their prac-
tical uses and the challenges ahead. By examining the multifunctionality of NaDESs, the
review underscores their potential to transform formulation practices within cosmetics and
pharmaceuticals, advocating for their broader adoption as a green solution in bioactive
ingredient delivery.

Chelu [10] presents a comprehensive analysis of recent innovations combining es-
sential oils with hydrogel technology for diverse applications such as biomedical, dental,
cosmetic, food, packaging, and heritage restoration. This review explores the synthesis,
polymeric sources, and cross-linking techniques used in these hydrogels, emphasizing their
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biocompatibility, non-toxicity, antibacterial properties, controlled release capabilities, and
cytocompatibility. The unique properties of essential oils, including their bioactivity and
aromatic potential, are examined alongside their extraction and encapsulation processes.
The review delves into the benefits and challenges of these methods, addressing issues
such as the volatility, solubility, and stability of essential oils within hydrogel matrices.
The encapsulation of essential oils in hydrogels enhances both stability and biological
efficacy, making these formulations viable for sustained release applications in health and
cosmetic products as well as food preservation and cultural conservation. Chelu’s review
outlines the challenges and limitations faced in essential oil hydrogel technologies and
discusses their promising future, noting significant potential across a broad spectrum of
fields due to the multifunctionality of hydrogels and the enhanced delivery of natural
bioactive compounds.

3. Future Directions in Hydrogel-Based Therapeutics

While the studies presented in this Special Issue illustrate the tremendous potential of
hydrogel systems, challenges remain that require collaborative research efforts. The field is
moving towards more personalized, patient-specific approaches, leveraging advanced tech-
niques such as 3D printing and machine learning to create hydrogels tailored to individual
needs. The integration of “smart” responsive materials that adjust drug release based on
real-time feedback holds promise for next-generation, self-regulating delivery systems.
Furthermore, the inclusion of both therapeutic and diagnostic functionalities within a
single hydrogel platform—often referred to as “theranostic” applications—is an exciting
development that could transform treatment paradigms for chronic and complex diseases.

4. Conclusions

This Special Issue captures both the depth and diversity of hydrogel-based drug de-
livery research. It reflects the field’s journey from theoretical advancements to tangible
applications and encourages continued exploration to overcome existing limitations. By
integrating high-quality reviews and pioneering research, we aim to inspire innovation
and collaboration among researchers and industry professionals working towards safer,
more effective, and patient-centered drug delivery solutions. We hope that this collec-
tion will serve as a valuable resource for anyone interested in the field of hydrogels for
sustained therapeutic delivery and look forward to witnessing the future impact of these
advancements on modern medicine.

We would like to extend our deepest gratitude to the journal Gels for the invaluable
opportunity to produce this Special Issue, and we express our heartfelt thanks to the
editorial team for their tireless support, especially our managing editor Ms. Miranda
Song, who provided continuous guidance throughout the submission and publication
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the contributing authors and the conscientiousness of our reviewers, whose critical insights
and commitment have ensured the high quality and scientific rigor of this collection.
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Abstract: Budesonide is a mineral corticoid applied in the local therapy of pediatric atopic der-
matitis. Unfortunately, its dermal administration is hindered by the concomitant adverse effects
and its physicochemical properties. The characteristic pH change in the atopic lesions can be uti-
lized for the preparation of a pH-sensitive nanocarrier. In this view, the formulation of Eudragit L
100 nanoparticles as a budesonide delivery platform could provide more efficient release to the desired
site, improve its penetration, and subsequently lower the undesired effects. In this study, budesonide-
loaded Eudragit L100 nanoparticles were prepared via the nanoprecipitation method (mean diameter
57 nm, −31.2 mV, and approx. 90% encapsulation efficiency). Their safety was proven by cytotoxicity
assays on the HaCaT keratinocyte cell line. Further, the drug-loaded nanoparticles were incorporated
into two types of hydrogels based on methylcellulose or Pluronic F127. The formulated hydrogels
were characterized with respect to their pH, occlusion, rheology, penetration, spreadability, and drug
release. In conclusion, the developed hydrogels containing budesonide-loaded nanoparticles showed
promising potential for the pediatric treatment of atopic dermatitis.

Keywords: budesonide; nanoparticles; Eudragit L100; hydrogels; atopic dermatitis

1. Introduction

Atopic dermatitis is a chronic, relapsing inflammatory skin disease. It has three stages:
infantile, childhood, and adult. The onset could be as early as birth and can manifest
with erythematous papules and vesicles on the cheeks, forehead, and/or scalp. It has
a high prevalence and affects 15% to 30% of children [1]. The disease’s pathogenesis is
related to genetic predisposition, environmental factors, and immune dysregulation [2]. It
is characterized by increased transepidermal water loss due to barrier dysfunction and a
pH increase of up to 6 or even higher [3]. Therapy for atopic dermatitis depends on the
manifestation of the disease, and in severe cases, it may require a systemic remedy. In mild
to moderate conditions, usually topical therapies are sufficient for disease management [4].
Furthermore, topical application is a convenient and affordable method of administration
with minimal systemic toxicity [5]. The pharmacological topical treatment consists mainly
of glucocorticoids, calcineurin inhibitors, or topical crisaborole [6]. Current therapeutic
strategies are focused on reducing inflammation, restoring the skin barrier, and antibacterial
therapy [7].

Corticosteroids are used as a first-line treatment for many dermal conditions, from
pruritic lesions to atopic dermatitis or psoriasis. They have anti-inflammatory, immunosup-
pressive, anti-proliferative, and vasoconstrictor effects [8]. Even though they have been
intensively applied topically, they have been associated with local or systemic adverse
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effects such as cutaneous atrophy, telangiectasia, striae, skin infections, and hypothalamic-
pituitary-adrenal axis suppression [9]. This is a drawback in their application, especially
for long-term therapies for chronic conditions such as atopic dermatitis.

Budesonide is a potent synthetic nonhalogenated representative of the corticosteroid
family with predominantly anti-inflammatory activity and a weak mineralocorticoid [10].
It is applicable in the inhaled therapy of asthma [11] and the targeted oral treatment
of ulcerative colitis [12]. There are recent reports about the use of budesonide in the
management of pediatric atopic dermatitis [4]. However, budesonide has poor aqueous
solubility [13] and a partition coefficient (log P) of 2.32 [14]. These characteristics make
it an unattractive drug for the dermal route of application, and different strategies have
been proposed to improve its skin delivery, e.g., cyclodextrin inclusion complex-based
hydrogels [4], PLGA-PVA nanoparticles [10], and PEO-PCL-PEO triblock nanoparticles [15].

Nowadays, scientific efforts are directed toward the development of innovative formu-
lations like nanoparticles, liposomes, microemulsions, etc. for enhanced delivery of drug
molecules into the skin [7]. The nanotechnological approach can boost the therapy of skin
disorders. The penetration and transport of drugs from nanoparticles can be modified by
the different chemical properties of the polymer used, the encapsulation mechanism, the
size of the nanoparticles, and the viscosity of the formulations. The loading of the drug in
nanocarriers improves the solubility of highly hydrophobic drugs, provides sustained and
controlled release, increases drug stability, and provides site-specific delivery. Therefore, the
adverse effects can be diminished [10]. Polymeric nanoformulations are sub-micrometric
colloidal drug carriers prepared by biocompatible and biodegradable polymers. They vary
in composition and structure and include such nanosystems as nanocapsules, nanospheres,
nanofibers, etc. [7]. Natural and synthetic polymers can be used in their preparation.
The second group is characterized by high purity and batch-to-batch reproducibility and
is therefore suitable for more consistent drug release profiles. Some typical examples
of synthetic polymers used for nanoparticle preparation are poly(lactic-co-glycolic acid),
tyrosine-derived triblock polymer, poly(ε-caprolactone), and others [16].

Polymeric nanoparticles can be prepared by various methods, which can be gener-
ally classified as the application of preformed polymers or the direct polymerization of
monomers. There are various techniques applied for the formation of nanoparticles with
preformed polymers, such as solvent evaporation, salting-out, dialysis, supercritical fluid
technology, and others [17]. Eudragit® is a manufactural name for a diverse range of
synthetic polymethacrylate-based copolymers. They can be commercialized with different
acidic or alkaline end groups, allowing pH-dependent drug release. Eudragits are func-
tional polymers widely used in the development of polymeric nanoparticles. They have
the potential to encapsulate and increase the solubility and bioavailability of poorly soluble
drugs [18], as well as control drug delivery [3]. Eudragit® L100 is an anionic representative
with a mean molecular mass of approximately 135,000 Da and an apparent viscosity of
50–200 mPas [19]. It is soluble at pH ≥ 6 and is generally used in the preparation of enteric
coatings. A current review of its applications shows that Eudragit® L100 can be utilized
in the preparation of microspheres, microsponges, nanoparticles, liposomes, tablets, etc.
in order to achieve sustained release or bioavailability improvement [20]. Nanoparaticles
based on Eudragit L100 were also proposed for dermal drug delivery [21]. It has also
been suggested that those nanoparticles possess negative zeta potential and remain on
the epidermis surface, limiting systemic absorption as well as side effects, which could be
especially useful in the pediatric population [22].

Topical corticosteroids are available in different conventional dosage forms, including
creams, ointments, gels, sprays, foams, and others [8]. The main barrier for the topical
and transdermal routes of administration happens to be the stratum corneum (SC) layer
of the skin. It has a two-compartment structure, often referred to as a “brick and mortar
system.0”. The corneocytes are stacked in up to 20 layers and play the physical barrier role
of SC. The spaces between them are occupied by mortar lipids. This is a complex mixture of
around 13 lipid types, including ceramides, cholesterol, and free fatty acids, which play the
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permeability barrier role of SC [23]. The substances that are capable of diffusion through
the intracellular route of the SC are small (molecular weight ≤ 400 Da) and lipophilic in
nature (log P > 3) [24]. The main issue regarding the application of the classic semi-solid
formulations is the enhancement of drug penetration and the simultaneous minimization
of the risks of percutaneous absorption. The choice of vehicle can significantly affect the
potency of the corticosteroid applied. Ointments, for example, exert more pronounced
occlusion, which promotes their absorption and reach into the bloodstream [25]. In addition,
the pediatric population, which is the most common end user of topical steroid therapy,
is characterized by considerable differences in skin structure and thickness. The drug
permeability is significant in children due to the thinner skin and the high skin-to-body-
weight ratio. Thus, topical steroid application in children is prone to more systemic side
effects such as growth retardation, Cushing disease, hyperglycemia, Addisonian crises
upon cessation, and others [26]. Therefore, significant attention should be paid to the
choice of vehicle for corticosteroid topical delivery. Simultaneously, more effective therapy
regarding the dose is needed, with limited effect on the depth of penetration.

Hydrogels present one of the most intensively used semisolid forms due to their
excellent biocompatibility, solubility in water, and structural and viscoelastic resemblance
to the cell membrane [27,28]. In addition, they are more cosmetically appealing, they do
not cause skin maceration or folliculitis, and they can be applied to the scalp [25]. In the
light of atopic dermatitis treatment, there is data suggesting that hydrogels are the most
preferable dosage form [29]. The most recent studies have pointed towards the preparation
of so-called novel hydrogels, which consist of novel formulations such as nanoparticles,
nanoemulsions, microemulsions, liposomes, etc. [5]. These dosage forms provide the
opportunity to resolve some of the issues of drug delivery to the skin as well as being
capable of controlling the drug release. Various polymers could be used for hydrogel
preparation, including natural ones (such as chitosan [30,31], hydroxyethylcellulose [32],
and hyaluronic acid [33]) or synthetic ones (such as carbomer [34], pluronic [27], and
polyvinyl alcohol [35]). The choice of gelling agent can affect the properties of the prepared
hydrogel and the expected drug behavior. Even though carbomer is one of the most widely
used gelling agents for semisolid formulations, its gelation is pH-dependent and occurs
in a neutral medium [36]. This could be inappropriate for pH-dependent Eudragit® L100
nanoparticles. Another considerably universal gelling agent for various routes of applica-
tion are Pluronic derivatives [37]. Pluronics are water-soluble non-ionic triblock copolymers
(PEO-PPO-PEO) of varying numbers of polyethylene oxide (PEO) and polypropylene oxide
(PPO) units. Depending on the size of the blocks and molecular weight, different grades of
Pluronic copolymers exist. The PEO and PPO blocks determine their amphiphilic structure,
which allows micelle formation for the solubilization of lipophilic drugs. Depending on
the type and concentration, a thermo-reversible gelation can be observed [37]. The most
common representative applied as gelation aid is the hydrophilic Pluronic® F127. Its ease
of gelation and biocompatibility make it very suitable for semisolid topical formulations. A
disadvantage is its relatively low mechanical strength. On the other hand, methylcellulose
is a cellulose derivative with excellent biocompatibility properties. It is the simplest ether
derivative, with methyl groups substituting the hydroxyl ones at the C-2, C-3, and/or C-6
positions. There are a lot of commercial grades of methylcellulose, varying the degree and
localization of substitution. Methylcellulose hydrogels have been exploited for dermal, ocu-
lar, vaginal, rectal, and oral drug delivery [38]. Therefore, gelling agents from two different
groups were chosen in the current study for comparison purposes. The consistency of the
hydrogels and their spreadability are important characteristics that provide information
regarding the application or delivery of a desired drug dose to the skin and the ease of
gel application. These properties significantly influence the patient’s preference for the
respective semisolid formulation [39].

The use of corticosteroids in the pediatric population should be considered with care,
as these patients possess a higher propensity to develop adverse actions due to a higher
surface area-to-body weight ratio and fragile skin [40]. A formulation of budesonide in
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an appropriate delivery system capable of providing efficient treatment of early forms of
atopic dermatitis with limited side effects is a very attractive approach. The prolonged
release achieved with the help of nanocomposites can overcome issues regarding systemic
absorption through topical administration. Furthermore, a semisolid formulation could
be suitable for easy application, a longer stay on the affected area, and a possible hydra-
tion effect. Thus, the aim of the current study is to develop and characterize Eudragit®

L100-based nanoparticles loaded with budesonide for pH-sensitive delivery of the drug.
Furthermore, the drug-loaded nanoparticles were formulated into two types of semisolid
hydrogels as a final dosage form for the therapy of atopic dermatitis.

2. Results and Discussion

In the present study, budesonide is encapsulated into Eudragit L100 nanoparticles that
are further formulated in hydrogel dosage form. The scientific rationale is to combine the
pH-dependent budesonide delivery via Eudragit L100 nanoparticles with the hydration
ability of methylcellulose or F127 hydrogels as a final dosage form.

2.1. Preparation and Characterization of the Nanoparticles

Eudragit L100 nanoparticles were successfully prepared by the nanoprecipitation
technique. Eudrgait L 100 and budesonide were dissolved in ethanol, and their solution
was slowly precipitated via mixing with a 0.25% aqueous solution of PVA as a non-solvent.
During this mixing, rapid diffusion of the ethanol occurs in the water, which is accompanied
by reduced interfacial tension and the formation of small droplets of the polymer and drug.
Upon ethanol evaporation, nanoprecipitation occurs [17]. It appeared that the pH of the
aqueous PVA-phase was a crucial factor in the preparation of particles with a size on the
nanoscale. The medium diameter of the particles obtained with PVA-phase at pH 4.0 was
approximately 6268 nm, whereas those prepared at pH 5.0 had an average diameter less
than 60 nm. Furthermore, the ratio between both the organic and aqueous PVA-phases also
influenced the particle size. Figure 1a shows the three ratios between both phases that were
evaluated (1:1, 1:6, and 1:10, v/v). The optimal ratio between the ethanol and the aqueous
phase was determined to be 1:10, since only at this ratio was the size of the particles at the
nanoscale. As shown, the polydispersity slightly increased at this ratio but still indicated a
narrow size distribution. The results from the dynamic light scattering analysis (DLS) for
the optimized batch are presented in Figure 1b. It can be seen that there is no significant
difference between the size of the empty (57.2 nm) and the drug-loaded nanoparticles
(55.8 nm). Both particle samples showed a narrow particle size distribution, with PDI equal
to 0.309 and 0.219 for the NP and Bud-NP, respectively. Similar results were observed by
other studies [41].
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Important information regarding nanoparticle colloidal stability can be provided by
investigating their zeta potential. According to literature data, polymeric nanoparticles
are considered stable if their absolute value of zeta potential is equal to or greater than
30 mV [42]. All batches of the prepared nanoparticles were characterized with similar
values ranging from −30 mV to −32.7 mV. The negative zeta potential could be explained
by the presence of carboxylic groups in the polymer carrier on the nanoparticle surface.
Similar results regarding Eudragit L100 nanoparticles can be found in the literature [3,43,44].
The morphology of the prepared nanoparticles was characterized by TEM. The micrographs
are presented in Figure 2. It can be seen that the nanoparticles were spherical in shape, and
the observed diameter was correlated with that found by DLS.
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Figure 2. Transmission electron microscope image of the optimized nanoparticle batch.

The encapsulation efficiency was investigated in the case of different ratios between
the drug and the polymer (correspondingly 1:5, 1:8, and 1:10, wt/wt). The results from the
different batches are statistically different (p < 0.005). The results showed that encapsula-
tion efficiency was paramount at a ratio of 1:8, achieving approximately 90% (Figure 3a).
Similarly, the yield of the obtained lyophilized nanoparticles was highest at the same ratio
(Figure 3b). The loading degree at a ratio of 1:8 was slightly lower than that obtained at a
ratio of 1:5 (Figure 3a). Thus, taking into consideration the higher encapsulation efficiency
and higher yield, the ratio 1:8 was selected as optimal, and all further tests were performed
with these nanoparticles.

Gels 2024, 10, x FOR PEER REVIEW 6 of 20 
 

 

 

Figure 3. Influence of the ratio between the drug and the polymer on encapsulation efficiency, drug 

loading (a), and nanoparticle yield (b). 

Figure 4 presents the FTIR spectra of budesonide, Eudragit L100, empty nanoparti-

cles, and budesonide-loaded nanoparticles. The spectrum of budesonide consists of lots 

of well-resolved absorption peaks, which could be assigned as follows: a peak in the re-

gion 3600–3350 cm−1 due to OH-group stretching; peaks in the region 3000–2850 cm−1 due 

to the stretching of C−H bonds; peaks at 1721 cm−1, 1666 cm−1 and 1622 cm−1, attributed to 

stretching vibrations of C=O (carboxylic), conjugated C=O stretching, and C=C bonds, re-

spectively. The Eudragit L100 spectrum represents a broad band in 3700–3080 cm−1 of 

stretching of the OH-group, which overlaps partially with the peaks of the C−H stretch in 

the 3060–2870 cm−1 range. A peak with high intensity at 1722 cm−1 is assigned to C=O ester 

stretching with a shoulder at 1620 cm−1. The peaks of C−H bending vibrations are found 

in the region 1380–1470 cm−1. The spectrum of the empty nanoparticles consists of the 

same peaks as this of Eudragit L100, with a slight difference in their intensities. The spec-

trum of the drug-loaded sample (Bud-NP) is characterized by the same peaks observed in 

the spectrum of the empty nanoparticles, accompanied by a noticeable additional peak at 

1664 cm−1 characteristic for the budesonide, which confirms the loading of budesonide 

into the nanoparticles formed.  

 

Figure 4. FTIR spectra of budesonide (Bud), budesonide-loaded nanoparticles (Bud-NP), empty na-

noparticles (NP), and Eudragit L100 (E L100). 

Figure 3. Influence of the ratio between the drug and the polymer on encapsulation efficiency, drug
loading (a), and nanoparticle yield (b).

Figure 4 presents the FTIR spectra of budesonide, Eudragit L100, empty nanoparticles,
and budesonide-loaded nanoparticles. The spectrum of budesonide consists of lots of
well-resolved absorption peaks, which could be assigned as follows: a peak in the region
3600–3350 cm−1 due to OH-group stretching; peaks in the region 3000–2850 cm−1 due to
the stretching of C−H bonds; peaks at 1721 cm−1, 1666 cm−1 and 1622 cm−1, attributed
to stretching vibrations of C=O (carboxylic), conjugated C=O stretching, and C=C bonds,
respectively. The Eudragit L100 spectrum represents a broad band in 3700–3080 cm−1 of
stretching of the OH-group, which overlaps partially with the peaks of the C−H stretch in
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the 3060–2870 cm−1 range. A peak with high intensity at 1722 cm−1 is assigned to C=O
ester stretching with a shoulder at 1620 cm−1. The peaks of C−H bending vibrations are
found in the region 1380–1470 cm−1. The spectrum of the empty nanoparticles consists of
the same peaks as this of Eudragit L100, with a slight difference in their intensities. The
spectrum of the drug-loaded sample (Bud-NP) is characterized by the same peaks observed
in the spectrum of the empty nanoparticles, accompanied by a noticeable additional peak
at 1664 cm−1 characteristic for the budesonide, which confirms the loading of budesonide
into the nanoparticles formed.
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Part of the XRD patterns of budesonide, Eudragit L100, empty nanoparticles, and
budesonide-loaded nanoparticles are presented in Figure 5. The pattern of budesonide
represents a well-crystalline compound with two epimers (22R and 22S) [45]. Our detailed
examination also revealed that it consists of patterns of the 22R and 22S epimers. The
mass ratio of 3:1 (75% and 25% for 22R and 22S epimers, respectively) was calculated by
comparing the total intensity of the peaks connected to both phases with the assumption of
their equal density. Both epimers were found to crystallize in orthorhombic Space Group
P212121, and their unit cell parameters are calculated by our experimental data as follows:
for 22R a = 8.516(4) Å, b = 9.185(3) Å, c = 28.87(1) Å; for 22S a = 8.449(2) Å, b = 9.127(2) Å,
c = 20.099(9) Å. It is worth mentioning that they are very close to those reported in the
study of Albertsson et al. [45]. The XRD pattern of Eudragit L100 shows typical amorphous
humps at around 2θ = 15◦ and 30◦, as it was observed previously [46]. The well-visible shift
of the maximum of the first amorphous peak from 2θ = 15◦ to 18.5◦ upon the formation
of empty nanoparticles can be seen. The shift indicates that, in the presence of PVA as a
stabilizer, the characteristics of the encapsulated Eudragit L100 differ from those of the
bulk Eudragit L100. This is a common feature of nanoparticles. In particular, the surface
layer tends to have many structural defects, resulting in different types of bonding and
coordination of the atoms compared to the bulk carrier [47]. The loaded sample shows
the same amorphous peak as in the empty nanoparticles and some small crystalline peaks
at around 2θ = 6◦ and 10◦ indexed as (002) and (011) peaks of budesonide. The results
confirm the successful loading of budesonide into Eudragit L100 nanoparticles.
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Figure 5. Powder XRD patterns of budesonide (Bud), budesonide-loaded nanoparticles (Bud-NP),
empty nanoparticles (NP), and Eudragit L100 (E L100).

2.2. Cytotoxicity Evaluation of HaCaT Cells

Cell cytotoxicity assays represent one of the most frequently used in vitro bioassay
methods for predicting the toxicity and irritating side effects of drugs and medical devices;
thus, it is important to study thoroughly the response of cell mechanisms upon exposure to
different compounds [48]. Cultured human keratinocytes offer a means to predict dermal
irritancy resulting from exposure to various substances in humans [49,50]. Keratinocytes,
being the first living cells that come into contact with externally applied compounds,
represent a biologically relevant target for assessing skin irritants. However, primary
keratinocyte cultures have inherent limitations, including limited and variable availability
of source material and varying susceptibility to irritants with the number of passages. To
overcome these challenges, HaCaT cells were employed as a model. These non-tumorigenic,
spontaneously immortalized keratinocyte cells offer a nearly limitless supply of identical
cells, thereby ensuring high levels of reproducibility within and between laboratories [50].
Furthermore, it is worth noting that in vitro cytotoxicity data obtained from the human
keratinocyte line (HaCaT) closely correlates with in vivo data [51].

Therefore, we evaluated the potential cytotoxic effects of pure budesonide, budesonide
loaded into the nanoparticles, and empty nanoparticles on the viability of the human
keratinocyte line HaCaT. A colorimetric assay measuring the capacity for viable cells to
metabolize a tetrazolium colorless salt to a blue formazan (MTT assay) was used as an
indirect measurement of cell viability to predict skin irritancy. After 24 h of treatment, the
empty nanoparticles (NP) at concentrations ranging from 2.65 to 85 µg/mL did not decrease
cell viability and showed no toxic effects. Furthermore, both pure budesonide (ranging
from 0.17 to 5.4 µg/mL) and budesonide loaded into the nanoparticles (corresponding
concentrations) did not exhibit a statistically significant decrease in keratinocyte viability,
as shown in Figure 6. In the tested concentrations, both samples demonstrated no in vitro
toxicity and a favorable safety profile in the human keratinocyte HaCaT cell line.
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Figure 6. Cytotoxicity on HaCaT cells measured by MTT assay of pure budesonide (Bud), budesonide
loaded in the nanoparticles (Bud-NP), and empty nanoparticles (NP). The results are expressed as
means ± SD of triplicate assays (n = 3). All groups were compared statistically vs. untreated controls
by one-way ANOVA with Dunnet’s post hoc test.

2.3. Preparation and Characterization of the Hydrogels

The nanoparticle dispersions can be easily removed from the skin and exert limited
contact with the affected area. Thus, in order to improve the retention of the drug at
the site of application, the nanoparticles were incorporated into two types of hydrogels.
Furthermore, the high water content of hydrogels would provide hydration for the atopic
skin. The latter makes hydrogels very appropriate topical dosage forms since the disrupted
barrier function of atopic skin allows transepidermal water loss. The hydrogels are pre-
pared by simple gelling of nanoparticle dispersions with methylcellulose or Pluronic F127
(further referred to as F127). The gelling agent selection was based on their frequent use,
biocompatibility, and generally regarded as safe (GRAS) status [52,53]. Light microscopic
observations showed that the incorporation of the nanoparticles within both hydrogels did
not lead to any changes in their appearance or stability. All gels maintained a homogeneous,
transparent appearance with no visible aggregates upon nanoparticle incorporation. In
addition, the pH of the prepared hydrogels was determined with or without the presence
of nanoparticles. The F127 and methylcellulose plain gels had pH equal to 5.19 and 5.26,
respectively. The results suggested that the semisolid vehicles are appropriate for the
incorporation of the Eudragit L100 nanoparticles. The incorporation of the nanoparticles
leads to a slight but insignificant decrease in the pH values (5.11 and 5.18, respectively).
This can be attributed to the presence of PVA as a stabilizer for the nanoparticles. The data
suggests the suitability of the proposed formulations for dermal application [54].

Preliminary dynamic rheological tests of methylcellulose- and Pluronic- based samples
revealed a significant difference in the elastic properties of materials (Table 1). The hydrogel
formed by F127 was much more elastic than the methylcellulose hydrogel (MC). At first
glance, one of the reasons for the huge difference in the elastic modulus (G′) of F127
and MC hydrogel carriers might be their different concentrations. More precisely, at the
given concentration, the plain MC sample was in the form of a highly viscous solution
(G′′ > G′), which formed a soft gel upon adding the nanoparticles. On the other hand, the
F127 system exhibited the typical behavior for hard gels (G′′ >> G′) with and without NPs.
It should also be noted that the gelation of the two polymers in aqueous media occurs
by different mechanisms. Above certain critical concentrations and temperatures, the
macromolecules of MC tend to intertwine, and some junction pints are formed to produce
a weak physical hydrogel [55]. In contrast, under the reported experimental conditions,
F127 macromolecules are self-assembled into nanosized micelles, which are closely packed
into a three-dimensional network structure. Such material behaves as a hard gel [56].
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Table 1. Elastic (G′) and loss (G′′) moduli and complex dynamic viscosity (η*) of plain methylcellulose
(MC) and Pluronic F127 (F127) hydrogels and the corresponding hydrogels containing empty (NP-
F127 and NP-MC) and drug-loaded nanoparticles (Bud-NP-F127 and Bud-NP-MC).

Sample F127 NP-F127 Bud-NP-F127 MC NP-MC Bud-NP-MC

G′ (Pa) 22,960 26,900 27,570 69 240 191
G′′ (Pa) 3037 1847 1757 108 231 185
η* (Pa.s) 3686 4292 4396 20 52 49

Embedding the empty and budesonide-loaded nanoparticles into the hydrogel matrix
resulted in increased elastic modulus and complex dynamic viscosity (η*) (see Table 1). The
reinforcing effect of the nanoparticles can be explained by the fact that the NPs comprise a
polymethacrylate derivative, which makes them more rigid than the hydrogel matrix.

The investigation of the occlusive properties of the selected gel bases was evaluated,
taking into consideration their administration to atopic lesions. The occlusive properties
of both hydrogels are compared to those of petrolatum, which is well known for its high
occlusion [57]. The hydrogels are preferable semisolid vehicles for dermal delivery due
to their more appealing properties and the reduced occlusive effect they possess [28]. In-
deed, our study reveals that both hydrogels have a lower occlusion factor than petrolatum
(Figure 7). The observed occlusive effect is due to the gelling agent present in the formula-
tion, which tends to form a thin film on the surface, thus preventing water evaporation [58].
The lower occlusive effect compared to petrolatum is attributed to the hydrophilic prop-
erties of the gels. This result indicates that the hydrogels will ensure breathability during
skin treatment. Thus, the combination of breathability and hydration ability of the devel-
oped hydrogels could be considered important parameters for effective healing of atopic
lesions [59]. Further, the F127 gel showed more pronounced occlusion compared to the
methylcellulose gel. This may be attributed to the lower concentration at which methylcel-
lulose is used for the gelation. This is probably not the only reason since there is data in
the literature that 0.5%–0.8% Carbopol-based gels showed an occlusive factor similar [60]
or even higher [58] to the one of plain methylcellulose hydrogel in our study. Probably,
the difference in the chemical structure of the gelling agents affects film formation and the
prevention of water evaporation.
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Figure 7. Occlusion factor for the plain methylcellulose (MC) and Pluronic F127 (F127) hydrogels
and the same hydrogels containing the empty (NP-F127 and NP-MC) or drug-loaded nanoparticles
(Bud-NP-F127 and Bud-NP-MC). Petrolatum was used as a positive control.

Further, the presence of nanoparticles was evaluated in terms of their effect on oc-
clusive properties. It is well known that lipid nanoparticles exhibit skin occlusive effects
[58,60]. There are limited data characterizing the occlusion of polymeric nanoparticles.
Thus, in the present study, we investigated whether the embedment of Eudragit L100
nanoparticles within two different hydrogels affects their prevention of water evaporation.
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The results showed that the incorporation of empty or drug loaded nanoparticles did not
significantly alter the occlusion factor of the parent hydrogels. The retention of water could
be useful in terms of the effectiveness of drug delivery as it could hydrate the stratum
corneum [61] and also ameliorate the atopic skin condition [62].

The penetration and spreadability of the prepared hydrogels were also evaluated in
order to provide some information regarding their ease of application. As can be seen in
Figure 8, the addition of nanoparticles within the hydrogels is not related to a significant
alteration of the depth of penetration. It can be seen that the F127-based gel shows a
statistically lower depth of penetration compared to the methylcellulose gel (p = 0.012,
one-way ANOVA). According to the rheology, it could be due to the closely packed three-
dimensional network structure of this hydrogel compared to the weak physical hydrogel of
methylcellulose. Similar values for the depth of penetration in F127 gels have been reported
by other working groups [63].
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Figure 8. Penetration of plain hydrogels (MC and F127) and hydrogels containing budesonide-loaded
nanoparticles (Bud-NP-MC and Bud-NP-F127); mean ± SD, n = 3; (* significant difference at level
p < 0.05).

The results from the spreadability test for the plain and nanoparticles containing
hydrogels are presented in Figure 9. It can be seen that the F127 gels are less spread-
able than the ones with methylcellulose as a gelling agent. This can be attributed to the
higher concentration used for gelation. Such results can be found in the literature [64].
According to the literature, methylcellulose solutions with a concentration of about 1% or
less show thermogellation above 30 ◦C, depending on the molecular weight of the used
methylcellulose [38]. Furthermore, the increase in molecular weight and concentration leads
to gelation at a lower temperature [65], and typically hydrogels are formed at room temper-
ature at a concentration of 3–6% [66]. In our study, a high-molecular weight methylcellulose
was used at a concentration of 4%, leading to the formation of gel at room temperature with
a spreadability factor of 5.95 mm2/g. The incorporation of the Eudragit L100 nanoparticles
in the methylcellulose hydrogels resulted in an increase in hydrogel spreadability, as shown
in Figure 9a, and the corresponding spreadability factors are 9.09 mm2/g and 8.91 mm2/g
for the NP-MC and Bud-NP-MC samples, respectively. Since Zilberman et al. reported
a decrease in surface tension for the mixtures of cellulose derivatives and PVA [67], we
suggest that the presence of PVA in nanoparticle dispersion may contribute to the larger
spreadability of the hydrogels containing the nanoparticles.

In the case of F127-based gels, no significant difference is observed between the plain
and composite gels, as shown in Figure 9b. Only a slight decrease in the spreadability factor
is evidenced for the hydrogel loaded with the empty nanoparticles (4.23 ± 2.02 mm2/g)
compared to the empty hydrogel (5.49 ± 3.55 mm2/g) and the hydrogel formulated with
budesonide-loaded nanoparticles (4.96 ± 3.21 mm2/g). Similar decrease in spreadability
was observed for F127-based gels loaded with different types of nanoparticles [68].
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Figure 9. Extensiometric profiles of plain methylcellulose (MC) (a) and F127-based gels (b) and the
same hydrogels containing empty (NP-MC and NP-F127) or drug-loaded nanoparticles (Bud-NP-MC
and Bud-NP-F127). Mean ± SD, n = 3.

Thus, the different effects of nanoparticle incorporation in the two types of hydrogels
could be explained by the different mechanisms of gelation for F127 and methylcellulose.
According to most recent literature studies, methylcellulose forms gel based on the fibril
theory [53,69]. The coiling of the fibrils is more pronounced at lower pH values as opposed
to higher pH values, and the viscosity is correspondingly lower as there is limited possi-
bility for polymer-polymer interaction [70]. In the present study, the incorporation of the
nanoparticles leads to a slight reduction of the pH. At the same time, F127 gelation is due
to the very tight packing of the formed micelles and their overlaying [37,71]. The enthropy
is determining the gelation process [37], and probably the nanoparticles do not affect it.

The release profiles of the free drug from the two hydrogels as well as budesonide-
loaded nanoparticles (Bud-NP) and their corresponding hydrogels are shown in Figure 10.
The drug release from the nanoparticle dispersion fits the best Higuchi release kinetics
(Table 2). It can therefore be expected that budesonide release is diffusion-driven through
the undissolved Eudragit L100 matrix nanoparticles. Similar results for the release of
Eudragit-based polymeric nanoparticles have been reported by other researchers [72,73].
Similarly, the Higuchi model best fits the release of non-encapsulated budesonide from the
two hydrogels (Table 2). As shown, with values for the diffusional exponent
n > 0.5 (Korsmeyer-Peppas model), a non-Fickian diffusion controlled the release from the
hydrogels, whereas quasi-Fickian diffusion could be considered in the case of nanoparticles
(n < 0.5).
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Figure 10. In vitro drug release from the hydrogels containing non-encapsulated budesonide (a),
nanoparticles, and hydrogels with nanoparticles (b) in a buffer medium (pH 5.5).
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Table 2. Kinetic parameters of the in vitro drug release from the nanoparticles containing methylcel-
lulose (Bud-NP-MC) and F127 (Bud-NP-F127) hydrogels.

Formulation
Zero Order First Order Higuchi Korsmeyer-Peppas

Qt = Q0−k0t lnQt = lnQ0−k1t Qt = kHt1/2 Mt
M∞

= k.tn

Bud-MC
R2 = 0.8870 R2 = 0.9875 R2 = 0.9874 R2 = 0.8909
k = 13.895 k = −0.152 k = 37.678 n = 0.672

Bud-F127
R2 = 0.8598 R2 = 0.9848 R2 = 0.9850 R2 = 0.8344
k = 14.567 k = −0.425 k = 40.073 n = 0.613

Bud-NP
R2 = 0.871 R2 = 0.9862 R2 = 0.9874 R2 = 0.8612
k = 14.844 k = −0.2176 k = 40.619 n = 0.413

Bud-NP-MC
R2 = 0.9673 R2 = 0.9687 R2 = 0.9604 R2 = 0.9337

k = 3.175 k = −0.021 k = 11.007 n = 0.268

Bud-NP-F127
R2 = 0.9599 R2 = 0.8673 R2 = 0.9089 R2 = 0.9125

k = 8.309 k = −0.090 k = 28.133 n = 0.418

Q—amount of drug; k—rate constant; t—time; n—release exponent.

Comparing the release from both hydrogels containing non-encapsulated (Figure 10a)
or encapsulated drugs (Figure 10b), it can be concluded that the methylcellulose gel is
characterized by a slower and incomplete release as opposed to the F127. The drug release
from the NP-loaded F127 gel follows zero-order (Table 2). Such behavior is observed
by other researchers as well [74]. It is due predominantly to the F127 dissolution in the
medium [75,76]. In the case of methylcellulose gel, the swelling of the polymer retards the
drug release. Furthermore, the investigation of the release kinetics suggests a first-order
pattern. This is in accordance with previous data suggesting that the polymer itself may re-
tain the drug [77]. Another study comparing the release of free drugs from methylcellulose
and poloxamer gel showed the slowest release from the methylcellulose gel, even though
the viscosity was lower than the Pluronic F127 one [78]. The authors explain these findings
due to the interaction between the polymer and drug. Another study points towards the
significance of drug-polymer interactions rather than the viscosity or concentration of the
polymer [79]. In the current study, probably the Eudragit nanoparticles stabilized with
PVA interact with methylcellulose but not with Pluronic F127. These assumptions are also
supported by the susceptibility of the methylcellulose gel’s spreadability and viscosity to
the incorporation of the proposed nanoparticles. The calculation of the similarity factor
between the two release profiles shows that they are not similar (f2 = 33.1). Possible reasons
for the different effect that the gelling agent exerts on the release pattern are the surface ac-
tive properties of F127 and its tendency to form micelles at concentrations above 0.725 wt%
at 25 ◦C [80]. Therefore, in the case of F127 hydrogel, budesonide is probably solubilized,
which enables the release process. Furthermore, the drug release from Pluronic F127 gel is
governed by gel erosion and is not affected to a significant extent by drug diffusion [71].
Such an assumption is supported by the release kinetics findings in the current study.

3. Conclusions

Budesonide was successfully encapsulated in Eudragit nanoparticles (approximately
90% encapsulation efficiency) intended to provide local drug delivery at pH 5.5 and above,
which is desired for atopic skin treatment. The nanoparticles possess appropriate physico-
chemical properties, particularly their small size and highly negative surface charge, that
are prerequisites for improved penetration and colloid stability, respectively. Prolonged
release was achieved, which could reduce the applied dose. The lack of irritancy of the
prepared nanocarriers was demonstrated in vitro in the human keratinocyte cell line, Ha-
CaT. Further, the budesonide-loaded nanoparticles were homogeneously embedded in
two types of hydrogels, based on methylcellulose or Pluronic F127, able to provide ease
of application and hydration ability to the topical formulation. Both hydrogels showed
suitability for dermal application in terms of spreadability, penetration, pH, and occlusion
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properties. At the same time, the budesonide release from the F127 gel was more complete
in the tested time frame, making it more practically applicable.

4. Materials and Methods
4.1. Materials

Budesonide, methylcellulose (Methocel 90HG), and ethanol (96%) were purchased
from Sigma Aldrich; poly(methacrylic acid-co-methyl methacrylate) 1:1 (Eudragit® L100)
from Evonik Röhm GmbH (Darmstadt, Germany); polyvinyl alcohol (PVA 22000) from
Fluka Chemie AG (Germany); and Pluronic F127 from BASF (Ludwigshafen, Germany).
Distilled water was prepared in the laboratory. For HPLC analysis, acetonitrile and
methanol HPLC grades were used from Fisher Chemical (Thermo Fisher Scientific Inc.,
Waltham, MA, USA). Dulbecco’s Modified Eagle’s Medium, MTT (3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide), fetal bovine serum, and L-glutamine were purchased
from Sigma-Aldrich (Merck KGaA, Darmstadt, Germany). The Human immortalized
keratinocyte cell line HaCaT (300493) was acquired from the CLS Cell Lines Service GmbH
(CLS, Eppelheim, Germany).

4.2. Preparation of the Nanoparticles

The nanoparticles were prepared by nanoprecipitation according to the procedure sug-
gested by Sahle et al. [21], with some modifications as shown in Figure 11. First, PVA (0.25%
wt/v) was dissolved in purified water, and the pH was adjusted to 5.0 by the addition of
0.1 N HCl. Eudragit® L100 and budesonide were dissolved in 95% ethanol in different
concentrations, giving the following ratios in regard to Eudragit® L100: 1:5, 1:8, and 1:10
(wt/wt). Afterwards, the ethanol solution was added dropwise to the PVA while being
sonicated at 80 kHz (Bandelin Sonoplus HD3100, Bandelin Electronics, Berlin, Germany)
for 1 min. The sonication was continued for 1 more minute after the ethanol solution was
added completely. Then, the resultant dispersion was left for 24 h under continuous stirring
for ethanol evaporation. Upon the evaporation of the organic solvent, Eudragit® L100
precipitates into nanoparticles stabilized by the non-ionic surfactant PVA. The prepared
dispersion was filtered (0.45 µm), and the filters were rinsed with ethanol (50%). The en-
capsulation efficiency was determined based on the initial amount of budesonide (Budtotal)
and the amount found in the filter fractions (Budfilter). The following equation was used for
the calculation:

EE% =
Budtotal − Bud f ilter

Budtotal
.100 (1)
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4.3. Determination of Nanoparticle Size, Polydispersity Index (PDI), and Zeta-Potential

Dynamic light scattering (DLS) was applied to investigate the particle size, polydisper-
sity (PDI), and zeta-potential of the prepared empty and budesonide-loaded nanoparticles
(Zeta-Master, Malvern Instruments, Worcestershire, UK). The measurements were per-
formed in triplicate on the aqueous nanoparticle dispersions at 25 ◦C with a scattering
angle of 90◦. Transmission electron microscopy (TEM) was applied for the evaluation of
nanoparticle shape and surface morphology (HR STEM JEOL JEM 2100, Tokyo, Japan).

4.4. X-ray Powder Diffraction Analysis (XRPD) and FTIR Spectrophotometry

The diffraction patterns of budesonide, budesonide-loaded nanoparticles, empty
nanoparticles, and Eudragit L100 were collected from 5 to 80◦2θ on a Bruker D8-Advance
Diffractometer (Karlsruhe, Germany). CuKα radiation was used, and registration was
performed by the LynxEye detector. The unit cell parameters were refined using the Topas
4.2 program, part of the Bruker software (Bruker AXS, Karsruhe, Germany).

The FTIR spectra of budesonide, budesonide-loaded nanoparticles, empty nanoparti-
cles, and Eudragit L100 in KBr were recorded on a Thermo Nicolet Avatar 360 FTIR spec-
trometer (Thermo Fisher Scientific, Waltham, MA, USA), within the range 4000–400 cm−1

with a resolution of 2 cm−1.

4.5. Cytotoxicity Evaluation of HaCaT Cells

The cell line was cultured in 75 cm2 flasks in DMEM medium with glucose (4.5 g/L),
to which 10% fetal bovine serum and 2 mM L-glutamine were added. The cells were
maintained at a constant temperature of 37 ◦C within an environment comprising 5% CO2.
When the cells reached approximately 80% confluence, a series of sequential steps were
performed. The cells were first harvested using a trypsin/EDTA solution, after which they
were precisely seeded into the central 60 wells of 96-well plates at a density of 5 × 104 cells
per milliliter. Subsequently, these plates were placed in an incubator and maintained at
37 ◦C with 5% CO2 for a period of 24 h. This process was meticulously repeated three times,
utilizing cells from different passages, to ensure experimental consistency and reliability.

The MTT assay was employed to assess the cytotoxicity of the tested samples according
to the previously described procedure [81]. The cells were treated with a reference solution
of budesonide (0.17, 0.34, 0.68, 1.35, 2.7, and 5.4 µg/mL), dispersion of budesonide loaded
nanoparticles (in the same concentrations), and dispersion of empty nanoparticles (from
2.65 µg/mL to 85 µg/mL). Each plate included control wells that contained only culture
medium. After 24 h of treatment, the culture medium was aspirated and replaced with
100 µL of the MTT solution (5 mg/mL in phosphate-buffered saline) in each well. Sub-
sequently, the plates were incubated for a period of 3 h, the cell culture medium was
aspirated, and 100 µL of dimethylsulfoxide (DMSO) per well was added to dissolve the
purple formazan product. This was achieved by gently shaking the plates for 10 min at
room temperature. The absorbance of the resulting solutions was measured at 570 nm
using a multiplate reader, Synergy 2 (BioTek Instruments, Inc., Highland Park, Winooski,
VT, USA).

For statistical analysis, GraphPad Prism 8 Software was utilized. The data underwent
a one-way analysis of variance (ANOVA), which was followed by Dunnett’s multiple
comparisons post-test. This post-test was employed to assess and compare differences
between the control and treatment groups. A significance level of 0.05 was selected as the
threshold for determining statistical significance in all the comparisons conducted.

4.6. Hydrogel Preparation

A hydrogel was proposed as a semisolid dosage form containing budesonide loaded
nanoparticles. Two types of hydrogels were formulated using methylcellulose (MC)
(4 wt %) and Pluronic F127 (F127) (25 wt %) as gelling agents. Pluronic F127 was dispersed
in the medium, while methylcellulose was dispersed in the hot medium, and then they
were both left to dissolve completely at 4 ◦C overnight. The gels containing budesonide-
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loaded nanoparticles were prepared in a similar manner, with the liquid medium being
the nanoparticle-containing dispersion. In the case of methylcellulose, the different gelling
agent concentrations were compensated by the addition of distilled water with a pH of 5.0.
In this way, the budesonide concentration in both hydrogels was adjusted to 0.1 mg/g gel.

4.7. Appearance and pH of Hydrogels

All formulations were visually and microscopically investigated using a Leica DM750
light microscope equipped with Air Teach software (v.1.0.9874) (Heerbrugg, Switzerland).
The pH of the formulations was determined by the potentiometric method with a pH meter
(Hanna HI98100, Hanna Instruments Inc., Woonsocket, RI, USA). The investigated gel
samples were diluted (1:4) with distilled water, mixed vigorously for 1 min, and the pH
was recorded [82,83].

4.8. In Vitro Occlusion Test

The occlusive properties of the gels were tested in vitro based on the measurement of
water evaporation in controlled environmental conditions, as proposed by Caldas et al. [84].
In brief, a beaker was filled with 25 mL of distilled water, covered with a Whatman cellulose
filter (0.45 µm), and tightly sealed with Teflon tape. An equal amount of the tested gels was
evenly spread on the surface of the filter paper (surface area: 13.84 cm2). The samples were
accurately weighed and stored in a climate chamber (T = 32 ± 0.5 ◦C; RH = 50% ± 1%) in
the dark. After 48 h, the samples were weighed again. The water loss of the sample (LS)
was calculated based on the change in weight. The difference with the reference sample’s
loss (LR) was used for the calculation of the occlusive factor (F).

F% =
LR − Ls

LR
.100 (2)

The reference sample was a beaker with plain filter paper on top. An occlusive factor of
100 means a maximal occlusive effect, while an occlusive factor of 0 means no occlusion [85].

4.9. Rheology, Spreadability, and Penetrometry of Hydrogels

Dynamic rheological measurements of hydrogels were carried out with a HAAKE
MARS 60 rheometer in controlled deformation mode using a parallel plate sensor system
(top plate diameter = 20 mm; gap = 1 mm). The elastic (G’) modulus was determined at
32 ◦C and constant deformation (γ = 0.01) in the 0.1–10 Hz frequency range.

The spreadability test characterizing the rheological properties of the hydrogels was
performed with the parallel plate method [86,87]. A circle with a diameter of 1 cm was
marked on a glass plate, and a sample of 1 g of the tested gel was placed inside. A second
glass plate with a known weight was set on top. Subsequent weights are placed on top
every 5 min. The diameter (d) of the spread gel was measured and recorded after each
weight (W). The results were plotted to obtain the extensiometric profiles of the samples.
All measurements were performed in triplicate. The spreadability (S) and spreadability
factor (SF) were calculated based on the following equations:

S =
d2.π

4
(3)

SF =
S
W

(4)

The consistency of the semisolid formulations was evaluated using the pharmacopoeial
penetrometry test [88]. The gel samples with a sufficient amount were prepared immedi-
ately after gelation and stored in the test container for 24 h at 25 ± 0.5 ◦C prior to testing.
The gravity-driven penetrating object was released for 5 s, and the depth of penetration
was measured in millimeters.
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4.10. In Vitro Dissolution Test and Release Kinetics

The dissolution test was performed in a buffer medium with a pH = 5.5, simulating
the physiological acidity of the skin. A sample (corresponding to 0.65 mg budesonide)
was placed in a dialysis membrane (MW 10 000 Da) and introduced into a 50 mL acceptor
phase tempered at 32 ± 0.5 ◦C at constant shaking. Aliquot samples were withdrawn at
predetermined time intervals and replaced with fresh medium. The released drug amount
was evaluated using the HPLC method. The chromatographic procedure was carried out
with the HPLC system UltiMate Dionex 3000 SD, Chromeleon 7.2 SR3 Systems (Thermo
Fisher Scientific Inc., Waltham, MA, USA). The separation was achieved with Column
Luna (Phenomenex, Torrance, CA, USA) C18, 250 × 4.60 mm, particle size 5 µm, and
a Diode Array Detector. The chromatographic conditions are as follows: mobile phase
acetonitrile:methanol (70:30 v/v), flow rate 1.0 mL/min, and a wavelength of 254 nm. The
amount was calculated based on a standard curve prepared in the concentration range of
3.5–10 µg/mL.

The drug release mechanism of the hydrogels was investigated by fitting the release
profiles according to different release kinetic equations. Further, regression analysis was
performed to evaluate the best fit.
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Abstract: Sustained release is highly desired for “efficacious, safe and convenient” drug delivery,
particularly for those anticancer drug molecules with toxicity. In this study, a modified coaxial elec-
trospraying process was developed to coat a hydrophobic lipid, i.e., stearic acid (SA), on composites
composed of the anticancer drug tamoxifen citrate (TC) and insoluble polymeric matrix ethylcellulose
(EC). Compared with the electrosprayed TC-EC composite microparticles M1, the electrosprayed
SA-coated hybrid microparticles M2 were able to provide an improved TC sustained-release profile.
The 30% and 90% loaded drug sustained-release time periods were extended to 3.21 h and 19.43 h
for M2, respectively, which were significantly longer than those provided by M1 (0.88 h and 9.98 h,
respectively). The morphology, inner structure, physical state, and compatibility of the components
of the particles M1 and M2 were disclosed through SEM, TEM, XRD, and FTIR. Based on the analyses,
the drug sustained-release mechanism of multiple factors co-acting for microparticles M2 is sug-
gested, which include the reasonable selections and organizations of lipid and polymeric excipient,
the blank SA shell drug loading, the regularly round shape, and also the high density. The reported
protocols pioneered a brand-new manner for developing sustained drug delivery hybrids through a
combination of insoluble cellulose gels and lipid using modified coaxial electrospraying.

Keywords: sustained release; anticancer drug; ethylcellulose; coaxial electrospraying; stearic acid;
microparticle; anticancer; insoluble gels

1. Introduction

Most of the anticancer drugs, regardless of the active biomolecules (such as curcumin,
quercetin, silybum marianum, and paclitaxel) or the synthetic therapeutic molecules, on
the one hand, are poorly water soluble or even insoluble [1–4]. On the other hand, they are
toxic due to a high blood drug concentration after oral administration resulting from the
initial burst release, which is particularly a negative case for numerous nano/micro drug
delivery systems [5–8]. Thus, better drug dissolution and sustained release of these drugs
after oral delivery is highly desired for a “safe, efficacious, and convenient” delivery to the
patients [9–12].

For the sustained release of a drug, the common strategies that can be relied upon can
be divided into two approaches. One is to encapsulate the drug molecules into an insoluble
inert matrix [13,14]. Some examples are phospholipid, insoluble polymers, biodegradable
polymers, and also many inorganic materials, such as silicon, carbon nano tubes, and
graphene [15–17]. The other is to treat the drug and the excipients through advanced
pharmaceutical techniques, which are frequently introduced into the field of pharmaceuti-
cals from other material conversion methods [18–21]. Certainly, these two approaches are
frequently integrated together to develop a wide variety of drug sustained-release DDSs.
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Cellulose and its derivatives are highly popular as polymeric matrices for providing
all types of drug controlled-release profiles in many fields, such as drug delivery, tissue
engineering, and food packaging engineering [22–27]. In general, soluble cellulose deriva-
tives can be exploited for promoting the fast release of the poorly water-soluble drugs,
such as a series of hydroxypropyl methylcellulose [28]. Insoluble cellulose derivatives
are often exploited for drug extended- or sustained-release profiles, such as ethylcellulose
(EC) and cellulose acetate (CA) [29,30]. These cellulose derivatives have fine film-forming,
filament-forming, and other processing properties [31]. Thus, in the literature, they are
frequently converted with a guest drug to form new kinds of DDSs. Particularly in this
nano era, they are often transferred into nanoparticles, nanofibers, and beads-on-a-string
products through a certain pharmaceutical nanotechnology [32–34].

One most recent pharmaceutical nanotechnology is electrospinning, which belongs to
an electrohydrodynamic atomization (EHDA) process [35–39]. In comparison, electrospray-
ing, as a sister EHDA method of electrospinning, receives less attention for drug delivery
applications [40,41]. In the past several years, single-fluid electrospinning has been quickly
moving to coaxial, tri-axial, side-by-side, and tri-layer side-by-side processes [42–47]. Fur-
thermore, many fluids without electrospinnability have also taken part in the multiple-fluid
electrospinning processes because only one of the fluids must be electrospinnable [48].
However, the electrospraying process is still mainly the single-fluid process and also the
traditional coaxial process. Inspired by modified coaxial electrospinning, in which un-
spinnable fluids can be explored as the sheath working fluids for creating core–sheath
nanofibers [49], unsolidable fluids may also be utilized as the shell working fluids for
generating core–shell particles.

Tamoxifen citrate (TC) is a non-steroidal anti-estrogen drug with a structure similar to
estrogen. It mainly competes with estrogen for estrogen receptors so as to prevent estrogen
from entering tumor cells, prevent estrogen from playing its role, and thus inhibit the
proliferation of breast cancer cells. Its most important role is to treat recurrent and metastatic
breast cancer in women and to serve as an adjuvant treatment for postoperative metastasis
of breast cancer to prevent recurrence [50,51]. In addition, its anti-estrogen effect can also be
used to improve breast hyperplasia, pain, and discomfort symptoms. However, there are a
series of possible common adverse reactions after the oral administration of TC, which are
included as follows: (1) Gastrointestinal reactions, mainly manifested as nausea, vomiting,
abdominal pain, and diarrhea; (2) The main side effects of the reproductive system are
menstrual disorder, menopause, and vaginal bleeding; (3) Skin side effects, manifested
as facial flushing and rash; (4) Symptoms of the mental nerves, mainly manifested as
headaches and dizziness; (5) Changes in blood routine can lead to a decrease in white blood
cells and platelets in patients; and (6) Some patients may also experience abnormal liver
function. Thus, sustained release of TC after oral administration is highly desired for the
patient’s compliance and a better therapeutic effect [5,6,50,51].

In this study, we hypothesized that unsolidable, i.e., dilute stearic acid (SA) solution,
can be utilized as a shell liquid to conduct a modified coaxial electrospraying process, in
which the core fluid was a solidable drug polymer co-dissolved solution composed of EC
and TC. We further hypothesized that the coating SA layer, as a hydrophobic shell, was
able to remarkably modify the sustained-release profile of TC from the insoluble EC matrix.
A series of characterizations were carried out to disclose the products’ morphologies and
inner structures, the components’ physical states and their compatibility, and the targeted
sustained release performances.

2. Results and Discussion
2.1. The Coaxial Electrospraying and the Core–Shell Structures in Drug Delivery

Just as coaxial electrospinning is used for creating core–sheath nanofibers [52–55],
coaxial electrospraying is useful for generating core–shell micro- or nanoparticles [40,41].
A diagram shows the main components of a coaxial electrospraying apparatus, and the
key elements in a spraying process are included in Figure 1. A concentric spraying head
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is the convergent place for the working fluids and the electrostatic energy. Two syringe
pumps are exploited to quantitatively send the core and shell working fluids to the spraying
head. A power supply is utilized to generate the applied high voltage, and a homemade
collector is utilized to collect the deposited particles under the spraying head. Besides
these four essential parts, often, a camera can be added to monitor the working process.
During the working process, the first key is to form a Taylor cone, which is followed by
the Coulomb explosion [40,41]. The second key is to achieve the solid particles, i.e., the
designed products, after the effective removal of the solvents. A failed electrospraying
process often results in a wet film. By the way, all the components of the electrospraying
apparatus should be grounded for the safe operation of an electrospinning system [56,57].

Figure 1. A diagram showing the modified coaxial electrospraying system, its main components, and
key information about the working process.

In the traditional coaxial electrospraying process, the shell fluid should be solidable
when it experiences an electrospraying process for ensuring the formation of solid core–
shell particles. However, Li et al. reported that pure organic solvent (a non-solidable
property) can be explored for creating high-quality nanoparticles [40]. Along this direction,
the present work developed a modified coaxial electrospraying method, in which the dilute
unsolidable SA solution was explored as the shell liquid to coat the core solidable EC-TC
solution. The parameters for the electrospraying processes are included in Table 1.

Table 1. Fabrication parameters of the microparticles.

No. Electrospraying Applied Voltage (kV)
Fluid Flow Rate (mL/h)

Products
Core a Shell b

M1 Single fluid 21 -- 1.0 Monolithic microparticles
M2 Coaxial 18 0.4 1.0 Core–shell microparticles
M3 Single fluid 12 0.4 -- --

a The core fluid consisted of 2.0 g of TC and 10.0 g of EC in 100 mL of solvent mixture of anhydrous ethanol and
DCM with a volume ratio of 6:4. b The shell solution was composed of 1.0 g of stearic acid in 50 mL of DCM.

The key points about the implementation of electrospraying are recorded in Figure 2.
A whole image of the modified coaxial electrospraying system is shown in Figure 2a. The
homemade spraying head is exhibited in the upper left inset, which can also be explored
in coaxial electrospinning and modified coaxial electrospinning. A coaxial outlet of the
nozzle was utilized to guide the core and shell working fluids into the electrical field. The
homemade collector was prepared by placing aluminium foil on a cardboard box. The
working distance between the collector and the nozzle of the spraying head was fixed at
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20 cm. The transportation of electrostatic energy and working fluids is given in Figure 2b.
The copper line could be directly wrapped around the stainless steel capillary guiding the
core fluid to transfer the high voltage. The core fluid was delivered to the spraying head
directly by its syringe fixed on a pump. The shell fluid was sent to the inlet of the spraying
head by the polymeric tubes, which were composed of a hard Teflon capillary and a section
of highly elastic silicon tube as a connection between it and the metal inlet of the spraying
head. This arrangement was exploited to avoid the absorbance of dichloromethane (DCM)
and swelling of the silicon tube during the working process.
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Figure 2. The coaxial electrospraying apparatus and observations of the working processes: (a) a
digital picture of the electrospraying apparatus, with the upper left inset showing the concentric
spraying head; (b) a digital picture showing the connection of the working fluids and the transferring
of electrostatic energy; (c,d) a single-fluid electrospraying process experienced by the core solidable
TC-EC solution under different magnifications for preparing the microparticles M1; (e,f) the digi-
tal photos of modified coaxial electrospraying processes for observing the whole process and the
compound Taylor cone for producing the microparticles M2, respectively.

The applied voltage was adjusted to a suitable value based on a continuous and robust
electrospraying process. When one of the two working fluids was switched off, then the
coaxial electrospraying process downgraded into a single-fluid electrospraying process. As
indicated by Figure 2c,d, for creating microparticles M1, a trio emerged between the Taylor
cone, the straight fluid jet, and the Coulomb explosion, and the Taylor cone from the inner
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metal capillary was stable and in a typical cone shape. A high voltage of 21 kV is needed
due to the higher surface tension of the core TC-EC fluid for a fluid rate of 1.0 mL/h.

After some optimization, the shell and core fluid flow rates were selected as 0.4 and
1.0 mL/h, respectively. The applied voltage was 18 kV. Although there was a generally
larger fluid flow rate from the concentric nozzle (1.0 + 0.4 = 1.4 mL/h) for the modified
coaxial process compared to the single-fluid electrospraying of the core fluid, the applied
voltage was reduced to a smaller value of 18 kV compared to 21 kV. This strange phe-
nomenon occurred because the Coulomb explosion is always initiated at the surface of the
working liquid, and the electrostatic charges tend to gather on the surface of a working
liquid. Thus, the smaller applied voltage was a direct result of the smaller surface tension
of the shell SA solution. The working processes for generating microparticles M2 are
recorded in Figure 2e (a typical whole coaxial electrospraying process) and Figure 2f (the
compound core–shell Taylor cone). The single-fluid electrospraying of the shell SA solution
(switching off the core fluid) resulted in only wet films due to a diluted SA concentration.
The exploration of unsolidable SA solution as the shell fluid had the following advantages,
besides providing a hydrophobic coating on the TC-EC medicated composites: (1) a good
encapsulation of the core fluid at the nozzle of the spray head; (2) a facile initiation of the
electrospraying process; (3) an easy fission of the sprayed droplets during the Coulomb
explosion procedure; and (4) a stabler drying process of the core TC-EC solution, which
would be demonstrated by the resultant products.

2.2. The Morphology and Structure of the Microparticles

The SEM images of the morphologies and the diameter distributions of microparticles
from the single-fluid and modified coaxial processes are included in Figure 3. The differ-
ences between microparticles M1 and M2 can be concluded as follows: (1) particles M1
are dented from different directions and thus in an irregular shape (Figure 3a,b), whereas
particles are mainly in a round shape (Figure 3d,e); (2) although both have satellites, par-
ticles M1 are more severe than M2; (3) particles M1 had a larger average diameter value
(1.31 ± 0.29 µm, Figure 3c) than particles M2 (1.13 ± 0.34 µm, Figure 3f), although the
applied voltage in producing M1 was bigger than that in producing M2.

The TEM images of particles M1 and M2 are included in Figure 4. In Figure 4a, it is
obvious that microparticles M1 are irregular in their shape, with recessed sections at their
surface. This indicates that the thicknesses of particles M1 varied, with no rules, which
is reflected by the various gray levels in one particle, as the darker places mean a thicker
region than the lighter gray places. In sharp contrast, microparticles M2 are mainly in a
round shape, with a regular gray level change trend, i.e., the shell gray levels are always
smaller than the core gray levels. By estimation, the thicknesses of these SA shell layers are
between 10 and 30 nm.

A diagram showing the microformation mechanism of the single-fluid electrospraying
process is exhibited in Figure 5a. The interaction between the electric energy, the surface
tension, and the viscosity of the working fluid results in the Taylor cone, which is followed
by a straight fluid jet and the Coulomb explosion. The most fundamental rule is that the
“same charge repels each other,” by which the droplets are continuously splitting, reducing
in volume, and being solidified to form the microparticles. During the process and at the
late stage of the Coulomb explosion, the split droplets may have the semi-solid state of
their surface but maintain a fluid state in the inner part. The formation of a solid film on the
droplets not only retards further splitting but would also trap some solvent. Later, when
the trapped solvent escapes to the environment, the barometric pressure would deform the
round “droplet” shape to the irregular, dented shape in Figure 3b. This phenomenon has
been reported in some other investigations about the preparations of electrosprayed CA
particles [40] and zein nanoparticles [41].

When a diluted SA solution was exploited as a shell fluid to implement the modified
coaxial electrospraying process, the shell solution, on the one hand, would dominate the
Coulomb splitting process because of the surface distribution property of charges and
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its small surface tension (Figure 5b). On the other hand, the shell solvent would act as a
bridge for the core solvents to move from the core sections to the atmosphere, and a more
continuous and robust drying process could be ensured. Meanwhile, the shell solution may
help to resist the outer disturbances for a stabler and more robust microparticles generation
process. These positive factors should be attributed to the formation of the round shape of
microparticles M2, and they would make the density of microparticles M2 larger than that
of microparticles M1.
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Figure 3. The morphologies and diameters of the electrosprayed microparticles: (a,b) SEM images of
microparticles M1 at different magnifications; (c) the diameters of microparticles M1 and their size
distributions; (d,e) SEM images of microparticles M2 at different magnifications; (f) the diameters of
microparticles M2 and their size distributions.
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and (b) TEM images of the microparticles M2.
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Figure 5. The microformation mechanisms: (a) the single-fluid electrospraying for producing mi-
croparticles M1; (b) the modified coaxial electrospraying for preparing microparticles M2; and (c) the
different materials processing capabilities of traditional coaxial electrospraying and modified coaxial
electrospraying processes; the case (II) represents the SA-coated core–shell microparticles M2 in
this work.

Compared with traditional coaxial electrospraying, the modified coaxial process has
a stronger capability to create different kinds of particulate micro products. Shown in
Figure 5c, the main difference in the implementation is that the shell fluid must be solidable
in the traditional coaxial electrospraying, whereas the shell fluid in a modified coaxial
process is unsolidable. From a standpoint of created products, traditional coaxial electro-
spraying can only create core–shell particles. In contrast, modified coaxial electrospraying
can create core–shell particles (Case I), coat the particles’ surfaces in a continuous manner
(Case II, i.e., the microparticles M2 in this work) or in a discontinuous way, and be exploited
to create monolithic nanoparticles (Case III), such as by using only solvent as a shell fluid.
This last case has been demonstrated by some previous investigations [40,41].

2.3. The Physical State and Compatibility

The ATR-FTIR spectra of the initial materials, i.e., EC, TC, and SA, and their elec-
trosprayed microparticles M1 and M2, are included in the left section of Figure 6. The
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molecular formulas of EC, TC, and SA are given in the right side of Figure 6. TC spec-
tra have a series of characteristic peaks, such as at 1724, 1581, and 1508 cm−1. SA has
characteristic peaks at 1704, 2917, and 2850 cm−1, and EC’s characteristic peaks are at
1104 and 1062 cm−1. In the spectra of microparticles M1 from the single-fluid electrospray-
ing process, the EC’s characteristic peaks are still clearly there. However, the characteristic
peaks of TC are greatly reduced or even disappear, with only one peak distinguishable
at 1727 cm−1. The reasons should be the formation of composites between EC and TC in
the electrosprayed microparticles M1. In the spectra of microparticles M2, the peaks of
SA are very obvious, which should be the reason that the detection depth of ATR-FTIR is
about 10 nm. However, the information from the core section can still be discerned, such
as the shoulder of the peak at 1704 cm−1 (as indicated by the “A” red arrow) and also the
peaks at 1104 and 1062 cm−1. These results suggest that the shell SA and the core TC-EC
composites co-existed in the core–shell particles in a hybrid manner, concurring with the
TEM observations in Figure 4b. From the molecular formula of EC, SA, and TC, it can be
anticipated that these components are highly compatible due to the secondary interactions
between their molecules, such as hydrogen bonds, hydrophobic interactions, electrostatic
interactions, and the van der Waals interaction [58,59].
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Figure 6. The ATR-FTIR spectra of the raw materials (TC, EC, and SA) and their electrosprayed
microparticles (M1 and M2); the molecular formulas of EC, SA, and TC.

The XRD patterns of the raw materials of EC, TC, and SA, and their electrosprayed
microparticles M1 and M2, are included in the left section of Figure 7. All the samples except
the raw TC powders present in an amorphous state. TC patterns have some sharp Bragg
peaks, suggesting their raw crystalline state. However, when TC was experiencing the
electrospraying processes, regardless of whether the single-fluid monoaxial or the modified
coaxial process was used, TC was converted into an amorphous state within its carrier EC in
both monolithic composite microparticles M1 and core–shell hybrid microparticles M2. The
electrospraying process is a very rapid fluid drying process, essentially. The short drying
time period leaves almost no time for the TC molecules in the working fluids to recrystallize
into new particles. The homogeneous state of the solutions was sufficiently maintained
after the removal of organic solvents. Because there are abundant favorable secondary
interactions between the components, the homogeneous state can be stably maintained.
Shown in the right section of Figure 7 are the possible hydrogen bonds between EC and TC
in the core section, between EC and SA, and between TC and SA in the core–shell interfaces.
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2.4. The Drug Encapsulation Ratio of the Dual-Stage Drug Controlled-Release Profile

The measured entrapment efficiency (EE%) of TC was 99.4 ± 3.5% and 100.1 ± 3.3%
for microparticles M1 and M2, respectively. The results indicate that all of the drug TC was
successfully encapsulated into the microparticles through the electrospraying processes,
regardless of whether the single-fluid process for creating particles M1 or the double-fluid
modified coaxial process for generating the particles M2 was used. During the rapid
electrospraying process, the TC solutions were converted into solid microparticles because
of the evaporation of volatile solvents of ethanol and DCM to the environment. The
solutes TC, EC, and also SA were solidified together, with few chances to escape from the
working processes to the environment. The fate of a drug molecule from the preparation
of its dosage form to its final clinical application is influenced by many factors [60–64].
Compared with many “bottom–up” nanofabrication methods, EHDA has its advantages to
create drug-loaded micro/nano products with a higher EE% value.

The in vitro drug release profiles of microparticles M1 and M2 are exhibited in Fig-
ure 8a–c. Figure 8a shows the full time period experimental results of two kinds of mi-
croparticles. The comparisons between the two kinds of particles’ release profiles can help
discern that the microparticles M2 from the modified coaxial process showed an obvious
improved effect of the TC sustained release performances. In Figure 8a, it is clear that
microparticles M2 showed a smaller tailing-off release phenomenon at the end of in vitro
release, which is a negative phenomenon in drugs’ sustained-release profile. The initial
burst release is another negative phenomenon in drug sustained release. Figure 2b shows
that the initial burst release from the microparticles M1 is obvious. The microparticles M2
had no initial burst release. It is after almost 4 h that microparticles M2 released a drug
release amount that matched what was released at the first hour from the microparticles
M1. A further regressed treatment of the experimental data can calculate the time needed
to release a certain percentage of drug from the microparticles. The results are included in
Figure 8c. The release times for core–shell microparticles M2 for releasing 30%, 50%, and
90% of the loaded drugs were 3.21, 7.33, and 19.43 h, respectively. These results are better
than those from the monolithic microparticles M1, whose corresponding values were 0.88,
1.81, and 93.98 h, respectively.

To further determine the drug release mechanisms from the two sorts of microparticles,
the Peppas Equation (Q = ktn; Q, k, t, and n represent the accumulative drug release amount,
a constant, the sampling time point, and the exponent [65]) was exploited to regress the
in vitro drug release data. The results are shown in Figure 8d for microparticles M1 and
in Figure 8e,f for microparticles M2. Just as expected, TC released from the microparticles
M1 was manipulated by a typical Fickian diffusion mechanism. The regressed equation
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is LogQ1 = 1.61 + 0.30 Logt (R = 0.9545), in which the exponent value is 0.30, which is
smaller than the judge standard of 0.45. Unexpectedly, the full time period regressions
of microparticles M2 indicated a combination of diffusion and erosion mechanisms of TC
release. The corresponding equation is LogQ2 = 0.89 + 0.84 Logt (R = 0.9293), which is
shown in Figure 8e. The exponent is 0.84, between 0.45 and 0.90. However, when the data
in the treatment are started from the fourth hour, a new regressed equation is achieved as
LogQ2′ = 1.38 + 0.43 Logt (R = 0.9927). These results suggest that the shell SA had exerted a
remarkable influence on the TC released from the core–shell microparticles M2, particularly
during the first several hours. When the shell SA was removed at about 4 h, the drugs
released from the core TC-EC composites were still manipulated by the typical Fickian
diffusion mechanism, an anticipated result of drug molecules released from their insoluble
matrices [66–69].
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Figure 8. The drug sustained-release functional performances and the related drug controlled-release
mechanisms: (a) The full time period drug sustained-release profiles of microparticles M1 and M2;
(b) The first 4 h drug release profiles of the particles M1 and M2; (c) The regressed drug release time
periods for releasing a certain percentage (30%, 50%, and 90%) of TC from the microparticles M1 and
M2; (d) The regressed drug release mechanism for microparticles M1; (e,f) The regressed drug release
mechanisms for microparticles M2 for the whole time period and from the 4th hour to the final time
point, respectively.

2.5. The Proposed Drug Controlled-Release Mechanism Based on the Insoluble Gel Forming

Initially, polymer properties are the most important factor for providing a wide variety
of drug controlled-release profiles, including drug sustained release [70–74]. Numerous
reports in the literature have demonstrated that insoluble and biodegradable polymers
and their composites and hybrids can be exploited as carriers to manipulate the gradual
release of the loaded drug molecules [75–78]. Meanwhile, lipid materials are also frequently
explored for the extended release of drugs in the formation of microparticles, micelles,
composites, solid nanoparticles, emulsions, and liposome [79–83]. Thus, firstly, in this study,
both insoluble polymer EC gels and the lipid SA were selected as the TC carrier, which are
materials selected from experiences with the traditional pharmaceutics. Secondly, SA was
exploited as a shell coating material to cover the polymer EC and the loaded drug molecules.
This core–shell organization format at the micro scale is difficult to realize through the
traditional chemical and physical methods. The coaxial electrospraying process proceeds
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in a one-step, straightforward manner. Meanwhile, modified coaxial electrospraying can
organize the core–shell particles in a more regular, round shape. In contrast, the EC-
TC particles M1 from the single-fluid electrospraying process have an irregular shape,
which means an even more enlarged surface area for aggravating the initial burst release
(Figure 9). Thirdly, the blank SA coating can make it so that there are no drug molecules
on the surface of the electrosprayed microparticles, and thus completely eliminates the
initial burst release phenomenon. Fourthly, the regular shape of microparticles M2 not
only determines a relatively small surface for drug distribution and the amount of the drug
initially released, but also determines a regular long diffusion distance for the penetration
of both water molecules and drug molecules (e.g., routes R1 and R2 in Figure 9). In the
irregular microparticles M1, the drug molecules would always diffuse to the dissolution
bulk solution through the thinnest places (e.g., Route R3 is more possible than route R4),
which is negative for the drug’s sustained release. Fifthly, although the fluid processing
capacity per unit time in the modified coaxial electrospraying process is larger than that of
the single-fluid electrospraying, the microparticles M2 are smaller than M1. This means
that the particles M2 have a greater density than M1. The drug release route comprises
water molecules penetrating into the EC-TC composites; absorbance of water, gelling, and
swelling of EC molecules; dissolution of TC from the EC-TC composites; and diffusion of
TC molecules from the inside of the particles to the bulk dissolution solutions. The greater
density thus means a slower process of the above-mentioned procedure, which is favorable
for the sustained release of TC. Thus, the fine sustained-release effect of microparticles
is the result of multiple factors co-acting. One is the reasonable selection of the starting
materials. The other four reasons come from the materials conversions through modified
coaxial electrospraying. EHDA processes, as the popular material conversion method
currently, hold many new approaches for creating novel, functional materials by updating
the working strategies, such as the design of a biomimetic spraying head [84], exploring the
alternating current [85,86], and integrating the chemical reaction into the physical drying
procedure [87]. Meanwhile, the microformation mechanisms of these new EHDA processes
deserve further investigations, which are completely different with those “bottom–up”
fabrication processes, such as assemblies [88,89].
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release of TC from the electrosprayed microparticles M2, in which a core insoluble gel composite is
coated by a lipid shell layer.

3. Conclusions

In this study, a modified coaxial electrospraying process was developed to encapsulate
the anticancer drug TC in the core section of a new type of core–shell microparticle, in which
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the shell sections are the lipid SA coatings. Although the shell SA solution had no solidable
property alone, it could ensure a robust and continuous modified coaxial electrospraying
process to fabricate high-quality core–shell microparticles M2. SEM and TEM results
demonstrated that M2 had a round shape, an obvious core–shell structure, and an estimated
diameter of 1.13 ± 0.34 µm. XRD and FTIR verified that the drug TC presented in the
electrosprayed products in an amorphous state, and TC had fine compatibility with EC and
also SA. Compared with the electrosprayed TC-EC microparticles M1, the electrosprayed
SA-coated microparticles M2 were able to provide an improved TC sustained-release
profile. In total, 30% and 90% of the loaded drug sustained-release time periods were
extended to 3.21 h and 19.43 h for M2, respectively, which was significantly longer than
those provided by M1 (0.88 h and 9.98 h, respectively). Both the microformation mechanism
of the modified coaxial electrospraying and the drug sustained-release mechanism from
the core–shell microparticles M2 are suggested. The present study pioneered a brand-new
manner for developing sustained drug delivery hybrids through a combination of insoluble
cellulose gels and lipid using a modified coaxial electrospraying process.

4. Materials and Methods
4.1. Materials

TC with a purity greater than 99% was purchased from Shanghai Haosheng Bioengi-
neering Company (Shanghai, China). The polymer EC and lipid SA were bought from
Shanghai Huashi Big Pharmacy (Shanghai, China). The organic solvents DCM and anhy-
drous ethanol were analytical grade and obtained from Shanghai First Reagent Factory
(Shanghai, China). Water was double distilled just before use.

4.2. Electrospraying

The homemade electrospraying apparatus comprised two syringe pumps (KDS100,
USA) and a high voltage generator (ZGF2000/6 mA, Wuhan Huatian, Wuhan, China). The
concentric spray head and the collector were homemade. The collecting distance from the
nozzle of the spray head to the collector was fixed at 20 cm. The collected powders were
kept in a desiccator until the characterizations.

4.3. Characterization
4.3.1. Morphology and Inner Structure

A filed-emission scanning electron microscope (Quanter 450, FEI, Hillsboro, OR,
USA) was used to evaluate the morphologies of microparticles M1 and M2. Before the
assessments, the collected samples were placed on the conductive adhesives and sputtered
with a thin layer of Pt. The applied voltage was fixed at 10 keV. The average diameters
of the microparticles were evaluated using ImageJ software V1.8.0 (National Institutes of
Health, Bethesda, MD, USA) by randomly measuring 100 places in the SEM images.

A transmission electron microscope (TEM, JEM2100F, JEOL, Tokyo, Japan) was used
to evaluate the inner structures of microparticles M1 and M2. The samples were prepared
by placing a carbon film supported by 200 × 200 Cu Mesh on the collector to collect
microparticles for 1 min. The operational voltage was 300 keV.

4.3.2. Physical State and Compatibility

A Spectrum 100 FTIR Spectrometer (Perkin-Elmer, Billerica, MA, USA) was used to
conduct the ATR-FTIR detection. The samples included the raw TC, EC, and SA powders,
and their electrosprayed products, microparticles M1 and M2. A Bruker X-ray Diffractome-
ter (Karlsruhu, Germany) was utilized to achieve the XRD patterns of raw TC, EC, and SA
powders and the electrosprayed microparticles M1 and M2. The X-rays were emitted at
40 kV and 30 mA. The recorded range of 2θ was between 5◦ and 60◦.
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4.4. Functional Performances
4.4.1. Entrapment Efficiency

TC has a maximum absorbance at λmax = 278 nm, which was exploited for its quan-
titative measurements. The EE% was measured by extracting the TC from the prepared
microparticles M1 and M2 as follows: an accurately weighted product of microparticles
was dissolved into a mixture of ethanol and DCM (6:4 in volume); then, 1 mL of the solution
was dripped into 1000 mL of distilled water; after being centrifuged at 5000 rpm for 8 min
at room temperature, the supernatant was measured using a UV-vis Spectrophotometer
(UV-2102PC, Unico Instrument Co. Ltd., Shanghai, China). The encapsulated TC in the elec-
trosprayed products could be calculated through the predetermined calibration standard
equation. The value of EE% could be achieved through the following Equation (1):

EE(%) = Wm/Wp × 100% (1)

where EE% is the entrapment efficiency, Wm is TC measured in the microparticles, and
Wp represents the TC added in the working fluids. All measurements were conducted in
triplicate.

4.4.2. In Vitro Dissolution Tests

The paddle method in the Chinese Pharmacopoeia (2020 Ed.) was explored to measure
the in vitro release profiles of microparticles M1 and M2. The phosphate buffer solution
(PBS, 0.01 M, pH 7.0) was utilized as the dissolution bulk media. The experimental condi-
tions included 600 mL of PBS, 37 ◦C, and a rotation rate of 50 rpm. At predetermined time
points, a 5.0 mL aliquot was withdrawn, and 5.0 mL of fresh PBS solution was added. All
in vitro experiments were repeated six times.
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72. Ilić-Stojanović, S.; Nikolić, L.; Cakić, S. A Review of Patents and Innovative Biopolymer-Based Hydrogels. Gels 2023, 9, 556.
[CrossRef] [PubMed]

73. Li, J.; Song, W.; Li, F. Polymeric DNA Hydrogels and Their Applications in Drug Delivery for Cancer Therapy. Gels 2023, 9, 239.
[CrossRef] [PubMed]

74. Zhou, J.; Wang, L.; Gong, W.; Wang, B.; Yu, D.-G.; Zhu, Y. Integrating Chinese Herbs and Western Medicine for New Wound
Dressings through Handheld Electrospinning. Biomedicines 2023, 11, 2146. [CrossRef] [PubMed]

75. Han, W.; Wang, L.; Li, Q.; Ma, B.; He, C.; Guo, X.; Nie, J.; Ma, G. A Review: Current Status and Emerging Developments on
Natural Polymer-Based Electrospun Fibers. Macromol. Rapid Commun. 2022, 43, 2200456. [CrossRef]

76. Dias, J.R.; Sousa, A.; Augusto, A.; Bártolo, P.J.; Granja, P.L. Electrospun Polycaprolactone (PCL) Degradation: An In Vitro and In
Vivo Study. Polymers 2022, 14, 3397. [CrossRef]

77. Liu, H.; Wang, H.; Lu, X.; Murugadoss, V.; Huang, M.; Yang, H.; Wan, F.; Yu, D.G.; Guo, Z. Electrospun structural nanohybrids
combining three composites for fast helicide delivery. Adv. Compos.Hybrid Mater. 2022, 5, 1017–1029. [CrossRef]

78. Yu, D.G.; Huang, C. Electrospun Biomolecule-Based Drug Delivery Systems. Biomolecules 2023, 13, 1152. [CrossRef]
79. Pooja, C.; Bright, B.; Siew, H.N.; Aaron, W.; Lynn, P.W.; Heather, L.W. Solidified Saturated Fats Coating Subunit Vaccines Greatly

Extended Vaccine Booster Release and Contributed to a Th1/Th2 Mixed Immune Response in Mice. Vaccine 2023, 41, 3989–4001.
[CrossRef]

80. Agrawal, A.; Joshi, A.; Bhattacharya, S. Recent Excavation of Nanoethosomes in Current Drug Delivery. Curr. Drug Deliv. 2022,
21, 168–183. [CrossRef]

81. Sare, F.; Mohammad, R.A.; Seyyedeh, E.M.; Seyyed, M.R.S.; Mandana, K.; Shirzad, A.; Solmaz, G. Diazepam Loaded Solid Lipid
Nanoparticles: In Vitro and In Vivo Evaluations. Adv. Pharm. Bull. 2022, 12, 86–92. [CrossRef]

82. Alam, M.; Rizwanullah, M.; Mir, S.R.; Amin, S. Statistically Optimized Tacrolimus and Thymoquinone Co-Loaded Nanostructured
Lipid Carriers Gel for Improved Topical Treatment of Psoriasis. Gels 2023, 9, 515. [CrossRef] [PubMed]

83. Ahmadi, N.; Rincón, M.; Silva-Abreu, M.; Sosa, L.; Pesantez-Narvaez, J.; Calpena, A.C.; Rodríguez-Lagunas, M.J.; Mallandrich, M.
Semi-Solid Dosage Forms Containing Pranoprofen-Loaded NLC as Topical Therapy for Local Inflammation: In Vitro, Ex Vivo
and In Vivo Evaluation. Gels 2023, 9, 448. [CrossRef] [PubMed]

84. Song, W.; Tang, Y.; Qian, C.; Kim, B.J.; Liao, Y.; Yu, D.-G. Electrospinning Spinneret: A Bridge between the Visible World and the
Invisible Nanostructures. Innovation 2023, 4, 100381. [CrossRef]

85. Sivan, M.; Madheswaran, D.; Hauzerova, S.; Novotny, V.; Hedvicakova, V.; Jencova, V.; Kostakova, E.K.; Schindler, M.; Lukas,
D. AC Electrospinning: Impact of High Voltage and Solvent on the Electrospinnability and Productivity of Polycaprolactone
Electrospun Nanofibrous Scaffolds. Mater. Today Chem. 2022, 26, 101025. [CrossRef]

86. Sivan, M.; Madheswaran, D.; Valtera, J.; Kostakova, E.K.; Lukas, D. Alternating Current Electrospinning: The Impacts of Various
High-Voltage Signal Shapes and Frequencies on the Spinnability and Productivity of Polycaprolactone Nanofibers. Mater. Des.
2022, 213, 110308. [CrossRef]

41



Gels 2023, 9, 700

87. Xu, J.; Zhong, M.; Song, N.; Wang, C.; Lu, X. General Synthesis of Pt and Ni Co-Doped Porous Carbon Nanofibers to Boost HER
Performance in Both Acidic and Alkaline Solutions. Chin. Chem. Lett. 2023, 34, 107359. [CrossRef]

88. Eslami, H.; Gharibi, A.; Muller-Plathe, F. Mechanisms of Nucleation and Solid−Solid-Phase Transitions in Triblock Janus
Assemblies. J. Chem. Theory Comput. 2021, 17, 1742–1754. [CrossRef]

89. Bahri, K.; Eslami, H.; Muller-Plathe, F. Self-Assembly of Model Triblock Janus Colloidal Particles in Two Dimensions. J. Chem.
Theory Comput. 2022, 18, 1870–1882. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

42



Citation: Aldakheel, F.M.;

Mohsen, D.; El Sayed, M.M.;

Fagir, M.H.; El Dein, D.K. Green

Synthesized Silver Nanoparticles

Loaded in Polysaccharide Hydrogel

Applied to Chronic Wound Healing

in Mice Models. Gels 2023, 9, 646.

https://doi.org/10.3390/gels9080646

Academic Editors: Adina

Magdalena Musuc,

Magdalena Mititelu and

Mariana Chelu

Received: 16 July 2023

Revised: 5 August 2023

Accepted: 8 August 2023

Published: 11 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 gels

Article

Green Synthesized Silver Nanoparticles Loaded in
Polysaccharide Hydrogel Applied to Chronic Wound Healing in
Mice Models
Fahad M. Aldakheel 1 , Dalia Mohsen 2,3,* , Marwa M. El Sayed 4 , Mohammed H. Fagir 2 and Dalia K. El Dein 2

1 Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University,
Riyadh 11433, Saudi Arabia; faldakheel@ksu.edu.sa

2 Clinical Laboratory Sciences Program, Inaya Medical College, Riyadh 12211, Saudi Arabia;
husseinfagir@inaya.edu.sa (M.H.F.); dkmohammed@inaya.edu.sa (D.K.E.D.)

3 Microbiology Department, National Research Centre, Giza 12622, Egypt
4 Chemical Engineering and Pilot Plant Department, National Research Centre, Giza 12622, Egypt;

dr.marwameid@gmail.com
* Correspondence: dr.dalia@inaya.edu.sa

Abstract: The prevalence of chronic wounds is increasing owing to the expanding population and
the growing number of individuals suffering from diabetes. Such a chronic wound continues to be
a significant healthcare burden for diabetic patients because it frequently carries a high chance of
limb loss due to amputation and reduces survival as a result. Development of innovative wound
dressing materials with the potential to stop bacterial infections and accelerate the process of tissue
regeneration is needed to increase the effectiveness of diabetic wound healing. In the current
study, a co-polymerization process based on a free radical reaction was used to create a hydrogel
of polysaccharides blend graft acrylamide (PsB-g-Am). Starch, chitosan, and alginate make up
the polysaccharides blend (PsB). The produced hydrogel’s structure was characterized using FTIR
spectroscopy. The antibacterial activities of silver nanoparticles synthesized through the green method
using garlic bulb (Allium sativum) is reported. The silver nanoparticles’ physical characteristics were
examined using scanning electron microscopy, transmission electron microscopy analysis, and UV-
visible spectroscopy and they were found to range in size from 50 to 100 nm. The agar well diffusion
technique is used to investigate the antibacterial characteristics. Inclusion of silver nanoparticles in
the hydrogels demonstrated concentration-dependent antibacterial behavior against Gram-negative
Klebsiella pneumoniae and Gram-positive Staphylococcus aureus during antimicrobial testing of the
hydrogels. When hydrogels were applied to diabetic mice, the system was examined for its healing
abilities, and positive therapeutic results were obtained in as little as 14 days. Thus, it can be inferred
that graft copolymer of chitosan-AgNPs hydrogels can promote healing in chronic wounds over time
and can be utilized as an alternative to conventional therapies for chronic wounds (such as those
brought on by diabetes) in mouse models.

Keywords: chronic wound; hydrogel; graft copolymer of chitosan; antibacterial; mice induced diabetes

1. Introduction

Diabetic foot ulcer (DFU) is a common and serious complication of diabetes; character-
ized by slow-healing wounds on the skin of diabetic patients [1]. DFUs pose significant
challenges due to compromised physiological conditions and weakened immune responses
in individuals with diabetes [2,3]. Despite advancements in medical technology, DFU
continues to burden patients’ access to healthcare. Consequently, there is an urgent need to
develop effective therapeutic approaches to enhance DFU [4].

The skin is the most crucial organ in the body because it protects the body from harm
from the environment, is vulnerable to traumas and wounds, and can effectively heal
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damaged tissues [5]. A chronic wound develops when tissue does not heal within the
predicted time frame, which is why wound healing is a specialized biological process
connected to the general phenomena of tissue development and regeneration. Hemostasis,
inflammation, migration, proliferation, and maturation are the five discrete steps that make
up this process. These processes result in a complex web of interactions between various
cell types, mediator chemicals, and extracellular matrix components [6].

The wounds may contain a variety of bacteria including multidrug-resistant forms
of Staphylococcus aureus; Pseudomonas aeruginosa; and Klebsiella pneumonia organisms. A
better method of treating chronic wounds is therefore desperately needed. Antibacterial
medications are used in traditional therapies. However; this strategy adds to the problem
of bacterial resistance development, which is still a problem today [7]. More targeted ap-
proaches to build a more powerful solution are needed. Although antibacterial applications
may aid the wound more successfully; it still struggles with being quickly broken down by
the body. To avoid this, a specially designed carrier that delivers the anticipated medicine
while providing protection will maximize the healing process and allow for longer-lasting
treatment [8].

There are various kinds of wound care dressings. These dressings, however, are
developed from substances like semi-permeable gels or foams that can either be combined
with antibacterial drugs or naturally possess microbiological qualities. A good wound
dressing should, in general, be simple to remove, not adhere to the wound, keep the area
moist permitting air permeation, and keep external detritus like bacteria out. The patient
should have the least amount of discomfort and anxiety possible [9]. According to the
published data in the same field, increasing the porosity can have a beneficial effect on
the diffusion of nutrients and oxygen, especially in the absence of a functional vascular
system [10,11]. As a result, there are many medications available for the treatment of
chronic injuries. However, using these products has drawbacks, including the need for
repeated applications owing to their short-term effects and high-investment costs. In order
to achieve appropriate healing, new techniques were developed. One such technique is the
use of hydrogels, which may absorb part of the wound’s exudate and provide moisture to
tissue that has lost any.

The capacity of vinyl monomers to create hydrogels by grafting copolymerization onto
polysaccharides, such as starch, chitosan, sodium alginate, and carrageenan, are extensively
described [12]. Additionally, hydrogels are frequently sensitive to the circumstances of the
surrounding environment and are referred to as “intelligent materials” or “smart materials”
due to the presence of various functional groups along the polymer chains [13,14]. It was
claimed that by employing hydrogels made from natural polymers mixed with nanostruc-
tures as an innovation for controlled drug release, taking into consideration its structure,
permanence in the wound, stimulus sensitivity, and ultimately duration and temperature of
breakdown, chitosan was suggested as an alternative to create hydrogels because research
showed that it has curative properties, including the ability to regenerate skin tissue and
control bleeding by working with inflammatory cells (leukocytes, macrophages, and fibrob-
lasts) [15]. As a result, it has an antibacterial effect; this feature is a result of its positive
charge and chelating ability [16].

The incorporation of silver nanoparticles (AgNPs) as a bactericidal and bacteriostatic
agent to chitosan-made hydrogels was proposed; for example, their main advantage is to
cover a greater surface area with a smaller amount of material when compared to their
macroscopic structures, which inhibit different bacterial concentrations.

The unique characteristics of nanomaterials contribute to the rapid advancement of
nanotechnology. Silver nanoparticles in particular have attracted significant interest from
scientists due to their ability to exhibit various distinctive properties that can be adjusted
based on their size. These properties include remarkable chemical stability a wide range
of radiation absorption easy accessibility and non-toxicity [17,18]. Among the frequently
employed nanoparticles, silver nanoparticles are known for their potent antimicrobial
properties [19]. Various techniques, including electrochemical reduction, photochemi-
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cal reduction, heat evaporation and biological methods, are employed to produce silver
nanoparticles. However, these methods are often costly and involve the use of hazardous
chemicals, posing risks to both biological systems and the environment. Recently, there
is a growing interest in utilizing plant extracts for the synthesis of silver nanoparticles
primarily due to their environmentally friendly nature [20]. Plant extracts serve as both
reducing agents and capping agents during the nanoparticle synthesis process. Several
plant extracts such as garlic (Allium sativum) [21], Z. officinale (ginger), Aloe vera and
coffee [22] can be utilized.

Garlic, which is widely consumed as a spice food additive and medicinal herb, is known to
have gastric stimulant properties. It contains a range of organosulfur compounds that contribute
to its various biological activities. These compounds include allyl sulfide allicin allyl cysteine,
ajoene and alliin. Additionally, the presence of phenols, terpenoids, ketones aldehydes and
amides in plants plays a role in the synthesis of metal nanoparticles [23].

According to [24], hydrogels coated with chitosan-AgNPs showed higher antibacterial
activity than hydrogels without the coating. Evaluations of in vitro antibacterial activ-
ity were conducted against wound infections brought on by the presence of methicillin-
resistant S. aureus and P. aeruginosa. Hydrogels made of chitosan and AgNPs showed
significant antibacterial activity. In addition, [16,25] produced chitosan and chitosan-PVP-
silver nano-oxide (CPS) films having antibacterial and therapeutic capabilities for wound
healing. A greater level of antibacterial activity was seen in the CPS film. There are many
reports on the use of dressings with particular materials that encourage tissue development
and favor cellular recruitment in the early phases of cauterization, despite the fact that
wound healing is a natural mechanism in the regeneration of injured tissues inside the
human body. As cauterization dressings for skin wounds, chitosan hydrogels developed
with Gaps were used in the current study. An in vivo case study using mice that were
previously generated with diabetes and other diseases that interfered with the tissues’
normal cauterization process was carried out.

2. Results and Discussion
2.1. Ultraviolet–Visible Spectroscopy (UV–Vis)

The UV-vis spectra of the AgNPs synthesized at three different powers (50, 60, and
70%) are shown in Figure 1. Because the temperature developed in the solution was
insufficient to carry out an effective reduction, the AgNPs synthesized at 50% power
displayed the lowest intensity in the peak of 420 nm.
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The maximal absorbance peak was seen when the synthesis process was run at a
greater power (70%). This change could be the result of using more energy per unit of time,
which makes the reaction more intense and permits the production of bigger particles [26].
Furthermore, it can be deduced that as the power of the microwave oven grows, the density
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of the particles in the solution rises and the distance between them decreases, allowing the
van der Waals forces to dominate and cluster formation to occur [27]. The sample of 70%
powder will be used for the hydrogel synthesis in regard to the UV-Vis spectrum analysis.

2.2. Characterization of the Synthesied Hydrogel
FTIR

By contrasting the FTIR spectra of the raw PsB mixture with the grafted PsB, as shown
in Figure 2, the grafting evidence of acrylamide onto polysaccharides blend (PsB) was
validated. The characteristic peaks of chitosan are 1600 cm−1 (N-H bend), 1327 cm−1 (C-N
stretch), 1155 cm−1 (bridge O stretch), a peak at 1440 cm−1 (-COO- stretching), while the
characteristic peak of alginate appeared at 619 cm−1 (Na-O). Furthermore, for starch, the
broad band was 3459 cm−1 due to the stretching mode of O-H groups. The adsorption
band at 1648 cm−1 is attributed to an intermolecular H-bond involving the carboxyl group.
The band at 2931 cm−1 is assigned to C-H stretching. For the grafted PsB, in addition
to the peaks related to the three used poly saccharides, adding Am shows a broad band
located at 3428 cm−1, which was attributed to the N-H vibrations and a smaller peak at
2936 cm−1, corresponding to the C-H stretching vibrations of the methylene group. The
bands at 1667 cm−1 are assigned to C=O moiety of the -CONH2 group (amide-I) [28,29].
Furthermore, the absorption band at 1450 cm−1 was related to the vibrations of C-N bond.
Furthermore, there are peaks at 1157 and 1080 cm−1 due to the C=O stretching. Hence, the
newly appeared peaks found in PsB-g-Am hydrogel support the grafting findings.
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2.3. SEM Analysis of AgNPs

At magnifications of 2.9 and 11, Figure 3 shows a wide range of AgNP sizes, which are
consistent with the UV–Vs spectra, where the breadth of the absorption curve indicated the
potential development of NP aggregates brought on by the high concentration of AgNPs.
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2.4. TEM Analysis of AgNPs

Figure 4 demonstrates the tendency of AgNPs to cluster. Images produced by TEM
of NPs morphology shows a zoom of the sampled NPs (20 nm). Similar outcomes were
reported by different authors [30–33] as their generated NPs had a 100 nm size. Additionally,
a significant proportion of AgNPs were found to have faceted morphologies (wireframe
structures, nanorods, and truncated prisms).
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2.5. Swelling Water Ratio (SWR)

SWR for the two synthesized samples (PsB-g-Am and PsB-g-Am-AgNPs) are shown
in Figure 5. For all grafted samples, the maximum SWR values after swelling time of 24 h
was 50 g/g. Furthermore, the maximum obtained SWR for the hydrogel loaded with silver
nano-particles was 74 g/g. This result means that adding the silver ion to the hydrogel
main substrate improves the swelling properties by 24%, which matches with the results
obtained by previously published work [29].
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2.6. In Vitro Test Examination

The study demonstrated that hydrogels made from chitosan and containing AgNPs
exhibited the highest effectiveness in combating bacteria that are resistant to treatment.
These bacteria typically emerge in the wounds of diabetic mice and have the ability to
isolate themselves, leading to the development of secondary infections. The hydrogels
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not only prevented these secondary infections caused by the bacteria’s resistance, but also
promoted the faster wound healing.

In Figure 6, it is illustrated that the assessment focused on detecting the efficacy
of PsB-g-Am- and PsB-g-Am-loaded sliver nanoparticles for the chronic wound healing
group. When evaluating the impact on Klebsiella pneumoniae, it was observed that neither
of the fixed films with the lowest silver concentration (0.5 mL of AgNPs) displayed any
inhibition zone. However, when using the highest concentration of silver nanoparticles
(AgNPs) at 2 mL, it was noted that the zone of inhibition indicating the effectiveness
against bacterial growth increased to approximately 0.4 mm in size. When testing against
Staphylococcus aureus, it was observed that the hydrogel exhibited a similar inhibition zone
size of 0.4 mm to what was observed with Klebsiella pneumoniae. However, even at the
lowest concentration of AgNPs, an inhibition zone of 0.26 mm was formed, while Klebsiella
pneumoniae was 0.28 mm the size of the inhibition zones that increased as the concentration
of AgNPs increased. The largest observed inhibition zone in this case was 0.4 mm. The
results of both analyses align with the findings of Reiad [34], as the chitosan films without
AgNPs exhibit a similar outcome. The gradual release of NPs leads to bacterial inhibition,
as confirmed by the technique.

Gels 2023, 9, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 6. The Efficacy of PsB-g-Am and PsB-g-Am loaded sliver nanoparticles for infected chronic 
wound by Gram-negative Klebsiella pneumoniae and Gram-positive Staphylococcus aureus. 

2.7. In Vivo Study 
The previously induced diabetic mice were divided into three groups; first, not 

treated (control); and the second and third treated by (PsB-g-Am) and (PsB-g-Am-
AgNPs), respectively, by applying of 50-microliter volume of (PsB-g-Am) and (PsB-g-Am-
AgNPs) solutions (10 ppm) to the wound. Each group of mice was accommodated in sep-
arate housing. The duration of the experiment spanned 14 days. 

When (PsB-g-Am) and (PsB-g-Am-AgNPs) are present on the surface of the wound 
area PsB-g-Am and silver nanoparticles could accelerate chronic wound healing as com-
pared with the control group. As shown in Figure 7, both the two groups (2 and 3) lines 
of healing indicate the (second and third) groups of treated mice in days (2, 7, and 14) 
when the mice were sacrificed. 

As inflammation is a normal part of the wound healing process, the results suggest 
that (PsB-g-Am) and (PsB-g-Am-AgNPs) could reduce chronic wound size and enhance 
skin wound healing in the mice treated with (PsB-g-Am) alone or (PsB-g-Am-AgNPs) as 
compared with the control group. However, a significant difference was found between 
the three groups at day 14 due to the effect of (PsB-g-Am) only or when PsB-g-Am-AgNPs 
were used. Moreover, since the formation of scars plays a crucial role in the process of 
wound healing [35], the extent of scarring on the skin’s surface was measured. 

It was observed that there was a noticeable contrast in the overall visible characteris-
tics of the healed wounds after a period of 14 days, following the initial injury (Figure 7). 
The findings of the current research demonstrate that the utilization of silver nanoparti-
cles (PsB-g-Am-AgNPs) has the potential to enhance the process of healing for skin 
wounds while minimizing the visibility of scars [36]. Silver nanoparticles (Ag-NPs) loaded 
in hydrogel display strong antimicrobial properties that effectively combat infections fol-
lowed by when using (PsB-g-Am) without silver nanoparticles as hydrogels have 
emerged as a promising substitute for treating various challenging wounds that struggle 
to heal. Certain severe skin injuries often suffer from bacterial contamination, leading to 
delayed healing due to the presence of necrotic tissue that creates an ideal environment 
for bacterial growth [37]. However, by employing silver nanoparticles (AgNPs) as an an-
timicrobial agent, the use of hydrogels effectively diminishes the bacterial burden, thereby 
facilitating a proper healing process. Hydrogel and silver nanoparticles exhibit high tox-
icity towards microorganisms, making them effective in eliminating bacteria responsible 
for diseases transmitted through food water and wounds [38]. Although the exact 

Figure 6. The Efficacy of PsB-g-Am and PsB-g-Am loaded sliver nanoparticles for infected chronic
wound by Gram-negative Klebsiella pneumoniae and Gram-positive Staphylococcus aureus.

2.7. In Vivo Study

The previously induced diabetic mice were divided into three groups; first, not treated
(control); and the second and third treated by (PsB-g-Am) and (PsB-g-Am-AgNPs), re-
spectively, by applying of 50-microliter volume of (PsB-g-Am) and (PsB-g-Am-AgNPs)
solutions (10 ppm) to the wound. Each group of mice was accommodated in separate
housing. The duration of the experiment spanned 14 days.

When (PsB-g-Am) and (PsB-g-Am-AgNPs) are present on the surface of the wound
area PsB-g-Am and silver nanoparticles could accelerate chronic wound healing as com-
pared with the control group. As shown in Figure 7, both the two groups (2 and 3) lines of
healing indicate the (second and third) groups of treated mice in days (2, 7, and 14) when
the mice were sacrificed.
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As inflammation is a normal part of the wound healing process, the results suggest
that (PsB-g-Am) and (PsB-g-Am-AgNPs) could reduce chronic wound size and enhance
skin wound healing in the mice treated with (PsB-g-Am) alone or (PsB-g-Am-AgNPs) as
compared with the control group. However, a significant difference was found between
the three groups at day 14 due to the effect of (PsB-g-Am) only or when PsB-g-Am-AgNPs
were used. Moreover, since the formation of scars plays a crucial role in the process of
wound healing [35], the extent of scarring on the skin’s surface was measured.

It was observed that there was a noticeable contrast in the overall visible characteristics
of the healed wounds after a period of 14 days, following the initial injury (Figure 7). The
findings of the current research demonstrate that the utilization of silver nanoparticles
(PsB-g-Am-AgNPs) has the potential to enhance the process of healing for skin wounds
while minimizing the visibility of scars [36]. Silver nanoparticles (Ag-NPs) loaded in
hydrogel display strong antimicrobial properties that effectively combat infections followed
by when using (PsB-g-Am) without silver nanoparticles as hydrogels have emerged as
a promising substitute for treating various challenging wounds that struggle to heal.
Certain severe skin injuries often suffer from bacterial contamination, leading to delayed
healing due to the presence of necrotic tissue that creates an ideal environment for bacterial
growth [37]. However, by employing silver nanoparticles (AgNPs) as an antimicrobial
agent, the use of hydrogels effectively diminishes the bacterial burden, thereby facilitating
a proper healing process. Hydrogel and silver nanoparticles exhibit high toxicity towards
microorganisms, making them effective in eliminating bacteria responsible for diseases
transmitted through food water and wounds [38]. Although the exact mechanism by
which (PsB-g-Am-AgNPs) affect microorganisms is not fully understood, they interact
with various molecular processes within microorganisms leading to growth inhibition
loss of infectivity and cell death [39]. The antimicrobial activity of Ag-NPs is attributed
to the generation of free radicals on their surface [40]. The healing of chronic wounds is
a dynamic process involving the coordinated interplay of blood cells proteins proteases
growth factors and extracellular matrix components. This physiological process is vital
for the regeneration and reorganization of damaged tissue, ultimately restoring its normal
structure [2].

Furthermore, the mice treated with (PsB-g-Am) and (PsB-g-Am-AgNPs) showed
reduced scar visibility and inflammation levels at the site of the wound. As a result, the
size of the wound area was smaller and the healing process was shorter compared to the
control group. Similarly, in a study conducted by Nadworny [41] that examined the effects
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of (PsB-g-Am) only or when loaded with Ag-NPs on wound healing, it was observed that
the healing process was expedited and the cosmetic appearance of the wound improved in
an animal model.

Based on the aforementioned explanations, it was suggested to use chitosan hydrogels
containing silver nanoparticles as the best results than when using the chitosan g PVA
alone. This choice was made due to the combined benefits offered by each component
of the dressing, which promote the healing and regeneration of injured tissue through
granulation and epithelialization processes.

3. Conclusions

In conclusion, the extract derived from garlic (alum sativum) extract effectively gener-
ates AgNPs that exhibit excellent stability in solution. These synthesized silver nanopar-
ticles demonstrate their effectiveness as an active agent against both Gram-negative and
Gram-positive bacteria. Ultimately the biosynthesis of silver nanoparticles shows great
promise as a potential solution for medical applications where antimicrobial activity is
crucial. The utilization of graft copolymer of chitosan hydrogels alone and graft copolymer
of chitosan hydrogels containing silver nanoparticles (PsB-g-Am-AgNPs) in diabetic mice
offers beneficial effects in the recovery of chronic wounds. This is due to the hydrogel only
creating a moist environment around the wound facilitating the required physiological
and environmental conditions for healing in the underlying tissues of ulcers or chronic
wounds. Moreover, research successfully developed the (PsB-g-Am-AgNPs) as a versatile
composite hydrogel that was identified as a highly effective material for treating long-term
wounds. The (PsB-g-Am-AgNPs) exhibited strong antimicrobial properties as it displayed
a significant ability to kill bacteria, specifically K. pneumoniae and S. aureus due to the pres-
ence of Ag+ in its composition. Both graft copolymer of chitosan hydrogel alone and graft
copolymer of chitosan hydrogel developed with AgNPs when applied to the diabetic mice
wounds, led to decreased scarring and enhancement of the healing process, diminishing
the likelihood of infection.

4. Materials and Methods
4.1. Materials

Corn starch (Sigma-Aldrich, Hamburg, Germany) chitosan medium molecular weight
(Sigma Aldrich, Hamburg, Germany) alginic acid sodium salt from brown algae “algi-
nate” (Routh, Hamburg, Germany) chitosan (Ch) with medium molecular weight and
deacetylation ≥ 75% (Sigma Aldrich, Hamburg, Germany) and acrylamide (Am), MW
71.08 (Baker Chemical Co., Phillipsburg, NJ, USA) were the basic raw materials used for
the hydrogel preparation. Methylene bisacryl-amide (MBA) MW 154.2 (Fluka, Buchs,
Germany) and potassium persulfate (KPS) MW 270.322 (Merck, Darmstadt, Germany)
were used as the crosslinker and initiator, respectively. Other chemicals include acetone
acetic acid and ethanol (El Nasr Pharmaceutical Chemicals Co., Cairo, Egypt) and sodium
hydroxide pellets (Laboratory chemicals Modern Lab. Egypt). The applied experiments
were conducted using double distilled water (DDW). In addition, drying was conducted
via an oven hot-plate magnetic stirrer; Microwave normal saline and Ultraviolet apparatus
(ES-13080UV2A).

Garlic bulb (Allium sativum), a beaker, magnetic stirrer, hot plate, incubator, power
supply, thermometer, Whatman No. 1 filter papers, digital electronic analytical balance
(Model FA2104, Shanghai Selon Scientific Instrument Co., Ltd., Shanghai, China), furnace
(Model BK-5-12GJ), ceramic crucible cups, drying oven (Model 101-0 Biobased Biodustry
Shandong Co., Ltd.), China cylinders, and a centrifuge (Model AVI-558 max RPM: 5000 rpm)
were used.

For the production of silver nanoparticles using garlic bulb extract, silver nitrate
(AgNO3) was utilized as the precursor. A 1 mM solution of silver nitrate was prepared by
dissolving it in double distilled water and subsequently stored at a temperature of 4 ◦C in
a refrigerator.
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4.2. Ethical Considerations

Research protocols for animal injection were approved by the National research Centre
(Animal Facility Unit). Animal testing was performed with compliance of the local ethics
committee and Biosafety Committee under number (RSP 2023R506) from KSU. Mice were
sacrificed through anesthetic overdose from Dimethyl ether.

4.3. Preparation of the Polysaccharides Blend (PsB)

Three grammes of starch were added to 70 mL of DW, and the mixture was stirred
for 30 min at 80 ◦C. One gram of chitosan was added, and the mixture was stirred for
five hours at room temperature. Finally, one gram of alginate was added, and the mixture
was stirred for four hours at room temperature. The pre-prepared starch colloid was then
added to the chitosan and alginate solutions, and the mixture was stirred for 10 min to
produce the PsB solution.

4.3.1. Grafting of Acrylamide onto PsB

The pre-made PsB solution was mixed with 0.6 g of KPS and five different weights
of Am, resulting in Am/PsB weight ratios of 0.6, 0.69, 0.78, 0.87, and 0.96 “g/g”. Then, to
each of the five produced combinations, 0.1 g of MBA was added. The next phase, grafting,
was completed using a traditional technique using a three-necked round bottom flask.
Nitrogen inlets and thermometers were installed in the right and left necks, respectively.
The intermediate neck had a mechanical stirrer, and was condensed for an hour at 60 ◦C,
and three neck quick-fit adapter reactants were inputted. The reaction product was cooled
to room temperature.

4.3.2. Post Treatment

After the grafted hydrogels were brought to a pH of 8 using 1 N NaOH, a solution
of 70% ethanol was added, and the gel product was agitated for 150 min (five times) to
dissolve the homopolymer that had formed. Final steps included filtering, two new ethanol
washes, and drying the product at 70 ◦C until a consistent weight was achieved [39,40].

4.4. Hydrogel Characterization and Analysis
4.4.1. FTIR

A FT/IR-6100 type A Jasco Japan TGS detector with the absorbance technique ranging
from 500 to 4000 cm−1 with scanning speed of 2 mm/s was used.

4.4.2. SEM Analysis of AgNPs

The synthesized solution at 70% power was chosen for the remaining experiments after
the samples’ spectroscopy analysis was completed because it has a higher concentration of
particles and a lower concentration of silver ions (which could produce a secondary effect
in its application). Using a Tescan model MIRA LMU scanning electron microscope, SEM
analysis was produced.

4.4.3. TEM Analysis of AgNPs

It was required to do a transmission electron microscopy analysis on the particles in
order to precisely identify their size and form. Equipment from the TEM Jeol JSM-1010 was
used for the analysis. A power of 90 keV was used to analyze the sample.

4.5. Swelling Water Ratio (SWR)

The dried hydrogel samples were immersed in RO water with different pH values
(3, 5, 7, 9 and 11) and with different ionic strengths (0.1%, 2% and 3%). Samples were taken,
and then weighed after indicated time intervals, where the excess water on their surface
was gently removed by filter paper.
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Swelling ratio (SR) was calculated by the following Equation (1) [40,41]:

SR(%) =

[
Ws − Wd

Wd

]
× 100 (1)

where, Ws and Wd are the weight of the swollen and dry samples, respectively. SWR was
calculated as grams of absorbed water per grams of dry hydrogel (g/g).

4.6. Ultraviolet–Visible Spectroscopy (UV–Vis)

A UV–Vis examination was carried out in a 10 S spectrometer to confirm the existence
of these NPs, and spectrum scanning was performed in the 300–800 nm wavelength range.
The development of a maximal absorbance peak at about 420 nm was used to assess the
existence of AgNPs [30,31]. The UV-vis spectra of the AgNPs was synthesized at three
different powers (50, 60, and 70%).

4.7. Synthesis of AgNPs
4.7.1. Extraction Alum Sativum

Fresh roots of garlic were obtained from a local market in Egypt. The outer skin of the
garlic was removed and then washed with distilled water. Roots were dried completely
to remove any moisture content. The dried roots were crushed using a mortar and pestle.
Subsequently, 10 g of the powder was boiled in 100 mL of deionized water (DW) for 30 min.
Finally, the extracts were filtered using Whatman No. 1 filter paper and stored at 4 ◦C for
further use.

4.7.2. Silver Nanoparticles Biosynthesis

The synthesis of silver nanoparticles was conducted using the green synthesis method.
To reduce Ag+ ions, 1 mL of garlic extract solution was added drop by drop into a 100 mL
aqueous solution containing 1 mM of AgNO3. The mixture was heated at a temperature
ranging from 60 to 80 ◦C for a duration of 1 h. During this process, a noticeable change
in color was observed as the dark brown solution transformed into a reddish-brown, thus
indicating the successful formation of silver nanoparticles, as shown in Figure 8.
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4.8. Synthesis of PsB-g-Am Loaded with AgNPs

As mentioned in Section 2.3, the hydrogel was prepared. Then, this step was followed
by dividing the resulting sample into five parts and the silver nanoparticles were added to
each sample, as illustrated in Table 1. The reaction mixture was mixed using mild stirring
for 30 min in 70 ◦C under nitrogen conditions.
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Table 1. Sample Coding with the NPs concentration by mL.

1 2 3 4 5

NPs (mL) 0 0.5 1 1.5 2

Then, the five samples were stirred for 10 min then poured into a Petri dish and
subjected to UV irradiation for 10 min. Finally, for both in vitro and in vivo tests, the
samples produced were sterilized using UV irradiation. The hydrogel was removed and
stored at 4 ◦C.

4.9. Laboratory Animals and Housing Conditions

Laboratory animals and the care conditions were carried out in agreement with the
international guidelines governing animal care. As a result, 30 BALB-c mice (weighing
35–40 g) were attainted from a laboratory animal facility at the National Research Center,
Egypt. The mice were housed in cages with temperature controls between (20–22 ◦C), and
50–70% humidity light/dark cycles for 12 h. Mice were free of infections when they arrived
at the workplace.

After a period of two weeks to adapt, the mice were divided into three groups ran-
domly: The first group of (10) mice was untreated (control), the second group of (10) mice
was treated by hydrogel only (PsB-g-Am), and the third group was treated by (PsB-g-Am
with AgNPs). The animals were deprived of food overnight prior to the treatment. The
mice were assessed regularly for any signs of infections. The mice that ate less through the
provided commercial pellet diet were given deionized water.

4.10. In Vitro Study

The current study examined bacterial inhibition using the agar well diffusion method
(at concentration about 10−5 CFU/mL), which provides qualitative insights into antimicro-
bial activity. Each test was conducted in triplicate to ensure accuracy. Two types of bacteria
were tested against standard pathogens, namely Klebsiella pneumoniae and Staphylococcus
aureus, which were selected for analysis. The assessment focused on detection of the efficacy
of (PsB-g-Am) and (PsB-g-Am loaded sliver nanoparticles) with different concentrations
for chronic wound healing group.

The tryptic soy broth (TSB) was used to cultivate Klebsiella pneumoniae (K. pneumoniae
ATCC 9637) and Staphylococcus aureus (S. aureus-ATCC 6538) at 37 ◦C in an aerobic environ-
ment. Prior to the experiment, the standard curve of the absorbance (optical density OD600)
vs. colony forming units (CFUs mL5) for each microbial species was developed. Both types
of bacteria were quantified by spectrophotometry at abs = 600 nm. The overnight cultures
were diluted 1:100 and continued to be grown until the OD600 value was 1.0.

The animal protocols used in this study followed the guidelines set by the laboratory
animal facility at the National Research Center, Egypt for care and operation of laboratory
animals. A total of 30 C-BALB mice (8–10 weeks), weighing between 35–40 g were employed
in the wound healing experiments. Diabetes mellitus of mice were induced by single
intravenous injection of 45 mg/kg streptozotocin (STZ). Blood glucose of each mouse was
measured every week and the one with >300 mg /dL of blood glucose level on the 21st day
was considered diabetic [41].

4.11. Surgical Wound Creation Model

Anesthesia for experimentation was achieved with dimethyl ether. After administering
anesthesia, a full-thickness excisional wound measuring 2.0 cm2 was surgically developed.
The shaved dorsal area of each mouse was meticulously cleaned with iodine to disinfect
the skin. The injury was developed by administering anesthesia and causing wounds with
diameters of up to 10 mm. In the second and the third groups treated by (Ch-g-PVA) and
(Ch-g-PVA-AgNPs), respectively, a 50-microliter volume of (Ch-g-PVA) and (Ch-g-PVA-
AgNPs) solutions (10 ppm) were applied to the wound once a day at a specific time. In
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the first untreated (control) group, no (Ch-g-PVA nor (Ch-g-PVA-AgNPs) solution were
used, but the wound area was cleansed with a normal saline. Each group of mice were
accommodated in separate housing. The duration of the experiment spanned 14 days.
Sampling occurred on days 0, 2, 7 and 14 days when the animals were sacrificed to
determine the wound healing efficacy of the (Ch-g-PVA) and (Ch-g-PVA-AgNPs) in the
treated groups and non-treated control group.
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Abstract: Oral and parenteral delivery routes of valproic acid (VA) are associated with serious
adverse effects, high hepatic metabolism, high clearance, and low bioavailability in the brain. A
GastroPlus program was used to predict in vivo performance of immediate (IR) and sustained
release (SR) products in humans. HSPiP software 5.4.08 predicted excipients with maximum possible
miscibility of the drug. Based on the GastroPlus and HSPiP program, various excipients were
screened for experimental solubility, nanoemulsions, and respective gel studies intended for nasal-
to-brain delivery. These were characterized by size, size distribution, polydispersity index, zeta
potential, morphology, pH, % transmittance, drug content, and viscosity. In vitro drug release, ex
vivo permeation profile (goat nasal mucosa), and penetration studies were conducted. Results
showed that in vivo oral drug dissolution and absorption were predicted as 98.6 mg and 18.8 mg,
respectively, from both tablets (IR and SR) at 8 h using GastroPlus. The predicted drug access to
the portal vein was substantially higher in IR (115 mg) compared to SR (82.6 mg). The plasma
drug concentration–time profile predicted was in good agreement with published reports. The
program predicted duodenum and jejunum as the prime sites of the drug absorption and no effect of
nanonization on Tmax for sustained release formulation. Hansen parameters suggested a suitable
selection of excipients. The program recommended nasal-to-brain delivery of the drug using a
cationic mucoadhesive nanoemulsion. The optimized CVE6 was associated with the optimal size
(113 nm), low PDI (polydispersity index) (0.26), high zeta potential (+34.7 mV), high transmittance
(97.8%), and high strength (0.7% w/w). In vitro release and ex vivo permeation of CVE6 were found
to be substantially high as compared to anionic AVE6 and respective gels. A penetration study using
confocal laser scanning microscopy (CLSM) executed high fluorescence intensity with CVE6 and
CVE6-gel as compared to suspension and ANE6. This might be attributed to the electrostatic
interaction existing between the mucosal membrane and nanoglobules. Thus, cationic nanoemulsions
and respective mucoadhesive gels are promising strategies for the delivery of VA to the brain through
intransal administration for the treatment of seizures and convulsions.

Keywords: valproic acid; GastroPlus-based prediction; cationic nanoemulsion; gels; in vitro–ex vivo
permeation profile; CLSM study

1. Introduction

Epilepsy is defined as a group of neurological issues of the central nervous system
and is characterized as a predisposition to epileptic seizures due to the complexity of its
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characteristics. The World Health Organization (WHO) estimated that 50 million people are
affected annually around the world [1]. In the USA, 2.3 million adults and 500,000 children
are affected by varied forms of epilepsy due to unknown and known possible reasons
(genetics, trauma, stroke, brain tumor, and any factors responsible for disturbing the normal
pattern of the brain circuit) [2]. In Saudi Arabia, the reported prevalence of cases of epilepsy
is 6.45 per 1000 people, which is responsible for affecting children’s mental health, behavior,
and academic performance [3].

Valproic acid (VA) is the most effective first-line anticonvulsant to control grand
mal epilepsy and tonic–clonic fits (seizure), various seizures, and idiopathic generalized
seizures. Several characteristics, including low molecular weight (144 g/mol), hydrophobic
nature (log P = 2.54), high oral dose (not more than 600 mg/kg/day), high first-pass
metabolism (methylation, sulfation, and glucuronidation), and poor brain bioavailability
after oral administration, are possible reasons for nasal delivery of the drug to control
seizure [4]. Commercial products (oral and parenteral) showed high plasma levels of
active metabolites (90% such as 4-ene-VA and undergoes beta oxidation of fatty acid) due
to hepatic metabolism (causing hepatotoxicity) and rapid clearance due to efflux (P-gp
pump of microvessel endothelial cell in the blood–brain barrier). Parenteral delivery
causes serious side effects, possibly due to the reticuloendothelial system (Kuffer cells)-
based metabolism and low bioavailability to the brain. Hammond et al. investigated the
pharmacokinetics profiles of the drug in a cat model (six adult cats) after rapid intravenous
infusion (60 mg/kg within 3 min of infusion using saline) wherein the maximum level
of the drug was obtained at 1 min (brain distribution half-life as 6 min estimated from
α-phase) followed by the Vd rapid clearance (mean elimination half-life of 41 min), and
the volume of distribution (Vd) as 0.125 L/kg. Low in vivo uptake (low brain–plasma
ratio), low Vd, and rapid clearance (brain elimination half-life of 41 min estimated from the
β-phase) from the brain indicated poor binding of the drug to the cerebral cortex [5]. As per
the US FDA label of DEPAKENE, oral absorption was dependent on age and dosage forms
(tablet versus capsule). In adult patients, the absorption rate on monotherapy (250 mg of
oral delivery) is nonlinear, whereas the kinetics of the unbound drug is linear. Notably,
the drug is primarily metabolized through the liver (30–50% as glucuronide conjugate)
and mitochondrial β-oxidation (>40%) for excretion through urine (3% as unchanged). In
humans, the mean plasma clearance and Vd values were reported as 0.56 L/Kg and 11 L,
respectively, following 250 mg of oral administration in adults (70 kg or 1.73 m2 as body
surface area) [6].

Several drugs (35–40 molecules) have been exploited for brain delivery using the
nasal route of administration. The route is the most preferred one to circumvent the afore-
mentioned issues of oral and parenteral delivery in conventional dosage forms. Various
nanocarriers have been reported for drug delivery through the nasal route. These are
lipidic nanocarriers (lipid nanoparticles, nanoemulsion, and liposomes), nanotubes, and
dendrimers [7–11]. Tan et al. tailored stable nanoemulsion comprised of safflower (70–80%
linolenic acid-rich natural oil capable of drug delivery across the blood–brain barrier and
cerebrospinal fluid barrier) for delivery of the drug to the brain, and brain bioavailability
was improved [10,12].

Nanoemulsion is a well-explored nanocarrier system for drug delivery due to desired
innate features such as nanoscale globular size, suitability to load small molecules, and ther-
modynamically stable isotropic mixture. An imposed cationic charge on the nanoglobule
further improves its pharmaceutical utility for the facilitated permeation across the biologi-
cal membrane for the extended residence time. Nasal drug delivery is usually challenged
by its short residence time and high washout after nasal administration. Cationic-charged
nanocarriers interact with the biological membrane for maximized internalization and
increased passive permeation and drug deposition (enhanced drug access across the bi-
ological membrane) [13,14]. The nasal route of administration offers several advantages
over oral and parenteral routes such as (a) high patient compliance, (b) avoiding hepatic
metabolism and related drug degradation, (c) direct drug access from the olfactory region
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to the cranial cavity of the brain, (d) avoiding unnecessary administration of excipients, (e)
dose mitigation and reduction in dose-related side effects, (f) low therapy cost, (g) ease in
regulatory constraints for approval, and (h) safety and biocompatibility [14].

We predicted the in vivo performance of the drug using GastroPlus (predictive and
simulation program) using the literature, default values, and experimental data. The pro-
gram assisted in predicting the dose-dependent pharmacokinetic parameters (time required
to reach Cmax as Tmax, area under the curve as AUC, and maximum drug concentration
reached in the blood as Cmax) considering an oral commercial dose (250 mg) and the dosage
form (tablet) in healthy adults. Moreover, cationic nanoemulsions were prepared, opti-
mized, and characterized for in vitro (size, size distribution, zeta potential, morphology,
thermodynamic stability, and release profile at pH 5.5 and 6.8) and ex vivo performance
(permeation flux, drug deposition, and enhancement ratio) (goat nasal tissue).

2. Results and Discussion
2.1. Prediction and Simulation Study Using GastroPlus

VA is orally administered in different dosage forms such as IR/SR tablets, an oral
solution, and an oral capsule. Considering 200 mg as an adult dose in an IR tablet and SR
tablet, the program was run for a simulation of 24 h (Table 1). The program was used to
predict PK parameters (Cmax, AUC, and Tmax) for both of them in adults. Limited data are
available for comparative PK studies of VA using IR and SR tablets in humans. No data
are available for predicting PK parameters using the GastroPlus program and comparing
an IR tablet and an SR tablet at a fixed dose and dosing frequency. Teixeira-da-Silva et al.
predicted population pharmacokinetics of VA monotherapy considering different doses,
body weights, and age groups. The regimen depicted was designed to achieve a VA con-
centration within the acceptable therapeutic range. The steady-state plasma concentrations
were predicted to be >120 mg/L for age groups of 15 (1000 mg in tablet) and 35 years
(1200 mg in tablet), whereas this value was predicted as <100 mg/L for children aged 1
(dose of 100 mg in solution) and 6 years (dose of 200 mg in solution) [15]. Thus, the authors
found that there was no significant difference in the plasma drug concentration from the
tablet with 1000 mg or 1200 mg in adults of different ages (15 versus 35 years old) and body
weights (56 versus 70 kg) [16]. In the present study, we used a 200 mg dose for an adult
weighing 70 kg to predict in vivo dissolution and in vivo absorption of the IR tablet and SR
tablet of VA. The result is illustrated in Figure 1A,B. It is clear that the predicted pattern
of in vivo dissolution of the IR VA tablet and the SR VA tablet are closely related without
a substantial difference in a fast-state adult. Interestingly, the amount of drug absorbed
by the portal vein (AmtPV-1) is higher in the IR VA tablet compared to the SR VA tablet
(Figure 1A) as predicted in the program. This may be prudent to correlate the difference in
the dissolution rate between IR and SR tablets. The IR tablet exhibits rapid drug dissolution
in gastric content for the profound availability of the drug for absorption at the intestinal
mucosa of the GIT lumen. On the other hand, the SR tablet follows a different dissolution
process due to the rate-limiting membrane of the polymer coating on the tablet. Slow
and sustained release of the drug caused slow and extended absorption as predicted in
Figure 1B. The total amount of the drug absorbed from both tablets is approximately the
same as predicted in the program (green bold color) suggesting no significant difference
in the modified form of the tablet over a period of 24 h. This may be due to the slightly
acidic nature of VA (pKa = 5.14) suitable for absorption from the intestinal area as the prime
site of drug absorption. The therapeutic window of the drug is 30–100 mg/L after oral
administration in humans [17]. The drug is rapidly absorbed from the oral dosage form and
the drug access to the brain is limited due to the high protein binding capacity (90%). The
low volume of distribution (0.125 L/Kg) is very similar to that found in humans suggesting
no significant bounding of the drug to the brain. Therefore, this needs a high blood plasma
level by administering high oral doses. The limited free drug in the plasma is available for
brain access. In a previous study, it was observed that VA transport to the brain occurs via
the monocarboxylic acid transport system. The plasma level of VA < 60 µg/mL results in a
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low level of the drug in the brain. For clinical effectiveness in humans, it is only possible
with a relatively high plasma concentration above 55 µg/mL [5].

Table 1. Summary of input data for GastroPlus simulation and prediction of VA sodium.

Parameter Values

Molecular formula C8H15NaO2

Molecular weight (g/mol) 166.19

Melting point (◦C) 300

Aqueous solubility (mg/mL) at 25 ◦C <1

Density (g/mL) 0.9

Pka 5.14

Log p 3.08

Apparent permeability coefficient (cm/h) across hCMEC/D3 and
CC-2565 of in vitro blood brain barrier 0.625

Dose (mg) 200

Body weight (kg) 70

Dosing volume (mL) 1

Mean precipitation time (s) 30

AUC (µg. h/mL) 10–160

Cmax (mg/L) ~120

Tmax (h) (mean) 5

Elimination half-life (h) 8–15

Clearance (L/h) 0.206–1.154

Plasma protein binding (%) 90–95

Vd (L) 8.4–23.3

pH for reference solubility 7.0

Simulation time (h) 24

2.1.1. Prediction of Plasma Drug Concentration Time Profile

The program predicted the plasma drug concentration–time profile of the IR tablet and
the SR tablet of VA. The result of the predicted PK profile is displayed in Figure 2 wherein
Cmax values of VA IR and VA SR tablets were predicted as 159.3 µg/mL and 82.5 µg/mL,
respectively. The predicted values are quite interesting and convincing as explained before
for therapeutic effectiveness. Both values are enough to produce a substantial level of the
drug in the blood plasma for brain access (>55 µg/mL) [5]. The acidic form of the drug is
suitable for solubility in water and an acidic medium (pKa 5.4). Therefore, the IR tablet
showed rapid drug dissolution for immediate drug absorption. Therefore, the IR tablet
(2.1 h) showed relatively low Tmax compared to the SR tablet (5.2 h) in prediction. These
predicted Tmax values are in good agreement with the published report for the oral solution
and the SR tablet [18]. This indicated that the model is a good fit (as observed by the high
Akaike value) for simulation and prediction. The result can be correlated to the difference
in oral bioavailability of VA in the drug solution and the SR formulation. In the literature,
the drug solution and SR formulation resulted in 100% and 80–90% bioavailability for
VA [19]. Thus, the predicted pattern of the VA SR tablet suggested slow and sustained
delivery of VA for a long-term effect within the therapeutic window (200 mg). However,
the drug is limited to brain access due to various possible reasons. These may be due to
high protein binding capacity, high hepatic drug metabolism, the low solubility of the drug,
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and extra hepatic drug metabolism. The sustained-release tablet slightly decreased the
drug absorption to the portal vein (Figure 1B).
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Figure 1. Simulation and prediction software (GastroPlus)-based analysis of IR tablet and SR tablet
for oral administration. (A) Prediction of in vivo dissolution and in vivo absorption of VA IR Tablet
(200 mg) for oral delivery (once a day in fast-state condition) and (B) prediction of in vivo dissolution
and in vivo absorption of VA SR tablet (200 mg) for oral delivery (once a day in fast-state condition).

2.1.2. Regional Compartmental Absorption of Both Tablets

The program predicted nine compartmental absorption sites in GIT. Both IR and SR
tablets were processed in the system to estimate the percent of regional absorption of
the drug. The result is displayed in Figure 3A,B wherein the IR tablet and the SR tablet
were predicted to have an overall total absorption of 95.3% and 86.6%, respectively. VA
is a slightly acidic drug with a pKa value of 5.6. Therefore, the drug was predicted to be
absorbed primarily from the proximal portion of GIT. Thus, the duodenum and jejunum
are the main sites of oral absorption. The drug is considered poorly absorbed from the
distal GIT region as shown in Figure 3A,B. The predicted values are in agreement with
the published report of oral bioavailability for the drug solution (100%) and SR tablet
(80–90%) [19].
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2.1.3. PSA (Parameter Sensitivity Analysis) Assessment

PSA assessment was performed to identify the relevant factors responsible for affecting
the PK parameters of the VA tablet on oral administration (Figure 4A–C). The analysis
was carried out using the GastroPlus program considering the fasted-state condition of
the subject. This avoided any interaction with food. In the study, we attempted to predict
the impact of a nanocarrier system for oral drug delivery and its impact on PK parameters
such as Cmax, Tmax, and AUC (area under the curve). It is clear from the prediction study
and literature-based findings that conventional dosage forms of VA (tablet, SR tablet, and
solution) do not have much difference in terms of bioavailability in humans [10,16,20–24].
Therefore, the predicted oral bioavailability values are almost similar to the reported values
(as described before). However, the program predicted that the nano effect had no impact
on PK parameters after oral delivery. This may be correlated with the lipophilic nature of the
drug being absorbed and poor dissolution (BCS class II) [25,26]. Conclusively, GastroPlus
simulation and the prediction program assisted in the understanding of the nanonized
product of VA for oral delivery could be of no benefit for brain delivery. Therefore, it
is better to formulate nanocarrier-based drug delivery for brain delivery using the nasal
route of administration. The basal route contains the olfactory chamber directly linked
to the brain for drug access. Thus, the purpose of GastroPlus-based prediction was to
understand the feasibility of the oral nanocarrier for brain delivery using clinical data
(obtained from the literature). The program provided various predicted in vivo values for
a human trial.

2.1.4. Hansen Solubility Parameters for VA and Excipients

HSP values helped to select excipients possibly exhibiting maximum drug solubility
via a cohesive interaction (cohesive forces) [27]. The program is well-exploited for solute
miscibility/solubility in a particular solvent. The HSP values of the drug and each excipient
are summarized in Table 2. It is easy to understand that the lipid, the surfactant, and the
co-surfactant possessing HSP close to the values of the drug could be the most appropriate
and suitable for drug solubility. The values of δd, δp, and δh of the drug are 16.1, 4.3, and
9.0 MPa1/2, respectively. The δh value of tween 80 is quite close to the HSP values of
VA compared to span 80 (δh of span 80 is 12.4 compared to 9 of tween 80). Therefore, a
solute interacts with a solvent through these cohesive forces working together. Thus, the
difference of any parameter between the solute and solvent close to zero is considered
miscible or soluble. Thus, the program predicted relevant excipients based on these
HSP values of each excipient close to the HSP values of the model drug. The program
estimated these values as shown in Table 2. The HSP values of oils (safflower, Flaxseed
oil, and grape seed oil), lecithin, and PC were obtained from the literature and calculated
manually based on the percent composition of linoleic acid or phosphatidylcholine (PC)
present [28]. Among these oils, safflower seed oil might be the most suitable for tailoring
a cationic nanoemulsion due to the predicted miscibility of the drug in terms of HSP.
The oil has been reported t have a high content of linoleic acid (78%), and linoleic acid
is considered a promoter for the diffusion of the lipophilic drug across the blood–brain
barrier [29].

62



Gels 2023, 9, 603

Gels 2023, 9, x    8  of  25 
 

 

nanocarrier-based  drug  delivery  for  brain  delivery  using  the  nasal  route  of 

administration. The basal route contains the olfactory chamber directly linked to the brain 

for drug access. Thus, the purpose of GastroPlus-based prediction was to understand the 

feasibility of the oral nanocarrier for brain delivery using clinical data (obtained from the 

literature). The program provided various predicted in vivo values for a human trial. 

 

Figure 4. Parameter sensitivity analysis assessment using GastroPlus Version 9.8.3 simulation and 

prediction program.  (A)  Impact of nanonized VA product  (oral delivery) on Tmax,  (B)  impact of 

nanonized product on Cmax, and (C) impact of nanonized product on AUC values. Blue bold line 

indicates  the  impact of Nano effect. Red bold  line  indicates “Peff” permeability coefficient across 

mucosal  membrane,  and  effect  of  duodenum ASF  (absorption  scale  factor).  The  green  curve 

indicates  the  impact of  reference  solubility. Sky blue curve  indicates  the dose effect. The brown 

triangle symbol represents particle density whereas grey curve indicated shape behaviour. 

   

Figure 4. Parameter sensitivity analysis assessment using GastroPlus Version 9.8.3 simulation and
prediction program. (A) Impact of nanonized VA product (oral delivery) on Tmax, (B) impact of
nanonized product on Cmax, and (C) impact of nanonized product on AUC values. Blue bold line
indicates the impact of Nano effect. Red bold line indicates “Peff” permeability coefficient across
mucosal membrane, and effect of duodenum ASF (absorption scale factor). The green curve indicates
the impact of reference solubility. Sky blue curve indicates the dose effect. The brown triangle symbol
represents particle density whereas grey curve indicated shape behaviour.
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Table 2. Summary of HSP values for the drug and selected excipients.

Drug and Excipient δd (MPa1/2) δp (MPa1/2) δh (MPa1/2)

AV 16.1 4.3 9.0

Safflower seed oil (87%) * 14.5 2.7 5.3

Grape seed oil (70%) * 11.69 2.17 4.27

Flaxseed oil (60%) * 10.02 1.86 3.66

Tween 80 16.6 5.3 7.5

Span 80 16.7 6.1 12.4

Lecithin (PC as 20%) * 3.2 0.54 0.64

Linoleic acid * 16.7 3.1 6.1

Transcutol HP 16.0 2.8 6.2

PG φ 16.8 10.4 21.3

PC * 16 2.7 3.2

* Estimated using reference [28]; φ [30].

2.1.5. Solubility of Valproate (VA) in Various Excipients

The result of the experimental solubility of VA is portrayed in Figure 5. The solubility
of the drug was found to be the maximum in safflower seed oil (8.9 ± 0.11 mg/mL), tween
80 (5.3 ± 0.09 mg/mL), and transcutol (6.3 ± 0.08 mg/mL). This maximized solubility can
be rationalized based on the HSP values predicted in Table 2. The difference value of ∆δd is
1.6 (16.1–14.5) for the solute (VA) and the solvent (safflower oil), which is quite low for high
miscibility/solubility. Similarly, the difference values of ∆δp and ∆δh are 1.6 (4.3–2.7) and
3.7 (9–5.3), respectively, for the drug in safflower. These differences are quite convincing for
maximized drug solubility due to interactive forces (polarization, hydrogen bonding ability,
and dispersion nature). Among the co-surfactants, transcutol was selected due to the high-
est solubility and suitability for the drug. Flaxseed (50–70%), safflower (70–87%), and grape
seed oil (70%) are prime sources of linoleic acid. Linoleic acid-rich oils are gaining popular-
ity in pharmaceutical and cosmeceutical industries due to possessing various skin benefits
such as (a) anti-inflammatory, (b) acne-reductive, (c) skin-softening, and (d) moisture-
retentive qualities, as well as possessing the ability to (e) facilitate drug diffusion across the
blood–brain barrier (50–87% linoleic acid) and (f) biocompatibility [10,31]. Thus, safflower,
tween 80, and transcutol were selected as the oil, surfactant, and co-surfactant. However, a
blend of tween 80 and lecithin (1:1) was used for a stable and small-sized nanoemulsion.
The combination was supposed to stabilize the nanoemulsion with a small size particle as
compared to tween 80 as a standalone.

2.1.6. VA Loaded Cationic Nanoemulsions Prepared

To construct a cationic nanoemulsion, a constant amount of stearylamine (5 mg) was
used in each formulation. A series of nanoemulsions (CVE as cationic and AVE as an-
ionic nanoemulsion) were prepared as shown in Table 3. Formulation CVE5 exhibited
unique characteristic features among them. The globular size, PDI, zeta potential, %T, and
product strength (% w/w) were found to be 79 nm (the lowest value), 0.11 (the lowest
value), +27.1 mV (optimal), 95%, and 0.5%, respectively. The lowest value of PDI is due
to the lowest content of oil (9.8%) and the sufficient amount of Smix (21.84%) responsible
for efficient emulsification and resulted in the homogeneous nature of the globular distri-
bution. However, %DC was found to be low (~0.5%) for CVE5, which may be related to
the low content of oil (9.8%). Formulation CVE6 had an optimal content of oil (14.46%)
and Smix (17.15%) to render the optimal size (113 nm), high zeta potential (+34.7 mV) for
enhanced stability, and high %DC (67%) as compared to others. Comparing CVE1, CVE3,
and CVE4, it is clear that by increasing the relative concentration of Smix compared to oil,
the size values regularly decreased from 185 nm to 148 nm. This may be due to efficient
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emulsification by the surfactant mixture. Comparing CVE2 (189 nm) and CVE4 (148 nm),
the size of CVE4 was substantially decreased due to the high content of the surfactant
mixture, even decreasing the relative content of the co-surfactant transcutol (from 1:3 to
1:2) within the Smix. AVE6 was anionic (zeta potential = −22 mV) in nature due to the
lack of stearylamine in the formulation and served as a control group. The negative zeta
potential is due to the lipid (triglycerides of fatty acids). The study aimed to address the
impact of the charge on the nanocarrier for permeation behavior across nasal mucosa
followed by blood–brain barrier. Notably, all of the nanoemulsions showed %T (%transmit-
tance) higher than 96% suggesting the isotropic and transparent nature of the cationic and
anionic nanoemulsions.
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Figure 5. Experimental solubility of VA in various excipients at 40 ◦C. Data were expressed as
mean ± standard deviation (n = 3).

Table 3. Summary of selected cationic/anionic VA-loaded nanoemulsions and their evaluated parameters.

Code SO (%) Smix (%) Water (%) Smix Ratio ST (%) Size (nm) PDI ZP (mV) %T
Product
Strength
(% w/w)

CVE1 16.46 30.21 48.59 1:2 0.04 162 0.27 +24.7 98.5 0.4

CVE2 20.75 23.5 50.22 1:3 0.05 189 0.32 +26.8 96.8 0.5

CVE3 14.72 21.67 57.12 1:2 0.06 185 0.31 +31.6 97.2 0.6

CVE4 19.88 43.51 32.16 1:2 0.04 148 0.18 +23.9 96.9 0.4

CVE5 9.8 21.84 63.04 2:1 0.05 79 0.11 +27.1 95.3 0.5

CVE6 14.46 17.15 60.99 3:1 0.07 113 0.26 +34.7 97.8 0.7

AVE6 14.46 17.15 60.92 3:1 0.0 126 0.29 −22.8 95.6 0.7

Nanoemulsion gel (0.5% w/w) composition (VA strength) Evaluated parameters

0.5%
VE gel NE (g) Gel-blank (g) Triethanolamine (g) CVE6:gel

ratio Size (nm) PDI ZP (mV) Viscosity
(cP) pH

CVE6 gel
(0.35%) 1 0.95 0.05 g 1:1 129 0.24 +21.9 1837.3 6.8

AVE6 gel
(0.35%) 1 0.95 0.05 g 1:1 142 0.31 −26.5 1907.1 7.1

Note: SO = Safflower, Smix = Tween 80-lecithin: transcutol, ST = stearylamine (cationic charge inducer),
PDI = Polydispersity index; ZP = zeta potential, NE = Nanoemulsion, CVE = Cationic NE, VE = Valproic acid
loaded nanoemulsion, AVE6 = Anionic valproic acid loaded nanoemulsion.
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2.1.7. Freeze–Thaw Cycle and Ultracentrifugation of Nanoemulsions

The developed formulations CVE1-CVE6 and AVE6 were subjected to ensure stability
and capability to withstand thermal and physical stress during storage and transportation.
The centrifugation step confirmed the physical stability to face attrition- and friction-
triggered phase separation usually observed during transportation [32]. On the other
hand, extreme temperatures (freeze and accelerated temperatures) assured stability against
thermal-mediated instability in the nanoemulsion. The result is presented in Table 4. All of
the formulations (cationic and anionic) were physically and thermally stable at the explored
temperatures for the studied time period. A sequential series of thermal exposure from
low to high via room temperature indicated that each product resumed its original state of
the transparent isotropic nature of the nanoemulsion with good flowability, consistency,
and elegancy. There were no signs of any instability over the explored period of time. It
was imperative to corroborate the thermal and physical stability so that the developed
nanoemulsion can be stored and transported accordingly.

Table 4. Freeze–thaw and centrifugation cycles and observation.

Formulations Freezing
(−21 ◦C)

Room
Temperature Thaw (40 ◦C) Centrifugation Inference *

CVE1 � � � � Stable

CVE2 � � � � Stable

CVE3 � � � � Stable

CVE4 � � � � Stable

CVE5 � � � � Stable

CVE6 � � � � Stable

AVE6 � � � � Stable
Note: * Recovery of original form/state of nanoemulsion at room temperature after exposure to the extreme
temperature was considered stable in inference. Formulations exhibiting any signs of instability in terms of drug
precipitation, phase separation, color development, and creaming were dropped out from further studies. The
symbol “�” means passed the test.

2.2. Evaluation of Cationic and Anionic Nanoemulsions Gels

CVE6 and AVE6 were used to incorporate 1% carbopol gel (1:1 ratio) into the respective
nanoemulsion gel (0.5%) containing 0.35% w/w of VA in the gels. Thus, the final product
strength was 0.35% w/w in each gel. Both gels were evaluated for size, PDI, ZP, viscosity,
and final pH as shown in Table 3. It is apparent that the pH (from 7.4 to 6.8) and zeta
potential (from +34.7 to +21.9 mV) values of the CVE6 gel were significantly reduced from
the respective CVE6 nanoemulsion. This is obvious due to the acidic carbopol polymeric
gel with free carboxylic acid in its structural backbone. However, globular size values
were nearly similar to the CVE6 nanoemulsion, suggesting no globular aggregation in
the gel carrier. Viscosity values of the CVE6 gel and the AVE6 gel were 1837 and 1907 cP,
respectively. These findings are in good agreement with the reported 0.5% carbopol 934 gel
for topical application [33]. The viscosity indicates good consistency and shear thinning
behavior after topical application due to the oil in a water-based system. In the final
selected formulations, a fixed amount of SA was used in CVE6 and CVE6-gel to achieve
concerted positivity on the globular surface of the nanoemulsion, which may facilitate the
mucoadhesive property (as a result of electrostatic interaction) after nasal administration to
improve the residence time and absorption [34]. The final pH of CVE6, AVE6, CVE6-gel,
and AVE-6 gel products was found to be in the range of 6.8–7.4, which provided agreeable
consistency and compatibility with the nasal mucosa.
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2.2.1. Morphological Evaluation of the Optimized Cationic Nanoemulsion and
Respective Gel

CVE6, AVE6, CVE6-gel, and AVE6-gel were considered the most stable and optimized
nanoemulsion and respective gels. Generally, the size, shape, and size distribution are
expected to change after the incorporation of the nanoemulsion into a hydrogel carrier.
Therefore, it was requisite to visualize CVE6, AVE6, CVE6-gel, and AVE6-gel. Thus, the
morphology of nanoemulsions was compared after incorporation into the gel. The result is
shown in Supplementary Figure S1 including the shape, size, and globular size distribution.
The shape of the globular particle is approximately similar in the nanoemulsion and
respective gel. However, the cationic nanoemulsion is found to be well dispersed in
CVE6 compared to AVE6, which may be due to the imposed positive charge. AVE6 is
slightly dispersed without forming any aggregation. A similar observation was obtained in
the respective gel. Thus, hydrogel could not change the shape, size, or globular distribution
of the nanoemulsion. Moreover, there was no observed drug precipitation even after the
amalgamation of CVE6 or AVE6 into the carbopol hydrogel matrix. This suggested there
was a substantially firm layer of Smix coated on oil globules containing solubilized VA. It is
noteworthy that the size obtained from DLS always differs from the size estimated using
TEM. This happens due to instrumental error and differences in the working principle.
Both techniques are quite different and followed different sample processes during analysis.
Therefore, this error is defined as a “Fold error” and estimated using the following formula:

Fold error (FE) = 1/n [logsize of DLS/size of TEM] (1)

In general, the error is considered acceptable when it drops below 2 (≤2) [35]. The
values of FE for CVE6, AVE6, CVE6-gel, and AVE6 gel were found to be 1.4, 1.7, 1.3, and 1.9,
respectively. For the gel, the sample was first diluted in water to a gel consistency similar
to the respective nanoemulsion before analysis using the DLS technique. The same sample
was scanned under TEM. In DLS analysis and TEM-based scanning, the temperature was
kept constant to avoid any further errors in the results.

2.2.2. Drug Content Estimation

The percent drug contents of CVE1-CVE6, AVE6, AVE6-gel, and CVE6 gel were
estimated using the HPLC method. The sample was dissolved in an acetonitrile-methanol
mixture (30:70) to extract the drug. The sample was filtered and analyzed. The percent
of drug content in each formulation was not less than 99.3%. There was a slight loss of
drug content during the preparation and handling process. The percent strength of each
nanoemulsion and gel is presented in Table 3.

2.2.3. In Vitro Drug Release Profile

The model drug is acidic in nature (pKa = 5.2) and poorly soluble in water (1.3 mg/mL).
The drug is reported to be soluble in an alkaline medium such as sodium hydroxide and
alcohol. The optimized nanoemulsions (CVE6 and AVE6) and their respective gels showed
different release behavior at pH 6.8 and 7.4 (phosphate buffer solution). The result is
presented in Figure 6A,B. The nasal fluid and mucosa pH is approximately 6.8 and systemic
delivery across the blood–brain barrier is exposed to pH of 7.4. Therefore, it was mandatory
to investigate the impact of mucosal pH and blood pH when formulations are expected to
be transported across mucosal and BBB for brain delivery. The result showed two important
findings. These were (a) the impact of gel and (b) the impact of the release medium pH. It
is quite clear that the drug was rapidly released from cationic and anionic nanoemulsions
through the dialysis membrane as compared to the respective gel. This may be correlated
with the viscous nature of the gel and two drug-release-limiting factors. These drug release
rate-limiting factors are the gel matrix and dialysis membrane slowing down nanoglobules
diffusion from the matrix to the medium. In the case of the nanoemulsion, there is only
the dialysis membrane as a drug-release rate-limiting factor. The low viscosity further
facilitated drug diffusion from the nanoemulsion to the release medium [36]. The release
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medium chamber was maintained at a temperature of 32 ± 1 ◦C throughout the study.
The drug suspension (7 mg/mL) was rapidly released (>90%) within 30 min due to its salt
solubility (1.3 mg/mL) at pH 6.8 (Figure 6A). A similar pattern was observed at pH 7.4
(>78.4% within 30) (Figure 6B).

2.2.4. Ex Vivo Drug Permeation and Drug Deposition Using Goat Nasal Mucosal Tissue

Various reports have been published for drug delivery to the brain using the nasal
route. The nasal mucosa composition, the viscosity of the nasal formulation, mucoadhesive-
ness, residence time, and nasal pH are major critical factors responsible for controlled drug
release and permeation across the nasal epithelium [37,38]. The study was conducted for
up to 6 h to avoid any loss of natural anatomical structural integrity of mucosal tissue and
tissue viability [39]. The study was conducted using a simulated nasal fluid with pH 6.8
(to mimic nasal pH) to avoid nasal irritation and discomfort after application [40]. Gel
products are relatively viscous and more mucoadhesive compared to CVE6 and AVE6. The
cumulative amount of drug permeation is revealed in Figure 7A and the drug deposition
into the nasal mucosal tissue is presented in Figure 7B. The values of permeation flux for
CVE6, AVE6, CVE6-gel, and AVE6-gel were estimated as 67.64, 48. 01, 57.18, 31.74, and
3.15 µg/cm2/h, respectively, across the nasal mucosa of goats. The steady-state permeation
flux values of the cationic nanoemulsion and its gel exhibited 21.47- and 18.15-fold higher
flux rates as compared to the control suspension, which may be correlated with cationic and
mucoadhesive gel carriers providing an electrostatic interaction with a negatively charged
mucosal surface, extended residence time, and linoleic acid reported to facilitate drug
permeation across the blood–brain barrier [41,42]. Moreover, the gel is mucoadhesive, bio-
compatible, and slightly acidic comparable to nasal fluid pH and drug pKa value (5.2–5.6).
The flux value of CVE6 is very comparable to the published report of flux (~73 µg/cm2/h)
for a VA-loaded niosomal in situ gel across a goat mucosal membrane [43]. Slightly high
flux values may be attributed to a niosomal loading efficiency greater than the nanoemul-
sion. Fortunately, these parameters are suitable for maximized nasal permeation of the
drug in the explored carrier for brain delivery. The drug is supposed to remain unionized at
nasal pH due to the comparable pKa value for enhanced permeation and drug deposition.
In addition, considering poorly vascularized (anterior third of each nasal cavity) and highly
vascularized anatomical areas (the respiratory epithelium and two-thirds of the posterior
portion of the cavity) of the nose, inhaled particles or nanoglobules were thought to be
lodged by three prime mechanisms, namely (a) gravitational sedimentation, (b) inertial
impaction, and (c) Brownian diffusion (if spayed) [43]. To understand the mechanistic per-
spective of drug delivery from the nose to the brain, it is imperative to consider the interplay
of various critical factors such as formulation characteristics, the device, and patient-related
conditions. These factors are directly involved in the drug-laden nanodroplets for maxi-
mized permeation and drug deposition within nasal cavities and, subsequently, the drug
access to the brain. Notably, the exact localization of the drug for deposition is recognized
as key to the success or failure of the nasal product [44]. The sites of drug localization within
the nose dictate the purpose of local, systemic, and brain drug delivery. For drug delivery
to the brain, the nasal cavities (innervated with olfactory and trigeminal nerves) are the
most ideal site for drug localization and constitute a potential target for nose-to-brain deliv-
ery using a cationic nanoemulsion and gel formulation. Moreover, these cavities rapidly
absorb the lodged drug through the thin membrane to achieve faster onset of action at a
low dose, high patient compliance, reduced dose and metabolite (4-eve-VPA)-based side
effects (hepatic toxicity due to the reticuloendothelial system) without hepatic metabolism
and maximized drug access to the brain [45–47]. Greater uptake by RES indicates greater
drug metabolism and incidence of side effects. Considering formulation-related factors
such as the globular size, shape, zeta potential, viscosity, and mucoadhesiveness, the drug
solubility, polarity, hydrophilicity, and composition (surfactant and oil) are complementary
factors. Linoleic acid-rich oils are gaining popularity in pharmaceutical and cosmeceutical
industries due to possessing various skin benefits such as (a) anti-inflammatory, (b) acne-
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reductive, (c) skin-softening, and (d) moisture-retentive abilities, as well as (e) facilitating
drug diffusion across the blood–brain barrier (50–70% linoleic acid) and (f) biocompatibil-
ity [10,31]. Tween 80 possessed high hydrophilicity due to the high HLB value (14.5) and
it is anticipated to achieve maximized emulsification in the hydrophilic mucosal layer to
keep nanoglobules in an emulsified form within the mucosal matrix for prolonged systemic
circulation time (likely due to the long fatty acid chain in lipid. such as linoleic acid) in
the brain or reduced RES uptake. The surfactant is reported to have several benefits for
nasal nanoemulsion for VA delivery to the brain. These are (a) protection of the drug from
enzymatic degradation, (b) improved brain bioavailability, and (c) prolonged circulation
time in the brain due to the long fatty acid and polyunsaturated fatty acid (PUFA) of the
present oil [10].
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The result of the drug deposition is presented in Figure 7B wherein CVE6, AVE6,
CVE6-gel, AVE6-gel, and the suspension showed percent drug depositions of 67.64, 48.0,
57.18, 31.74, and 3.15%, respectively. It is quite clear that greater drug deposition means
greater permeation flux as observed in CVE-6 as compared to the respective gel and other
nanoemulsions. The gel matrix slightly delayed permeation and drug deposition, which
is good for prolonged drug release and an extended effect to control epileptic fits and
seizures. However, considering the types of patients and working or traveling schedules,
both formulations are important. For immediate relief, it is better to spray a cationic
nanoemulsion as it is aqueous and free-flowing due to its low viscosity. In the case of a
planned traveling schedule, a gel product is better and more suitable as a prophylactic dose
for prolonged relief from seizure attacks. Globular size, surface charge, and pH are other
factors controlling drug deposition and, subsequently, drug flux. The nanoemulsion size
depends on the oil content (the oil content is inversely proportional to the globular size
of the nanoemulsion) and the content and type of surfactant. Tan et al. revealed reduced
globular sizes of the nanoemulsion from 142 nm to 80 nm due to the reduced content of
oil from 6% to 1.5%, respectively [10]. In the literature, it was reported that VA transport
and nanoemulsion permeation across the blood–brain barrier is mediated via the organic
anion transporter and the LDL-mediated endocytosis due to the presence of tween 80,
respectively [48–50]. This may explain the significant difference in permeation profiles
between the drug suspension and formulations.
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Figure 7. (A) Ex vivo cumulative drug permeation across nasal mucosa of goat over a period of 6 h
in simulated nasal fluid, and (B) drug deposition of the drug in nasal mucosa after 6 h of ex vivo
permeation at 37 ± 1 ◦C (data are expressed as mean ± standard deviation, n = 3).

2.2.5. Confocal Laser Scanning Microscopy (CLSM)

To evaluate the degree of penetration and permeation across the superior nasal concha
(nasal membrane), we scanned the nasal mucosa treated with the formulations under
CLSM. For comparison, the R123 solution was used as the control. The result is provided
in Figure 8A–F. It is obvious from the result that the dye solution and suspension were not
penetrable across the hydrophilic (approximately 90–95% water and glycoprotein, provid-
ing a gel-like structure) nasal mucosal membrane as evidenced by the poor fluorescence
intensity [51]. The drug suspension containing the dye showed approximately similar
intensity due to the drug insolubility and poor permeation behavior. The fluorescence
intensity values of the dye solution, suspension, AVE6-R, AVE6-R-gel, CVE6-R, and CVE6-
R-gel were obtained as 11.6, 17.3, 65.6, 75.62, 84.7, and 96.11%, respectively. The lowest
fluorescence intensity associated with the dye solution and suspension could be attributed
to poor dye and drug permeation across the hydrophilic nasal mucosa as a result of low
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solubility. However, high-intensity values were observed for both the nanoemulsions
(AVE6-R and CVE6-R) and gels (AVE6-R-gel and CVE6-R-gel) as shown in Figure 8. A high
degree of intense fluorescence by the gel and cationic nanoemulsion can be correlated with
mucoadhesiveness and prolonged residence time on the nasal mucosa of goats. Carbopol
gel is known for its good mucoadhesive nature at compatible pH for nasal delivery (4.5–6.8)
without producing any nasal irritation [52]. Nasal pH (4.5–6.8) is very suitable for the gel
consistency maintained after nasal application. Moreover, the drug is slightly acidic to
ensure it is in a stable and non-ionized form if it comes into contact with the nasal fluid
and mucosal membrane. The drug- and formulation-related properties provide suitability
for the drug permeation, penetration, and compatibility for intranasal delivery of the drug
to control convulsion in patients. Moreover, the imposed positive charge on the cationic
nanoemulsion facilitated the nanoemulsion penetration as compared to the anionic coun-
terpart as evidenced by the remarkably high fluorescence intensity. This can be correlated
to the electrostatic interaction-mediated improved permeation and, subsequently, the drug
deposition within the submucosal region of nasal tissues. In addition, intranasal deliv-
ery of the nanocarrier-based drug offers several advantages over oral administration of
the drug.
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Figure 8. Penetration and permeation of the optimized nanoemulsions and respective gels across
nasal epithelium to submucosal and mucosal regions using CLSM (confocal laser scanning mi-
croscopy). (A) Control using R123 solution, (B) R123-probed drug suspension, (C) AVE6-R nanoemul-
sion, (D) AVE6-R-gel, (E) CVE6-R nanoemulsion, and (F) CVE6-R-gel. Mean intensity measured
using image J software 1.54f (E).

Conclusively, the dye solution and the drug suspension itself are not capable of
being penetrated. Both nanoemulsions were relatively less viscous as compared to the
gel formulation. This caused slightly lower residence time in the mucosal region. The
gel carrier provided hydration and high residence time for nanoemulsion penetration.
Finally, the cationic globular electrostatic interaction with the negatively charged nasal
membrane rendered the investigated nanoemulsion suitable for maximized permeation
and penetration [53]. Thus, it was hypothesized that the optimized viscosity, imposed
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cationic charge, reduced globular size, and mucoadhesive gel could be working in tandem
for drug delivery to the brain through nasal administration.

3. Conclusions

The conventional dosage form of VA is associated with multiple challenges. These
challenges are related to the physicochemical properties, pharmacokinetic behavior, and
pharmacodynamics properties of the drug. Low bioavailability to the brain, high hepatic
metabolism, and severe side effects upon oral and parenteral delivery gained widespread
attention from formulation scientists for alternative and high therapeutic benefits. The Gas-
troPlus program assisted us to understand the in vivo behavior of the drug in the human
body at the explored dose, dosing frequency, and dosage form. Moreover, the program
predicted various factors responsible for affecting in vivo pharmacokinetics and drug dis-
solution. HSPiP software predicted various excipients based on HSP parameters to reduce
the experimental screening duration and development stage. Cationic nanoemulsions may
be a promising option for maximized drug access to the nasal cavity due to their small
size (113 nm), high mucoadhesiveness (high positive zeta potential and mucoadhesive
carbopol gel), and linoleic acid (as high content in the oil)-mediated drug permeation
across the blood–brain barrier. Ex vivo permeation flux, the enhancement ratio, drug
deposition, and the penetration property of CVE6 and CVE6 gel confirmed electrostatic
and mucoadhesiveness worked in tandem for extended residence time in the nasal mucosa
and, subsequently, augmented the drug’s access to the brain. Conclusively, this strategy is a
promising and suitable alternative to conventional cream or oral tablets to control seizures
with high therapeutic effectiveness and patient compliance.

4. Materials and Methods
4.1. Materials

Valproic acid sodium salt (VA, 98.0% pure) and polysorbate-80 were procured from
Sigma Aldrich (Merck), Mumbai, Maharashtra, India). Soya lecithin powder (97%) was
purchased from Otto Chemie Pvt. Ltd., Mumbai, India. HPLC (high-performance liquid
chromatography)-grade solvents (methanol, ethanol, acetonitrile, and buffering reagents)
were purchased from Merck, Mumbai, India. Edible safflower, flaxseed, and grape seed oils
were purchased from a local medical shop. Buffer reagents (potassium dihydrogen phos-
phate, sodium chloride, and sodium hydroxide) were procured from S.D. Fine, Mumbai,
India. In-house-distilled water was used as an aqueous solvent. For HPLC mobile phase
preparation, Milli-Q water was used (Millipore, Burlington, MA, USA).

4.2. Methods
4.2.1. Prediction and Simulation Study Using GastroPlus for Oral Tablet

The program was used to predict pharmacokinetic parameters (PK) of orally delivered
VA tablets for adult patients with a dose of 250 mg. In the literature and on the DEPAKENE
tablet label, varied bioavailability, absorption rate, and PK parameters have been described
depending on the patient’s body weight. To avoid preclinical and clinical studies due
to expensive and tedious investigations, the program assisted in predicting various PK
parameters in a targeted patient for the desired dose, dosage form, dosage volume, and
frequency of dosing frequency. For this, the program used three basic tabs such as (a) the
compound tab, (b) the formulation tabs, and (c) the pharmacokinetic tabs. We used various
literature data, experimental values, and by-default program-suggested values to run
the simulation and prediction (as shown in Table 1). Moreover, parameter sensitivity
assessment (PSA) was used to determine the impact of various factors (physicochemical
properties of the drug and physiological conditions such as intestinal lumen and related
factors) affecting the PK parameters of the drug. Physicochemical properties of the drug
include the reference solubility, particle size, volume, density, logP, pKa, and molecular
weight. Physiological factors include gastrointestinal pH, stomach volume, residence time,
and radius. Formulation factors are the nanosize, shape, and solubility. The regional
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compartmental model predicts regional absorption of the drug through nine different GIT
(gastrointestinal tract) sections (stomach, duodenum, ileum-1,2, jejunum-1,2, ascending
colon, colon, and caecum). Total absorption indicates the sum of absorption from the GIT
of patients. Prediction and simulation were carried out considering fast subjects to avoid
a food interaction in the prediction model. The simulation time was 24 h for each run of
prediction and simulation [25,26].

Hansen Solubility Parameters for VA and Excipients

Hansen solubility parameters have been used for various solvents, co-solvents, drugs,
and human skin (normal and abnormal). The parameters were estimated using the HSPiP
program. The fundamentals of the software are based on the physicochemical interactions
(in terms of cohesive energy) of a solute for a particular solvent. These parameters are
dispersion energy (δd), polarity (δp), and hydrogen bonding energy (δh) [54,55]. Therefore,
a solute interacts with a solvent through these cohesive forces working together. Thus,
the difference in any parameter between a solute and solvent close to zero is considered
miscible or soluble. Thus, the program predicted relevant excipients based on these HSP
values of each excipient close to the HSP values of the model drug. The program estimated
the values shown in Table 1. The HSP values of oils, lecithin, and PC were obtained from
the literature, and these were calculated manually based on the percent composition of
linoleic acid or phosphatidylcholine (PC) present [28].

Solubility of Valproate Sodium in Various Excipients

The solubility of VA was determined in various lipids, surfactants, and co-surfactants
to identify the most suitable and biocompatible excipients for nasal nanoemulsion. Steary-
lamine was added to the organic phase to impose the cationic charge on a globular surface
for adhesive purposes [13]. Flaxseed (50–70%), safflower (70–78%), and grape seed oil
(70%) are prime sources of linoleic acid. Tween 80, Span-80, transcutol, propylene glycol,
and lecithin were used as surfactants and co-surfactants. Briefly, a fixed amount of each
excipient was transferred to a clean glass vial. A weighed amount of the drug was added
to each vial containing the individual excipients. The glass vials were closed and sealed
for the solubility study. The vial was placed inside a water shaker bath (Remi Shaker,
Mumbai, India) set at a fixed temperature (40 ◦C) and shaking rate (75 rpm). The study
was continued for 72 h to achieve equilibrium. Then, the mixture was centrifuged to obtain
the supernatant liquid. The amount of the drug dissolved was assayed using a UV Vis
spectrophotometer (U 1800, Japan) at 210 nm [10]. The study was repeated to obtain a
mean and standard deviation (n = 3).

Pseudo Ternary Phase Diagram, Cationic Nanoemulsions, and Nanoemulsion Gel

To prepare a cationic nanoemulsion, a constant amount of stearylamine (0.1%) was
used in the formulation. Based on HSP values and the experimental solubility of AV,
excipients were selected. The excipient possessing HSP values close to the HSP values of
AV and excipients with the highest solubility of AV were selected for cationic nanoemulsion.
Thus, safflower seed oil, tween 80 + lecithin (1:1), and PG were selected as the oil, surfactant,
and co-surfactant, respectively. To impose a cationic charge, a constant amount (0.1%) of
SA (stearylamine as the cationic lipid) was incorporated into the organic phase of each
formulation [34]. Various pseudoternary phase diagrams were constructed to identify the
correct ratio of the surfactant to the co-surfactant (Smix). A slow and spontaneous titration
method was adopted to prepare the nanoemulsion by varying the lipid-to-Smix ratio [25]. A
transparent and isotropic cationic nanoemulsion was selected for further characterization.
To prepare a nanoemulsion gel, the cationic nanoemulsion was incorporated into a carbopol
gel (1%). The final strength of the gel was 0.5% w/w. Each nanoemulsion and respective
gel contained a constant amount of VA. For this, a weighed amount of carbopol 934 was
dispersed into warm distilled water to obtain the final strength of 1% w/w. The dispersed
gel was vigorously stirred using a mixer at high speed (10,000 rpm). The obtained gel
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was treated with a few drops (3–5 drops) of triethanolamine (base) as a cross-linking
agent. The acidic solution of the carbopol dispersion was triggered for cross-linking under
triethanolamine and become a transparent viscous gel. Equal weights of gel and lyophilized
formulation were mixed together using a homogenizer to obtain a gel of 0.5% gel strength.
The final concentration of AV in the gel product was approximately 5% w/w. The final pH
of each formulation was adjusted to 6.8 to obtain good consistency and compatibility with
nasal mucosa.

Thermodynamic Stability of Cationic Nanoemulsion: Freeze–Thaw Cycle and
Ultracentrifugation

Each developed nanoemulsion was subjected to extreme physical (ultracentrifugation)
and thermal stress (extreme low and extreme high temperatures). For this, each cationic
nanoemulsion was stored in a clear glass vial, labelled, and sealed. Each formulation
was separately stored in the stability chamber at the set temperature. A cycle of exposure
to as low as freeze (−21 ◦C) and as high as thaw (40 ◦C) temperatures was repeated
thrice followed by room temperature conditions. Each sample was withdrawn from
both temperatures and kept at room temperature (25 ◦C) to resume its original stable
form (isotropic liquid). In the second phase, each stable formulation was subjected to an
ultracentrifugation step (22,000 rpm for 5 min). Any sign of physical instability (drug
precipitation, color, creaming, and phase separation) was considered an unstable product
and dropped out from further study. This freeze–thaw cycle was mandatory to identify the
most stable product.

4.2.2. Evaluation of Cationic Nanoemulsions and Gels

Nanoemulsions were characterized by globular size, size distribution, and zeta poten-
tial. These parameters were determined using a Zetasizer (Malvern Instrument Limited,
Malvern, Worcestershire, UK). Formulations were diluted with distilled water before scan-
ning for size analysis. In the case of zeta potential, the formulations were analyzed without
dilution to obtain tangible zeta potential values. This value was expected to be positive for
the cationic nanoemulsion, whereas the nanoemulsion without stearylamine was antici-
pated to be negative. The analysis was carried out at room temperature. The viscosity of
each formulation was determined using a viscometer (Bohlin visco88, Malvern Instrument
Ltd., Worcestershire, UK). The sample was processed at room temperature (25 ◦C). The
study was replicated for the mean and standard deviation (n = 3). The values of pH were
estimated using a calibrated digital pH meter.

Morphological Evaluation of the Optimized Cationic Nanoemulsion and Respective Gel

The optimized cationic nanoemulsion and respective gel were observed under cryo-
genic transmission electron microscopy (cryo-TEM) [56,57]. The tool was used to visualize
the globular size, size distribution, and shape. For this, the sample was placed on a glass
coverslip previously coated with poly-L-lysin (a fixative) [56]. Then, the sample was pro-
cessed for cryogenic TEM by placing the sample on a copper screen with lacey carbon
film and a blotting time of 5 s. Scanning was conducted using Thermofisher Krios G3
(Thermo Fisher Scientific India, Private Limited, Mumbai, India) equipment (low energy
consumption method) coupled with a Bioquantum K3 detector [57,58]. The images were
processed at an operating voltage power of 80 Kv (a Gatan cryoholder system) (Gatan, Inc.
Corporate Headquarters 5794 W. Las Positas Blvd. Pleasanton, CA 94588, United States of
America). Finally, the dried sample was scanned at various magnifications and resolutions.
A fixed location was located and scanned for the sample. The process was conducted at
room temperature. The wet sample was avoided in the scan due to poor scanning, and the
resolution of images was observed by an interfered electronic beam.
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Drug Content Estimation

The drug content was estimated from the optimized anionic nanoemulsion, cationic
nanoemulsion, and respective gel formulations. In brief, a weighed amount of the formula-
tion was dissolved in a methanol-chloroform mixture (1:10). The mixture was stirred for
10 min to extract the drug. The mixture was centrifuged for 15 min at 12,000 rpm to separate
the low-density nanoemulsion from the insoluble drug and water. The supernatant and
settled pellet were separately estimated to find the total drug and the entrapped drug.
The drug was assayed using the validated HPLC method at 210 nm. The experiment was
repeated to obtain the mean and standard deviation. In the case of gel formulation, a
weighed amount of gel was dispersed into a water–ethanol mixture (1:2) to obtain the
extracted drug. Then, the mixture was stirred for 15 min followed by centrifugation. The
supernatant was used to estimate the drug content.

4.2.3. In Vitro Drug Release Profile

The in vitro drug release profile for each nanoemulsion and the respective gel was
determined using a dialysis membrane with a molecular weight cut-off of 12–14K Dalton
(HiMedia, Mumbai, India). For this, a fixed dimension of the dialysis membrane was cut
from ribbon and soaked in saline for 12 h before use. The activated dialysis bag was filled
with the test sample and both ends were clipped with a plastic clipper. This maintained
a constant effective surface area for drug release. The release medium (500 mL) was
phosphate buffer at pH 6.8 and pH 7.4. A glass beaker containing the release medium
was used for the drug release. The test sample bag was suspended in the release medium
already placed on a heating magnetic stirrer. A Teflon-coated magnetic bead was used to
maintain the temperature and uniform drug distribution within the bulk volume released
from the bag. The sample was collated at different time points (0.5, 1, 2, 3, and 6 h). The
withdrawn volume was replaced with the fresh-release medium. The withdrawn sample
was filtered (0.22 µ as pore size) and used for the drug content released after each time
point. The drug was analyzed using an HPLC method. The release medium chamber was
maintained at a temperature of 32 ± 1 ◦C throughout the study. The effective surface area
for passive diffusion of the drug was 1.34 cm2 functional at 32 ± 1 ◦C [36,59].

4.2.4. Ex Vivo Drug Permeation and Drug Deposition Using a Goat Nasal Mucosa

Drug permeation and deposition studies were performed using an excised goat nasal
mucosa obtained from a local slaughterhouse. The excised tissue was used 20 min after
sacrifice to avoid tissue damage and death. The intact nose was obtained, and the skin
was removed. Then, the nose was stored in a cold phosphate buffer solution (pH 7.4) [37].
The nasal mucosa was removed using surgical scissors and forceps without making any
surgical cut in the desired area of the mucosal membrane. The obtained mucosal tissue was
immersed in a freshly prepared Ringer’s solution with proper aeration [38]. The excised
tissue has a dimension of 0.2 mm × 10 mm with an effective surface area of diffusion of
1.78 cm2. The tissue was mounted between the receptor and the donor chambers. The
receptor chamber was filled with SNF (simulated nasal fluid) at pH 6.8 [40]. The release
medium was maintained at 37 ± 1 ◦C by circulating hot water through a jacketed system
around the chamber. A rice bead was placed inside the receptor chamber rotating at
300 rpm on a magnetic stirrer. A constant amount of the sample was placed on the mucosal
adhesive side for drug permeation. Four groups were categorized as (a) CVE6-1, AVE6,
CVE6-gel, and AVE6-gel. For comparison, the drug solution was used as a control in gel
formulation. In each case, an equivalent amount of the drug was loaded on the effective
permeation area. The sampling (1 mL using a syringe) was conducted at different time
points such as 0.5, 1, 1.5, 2, 2.5, and 3 h. The withdrawn sample volume was replaced with
an equal volume of the fresh medium. The sample was filtered using a membrane filter
(0.2 µm) and the content of the drug was estimated using the HPLC method. The study
was replicated to obtain the mean and standard values. The result was expressed as the
percent of the drug permeated for the brain delivery or percent diffusion for the brain
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access or availability of the drug to the brain (ex vivo). The permeation parameters (steady
state flux, targeted flux, permeability coefficient, and enhancement ratio) were estimated
using the following equation:

Jss = (dM/dt) × (1/A) = PC (2)

where A, P, and C represent the effective surface area for diffusion, the permeability
diffusion coefficient, and the initial loaded content of the drug, respectively. Jss indicates
the steady state flux of the solution as per Fick diffusion in Equation (2). The value of dM
indicates the amount of the drug diffused across the mucosal membrane within a given
time point (dt). The study was conducted for up to 360 min to avoid the loss of the natural
integrity of tissue and tissue viability [39].

A drug deposition study was conducted after the completion of the ex vivo permeation
study. The mounted tissue was removed from the diffusion cell. Each tissue was separately
sliced into small pieces. The sliced pieces were transferred to a vial containing methanol
and chloroform (1:2). The mixture was stirred for 12 h under closed conditions using a
magnetic bead. The drug was extracted from the tissue and subjected to centrifugation. The
fatty debris and tissues settled at the bottom as pellets and the supernatant (clear solution)
was removed for the drug analysis. The supernatant was filtered using a membrane filter
and analyzed using the HPLC method [10,60].

4.2.5. Confocal Laser Scanning Microscopy (CLSM)

To visualize the degree of drug penetration, the same formulations and control were
reformulated using rhodamine 123 as a probe in the formulation. The composition and
experimental conditions were kept constant as in the ex vivo permeation and drug depo-
sition study section. The dye was present as 0.01% w/v in each formulation. The Franz
diffusion cell, tissue mounting, release SNF, volume, pH, and loaded dose were constant
for 3 h. After 3 h of permeation study, the tissue was removed for each group (five groups),
and the adhered material was washed with running water. The tissue was sliced as per
CLSM requirements. The treated and untreated skin was sliced into small pieces using a
microtome. The tissue specimen was placed on the glass coverslip and air-dried for 12 h.
Each tissue was visualized under CLSM and evaluated for globular penetration across
the mucosal membrane (Fluorescence Correlation Microscope-Olympus FluoView FV1000,
Olympus, Melville, NY, USA) with an argon laser beam with excitation at 488 nm and
emission at 590 nm [15,61].
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Cellular Activity of Cells Cultured on Porcine Acellular Dermal
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Abstract: This study aims to test a photodynamic protocol based on a gel containing aminole-
vulinic acid followed by red-LED (ALAD-PDT) irradiation on human gingival fibroblasts (hGFs)
and osteoblasts (hOBs) cultured on a porcine acellular dermal matrix membrane (PADMM). In the
previous literature, ALAD-PDT showed solid antibacterial activity and proliferative induction on
HGFs cultured on plates and HOBs cultured on a cortical lamina. PADMMs are used in dentistry
and periodontology to treat gingival recessions and to increase the tissue thickness in the case of a
thin biotype without the risks or postoperative discomfort associated with connective tissue grafts.
However, one of the possible complications in this type of surgery is represented by bacterial in-
vasion and membrane exposition during the healing period. We hypothesized that the addition of
ALAD-PDT to PADMMs could enhance more rapid healing and decrease the risks connected with
bacterial invasion. In periodontal surgery, PADMMs are inserted after a full-thickness flap elevation
between the bone and the flap. Consequently, all procedures were performed in parallel on hOBs
and hGFs obtained by dental patients. The group control (CTRL) was represented by the unexposed
cells cultured on the membranes, group LED (PDT) were the cells subjected to 7 min of red LED
irradiation, and ALAD-PDT were the cells subjected to 45 min of ALAD incubation and then to 7 min
of red LED irradiation. After treatments, all groups were analyzed for MTT assay and subjected to
histological examination at 3 and 7 days and to the SEM observations at 3, 7, and 14 days. Different
bone mineralization assays were performed to quantify the effects of ALAD-PDT on hOBs: ALP
activity, ALP gene expression, osteocalcin, and alizarin red. The effects of ALAD-PDT on hGFs
were evaluated by quantifying collagen 1, fibronectin, and MMP-8. Results showed that ALAD-PDT
promoted cellular induction, forming a dense cellular network on hOBs and hGFs, and the assays
performed showed statistically significantly higher values for ALAD-PDT with respect to LED alone
and CTRLs. In conclusion, ALAD-PDT could represent a promising aid for enhancing the healing of
gingival tissues after PADMM applications.

Keywords: photodynamic therapy; aminolevulinic acid; red light; dermal matrix membrane; gingival
fibroblasts; oral osteoblasts
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1. Introduction

Aminolevulinic acid (5-ALA) is a precursor of protoporphyrin IX, a photosensitive
substance that, after activation with red light at specific wavelengths, enhances the produc-
tion of free radicals and singlet oxygen molecules [1]. It is currently applied in dermatology
for medical and cosmetic purposes, including treating precancerous lesions [2]. The 5-ALA-
mediated photodynamic therapy (PDT) is a non-invasive emerging method in dentistry
as a diagnostic and therapeutic tool [3]. It has been demonstrated that ROS production is
the critical factor in the effectiveness of PDT, and it depends on light dose and photosen-
sitizer concentrations [4,5]. However, a recent study has demonstrated better tolerability
of 5-ALA at a concentration of less than 20%, representing the indicated concentration
PDT guidelines for managing oral leucoplakia [6,7]. In addition, the hydrophilic nature of
5-ALA limits its ability to cross the cellular membranes and penetrate the skin [8]. However,
a novel gel for oral cavity applications has been recently formulated with a mixture of
poloxamers to convey its active ingredient better. This thermosensitive gel containing
5% of 5-delta aminolevulinic acid (ALAD), associated with red-LED irradiation (ALAD-
PDT), has shown antimicrobial activity against Gram-negative and positive bacteria against
C. albicans and oral biofilm [9–11]. Clinical case reports have recently been published that
show the application of ALAD-PDT during root canal disinfection in endodontic treatments
and in periodontology [12,13]. In particular, for the treatment of periodontal pockets and
peri-implantitis sites, the addition of this protocol respects the traditional gold standard
scaling root planning (SRP), and was associated with a reduction in the total bacterial
load. Despite the antibacterial and anticancer activity of 5-ALA-PDT, a pro-regenerative
nature of 5-ALA-mediated PDT is recently emerging in the literature. Several studies
reported the capacity of photodynamic therapy to accelerate skin wound healing by pro-
moting epithelial stem cell functions [14–17]. However, little is known about the potential
healing effects of 5-ALA-PDT in periodontal-related tissues. Our previous study shows
a pro-proliferative activity of the gel ALAD in osteoblasts (hOBs) and fibroblasts (hGFs)
on cell culture on plates and a cortical membrane for bone regeneration. Results showed
increased hOBs proliferation, ALP activity, and bone mineralization proportional to ALAD
concentration [18,19]. Several efforts have been made to find a biomaterial to be used in
tissue and bone regeneration [20,21]. During periodontal and bone regeneration proce-
dures, the membrane and the biomaterial interact with the host’s cells, and their chemical
and surface features play a fundamental role in accelerating the healing of the tissues and
long-term success. It has been shown that the topographical characteristics of Porcine
acellular dermal matrix membranes (PADMs) can influence cellular proliferation and be-
havior [22]. PADMs are composed of a three-dimensional acellular network of collagen
types I and III and elastin of heterologous origin. PADMs permit the treatment of gingival
recessions or to increase the tissue thickness in the case of a thin biotype without the risks or
postoperative discomfort associated with connective tissue grafts (CTGs). Therefore, based
on our previous in vitro studies, we hypothesized that applying ALAD-PDT protocol to
PADMMs could enhance the healing process. At the same time, the risks connected with
bacterial invasion could be decreased. In periodontal surgery, PADMMs are inserted after
a full-thickness flap elevation between the bone and the flap. Consequently, this study
evaluated the response of hOBs and hGFs, extracted from dental patients, cultured on the
membranes, and subjected to ALAD-PDT. The effects of ALAD-PDT were investigated in
terms of adhesion, growth, mineralization activity, and gene expression.

2. Results and Discussion
2.1. Cell Attachment on the PADMM after ALAD-PDT

Figure 1 shows the membrane without cells. Its surface appeared smoothed. Cell
adhesion was evaluated by SEM at 3, 7, and 14 days (Figures 2 and 3). At 3 days, HGFs
colonized the surface of the matrix, especially after the ALAD-PDT protocol, as observed
in the different magnifications (Figure 2). At 1000×, the presence of elongated and spindle-
shaped with cytoplasmic extensions and lamellipodia were recognizable. Confluence was
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reached after 7 days; at 14 days, the cells covered the matrix entirely. At 14 days, the
morphology of cells was not notable because of the high density of cells.
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Figure 1. Scanning electron microscopy (SEM) images of the membrane (PADMM) without cells.
Magnification 390×.

Regarding hOBs, ALAD-PDT promoted the attachment of cells to the membrane at
3 days, as observed at each magnification (Figure 3). After 7 days of culture, hOBs colonized
the matrix surface. At 3000×, cellular extensions among osteoblasts were observed at 3 and
7 days. In contrast, at 14 days, it was impossible to recognize the cells’ morphology because
of their full confluence reached. The increased adhesion of cells to the PADMM membrane
after ALAD-PDT may be due to the formulation of ALAD gel based on the mixture of
poloxamers. Indeed, the topical application of 5-ALA is limited by its hydrophilic nature,
preventing it from entering easily into the cells. The poloxamers-rich compound permits
the thermosensitive gel ALAD to improve this limiting characteristic and makes it ideal
for the application of oral mucosa. In addition, the formulation is temperature-dependent,
allowing the transient state of ALAD from liquid to gel at a temperature above 28 ◦C; thus,
ALAD acts like a glue that increases the attachment of cells, and it also counteracts the
continuous secretion of saliva that could obstacle the adhesion of cells.

2.2. Gingival Fibroblasts and Oral Osteoblast Proliferation

The proliferation rate of gingival fibroblasts and oral osteoblasts cultured on the
PADMMs was evaluated by MTT at 3, 7, and 14 days (Figures 2 and 3). As observed
in Figure 2D, the growth of hGFs is time dependent. LED irradiation in the PDT group
exerted a pro-proliferative activity compared to the control group after 7 and 14 days
of culture. This is in line with a recent study that demonstrated that 655 and 808 nm
diode lasers speed up the proliferation of dermal fibroblasts [23]. Recently, Rossi et al.
documented an opposite effect, both inhibitory and stimulatory, in different doses, by
treating dermal fibroblasts with a blue LED light at 420 nm [24]. In the present study,
although LED was able to enhance cell proliferation, the maximum stimulatory effect
was given by ALAD-PDT at each time. However, the results were statistically significant
only at 7 and 14 days compared to CTRL and PDT groups. Jang et al. reported that
PDT-induced intracellular ROS in dermal fibroblasts leads to increased proliferation via
ERK pathway activation [25]. In hOBs, ALAD-PDT also increased cell growth, but not
in a time-dependent manner (Figure 3D), and it was statistically significant only after
14 days. In the literature, a contradictory effect of 5-ALA-PDT on osteoblasts was reported.
Kushibiki et al. demonstrated that 5-ALA, combined with low-dose light, can promote
osteoblast differentiation via the activation of AP-1 [26]. On the contrary, Egli et al. showed
an inhibitory effect of 5-ALA-PDT on fibroblasts and osteoblasts viability [27].
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Figure 1. Scanning electron microscopy (SEM) images of the membrane (PADMM) without cells. 
Magnification 390×. 

 
Figure 2. Scanning electron microscopy (SEM) images of hGFs cultured on the PADMM and exposed
to ALAD-PDT at 3, 7, and 14 days. (A) Magnification 390×; (B) Magnification 1000×; (C) Magnifica-
tion 3000×; (D) Cell proliferation of hGFs cultured on the PADMM at 3, 7, and 14 days. (** p < 0.001;
*** p < 0.0001).

2.3. Cell Interaction with the PADMM after ALAD-PDT

The interaction of specialized cells to a membrane is an essential characteristic of its
physiological functions, and in this study, it was evaluated by histology at 400× at 3 and
7 days (Figure 4 and 5). At 3 days, after ALAD-PDT protocol, hGFs grew on the edges
of the membrane by establishing connections among cells (Figure 4C). After 7 days, PDT
also promoted the interaction of hGFs (Figure 4E), and after ALAD-PDT cells colonized
the inside of the membrane (Figure 4F). At 3 days, hOBs appeared roundish in shape, and
after 7 days their shape became elongated (Figure 5). A recent publication reported an
inhibitory effect of toluidine blue-mediated PDT, used at a concentration of 50% on the
migratory activity of gingival fibroblasts [28]. In contrast, the thermosensitive gel used
in the present study and which contains 5% of 5-ALA as the pro-drug able to induce the
accumulation of PpIX inside the cells, seemed to enhance the interaction of the cells and
favor their migratory activity.
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Figure 3. Scanning electron microscopy (SEM) images of hOBs cultured on the PADMM and ex-
posed to ALAD-PDT at 3, 7, and 14 days. (A) (Magnification = 390×; (B) Magnification, 1000×;
(C) Magnification and 3000×; (D). Cell proliferation of hOBs cultured on the PADMM at 3, 7, and
14 days. (*** p < 0.0001).

2.4. Mineralization

To determine the presence of calcific deposition in osteoblast cultures, calcium deposits
were evaluated qualitatively by Alizarin Red staining (ARS) and quantitatively by CPC after
14 days of culture (Figure 7). Brighter red mineralized nodules were observed after ALAD-
PDT protocol compared to CTRL (Figure 7A), indicating more mineralization activity in
osteoblasts treated with ALAD-PDT. The PDT group also showed a similar intensity of
red to the ALAD-PDT group. Quantization with CPC confirmed the qualitative results.
Therefore, the percentage of calcium deposition was statistically higher in PDT and ALAD-
PDT groups than in the CTRL group (p < 0.0001). However, there was no difference
in calcium deposits between PDT and ALAD-PDT (Figure 7B). Yang et al. conversely
observed more mineralized nodule formation in laser-treated cells [29]. In addition, in our
previous study, an increase in the mineralization and calcium deposits was observed when
osteoblasts were cultured on a cortical, rigid, and collagenated bone lamina and subjected
to ALAD-PDT [30].

84



Gels 2023, 9, 584

Gels 2023, 9, 584 5 of 14 
 

 

2.2. Gingival Fibroblasts and Oral Osteoblast Proliferation 
The proliferation rate of gingival fibroblasts and oral osteoblasts cultured on the 

PADMMs was evaluated by MTT at 3, 7, and 14 days (Figures 2 and 3). As observed in 
Figure 2D, the growth of hGFs is time dependent. LED irradiation in the PDT group ex-
erted a pro-proliferative activity compared to the control group after 7 and 14 days of 
culture. This is in line with a recent study that demonstrated that 655 and 808 nm diode 
lasers speed up the proliferation of dermal fibroblasts [23]. Recently, Rossi et al. docu-
mented an opposite effect, both inhibitory and stimulatory, in different doses, by treating 
dermal fibroblasts with a blue LED light at 420 nm [24]. In the present study, although 
LED was able to enhance cell proliferation, the maximum stimulatory effect was given by 
ALAD-PDT at each time. However, the results were statistically significant only at 7 and 
14 days compared to CTRL and PDT groups. Jang et al. reported that PDT-induced intra-
cellular ROS in dermal fibroblasts leads to increased proliferation via ERK pathway acti-
vation [25]. In hOBs, ALAD-PDT also increased cell growth, but not in a time-dependent 
manner (Figure 3D), and it was statistically significant only after 14 days. In the literature, 
a contradictory effect of 5-ALA-PDT on osteoblasts was reported. Kushibiki et al. demon-
strated that 5-ALA, combined with low-dose light, can promote osteoblast differentiation 
via the activation of AP-1 [26]. On the contrary, Egli et al. showed an inhibitory effect of 
5-ALA-PDT on fibroblasts and osteoblasts viability [27]. 

2.3. Cell Interaction with the PADMM after ALAD-PDT 
The interaction of specialized cells to a membrane is an essential characteristic of its 

physiological functions, and in this study, it was evaluated by histology at 400× at 3 and 7 
days (Figure 4 and 5). At 3 days, after ALAD-PDT protocol, hGFs grew on the edges of the 
membrane by establishing connections among cells (Figure 4C). After 7 days, PDT also 
promoted the interaction of hGFs (Figure 4E), and after ALAD-PDT cells colonized the 
inside of the membrane (Figure 4F). At 3 days, hOBs appeared roundish in shape, and 
after 7 days their shape became elongated (Figure 5). A recent publication reported an 
inhibitory effect of toluidine blue-mediated PDT, used at a concentration of 50% on the 
migratory activity of gingival fibroblasts [28]. In contrast, the thermosensitive gel used in 
the present study and which contains 5% of 5-ALA as the pro-drug able to induce the 
accumulation of PpIX inside the cells, seemed to enhance the interaction of the cells and 
favor their migratory activity. 

 
Figure 4. hGFs interaction with PADMM. hGFs grew on the edges of the membrane at 3 days (A–
C). At 7 days, they colonize the inside of the membrane (D–F). Magnification: 400×. The arrows 
pointed to the cells. 

Figure 4. hGFs interaction with PADMM. hGFs grew on the edges of the membrane at 3 days (A–C).
At 7 days, they colonize the inside of the membrane (D–F). Magnification: 400×. The arrows pointed
to the cells.

Gels 2023, 9, 584 6 of 14 
 

 

 
Figure 5. Interaction between hOBs and PADMM. At 3 days, osteoblast showed a round shape (A–
C); at 7 days, they appeared more elongated (D–F). Magnification: 400×. The arrows pointed to the 
cells. 

2.4. ALP Activity 
The levels of Alkaline Phosphatase (ALP), as the main osteoblastic marker, were eval-

uated at 7 days in hOBs (Figure 6). ALP relative activity increased after Led irradiation in 
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pared to both CTRL group (p < 0.0001) and to PDT group (p < 0.0001). Yang et al. reported 
a similar result by treating gingival fibroblasts with 5 µM methylene blue PDT. However, 
they obtained a higher ALP activity in the laser treatment group [29]. Whereas in our 
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Figure 5. Interaction between hOBs and PADMM. At 3 days, osteoblast showed a round shape (A–C);
at 7 days, they appeared more elongated (D–F). Magnification: 400×. The arrows pointed to the cells.

2.5. ALP Activity

The levels of Alkaline Phosphatase (ALP), as the main osteoblastic marker, were
evaluated at 7 days in hOBs (Figure 6). ALP relative activity increased after Led irradiation
in the PDT group, although the ALAD-PDT induced a significative increment of ALP
compared to both CTRL group (p < 0.0001) and to PDT group (p < 0.0001). Yang et al.
reported a similar result by treating gingival fibroblasts with 5 µM methylene blue PDT.
However, they obtained a higher ALP activity in the laser treatment group [29]. Whereas
in our study, only the synergy between ALAD gel and light-LED significantly promoted
the activity of ALP in osteoblasts.
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and Collagen I are well known to have a tight relationship both related to connective tissue 
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Figure 7. Mineralization was evaluated at 14 days in hOBs seeded on the membrane and exposed
to ALAD-PDT. The qualitative analysis was performed by ARS (A), while the quantization was
carried out by CPC (B). ALAD-PDT promoted the highest calcium deposits compared to CTRL.
(*** p < 0.0001).

2.6. Gene Expression of Gingival Fibroblasts and Oral Osteoblast Cultured on the PADMM and
Exposed to Photodynamic Therapy

The gene expression of gingival fibroblasts and oral osteoblasts cultured on the matrix
and exposed to ALAD-PDT protocol was evaluated at 3, 7, and 14 days. Fibronectin 1 (FN1),
Collagen 1 (COL-1), and metalloproteinase 8 (MMP8) expression were evaluated for hGFs
(Figure 8), while ALP and osteocalcin (OCN) for hOBs (Figure 9). Fibronectin and Collagen I
are well known to have a tight relationship both related to connective tissue regulation. The
comparative analysis showed that the expression of FN1 and COL-1 was statistically higher
in PDT and ALAD-PDT groups than in the CTRL group at every time point (Figure 8A,B).
Although, the highest values for both FN1 and COL-1 have been observed at 14 days. Any
statistical difference was observed between PDT and ALAD-PDT. MMP8 is a member of
the metalloproteinase family, specifically involved in both the degradation of matrix and
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the wound-healing-processes [31]. MMP8 was not modulated at 3 and 7 days with respect
to CTRL group (Figure 8C). ALAD-PDT and PDT slightly increased MMP8 expression only
at 14 days (p < 0.05). Karrer et al. found that 5-ALA-mediated PDT induced in fibroblast
the expression of metalloproteinases MMP1, MMP2, and MMP3 but not Collagen I mRNA
expression [32]. In contrast, Yang et al. reported an enhancement of fibroblast-related
genes FN1 and COL1 after applying 5 µM methylene blue-PDT on cells. Although, in
the same study, an inhibitory effect on gene expression of fibroblasts treated with higher
concentrations than 5 µM was reported [29]. Our results concerning FN1, COL1, and
MMP8 expression could indicate a stimulatory effect of ALAD-PDT for the renewal of the
extracellular matrix (ECM).
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The expression of bone tissue-specific genes ALP and OCN, which are tightly regu-
lated at different stages of osteoblasts, was evaluated at 3, 7, and 14 days (Figure 9). Alt-
hough ALP gene expression was statistically augmented after ALAD-PDT protocol com-
pared to CTRL at every time points, the expression was not modulated during time with 
the highest value at 7 days (Figure 9A). Interestingly, PDT group showed the maximum 
expression at 14 days. Osteocalcin expression is usually correlated to the ALP expression, 
and in this study, OCN showed a similar trend to ALP. OCN-relative mRNA was up-
regulated in the ALAD-PDT group compared to CTRL and PDT, with the highest value at 
an early stage of osteoblasts. Although, at 14 days, OCN expression showed similar levels 
in PDT and ALAD-PDT groups (Figure 9B). 

Together, these findings indicated that the ALAD-PDT protocol may be applied dur-
ing guided tissue regeneration (GTR) and guided bone regeneration (GBR) to improve the 
performance of PADMM in the periodontal tissue’s augmentation. The thermosensitive 
ALAD gel, formulated to improve the topical application of 5-ALA on the oral mucosa, 
where the saliva represents an additional limit to the retention of 5-ALA, enhanced the 
adhesion and the interaction of periodontal-related cells cultured on the membrane. 

The results of this in vitro study could represent the bases for an in vivo study in 
which ALAD-PDT could be applied as an adjuvant during GBR and GTR. 

  

Figure 8. Real-time PCR of fibroblasts (HGFs) cultured on the matrix and treated with ALAD-PDT for
Fibronectin 1 (FN1) (A), Collagen 1 (COL-1) (B), Metalloprotease 8 (MMP8) (C) at 3, 7, and 14 days
post-seeding. ALAD-PDT induced increased expression of FN1, COL-1, and MMP8 at 14 days
(* p < 0.05; ** p < 0.001; *** p < 0.0001).
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Figure 9. Real-time PCR of osteoblasts (hOBs) seeded on the PADMM and treated with ALAD-PDT
for genes encoding Alkaline Phosphatase (ALP) (A) and Osteocalcin (OCN) (B) at 3, 7, and 14 days
post-seeding. ALP and OCN were more expressed in the ALAD-PDT group than in CTRL. (* p < 0.05;
** p < 0.001; *** p < 0.0001).

The expression of bone tissue-specific genes ALP and OCN, which are tightly regulated
at different stages of osteoblasts, was evaluated at 3, 7, and 14 days (Figure 9). Although
ALP gene expression was statistically augmented after ALAD-PDT protocol compared to
CTRL at every time points, the expression was not modulated during time with the highest
value at 7 days (Figure 9A). Interestingly, PDT group showed the maximum expression
at 14 days. Osteocalcin expression is usually correlated to the ALP expression, and in this
study, OCN showed a similar trend to ALP. OCN-relative mRNA was up-regulated in the
ALAD-PDT group compared to CTRL and PDT, with the highest value at an early stage
of osteoblasts. Although, at 14 days, OCN expression showed similar levels in PDT and
ALAD-PDT groups (Figure 9B).

Together, these findings indicated that the ALAD-PDT protocol may be applied during
guided tissue regeneration (GTR) and guided bone regeneration (GBR) to improve the
performance of PADMM in the periodontal tissue’s augmentation. The thermosensitive
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ALAD gel, formulated to improve the topical application of 5-ALA on the oral mucosa,
where the saliva represents an additional limit to the retention of 5-ALA, enhanced the
adhesion and the interaction of periodontal-related cells cultured on the membrane.

The results of this in vitro study could represent the bases for an in vivo study in
which ALAD-PDT could be applied as an adjuvant during GBR and GTR.

3. Conclusions

In conclusion, ALAD-PDT applied on the gingival fibroblasts and oral osteoblasts
cultured on a porcine dermal matrix membrane promoted the proliferation, mineralization,
and expression of functional genes such as FN1 and COL1 in hGFs, and ALP and OCN
in hOBs.

4. Materials and Methods
4.1. Study Design

The effects of the photodynamic protocol (ALAD-PDT) on the human gingival fibrob-
lasts (hGFs) and human oral osteoblast (hOBs) cultured on the PADMM (Cellis Dental,
La Rochelle, France) were performed using MTT assay, SEM and gene expression at 3, 7
and 14 days, histology at 3 and 7 days, Alkaline Phosphatase levels (ALP) at 7 days and
Alizarin Red Staining (ARS) at 14 days. The following experimental conditions were used:

i. PDT: cells cultured on the membrane and exposed to 630 nm LED for 7 min;
ii. ALAD-PDT: cells cultured on the membrane and treated with a gel containing 5%

of 5-aminolevulinic acid (ALAD) for 45 min and irradiated with red light (LED) for
7 min;

iii. And CTRL: cells cultured on the membrane PADM.

The PADMM, used in the in vitro tests, was cut into squares of 5 mm × 5 mm under
sterilized conditions, and they were hydrated with NaCl 0.9% three times before the culture
of cells.

Photodynamic therapy is based on the use of a gel containing 5-aminolevulinic acid at
the concentration of 5% (ALAD) (AlphaStrumenti, Melzo (MI), Italy) and a 630 nm LED
(PDT) (AlphaStrumenti, Melzo (MI), Italy). ALAD gel is a thermosetting product, protected
by a patent (PCT/IB2018/060368, 12.19.2018), that remains liquid at temperatures below
28 ◦C, becoming gel at higher temperatures. Further, 630 nm LED has an intensity of
380 mW/cm2 with a light dose of 23 J/cm2.

4.2. Cell Culture

Primary human gingival fibroblasts (hGFs) were purchased from ATCC (Manassas,
VA, USA), and human oral osteoblasts (hOBs) were extracted from bone fragments of
patients treated at Dental Clinic of University Gabriele d’Annunzio (Ethical Committee
reference numbers: BONEISTO N. 22 of 10.07.2021) according to the protocol described by
Pierfelice TV and co-workers [33]. In particular, during the procedures of dental implant
insertion, during the implant site preparation, a trephine bur was used to sample a bone
fragment. Briefly, bone fragments were subjected to three enzymatic digestions at 37 ◦C
for 20, 40, and 60 min using collagenase type 1A (Sigma-Aldrich, St. Louis, MO, USA) and
trypsin-EDTA 0.25% (Corning, New York, NY, USA). After each digestion, this solution
was centrifuged at 1200 rpm for 10 min, and the pellet obtained was transferred into a T25
culture flask with low-glucose (1 g/L) DMEM supplemented with 10% FBS (SIAL, Rome,
Italy), 1% antibiotics (100 µg/mL−1 streptomycin and 100 IU/mL−1 penicillin), and 1%
L-glutamine (Corning) at 5% CO2 and 37 ◦C. The medium was changed every 4–5 days.
hGFs and hOBs were cultured in DMEM low glucose (Corning) supplemented with 10%
fetal bovine serum (FBS) (SIAL), 1% penicillin, and streptomycin (Corning) at 37 ◦C and 5%
CO2. Both cell lines, hOBs and hGFs, were used from the 3rd and 5th passages. Figure 10
shows hOBs at the optical microscope.
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Figure 10. Human oral osteoblasts (hOBs) at optical microscopy at 5th passage. Magnification: 10×.

4.3. Cell Proliferation Assay

MTT evaluated the growth of cells seeded on the matrix. A total of 104 cells/membrane
were seeded on the matrix, exposed to ALAD-PDT, and cultured for 3, 7, and 14 days.
The choice of cell density was based on previous studies and considering the area of the
specimen [34,35]. Then, the MTT assay (Sigma Aldrich, St. Louis, MO, USA) was used
according to the manufacturer’s instructions. At the end of each incubation period, a
solution of 0.5 mg/mL MTT (Sigma Aldrich, St. Louis, MO, USA) was added to each
well, and then the cells were incubated for 4 h at 37 ◦C and 5% CO2. A solubilization
solution was added to each well to dissolve the insoluble formazan. Then, the plate was
read at 570 and 630 nm by a microplate reader (Synergy H1 Hybrid BioTek Instruments,
Winooski, VT, USA) to determine the absorbance (A). Then, a subtraction A = A570 − A630
was performed. The results were expressed as percentages and calculated with respect to
control (CTRL).

4.4. Cell Attachment

The adhesion of cells was observed using scanning electron microscope (SEM) images.
The cells at 104 cells/membrane density were seeded on the matrix, treated with ALAD-
PDT, and cultured for 3, 7, and 14 days. Loosely adherent cells were removed from
the experiment wells by washing twice with 0.1 M PBS (pH 7.4). Thereafter, cells were
fixed with 2.5% glutaraldehyde for 1 h and dehydrated using sequential concentrations of
ethanol (40, 50, 75, 95, 100%). Before the observation, they were sputtered with gold and
observed at 390×, 1000×, and 3000× using SEM (Philips XL20; Philips Inc., Eindhoven, the
Netherlands) at 15 kV.

4.5. Histological Analysis

The interaction of cells with the membrane was evaluated by histological analysis. A
total of 104 cells/membranes were seeded on the top of the matrix. Cells were exposed to
ALAD-PDT protocol, and the culture was carried out for 7 days. Each specimen was fixed
with 10% buffered formalin and dehydrated in an ascending alcohol series. They were
then polymerized in a glycol methacrylate resin (Technovit 7200 VLC; Kulzer, Wehrheim,
Germany). The sections, about 30 µm in width, were stained with fuchsin and toluidine
blue. The images were taken by an optical microscope (Leica, Wetzlar, Germany) at 400×.

4.6. ALP Assay

ALP assay was performed to evaluate ALP levels in hOBs using a colorimetric kit
AB83369 (Abcam Inc., Cambridge, UK) based on the cleavage of p-nitrophenyl phosphate
(pNPP). hOBs at a density of 5 × 104 were seeded on top of the matrix, treated with
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ALAD-PDT, and cultured for 7 days. Thereafter, the assay was performed according to
the manufacturer’s instructions. After 7 days, the cells were washed three times with PBS
and resuspended in assay buffer. The cell suspension was then homogenized by a Tissue
Rupture device (QIAGEN, Hilden, Germany) and centrifuged at 10,000× g for 15 min. The
relative ALP activity of the supernatant was measured using pNPP, as the substrate, for 1 h.
After incubation, the reaction was stopped and the relative ALP activity was quantified as
an absorbance value at 405 nm.

4.7. Mineralization

The deposition of calcium nodules was evaluated by ARS (Sigma Aldrich, St. Louis,
MO, USA) and quantized with 10% Cetylpyridinium Chloride (CPC) solution (Sigma-
Aldrich). Then, 5× 104 hOBs/membrane were seeded on the membrane, exposed to ALAD-
PDT protocol, and cultured for 14 days. The cells were fixed with 2.5% glutaraldehyde
and then stained with ARS solution for 1h. After 1 h, deionized water was used to remove
the excess dye, and the presence of mineral nodules stained by red color was observed.
Then, to quantize calcium deposits, 1 mL of 10% CPC solution was added, and after 1 h
the absorbance was read at 540 nm in a microplate reader (Synergy H1 Hybrid BioTek
Instruments).

4.8. Gene Expression

The gene expression of different markers of osteoblastic cells (ALP and OCN) and
markers of fibroblast activity (COL1, FN1, and MMP8) were evaluated by RT-PCR. To-
tal RNA was isolated using the Trifast reagent (EuroClone, Pero (MI), Italy), and RNA
was quantified on a Nanophotometer NP80 spectrophotometer (Implen NanoPhotome-
ter, Westlake Village, CA, USA) for analysis of RNA integrity, purity, and concentration.
Then, the GoTaq®2 Step RT-qPCR Kit (Promega, Madison, WI, USA) was used to obtain
complementary DNA (cDNA), and SYBR Green (GoTaq® 2 Step RT-qPCR Kit, Promega)
was used to perform RT-qPCR according to manufacturer’s instructions. Gene expression
was determined using Quant Studio 7 Pro Real-Time PCR System (ThermoFisher, Waltham,
MA, USA). The results were normalized to Glyceraldehyde-3-Phosphate Dehydrogenase
(GAPDH for hGFs and to β-actin (β-ACT) for hOBs using the 2−∆∆ct method. Primer
sequences are reported in Table 1.

Table 1. Primer sequences used in RT-qPCR.

Gene Forward Primer (5′-3′) Reverse Primer (5′-3′)

OCN TCAGCCAACTCGTCACAGTC GGCGCTACCTGTATCAATGG
ALP AATGAGTGAGTGACCATCCTGG GCACCCCAAGACCTGCTTTAT

COL1 AGTCAGAGTGAGGACAGTGAATTG CACATCACACCAGGAAGTGC
FN1 GGAAAGTGTCCCTATCTCTGATACC AATGTTGGTGAATCGCAGGT

MMP8 ATGTTCTCCCTGAAGACGCT AGACTGATACTGGTTGCTTGGT
B-ACT CCAGAGGCGTACAGGGATAG GAGAAGATGACCCAGGACTCTC

GAPDH ACGGGAAGCTTGTCATCAAT GGAGGGATCTCGCATTTCTT

4.9. Statistical Analysis

The data are reported as means ± standard deviation (SD). Statistical analyses were
performed using the GraphPad Prism8 (GraphPad Software San Diego, CA, USA), and
ANOVA and post hoc Tukey tests were adopted. A p-value < 0.05 was considered significant.
All experiments were performed in biological triplicates and repeated three times.
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Abstract: Caspofungin is a drug that is used for fungal infections that are difficult to treat, including
invasive aspergillosis and candidemia, as well as other forms of invasive candidiasis. The aim
of this study was to incorporate Azone in a caspofungin gel (CPF-AZ-gel) and compare it with
a promoter-free caspofungin gel (CPF-gel). An in vitro release study using a polytetrafluoroethylene
membrane and ex vivo permeation into human skin was adopted. The tolerability properties were
confirmed by histological analysis, and an evaluation of the biomechanical properties of the skin
was undertaken. Antimicrobial efficacy was determined against Candida albicans, Candida glabrata,
Candida parapsilosis, and Candida tropicalis. CPF-AZ-gel and CPF-gel, which had a homogeneous
appearance, pseudoplastic behavior, and high spreadability, were obtained. The biopharmaceutical
studies confirmed that caspofungin was released following a one-phase exponential association
model and the CPF-AZ gel showed a higher release. The CPF-AZ gel showed higher retention
of caspofungin in the skin while limiting the diffusion of the drug to the receptor fluid. Both
formulations were well-tolerated in the histological sections, as well as after their topical application
in the skin. These formulations inhibited the growth of C. glabrata, C. parapsilosis, and C. tropicalis,
while C. albicans showed resistance. In summary, dermal treatment with caspofungin could be used
as a promising therapy for cutaneous candidiasis in patients that are refractory or intolerant to
conventional antifungal agents.

Keywords: caspofungin; echinocandin; Azone; candidiasis; permeation enhancer; gel

1. Introduction

Candidiasis is a fungal infection caused by the yeast of the genera Candida spp., which
is the most important cause of opportunistic mycoses worldwide and can proliferate in
the skin and mucosal surface, even causing a systemic infection [1,2]. Candida albicans
is the most prevalent pathogen that is responsible for about 70% of fungal infections [2].
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Cutaneous candidiasis is caused by Candida proliferation in the skin, mainly in the inter-
triginous areas, producing inflammation, dryness, erosions, and pustules [3,4]. Despite
the available pharmacological treatments, such as azoles and polyenes, complications
from Candida infections are frequent, especially in patients that are refractory or intolerant
to these antifungal drugs or those in hospital conditions, including immunosuppressed
populations such as patients with malignancies or HIV infections for whom the mortality
rates are high [4,5].

Therefore, the treatment of candidiasis becomes a challenge in this population, and
consequently, other pharmacological options, such as echinocandins, have been addressed [6].
Echinocandin drugs are formed by a cyclic nucleus composed of several amino acid residues
and N-linked acyl lipophilic fatty acid tails, which act as an anchor for the drug at the pathogen
cell wall. These antifungal drugs inhibit the biosynthesis of β-(1,3)-D-glucan, which is present
in the fungal cell walls, including in Aspergillus and Candida spp. [5,7,8]. Currently, there are
some clinically used echinocandins, such as caspofungin, micafungin, and anidulafungin, all
of which have a lipopeptide structure that is synthetically modified from the fermentation
broths of different fungi [8]. Caspofungin is a semi-synthetic lipopeptide obtained from a fer-
mentation product of Glarea lozoyensis [9]; its chemical structure is depicted in Figure 1. In 2001,
caspofungin was approved by the US Food and Drug Administration (FDA) and the European
Medicines Agency (EMEA). This drug is used as therapy for fungal infections that are difficult
to treat, including invasive aspergillosis, as well as candidemia and other forms of invasive
candidiasis [6,10]. However, caspofungin is only used for intravenous administration due to
its high molecular weight (1093.31 g/mol) and poor oral bioavailability, and consequently, the
need arises to investigate alternative formulations and routes of administration to improve
the efficacy of the drug and facilitate its use [9]. Dermal treatment with caspofungin could
be used as a promising therapy for cutaneous candidiasis in patients that are refractory or
intolerant to conventional antifungal agents.

In recent years, formulations combining polymers have been designed to produce
multifunctional gels [11]. The combination of polymers of a natural origin, such as chitosan,
with polymers of a synthetic origin, such as poloxamer 407, produces gels with a bio-
compatible and biodegradable nature, with a high permeability capacity and, thus, better
therapeutic effect [12]. Chitosan is a cationic polysaccharide consisting of glucosamine and
N-acetylglucosamine units obtained by the alkaline deacetylation of the natural polysaccha-
ride chitin and is known for its antimicrobial properties. It is biocompatible, biodegradable,
and capable of forming gels in situ with negatively charged macromolecules [13–15]. On
the other hand, poloxamer 407 is a hydrophilic nonionic surfactant consisting of a hy-
drophobic polypropylene oxide (PPO) core block flanked by hydrophilic poly (ethylene
oxide) (PEO-PPO-PEO) blocks and is known to be thermoreversible [16]. To that end,
skin penetration promoters can be used in order to facilitate the drug permeation through
the stratum corneum and achieve an effective drug concentration [17]. Several perme-
ation enhancers, including pyrrolidones, Azone, alcohols, sulfoxides, surfactants, essential
oils, and their chemical constituents, have been proposed in cosmetic and pharmaceutical
formulations to improve transdermal drug delivery and increase drug retention in the
skin [18,19]. The ideal purpose of these permeation enhancers should be to temporarily and
reversibly perturb the barrier function of the stratum corneum [19]. The reported mecha-
nisms of action for these skin penetration promoters include the (i) reversible alteration
of the intercellular lipid matrix or on the intracellular keratin domains, (ii) changes in the
drug/tissue partition coefficient, and (iii) the disturbance of skin metabolism [20]. Azone
(1-dodecylazacycloheptan-2-one) was the first synthetic compound specifically designed as
a skin permeation promoter [21]. The chemical structure of Azone (Figure 1) shows a polar
headgroup (within a seven-membered ring) attached to a C12 chain, which possibly allows
this molecule to interact directly with the skin lipid domains to disturb the organized lipid
packing [19,22]. Transcutol-P (diethylene glycol monoethyl ether) is a compound that is
extensively used as a penetration enhancer in topical delivery systems, as well as for its
solubilizing action [23–26]; Figure 1 depicts its chemical structure.
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Figure 1. Chemical structure of drug and skin promoters. (A) Caspofungin [27], (B) Azone, [20] and
(C) diethylene glycol monoethyl ether (Transcutol) [28].

Considering these remarkable findings, the aim of the study was to design and develop
a topical delivery system for caspofungin. Two formulations were developed: a caspo-
fungin gel (CPF-gel) and a caspofungin gel with the addition of two promoters: Azone
and Transcutol-P (CPF-AZ-gel). The physicochemical, biopharmaceutical, and efficacy
properties of both formulations in the treatment of cutaneous candidiasis were compared.
Figure 2 illustrates a schematic representation of the development and evaluation of the hy-
drogels composed of pluronic F-127 and chitosan, with and without permeation enhancers
loading caspofungin.
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Figure 2. Schematic representation of the development of the loaded and unloaded hydrogels
composed of pluronic F-127 and chitosan, with and without permeation enhancers, and the evaluation
of the formulations.

2. Results and Discussion
2.1. Preparation of Gel Formulations

The composition of CPF-gel and CPF-AZ-gel obtained in this work are described in
Table 1. CPF-gel was obtained by dissolving Pluronic F-127 (18%) and caspofungin (2%)
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in cold water (58%), then chitosan (2%) that was previously dissolved in 0.1 M aqueous
acid acetic solution (20%) was added. On the other hand, CPF-AZ-gel was obtained
by incorporating a mixture of Azone (5%) and Transcutol-P (5%) into CPF-gel that was
previously prepared by considering water adjustment. Both gels (CPF-gel and CPF-AZ-
gel) had a uniform and homogeneous appearance, free of visible particles, lumps, and
precipitates (Figure 3).

Table 1. Composition formula of caspofungin-loaded gels.

Ingredients CPF-Gel (% w/w) CPF-AZ-Gel (% w/w)

Caspofungin 2 2
Chitosan 2 2

Pluronic F-127 18 18
0.1 M Acid acetic solution 20 20

Water 58 48
Azone - 5

Transcutol-P - 5
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Figure 3. Photograph of drug-loaded hydrogels and nondrug-loaded hydrogels. (A) CPF-Gel without
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The gelling of CPF-gel and CPF-AZ-gel occurs because of the Pluronic F-127 and chi-
tosan content. In an aqueous solution, the amphiphilic properties of Pluronic F-127 cause
self-aggregation-forming micelles at concentrations above its critical micelle concentration,
where PPO hydrophobic groups interact together via van der Waals forces to form the inner
core, whereas the PEO hydrophilic groups interact with water molecules via hydrogen
bonds to form the outer shell [29,30]. Consequently, gelation occurs at sufficient concentra-
tions of Pluronic F-127, which, in this study, was 18% due to micelles packing [31]. On the
other hand, the gelling with chitosan was produced by physical cross-linking, where ion
interactions and hydrogen bonds are the driving forces for the formation of the entangled
networks of this gel [32,33]. Figure 4 illustrates the mechanism of hydrogel formation.
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Figure 4. Schematic illustration of the mechanism of hydrogel formation.

2.2. Thermosensitive Properties

The incorporation of the drug into the hydrogels did not change the temperature
sensitivity, as shown in Figure 5. No significant differences were observed when the
gels were acclimatized to the different temperatures after the addition of the Azone and
Transcutol-P promoters. As the temperature increased, the gels seemed to flow better.
However, at no time was the gelation state reached.
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Combinations of polymers, such as CTS and P407, can modify the properties of the
resulting system. The micellar corona increases in thickness because the number of hy-
drophilic chains increases. This is due to the interaction between CTS and the polyethylene
oxide chains of P407. As a result of the interaction, the apparent viscosity increases, leading
to a decrease in temperature, whereby the SOL-GEL transition could be reached [34,35].

2.3. Fourier Transform Infrared

Fourier transform infrared (FTIR) was performed to investigate any possible interac-
tion between the drug and the gel matrix. Figure 6 shows the FTIR spectra for the loaded
and unloaded gels of CPF-gel and CPF-AZ-gel. The peaks corresponding to different
functional groups of caspofungin can be seen at about 1600 cm−1: carbonyl and amide.
Within the range 3200–3600 cm−1, there are peaks related to O-H bond vibrations from the
alcohol groups present in the structure, as well as from the amide groups (Figure 6c). When
analyzing the hydrogels loaded with caspofungin, a remarkable decrease in the absorption
is observed within the range 3000–3600 cm−1 (OH stretching) compared to the caspofungin
spectrum. This fact indicates that caspofungin interacts with the hydrogel via the hydrogen
bonds, especially between the hydroxyl groups in both caspofungin and the polymers.
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2.4. Morphological Study and Determination of the Porosity of the Hydrogels

The structure of the gels was evaluated via scanning electron microscopy (SEM) after
desiccating the gels. Figure 7 shows the SEM images of the unloaded and loaded hydrogels.
CPF-gel showed a denser and more compact structure than CPF-AZ-gel. The addition of
Transcutol-P and Azone resulted in a more rounded shape structure, which was especially
remarkable for the unloaded gels.
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Figure 7. SEM images of the hydrogels: left panels show the blank hydrogels with or without
permeation enhancers, and the right panels display the loaded hydrogels.

Hydrogels have the capacity to absorb large amounts of water or biological fluids;
when the gels absorb more than 10 times their weight (in the dried state), they are classified
as superabsorbent hydrogels. There are different techniques to evaluate gel porosity; in
this work, the porosity was determined by the density of the solvent uptake. CPF-AZ-gel
showed higher porosity than CPF-gel (Table 2). The addition of Transcutol-P and Azone
in the hydrogel increased the porosity by about four-fold. The porosity of the gels has
an impact on the drug release from the gel matrix [36]. This is in line with the drug release
behavior observed in Section 2.7; CPF-AZ-gel released greater amounts of caspofungin
than CPF-gel.
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Table 2. Porosity of caspofungin-loaded gels.

Formulation Porosity (%)

CPF-gel 5.7 ± 0.3
CPF-AZ-gel 22.4 ± 1.4

2.5. Rheological Behavior

Figure 8 shows the rheograms of CPF-gel and CPF-AZ-gel at 10, 25, and 32 ◦C. Rheo-
logical behavior plays a critical role in topical formulations, as it determines sensory and
dosage characteristics, as well as modulates the biopharmaceutical parameters, such as
the drug release rate from its vehicle [37]. CPF-AZ-gel exhibited a higher viscosity than
CPF-gel due to its Azone and Transcutol-P content, providing greater consistency to the
final product. The viscosity of both formulations decreased as the temperature increased,
showing values of 1.48, 1.16, and 0.95 Pa·s at 10, 25, and 32 ◦C, respectively, for CPF-gel
and 1.66, 1.52, and 1.09 Pa·s at 10, 25, and 32 ◦C, respectively, for CPF-AZ-gel.
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Figure 8. Rheograms of caspofungin formulations. (A) CPF-gel at 10 ◦C, (B) CPF-gel at 25 ◦C,
(C) CPF-gel at 32 ◦C, (D) CPF-AZ-gel at 10 ◦C, (E) CPF-AZ-gel at 25 ◦C, and (F) CPF-AZ-gel at 32 ◦C.
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Table 3 summarizes the results obtained from the rheological analysis of both for-
mulations and the mathematical modeling of the experimental data. Both CPF-gel and
CPF-AZ-gel at 10, 25, and 32 ◦C exhibit shear-thinning (pseudoplastic) behavior, according
to the Cross model for the stretch ramp-up and stretch ramp-down. This behavior is char-
acterized by a decrease in viscosity as friction or light massage is applied to the treated area
facilitating its spreadability on the skin; however, when the friction is stopped, the viscosity
of the product returns to its original state, favoring the product residence time [38].

Table 3. Viscosity and mathematical fitting of caspofungin formulations at 10, 25 and 32 ◦C.

Temperature Conditions 10 ◦C 25 ◦C 32 ◦C

CPF-gel Viscosity (Pa·s) at 100 s−1 1.48 ± 0.01 1.16 ± 0.01 0.95 ± 0.03
Mathematical model (stretch ramp up/down) Cross Cross Cross

CPF-AZ-gel Viscosity (Pa·s) at 100 s−1 1.66 ± 0.02 1.52 ± 0.01 1.09 ± 0.01
Mathematical model (stretch ramp up/down) Cross Cross Cross

2.6. Spreadability Analysis

Sample spreading properties represent decisive parameters in the assessment of topical
forms as they affect the process of incorporation into the container as well as the uniformity
of the dose and application, thereby affecting therapeutic efficacy [39,40]. CPF-gel and CPF-
AZ-gel followed a hyperbola one-site model (Figure 9), and similar values were observed
regarding the extensibility of the two formulas (Table 4). The results obtained indicate that
both formulas can be easily spread on the skin.
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Figure 9. Evaluation of the spreadability of CPF-gel and CPF-AZ-gel, fitting a one-site hyperbola
equation: (a) Spreading area (S, cm2) as a function of the applied mass (g) at 22 ± 2 ◦C; 60 ± 5% RH,
and (b) plot of the parameters of the formulas of CPF-gel, and CPF-AZ-gel fitting a one-site hyperbola
equation. The data are expressed as the mean ± standard deviation (SD) of the three replicates (n = 3).

2.7. Evaluation of the Drug-Release Kinetics

The amount of caspofungin that was released from the formulations was assessed by
in vitro release tests performed by Franz cells. A suitable receptor medium for the in vitro
drug release studies must provide sink conditions so as to ensure that the concentration
of the drug in the receiver compartment will not exceed 30% of the concentration to the
saturation of the given drug in that medium [41]. Keeping sink conditions is crucial and
prevents the inhibition of drug diffusion through the membrane/skin due to the saturation
of the medium [42]. In this study, 0.9% physiological saline solution provided the sink
conditions for the study.
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Table 4. Fitting and goodness of fit for the parameters estimated according to one-site hyperbola
equations for the formulas CPF-gel and CPF-AZ-gel.

One Site Binding (Hyperbola) CPF-Gel CPF-AZ-Gel

Best-fit values
Bmax 36.23 39.41
Kd 13.98 11.50

Std. Error
Bmax 0.9566 1.008
Kd 1.719 1.500

95% CI (profile likelihood)
Bmax 34.29 to 38.29 37.37 to 41.57
Kd 10.67 to 17.92 8.612 to 14.92

Goodness of Fit
Degrees of Freedom 25 25
R squared 0.8725 0.8480
Sum of Squares 142.0 176.0
Sy.x 2.383 2.653
AICc 51.86 57.66

Figure 10 shows the release profile of caspofungin using a polytetrafluoroethylene
(PTFE) membrane. The selection of the membrane in the drug-release studies is also crucial
since they must be inert and must not limit the drug release, nor can any binding between
the drug and the membrane occur [41].
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Figure 10. In vitro drug release of caspofungin from the CPF-gel and CPF-ZA gel formulations:
(a) release profile of caspofungin over time; (b) release constant (K), estimated by modeling to the
best-fit model, corresponding to a one-phase exponential association model; (c) maximum amount
released (Ymax) estimated by modeling to the best-fit model, corresponding to a one-phase exponential
association model. *** significant statistical differences between the two gels (p < 0.0001).
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The release data were fitted to the kinetic models to describe the release profile of
caspofungin. The best fit was obtained for a one-phase exponential association model
(r2 = 0.9986 for CPF-gel and r2 = 0.9971 for CPF-AZ-gel), for which the mathematical
equation is

Y = Ymax·
(

1 − e−K·X
)

(1)

where K is the release rate, Ymax is the maximum amount of drug released, and X is the
time. In this study, the parameters K and Ymax were estimated and statistically compared
by a t-test. According to the one-phase exponential association kinetics, the release of
caspofungin is directly proportional to the concentration of the drug remaining in the
donor chamber, resulting in a fast drug release in the early stages when the concentration
of the drug is high in the donor chamber, and followed by a slowing down of the release
rate as the concentration in the donor chamber decreases.

Although CPF-gel showed a greater release rate, it resulted in lower amounts of
drug released than CPF-AZ-gel, which suggests that Azone and Transcutol-P improve the
availability of the drug, and higher amounts of caspofungin would be delivered on the skin
from the CPF-AZ-gel formulation.

2.8. Evaluation of the Permeation Capacity of Caspofungin through Ex Vivo Human Skin

The capacity of caspofungin to diffuse through the skin was evaluated by an ex vivo
permeation study. In the ex vivo permeation studies, keeping sink conditions correct is as
essential as in the in vitro drug release study. Furthermore, the receptor fluid, apart from
providing sink conditions, must be biocompatible with the skin; for this reason, a 0.9%
physiological saline solution was selected. Another important critical factor in permeation
studies is the integrity of the ex vivo skin because using impaired skin or skin with altered
barrier functions affects the permeability results. Hence, it is important to assess the
skin integrity of the discs included in the study. Transepidermal water loss (TEWL) is
one technique to evaluate skin integrity since there is a high correlation between TEWL
values and skin integrity. Dey and co-workers investigated the TEWL values of intact skin,
and then the researchers damaged the skin at different severities by removing stratum
corneum with tape strips. They observed that the TEWL values for intact skin were below
13 g/m2/h; moderately compromised skin was prepared with 20 consecutive tape strips
and showed TEWL values up to 15.6 g/m2/h; a total of 25–30 tape strips corresponded
to highly compromised skin, for which the TEWL values increased up to 35 g/m2/h. The
maximum damage was reached by separating the epidermis from the dermis with heat
treatment; this extremely damaged skin resulted in TEWL values up to 44.8 g/m2/h [43].
The stratum corneum is the outermost layer of the skin and is the main factor responsible
for the barrier function. Skins with altered barrier functions are usually more permeable
than intact skins. For this reason, the integrity of the skin discs used in this study was
considered, and only those with TEWL values below 13 g/m2/h were included in the study.

Figure 11 shows the amounts of caspofungin permeated over 28 h and those retained
in the skin at the end of the experiment.

Similar amounts of caspofungin permeated through the human skin for most of the
sampling time points; contrarily, the formulation CPF-AZ-gel led to a major drug retention
within the skin at 28 h. This is probably due to the presence of Azone and Transcutol-P in
the formulation. Azone is known to be a penetration enhancer that is useful for increasing
the permeation of both hydrophilic and lipophilic drugs. Azone increases the fluidity of the
skin lipids by disrupting the lipid bilayers of the skin [44]. Transcutol-P is widely used in
topical and oral formulations to improve the solubility of poorly soluble drugs; it disrupts
the stratum corneum of the skin [45,46].
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Figure 11. Permeation of caspofungin from CPF-gel and CPF-AZ-gel: (a) permeation profiles of
caspofungin depicted as the cumulative amounts of caspofungin permeated through the ex vivo skin
over time; (b) amount of caspofungin remaining in the skin at the end of the permeation study (28 h).
*** significant statistical differences between the two gels (p < 0.0001).

The permeation parameters, such as the flux and the cumulative amount of drug
permeated at a given time, characterize the rate and extent of the drug through the skin.
Evaluating these parameters is important in the development and optimization of topical
products. Table 5 reports typical permeation parameters.

Table 5. Permeation parameters estimated for CPF-gel and CPF-AZ-gel.

Parameter CPF-Gel CPF-AZ-Gel

A28h (µg) 1854.4 ± 193.2 1623.9 ± 173.2
J (µg/h) 129.2 ± 14.7 86.9 ± 1.3 ***

J/cm2 (µg/h/cm2) 50.8 ± 5.8 34.2 ± 0.5 ***
Tl (h) 13.9 ± 1.2 9.2 ± 1.4 ***

KP (10−3 cm/h) 2.54 ± 0.29 1.71 ± 0.02 ***
P2 (10−2 1/h) 1.20 ± 0.14 1.79 ± 0.11 ***
P1 (10−2 cm) 21.23 ± 0.21 9.53 ± 0.02 ***
Css (ng/mL) 26.99 ± 3.08 18.16 ± 2.65 **

A28h: cumulative amount of caspofungin permeated at 28 h. J: flux; Tl: lag-time; KP: permeability coefficient; P1:
partition coefficient vehicle-skin; P2: diffusion coefficient and Css: predicted plasma concentration at the steady
state. ** statistical significance p < 0.01 and *** statistical significance p < 0.0001.

The amount of caspofungin that permeated through the skin over 28 h was slightly
higher from the CPF-gel; however, no statistical differences were observed between the
formulations for this parameter. The flux corresponds to the permeation rate of the drug
through the skin, which is obtained as the slope of the linear regression of the linear part
of the permeation profile; this parameter can also be expressed per unit area. The flux
was 1.5-fold higher for CPF-gel, indicating that caspofungin crosses the skin faster when
applied formulated in CPF-gel than CPF-AZ-gel. Apparently, the inclusion of Azone and
Transcutol-P restricts the permeation of caspofungin and retains the drug in the skin. This
is an interesting result for local therapy. The same pattern was observed for parameters Tl
and KP, which were 1.5-fold higher for CPF-gel with respect to CPF-AZ-gel. A shorter lag
time predicts an earlier onset of action; hence, it is expected that CPF-AZ-gel will initiate
its therapeutical action more rapidly than CPF-gel. The permeability coefficient is greater
for CPF-gel, which is logical because KP is estimated from the flux, and CPF-gel exhibited
a higher flux. The higher the permeability coefficient, the higher the permeation of the
drug into the receptor fluid.

The permeation of drugs depends on both the partition and diffusion processes. When
analyzing the partition and diffusion coefficients, it is evident that the partition has a greater
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impact on the permeation of caspofungin since it shows higher values than the diffusion
coefficient. Interestingly, the addition of Azone and Transcutol-P increases the partition
coefficient of caspofungin between the formulation and the skin with regard to the gel
without the enhancers while decreasing the diffusion of caspofungin through the skin,
resulting in a higher retention of caspofungin in the skin. This is also observed when
analyzing the predicted plasma concentration at the steady state (Css); CPF-AZ-gel would
reach a lower Css than CPF-gel. Css was estimated by taking into account the human
plasma clearance for caspofungin (9.42 L/h) [19] and considering an application surface of
5 cm2.

2.9. Histological Analysis of the Ex Vivo Human Skin after Permeation of Caspofungin

After the ex vivo permeation test, in which we evaluated the permeability capacity of
caspofungin from the two gels, an histological analysis was carried out to assess whether
any structural change on the skin occurred. Figure 12 shows the histological images of the
formulations, as well as the positive and negative controls. The ethanol solution induced
the loss of stratum corneum. CPF-gel and CPF-AZ-gel did not change the stratum corneum
or the epithelium.
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Figure 12. Skin sections stained with hematoxylin and eosin after the ex vivo permeation study,
stained and observed under the microscope at 200X. Scale bar = 100 µm. (A) PBS as negative
control; (B) ethanol as positive control; (C) CPF-gel and (D) CPF-AZ-gel. Asterisk indicates loss of
stratum corneum.
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2.10. Tolerance Studies by Evaluating Biomechanical Skin Properties

The skin integrity indicates the state of the skin as a physical barrier that protects
the body from the environment. The integrity of the skin can be evaluated by measuring
TEWL, which determines the ability of the skin to prevent water loss. TEWL increases
when the skin barrier is compromised, for instance, via a cut, burn, or some skin diseases,
including atopic dermatitis, eczema, or psoriasis. Altered skin barrier function, which may
lead to increased transepidermal water loss, can result in irritation and skin dryness. Other
factors can also impact the TEWL values, such as age and gender. For example, aging skin
typically has a higher TEWL than younger skin, and exposure to dry or hot environments
can increase TEWL.

Hence, measuring TEWL can be useful in dermatology and cosmetic science to evalu-
ate the effectiveness of skin care products and treatments, as well as in clinical research to
assess the skin barrier function in individuals with skin diseases or conditions [47].

Figure 13 shows the progression of the monitored parameters (TEWL and SCH) before
and after the application of the formulations for up to 120 min. These parameters are
indicative of the effect of the formulations on skin hydration and integrity. The transepi-
dermal water loss (TEWL) values obtained from CPF-gel and CPF-AZ-gel showed a slight
increase 5 min after the application and then a decrease at 30 min, and finally, remaining
unchanged, being greater than the values for the formulation CPF-AZ-gel (Figure 13A,B,E).
The stratum corneum hydration (SCH) values obtained from CPF-AZ-gel presented a slight
increase 5 min after the application, with this increase being higher than the one for the
CPF-gel formulation, and then this descended quickly; this occurs because the water in the
formulas evaporates after 30 min and then both formulations remain unchanged, reach-
ing values lower than the basal value (Figure 13C,D,F). Considering that skin hydration
is directly related to skin capacitance, the results suggest that the formulations slightly
increase hydration in relation to the normal behavior of the skin. No visible skin irritation
was observed after the formulations were applied to the skin of the patients, indicating that
both formulations were well tolerated on the skin.
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Figure 13. Biomechanical parameters evolution in human volunteers was monitored before the
application of the formulations (basal) and 5 min, 30 min, 60 min, 90 min, and 120 min post-application.
(A,B) TEWL of CPF-gel and CPF-AZ-gel, respectively, expressed as g/h × m2. (C,D) the SCH of CPF-
gel and CPF-AZ-gel respectively expressed as arbitrary units (AU). Significant statistical differences:
* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns = non-significant. (E) Comparison of the evolution
of the TEWL between both formulas: CPF-gel and CPF-AZ-gel. (F) Comparison of the evolution of
the SCH between both formulas: CPF-gel and CPF-AZ-gel. Each value represents the mean ± SD
(n = 10).

2.11. Antimicrobial Efficacy

Caspofungin belongs to an essential class of antifungals, the echinocandins, which are
used to treat invasive candidiasis that is resistant to conventional treatments. Candidiasis
is caused mainly by C. albicans, C. glabrata, C. parapsilosis, and C. tropicalis [48]. In this study,
in vitro tests were carried out to determine if the Candida strains tested were susceptible to
the formulations under investigation.

In this study, the CPF-gel and CPF-AZ-gel formulations demonstrated that they are
effective at the in vitro level in three of the four Candida strains tested, producing broad
areas of inhibition (Figure 14A–C, yellow circles), which indicates a beneficial effect since
resistance to these types of drugs is gaining momentum over time, especially among
isolates from immunosuppressed patients [49]. In the case of C. albicans, the growth of
intrahalo colonies was observed within the zone of inhibition, showing resistance (orange
arrow). This behavior has been observed in a previous study [39]. The gel without the
drug produced a slight inhibitory effect in the area where the formulations were added.
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This could be due to the impact caused by chitosan since the latter has been shown to
have an antibacterial and antifungal effect (Figure 14A–C, blue circles) [50]. The results are
summarized in Table 6.
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Figure 14. In vitro antifungal activity. (A) C. glabrata (B) C. parapsilosis (C) C. tropicalis and
(D) C. albicans. The blue circles show the inhibition halo for CPF-gel and CPF-AZ-gel, the orange
circles show the halo growth around the disc with an excipient (gel), and the yellow circles indicate
the intrahalo growth of C. albicans.

Table 6. Growth inhibition on Candida species.

Yeast Tested CPF-Gel CPF-AZ-Gel Gel

C. albicans R(a) R(a) R(b)

C. glabrata S S R(b)

C. parapsilosis S S R(b)

C. tropicalis S S R(b)

S: susceptible, R(a): resistant to inhibition of halo and intrahalo colonies, and R(b): resistant, with the formation of
a slight halo of inhibition.

3. Conclusions

Two gels containing caspofungin, which is an echinocandin antifungal, were prepared,
CPF-gel and CPF-AZ-gel, with the latter containing Azone and Transcutol-P, which are
penetration enhancers. The gels were analyzed for their viscosity and rheological behavior.
The spreadability of the gels was also investigated, and all characteristics were suitable for
topical administration.

The drug release profile from the gels and the capacity of caspofungin to diffuse
through the skin were also evaluated. The release of caspofungin followed a one-phase
exponential association model, showing CPF-AZ-gel to have a higher drug amount released.
The gel containing Azone and Transcutol-P (CPF-AZ-gel) resulted in a higher retention of
the caspofungin in the skin while limiting the diffusion of the drug to the receptor fluid.
Hence, a higher amount of caspofungin is available in the skin for a local effect.
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Both gels were well-tolerated since they did not show any damage to the skin in the
histological study, nor was any irritation observed when the formulation was applied to
the skin. A decrease in the TEWL values indicated that the gels did not alter the skin
function barrier.

Finally, the antifungal activity was assessed on different Candida sp. The two gels
inhibited the growth of C. glabrata, C. parapsilosis, and C. tropicalis. However, C. albicans
showed resistance.

In summary, the two gels showed satisfactory properties for a cutaneous application.
Caspofungin was located in the skin, especially when applied through CPF-AZ-gel, through
which it can exert a local effect. The formulations were well-tolerated, and the gels were
effective against three of the four strains tested.

4. Materials and Methods
4.1. Materials

Caspofungin acetate salt (molecular weight ~1200 Da) was acquired from SunPharma
(Barcelona, Spain). Poloxamer 407 (Pluronic F-127, molecular weight ~12,500 Da) was
supplied by BASF (Barcelona, Spain), chitosan medium molecular weight (190–310 KDa
and deacetylation degree ≥ 75%) was purchased from Sigma Aldrich (Madrid, Spain) and
diethylene glycol monoethyl ether (Transcutol-P, molecular weight ~130 Da) was provided
by Gattefossé (Saint-Priest, France). Azone (molecular weight ~280 Da) was acquired from
Netqem (Durham, NC, USA), and acetic acid and reagents for the analytical method were
acquired from Panreac (Barcelona, Spain). Purified and filtered water was obtained using
a Milli-Q® Gradient A10 system apparatus (Millipore Iberica SAU.; Madrid, Spain).

4.2. Preparation of Gel Formulations

For CPF-gel preparation, Pluronic F-127 and caspofungin were dissolved using cold
purified water at 4 ◦C under magnetic stirring for 30 min, then chitosan previously dissolved
in 0.1 M aqueous acetic acid solution was incorporated, maintaining stirring conditions for
20 min. For CPF-AZ-gel preparation, the water proportions of CPF-gel were adjusted to
incorporate Azone previously mixed with Transcutol-P.

4.3. Thermosensitive Properties

In order to observe if there was a phase transition, the gels were acclimatized in vials
at 4 ◦C, 25 ◦C, and 32 ◦C. When the desired temperature was reached, the vials were
inclined at approximately 45◦ to determine if the hydrogels flowed or not. The gels were
photographed with and without the drug at different temperatures.

4.4. Fourier Transform Infrared

We investigated any possible chemical interaction between caspofungin and the poly-
mers by Fourier Transform Infrared (FTIR). For this, the gels were desiccated in an oven at
37 ◦C. The FTIR spectra were obtained by a Nicolet iZ10 (Thermo Scientific, Waltham, MA,
USA) with a DTGS detector within the range of 4000–525 cm−1 with a spectral resolution of
4 cm−1 using attenuated total reflectance (ATR) with a diamond crystal. A total of 32 scans
per spectrum were obtained.

4.5. Morphological Study and Determination of the Porosity of the Hydrogels

Scanning electron microscopy (SEM) was performed to investigate the gels’ structure.
To this end, the gels were desiccated in an oven at the temperature of 37 ◦C, monitoring the
desiccation process: the gels were weighed every day until a constant weight was observed.
A small amount of the dried gel was coated with a thin film of carbon to obtain a conductive
sample suitable for observation by SEM JSM-7001F (JEOL, Inc, Peabody, MA, USA).

The porosity of the hydrogels (CPF-gel and CPF-AZ-gel) was determined by the
density method [REF]. Briefly, weighed amounts of dried gels were placed in Eppendorf
with 1 mL of pure ethanol (n = 3 for each hydrogel). The experiment was conducted at 32 ◦C.
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At pre-established time points, the Eppendorfs were centrifuged at 3000 rpm for 3 min, the
supernatants of ethanol were withdrawn by automated pipette, and the hydrogels were
weighed to monitor the increase of weight, which corresponds to the ethanol uptake by the
gel. The increase in weight was observed at different time points until a constant weight
was obtained. The porosity was calculated according to Equation (2):

P =
Ws − Wd

ρ × Vs
× 100 (2)

where Wd is the dried hydrogel’s weight, Ws is the swollen hydrogel’s weight, ρ is ethanol’s
density, and Vs is the volume of the swollen hydrogel determined by a pycnometer.

4.6. Rheological Behavior

Determining the rheological behaviour in topical products is essential in topical prod-
ucts because theological properties are related to the consistency, texture and spreadability
of the product. The viscosity of the formulation will impact the ease of application of the
formulation to the skin. The rheological study was carried out with a Haake Rheostress
1® rheometer (Thermo Fisher Scientific, Karlsruhe, Germany) using a cone-cone system
(C60/2◦Ti: 60 mm diameter, 2◦ angle). The shear stress (τ) and the viscosity (η) were
determined as a function of the shear rate (γ) at 25 ± 0.1 ◦C. The temperature was set
with a thermostatic circulator Thermo Haake Phoenix II + Haake C25P. The Rotational
measurements involved a 3-phase program which consisted of a ramp-up shear rate from
0 to 50 s−1 for 3 min, followed by a steady shear rate at 50 s−1 for 1 min and finally, a ramp-
down from 50 to 0 s−1 for another period of 3 min. The viscosity was calculated at a steady
shear at 100 s−1.

The obtained data were analyzed with Data Manager v. 4.87 software (Haake Rheowin®,
Thermo Electron Corporation, Karlsruhe, Germany) Data from the flow curves were modelled
to different mathematical models [51]; and the best-fit model was selected on the basis of
correlation coefficient and chi-square value.

4.7. Spreadability Analysis

Extensibility testing was carried out by placing a sample of 0.5 g of each formulation
(CPF-gel and CPF-AZ-gel) between two glass plates, the one located in the bottom position
pre-marked. The standard weight was added onto the upper plate for 60 s forcing the
sample to spread. Nine pieces of increasing standard weight (10, 20, 30, 40, 50, 100, 150,
200, and 250 g) were added successively with 60 s between weights. The increase in the
spreading area (diameter) was recorded as a function of the weight applied. The spreading
area at each applied mass was calculated according to the following equation:

S = d2 × π

4
(3)

in which S is the spreading area (cm2) calculated from the applied mass (g), and d is the
mean diameter (cm) reached by the sample [39].

The formulations were analyzed in accordance with the best kinetic model, and the
extensibility data were fitted to different mathematical equations (hyperbola, Boltzmann)
using GraphPad Prism® version 8.0.0 for Windows, GraphPad Software, San Diego, CA,
USA. The model fitting appropriateness was confirmed by the r value.

4.8. Evaluation of the Drug Release Kinetics

The rate and extent that caspofungin was released from the formulations was evaluated
by Franz cells, which consist of two compartments: the donor and receiver chambers. The
latter was filled with saline solution as the receptor medium, and the system was kept
at 32 ± 1 ◦C with constant stirring. These experimental conditions provided the sink
conditions. The two compartments are divided by a membrane that acts as an inert support
for the formulation. The membrane used in this study was polytetrafluoroethylene (PTFE)

111



Gels 2023, 9, 308

47 mm in diameter and 0.45 µm pore size (Merck, Spain). An amount og 0.3 g of formulation
for either CPF-gel or CPF-AZ-gel was applied to the membrane in the donor chamber, and
the drug diffused through the membrane into the receiver compartment was assessed over
time by collecting samples (200 µL) at the following time points: 1, 2, 4, 6, 22, 26, and 28 h.
The samples were analyzed by UPLC. 6 replicates for each formulation were included in
this study.

The cumulative amount of caspofungin released was calculated and plotted as a func-
tion of time. The release rate was calculated by linear regression analysis as the slope
of the linear part in the release profile. Kinetic modeling was performed to describe the
behavior of caspofungin release over time. To this end, the data were fitted to several
mathematical models, and the best-fitted one was chosen on the basis of the coefficient of
determination (R2).

4.9. Evaluation of the Permeation Capacity of Caspofungin through Ex Vivo Human Skin

To assess the potential of caspofungin to be absorbed into the bloodstream and de-
termine the effectiveness of the gels developed as topical delivery systems, an ex vivo
permeation test was conducted by Franz cells. The set-up is similar to the drug release
test, with the particularity of using ex vivo human skin as a membrane. The skin was
obtained from the abdominal area of donors subjected to aesthetic surgery; the “Docencia
e Investigación” Committee of SCIAS Hospital de Barcelona approved the study (approval
date 17 January 2020). The skin was cut at the thickness of 0.4 mm by a dermatome (Der-
malab GA630 dermatome, Aesculap, Tuttlingen, Germany). This thickness presents the
main layers of the skin: stratum corneum, viable epidermis, and a representative part of
the dermis, which contains the blood vessels. The integrity of the skin discs was evaluated
before the permeation test by measuring the transepidermal water loss (TEWL). Briefly,
the sensor was placed on the skin for 2 min to allow it for temperature and humidity
equilibration. Afterward, the TEWL values were recorded for 20 s, and only skin discs with
TEWL below 13 g/h·cm2 were included in the study [43].

The permeation test was performed under an infinite dose approach, and 0.3 g of gel
(CPF-gel or CPF-AZ-gel) was applied to the skin on the stratum corneum side, and samples
were collected from the receiver medium at the time points 0.5, 1, 2, 4, 6, 22, 26 and 28 h.
Samples were analyzed by UPLC to estimate the amount of caspofungin that permeated
through the skin over time. Six replicates per formulation were included in the study.
Once finished the permeation tests, 3 skin discs per formulation were destined for drug
extraction, and the other 3 replicates were used for a histological evaluation.

To determine the amount of caspofungin that remained in the skin after 28 h of
permeation, the skin discs were processed for drug extraction as follows: firstly, the
excess gel on the skin surface was gently wiped and rinsed with distilled water; then, the
diffusional area exposed to the formulations (2.54 cm2) was cut, punched, and immersed in
distilled water. The drug was extracted by ultrasonic technique for 20 min, and samples
were analyzed by UPLC.

Data Analysis

The cumulative amounts of permeated caspofungin were plotted for each sampling
time point. To evaluate the rate and extent of caspofungin permeation, we calculated the
following permeation parameters: flux (J) as the permeation rate, expressed in µg/h; the
lag-time (Tl), the permeability coefficient (KP), and the partition and diffusion coefficients
(P1 and P2, respectively) were also estimated, as well as we predicted the plasma concen-
tration at the steady state that caspofungin would achieve after a topical application of the
formulations, CPF-gel or CPF-AZ-gel, in a theoretical surface of application of 5 cm2 [52].

The amount of caspofungin retained in the skin after 28 h of exposure was calculated
by extracting the drug from the tissue and applying the factor of drug recovery in the skin
of 45.5%.
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4.10. Analytical Method for Determining Caspofungin

The samples from the drug release and permeation studies were analyzed by Ultra
Performance Liquid Chromatography (UPLC) using an Acquity I-Class UPLC System
(Waters, Milford, CT, USA). For the determination of caspofungin, we used a Lichrospher
RP-8 column (125 × 4 mm, 5 µm, Phenomenex) in gradient elution, which consisted of 50%
B for 0–5 min; 100% B for 5–6 min and finally, 50% B for 6–8 min, being the composition
of the mobile phase: A = 0.1 % of trifluoroacetic acid (TFA), and B = methanol. The flow
rate was set at 0.8 mL/min, and we injected a sample volume of 10 µL. The detection
of caspofungin was carried out by an Acquity Fluorescence Detector at the excitation
wavelength of 224 nm and emission wavelength of 304 nm [39].

4.11. Histological Analysis of the Ex Vivo Human Skin after Permeation of Caspofungin

The histological analysis aimed to examine the skin tissues to evaluate whether any
alteration in the skin structure had occurred after the permeation study. To this end, 3 skin
discs per formulation from the ex vivo permeation test were processed for the histological
examination. After treatment with the different formulations, the skin was rinsed in PBS,
dehydrated, and finally embedded in paraffin wax. Tissue sections of 5 µm were stained
with hematoxylin and eosin to assess the impact of the different formulations on the
skin layers. Serum was used as a control condition, and ethanol was used as a positive
control. Finally, the skin samples were observed under the microscope (Olympus BX41)
and photographed (camera Olympus XC50).

4.12. Tolerance Studies by Evaluating Biomechanical Skin Properties

An in vivo skin tolerance study was conducted to evaluate the biomechanical prop-
erties of human skin. The study protocol was approved by the Ethics Committee of
the University of Barcelona on 30/01/2019 (IRB00003099). The assessment of the total
amount of water loss (TEWL) through the skin was carried out using a Tewameter® TM
300 (Courage-Khazaka Electronics GmbH, Cologne, Germany) to measure the amount
of water reaching the surrounding atmosphere through the diffusion and evaporation
processes of the epidermal layer of the skin. Ten healthy-skinned participants ranging in
age from 25 to 40 years were recruited after medical assessment and notification (written
informed consent) of the nature of the study and associated procedures. The subjects were
asked not to use skin-care cosmetics on the measurement site (flexor side of the left forearm)
during the day before the study. The volunteers stayed in the testing room for at least
20 min before taking the measurements. The measurement site was marked drawing circles
around 4 cm in diameter The readings were collected (baseline readings), and then we
applied a uniform layer of 0.5 g of the formulations (CPF-gel and CPF-AZ-gel) to the center
of the circle using a gentle tool using a circular motion with the thumb to help distribute
samples. A total of 20 laps were carried out in a clockwise direction. New measurements
were collected just after application and at 30, 60, 90, and 120 min post-application [31]. To
measure, the electrode, a small hollow cylinder, was maintained on the different tissue’s
surface for 1 min. TEWL values (g/m2·h) were expressed as the mean ± SD of 10 replicates
before and after the application of the formulations for at least 2 h. All measurements were
carried out in accordance with published procedures [53,54].

The measurement of the hydration of the stratum corneum (SCH) was determined
before application in the basal state and 5, 30, 60, 90, and 120 min post-applications
of CPF-gel and CPF-AZ-gel on the treated area using Corneometer® 825 a Multi Probe
installed Hydration Adapter® MPA5 (Courage & Khazaka Electronics GmbH, Cologne,
Germany). The measurements were performed using the capacitance method, which
takes advantage of the relatively high dielectric constant of water compared to other skin
substances. Stratum corneum hydration (SCH) values (arbitrary units, AU) are expressed
as mean ± SD, n = 10.
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4.13. Antimicrobial Efficacy

The in vitro antifungal activity of the prepared formulations was determined using
the methodology described in the test protocol [citation from CLSI], similar to the disk
diffusion method (also known as the Kirby-Bauer method) but with some modifications.

The Candida strains used in this assay were: Candida albicans ATCC 10231, Can-
dida glabrata ATCC 66032, Candida parapsilosis ATCC 22019, and Candida tropicalis ATCC
7349 (American Type Culture Collection, Manassas, VA, USA).

For the inoculum preparation, the culture medium was first prepared; Muller Hinton
Agar (MH) supplemented with 2% glucose (MH-Glucose 2%) and 500 µg/mL of chloram-
phenicol to avoid possible bacterial contamination by the excipients and incubating at
30 ◦C for 48 h. Subsequently, each of the Candida strains was seeded. The fungal inoculum
was prepared by suspending one to two isolated yeast colonies in Ringer’s solution to
achieve 0.5 McFarland equivalent density.

The 2% MH-glucose plates were inoculated three times over the entire surface of the
agar with the aid of a swab soaked in the yeast with the scratching action, rotating the plate
approximately 60◦ each time to ensure a good distribution of the inoculum.

The following formulations were studied: CPF-gel, CPF-AZ-gel, gel (excipient), and
controls of 100 UI/mL nystatin and 250 µg/mL amphotericin B. Approximately 5 µL of
these products were placed in the inoculated yeast and incubated at 30 ◦C for 48 h. The
inhibition zone for yeast growth was observed.
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Abstract: The innovative fusion of essential oils with hydrogel engineering offers an optimistic
perspective for the design and development of next-generation materials incorporating natural bioac-
tive compounds. This review provides a comprehensive overview of the latest advances in the use
of hydrogels containing essential oils for biomedical, dental, cosmetic, food, food packaging, and
restoration of cultural heritage applications. Polymeric sources, methods of obtaining, cross-linking
techniques, and functional properties of hydrogels are discussed. The unique characteristics of
polymer hydrogels containing bioactive agents are highlighted. These include biocompatibility,
nontoxicity, effective antibacterial activity, control of the sustained and prolonged release of active
substances, optimal porosity, and outstanding cytocompatibility. Additionally, the specific char-
acteristics and distinctive properties of essential oils are explored, along with their extraction and
encapsulation methods. The advantages and disadvantages of these methods are also discussed.
We have considered limitations due to volatility, solubility, environmental factors, and stability. The
importance of loading essential oils in hydrogels, their stability, and biological activity is analyzed.
This review highlights through an in-depth analysis, the recent innovations, challenges, and future
prospects of hydrogels encapsulated with essential oils and their potential for multiple applications
including biomedicine, dentistry, cosmetics, food, food packaging, and cultural heritage conservation.

Keywords: hydrogels; essential oils; encapsulation; biomedical applications; cosmetics; dentistry;
active food packaging; restoration of cultural heritage

1. Introduction

Hydrogels form a unique category, being among the most modern multifunctional
materials that can be applied in numerous fields. As a result, they have captured the interest
of many scientists in various research fields. Hydrogels are essentially 3D cross-linked
networks formed of hydrophilic polymeric materials that can retain large volumes of water
and fluids [1]. They can be formulated from both synthetic polymers and biopolymers.
Hydrogels based on natural biodegradable polymers, such as polysaccharides, polypep-
tides, and proteins have many advantages over synthetic ones and have gained particular
importance lately [2]. One of the advantages is the porous macromolecular structure, which
can be easily adjusted so that the hydrogels can incorporate different bioactive compounds
and then release them in a controlled manner.

Due to their special properties, the so-called intelligent hydrogels have the ability to
swell in an aqueous environment, show sensitivity to temperature, light, pH variations and
other stimuli, self-healing, and shape memory [3].

Through different strategies, such as molecular design, cross-linking techniques, or the
incorporation of different bioactive compounds, the properties and functions of hydrogels
can be adapted for a wide variety of applications. They are widely used in the biomed-
ical field for wound healing and tissue engineering, as well as drug delivery systems,
pharmaceutical products, the food industry, cosmetics, hygiene products, and dentistry, etc.
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Similarly to the remarkable class of hydrogels, essential oils (EOs) have shown an
extraordinary increase in scientific interest in recent years, providing huge potential for a
diverse range of modern applications, including cutting-edge fields such as nanotechnology,
bioengineering, and biomedicine. Extracted from aromatic plants, EOs are hydrophobic
products of high concentration and contain molecules with low molecular weight. The
extraordinary therapeutic potential of EOs is due to the biological activity of their volatile
chemical components (terpenoids, terpenes, and other aromatic compounds) and non-
volatile (hydrocarbons, fatty acids, sterols, carotenoids, waxes, and flavonoids) [4].

This review brings a new perspective, scrutinizing the potential to incorporate different
essential oils into hydrogels in order to develop efficient delivery systems for bioactive
molecules of natural origin. Through this versatile delivery method, new products with
improved bioactive activity can find use for many types of applications to provide both
cost-effectiveness and high efficiency.

At present, the global production of essential oils is driven by the strong demand for
consumption, from natural options to synthetic antioxidants, due to remarkable biological
properties, including antimicrobial, antioxidant, anti-inflammatory, antiviral, and antitumor
effects [5]. These distinctive qualities pave the way for promising opportunities in utilizing
EOs across different fields.

As potent curative agents, EOs offer a viable alternative to synthetic drugs, particularly
for their antimicrobial effectiveness against a wide range of pathogenic microorganisms.
They are most commonly applied in the biomedical and pharmaceutical sectors.

Since ancient times, the sensory and pharmacological activities of essential oils have
been studied for their use in preventive and curative treatments, particularly in cosmetics
and countless personal care products.

In the food industry, EOs are used on a large scale, as a beneficial mechanism to
combat undesirable microorganisms in food products. The natural bioactive capacities of
EOs, such as antimicrobial and antioxidant properties, together with their aroma, flavor, or
spicy taste, make them suitable for use as preservatives in the food industry.

EOs can be incorporated into different food systems to increase the shelf life of food
while maintaining its quality. They can also be encapsulated in the form of edible coatings
or films, to mitigate microbial development on the surface and protect the environment
from synthetic packaging.

However, EOs cannot be applied directly, in their raw form, because they are unstable
volatile compounds, fragile, and of very high concentration. They require special post-
obtaining conditions so that the original chemical profile is not modified by different
environmental conditions (light, heat, oxidation) [6].

Consequently, EOs can be encapsulated in different hydrogel matrices to prolong their
effective biological activity and ensure their release in a controlled and sustained manner.

Hydrogels are versatile platforms with an adjustable structure, of a non-toxic nature
that can be used safely [7]. The high-water content, the sustainable nature of the constituent
polymers, and the ability to incorporate EOs give hydrogels favorable biocompatibility and
key structural characteristics, making them suitable for a wide range of implementation [8].

This review aims to showcase significant research and findings through a detailed
analysis of the main applications of essential oil-embedded hydrogels. Therefore, this
review article provides a comprehensive overview of recent studies on obtaining hydrogels,
and EOs, as well as their incorporation into hydrogel matrices, for a multitude of uses.
These include fields such as biomedicine, dentistry, cosmetics, functional food products,
food packaging, and even the preservation of stone cultural heritage.

2. Preparation of Hydrogels

Hydrogels are systems made up of polymers and solvents obtained in the form of 3D
cross-linked networks. Cross-linking can be formed (i) physically, (ii) chemically or (iii) by
ionizing radiation [9].
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The main advantage of hydrogels obtained by the physical method is the absence of
crosslinking agents which eliminates the risk of possible residual toxicity [9,10].

However, a notable disadvantage is that physically cross-linked hydrogels are re-
versible. Between the polymer chains, there are temporary bonds that appear in response
to composition, pH, or temperature changes. Moreover, these hydrogels show weak me-
chanical and viscoelastic properties. Depending on the size of the polymer particles and the
nature of the solvent in the 3D network, there may be hydrogen bonds, van der Walls bonds,
electrostatic, hydrophobic interactions, or between-polymer chains with local crystallite
generation [9].

Chemically obtained hydrogels are created by covalent cross-linking between the exist-
ing polymer chains. This leads to a stable or irreversible bond. Chemical cross-linking can
be produced using various methods, including addition polymerization, photopolymeriza-
tion, volume condensation, plasma or electromagnetic radiation, or interpenetration [10].

In general, a cross-linking agent with a multifunctional role is used, which unites the
monomeric units and leads to the development of the polymer chain [10]. Chemically cross-
linked hydrogels are advantageous due to their resistance to degradation and improved
mechanical and viscoelastic properties compared to physically cross-linked ones [9]. On the
other hand, hydrogels, obtained by anionic or cationic polymerization have as their main
disadvantage the sensitivity to water, respectively, the limitation to non-polar monomers [9].

In the case of hydrogels made by radiation, they can be obtained at ambient tempera-
ture and physiological pH, even without a crosslinking agent, which makes them suitable
to be applied in a wide range of biomedical, food, or cosmetic applications [11].

Hydrogels can be categorized according to various characteristics, providing deeper
insight into their properties and potential uses (Figure 1). These characteristics include [9]:

â According to source: natural, synthetic, or hybrid.
â According to polymer structure: linear, branched, or cross-linked.
â According to physical appearance: macroporous, microporous, or nanoporous.
â According to charge: neutral, anionic (negatively charged), cationic (positively charged),

or amphoteric, meaning they contain both positive and negative charges.
â According to responsiveness to stimuli: Hydrogels can also be classified by their

sensitivity to external stimuli such as temperature, pH, light, or electric fields. Called
“smart hydrogels,” these materials can undergo reversible changes in their structure
or properties when subjected to these environmental influences.

â According to water content: superabsorbent hydrogels, and less moisture.
â According to degradability: biodegradable, and non-biodegradable.

Gels 2024, 10, x FOR PEER REVIEW 4 of 32 
 

 

 
Figure 1. Classifications of hydrogels. 

Natural polymers are polymer molecules of biological origin that can be obtained 
from different sources such as animals, bacteria, microorganisms (algae and fungi), or 
plants. The chemical structures of natural polymers are composed of monomers of amino 
acids, nucleotides, esters, or monosaccharides, that are covalently coupled to form pep-
tides, polyphenols, polyesters, or polysaccharides [13]. 

Because they are similar to the components of the extracellular matrix (ECM), natural 
polymers have a reduced toxicity, with a low risk of causing adverse reactions. This bio-
compatibility has determined their widespread use in numerous biomedical, pharmaceu-
tical, and cosmetic applications, as additives in textile products, and in food or agriculture 
[14]. 

The most used natural polymers include sodium alginate, starch, gelatin, chitosan, 
collagen, hyaluronic acid, κ-carrageenan, cellulose, gum arabic, silk, fibrin, and bacterial 
polyesters [15,16]. 

Synthetic polymers are created artificially in laboratories and can be mainly classified 
as thermoplastic and thermosetting polymers and elastomers. They are very often found in 
multiple fields, such as packaging and construction, as plastic materials, fibers, elastomers, 
or adhesives. As synthetic polymers, we can mention polyvinyl alcohol, poly(lactic acid), 
polyvinylpyrrolidone, poly(ε-caprolactone), polyurethane, polyethylene glycol, polyeth-
ylene oxide, poly(L-lactide-co-caprolactone), carboxymethyl cellulose and poly(vinylidene 
fluoride) [17]. Among them, some synthetic polymers are biocompatible and biodegradable, 
such as poly(lactic acid), carboxymethyl cellulose, poly(acrylic acid), poly(vinyl alcohol), or 
polyethylene glycol. Some of them have shown antitumor, antibiotic, antiviral, or an-
tithrombotic activities and are often used as drug carriers, implants, diagnostic imaging 
agents, or as bio-ink in 3D printing for various biological scaffolds [18,19]. 

A new approach in hydrogel engineering is the design of complex systems through 
which hybrid hydrogels are obtained that incorporate both natural and synthetic poly-
mers, but also other functional components [20]. The hybrid hydrogels that have been 
developed are capable of integrating nano- or microstructures, allowing for targeted ac-
tion, controlled transport, and an adjustable release profile. 

Hybrid nanogels have the ability to respond faster than macroscopic ones to environ-
mental variations, proving their usefulness especially in biomedical applications such as 
therapies for tissue engineering, transport and delivery of chemicals in cancer therapy, or 
in optical detection [21]. 

  

Figure 1. Classifications of hydrogels.

119



Gels 2024, 10, 636

Polymers play an important role in the matrix of hydrogels, greatly influencing their
properties. They can be divided into two main categories: natural polymers and synthetic
polymers. Biodegradable polymeric materials, both natural and synthetic, have received
more interest lately, due to the importance of environmentally friendly products and the
possibility of their application in many fields such as biomedicine, pharmaceuticals, or
agriculture [12].

The creation of advanced materials formulated from bioavailable and renewable
raw materials, including waste, has been increasingly promoted, in agreement with the
12 principles of Green Chemistry and the achievement of the Sustainable Development
Goals provided for the UN 2030 Agenda.

Natural polymers are polymer molecules of biological origin that can be obtained
from different sources such as animals, bacteria, microorganisms (algae and fungi), or
plants. The chemical structures of natural polymers are composed of monomers of amino
acids, nucleotides, esters, or monosaccharides, that are covalently coupled to form peptides,
polyphenols, polyesters, or polysaccharides [13].

Because they are similar to the components of the extracellular matrix (ECM), natural
polymers have a reduced toxicity, with a low risk of causing adverse reactions. This biocom-
patibility has determined their widespread use in numerous biomedical, pharmaceutical,
and cosmetic applications, as additives in textile products, and in food or agriculture [14].

The most used natural polymers include sodium alginate, starch, gelatin, chitosan,
collagen, hyaluronic acid, κ-carrageenan, cellulose, gum arabic, silk, fibrin, and bacterial
polyesters [15,16].

Synthetic polymers are created artificially in laboratories and can be mainly classified
as thermoplastic and thermosetting polymers and elastomers. They are very often found in
multiple fields, such as packaging and construction, as plastic materials, fibers, elastomers,
or adhesives. As synthetic polymers, we can mention polyvinyl alcohol, poly(lactic acid),
polyvinylpyrrolidone, poly(ε-caprolactone), polyurethane, polyethylene glycol, polyethy-
lene oxide, poly(L-lactide-co-caprolactone), carboxymethyl cellulose and poly(vinylidene
fluoride) [17]. Among them, some synthetic polymers are biocompatible and biodegradable,
such as poly(lactic acid), carboxymethyl cellulose, poly(acrylic acid), poly(vinyl alcohol),
or polyethylene glycol. Some of them have shown antitumor, antibiotic, antiviral, or an-
tithrombotic activities and are often used as drug carriers, implants, diagnostic imaging
agents, or as bio-ink in 3D printing for various biological scaffolds [18,19].

A new approach in hydrogel engineering is the design of complex systems through
which hybrid hydrogels are obtained that incorporate both natural and synthetic polymers,
but also other functional components [20]. The hybrid hydrogels that have been developed
are capable of integrating nano- or microstructures, allowing for targeted action, controlled
transport, and an adjustable release profile.

Hybrid nanogels have the ability to respond faster than macroscopic ones to environ-
mental variations, proving their usefulness especially in biomedical applications such as
therapies for tissue engineering, transport and delivery of chemicals in cancer therapy, or
in optical detection [21].

3. Methods of Obtaining Essential Oils

Since ancient times, people have used EOs because they were believed to contain
essential components that are necessary for healing and prolonging life. Alchemists referred
to them as the “quintessence of plants”.

Essential oils are aromatic oil liquids in the form of complex natural mixtures of
different polar and non-polar compounds, made from natural raw material of plant origin.
The main chemical constituents of essential oils are volatile, lipophilic, and odoriferous
substances that are commonly found in different parts of plants (leaves, flowers, fruits,
or stems), giving them specific properties [22]. Since the beginning, aromatic plants have
been used empirically as spices in kitchens, in perfumes, cosmetics, and aromatherapy, for
preventive, curative, or therapeutic purposes. With the advent of distillation centers, the
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methods of obtaining essential oils have advanced and the therapeutic benefits of EO have
been scientifically evaluated [23].

The different production techniques involve (i) hot distillation, with water or steam,
(ii) cold or dry distillation, and (iii) through various mechanical processes. While the yield
of obtaining pure essential oils from aromatic plants is very low, their price is commensurate
with their natural bioactivity and implicit pharmaceutical and therapeutic benefits.

Over time, it has been proven that essential oils contain over 300 different aromatic
components, showing an extremely varied therapeutic potential [24]. In practice, these
capabilities of essential oils have been continuously explored and harnessed on a large
scale for a wide range of multiple applications that have been successfully integrated into
a variety of industries and contexts. The chemical composition of essential oils can vary,
even for the same species, depending on certain parameters such as climatic factors, soil
characteristics, harvesting conditions, post-harvest treatment, or the extraction methods
used [24].

The uniqueness and importance of EOs are given by their medicinal and bioactive
compounds, as well as by the other valuable constituents. EOs show significant variability
in their composition, both in terms of quality and quantity. Since this variability is heavily
influenced including on the extraction method used, it is crucial to identify optimal, and
especially non-toxic extraction techniques.

This chapter will offer a concise summary of the main extraction methods, including both
traditional and modern approaches, which are continuously being refined for improvement.

The main compounds discovered in EOs are terpenoid derivatives (80%) and phenyl-
propanoids (which give the specific spicy smell and aroma) [25].

There are several ways by which EOs are extracted from aromatic plants. The selection
of an extraction method is influenced by the plant’s texture and characteristics, the specific
essential oils being targeted, and the intended application of the final product. Every
method demonstrates its own advantages and drawbacks.

Some classical EO extraction methods, also called conventional, have been practiced
for hundreds of years and include steam distillation, water distillation, combined water
and steam distillation, cohobation (or repeated distillation), maceration, cold pressing, and
enfleurage. The limitations of these methods are mainly represented by low extraction
yields, thermal degradation, or the need to use high mechanical power [23].

Other more recent methods, also called alternatives, try to demonstrate their efficiency
in operation, to be ecological and viable from an economic point of view. Among these can
be listed extraction with solvents, supercritical CO2, or resins, and fractional distillation,
percolation, and the phytonic process (uses a new solvent based on hydrofluorocarbon
134) [23]. The main benefits of supercritical extraction with CO2 are its low cost and non-
corrosive nature, which enables the production of thermally unstable EOs at an industrial
level with a high yield. In addition, it is an ecological way by which safe EOs can be
produced to be used in various applications in the food industry.

New extraction methods use “green concepts” to extract valuable components from
aromatic plants. They act in accordance with the United Nations 2030 strategy, pursuing
sustainable developments by reducing waste, using discarded by-products, recycling them,
and reducing the carbon footprint in processing, which will have a positive impact towards
a cleaner environment. The global EO market has been continuously growing, reaching
USD 7.51 billion in 2018, and is expected to grow at a CAGR of over 9% between 2019 and
2026 [26].

Innovative techniques that respect these green concepts include ultrasound-assisted
extraction of bioactive compounds, microwave-assisted extraction of essential oils, high-
pressure liquid extraction, sub- and supercritical fluid extraction, pulsed electric fields, and
high-voltage electric discharges [27].

Essential oils are categorized into three main categories which include (i) terpenes,
(ii) terpenoids, and (iii) phenylpropanoids in their chemical composition. Terpene con-
stituents can be classified into two primary groups: (i) components that have a hydrocarbon
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structure (such as monoterpenes diterpenes and sesquiterpenes) and (ii) those that are
oxygenated, including acids, aldehydes, alcohols, esters, ketones, lactones, oxides, and
phenols [28]. Among the most common terpenes, we can distinguish limonene, sabinene,
α-pinene and p-cymene, for example in thyme and oregano, but also in lemon, grape-
fruit, eucalyptus, and rosemary EOs. Carvacrol, citronellal, carvone, and thymol are all
terpenoids that are present in EOs like mint, lavender, tea tree, chamomile, or geranium.
Clove, jasmine, rose, or pepper EOs contain phenylpropanoids that can be identified as cin-
namaldehyde, eugenol, safrole, and vanillin. EOs also includes other components derived
from amino acids, such as alanine, leucine, isoleucine, methionine, and valine [25].

The primary drawbacks of using EOs include their volatility, high sensitivity, poor
stability, high sensitivity, and vulnerability to degradation at processing temperatures. To
address these challenges, the encapsulation of EO in polymeric matrices improves their
bioactivity, stability, and water solubility, and enables long-term sustained delivery across
various applications [29].

4. Encapsulation of Essential Oils in Hydrogels

Most essential oils cannot be applied through direct contact with biological systems,
because they can be irritating or even toxic in certain cases. Incorporating essential oils
directly into hydrophilic matrices is not beneficial due to their hydrophobic nature, which
diminishes the inherent bioactivity of their components, leading to the use of high con-
centrations to be functional. To preserve their biological activity over an extended period,
particularly for biomedical applications, EOs should be encapsulated in various systems,
such as lipidic nanoparticles, liposomes, films, emulsion gels, oil-in-water emulsions, or
spray-dried microparticles [30].

Through encapsulation, risks due to possible toxicity are reduced, ensuring a safe
delivery system. Moreover, this method increases the biological activities and efficiency of
particularly volatile EOs through better absorption. In addition, encapsulation has often
been widely used as a way of protecting essential oils, prolonging their active biocapacity
and efficient delivery, which offers the possibility of their implementation in the medical,
pharmaceutical, cosmetic, and food fields [31].

These benefits can be achieved by employing different techniques to encapsulate
es- essential oils with diverse bioactivities [26,32]: (i) chemical; (ii) physico-chemical;
(iii) mechanical; (iv) ultrasound-assisted emulsification; and (v) electrostatic extrusion.

An example is thyme EO, which is often used due to its therapeutic properties. Thyme
(Thymus vulgaris L.) is a plant native to the Mediterranean area with both dietary and
medicinal uses. It contains many polyphenolic compounds of biological interest, such as
carvacrol, 5-isopropyl-2-methylphenol, and a p-cymene derivative with a characteristic
smell, with antioxidant, antimicrobial, antidiabetic, anti-inflammatory, immunomodula-
tory, and anticancer bioactivities [33,34]. Thyme EO was encapsulated in the first step
in sodium caseinate nanomicelles by a physical method [35]. Then, in the second step,
these nanomicelles were introduced into the preparation of a hydrogel. This formulation
aimed to improve the stability and protect the bioactivity of thyme EO. Finally, a gelatin
nanocomposite hydrogel as a drug delivery platform was obtained, having antibacterial
potential for wound healing both in vitro and in vivo [35].

The ionic gelation method, achieved by ionic bonding between alginate and some
divalent cations, led to the creation of a biocompatible hydrogel material in the form
of alginate microspheres that encapsulated thyme and calendula EO [36]. The study
investigated the loading capacity, the encapsulation efficiency of EO, and the dissolution of
microspheres under simulated digestion conditions.

Lipid matrices offer a suitable and stable environment for incorporating EOs and
ensuring their controlled release [37]. In particular, solid lipid nanoparticles have aroused
special interest for the encapsulation of bioactive compounds due to their large surface area
and the potential to facilitate the protection of bioactive constituents in ambient conditions.
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An interesting method for obtaining lipid matrices is homogenization at high shear
followed by the ultrasonication method [37]. Thus, chitosan and polyvinyl alcohol hydro-
gels containing solid lipid nanoparticles loaded with EOs of Origanum vulgare and Thymus
vulgaris were formulated and investigated as alternatives to synthetic fungicides. The
materials made with EOs content have demonstrated abilities to reduce the infestation with
phytopathogenic fungi responsible for the degradation of perishable fruits [37].

A new work investigated the capabilities of Perilla frutescens (L.), the annual aromatic
plant cultivated and used for thousands of years in traditional medicine or as food. In the
first step, microcapsule powders of Perilla frutescens (L.) [38] EOs were prepared by the
spray drying method of a wall material (octenyl succinic anhydride starch). In the next step,
they were further encapsulated with sodium alginate and chitosan by the polyelectrolyte
complex coacervate method, obtaining stable hydrogel balls for aqueous and acidic food
formulations with a complete and prolonged release of the encapsulated EOs [38].

Hydrophobic clove EO was loaded in situ into a hydrophilic chitosan polymer matrix
to obtain functional coatings as food packaging [32]. By using this method, bioactive
materials were obtained without the need for crosslinking agents.

The electrostatic extrusion technique that was applied to encapsulate fennel EO in an
alginate polymer matrix, together with the incorporation of a whey protein followed by
freeze-drying, is an original approach to improve the encapsulation efficiency and loading
capacity [39]. The encapsulated EO maintained its qualitative appearance by keeping
58.95% of the volatile compounds [39].

5. Applications of Hydrogel Materials Enriched with Essential Oil

The exploration and application of the bioactivities of essential oils as natural phy-
totherapeutic agents in various biomedical fields arose from the need to develop alternative
therapeutic approaches to traditional synthetic treatments.

Hydrogels are ideal host matrices for some limitations of EOs, such as volatility,
high sensitivity to environmental factors, and lower stability [26]. Together, EOs and
hydrogels are biocompatible and biodegradable materials, which demonstrate remarkable
physicochemical properties and antibacterial, antioxidant, anti-inflammatory, and anti-
cancer activities [40]. The porous 3D structure of hydrogels facilitates the incorporation of
essential oils through hydrophobic interactions, enabling their sustained and controlled
release in response to various stimuli such as hydrolytic and enzymatic activity, pH changes,
or temperature variations [41].

The beneficial combination of essential oils with the engineering of hydrogels can be
an advanced approach to the design and development of the next generation of hybrid
biomedical systems that embed natural therapeutic compounds.

5.1. Biomedical Applications
5.1.1. Topical or Transdermal Delivery Systems

Natural polysaccharides are among the most widely used biopolymers in biomedical
applications due to their biocompatibility, bioactivity, biodegradability, and exceptional
rheological and biomucoadhesive properties. These attributes make them ideal for de-
veloping a wide variety of topical formulations, for wound healing, or as effective and
inexpensive drug delivery systems [42]. Additionally, marine polysaccharides enhance
hydrogel formation capabilities, making them particularly effective for skin applications in
treating various dermatological conditions.

Alginate and fucoidan hydrogels loaded with menthol, L-linalool, bergamot oil, and
β-pinene essential oils have been developed to improve skin permeability [43]. The aim of
the study was to evaluate the way in which these EOs influence the penetration of the active
ingredients through the skin, and the effect of the composition, in order to create effective
formulations for topical or transdermal administration [43]. The porous morphology of
the prepared hydrogels, presented in Figure 2, could be due to the lyophilized oil droplets,
which can lead to these structures. Menthol, a cyclic monoterpene, is widely recognized
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for its ability to improve skin permeability by disrupting intercellular lipids in the stratum
corneum. Bergamot EO (Citrus bergamia) is mainly composed of limonene, linalyl acetate,
and linalool with anti-inflammatory properties and b-pinene, a bicyclic monoterpene, with
antioxidant, anti-inflammatory, and analgesic effects. Combining the activities of EOs
like menthol, L-linalool, bergamot oil, and β-pinene can indeed be a powerful strategy
for overcoming the skin barrier and treating inflammation. Each of these essential oils
has unique properties that, when combined, can work synergistically to enhance skin
permeability and provide anti-inflammatory benefits [43].
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5.1.2. Antimicrobial and Anti-Inflammatory Activity

Oral candidiasis is a fungal infection primarily produced by Candida species for which
there is a rather limited antifungal treatment. This condition is particularly challenging
to manage due to the limited availability of effective antifungal treatments and the po-
tential for these treatments to cause adverse effects and contribute to the development of
antifungal resistance.

Encapsulating biocides within hydrogels is an effective strategy for targeted de-
livery, offering controlled release and enhanced therapeutic effects. Specifically, using
methylcellulose-based hydrogels incorporated with Melissa officinalis EO can enhance an-
timicrobial efficacy while maintaining biocompatibility with biological tissues [44]. The
hydrogel formulation based on methylcellulose with Melissa officinalis EO demonstrated
both antimicrobial activity and antifungal potential, making it an effective treatment for
inhibiting oral candidiasis [44].

A complex study focused on the development of hydrogel films made from a com-
bination of polyvinyl alcohol (PVA), corn starch, patchouli oil, and silver nanoparticles
(Figure 3) [45]. These materials were chosen for their bioactive properties, particularly their
effectiveness against Staphylococcus aureus and Staphylococcus epidermidis, both of which
are common bacteria responsible for various infections, including skin and soft tissue
infections. The nanoparticles were prepared by green synthesis, in the presence of both
aqueous and methanolic extracts from patchouli plants (Pogostemon cablin Benth). The use of
cross-linked polymeric hydrogel films with glutaraldehyde and containing biosynthesized
silver nanoparticles with phytochemicals presents an advanced approach to developing
antimicrobial materials [45].

Figure 4 shows SEM and photo images during the swelling experiments.
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Figure 4. SEM images of hydrogel films based on polyvinyl alcohol/corn starch/patchouli oil
(A) with Ag nanoparticles (samples F0–F4); (B) Dry samples; (C) Dry samples soaked in water;
(D) Dry samples soaked with phosphate buffer [45].

Acne Vulgaris is a common inflammatory skin condition that affects many young
individuals and often persists into adulthood. Traditional acne treatments, which mainly
rely on antibiotics, have shown limited effectiveness and frequently disrupt the balance
of the skin microbiome. Recent research suggests that essential oils and herbs could offer
promising benefits for treating acne, a long-lasting inflammatory condition that can lead to
scarring [46].

Thyme EO has excellent antibacterial and antioxidant properties that are suitable
for inflammatory skin conditions such as acne [47]. Obtained by steam distillation of the
flowering stems, Thyme EO contains thymol (37–55%) and 0.5-carvacrol (0.5–5.5%). These
biocomponents have antibacterial activity, easily penetrating the lipid layer. Although
Thyme EO is recognized for its insolubility in water, high volatility, and tendency to degrade
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rapidly when exposed to air, light, or high temperatures for long periods, the extraordinary
potential of this plant has been explored in numerous studies.

In a recent research, Thyme EO was encapsulated in biodegradable nanoparticles of
poly-(D,L)-(lactic-co-glycolic acid) for skin and pharmaceutical applications [47]. Through
functionalization, the nanosystems remained stable for a period of 6 months, by cold
storage. In vitro, ex vivo, and in vivo evaluations on human volunteers indicated that
Thyme EO demonstrated excellent antioxidant activity and healing of skin inflammation
without leaving acne scars (Figure 5A,B) [47].
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Figure 5. Wound healing activity: (A) for in vitro scratch assay in HaCaT cell lines. Images were
taken before (Control t0) and 24 h after incubation: untreated samples (control and 24 h) and treated
samples, respectively thyme oil (THO) and functionalized hydrogels and their corresponding empty
NPs. (B) Skin surface showed a reduction in methylene blue following ex vivo antioxidant activity of
the samples [47].

5.1.3. Wound Dressing Applications

Numerous formulations of composite hydrogels have been studied as intricate systems
composed of biopolymers, incorporating various bioactive elements from essential oils.
These platforms, exhibiting synergistic properties, are being explored for use as advanced
wound dressings with enhanced therapeutic potential [48].

Cedarwood EO obtained from several types of conifers (e.g., Cedrus sp. and Juniperus
sp.) is a mixture of safe organic chemicals with pesticidal and preservative properties. In
order to develop effective hemostatic and antibacterial dressings for treating wounds, com-
posite porous sponges were designed [49]. Polyvinyl alcohol was physically cross-linked
with kaolin and incorporated cedar essential oil, through a freeze–thaw approach, yielding
sponge hydrogels with distinct lamellar architectures. The addition of cedar and kaolin in
the formulation improved the pore sizes and structure of the resulting sponges (Figure 6).
Studies have shown the biocompatibility of these sponges, improved antibacterial activity
against Bacillus cereus and Escherichia coli, and high free radical scavenging capacity and
hemostatic performance [49].
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Figure 6. SEM micrographs at 1000× magnifications showing the microstructure in cross-sectional of
composite sponges [49].

Clove (Syzygium aromaticum L. Myrtaceae) EO possesses significant biological ac-
tivities beneficial to human health, such as antimicrobial, antioxidant, and insecticidal
properties. Consequently, it has attracted considerable attention for its widespread use
in the medical world, perfume, cosmetic, flavoring, and food industries [50]. It can be
extracted by (i) hydrodistillation, (ii) steam distillation, (iii) ultrasound-assisted extraction,
(iv) microwave-assisted extraction, (v) cold pressing, or (vi) supercritical fluid extraction.
The extraction methods used determine the concentration of primary volatile compounds
in clove essential oil and organic clove extracts. It contains mostly eugenol (at least 50%),
respectively, eugenyl acetate, β-caryophyllene, and α-humulene (10–40%).

The development of different materials for biomedical applications has been in con-
tinuous growth lately [51]. Thus, the biological capabilities of clove EO were used in a
very interesting recent study for the generation of hydrogels as wound dressings. The
hydrogels were loaded with cloves EO by combining covalent and physical cross-linking
methods. In the first step, EO was emulsified and stabilized in a chitosan-based solution,
which was further strengthened by covalent cross-linking of the Schiff base with another
polysaccharide, namely oxidized pullulan (Figure 7). In the next step, several freeze–thaw
cycles were performed to stabilize the cloves EO in the physically cross-linked polymer
walls. The hydrogels formed with a sponge-like porous structure (Figure 8) exhibited
outstanding elasticity [52].

The antibacterial activity of hydrogels containing clove essential oil was evaluated by
the time-kill method, for different incubation time intervals, against three bacterial strains
and demonstrated antibacterial and antifungal effectiveness against S. aureus and E. coli
(Figure 9) [52].
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A novel gelatin nanocomposite hydrogel formulation encapsulated thyme essential oil
in sodium caseinate nanomicelles formulated as a gelatin nanocomposite hydrogel which
has been investigated as a drug delivery platform for in vitro antibacterial and in vivo
wound healing potential [35]. The evaluation tests of the biocompatible and hemocompati-
ble hydrogel showed a sustained in vitro release profile of EOs, with a strong antibacterial
effect. In addition, the wound-healing potential of the nanocomposite was investigated
in vivo, demonstrating a significant wound reduction in the group of animals it was tested
on, after only 18 days. Antibacterial hydrogel may be a promising active and biocompatible
platform for sustained delivery of thyme essential oil [35].
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Origanum vulgare L. (oregano) has been used since ancient times all over the world, as
a culinary ingredient, spice, or preservative and in curative treatments, being carminative,
tonic, stimulant, and diaphoretic. Numerous studies have reported the main characteristics
of this common plant, which demonstrate good analgesic, antimicrobial, antifungal, antivi-
ral, antioxidant, and anti-inflammatory activities. In addition, it helps to easily penetrate
the skin for transdermal drug administration [53]. In local applications, it is useful in anti-
aging treatments, due to its antioxidant and anti-inflammatory properties which provides
protection against free radicals of various reactive oxygen species [54,55]. It has a wealth
of volatile and non-volatile components such as flavonoids, phenolic acids, and tannins,
mainly phenolic monoterpenes such as carvacrol and thymol, with a variable chemical
profile depending on the species and the geographical area [56].

Recent research used oregano EO in an innovative hydrogel formulation based on
polymeric micelles (Figure 10) [57]. The release and permeation profile of the EO, the
in vivo effects on biocompatibility, and the impact of the hydrogel on in ovo-angiogenesis
were evaluated. It should be noted that the study avoided animal testing and a chick
chorioallantoic membrane was used. The results showed a sustained release of EO, having
a potential anti-angiogenic effect. This hydrogel with oregano EO content could be a natural
therapeutic alternative in skin pathologies, such as fibroepithelial polyps [57].
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The bioactive and curative phytotherapeutic potential of essential oils has been ex-
ploited in a multitude of applications for wound healing [58,59].

Peppermint (Mentha × piperita) EO is widely used in the cosmetic industry for its
aromatic fragrance. Its main constituents are menthol, menthone, and menthol acetate, and
as secondary components, it contains bitter substances, caffeic acid, flavonoids, tannins,
1,8-eucalyptol, and propanone [60]. The pine needles EO mainly contains α-terpineol,
linalool, and limonene, but also anethole, caryophyllene, and eugenol [61]. Fennel EO pre-
dominantly contains (E)-anethole, but also α-phellandrene and fenchone, methyl chavicol,
p-cymene, and β-phellandrene [62].

The healing capacities of four types of EOs have been used advantageously by encap-
sulating them in microcapsules in the first step, and then by incorporating them in polymer
matrices in the form of films to develop dressings for wounds [63]. Polyvinyl alcohol,
polyvinyl pyrrolidone, and hydroxypropyl methylcellulose were selected as polymeric
materials. Poly(ethylene glycol) and glycerol were used as plasticizers, together with Zn
stearate as a stabilizer, and vitamins A and E for the antioxidant effect. EOs of mint, thyme,
pine, and fennel were loaded into the polymer matrices as active substances with antimicro-
bial effects. The different types and compositions of EOs and polymer components affect
the shape and aspect of the microcapsules, which can be visibly observed (Figure 11). The
results of the investigations showed that the samples made with EO content presented good
inhibitory activity and antimicrobial properties against Staphylococcus aureus, Enterococcus
faecalis, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans [63].
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5.1.4. Chemotherapeutic

The alarming increase in the number of cancer cases in recent years highlights the
pressing need for intensified efforts to improve therapeutic protocols [64,65]. Breast cancer,
brain cancer, or invasive skin cancer affect millions of people every year and cause suffering
and death all over the world [66,67]. With the multitude of different cancer treatment
protocols, both surgical interventions and targeted therapies (chemo-, radio-, hormone-),
the increase in the survival of cancer patients has been almost constant in recent years [68].
From here it is obvious the major urgency with which new therapies, combinatory, and
targeted strategies are approached for a synergistic effect that will prolong the survival
time and decrease the mortality rate [69,70].

Owing to some serious side effects of currently used anticancer chemotherapeutic
methods or agents, there is a growing trend to use herbal medicine and its phytocompound
derivatives [71]. It is important to use them both as ideal therapeutic alternatives and
alongside chemotherapy treatments for many types of cancer [72–74].

Research is in a continuous dynamic and is actively focused on the discovery of new
“green” pharmacological components for chemotherapies that offer potent potential activity
with minimal side effects. A study aimed at obtaining new synergistic therapeutic agents
(antimicrobial, antioxidant, and anticancer) was carried out by nanoencapsulation of clove
essential oil in a nanogel based on squid chitosan and another phytochemical component,
namely ρ-coumaric acid [75]. The in vitro evaluation of the nanogel encapsulated with
clove essential oil indicated chemotherapeutic effects and potential for the prevention or
therapy of pathologies induced by oxidative stress, microbial infection, or breast and skin
cancer [75].

5.1.5. Carrier for Drug Delivery

Hydrogel delivery systems are excellent therapeutic tools for multiple clinical uses [76].
The adjustable 3D structure of hydrogels allows the inclusion of small molecules, macro-
molecules, or growth factors and they have the ability to protect drugs susceptible to
degradation. It also ensures precise spatial and temporal control over the release of thera-
peutic factors and degradability [77].

Bioactive molecule delivery systems are designed and developed in the form of films,
pearls, and nanogels. In order to create a smart drug carrier with intestinal release activity,
alginate hydrogel beads containing essential oils were made [78]. Glycyrrhizic acid, licorice
root extract, and Thymus EO were loaded into ß-cyclodextrin. By co-encapsulating them
with alginate, active alginate hydrogel beads were obtained. Studying the release of EO
from alginate beads in simulated gastric fluid and simulated intestinal fluids indicated a
high release rate of both EOs [78].

The characteristics of a natural hydrogel nanoliposome hybrid system were evalu-
ated for the controllable release of thyme essential oil in the gastrointestinal tract [79].
Hydrogels based on pea protein and gum Arabic indicated the need for intermediates
such as maltodextrin for stabilization. Figure 12 shows different photo and SEM images of
different formulations, with and without nanoliposomes and nanoliposome–maltodextrin
complexes [79].

5.1.6. Burn Healing

Burns or scalds to the skin are particularly serious injuries, sometimes life-threatening,
as they can disrupt the body’s essential functions. This disruption is primarily due to the
loss of water, electrolytes, and proteins, because of the wounds [80].

Burns need emergency medical care along with very strict infection control and
surveillance measures to increase the rate of healing and survival. The appearance of
multi-resistant organisms to antibiotics or some treatments, such as dressings or ointments
inappropriate for the degree of burn, can lead to invasive infections [81].
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EO (33%) [79].

Polysaccharide-based hydrogel dressings are more advantageous materials for the
treatment of burns, compared to traditional textile dressings, due to the easy application
and removal and rapid coverage of the wounds together with the surrounding areas, the
good capacity to absorb exudate, and the comfort given by the improvement quickness
of pain. In addition, the transparency of most hydrogels allows for easier management
of lesions.

Numerous studies have reported the results of the use of polymeric hydrogels with
different EOs content in the care of wounds and burns [82–84]. New formulations of hydro-
gel materials based on polyvinyl alcohol and gelatin enriched with ginger extract have been
proposed as dressings for burn wound healing. The hydrogels demonstrated comparable
wound healing efficacy to the commercial dressing on rabbit back burn wounds in vivo. In
addition, they showed significantly higher wound healing activity than the control group,
as evidenced by intensive collagen development observed in histopathological analysis [85].
A new study obtained and tested materials for the treatment of burns by designing dress-
ings based on physically cross-linked carboxymethyl chitosan and carbomer 940 hydrogels.
EOs of eucalyptus, ginger, and cumin were selected and loaded into them [86]. The hydro-
gel containing eucalyptus EO showed favorable antibacterial activities against S. aureus
and E. coli. Moreover, experiments performed in vivo on mice demonstrated that hydrogel
with eucalyptus EO improved wound healing in burn models and considerably promoted
the regeneration of the dermis and epidermis. The histological analysis highlighted the

132



Gels 2024, 10, 636

decrease in the values of IL-6, TNF-α, and the increase in the values of the factors TGF-β,
VEGF, and EGF, specific to the burn wound tissue area [86].

5.2. Dental Applications

Traditionally, plants, herbal extracts, and essential oils have been successfully used in
dentistry to clean teeth and dental caries [87]. People traditionally crafted toothbrushes
using natural bristles from twigs selected from medicinal plants, which were rich in oils. Fir,
clove, bay, eucalyptus, juniper, neem, or oak were used, with a rich content of volatile oils
that acted to stimulate blood circulation, and with tannins for contraction and cleaning of
the gums [88]. They also used poppies or cranberries, rich in vitamins, to keep their gums
healthy. It has been observed that aloe vera plants, marigolds, and grapefruit seeds have
beneficial and anti-inflammatory effects in the oral cavity [89]. They inhibit the growth of
aerobic or anaerobic bacteria and act to reduce gingival bleeding and gingivitis [90].

Phytochemicals provide a potential strategy in the prevention and treatment of dental
caries, inflammation, and other oral infections and could be a powerful substitute for
antibiotics [91,92].

A promising strategy for the prevention and treatment of dental caries, inflammation,
and other oral infections is the use of phytochemicals both in current care products and
in oral treatments [87]. These natural compounds could serve as a powerful alternative to
antibiotics [93].

Extensive recent research has developed hydrogels with incorporated essential oils for
the therapy of periodontitis [94]. These materials are described as dental drugs that could
be used as photosensitizers in photodynamic therapy for the treatment of periodontitis.
Oregano®, Frankincense®, and the Thieves® blend were incorporated as EOs, with a
content of cloves, lemon, cinnamon bark, eucalyptus radiata, and rosemary extract. The
main constituents identified from the mixture of selected and used oils included eugenol,
pinene, limonene, carvacrol, and cymene [94].

5.3. Cosmetics Applications

Essential oils are integral to the formulation of care products and cosmetics, offering a
wide range of benefits thanks to their rich and diverse composition of biocompounds [95,96].
Moreover, hydrogels combined with various chemical compounds can be incorporated into
cosmetic formulations, offering multiple topical applications for both skin and hair [97,98].

Hydrogels for cosmetic preparations can be obtained from biopolymers of natural
origin, such as alginate, collagen, gelatin, hyaluronic acid, chitosan, xanthan gum, pectin,
starch, or cellulose [99,100]. These biopolymers themselves possess bioactivities advanta-
geous to cosmetics. Thus, new cosmetic products were designed and made in the form of
gels, microcapsules, or masks, both for skin and hair, with excellent hydration, softening,
and elasticity performances, supporting and actively promoting anti-aging. Also, super-
absorbent hydrogels have been developed in comfortable hygiene products, capable of
absorbing fluids.

The combination of hydrogels with essential oils is a successful mixture, particularly
useful and advantageous as cosmetic preparations or beauty and care products [101–103].

Recently, a study was reported that aimed at the design and creation of new cosme-
ceutical materials based on hydrogels with improved biological properties [104]. In the
first step, Camellia oleifera EO was loaded into chitosan nanoparticles by emulsification and
then ionic gelation. Then, hydrogels based on poly(vinyl alcohol), silk sericin, and gelatin
were prepared, in which chitosan nanoparticles were embedded. Materials that showed
tyrosinase inhibition and antioxidant activity could be useful in cosmeceutical applications,
such as facial masks [104].

5.4. Food Applications

Hydrogel-based formulations with incorporated EOs have numerous applications in
the food industry [105].
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Hydrogels for food application should be categorized as follows: (i) Delivery; (ii) Pack-
aging; (iii) Coating; (iv) Fat replacer; and (v) Texturizing. A growing field of research
centers on hydrogel beads, which act as carriers for nano- or microparticles. These sys-
tems are highly effective for targeted drug delivery and can also be used as food supple-
ments, including dietary additives, probiotics, or food components for special medical
purposes [105,106]. These types of materials, which can be administered orally, have ex-
ploited the biological origin of natural polymers, especially polysaccharides and proteins,
their specific biodegradability, and pH sensitivity [107]. A considerable amount of research
has been devoted to the development of hydrogels for the encapsulation of food-grade
components, such as vitamins, natural extracts, and essential oils [108].

Hydrogel beads show great potential for improving the bioavailability and perfor-
mance of some compounds from the range of nutraceuticals, including EO, offering them
protection against chemical degradation [109]. The granules are made through an accessible
technique, in two steps: (i) obtaining the particles enriched with biopolymeric materials
and nutraceutical content, and (ii) crosslinking the biopolymeric materials. The first step
can be achieved by injection, phase separation, shearing, or templating, and the second step
can be achieved by degree changes in the solvent quality, the incorporation of counter-ions
or enzymes, or by heating–cooling cycles [110].

Recently, substantial amounts of waste from coffee pulp, generated during the extrac-
tion of essential oils, were analyzed [111]. These wastes were used to extract two different
pectin fractions (highly methoxylated and low methoxylated). Pectins have been studied
for their performance as EO carrier systems. The pectin fractions formed two systems of
hydrogel beads, with or without chitosan, to encapsulate the EO of roasted coffee or green
coffee. The two systems were analyzed in terms of their antioxidant activity and EO release
profile for potential food applications. On the one hand, the highly methoxylated pectin
obtained from Coffea arabica presented better EO encapsulation performances. On the other
hand, surprisingly, the EOs obtained from roasted coffee showed superior antioxidant
activity compared to that obtained from green coffee [111].

Food packaging serves as a passive barrier, shielding products from environmental
factors, extending their shelf life by preventing contamination, and ensuring safe trans-
portation and storage. Active packaging incorporated with essential oils allows interaction
between food and the external environment, helping to regulate temperature, moisture
levels, and microbial control, which ultimately enhances the quality and extends the shelf
life of the food [112]. The upcoming chapter will focus on the key concerns and challenges
faced by the food packaging industry. It will explore how essential oils influence the
microstructure of packaging materials and examine their specific properties.

A new direction regarding the applications of hydrogels with EO content is represented
by edible coatings that extend the shelf life of some perishable foods, by delaying oxidation
and reducing the amount of packaging. EOs are known to be excellent natural antimicrobial
and antibacterial agents [113]. Some contaminants such as gram-negative bacteria (E. coli)
can cause serious diseases by contaminating food such as milk and meat or gram-positive
ones (S. aureus and B. cereus), which cause the contamination of fruits or food products with
starch content.

The richness of volatile compounds contained in EO, such as phenolics, determines
the use of oils in edible films or coatings for flavoring, packaging, or preservation of food
products. Different gels incorporating EO such as basil leaves, clove, cypress, fennel, laven-
der, oregano, pine, rosemary, thyme, and verbena have been used to inhibit lipid oxidation
and microorganism growth in coatings for fish fillets, cheese, fruits, or vegetables [114–118].

Studies on two types of gelatin hydrogels containing rosemary and orange EO micro-
droplets prepared by simple emulsification in the presence of Tween®80 surfactant showed
interesting conclusions [119]. The mechanical and antibacterial properties of these gels
against some food contaminants such as E. coli, S. aureus, and B. cereus. indicated adequate
characteristics as edible coatings of perishable foods, in order to preserve foods such as
meat [119].
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A novel area of research that has gained attention recently is the replacement of animal
fats through the immobilization of oils within hydrogels [120]. Healthier meat products
are a direction imposed both by worldwide recommendations and by consumer demands.
Traditional products should be adapted to the nutritional characteristics recommended
by specialists, by reformulating them. Therefore, a recent approach to improving the
health of meat products is the use of healthy oils (vegetable or marine) as fat substitutes.
Also, it is important to develop food products that are low in fat, but which retain their
functional qualities, such as mayonnaise or ice cream [121]. However, it is a great challenge
for researchers to keep the specific bioactivities of hydrogels with incorporated essential
oils and use them as fat substitutes or as materials with specific textures. Future scientific
discoveries based on nanotechnology will also develop such products.

5.5. Food Packaging Applications

Active packaging is representing intelligent materials that improve the preservation
of food, especially perishable ones, extend the shelf life, and ensure safety by interacting
with the food product through its various components [122].

Currently, there is a multitude of advantageous active packaging for applications in
different fields. In the food industry, but also in the beverage industry, there is the most
active packaging, due to the very high demand for increased shelf life, freshness, and
safety. The pharmaceutical industry, medical technology, agriculture, and courier and
delivery services are just a few other areas where there is a demand for these types of
modern packaging.

Active packaging is created based on the active components of biopolymers or with
different biocompounds incorporated into them [123].

For instance, biopolymeric hydrogels with essential oils incorporated as antimicrobial
substances are advantageous systems for obtaining active food packaging. In addition to
monitoring the condition and ensuring food safety, minimizing the risk of contamination,
increasing the shelf life, or obtaining more durable packaging, smart packaging can help
reduce food waste. In this context, adding EOs to packaging is a natural alternative that
can replace chemical additives [124,125].

Cinnamon EO is a natural bacteriostatic agent, with potential applications in the field
of food preservation [126]. In general, it has found many uses in culinary and medicinal
applications. It contains numerous chemical constituents, of which, depending on the
different species of Cinnamomum trees or shrubs, the most important are the compounds
(E)-cinnamaldehyde, linalool, β-caryophyllene, eucalyptol, and eugenol [126]. Apart from
the specific spicy taste and cinnamon flavor that is due to the cinnamaldehyde compound,
the wide variety of components of cinnamon EO have antimicrobial, antioxidant, antifungal,
and antidiabetic biological properties [127,128].

Sodium alginate and acacia gum hydrogels loaded with cinnamon EO were prepared
as edible films and analyzed in terms of view of physicochemical characteristics [129]. The
antioxidant capacity of the films was improved with increasing cinnamon EO concentration,
making them promising candidates for use as active food packaging materials. Figure 13
shows the composite films prepared with different concentrations of cinnamon EO between
0–30 µL EO [129].

Recently, the phytochemical components of the essential oil obtained from the Artemisia
dracunculus plant, widely distributed geographically, were identified and evaluated [130].
Artemisia dracunculus EO was valorized by incorporating different amounts into hydrogel
matrices based on polyvinyl alcohol and agar. The results of the antimicrobial tests indicated
sustained antimicrobial activity against nine pathogenic strains (four Gram-positive and
five Gram-negative). The incorporation of Artemisa dracunculus EO in these hydrogel
models can lead to practical applications in the area of food technology, as an active and
biodegradable alternative to classic packaging [130].
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In another study, a quantity of powdered starch was obtained in the first stage from
the use of residual biomass, then in the second stage, it was introduced into a formulation,
to prepare cryogels and hydrogels [131]. The materials prepared by absorption or cross-
linking by the Schiff-base reaction were loaded with diacetyl and mint EO. The prepared
materials showed a good ability to adsorb water and deliver antimicrobial substances,
being advantageous for possible fresh food packaging applications [131].

Furthermore, new antibacterial hydrogels were prepared by the method of freeze–thaw
cycles [127]. Inclusion complexes methyl-β-cyclodextrin and thyme oil were incorporated
into a polyvinyl alcohol matrix with polysaccharide content, respectively, dendrobium and
guar gum, in various ratios. These materials presented very good mechanical performance,
as well as antimicrobial and antioxidant activities favorable for the preservation of chicken
breast, extending the shelf life by four days. These results indicate the potential of the
materials for possible active packaging applications [132].

5.6. Restoration of Stone Cultural Heritage

Stone monuments in the sphere of cultural heritage suffer from biological damage.
The variation in environmental conditions determines the growth of phototrophic microor-
ganisms on stone surfaces, in the form of biofilms [133–135]. These microorganisms are
made of microbial aggregates that act mechanically and produce micro-decohesion of the
substrates [136]. In addition, biofilms, together with atmospheric pollutants, promote
chemical corrosion, pigmentation, or discoloration of stone surfaces [137].

The classic restoration of stone surfaces uses both physical and chemical methods [138].
However, mechanical brushing can damage the surface of the monument, and chemical
treatment can lead to a selection of resistant microbial species or can be harmful to the
environment or the operators [139,140].

An innovative and eco-sustainable restoration technique is the use of essential oils
with natural biocidal action, embedded in hydrogels, as alternatives to chemical treatments
for the restoration of cultural heritage [141–144].

EOs of lavender and thyme were encapsulated in alginate hydrogel in order to create
an easy-to-use and non-invasive restoration method [136]. The vitality of cyanobacterial
biofilms was discouraged by applying hydrogel for different periods of time. The results of
the tests indicated that the best inhibitory effect on the photosynthetic activity of microor-
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ganisms was shown by thyme oil rich in thymol, for a concentration of 0.1% (v/v) it was
shown by thyme oil rich in thymol. It retained an effective antimicrobial action against
cyanobacteria. Notably, the developed protocol allowed the use of a very small amount of
essential oil as a green biocide [136].

In another study, thyme EO was also used in the preparation of poly(vinyl)alcohol
and borax-based hydrogels, together with a double-layered hydroxide of ZnAl intercalated
with sodium alginate, and silver nanoparticles or a mix of silver–silver chloride nanopar-
ticles [145]. The hydrogels were thus formulated to mechanically remove the biopatina
from two types of biodamaged stones: Carrara marble and St. Margarethen. The hydrogel
with thyme EO content worked effectively for cleaning stones with porous structures and
different compositions, damaged by the natural environment [145].

A real case study reported the results of in situ application of a sodium alginate
hydrogel containing thyme EO. The experiment followed the restoration of three selected
parts of Fortunato Depero’s mosaic located in a neighborhood in Rome (Italy) [146]. The
material was prepared by a simple method and easily applied on large and vertical surfaces.
The images taken before and after application demonstrated that a single treatment was
enough to completely eliminate the microbial patina. The hydrogel loaded with thyme EO
as a natural biocide showed a very good biocide performance [146].

In summary, Table 1 outlines the key characteristics of various essential oils discussed
in this review, highlighting the main bioactive compounds, the extraction methods used,
pharmacological features and potential applications. The brief summary of essential oil-
enriched hydrogel applications introduced in this manuscript can be found in Table 2.

Table 1. General characteristics of essential oils incorporated in hydrogels.

Plants Essential Oils Main Constituents Extraction
Procedure

Pharmacological
Properties Applications Reference

Cinnamomum
zeylanicum Cinnamon oil cinnamaldehyde

Steam distillation
and Soxhlex
extraction

Antimicrobial,
antibiotic,

antioxidant

Food packaging
materials, food

preservation
[129,147–149]

Lavandula
angustifolia

Lavandin
essential oils

Terpenes
(e.g., linalool, linalyl
acetate, terpinen-4-ol)

and
terpenoids

(e.g., eucalyptol)

Steam distillation

Antioxidants,
antibacterial,
anxiolytics,

analgesics, and
anti-inflammatories

Wound healing,
Microparticles as
delivery system

[48,150–153]

Cymbopogon
(spp.)

Lemongrass
essential oils

Terpenes and
Terpenoids

(Terpinen-4-ol,
α-Terpineol (neral,
isoneral, geranial,

isogeranial, geraniol,
geranyl acetate,

citronellal, citronellol,
germacrene-D, and

elemol)

Steam distillation

Antifungal,
antibacterial,

antiviral, anticancer,
and antioxidant

Pharmaceutical,
cosmetics, and

food
preservations

industries

[154,155]

Melaleuca
alternifolia

Tea tree essential
oils

Terpenes
(e.g., terpinen-4-ol,

1,8-cineole)
Steam distillation Antimicrobial and

anti-inflammatory
Beads for food
preservation [156–158]
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Table 1. Cont.

Plants Essential Oils Main Constituents Extraction
Procedure

Pharmacological
Properties Applications Reference

Mentha piperita Peppermint
essential oils

Menthol, menthone,
neomenthol and

iso-menthone

Steam distillation,
hydrodistillation,

microwave-
assisted

extraction,
supercritical fluid

extraction,
ultrasonic-

assisted
extraction and
countercurrent

extraction

Anti-inflammatory,
antibacterial,

antiviral, scolicidal,
immunomodula-
tory, antitumor,
neuroprotective,
antifatigue and

antioxidant;
hypoglycemic and

hypolipidemic
effects,

gastrointestinal and
dermatological

diseases

Patches, wound
dressing [63,159–162]

Ocimum
basilicum

(L.)

Basil essential
oils

Eugenol, e α-Pinene,
β-Pinene, Methyl

chavicol,
1,8 cineole, L-linalool,

Ocimene, Borneol,
Geraneol,

B-Caryphyllone, and
n-Cinnamate

Hydrodistillation

Carminative,
galactogogue,
stomachic and
antispasmodic

tonic, vermifuge,

Food packaging,
antiperspirant in

agriculture
[163–166]

Thymus vulgaris
(L.)

Thyme essential
oils

Carvacrol,
5-isopropyl-2-

methylphenol, and a
p-cymene

Hydrodistillation,
steam distillation

Antioxidant,
antimicrobial,
antidiabetic,

anti-inflammatory,
immunomodula-

tory and anticancer
bioactivities

Wound healing,
wound dressing;
beads as delivery

systems

[33,35,36,47,63,
79,167]

Table 2. Applications of essential oils incorporated in hydrogels.

Method of
Preparations Materials Encapsulated

Essential Oils Applications References

Biomedical
applications

Physical crosslinking Sodium alginate/Fucoidan
Menthol, L-linalool,
bergamot oil, and

β-pinene

Topical or
transdermal

administration
[43]

Physical crosslinking Methylcellulose
(10% (w/v)) Melissa officinalis EO Treatment of oral

candidiasis. [44]

Chemical
crosslinking

Polyvinyl Alcohol/Corn
Starch Hydrogel Films

loaded with Silver
Nanoparticles

Patchouli EO

Antimicrobial
materials (against

Staphylococcus aureus
and Staphylococcus

epidermidis)

[45]

Solvent displacement
method

Poly-(D,L)-(lactic-co-
glycolic

acid)
Thyme EO Inflammatory skin

disorders [47]

Physical crosslinking Polyvinyl alcohol/kaolin Cedar EO Wound dressing [49]

Covalent and
physical crosslinking

Chitosan/oxidized
pullulan Clove EO Wound dressings [52]

Cold gelation process

Polymeric-Micelles-Based
Hydrogels (Pluronic
F127–20%w/w; and

Pluronic L 31—1%w/w)

Oregano EO Cutaneous
application [57]
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Table 2. Cont.

Method of
Preparations Materials Encapsulated

Essential Oils Applications References

Chemical
crosslinking; casting

method

Polyvinyl
alcohol/polyvinyl

pyrrolidone;
hydroxypropyl methyl

cellulose; sodium alginate;
polyethylene glycol;
glycerol; Zn stearate;

vitamin A and E

Fennel, pine, mint
and thyme EO Wound dressings [63]

Chemical
crosslinking

Ultrasound-assisted
deacetylated

chitosan/ρ-coumaric acid
Clove EO

Chemotherapeutic/
chemopreventive

agent
[75]

Thin-film dispersion
technique/heat-

induced
gelation.

Pea protein (30%) and gum
Arabic (1.5%); Soybean

lecithin; maltodextrin and
gum Arabic

Thyme EO

Delivery of bioactive
compounds (food
packing material,

tissue engineering or
drug delivery)

[79]

Physical crosslinking Carboxymethyl
chitosan/carbomer 940

Eucalyptus, ginger,
and cumin EO

Burn dressing
material for skin

burn repair
[86]

Dental applications Physical crosslinking

Xanthan
gum/Glycerin/Lyophilized
Whey/Polyvinylpyrrolidone/

PEG 400

Oregano®,
Frankincense®,

Thieves®,
Frankincense® EO

Therapy of
periodontitis [94]

Cosmetics
applications Ionic gelation

Poly(vinyl alcohol), silk
sericin, and

gelatin/chitosan
nanoparticles

Camellia oleifera EO Cosmetic product
(facial masks) [104]

Food applications Emulsification/ionic
crosslinking

Pectin and pectin/chitosan
hydrogel beads

Green and roasted
coffee EO

Systems for the
delivery and

controlled release of
essential oils; food

applications

[111]

Food packaging
applications Gelation/casting Sodium alginate/

acacia gum Cinnamon EO
Hydrogel-based films

as active food
packaging materials

[129]

Restorations of the
stone cultural

heritage

Preparation directly
in situ Sodium alginate Thyme EO

Biocides for
restoration in a real

case of study, i.e., the
mosaic Le Professioni
e le Arti of Fortunato

Depero

[146]

6. Challenges and Perspectives

The advancement of polymeric hydrogels presents emerging opportunities for their
use across various fields, thanks to their biocompatibility, simple gelation process, ease
of application, and the potential for functionalization. Hydrogels have the ability to alter
their volume, phase, and structure when exposed to specific external stimuli, making them
versatile for use in a wide range of sectors. However, the limited mechanical rigidity
commonly found in some biocompatible hydrogels presents a significant challenge that
needs to be addressed, particularly when dealing with rapid dynamic changes or when
considering structural uniformity and long-term stability.

Integrating EO into the hydrogel matrix can enhance their biological activities, shield
them from degradation, and serve as a platform for creating innovative biotechnological
products. Furthermore, encapsulation seeks to address certain limitations of EOs, such as
their volatility, reduced stability, and high sensitivity to environmental conditions. The
controlled release of bioactive compounds from EOs encapsulated within hydrogels is
crucial for effectively delivering these compounds to their target. On the other hand, a huge
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difficulty, especially in medical applications, is the very high qualitative and quantitative
variability of the EO composition. This is determined by intrinsic factors that influence each
other and are due to the varieties and age of the plants, the type of soil, the climate, or the
time of harvesting, but also by some extrinsic factors such as the extraction methods used.

However, to enhance their effectiveness as targeted delivery systems of EOs, fur-
ther research is required to assess their safety across various applications, ranging from
biomedical to food industries.

The limitations related to the insufficient data on the stability, safety, and long-term
bioactivity of these materials are emphasized. Moreover, the limited number of in vivo
studies, particularly in the medical field, could delay their commercialization in the phar-
maceutical and biomedical sectors.

7. Conclusions

This review aims to provide an overview of polymeric hydrogels containing essential
oils, emphasizing their vast potential for applications in various fields. Hydrogels are
valuable as delivery systems because of their ability to be biocompatible, biodegradable,
and provide controlled release of plant-derived bioactive ingredients. Hydrogel structures,
known for their remarkable swelling, gelling, and bioactive loading capabilities, play a
vital role in the creation of functional materials. Most essential oils are accepted, cred-
ited, and appreciated as valuable bioactive ingredients, capable of performing multiple
pharmacological functions, such as anticancer, antiseptic, antiviral, and antioxidant activi-
ties. Results from the cited literature suggest that hydrogels containing essential oils are
ecological, sustainable materials, with improved biological properties, demonstrating effec-
tive antibacterial, antifungal, anticancer, and anti-inflammatory activities. Nevertheless,
challenges remain in this field, including the need for standardization and the absence of
cost-effective methods for scaling up production on a larger scale. Additionally, issues
concerning stability and toxicity require thorough investigation. The advancement of
essential oil-enriched hydrogel materials presents a growing opportunity to be applied in a
wide range of fields, including biomedicine, cosmetics, dentistry, the food industry, and
even heritage conservation.
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Abstract: Natural deep eutectic solvents (NaDES) represent a new generation of green, non-flammable
solvents, useful as an efficient alternative to the well-known ionic liquids. They can be easily
prepared and exhibit unexpected solubilizing power for lipophilic molecules, although those of
a hydrophilic nature are mostly used. For their unique properties, they can be recommend for
different cosmetic and pharmaceutical applications, ranging from sustainable extraction, obtaining
ready-to-use ingredients, to the development of biocompatible drug delivery responsive systems. In
the biomedical field, NaDES can be used as biopolymer modifiers, acting as delivery compounds also
known as “therapeutic deep eutectic systems”, being able to solubilize and stabilize different chemical
and galenical formulations. The aim of this review is to give an overview of the current knowledge
regarding natural deep eutectic solvents specifically applied in the cosmetic and pharmaceutical
fields. The work could help to disclose new opportunities and challenges for their implementation
not only as green alternative solvents but also as potential useful pathways to deliver bioactive
ingredients in innovative formulations.

Keywords: natural deep eutectic solvents; NaDES and formulations; NaDES and drug delivery;
NaDES and cosmetic; bioactive compound extraction

1. Introduction

Currently, interest in the development of sustainable processes and green bioactive
compounds from renewable sources is steadily increasing in the cosmetic and pharmaceuti-
cal fields. From an extractive point of view, avoiding unfriendly solvents, saving sources
and energy, and recycling waste have become primary objectives for the pharmaceutic and
cosmetic context, according to the green extraction principles [1]. Conventional organic
solvents are commonly used for extracting aromas, perfumes, medicines, and dyes from
plants, but they are often not sustainable due to toxicity, high environmental impact and
flammability [2]. For this reason, in recent years, research in the green extraction context
has focused its attention on new non-toxic, biodegradable green solvents [3].

In this context, ionic liquids (ILs) and deep eutectic solvents (DES) can represent an
excellent alternative to conventional hazardous organic solvents [2]. ILs are defined as salts
deriving from the combination of an organic cation and an anion, characterized by a melting
point below 100 ◦C, being in most cases liquids at room temperature [4]. DESs are defined
as homogeneous eutectic mixtures obtained by mixing two or more pure components
(liquids or solids, ions or neutral molecules) acting as hydrogen bond acceptors (HBA)
and hydrogen bond donors (HBD) [5]. High thermal stability, low volatility, and wide
ranges of viscosity and polarity are some of the most interesting properties belonging to
both ILs and DES [6,7]. In particular, the class of IL organic salts is characterized by low
melting point and minimal vapor pressure, and they can be modified in terms of polarity
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and selectivity for different applications such as chemical or enzymatic reactions [8,9].
Unfortunately, their use is restricted due to their high toxicity and high production costs,
including those for synthesis, purification and disposal [10]. These limitations can be
overcome by deep eutectic solvents with comparable or better physical properties and
phase behaviors than ILs [11]. First introduced by Abbott et al. [12], DES represent a
great and successful alternative to ILs, characterized by easy preparation, purity and low
costs [13]. The process to obtain DES involves the simple mixing of a hydrogen-bond
acceptor (HBA) (like a quaternary ammonium salt) and a hydrogen-bond donor (HBD)
at a suitable molar ratio [14]. Their interaction gives rise to supramolecular compounds,
with peculiar chemical-physical characteristics [15,16], with a charge delocalization that
is responsible for the lowering of the mixture melting temperature with respect to the
individual components (generally from room temperature to 70 ◦C) [7]. Unfortunately,
the use of DES, like green solvents at room temperature, can be hindered by their melting
points being too high [17].

In this regard, a new generation of greener DES of natural origin has emerged over the
past decade. In nature, it has been hypothesized that in plants, different metabolites can
form eutectic mixtures which play different biological roles. They can act as an alternatives
to water and lipids, with the ability to transport water-insoluble compounds inside the
cells, explaining the co-presence of water soluble and insoluble compounds in the botanical
matrix. For this reason, when these metabolites (i.e., sugars, alcohols, amino acids, organic
acids) form DES, they are called “Natural DES” (NaDES) [18]. Their green properties and
behaviors were first described by Choi et al. in 2011 [17–19].

Synthetic NaDES can reproduce this natural behavior, and they are considered promis-
ing new green solvents to be applied in several fields, such as in the cosmetic, pharmaceuti-
cals and food areas. NADES were used successfully to extract phenolic compounds from
plant material. For example, in recent years, research has been carried out on the NaDES
extraction of phlorotannins from the brown alga Fucus vesiculosus L. [20,21]. Phlorotannins
are polyphenols with antioxidant, anti-inflammatory, antiallergic, antibacterial, and anti-
tumor properties. They have a wide range of cosmetic applications, e.g., in sunscreens as
anti-aging and UV-protective agents, and in in food packaging films as preservatives. Some
authors have suggested the use of NaDES as solvents to stabilize proteins (lysozyme, amy-
lase, photosynthetic enzymes) and DNA [18,22,23]. This opportunity led to an increasing in-
terest in NaDES as drug delivery systems for active, but poorly soluble, ingredients [24–26].
NaDES show a wide polarity range and high solubilization strength for a variety of com-
pounds. They present several advantages over classical solvents, ILs, and DES, such as
natural origin, low cost, biodegradability, absence of toxicity, sustainability, and simple
preparation [22]. Although NaDES are recognized as being slightly toxic and with a low
environmental impact, it must be mentioned that they show the phenomenon of eutrophi-
cation [27]. As extractive alternative solvents, NaDES allow the achievement of efficient
extractions when compared to conventional solvents [28–31]. Moreover, they often improve
the stability and storage of the extracted compounds of interest, such as phenols, β-carotene,
and α-tocopherol [22,23,29,32,33]. Despite the myriad of research fields in which NaDES
are involved for diverse types of applications, the dermocosmetic and pharmaceutical
topics are relatively unexplored, as can be seen from Figure 1.

In the last 5 years (2019–2023), more than 1600 papers have been published on this
subject. Most of them deal with the use of these eutectic systems for the extraction of
bioactive compounds from botanical matrices and/or agrifood waste, for the most varied
applications. In order to narrow and detail the object of the work, this review considers and
reports the latest research and results limited to cosmetic and pharmaceutical applications,
where NaDES are explicitly included in the formulations. Papers in which the cosmetic
and/or pharmaceutical potential is only mentioned and NaDES are proposed as alternative
extractive solvents are summarized and cited in Table 1.
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Figure 1. Histogram showing the increase in publications in the past 5 years (2019–2023) regarding
the keywords “NaDES or natural deep eutectic solvent” and the corresponding small number related
to “NaDES and Cosmetic” and “NaDES and Drug or Pharmac*” (data available on Scopus accessed
on 20 December 2023).

Table 1. Extraction of target compounds from natural sources and agri-food byproducts using
NADES as alternatives to conventional solvents, and related references.

Target Compound Natural Matrix NaDES System Conventional Solvent Reference

Anthocyanins Grape skin Citric acid/D-(+)-maltose water or organic solvents such as
methanol and ethanol [34]

Anthocyanins Mulberry Choline chloride/citric
acid/glucose

methanol, ethanol, acetic acid
modified water or hydrochloric acid

modified ethanol
[35]

Anthocyanins Grape pomace
Choline chloride/citric acid

Choline
chloride/proline/malic acid

methanol, acetone and
hydrochloric acid [36]

Anthocyanins Sour cherry pomace Choline chloride/malic acid acidified ethanol [37]

Anthocyanins Blueberry peel Choline chloride/malic acid
Choline chloride/citric acid acidified ethanol [38]

Caffeine Chinese dark tea Choline chloride/lactic acid chloroform, dichloromethane,
acetone and ethyl acetate. [39]

Curcumin Standard solubility tests Choline chloride/glycine ethanol, methanol, acetone and
ethyl acetate [40]

Hydroxytyrosol Olive leaves Citric acid/glycine/water ethanol and water [41]

Isoflavones Soybeans Choline chloride/citric acid acetonitrile acetone, ethanol
and methanol [42]

Pectins Mango peel Betaine/citric acid
choline chloride/malic acid

alkaline, acidic aqueous solutions
and enzyme [43]

Phenolic acids Orange peel Choline chloride/
D-(+)-glucose/water

acetonitrile,
methanol and acetone [44]

Phenolic compounds Bitter melon Choline chloride/acetic acid ethanol, methanol, acetone, ethyl
acetate and chloroform [45]
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Table 1. Cont.

Target Compound Natural Matrix NaDES System Conventional Solvent Reference

Phenolic compounds Olea europaea Water/Choline
chloride/fructose

dimethyl sulfoxide, hexane, ethanol
and methanol [46]

Phenolic compounds Olive pomace Choline chloride/citric acid petroleum ether, acetone, ethyl
acetate and methanol [47]

Phenolic compounds Hazelnut skin Choline chloride/lactic acid methanol, ethanol, and
methanol/water mixtures [48]

Phenolic compounds Cocoa beans Betaine/glucose Hexane, petroleum ether, methanol,
ethanol, ethyl acetate and acetone [49]

Phenolic compounds Waste mango peel Lactic acid/glucose methanol, ethanol, acetone and
ethyl acetate [50]

Rosmarinic acid, carnosol,
carnosic acid Rosmarinus officinalis

Lactic
acid-glucose/menthol-lauric

acid (biphasic system)

dichloromethane, ethanol
and methanol [51]

Solenesol Tobacco leaves Choline chloride/urea
petroleum ether, acetone,
n-hexane, ethyl acetate

and methanol
[52]

Tryptanthrin, indirubin,
and indigo Baphicacanthus cusia Lactic acid/L-menthol methanol, ethanol and

methanol/dichloromethane [53]

Triterpenic acids,
Ursolic acid Eucalyptus globulus Choline

chloride/D-(+)-glucose
dichloromethane n-hexane ethanol

or chloroform [54]

1.1. NaDES Preparation

Many NaDES mixtures are biodegradable and have low toxicity [55–57], partially
due to their natural origin. Most of their components present an intrinsic cosmetic or
pharmaceutical activity, being well-known and used ingredients (organic acids, sugars,
alcohols and polyols, amino acids and quaternary ammonium salts).

Particularly from a cosmetic point of view, this aspect presents many advantages:
increasing the naturality of the compositions and the concentration of active ingredients,
stabilizing them without adding preservatives, reducing the number of ingredients and
allowing a synergistic effect to improve the biological activity of the formulation.

The preparation of NaDES yields easy results with high purity and no waste forma-
tion [58] according to the fundamental principles of green chemistry [59].

As mentioned above, NaDES can be prepared by mixing an HBA (i.e., choline chloride,
choline acetate or betaine) with an HBD (glycerol, urea, glucose, sorbitol, fructose, etc.), with
or without water [17], mainly applying these most common and different physical methods:

1. Heating and stirring method [17], where two components are mixed with a mag-
netic stirring bar, in a 50 ◦C water bath until a clear viscous liquid is formed, about
30–90 min later [17,22,60,61]. Otherwise, it is possible to follow the conditions stated
by Abbot et al. 2003 [12], or heating at 80 ◦C under continuous stirring [60,62,63].

2. Freeze-drying method [64], which is the least used and based on freeze-drying by
sublimation of both the NaDES aqueous portion and the individual components of
the NaDES. This method makes it possible to achieve pure NaDES.

3. Evaporation method [17], which involves the use of rotary evaporator to allow the
components’ evaporation and dissolution in water at 50 ◦C. The liquid that is obtained
is transferred to a silica gel desiccator until it reaches a constant weight.

4. Grinding method, where the component mixture is ground in a mortar with a pestle,
at room temperature, until formation of a homogeneous liquid [65].

5. Ultrasound-assisted heating method, where the component mixture is exposed to
ultrasonication until a homogeneous liquid is formed [66].

6. Microwave irradiation technique, where the mixture is irradiated in a microwave
oven at low power emission and for a few seconds [67].
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The methods mentioned above are shown in Figure 2. The microwave-assisted prepa-
ration of NaDES represents a promising green technique, due to its advantages such as
higher yields, lower energy consumption and shorter reaction times [68].
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1.2. NaDES Structure

The structure and properties of NaDES are conferred by the type and ratio of com-
ponents and also by the hydrogen (H) bonds established between the metabolites them-
selves [17,69,70]. The H bonds’ strength is related to the phase-transition temperature,
stability and solvent properties of the mixture [64]; their key roles in important NaDES
features and behaviors (such as stability and formation) depend on their number and
location [17].

The lowering of the mixture melting temperature, with respect to the single compo-
nents, is due to the formation of a charge delocalization between the HBA and HBD and
to the van der Waals forces that allow blocking the crystallization of the compounds [29].
Usually, a low freezing point can be determined by a higher binding capacity between the
HBD and HBA [70].

The NaDES structures have been evaluated through nuclear magnetic resonance spec-
troscopy (NMR) studies, crystallographic data, fast atom bombardment-mass spectrometry
(FAB)-MS and Fourier transform infrared spectroscopy (FT-IR) [17,60,71]. Thanks to the
nuclear Overhauser effect spectroscopy (NOESY) spectra obtained, it has been seen that
NaDES are characterized by a supramolecular structure mainly due to bonds established
between HBAs and HBDs [17]. This supramolecular structure changes after water dilu-
tion [59]; in fact, it was observed that the presence or absence of water plays a significant
role. This behavior occurs because the H bond systems that NaDES are able to form,
will gradually fade when diluted with water, until disappearing when the water amount
exceeds 50% v/v. In this regard, it has been observed that the degradation of concentrated
NaDES was slower than that of diluted ones [72].

The amount of added water tolerated by the eutectic system should be determined for
each NaDES. Moreover, the types of components used to form NaDES can influence their
physicochemical properties, such as viscosity, conductivity, density, and polarity [60].

Craveiro et al. have demonstrated that water can increase polarity, which affects the
solubility of NaDES [73]. Simultaneously, dilution with water can result in a decrease in
viscosity. This rheological behavior is one of the main problems that NaDES present [17].
A high viscosity interferes with the flow of substances and decreases the extraction effi-
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ciency [74]; this problem can be overcome by heating. The high temperature and thermal
expansion lead to increased molecular force and to structural damage, respectively [75]. An-
other way to reduce the viscosity is dilution with water, since, as already mentioned, water
leads to the breaking of the hydrogen bonds and consequently to a lower viscosity [60].

Several works in the literature describe the use of NaDES to obtain, from natural
sources, bioactive compounds that can be used in cosmetic and pharmaceutical formu-
lations (Figure 3). The main advantage consists of the possibility of directly adding the
NaDES-based extract itself to all types of topical formulations, both in the cosmetic and
pharmaceutical fields, without dramatic changes in the rheological properties or sensorial
profile [76]. However, only a few can actually be used for cosmetic applications because of
safety or regulatory issues [75].
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In the section below, some papers dealing with the use of NaDES to obtain active
principles with excellent properties that can be exploited in the future have been taken
into consideration.

2. NaDES in the Cosmetic Field

Jeong et al. [30] developed an extractive procedure to obtain catechins from Camellia
sinensis (C. sinensis) green tea leaves, including epigallocatechin-3-gallate (EGCG), a pow-
erful antioxidant. Their optimized extraction method involved the use of a ternary DES
mixture, suitable for both pharmaceutical topical preparations and cosmetic formulations.
The authors prepared NaDES by both the heating [17] and freeze-drying [64] methods,
selecting glycerol, xylitol, citric acid, betaine, D-(+)-glucose, D-sorbitol, D-(+)-maltose,
maltitol, urea, D-(−)-fructose, D-(+)-galactose, and sucrose in an adequate molar ratio.
They tested several extractive methods, including ultrasound-assisted extraction (UAE),
agitation, heating, and heating with agitation.

All of the green solvents assessed by the authors allowed for very efficient extractions,
but taking into account the limits of use in cosmetic formulations and the production costs,
the final choice was a NaDES composed of betaine, glycerol and D-(+)-glucose, 4:20:1
(BGG-4). Compared to conventional solvent extractions (water and organic solvents), this
mixture allowed for a better extraction of EGCG and improved stability. The best extraction
conditions, identified by the response surface methodology, involved the application of
UAE at room temperature for 6.5 min, using 81% BGG-4. In conclusion, it was highlighted
that BGG-4 is an excellent extractive solvent and stabilizer for catechins of C. sinensis, useful
in topical formulations.

Also, Vasyliev et al. [77] indicated NaDES as promising solvents to extract antioxidant
bioactive compounds for use in cosmetic formulations. In their work, they applied the UAE
method with one NaDES based on choline chloride (as the HBA) to extract polyphenols
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from waste tomato pomace. To enhance extraction efficiency, they prepared the NaDES in
the presence of water. In particular, they tested a mixture composed of choline chloride:
1,2-propanediol (1:2 v/w): water (10% w/w) (DESs-1) and another one containing choline
chloride: lactic acid (1:2 v/w): water (10% w/w) (DESs-2).

The tomato pomace extracts obtained were then characterized and used as antioxidant
agents (being rich in phenolic acids and flavanols) to develop a natural cream formulation
(oil-in-water emulsion). The main phenolic compounds extracted with DESs-1 and DESs-2
were gallic acid, chlorogenic acid, caffeic acid, trans-cinnamic acid, p-coumaric acid and
ferulic acid. The extract obtained with DESs-2 afforded higher amounts of quercetin, caffeic
and ferulic acid, displaying an enhanced antioxidant power when compared to DESs-1.
The cosmetic formulation also containing DESs-2 showed greater antioxidant activity. Both
emulsions, stabilized by DES, demonstrated antifungal activity against Candida albicans.
In conclusion, this study showed that DES can extract polyphenols from agri-food waste,
such as tomato pomace, to be used as antioxidant additives in the cosmetics industry.

The research team of Petkov et al. [78] also investigated NaDES as possible solvents
for extracting bioactive compounds from natural sources. The authors evaluated the an-
tioxidant activity of extracts from Plantago major (P. major), Sideritis scardica (S. scardica) and
propolis obtained by UAE, assessing the extraction efficiency in terms of total phenols and
flavonoids content, using 10 different NaDES. Betaine-malic acid-water 1:1:6 (BMAH), citric
acid-1,2-propanediol 1:4 (CAPD), lactic acid-fructose 5:1 (LAFr), lactic acid-1,2-propanediol
1:1 (LAPD), choline chloride-glucose-water 5: 2:25 (XXGlH), choline chloride-glycerol 1:1
(XXGly), choline chloride-1,2-propanediol 1:3 (XXPD), and choline chloride1,2-propanediol-
water 1:1:1 (XXPDH) were prepared by the heating and stirring method. In contrast, choline
chloride-urea 1:1 (XXU) and choline chloride-xylitol 4:1 (XXXy) were obtained by the vac-
uum evaporation method The most effective phenolic extraction for both P. major and S.
scardica was achieved using XXGlH as the solvent. When compared to EtOH 70%, used as
a reference, XXPDH, XXPD and LAPD extracted a greater phenolic amount and the same
quantity of flavonoids. Moreover, in contrast to P. major and S. scardica, propolis showed a
strong correlation between phenolic concentration and antioxidant capacity. In conclusion,
Petkov et al. asserted that NaDES extracts can be directly incorporated into formulations
considering their intrinsic properties, such as biocompatibility, low toxicity, and excellent
antioxidant activity.

Another natural bioactive compound, namely Naringerin (NA), a flavonoid already
utilized in various formulations, was extracted by El Maaiden et al. [79] from dried aerial
parts of Searsia tripartita (ST), using NaDES. This study focused on six eutectic solvents,
prepared by the heating technique [80], composed by choline chloride in a 1:2 ratio with
formic acid (DES-1), ethylene glycol (DES-2), lactic acid (DES-3), urea (DES-4), and glycerol
(DES-5), and in a 2:1 ratio with citric acid (DES-6). These solvents were, therefore, used for
the NA extraction by UAE from ST powder. After characterization, DES-1 was chosen for
further analyses as the best-performing solvent with the highest NA concentration, while
DES-6 showed the lowest yields. El Maaiden et al. presented the best operative conditions
based on their achievements, involving an extraction time of 10 min at 50 ◦C, with an
ultrasound amplitude of 75 W and a solid–liquid ratio of 1/60 g/mL. These extracts proved
to be excellent antiaging agents for their antioxidant activity and as enzyme inhibitors of
tyrosinase, collagenase, elastase, and hyaluronidase, which are responsible for skin aging.

Further, Jamaleddine et al. [81] conducted an extractive study using NaDES on tomato
pomace (TP), rich in bioactive compounds. Specifically, they prepared and used four kinds
of NaDES to extract TP by UAE. Jamaleddine and coworkers proposed a novel strategy
for sustainable formulations by incorporating their extraction medium directly into the
formulations. They selected four different methods, present in the literature, for preparing
their NaDES. DES 1, composed of glycerol:glucose (1:3) and water (30%), was prepared
using the method developed by Wils et al. [82]; DES 2 (DL-menthol-lactic acid 8:1) was
obtained by the method of Silva et al. [83]; DES 3, composed of lactic acid-glucose (5:1) and
15% water, was prepared following the method of Fernandez et al. [84], and finally, DES
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4 (L-proline-glycerol 1:2.5 and 30% water) was prepared according to Wu et al. [85] with
some modifications. TP extractions required a matrix maceration in DES 1 for 2 h at 40 ◦C
(ratio NaDES/TP 32:2 w/w) and for 30 min at 50 ◦C with DES (NaDES/TP 20:3.4 w/w). For
DES 3 and DES 4, the UAE procedure was carried out for 1 h at 40 ◦C, with a solid–liquid
ratio of 40/2 v/w and 20/2 v/w, respectively. The results showed that DES 1 demonstrated
great suitability for the extraction of phenolic acids, flavones, flavonols and tannins. DES 2
could extract carotenoids, lipids and tocopherol. DES 3 demonstrated greater efficiency
for phenols, while flavones, flavanols and flavanones were ultimately extracted by DES
4. Finally, the extracts obtained were employed to develop four cosmetic formulations: a
peel-off mask (containing DES 1); a lip balm (DES 2); a water-soluble mask (DES 3); and a
moisturizing cream (DES 4).

Another research team, Jin et al. [86], produced extracts with excellent skin properties
using a mixture of dried and ground leaves of Ginkgo biloba L (GB), Cinnamomum camphora
(L) J. Presl (CC), and Cryptomeria japonica (L.f.) D. Don (CJ). Using safe, stable, and cost-
effective substances approved by the European Commission (2006) [87], Jin et al. prepared
and assessed 15 different cosmetics-compliant NaDES using the heating method [17,88]:
glycerol-xylitol 2:1 (DES 1), glycerol-maltose 3:1 (DES 2), glycerol-sorbitol 2:1 (DES 3),
glycerol-fructose 3:1 (DES 4), glycerol-sucrose 3:1 (DES 5),glycerol-glucose 3:1 (DES 6),
glycerol-maltitol 3:1 (DES 7), glycerol-malic acid 1:1 and 1:2 (DES 8 and DES 9), lactic
acid-glucose 1:2 (DES 10), fructose-sucrose 1:1 (DES 11), fructose-sucrose-glucose 1:1:1
(DES 12), betaine-sucrose 1:1 and 1:2 (DES 13 and DES 14) and 1:1 betaine:glucose (DES
15). This approach facilitated the safe development of an ISO extraction technique capa-
ble of producing a significant quantity of extracts that can be directly incorporated into
cosmetic formulations. DES 1 was selected as the most efficient solvent for the extraction
of isoquercetin (ISO yield 861 µg/g), found in GB, CC and CJ leaf extracts. Finally, using
the central composite design approach, Jin et al. collected data on specific bioactivities
with several leaf extract mixtures and identified the best-performing in terms of increasing
antioxidant activity and anti-tyrosinase and anti-elastase effects.

The study by Hsieh et al. [89] highlighted the potential of natural DES as alternative
solvents to volatile organic solvents (VOS), with the same or even better efficiency. In
particular, the authors extracted gingerols from Zingiber officinale Roscoe (ginger) powder
to obtain extracts that could be incorporated directly into formulations, without the need
for work-up steps for product isolation. NaDES were designed and prepared by the
ultrasonication assisted method, with three different hydrogen bond acceptors (choline
chloride, betaine and L-carnitine) and five polyalcohols (triethylene glycol, ethylene glycol,
1,3-propanediol, glycerol, and 1,3-butanediol) as hydrogen bond donors in opportune
molar ratios: choline chloride-triethylene glycol 1:4 (CC-TriG), choline chloride-ethylene
glycol 1:2 (CC-EG), choline chloride-1,3-propanediol 1:4 (CC-PG), choline chloride-glycerol
1:2 (CC-gly), choline chloride-1,3-butanediol 1:4 (CC-ButG), betaine-triethylene glycol
1:4 (Bet-TriG), betaine-ethylene glycol 1:2 (Bet-EG), betaine-1,3-propanediol 1:4 (Bet-PG),
betaine-glycerol 1:2 (Bet-gly), betaine-1,3-butanediol 1:4 (Bet-ButG), L-carnitine-triethylene
glycol 1:4 (Lcat-TriG), L-carnitine-ethylene glycol 1:2 (Lcat-EG), L-carnitine-1,3-propanediol
1:4 (Lcat-PG), L-carnitine-glycerol 1:2 (Lcat-gly), and L-carnitine-1,3-butanediol 1:4 (Lcat-
ButG). Ultrasonication-assisted extractions were carried out after diluting all of the NaDES
samples with 75% water v/v, reducing viscosities for a more effective extraction. Three
NaDES (Bet-ButG, Lcat-Trig and Lcat-ButG) resulted in the most efficient eutectic systems,
containing the highest concentration of gingerols. Finally, the authors suggested the best
operative conditions for UAE (50 ◦C for 30 min with a 30/1 solvent/solid ratio v/w) that
could maintain the antioxidant activity of gingerols and prevent phenol degradation.

Rocha et al. [90] emphasized the effectiveness of NaDES-based extracts from botanical
matrices as cosmetic ingredients. By the heating and stirring technique, the research team
prepared three eutectic solvents composed as follows: lactic acid-glycerol 1:1 and 10% water
(NADES 1), lactic acid-glycine 5:1 and 13% water (NADES 2), and lactic acid-sodium citrate
4:1 and 31% water (NADES 3). NADES 1–3 were subjected to an accurate physicochemical
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characterization (melting point, pH, density, refractive index, surface tension, viscosity, con-
ductivity, and polarity) after a freeze-drying process. Then, cork extraction was conducted
for each NaDES in a high-pressure closed system, leading to three NaDES-based samples
(Extract 1–3) with antioxidant and antibacterial properties. Once assessed with regard
to their antioxidant activity, transdermal permeability, and cytotoxicity, all samples were
added to two commercial cosmetic products. The new complexes (Formulation A and For-
mulation B) showed an enhanced antioxidant activity and no cytotoxicity on keratinocytes
(for extract concentrations up to 10 mg/mL). Furthermore, Rocha et al. suggested that
Extract 2 (corresponding to NADES 2 solvent) would be the most suitable for inclusion in
cosmetic formulations.

Marijan et al. [91] conducted an extraction using NaDES to derive bioactive com-
pounds from flowering aerial parts of Lotus corniculatus (LC), Medicago lupulina (ML), and
Knautia arvensis (KA), as well as from leaves of Plantago major (PM) selected from urban
parks. In this work, the authors demonstrated that organic waste from urban areas can
contain useful minerals for skin health. The UA extraction was exploited using an NaDES
composed by glycerol, betaine and glucose (in a weight ratio of 20:4:1) and then diluted
with water in the proportion 8:2 (DES80) or 4:6 (DES40) in order to investigate two different
polarities of the solvent [17,30]. Furthermore, for a comparative evaluation, Marijan et al.
utilized environmentally friendly extraction solvents made by dissolving hydroxypropyl-β-
cyclodextrin (HPβCD) or γ-cyclodextrin (γCD) in aqueous solutions. The -different metals
identified by extraction in plants were calcium, very abundant in PM, zinc, especially
present in KA, iron, in ML and less in LC. The last two extracts (obtained by DES80) were
the richest in phenols; in ML samples, the authors identified quercetin, kaempferol, luteolin
and apigenin, while in LC samples, only kaempferol was detected. Differently, in KA and
PM extracts, the highest concentration of phenols was obtained from DES40. In particular,
in PM, all of the studied phenols except luteolin were identified, while in KA, only apigenin
and luteolin were detected. The results obtained by Marijan et al. seem to indicate LC
extract as a good anti-tyrosinase agent and KA as a better anti-elastase one. In conclusion,
the solvents they used, in addition to contributing to bioactivity, allowed for the recovery
of bioactive compounds and metals in organic waste from urban parks, which can be
exploited to produce ecological cosmetic formulations with added high value.

Another research group, Alishlah et al. [92], optimized a UA extraction of oxyresver-
atrol from the root powder of Morus alba (mulberry) urea and glycerin eutectic systems.
The aim of this study was the formulation of an efficient skin whitening cosmetic lotion
containing the NaDES-based extracts. The heating and stirring method was selected for the
preparation and evaluation of NaDES with a urea-glycerin molar ratio of 1:1, 1:2, and 1:3.
UAE was performed with different extraction times (i.e., 10, 15 and 20 min) using 20 mL
NaDES for 1 g mulberry powder; HPLC was used for the identification and quantitation of
oxyresveratrol after extraction. The best results in terms of oxyresveratrol recovery (2.42
mg/g dry powder) were obtained in 15 min by NaDES with urea-glycerin 1:3. Therefore,
this sample was used at a percentage of 35% w/w to formulate three oil-in-water emulsions
(whitening skin lotions: formula A, formula B and formula C) containing stearic acid (1%),
isopropyl myristate (5%), propylene glycol (15%) cetyl alcohol (2% A, 4% B, or 6%C), Tween
80 (3.88% A, 4.13% B, or 4.29% C) and glyceryl monostearate (1.12% A, 0.87% B, or 0.71%
C). Based on physical evaluations, formula A was chosen as the best formulation for the
development of a cosmetic bleaching product for the skin.

Oktaviyanti et al. [93] developed and optimized a green ultrasound-assisted deep
eutectic solvent extraction of Ixora javanica flowers to obtain a natural antioxidant and skin
lightening agent to be used in the cosmetic field. The researchers evaluated the extraction
efficiency of 11 NaDES regarding flavonoids and anthocyanins, and the antioxidant and anti-
tyrosinase activity of the obtained extracts. By use of the heating method, choline chloride
(Ch) was coupled in opportune molar ratios with different HBDs (polyols and organic acids)
to form the following eutectic systems: ChPg (choline-propylene glycol 1:1), ChGl (choline-
glycerol 1:2), ChEg (choline-ethylene glycol 1:2), ChPeg (choline-polyethylene glycol 1:2),
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ChSb (choline-sorbitol 1:1), ChPd (choline-1,3-propanediol 1:3), ChOa (choline-oxalic acid
1:1), ChLa (choline-lactic acid 1:2), ChGa (choline-glycolic acid 1:2), ChMa (choline-malic
acid 1:1) and ChCa (choline-citric acid 1:1). According to the authors, the best extractive
NaDES solvent for I. javanica flowers was ChPg, which demonstrated the best-performing
anti-tyrosinase activity. The design and optimization of the extraction parameters to
maximize flavonoids recovery was achieved by the response surface methodology (RSM);
the best-performing conditions required an extraction temperature at 57 ◦C for 5 min with
a matrix-solvent ratio of 1:50 g/mL. The authors concluded that NaDES can be used as
useful green alternative organic solvents for bioactive compound extractions from natural
models to be added in cosmetic formulations.

In addition to natural models, agrifood waste also represents a promising renewable
source of bioactive cosmetic ingredients. In this regard, Punzo et al. [94] studied NaDES for
the extraction of polyphenols, from freeze-dried red grape pomace, for topical applications.
NaDES, prepared by the heating and stirring method, were obtained by three HBDs (urea,
citric acid and ethylene glycol), selected on the basis of their proven skin compatibility
and mixed in optimal molar ratio with betaine (HBA), as follows: betaine-citric acid 1:1
(BET-CA), betaine-ethylene glycol 1:2 (BET-EG), and betaine-urea 1:2 (BET-U). Among the
samples obtained and used directly as topical formulations, BET-CA extracts (the richest in
malvidin), showed the best antioxidant and anti-inflammatory activity at concentrations
able to permeate the skin. Therefore, this formulation was indicated by Punzo et al. as
the most suitable ingredient for anti-aging cosmetic formulations. Moreover, NaDES were
proven as excellent extractants and carriers for polyphenols; the researchers assessed and
confirmed the in vitro safety of NaDES extracts by means of human 3D keratinocytes.
The authors concluded that their findings could support the use of NaDES as promising
cosmetic ingredients and carriers in new drug delivery systems for topical applications,
since they can affect the permeation of active molecules.

3. NADES in the Pharmaceutical Field

As stated in the reported literature, NaDES are not only considered as green alterna-
tives to conventional organic solvents, but they also promote and enhance the extraction
of bioactive compounds from natural models, or agrifood waste, suitable for cosmetic
application. More recently, several publications have referred to the exploitation of NaDES
in pharmaceutical technology to solubilize and stabilize a wide range of pharmaceutical
systems. Moreover, they can be applied in hydrogels and film formation and as carriers to
deliver bioactive compounds in many other innovative pharmaceutical forms.

In this regard, Delgado-Rangel et al. [95] used NaDES, without crosslinkers, to create
3D pure and porous materials constituted by chitosan (CTS), to be used against V. cholerae
biofilm. In particular, the research group optimized an environmentally friendly method
that allowed the formation of porous monoliths and films, underlining the versatility
of application of NaDES-assisted phase separation processes. The preparation of CTS
matrix films was carried out in three steps by evaporation-induced phase separation. The
solution, based on 2% CTS and acetic acid, was mixed with a NaDES obtained by the
heating method and composed by a mixture of chloride choline-urea in a molar ratio of 1:2
(CCU-DES). After the evaporation of the acidic aqueous solvent from the CTS CCU-DES
mixture, the plasticized CTS film structure was obtained. Between the different weight
ratios of CTS/CUU analyzed, Delgado-Rangel et al. selected the equal weight ratio, as it
allowed obtaining films with the most suitable porous structure. In addition, the research
group observed that the thermal stability of CTS was affected by residual NaDES within its
porous structure. They concluded that, as regards films formed by chitosan in this specific
example, the porosity influenced V. cholerae growth.

Differently, the research group of Alkhawaja et al. [96] used NaDES as a carrier of
a phosphodiesterase 5 (PDE-5) enzyme inhibitor, namely tadalafil (TDF), with the aim
of developing a formulation to be applied on burns and able to prevent the systemic
absorption of the drug. By stirring at room temperature, the authors prepared seven
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NaDES formulations, based on malonic acid (MA) and choline chloride (CC) in different
molar ratios, with and without propylene glycol (PG) to provide different viscosities. B01,
B02, and B03 formulations were composed by the simple mixture of MA-CC 1:1, 1:2, and
2:1, respectively. Once prepared, these NaDES were mixed with PG at different ratios to
obtain the B04 formulation (B01-PG 1:1), B05 formulation (B01-PG 1:2), B06 formulation
(B02-PG 1:1), and B07 formulation (B02-PG 1:2). The characterization of blank NaDES,
obtained by evaluation of spreadability and measurement of contact angle, allowed the
selection of B01 and B04 as potential topical formulations. Subsequently, Alkhawaja and
co-workers improved the aqueous solubility of TDF by mixing it into B01. Moreover, a
new formulation (F01) was developed by incorporating lidocaine (LCD) into the NaDES
samples containing TFD, to also provide a local anesthetic effect. Due to topical effects,
B01 and B04 were chosen to formulate topical preparations with or without lidocaine. The
authors concluded that F01 delays the healing process, thereby lowering the probability
of scarring that may result from burn wounds. Moreover, the presence of NaDES in the
formulations, having antimicrobial activities, reduces the risk of bacterial infections.

Filip et al. [97] coupled NaDES with hydroxypropylcellulose (HPC) to produce self-
assembled hydrogels (HPC-NaDES), compatible with the human gingival fibroblast (HGF)
cell line, for applications in the pharmaceutical field. In particular, the authors obtained
HPC-NaDES 17% and HPC-NaDES 29% aqueous solutions by adding to a 14% HPC solu-
tion the NaDES previously prepared. Choline chloride (ChCl) was mixed in different molar
ratios with four HBDs and small water amounts to obtain ChCl-urea 1:2 (U), ChCl-glycerol
1:2 (GL), ChCl-lactic acid 1:1 (LA), and ChCl-citric acid 1:1 (CA). HPC-NaDES were then
characterized by FT-IR, H1NMR, DSC, TGA measurements, and rheological tests. Accord-
ing to the authors, the HPC-NaDES physicochemical properties are influenced by different
parameters such as hydrogen bond interactions between HBA and HBD, content of NaDES,
and the water amount. Stronger hydrogen bonds were observed in HPC-CA and HPC-GL
compared to the other hydrogels obtained. All HPC-NaDES hydrogels exhibited a pseudo-
plastic behavior. Furthermore, the latter possessed thermo-thickening characteristics since
the HPC in aqueous systems has a lower critical temperature than the solution itself. Finally,
the disk diffusion methods [98,99] enabled the determination of antibacterial and antifungal
activities, showing this order of efficacy: ChCl-CA > ChCl-LA > ChCl-U > ChCl-GL.

A research team that exploited the solubilizing abilities of NaDES (Mustafa et al. [100])
screened various types of eutectic mixtures to solubilize poorly water-soluble drugs and
produce liquid formulations for parenteral administration and gastric tube feeding. In
particular, the authors conducted tests of NaDES solubilization on some insoluble drugs
such as nitrofurantoin, trimethoprim, griseofulvin, methylphenidate, and spironolactone,
and on water-unstable ones (trichloroacetaldehyde monohydrate or chloral hydrate). They
observed good drug solubility in eutectic systems based on choline chloride or betaine,
coupled with different HBDs, such as organic acids, sugars, and polyols. Good results
were achieved for methylphenidate, trimethoprim, griseofulvin, spironolactone, and ni-
trofurantoin. In addition, the stability of NaDES samples containing drugs was tested at
4 ◦C for up to 4 months. The results suggested that methylphenidate and trimethoprim are
better solubilized in acidic NaDES, while pure acetic or lactic acids are more effective for
spironolactone and griseofulvin solubilization. Nitrofurantoin could be dissolved only by
a mixture of choline chloride–acetic-acid–proline–water (1:1:1:5 molar ratio) at a concentra-
tion of 5 mg/mL. Unstable drugs dissolved at the maximum concentration of 250 mg/mL.
Therefore, Mustafa et al. suggested that NaDES represent promising solvents to optimize
liquid formulations with poorly water-soluble drugs, but further investigations are needed.

Li et al. [101] exploited the features of NaDES with the aim of improving the an-
tibacterial properties of a hydrogel to be used as a wound dressing. Specifically, they
prepared a hydrogel of sodium hyaluronate (SH), coated with dopamine (DA), using a
NaDES composed by choline chloride and glucose. After combining SH and DA, Li et al.
added N-Hydroxysuccinimide (NHS) and 1-ethyl-3-(3-(dimethylamino)propyl) carbodi-
imide (EDC) as coupling agents to the mixture using the techniques described by Lee
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et al. [102]. The resulting product, i.e., the SH conjugate with dopamine (DASH), was then
purified and lyophilized. Then, DASH and NaDES were combined in a mass ratio of 4:175
to form a DES-DASH hydrogel. Subsequently, a DES-DASH@Ag hydrogel containing a
silver nitrate solution was prepared and tested for its antibacterial activity against S. aureus
and E. coli. The results showed a nontoxic behavior towards NIH-3 T3 fibroblast cell lines
and the ability to support wound healing in mouse skin within 12 days of surgery. Thus,
Li et al. suggested a future use of the DES-DASH@Ag hydrogel as a topical application for
wound dressing.

Sokolova et al. [103] exploited the plasticizing effect of chitosan of (CS) with NaDES
to create CS/DES films. According to the method described by Samarov et al. [104], they
prepared NaDES by mixing malonic acid (MA) with choline chloride (ChCl). The CS/DES
films (with a thickness of 20 µm) were obtained by casting at room temperature a mixture
of CS and water with a NaDES content ranging from 0 to 82% (w/w), in Petri disks. Film
characterization was performed by means of Fourier transform infrared spectroscopy (FT-
IR), scanning electron microscopy (SEM), atomic force microscopy (AFM), water absorption
isotherms, mechanical measurements, thermogravimetric analysis (TA) and differential
scanning calorimetry (DSC). The analysis of water absorption isotherms, AFM data, and
FTIR spectra indicated that during NaDES formation, MA and ChCl strongly interact,
as well as CS and DES. The other results obtained by Sokolova et al. indicated a glass
transition temperature between +2.0 and −2.3 ◦C, with maximum elongation at break of
62% shown by a film containing 67% by weight of NaDES. The increase in NaDES content
(from 0 to 82%) led to a decrease in elasticity at tension from 800 MPa down to 16 MPa.
Additionally, film with 82% NaDES demonstrated an elastic modulus with a bimodal trend.
Finally, all of the studied films were found to be soluble in water at room temperature.

A further paper, in which NADES were used to endow plasticizing properties to
chitosan films, was presented by Pontillo et al. [105]. The authors investigated the solu-
bility of chitosan in NaDES aqueous solutions of choline chloride: lactic acid (ChCl-LA,
molar ratio 1:1.5) and betaine: lactic acid (bet-LA, 1:2), demonstrating that chitosan can be
dissolved in 1% NaDES w/v water solutions. Films prepared by the casting technique were
compact, with elasticity properties comparable to films obtained by chitosan dissolved in
1% acetic acid (F/AA). Films containing NaDES or physical mixtures were more elastic
and pliable. Films prepared with NaDES solutions (F/bet:LA NaDES and F/ChCl:LA
NaDES) were significantly thicker than the F/AA films. The influence of acids on films’
mechanical properties was confirmed by comparing different organic acids: the presence of
lactic acid instead of acetic acid increases both the resistance of burst and the maximum
elongation of chitosan films. Interesting results were obtained observing SEM morphology:
F/AA films presented small holes, possibly due to the evaporation of the acetic acid, while
the two F/bet:LA NaDES and F/ChCl:LA NaDES seemed to have a smooth surface with
small wrinkled structured pores. The results suggested that properties of the films can be
easily adjusted to fit the requirements useful for a wide range of applications; in particular,
the new mixtures could represent promising alternatives for biomedical wound healing
patches that usually lack in terms of elasticity.

Cerdá-Bernard et al. [106] investigated chitosan/alginate hydrogels to stabilize freeze-
dried C. sativus flower extracts obtained by NaDES-UAE. The study aim was to ex-
ploit unused flower waste, reducing its environmental impact while stabilizing high
added-value ingredients to screen their potential practical applications. In particular,
they proposed an innovative extraction method that afforded the preparation of stable
bioactive compounds with excellent antioxidant activity. NaDES obtained by the heat-
ing method [107] were based on different molar ratios of betaine-lactic acid (80%)-water
1:2:2.5 (Bet/LA/Water), glucose-lactic acid (80%)-water 1:5:6.2 (Glu/LA/Water), betaine-
glycerol-water 1:3:1 (Bet/Gly/Water), L-proline-citric acid-water 2:1:3 (Pro/CA/Water),
and L-proline-glycerol 1:2 (Pro/Gly), this last proving to be the best sample. The optimal
UAE parameters for the extraction of saffron floral by-products and stigmas considered a
process time of 20 min at 180 W and 90% Pro/Gly. Showing excellent antioxidant properties,
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these extracts were subsequently incorporated into a 0.3% chitosan/2% alginate hydrogel
for stability improvement and to study their possible application as food formulations.
Hydrogels containing extracts were then evaluated with regard to their water uptake and
water retention capacities and total phenolic content (TPC) during in vitro digestion. Hy-
drogels with saffron stigma NaDES extracts showed an increased TPC after an hour of
intestinal digestion, with constant levels up to 2 h. Otherwise, the hydrogel with saffron
floral by-product NaDES extract showed an increase in TPC within the first 2 h. Therefore,
Cerdá et al. proposed NaDES-UAE as an optimal combination for the recovery of bioactive
compounds from saffron flower waste and suggested possible uses of their hydrogels for
the cosmetic, food and pharmaceutical areas.

Silva et al. [108] presented a drug delivery system in which curcumin, dissolved in
NaDES based on choline chloride (CC) and glycerol (GLY), was encapsulated into beads
obtained by ionotropic gelation with chitosan and alginate. Beads were produced using
an extrusion-dripping method. The main goal of the study was to develop curcumin-
loaded hydrogel beads with an improved solubility and stability during transit along the
gastrointestinal tract. In this context, NaDES can offer a green and promising alternative to
overcome solubility hurdles and the need for removing organic solvent.

Wang et al. [109] investigated a hydrogel entirely composed by natural ingredients
(sodium hyaluronate—SH, dopamine—DA, chitosan—CS, aloe vera—AV and NaDES) to be
applied as a green and degradable wound dressing formulation. The hydrogel showed good
cytocompatibility on NIH-3T3 fibroblast cells, and antibacterial properties against both
Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria. Sample surface morphologies
were characterized by scanning electron microscopy (SEM); hydrogel swelling and in vitro
degradation studies were assessed by mass change in phosphate buffered saline (PBS)
solutions at 37 ◦C, and the dynamic rheological performances were evaluated by a strain-
controlled rheometer. The results obtained by the NaDES-SH-CS/DA/AV hydrogel showed
good cytocompatibility on NIH-3T3 fibroblast cells and good antibacterial properties.
Moreover, the formulation promoted skin tissue regeneration with good wound healing
effects on mouse skin within 12 days of surgery.

A new approach to NaDES application in the pharmaceutical and cosmetic fields
seems to be exploitable by transforming these natural solvents into eutectogels for active
ingredient delivery. Zeng et al. [110] proposed this opportunity using xanthan gum, a
well-known polysaccharidic gelling agent produced by bacterial fermentation. This low-
cost, biocompatible and biodegradable polymeric excipient is widely used in hydrogel
preparations for biomedical and technological applications. Recently, it attracted a great
deal of attention as a biomaterial for tissue scaffold preparation (extracellular matrix) in
tissue engineering studies. The authors prepared highly biodegradable, thermostable
eutectogels, by gelation with xanthan gum, of four low-viscosity NaDES containing choline
chloride as the HBA and glycerol, xylitol, sorbitol or citric acid as the HBD. Gelation was
obtained at low concentrations of xanthan gum (less than 5%). Morphology of the xanthan
gum eutectogels was observed by optical and electron microscopy, and the possible gel
formation mechanism was investigated by Fourier-transform infrared spectroscopy (FT-IR)
and X-ray diffraction (XRD). The rheological properties were also studied, and the results
showed excellent thermostability of the eutectogels in a temperature range of from 60 to
80 ◦C, with unchanged weight, keeping the gel stored at 80 ◦C for 10 h. By comparison
with xanthan gum hydrogels, the resulting eutectogels were more stable in response to
temperature increases, providing good rheological characteristics that were maintained
over time.

4. Conclusions

In this review, the potential of NaDES as alternative green solvents in the extraction
of natural active ingredients and as drug carriers was presented and explored. The most
significant papers of the last 5 years regarding cosmetic and pharmaceutical formulations
were discussed.
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The main difficulties in the application of NaDES in industrial extraction processes are
often represented by the high viscosities and by the separation of the solute after extraction.
This second drawback is usually overcome by water addition or increasing the temperature,
since these substances are thermo and pH switchable.

This review could help to disclose new opportunities and challenges for NaDES
implementation not only as green alternative solvents but also as potential useful pathways
to deliver bioactive ingredients in innovative formulations.

In conclusion, their application versatility, safety, biodegradability, biocompatibility
and natural origin support NaDES as solvents of the future in the food, cosmetic and
pharmaceutical fields.
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Abstract: Aloe vera-based hydrogels have emerged as promising platforms for the delivery of thera-
peutic agents in wound dressings due to their biocompatibility and unique wound-healing properties.
The present study provides a comprehensive overview of recent advances in the application of Aloe
vera-based hydrogels for wound healing. The synthesis methods, structural characteristics, and
properties of Aloe vera-based hydrogels are discussed. Mechanisms of therapeutic agents released
from Aloe vera-based hydrogels, including diffusion, swelling, and degradation, are also analyzed.
In addition, the therapeutic effects of Aloe vera-based hydrogels on wound healing, as well as the
reduction of inflammation, antimicrobial activity, and tissue regeneration, are highlighted. The
incorporation of various therapeutic agents, such as antimicrobial and anti-inflammatory ones, into
Aloe vera-based hydrogels is reviewed in detail. Furthermore, challenges and future prospects of Aloe
vera-based hydrogels for wound dressing applications are considered. This review provides valuable
information on the current status of Aloe vera-based hydrogels for the delivery of therapeutic agents
in wound dressings and highlights their potential to improve wound healing outcomes.

Keywords: Aloe vera; hydrogels; wound healing; wound dressings; therapeutic agents

1. Introduction

Medicinal plants have been used since ancient times. It has even been estimated that
nearly 80% of the world’s population relies on traditional herbal medicine for primary
health care [1]. Herbal therapies have recently shown an upward trend for a variety
of ailments in parallel with the development of modern medicine. Many new drugs
and treatments derived from medicinal plants are being developed and prescribed today.
According to the World Health Organization (WHO), almost 25% of modern medicines are
derived from plants that were used in traditional medicine. Additionally, many drugs are
synthetic analogues obtained from model compounds isolated from plants [2]. This review
summarizes the preparation, structural features, and properties of Aloe vera-based hydrogels
and recent advances in Aloe vera-based hydrogels for wound dressing applications.

Aloe vera (AV) belongs to the Liliaceae family, of which the best-known species is Aloe
Barbadensis Miller, and has been used for thousands of years in traditional medicine [3].
Being one of the most famous medicinal plants in the world, it is considered a miracle gift
of nature due to its many therapeutic benefits [4].

References to the medicinal use of the AV plant date back 4000 years, but the first
inscriptions mentioning the plant were found on a collection of Sumerian clay tablets from
2100 BC [5,6]. Additionally, in the Egyptian Ebers Papyrus of 1552 BC, the plant was
mentioned as a laxative [5]. The first populations to identify and appreciate the healing
properties of Aloe plants were the Egyptians, Romans, Greeks, Arabs, and Indians [7].
There were many legends, which said that the Aloe plant was used by the Egyptian Queen
Nefertiti (1353 BC), considered “the most beautiful woman who ever lived”, and by Queen
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Cleopatra VII (69–30 BC) in their usual beauty treatments, but also as medicine. According
to legend, in 333 BC, Aristotle advised Alexander the Great to capture the island of Socotra
in the Indian Ocean for its famous AV plantations, which were needed to treat his wounded
soldiers [5].

Starting in the 1950s, Aloe leaf gel began to be industrialized and commercialized.
The global AV extracts market size is projected to grow from USD 2.65 billion in 2023 to
USD 4.55 billion by 2030 at a compound annual growth rate of 8.0% during the forecast
period [8]. The market demand for AV products is now widespread globally and has
been steadily increasing, driven by consumer awareness of its various health benefits
associated with medicinal and cosmetic properties and the growing preference for natural
and organic herbal products, including (i) health and wellness products such as dietary
supplements, herbal remedies, and functional beverages, for their potential health benefits
such as aiding digestion and supporting the immune system; (ii) skin care products and
cosmetics, e.g., lotions, creams, gels, and face masks, due to its soothing and moisturizing
properties; (iii) pharmaceuticals: AV extracts are used in the production of ointments,
creams, and oral medications for burns, wounds, psoriasis, and gastrointestinal disorders;
(iv) agriculture and farming: AV is used in soil improvement and as a natural fertilizer.
Gel-based pharmaceutical and skin care products account for approximately 80% of the
market size.

AV is a shrubby plant with fleshy green leaves, conical and filled with a clear, viscous
gel. It grows perennially in many areas of the globe [9,10]. AV gel has been used for curative
and therapeutic purposes, and numerous bioactive components have been discovered in
the inner gel. It was believed that the special biological activities of AV gel are due to the
synergistic effect of the multitude of biochemical components present in its composition.
It exhibits numerous biological benefits such as astringent, anti-diabetic, anti-ulcer, an-
tibacterial, anti-inflammatory, antimicrobial, antioxidant, hemostatic, and anti-carcinogenic
properties and also effectiveness in treating gastrointestinal disorders [11,12].

AV is a plant often cultivated in people’s homes around the world as a natural com-
pound intended for widespread use by both adults and children and recognized in clinical
practice as a tool for wound healing [13–17]. AV gel has been particularly associated
with the treatment of skin injuries such as cuts, burns, frostbite, radiation, and electrical
injuries [18–21].

Depending on the evolution of the recovery process, wounds can be classified into
two broad categories: acute and chronic wounds [22,23]. Acute wounds are injuries with
complete healing within up to 12 weeks [24,25]. In contrast, chronic wounds take more
than three months to heal. This may be due to repeated tissue damage or associated
physiological conditions such as poor primary treatment, infections, diabetes, malignancy,
severe injury, or a compromised immune system [26–28].

Wound care is necessary to prevent or mitigate possible infection, the most common
complication for compromised skin. Dressings are mainly applied to prevent microorgan-
isms from reaching the wound, to keep the wounded area hydrated, and to absorb exu-
dates [29,30]. Traditionally, sterile gauze dressings have been widely applied to wounded
areas [31–33]. However, they are not always effective because they do not provide hy-
dration, and sometimes their removal becomes painful because they stick to the wounds.
Additionally, to prevent the development of infections, different creams and ointments with
antimicrobial action are used, which must be removed and reapplied constantly [34–36].
Modern dressings are adapted to different types of injuries and patient typologies to
avoid infection and promote scarless healing. They are designed to provide hydration and
interact with wounds by releasing bioactive molecules to accelerate the wound-healing
process [37,38].

With the adaptation of synthesis methods and the evolution towards ecological chem-
istry, it is absolutely necessary to use non-toxic solvents for the production of dressings.
Thus, dressings such as dermal patches, foams, hydrogels, hydrocolloids, nanoparticles,
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nanofibers, films, membranes, and three-dimensional (3D) printed scaffolds can be obtained
with various bio-based adaptive features [39–44].

Hydrogels are a class of materials often applied in the soft tissue engineering of skin,
blood vessels, and muscles [45,46]. With a three-dimensional porous structure, hydrogels
are formed by physically or chemically crosslinked bonds of hydrophilic polymers [47–49].
They are also insoluble and have an exceptional capacity to absorb wound exudates and
allow oxygen diffusion to accelerate healing [25,50–52]. They can retain several times more
water compared to their dry weight and maintain good hydration in the injured area [53,54].
Due to these unique physical properties, hydrogels are the most suitable dressings to cover
skin wounds [55–57]. Hydrogel design and development can provide a platform for the
encapsulation of cells, antibacterial agents, or bioactive factors. As dressings, hydrogels
must be biocompatible, have suitable physical and mechanical properties, and ensure cell
proliferation in wounds [58–60].

Throughout history, humans have used native AV gel, which has been shown to have
exceptional properties in the wound-healing process and in promoting tissue regeneration.
The huge potential of AV gel is due to the advantages of the biocompatible, bioavailable,
and biodegradable matrix, as well as the ability to heal wounds easily and effectively
without leaving scars [52,61,62]. Native AV gel not only releases bioactive components but
also moisturizes the wound to increase flexibility, acts as a barrier against foreign microbes,
and helps reduce pain at nerve endings [21].

2. Phytochemical Constituents of Aloe vera

Numerous studies have demonstrated the exceptional healing potential of AV and
identified the many bioactive compounds responsible for wound healing. The structure
of the Aloe leaf is configured in the form of three layers. The inner layer consists of a
transparent gel containing 99% water and 1% solid matter that compresses over 75 different
compounds (such as glucomannans, amino acids, lipids, sterols, and vitamins), the middle
layer is a bitter latex in the form of yellow juice rich in glycosides and anthraquinones, and
the outer layer is a thick cortex that produces carbohydrates and proteins (Figure 1) [63–67].
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Depending on the species, the influence of climatic conditions, and the diversity of
the ecosystem to which they belong, the phytochemical constituents can be different in
AV plants. Harvested from the inside of the leaves of the AV plant, the gel is a gelatinous
substance that contains a complex variety of several bioactive compounds, and the analysis
of the dry matter of the dry AV gel showed that it mainly contains polysaccharides (approx.
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55%), sugars (approx. 17%), minerals (approx. 16%), proteins (approx. 7%), lipids (4%), and
phenolic compounds (approx. 1%) [4,68–72]. One of the most important compounds of the
gel is acemannan, which is used in many pharmacological and biological applications in
medical and industrial fields, such as dentistry [73], metabolic disorders [74], cardiovascular
diseases [75], and tumor diseases [76]. It has also been used for wound treatment [77] and
drug delivery [78,79]. Other constituents, such as amino acids, are building blocks for body
and muscle proteins; sugars control cholesterol levels, proper digestion, liver function,
and help strengthen bones. Anthraquinones have an antiviral effect, enzymes catalyze
the biochemical reactions, inorganic compounds have a role in the proper functioning of
several enzymes in various metabolic pathways, vitamins have a strong antioxidant action
in neutralizing free radicals, proteins have an antitumor effect, and hormones and sterols
promote wound healing.

It is believed that the power to adjust the various biological and therapeutic implica-
tions of AV gel is due to the synergistic effect of all the active phytochemical components.
This unique composition enabled the gel to harmoniously integrate into human tissues,
promoting natural healing and regeneration processes. Applied topically to a wound,
AV gel acts gently but as a potent antimicrobial and anti-inflammatory agent, inhibiting
bacterial growth and reducing inflammation [21,80–84]. Table 1 summarizes the main
biocomponents of AV. Additionally, the active compounds of the gel stimulate the pro-
duction of new cells and collagen, which is an essential protein in the process of tissue
regeneration (Figure 2) [68,85]. Thus, wounds treated with AV gel heal faster and without
leaving unsightly scars.
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Table 1. Compounds found in Aloe vera [64].

Type Compounds

Anthraquinones/anthrones Aloe-emodin, aloetic-acid, anthranol, aloin A and B (collectively known as barbaloin)
isobarbaloin, emodin, ester of cinnamic acid

Carbohydrates
Pure mannan, acetylated mannan, acetylated glucomannan, glucogalactomannan,

galactan, pectic substance, arabinogalactan, galactoglucoarabinomannan,
galactogalacturan, xylan, cellulose, acemannan

Enzymes Alkaline phosphatase, amylase, carboxypeptidase, carboxylase, catalase, cyclooxidase,
phosphoenolpyruvate, cyclooxygenase, superoxide dismutase, lipase, oxidase

Inorganic compounds Calcium, chlorine, phosphorous, chromium, copper, magnesium, iron, manganese,
potassium, sodium, zinc

Non-essential and essential amino acids
Alanine, arginine, aspartic acid, glutamic acid, glycine, histidine, hydroxyproline,

isoleucine, leucine, lysine, methionine, proline, threonine, tyrosine, valine,
phenylalanine

Proteins Lectins, lectin-like substance

Saccharides Mannose, glucose, L-rhamnose, aldopentose,

Vitamins B1, B2, B6, C, β-carotene, choline, folic acid, α-tocopherol

Miscellaneous Arachidonic acid, γ-linolenic acid, potassium sorbate, steroids (campesterol, cholesterol,
β-sitosterol), triglycerides, triterpenoid, gibberellin, lignins, salicylic acid, uric acid

3. Preparation of Aloe vera Hydrogels

AV gel can serve as a natural and biocompatible matrix for hydrogel. It can be obtained
by extracting the gel from mature AV leaves that are healthy and free from any damage
or discoloration, removal of the yellow latex layer, which can be irritant, and processing
the clear gel in the inner leaf to remove any impurities by washing with distilled water or
ethanol. After purification and excess water draining (a concentration of 1–10% (w/v) is
typically used for hydrogel formulations), the gel can be mixed with a cross-linking agent,
such as a suitable polymer, considering factors such as gelation time, biocompatibility, and
stability of the cross-linked hydrogel, to form a hydrogel. Finally, the gel is washed with
distilled water to remove any unreacted cross-linking agent or by-products and stored
refrigerated in a moisture-sealed container to maintain its moisture content (Figure 3). In
Figure 4, the procedure for the AV hydrogel network preparation for its use in regenerative
medicine is represented [86,87].

The specific procedure for preparing AV-based hydrogels can vary depending on the
desired application and the chosen cross-linking method. It is essential to follow good
laboratory practices and refer to relevant literature or established protocols to ensure the
reproducibility and quality of the hydrogel preparation. It is worth mentioning that the in-
corporation of therapeutic agents, such as antimicrobial and anti-inflammatory agents, into
AV-based hydrogels can enhance their potential for wound healing and other biomedical
applications. By combining AV medicinal properties and wound healing effects with the
controlled release capabilities of hydrogels, it is possible to develop advanced biomaterials
with improved therapeutic outcomes. Therapeutic agents can be added to the AV gel
solution before or during the cross-linking process. This can be achieved by dissolving
the agents in a suitable solvent and then mixing them with the gel solution. The concen-
tration of the agents can be varied to control the release rate and dosage. Additionally,
the incorporation of therapeutic agents can be attained by the selection of appropriate
therapeutic agents with desired antimicrobial and anti-inflammatory effects based on the
specific application. Examples of antimicrobial agents include silver nanoparticles [88],
antibiotics [89], or natural antimicrobial compounds [90], while anti-inflammatory agents
may include corticosteroids [91] or non-steroidal anti-inflammatory drugs (NSAIDs) [92].
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The cross-linking and gelation of AV hydrogels are crucial steps in the preparation
process to convert the AV gel solution into a solid hydrogel matrix. Cross-linking is the
process of creating covalent or physical bonds between polymer chains, resulting in a
three-dimensional network that gives the hydrogel its structural stability and enhanced
mechanical properties. Gelation refers to the transformation of the liquid gel solution
into a solid gel form. The gelation process involves mixing the AV gel solution with an
appropriate concentration of cross-linking agent and allowing it to react for a specific
period. The AV gel solution containing therapeutic agents can be cross-linked using a
suitable method, such as chemical cross-linking or physical cross-linking. Cross-linking
agents are substances that promote the formation of covalent bonds between polymer
chains, resulting in a three-dimensional network structure. This network improves the
gel’s strength, elasticity, and resistance to dissolution in aqueous environments, making
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it suitable for wound healing applications. Various cross-linking mechanisms and agents
can be utilized for AV-based hydrogels. Chemical cross-linking may involve the addition
of a cross-linking agent that reacts with hydroxyl groups in AV to form covalent bonds,
leading to gelation; while physical cross-linking can be achieved through temperature,
pH-incorporating temperature, or pH-responsive polymers, the hydrogel forms as the
polymer chains undergo a conformational change by simply heating the gel solution to a
specific temperature or adjusting the pH. Certain polymers, such as alginate, can undergo
ion-induced gelation in the presence of divalent cations such as calcium ions. Calcium
chloride (CaCl2) is commonly used to initiate gelation in Aloe vera-alginate composite
hydrogels. The gelation occurs as the calcium ions form ionic cross-links with the alginate
chains [93]. A few commonly employed cross-linking methods are: (i) temperature-induced
gelation: AV polymers can undergo gelation when the temperature is raised above a critical
point, forming a physical cross-linked network; (ii) ionic gelation: addition of multivalent
cations, such as calcium ions (Ca2+), can induce gelation by creating ionic interactions
between the AV polysaccharides; (iii) natural agents such as glutaraldehyde, genipin,
and tannic acid can be used to chemically cross-link AV hydrogels, these agents react
with the functional groups present in the polymer chains, forming stable covalent bonds;
(iv) carbodiimides such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), can
facilitate the formation of amide bonds between carboxylic acid groups of AV polymers
and amine groups from other molecules, resulting in cross-linking; (v) radiation-induced
cross-linking: hydrogels can be cross-linked using ionizing radiation, such as gamma rays
or electron beams, these high-energy radiations cause the formation of free radicals within
the polymer chains, leading to cross-linking. These cross-linking mechanisms and agents
help improve the mechanical integrity, swelling behavior, and biocompatibility of AV-based
hydrogels used in wound dressings. They promote the stability of the hydrogel structure,
prevent rapid dissolution in contact with wound exudate, and ensure the sustained release
of beneficial components from AV for wound healing purposes. It is important to note
that the specific choice of cross-linking agent and method may depend on factors such
as desired properties, safety considerations, and compatibility with the wound healing
environment. During cross-linking and gelation, it is important to control parameters such
as temperature, pH, and reaction time to achieve the desired gel properties. The gelation
time can be influenced by factors such as the concentration of cross-linking agents, AV gel
concentration, and the specific method used. It is crucial to optimize these parameters to
obtain hydrogels with desirable properties, such as mechanical strength, swelling behavior,
and drug release characteristics. After gelation, it is common to wash the hydrogel to
remove any unreacted cross-linking agents or by-products. The resulting AV hydrogel can
be characterized and evaluated for its physical, chemical, and biological properties, such
as gelation time, swelling behavior, mechanical strength, and drug release profile. In vitro
and in vivo studies can be conducted to assess the antimicrobial and anti-inflammatory
efficacy of the hydrogel, as well as its biocompatibility, to ensure its suitability for various
applications, including wound healing, drug delivery, and tissue engineering. Figure 5
presents a schematic illustration of the synthesis and characterization of three composite
hydrogels with different concentrations of AV, 5%, 10%, and 20% (w/v), and the assessment
of their properties [94]. The natural polymer-based hydrogels with high AV content, from
38% to 71% by weight in dry gel, demonstrated improved pharmacotechnical properties,
including swelling ratio, spreadability, elasticity, and tensile strength. The hydrogel with AV
content of 10% (w/v) in solution and 55% by weight in dry gel exhibited the highest strength,
elasticity, and absorption capacity and also a slightly higher spreadability, indicating it for
application in wound care [94].
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the experimental mouse model [100]. It acts in intestinal disorders (combats constipation) 
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103]. Moreover, even AV flowers are consumed more often today, knowing that diets rich 
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4. Biological and Pharmacological Effects of Aloe vera

AV gel has multiple functions. It can be used in the food field due to its proven
biological properties such as antioxidant, antiviral, antibacterial, antifungal, and antiochra-
toxigenic activity against Aspergillus carbonarius, Aspergillus niger, Penicillium digitatum,
Penicillium expansum, and Botrytis cinerea [63,95–98]. It is widely used to produce gel-
containing healthy drinks and juices, including sports drinks [99]. It can be a functional
food in the activation of lipolysis and the prevention of metabolic changes related to obesity
since the phytosterols of Aloe gel are effective in reducing visceral fat due to the interaction
with cholesterol and also has an effect on glucose metabolism, reducing blood sugar in
the experimental mouse model [100]. It acts in intestinal disorders (combats constipation)
due to its laxative, anti-dysenteric, anti-hemorrhoidal, and cicatrizing properties [101–103].
Moreover, even AV flowers are consumed more often today, knowing that diets rich in
antioxidants reduce the risks of cardiovascular diseases and cancers [104].

Additionally, AV gel can be used in the medical field due to its demonstrated phar-
macological effects on several components of the metabolic syndrome, such as effects
against dyslipidemia, hyperglycemia, hypertension, and obesity [105]. Numerous studies
have highlighted the beneficial anti-inflammatory, anti-diabetic, immunomodulatory, and
anticancer (neoplastic disease) capacity [106–108].

At the same time, it has been studied for its active capabilities, such as hepato-
protective, anti-ulcer, anti-arthritic, and anti-rheumatic properties [109–111]. Many in-
vestigations have shown that the dental uses of AV are multiple, with a positive impact
on the oral area [112–114]. In the case of broken, avulsed teeth, the extract (50%) of AV
determined the increase in the cell viability of the stem cells in the dental pulp. This result
is due to polysaccharides and especially acemannan, which have a positive effect on the
growth factor, the expressions of specific osteogenic genes, and DNA synthesis [115,116].

AV has a crucial contribution in reducing pain, combating inflammation, moisturizing
the wound, improving the quantitative and qualitative composition of collagen, and im-
proving the migration of neighboring epithelial cells of the wound [117]. AV has valuable
pharmaceutical properties both through the contained gel and the whole leaf extract, which
include the possibility of co-administration of bioavailable vitamins to humans. In a study
on human subjects, Aloe was found to increase the absorption of both vitamins C and
E through a slower absorption mechanism, and the vitamins last longer in plasma with
Aloe. Aloe is said to be the only supplement known to improve the absorption of both
vitamins and should be considered a true supplement [118]. Figure 6 presents a graphical
representation of the interrelationship between the properties and composition of AV.
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The versatile nature of AV gel has significant potential in the field of pharmaceutical
applications, particularly in improving the absorption capabilities of poorly absorbed orally
administered drugs. Different formulations can encapsulate poorly absorbed drugs, while
AV gel acts as a stabilizing and enhancing agent [119–121]. Due to its outstanding efficacy
and compatibility with different drug carriers, the use of AV can be further expanded in
potential applications and provides a flexible platform for optimizing oral drug delivery.

The release of therapeutic agents from AV-based hydrogels can occur through several
mechanisms, including diffusion, swelling, and degradation of the hydrogel matrix. These
mechanisms play a crucial role in controlling the release rate and duration of the therapeutic
agents. Here is an overview of these mechanisms:

Diffusion-controlled release: Diffusion is the most common mechanism for the release of
therapeutic agents from hydrogels. The hydrogel matrix acts as a barrier, and therapeutic
agents diffuse through the gel network. The release rate is governed by the concentration
gradient between the hydrogel and the surrounding medium. The diffusion coefficient of
the therapeutic agent in the hydrogel matrix, as well as the pore size and structure of the
hydrogel, influence the release kinetics. Factors such as the molecular weight and solubility
of the therapeutic agent also affect diffusion-controlled release [122].

Swelling-controlled release: AV-based hydrogels have the ability to absorb water and
swell, affecting the release of therapeutic agents. When the hydrogel comes into contact
with an aqueous medium, it absorbs water and swells, leading to an expansion of the
gel network. The swelling of the hydrogel creates channels or pores, facilitating the
release of therapeutic agents. The release rate depends on the degree of swelling, which
can be influenced by factors such as hydrogel composition, cross-linking density, and
environmental conditions (e.g., pH and temperature) [123].

Degradation-controlled release: Some AV-based hydrogels can undergo controlled degra-
dation over time. The hydrogel matrix degrades through processes such as hydrolysis,
enzymatic degradation, or biodegradation, leading to the release of therapeutic agents.
The degradation rate is influenced by factors such as the composition of the hydrogel,
cross-linking density, the presence of enzymes or catalysts, and the physicochemical envi-
ronment. As the hydrogel degrades, the therapeutic agents are gradually released into the
surrounding medium [124,125].
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These release mechanisms can occur individually or in combination, depending on the
specific formulation and properties of the AV-based hydrogel, as well as the characteristics
of the therapeutic agents. The choice of cross-linking agents, gel composition, and hydrogel
architecture can be tailored to optimize the release profile, achieving sustained or controlled
release over a desired period. The release of kinetics can also be influenced by external
factors such as temperature, pH, and mechanical forces. Additionally, the interactions
between the therapeutic agents and the hydrogel matrix, such as electrostatic or chemical
interactions, can also impact the release behavior. Therefore, it is essential to carefully
design and characterize AV-based hydrogels to achieve the desired release profile for
specific therapeutic applications.

AV-based formulations have both inhibitory and stimulatory properties that can
influence inflammatory processes and wound healing. Its inhibitory system refers to its
capacity to reduce inflammation and exhibit anti-inflammatory activity. On the other
hand, its stimulatory system refers to its power to promote wound healing. Together,
these dual systems allow AV to modulate the complex interplay between wound healing
and inflammation beneficially. Both the native gel and hydrogels based on AV showed
beneficial effects and proved effective in different applications, in oral and topical therapies.
They accelerate the rate of wound closure and skin healing and alleviate mucocutaneous
problems, including gingivitis. As a natural medicine, it is used in oral mouthwashes,
toothpaste, submucosal fibrosis, vaginal atrophy in menopausal women, and mucosal
lesions induced by chemotherapy and radiotherapy or in veterinary practice. Here, we
highlight some main beneficial effects of AV hydrogels in wound healing.

4.1. Reduction of Inflammation

Psoriasis is an immune disease, provoked by an unclear cause, which is characterized
by inflammation caused by the dysfunction of the immune system and is manifested by an
itchy rash, most commonly on the knees, elbows, trunk, and scalp. This disease can cause
inflammation in the body and can also affect other organs or tissues in the body. Worldwide,
approximately 125 million people suffer from this disease. Plaque psoriasis is associated
with several comorbidities, including inflammatory arthritis, cardiometabolic disease, and
depression. The American Academy of Dermatology—National Psoriasis Foundation
guidelines recommend biologics as alternatives for the first-line treatment of moderate to
severe plaque psoriasis due to their therapeutic efficacy and acceptable safety profiles [126].
AV has often been used for topical applications in the treatment of psoriasis. A study on rats,
in which hydrogels based on AV mucilage were developed and prepared with 80% w/w of
gel for topical applications, demonstrated good efficiency in controlling hyperkeratinization,
showing a 61% reduction of the stratum corneum on the tested animals. The results
confirmed the keratolytic action of AV hydrogel, which can be used to treat psoriasis.
The effect of AV leaf extract has been attributed to polysaccharides, rich in glucomannan
and acemannan, pectic compounds, cellulose, and hemicelluloses, which determine most
of the plant’s therapeutic properties [127]. The antipsoriatic properties of AV have been
combined with the healing activity of Natural Rubber Latex to produce new economic
occlusive dressings recommended for the treatment of psoriasis symptoms. In total, 58.8%
of loaded AV, present on the surface and inside the dressing, was released after 4 days.
An in vitro study on human dermal fibroblasts and sheep blood, respectively, confirmed
the biocompatibility and hemocompatibility of the new dressings, the preservation of
approximately 70% of the free antioxidant properties of AV, and the total content of
phenolic compounds 2.31 times higher in these dressings compared to natural rubber
latex without AV [128].

4.2. Prevention of Bacterial Infection

Chitosan and AV films encapsulating thymol were prepared to be used in preventing
the possibility of bacterial infection and showed a high thymol encapsulation efficiency of
95.3% with good dispersibility. Test results against various pathogenic microbes such as
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Bacillus, Staphylococcus, Escherichia, Pseudomonas, Klebsiella, and Candida showed that the
films were effective against bacterial colonization in a thymol concentration-dependent
manner. The addition of AV increased the water absorption of the films, which is one of
the primary factors of healthy wound healing and helped by improving the antioxidant
activity and in vitro release efficiency of thymol [129]. New polymer composite films based
on polyvinyl alcohol and AV have been prepared for wound healing and prevention of
surgical wound infections. Films tested for antibacterial and antifungal activity against
E. coli, P. aeruginosa, Aspergillus flavus, and Aspergillus tubingensis showed antimicrobial
activity against all strains; the lowest concentration of AV (5%) showed the highest activity
against all strains. Sutures of wounds covered with films based on polyvinyl alcohol and
AV showed that the new composites have antibacterial effects and the potential to be used
in the prevention of infections at the surgical site and can be used for wound healing
purposes [130]. Films based on alginate, AV gel, honey, and cellulose nanocrystals can be
used for applications as antibacterial dressings. The morphological, swelling, mechani-
cal, and biological properties of the films prepared and tested against the Gram-negative
organisms Salmonella typhi, Klebsiella pneumoniae, Escherichia coli, and the Gram-positive
organism Staphylococcus aureus were estimated. The films showed superior biocompati-
bility, good mechanical properties, and excellent antibacterial capabilities [131]. Blended
nanofiber membranes for new types of antibacterial wound dressings were made based on
polycaprolactone/chitosan/Aloe vera (PCL/CS/AV) nanofiber (NFM) by electrospinning.
The characterizations and tests carried out showed that the addition of AV increased the
hydrophilicity and the pore size of the membranes and led to the improvement of the
antibacterial performance against Streptococcus aureus and E. coli and the biocompatibility
in 5 days. The membranes produced were proposed as suitable for short-term dressing or
acute wounds (1–4 days) [132]. Nanofiber membranes were developed based on natural,
biocompatible, and biodegradable composites from AV extract, pullulan, chitosan, and
citric acid, through Forcespinning® technology. The morpho-structural characterization
and thermogravimetric analysis of the membranes indicated their good properties, as well
as good water absorption capacities and synergistic antibacterial activity against Escherichia
coli, which promoted cell attachment and growth. Due to their porous structure and large
surface area, the membranes can be recommended as potential dressing applications due
to their ability to absorb excessive blood and exudates, their thermal stability, and the
protection they offer against infection [133]. Novel sodium alginate/poly(vinyl alcohol)
(SA/PVA) hydrogel dressing films enriched with AV were produced by a simple method.
The influence of different amounts (5, 10, 15, 20, and 25%, v/v) of AV solution on the
chemical structure and properties of sodium alginate/poly(vinyl alcohol) hydrogel films
was studied. The structural, morphological, mechanical, and thermal characterization
confirmed that rigid and thermally stable three-dimensional structures were obtained.
The results regarding the release profile of the polysaccharides from the hydrogel matrix
showed that the active substance was released in a prolonged, gradual manner, even for
a week. It was shown that the presence of AV within the cross-linked polymer network
improved the active substance delivery properties of the hydrogel films. At the same time,
the cytotoxicity of the materials was studied, and the results indicated good adhesion
properties and a lack of toxicity. In vitro experiments on normal human dermal fibroblasts
showed very good cell attachment to AV hydrogel discs, which promoted cell spreading
and proliferation. As such, SA/PVA/AV sustained-release AV films have been proposed
for applications such as interactive wound dressings [134]. Recent studies have concluded
that AV gel is an effective antibacterial agent to prevent wound infection caused by various
bacteria: P. Aeruginosa [135], Campylobacter rectus, Provetella intermedia [136], and Escherichia
coli (E. coli) [137].

4.3. Skin Regeneration

The skin is part of the body’s integumentary system and consists of the epidermis and
dermis, with a subcutaneous fatty layer, the hypodermis [138,139]. It protects us against
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external factors and prevents bacteria and germs from entering the body and blood and
causing infections [140,141]. At the same time, the skin is vulnerable and can be affected
by acute or chronic wounds [142]. Wound healing is a complex physiological process,
which is achieved through four explicit phases: hemostasis, inflammation, proliferation,
and remodeling and involves the epidermis-containing keratinocyte, melanocyte, and
Langerhans cells, dermis, including fibroblast, neutrophil, mast cell, and dermal dendritic
cells, and the hypodermis, which contains mesenchymal stem cells (Figure 7) [22,143–145].
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Figure 7. Structure of human skin: the epidermis (which contains keratinocytes, melanocytes,
and Langerhans cells) and dermis (which includes fibroblasts, neutrophils, mast cells, and dermal
dendritic cells), as well as subcutaneous hypodermis (which contains mesenchymal stem cells) [145].

The wound-healing process consists of four highly integrated and overlapping phases:
(i) hemostasis, (ii) inflammation, (iii) proliferation, and (iv) tissue remodeling or resolu-
tion [146]. Figure 8 shows the main stages of the normal wound-healing process [145]. Each
stage is characterized by key molecular and cellular events and is coordinated by a series
of secreted factors that are recognized and released by wound response cells. Hemostasis is
the first stage. It involves coagulation, which changes the blood from a liquid to a gel. The
inflammation phase begins at the time of injury and lasts up to four days. As inflamma-
tory cells undergo apoptosis, wound healing progresses to the proliferative phase. This
phase begins approximately three days after the injury and overlaps with the inflammatory
phase, while the tissue remodeling phase, characterized by the formation of granulation
tissue, angiogenesis (formation of blood vessels), wound contraction, and the process of
epithelialization, can continue for six months to one year after the injury, which leads to
the formation of scar tissue. Many variables can disrupt one or more phases of this process,
thereby producing inadequate or incorrect healing of skin wounds. The main elements
that affect wound healing are oxygenation, infection, age, stress, diabetes, obesity, drugs,
alcoholism, smoking, repeated trauma, diet, and poor blood circulation [147–149]. Infection
is the most common complication for injured skin; therefore, prevention or mitigation of
infection is of utmost importance.
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Using an ecological preparation method, a natural, degradable, and environmentally
friendly hydrogel dressing was developed using AV as an active ingredient. The hydrogel
dressing was prepared using only natural ingredients, composed of sodium hyaluronate
(SH), dopamine (DA), chitosan (CS), and AV, and using a natural deep eutectic green solvent
(DES) as the green solvent. The newly synthesized hydrogel showed good cytocompatibility
tested on NIH-3T3 fibroblast cells and antibacterial properties against both Gram-positive
(S. aureus) and Gram-negative (E. coli). Additionally, in a study on mice, the hydrogel
promoted the regeneration of skin tissue and healed the skin wound after surgery within
12 days. The authors concluded that the newly prepared hydrogel, which is natural,
degradable, and ecological and uses AV as an active ingredient, shows great potential
in wound healing applications [150]. A study on the emergency treatment of vaginal
tissue by local application of AV and alginate hydrogel for the release of mesenchymal
stem cells derived from the maternal endometrium with the aim of promoting maternal
injury relief and early healing was carried out in a simulated injury model at birth. It was
observed that in the absence of therapy, fibrotic healing can occur in many cases. Local
injection of hydrogel-containing mesenchymal cells significantly improves smooth muscle
and elastin content, as well as decreases tissue stiffness after 6 weeks. The findings of the
study highlighted that immediate treatment of severe vaginal birth trauma with therapeutic
mesenchymal stem cells delivered in AV and alginate hydrogel might become a potential
new treatment strategy for faster healing of birth injuries and prevention of pelvic organ
prolapse (Figure 9) [151].
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(A) Hyd T; (B) Hyd/eMSC T (yellow dotted lines); (C,D) red arrows—zoom area of hydrogel
and black arrows—zoom area of collagen; (E) SUSD2, (F) mCherry, and (G) merge image of
SUSD2 + mCherry in rat vaginal sections after 1 week. Reprinted with permission from ref. [151]
Copyright 2023, Elsevier.

Another study explored the potential for acute and chronic wound healing using
piperine as a new bioactive compound. New systems of bioactive hydrogels based on
carbopol 934 containing piperine mixed with AV gels of different gel strengths were pre-
pared and characterized (Figure 10). The developed formulation system was investigated
in an excisional wound healing model in the rat model. The results of the in vivo study
and histopathological examination showed that the piperine-containing bioactive hydrogel
system compared with the piperine-free bioactive hydrogel system, leads to early and
intrinsic wound healing (Figure 11). Thus, the findings of the study emphasized that the
new piperine-containing bioactive hydrogel is a promising therapeutic approach for the
application of wound healing [152].

Studying the influence of a commercial hydrogel formulation based on AV with
1,2-propanediol (propanediol) and triethanolamine (TEA) on skin wound healing was
investigated in female Wistar rats. Additionally, the study aimed to show that the presence
of specific additives, propanediol and triethanolamine, does not exert any negative effect
on wound healing.

The results showed that the prepared hydrogel had a positive effect on inflammation,
angiogenesis, and wound contraction and reduced the total healing time by 29%, with the
total closure of the wound being achieved in 15 days (Figure 12). The paper highlighted the
influence of the bioactive components of AV, related to rhamnogalacturonan and pectin-like
acemannan, which improved the healing process of skin wounds [153].
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A novelty in the area of efficient ecological materials is the new system of biocompati-
ble hydrogels based on AV that was prepared by a completely green synthesis method for
wound healing applications (Figure 13).

Gels 2023, 9, x FOR PEER REVIEW 16 of 32 
 

 

Studying the influence of a commercial hydrogel formulation based on AV with 1,2-
propanediol (propanediol) and triethanolamine (TEA) on skin wound healing was inves-
tigated in female Wistar rats. Additionally, the study aimed to show that the presence of 
specific additives, propanediol and triethanolamine, does not exert any negative effect on 
wound healing. 

The results showed that the prepared hydrogel had a positive effect on inflammation, 
angiogenesis, and wound contraction and reduced the total healing time by 29%, with the 
total closure of the wound being achieved in 15 days (Figure 12). The paper highlighted 
the influence of the bioactive components of AV, related to rhamnogalacturonan and pec-
tin-like acemannan, which improved the healing process of skin wounds [153]. 

 
Figure 12. Images during the wound-healing process in female Wistar rats [153]. 

A novelty in the area of efficient ecological materials is the new system of biocompat-
ible hydrogels based on AV that was prepared by a completely green synthesis method 
for wound healing applications (Figure 13).  

 
Figure 13. Aloe vera-based hydrogel for wound healing dressing: (a) dry hydrogel (b) wet hydrogel. 
The healing process (c) initial time; (d) after 5 min; (e) after 20 days; (f,g) inverted vial method [154]. 
Figure 13. Aloe vera-based hydrogel for wound healing dressing: (a) dry hydrogel (b) wet hydrogel.
The healing process (c) initial time; (d) after 5 min; (e) after 20 days; (f,g) inverted vial method [154].

Hydrogels with different concentrations of AV (5 and 10%, respectively) also contain
other natural components such as salicylic acid, allantoin, and xanthan gum. The hydrogels’
rheological properties, morphology, cell viability, biocompatibility, and cytotoxicity, were
studied. The preliminary examinations showed that the hydrogels are very well supported
on a wound, without stinging even more; they quickly penetrated the tissue and ensured
good hydration of the area. Testing the antibacterial activity of the hydrogels was evalu-
ated both on Gram-positive strains, Staphylococcus aureus, and on Gram-negative strains,
Pseudomonas aeruginosa. The results showed that they have good antibacterial properties
(Figure 14i). Moreover, the in vitro scratch test demonstrated the suitable ability of these
“green” hydrogels to accelerate cell proliferation and migration and induce closure of a
wounded area, making them suitable for wound healing applications (Figure 14ii) [154].
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Figure 14. (i) Live/dead fluorescent images of L929, control, (A)—untreated and treated with
AV5 (B–F) and AV10 (G–K) hydrogels at different concentrations for 48 h. (B,G)—10 mg/mL;
(C,H)—25 mg/mL; (D,I)—50 mg/mL; (E,J)—75 mg/mL; (F,K)—100 mg/mL. (ii) Light microscope
images (a) after in vitro generation of a wound for 24 h. (b) ImageJ analysis of wound closure
percentage [154].

4.4. Healing Burns

A clinical study was conducted on 30 patients with similar types of second-degree
burns in two places on different parts of the body. This research was conducted to eval-
uate the effectiveness of AV cream for partial thickness burns and to compare its results
with those of silver sulfadiazine. Each patient had one burn treated randomly with top-
ical silver sulfadiazine ointment and one treated with Aloe cream. The mean time to
re-epithelialization and healing of partial-thickness burns was significantly shorter for
the Aloe group at 15.9 ± 2 days versus 18.73 ± 2.65 days for the SSD group (p < 0.0001).
Both sites were negative for microbial contamination on days 3, 7, and 13. Study results
showed that AV cream promoted better wound healing with smaller lesions and had
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shorter healing times than silver sulfadiazine [155]. A similar international study was
accomplished on 50 patients with second-degree burns and evaluated the effectiveness of
AV gel compared with 1% silver sulfadiazine cream as a special dressing for the treatment
of superficial and partial thickness burn wounds. The study used 98% unrefined gel from
the inner leaf of the plant. Thermal burn patients bandaged with AV gel showed improve-
ments compared to those bandaged with silver sulfadiazine cream in terms of early wound
epithelialization, early pain relief, and cost-effectiveness of treatment management [156].
Another double-blind, randomized clinical trial in 11 patients treated once daily for 14 days
compared the efficacy of herbal AV cream with 1% silver sulfadiazine in reducing the pain
of second-degree burns. The herbal cream was prepared from AV gel and essential oils of
Lavandula stoechas and Pelargonium roseum. In total, 56 patients were treated with herbal
cream, and another 55 were treated with silver sulfadiazine 1%. Study results demonstrated
that pain intensity at 14 days was significantly reduced in both groups compared to baseline
(p < 0.001). However, a greater reduction in pain from baseline to the 7- and 14-day mark
was observed in the herbal cream group (p = 0.014 and p = 0.05). One case of infection was
reported in the herbal cream group; however, it cleared up with continued treatment. The
findings of this clinical trial showed that the herbal cream was superior to silver sulfadi-
azine in relieving pain for superficial second-degree burns [157]. In an additional clinical
case study, the therapeutic impact of AV gel on chronic skin burns in a 17-year-old patient
with a rejected skin graft is presented. This is a before–after comparative study design in a
case of fire burn in which initiation of AV gel treatment is accompanied by the promotion
of wound repair. Before being treated with gel, the patient who had suffered burns on
30–40% of her body surface for 40 days had a healthy skin graft operation on her previous
chest, which was rejected after 5 days. Following chronic unhealed skin lesions, the patient
was treated with AV gel for 21 days continuously. The skin healing process began with the
formation of granulation tissue and epithelization of the wounds. During the treatment, no
sign of skin infection and no topical side effects of AV gel, such as allergic reactions and
itching, were observed. This study on the impact of AV gel in the healing of burns can be
considered a cheap and quick effect of substitution therapy instead of surgery [158].

4.5. Protection against Chemoradiation Secondary Effects in Cancer Treatment

A multicenter, randomized, double-blind, controlled trial was performed on 120 patients
with head and neck cancer treated with concurrent chemoradiation. Patients received
either AV gel or placebo gel and were assessed for adverse levels of skin toxicity with
the Radiation-Induced Skin Reaction Rating Scale (RISRAS). At the 5th and 6th week of
treatment, grades moderate to severe erythematous skin at values of 13.6% and 24.1%
versus 27.8 and 42.6% were observed for members of the AV gel group and the placebo
group, respectively (p = 0.05 for the 5th week and p = 0.038 for the 6th week). At week 7, in
the placebo group, moderate to severe cases of wet scaling were observed in eight patients
(19.0%) (p = 0.001), as well as a burning sensation with RISRAS scores of 3–4, representing
only 11.9% of patients (p = 0.016). The study authors concluded that there was no pro-
phylactic efficacy for radiation-induced dermatitis in the AV gel group compared with
the placebo group but that topical applications of AV gel along with a routine skin care
program from starting radiation would reduce the severity of any burning sensations,
along with the incidence of erythematous, moist scaling of the skin in head and neck cancer
patients receiving concurrent chemoradiation [159].

4.6. Summary of Clinical Effects of AV on Prevention and Healing of Skin Wounds

An earlier systematic study [121] concluded that AV helps to retain skin moisture
and integrity and prevents skin ulcers due to its content of mucopolysaccharides, amino
acids, zinc, and water. Furthermore, AV was found to be ‘much more effective and less
costly compared to the currently available alternative treatments’ in terms of quality and
speed of wound healing. Considering the tendency to promote traditional medicine as
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well as the rare side effects of AV, the use of this medicinal plant for the healing of skin
wounds is recommended.

AV gel has been demonstrated to be active in wound healing through several reported
mechanisms [31], including increased epithelial cell viability, proliferation, and migration,
moisture retention [160], increased quantity and cross-linking of collagen [161], and hin-
dering inflammation through the decrease of proinflammatory cytokines [162–166]. The
various active components of AV include acemannan, aloesin, aloe-emodin, aloin, emodin,
and glucomannan [68]. Acemannan is known to stimulate epidermal keratinocytes and the
production of fibrotic cytokines [167,168]. Glucomannan, a water-soluble mucopolysaccha-
ride, stimulates fibroblast growth factor production and the activity and proliferation of
these cells, leading to the increased amount of collagen on the wound site with enhanced
transversal connections [21,64,169]. Emodin emodinolin, anthraquinone derivatives found
in AV, act as competitive inhibitors of thromboxane synthetase and have significant anti-
inflammatory properties [21]. The anti-inflammatory properties of AV are related to the
inhibition of proinflammatory cytokines [162,164,165], hindering ROS production [162,164],
and blocking the signalling of JAK1-STAT1/3 [68]. The anti-inflammatory effects and
increased collagen production and cross-linking promote the rearrangement of epithelial
tissues [12], reducing the wounded area and accelerating the healing process [170]. Various
studies have confirmed that topical AV creams heal first- and second-degree burns in less
than half the time than standard treatment with silver sulfadiazine [21,171–173]. AV has
an anti-erythema activity similar to that of the positive control group (i.e., hydrocortisone
gel) after 6 days of treatment [174]. AV gel has also demonstrated potent angiogenic ac-
tivity, an essential process in wound healing, attributed to angiogenic compounds such as
beta-sitosterol [175,176]. Table 2 summarizes various beneficial effects of AV compounds
for wound healing reported in clinical studies.

Table 2. Beneficial effects for wound healing of AV gels.

Enhanced Reported References

Cell viability Sholehvar et al. [115], Liu et al. [177]

Epitelial cell proliferation Moriyama et al. [167], Hashemi et al. [170], Shanmugan et al. [178], Teplicki et al. [179]

Epitelial cell midration Teplicki et al. [179], Negahdari et al. [180], Wahedi et al. [181], Muller et al. [182]

Moisture retention Dal’Belo et al. [160], Hamman et al. [183]

Keratinocyte proliferation Moriyama et al. [167]

Collagen quantity Hekmatpou et al. [21], Rahman et al. [64], Nabipour et al. [121], Abdel Hamid
et al. [169], Hashemi et al. [170], Shanmugan et al. [178]

Collagen cross-linking Hekmatpou et al. [21], Rahman et al. [64], Abdel Hamid et al. [169], Shanmugan
et al. [178]

GSH activity Liu et al. [177]

SOD activity Liu et al. [177]

Antioxidant enzyme activity Anilakumar et al. [184], Hassanpour et al. [185]

Accelerated wound healing
Moriyama et al. [167], Maenthaisong et al. [171], Somboonwong et al. [173], Shanmugan

et al. [178], Negahdari et al. [180], Wahedi et al. [178–181], Hormozi et al. [186], Ali
et al. [187]

Growth factors production Hashemi et al. [170], Wahedi et al. [181]

Wound closure Curto et al. [188]

Lysosomal stabilization Paul et al. [165], DeOliveira et al. [189]

Stimulate fibrotic cytokines Wahedi et al. [181], Zeng et al. [190]

Angiogenesis Moon et al. [175], Choi et al. [176]

Block the signaling of JAK1-STAT1/3 Sánchez et al. [68]
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Table 2. Cont.

Enhanced Reported References

Thromboxane reduction Zeng et al. [21], Hekmatpou et al. [189]

Hindering IL-6 Ma et al. [162], Jiang et al. [164]

Hindering IL-8 Leng et al. [163], Na et al. [191]

Hindering IL-12 Ahluwalia et al. [163], Leng et al. [166]

TNF alpha levels reduced Leng et al. [163], Jiang et al. [164], Paul et al. [165], Ahluwalia et al. [166]

Erythema reduction Fox et al. [174], Reuter et al. [192]

Pain reduction Hekmatpou et al. [21], Rompicherla et al. [119]

T cell proliferation suppressed Li et al. [193]

Lipid peroxidation reduced Liu et al. [177]

Proinflammatory cytokines reduced Ma et al. [162], Leng et al. [163], Jiang et al. [164], Paul et al. [165], Ahluwalia et al. [166]

Type IV collagen degradation Curto et al. [188]

ROS production hindered Ma et al. [162], Jiang et al. [164]

Inflammation reduction Hekmatpou et al. [21], Paul et al. [165]

Recent studies on AV gels with added therapeutic agents have reported the positive
interaction between graphene oxide/reduced graphene oxide (GO/rGO) and AV hydrogels
to be a strongly promising strategy for the advancement of therapeutic approaches for
wound healing (Figure 15) [178].
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Jales et al. further confirmed the great potential of AV mucilaginous hydrogel with
a high keratolytic effect that can be used in psoriasis treatment [127]. Puliero et al. in-
vestigated the use of AV extracts for ocular therapeutic or preventive purposes. They
demonstrated that the best lenses allowing for the high and stable release of AV extract to
the corneal surface are those composed of ionic hydrogels [194]. Capsaicin, a powerful anti-
inflammatory and analgesic agent, poorly water-soluble, was successfully incorporated
into AV gel for topical drug delivery and to reduce skin irritation caused by capsaicin [119].
The AV gels softness, biocompatibility, and fast spreading or penetrating capacity are
particularly useful features to encapsulate and deliver various nanoparticles with antimi-
crobial properties (e.g., ZnO or TiO2) [195], drugs, cell culture, both for wound healing,
and bio-sensing applications [196]. The combination of AV and Rheum palmatum root can
promote the migration of human primary fibroblasts (Figure 16) [182].
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Figure 16. Actin staining of fibroblasts with phalloidin (A); the average length of the fibroblasts
(B); fluorescent actin staining (C) [182].

None of the dressings available on the market today are fully capable of reproducing
all the characteristics of native skin. An asymmetric bilayer membrane with a top dense
polycaprolactone layer that provides mechanical support and a bottom porous layer of
chitosan and AV, aiming to improve the healing process, was designed to mimic both
layers of the skin [197]. The results obtained revealed the potential of these asymmetric
membranes to be applied as wound dressings in the future.

5. Side Effects

No serious adverse reactions were demonstrated following the topical application of
AV inner gel products. AV used in dietary supplements appears to be safe [198]. The inner
gel was evaluated by the Cosmetic Ingredient Review Expert Panel as noncytotoxic [199].
However, due to the cytotoxicity, mutagenicity, and carcinogenicity of anthraquinones, it is
crucial to monitor the content of these phenolic compounds in AV whole leaf extract and
latex [200,201]. Topical and oral use of AV whole leaf extract in humans can cause adverse
clinical effects: skin irritation, hives, cramping, and diarrhea to those who are allergic to
plants in the lily family, for example, onion and tulips [202–204].
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6. Conclusions and Future Prospective Studies

It is important to apply modern delivery techniques to develop affordable products
based on efficacious traditional natural medicines for wound healing and to improve their
therapeutic effect.

Further research is needed to ensure that these formulations reach the pharmaceutical
market. Chemotherapy treatments for cancer are associated with the presence of ulcers in
the oral mucosa that causes pain, bleeding, and difficulty swallowing or speaking. There is
no effective standard treatment, and few studies have been published on the therapeutic
effects of natural products such as AV to improve the local retention period.

Future treatments may arise from medicinal plants, which have fewer side effects and
improved bioavailability for the wound-healing process. In addition, in the future, a great
challenge is represented by the development of an intelligent treatment that presents anti-
inflammatory, antimicrobial, and antioxidant cumulative properties for the treatment of all
types of wounds. Furthermore, the commercialization and use in preclinical research and
clinical practice of natural products used in wound healing must be increased significantly
to discover the potential of these products, considered natural bioactive molecules, in the
treatment and regeneration of skin tissue. Future research should be considered to find
new natural bioactive compounds related to their usage in the wound-healing process and
their ability to act as substitutes for existing antibiotics.

By incorporating therapeutic agents into AV-based hydrogels, it is possible to develop
multifunctional biomaterials that provide sustained release of agents, promote wound
healing, reduce inflammation, and prevent or treat microbial infections. However, it is
important to note that the specific formulation and efficacy of such hydrogels may vary
depending on the therapeutic agents chosen, their concentration, crosslinking method, and
other factors. Extensive research and testing (rheological analysis, drug release profiles,
permeability, and stability studies) are required to optimize the formulation and ensure its
safety and effectiveness for clinical use and to promote human well-being worldwide.
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Abstract: Although titanium and titanium alloys have become the preferred materials for various
medical implants, surface modification technology still needs to be strengthened in order to adapt to
the complex physiological environment of the human body. Compared with physical or chemical
modification methods, biochemical modification, such as the introduction of functional hydrogel
coating on implants, can fix biomolecules such as proteins, peptides, growth factors, polysaccharides,
or nucleotides on the surface of the implants, so that they can directly participate in biological
processes; regulate cell adhesion, proliferation, migration, and differentiation; and improve the
biological activity on the surface of the implants. This review begins with a look at common substrate
materials for hydrogel coatings on implant surfaces, including natural polymers such as collagen,
gelatin, chitosan, and alginate, and synthetic materials such as polyvinyl alcohol, polyacrylamide,
polyethylene glycol, and polyacrylic acid. Then, the common construction methods of hydrogel
coating (electrochemical method, sol–gel method and layer-by-layer self-assembly method) are
introduced. Finally, five aspects of the enhancement effect of hydrogel coating on the surface
bioactivity of titanium and titanium alloy implants are described: osseointegration, angiogenesis,
macrophage polarization, antibacterial effects, and drug delivery. In this paper, we also summarize
the latest research progress and point out the future research direction. After searching, no previous
relevant literature reporting this information was found.

Keywords: hydrogel coating; titanium alloy; biochemical modification; application

1. Introduction

In the 1940s, some scholars implanted pure titanium (Ti) into the femur of mice without
causing adverse reactions, which proved that Ti had good biocompatibility [1]. Later, more
and more scholars began to apply pure Ti in dental implants, joint prostheses, and other
clinical fields. However, in the process of application, it was found that the low hardness
and poor wear resistance of Ti did not meet the requirements of the force parts of knee
joint and hip joint, promoting research into and development of titanium alloys. Ti6Al4V
is an α + β alloy with higher hardness, better wear resistance, and better workability
compared with Ti (Table 1). However, aluminum (Al) and vanadium (V) in Ti6Al4V
alloy are harmful metal elements, which have the risk of releasing after implantation
into the human body. There is an urgent need to develop new medical titanium alloys
with better biocompatibility. Representative materials are Ti–Nb–Zr and Ti–Nb–Zr–ME
(Me (metal)) systems, especially Ti–Nb–Zr–Si (TNZS) alloy, which not only has better
biocompatibility, but also has improved corrosion resistance, and can better match with
human bone tissue [2].
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Table 1. Development of medical titanium and titanium alloys.

Classification Time Representative
Material Advantage Disadvantage

α 1960s Ti Good biocompatibility Low strength, poor wear resistance

α + β

1970s Ti6Al4V
Higher hardness, better wear

resistance, lower elastic modulus,
better mechanical compatibility

Biological toxicity of metal ions
Al and V

1980s Ti6Al7Nb Ti5Al2.5Fe Better biocompatibility Easy corrosion, biological toxicity
of Al metal ions

β 1990s Ti13Nb13Zr
Ti12Mo6Zr2Fe Ti15Mo

The low modulus of elasticity is
close to that of human bones,

non-biological toxicity of
metal ions

Biological activity, abrasion
resistance, and corrosion resistance

still need to be improved

At present, titanium and titanium alloys have become the preferred materials for
medical metal products because of their lower density, higher specific strength, and bet-
ter biocompatibility.

Although medical titanium and titanium alloys have outstanding properties, it is
still necessary to strengthen the research on surface modification technology to match the
complex physiological environment in human body (Figure 1) [3]. Now, construction of
functional coatings on titanium and titanium alloys has attracted more and more attention.
For example, titanium nitride [4], titanium aluminum nitride [5], and titanium dioxide [6]
coatings significantly improve wear resistance and corrosion resistance of titanium and
titanium alloys. The modification of Si–TiO2 nanotubes on the Ti substrate generates a
nanostructured and hydrophilic surface, which can promote cell growth. Moreover, the
existence of the TiO2 nanotubes and Si element improves the in vitro osteogenic differentia-
tion of MC3T3-E1 cells and early bone-formation around the implanted screws [7]. Coating
of silver (Ag), copper (Cu), zinc (Zn), and other antibacterial metal elements show excellent
antibacterial properties [8,9]. Adding Cu with Ti-15Mo reduces the possibility of bacterial
infection during biomedical implant surgeries [10].

Differently from physical or chemical modification methods such as micro-arc oxida-
tion and sandblasting to prepare oxide film or rough surface on the surface of implants,
biochemical modification of fixing specific proteins, peptides, growth factors, polysaccha-
rides, nucleotides, and other biomolecules on the surface of implants can directly participate
in biological processes and regulate cell adhesion, proliferation, migration, and differentia-
tion [11,12]. Hydrogel is a type of hydrophilic three-dimensional network structure formed
by natural or artificial synthetic polymer materials through the gelation process of sol,
which is widely used in many fields such as tissue engineering, drug delivery, and biosen-
sors. The functional hydrogel coatings on titanium implants can effectively coordinate the
advantages of hydrogel (lubricity, biocompatibility, and controlled release) with those of
implants (stiffness, strength, and toughness) [13], and change the electrochemical behavior
of titanium implants and enhance corrosion resistance [14].

In this review, we will first introduce the classification of hydrogel coatings on the
surface of titanium implants, including natural hydrogels and synthetic hydrogels, ac-
cording to the composition of the hydrogel matrix. We will then introduce the common
binding methods of hydrogel coatings and titanium implants, such as the electrochemical
precipitation method, the sol–gel method, and the layer-by-layer self-assembly method.
Subsequently, the improvement of titanium implants by hydrogel coating on osseoin-
tegration, angiogenesis, macrophage polarization, antibacterial, and drug delivery are
summarized in detail. Finally, the possible problems and future development direction of
hydrogel coatings are presented in order to provide reference for scientific research work-
ers in related fields. After searching, no previous research reporting of this information
was found.
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Figure 1. Surface modification methods of titanium and its alloys [3].

2. Classification of Hydrogel Coatings

According to the main components of the hydrogel matrix, hydrogel coatings can be
divided into natural hydrogel coatings and synthetic hydrogel coatings (Table 2).

Table 2. Classification of hydrogel coatings.

Classification Representative Material Advantage Reference

Natural hydrogel
coatings

Collagen-based

Improve the attachment of the peri-implant soft
tissue to titanium at early stages [15]

Enhance tissue vascularization and reduce
inflammatory response [16]

Improve gingival connective tissue response to
titanium implants [17]

Gelatin-based
Improve surface bio-activity [18]

Load with antibacterial agent curcumin [19]

Chitosan-based

Enhance the antibacterial activity and
osteoinductive properties [20]

Develop a close bony apposition or the
osseointegration of dental/craniofacial and

orthopedic implants
[21]

Provide a self-protective surface that prevents
bacterial colonisation and

implant-associated infections
[22]

Great potential in implant anticorrosion [23]

Alginate-based
Improve the antibacterial effect and induce

mineralization of dental implants [24]

Successively functionalize titanium surface [25]
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Table 2. Cont.

Classification Representative Material Advantage Reference

Synthetic hydrogels
coatings

Polyvinyl alcohol Improve the calcium silicate
coating-to-substrate adhesion. [26]

Polyacrylamide Antimicrobial-loaded hydrogel coatings [27]

Polyethylene glycol
Lower albumin adsorption and presented a

decreased fibroblast, Streptococcus sanguinis and
Lactobacillus salivarius adhesion.

[28]

Poly (lacto-glycolic acid) Drug release [29]

Polyacrylic acid Acts as both an effective bioactive surface and an
effective anti-corrosion barrier [14]

2.1. Natural Hydrogel Coating

Natural hydrogel is composed of natural biological materials which are highly sim-
ilar to the extracellular matrix. It is considered as good biomimetic material in tissue
engineering because of its complete bioactivity in promoting cell adhesion, proliferation,
differentiation, and biodegradation. Common natural biomaterials are collagen and gelatin
from animal protein, hyaluronic acid from animal epithelium and connective tissue, chi-
tosan from shells of crustaceans, and alginate from the cytoplasm and cell wall.

2.1.1. Collagen-Based Hydrogel Coating

Collagen is the main component of the extracellular matrix in mammals, and is mainly
distributed in the cornea, cartilage, bone, blood vessels, viscera, intervertebral discs, and
dentin, and plays an important role in supporting and protecting the body and organs. Col-
lagen has the advantages of non-cytotoxicity, good biocompatibility, easy absorption, small
immune response, low antigenicity, etc. Coating titanium alloys with collagen promotes
adhesion, proliferation, and differentiation of born-forming cells [30–33] as well as fibrob-
lasts [34,35]. In comparison with uncoated commercially pure titanium, collagen coating
significantly improves bone mineralization and maturation [36]. More rapid osteointe-
gration will be achieved if the coating is combined with vitamins [37], phospholipid [38],
or hydroxyapatite (HA) [39–41]. Besides osteogenesis, collagen coating can support the
timely conversion of macrophages from the pro-inflammatory M1 to the pro-healing M2
phenotype, inhibiting inflammatory reaction and generating a beneficial osteoimmune
microenvironment [42,43] (Figure 2). Simultaneously, collagen coating prominently facili-
tates angiogenesis of endothelial cells [42] and strengthens local blood supply restoration
through sustained release of vascular endothelial growth factor (VEGF) [44].

2.1.2. Gelatin-Based Hydrogel Coating

Gelatin is a product of collagen hydrolysis but retains arginine–glycine–aspartic (RGD)
cell adhesion peptide and protease degradation sites of collagen with lower immuno-
genicity. Gelatin-based hydrogel coatings enhance the integration between implant and
tissue [45], and promote biological activity by loading various growth factors. For example,
gelatin coating loaded with VEGF/bone morphogenetic protein 2 (BMP-2) shell-core micro-
spheres promoted osteogenic differentiation and osseointegration effectively in 3D-printed
porous titanium alloy [46]. In 2000, Van den Bulcke et al. introduced the methacryl group
into modified gelatin for the first time to prepare methacryl amide gelatin, which gave the
gelatin the property of photo-cross-linking under the photoinitiator and light [47]. When
loaded with a short cationic antimicrobial peptide and synthetic silicate nanoparticles, the
photo-cross-linked gelatin-based hydrogel coating demonstrated excellent antimicrobial
activity and enhanced osteogenesis [48]. The addition of ginger inhibited the growth of
S. mutans and P. gingivalis [49]. Methylacrylamide gelatin combined with photosensitizer
and photocatalyst offers direct fibroblast activation [50] (Figure 3) and multi-mode pho-
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tothermal and photodynamic antibacterial effects [51]. Furthermore, the allylated gelatin
co-encapsulated human umbilical vein endothelial cells (HUVECs) and human mesenchy-
mal stromal cells (hMSCs) support and achieve concurrent vasculogenic and osteogenic
performance [52].
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Figure 3. Fibroblast activation, or fibroblast-myofibroblast transition, of NIH/3T3 cells after ir-
radiation [50]. (A) Representative fluorescence images of NIH/3T3 cells cultured with different
samples for 2 days. The expression of α-SMA and Thy-1 was stained as green. (B) Cellular ATP
level reflected by luminescence intensity after different treatments. (C) Western blotting detect-
ing the expression of Thy-1, α-SMA, HSP70, HSP90, Smad-2, and p-Smad-2 after different treat-
ments. a: TCPs; b: Ti/GelMAc/MPDA@Ce6; c: TCPs + Laser; d: Ti/GelMAc/MPDA@Ce6 + Laser.
(D–F) Quantitative analysis according to Western blotting results. (n = 6, ** p < 0.01, N.S.: no signifi-
cance). (For interpretation of the references to color in this figure legend, the reader is referred to the
Web version of this article.)

2.1.3. Chitosan-Based Hydrogel Coating

Chitosan, the deacetylated chitin, is the only natural alkaline polysaccharide with
charge. Due to their pH, ionic strength, and temperature sensitivity, chitosan-based hy-
drogels have good application prospects in the fields of targeting, sustained drug release,
tissue engineering, and medical dressings [53]. Chitosan-based hydrogel coatings increase
the antibacterial ability of the implant by loading antibacterial agents [54–56], or metal
ions (Ag, Cu) [57–60]. Coatings give the implant the photocatalytic antibacterial effect by
modifying or loading novel semiconductor materials, such as graphene [61], molybdenum
disulfide [62], black phosphorus [63], and molybdenum diselenide [64]. They also promote
osteogenesis through loading drugs, (for example, pitavastatin [65] and quercetin [66]),
active substances (insulin growth factor binding protein-3 [67] and BMP-2 [68]) and inor-
ganic matter (HA [69,70] and bioactive glass [71]). In addition, chitosan combines with
polyanions such as gelatin [72,73], hyaluronic acid [74], and sodium alginate [75,76] to form
a polyelectrolyte complex, promoting the surface functionalization of titanium. Modified
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carboxymethyl chitosan nanofibers, as a novel implant coating on titania nanotube arrays,
inhibit bacterial colony formation and increase osteoblast cell survival [77] (Figure 4). Simi-
larly, carboxymethyl chitosan loaded with silver nanoparticles enhances the antibacterial
properties of the titanium alloy [78].
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2.1.4. Alginate-Based Hydrogel Coating

Alginate is a type of linear hydrophilic polysaccharide existing in brown algae. It
forms hydrogels by ionic cross-linking with Ca2+ and other polyvalent inorganic cations.
There are a large number of –OH and –COOH groups on the alginate skeleton, which can be
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modified by chemical or physical methods to achieve controlled release of cells or bioactive
molecules in response to temperature, pH, and light [79]. Composite coating formed by
alginate crosslinking with collagen enhances the cell adhesion of titanium implants [80,81].
Alginate and chitosan coating improves the biomineralization, the antibacterial activity,
and corrosion resistance [75,82]. The addition of Ag further promotes the antibacterial
ability and reduces the bacterial adhesion [83,84]. Alginate-based hydrogel coatings also
provide sustained antibacterial activity by loading various antibacterial agents such as gen-
tamicin [68], vancomycin [85], and chlorchloridine [86], and improving in vitro osteogenic
differentiation as well as bone integration by loading BMP2 [87] and RGD [88].

2.2. Synthetic Hydrogel Coatings

The synthetic hydrogels have great application potential due to the wide source of
raw materials, simple synthesis method, and controllable composition and structure. Syn-
thetic hydrogels can be divided into the following functional groups: non-ionic hydrogels
including polyvinyl alcohol (PVA), polyacrylamide (PAM), poly N-isopropylacrylamide
(PNIPAm), polyethylene glycol (PEG), poly (lacto-glycolic acid) (PLGA), etc., and ionic
hydrogels such as polyacrylic acid (PAA).

PVA hydrogels with porous titanium bases are being developed to repair or replace
articular cartilage due to their high mechanical strength [89]. The Ti–hydrogel artificial
cartilage material constructed with polydopamine (PDA), PVA, HA, or PAA as raw materi-
als is an ideal high-strength and low-friction biomimetic cartilage material [90]. The novel
“soft (PVA hydrogel layer)–hard (porous Ti6Al4V alloy substrate)” structure improves the
surface wettability and tribological properties of Ti6Al4V alloy [91].

PAM hydrogel is an injectable soft-tissue-filling material. PAM-based hydrogels in
combination with titanium-oxide nanotubes are also widely used as potential candidates for
cartilage replacement [92]. PAM/PVA hydrogel on Ti6Al4V alloy configuration combines
the good load-bearing capacity of the rigid substrate and the excellent lubrication of the
hydrogel layer [93]. The cross-linked network porous structure of hydrogel is the main
factor accounting for the low dynamic friction [94].

PNIPAm is a thermo-responsive polymer with lower critical solution temperature
(LCST) around 32 ◦C. When the temperature is above the LCST, the polymer chains become
hydrophobic and collapse, resulting in dense crosslinking networks in which the loaded
molecules are more likely to be trapped, thus leading to slow release [95].

PEG is obtained by glycol dehydration polycondensation. The functional-group-
hydroxyl at the end of the molecular chain is prone to chemical reactions and chemical
modifications [96]. PLGA–PEG–PLGA hydrogels, polymerization of PLGA with PEG,
are suitable for drug loading in vitro and sustained drug release in vivo, owing to the
thermo-sensitive properties [97].

PAA hydrogels are three-dimensional macromolecules containing a large number of
carboxyl groups that cannot move freely. When the pH value of the solution is different,
it presents different degrees of shrinkage or swelling state. It can be used to prepare a
simple and low-cost hydrogel-based bone adhesive to improve the osseointegration and
anti-infection ability of the bone-implant interface [98].

3. Binding Method of Hydrogel Coating and Titanium Implant (Preparation Method
of Hydrogel Coating)

Titanium implants have some disadvantages and one of the effective strategies is
to prepare multifunctional hydrogel coatings on the surface. The most commonly used
preparation method is sol–gel method.

3.1. Electrochemical Methods

The electrochemical methods for preparing hydrogel coatings mainly include electro-
chemical deposition and electrophoretic deposition. Electrochemical deposition refers to the
process of forming coatings on the surface of metals or alloys in aqueous or non-aqueous
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solutions of inorganic salts and bio-active factors, which is a promising technique for sur-
face modification of implants with various shapes, especially deformed structures [99,100].
The chitosan hydrogel coating, which is a versatile platform for Cu immobilization and pre-
cisely controlled synthesis via electrochemical deposition, has in vitro cell biocompatibility
and catalyzed nitric-oxide-generation activity [101] (Figure 5). Electrophoretic deposi-
tion refers to the phenomenon of powder particles deposited from the suspension on the
electrodes with opposite charges and certain shapes, relying on the action of the direct
current [102]. The lanthanum- and silicate-substituted composite coating on a titanium
implant achieved by the electrophoretic deposition method exhibited strong osteogenic
ability [103]. Moreover, UV irradiation can be used as a crosslinking activator to deposit
gentamicin-loaded agarose hydrogels, controlling the release of the loaded antibacterial
agents while improving cell integration [104].
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Figure 5. Electrochemical construction of a catechol-grafted chitosan film for Cu2+ incorporation [101].

3.2. Sol–Gel Method

Hydrogel coatings are mostly prepared by the sol–gel method. That is, monomers and
coupling agents, as well as substances with different functions (initiators, loaded drugs,
etc.), are dissolved in water to generate a free-radical polymerization reaction to form
uncross-linked polymer chains. Then, the formulated aqueous solution is coated on the
prepared matrix, and the polymer chain is cross-linked into a polymer network by the
coupling agent. Finally, the polymer network is connected to the matrix by reacting with
complementary functional groups on the matrix surface (Figure 6) [105].
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Figure 6. Principle of hydrogel coating [105]. (a) Formulation: monomer units and coupling agents
copolymerize into polymer chains, but do not crosslink into a network, resulting in an aqueous
solution. The solution may also contain other compounds for various functions but are not drawn
here. (b) Substrate preparation: functional groups complementary to the coupling agents are imparted
onto the surface of a substrate. (c) Paint: The aqueous solution is painted on the substrate by various
operations. (d) Cure: The coupling agents react with each other to crosslink the polymer chains into
network and react with the complementary functional groups to interlink the polymer network to
the substrate.

Common methods of applying aqueous solution to the substrate are spraying [106],
spin [26,107], and impregnated lift [52,108]. In order to enhance integration between
implant material and hydrogel, a PDA layer was introduced onto the surface of the titanium
alloy. Through chemical crosslinking between PDA and gelatin [45,51] or HRP/H2O2
catalysis [78], the hydrogel precursor could simply form a firm gel layer on the titanium
alloy plate. Methylacryylated gelatin (GelMA) is a photo-cross-linked gelatin derivative.
The photoinitiator [109] or catechol motifs [50,110] stabilize the GelMA hydrogel system
and make the coating tightly adhere to titanium substrates after 365 nm UV exposure. The
sol–gel method caused by ionizing radiation is a safe, simple operation with no polluting
effects. Unfortunately, this method is rarely used in the preparation of hydrogel coatings
on titanium and titanium alloys.

3.3. Layer-by-Layer Self-Assembly

Layer-by-layer self-assembly (LBL) is a popular surface modification method that
uses electrostatic adsorption to self-assemble layers of materials with opposite charges
into multilayer structures [111] (Figure 7). The assembly process is simple and gentle,
and can maintain the biological activity of cytokines and achieve sustained release drug
delivery [112]. However, it is necessary to pretreat the Ti surface with microarc oxidation,
electrochemical deposition technology [113], etc., to firmly immobilize the multilayers. As
one of the silyl reagents, 3-aminopropyl triethoxysilane is often used to aminofunctionalize
titanium substrates, promoting covalent coupling to form precursor layers and facilitating
the construction of future multilayer coatings [114]. The titanium alloy surfaces can also con-
jugate with dopamine as the base layer, which enables the deposition of gelatin molecules
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of hydrogel precursor [115]. PDA is a common mussel-inspired anchoring polymer and ex-
hibits powerful reactivity to various bioactive molecules containing carboxyl groups, amino
groups, and thiol groups. A multilayer type-I-collagen decorated nanoporous network was
successfully developed on alkali-treated titanium surfaces via PDA coating and LBL [42].
The phase-transited lysozyme provides a new approach to achieving a high binding force
that is superior to dopamine, and which forms an amyloid-like microfiber net that tightly
adheres to Ti surfaces according to the transition process of lysozyme based on the β-sheet
of lysozyme microfibers [116,117]. In addition, tannic acid is a low-cost plant polyphenol,
which can bind materials tightly via hydrogen bonds, Michael addition reactions, Schiff
base reactions, etc., due to the composition of a glucose core and a hydroxyl-rich phenolic
shell, show great potential in LBL [118].
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4. Characterization Methods of Surface Modification

Characterization methods for hydrogel coatings include nuclear magnetic resonance
(NMR), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and
scanning electron microscopy (SEM). The position of the resonance signal on the NMR
spectrum reflects the local structure of the sample molecules, such as functional groups.
FTIR is the absorption spectrum generated by the absorption of specific wavelengths of
infrared light during the vibrational energy level transition of bond-forming atoms in
compound molecules, and is mainly used for structural analysis, qualitative identification,
and quantitative analysis. XRD is the crystal structure analysis of hydrogel precursor
polymer, such as fibroin protein, collagen, and other natural macromolecules containing
crystal structure, or loaded nanoparticles such as biological glass and HA. Moreover, SEM
and 3D optical profilometer are used to detect the morphological changes and thickness of
hydrogel coating, respectively.

5. Application of the Hydrogel Coating
5.1. Osseointegration

Osseointegration is the direct contact between the implant and the bone tissue under
the optical microscope, without fibrous connective tissue. Good osseointegration is a key
factor in the long-term success of implants. Physical and chemical modification methods,
such as changing surface properties [119] and loading inorganic substances, mainly in-
directly affect cell behavior, with limitations in improving osteogenic activity [120,121].
Biochemical modifications caused by biomolecules [122–127] immobilized on the surface
of titanium implants directly participate in biological processes and are more effective in
inducing bone-formation, especially in poor bone conditions [128].

Hydrogel is a three-dimensional network cross-linked structure, which can not only
simulate the extracellular matrix environment and develop bio-mimetic implants to design
and repair bone defects [129], but also serve as drug carrier to carry and slowly release
various active substances to promote bone-formation. Poloxamer-407 hydrogel loaded
with simvastatin induces endogenous osteogenic growth factors and promotes bone in-
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growth [130]. Pluronic F-127 hydrogel controls the release of 1α,25-Dihydroxyvitamin D3
as a bio-cap [131]. A non-toxic click hydrogel that rapidly polymerizes in situ provides
localized controlled delivery of osteoprotective factor Semaphorin 3A [132]. Hydrogel con-
taining BMP-2 facilitates dimensionally stable bone regeneration [133]. Dopamine-loaded
RGD coatings on a vaterite-modified titanium surface successfully provided a solution to
bone remodeling imbalance in osteoporosis by promoting osteoblasts and inhibiting os-
teoclasts at different concentrations [88] (Figure 8). Titanium implants loaded with human
bone marrow mesenchymal stem cells (hBMSCs) show superior tissue ingrowth, and the
synergic action of the bioactive hydrogel and hBMSCs increases both the bone deposition
and integration [134]. In addition to these active ingredients, some inorganic substances
such as a tri-calcium phosphate- [135], HA- [136], and silica-nanoparticle-loaded [137]
hybrid hydrogels also improve the osteogenic ability of titanium implants, especially in
combination with BMP-2 [138] or osteoblasts [139].
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5.2. Angiogenesis

Adequate blood supply plays an indispensable role in promoting bone regeneration,
and angiogenesis promotion has become one of the key factors for the success of titanium
implants. Hydrogels can act as carriers for drugs, growth factors, and cells, to promote
angiogenesis around titanium implants. The combination of simvastatin-loaded hydrogel
coating with porous titanium alloy significantly improved the formation of new blood
vessels around rabbit tibial implants, providing an effective strategy for bone integration
and bone growth [140]. The heat-sensitive collagen hydrogel/porous titanium alloy scaffold
system equipped with VEGF, increased vascular permeability, promoted proliferation and
induction of HUVECs, and aided in angiogenic-mediated bone regeneration [44] (Figure 9).
The composite scaffold loaded with VEGF and BMP continuously provided angiogenic
and osteogenic growth factors at the site of osseous defect, thus exhibiting higher bone
integration capacity and new bone amount [46,141]. Combining cell-laden hydrogels with
porous titanium alloys develops a vascularized bone implant. Co-encapsulating hMSCs
with HUVECs [52] or endothelial progenitor cells (EPCs) [142], support HUVEC- and
EPC-spreading and vascular-like network formation, along with osteogenesis of hMSCs.
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5.3. Macrophage Polarization

Macrophage polarization is a reversible and modified dynamic process involving in the
occurrence, development and outcome of many immune inflammatory diseases, including
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peri-implantitis. The introduction of hydrogel for “reprogramming” of the macrophage
state is a novel strategy to induce resolution of inflammation [143]. Interleukin-4 (IL-4)
is a common inflammatory factor, which can regulate the antigen-presenting ability of
macrophages, inhibit the secretion of inflammatory factors such as IL-1 β and TNF- α, and
promote the differentiation of macrophages into profibrotic macrophages to secrete TGF-β.
IL-4-loading of a hydrogel system on titanium modulated pro-inflammatory reactions [110].
Hydrogels containing interferon-γ and IL-4 were able to modulate the transformation
with a stronger effect than those containing only IL-4 [144] (Figure 10). Combination of
IL-4 and cell adhesive motif (RGD) onto the Ti substrate synergistically generated a more
favorable early-stage osteo-immune environment with superior osteogenic properties [145].
Dexamethasone, as a glucocorticoid, can also regulate macrophage polarization and plays
an important role in the regression of inflammation. The novel DNA hydrogel on the
titanium surface, as the platform for dexamethasone delivery, extends the half- life of the
release profile [146]. Reactive oxygen species (ROS) produced by macrophages regulate
a variety of physiological functions including endothelial cells growth, migration, and
mesenchymal stem cells activation. Removing excessive ROS by a two-component hydrogel
coating containing borate ester bond and thymosin β4 favors M1 to M2 phenotype switch
of macrophages and inflammatory response regulation [147].
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5.4. Antibacterial

Bacterial biofilm formation can cause implant infection and osseointegration loss, re-
sulting in loosening and dropping. Hydrogels with good biocompatibility and drug loading
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capability can slowly release various antibacterial components to prevent initial bacterial ad-
hesion [13]. Designing and constructing a hydrogel drug-controlled release system by load-
ing with antibacterial drugs such as gentamicin [104,108,148] or vancomycin [98,149,150]
on a titanium surface is a frequently used strategy. Antibacterial peptides have garnered
more attention as alternative antibacterial agents of implant coating due to their unique
antibacterial mechanism [151,152]. Bacteriophage-loaded hydrogels also showed excellent
antimicrobial activity in inhibiting attachment and colonization of multidrug-resistant
E. faecalis surrounding and within femoral tissues [153]. Metal antibacterial agents are
introduced into the implant hydrogel coating because of their broad-spectrum antibac-
terial properties and no drug resistance. Among them, silver ion is most commonly
used [26,78,154,155]. Metal oxide antimicrobial agents such as zinc oxide [109] and calcium
oxide [110] also show significant antibacterial ability in the coating, although Zn ion has
renal absorption toxicity. Photodynamic therapy is a promising modality in antibacterial
material design. The introduction of photosensitizer Chlorin e6 with laser-triggered ROS
generation property exhibited a remarkable and rapid antibacterial activity when the laser
power was 1 W cm−2 [50]. Coatings with semiconductor photocatalytic materials, such
as bismuth [51] and red phosphorus [156], can produce ROS, kill bacteria and eradicate
biofilm under light, which might provide a novel multimodal antibacterial and anti-biofilm
treatment for infection.

5.5. Drug Delivery

Hydrogels have been widely used in various fields of medicine as vehicles to control
the continuous release of drugs [157]. Loading cefuroxime, tetracycline, amoxicillin, or
acetylsalicylic acid through hydrogel coating can improve the anti-infection effect of the
implant [158]. Loading bone-metabolism-related drugs, proteins, peptides, and growth
factors has demonstrated better osseointegration, especially in challenged degenerative
conditions, such as osteoporosis, osteoarthritis, and osteogenesis imperfecta [159]. Simi-
larly, hydrogels can load with cytokines to promote macrophage polarization [160] and
angiogenesis [141], which have great potential for application in bone-tissue regeneration
and repair.

6. Conclusions and Future Protects

In recent decades, metallic materials have been widely used in the field of biomaterials
for their good mechanical properties and biocompatibility. Among them, the application
prospects of biomedical titanium alloy are particularly remarkable. However, some dis-
advantages of titanium alloys limit their further application. Therefore, scientists have
been working to explore improvements in the properties of titanium alloys. Hydrogel
coatings can serve as ideal carriers to introduce drugs, peptides, metal ions, growth factors,
and cells to effectively bio-modify titanium alloys. In this study, we have reviewed the
popular matrix of hydrogel coatings, especially the natural materials such as collagen,
gelatin, chitosan, and alginate. The usual modification methods are the electrochemical
method, the sol–gel method, and layer-by-layer self-assembly. Hydrogel coatings signifi-
cantly improve the properties of the titanium implant in osseointegration, angiogenesis,
macrophage polarization, antibacterial effects, and drug delivery.

Although the improvement of titanium alloy caused by hydrogel coating is obvious,
there are still some problems worth noting: (1) The mechanical properties of hydrogel coat-
ing are poor, and whether some inorganic fillers can be added to promote bone integration
and mechanical properties needs further research. (2) The strong bond between the hydro-
gel coating and titanium alloy needs to be further strengthened. (3) Some semiconductor
materials have excellent photocatalytic properties, and the introduction of semiconductor
materials in hydrogel coatings is promising for photodynamic therapy. Therefore, future
research should focus on these aspects to further improve the properties of hydrogel coating
on titanium alloy.
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